
Part II
Using C++ Operators

163

EXAMPLE
C++ By

8

Using C++ Math
Operators and
Precedence

If you are dreading this chapter because you don’t like math—relax,

C++ does all your math for you! It is a misconception that you have

to be good at math to understand how to program computers. In

fact, programming practice assumes the opposite is true! Your

computer is your “slave,” to follow your instructions, and to do all

the calculations for you. This chapter explains how C++ computes

by introducing you to

♦ Primary math operators

♦ Order of operator precedence

♦ Assignment statements

♦ Mixed data type calculations

♦ Type casting

Chapter 8 ♦ Using C++ Math Operators and Precedence

164

Many people who dislike math actually enjoy learning how the

computer handles it. After learning the math operators and a few

simple ways in which C++ uses them, you should feel comfortable

using calculations in your programs. Computers are fast, and they

can perform math operations much faster than you can!

C++’s Primary Math
Operators

A C++ math operator is a symbol used for adding, subtracting,

multiplying, dividing, and other operations. C++ operators are not

always mathematical in nature, but many are. Table 8.1 lists these

operator symbols and their primary meanings.

Table 8.1. C++ primary operators.

Symbol Meaning

* Multiplication

/ Division and Integer Division

% Modulus or Remainder

+ Addition

- Subtraction

Most of these operators work in the familiar way you expect

them to. Multiplication, addition, and subtraction produce the same

results (and the division operator usually does) as those produced

with a calculator. Table 8.2 illustrates four of these simple operators.

Table 8.2. Typical operator results.

Formula Result

4 * 2 8

64 / 4 16

80 - 15 65

12 + 9 21

165

EXAMPLE
C++ By

Table 8.2 contains examples of binary operations performed with

the four operators. Don’t confuse binary operations with binary
numbers. When an operator is used between two literals, variables,

or a combination of both, it is called a binary operator because it

operates using two values. When you use these operators (when

assigning their results to variables, for example), it does not matter

in C++ whether you add spaces to the operators or not.

CAUTION: For multiplication, use the asterisk (*), not an x as

you might normally do. An x cannot be used as the multiplica-

tion sign because C++ uses x as a variable name. C++ interprets

x as the value of a variable called x.

The Unary Operators

A unary operator operates on, or affects, a single value. For

instance, you can assign a variable a positive or negative number by

using a unary + or –.

Examples

1. The following section of code assigns four variables a posi-

tive or a negative number. The plus and minus signs are all

unary because they are not used between two values.

The variable a is assigned a negative 25 value.
The variable b is assigned a positive 25 value.
The variable c is assigned a negative a value.
The variable d is assigned a positive b value.

a = -25;// Assign ‘a’ a negative 25.

b = +25;// Assign ‘b’ a positive 25 (+ is not needed).

c = -a; // Assign ‘c’ the negative of ‘a’ (-25).

d = +b; // Assign ‘d’ the positive of ‘b’ (25, + not needed).

Chapter 8 ♦ Using C++ Math Operators and Precedence

166

2. You generally do not have to use the unary plus sign. C++

assumes a number or variable is positive, even if it has no

plus sign. The following four statements are equivalent to

the previous four, except they do not contain plus signs.

a = -25; // Assign ‘a’ a negative 25.

b = 25; // Assign ‘b’ a positive 25.

c = -a; // Assign ‘c’ the negative of ‘a’ (-25).

d = b; // Assign ‘d’ the positive of ‘b’ (25).

3. The unary negative comes in handy when you want to

negate a single number or variable. The negative of a nega-

tive is positive. Therefore, the following short program

assigns a negative number (using the unary –) to a variable,

then prints the negative of that same variable. Because it had

a negative number to begin with, the cout produces a posi-

tive result.

// Filename: C8NEG.CPP

// The negative of a variable that contains a negative value.

#include <iostream.h>

main()

{

 signed int temp=-12; // ‘signed’ is not needed because

 // it is the default.

 cout << -temp << “\n”; // Produces a 12 on-screen.

 return 0;

}

The variable declaration does not need the signed prefix,

because all integer variables are signed by default.

4. If you want to subtract the negative of a variable, make sure

you put a space before the unary minus sign. For example,

the following line:

new_temp + new_temp- -inversion_factor;

temporarily negates the inversion_factor and subtracts that

negated value from new_temp.

167

EXAMPLE
C++ By

Division and Modulus

The division sign, /, and the modulus operator, %, might behave

in ways unfamiliar to you. They’re as easy to use, however, as the

other operators you have just seen.

The forward slash (/) is always used for division. However, it

produces an integer called divide if integer values (literals, variables,

or a combination of both) appear on both sides of the slash. If there

is a remainder, C++ discards it.

The percent sign (%) produces a modulus, or a remainder, of an

integer division. It requires that integers be on both sides of the

symbol, or it does not work.

Examples

1. Suppose you want to compute your weekly pay. The follow-

ing program asks for your yearly pay, divides it by 52, and

prints the results to two decimal places.

// Filename: C8DIV.CPP

// Displays user’s weekly pay.

#include <stdio.h>

main()

{

 float weekly, yearly;

 printf(“What is your annual pay? “); // Prompt user.

 scanf(“%f”, &yearly);

 weekly = yearly/52; // Computes the weekly pay.

 printf(“\n\nYour weekly pay is $%.2f”, weekly);

 return 0;

}

Because a floating-point number is used in the division, C++

produces a floating-point result. Here is a sample output

from such a program:

What is your annual pay? 38000.00

Your weekly pay is $730.77

The modulus (%)
computes
remainders in
division.

Chapter 8 ♦ Using C++ Math Operators and Precedence

168

Because this program used scanf() and printf() (to keep you
familiar with both ways of performing input and output),
the stdio.h header file is included rather than iostream.h.

2. Integer division does not round its results. If you divide two
integers and the answer is not a whole number, C++ ignores
the fractional part. The following printf()s help show this.
The output that results from each printf() appears in the

comment to the right of each line.

printf(“%d \n”, 10/2); // 5 (no remainder)

printf(“%d \n”, 300/100); // 3 (no remainder)

printf(“%d \n”, 10/3); // 3 (discarded remainder)

printf(“%d \n”, 300/165); // 1 (discarded remainder)

The Order of Precedence
Understanding the math operators is the first of two steps toward

understanding C++ calculations. You must also understand the order of
precedence. The order of precedence (sometimes called the math hierarchy
or order of operators) determines exactly how C++ computes formulas.
The precedence of operators is exactly the same concept you learned in
high school algebra courses. (Don’t worry, this is the easy part of
algebra!) To see how the order of precedence works, try to determine

the result of the following simple calculation:

2 + 3 * 2

If you said 10, you are not alone; many people respond with 10.
However, 10 is correct only if you interpret the formula from the left.
What if you calculated the multiplication first? If you took the value
of 3 * 2 and got an answer of 6, then added the 2, you receive an
answer of 8—which is exactly the same answer that C++ computes
(and happens to be the correct way)!

C++ always performs multiplication, division, and modulus
first, then addition and subtraction. Table 8.3 shows the order of the
operators you have seen so far. Of course, there are many more
levels to C++’s precedence table of operators than the ones shown in
Table 8.3. Unlike most computer languages, C++ has 20 levels of
precedence. Appendix D, “C++ Precedence Table,” contains the
complete precedence table. Notice in this appendix that multiplica-
tion, division, and modulus reside on level 8, one level higher than

C++ performs
multiplication,
division, and
modulus before
addition and
subtraction.

169

EXAMPLE
C++ By

level 9’s addition and subtraction. In the next few chapters, you learn
how to use the remainder of this precedence table in your C++

programs.

Table 8.3. Order of precedence for primary operators.

Order Operator

First Multiplication, division, modulus remainder (*, /, %)

Second Addition, subtraction (+, -)

Examples

1. It is easy to follow C++’s order of operators if you follow the

intermediate results one at a time. The three calculations in

Figure 8.1 show you how to do this.

6 + 2 * 3 - 4 / 2

6 + 6 - 4 / 2

6 + 6 - 2

 12 - 2

 10

3 * 4 / 2 + 3 - 1

 12 / 2 + 3 - 1

 6 + 3 - 1

 9 - 1

 8

20 / 3 + 5 % 2

 6 + 5 % 2

 6 + 1

 7

Figure 8.1. C++’s order of operators with lines indicating precedence.

Chapter 8 ♦ Using C++ Math Operators and Precedence

170

2. Looking back at the order of precedence table, you might

notice that multiplication, division, and modulus are on the

same level. This implies there is no hierarchy on that level. If

more than one of these operators appear in a calculation,

C++ performs the math from the left. The same is true of

addition and subtraction—C++ performs the operation on

the extreme left first.

Figure 8.2 illustrates an example showing this process.

10 / 5 * 2 - 2 + 1

 2 * 2 - 2 + 1

 4 - 2 + 1

 2 + 1

 3

Figure 8.2. C++’s order of operators from the left, with lines indicating
precedence.

Because the division appears to the left of the multiplication,
it is computed first.

You now should be able to follow the order of these C++
operators. You don’t have to worry about the math because C++
does the actual work. However, you should understand this order
of operators so you know how to structure your calculations. Now
that you have mastered this order, it’s time to learn how you can

override it with parentheses!

Using Parentheses

If you want to override the order of precedence, you can add
parentheses to the calculation. The parentheses actually reside on a
level above the multiplication, division, and modulus in the prece-
dence table. In other words, any calculation in parentheses—whether
it is addition, subtraction, division, or whatever—is always calcu-
lated before the rest of the line. The other calculations are then
performed in their normal operator order.

171

EXAMPLE
C++ By

The first formula in this chapter, 2 + 3 * 2, produced an 8 because
the multiplication was performed before addition. However, by
adding parentheses around the addition, as in (2 + 3) * 2, the answer
becomes 10.

In the precedence table shown in Appendix D, “C++ Prece-
dence Table,” the parentheses reside on level 3. Because they are
higher than the other levels, the parentheses take precedence over

multiplication, division, and all other operators.

Examples

1. The calculations shown in Figure 8.3 illustrate how paren-

theses override the regular order of operators. These are the

same three formulas shown in the previous section, but their

results are calculated differently because the parentheses

override the normal order of operators.

6 + 2 * (3 - 4) / 2

 6 + 2 * -1 / 2

 6 + -2 / 2

 6 + -1

 5

3 * 4 / 2 + (3 - 1)

3 * 4 / 2 + 2

 12 / 2 + 2

 6 + 2

 8

20 / (3 + 5) % 2

20 / 8 % 2

 2 % 2

 0

Figure 8.3. Example of parentheses as the highest precedence level
with lines indicating precedence.

Parentheses override
the usual order of
math.

Chapter 8 ♦ Using C++ Math Operators and Precedence

172

2. If an expression contains parentheses-within-parentheses,

C++ evaluates the innermost parentheses first. The expres-

sions in Figure 8.4 illustrate this.

5 * (5 + (6 - 2) + 1)

 5 * (5 + 4 + 1)

 5 * (9 + 1)

 5 * 10

 50

Figure 8.4. Precedence example of parentheses-within-parentheses
with lines indicating precedence.

3. The following program produces an incorrect result, even

though it looks as if it will work. See if you can spot the

error!

Comments to identify your program.
Include the header file iostream.h so cout works.
Declare the variables avg, grade1, grade2, and grade3 as floating-
point variables.
The variable avg becomes equal to grade3 divided by 3.0 plus
grade2 plus grade1.
Print to the screen The average is and the average of the three
grade variables.
Return to the operating system.

// Filename: C8AVG1.CPP

// Compute the average of three grades.

#include <iostream.h>

main()

{

 float avg, grade1, grade2, grade3;

 grade1 = 87.5;

 grade2 = 92.4;

 grade3 = 79.6;

173

EXAMPLE
C++ By

 avg = grade1 + grade2 + grade3 / 3.0;

 cout << “The average is “ << avg << “\n”;

 return 0;

}

The problem is that division is performed first. Therefore,

the third grade is divided by 3.0 first, then the other two

grades are added to that result. To correct this problem, you

simply have to add one set of parentheses, as shown in the

following:

// Filename: C8AVG2.CPP

// Compute the average of three grades.

#include <iostream.h>

main()

{

 float avg, grade1, grade2, grade3;

 grade1 = 87.5;

 grade2 = 92.4;

 grade3 = 79.6;

 avg = (grade1 + grade2 + grade3) / 3.0;

 cout << “The average is “ << avg << “\n”;

 return 0;

}

TIP: Use plenty of parentheses in your C++ programs to clarify

the order of operators, even when you don’t have to override

their default order. Using parentheses makes the calculations

easier to understand later, when you might have to modify the

program.

Shorter Is Not Always Better

When you program computers for a living, it is much more

important to write programs that are easy to understand than

programs that are short or include tricky calculations.

Chapter 8 ♦ Using C++ Math Operators and Precedence

174

Maintainability is the computer industry’s word for the chang-

ing and updating of programs previously written in a simple

style. The business world is changing rapidly, and the pro-

grams companies have used for years must often be updated to

reflect this changing environment. Businesses do not always

have the resources to write programs from scratch, so they

usually modify the ones they have.

Years ago when computer hardware was much more expen-

sive, and when computer memories were much smaller, it was

important to write small programs, which often meant relying

on clever, individualized tricks and shortcuts. Unfortunately,

such programs are often difficult to revise, especially if the

original programmers leave and someone else (you!) must

modify the original code.

Companies are realizing the importance of spending time to

write programs that are easy to modify and that do not rely on

tricks, or “quick and dirty” routines that are hard to follow. You

can be a much more valuable programmer if you write clean

programs with ample white space, frequent remarks, and

straightforward code. Use parentheses in formulas if it makes

the formulas clearer, and use variables for storing results in

case you need the same answer later in the program. Break

long calculations into several smaller ones.

Throughout the remainder of this book, you can read tips on

writing maintainable programs. You and your colleagues will

appreciate these tips when you incorporate them in your own

C++ programs.

The Assignment Statements
In C++, the assignment operator, =, behaves differently from

what you might be used to in other languages. So far, you have used

it to assign values to variables, which is consistent with its use in

most other programming languages.

However, the assignment operator also can be used in other

ways, such as multiple assignment statements and compound as-

signments, as the following sections illustrate.

175

EXAMPLE
C++ By

Multiple Assignments

If two or more equal signs appear in an expression, each

performs an assignment. This fact introduces a new aspect of the

precedence order you should understand. Consider the following

expression:

a=b=c=d=e=100;

This might at first seem confusing, especially if you know other

computer languages. To C++, the equal sign always means: Assign

the value on the right to the variable on the left. This right-to-left

order is described in Appendix D’s precedence table. The third

column in the table is labeled Associativity, which describes the

direction of the operation. The assignment operator associates from

the right, whereas some of the other C++ operators associate from

the left.

Because the assignment associates from the right, the previous

expression assigns 100 to the variable named e. This assignment

produces a value, 100, for the expression. In C++, all expressions

produce values, typically the result of assignments. Therefore, 100 is

assigned to the variable d. The value, 100, is assigned to c, then to b,

and finally to a. The old values of these variables are replaced by 100

after the statement finishes.

Because C++ does not automatically set variables to zero before

you use them, you might want to do so before you use the variables

with a single assignment statement. The following section of vari-

able declarations and initializations is performed using multiple

assignment statements.

main()

{

 int ctr, num_emp, num_dep;

 float sales, salary, amount;

 ctr=num_emp=num_dep=0;

 sales=salary=amount=0;

 // Rest of program follows.

In C++, you can include the assignment statement almost

anywhere in a program, even in another calculation. For example,

consider this statement:

Chapter 8 ♦ Using C++ Math Operators and Precedence

176

value = 5 + (r = 9 - c);

which is a perfectly legal C++ statement. The assignment operator

resides on the first level of the precedence table, and always pro-

duces a value. Because its associativity is from the right, the r is

assigned 9 - c because the equal sign on the extreme right is

evaluated first. The subexpression (r = 9 - c) produces a value (and

places that value in r), which is then added to 5 before storing the

answer in value.

Example

Because C++ does not initialize variables to zero before you use

them, you might want to include a multiple assignment operator to

do so before using the variables. The following section of code

ensures that all variables are initialized before the rest of the pro-

gram uses them.

main()

{

 int num_emp, dependents, age;

 float salary, hr_rate, taxrate;

 // Initialize all variables to zero.

 num_emp=dependents=age=hours=0;

 salary=hr_rate=taxrate=0.0;

 // Rest of program follows.

Compound Assignments

Many times in programming, you might want to update the

value of a variable. In other words, you have to take a variable’s

current value, add or multiply that value by an expression, then

reassign it to the original variable. The following assignment state-

ment demonstrates this process:

salary=salary*1.2;

177

EXAMPLE
C++ By

This expression multiplies the old value of salary by 1.2 (in

effect, raising the value in salary by 20 percent), then reassigns it to

salary. C++ provides several operators, called compound operators,
that you can use any time the same variable appears on both sides

of the equal sign. The compound operators are shown in Table 8.4.

Table 8.4. C++’s compound operators.

Operator Example Equivalent

+= bonus+=500; bonus=bonus+500;

-= budget-=50; budget=budget-50;

= salary=1.2; salary=salary*1.2;

/= factor/=.50; factor=factor/.50;

%= daynum%=7; daynum=daynum%7;

The compound operators are low in the precedence table. They

typically are evaluated last or near-last.

Examples

1. You have been storing your factory’s production amount

in a variable called prod_amt, and your supervisor has just

informed you that a new addition has to be applied to the

production value. You could code this update in a statement,

as follows:

prod_amt = prod_amt + 2.6; // Add 2.6 to current production.

Instead of using this formula, use C++’s compound addition

operator by coding it like this:

prod_amt += 2.6; // Add 2.6 to current production.

2. Suppose you are a high school teacher who wants to raise

your students’ grades. You gave a test that was too difficult,

and the grades were not what you expected. If you had

stored each of the student’s grades in variables named

grade1, grade2, grade3, and so on, you can update the grades

in a program with the following section of compound

assignments.

Chapter 8 ♦ Using C++ Math Operators and Precedence

178

grade1*=1.1; // Increase each student’s grade by 10.

percent.

grade2*=1.1;

grade3*=1.1;

// Rest of grade changes follow.

3. The precedence of the compound operators requires impor-

tant consideration when you decide how to code compound

assignments. Notice from Appendix D, “C++ Precedence

Table,” that the compound operators are on level 19, much

lower than the regular math operators. This means you must

be careful how you interpret them.

For example, suppose you want to update the value of a

sales variable with this formula:

4-factor+bonus

You can update the sales variable with the following

statement:

sales = *4 - factor + bonus;

This statement adds the quantity 4-factor+bonus to sales. Due

to operator precedence, this statement is not the same as the

following one:

sales = sales *4 - factor + bonus;

Because the *= operator is much lower in the precedence

table than * or -, it is performed last, and with right-to-left

associativity. Therefore, the following are equivalent, from a

precedence viewpoint:

sales *= 4 - factor + bonus;

and

sales = sales * (4 - factor + bonus);

Mixing Data Types
in Calculations

You can mix data types in C++. Adding an integer and a

floating-point value is mixing data types. C++ generally converts

179

EXAMPLE
C++ By

the smaller of the two types into the other. For instance, if you add

a double to an integer, C++ first converts the integer into a double

value, then performs the calculation. This method produces the

most accurate result possible. The automatic conversion of data

types is only temporary; the converted value is back in its original

data type as soon as the expression is finished.

If C++ converted two different data types to the smaller value’s

type, the higher-precision value is truncated, or shortened, and

accuracy is lost. For example, in the following short program, the

floating-point value of sales is added to an integer called bonus.

Before C++ computes the answer, it converts bonus to floating-point,

which results in a floating-point answer.

// Filename: C8DATA.CPP

// Demonstrate mixed data type in an expression.

#include <stdio.h>

main()

{

 int bonus=50;

 float salary=1400.50;

 float total;

 total=salary+bonus; // bonus becomes floating-point

 // but only temporarily.

 printf(“The total is %.2f”, total);

 return 0;

}

Type Casting

Most of the time, you don’t have to worry about C++’s auto-

matic conversion of data types. However, problems can occur if you

mix unsigned variables with variables of other data types. Due to

differences in computer architecture, unsigned variables do not

always convert to the larger data type. This can result in loss of

accuracy, and even incorrect results.

You can override C++’s default conversions by specifying your

own temporary type change. This process is called type casting.
When you type cast, you temporarily change a variable’s data type

C++ attempts to
convert the smaller
data type to the
larger one in a
mixed data-type
expression.

Chapter 8 ♦ Using C++ Math Operators and Precedence

180

from its declared data type to a new one. There are two formats of

the type cast. They are

(data type) expression

and

data type(expression)

where data type can be any valid C++ data type, such as int or float,

and the expression can be a variable, literal, or an expression that

combines both. The following code temporarily type casts the

integer variable age into a double floating-point variable, so it can be

multiplied by the double floating-point factor. Both formats of the

type cast are illustrated.

The variable age_factor is assigned the value of the variable age (now
treated like a double floating-point variable) multiplied by the variable
factor.

age_factor = (double)age * factor; // Temporarily change age

 // to double.

The second way of type casting adds the parentheses around

the variable rather than the data type, as so:

age_factor = double(age) * factor; // Temporarily change age

 // to double.

NOTE: Type casting by adding the parentheses around the

expression and not the data type is new to C++. C programmers

do not have the option—they must put the data type in paren-

theses. The second method “feels” like a function call and

seems to be more natural for this language. Therefore, becom-

ing familiar with the second method will clarify your code.

181

EXAMPLE
C++ By

Examples

1. Suppose you want to verify the interest calculation used by

your bank on a loan. The interest rate is 15.5 percent, stored

as .155 in a floating-point variable. The amount of interest

you owe is computed by multiplying the interest rate by the

amount of the loan balance, then multiplying that by the

number of days in the year since the loan originated. The

following program finds the daily interest rate by dividing

the annual interest rate by 365, the number of days in a year.

C++ must convert the integer 365 to a floating-point literal

automatically, because it is used in combination with a

floating-point variable.

// Filename: C8INT1.CPP

// Calculate interest on a loan.

#include <stdio.h>

main()

{

 int days=45; // Days since loan origination.

 float principle = 3500.00; // Original loan amount

 float interest_rate=0.155; // Annual interest rate

 float daily_interest; // Daily interest rate

 daily_interest=interest_rate/365; // Compute floating-

 // point value.

 // Because days is int, it too is converted to float.

 daily_interest = principle * daily_interest * days;

 principle+=daily_interest;//Update principle with interest.

 printf(“The balance you owe is %.2f\n”, principle);

 return 0;

}

The output of this program follows:

The balance you owe is 3566.88

Chapter 8 ♦ Using C++ Math Operators and Precedence

182

2. Instead of having C++ perform the conversion, you might

want to type cast all mixed expressions to ensure they

convert to your liking. Here is the same program as in the

first example, except type casts are used to convert the

integer literals to floating-points before they are used.

// Filename: C8INT2.CPP

// Calculate interest on a loan using type casting.

#include <stdio.h>

main()

{

 int days=45; // Days since loan origination.

 float principle = 3500.00; // Original loan amount

 float interest_rate=0.155; // Annual interest rate

 float daily_interest; // Daily interest rate

 daily_interest=interest_rate/float(365); // Type cast days

 // to float.

 // Because days is integer, convert it to float also.

 daily_interest = principle * daily_interest * float(days);

 principle+=daily_interest;// Update principle with interest.

 printf(“The balance you owe is %.2f”, principle);

 return 0;

}

The output from this program is exactly the same as the

previous one.

Review Questions
The answers to the review questions are in Appendix B.

1. What is the result for each of the following expressions?

a. 1 + 2 * 4 / 2

b. (1 + 2) * 4 / 2

c. 1 + 2 * (4 / 2)

183

EXAMPLE
C++ By

2. What is the result for each of the following expressions?

a. 9 % 2 + 1

b. (1 + (10 - (2 + 2)))

3. Convert each of the following formulas into its C++ assign-

ment equivalents.

3 + 3

a. a =

4 + 4

b. x = (a - b)*(a - c)2

a2

c. f =

b3

(8 - x2) (4 * 2 - 1)

d. d = -

 (x - 9) x3

4. Write a short program that prints the area of a circle, when

its radius equals 4 and equals 3.14159. (Hint: The area of a

circle is computed by * radius2.)

5. Write the assignment and printf() statements that print the

remainder of 100/3.

Review Exercises
1. Write a program that prints each of the first eight powers

of 2 (21, 22, 23,...28). Please write comments and include

your name at the top of the program. Print string literals

that describe each answer printed. The first two lines of

your output should look like this:

2 raised to the first power is 2

2 raised to the second power is 4

Chapter 8 ♦ Using C++ Math Operators and Precedence

184

2. Change C8PAY.CPP so it computes and prints a bonus of 15

percent of the gross pay. Taxes are not to be taken out of the

bonus. After printing the four variables, gross_pay, tax_rate,

bonus, and gross_pay, print a check on-screen that looks like

a printed check. Add string literals so it prints the check-

holder and put your name as the payer at the bottom of the

check.

3. Store the weights and ages of three people in variables. Print

a table, with titles, of the weights and ages. At the bottom of

the table, print the averages.

4. Assume that a video store employee works 50 hours. He is

paid $4.50 for the first 40 hours, time-and-a-half (1.5 times

the regular pay rate) for the first five hours over 40, and

double-time pay for all hours over 45. Assuming a 28 per-

cent tax rate, write a program that prints his gross pay, taxes,

and net pay to the screen. Label each amount with appropri-

ate titles (using string literals) and add appropriate com-

ments in the program.

Summary
You now understand C++’s primary math operators and the

importance of the precedence table. Parentheses group operations

so they can override the default precedence levels. Unlike some

other programming languages, every operator in C++ has a mean-

ing, no matter where it appears in an expression. This fact enables

you to use the assignment operator (the equal sign) in the middle of

other expressions.

When you perform math with C++, you also must be aware of

how C++ interprets data types, especially when you mix them in the

same expression. Of course, you can temporarily type cast a variable

or literal so you can override its default data type.

This chapter has introduced you to a part of the book concerned

with C++ operators. The following two chapters (Chapter 9, “Rela-

tional Operators,” and Chapter 10, “Logical Operators”) extend this

introduction to include relational and logical operators. They enable

you to compare data and compute accordingly.

185

EXAMPLE
C++ By

9

Relational
Operators

Sometimes you won’t want every statement in your C++ program to

execute every time the program runs. So far, every program in this

book has executed from the top and has continued, line-by-line,

until the last statement completes. Depending on your application,

you might not always want this to happen.

Programs that don’t always execute by rote are known as data-
driven programs. In data-driven programs, the data dictates what

the program does. You would not want the computer to print every

employee’s paychecks for every pay period, for example, because

some employees might be on vacation, or they might be paid on

commission and not have made a sale during that period. Printing

paychecks with zero dollars is ridiculous. You want the computer to

print checks only for employees who have worked.

This chapter shows you how to create data-driven programs.

These programs do not execute the same way every time. This is

possible through the use of relational operators that conditionally
control other statements. Relational operators first “look” at the

literals and variables in the program, then operate according to what

they “find.” This might sound like difficult programming, but it is

actually straightforward and intuitive.

Chapter 9 ♦ Relational Operators

186

This chapter introduces you to

♦ Relational operators

♦ The if statement

♦ The else statement

Not only does this chapter introduce these comparison com-

mands, but it prepares you for much more powerful programs,

possible once you learn the relational operators.

Defining Relational Operators
In addition to the math operators you learned in Chapter 8,

“Using C++ Math Operators and Precedence,” there are also opera-

tors that you use for data comparisons. They are called relational
operators, and their task is to compare data. They enable you to

determine whether two variables are equal, not equal, and which

one is less than the other. Table 9.1 lists each relational operator and

its meaning.

Table 9.1. The relational operators.

Operator Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

The six relational operators form the foundation of data com-

parison in C++ programming. They always appear with two literals,

variables, expressions (or some combination of these), one on each

side of the operator. These relational operators are useful and you

should know them as well as you know the +, -, *, /, and % mathemati-

cal operators.

Relational operators
compare data.

187

EXAMPLE
C++ By

NOTE: Unlike many programming languages, C++ uses a

double equal sign (==) as a test for equality. The single equal

sign (=) is reserved for assignment of values.

Examples

1. Assume that a program initializes four variables as follows:

int a=5;

int b=10;

int c=15;

int d=5;

The following statements are then True:

a is equal to d, so a == d

b is less than c, so b < c

c is greater than a, so c > a

b is greater than or equal to a, so b >= a

d is less than or equal to b, so d <= b

b is not equal to c, so b != c

These are not C++ statements; they are statements of com-

parison (relational logic) between values in the variables.

Relational logic is easy.

Relational logic always produces a True or False result. In

C++, unlike some other programming languages, you can

directly use the True or False result of relational operators

inside other expressions. You will soon learn how to do this;

but for now, you have to understand only that the following

True and False evaluations are correct:

♦ A True relational result evaluates to 1.

♦ A False relational result evaluates to 0.

Chapter 9 ♦ Relational Operators

188

Each of the statements presented earlier in this example

evaluates to a 1, or True, result.

2. If you assume the same values as stated for the previous

example’s four variables, each of the value’s statements is

False (0):

a == b

b > c

d < a

d > a

a != d

b >= c

c <= b

Study these statements to see why each is False and evalu-

ates to 0. The variables a and d, for example, are exactly

equal to the same value (5), so neither is greater or less than

the other.

You use relational logic in everyday life. Think of the follow-

ing statements:

“The generic butter costs less than the name brand.”

“My child is younger than Johnny.”

“Our salaries are equal.”

“The dogs are not the same age.”

Each of these statements can be either True or False. There is

no other possible answer.

Watch the Signs!

Many people say they are “not math-inclined” or “not logical,”

and you might be one of them. But, as mentioned in Chapter 8,

you do not have to be good in math to be a good computer

programmer. Neither should you be frightened by the term

189

EXAMPLE
C++ By

“relational logic,” because you just saw how you use it in every-

day life. Nevertheless, symbols confuse some people.

The two primary relational operators, less than (<) and greater
than (>), are easy to remember. You probably learned this

concept in school, but might have forgotten it. Actually, their

signs tell you what they mean.

The arrow points to the lesser of the two values. Notice how, in

the previous Example 1, the arrow (the point of the < or >)

always points to the lesser number. The larger, open part of the

arrow points to the larger number.

The relation is False if the arrow is pointing the wrong way. In

other words, 4 > 9 is False because the operator symbol is

pointing to the 9, which is not the lesser number. In English this

statement says, “4 is greater than 9,” which is clearly false.

The if Statement
You incorporate relational operators in C++ programs with the

if statement. Such an expression is called a decision statement because

it tests a relationship—using the relational operators—and, based

on the test’s result, makes a decision about which statement to

execute next.

The if statement appears as follows:

if (condition)

 { block of one or more C++ statements }

The condition includes any relational comparison, and it must

be enclosed in parentheses. You saw several relational comparisons

earlier, such as a==d, c<d, and so on. The block of one or more C++

statements is any C++ statement, such as an assignment or printf(),

enclosed in braces. The block of the if, sometimes called the body of

the if statement, is usually indented a few spaces for readability.

This enables you to see, at a glance, exactly what executes if condition

is True.

Chapter 9 ♦ Relational Operators

190

If only one statement follows the if, the braces are not required

(but it is always good to include them). The block executes only if

condition is True. If condition is False, C++ ignores the block and

simply executes the next appropriate statement in the program that

follows the if statement.

Basically, you can read an if statement in the following way: “If

the condition is True, perform the block of statements inside the

braces. Otherwise, the condition must be False; so do not execute

that block, but continue executing the remainder of the program as

though this if statement did not exist.”

The if statement is used to make a decision. The block of

statements following the if executes if the decision (the result of the

relation) is True, but the block does not execute otherwise. As with

relational logic, you also use if logic in everyday life. Consider the

statements that follow.

“If the day is warm, I will go swimming.”

“If I make enough money, we will build a new house.”

“If the light is green, go.”

“If the light is red, stop.”

Each of these statements is conditional. That is, if and only if the

condition is true do you perform the activity.

CAUTION: Do not type a semicolon after the parentheses of

the relational test. Semicolons appear after each statement

inside the block.

Expressions as the Condition

C++ interprets any nonzero value as True, and zero always as

False. This enables you to insert regular nonconditional expres-

sions in the if logic. To understand this concept, consider the

following section of code:

The if statement
makes a decision.

191

EXAMPLE
C++ By

main()

{

 int age=21; // Declares and assigns age as 21.

 if (age=85)

 { cout << “You have lived through a lot!”; }

 // Remaining program code goes here.

At first, it might seem as though the printf() does not execute,

but it does! Because the code line used a regular assignment

operator (=) (not a relational operator, ==), C++ performs the

assignment of 85 to age. This, as with all assignments you saw

in Chapter 8, “Using C++ Math Operators and Precedence,”

produces a value for the expression of 85. Because 85 is nonzero,

C++ interprets the if condition as True and then performs the

body of the if statement.

Confusing the relational equality test (==) with the regular

assignment operator (=) is a common error in C++ programs,

and the nonzero True test makes this bug even more difficult to

find.

The designers of C++ didn’t intend for this to confuse you.

They want you to take advantage of this feature whenever you

can. Instead of putting an assignment before an if and testing

the result of that assignment, you can combine the assignment

and if into a single statement.

Test your understanding of this by considering this: Would

C++ interpret the following condition as True or False?

if (10 == 10 == 10)...

Be careful! At first glance, it seems True; but C++ interprets it

as False! Because the == operator associates from the left, the

program compares the first 10 to the second. Because they are

equal, the result is 1 (for True) and the 1 is then compared to the

third 10—which results in a 0 (for False)!

Chapter 9 ♦ Relational Operators

192

Examples

1. The following are examples of valid C++ if statements.

If (the variable sales is greater than 5000), then the variable bonus
becomes equal to 500.

if (sales > 5000)

 { bonus = 500; }

If this is part of a C++ program, the value inside the variable

sales determines what happens next. If sales contains more

than 5000, the next statement that executes is the one inside

the block that initializes bonus. If, however, sales contains

5000 or less, the block does not execute, and the line follow-

ing the if’s block executes.

If (the variable age is less than or equal to 21) then print You are a
minor. to the screen and go to a new line, print What is your
grade? to the screen, and accept an integer from the keyboard.

if (age <= 21)

 { cout << “You are a minor.\n”;

 cout << “What is your grade? “;

 cin >> grade; }

If the value in age is less than or equal to 21, the lines of code

within the block execute next. Otherwise, C++ skips the

entire block and continues with the remaining program.

If (the variable balance is greater than the variable low_balance),
then print Past due! to the screen and move the cursor to a new
line.

if (balance > low_balance)

 {cout << “Past due!\n”; }

If the value in balance is more than that in low_balance, execu-

tion of the program continues at the block and the message

“Past due!” prints on-screen. You can compare two variables

to each other (as in this example), or a variable to a literal (as

in the previous examples), or a literal to a literal (although

this is rarely done), or a literal to any expression in place of

any variable or literal. The following if statement shows an

expression included in the if.

193

EXAMPLE
C++ By

If (the variable pay multiplied by the variable tax_rate equals the
variable minimum), then the variable low_salary is assigned 1400.60.

If (pay * tax_rate == minimum)

 { low_salary = 1400.60; }

The precedence table of operators in Appendix D, “C++

Precedence Table,” includes the relational operators. They

are at levels 11 and 12, lower than the other primary math

operators. When you use expressions such as the one shown

in this example, you can make these expressions much more

readable by enclosing them in parentheses (even though

C++ does not require it). Here is a rewrite of the previous if

statement with ample parentheses:

If (the variable pay (multiplied by the variable tax_rate) equals the
variable minimum), then the variable low_salary is assigned 1400.60.

If ((pay * tax_rate) == minimum)

 { low_salary = 1400.60; }

2. The following is a simple program that computes a

salesperson’s pay. The salesperson receives a flat rate of

$4.10 per hour. In addition, if sales are more than $8,500, the

salesperson also receives an additional $500 as a bonus. This

is an introductory example of conditional logic, which

depends on a relation between two values, sales and $8500.

// Filename: C9PAY1.CPP

// Calculates a salesperson’s pay based on his or her sales.

#include <iostream.h>

#include <stdio.h>

main()

{

 char sal_name[20];

 int hours;

 float total_sales, bonus, pay;

 cout << “\n\n”; // Print two blank lines.

 cout << “Payroll Calculation\n”;

 cout << “-------------------\n”;

Chapter 9 ♦ Relational Operators

194

 // Ask the user for needed values.

 cout << “What is salesperson’s last name? “;

 cin >> sal_name;

 cout << “How many hours did the salesperson work? “;

 cin >> hours;

 cout << “What were the total sales? “;

 cin >> total_sales;

 bonus = 0; // Initially, there is no bonus.

 // Compute the base pay.

 pay = 4.10 * (float)hours; // Type casts the hours.

 // Add bonus only if sales were high.

 if (total_sales > 8500.00)

 { bonus = 500.00; }

 printf(“%s made $%.2f \n”, sal_name, pay);

 printf(“and got a bonus of $%.2f”, bonus);

 return 0;

}

This program uses cout, cin, and printf() for its input and

output. You can mix them. Include the appropriate header

files if you do (stdio.h and iostream.h).

The following output shows the result of running this

program twice, each time with different input values. Notice

that the program does two different things: It computes a

bonus for one employee, but doesn’t for the other. The $500

bonus is a direct result of the if statement. The assignment

of $500 to bonus executes only if the value in total_sales is

more than $8500.

Payroll Calculation

What is salesperson’s last name? Harrison

How many hours did the salesperson work? 40

What were the total sales? 6050.64

Harrison made $164.00

and got a bonus of $0.00

195

EXAMPLE
C++ By

Payroll Calculation

What is salesperson’s last name? Robertson

How many hours did the salesperson work? 40

What were the total sales? 9800

Robertson made $164.00

and got a bonus of $500.00

3. When programming the way users input data, it is wise to

program data validation on the values they type. If they enter

a bad value (for instance, a negative number when the input

cannot be negative), you can inform them of the problem

and ask them to reenter the data.

Not all data can be validated, of course, but most of it can be

checked for reasonableness. For example, if you write a

student record-keeping program, to track each student’s

name, address, age, and other pertinent data, you can check

whether the age falls in a reasonable range. If the user enters

213 for the age, you know the value is incorrect. If the user

enters -4 for the age, you know this value is also incorrect.

Not all erroneous input for age can be checked, however. If

the user is 21, for instance, and types 22, your program has

no way of knowing whether this is correct, because 22 falls

in a reasonable age range for students.

The following program is a routine that requests an age, and

makes sure it is more than 10. This is certainly not a fool-

proof test (because the user can still enter incorrect ages), but

it takes care of extremely low values. If the user enters a bad

age, the program asks for it again inside the if statement.

// Filename: C9AGE.CPP

// Program that ensures age values are reasonable.

#include <stdio.h>

main()

{

 int age;

 printf(“\nWhat is the student’s age? “);

 scanf(“ %d”, &age); // With scanf(), remember the &

Chapter 9 ♦ Relational Operators

196

 if (age < 10)

 { printf(“%c”, ‘\x07’); // BEEP

 printf(“*** The age cannot be less than 10 ***\n”);

 printf(“Try again...\n\n”);

 printf(“What is the student’s age? “);

 scanf(“ %d”, &age);

 }

 printf(“Thank you. You entered a valid age.”);

 return 0;

}

This routine can also be a section of a longer program. You

learn later how to prompt repeatedly for a value until a valid

input is given. This program takes advantage of the bell

(ASCII 7) to warn the user that a bad age was entered.

Because the \a character is an escape sequence for the alarm

(see Chapter 4, “Variables and Literals” for more informa-

tion on escape sequences), \a can replace the \x07 in this

program.

If the entered age is less than 10, the user receives an error

message. The program beeps and warns the user about the

bad age before asking for it again.

The following shows the result of running this program.

Notice that the program “knows,” due to the if statement,

whether age is more than 10.

What is the student’s age? 3

*** The age cannot be less than 10 ***

Try again...

What is the student’s age? 21

Thank you. You entered a valid age.

4. Unlike many languages, C++ does not include a square math

operator. Remember that you “square” a number by multi-

plying it times itself (3*3, for example). Because many com-

puters do not allow for integers to hold more than the square

of 180, the following program uses if statements to make

sure the number fits as an integer.

197

EXAMPLE
C++ By

The program takes a value from the user and prints its

square—unless it is more than 180. The message * Square is

not allowed for numbers over 180 * appears on-screen if the

user types a huge number.

// Filename: C9SQR1.CPP

// Print the square of the input value

// if the input value is less than 180.

#include <iostream.h>

main()

{

 int num, square;

 cout << “\n\n”; // Print two blank lines.

 cout << “What number do you want to see the square of? “;

 cin >> num;

 if (num <= 180)

 { square = num * num;

 cout << “The square of “ << num << “ is “ <<

 square << “\n”;

 }

 if (num > 180)

 { cout << ‘\x07’; // BEEP

 cout << “\n* Square is not allowed for numbers over 180 *”;

 cout << “\nRun this program again trying a smaller value.”;

 }

 cout << “\nThank you for requesting square roots.\n”;

 return 0;

}

The following output shows a couple of sample runs with

this program. Notice that both conditions work: If the user

enters a number less than 180, the calculated square appears,

but if the user enters a larger number, an error message

appears.

Chapter 9 ♦ Relational Operators

198

What number do you want to see the square of? 45

The square of 45 is 2025

Thank you for requesting square roots.

What number do you want to see the square of? 212

* Square is not allowed for numbers over 180 *

Run this program again trying a smaller value.

Thank you for requesting square roots.

You can improve this program with the else statement,

which you learn later in this chapter. This code includes a

redundant check of the user’s input. The variable num must

be checked once to print the square if the input number is

less than or equal to 180, and checked again for the error

message if it is greater than 180.

5. The value of 1 and 0 for True and False, respectively, can

help save you an extra programming step, which you are not

necessarily able to save in other languages. To understand

this, examine the following section of code:

commission = 0; // Initialize commission

if (sales > 10000)

 { commission = 500.00; }

pay = net_pay + commission; // Commission is 0 unless

 // high sales.

You can make this program more efficient by combining the

if’s relational test because you know that if returns 1 or 0:

pay = net_pay + (commission = (sales > 10000) * 500.00);

This single line does what it took the previous four lines to

do. Because the assignment on the extreme right has prece-

dence, it is computed first. The program compares the

variable sales to 10000. If it is more than 10000, a True result

of 1 returns. The program then multiplies 1 by 500.00 and

stores the result in commission. If, however, the sales were not

199

EXAMPLE
C++ By

more than 10000, a 0 results and the program receives 0 from

multiplying 0 by 500.00.

Whichever value (500.00 or 0) the program assigns to commis-

sion is then added to net_pay and stored in pay.

The else Statement
The else statement never appears in a program without an if

statement. This section introduces the else statement by showing

you the popular if-else combination statement. Its format is

if (condition)

 { A block of 1 or more C++ statements }

else

 { A block of 1 or more C++ statements }

The first part of the if-else is identical to the if statement. If

condition is True, the block of C++ statements following the if

executes. However, if condition is False, the block of C++ statements

following the else executes instead. Whereas the simple if statement

determines what happens only when the condition is True, the if-

else also determines what happens if the condition is False. No

matter what the outcome is, the statement following the if-else

executes next.

The following describes the nature of the if-else:

♦ If the condition test is True, the entire block of statements

following the if executes.

♦ If the condition test is False, the entire block of statements

following the else executes.

NOTE: You can also compare characters, in addition to num-

bers. When you compare characters, C++ uses the ASCII table

to determine which character is “less than” the other (lower in

the ASCII table). But you cannot compare character strings or

arrays of character strings directly with relational operators.

Chapter 9 ♦ Relational Operators

200

Examples

1. The following program asks the user for a number. It then

prints whether or not the number is greater than zero, using

the if-else statement.

// Filename: C9IFEL1.CPP

// Demonstrates if-else by printing whether an

// input value is greater than zero or not.

#include <iostream.h>

main()

{

 int num;

 cout << “What is your number? “;

 cin >> num; // Get the user’s number.

 if (num > 0)

 { cout << “More than 0\n”; }

 else

 { cout << “Less or equal to 0\n”; }

 // No matter what the number was, the following executes.

 cout << “\n\nThanks for your time!\n”;

 return 0;

}

There is no need to test for both possibilities when you use

an else. The if tests whether the number is greater than zero,

and the else automatically handles all other possibilities.

2. The following program asks the user for his or her first

name, then stores it in a character array. The program checks

the first character of the array to see whether it falls in the

first half of the alphabet. If it does, an appropriate message is

displayed.

// Filename: C9IFEL2.CPP

// Tests the user’s first initial and prints a message.

#include <iostream.h>

main()

{

201

EXAMPLE
C++ By

 char last[20]; // Holds the last name.

 cout << “What is your last name? “;

 cin >> last;

 // Test the initial

 if (last[0] <= ‘P’)

 { cout << “Your name is early in the alphabet.\n”;}

 else

 { cout << “You have to wait a while for “

 << “YOUR name to be called!\n”;}

 return 0;

}

Notice that because the program is comparing a character

array element to a character literal, you must enclose the

character literal inside single quotation marks. The data type

on each side of each relational operator must match.

3. The following program is a more complete payroll routine

than the other one. It uses the if statement to illustrate how

to compute overtime pay. The logic goes something like this:

If employees work 40 hours or fewer, they are paid regular

pay (their hourly rate times the number of hours worked). If

employees work between 40 and 50 hours, they receive one-

and-a-half times their hourly rate for those hours over 40, in

addition to their regular pay for the first 40. All hours over

50 are paid at double the regular rate.

// Filename: C9PAY2.CPP

// Compute the full overtime pay possibilities.

#include <iostream.h>

#include <stdio.h>

main()

{

 int hours;

 float dt, ht, rp, rate, pay;

 cout << “\n\nHow many hours were worked? “;

 cin >> hours;

 cout << “\nWhat is the regular hourly pay? “;

 cin >> rate;

Chapter 9 ♦ Relational Operators

202

 // Compute pay here

 // Double-time possibility

 if (hours > 50)

 { dt = 2.0 * rate * (float)(hours - 50);

 ht = 1.5 * rate * 10.0;} // Time + 1/2 for 10 hours.

 else

 { dt = 0.0; }// Either none or double for hours over 50.

 // Time and a half.

 if (hours > 40)

 { ht = 1.5 * rate * (float)(hours - 40); }

 // Regular Pay

 if (hours >= 40)

 { rp = 40 * rate; }

 else

 { rp = (float)hours * rate; }

 pay = dt + ht + rp; // Add three components of payroll.

 printf(“\nThe pay is %.2f”, pay);

 return 0;

}

4. The block of statements following the if can contain any

valid C++ statement—even another if statement! This

sometimes is handy, as the following example shows.

You can even use this program to award employees for their

years of service to your company. In this example, you are

giving a gold watch to those with more than 20 years of

service, a paperweight to those with more than 10 years, and

a pat on the back to everyone else!

// Filename: C9SERV.CPP

// Prints a message depending on years of service.

#include <iostream.h>

main()

{

 int yrs;

 cout << “How many years of service? “;

 cin >> yrs; // Determine the years they have worked.

203

EXAMPLE
C++ By

 if (yrs > 20)

 { cout << “Give a gold watch\n”; }

 else

 { if (yrs > 10)

 { cout << “Give a paper weight\n”; }

 else

 { cout << “Give a pat on the back\n”; }

 }

 return 0;

}

Don’t rely on the if within an if to handle too many condi-

tions, because more than three or four conditions can add

confusion. You might mess up your logic, such as: “If this is

True, and if this is also True, then do something; but if not

that, but something else is True, then...” (and so on). The

switch statement that you learn about in a later chapter

handles these types of multiple if selections much better

than a long if within an if statement does.

Review Questions
The answers to the review questions are in Appendix B.

1. Which operator tests for equality?

2. State whether each of these relational tests is True or False:

a. 4 >= 5

b. 4 == 4

c. 165 >= 165

d. 0 != 25

3. True or false: C++ is fun prints on-screen when the following

statement executes.

Chapter 9 ♦ Relational Operators

204

if (54 <= 54)

 { printf(“C++ is fun”); }

4. What is the difference between an if and an if-else state-

ment?

5. Does the following printf() execute?

if (3 != 4 != 1)

 { printf(“This will print”); }

6. Using the ASCII table (see Appendix C, “ASCII Table”), state

whether these character relational tests are True or False:

a. ‘C’ < ‘c’

b. ‘0’ > ‘0’

c. ‘?’ > ‘)’

Review Exercises
1. Write a weather-calculator program that asks for a list of the

previous five days’ temperatures, then prints Brrrr! every

time a temperature falls below freezing.

2. Write a program that asks for a number and then prints the

square and cube (the number multiplied by itself three

times) of the number you input, if that number is more than

1. Otherwise, the program does not print anything.

3. In a program, ask the user for two numbers. Print a message

telling how the first one relates to the second. In other

words, if the user enters 5 and 7, your program prints “5 is

less than 7.”

4. Write a program that prompts the user for an employee’s

pre-tax salary and prints the appropriate taxes. The taxes are

10 percent if the employee makes less than $10,000; 15

percent if the employee earns $10,000 up to, but not includ-

ing, $20,000; and 20 percent if the employee earns $20,000 or

more.

205

EXAMPLE
C++ By

Summary
You now have the tools to write powerful data-checking pro-

grams. This chapter showed you how to compare literals, variables,

and combinations of both by using the relational operators. The if

and the if-else statements rely on such data comparisons to deter-

mine which code to execute next. You can now conditionally execute
statements in your programs.

The next chapter takes this one step further by combining

relational operators to create logical operators (sometimes called

compound conditions). These logical operators further improve your

program’s capability to make selections based on data comparisons.

Chapter 9 ♦ Relational Operators

206

207

EXAMPLE
C++ By

10

Logical Operators

C++’s logical operators enable you to combine relational operators

into more powerful data-testing statements. The logical operators

are sometimes called compound relational operators. As C++’s prece-

dence table shows, relational operators take precedence over logical

operators when you combine them. The precedence table plays an

important role in these types of operators, as this chapter empha-

sizes.

This chapter introduces you to

♦ The logical operators

♦ How logical operators are used

♦ How logical operators take precedence

This chapter concludes your study of the conditional testing

that C++ enables you to perform, and it illustrates many examples

of if statements in programs that work on compound conditional

tests.

Defining Logical Operators
There may be times when you have to test more than one set of

variables. You can combine more than one relational test into a

compound relational test by using C++’s logical operators, as shown in

Table 10.1.

Chapter 10 ♦ Logical Operators

208

Table 10.1. Logical operators.

Operator Meaning

&& AND

|| OR

! NOT

The first two logical operators, && and ||, never appear by

themselves. They typically go between two or more relational tests.

Table 10.2 shows you how each logical operator works. These

tables are called truth tables because they show you how to achieve

True results from an if statement that uses these operators. Take

some time to study these tables.

Table 10.2. Truth tables.

The AND (&&) truth table

(Both sides must be True)

True AND True = True

True AND False = False

False AND True = False

False AND False = False

The OR (||) truth table

(One or the other side must be True)

True OR True = True

True OR False = True

False OR True = True

False OR False = False

The NOT (!) truth table

(Causes an opposite relation)

NOT True = False

NOT False = True

Logical operators
enable the user to
compute compound
relational tests.

209

EXAMPLE
C++ By

Logical Operators and
Their Uses

The True and False on each side of the operators represent a

relational if test. The following statements, for example, are valid if

tests that use logical operators (sometimes called compound relational
operators).

If the variable a is less than the variable b, and the variable c is greater than
the variable d, then print Results are invalid. to the screen.

if ((a < b) && (c > d))

 { cout << “Results are invalid.”; }

The variable a must be less than b and, at the same time, c must

be greater than d for the printf() to execute. The if statement still

requires parentheses around its complete conditional test. Consider

this portion of a program:

if ((sales > 5000) || (hrs_worked > 81))

 { bonus=500; }

The sales must be more than 5000, or the hrs_worked must be

more than 81, before the assignment executes.

if (!(sales < 2500))

 { bonus = 500; }

If sales is greater than or equal to 2500, bonus is initialized. This

illustrates an important programming tip: Use ! sparingly. Or, as

some professionals so wisely put it: “Do not use ! or your programs

will not be !(unclear).” It is much clearer to rewrite the previous

example by turning it into a positive relational test:

if (sales >= 2500)

 { bonus 500; }

But the ! operator is sometimes helpful, especially when testing

for end-of-file conditions for disk files, as you learn in Chapter 30,

“Sequential Files.” Most the time, however, you can avoid using ! by

using the reverse logic shown in the following:

The || is
sometimes called
inclusive OR. Here is
a program segment
that includes the not
(!) operator:

Chapter 10 ♦ Logical Operators

210

!(var1 == var2) is the same as (var1 != var2)

!(var1 <= var2) is the same as (var1 > var2)

!(var1 >= var2) is the same as (var1 < var2)

!(var1 != var2) is the same as (var1 == var2)

!(var1 > var2) is the same as (var1 <= var2)

!(var1 < var2) is the same as (var1 >= var2)

Notice that the overall format of the if statement is retained

when you use logical operators, but the relational test expands to

include more than one relation. You even can have three or more, as

in the following statement:

if ((a == B) && (d == f) || (l = m) || !(k <> 2)) ...

This is a little too much, however, and good programming

practice dictates using at most two relational tests inside a single if

statement. If you have to combine more than two, use more than one

if statement to do so.

As with other relational operators, you also use the following

logical operators in everyday conversation.

“If my pay is high and my vacation time is long, we can go

to Italy this summer.”

“If you take the trash out or clean your room, you can watch

TV tonight.”

“If you aren’t good, you’ll be punished.”

Internal Truths

The True or False results of relational tests occur internally at

the bit level. For example, take the if test:

if (a == 6) ...

to determine the truth of the relation, (a==6). The computer

takes a binary 6, or 00000110, and compares it, bit-by-bit, to

the variable a. If a contains 7, a binary 00000111, the result of

this equal test is False, because the right bit (called the least-
significant bit) is different.

211

EXAMPLE
C++ By

C++’s Logical Efficiency

C++ attempts to be more efficient than other languages. If you

combine multiple relational tests with one of the logical operators,

C++ does not always interpret the full expression. This ultimately

makes your programs run faster, but there are dangers! For ex-

ample, if your program is given the conditional test:

if ((5 > 4) || (sales < 15) && (15 != 15))...

C++ only evaluates the first condition, (5 > 4), and realizes it does

not have to look further. Because (5 > 4) is True and because || (OR)

anything that follows it is still True, C++ does not bother with the

rest of the expression. The same holds true for the following state-

ment:

if ((7 < 3) && (age > 15) && (initial == ‘D’))...

Here, C++ evaluates only the first condition, which is False.

Because the && (AND) anything else that follows it is also False, C++

does not interpret the expression to the right of (7 < 3). Most of the

time, this doesn’t pose a problem, but be aware that the following

expression might not fulfill your expectations:

if ((5 > 4) || (num = 0))...

The (num = 0) assignment never executes, because C++ has to

interpret only (5 > 4) to determine whether the entire expression is

True or False. Due to this danger, do not include assignment

expressions in the same condition as a logical test. The following

single if condition:

if ((sales > old_sales) || (inventory_flag = ‘Y’))...

should be broken into two statements, such as:

inventory_flag) = ‘Y’;

if ((sales > old_sales) || (inventory_flag))...

so the inventory_flag is always assigned the ‘Y’ value, no matter how

the (sales > old_sales) expression tests.

Chapter 10 ♦ Logical Operators

212

Examples

1. The summer Olympics are held every four years during each

year that is divisible evenly by 4. The U.S. Census is taken

every 10 years, in each year that is evenly divisible by 10.

The following short program asks for a year, and then tells

the user if it is a year of the summer Olympics, a year of the

census, or both. It uses relational operators, logical opera-

tors, and the modulus operator to determine this output.

// Filename: C10YEAR.CPP

// Determines if it is Summer Olympics year,

// U.S. Census year, or both.

#include <iostream.h>

main()

{

 int year;

 // Ask for a year

 cout << “What is a year for the test? “;

 cin >> year;

 // Test the year

 if (((year % 4)==0) && ((year % 10)==0))

 { cout << “Both Olympics and U.S. Census!”;

 return 0; } // Quit program, return to operating

 // system.

 if ((year % 4)==0)

 { cout << “Summer Olympics only”; }

 else

 { if ((year % 10)==0)

 { cout << “U.S. Census only”; }

 }

 return 0;

}

2. Now that you know about compound relations, you can

write an age-checking program like the one called

C9AGE.CPP presented in Chapter 9, “Relational Operators.”

That program ensured the age would be above 10. This is

another way you can validate input for reasonableness.

213

EXAMPLE
C++ By

The following program includes a logical operator in its if to

determine whether the age is greater than 10 and less than

100. If either of these is the case, the program concludes that

the user did not enter a valid age.

// Filename: C10AGE.CPP

// Program that helps ensure age values are reasonable.

#include <iostream.h>

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 if ((age < 10) || (age > 100))

 { cout << “ \x07 \x07 \n”; // Beep twice

 cout << “*** The age must be between 10 and”

 “100 ***\n”; }

 else

 { cout << “You entered a valid age.”; }

 return 0;

}

3. The following program could be used by a video store to

calculate a discount, based on the number of rentals people

transact as well as their customer status. Customers are

classified either R for Regular or S for Special. Special custom-

ers have been members of the rental club for more than one

year. They automatically receive a 50-cent discount on all

rentals. The store also holds “value days” several times a

year. On value days, all customers receive the 50-cent dis-

count. Special customers do not receive an additional 50

cents off during value days, because every day is a discount

for them.

The program asks for each customer’s status and whether or

not it is a value day. It then uses the || relation to test for the

discount. Even before you started learning C++, you would

probably have looked at this problem with the following

idea in mind.

Chapter 10 ♦ Logical Operators

214

“If a customer is Special or if it is a value day, deduct 50

cents from the rental.”

That’s basically the idea of the if decision in the following

program. Even though Special customers do not receive an

additional discount on value days, there is one final if test

for them that prints an extra message at the bottom of the

screen’s indicated billing.

// Filename: C10VIDEO.CPP

// Program that computes video rental amounts and gives

// appropriate discounts based on the day or customer status.

#include <iostream.h>

#include <stdio.h>

main()

{

 float tape_charge, discount, rental_amt;

 char first_name[15];

 char last_name[15];

 int num_tapes;

 char val_day, sp_stat;

 cout << “\n\n *** Video Rental Computation ***\n”;

 cout << “ ------------------------\n”;

 // Underline title

 tape_charge = 2.00;

 // Before-discount tape fee-per tape.

 // Receive input data.

 cout << “\nWhat is customer’s first name? “;

 cin >> first_name;

 cout << “What is customer’s last name? “;

 cin >> last_name;

 cout << “\nHow many tapes are being rented? “;

 cin >> num_tapes;

 cout << “Is this a Value day (Y/N)? “;

 cin >> val_day;

 cout << “Is this a Special Status customer (Y/N)? “;

 cin >> sp_stat;

 // Calculate rental amount.

215

EXAMPLE
C++ By

 discount = 0.0; // Increase discount if they are eligible.

 if ((val_day == ‘Y’) || (sp_stat == ‘Y’))

 { discount = 0.5;

 rental_amt=(num_tapes*tape_charge)

 (discount*num_tapes); }

 // Print the bill.

 cout << “\n\n** Rental Club **\n\n”;

 cout << first_name << “ “ << last_name << “ rented “

 << num_tapes << “ tapes\n”;

 printf(“The total was %.2f\n”, rental_amt);

 printf(“The discount was %.2f per tape\n”, discount);

 // Print extra message for Special Status customers.

 if (sp_stat == ‘Y’)

 { cout << “\nThank them for being a Special “

 << “Status customer\n”;}

 return 0;

}

The output of this program appears below. Notice that

Special customers have the extra message at the bottom of

the screen. This program, due to its if statements, performs

differently depending on the data entered. No discount is

applied for Regular customers on nonvalue days.

*** Video Rental Computation ***

What is customer’s first name? Jerry

What is customer’s last name? Parker

How many tapes are being rented? 3

Is this a Value day (Y/N)? Y

Is this a Special Status customer (Y/N)? Y

** Rental Club **

Jerry Parker rented 3 tapes

The total was 4.50

The discount was 0.50 per tape

Thank them for being a Special Status customer

Chapter 10 ♦ Logical Operators

216

Logical Operators and
Their Precedence

The math precedence order you read about in Chapter 8,

“Using C++ Math Operators and Precedence,” did not include the

logical operators. To be complete, you should be familiar with the

entire order of precedence, as presented in Appendix D, “C++

Precedence Table.”

You might wonder why the relational and logical operators are

included in a precedence table. The following statement helps show

you why:

if ((sales < min_sal * 2 && yrs_emp > 10 * sub) ...

Without the complete order of operators, it is impossible to

determine how such a statement would execute. According to the

precedence order, this if statement executes as follows:

if ((sales < (min_sal * 2)) && (yrs_emp > (10 * sub))) ...

This still might be confusing, but it is less so. The two multipli-

cations are performed first, followed by the relations < and >. The &&

is performed last because it is lowest in the precedence order of

operators.

To avoid such ambiguous problems, be sure to use ample

parentheses—even if the default precedence order is your intention.

It is also wise to resist combining too many expressions inside a

single if relational test.

Notice that || (OR) has lower precedence than && (AND).

Therefore, the following if tests are equivalent:

if ((first_initial==’A’) && (last_initial==’G’) || (id==321)) ...

if (((first_initial==’A’) && (last_initial==’G’)) || (id==321)) ...

The second is clearer, due to the parentheses, but the precedence

table makes them identical.

217

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. What are the three logical operators?

2. The following compound relational tests produce True or

False comparisons. Determine which are True and which are

False.

a. ! (True || False)

b. (True && False) && (False || True)

c. ! (True && False)

d. True || (False && False) || False

3. Given the statement:

int i=12, j=10, k=5;

What are the results (True or False) of the following state-

ments? (Hint: Remember that C++ interprets any nonzero

statement as True.)

a. i && j

b. 12 - i || k

c. j != k && i != k

4. What is the value printed in the following program? (Hint:
Don’t be misled by the assignment operators on each side of

the ||.)

// Filename: C10LOGO.CPP

// Logical operator test

#include <iostream.h>

main()

{

 int f, g;

 g = 5;

 f = 8;

 if ((g = 25) || (f = 35))

Chapter 10 ♦ Logical Operators

218

 { cout << “g is “ << g << “ and f got changed to “ << f; }

 return 0;

}

5. Using the precedence table, determine whether the follow-

ing statements produce a True or False result. After this, you

should appreciate the abundant use of parentheses!

a. 5 == 4 + 1 || 7 * 2 != 12 - 1 && 5 == 8 / 2

b. 8 + 9 != 6 - 1 || 10 % 2 != 5 + 0

c. 17 - 1 > 15 + 1 && 0 + 2 != 1 == 1 || 4 != 1

d. 409 * 0 != 1 * 409 + 0 || 1 + 8 * 2 >= 17

6. Does the following cout execute?

if (!0)

 { cout << “C++ By Example \n”; }

Review Exercises
1. Write a program (by using a single compound if state-

ment) to determine whether the user enters an odd positive

number.

2. Write a program that asks the user for two initials. Print a

message telling the user if the first initial falls alphabetically

before the second.

3. Write a number-guessing game. Assign a value to a variable

called number at the top of the program. Give a prompt that

asks for five guesses. Receive the user’s five guesses with a

single scanf() for practice with scanf(). Determine whether

any of the guesses match the number and print an appropriate

message if one does.

4. Write a tax-calculation routine, as follows: A family pays no

tax if its income is less than $5,000. It pays a 10 percent tax if

its income is $5,000 to $9,999, inclusive. It pays a 20 percent

tax if the income is $10,000 to $19,999, inclusive. Otherwise,

it pays a 30 percent tax.

219

EXAMPLE
C++ By

Summary
This chapter extended the if statement to include the &&, ||, and

! logical operators. These operators enable you to combine several

relational tests into a single test. C++ does not always have to

look at every relational operator when you combine them in an ex-

pression.

This chapter concludes the explanation of the if statement. The

next chapter explains the remaining regular C++ operators. As you

saw in this chapter, the precedence table is still important to the C++

language. Whenever you are evaluating expressions, keep the pre-

cedence table in the back of your mind (or at your fingertips) at all

times!

Chapter 10 ♦ Logical Operators

220

221

EXAMPLE
C++ By

11

Additional C++
Operators

C++ has several other operators you should learn besides those you

learned in Chapters 9 and 10. In fact, C++ has more operators than

most programming languages. Unless you become familiar with

them, you might think C++ programs are cryptic and difficult to

follow. C++’s heavy reliance on its operators and operator prece-

dence produces the efficiency that enables your programs to run

more smoothly and quickly.

This chapter teaches you the following:

♦ The ?: conditional operator

♦ The ++ increment operator

♦ The –– decrement operator

♦ The sizeof operator

♦ The (,) comma operator

♦ The Bitwise Operators (&, |, and ^)

Chapter 11 ♦ Additional C++ Operators

222

Most the operators described in this chapter are unlike those

found in any other programming language. Even if you have

programmed in other languages for many years, you still will be

surprised by the power of these C++ operators.

The Conditional Operator
The conditional operator is C++’s only ternary operator, requir-

ing three operands (as opposed to the unary’s single-and the binary’s

double-operand requirements). The conditional operator is used to

replace if-else logic in some situations. The conditional operator is

a two-part symbol, ?:, with a format as follows:

conditional_expression ? expression1 : expression2;

The conditional_expression is any expression in C++ that results

in a True (nonzero) or False (zero) answer. If the result of

conditional_expression is True, expression1 executes. Otherwise, if

the result of conditional_expression is False, expression2 executes.

Only one of the expressions following the question mark ever

executes. Only a single semicolon appears at the end of expression2.
The internal expressions, such as expression1, do not have a semico-

lon. Figure 11.1 illustrates the conditional operator more clearly.

The conditional
operator is a ternary
operator.

Figure 11.1. Format of the conditional operator.

223

EXAMPLE
C++ By

If you require simple if-else logic, the conditional operator

usually provides a more direct and succinct method, although you

should always prefer readability over compact code.

To glimpse the conditional operator at work, consider the

section of code that follows.

if (a > b)

 { ans = 10; }

else

 { ans = 25; }

You can easily rewrite this kind of if-else code by using a single

conditional operator.

If the variable a is greater than the variable b, make the variable ans
equal to 10; otherwise, make ans equal to 25.

a > b ? (ans = 10) : (ans = 25);

A l t h o u g h p a r e n t h e s e s a r e n o t r e q u i r e d a r o u n d

conditional_expression to make it work, they usually improve read-

ability. This statement’s readability is improved by using parenthe-

ses, as follows:

(a > b) ? (ans = 10) : (ans = 25);

Because each C++ expression has a value—in this case, the

value being assigned—this statement could be even more succinct,

without loss of readability, by assigning ans the answer to the left of

the conditional:

ans = (a > b) ? (10) : (25);

This expression says: If a is greater than b, assign 10 to ans;

otherwise, assign 25 to ans. Almost any if-else statement can be

rewritten as a conditional, and vice versa. You should practice

converting one to the other to familiarize yourself with the condi-

tional operator’s purpose.

NOTE: A n y v a l i d if C + + s t a t e m e n t a l s o c a n b e a

conditional_expression, including all relational and logical op-

erators as well as any of their possible combinations.

Chapter 11 ♦ Additional C++ Operators

224

Examples

1. Suppose you are looking over your early C++ programs, and

you notice the following section of code.

if (production > target)

 { target *= 1.10; }

else

 { target *= .90; }

You should realize that such a simple if-else statement can

be rewritten using a conditional operator, and that more

efficient code results. You can therefore change it to the

following single statement.

(production > target) ? (target *= 1.10) : (target *= .90);

2. Using a conditional operator, you can write a routine to find

the minimum value between two variables. This is some-

times called a minimum routine. The statement to do this is

minimum = (var1 < var2) ? var1 : var2;

If var1 is less than var2, the value of var1 is assigned to mini-

mum. If var2 is less, the value of var2 is assigned to minimum. If

the variables are equal, the value of var2 is assigned to

minimum, because it does not matter which is assigned.

3. A maximum routine can be written just as easily:

maximum = (var1 > var2) ? var1 : var2;

4. Taking the previous examples a step further, you can also

test for the sign of a variable. The following conditional

expression assigns –1 to the variable called sign if testvar is

less than 0; 0 to sign if testvar is zero; and +1 to sign if testvar

is 1 or more.

sign = (testvar < 0) ? -1 : (testvar > 0);

It might be easy to spot why the less-than test results in a –1,

but the second part of the expression can be confusing. This

works well due to C++’s 1 and 0 (for True and False, respec-

tively) return values from a relational test. If testvar is 0 or

greater, sign is assigned the answer (testvar > 0). The value

225

EXAMPLE
C++ By

of (testvar > 0) is 1 if True (therefore, testvar is more than 0)

or 0 if testvar is equal to 0.

The preceding statement shows C++’s efficient conditional

operator. It might also help you understand if you write the

statement using typical if-else logic. Here is the same

problem written with a typical if-else statement:

if (testvar < 0)

 { sign = -1; }

else

 { sign = (testvar > 0); } // testvar can only be

 // 0 or more here.

The Increment and
Decrement Operators

C++ offers two unique operators that add or subtract 1 to or

from variables. These are the increment and decrement operators: ++

and ––. Table 11.1 shows how these operators relate to other types of

expressions you have seen. Notice that the ++ and –– can appear on

either side of the modified variable. If the ++ or –– appears on the left,

it is known as a prefix operator. If the operator appears on the right,

it is a postfix operator.

Table 11.1. The ++ and –– operators.

Operator Example Description Equivalent Statements

++ i++; postfix i = i + 1; i += 1;

++ ++i; prefix i = i + 1; i += 1;

–– i––; postfix i = i - 1; i -= 1;

–– ––i; prefix i = i - 1; i -= 1;

Any time you have to add 1 or subtract 1 from a variable, you

can use these two operators. As Table 11.1 shows, if you have to

increment or decrement only a single variable, these operators

enable you to do so.

The ++ operator
adds 1 to a variable.
The –– operator
subtracts 1 from a
variable.

Chapter 11 ♦ Additional C++ Operators

226

Increment and Decrement Efficiency

The increment and decrement operators are straightforward,

efficient methods for adding 1 to a variable and subtracting 1

from a variable. You often have to do this during counting or

processing loops, as discussed in Chapter 12, “The while Loop”

and beyond.

These two operators compile directly into their assembly lan-

guage equivalents. Almost all computers include, at their

lowest binary machine-language commands, increment and

decrement instructions. If you use C++’s increment and decre-

ment operators, you ensure that they compile to these low-level

equivalents.

If, however, you code expressions to add or subtract 1 (as you

do in other programming languages), such as the expression

i = i - 1, you do not actually ensure that C++ compiles

this instruction in its efficient machine-language equivalent.

Whether you use prefix or postfix does not matter—if you are

incrementing or decrementing single variables on lines by them-

selves. However, when you combine these two operators with other

operators in a single expression, you must be aware of their differ-

ences. Consider the following program section. Here, all variables

are integers because the increment and decrement operators work

only on integer variables.

Make a equal to 6. Increment a, subtract 1 from it, then assign the result
to b.

a = 6;

b = ++a - 1;

What are the values of a and b after these two statements finish?

The value of a is easy to determine: it is incremented in the second

statement, so it is 7. However, b is either 5 or 6 depending on when

the variable a increments. To determine when a increments, consider

the following rule:

227

EXAMPLE
C++ By

♦ If a variable is incremented or decremented with a prefix
operator, the increment or decrement occurs before the

variable’s value is used in the remainder of the expression.

♦ If a variable is incremented or decremented with a postfix
operator, the increment or decrement occurs after the

variable’s value is used in the remainder of the expression.

In the previous code, a contains a prefix increment. Therefore,

its value is first incremented to 7, then 1 is subtracted from 7, and the

result (6) is assigned to b. If a postfix increment is used, as in

a = 6;

b = a++ - 1;

a is 6, therefore, 5 is assigned to b because a does not increment

to 7 until after its value is used in the expression. The precedence

table in Appendix D, “C++ Precedence Table,” shows that prefix

operators contain much higher precedence than almost every other

operator, especially low-precedence postfix increments and decre-

ments.

TIP: If the order of prefix and postfix confuses you, break

your expressions into two lines of code and type the increment

or decrement before or after the expression that uses it.

By taking advantage of this tip, you can now rewrite the

previous example as follows:

a = 6;

b = a - 1;

a++;

There is now no doubt as to when a is incremented: a incre-

ments after b is assigned to a-1.

Even parentheses cannot override the postfix rule. Consider

the following statement.

x = p + (((amt++)));

Chapter 11 ♦ Additional C++ Operators

228

There are too many unneeded parentheses here, but even the

redundant parentheses are not enough to increment amt before

adding its value to p. Postfix increments and decrements always
occur after their variables are used in the surrounding expression.

CAUTION: Do not attempt to increment or decrement an

expression. You can apply these operators only to variables.

The following expression is invalid:

sales = ++(rate * hours); // Not allowed!!

Examples

1. As you should with all other C++ operators, keep the prece-

dence table in mind when you evaluate expressions that

increment and decrement. Figures 11.2 and 11.3 show you

some examples that illustrate these operators.

2. The precedence table takes on even more meaning when you

see a section of code such as that shown in Figure 11.3.

3. Considering the precedence table—and, more importantly,

what you know about C++’s relational efficiencies—what is

the value of the ans in the following section of code?

int i=1, j=20, k=-1, l=0, m=1, n=0, o=2, p=1;

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

This, at first, seems to be extremely complicated. Neverthe-

less, you can simply glance at it and determine the value of

ans, as well as the ending value of the rest of the variables.

Recall that when C++ performs a relation || (or), it ignores

the right side of the || if the left value is True (any nonzero

value is True). Because any nonzero value is True, C++ does

229

EXAMPLE
C++ By

Figure 11.2. C++ operators incrementing (above) and decrementing
(below) by order of precedence.

int i=1;

int j=2;

int k=3;

ans = i++ * j - ––k;

 |
 i++ * j - 2

 2 - 2

 0

ans = 0, then i increments by 1 to its final value of 2.

int i=1;

int j=2;

int k=3;

ans = ++i * j - k––;

 |
 2 * j - k––

 4 - k––

 1

ans = 1, then k decrements by 1 to its final value of 2.

not evaluate the values on the right. Therefore, C++ per-

forms this expression as shown:

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

 |
 1 (TRUE)

Chapter 11 ♦ Additional C++ Operators

230

int i=0;

int j=-1;

int k=0;

int m=1

ans = i++ && ++j || k || m++;

 |
 i++ && 0 || k || m++

 0 || k || m++

 0 || m++

 1

ans = 1, then i increments by 1 to its final value of 1,

and m increments by 1 to its final value of 2.

Figure 11.3. Another example of C++ operators and their precedence.

NOTE: Because i is True, C++ evaluates the entire expression

as True and ignores all code after the first ||. Therefore, every
other increment and decrement expression is ignored. Because C++

ignores the other expressions, only ans is changed by this

expression. The other variables, j through p, are never

incremented or decremented, even though several of them

contain increment and decrement operators. If you use rela-

tional operators, be aware of this problem and break out all

increment and decrement operators into statements by them-

selves, placing them on lines before the relational statements

that use their values.

The sizeof Operator
There is another operator in C++ that does not look like an

operator at all. It looks like a built-in function, but it is called the

231

EXAMPLE
C++ By

sizeof operator. In fact, if you think of sizeof as a function call, you

might not become confused because it works in a similar way. The

format of sizeof follows:

sizeof data

or

sizeof(data type)

The sizeof operator is unary, because it operates on a single

value. This operator produces a result that represents the size, in

bytes, of the data or data type specified. Because most data types and

variables require different amounts of internal storage on different

computers, the sizeof operator enables programs to maintain con-

sistency on different types of computers.

TIP: Most C++ programmers use parentheses around the

sizeof argument, whether that argument is data or data type .
Because you must use parentheses around data type arguments

and you can use them around data arguments, it doesn’t hurt to

always use them.

The sizeof operator is sometimes called a compile-time operator.
At compile time, rather than runtime, the compiler replaces each

occurrence of sizeof in your program with an unsigned integer

value. Because sizeof is used more in advanced C++ programming,

this operator is better utilized later in the book for performing more

advanced programming requirements.

If you use an array as the sizeof argument, C++ returns the

number of bytes you originally reserved for that array. Data inside

the array have nothing to do with its returned sizeof value—even if

it’s only a character array containing a short string.

Examples

1. Suppose you want to know the size, in bytes, of floating-

point variables for your computer. You can determine

this by entering the keyword float in parentheses—after

sizeof—as shown in the following program.

The sizeof
operator returns its
argument’s size in
bytes.

Chapter 11 ♦ Additional C++ Operators

232

// Filename: C11SIZE1.CPP

// Prints the size of floating-point values.

#include <iostream.h>

main()

{

 cout << “The size of floating-point variables on \n”;

 cout << “this computer is “ << sizeof(float) << “\n”;

 return 0;

}

This program might produce different results on different

computers. You can use any valid data type as the sizeof

argument. On most PCs, this program probably produces

this output:

The size of floating-point variables on

this computer is: 4

The Comma Operator
Another C++ operator, sometimes called a sequence point, works

a little differently. This is the comma operator (,), which does not

directly operate on data, but produces a left-to-right evaluation of

expressions. This operator enables you to put more than one expres-

sion on a single line by separating each one with a comma.

You already saw one use of the sequence point comma when

you learned how to declare and initialize variables. In the following

section of code, the comma separates statements. Because the comma

associates from the left, the first variable, i, is declared and initial-

ized before the second variable.

main()

{

 int i=10, j=25;

 // Remainder of the program follows.

233

EXAMPLE
C++ By

However, the comma is not a sequence point when it is used

inside function parentheses. Then it is said to separate arguments,

but it is not a sequence point. Consider the printf() that follows.

printf(“%d %d %d”, i, i++, ++i);

Many results are possible from such a statement. The commas

serve only to separate arguments of the printf(), and do not generate

the left-to-right sequence that they otherwise do when they aren’t

used in functions. With the statement shown here, you are not

ensured of any order! The postfix i++ might possibly be performed

before the prefix ++i, even though the precedence table does not

require this. Here, the order of evaluation depends on how your

compiler sends these arguments to the printf() function.

TIP: Do not put increment operators or decrement operators

in function calls because you cannot predict the order in which

they execute.

Examples

1. You can put more than one expression on a line, using the

comma as a sequence point. The following program does

this.

// Filename: C11COM1.CPP

// Illustrates the sequence point.

#include <iostream.h>

main()

{

 int num, sq, cube;

 num = 5;

 // Calculate the square and cube of the number.

 sq = (num * num), cube = (num * num * num);

 cout << “The square of “ << num << “ is “ << sq <<

 “ and the cube is “ << cube;

 return 0;

}

Chapter 11 ♦ Additional C++ Operators

234

This is not necessarily recommended, however, because it

doesn’t add anything to the program and actually decreases

its readability. In this example, the square and cube are

probably better computed on two separate lines.

2. The comma enables some interesting statements. Consider

the following section of code.

i = 10

j = (i = 12, i + 8);

When this code finishes executing, j has the value of 20—

even though this is not necessarily clear. In the first state-

ment, i is assigned 10. In the second statement, the comma

causes i to be assigned a value of 12, then j is assigned the

value of i + 8, or 20.

3. In the following section of code, ans is assigned the value

of 12, because the assignment before the comma is per-

formed first. Despite this right-to-left associativity of the

assignment operator, the comma’s sequence point forces

the assignment of 12 to x before x is assigned to ans.

ans = (y = 8, x = 12);

When this fragment finishes, y contains 8, x contains 12, and

ans also contains 12.

Bitwise Operators
The bitwise operators manipulate internal representations of

data and not just “values in variables” as the other operators do.

These bitwise operators require an understanding of Appendix A’s

binary numbering system, as well as a computer’s memory. This

section introduces the bitwise operators. The bitwise operators are

used for advanced programming techniques and are generally used

in much more complicated programs than this book covers.

Some people program in C++ for years and never learn the

bitwise operators. Nevertheless, understanding them can help you

improve a program’s efficiency and enable you to operate at a more

advanced level than many other programming languages allow.

235

EXAMPLE
C++ By

Bitwise Logical Operators

There are four bitwise logical operators, and they are shown in

Table 11.2. These operators work on the binary representations of

integer data. This enables systems programmers to manipulate

internal bits in memory and in variables. The bitwise operators are

not just for systems programmers, however. Application program-

mers also can improve their programs’ efficiency in several ways.

Table 11.2. Bitwise logical operators.

Operator Meaning

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

~ Bitwise 1’s complement

Each of the bitwise operators makes a bit-by-bit comparison of

internal data. Bitwise operators apply only to character and integer

variables and constants, and not to floating-point data. Because

binary numbers consist of 1s and 0s, these 1s and 0s (called bits) are

compared to each other to produce the desired result for each

bitwise operator.

Before you study the examples, you should understand Table

11.3. It contains truth tables that describe the action of each bitwise

operator on an integer’s—or character’s—internal-bit patterns.

Table 11.3. Truth tables.

Bitwise AND (&)

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

Bitwise operators
make bit-by-bit
comparisons of
internal data.

continues

Chapter 11 ♦ Additional C++ Operators

236

Table 11.3. Continued.

Bitwise inclusive OR (|)

0 | 0 = 0

0 | 1 = 1

1 | 0 = 1

1 | 1 = 1

Bitwise exclusive OR (^)

0 ^ 0 = 0

0 ^ 1 = 1

1 ^ 0 = 1

1 ^ 1 = 0

Bitwise 1’s complement (~)

~0 = 1

~1 = 0

In bitwise truth tables, you can replace the 1 and 0 with True

and False, respectively, if it helps you to understand the result better.

For the bitwise AND (&) truth table, both bits being compared by the

& operator must be True for the result to be True. In other words,

“True AND True results in True.”

TIP: By replacing the 1s and 0s with True and False, you might

be able to relate the bitwise operators to the regular logical

operators, && and ||, that you use for if comparisons.

The | bitwise operator is sometimes called the bitwise inclusive
OR operator. If one side of the | operator is 1 (True)—or if both sides

are 1—the result is 1 (True).

The ̂ operator is called bitwise exclusive OR. It means that either

side of the ^ operator must be 1 (True) for the result to be 1 (True), but

both sides cannot be 1 (True) at the same time.

For bitwise ^, one
side or the other—
but not both—must
be 1.

237

EXAMPLE
C++ By

The ~ operator, called bitwise 1’s complement, reverses each bit to

its opposite value.

NOTE: Bitwise 1’s complement does not negate a number. As

Appendix A, “Memory Addressing, Binary, and Hexadecimal

Review,” shows, most computers use a 2’s complement to

negate numbers. The bitwise 1’s complement reverses the bit

pattern of numbers, but it doesn’t add the additional 1 as the 2’s

complement requires.

You can test and change individual bits inside variables to

check for patterns of data. The following examples help to illustrate

each of the four bitwise operators.

Examples

1. If you apply the bitwise & operator to numerals 9 and 14, you

receive a result of 8. Figure 11.4 shows you why this is so.

When the binary values of 9 (1001) and 14 (1110) are com-

pared on a bitwise & basis, the resulting bit pattern is 8

(1000).

Figure 11.4. Performing bitwise & on 9 and 14.

In a C++ program, you can code this bitwise comparison as

follows.

Make result equal to the binary value of 9 (1001) ANDed to the
binary value of 14 (1110).

result = 9 & 14;

Chapter 11 ♦ Additional C++ Operators

238

The result variable holds 8, which is the result of the bitwise

&. The 9 (binary 1001) or 14 (binary 1110)—or both—also can

be stored in variables with the same result.

2. When you apply the bitwise | operator to the numbers 9 and

14, you get 15. When the binary values of 9 (1001) and 14

(1110) are compared on a bitwise | basis, the resulting bit

pattern is 15 (1111). result’s bits are 1 (True) in every posi-

tion where a 1 appears in both numbers.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 | 14;

The result variable holds 15, which is the result of the

bitwise |. The 9 or 14 (or both) also can be stored in

variables.

3. The bitwise ^ applied to 9 and 14 produces 7. Bitwise ^ sets

the resulting bits to 1 if one number or the other’s bit is 1, but

not if both of the matching bits are 1 at the same time.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 ^ 14;

The result variable holds 7 (binary 0111), which is the result

of the bitwise ^. The 9 or 14 (or both) also can be stored in

variables with the same result.

4. The bitwise ~ simply negates each bit. It is a unary bitwise

operator because you can apply it to only a single value at

any one time. The bitwise ~ applied to 9 results in 6, as

shown in Figure 11.5.

Figure 11.5. Performing bitwise ~ on the number 9.

239

EXAMPLE
C++ By

In a C++ program, you can code this bitwise operation like

this:

result = ~9;

The result variable holds 6, which is the result of the bit-

wise ~. The 9 can be stored in a variable with the same result.

5. You can take advantage of the bitwise operators to perform

tests on data that you cannot do as efficiently in other ways.

For example, suppose you want to know if the user typed an

odd or even number (assuming integers are being input).

You can use the modulus operator (%) to determine whether

the remainder—after dividing the input value by 2—is 0

or 1. If the remainder is 0, the number is even. If the remain-

der is 1, the number is odd.

The bitwise operators are more efficient than other operators

because they directly compare bit patterns without using

any mathematical operations.

Because a number is even if its bit pattern ends in a 0 and

odd if its bit pattern ends in 1, you also can test for odd or

even numbers by applying the bitwise & to the data and to a

binary 1. This is more efficient than using the modulus

operator. The following program informs users if their input

value is odd or even using this technique.

Identify the file and include the input/output header file. This
program tests for odd or even input. You need a place to put the
user’s number, so declare the input variable as an integer.

Ask the user for the number to be tested. Put the user’s answer in
input. Use the bitwise operator, &, to test the number. If the bit on
the extreme right in input is 1, tell the user that the number is odd.
If the bit on the extreme right in input is 0, tell the user that the
number is even.

// Filename: C11ODEV.CPP

// Uses a bitwise & to determine whether a

// number is odd or even.

#include <iostream.h>

main()

{

Chapter 11 ♦ Additional C++ Operators

240

Only bit 6
is different

 int input; // Will hold user’s number

 cout << “What number do you want me to test? “;

 cin >> input;

 if (input & 1) // True if result is 1;

 // otherwise it is false (0)

 { cout << “The number “ << input << “ is odd\n”; }

 else

 { cout << “The number “ << input << “ is even\n”; }

 return 0;

}

6. The only difference between the bit patterns for uppercase

and lowercase characters is bit number 5 (the third bit from

the left, as shown in Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review”). For lowercase letters, bit

5 is a 1. For uppercase letters, bit 5 is a 0. Figure 11.6 shows

how A and B differ from a and b by a single bit.

Only bit 6
is different

Figure 11.6. Bitwise difference between two uppercase and two lower-
case ASCII letters.

To convert a character to uppercase, you have to turn off

(change to a 0) bit number 5. You can apply a bitwise & to the

input character and 223 (which is 11011111 in binary) to turn

off bit 5 and convert any input character to its uppercase

equivalent. If the number is already in uppercase, this

bitwise & does not change it.

The 223 (binary 11011111) is called a bit mask because it

masks (just as masking tape masks areas not to be painted)

bit 5 so it becomes 0, if it is not already. The following

program does this to ensure that users typed uppercase

characters when they were asked for their initials.

241

EXAMPLE
C++ By

// Filename: C11UPCS1.CPP

// Converts the input characters to uppercase

// if they aren’t already.

#include <iostream.h>

main()

{

 char first, middle, last; // Will hold user’s initials

 int bitmask=223; // 11011111 in binary

 cout << “What is your first initial? “;

 cin >> first;

 cout << “What is your middle initial? “;

 cin >> middle;

 cout << “What is your last initial? “;

 cin >> last;

 // Ensure that initials are in uppercase.

 first = first & bitmask; // Turn off bit 5 if

 middle = middle & bitmask; // it is not already

 last = last & bitmask; // turned off.

 cout << “Your initials are “ << first << “ “ <<

 middle << “ “ << last;

 return 0;

}

The following output shows what happens when two of the

initials are typed with lowercase letters. The program con-

verts them to uppercase before printing them again. Al-

though there are other ways to convert to lowercase, none

are as efficient as using the & bitwise operator.

What is your first initial? g

What is your middle initial? M

What is your last initial? p

Your initials are: G M P

Chapter 11 ♦ Additional C++ Operators

242

Review Questions
The answers to the review questions are in Appendix B.

1. What set of statements does the conditional operator

replace?

2. Why is the conditional operator called a “ternary” operator?

3. Rewrite the following conditional operator as an if-else

statement.

ans = (a == b) ? c + 2 : c + 3;

4. True or false: The following statements produce the same

results.

var++;

and

var = var + 1;

5. Why is using the increment and decrement operators more

efficient than using the addition and subtraction operators?

6. What is a sequence point?

7. Can the output of the following code section be determined?

age = 20;

printf(“You are now %d, and will be %d in one year”,

 age, age++);

8. What is the output of the following program section?

char name[20] = “Mike”;

cout << “The size of name is “ << sizeof(name) << “\n”;

9. What is the result of each of the following bitwise True-False

expressions?

a. 1 ^ 0 & 1 & 1 | 0

b. 1 & 1 & 1 & 1

c. 1 ^ 1 ^ 1 ^ 1

d. ~(1 ^ 0)

243

EXAMPLE
C++ By

Review Exercises
1. Write a program that prints the numerals from 1 to 10. Use

ten different couts and only one variable called result to hold

the value before each cout. Use the increment operator to

add 1 to result before each cout.

2. Write a program that asks users for their ages. Using a single

printf() that includes a conditional operator, print on-screen

the following if the input age is over 21,

You are not a minor.

or print this otherwise:

You are still a minor.

This printf() might be long, but it helps to illustrate how the

conditional operator can work in statements where if-else

logic does not.

3. Use the conditional operator—and no if-else statements—to

write the following tax-calculation routine: A family pays no

tax if its annual salary is less than $5,000. It pays a 10 percent

tax if the salary range begins at $5,000 and ends at $9,999. It

pays a 20 percent tax if the salary range begins at $10,000

and ends at $19,999. Otherwise, the family pays a 30 percent

tax.

4. Write a program that converts an uppercase letter to a

lowercase letter by applying a bitmask and one of the bit-

wise logical operators. If the character is already in lower-

case, do not change it.

Summary
Now you have learned almost every operator in the C++

language. As explained in this chapter, conditional, increment, and

decrement are three operators that enable C++ to stand apart from

many other programming languages. You must always be aware of

the precedence table whenever you use these, as you must with all

operators.

Chapter 11 ♦ Additional C++ Operators

244

The sizeof and sequence point operators act unlike most others.

The sizeof is a compile operator, and it works in a manner similar to

the #define preprocessor directive because they are both replaced by

their values at compile time. The sequence point enables you to have

multiple statements on the same line—or in a single expression.

Reserve the sequence point for declaring variables only because it

can be unclear when it’s combined with other expressions.

This chapter concludes the discussion on C++ operators. Now

that you can compute just about any result you will ever need, it is

time to discover how to gain more control over your programs. The

next few chapters introduce control loops that give you repetitive

power in C++.

245

EXAMPLE
C++ By

12

The while Loop

The repetitive capabilities of computers make them good tools for

processing large amounts of information. Chapters 12-15 introduce

you to C++ constructs, which are the control and looping commands

of programming languages. C++ constructs include powerful, but

succinct and efficient, looping commands similar to those of other

languages you already know.

The while loops enable your programs to repeat a series of

statements, over and over, as long as a certain condition is always

met. Computers do not get “bored” while performing the same tasks

repeatedly. This is one reason why they are so important in business

data processing.

This chapter teaches you the following:

♦ The while loop

♦ The concept of loops

♦ The do-while loop

♦ Differences between if and while loops

♦ The exit() function

♦ The break statement

♦ Counters and totals

Chapter 12 ♦ The while Loop

246

After completing this chapter, you should understand the first

of several methods C++ provides for repeating program sections.

This chapter’s discussion of loops includes one of the most impor-

tant uses for looping: creating counter and total variables.

The while Statement
The while statement is one of several C++ construct statements.

Each construct (from construction) is a programming language state-

ment—or a series of statements—that controls looping. The while,

like other such statements, is a looping statement that controls the

execution of a series of other statements. Looping statements cause

parts of a program to execute repeatedly, as long as a certain

condition is being met.

The format of the while statement is

while (test expression)

 { block of one or more C++ statements; }

The parentheses around test expression are required. As long

as test expression is True (nonzero), the block of one or more C++

statements executes repeatedly until test expression becomes False

(evaluates to zero). Braces are required before and after the body of

the while loop, unless you want to execute only one statement. Each

statement in the body of the while loop requires an ending semi-

colon.

The placeholder test expression usually contains relational,

and possibly logical, operators. These operators provide the True-

False condition checked in test expression. If test expression is False

when the program reaches the while loop for the first time, the body

of the while loop does not execute at all. Regardless of whether the

body of the while loop executes no times, one time, or many times,

the statements following the while loop’s closing brace execute if test

expression becomes False.

Because test expression determines when the loop finishes, the

body of the while loop must change the variables used in test

expression. Otherwise, test expression never changes and the while

loop repeats forever. This is known as an infinite loop, and you should

avoid it.

The body of a
while loop
executes repeatedly
as long as test
expression is True.

247

EXAMPLE
C++ By

TIP: If the body of the while loop contains only one statement,

the braces surrounding it are not required. It is a good habit to

enclose all while loop statements in braces, however, because if

you have to add statements to the body of the while loop later,

your braces are already there.

The Concept of Loops
You use the loop concept in everyday life. Any time you have

to repeat the same procedure, you are performing a loop—just as

your computer does with the while statement. Suppose you are

wrapping holiday gifts. The following statements represent the

looping steps (in while format) that you follow while gift-wrapping.

while (there are still unwrapped gifts)
 { Get the next gift;

Cut the wrapping paper;
Wrap the gift;
Put a bow on the gift;
Fill out a name card for the gift;
Put the wrapped gift with the others; }

Whether you have 3, 15, or 100 gifts to wrap, you use this

procedure (loop) repeatedly until every gift is wrapped. For an

example that is more easily computerized, suppose you want to total

all the checks you wrote in the previous month. You could perform

the following loop.

while (there are still checks from the last month to be totaled)
 { Add the amount of the next check to the total; }

The body of this pseudocode while loop has only one statement,

but that single statement must be performed until you have added

each one of the previous month’s checks. When this loop ends (when

no more checks from the previous month remain to be totaled), you

have the result.

The body of a while loop can contain one or more C++ state-

ments, including additional while loops. Your programs will be

Chapter 12 ♦ The while Loop

248

more readable if you indent the body of a while loop a few spaces to

the right. The following examples illustrate this.

Examples

1. Some programs presented earlier in the book require user

input with cin. If users do not enter appropriate values, these

programs display an error message and ask the user to enter

another value, which is an acceptable procedure.

Now that you understand the while loop construct, however,

you should put the error message inside a loop. In this way,

users see the message continually until they type proper

input values, rather than once.

The following program is short, but it demonstrates a while

loop that ensures valid keyboard input. It asks users

whether they want to continue. You can incorporate this

program into a larger one that requires user permission to

continue. Put a prompt, such as the one presented here, at

the bottom of a text screen. The text remains on-screen until

the user tells the program to continue executing.

Identify the file and include the necessary header file. In this
program, you want to ensure the user enters Y or N.
You have to store the user’s answer, so declare the ans variable as a
character. Ask the users whether they want to continue, and get
the response. If the user doesn’t type Y or N, ask the user for
another response.

// Filename: C12WHIL1.CPP

// Input routine to ensure user types a

// correct response. This routine can be part

// of a larger program.

#include <iostream.h>

main()

{

 char ans;

 cout << “Do you want to continue (Y/N)? “;

 cin >> ans; // Get user’s answer

249

EXAMPLE
C++ By

 while ((ans != ‘Y’) && (ans != ‘N’))

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N)?”; // again.

 cin >> ans;

 } // Body of while loop ends here.

 return 0;

}

Notice that the two cin functions do the same thing. You

must use an initial cin, outside the while loop, to provide an

answer for the while loop to check. If users type something

other than Y or N, the program prints an error message, asks

for another answer, then checks the new answer. This vali-

dation method is preferred over one where the reader only

has one additional chance to succeed.

The while loop tests the test expression at the top of the loop.

This is why the loop might never execute. If the test is

initially False, the loop does not execute even once. The

output from this program is shown as follows. The program

repeats indefinitely, until the relational test is True (as soon

as the user types either Y or N).

Do you want to continue (Y/N)? k

You must type a Y or an N

Do you want to continue (Y/N)? c

You must type a Y or an N

Do you want to continue (Y/N)? s

You must type a Y or an N

Do you want to continue (Y/N)? 5

You must type a Y or an N

Do you want to continue (Y/N)? Y

2. The following program is an example of an invalid while

loop. See if you can find the problem.

Chapter 12 ♦ The while Loop

250

// Filename: C12WHBAD.CPP

// Bad use of a while loop.

#include <iostream.h>

main()

{

 int a=10, b=20;

 while (a > 5)

 { cout << “a is “ << a << “, and b is “ << b << “\n”;

 b = 20 + a; }

 return 0;

}

This while loop is an example of an infinite loop. It is vital

that at least one statement inside the while changes a variable

in the test expression (in this example, the variable a); other-

wise, the condition is always True. Because the variable a

does not change inside the while loop, this program will

never end.

TIP: If you inadvertently write an infinite loop, you must stop

the program yourself. If you use a PC, this typically means

pressing Ctrl-Break. If you are using a UNIX-based system,

your system administrator might have to stop your program’s

execution.

3. The following program asks users for a first name, then uses

a while loop to count the number of characters in the name.

This is a string length program; it counts characters until it

reaches the null zero. Remember that the length of a string

equals the number of characters in the string, not including

the null zero.

// Filename: C12WHIL2.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

251

EXAMPLE
C++ By

 int count=0; // Will hold total characters in name

 // Get the user’s first name

 cout << “What is your first name? “;

 cin >> name;

 while (name[count] > 0) // Loop until null zero reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The loop continues as long as the value of the next character

in the name array is greater than zero. Because the last charac-

ter in the array is a null zero, the test is False on the name’s

last character and the statement following the body of the

loop continues.

NOTE: A built-in string function called strlen() determines

the length of strings. You learn about this function in Chap-

ter 22, “Character, String, and Numeric Functions.”

4. The previous string-length program’s while loop is not as

efficient as it could be. Because a while loop fails when its test

expression is zero, there is no need for the greater-than test.

By changing the test expression as the following program

shows, you can improve the efficiency of the string length

count.

// Filename: C12WHIL3.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

 int count=0; // Will hold total characters in name

 // Get the user’s first name

Chapter 12 ♦ The while Loop

252

 cout << “What is your first name? “;

 cin >> name;

 while (name[count]) // Loop until null zero is reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The do-while Loop
The do-while statement controls the do-while loop, which is

similar to the while loop except the relational test occurs at the end

(rather than beginning) of the loop. This ensures the body of the loop

executes at least once. The do-while tests for a positive relational test;
as long as the test is True, the body of the loop continues to execute.

The format of the do-while is

do

 { block of one or more C++ statements; }

while (test expression)

test expression must be enclosed in parentheses, just as it must

in a while statement.

Examples

1. The following program is just like the first one you saw with

the while loop (C12WHIL1.CPP), except the do-while is used.

Notice the placement of test expression. Because this expres-

sion concludes the loop, user input does not have to appear

before the loop and again in the body of the loop.

// Filename: C12WHIL4.CPP

// Input routine to ensure user types a

// correct response. This routine might be part

// of a larger program.

The body of the
do-while loop
executes at least
once.

253

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 char ans;

 do

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N) ?”; // again.

 cin >> ans; } // Body of while loop

 // ends here.

 while ((ans != ‘Y’) && (ans != ‘N’));

 return 0;

}

2. Suppose you are entering sales amounts into the computer

to calculate extended totals. You want the computer to print

the quantity sold, part number, and extended total (quantity

times the price per unit), as the following program does.

// Filename: C12INV1.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information.

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no != -999)

 { cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

Chapter 12 ♦ The while Loop

254

 cin >> cost;

 ext_cost = cost * quantity;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) <<

 ext_cost;

 cout << “\n\n\n”; // Print two blank lines.

 }

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

Here is the output from this program:

*** Inventory Computation ***

What is the next part number (-999 to end)? 213

How many were bought? 12

What is the unit price of this item? 5.66

12 of # 213 will cost 67.92

What is the next part number (-999 to end)? 92

How many were bought? 53

What is the unit price of this item? .23

53 of # 92 will cost 12.19

What is the next part number (-999 to end)? -999

End of inventory computation

The do-while loop controls the entry of the customer sales

information. Notice the “trigger” that ends the loop. If the

user enters –999 for the part number, the do-while loop quits

because no part numbered –999 exists in the inventory.

However, this program can be improved in several ways.

The invoice can be printed to the printer rather than the

255

EXAMPLE
C++ By

screen. You learn how to direct your output to a printer in

Chapter 21, “Device and Character Input/Output.” Also, the

inventory total (the total amount of the entire order) can be

computed. You learn how to total such data in the “Counters

and Totals” section later in this chapter.

The if Loop Versus the while
Loop

Some beginning programmers confuse the if statement with

loop constructs. The while and do-while loops repeat a section of code

multiple times, depending on the condition being tested. The if

statement may or may not execute a section of code; if it does, it

executes that section only once.

Use an if statement when you want to conditionally execute a

section of code once, and use a while or do-while loop if you want to

execute a section more than once. Figure 12.1 shows differences

between the if statement and the two while loops.

Body executes only
once if test is true.

Test at top of loop.

Body loops continuously
as long as test is true.

Test at top of loop.

Figure 12.1. Differences between the if statement and the two while
loops.

Chapter 12 ♦ The while Loop

256

The exit() Function and break
Statement

C++ provides the exit() function as a way to leave a program

early (before its natural finish). The format of exit() is

exit(status);

where status is an optional integer variable or literal. If you are

familiar with your operating system’s return codes, status enables

you to test the results of C++ programs. In DOS, status is sent to the

operating system’s errorlevel environment variable, where it can be

tested by batch files.

Many times, something happens in a program that requires the

program’s termination. It might be a major problem, such as a disk

drive error. Perhaps users indicate that they want to quit the

program—you can tell this by giving your users a special value to

type with cin or scanf(). You can isolate the exit() function on a line

by itself, or anywhere else that a C++ statement or function can

appear. Typically, exit() is placed in the body of an if statement to

end the program early, depending on the result of some relational

test.

Always include the stdlib.h header file when you use exit().

This file describes the operation of exit() to your program. When-

ever you use a function in a program, you should know its corre-

sponding #include header file, which is usually listed in the compiler’s

reference manual.

Instead of exiting an entire program, however, you can use the

break statement to exit the current loop. The format of break is

break;

The break statement can go anywhere in a C++ program that

any other statement can go, but it typically appears in the body of a

while or do-while loop, used to leave the loop early. The following

examples illustrate the exit() function and the break statement.

NOTE: The break statement exits only the most current loop. If

you have a while loop in another while loop, break exits only the

internal loop.

The exit()
function provides an
early exit from your
program.

The break
statement ends the
current loop.

257

EXAMPLE
C++ By

Examples

1. Here is a simple program that shows you how the exit()

function works. This program looks as though it prints

several messages on-screen, but it doesn’t. Because exit()

appears early in the code, this program quits immediately

after main()’s opening brace.

// C12EXIT1.CPP

// Quits early due to exit() function.

#include <iostream.h>

#include <stdlib.h> // Required for exit().

main()

{

 exit(0); // Forces program to end here.

 cout << “C++ programming is fun.\n”;

 cout << “I like learning C++ by example!\n”;

 cout << “C++ is a powerful language that is “ <<

 “not difficult to learn.”;

 return 0;

}

2. The break statement is not intended to be as strong a pro-

gram exit as the exit() function. Whereas exit() ends the

entire program, break quits only the loop that is currently

active. In other words, break is usually placed inside a while

or do-while loop to “simulate” a finished loop. The statement

following the loop executes after a break occurs, but the

program does not quit as it does with exit().

The following program appears to print C++ is fun! until the

user enters N to stop it. The message prints only once, how-

ever, because the break statement forces an early exit from

the loop.

// Filename: C12BRK.CPP

// Demonstrates the break statement.

#include <iostream.h>

main()

Chapter 12 ♦ The while Loop

258

{

 char user_ans;

 do

 { cout << “C++ is fun! \n”;

 break; // Causes early exit.

 cout << “Do you want to see the message again (N/Y)? “;

 cin >> user_ans;

 } while (user_ans == ‘Y’);

 cout << “That’s all for now\n”;

 return 0;

}

This program always produces the following output:

C++ is fun!

That’s all for now

You can tell from this program’s output that the break state-

ment does not allow the do-while loop to reach its natural

conclusion, but causes it to finish early. The final cout prints

because only the current loop—and not the entire pro-

gram—exits with the break statement.

3. Unlike the previous program, break usually appears after an

if statement. This makes it a conditional break, which occurs

only if the relational test of the if statement is True.

A good illustration of this is the inventory program you saw

earlier (C12INV1.CPP). Even though the users enter –999

when they want to quit the program, an additional if test is

needed inside the do-while. The –999 ends the do-while loop,

but the body of the do-while still needs an if test, so the

remaining quantity and cost prompts are not given.

If you insert a break after testing for the end of the user’s

input, as shown in the following program, the do-while will

not need the if test. The break quits the do-while as soon as

the user signals the end of the inventory by entering –999 as

the part number.

259

EXAMPLE
C++ By

// Filename: C12INV2.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no == -999)

 { break; } // Exit the loop if

 // no more part numbers.

 cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

 cin >> cost;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) << cost*quantity;

 cout << “\n\n\n”; // Print two blank lines.

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

4. You can use the following program to control the two other

programs. This program illustrates how C++ can pass in-

formation to DOS with exit(). This is your first example of a

menu program. Similar to a restaurant menu, a C++ menu

program lists possible user choices. The users decide what

they want the computer to do from the menu’s available

options. The mailing list application in Appendix F, “The

Mailing List Application,” uses a menu for its user options.

Chapter 12 ♦ The while Loop

260

This program returns either a 1 or a 2 to its operating system,

depending on the user’s selection. It is then up to the oper-

ating system to test the exit value and run the proper

program.

// Filename: C12EXIT2.CPP

// Asks user for his or her selection and returns

// that selection to the operating system with exit().

#include <iostream.h>

#include <stdlib.h>

main()

{

 int ans;

 do

 { cout << “Do you want to:\n\n”;

 cout << “\t1. Run the word processor \n\n”;

 cout << “\t2. Run the database program \n\n”;

 cout << “What is your selection? “;

 cin >> ans;

 } while ((ans != 1) && (ans != 2)); // Ensures user

 // enters 1 or 2.

 exit(ans); // Return value to operating system.

 return 0; // Return does not ever execute due to exit().

}

Counters and Totals
Counting is important for many applications. You might have

to know how many customers you have or how many people scored

over a certain average in your class. You might want to count how

many checks you wrote in the previous month with your computer-

ized checkbook system.

Before you develop C++ routines to count occurrences, think of

how you count in your own mind. If you were adding a total number

of something, such as the stamps in your stamp collection or the

261

EXAMPLE
C++ By

number of wedding invitations you sent out, you would probably

do the following:

Start at 0, and add 1 for each item being counted. When you are finished,
you should have the total number (or the total count).

This is all you do when you count with C++: Assign 0 to a

variable and add 1 to it every time you process another data value.

The increment operator (++) is especially useful for counting.

Examples

1. To illustrate using a counter, the following program prints

“Computers are fun!” on-screen 10 times. You can write a

program that has 10 cout statements, but that would not be

efficient. It would also be too cumbersome to have 5000 cout

statements, if you wanted to print that same message 5000

times.

By adding a while loop and a counter that stops after a

certain total is reached, you can control this printing, as the

following program shows.

// Filename: C12CNT1.CPP

// Program to print a message 10 times.

#include <iostream.h>

main()

{

 int ctr = 0; // Holds the number of times printed.

 do

 { cout << “Computers are fun!\n”;

 ctr++; // Add one to the count,

 // after each cout.

 } while (ctr < 10); // Print again if fewer

 // than 10 times.

 return 0;

}

Chapter 12 ♦ The while Loop

262

The output from this program is shown as follows. Notice

that the message prints exactly 10 times.

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

The heart of the counting process in this program is the

statement that follows.

ctr++;

You learned earlier that the increment operator adds 1 to a

variable. In this program, the counter variable is

incremented each time the do-while loops. Because the only

operation performed on this line is the increment of ctr, the

prefix increment (++ctr) produces the same results.

2. The previous program not only added to the counter vari-

able, but also performed the loop a specific number of times.

This is a common method of conditionally executing parts of

a program for a fixed number of times.

The following program is a password program. A password

is stored in an integer variable. The user must correctly enter

the matching password in three attempts. If the user does

not type the correct password in that time, the program

ends. This is a common method that dial-up computers use.

They enable a caller to try the password a fixed number of

times, then hang up the phone if that limit is exceeded. This

helps deter people from trying hundreds of different pass-

words at any one sitting.

If users guess the correct password in three tries, they see the

secret message.

263

EXAMPLE
C++ By

// Filename: C12PASS1.CPP

// Program to prompt for a password and

// check it against an internal one.

#include <iostream.h>

#include <stdlib.h>

main()

{

 int stored_pass = 11862;

 int num_tries = 0; // Counter for password attempts.

 int user_pass;

 while (num_tries < 3) // Loop only three

 // times.

 { cout << “What is the password (You get 3 tries...)? “;

 cin >> user_pass;

 num_tries++; // Add 1 to counter.

 if (user_pass == stored_pass)

 { cout << “You entered the correct password.\n”;

 cout << “The cash safe is behind the picture “ <<

 “of the ship.\n”;

 exit(0);

 }

 else

 { cout << “You entered the wrong password.\n”;

 if (num_tries == 3)

 { cout << “Sorry, you get no more chances”; }

 else

 { cout << “You get “ << (3-num_tries) <<

 “ more tries...\n”;}

 }

 } // End of while loop.

 exit(0);

 return 0;

}

This program gives users three chances in case they type

some mistakes. After three unsuccessful attempts, the pro-

gram quits without displaying the secret message.

Chapter 12 ♦ The while Loop

264

3. The following program is a letter-guessing game. It includes

a message telling users how many tries they made before

guessing the correct letter. A counter counts the number of

these tries.

// Filename: C12GUES.CPP

// Letter-guessing game.

#include <iostream.h>

main()

{

 int tries = 0;

 char comp_ans, user_guess;

 // Save the computer’s letter

 comp_ans = ‘T’; // Change to a different

 // letter if desired.

 cout << “I am thinking of a letter...”;

 do

 { cout << “What is your guess? “;

 cin >> user_guess;

 tries++; // Add 1 to the guess-counting variable.

 if (user_guess > comp_ans)

 { cout << “Your guess was too high\n”;

 cout << “\nTry again...”;

 }

 if (user_guess < comp_ans)

 { cout << “Your guess was too low\n”;

 cout << “\nTry again...”;

 }

 } while (user_guess != comp_ans); // Quit when a

 // match is found.

 // They got it right, let them know.

 cout << “*** Congratulations! You got it right! \n”;

 cout << “It took you only “ << tries <<

 “ tries to guess.”;

 return 0;

}

265

EXAMPLE
C++ By

Here is the output of this program:

I am thinking of a letter...What is your guess? E

Your guess was too low

Try again...What is your guess? X

Your guess was too high

Try again...What is your guess? H

Your guess was too low

Try again...What is your guess? O

Your guess was too low

Try again...What is your guess? U

Your guess was too high

Try again...What is your guess? Y

Your guess was too high

Try again...What is your guess? T

*** Congratulations! You got it right!

It took you only 7 tries to guess.

Producing Totals

Writing a routine to add values is as easy as counting. Instead

of adding 1 to the counter variable, you add a value to the total

variable. For instance, if you want to find the total dollar amount of

checks you wrote during December, you can start at nothing (0) and

add the amount of every check written in December. Instead of

building a count, you are building a total.

When you want C++ to add values, just initialize a total

variable to zero, then add each value to the total until you have

included all the values.

Chapter 12 ♦ The while Loop

266

Examples

1. Suppose you want to write a program that adds your grades

for a class you are taking. The teacher has informed you that

you earn an A if you can accumulate over 450 points.

The following program keeps asking you for values until

you type –1. The –1 is a signal that you are finished entering

grades and now want to see the total. This program also

prints a congratulatory message if you have enough points

for an A.

// Filename: C12GRAD1.CPP

// Adds grades and determines whether you earned an A.

#include <iostream.h>

include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade; // Holds individual grades.

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; } // Add to total.

 } while (grade >= 0.0); // Quit when -1 entered.

 // Control begins here if no more grades.

 cout << “\n\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points\n”;

 if (total_grade >= 450.00)

 { cout << “** You made an A!!”; }

 return 0;

}

Notice that the -1 response is not added to the total number

of points. This program checks for the -1 before adding to

total_grade. Here is the output from this program:

267

EXAMPLE
C++ By

What is your grade? (-1 to end) 87.6

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) 78.7

What is your grade? (-1 to end) -1

You made a total of 258.7 points

2. The following program is an extension of the grade-

calculating program. It not only totals the points, but also

computes their average.

To calculate the average grade, the program must first

determine how many grades were entered. This is a subtle

problem because the number of grades to be entered is

unknown in advance. Therefore, every time the user enters a

valid grade (not –1), the program must add 1 to a counter as

well as add that grade to the total variable. This is a combi-

nation counting and totaling routine, which is common in

many programs.

// Filename: C12GRAD2.CPP

// Adds up grades, computes average,

// and determines whether you earned an A.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade_avg = 0.0;

 float grade;

 int grade_ctr = 0;

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; // Add to total.

 grade_ctr ++; } // Add to count.

 } while (grade >= 0.0); // Quit when -1 entered.

Chapter 12 ♦ The while Loop

268

 // Control begins here if no more grades.

 grade_avg = (total_grade / grade_ctr); // Compute

 // average.

 cout << “\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points.\n”;

 cout << “Your average was “ << grade_avg << “\n”;

 if (total_grade >= 450.0)

 { cout << “** You made an A!!”; }

 return 0;

}

Below is the output of this program. Congratulations! You

are on your way to becoming a master C++ programmer.

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 98.7

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) -1

You made a total of 326.68 points.

Your average was 81.7

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between the while loop and the

do-while loop?

2. What is the difference between a total variable and a counter

variable?

3. Which C++ operator is most useful for counting?

4. True or false: Braces are not required around the body of

while and do-while loops.

269

EXAMPLE
C++ By

5. What is wrong with the following code?

while (sales > 50)

 cout << “Your sales are very good this month.\n”;

 cout << “You will get a bonus for your high sales\n”;

6. What file must you include as a header file if you use exit()?

7. How many times does this printf() print?

int a=0;

do

 { printf(“Careful \n”);

 a++; }

while (a > 5);

8. How can you inform DOS of the program exit status?

9. What is printed to the screen in the following section of

code?

a = 1;

while (a < 4)

 { cout << “This is the outer loop\n”;

 a++;

 while (a <= 25)

 { break;

 cout << “This prints 25 times\n”; }

 }

Review Exercises
1. Write a program with a do-while loop that prints the numer-

als from 10 to 20 (inclusive), with a blank line between each

number.

2. Write a weather-calculator program that asks for a list of the

previous 10 days’ temperatures, computes the average, and

prints the results. You have to compute the total as the input

occurs, then divide that total by 10 to find the average. Use a

while loop for the 10 repetitions.

Chapter 12 ♦ The while Loop

270

3. Rewrite the program in Exercise 2 using a do-while loop.

4. Write a program, similar to the weather calculator in Exer-

cise 2, but generalize it so it computes the average of any

number of days’ temperatures. (Hint: You have to count the

number of temperatures to compute the final average.)

5. Write a program that produces your own ASCII table on-

screen. Don’t print the first 31 characters because they are

nonprintable. Print the codes numbered 32 through 255 by

storing their numbers in integer variables and printing their

ASCII values using printf() and the “%c” format code.

Summary
This chapter showed you two ways to produce a C++ loop: the

while loop and the do-while loop. These two variations of while loops

differ in where they test their test condition statements. The while

tests at the beginning of its loop, and the do-while tests at the end.

Therefore, the body of a do-while loop always executes at least once.

You also learned that the exit() function and break statement add

flexibility to the while loops. The exit() function terminates the

program, and the break statement terminates only the current loop.

This chapter explained two of the most important applications

of loops: counters and totals. Your computer can be a wonderful tool

for adding and counting, due to the repetitive capabilities offered

with while loops.

The next chapter extends your knowledge of loops by showing

you how to create a determinate loop, called the for loop. This feature

is useful when you want a section of code to loop for a specified

number of times.

605

EXAMPLE
C++ By

29

Arrays of
Structures

This chapter builds on the previous one by showing you how to

create many structures for your data. After creating an array of

structures, you can store many occurrences of your data values.

Arrays of structures are good for storing a complete employee

file, inventory file, or any other set of data that fits in the structure

format. Whereas arrays provide a handy way to store several values

that are the same type, arrays of structures store several values of

different types together, grouped as structures.

This chapter introduces the following concepts:

♦ Creating arrays of structures

♦ Initializing arrays of structures

♦ Referencing elements from a structure array

♦ Arrays as members

Many C++ programmers use arrays of structures as a prelude

to storing their data in a disk file. You can input and calculate your

disk data in arrays of structures, and then store those structures in

memory. Arrays of structures also provide a means of holding data

you read from the disk.

Chapter 29 ♦ Arrays of Structures

606

Declaring Arrays
of Structures

It is easy to declare an array of structures. Specify the number

of reserved structures inside array brackets when you declare the

structure variable. Consider the following structure definition:

struct stores

 { int employees;

 int registers;

 double sales;

 } store1, store2, store3, store4, store5;

This structure should not be difficult for you to understand

because there are no new commands used in the structure declara-

tion. This structure declaration creates five structure variables.

Figure 29.1 shows how C++ stores these five structures in memory.

Each of the structure variables has three members—two integers

followed by a double floating-point value.

Figure 29.1. The structure of Store 1, Store 2, Store 3, Store 4, and
Store 5.

607

EXAMPLE
C++ By

If the fourth store increased its employee count by three, you

could update the store’s employee number with the following

assignment statement:

store4.employees += 3; // Add three to this store’s

 // employee count.

Suppose the fifth store just opened and you want to initialize its

members with data. If the stores are a chain and the new store is

similar to one of the others, you can begin initializing the store’s data

by assigning each of its members the same data as another store’s,

like this:

store5 = store2; // Define initial values for

 // the members of store5.

Such structure declarations are fine for a small number of

structures, but if the stores were a national chain, five structure

variables would not be enough. Suppose there were 1000 stores. You

would not want to create 1000 different store variables and work

with each one individually. It would be much easier to create an

array of store structures.

Consider the following structure declaration:

struct stores

 { int employees;

 int registers;

 double sales;

 } store[1000];

In one quick declaration, this code creates 1000 store structures,

each one containing three members. Figure 29.2 shows how these

structure variables appear in memory. Notice the name of each

individual structure variable: store[0], store[1], store[2], and so on.

CAUTION: Be careful that your computer does not run out

of memory when you create a large number of structures.

Arrays of structures quickly consume valuable memory. You

might have to create fewer structures, storing more data in disk

files and less data in memory.

Arrays of structures
make working with
large numbers of
structure variables
manageable.

Chapter 29 ♦ Arrays of Structures

608

Figure 29.2. An array of the store structures.

The element store[2] is an array element. This array element,

unlike the others you have seen, is a structure variable. Therefore, it

contains three members, each of which you can reference with the

dot operator.

The dot operator works the same way for structure array

elements as it does for regular structure variables. If the number of

employees for the fifth store (store[4]) increased by three, you could

update the structure variable like this:

store[4].employees += 3; // Add three to this store’s

 // employee count.

You can assign complete structures to one another also by

using array notation. To assign all the members of the 20th store to

the 45th store, you would do this:

609

EXAMPLE
C++ By

store[44] = store[19]; // Copy all members from the

 // 20th store to the 45th.

The rules of arrays are still in force here. Each element of the

array called store is the same data type. The data type of store is the

structure stores. As with any array, each element must be the same

data type; you cannot mix data types in the same array. This array’s

data type happens to be a structure you created containing three

members. The data type for store[316] is the same for store[981] and

store[74].

The name of the array, store, is a pointer constant to the starting

element of the array, store[0]. Therefore, you can use pointer nota-

tion to reference the stores. To assign store[60] the same value as

store[23], you can reference the two elements like this:

*(store+60) = *(store+23);

You also can mix array and pointer notation, such as

store[60] = *(store+23);

and receive the same results.

You can increase the sales of store[8] by 40 percent using

pointer or subscript notation as well, as in

store[8].sales = (*(store+8)).sales * 1.40;

The extra pair of parentheses are required because the dot

operator has precedence over the dereferencing symbol in C++’s

hierarchy of operators (see Appendix D, “C++ Precedence Table”).

Of course, in this case, the code is not helped by the pointer notation.

The following is a much clearer way to increase the sales by 40

percent:

store[8].sales *= 1.40;

The following examples build an inventory data-entry system

for a mail-order firm using an array of structures. There is very little

new you have to know when working with arrays of structures. To

become comfortable with the arrays of structure notation, concen-

trate on the notation used when accessing arrays of structures and

their members.

Chapter 29 ♦ Arrays of Structures

610

Keep Your Array Notation Straight

You would never access the member sales like this:

store.sales[8] = 3234.54; // Invalid

Array subscripts follow only array elements. sales is not an

array; it was declared as being a double floating-point number.

store can never be used without a subscript (unless you are

using pointer notation).

Here is a corrected version of the previous assignment state-

ment:

store[8].sales=3234.54; // Correctly assigns

 // the value.

Examples

1. Suppose you work for a mail-order company that sells disk

drives. You are given the task of writing a tracking program

for the 125 different drives you sell. You must keep track of

the following information:

Storage capacity in megabytes

Access time in milliseconds

Vendor code (A, B, C, or D)

Cost

Price

Because there are 125 different disk drives in the inventory,

the data fits nicely into an array of structures. Each array

element is a structure containing the five members described

in the list.

The following structure definition defines the inventory:

struct inventory

{

611

EXAMPLE
C++ By

 long int storage;

 int access_time;

 char vendor_code;

 double code;

 double price;

} drive[125]; // Defines 125 occurrences of the structure.

2. When working with a large array of structures, your first

concern should be how the data inputs into the array ele-

ments. The best method of data-entry depends on the

application.

For example, if you are converting from an older computer-

ized inventory system, you have to write a conversion

program that reads the inventory file in its native format and

saves it to a new file in the format required by your C++

programs. This is no easy task. It demands that you have

extensive knowledge of the system from which you are

converting.

If you are writing a computerized inventory system for the

first time, your job is a little easier because you do not have

to convert the old files. You still must realize that someone

has to type the data into the computer. You must write a

data-entry program that receives each inventory item from

the keyboard and saves it to a disk file. You should give the

user a chance to edit inventory data to correct any data he or

she originally might have typed incorrectly.

One of the reasons disk files are introduced in the last half of

the book is that disk-file formats and structures share a

common bond. When you store data in a structure, or more

often, in an array of structures, you can easily write that data

to a disk file using straightforward disk I/O commands.

The following program takes the array of disk drive struc-

tures shown in the previous example and adds a data-entry

function so the user can enter data into the array of struc-

tures. The program is menu-driven. The user has a choice,

when starting the program, to add data, print data on-

screen, or exit the program. Because you have yet to see disk

I/O commands, the data in the array of structures goes away

Chapter 29 ♦ Arrays of Structures

612

when the program ends. As mentioned earlier, saving those

structures to disk is an easy task after you learn C++’s disk

I/O commands. For now, concentrate on the manipulation

of the structures.

This program is longer than many you previously have seen

in this book, but if you have followed the discussions of

structures and the dot operator, you should have little

trouble following the code.

Identify the program and include the necessary header files. Define a
structure that describes the format of each inventory item. Create an
array of structures called disk.

Display a menu that gives the user the choice of entering new
inventory data, displaying the data on-screen, or quitting the pro-
gram. If the user wants to enter new inventory items, prompt the user
for each item and store the data into the array of structures. If the user
wants to see the inventory, loop through each inventory item in the
array, displaying each one on-screen.

// Filename: C29DSINV.CPP

// Data-entry program for a disk drive company.

#include <iostream.h>

#include <stdlib.h>

#include <iomanip.h>

#include <stdio.h>

struct inventory // Global structure definition.

{

 long int storage;

 int access_time;

 char vendor_code;

 float cost;

 float price;

}; // No structure variables defined globally.

void disp_menu(void);

struct inventory enter_data();

void see_data(inventory disk[125], int num_items);

void main()

613

EXAMPLE
C++ By

{

 inventory disk[125]; // Local array of structures.

 int ans;

 int num_items=0; // Number of total items

 // in the inventory.

 do

 {

 do

 { disp_menu(); // Display menu of user choices.

 cin >> ans; // Get user’s request.

 } while ((ans<1) || (ans>3));

 switch (ans)

 { case (1): { disk[num_items] = enter_data(); // Enter

 // disk data.

 num_items++; // Increment number of items.

 break; }

 case (2): { see_data(disk, num_items); // Display

 // disk data.

 break; }

 default : { break; }

 }

 } while (ans!=3); // Quit program

 // when user is done.

 return;

}

void disp_menu(void)

{

 cout << “\n\n*** Disk Drive Inventory System ***\n\n”;

 cout << “Do you want to:\n\n”;

 cout << “\t1. Enter new item in inventory\n\n”;

 cout << “\t2. See inventory data\n\n”;

 cout << “\t3. Exit the program\n\n”;

 cout << “What is your choice? “;

 return;

}

inventory enter_data()

Chapter 29 ♦ Arrays of Structures

614

{

 inventory disk_item; // Local variable to fill

 // with input.

 cout << “\n\nWhat is the next drive’s storage in bytes? “;

 cin >> disk_item.storage;

 cout << “What is the drive’s access time in ms? “;

 cin >> disk_item.access_time;

 cout << “What is the drive’s vendor code (A, B, C, or D)? “;

 fflush(stdin); // Discard input buffer

 // before accepting character.

 disk_item.vendor_code = getchar();

 getchar(); // Discard carriage return

 cout << “What is the drive’s cost? “;

 cin >> disk_item.cost;

 cout << “What is the drive’s price? “;

 cin >> disk_item.price;

 return (disk_item);

}

void see_data(inventory disk[125], int num_items)

{

 int ctr;

 cout << “\n\nHere is the inventory listing:\n\n”;

 for (ctr=0;ctr<num_items;ctr++)

 {

 cout << “Storage: “ << disk[ctr].storage << “\t”;

 cout << “Access time: “ << disk[ctr].access_time << “\n”;

 cout << “Vendor code: “ << disk[ctr].vendor_code << “\t”;

 cout << setprecision(2);

 cout << “Cost: $” << disk[ctr].cost << “\t”;

 cout << “Price: $” << disk[ctr].price << “\n”;

 }

 return;

}

Figure 29.3 shows an item being entered into the inventory

file. Figure 29.4 shows the inventory listing being displayed

to the screen. There are many features and error-checking

functions you can add, but this program is the foundation of

a more comprehensive inventory system. You can easily

615

EXAMPLE
C++ By

adapt it to a different type of inventory, a video tape collec-

tion, a coin collection, or any other tracking system by

changing the structure definition and the member names

throughout the program.

Figure 29.3. Entering inventory information.

Arrays as Members
Members of structures can be arrays. Array members pose no

new problems, but you have to be careful when you access indi-

vidual array elements. Keeping track of arrays of structures that

contain array members might seem like a great deal of work on your

part, but there is nothing to it.

Consider the following structure definition. This statement

declares an array of 100 structures, each structure holding payroll

information for a company. Two of the members, name and depart-

ment, are arrays.

struct payroll

 { char name[25]; // Employee name array.

Chapter 29 ♦ Arrays of Structures

616

 int dependents;

 char department[10]; // Department name array.

 float salary;

 } employee[100]; // An array of 100 employees.

Figure 29.4. Displaying the inventory data.

Figure 29.5 shows what these structures look like. The first and

third members are arrays. name is an array of 25 characters, and

department is an array of 10 characters.

Suppose you must save the 25th employee’s initial in a charac-

ter variable. Assuming initial is already declared as a character

variable, the following statement assigns the employee’s initial to

the varible initial:

initial = employee[24].name[0];

The double subscripts might look confusing, but the dot opera-

tor requires a structure variable on its left (employee[24]) and a

member on its right (name’s first array element). Being able to refer to

member arrays makes the processing of character data in structures

simple.

617

EXAMPLE
C++ By

Figure 29.5. The payroll data.

Chapter 29 ♦ Arrays of Structures

618

Examples

1. Suppose an employee got married and wanted her name

changed in the payroll file. (She happens to be the 45th

employee in the array of structures.) Given the payroll

structure described in the previous section, this would

assign a new name to her structure:

strcpy(employee[44].name, “Mary Larson”); // Assign

 // a new name.

When you refer to a structure variable using the dot opera-

tor, you can use regular commands and functions to process

the data in the structure members.

2. A bookstore wants to catalog its inventory of books. The

following program creates an array of 100 structures. Each

structure contains several types of variables, including

arrays. This program is the data-entry portion of a larger

inventory system. Study the references to the members to

see how member-arrays are used.

// Filename: C29BOOK.CPP

// Bookstore data-entry program.

#include <iostream.h>

#include <stdio.h>

#include <ctype.h>

struct inventory

 { char title[25]; // Book’s title.

 char pub_date[19]; // Publication date.

 char author[20]; // Author’s name.

 int num; // Number in stock.

 int on_order; // Number on order.

 float retail; // Retail price.

 };

void main()

{

 inventory book[100];

 int total=0; // Total books in inventory.

 int ans;

619

EXAMPLE
C++ By

 do // This program enters data into the structures.

 { cout << “Book #” << (total+1) << “:\n”, (total+1);

 cout << “What is the title? “;

 gets(book[total].title);

 cout << “What is the publication date? “;

 gets(book[total].pub_date);

 cout << “Who is the author? “;

 gets(book[total].author);

 cout << “How many books of this title are there? “;

 cin >> book[total].num;

 cout << “How many are on order? “;

 cin >> book[total].on_order;

 cout << “What is the retail price? “;

 cin >> book[total].retail;

 fflush(stdin);

 cout << “\nAre there more books? (Y/N) “;

 ans=getchar();

 fflush(stdin); // Discard carriage return.

 ans=toupper(ans); // Convert to uppercase.

 if (ans==’Y’)

 { total++;

 continue; }

 } while (ans==’Y’);

 return;

}

You need much more to make this a usable inventory pro-

gram. An exercise at the end of this chapter recommends

ways you can improve on this program by adding a printing

routine and a title and author search. One of the first things

you should do is put the data-entry routine in a separate

function to make the code more modular. Because this

example is so short, and because the program performs only

one task (data-entry), there was no advantage to putting the

data-entry task in a separate function.

3. Here is a comprehensive example of the steps you might go

through to write a C++ program. You should begin to

understand the C++ language enough to start writing some

advanced programs.

Chapter 29 ♦ Arrays of Structures

620

Assume you have been hired by a local bookstore to write a

magazine inventory system. You have to track the following:

Magazine title (at most, 25 characters)

Publisher (at most, 20 characters)

Month (1, 2, 3,...12)

Publication year

Number of copies in stock

Number of copies on order

Price of magazine (dollars and cents)

Suppose there is a projected maximum of 1000 magazine

titles the store will ever carry. This means you need 1000

occurrences of the structure, not 1000 magazines total. Here

is a good structure definition for such an inventory:

struct mag_info

 { char title[25];

 char pub[25];

 int month;

 int year;

 int stock_copies;

 int order_copies;

 float price;

 } mags[1000]; // Define 1000 occurrences.

Because this program consists of more than one function, it

is best to declare the structure globally, and the structure

variables locally in the functions that need them.

This program needs three basic functions: a main() control-

ling function, a data-entry function, and a data printing

function. You can add much more, but this is a good start for

an inventory system. To keep the length of this example

reasonable, assume the user wants to enter several maga-

zines, then print them. (To make the program more “us-

able,” you should add a menu so the user can control when

she or he adds and prints the information, and should add

more error-checking and editing capabilities.)

621

EXAMPLE
C++ By

Here is an example of the complete data-entry and printing

program with prototypes. The arrays of structures are

passed between the functions from main().

// Filename: C29MAG.CPP

// Magazine inventory program for adding and displaying

// a bookstore’s magazines.

#include <iostream.h>

#include <ctype.h>

#include <stdio.h>

struct mag_info

 { char title[25];

 char pub[25];

 int month;

 int year;

 int stock_copies;

 int order_copies;

 float price;

 };

mag_info fill_mags(struct mag_info mag);

void print_mags(struct mag_info mags[], int mag_ctr);

void main()

{

 mag_info mags[1000];

 int mag_ctr=0; // Number of magazine titles.

 char ans;

 do

 { // Assumes there is

 // at least one magazine filled.

 mags[mag_ctr] = fill_mags(mags[mag_ctr]);

 cout << “Do you want to enter another magazine? “;

 fflush(stdin);

 ans = getchar();

 fflush(stdin); // Discards carriage return.

 if (toupper(ans) == ‘Y’)

 { mag_ctr++; }

 } while (toupper(ans) == ‘Y’);

 print_mags(mags, mag_ctr);

Chapter 29 ♦ Arrays of Structures

622

 return; // Returns to operating system.

}

void print_mags(mag_info mags[], int mag_ctr)

{

 int i;

 for (i=0; i<=mag_ctr; i++)

 { cout << “\n\nMagazine “ << i+1 << “:\n”;// Adjusts for

 // subscript.

 cout << “\nTitle: “ << mags[i].title << “\n”;

 cout << “\tPublisher: “ << mags[i].pub << “\n”;

 cout << “\tPub. Month: “ << mags[i].month << “\n”;

 cout << “\tPub. Year: “ << mags[i].year << “\n”;

 cout << “\tIn-stock: “ << mags[i].stock_copies << “\n”;

 cout << “\tOn order: “ << mags[i].order_copies << “\n”;

 cout << “\tPrice: “ << mags[i].price << “\n”;

 }

 return;

}

mag_info fill_mags(mag_info mag)

{

 puts(“\n\nWhat is the title? “);

 gets(mag.title);

 puts(“Who is the publisher? “);

 gets(mag.pub);

 puts(“What is the month (1, 2, ..., 12)? “);

 cin >> mag.month;

 puts(“What is the year? “);

 cin >> mag.year;

 puts(“How many copies in stock? “);

 cin >> mag.stock_copies;

 puts(“How many copies on order? “);

 cin >> mag.order_copies;

 puts(“How much is the magazine? “);

 cin >> mag.price;

 return (mag);

}

623

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: Each element in an array of structures must be

the same type.

2. What is the advantage of creating an array of structures

rather than using individual variable names for each struc-

ture variable?

3. Given the following structure declaration:

struct item

 { char part_no[8];

 char descr[20];

 float price;

 int in_stock;

 } inventory[100];

a. How would you assign a price of 12.33 to the 33rd item’s

in-stock quantity?

b. How would you assign the first character of the 12th

item’s part number the value of X?

c. How would you assign the 97th inventory item the same

values as the 63rd?

4. Given the following structure declaration:

struct item

 { char desc[20];

 int num;

 float cost;

 } inventory[25];

a. What is wrong with the following statement?

item[1].cost = 92.32;

b. What is wrong with the following statement?

strcpy(inventory.desc, “Widgets”);

Chapter 29 ♦ Arrays of Structures

624

c. What is wrong with the following statement?

inventory.cost[10] = 32.12;

Review Exercises
1. Write a program that stores an array of friends’ names,

phone numbers, and addresses and prints them two ways:

with their name, address, and phone number, or with only

their name and phone number for a phone listing.

2. Add a sort function to the program in Exercise 1 so you can

print your friends’ names in alphabetical order. (Hint: You

have to make the member holding the names a character

pointer.)

3. Expand on the book data-entry program, C29BOOK.CPP,

by adding features to make it more usable (such as search

book by author, by title, and print an inventory of books on

order).

Summary
You have mastered structures and arrays of structures. Many

useful inventory and tracking programs can be written using struc-

tures. By being able to create arrays of structures, you can now create

several occurrences of data.

The next step in the process of learning C++ is to save these

structures and other data to disk files. The next two chapters explore

the concepts of disk file processing.

625

EXAMPLE
C++ By

30

Sequential Files

So far, every example in this book has processed data that resided

inside the program listing or came from the keyboard. You assigned

constants and variables to other variables and created new data

values from expressions. The programs also received input with cin,

gets(), and the character input functions.

The data created by the user and assigned to variables with

assignment statements is sufficient for some applications. With the

large volumes of data most real-world applications must process,

however, you need a better way of storing that data. For all but the

smallest computer programs, disk files offer the solution.

After storing data on the disk, the computer helps you enter,

find, change, and delete the data. The computer and C++ are simply

tools to help you manage and process data. This chapter focuses on

disk- and file-processing concepts and teaches you the first of two

methods of disk access, sequential file access.
This chapter introduces you to the following concepts:

♦ An overview of disk files

♦ The types of files

♦ Processing data on the disk

♦ Sequential file access

♦ File I/O functions

Chapter 30 ♦ Sequential Files

626

After this chapter, you will be ready to tackle the more ad-

vanced random-file-access methods covered in the next chapter. If

you have programmed computerized data files with another pro-

gramming language, you might be surprised at how C++ borrows

from other programming languages, especially BASIC, when work-

ing with disk files. If you are new to disk-file processing, disk files

are simple to create and to read.

Why Use a Disk?
The typical computer system has much less memory storage

than hard disk storage. Your disk drive holds much more data than

can fit in your computer’s RAM. This is the primary reason for using

the disk for storing your data. The disk memory, because it is

nonvolatile, also lasts longer; when you turn your computer off, the

disk memory is not erased, whereas RAM is erased. Also, when your

data changes, you (or more important, your users) do not have to

edit the program and look for a set of assignment statements.

Instead, the users run previously written programs that make

changes to the disk data.

This makes programming more difficult at first because pro-

grams have to be written to change the data on the disk.

Nonprogrammers, however, can then use the programs and modify

the data without knowing C++.

The capacity of your disk makes it a perfect place to store your

data as well as your programs. Think about what would happen if

all data had to be stored with a program’s assignment statements.

What if the Social Security Office in Washington, D.C., asked you to

write a C++ program to compute, average, filter, sort, and print each

person’s name and address in his or her files? Would you want your

program to include millions of assignment statements? Not only

would you not want the program to hold that much data, but it could

not do so because only relatively small amounts of data fit in a

program before you run out of RAM.

Disks hold more
data than computer
memory.

627

EXAMPLE
C++ By

By storing data on your disk, you are much less limited because

you have more storage. Your disk can hold as much data as you have

disk capacity. Also, if your program requirements grow, you can

usually increase your disk space, whereas you cannot always add

more RAM to your computer.

NOTE: C++ cannot access the special extended or expanded

memory some computers have.

When working with disk files, C++ does not have to access

much RAM because C++ reads data from your disk drive and

processes the data only parts at a time. Not all your disk data has to

reside in RAM for C++ to process it. C++ reads some data, processes

it, and then reads some more. If C++ requires disk data a second

time, it rereads that place on the disk.

Types of Disk File Access
Your programs can access files two ways: through sequential

access or random access. Your application determines the method

you should choose. The access mode of a file determines how you

read, write, change, and delete data from the file. Some of your files

can be accessed in both ways, sequentially and randomly as long as

your programs are written properly and the data lends itself to both

types of file access.

A sequential file has to be accessed in the same order the file

was written. This is analogous to cassette tapes: You play music in

the same order it was recorded. (You can quickly fast-forward or

rewind over songs you do not want to listen to, but the order of the

songs dictates what you do to play the song you want.) It is difficult,

and sometimes impossible, to insert data in the middle of a sequen-

tial file. How easy is it to insert a new song in the middle of two other

songs on a tape? The only way to truly add or delete records from the

middle of a sequential file is to create a completely new file that

combines both old and new records.

It might seem that sequential files are limiting, but it turns

out that many applications lend themselves to sequential-file

processing.

Chapter 30 ♦ Sequential Files

628

Unlike sequential files, you can access random-access files in

any order you want. Think of data in a random-access file as you

would songs on a compact disc or record; you can go directly to any

song you want without having to play or fast-forward over the other

songs. If you want to play the first song, the sixth song, and then the

fourth song, you can do so. The order of play has nothing to do with

the order in which the songs were originally recorded. Random-file

access sometimes takes more programming but rewards your effort

with a more flexible file-access method. Chapter 31 discusses how to

program for random-access files.

Sequential File Concepts
There are three operations you can perform on sequential disk

files. You can

♦ Create disk files

♦ Add to disk files

♦ Read from disk files

Your application determines what you must do. If you are

creating a disk file for the first time, you must create the file and write

the initial data to it. Suppose you wanted to create a customer data

file. You would create a new file and write your current customers

to that file. The customer data might originally be in arrays, arrays

of structures, pointed to with pointers, or placed in regular variables

by the user.

Over time, as your customer base grows, you can add new

customers to the file (called appending to the file). When you add to

the end of a file, you append to that file. As your customers enter

your store, you would read their information from the customer

data file.

Customer disk processing is an example of one disadvantage

of sequential files, however. Suppose a customer moves and wants

you to change his or her address in your files. Sequential-access files

do not lend themselves well to changing data stored in them. It is

also difficult to remove information from sequential files. Random

files, described in the next chapter, provide a much easier approach

629

EXAMPLE
C++ By

to changing and removing data. The primary approach to changing

or removing data from a sequential-access file is to create a new one,

from the old one, with the updated data. Because of the updating

ease provided with random-access files, this chapter concentrates

on creating, reading, and adding to sequential files.

Opening and Closing Files
Before you can create, write to, or read from a disk file, you

must open the file. This is analogous to opening a filing cabinet

before working with a file stored in the cabinet. Once you are done

with a cabinet’s file, you close the file drawer. You also must close

a disk file when you finish with it.

When you open a disk file, you only have to inform C++ of the

filename and what you want to do (write to, add to, or read from).

C++ and your operating system work together to make sure the disk

is ready and to create an entry in your file directory (if you are

creating a file) for the filename. When you close a file, C++ writes any

remaining data to the file, releases the file from the program, and

updates the file directory to reflect the file’s new size.

CAUTION: You must ensure that the FILES= statement in your

CONFIG.SYS file is large enough to hold the maximum num-

ber of disk files you have open, with one left for your C++

program. If you are unsure how to do this, check your DOS

reference manual or a beginner’s book about DOS.

To open a file, you must call the open() function. To close a file,

call the close() function. Here is the format of these two function

calls:

file_ptr.open(file_name, access);

and

file_ptr.close();

file_ptr is a special type of pointer that only points to files, not

data variables.

Chapter 30 ♦ Sequential Files

630

Your operating system handles the exact location of your data

in the disk file. You don’t want to worry about the exact track and

sector number of your data on the disk. Therefore, you let file_ptr

point to the data you are reading and writing. Your program only

has to generically manage file_ptr, whereas C++ and your operat-

ing system take care of locating the actual physical data.

file_name is a string (or a character pointer that points to a

string) containing a valid filename for your computer. file_name can

contain a complete disk and directory pathname. You can specify

the filename in uppercase or lowercase letters.

access must be one of the values from Table 30.1.

Table 30.1. Possible access modes.

Mode Description

app Open the file for appending (adding to it).

ate Seek to end of file on opening it.

in Open the file for reading.

out Open the file for writing.

binary Open the file in binary mode.

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails.

noreplace If file exists, open fails unless appending or seeking

to end of file on opening.

The default access mode for file access is a text mode. A text file

is an ASCII file, compatible with most other programming lan-

guages and applications. Text files do not always contain text, in the

word-processing sense of the word. Any data you have to store can

go in a text file. Programs that read ASCII files can read data you

create as C++ text files. For a discussion of binary file access, see the

box that follows.

631

EXAMPLE
C++ By

Binary Modes

If you specify binary access, C++ creates or reads the file in a

binary format. Binary data files are “squeezed”—they take less

space than text files. The disadvantage of using binary files is

that other programs cannot always read the data files. Only

C++ programs written to access binary files can read and write

to them. The advantage of binary files is that you save disk

space because your data files are more compact. Other than the

access mode in the open() function, you use no additional

commands to access binary files with your C++ programs.

The binary format is a system-specific file format. In other

words, not all computers can read a binary file created on

another computer.

If you open a file for writing, C++ creates the file. If a file by

that name already exists, C++ overwrites the old file with

no warning. You must be careful when opening files so you do

not overwrite existing data that you want to save.

If an error occurs during the opening of a file, C++ does not

create a valid file pointer. Instead, C++ creates a file pointer equal to

zero. For example, if you open a file for output, but use a disk name

that is invalid, C++ cannot open the file and makes the file pointer

equal to zero. Always check the file pointer when writing disk file

programs to ensure the file opened properly.

TIP: Beginning programmers like to open all files at the begin-

ning of their programs and close them at the end. This is not

always the best method. Open files immediately before

you access them and close them immediately when you are

done with them. This habit protects the files because they are

closed immediately after you are done with them. A closed file

is more likely to be protected in the unfortunate (but possible)

event of a power failure or computer breakdown.

Chapter 30 ♦ Sequential Files

632

This section contains much information on file-access theories.

The following examples help illustrate these concepts.

Examples

1. Suppose you want to create a file for storing your house

payment records for the previous year. Here are the first few

lines in the program which creates a file called HOUSE.DAT

on your disk:

#include <fstream.h>

main()

{

 ofstream file_ptr; // Declares a file pointer for writing

 file_ptr.open(“house.dat”, ios::out); // Creates the file

The remainder of the program writes data to the file. The

program never has to refer to the filename again. The pro-

gram uses the file_ptr variable to refer to the file. Examples

in the next few sections illustrate how. There is nothing

special about file_ptr, other than its name (although the

name is meaningful in this case). You can name file pointer

variables XYZ or a908973 if you like, but these names would not

be meaningful.

You must include the fstream.h header file because it con-

tains the definition for the ofstream and ifstream declarations.

You don’t have to worry about the physical specifics. The

file_ptr “points” to data in the file as you write it. Put the

declarations in your programs where you declare other

variables and arrays.

TIP: Because files are not part of your program, you might

find it useful to declare file pointers globally. Unlike data in

variables, there is rarely a reason to keep file pointers local.

633

EXAMPLE
C++ By

Before finishing with the program, you should close the file.

The following close() function closes the house file:

file_ptr.close(); // Close the house payment file.

2. If you want, you can put the complete pathname in the file’s

name. The following opens the household payment file in a

subdirectory on the D: disk drive:

file_ptr.open(“d:\mydata\house.dat”, ios::out);

3. If you want, you can store a filename in a character array or

point to it with a character pointer. Each of the following

sections of code is equivalent:

char fn[] = “house.dat”; // Filename in character array.

file_ptr.open(fn, ios::out); // Creates the file.

char *myfile = “house.dat”; // Filename pointed to.

file_ptr.open(myfile, ios::out); // Creates the file.

// Let the user enter the filename.

cout << “What is the name of the household file? “;

gets(filename); // Filename must be an array or

 // character pointer.

file_ptr.open(filename, ios::out); // Creates the file.

No matter how you specify the filename when opening the

file, close the file with the file pointer. This close() function

closes the open file, no matter which method you used to

open the file:

file_ptr.close(); // Close the house payment file.

4. You should check the return value from open() to ensure the

file opened properly. Here is code after open() that checks for

an error:

#include <fstream.h>

main()

{

 ofstream file_ptr; // Declares a file pointer.

Chapter 30 ♦ Sequential Files

634

 file_ptr.open(“house.dat”, ios::out); // Creates the file.

 if (!file_ptr)

 { cout << “Error opening file.\n”; }

 else

 {

 // Rest of output commands go here.

5. You can open and write to several files in the same program.

Suppose you wanted to read data from a payroll file and

create a backup payroll data file. You have to open the

current payroll file using the in reading mode, and the

backup file in the output out mode.

For each open file in your program, you must declare a

different file pointer. The file pointers used by your input

and output statement determine on which file they operate.

If you have to open many files, you can declare an array of

file pointers.

Here is a way you can open the two payroll files:

#include <fstream.h>

ifstream file_in; // Input file

ofstream file_out; // Output file

main()

{

 file_in.open(“payroll.dat”, ios::in); // Existing file

 file_out.open(“payroll.BAK”, ios::out); // New file

When you finish with these files, be sure to close them with

these two close() function calls:

file_in.close();

file_out.close();

635

EXAMPLE
C++ By

Writing to a File
Any input or output function that requires a device performs

input and output with files. You have seen most of these already.

The most common file I/O functions are

get() and put()

gets() and puts()

You also can use file_ptr as you do with cout or cin.

The following function call reads three integers from a file

pointed to by file_ptr:

file_ptr >> num1 >> num2 >> num3; // Reads three variables.

There is always more than one way to write data to a disk file.

Most the time, more than one function will work. For example, if

you write many names to a file, both puts() and file_ptr << work.

You also can write the names using put(). You should use which-

ever function you are most comfortable with. If you want a newline

character (\n) at the end of each line in your file, the file_ptr << and

puts() are probably easier than put(), but all three will do the job.

TIP: Each line in a file is called a record. By putting a newline

character at the end of file records, you make the input of those

records easier.

Examples

1. The following program creates a file called NAMES.DAT.

The program writes five names to a disk file using

file_ptr <<.

// Filename: C30WR1.CPP

// Writes five names to a disk file.

#include <fstream.h>

ofstream fp;

Chapter 30 ♦ Sequential Files

636

void main()

{

 fp.open(“NAMES.DAT”, ios::out); // Creates a new file.

 fp << “Michael Langston\n”;

 fp << “Sally Redding\n”;

 fp << “Jane Kirk\n”;

 fp << “Stacy Wikert\n”;

 fp << “Joe Hiquet\n”;

 fp.close(); // Release the file.

 return;

}

To keep this first example simple, error checking was not

done on the open() function. The next few examples check for

the error.

NAMES.TXT is a text data file. If you want, you can read this

file into your word processor (use your word processor’s

command for reading ASCII files) or use the MS-DOS TYPE

command (or your operating system’s equivalent command)

to display this file on-screen. If you were to display

NAMES.TXT, you would see:

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

2. The following file writes the numbers from 1 to 100 to a file

called NUMS.1.

// Filename: C30WR2.CPP

// Writes 1 to 100 to a disk file.

#include <fstream.h>

ofstream fp;

void main()

637

EXAMPLE
C++ By

{

 int ctr;

 fp.open(“NUMS.1”, ios::out); // Creates a new file.

 if (!fp)

 { cout << “Error opening file.\n”; }

 else

 {

 for (ctr = 1; ctr < 101; ctr++)

 { fp << ctr << “ “; }

 }

 fp.close();

 return;

}

The numbers are not written one per line, but with a space

between each of them. The format of the file_ptr << deter-

mines the format of the output data. When writing data to

disk files, keep in mind that you have to read the data later.

You have to use “mirror-image” input functions to read data

you output to files.

Writing to a Printer
Functions such as open() and others were not designed to write

only to files. They were designed to write to any device, including

files, the screen, and the printer. If you must write data to a printer,

you can treat the printer as if it were a file. The following program

opens a file pointer using the MS-DOS name for a printer located at

LPT1 (the MS-DOS name for the first parallel printer port):

// Filename: C30PRNT.CPP

// Prints to the printer device

#include <fstream.h>

ofstream prnt; // Points to the printer.

void main()

Chapter 30 ♦ Sequential Files

638

{

 prnt.open(“LPT1”, ios::out);

 prnt << “Printer line 1\n”; // 1st line printed.

 prnt << “Printer line 2\n”; // 2nd line printed.

 prnt << “Printer line 3\n”; // 3rd line printed.

 prnt.close();

return;

}

Make sure your printer is on and has paper before you run this

program. When you run the program, you see this printed on the

printer:

Printer line 1

Printer line 2

Printer line 3

Adding to a File
You can easily add data to an existing file or create new files, by

opening the file in append access mode. Data files on the disk are

rarely static; they grow almost daily due to (hopefully!) increased

business. Being able to add to data already on the disk is very useful,

indeed.

Files you open for append access (using ios::app) do not have

to exist. If the file exists, C++ appends data to the end of the file when

you write the data. If the file does not exist, C++ creates the file (as

is done when you open a file for write access).

Example

The following program adds three more names to the

NAMES.DAT file created in an earlier example.

// Filename: C30AP1.CPP

// Adds three names to a disk file.

#include <fstream.h>

639

EXAMPLE
C++ By

ofstream fp;

void main()

{

 fp.open(“NAMES.DAT”, ios::app); // Adds to file.

 fp << “Johnny Smith\n”;

 fp << “Laura Hull\n”;

 fp << “Mark Brown\n”;

 fp.close(); // Release the file.

 return;

}

Here is what the file now looks like:

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

Johnny Smith

Laura Hull

Mark Brown

NOTE: If the file does not exist, C++ creates it and stores the

three names to the file.

Basically, you only have to change the open() function’s access

mode to turn a file-creation program into a file-appending program.

Reading from a File
Once the data is in a file, you must be able to read that data. You

must open the file in a read access mode. There are several ways to

read data. You can read character data one character at a time or one

string at a time. The choice depends on the format of the data.

Files you open for read access (using ios::in) must exist al-

ready, or C++ gives you an error. You cannot read a file that does not

exist. open() returns zero if the file does not exist when you open it

for read access.

Files must exist
prior to opening
them for read
access.

Chapter 30 ♦ Sequential Files

640

Another event happens when reading files. Eventually, you

read all the data. Subsequent reading produces errors because there

is no more data to read. C++ provides a solution to the end-of-file

occurrence. If you attempt to read from a file that you have com-

pletely read the data from, C++ returns the value of zero. To find the

end-of-file condition, be sure to check for zero when reading infor-

mation from files.

Examples

1. This program asks the user for a filename and prints the

contents of the file to the screen. If the file does not exist, the

program displays an error message.

// Filename: C30RE1.CPP

// Reads and displays a file.

#include <fstream.h>

#include <stdlib.h>

ifstream fp;

void main()

{

 char filename[12]; // Holds user’s filename.

 char in_char; // Input character.

 cout << “What is the name of the file you want to see? “;

 cin >> filename;

 fp.open(filename, ios::in);

 if (!fp)

 {

 cout << “\n\n*** That file does not exist ***\n”;

 exit(0); // Exit program.

 }

 while (fp.get(in_char))

 { cout << in_char; }

 fp.close();

 return;

}

641

EXAMPLE
C++ By

Here is the resulting output when the NAMES.DAT file is

requested:

What is the name of the file you want to see? NAMES.DAT

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

Johnny Smith

Laura Hull

Mark Brown

Because newline characters are in the file at the end of each

name, the names appear on-screen, one per line. If you

attempt to read a file that does not exist, the program dis-

plays the following message:

*** That file does not exist ***

2. This program reads one file and copies it to another. You

might want to use such a program to back up important data

in case the original file is damaged.

The program must open two files, the first for reading, and

the second for writing. The file pointer determines which of

the two files is being accessed.

// Filename: C30RE2.CPP

// Makes a copy of a file.

#include <fstream.h>

#include <stdlib.h>

ifstream in_fp;

ofstream out_fp;

void main()

{

 char in_filename[12]; // Holds original filename.

 char out_filename[12]; // Holds backup filename.

 char in_char; // Input character.

Chapter 30 ♦ Sequential Files

642

 cout << “What is the name of the file you want to back up?

“;

 cin >> in_filename;

 cout << “What is the name of the file “;

 cout << “you want to copy “ << in_filename << “ to? “;

 cin >> out_filename;

 in_fp.open(in_filename, ios::in);

 if (!in_fp)

 {

 cout << “\n\n*** “ << in_filename << “ does not exist

***\n”;

 exit(0); // Exit program

 }

 out_fp.open(out_filename, ios::out);

 if (!out_fp)

 {

 cout << “\n\n*** Error opening “ << in_filename << “

***\n”;

 exit(0); // Exit program

 }

 cout << “\nCopying...\n”; // Waiting message.

 while (in_fp.get(in_char))

 { out_fp.put(in_char); }

 cout << “\nThe file is copied.\n”;

 in_fp.close();

 out_fp.close();

 return;

}

Review Questions
Answers to the review questions are in Appendix B.

1. What are the three ways to access sequential files?

2. What advantage do disk files have over holding data in

memory?

3. How do sequential files differ from random-access files?

643

EXAMPLE
C++ By

4. What happens if you open a file for read access and the file

does not exist?

5. What happens if you open a file for write access and the file

already exists?

6. What happens if you open a file for append access and the

file does not exist?

7. How does C++ inform you that you have reached the end-

of-file condition?

Review Exercises
1. Write a program that creates a file containing the following

data:

Your name

Your address

Your phone number

Your age

2. Write a second program that reads and prints the data file

you created in Exercise 1.

3. Write a program that takes your data created in Exercise 1

and writes it to the screen one word per line.

4. Write a program for PCs that backs up two important files:

the AUTOEXEC.BAT and CONFIG.SYS. Call the backup

files AUTOEXEC.SAV and CONFIG.SAV.

5. Write a program that reads a file and creates a new file with

the same data, except reverse the case on the second file.

Everywhere uppercase letters appear in the first file, write

lowercase letters to the new file, and everywhere lowercase

letters appear in the first file, write uppercase letters to the

new file.

Chapter 30 ♦ Sequential Files

644

Summary
You can now perform one of the most important requirements

of data processing: writing and reading to and from disk files. Before

this chapter, you could only store data in variables. The short life of

variables (they only last as long as your program is running) made

long-term storage of data impossible. You can now save large

amounts of data in disk files to process later.

Reading and writing sequential files involves learning more

concepts than actual commands or functions. The open() and close()

functions are the most important functions you learned in this

chapter. You are now familiar with most of the I/O functions needed

to retrieve data to and from disk files.

The next chapter concludes the discussion of disk files in this

book. You will learn how to create and use random-access files. By

programming with random file access, you can read selected data

from a file, as well as change data without having to rewrite the

entire file.

645

EXAMPLE
C++ By

31

Random-Access
Files

This chapter introduces the concept of random file access. Random

file access enables you to read or write any data in your disk file

without having to read or write every piece of data before it. You can

quickly search for, add, retrieve, change, and delete information in

a random-access file. Although you need a few new functions to

access files randomly, you find that the extra effort pays off in

flexibility, power, and speed of disk access.

This chapter introduces

♦ Random-access files

♦ File records

♦ The seekg() function

♦ Special-purpose file I/O functions

With C++’s sequential and random-access files, you can do

everything you would ever want to do with disk data.

Chapter 31 ♦ Random-Access Files

646

Random File Records
Random files exemplify the power of data processing with

C++. Sequential file processing is slow unless you read the entire

file into arrays and process them in memory. As explained in

Chapter 30, however, you have much more disk space than RAM,

and most disk files do not even fit in your RAM at one time.

Therefore, you need a way to quickly read individual pieces of

data from a file in any order and process them one at a time.

Generally, you read and write file records. A record to a file is

analogous to a C++ structure. A record is a collection of one or more

data values (called fields) you read and write to disk. Generally, you

store data in structures and write the structures to disk where they

are called records. When you read a record from disk, you generally

read that record into a structure variable and process it with your

program.

Unlike most programming languages, not all disk data for C++

programs has to be stored in record format. Typically, you write a

stream of characters to a disk file and access that data either sequen-

tially or randomly by reading it into variables and structures.

The process of randomly accessing data in a file is simple. Think

about the data files of a large credit card organization. When you

make a purchase, the store calls the credit card company to receive

authorization. Millions of names are in the credit card company’s

files. There is no quick way the credit card company could read

every record sequentially from the disk that comes before yours.

Sequential files do not lend themselves to quick access. It is not

feasible, in many situations, to look up individual records in a data

file with sequential access.

The credit card companies must use a random file access so

their computers can go directly to your record, just as you go directly

to a song on a compact disk or record album. The functions you use

are different from the sequential functions, but the power that

results from learning the added functions is worth the effort.

When your program reads and writes files randomly, it treats

the file like a big array. With arrays, you know you can add, print,

or remove values in any order. You do not have to start at the first

A record to a file is
like a structure to
variables.

You do not have to
rewrite an entire file
to change random-
access file data.

647

EXAMPLE
C++ By

array element, sequentially looking at the next one, until you get the

element you need. You can view your random-access file in the same

way, accessing the data in any order.

Most random file records are fixed-length records. Each record

(usually a row in the file) takes the same amount of disk space.

Most of the sequential files you read and wrote in the previous

chapters were variable-length records. When you are reading or

writing sequentially, there is no need for fixed-length records be-

cause you input each value one character, word, string, or number

at a time, and look for the data you want. With fixed-length records,

your computer can better calculate where on the disk the desired

record is located.

Although you waste some disk space with fixed-length records

(because of the spaces that pad some of the fields), the advantages

of random file access compensate for the “wasted” disk space (when

the data do not actually fill the structure size).

TIP: With random-access files, you can read or write records

in any order. Therefore, even if you want to perform sequential

reading or writing of the file, you can use random-access

processing and “randomly” read or write the file in sequential

record number order.

Opening Random-Access
Files

Just as with sequential files, you must open random-access files

before reading or writing to them. You can use any of the read access

modes mentioned in Chapter 30 (such as ios::in) only to read a file

randomly. However, to modify data in a file, you must open the file

in one of the update modes, repeated for you in Table 31.1.

Chapter 31 ♦ Random-Access Files

648

Table 31.1. Random-access update modes.

Mode Description

app Open the file for appending (adding to it)

ate Seek to end of file on opening it

in Open file for reading

out Open file for writing

binary Open file in binary mode

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails

noreplace If file exists, open fails unless appending or seeking to

end of file on opening

There is really no difference between sequential files and

random files in C++. The difference between the files is not physical,

but lies in the method you use to access them and update them.

Examples

1. Suppose you want to write a program to create a file of your

friends’ names. The following open() function call suffices,

assuming fp is declared as a file pointer:

fp.open(“NAMES.DAT”, ios::out);

if (!fp)

 { cout << “\n*** Cannot open file ***\n”; }

No update open() access mode is needed if you are only

creating the file. However, what if you wanted to create the

file, write names to it, and give the user a chance to change

any of the names before closing the file? You then have to

open the file like this:

fp.open(“NAMES.DAT”, ios::in | ios::out);

if (!fp)

 cout << “\n*** Cannot open file ***\n”;

649

EXAMPLE
C++ By

This code enables you to create the file, then change data

you wrote to the file.

2. As with sequential files, the only difference between using a

binary open() access mode and a text mode is that the file

you create is more compact and saves disk space. You

cannot, however, read that file from other programs as an

ASCII text file. The previous open() function can be rewritten

to create and allow updating of a binary file. All other file-

related commands and functions work for binary files just as

they do for text files.

fp.open(“NAMES.DAT”, ios::in | ios::out | ios::binary);

if (!fp)

 cout << “\n*** Cannot open file ***\n”;

The seekg() Function
C++ provides a function that enables you to read to a specific

point in a random-access data file. This is the seekg() function. The

format of seekg() is

file_ptr.seekg(long_num, origin);

file_ptr is the pointer to the file that you want to access,

initialized with an open() statement. long_num is the number of bytes

in the file you want to skip. C++ does not read this many bytes, but

literally skips the data by the number of bytes specified in long_num.
Skipping the bytes on the disk is much faster than reading them. If

long_num is negative, C++ skips backwards in the file (this allows for

rereading of data several times). Because data files can be large, you

must declare long_num as a long integer to hold a large amount of

bytes.

origin is a value that tells C++ where to begin the skipping of

bytes specified by long_num. origin can be any of the three values

shown in Table 31.2.

You can read
forwards or
backwards from any
point in the file with
seekg().

Chapter 31 ♦ Random-Access Files

650

Table 31.2. Possible origin values.

Description origin Equivalent

Beginning of file SEEK_SET ios::beg

Current file position SEEK_CUR ios::cur

End of file SEEK_END ios::end

The origins SEEK_SET, SEEK_CUR, and SEEK_END are de-

fined in stdio.h. The equivalents ios::beg, ios::cur, and ios::end are

defined in fstream.h.

NOTE: Actually, the file pointer plays a much more important

role than simply “pointing to the file” on the disk. The file

pointer continually points to the exact location of the next byte
to read or write. In other words, as you read data from either a

sequential or random-access file, the file pointer increments

with each byte read. By using seekg(), you can move the file

pointer forward or backward in the file.

Examples

1. No matter how far into a file you have read, the following

seekg() function positions the file pointer back to the begin-

ning of a file:

fp.seekg(0L, SEEK_SET); // Position file pointer at beginning.

The constant 0L passes a long integer 0 to the seekg() func-

tion. Without the L, C++ passes a regular integer and this

does not match the prototype for seekg() that is located in

fstream.h. Chapter 4, “Variables and Literals,” explained the

use of data type suffixes on numeric constants, but the

suffixes have not been used until now.

This seekg() function literally reads “move the file pointer 0

bytes from the beginning of the file.”

651

EXAMPLE
C++ By

2. The following example reads a file named MYFILE.TXT

twice, once to send the file to the screen and once to send the

file to the printer. Three file pointers are used, one for each

device (the file, the screen, and the printer).

// Filename: C31TWIC.CPP

// Writes a file to the printer, rereads it,

// and sends it to the screen.

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

ifstream in_file; // Input file pointer.

ofstream scrn; // Screen pointer.

ofstream prnt; // Printer pointer.

void main()

{

 char in_char;

 in_file.open(“MYFILE.TXT”, ios::in);

 if (!in_file)

 {

 cout << “\n*** Error opening MYFILE.TXT ***\n”;

 exit(0);

 }

 scrn.open(“CON”, ios::out); // Open screen device.

 while (in_file.get(in_char))

 { scrn << in_char; } // Output characters to the screen.

 scrn.close(); // Close screen because it is no

 // longer needed.

 in_file.seekg(0L, SEEK_SET); // Reposition file pointer.

 prnt.open(“LPT1”, ios::out); // Open printer device.

 while (in_file.get(in_char))

 { prnt << in_char; } // Output characters to the

 // printer.

 prnt.close(); // Always close all open files.

 in_file.close();

 return;

}

Chapter 31 ♦ Random-Access Files

652

You also can close then reopen a file to position the file

pointer at the beginning, but using seekg() is a more efficient

method.

Of course, you could have used regular I/O functions to

write to the screen, rather than having to open the screen as

a separate device.

3. The following seekg() function positions the file pointer at

the 30th byte in the file. (The next byte read is the 31st byte.)

file_ptr.seekg(30L, SEEK_SET); // Position file pointer

 // at the 30th byte.

This seekg() function literally reads “move the file pointer 30

bytes from the beginning of the file.”

If you write structures to a file, you can quickly seek any

structure in the file using the sizeof() function. Suppose you

want the 123rd occurrence of the structure tagged with

inventory. You would search using the following seekg()

function:

file_ptr.seekg((123L * sizeof(struct inventory)), SEEK_SET);

4. The following program writes the letters of the alphabet to a

file called ALPH.TXT. The seekg() function is then used to

read and display the ninth and 17th letters (I and Q).

// Filename: C31ALPH.CPP

// Stores the alphabet in a file, then reads

// two letters from it.

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

fstream fp;

void main()

{

 char ch; // Holds A through Z.

653

EXAMPLE
C++ By

 // Open in update mode so you can read file after writing to it.

 fp.open(“alph.txt”, ios::in | ios::out);

 if (!fp)

 {

 cout << “\n*** Error opening file ***\n”;

 exit(0);

 }

 for (ch = ‘A’; ch <= ‘Z’; ch++)

 { fp << ch; } // Write letters.

 fp.seekg(8L, ios::beg); // Skip eight letters, point to I.

 fp >> ch;

 cout << “The first character is “ << ch << “\n”;

 fp.seekg(16L, ios::beg); // Skip 16 letters, point to Q.

 fp >> ch;

 cout << “The second character is “ << ch << “\n”;

 fp.close();

 return;

}

5. To point to the end of a data file, you can use the seekg()

function to position the file pointer at the last byte. Subse-

quent seekg()s should then use a negative long_num value to

skip backwards in the file. The following seekg() function

makes the file pointer point to the end of the file:

file_ptr.seekg(0L, SEEK_END); // Position file

 // pointer at the end.

This seekg() function literally reads “move the file pointer 0

bytes from the end of the file.” The file pointer now points to

the end-of-file marker, but you can seekg() backwards to find

other data in the file.

6. The following program reads the ALPH.TXT file (created in

Exercise 4) backwards, printing each character as it skips

back in the file.

// Filename: C31BACK.CPP

// Reads and prints a file backwards.

Chapter 31 ♦ Random-Access Files

654

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

ifstream fp;

void main()

{

 int ctr; // Steps through the 26 letters in the file.

 char in_char;

 fp.open(“ALPH.TXT”, ios::in);

 if (!fp)

 {

 cout << “\n*** Error opening file ***\n”;

 exit(0);

 }

 fp.seekg(-1L, SEEK_END); // Point to last byte in

 // the file.

 for (ctr = 0; ctr < 26; ctr++)

 {

 fp >> in_char;

 fp.seekg(-2L, SEEK_CUR);

 cout << in_char;

 }

 fp.close();

 return;

}

This program also uses the SEEK_CUR origin value. The last

seekg() in the program seeks two bytes backwards from the

current position, not the beginning or end as the previous

examples have. The for loop towards the end of the program

performs a “skip-two-bytes-back, read-one-byte-forward”

method to skip through the file backwards.

7. The following program performs the same actions as Ex-

ample 4 (C31ALPH.CPP), with one addition. When the

letters I and Q are found, the letter x is written over the I and

Q. The seekg() must be used to back up one byte in the file to

overwrite the letter just read.

655

EXAMPLE
C++ By

// Filename: C31CHANG.CPP

// Stores the alphabet in a file, reads two letters from it,

// and changes those letters to xs.

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

fstream fp;

void main()

{

 char ch; // Holds A through Z.

// Open in update mode so you can read file after writing to it.

 fp.open(“alph.txt”, ios::in | ios::out);

 if (!fp)

 {

 cout << “\n*** Error opening file ***\n”;

 exit(0);

 }

 for (ch = ‘A’; ch <= ‘Z’; ch++)

 { fp << ch; } // Write letters

 fp.seekg(8L, SEEK_SET); // Skip eight letters, point to I.

 fp >> ch;

 // Change the Q to an x.

 fp.seekg(-1L, SEEK_CUR);

 fp << ‘x’;

 cout << “The first character is “ << ch << “\n”;

 fp.seekg(16L, SEEK_SET); // Skip 16 letters, point to Q.

 fp >> ch;

 cout << “The second character is “ << ch << “\n”;

 // Change the Q to an x.

 fp.seekg(-1L, SEEK_CUR);

 fp << ‘x’;

 fp.close();

 return;

}

Chapter 31 ♦ Random-Access Files

656

The file named ALPH.TXT now looks like this:

ABCDEFGHxJKLMNOPxRSTUVWXYZ

This program forms the basis of a more complete data file

management program. After you master the seekg() func-

tions and become more familiar with disk data files, you will

begin to write programs that store more advanced data

structures and access them.

The mailing list application in Appendix F is a good example

of what you can do with random file access. The user is

given a chance to change names and addresses already in

the file. The program, using random access, seeks for and

changes selected data without rewriting the entire disk file.

Other Helpful I/O Functions
There are several more disk I/O functions available that you

might find useful. They are mentioned here for completeness. As

you perform more powerful disk I/O, you might find a use for many

of these functions. Each of these functions is prototyped in the

fstream.h header file.

♦ read(array, count): Reads the data specified by count into the

array or pointer specified by array. read() is called a buffered
I/O function. read() enables you to read much data with a

single function call.

♦ write(array, count): Writes count array bytes to the specified

file. write() is a buffered I/O function. write() enables you to

write much data in a single function call.

♦ remove(filename): Erases the file named by filename. remove()

returns a 0 if the file was erased successfully and -1 if an

error occurred.

Many of these (and other built-in I/O functions that you learn

in your C++ programming career) are helpful functions that you

could duplicate using what you already know.

657

EXAMPLE
C++ By

The buffered I/O file functions enable you to read and write

entire arrays (including arrays of structures) to the disk in a single

function call.

Examples

1. The following program requests a filename from the user

and erases the file from the disk using the remove() function.

// Filename: C31ERAS.CPP

// Erases the file specified by the user.

#include <stdio.h>

#include <iostream.h>

void main()

{

 char filename[12];

 cout << “What is the filename you want me to erase? “;

 cin >> filename;

 if (remove(filename) == -1)

 { cout << “\n*** I could not remove the file ***\n”; }

 else

 { cout << “\nThe file “ << filename << “ is now removed\n”;}

 return;

}

2. The following function is part of a larger program that

receives inventory data, in an array of structures, from the

user. This function is passed the array name and the number

of elements (structure variables) in the array. The write()

function then writes the complete array of structures to the

disk file pointed to by fp.

void write_str(inventory items[], int inv_cnt)

{

 fp.write(items, inv_cnt * sizeof(inventory);

 return;

}

Chapter 31 ♦ Random-Access Files

658

If the inventory array had 1,000 elements, this one-line

function would still write the entire array to the disk file.

You could use the read() function to read the entire array of

structures from the disk in a single function call.

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between records and structures?

2. True or false: You have to create a random-access file before

reading from it randomly.

3. What happens to the file pointer as you read from a file?

4. What are the two buffered file I/O functions?

5. What is wrong with this program?

#include <fstream.h>

ifstream fp;

void main()

{

 char in_char;

 fp.open(ios::in | ios::binary);

 if (fp.get(in_char))

 { cout << in_char; } // Write to the screen

 fp.close();

 return;

}

Review Exercises
1. Write a program that asks the user for a list of five names,

then writes the names to a file. Rewind the file and display

its contents on-screen using the seekg() and get() functions.

659

EXAMPLE
C++ By

2. Rewrite the program in Exercise 1 so it displays every other

character in the file of names.

3. Write a program that reads characters from a file. If the input

character is a lowercase letter, change it to uppercase. If the

input character is an uppercase letter, change it to lowercase.

Do not change other characters in the file.

4. Write a program that displays the number of nonalphabetic

characters in a file.

5. Write a grade-keeping program for a teacher. Allow the

teacher to enter up to 10 students’ grades. Each student has

three grades for the semester. Store the students’ names and

their three grades in an array of structures and store the data

on the disk. Make the program menu-driven. Include op-

tions of adding more students, viewing the file’s data, or

printing the grades to the printer with a calculated class

average.

Summary
C++ supports random-access files with several functions. These

functions include error checking, file pointer positioning, and the

opening and closing of files. You now have the tools you need to save

your C++ program data to disk for storage and retrieval.

The mailing-list application in Appendix F offers a complete

example of random-access file manipulation. The program enables

the user to enter names and addresses, store them to disk, edit them,

change them, and print them from the disk file. The mailing-list

program combines almost every topic from this book into a com-

plete application that “puts it all together.”

Chapter 31 ♦ Random-Access Files

660

661

EXAMPLE
C++ By

32

Introduction to
Object-Oriented
Programming

The most widely used object-oriented programming language to-

day is C++. C++ provides classes—which are its objects. Classes

really distinguish C++ from C. In fact, before the name C++ was

coined, the C++ language was called “C with classes.”

This chapter attempts to expose you to the world of object-

oriented programming, often called OOP. You will probably not

become a master of OOP in these few short pages, however, you are

ready to begin expanding your C++ knowledge.

This chapter introduces the following concepts:

♦ C++ classes

♦ Member functions

♦ Constructors

♦ Destructors

This chapter concludes your introduction to the C++ language.

After mastering the techniques taught in this book, you will be ready

to modify the mailing list program in Appendix F to suit your own

needs.

Chapter 32 ♦ Introduction to Object-Oriented Programming

662

What Is a Class?
A class is a user-defined data type that resembles a structure. A

class can have data members, but unlike the structures you have

seen thus far, classes can also have member functions. The data

members can be of any type, whether defined by the language or by

you. The member functions can manipulate the data, create and

destroy class variables, and even redefine C++’s operators to act on

the class objects.

Classes have several types of members, but they all fall into two

categories: data members and member functions.

Data Members

Data members can be of any type. Here is a simple class:

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

};

Notice how this class resembles structures you have already

seen, with the exception of the public keyword. The Sphere class has

four data members: r, x, y, and z. In this case, the public keyword

plays an important role; it identifies the class Sphere as a structure.

As a matter of fact, in C++, a public class is physically identical to a

structure. For now, ignore the public keyword; it is explained later

in this chapter.

Member Functions

A class can also have member functions (members of a class that

manipulate data members). This is one of the primary features that

distinguishes a class from a structure. Here is the Sphere class again,

with member functions added:

663

EXAMPLE
C++ By

#include <math.h>

const float PI = 3.14159;

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere() { }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

This Sphere class has four member functions: Sphere(), ~Sphere(),

volume(), and surface_area(). The class is losing its similarity to a

structure. These member functions are very short. (The one with the

strange name of ~Sphere() has no code in it.) If the codes of the

member functions were much longer, only the prototypes would

appear in the class, and the code for the member functions would

follow later in the program.

C++ programmers call class data objects because classes do

more than simply hold data. Classes act on data; in effect, a class is

an object that manipulates itself. All the data you have seen so far in

this book is passive data (data that has been manipulated by code in

the program). Classes’ member functions actually manipulate class

data.

In this example, the class member Sphere() is a special function.

It is a constructor function, and its name must always be the same as

its class. Its primary use is declaring a new instance of the class.

Constructors create
and initialize class
data.

Chapter 32 ♦ Introduction to Object-Oriented Programming

664

Examples

1. The following program uses the Sphere() class to initialize a

class variable (called a class instance) and print it.

// Filename: C32CON.CPP

// Demonstrates use of a class constructor function.

#include <iostream.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

{ x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere() { }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 return;

}

665

EXAMPLE
C++ By

Note: In OOP, the main() function (and all it calls) becomes

smaller because member functions contain the code that ma-

nipulates all class data.

Indeed, this program looks different from those you have

seen so far. This example is your first true exposure to OOP

programming. Here is the output of this program:

X = 1, Y = 2, Z = 3, R = 4

This program illustrates the Sphere() constructor function.

The constructor function is the only member function called

by the program. Notice the ~Sphere() member function

constructed s, and initialized its data members as well.

The other special function is the destructor function,
~Sphere(). Notice that it also has the same name as the class,

but with a tilde (~) as a prefix. The destructor function never

takes arguments, and never returns values. Also notice that

this destructor doesn’t do anything. Most destructors do

very little. If a destructor has no real purpose, you do not
have to specify it. When the class variable goes out of scope,

the memory allocated for that class variable is returned to

the system (in other words, an automatic destruction oc-

curs). Programmers use destructor functions to free memory

occupied by class data in advanced C++ applications.

Similarly, if a constructor doesn’t serve any specific function,

you aren’t required to declare one. C++ allocates memory for

a class variable when you define the class variable, just as it

does for all other variables. As you learn more about C++

programming, especially when you begin using the ad-
vanced concept of dynamic memory allocation, constructors

and destructors become more useful.

2. To illustrate that the ~Sphere() destructor does get called (it

just doesn’t do anything), you can put a cout statement in the

constructor as seen in the next program:

// Filename: C32DES.CPP

// Demonstrates use of a class destructor function.

Destructors erase
class data.

Chapter 32 ♦ Introduction to Object-Oriented Programming

666

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main(void)

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 // Construct a class instance.

 cout << “X = “ << s.x << “, Y = “

 << s.y << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 return;

}

Here is the output of this program:

X = 1, Y = 2, Z = 3, R = 4

Sphere (1, 2, 3, 4) destroyed

667

EXAMPLE
C++ By

Notice that main() did not explicitly call the destructor

function, but ~Sphere() was called automatically when the

class instance went out of scope.

3. The other member functions have been waiting to be used.

The following program uses the volume() and surface_area()

functions:

// Filename: C32MEM.CPP

// Demonstrates use of class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

}; // End of class.

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

Chapter 32 ♦ Introduction to Object-Oriented Programming

668

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “

 << s.surface_area() << “\n”;

}

The volume() and surface_area() functions could have been

made in-line. This means that the compiler embeds the

functions in the code, rather than calling them as functions.

In C32MEM.CPP, there is essentially a separate function that

is called using the data in Sphere(). By making it in-line,

Sphere() essentially becomes a macro and is expanded in the

code.

4. In the following program, volume() has been changed to an

in-line function, creating a more efficient program:

// Filename: C32MEM1.CPP

// Demonstrates use of in-line class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

669

EXAMPLE
C++ By

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

}

The inline functions expand to look like this to the compiler:

// C32MEM1A.CPP

// Demonstrates use of in-line class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

Chapter 32 ♦ Introduction to Object-Oriented Programming

670

The advantage of using in-line functions is that they execute

faster—there’s no function-call overhead involved because

no function is actually called. The disadvantage is that if

your functions are used frequently, your programs become

larger and larger as functions are expanded.

Default Member Arguments
You can also give member functions arguments by default.

Assume by default that the y coordinate of a sphere will be 2.0, the

z coordinate will be 2.5, and the radius will be 1.0. Rewriting the

previous example’s constructor function to do this results in this

code:

Sphere(float xcoord, float ycoord = 2.0, float zcoord = 2.5,

 float radius = 1.0)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

You can create a sphere with the following instructions:

Sphere s(1.0); // Use all default

Sphere t(1.0, 1.1); // Override y coord

Sphere u(1.0, 1.1, 1.2); // Override y and z

Sphere v(1.0, 1.1, 1.2, 1.3); // Override all defaults

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 cout << “The volume is “ << (s.r * s.r * s.r * 4 * PI / 3)

 << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

}

671

EXAMPLE
C++ By

Examples

1. Default arguments are used in the following code.

// Filename: C32DEF.CPP

// Demonstrates use of default arguments in

// class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord = 2.0,

 float zcoord = 2.5, float radius = 1.0)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0); // use all default

 Sphere t(1.0, 1.1); // override y coord

 Sphere u(1.0, 1.1, 1.2); // override y and z

 Sphere v(1.0, 1.1, 1.2, 1.3); // override all defaults

 cout << “s: X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

Chapter 32 ♦ Introduction to Object-Oriented Programming

672

 cout << “The volume of s is “ << s.volume() << “\n”;

 cout << “The surface area of s is “ << s.surface_area() << “\n”;

 cout << “t: X = “ << t.x << “, Y = “ << t.y

 << “, Z = “ << t.z << “, R = “ << t.r << “\n”;

 cout << “The volume of t is “ << t.volume() << “\n”;

 cout << “The surface area of t is “ << t.surface_area() << “\n”;

 cout << “u: X = “ << u.x << “, Y = “ << u.y

 << “, Z = “ << u.z << “, R = “ << u.r << “\n”;

 cout << “The volume of u is “ << u.volume() << “\n”;

 cout << “The surface area of u is “ << u.surface_area() << “\n”;

 cout << “v: X = “ << v.x << “, Y = “ << v.y

 << “, Z = “ << v.z << “, R = “ << v.r << “\n”;

 cout << “The volume of v is “ << v.volume() << “\n”;

 cout << “The surface area of v is “ << v.surface_area() << “\n”;

 return;

}

Here is the output from this program:

s: X = 1, Y = 2, Z = 2.5, R = 1

The volume of s is 4.188787

The surface area of s is 12.56636

t: X = 1, Y = 1.1, Z = 2.5, R = 1

The volume of t is 4.188787

The surface area of t is 12.56636

u: X = 1, Y = 1.1, Z = 1.2, R = 1

The volume of u is 4.188787

The surface area of u is 12.56636

v: X = 1, Y = 1.1, Z = 1.2, R = 1.3

The volume of v is 9.202764

The surface area of v is 21.237148

Sphere (1, 1.1, 1.2, 1.3) destroyed

Sphere (1, 1.1, 1.2, 1) destroyed

Sphere (1, 1.1, 2.5, 1) destroyed

Sphere (1, 2, 2.5, 1) destroyed

Notice that when you use a default value, you must also use

the other default values to its right. Similarly, once you

define a function’s parameter as having a default value,

every parameter to its right must have a default value as well.

673

EXAMPLE
C++ By

2. You also can call more than one constructor; this is called

overloading the constructor. When having more than one

constructor, all with the same name of the class, you must

give them each a different parameter list so the compiler can

determine which one you intend to use. A common use of

overloaded constructors is to create an uninitialized object

on the receiving end of an assignment, as you see done here:

// C32OVCON.CPP

// Demonstrates use of overloaded constructors.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere() { /* doesn’t do anything... */ }

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

Chapter 32 ♦ Introduction to Object-Oriented Programming

674

 Sphere t; // No parameters (an uninitialized sphere).

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 t = s;

 cout << “The volume of t is “ << t.volume() << “\n”;

 cout << “The surface area of t is “ << t.surface_area()

 << “\n”;

 return;

}

Class Member Visibility
Recall that the Sphere() class had the label public. Declaring the

public label is necessary because, by default, all members of a class

are private. Private members cannot be accessed by anything but a

member function. In order for data or member functions to be used

by other programs, they must be explicitly declared public. In the

case of the Sphere() class, you probably want to hide the actual data

from other classes. This protects the data’s integrity. The next

program adds a cube() and square() function to do some of the work

of the volume() and surface_area() functions. There is no need for

other functions to use those member functions.

// Filename: C32VISIB.CPP

// Demonstrates use of class visibility labels.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

private:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 float cube() { return (r * r * r); }

 float square() { return (r * r); }

675

EXAMPLE
C++ By

public:

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

 return (cube() * 4 * PI / 3);

 }

 float surface_area()

 {

 return (square() * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

 return;

}

Notice that the line showing the data members had to be

removed from main(). The data members are no longer directly

accessible except by a member function of class Sphere. In other

words, main() can never directly manipulate data members such as

r and z, even though it calls the constructor function that created

them. The private member data is only visible in the member

functions. This is the true power of data hiding; even your own code

cannot get to the data! The advantage is that you define specific data-

retrieval, data-display, and data-changing member functions that

main() must call to manipulate member data. Through these member

functions, you set up a buffer between your program and the

program’s data structures. If you change the way the data is stored,

you do not have to change main() or any functions that main() calls.

You only have to change the member functions of that class.

Chapter 32 ♦ Introduction to Object-Oriented Programming

676

Review Questions
The answers to the review questions are in Appendix B.

1. What are the two types of class members called?

2. Is a constructor always necessary?

3. Is a destructor always necessary?

4. What is the default visibility of a class data member?

5. How do you make a class member visible outside its class?

Review Exercise
Construct a class to hold personnel records. Use the following

data members, and keep them private:

char name[25];

float salary;

char date_of_birth[9];

Create two constructors, one to initialize the record with its

necessary values and another to create an uninitialized record.

Create member functions to alter the individual’s name, salary, and

date of birth.

Summary
You have now been introduced to classes, the data type that

distinguishes C++ from its predecessor, C. This was only a cursory

glimpse of object-oriented programming. However, you saw that

OOP offers an advanced view of your data, combining the data with

the member functions that manipulate that data. If you desire to

learn more about C++ and become a “guru” of sorts, try Using
Microsoft C/C++ 7 (Que, 0-88022-809-1).

	Part II

Using C++ Operators
	Using C++ Math

Operators and

Precedence
	Relational

Operators
	Logical Operators
	Additional C++

Operators
	The while Loop
	Arrays of

Structures
	Sequential Files
	Random-Access

Files
	Introduction to

Object-Oriented

Programming

