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Preface

Based on the seminal work of Naum Zuselevich Shor (Institute of Cybernet-
ics, Kiev) in the 1980s [1, 2, 3], the theory of positive polynomials lends new
theoretical insights into a wide range of control and optimization problems.
Positive polynomials can be used to formulate a large number of problems
in robust control, non-linear control and non-convex optimization. Only very
recently it has been realized that polynomial positivity conditions can be for-
mulated efficiently in terms of Linear Matrix Inequality (LMI) and Semidef-
inite Programming (SDP) problems. In turn, it is now recognized that LMI
and SDP techniques play a fundamental role in convex optimization, see e.g.
the plenary talk by Stephen Boyd at the 2002 IEEE Conference on Decision
and Control or the successful Workshop on SDP and robust optimization or-
ganized in March 2003 by the Institute of Mathematics and its Applications
at the University of Minnesota in Minneapolis. For the above reasons, the
joint use of positive polynomials and LMI optimization provides an extremely
promising approach to difficult control problems.

In the last years, several sessions at major control conferences as well as
specialized workshops have been dedicated to these research topics. The in-
vited session Positive Polynomials in Control at the 2003 IEEE Conference on
Decision and Control, organized by the editors of this volume, has shown that
new research directions are quickly emerging, thus pointing out the need for a
more detailed overview of the current activity in this research area. This is the
main aim of the present book. Another important objective of the book is to
collect contributions from several fields (control, optimization, mathematics),
in order to show different views and approaches to the topics outlined above.

The book is organized in three parts.
The first part collects a number of articles on applications of positive

polynomials and LMI optimization to solve various control problems, start-
ing with a contribution by Jarvis-Wloszek, Feeley, Tan, Sun and Packard
on the sum-of-squares (SOS) decomposition of positive polynomials for non-
linear polynomial systems analysis and design [I.1]. SOS techniques are also
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used by Papachristodoulou and Prajna to cope with nonlinear non-polynomial
systems, using algebraic reformulation techniques [I.2]. Hol and Scherer in
[I.3] describe several results on the use of SOS polynomial matrices to de-
rive bounds on the global optima of non-convex bilinear matrix inequality
(BMI) problems, in particular those arising in fixed-order H∞ design. This
latter problem, traditionally deemed as difficult in the control community, is
approached differently by Henrion [I.4]: with the help of matrix polynomial
positivity conditions, sufficient LMI conditions for scalar fixed-order H∞ de-
sign are obtained. Gram-matrix representation of homogeneous forms, similar
to the SOS representation, are used by Chesi, Garulli, Tesi and Vicino in
[I.5] to construct less conservative quadratic-in-the-state but polynomial-in-
the-parameter Lyapunov functions for assessing robust stability of polytopic
linear systems. Finally, positivity conditions for multivariate polynomial ma-
trices are obtained by Bliman [I.6] via the Kalman-Yakubovich-Popov (KYP)
lemma, and an application to the design of linear-parameter-varying (LPV)
gain-scheduled state-feedback control laws is described.

The second part of the book is more mathematical, and gives an overview
of different algebraic techniques used to cope with polynomial positivity. Re-
sults of semi-algebraic geometry by Hilbert and Pólya led Parrilo [4, 5] to
construct converging hierarchies of LMI relaxations for optimization over
semi-algebraic sets, based on the theory of SOS representations of positive
polynomials. Independently, results by Schmüdgen and Putinar were used by
Lasserre [6] to construct similar converging LMI hierarchies, with the help
of the theory of moments. Both Parrilo’s and Lasserre’s approaches can be
viewed as dual to each other. The paper by De Klerk, Laurent and Parrilo
[II.1] shows equivalence between these two approaches in the special case of
minimization of forms on the simplex. In [II.2], Lasserre applies the theory
of moments to characterize the set of zeros of triangular sets of polynomial
equations. Namely, it is shown that the particular structure of the problem
allows for the derivation of a simple LMI formulation. Lasserre’s hierarchy
of LMI relaxations has proved asymptotic convergence under some constraint
qualification assumptions, and in particular if the semi-algebraic feasible set
is compact: Powers and Reznick [II.3] investigate what happens with the pos-
itivity condition of Schmüdgen-Putinar if this compactness assumption is not
satisfied. Finally, in [II.4] Šiljak and Stipanović follow a different approach to
ensure polynomial positivity. Based on Bernstein’s polynomials, they derive
criteria for stability analysis and robust stability analysis of two-indeterminate
polynomials.

Finally, the third part of the book is dedicated to numerical aspects of
positivity of polynomials, and recently developed software tools which can be
employed to solve the problems discussed in the book. Parrilo in [III.1] surveys
a collection of algebraic results (sparse polynomials and Newton polytopes,
ideal structure with equality constraints, structural symmetries) to reduce the
size of the LMI formulation of SOS decomposition of positive polynomials.
Vandenberghe, Balakrishnan, Wallin, Hansson and Roh [III.2] discuss imple-
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mentations of primal-dual interior-point methods for LMI problems derived
from the KYP lemma (positivity conditions on one-indeterminate matrix poly-
nomials). It is shown that the overall cost can be reduced to O(n4), or even
O(n3), as opposed to the O(n6) of conventional methods, where n is the size
of the Lyapunov matrix. In their paper [III.3], Hachez and Nesterov use the
theory of conic duality to study in considerable detail optimization problems
over positive polynomials with additional interpolation conditions. As a strik-
ing result, they show that the complexity of solving the dual LMI formulation
is almost independent of the number of interpolation constraints, which has
obvious applications in designing more efficient tailored primal-dual interior-
point algorithms. The book winds up with descriptions of recent developments
in two alternative Matlab software currently available to handle positive mul-
tivariate polynomials, using either the SOS decomposition (SOSTOOLS) or
the dual moment approach (GloptiPoly). Prajna, Papachristodoulou, Seiler,
and Parrilo survey in [III.4] the main features of SOSTOOLS along with
its control applications, whereas Henrion and Lasserre in [III.5] describe the
global optimality certificate and solution extraction mechanism implemented
in GloptiPoly.

We believe that the organization of the book into three parts reflects the
current trends in the area, with interplay between control engineers, mathe-
maticians, optimizers and software developers.

October 2004 Didier Henrion
Andrea Garulli
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Control Applications of
Sum of Squares Programming

Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun, and
Andrew Packard

Department of Mechanical Engineering, University of California, Berkeley
{zachary, rfeeley, weehong, kpsun, pack}@jagger.me.berkeley.edu

We consider nonlinear systems with polynomial vector fields and pose two
classes of system theoretic problems that may be solved by sum of squares
programming. The first is disturbance analysis using three different norms to
bound the reachable set. The second is the synthesis of a polynomial state
feedback controller to enlarge the provable region of attraction. We also out-
line a variant of the state feedback synthesis for handling systems with input
saturation. Both classes of problems are demonstrated using two-state non-
linear systems.

1 Introduction

Recent developments in sum of squares (SOS) programming [1, 2] have greatly
extended the class of problems that can be solved with convex optimization.
These results provide a general methodology to find formulations or relax-
ations, solvable by semidefinite programming, which address seemingly in-
tractable nonconvex problems. Many of the problems that are amenable to
SOS programming relate to polynomial optimization or algebraic geometry
and reach back to the original work on global lower bounds for polynomials.
This work is collected and expanded upon in [3].

First, we define the basic tools needed to state the main theorem, the
Positivstellensatz, which leads to the development of our results. We use this
methodology to pose two classes of system theoretic problems for nonlinear
systems with polynomial vector fields. The first class of problems is distur-
bance analysis, which we will show three different ways of quantifying the
effects of disturbances on polynomial systems:

1. bounding the reachable set subject to unit energy disturbance,
2. bounding the peak bounded disturbance that retains set invariance, and
3. bounding the induced L2 → L2 gain.

D. Henrion and A. Garulli (Eds.): Positive Polynomials in Control, LNCIS 312, pp. 3–22, 2005.
© Springer-Verlag Berlin Heidelberg 2005



4 Z. Jarvis-Wloszek et al.

The second class of problems is expanding a region of attraction with state
feedback, and its variant for systems with input saturation. We will illustrate
our methods of solving these problems by presenting two proof of concept
numerical examples. The two classes of problems presented here is a selection
of work done in [4] and [5].

2 Preliminaries

We often use the same letter to denote a signal (i.e. a function of time), as
well as the possible values that the signal may take on at any time. We hope
this abuse of notation will not confuse the reader.

2.1 Polynomial Definitions

Definition 1 (Monomials). A Monomial mα in n variables is a function
defined as mα(x) = xα := xα1

1 xα2
2 · · ·xαn

n for α ∈ Zn
+. The degree of a mono-

mial is defined, deg mα := n
i=1 αi.

Definition 2 (Polynomials). A Polynomial f in n variables is a finite
linear combination of monomials,

f := 
α

cαmα =
α

cαxα

with cα ∈ R. Define Rn to be the set of all polynomials in n variables. The
degree of f is defined as deg f := maxα deg mα (provided the associated cα is
non-zero).

Additionally we define Σn to be the set of sum of squares (SOS) polyno-
mials in n variables.

Σn := p ∈ Rn p =
t

i=1

f2
i , fi ∈ Rn, i = 1, . . . , t .

Obviously if p ∈ Σn, then p(x) ≥ 0 ∀x ∈ Rn.
It is interesting to note that there are polynomials that are positive

semidefinite (PSD) that are not sum of squares. In general, there are only
three combinations of number of variables and degree such that the set of
SOS polynomials is equivalent to the set of positive semidefinite ones, namely,
n = 2; d = 2; and n = 3 with d = 4. This result dates to Hilbert and is related
to his 17th problem.
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2.2 Positivstellensatz

In the section we define concepts to state a central theorem from real algebraic
geometry, the Positivstellensatz, which we will hereafter refer to as the P-satz.
This is a powerful theorem which generalizes many known results. For exam-
ple, applying the P-satz, it is possible to derive the S-procedure by carefully
picking the free parameters, as will be shown in Sect. 2.4.

Definition 3. Given {g1, . . . , gt} ∈ Rn, the Multiplicative Monoid gener-
ated by gj’s is the set of all finite products of gj’s, including 1 (i.e. the empty
product). It is denoted as M(g1, . . . , gt). For completeness define M(φ) := 1.

An example: M(g1, g2) = {gk1
1 gk2

2 | k1, k2 ∈ Z+}.
Definition 4. Given {f1, . . . , fr} ∈ Rn, the Cone generated by fi’s is

P(f1, . . . , fr) := s0 +
l

i=1

sibi l ∈ Z+, si ∈ Σn, bi ∈ M(f1, . . . , fr) . (1)

Note that if s ∈ Σn and f ∈ Rn, then f2s ∈ Σn as well. This allows us to
express a cone of {f1, . . . , fr} as a sum of 2r terms. An example: P(f1, f2) =
{s0 + s1f1 + s2f2 + s3f1f2 | s0, . . . , s3 ∈ Σn}.
Definition 5. Given {h1, . . . , hu} ∈ Rn, the Ideal generated by hk’s is

I(h1, . . . , hu) :=
u

k=1

hkpk pk ∈ Rn .

With these definitions we can state the following theorem taken from [6, The-
orem 4.2.2]

Theorem 1 (Positivstellensatz). Given polynomials {f1, . . . , fr},
{g1, . . . , gt}, and {h1, . . . , hu} in Rn, the following are equivalent:

1. The set x ∈ Rn
f1(x) ≥ 0, . . . , fr(x) ≥ 0
g1(x) = 0, . . . , gt(x) = 0
h1(x) = 0, . . . , hu(x) = 0


is empty.

2. There exist polynomials f ∈ P(f1, . . . , fr), g ∈ M(g1, . . . , gt),
h ∈ I(h1, . . . , hu) such that

f + g2 + h = 0 .

When there are only inequality constraints, and they describe a compact re-
gion, this theorem can be improved to reduce the number of free parameters
[7], and with slightly stronger assumptions [8]. These results have been used to
improve bounds on nonconvex polynomial optimization [2] and [9] highlighted
a software package to do so.
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2.3 SOS Programming

Sum of squares polynomials play an important role in the P-satz. Using a
“Gram matrix” approach, Choi et al. [10] showed that p ∈ Σn iff ∃ Q 0
such that p(x) = z∗(x)Qz(x), with z(x) a vector of suitable monomials. Powers
and Wörmann [11] proposed an algorithm to check if any Q 0 exists for a
given p ∈ Rn. Parrilo [1] showed that their algorithm is an LMI, and proved
the following extension.

Theorem 2 (Parrilo). Given a finite set {pi}m
i=0 ∈ Rn, the existence of

{ai}m
i=1 ∈ R such that

p0 +
m

i=1

aipi ∈ Σn

is an LMI feasibility problem.

This theorem is useful since it allows one to answer questions like the following
SOS programming example.

Example 1. Given p0, p1 ∈ Rn, does there exist a k ∈ Rn, of a given degree,
such that

p0 + kp1 ∈ Σn . (2)

To answer this question, write k as a linear combination of its monomials
{mj}, k = s

j=1 ajmj. Rewrite (2) using this decomposition

p0 + kp1 = p0 +
s

j=1

aj(mjp1)

which since (mjp1) ∈ Rn is a feasibility problem that can be checked by
Theorem 2.

A software package, SOSTOOLS, [12, 13], exists to aid in solving the LMIs
that result from Theorem 2. This package as well as [9] use Sturm’s SeDuMi
semidefinite programming solver [14].

2.4 S-Procedure

What does the S-procedure look like in the P-satz formalism? Given symmet-
ric n×n matrices {Ak}m

k=0, the S-procedure states: if there exist nonnegative
scalars {λk}m

k=1 such that A0 − m
k=1 λkAk 0, then

m

k=1

x ∈ Rn | xT Akx ≥ 0 ⊆ x ∈ Rn | xT A0x ≥ 0 .

Written in P-satz form, the question becomes “is
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x ∈ Rn xT A1x ≥ 0, . . . , xT Amx ≥ 0,

−xT A0x ≥ 0, xT A0x = 0

empty?” Certainly, if the λk exist, define 0 Q := A0 − m
k=1 λkAk. Further

define SOS functions s0(x) := xT Qx, s01 := λ1, . . . , s0m := λm. Note that

f := (−xT A0x)s0 + m
k=1(−xT A0x)(xT Akx)s0k

∈ P xT A1x, . . . , xT Amx,−xT A0x

and that g := xT A0x ∈ M(xT A0x). Substitution yields f + g2 = 0 as desired.
We will use this insight to make specific selections in the P-satz formulation
of in Sects. 3 and 4. For the special case of m = 1, the converse of the S-
Procedure is also true [15, Sect. 2.6.3].

Using the tools of SOS programming and the P-satz, we can, after some
simplifications, cast some control problems for systems with polynomial vector
fields as tractable optimization problems. In the next two sections, we discuss
two classes of problems that these techniques are applicable to.

3 Disturbance Analysis

In this section, we consider the local effects of external disturbances on poly-
nomial systems. The following types of disturbance analysis are considered:

1. Reachable set bounds under unit energy disturbances
2. Set invariance under peak bounded disturbances
3. Bounding the induced L2 → L2 gain

3.1 Reachable Set Bounds under Unit Energy Disturbances

Given a system of the form

ẋ = f(x) + gw(x)w (3)

with x(t) ∈ Rn, w(t) ∈ Rnw , f ∈ Rn
n, f(0) = 0, and gw ∈ Rn×nw

n . We want to
compute a bound on the set of points x(T ) that are reachable from x(0) = 0
under (3), provided the disturbance satisfies T

0
w(t)∗w(t) dt ≤ 1, T ≥ 0.

A similar problem is considered in [16], where real quantifier elimination
is used to calculate the exact reachable set for a larger class of dynamical
systems. Our approach only considers convex relaxations of the exact problem,
and as such requires less computation. A comparison of SOS programming and
computational algebra is given in [17] for the case of polynomial minimization.

Following the Lyapunov-like argument in [15, Sect. 6.1.1], if we have a
polynomial V such that
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V (x) > 0 for all x ∈ Rn\{0} with V (0) = 0 , and (4)

∂V

∂x
(f(x) + gw(x)w) ≤ w∗w for all x ∈ Rn, w ∈ Rnw , (5)

then {x|V (x) ≤ 1} contains the set of points x(T ) that are reachable from
x(0) = 0 for any w such that T

0 w(t)∗w(t) dt ≤ 1, T ≥ 0. We can see this by
integrating the inequality in (5) from 0 to T , yielding

V (x(T )) − V (x(0)) =
T

0

w(t)∗w(t) dt ≤ 1 .

Recalling V (x(0)) = 0, x(T ) ∈ {x|V (x) ≤ 1}. Furthermore, x(τ) ∈ {x|V (x) ≤
1} for all τ ∈ [0, T ], allowing us to relax the inequality in (5) to

∂V

∂x
(f(x) + gw(x)w) ≤ w∗w ∀x ∈ {x |V (x) ≤ 1}, ∀w ∈ Rnw .

To bound the reachable set, we require a V satisfying these conditions.
Additionally, to achieve a useful bound, the level set {x|V (x) ≤ 1} should
be as small as possible. This is accomplished by requiring {x|V (x) ≤ 1} to
be contained in a variable sized region Pβ := {x ∈ Rn|p(x) ≤ β}, for some
positive definite p, and minimizing β under the constraint that we can find a
V satisfying (4) and (5). Restricting V to be a polynomial with no constant
term, so that V (0) = 0, we formulate the problem in the following way, leading
to application of the P-satz.

min
V ∈Rn

β

such that
{x ∈ Rn | V (x) ≤ 0, l1(x) = 0} is empty , (6)
{x ∈ Rn | V (x) ≤ 1, p(x) ≥ β, p(x) = β} is empty , (7)

x ∈ Rn ,

w ∈ Rnw

V (x) ≤ 1,
∂V
∂x (f(x) + gw(x)w) ≥ w∗w,
∂V
∂x (f(x) + gw(x)w) = w∗w

 is empty . (8)

where l1 is some positive definite and SOS polynomial that replaces x in the
non-polynomial constraint x = 0. The constraints (6) and (8) make V and V̇
behave properly, while (7) allows that {x|V (x) ≤ 1} ⊆ Pβ .

Invoking the P-satz, constraints (6)–(8) are equivalent to the constraints
in the following minimization.
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min β over
V ∈ Rn , s1, . . . , s6 ∈ Σn

s7, . . . , s10 ∈ Σn+nw , k1, k2, k3 ∈ Z+

such that

s1 − V s2 + l2k1
1 = 0 , (9)

s3 + (1 − V )s4 + (p − β)s5 ,

+ (1 − V )(p − β)s6 + (p − β)2k2 = 0 , (10)

s7 +
∂V

∂x
(f(x) + gw(x)w) − w∗w s8 + (1 − V )s9

+ (1 − V )
∂V

∂x
(f(x) + gw(x)w) − w∗w s10 ,

+
∂V

∂x
(f(x) + gw(x)w) − w∗w

2k3

= 0 . (11)

Conditions (9)–(11) cannot be directly checked using SOS programming
methods. Therefore we specify convenient values for some of the si’s and kj ’s.
We also restrict the degree of V and the remaining si’s. Consequently (9)–(11)
become only sufficient for (6)–(8).

Picking any of the kj = 0, can prevent feasibility. Thus we set all of the kj ’s
equal to the next smallest value, 1. If we pick s2 = l1 and s1 = ŝ1l1, then (9)
looks like the form used to show positive definiteness of a Lyapunov function
in [18]. Additionally, if we pick s7 = s9 = 0, and realize that ∂V

∂x (f(x) +
gw(x)w) − w∗w is not the zero polynomial, we can write (11) in the form of
a “generalized” S-procedure. These choices leave the following problem:

min β over V ∈ Rn, s4, s5, s6 ∈ Σn, s10 ∈ Σn+nw

such that
V − l1 ∈ Σn , (12)

− (1 − V )s4 + (p − β)s5

+ (1 − V )(p − β)s6 + (p − β)2 ∈ Σn , (13)

− (1 − V )s10 +
∂V

∂x
(f(x) + gw(x)w) − w∗w ∈ Σn+nw . (14)

where (12) ensures the positive definiteness of V , (13) establishes {x|V (x) ≤
1} ⊆ Pβ , and (14) constrains V̇ ≤ w∗w on {x|V (x) ≤ 1}.

Note that some of the decision polynomials enter the constraints in a
bilinear form, which SOS programming cannot handle directly. For example,
in (13), there are bilinear terms such as V s4 and V s6. Our approach is to
hold one set of decision polynomials fixed while optimizing the other set, then
switching over. This results in an iterative algorithm whereby at any step, the
constraints (12)–(14) can be checked using SOS programming.
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Before presenting the algorithm, two issues deserve mention. First, to use
SOS programming, we must specify the maximum degree of V and the SOS
polynomials si. To ensure (12)–(14) might be satisfied, the degree of the poly-
nomials must satisfy

deg V = deg l1 ,

max{deg(V s4); deg(V ps6)} ≥ max{deg(ps5); 2 deg p} ,

deg s10 ≥ max{deg f ; deg(gww)} − 1 .

(15)

These constraints are a consequence of the nature of polynomials; e.g. a SOS
polynomial of degree 2 cannot be greater than a SOS polynomial of degree 4
for all x.

The second issue is that the algorithm does not reliably find a feasible
point {V, s4, s5, s6, s10, β}. Rather it can only improve upon one, by driving
β smaller. As written, the user must supply an initial V0 that is a component
of some feasible point, though the other components can be determined with
SDPs. Given a V0 satisfying (12), an SDP can determine the existence of s4,
s5, and s6 to satisfy (13). Likewise, a separate SDP can determine the exis-
tence of s10 satisfying (14). Note that a “poor” choice of initial V0 may render
(13) and/or (14) unsatisfiable for any choice of β, s4, s5, s6, s10, although for
a different V0, (13) and (14) may be satisfied. Heuristics (based on lineariza-
tions) to find suitable initial V0’s are possible. However, once a feasible point
{V, s4, s5, s6, s10, β} is found, the optimization will remain feasible and β will
be at least monotonically non-increasing with every step of the algorithm.
Since we do not have a lower bound on β, we do not have a formal stop-
ping criteria. Heuristics, such as β between each iteration of the algorithm
improving by less than a specified tolerance, is used as our stopping criterion.

Iterative Bounding Procedure
Setup: Specify the maximum degree that will be considered for both V and
the si’s, observing the constraints in (15). Set l1 = xm

i for some small
> 0, and m is the maximum degree of V . Each step of the iteration,

which is indexed by i, consists of three substeps, the first two subject
to constraints (12)–(14). To begin the iteration, choose a V0, initialize
V (i=0) = V0 and the iteration index i = 1, and proceed to step 1.

1. SOS Optimization:
Minimize β over s4, s5, s6, and s10, with V = V (i−1) fixed, to obtain
s
(i)
4 , s

(i)
6 , and s

(i)
10 .

2. Lyapunov Function Synthesis:
Minimize β over s5 and V , with s4 = s

(i)
4 , s6 = s

(i)
6 , and s10 = s

(i)
10

fixed, to obtain V (i) and β(i).



Control Applications of SOS Programming 11

3. Stopping Criterion:
If β(i)−β(i−1) is less than a specified tolerance, conclude the iteration,
otherwise increment i and return to substep 1.

In (13), β is multiplied by polynomials we are searching over. Therefore
we minimize β in substeps 1 and 2 using a line search.

If we restrict ourselves to linear dynamics, ẋ = Ax + Bww, and quadratic
Lyapunov functions, V (x) = x∗Px, then (12) becomes P 0, and with
s10 = 0, (14) becomes

A∗P + PA PBw

B∗
wP −I

0 .

Thus (12) and (14) generalize the LMI in [15, Sect. 6.1.1].

3.2 Set Invariance under Peak Bounded Disturbances

Considering again a polynomial system subject to disturbances as in (3),

ẋ = f(x) + gw(x)w .

We can now look at bounding the maximum peak disturbance value such that
a given set remains invariant under these bounded disturbances and the action
of the system’s dynamics.

Let the peak of a signal w be bounded by

w ∞ := sup
t

|w(t)| ≤ √
γ

and define the invariant set as

Ω1 := {x ∈ Rn|V (x) ≤ 1}
for some fixed V ∈ Rn, positive definite. We know that if ∂V

∂x (f(x)+gw(x)w) ≤
0 on the boundary of Ω1 for all w meeting the peak bound, then the flow of the
system from any point in Ω1 cannot ever leave Ω1, which makes it invariant.
In set containment terms we can write this relationship as

{x ∈ Rn, w ∈ Rnw |V (x) = 1} ∩ {x ∈ Rn, w ∈ Rnw |w∗w ≤ γ}

⊆ x ∈ Rn, w ∈ Rnw
∂V

∂x
(f(x) + gw(x)w) ≤ 0 (16)

which can be rewritten in set emptiness form as
x ∈ Rn,

w ∈ Rnw

V (x) − 1 = 0, γ − w∗w ≥ 0,
∂V
∂x (f(x) + gw(x)w) ≥ 0,
∂V
∂x (f(x) + gw(x)w) = 0

 = φ
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Employing the P-satz, this becomes

s0 + s1(γ − w∗w) + s2 
∂V
∂x (f(x) + gw(x)w)

+ s3(γ − w∗w)∂V
∂x (f(x) + gw(x)w)

+ ∂V
∂x (f(x) + gw(x)w)

2k
+ q(V − 1) = 0

with k ∈ Z+, q ∈ Rn+nw and s0, s1, s2, s3 ∈ Σn+nw .
Using our standard approach of k = 1, we can write the following SOS

constraint that guarantees invariance under bounded w,

− s1(γ − w∗w) − s2
∂V
∂x (f(x) + gw(x)w)

− s3(γ − w∗w)∂V
∂x (f(x) + gw(x)w)

− ∂V
∂x (f(x) + gw(x)w)

2 − q(V − 1) ∈ Σn+nw . (17)

Notice that this SOS condition has terms that are not linear in the monomials
of V , and thus there is no way to use our convex optimization approach to
adjust V while checking this condition. Since (17) in linear in γ we can search
for the maximum peak disturbance for which the set is invariant, by searching
over q and the si’s to maximize γ subject to (17). We will need to have the
following degree relationship hold to make (17) possibly feasible

max deg(s1) + 2, deg(s2
∂V
∂x (f(x) + gw(x)w)), deg(qV )

≥ max deg(s3
∂V
∂x (f(x) + gw(x)w))) + 2, 2 deg(∂V

∂x (f(x) + gw(x)w))) .

If we set x(0) = 0, then the invariant set Ω1 bounds the system’s reachable
set under disturbances with peak less than γ. This bound is similar, but less
stringent, than the bound for linear systems given in [15].

The constraint in (17) can result in searching for polynomials with many
coefficients. We can reduce the degree of this constraint by setting

q =
∂V

∂x
(f(x) + gw(x)w)

2

q̂

and

si =
∂V

∂x
(f(x) + gw(x)w)

2

ŝi

for i = 1, 2, 3. This allows us to factor out a ∂V
∂x (f(x) + gw(x)w)

2
term to

get the following sufficient condition:

− ŝ1(γ − w∗w) − ŝ2
∂V
∂x (f(x) + gw(x)w)

−ŝ3(γ − w∗w)∂V
∂x (f(x) + gw(x)w) − 1 − q̂(V − 1) ∈ Σn+nw . (18)

For this simplified constraint (18), the polynomials must satisify this degree
relationship:

max deg(ŝ1) + 2, deg(ŝ2
∂V
∂x (f(x) + gw(x)w)), deg(q̂V )

≥ deg ŝ3
∂V
∂x (f(x) + gw(x)w)) + 2 . (19)
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Effect of w ∞ on x ∞

Using the bounded peak disturbances techniques above to find a bound for the
largest disturbance peak value for which Ω1 is invariant, we can then bound
the peak size of the system’s state to get a relationship that is similar to the
induced L∞ → L∞ norm from disturbance to state for this invariant set.

For a given V , we solve the optimization to find the largest γ such that
(17) is feasible. Then we can bound the size of the state by optimizing to find
the smallest α such that

Ω1 = {x ∈ Rn | V (x) ≤ 1} ⊆ {x ∈ Rn | x∗x ≤ α}

This containment constraint is easily solved with a generalized S-procedure
following from Sect. 2.4. From this point we know that the following implica-
tion holds

∀x(0) ∈ Ω1 , and w ∞ ≤ √
γ ⇒ x ∞ ≤ √

α ,

which provides our induced norm-like bound.

3.3 Bounding the Induced L2 → L2 Gain

Consider the disturbance driven system with outputs,

ẋ = f(x) + gw(x)w

y = h(x)

with x(t) ∈ Rn, w(t) ∈ Rnw , y(t) ∈ Rp, f ∈ Rn
n, f(0) = 0, gw ∈ Rn×nw

n , and
h ∈ Rp

n with h(0) = 0.
For a region, Ω1 = {x ∈ Rn|V (x) ≤ 1} as in Sect. 3.2, that is invariant

under disturbances with w ∞ ≤ √
γ, we can bound the induced L2 → L2

gain from w to y on this invariant set by finding a positive definite H ∈ Rn

and β ≥ 0 such that the following set containment holds

{x ∈ Rn, w ∈ Rnw |w∗w ≤ γ} ∩ {x ∈ Rn, w ∈ Rnw |V (x) ≤ 1}
⊆ x ∈ Rn, w ∈ Rnw ∂H

∂x (f(x) + gw(x)w) + h(x)∗h(x) − βw∗w ≤ 0 (20)

If we can find a β, H pair to make (20) hold, then we can follow the steps
from Sect. 3.1 to show that

x(0) = 0 and w ∞ ≤ √
γ ⇒ y 2

w 2
≤ β .

We can search for the tightest bound on the induced norm by employing a
generalized S-procedure to satisfy (20) and solving the following optimization
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min
H∈Rn 

β s.t.

H − l ∈ Σn , (21)
− ∂H

∂x (f(x) + gw(x)w) + h(x)∗h(x) − βw∗w
−s1(γ − w∗w) − s2(1 − V ) ∈ Σn+nw

with s1, s2 ∈ Σn+nw and l ∈ Σn, positive definite.
In an effort to make the optimization (21) feasible we will pick the degrees

of s1 and s2 so that

deg(s1) + 2 ≥ deg ∂H
∂x (f(x) + gw(x)w) + h∗h and

deg(s2V ) ≥ deg ∂H
∂x (f(x) + gw(x)w) + h∗h .

3.4 Disturbance Analysis Example

Consider the following nonlinear system

ẋ1 = −x1 + x2 − x1x
2
2

ẋ2 = −x2 − x2
1x2 + w

y = [x1 x2]T (22)

with x(t) ∈ R2 and w(t) ∈ R. Given p(x) = 8x2
1 − 8x1x2 + 4x2

2, we would
like to determine the smallest level set Pβ := {x ∈ R2 | p(x) ≤ β} that con-
tains all possible system trajectories for t ≤ T starting from x(0) = 0 with

T

0
w2 dt ≤ R, where R is a given constant. Employing the algorithm in Sect.

3.1, we fix s5 = 1 and s6 = 0 to eliminate the need for a line search in each
substep. We set the maximum degree of V , s4 and s10 all to be of degree 4
and initialized the algorithm with V0(x) = x2

1 + x2
2. Figure 1 shows the algo-

rithm’s progress in reducing β versus iteration number as well as the trade off
between R and β. The insert shows the monotonically decreasing behavior of
our algorithm for R = 1, and after 10 iterations, β is reduced to 1.08, which is
a large improvement over the first iteration bound of β = 10.79. For increasing
values of disturbance energy R, the size of the reachable set increases, which
is expected.

Using the Lyapunov function V found in the reachable set analysis for
R = 1, we can bound the peak disturbance such that the set Ω1 = {x ∈
R2 | V (x) ≤ 1} remains invariant. Using the optimization in (18), we get
w ∞ ≤ √

γ = 0.642 by choosing the degree of ŝ1, ŝ2, ŝ3 and p̂ to be 6, 2, 0
and 4 respectively. If we start from x(0) ∈ Ω1 and have w ∞ ≤ 0.642, then
x ∞ ≤ √

α = 0.784. We can also bound the induced L2 → L2 disturbance to
state gain for this system. The maximum degree of H, s1, and s2 are chosen
to be 2, 0 and 2 respectively. Using (21), we get x 2

w 2
≤ 1.41 if we start from

x(0) = 0, and as long as w ∞ ≤ 0.642.
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Fig. 1. Insert: Algorithm’s progress for R=1, Main: Trade off between R and β

4 Expanding a Region of Attraction with State Feedback

Given a system of the form

ẋ = f(x) + g(x)u (23)

with x(t) ∈ Rn, u(t) ∈ R, and f, g n-vectors of elements of Rn such that
f(0) = 0, we would like to synthesize a state feedback controller u = K(x)
with K ∈ Rn that enlarges the set of points that we can show are attracted
to the fixed point at the origin.

We define a variable sized region as Pβ := {x ∈ Rn|p(x) ≤ β}, for some
given positive definite p. We then expand the provable region of attraction
by maximizing β while requiring that all of the points in Pβ converge to the
origin under the controller K. Using a Lyapunov argument, every point in Pβ

will converge asymptotically to the origin if there exists K, V ∈ Rn such that
the following hold:
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V (x) > 0 for all x ∈ Rn\{0} and V (0) = 0 , (24)

{x ∈ Rn | p(x) ≤ β} ⊆ {x ∈ Rn | V (x) ≤ 1} , (25)

{x ∈ Rn | V (x) ≤ 1}\{0} ⊆

x ∈ Rn ∂V

∂x
(f(x) + g(x)K(x)) < 0 .

(26)

These conditions show that V is positive definite, Pβ is contained in a level
set of V , and dV

dt is strictly negative on all the points contained in the level
set aside from x = 0.

The condition that V (0) = 0 is satisfied by setting the constant term to
zero. Enlarging the region of attraction subject to the preceding requirements
can be cast into the following form which is amenable to the P-satz.

max
K,V ∈Rn

β

such that
{x ∈ Rn | V (x) ≤ 0, l1(x) = 0} is empty , (27)
{x ∈ Rn | p(x) ≤ β, V (x) ≥ 1, V (x) = 1} is empty , (28)x ∈ Rn

V (x) ≤ 1, l2(x) = 0,
∂V
∂x f(x) + g(x)K(x) ≥ 0

 is empty . (29)

where l1, l2 are fixed positive definite and SOS polynomials which replace the
non-polynomial constraints x = 0 in (24) and (26).

Applying the P-satz, the region maximization problem with constraints
(27)–(29) is equivalent to

maxβ over
K, V ∈ Rn k1, k2, k3 ∈ Z+

s1, . . . , s10 ∈ Σn

such that

s1 − V s2 + l2k1
1 = 0 , (30)

s3 + (β − p)s4 + (V − 1)s5

+ (β − p)(V − 1)s6 + (V − 1)2k2 = 0 , (31)

s7 + (1 − V )s8 + (
∂V

∂x
(f + gK))s9

+ (1 − V )(
∂V

∂x
(f + gK))s10 + l2k3

2 = 0 . (32)

We cannot check (30)–(32) using SOS programming methods, so we will
have to pick values for some of the si’s and kj ’s. We set k1 = k2 = k3 = 1 and
pick s2 = l1 and s1 = ŝ1l1 to simplify (30). Equation (31) has a (V − 1)2k2

term which we can not directly optimize over using SOS programming, so we



Control Applications of SOS Programming 17

cast this constraint as an S-procedure (see Sect. 2.4). This is done by setting
s3 = s4 = 0, k2 = 1, and factoring out a (V − 1) term. To simplify (32) we
set s10 = 0 and factor out l2, leaving the sufficient conditions below,

max β over K, V ∈ Rn s6, s8, s9 ∈ Σn

such that
V − l1 ∈ Σn , (33)

− (β − p)s6 + (V − 1) ∈ Σn , (34)

− (1 − V )s8 +
∂V

∂x
(f + gK)s9 + l2 ∈ Σn . (35)

Again, the decision polynomials do not enter the constraints linearly, so we
employ an iterative algorithm to solve this maximization. A slight modification
to (35) is needed because for a given Lyapunov candidate function V , searching
over K does not affect β at all. An intermediate variable, α, is introduced to
(35) so that we maximize the level set of {x |V (x) ≤ α} that is contractively
invariant under K and use α to scale V and l2. We will elaborate more in the
control design algorithm.

To initialize the algorithm, set V0 to be a control Lyapunov function (CLF)
of the linearized system. Since V0 is a CLF, (33) is automatically satisfied
and (35) is easily satisfied by scaling V0. Constraint (34) is also satisfied for
sufficiently small β. As such, if we can find a CLF for the linearized system,
we would have a feasible starting point for our algorithm. Otherwise, the
algorithm might fail on the first iteration.

For reasons highlighted in Sect. 3.1, the maximum degree of V , K, l1, l2,
and the si’s must satisfy the following constraints:

deg V = deg l1 ,

deg(ps6) ≥ deg V ,

deg s8 ≥ max{deg(fs9); deg(gKs9)} − 1 ,

deg(V s8) = deg l2 .

(36)

Control Design Algorithm
Setup: Specify the maximum degree that will be considered for both V
and the si’s. Set l1 = xm

i for some small > 0, and m is the maximum
degree of V . Each step of the iteration, indexed by i, consists of three
substeps, two of which also involve iterations. These inner iterations will
be indexed by j. To begin the iteration, choose a V0 that is a CLF of
the linearized system, and initialize V (i=0) = V0 and s

(i=0)
9 = 1. Also, set

l
(i=0)
2 = xq

i , where q is the maximum degree of (V s8). Now set the
outer iteration index i = 1 and proceed to step 1.
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1. Controller Synthesis:
Set V = V (i−1), s(j=0)

9 = s(i−1)
9 , and the inner iteration index j = 1.

In substeps 1a and 1b, solve the following optimization problem:

maxα over K ∈ Rn, s8, s9 ∈ Σn such that

− (α − V )s8 + 
∂V

∂x
(f + gK)s9 + l2 ∈ Σn . (37)

(a) Maximize α over s8, K, with s9 = s
(j−1)
9 fixed, to obtain K(j).

(b) Maximize α over s8, s9, with K = K(j) fixed, to obtain s
(j)
9 and

α(j).
(c) If α(j) − α(j−1) is less than a specified tolerance, set s

(i)
8 = s

(j)
8 ,

s
(i)
9 = s

(j)
9 , l

(i)
2 = l

(i−1)
2 /α(j), and α(i) = α(j) and continue to step

2. Otherwise increment j and return to 1a.
2. Lyapunov Function Synthesis:

Set V (j=0) = V (i−1)/α(i) and the inner iteration index j = 1. Hold
s8 = s

(i)
8 , s9 = s

(i)
9 , and l2 = l

(i)
2 fixed.

(a) Maximize β over s6, with V = V (j−1) fixed, subject to (34) to
obtain s

(j)
6 . i.e.

max β over s6 ∈ Σn such that

− (β − p)s6 + (V − 1) ∈ Σn .

(b) Maximize β over V , with s6 = s
(j)
6 fixed, subject to (33)–(35) to

obtain V (j) and β(j).
(c) If β(j) − β(j−1) is less than a specified tolerance, set V (i) = V (j)

and β(i) = β(j) and continue to step 3. Otherwise increment j and
return to 2a.

3. Stopping Criterion: If β(i) − β(i−1) is less than a specified tolerance
conclude the iterations, otherwise return to step 1.

As in Sect. 3.1, we use a line search to maximize α and β in the steps
above.

4.1 Expanding the Region of Attraction for Systems with Input
Saturation

Given a system of the form

ẋ = f(x) + g(x) sat(u) (38)
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where

sat(u) :=


u if |u| ≤ 1

1 if u > 1

−1 if u < −1

with x(t) ∈ Rn, u(t) ∈ R, and f, g n-vectors of elements of Rn such that
f(0) = 0, we would like to synthesize a state feedback controller u = K(x)
with K ∈ Rn to enlarge the set of points which are attracted to the origin.

Again, we define the region to expand as Pβ := {x ∈ Rn|p(x) ≤ β}, for
some given positive definite p. We want to design state feedback controller
K(x) to maximize β such that the Pβ is a domain of attraction and |u| ≤ 1.
This is accomplished by appending two conditions to (24)–(26):

{x ∈ Rn | V (x) ≤ 1} ⊆ {x ∈ Rn | K(x) ≤ 1} , (39)

{x ∈ Rn | V (x) ≤ 1} ⊆ {x ∈ Rn | K(x) ≥ −1} . (40)

These two equations ensure that |u| = |K(x)| ≤ 1 for all x in the contractively
invariant set {x ∈ Rn|V (x) ≤ 1}, so the control action will not hit saturation.

Following the procedure in Sect. 4, we will obtain constraints (33)–(35).
Additionally due to the saturation, we have

(1 − K) − (1 − V )s10 ∈ Σn , (41)

(1 + K) − (1 − V )s11 ∈ Σn . (42)

The control design algorithm for this problem is similar to that proposed in
Sect. 4, with the inclusions of the two additional constraints (41) and (42).

4.2 State Feedback Example

Consider the following nonlinear system:

ẋ1 = u

ẋ2 = −x1 + 1
6x3

1 − u (43)

with x(t) ∈ R2 and u(t) ∈ R. We are interested in enlarging the domain
of attraction described by the level set Pβ := {x ∈ R2 | p(x) ≤ β}, where
p(x) = 1

6x2
1 + 1

6x1x2 + 1
12x2

2, through state feedback. Using the algorithm
in Sect. 4, we start with randomized V0(x) that are CLFs of the linearized
system. We set the maximum degrees of V , K, s6, s8 and s9 to 2, 1, 2, 2, and
0 respectively.

Figure 2 shows the progress of β with iteration number for 10 random V0.
Out of these 10 random V0, the largest β achieved is 54.65. Figure 3 shows
the resulting domain of attraction for this case. The corresponding controller
is K = −145.94x1+12.2517x2 and V = 0.001(2.3856x2

1+2.108x1x2 +1.17x2
2).
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Surprisingly, for higher orders of V and K, we have obtained smaller regions
of attraction. This is likely due to the nonconvexity of the overall control
design algorithm. Although each substep is optimal (i.e., convex), our iterative
approach of breaking the algorithm into substeps is not.
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40
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Fig. 2. β vs. iteration no. for various V0

x1 ’ = − 145 943 x1 + 12.2517 x2             
x2 ’ = 0.16667 x13 + 144.943 x1 − 12 2517 x2
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Fig. 3. Closed loop system’s region of attraction
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We can also analyze the disturbance rejection properties of this controller
when the disturbances enter the system additively in the control channel, i.e.
gw(x) = g(x). Using the Lyapunov function V found in the state feedback
design, we can bound the peak disturbance such that the set Ω1 = {x ∈
R2 | V (x) ≤ 1} remains invariant. Using the optimization in (18), we get
w ∞ ≤ √

γ = 31.62 by choosing the degree of ŝ1, ŝ2, ŝ3 and p̂ to be 4, 2, 0
and 4 respectively. If we start with x(0) ∈ Ω1 and have w ∞ ≤ 31.62, then
x ∞ ≤ √

α = 42.22. We can also bound the induced L2 → L2 disturbance
to state gain for this system by setting h(x) = [x1 x2]T . H, s1, and s2 are all
chosen to be of degree 2. Applying (21), if we start from x(0) = 0, and as long
as w ∞ ≤ 31.62, we get x 2

w 2
≤ 0.99.

5 Conclusions

Our expansion of existing SOS programming results to two classes of system
theoretic questions about nonlinear systems with polynomial vector fields ap-
pears promising. The authors believe that there is a multitude of classes of
system theoretic questions that can be answered by application of SOS pro-
gramming. Work in this area is still in its infancy, and the present classes of
problems considered is documented in [4].

For the two cases where the decision polynomials do not enter linearly, we
resorted to using iterative algorithms. As limited as the two iterative algo-
rithms are, the underlying technique provides opportunities to extend stan-
dard LMI analysis of linear systems to more general polynomial vector fields.
A drawback of the approach is that implementation of each algorithm requires
a feasible starting point. This may be produced by trial and error, or using
established nonlinear design techniques.
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11. V. Powers and T. Wörmann (1998). An algorithm for sums of squares of real
polynomials. Journal of pure and applied algebra, 127:99–104.

12. S. Prajna, A. Papachristodoulou, and P. Parrilo (2002). Introducing SOS-
TOOLS: A general purpose sum of squares programming solver. Proc. IEEE
Conf. on Decision and Control, 741–746.

13. S. Prajna, A. Papachristodoulou, and P. A. Parrilo (2002). SOSTOOLS: Sum
of squares optimization toolbox for MATLAB.

14. J. Sturm (1999). Using SeDuMi 1.02, a Matlab toolbox for optimizaton over
symmetric cones. Optimization Methods and Software, 11–12:625–653. Avail-
able at fewcal.cub.nl/sturm/software/sedumi.html.

15. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan (1994). Linear Matrix
Inequalities in System and Control Theory. SIAM, Philadelphia.

16. H. Anai and V. Weispfenning (2001). Reach set computations using real quan-
tifier elimination. In M. D. Benedetto and A. Sangiovanni-Vincentelli (Eds.).
Hybrid Systems: Comp and Ctrl, LNCS, 2034:63–76, Springer.

17. P. Parrilo and B. Sturmfels (2001). Minimizing polynomial functions. Workshop
on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Math-
ematics and Computer Science, held at DIMACS, Rutgers University. Available
at control.ee.ethz.ch/~parrilo.

18. A. Papachristodoulou and S. Prajna (2002). On the construction of Lyapunov
functions using the sum of squares decomposition. Proc. IEEE Conf. Decision
and Control, 3482–3487.



Analysis of Non-polynomial Systems Using
the Sum of Squares Decomposition
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Recent advances in semidefinite programming along with use of the sum of
squares decomposition to check nonnegativity have paved the way for efficient
and algorithmic analysis of systems with polynomial vector fields. In this pa-
per we present a systematic methodology for analyzing the more general class
of non-polynomial vector fields, by recasting them into rational vector fields.
The sum of squares decomposition techniques can then be applied in con-
junction with an extension of the Lyapunov stability theorem to investigate
the stability and other properties of the recasted systems, from which prop-
erties of the original, non-polynomial systems can be inferred. This will be
illustrated by some examples from the mechanical and chemical engineering
domains.

1 Introduction

The analysis of nonlinear systems has always been a difficult task as the
only direct, efficient methodology requires the construction of what is called a
Lyapunov function. The difficulty lies not only in the ‘manual’ construction of
Lyapunov functions but also in the complexity of testing the non-negativity
of the two Lyapunov conditions. Indeed, even if someone was to propose a
high order Lyapunov function, it might not at all be possible to verify the
two conditions that it needs to satisfy: that it is positive definite in some
region around the zero equilibrium and that its derivative along the system’s
trajectories is non-positive.

Recent advances in the areas of semidefinite programming and the use
of the sum of squares decomposition to efficiently check nonnegativity have
allowed an algorithmic procedure for systems analysis, something that was
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not possible before [10, 9]. Despite these advances, this methodology is re-
stricted to systems described by polynomial vector fields whereas physical
systems, the functionality of which is in the focus of many research areas,
seldom have polynomial vector fields. For example, it is a common practice
to use vector fields with non-rational powers to model enzymatic reactions
in biological systems [7]. Also, the model of an aircraft in longitudinal flight
contains trigonometric nonlinearities of the angle of attack and pitch angle,
but in the same equations one usually captures the coefficients of lift and drag
as polynomial descriptions of these variables. In this case the stability analysis
of the closed loop system using the above methodology becomes difficult, as
the same variable appears both in polynomial and non-polynomial terms. The
same is true in the case of analysis of chemical processes, where the temper-
ature appears in the energy equation both as a state and also exponentiated
in Arrhenius law for the reaction rate.

It has been shown in [14] that any system with non-polynomial nonlin-
earities can be converted through a simple series of steps to a polynomial
system with a larger state dimension, but with a series of equality constraints
restricting the states to a manifold of the original state dimension. In some
cases the recasting is ‘exact’, in the sense that the transformed system has
a polynomial vector field with the same dimension as the original system —
consider for example the case

ẋ(t) = ce−αx(t).

Setting p(t) = ce−αx(t) we get immediately that

ṗ(t) = −αp2(t).

In many cases, recasting increases the state dimension but equality constraints
that arise from the recasting restrict the system to the original manifold. In
particular, the constraints that arise can be either polynomial, or include non-
polynomial terms. Consider for example the case of a simple pendulum

d

dt

θ

ω
=

ω

− g
l sin θ

where g is the gravitational constant, l is the length of the pendulum, ω its
angular velocity and θ the angular deviation of the bead from the vertical.
Setting x1 = sin θ and x2 = cos θ one can easily rewrite the above system as

d

dt


x1

ω

x2

 =


x2ω

− g
l x1

−x1ω


x2

1 + x2
2 = 1
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where the constraint x2
1 + x2

2 = 1 is a polynomial equality in (x1, x2) that
restricts the 3-D recasted system to the 2-D evolution manifold.

However in some other cases, like the case of aircraft dynamics, the case of
a reactor process, or the case of enzymatic reactions described by Michaelis-
Menten equations these equality constraints are not polynomial, e.g., one
would have recastings of the form x1 = sinα, but then x1 and α also ap-
pear in the equations. This is one particularly interesting case that we will
explore.

The aim of this chapter is to address stability analysis of non-polynomial
systems through a recasting as described above. We extend Lyapunov’s sta-
bility theorem to handle recasted systems and then use the sum of squares
decomposition to construct Lyapunov functions in the new coordinates. When
mapped back to the original variables, these Lyapunov functions will contain
the original non-polynomial terms.

In Section 2 we review briefly the Lyapunov stability theory for nonlinear
systems and how the sum of squares decomposition can be used to construct
Lyapunov functions. In Section 3 we present the recasting algorithm and ex-
tend the standard Lyapunov theorem to handle the recasted systems. In the
examples section, Section 4, we present the analysis of four systems whose
vector fields contain radical, trigonometric, irrational power, and exponential
terms, which concludes the chapter.

2 Background Material

Systems analysis has been in the focus of research for many years. With the
development of Lyapunov stability theory, the question of assessing stability of
nonlinear systems through the properties of solutions to ordinary differential
equations (ODEs) describing the systems was turned into a problem of the
existence of what is now known as Lyapunov functions. This circumvented
the problem of solving the ODE to prove stability. Nonetheless, no explicit
algorithm was given on how these functions could be constructed.

The Lyapunov conditions require the construction of a positive definite
function that is guaranteed to have non-positive derivative along the trajec-
tories of the system. These conditions are inherently complex, as even testing
non-negativity of a polynomial is NP-hard when the polynomial has degree 4
or higher [8]. A sufficient condition for checking non-negativity of a polyno-
mial p is to check whether it admits a sum of squares decomposition [10]; the
latter is polynomial-time verifiable — it can be tested by solving a semidefinite
programme (SDP).

In this section we give the background material on sum of squares and
Lyapunov function theory that will be used in Section 3.
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2.1 The Sum of Squares Decomposition

We will now give a brief introduction to sum of squares (SOS) polynomials
and show how the existence of an SOS decomposition can be verified us-
ing semidefinite programming [16]. A more detailed description can be found
in [10, 11] and the references therein. We also present briefly an extension of
the S-procedure [17, 3] that is used in the main text.

Definition 1. For x ∈ Rn, a multivariate polynomial p(x) is an SOS if there
exist some polynomials fi(x), i = 1 . . .M such that p(x) = M

i=1 f
2
i (x).

An equivalent characterization of SOS polynomials is given in the following
proposition.

Proposition 1. A polynomial p(x) of degree 2d is an SOS if and only if there
exists a positive semidefinite matrix Q and a vector of monomials Z(x) con-
taining all monomials in x of degree ≤ d such that p = Z(x)T QZ(x).

The proof of this proposition is based on the eigenvalue decomposition and
can be found in [10]. In general, the monomials in Z(x) are not algebraically
independent. Expanding Z(x)T QZ(x) and equating the coefficients of the
resulting monomials to the ones in p(x), we obtain a set of affine relations in
the elements of Q. Since p(x) being SOS is equivalent to Q ≥ 0, the problem
of finding a Q which proves that p(x) is an SOS can be cast as a semidefinite
program (SDP). This was observed by Parrilo in [10].

Note that p(x) being an SOS implies that p(x) ≥ 0 for all x ∈ Rn. However,
the converse is not always true. Not all nonnegative polynomials can be written
as SOS, apart from three special cases: (i) when n = 2, (ii) when deg(p) = 2,
and (iii) when n = 3 and deg(p) = 4. See [13] for more details. Nevertheless,
checking nonnegativity of p(x) is an NP-hard problem when the degree of
p(x) is at least 4 [8], whereas as argued in the previous paragraph, checking
whether p(x) can be written as an SOS is computationally tractable — it can
be formulated as an SDP, which has worst-case polynomial time complexity.
We will not entail in a discussion on how conservative the relaxation is, but
there are several results suggesting that this is not too conservative [13, 11].
Note that as the degree of p(x) and/or its number of variables is increased,
the computational complexity for testing whether p(x) is an SOS increases.
Nonetheless, the complexity overload is still a polynomial function of these
parameters.

There is a close connection between sums of squares and robust con-
trol theory through Positivstellensatz, a central theorem in Real algebraic
geometry [2]. This theorem allows us to formulate a hierarchy of polynomial-
time computable stronger conditions [10] for the S-procedure type of analy-
sis [17, 3]. To see how we will be using this result say we want to use the
S-procedure to check that the set:
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{p(x) ≥ 0 when pi(x) ≥ 0 for i = 1, . . . , n}
is non-empty. Instead of finding positive constant multipliers (the standard
S-procedure), we search for SOS multipliers hi(x) so that

p(x) −
i

hi(x)pi(x) is a SOS. (1)

Since hi(x) ≥ 0 and condition (1) is satisfied, for any x such that pi(x) ≥ 0 we
automatically have p(x) ≥ 0, so sufficiency follows. This condition is at least
as powerful as the standard S-procedure, and many times it is strictly better;
it is a special instance of positivstellensatz. By putting an upper bound on
the degree of hi we can get a nested hierarchy of polynomial-time checkable
conditions.

Besides this, what is more interesting is the case in which the monomials
in the polynomial p(x) have unknown coefficients, and we want to search for
some values of those coefficients such that p(x) is a sum of squares (and hence
nonnegative). Since the unknown coefficients of p(x) are related to the entries
of Q via affine constraints, it is evident that the search for the coefficients that
make p(x) an SOS can also be formulated as an SDP (these coefficients are
themselves decision variables). This observation is crucial in the construction
of Lyapunov functions and other S-procedure type multipliers.

Construction of an equivalent SDP for computing SOS decomposition as
in Proposition 1 can be quite involved when the degree of the polynomials
is high. For this reason, conversion of SOS conditions to the corresponding
SDP has been automated in SOSTOOLS [12], a software package developed
for this purpose. This software calls SeDuMi [15], an SDP solver to solve the
resulting SDP, and converts the solutions back to the solutions of the original
SOS programs. These software packages are used for solving all the examples
in this chapter.

2.2 Lyapunov Stability

Here we concentrate on autonomous nonlinear systems of the form

ż = f(z), (2)

where z ∈ Rn and for which we assume without loss of generality that f(0) =
0, i.e. the origin is an equilibrium of the system. One of the most important
properties related to this equilibrium is its stability, and assessing whether
stability of the equilibrium holds has been in the center of systems and control
research for more than a century. It was not until just before the turn of
the 19th century that A. M. Lyapunov formulated sufficient conditions for
stability [18] that do not require knowledge of the solution, but are based
on the construction of an ‘energy-like’ function, well known nowadays as a
‘Lyapunov function’. Under some technical conditions, the existence of this
function was later proved also necessary for asymptotic stability [5].

More precisely, the conditions are stated in the following theorem.
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Theorem 1 (Lyapunov). For an open set D ⊂ Rn with 0 ∈ D, suppose
there exists a continuously differentiable function V : D → R such that

V (0) = 0, (3)
V (z) > 0 ∀z ∈ D \ {0}, (4)
∂V

∂z
(z)f(z) ≤ 0 ∀z ∈ D. (5)

Then z = 0 is a stable equilibrium of (2).

It is unfortunate that even with such a powerful theorem, the problem of
proving stability of equilibria of nonlinear systems is still difficult; the reason
is that there has been no coherent methodology for constructing the Lyapunov
function V (z).

In order to simplify the problem at hand, let us assume that f(z) is a
polynomial vector field, and that we will be searching for V (z) that is also a
polynomial in z. Then the two conditions in Theorem 1 become polynomial
nonnegativity conditions. To circumvent the difficult task of testing them, we
can restrict our attention to cases in which the two conditions admit SOS
decompositions. This is the procedure that was originally pursued by Parrilo
in his thesis [10]. For D = Rn, the conditions in Theorem 1 can then be for-
mulated as SOS program stated in the following proposition, and a Lyapunov
function that satisfies these conditions can be constructed using semidefinite
programming.

Proposition 2. Suppose that for the system (2) there exists a polynomial
function V (z) such that

V (0) = 0, (6)
V (z) − φ(z) is SOS, (7)

− ∂V

∂z
f(z) is SOS, (8)

where φ(z) > 0 for z = 0. Then the zero equilibrium of (2) is stable.

Proof. Condition (7) enforces V (z) to be positive definite. Since condition (8)
implies that V̇ (z) is negative semidefinite, it follows that V (z) is a Lyapunov
function that proves stability of the origin.

In the above proposition, the function φ(z) is used to enforce positive
definiteness of V (z). If V (z) is a polynomial of degree 2d, then φ(z) may be
chosen as follows:

φ(z) =
n

i=1

d

j=1

ijz
2j
i ,
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where the ’s satisfy
m

j=1

ij > γ ∀ i = 1, . . . , n,

with γ a positive number, and ij ≥ 0 for all i and j. In fact, this choice of
φ(z) will force V (z) to be radially unbounded, and hence the stability property
holds globally if the conditions in Proposition 2 are met.

3 Recasting and Analysis of Recasted Systems

3.1 Recasting

In this section we present an algorithm that can be used to convert a non-
polynomial system into a rational system. The algorithm is adapted from [14],
and it is applicable to a very large class of non-polynomial systems, namely
those whose vector field is composed of sums and products of elementary func-
tions, or nested elementary functions of elementary functions. What are meant
by elementary functions here are functions with explicit symbolic derivatives
such as exponential (ex), logarithm (ln x), power (xa), trigonometric (sin x,
cosx, etc.), and hyperbolic functions (sinh x, coshx, etc.).

Suppose that the original system is given in the form

żi =
j

αj

k

Fijk(z),

where i = 1, ..., n; αj ’s are real numbers; and z = (z1, ..., zn). In the above
equation, Fijk(z) are assumed to be elementary functions, or nested elemen-
tary functions of elementary functions. For the above system, the recasting
algorithm is stated below.

Algorithm 2 (adopted from [14], with some modifications)

1. Let xi = zi, for i = 1, ..., n.
2. For each Fijk(z) that is not of the form Fijk(z) = za, where a is some

integer and 1 ≤ ≤ n, introduce a new variable xm. Define xm = Fijk(z).
3. Compute the differential equation describing the time evolution of xm us-

ing the chain rule of differentiation.
4. Replace all appearances of such Fijk(z) in the system equations by xm.
5. Repeat steps 2–4, until we obtain system equations with rational forms.

It is best to illustrate the application of the above algorithm by an example.

Example 1. Consider the differential equation

ż = sin(exp(z) − 1) + 4 ln(z2 + 1),
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which we want to recast as a system with rational vector field. We start by
defining x1 = z, x2 = sin(exp(z) − 1), and x3 = ln(z2 + 1). By the chain
rule of differentiation and replacing the appearances of z, sin(exp(z)−1), and
ln(z2 + 1) in the resulting equations by x1, x2, and x3, we obtain

ẋ1 = x2 + 4x3,

ẋ2 = cos(exp(z) − 1) exp(z)ż
= cos(exp(x1) − 1) exp(x1)(x2 + 4x3),

ẋ3 =
2

z2 + 1
zż

=
x1(x2 + 4x3)

x2
1 + 1

.

Notice that the equations for ẋ1 and ẋ3 are in rational forms. However, the
equation for ẋ2 is not in a rational form and thus we continue by defining
x4 = cos(exp(x1)−1) and x5 = exp(x1). Using the chain rule of differentiation
again, we obtain

ẋ2 = x4x5(x2 + 4x3),
ẋ4 = − sin(exp(x1) − 1) exp(x1)(x2 + 4x3)

= −x2x5(x2 + 4x3),
ẋ5 = exp(x1)(x2 + 4x3)

= x5(x2 + 4x3).

At this point, we terminate the recasting process, since the differential equa-
tions describing the evolutions of x1, ..., x5 are already in rational forms.

More examples can be found in Section 4.

3.2 Analysis

The recasting process described in the previous subsection generally pro-
duces a recasted system whose dimension is higher than the dimension of
the original system. To describe the original system faithfully, constraints of
the form xn+1 = F (x1, ..., xn) that are created when new variables are in-
troduced (cf. Algorithm 2) should be taken into account. These constraints
define an n-dimensional manifold on which the solutions to the original dif-
ferential equations lie. In general such constraints cannot be converted into
polynomial forms, even though sometimes there exist polynomial constraints
that are induced by the recasting process. For example:

• Two variables introduced for trigonometric functions such as x2 = sin x1,
x3 = cosx1 are constrained via x2

2 + x2
3 = 1.

• Introducing a variable to replace a power function such as x2 =
√

x1

induces the constraints x2
2 − x1 = 0, x2 ≥ 0.
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• Introducing a variable to replace an exponential function such as x2 =
exp(x1) induces the constraint x2 ≥ 0.

We will shortly discuss how both types of constraints described above
can be taken into account in the stability analysis using the sum of squares
decomposition technique.

For our purpose, suppose that for a nonpolynomial system

ż = f(z) (9)

which has an equilibrium at the origin, the recasted system obtained using
the procedure of the previous subsection is written as

˙̃x1 = f1(x̃1, x̃2), (10)
˙̃x2 = f2(x̃1, x̃2), (11)

where x̃1 = (x1, ..., xn) = z are the state variables of the original system, x̃2 =
(xn+1, ..., xn+m) are the new variables introduced in the recasting process, and
f1(x̃1, x̃2), f2(x̃1, x̃2) have rational forms.

We denote the constraints that arise directly from the recasting process
by

x̃2 = F (x̃1), (12)

and those that arise indirectly by

G1(x̃1, x̃2) = 0, (13)
G2(x̃1, x̃2) ≥ 0, (14)

where F , G1, and G2 are column vectors of functions with appropriate dimen-
sions, and the equalities or inequalities hold entry-wise. The reader should
keep in mind that constraints (13)–(14) are actually satisfied only when
x̃2 = F (x̃1) are substituted to (13)–(14). Finally, denote the collective de-
nominator of f1(x̃1, x̃2) and f2(x̃1, x̃2) by g(x̃1, x̃2). That is, g(x̃1, x̃2) should
be a polynomial function such that g(x̃1, x̃2)f1(x̃1, x̃2) and g(x̃1, x̃2)f2(x̃1, x̃2)
are polynomials. We also assume that g(x̃1, x̃2) > 0 ∀(x̃1, x̃2) ∈ D1 × D2,
since otherwise the system is not well-posed.

Proving stability of the zero equilibrium of the original system (9) amounts
to proving that all trajectories starting close enough to z = 0 will remain close
to this equilibrium point. This can be accomplished by finding a Lyapunov
function V (z) that satisfies the following conditions of Lyapunov’s stability
theorem, Theorem 1. In terms of the new variables x̃1 and x̃2, sufficient con-
ditions that guarantee the existence of a Lyapunov function for the original
system are stated in the following proposition.

Proposition 3. Let D1 ⊂ Rn and D2 ⊂ Rm be open sets such that 0 ∈ D1

and F (D1) ⊆ D2. Furthermore, define x̃2,0 = F (0). If there exists a function
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Ṽ : D1 × D2 → R and column vectors of functions λ1(x̃1, x̃2), λ2(x̃1, x̃2),
σ1(x̃1, x̃2), and σ2(x̃1, x̃2) with appropriate dimensions such that

Ṽ (0, x̃2,0) = 0, (15)

Ṽ (x̃1, x̃2) − λT
1 (x̃1, x̃2)G1(x̃1, x̃2) − σT

1 (x̃1, x̃2)G2(x̃1, x̃2)...
≥ φ(x̃1, x̃2) ∀(x̃1, x̃2) ∈ D1 ×D2, (16)

− g(x̃1, x̃2)
∂Ṽ

∂x̃1
(x̃1, x̃2)f1(x̃1, x̃2) +

∂Ṽ

∂x̃2
(x̃1, x̃2)f2(x̃1, x̃2) ...

− λT
2 (x̃1, x̃2)G1(x̃1, x̃2) − σT

2 (x̃1, x̃2)G2(x̃1, x̃2)...
≥ 0 ∀(x̃1, x̃2) ∈ D1 ×D2, (17)

σ1(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ Rn+m, (18)

σ2(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ Rn+m, (19)

for some scalar function φ(x̃1, x̃2) with φ(x̃1, F (x̃1)) > 0 ∀x̃1 ∈ D1 \ {0},
then z = 0 is a stable equilibrium of (9).

Proof. Define V (z) = Ṽ (z, F (z)). From (15) it is straightforward to verify
that (3) is satisfied by V (z). Now, (13)–(14), (16), and (18) imply that

V (x̃1, x̃2) ≥ φ(x̃1, x̃2) + λT
1 (x̃1, x̃2)G1(x̃1, x̃2) + σT

1 (x̃1, x̃2)G2(x̃1, x̃2)
≥ φ(x̃1, x̃2) ∀(x̃1, x̃2) ∈ D1 ×D2.

Since φ(z, F (z)) > 0 ∀z ∈ D1 \ {0} and F (D1) ⊆ D2, it follows that V (z) >
0 ∀z ∈ D1 \ {0}, hence (4) is satisfied.

Finally, by the chain rule of differentiation we have

∂V

∂z
(z)f(z) =

∂Ṽ

∂x̃1
(z, F (z))f1(z, F (z)) +

∂Ṽ

∂x̃2
(z, F (z))f2(z, F (z)),

and using the same argument as above in conjunction with (13)–(14), (17),
(19), and the fact that g(x̃1, x̃2) > 0, we see that the condition (5) is also
satisfied.

Since the conditions (3)–(5) are fulfilled by V (z), we conclude that V (z)
is a Lyapunov function for (9) and therefore z = 0 is a stable equilibrium of
the system.

The above non-negativity conditions can be relaxed to appropriate sum of
squares conditions so that they can be algorithmically verified using semidefi-
nite programming, as discussed in Section 2. This will also lead the way to an
algorithmic construction of the Lyapunov function V . Here we assume that
D1 ×D2 is a semialgebraic set described by the following inequalities:

D1 ×D2 = {(x̃1, x̃2) ∈ Rn × Rm : GD(x̃1, x̃2) ≥ 0},
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where GD(x̃1, x̃2) is a column vector of polynomials and the inequality is
satisfied entry-wise. With all this notation, the sum of squares conditions can
be stated as follows.

Proposition 4. Let the system (10)–(11) and the functions F (x̃2), G1(x̃1, x̃2),
G2(x̃1, x̃2), GD(x̃1, x̃2), and g(x̃1, x̃2) be given. Define x̃2,0 = F (0). If there
exists a polynomial function Ṽ (x̃1, x̃2), column vectors of polynomial func-
tions λ1(x̃1, x̃2), λ2(x̃1, x̃2), and column vectors of sum of squares polynomi-
als σ1(x̃1, x̃2), σ2(x̃1, x̃2), σ3(x̃1, x̃2), σ4(x̃1, x̃2) with appropriate dimensions
such that

Ṽ (0, x̃2,0) = 0, (20)

Ṽ (x̃1, x̃2) − λT
1 (x̃1, x̃2)G1(x̃1, x̃2) − σT

1 (x̃1, x̃2)G2(x̃1, x̃2)...

− σT
3 (x̃1, x̃2)GD(x̃1, x̃2) − φ(x̃1, x̃2) is a sum of squares, (21)

− g(x̃1, x̃2)
∂Ṽ

∂x̃1
(x̃1, x̃2)f1(x̃1, x̃2) +

∂Ṽ

∂x̃2
(x̃1, x̃2)f2(x̃1, x̃2) ...

− λT
2 (x̃1, x̃2)G1(x̃1, x̃2) − σT

2 (x̃1, x̃2)G2(x̃1, x̃2)...

− σT
4 (x̃1, x̃2)GD(x̃1, x̃2) is a sum of squares, (22)

for some scalar polynomial function φ(x̃1, x̃2) with φ(x̃1, F (x̃1)) > 0 ∀x̃1 ∈
D1 \ {0}, then z = 0 is a stable equilibrium of (9).

Proof. We will show that the above conditions imply the conditions in Propo-
sition 3. Since σ1(x̃1, x̃2), σ2(x̃1, x̃2) are sums of squares, (18)–(19) automati-
cally hold. It remains to show that (21)–(22) imply (16)–(17). The condition
that (21) is a sum of squares implies that

Ṽ (x̃1, x̃2) − λT
1 (x̃1, x̃2)G1(x̃1, x̃2) − σT

1 (x̃1, x̃2)G2(x̃1, x̃2)

≥ σT
3 (x̃1, x̃2)GD(x̃1, x̃2) + φ(x̃1, x̃2)

Now, for (x̃1, x̃2) ∈ D1 ×D2, we have σ3(x̃1, x̃2)GD(x̃1, x̃2) ≥ 0 and therefore
it follows that for any such (x̃1, x̃2),

Ṽ (x̃1, x̃2) − λT
1 (x̃1, x̃2)G1(x̃1, x̃2) − σT

1 (x̃1, x̃2)G2(x̃1, x̃2) ≥ φ(x̃1, x̃2),

which is (16). Using the same argument as above, it is straightforward to show
that (17) is also fulfilled.

4 Examples

Here we present four examples. In the first example the vector field of the
system includes a radical term. Such terms appear frequently when considering



34 A. Papachristodoulou and S. Prajna

systems with saturation nonlinearities. The second example is a mechanical
system, whose description contains trigonometric terms that appear when
considering the system in cylindric coordinates. The third example shows how
one can analyze non-polynomial vector fields with irrational powers, which for
example appear in models of biological systems. In the last example we analyze
a system that appears frequently in chemical engineering, that of a diabatic
Continuous Stirred Tank Reactor (CSTR) with a single first-order exothermic
irreversible reaction A → B.

4.1 Example 4.1: System with Saturation Nonlinearity

For a general system, finding a global Lyapunov function is difficult, as one
of polynomial form in the variables considered might not exist. However, if
a term is expected to appear in a Lyapunov function, the search can be di-
rected to include that term in the Lyapunov function expression sought, by
changing variables and recasting the system in an equivalent one in terms of
that variable, making use of inequality and equality constraints.

Consider, for example, the system

ẋ1 = x2, (23)
ẋ2 = −ϕ(x1 + x2), (24)

where the function ϕ is a saturation function of the following form:

ϕ(σ) =
σ√

1 + σ2
.

This function has only one equilibrium point, namely the origin. Notice that
for the above memoryless nonlinearity,

Φ (σ) =
σ

0

ϕ(τ)dτ = 1 + σ2 − 1 (25)

is a positive definite function. In fact, we expect terms of the above form to
appear in the Lyapunov function.

First rewrite the above system in a polynomial form, as it has non-
polynomial terms. For this purpose, introduce the following auxiliary vari-
ables:

u1 = 1 + (x1 + x2)2,
u2 = 1/u1,

u3 = 1 + x2
1,

u4 = 1/u3.

Then the equations of motion for the above system become
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ẋ1 = x2,

ẋ2 = −(x1 + x2)u2,

u̇1 = (x1 + x2)(x2 − x1u2 − x2u2)u2,

u̇2 = −(x1 + x2)(x2 − x1u2 − x2u2)u3
2,

u̇3 = x1x2u4,

u̇4 = −x1x2u
3
4.

In addition, we have a number of equality and inequality constraints

u2
1 = 1 + (x1 + x2)2,

u1u2 = 1,

u2
3 = 1 + x2

1,

u3u4 = 1,

ui ≥ 0, for i = 1, 2, 3, 4.

Now the system is in the form (10)–(11) with x̃1 = (x1, x2) and x̃2 =
(u1, u2, u3, u4). The above constraints correspond to Equation (12). The new
representation allows us to use SOS decomposition to compute a Lyapunov
function for this problem, using Proposition 4. Terms that are nonpolynomial
in x1 and x2, such as u3, can be included in the search, and indeed they should
be, as they have the same form as the positive definite function (25). Thus,
for example, we may search for a Lyapunov function of the following form:

V = a1 + a2u3 + a3x
2
1 + a4x1x2 + a5x

2
2,

where the ai’s are the unknowns, with a1 + a2 = 0, so that V is equal to zero
at (x1, x2) = (0, 0). To guarantee positive definiteness, we require V to satisfy

(V − 1(u3 − 1) − 2x
2
1 − 3x

2
2) is a sum of squares,

with 1, 2, 3 being non-negative decision variables that satisfy, for example,

1 + 2 ≥ 0.1,

3 ≥ 0.1.

Using this method, a Lyapunov function has been constructed for the
system:

V = −3.9364 + 3.9364u3 + 0.0063889x2
1 + 0.010088x1x2 + 2.0256x2

2

= −3.9364 + 3.9364 1 + x2
1 + 0.0063889x2

1 + 0.010088x1x2 + 2.0256x2
2.

The level curves of this Lyapunov function are shown in Figure 1.
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Fig. 1. Global Lyapunov function for the system with saturation nonlinearity. Ar-
rows show vector field, solid lines show level curves of the Lyapunov function.
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Fig. 2. The whirling pendulum

4.2 Example 4.2: Whirling Pendulum

Consider the whirling pendulum [4] shown in Figure 2. It is a pendulum of
length lp whose suspension end is attached to a rigid arm of length la, with
a mass mb attached to its free end. The arm rotates with angular velocity
θ̇a. The pendulum can oscillate with angular velocity θ̇p in a plane normal to
the arm, making an angle θp with the vertical in the instantaneous plane of
motion. We will ignore frictional effects and assume that all links are slender
so that their moment of inertia can be neglected.

Using x1 = θp and x2 = θ̇p as state variables, we obtain the following state
equations for the system:

ẋ1 = x2, (26)

ẋ2 = θ̇2
a sin x1 cosx1 − g

lp
sin x1. (27)
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The number and stability properties of equilibria in this system depend
on the value of θ̇a. When the condition

θ̇2
a < g/lp (28)

is satisfied, the only equilibria in the system are (x1, x2) satisfying sin x1 = 0,
x2 = 0. One equilibrium corresponds to x1 = 0, i.e., the pendulum is hang-
ing vertically downward (stable), and the other equilibrium corresponds to
x1 = π, i.e., the vertically upward position (unstable). As θ̇2

a is increased be-
yond g/lp, a supercritical pitchfork bifurcation of equilibria occurs [6]. The
(x1, x2) = (0, 0) equilibrium becomes unstable, and two other equilibria ap-
pear. These equilibria correspond to cosx1 = g

lpθ̇2
a

, x2 = 0.
We will now prove the stability of the equilibrium point at the origin

for θ̇a satisfying (28), by constructing a Lyapunov function. Obviously the
energy of this mechanical system can be used as a Lyapunov function, but
since our purpose is to show that a Lyapunov function can be found using
the SOS decomposition, we will assume that our knowledge is limited to the
state equations describing the system and that we know nothing about the
underlying energy.

Since the vector field (26)–(27) is not polynomial, a transformation to a
polynomial vector field must be performed before we are able to construct a
Lyapunov function using the SOS decomposition. For this purpose, introduce
u1 = sinx1 and u2 = cosx1 to get:

ẋ1 = x2, (29)

ẋ2 = θ̇2
au1u2 − g

lp
u1, (30)

u̇1 = x2u2, (31)
u̇2 = −x2u1. (32)

In addition, we have the algebraic constraint

u2
1 + u2

2 − 1 = 0. (33)

The whirling pendulum system will now be described by Equations (29)–(33).
Notice that all the functions here are polynomial, so that Proposition 4 can
be used to prove stability.

We will perform the analysis with the parameters of the system set at some
fixed values. Assume that all the parameters except g are equal to 1, and g
itself is equal to 10, for which condition (28) is satisfied. For a mechanical
system like this, we expect that some trigonometric terms will be needed in
the Lyapunov function. Thus we will try to find a Lyapunov function of the
following form:

V = a1x
2
2 + a2u

2
1 + a3u

2
2 + a4u2 + a5, (34)

= a1x
2
2 + a2 sin2 x1 + a3 cos2 x1 + a4 cosx1 + a5
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where the ai’s are the unknown coefficients. These coefficients must satisfy

a3 + a4 + a5 = 0, (35)

for V to be equal to zero at (x1, x2) = (0, 0). To guarantee that V is positive
definite, we search for V s that satisfy

V − 1(1 − u2) − 2x
2
2 ≥ 0, (36)

where 1 and 2 are positive constants (we set 1 ≥ 0.1, 2 ≥ 0.1). Positive
definiteness holds as

1(1 − u2) + 2x
2
2 = 1(1 − cosx1) + 2x

2
2

is a positive definite function in the (x1, x2)–space (assuming all x1 that differ
by 2π are in the same equivalence class).

An example of Lyapunov function for this whirling pendulum system,
found using the sum of squares procedure, is given by

V = 0.33445x2
2 + 1.4615u2

1 + 1.7959u2
2 − 6.689u2 + 4.8931.

4.3 Example 4.3: System with an Irrational Power Vector Field

Enzymatic reactions that are described by Michaelis-Menten type equa-
tions [7] usually contain terms with non-integer powers. Here we give an exam-
ple of how such systems can be analyzed. Consider a simple one dimensional
system:

ẋ = xα − 1, x ∈ R+,

where α is a parameter. The linearisation of this system about the equilibrium
x = 1 is ẋ = αx which implies that the system is locally stable for α < 0. Let
us make a transformation y = x−1 to the above system to put its equilibrium
at the origin:

ẏ = (y + 1)α − 1. (37)

Further to this transformation, we introduce the transformation z = (y +
1)α − 1 and embed the system into a second order system with a polynomial
vector field and an equality constraint that projects it back to 1-D:

ẏ = z

ż = α
(z + 1)z
y + 1

z = (y + 1)α − 1. (38)

The non-polynomial equality constraint (38) cannot be imposed in the sum
of squares program in a similar manner as before. To proceed with the anal-
ysis, we will try to prove stability of the two dimensional system without the
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equality constraint, but keeping in mind that the system is, at the end of the
day, one-dimensional. We will attempt to prove stability for

α − αh ≤ 0 (39)
−y + yl ≤ 0 (40)
−z + zl ≤ 0. (41)

We set αh = −0.1 and yl = −0.9. This dictates that z ≥ (yl + 1)αh − 1 zl.
We search for a 4th order Lyapunov function in y, z but we do not require
V to be positive definite in both y and z, by constructing φ(y, z) in (21)
appropriately. In particular the two Lyapunov conditions become:

V (y, z; α) − φ(y, z) ≥ 0,

−∂V

∂y
ẏ − ∂V

∂z
ż ≤ 0,

for α, y, z satisfying (39)–(41), and additionally where

φ(y, z) = 1y
2 + 2y

4 + 3z
2 + 4z

4,
4

i=1

i ≥ 0.01, i ≥ 0, ∀i = 1, . . . , 4.

The inequality constraints (39)–(41) can be adjoined to the two conditions
and a sum of squares program can be written using SOSTOOLS as in the
previous examples. Indeed, such a Lyapunov function was constructed which
allows for stability to be concluded.

4.4 Example 4.4: Diabatic Continuous Stirred Tank Reactor

Chemical reactors are the most important unit operation in a chemical pro-
cess. In this section we consider the analysis of the dynamics of a perfectly
mixed, diabatic, continuously stirred tank reactor (CSTR) [1]. We also assume
a constant volume - constant parameter system for simplicity.

The reaction taking place in the CSTR is a first-order exothermic irre-
versible reaction A → B. After balancing mass and energy, the reactor tem-
perature T and the concentration of species A in the reactor CA evolve as
follows:

ĊA =
F

V
(CAf

− CA) − k0e
−∆E

RT CA (42)

Ṫ =
F

V
(Tf − T ) − ∆H

ρcp
k0e

−∆E
RT CA − UA

V ρcp
(T − Tj) (43)

where F is the volumetric flow rate, V is the reactor volume, CAf
is the con-

centration of A in the freestream, k0 is the pre-exponential factor of Arrhenius
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Parameter Units Nominal Value

F/V hr−1 1

k0 hr−1 9703×3600

−∆H kcal/kgmol 5960

∆E kcal/kgmol 11843

ρcp kcal/(m3 ◦C) 500

Tf
◦C 25

CAf kgmol/m3 10

UA/V kcal/(m3 ◦C hr) 150

Tj
◦C 25

Table 1. Parameter values for the CSTR.

law, ∆E is the reaction activation energy, R is the ideal gas constant, Tf is the
feed temperature, −∆H is the heat of reaction (exothermic), ρ is the density,
cp is the heat capacity, U is the overall heat transfer coefficient, A is the area
for heat exchange, and Tj is the jacket temperature. For the analysis, we use
the values shown in Table 1.
The equilibrium of the above system is given by (CA0 , T0) = (8.5636, 311.171).
We employ the following transformation: x1 = CA/CA0 − 1, x2 = T/T0 −
1; this serves two purposes: firstly it moves the equilibrium to the origin,
and secondly it rescales the state to avoid numerical ill-conditioning. The
transformed system then becomes:

ẋ1 =
F

V

CAf

CA0

− (x1 + 1) − k0e
− ∆E

RT0(x2+1) (x1 + 1)

ẋ2 =
F

V

Tf

T0
− (x2 + 1) − ∆HCA0

ρcpT0
k0e

− ∆E
RT0(x2+1) (x1 + 1) − UA

V ρcp
(x2 + 1) − Tj

T0

Note that the system has an exponential term; the recasting will yield an
indirect constraint, as discussed in Section 3. Define the state x3 = e

∆Ex2
RT0(x2+1)−

1. Then an extra equation in the analysis would be

ẋ3 =
∆E

RT0(x2 + 1)2
(x3 + 1)ẋ2

under the constraint that x3 > −1.
Then the full system, after we use the equilibrium relationship simplifies

to:
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ẋ1 = −F

V
x1 − k0e

− ∆E
RT0 (x1x3 + x1 + x3) (44)

ẋ2 = −F

V
x2 − ∆HCA0

ρcpT0
k0e

− ∆E
RT0 (x1x3 + x1 + x3) − UA

V ρcp
x2 (45)

ẋ3 =
∆E

RT0(x2 + 1)2
(x3 + 1)ẋ2 (46)

This system is now of the form (10)–(11), with x̃1 = (x1, x2) and x̃2 = x3.
To proceed, we define the set D1 as:

D1 = {(x1, x2) ∈ R2 : |x1| ≤ γ1, |x2| ≤ γ2}

and then define the set D2 as

D2 = {x3 ∈ R : (x3 − e
−∆Eγ2

RT0(−γ2+1) − 1)(x3 − e
∆Eγ2

RT0(γ2+1) − 1) ≤ 0}

Then the system is ready for analysis as per Proposition 4. For γ1 = 0.12
and γ2 = 0.05 a quartic Lyapunov function can be constructed for the system
described by Equations (44)–(46) using Proposition 4. Here the following φ(x)
is used:

φ(x) =
2

i=1 j=2,4

i,jx
j
i +

4

j=1

3,jx
j
3,

with

1,2 + 1,4 − 0.1 ≥ 0

2,2 + 2,4 + 3,1 + 3,2 + 3,3 + 3,4 − 0.1 ≥ 0.

The level curves of the constructed Lyapunov function are shown in Figure 3.

5 Conclusions

In this chapter we have presented a methodology to analyze systems described
by non-polynomial vector fields using the sum of squares decomposition and a
recasting procedure. Using this recasting procedure, a non-polynomial system
can be converted into a rational form. An extension of the Lyapunov theorem
in conjunction with the sum of squares decomposition and semidefinite pro-
gramming can then be used to investigate the stability of the recasted system,
the result of which can be used to infer the stability of the original system.
Some examples of systems whose vector fields contain radical, trigonometric,
irrational power, and exponential terms have been presented to illustrate the
use of the proposed approach.
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1 Introduction

Recent improvements of semi-definite programming solvers and developments
on polynomial optimization have resulted in a large increase of the research
activity on the application of the so-called sum-of-squares (SOS) technique
in control. In this approach non-convex polynomial optimization programs
are approximated by a family of convex problems that are relaxations of the
original program [4, 22]. These relaxations are based on decompositions of
certain polynomials into a sum of squares. Using a theorem of Putinar [28]
it can be shown (under suitable constraint qualifications) that the optimal
values of these relaxed problems converge to the optimal value of the original
problem. These relaxation schemes have recently been applied to various non-
convex problems in control such as Lyapunov stability of nonlinear dynamic
systems [25, 5] and robust stability analysis [15].

In this work we apply these techniques to the fixed order or structured
H∞-synthesis problem. H∞-controller synthesis is an attractive model-based
control design tool which allows incorporation of modeling uncertainties in
control design. We concentrate on H∞-synthesis although the method can
be applied to other performance specifications that admit a representation
in terms of Linear Matrix Inequalities (LMI’s). It is well-known that an H∞-
optimal full order controller can be computed by solving two algebraic Riccati
equations [7]. However, the fixed order H∞-synthesis problem is much more
difficult. In fact it is one of the most important open problems in control
engineering, in the sense that until now there do not yet exist fast and reliable
methods to compute optimal fixed order controllers. As the basic setup we
consider the closed-loop interconnection as shown below, where the linear
system P is the generalized plant and K is a linear controller.
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Given P , we want to find a controller K of a given order nc (independent of
that of P ) such that the closed-loop interconnection is internally (asymptoti-
cally) stable and such that the H∞-norm of the closed-loop transfer function
from w to z is minimized.

The resulting optimization problem is non-convex and difficult to solve.
Various approaches have been presented in the literature based on sequen-
tial solution of LMI’s [9, 2, 8, 20], nonlinear Semi-Definite Programs (SDP’s)
[23, 1, 18], Branch and Bound methods [35] and, more recently, polynomial op-
timization using SOS [14]. In this latter method a so-called central polynomial
is a priori chosen such that a sufficient condition for the H∞-performance can
be formulated in terms of a positivity test of two matrix polynomials with
coefficients that depend linearly on the controller variables. This linear de-
pendence allows to find the variables satisfying these positivity constraints
by LMI optimization. The method however depends crucially on the choice
of this central polynomial which is in general difficult. Furthermore this tech-
nique cannot be straightforwardly extended to MIMO (Multiple Input Multi-
ple Output) H∞-optimal controller synthesis. In contrast, the method to be
discussed below can directly be applied to MIMO synthesis.

The main result of this paper is the construction of a sequence of SOS
polynomial relaxations

• that require the solution of LMI problems whose size grows only quadrat-
ically in the number of states and

• whose optimal value converge from below to the fixed-order H∞ perfor-
mance.

The computation of lower bounds allows to add a stopping criterion to the
algorithms mentioned above with a guaranteed bound on the difference of the
performance of the computed controller and the optimal fixed order H∞ per-
formance. This is important since, except for the branch and bound method,
these algorithms can in general not guarantee convergence to the globally
optimal solution.

A trivial lower bound on the fixed order performance is, of course, the
optimal performance achievable with a controller of the same order as the
plant. Boyd and Vandenberghe [3] proposed lower bounds based on convex
relaxations of the fixed order synthesis problem. These lower bounds cannot
be straightforwardly improved to reduce the gap to the optimal fixed order
performance. For our sequence of relaxations this gap is systematically reduced
to zero.
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After the problem formulation in Section 2, we show in Section 3 how
a suitable matrix sum-of-squares relaxation technique can be directly ap-
plied to the non-convex semi-definite optimization problem resulting from the
bounded real lemma. We will prove that the values of these relaxations con-
verge to the optimal value. Although this convergence property is well-known
for polynomial problems with scalar constraints [22], to the best of our knowl-
edge this result is new for matrix-valued inequalities. (During the writing of
this paper we became aware of the independent recent work of Kojima [24],
that presents the same result with a different proof). This convergence result
is of value for a variety of matrix-valued optimization problems. Examples
in control are input-output selection, where the integer constraints of type
p ∈ {0, 1} are replaced by a quadratic constraint p(p − 1) = 0, and spectral
factorization of multidimensional transfer functions to asses dissipativity of
linear shift-invariant distributed systems [26]. Here, our goal is to apply it to
the fixed order H∞ synthesis problem. Unfortunately, for plants with high
state-dimension this direct technique leads to an unacceptable complexity. As
the main reason, the resulting relaxations involve the search for an SOS poly-
nomial in all variables, including the Lyapunov matrix in the bounded real
lemma inequality constraint. Therefore, the size of the LMI relaxations grows
exponentially in the number of state-variables.

In Section 4 we describe how to overcome this deficiency by constructing
a relaxation scheme without the exponential growth in the state dimension
through two-fold sequential dualization. First we dualize in the variables that
grow with the state dimension, which leads to the re-formulation of the fixed
order synthesis problem as a robust analysis problem with the controller vari-
ables as parametric uncertainty. On the one hand, this allows to apply the
wide spectrum of robust analysis techniques to the fixed order controller de-
sign problem. On the other hand, robustness has to be verified only with
respect to the small number of controller parameters which is the essence of
keeping the growth of the relaxation size in the state-dimension polynomial.

The purpose of Section 5 is to discuss a novel approach to solve robust LMI
problems based on SOS matrices, including a direct and compact description
of the resulting linear SDP’s with full flexibility in the choice of the under-
lying monomial basis. This leads to an asymptotically exact family of LMI
relaxations for computing lower bounds on the optimal fixed-order H∞-norm
whose size only grows quadratically in the dimension of the system state. We
will reveal as well that existing results based on straightforward scalarization
techniques fail to guarantee these growth properties.

Our technique is appropriate for the design of controllers with a few deci-
sion variables (such as Proportional Integral Derivative (PID) controllers) for
plants with moderate Mc-Millan degree. In Section 6 we apply the method
to the fixed order H∞-synthesis problem on two systems: an academic model
with Mc-Millan degree 4 and a model of an active suspension system which
has a generalized plant of a Mc-Millan degree 27.
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2 Fixed-Order H∞ Controller Synthesis

Consider the H∞-reduced order synthesis problem with a closed-loop system
described by A(p), B(p), C(p) and D(p), where p parameterizes the to-be-
constructed controller and varies in the compact set P . Compactness can, for
instance, be realized by restricting the controller variables to a Euclidean ball

P := {p ∈ Rnp | p ≤ M} . (1)

In practice, most structured control problems have large state dimension and
few controller variables that enter affinely in the closed-loop state space de-
scription. Suppose the generalized plant of order n admits the state space
description  

ẋ

z

y

 =


Aol Bol

1 Bol
2

Col
1

Col
2

Dol
11 Dol

12

Dol
21 0




x

w

u

 ,

where (·)ol stands for ‘open loop’ and Aol ∈ Rn×n, Bol
1 ∈ Rn×m1 , Bol

2 ∈
Rn×m2 , Col

1 ∈ Rp1×n, Col
2 ∈ Rp2×n, Dol

11 ∈ Rp1×m1 , Dol
12 ∈ Rp1×m2 and

Dol
21 ∈ Rp2×m1 . For simplicity we assume the direct-feedthrough term Dol

22 to
be zero. In Remark 7 we will discuss how our method can be applied to con-
trol problems with nonzero Dol

22. Now consider, for instance, a PID-controller
described by

k(p) = p1 + p2
1
s

+ p3
s

τs + 1
,

which admits the state space realization

AK(p) BK(p)

CK(p) DK(p)
:=


0 0 1

0 − 1
τ

1
τ

p2 − p3
τ p1 + p3

τ


and suppose that we want to find the optimal proportional, integral and
derivative gains p1, p2 and p3 respectively. This structure has been used by
Ibaraki and Tomizuka [19] for H∞-optimal PID tuning of a hard-disk drive us-
ing the cone complementarity method [9]. See also Grassi and Tsakalis [11, 12]
and Grimble and Johnson [13] for H∞ and LQG-optimal PID-tuning respec-
tively. Interconnecting the plant with the PID-controller yields a closed-loop
state-space representation with matrices

A(p) B(p)

C(p) D(p)
=


Aol + Bol

2 DK(p)Col
2 Bol

2 CK(p) Bol
1 + Bol

2 DK(p)Dol
21

BK(p)Col
2 AK(p) BK(p)Dol

21

Col
1 + Dol

12DK(p)Col
2 Dol

12CK(p) Dol
11 + Dol

12DK(p)Dol
21


which depend affinely on p. We intend to solve the fixed order H∞-synthesis
problem
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inf
p∈P, A(p) stable

D(p) + C(p)(sI − A(p))−1B(p) 2
∞.

Due to the bounded real lemma we can solve instead the equivalent problem

infimize γ

subject to p ∈ P , X ∈ Sn, X 0

B∞(X, p, γ) 0

(2)

where Sn denotes the set of real symmetric n × n matrices and

B∞(X, p, γ) :=
A(p)T X + XA(p) XB(p)

B(p)T X −γI
+

C(p)T

D(p)T
C(p) D(p) .

Let tpopt denote the optimal value of (primal) problem (2). Due to the bilinear
coupling of X and p, this problem is a non-convex Bilinear Matrix Inequality
problem (BMI). The number of bilinearly coupled variables is 1

2 (n + nc)(n +
nc + 1) + np (with np denoting the number of free controller variables) which
grows quadratically with n. However it has a linear objective and matrix
valued polynomial constraints. It will be shown in the next section that we
can compute a sequence of SOS relaxations of this problem that converges
from below to the optimal value.

3 A Direct Polynomial SDP-Approach

In this section we present an extension of the scalar polynomial optimization
by SOS decompositions [22] to optimization problems with scalar polynomial
objective and nonlinear polynomial semi-definite constraints. We formulate
the relaxations in terms of Lagrange duality with SOS polynomials as mul-
tipliers which seems a bit more straightforward than the corresponding dual
formulation based on the problem of moments [22].

3.1 Polynomial Semi-definite Programming

For x ∈ Rn let f(x) and G(x) denote scalar and symmetric-matrix-valued
polynomials in x, and consider the following polynomial semi-definite opti-
mization problem with optimal value dopt:

infimize f(x)

subject to G(x) 0
(3)

Since multiple SDP-constraints can be easily collected into one single SDP-
constraint by diagonal augmentation, it is clear that (2) is captured by this
general formulation.
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With any matrix S 0, the value infx∈Rnx f(x) + S, G(x) is a lower
bound for dopt by standard weak duality. However, not even the maximiza-
tion of this lower bound over S 0 allows to close the duality gap due to
non-convexity of the problem. This is the reason for considering, instead, La-
grange multiplier matrices S(x) 0 which are polynomial functions of x. Still
infx∈Rnx f(x)+ S(x), G(x) defines a lower bound of dopt, and the best lower
bound that is achievable in this fashion is given by the supremal t for which
there exists a polynomial matrix S(x) 0 such that

f(x) + S(x), G(x) − t > 0 for all x ∈ Rnx .

In order to render the determination of this lower bound computational we in-
troduce the following concept. A symmetric matrix-valued nG×nG-polynomial
matrix S(x) is said to be a (matrix) sum-of-squares (SOS) if there exists a
(not necessarily square and typically tall) polynomial matrix T (x) such that

S(x) = T (x)T T (x).

If Tj(x), j = 1, . . . , q denote the rows of T (x), we infer

S(x) =
q

j=1

Tj(x)T Tj(x).

If S(x) is a scalar then Tj(x) are scalars which implies S(x) = q
j=1 Tj(x)2.

This motivates our terminology since we are dealing with a generalization of
classical scalar SOS representations. Very similar to the scalar case, every SOS
matrix is globally positive semi-definite, but the converse is not necessarily
true.

Let us now just replace all inequalities in the above derived program for
the lower bound computations by the requirement that the corresponding
polynomials or polynomial matrices are SOS. This leads to the following op-
timization problem:

supremize t

subject to S(x) and f(x) + S(x), G(x) − t are SOS
(4)

If fixing upper bounds on the degree of the SOS matrix S(x), the value of this
problem can be computed by solving a standard linear SDP as will be seen
in Section 5. In this fashion one can construct a family of LMI relaxations for
computing increasingly improving lower bounds. Under a suitable constraint
qualification, due to Putinar for scalar problems, it is possible to prove that
the value of (4) actually equals dopt. To the best of our knowledge, the gener-
alization to matrix valued problems as formulated in the following result has,
except for the recent independent work of Kojima [24], not been presented
anywhere else in the literature.
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Theorem 1. Let dopt be the optimal solution of (3) and suppose the following
constraint qualification holds true: There exists some r > 0 and some SOS
matrix R(x) such that

r − x 2 + R(x), G(x) is SOS. (5)

Then the optimal value of (4) equals dopt.

Proof. The value of (4) is not larger than dopt. Since trivial for dopt = ∞, we
assume that G(x) 0 is feasible. Choose any > 0 and some x̂ with G(x̂) 0
and f(x̂) ≤ dopt + . Let us now suppose that S(x) and f(x)+ S(x), G(x) − t
are SOS. Then

dopt + − t ≥ f(x̂) − t ≥ f(x̂) + S(x̂), G(x̂) − t ≥ 0

and thus dopt + ≥ t. Since was arbitrary we infer dopt ≥ t.
To prove the converse we first reveal that, due to the constraint quali-

fication, we can replace G(x) by Ĝ(x) = diag(G(x), x 2 − r) in both (3)
and (4) without changing their values. Indeed if G(x) 0 we infer from
(5) that r − x 2 ≥ r − x 2 + R(x), G(x) ≥ 0. Therefore the extra con-
straint x 2 − r ≤ 0 is redundant for (3). We show redundancy for (4) in
two steps. If S(x) and f(x) − t + S(x), G(x) are SOS we can define the
SOS matrix Ŝ(x) = diag(S(x), 0) to conclude that f(x) − t + Ŝ(x), Ĝ(x)
is SOS (since it just equals f(x)− t + S(x), G(x) ). Conversely suppose that
Ŝ(x) = T̂ (x)T T̂ (x) and t̂(x)T t̂(x) = f(x) − t + Ŝ(x), Ĝ(x) are SOS. Par-

tition T̂ (x) = (T (x) u(x)) according to the columns of Ĝ(x). With the SOS
polynomial v(x)T v(x) = r − x 2 + R(x), G(x) we infer

t̂(x)T t̂(x) = f(x) − t + T (x)T T (x), G(x) + u(x)T u(x)( x 2 − r) =

= f(x) − t + T (x)T T (x), G(x) + u(x)T u(x)( R(x), G(x) − v(x)T v(x)) =

= f(x) − t + T (x)T T (x) + u(x)T u(x)R(x), G(x) − u(x)T u(x)v(x)T v(x).

With R(x) = Rf (x)T Rf (x) we now observe that

S(x) := T (x)T T (x) + u(x)T u(x)R(x) =
T (x)

u(x) ⊗ Rf (x)

T

T (x)

u(x) ⊗ Rf (x)

and

s(x) := t̂(x)T t̂(x) + u(x)T u(x)v(x)T v(x) =
t̂(x)

u(x) ⊗ v(x)

T

t̂(x)

u(x) ⊗ v(x)

are SOS. Due to f(x) − t + S(x), G(x) = s(x) the claim is proved.
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Hence from now one we can assume without loss of generality that there
exists a standard unit vector v1 with

vT
1 G(x)v1 = x 2 − r. (6)

Let us now choose a sequence of unit vectors v2, v3, . . . such that vi, i =
1, 2, . . . is dense in the Euclidean unit sphere, and consider the family of scalar
polynomial optimization problems

infimize f(x)

subject to vT
i G(x)vi ≤ 0, i = 1, . . . , N

(7)

with optimal values dN . Since any x with G(x) 0 is feasible for (7), we infer
dN ≤ dopt. Moreover it is clear that dN ≤ dN+1 which implies dN → d0 ≤ dopt

for N → ∞. Let us prove that d0 = dopt. Due to (6) the feasible set of (7)
is contained in {x ∈ Rnx | x 2 ≤ r} and hence compact. Therefore there
exists an optimal solution xN of (7), and we can choose a subsequence Nν

with xNν → x0. Hence d0 = limν→∞ dNν = limν→∞ f(xNν ) = f(x0). Then
d0 = dopt follows if we can show that G(x0) 0. Otherwise there exists a
unit vector v with := vT G(x0)v > 0. By convergence there exists some K
with G(xNν ) ≤ K for all ν. By density there exists a sufficiently large ν
such that K vi − v 2 + 2K vi − v < /2 for some i ∈ {1, . . . , Nν}. We can
increase ν to guarantee vT G(xNν )v ≥ /2 and we arrive at

0 ≥ vT
i G(xNν )vi =

= (vi − v)T G(xNν )(vi − v) + 2vT G(xNν )(vi − v) + vT G(xNν )v ≥
≥ −K vi − v 2 − 2K vi − v + /2 > 0,

a contradiction.
Let us finally fix any > 0 and choose N with dN ≥ dopt − /2. This

implies f(x) − dopt + > 0 for all x with vT
i G(x)vi ≤ 0 for i = 1, . . . , N . Due

to (6) we can apply Putinar’s scalar representation result [28] to infer that
there exist polynomials ti(x) for which

f(x) − dopt + +
N

i=1

ti(x)T ti(x)vT
i G(x)vi is SOS. (8)

With the SOS matrix

SN (x) :=
N

i=1

viti(x)T ti(x)vT
i =


t1(x)vT

1

...

tN (x)vT
N


T 

t1(x)vT
1

...

tN(x)vT
N


we conclude that f(x)− dopt + + SN (x), G(x) equals (8) and is thus SOS.
This implies that the optimal value of (4) is at least dopt − , and since > 0
was arbitrary the proof is finished.
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Theorem 1 is a natural extension of a theorem of Putinar [28] for scalar
polynomial problems to polynomial SDP’s. Indeed, Lasserre’s approach [22]
for minimizing f(x) over scalar polynomial constraints gi(x) ≤ 0, i =
1, . . . , m, is recovered with G(x) = diag(g1(x), . . . , gm(x)). Moreover the con-
straint qualification in Theorem 1 is a natural generalization of that used by
Schweighofer [33].

Remark 1. It is a direct consequence of Theorem 1 that, as in the scalar case
[32], the constraint qualification (5) can be equivalently formulated as follows:
there exist an SOS matrix R(x) and an SOS polynomial s(x) such that

{x ∈ Rnx | R(x), G(x) − s(x) ≤ 0} is compact.

3.2 Application to the H∞ fixed order control problem

The technique described above can directly be applied to (2), except that the
constraint qualification is not necessarily satisfied. This can be resolved by
appending a bounding inequality X MXI for some large value MX > 0.
An SOS relaxation of the resulting BMI problem is formulated with

G1(X, p, γ) := −X, G2(X, p, γ) := B∞(X, p, γ),

G3(X, p, γ) := X − MXI, G4(X, p, γ) := p 2 − M

as follows

supremize: γ (9)

subject to: γ +
4

i=1

Si(X, p, γ), Gi(X, p, γ) is SOS

Si(X, p, γ) is SOS, i = 1, . . . , 4.

It has already been indicated that this problem is easily translated into a
linear SDP if we impose a priori bounds on the degrees of all SOS matrix
polynomials. However, as the main trouble, this technique suffers from large
number of variables for higher order relaxations, especially when the order
of the underlying system state is large. Since S1, S2 and S3 are polynomials
in X , the size of the relaxation grows exponentially with the order of the
system. In our numerical experience the size of the LMI problems of the SOS
relaxations grows so fast that good lower bounds can be only computed for
systems with state dimension up to about 4. Therefore it is crucial to avoid
the need for constructing SOS polynomials in the Lyapunov variable X . As
the second main contribution of this paper, we reveal in the next section how
to overcome this deficiency.
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4 Conversion to Robustness Analysis

For translating the nonlinear synthesis problem in (2) to an equivalent ro-
bustness analysis problem, the key idea is to apply partial Lagrange dualiza-
tion [17]: Fix the controller variables p and dualize with respect to the Lya-
punov variable X . We will show that one is required to determine parameter-
dependent dual variables, in full analogy to computing parameter-dependent
Lyapunov function for LPV systems. As the main advantage, this reformula-
tion allows us to suggest novel SOS relaxations that grow exponentially only
in the number of controller (or uncertain) parameters p and that can be shown
to grow only quadratically in the number of the system states, in stark contrast
to the relaxations of Section 3.2.

4.1 Partial Dualization

In this section we need the additional assumption that (A(p), B(p)) is con-
trollable for every p ∈ P . For fixed p = p0 ∈ P , (2) is an LMI problem in X
and γ:

infimize γ

subject to X ∈ Sn, X 0, B∞(X, p0, γ) 0.
(10)

Let us partition the dual variable Z for the constraint B∞(X, p, γ) 0 in (2)
as

Z = 
Z11 Z12

ZT
12 Z22

. (11)

Then the Langrange dual reads as follows:

supremize Tr C(p0) D(p0) Z C(p0) D(p0)
T 

subject to A(p0)Z11 + Z11A(p0)T + B(p0)ZT
12 + Z12B(p0)T 0

Tr(Z22) ≤ 1, Z 0.

(12)

Let tdopt(p0) denote the dual optimal value of (12). Note that (12) is strictly
feasible for all p0 ∈ P as is shown in Appendix A. This implies tdopt(p) = tpopt(p)
and, as a consequence, it allows to draw the following conclusion. Given any
t ∈ R suppose that the function Z(p) satisfies

Tr C(p) D(p) Z(p) C(p) D(p)
T

> t, (13)

A(p)Z11(p) + Z11(p)A(p)T + B(p)Z12(p)T + Z12(p)BT (p) 0, (14)
Tr(Z22(p)) < 1, Z(p) 0, (15)
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for all p ∈ P . Then it is clear that tdopt(p) ≥ t and hence tpopt(p) ≥ t hold
for all p ∈ P . Therefore t is a lower bound on the best achievable controller
performance. It is thus natural to maximize t over some class of functions Z(.)
in order to determine tight lower bounds on the value of (2). Our construction
allows to show that this lower bound is actually tight if optimizing over matrix
polynomials Z(.).

Theorem 2. Let γopt be the optimal solution to (2). Let topt be the supremal t
for which there exists a polynomial matrix Z(p) ∈ Sn+m1 satisfying (13)-(15)
for all p ∈ P. Then γopt = topt.

Proof. We have already seen that γopt ≥ topt. Now suppose γopt ≥ topt + for
some > 0. For any fixed p0 ∈ P , the optimal value of (10) and hence that of
(12) are not smaller than γopt. Since (12) is strictly feasible there exists Y 0

(partitioned as (11)) with

Tr C(p0) D(p0) Y 0 C(p0) D(p0)
T

− /2 > topt,

A(p0)Y 0
11 + Y 0

11A(p0)T + B(p0)Y 0
12

T
+ Y 0

12B
T (p0) 0,

Tr(Y 0
22) < 1, Y 0 0.

Since the inequalities are strict and P is compact, we can use a partition of
unity argument [29] to show that there actually exists a continuous function
Y (p) such that

Tr C(p) D(p) Y (p) C(p) D(p)
T

− /4 > topt, (16)

A(p)Y11(p) + Y11(p)A(p)T + B(p)Y12(p)T + Y12(p)BT (p) 0, (17)
Tr(Y22(p)) < 1, Y (p) 0, (18)

for all p ∈ P . Due to the Stone-Weisterstrass theorem about the approxima-
tion of continuous functions by polynomials on compacta, we can even choose
Y (p) to be a matrix polynomial. This allows to conclude topt ≥ topt + /4, a
contradiction which finishes the proof.

In actual computations we optimize over functions Z(·) belonging to an
increasing sequence of finite-dimensional subspaces of matrix-valued polyno-
mials. Then the difference of the computed lower bound to the actual optimal
H∞ performance is non-decreasing. If we restrict the search to a subspace of
degree bounded matrix polynomials, and if we let the bound on the degree
grow to infinity, Theorem 2 guarantees that the corresponding lower bounds
converge from below to the globally optimal H∞ performance.

We have thus reduced the H∞ synthesis problem to a robust analysis
problem with complicating variables p and polynomial robustness certificates
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Z(p). In Section 5 we will discuss how (13)-(15) can be relaxed to standard
LMI constraints via suitable SOS tests.

Remark 2. The proposed partial dualization technique is not at all restricted
to fixed-order H∞ optimal control. Straightforward variations do apply to a
whole variety of other interesting problems, such as designing structured con-
trollers for any performance criterion that admits an analysis LMI represen-
tation (as e.g. general quadratic performance, H2-performance or placement
of closed-loop poles in LMI regions [6]).

Remark 3. We require the controller parameters to lie in a compact set in
order to be able to apply the theorem of Stone-Weierstrass. From a practical
point of view this is actually not restrictive since the controller parameters
have to be restricted in size for digital implementation. Moreover one can ex-
ploit the flexibility in choosing the set P in order to incorporate the suggested
lower bound computations in branch-and-bound techniques.

Remark 4. The controllability assumption is needed to prove that the dual
(12) is strictly feasible for all p ∈ P . Controllability can be verified by a
Hautus test: (A(p), B(p)) is controllable for all p ∈ P if and only if

PH(λ, p) := A(p) − λI B(p) has full row rank for all λ ∈ C, p ∈ P . (19)

This property can be verified by the method described in Section 3. Indeed
suppose K ∈ R is chosen with A(p) ≤ K for all p ∈ P (with · denoting the
spectral norm). Then (19) holds true if and only if the real-valued polynomial

FH(a, b, p) : = |det (PH(a + bi, p)PH(a + bi, p)∗)|2
= det (PH(a + bi, p)PH(a + bi, p)∗)∗ det (PH(a + bi, p)PH(a + bi, p)∗)

is strictly positive on [−K, K] × [−K, K] × P . This can be tested with SOS
decompositions, provided that P has a representation that satisfies (5). The
upper bound K on the spectral norm of A on P can also be computed with
SOS techniques.

Remark 5. The utmost right constraint in (14) (Z(p) 0 for all p ∈ P) can
be replaced by the (generally much) stronger condition

Z(p) is SOS in p.

As we will see in Section 5.6 this may reduce the complexity of our relaxation
problems. Theorem 2 is still true after the replacement, since for any matrix-
valued polynomial Y (p) that satisfies (13)-(15), we can find a unique matrix
valued function R(p) on P that is the Cholesky factor of Z(p) for all p ∈ P .
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Furthermore R(p) is continuous on P if Z(p) is, because the Cholesky factor of
a matrix can be computed by a sequence of continuity preserving operations
on the coefficients of the matrix [10]. Again by Weierstrass’ theorem there
exists an approximation of the continuous R(p) on P by a polynomial R̃(p)
such Z(p) := R̃(p)T R̃(p) satisfies (13)-(15). The constructed matrix-valued
polynomial Z(p) is indeed SOS.

4.2 Finite-Dimensional Approximation

Suppose that Zj : Rnp → Sn+m1 , j = 1, 2, . . . , N , is a set of linearly indepen-
dent symmetric-valued polynomial functions in p (such as a basis for the real
vector space of all symmetric matrix polynomials of degree at most d). Let us
now restrict the search of Z(.) in Theorem 2 to the subspace

ZN := 

Z(., z) | Z(., z) :=
N

j=1

zjZj(.), z = (z1, . . . , zN) ∈ RN

 . (20)

Then (13)-(15) are polynomial inequalities in p that are affine in the coeffi-
cients z for the indicated parameterization of the elements Z(., z) in ZN . With
y := col(t, z), c := col(1, 0nz) and

F (p, y) := diag(F11(p, z) − t, F22(p, z), Z(p, z), 1− Tr(Z22(p, z))) (21)

where

F11(p, z) := Tr C(p) D(p) Z(p, z) C(p) D(p)
T

,

F22(p, z) := Z11(p, z)A(p)T +A(p)Z11(p, z)+Z12(p, z)B(p)T + B(p)ZT
12(p, z)T

the problem to be solved can be compactly written as follows:

supremize cT y

subject to F (p, y) 0 for all p ∈ P .
(22)

This problem involves a semi-infinite semi-definite constraint on a matrix
polynomial in p only, i.e. not on the state variables. This allows to construct
relaxations that rely on SOS-decomposition for polynomials in p, which is the
key to keep the size of the resulting LMI-problem quadratic in the number of
system states, as opposed to the exponential growth of the size of the LMI-
problem for the direct approach discussed in Section 3.

5 Robust Analysis by SOS-Decompositions

Let us now consider the generic robust LMI problem
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supremize cT y

subject to F (x, y) 0 for all x ∈ Rnx with gi(x) ≤ 0, i = 1, . . . , ng

(23)

where F (x, y) ∈ Sr and gi(x) ∈ R are polynomial in x and affine in y respec-
tively. The problems (3) and (23) differ in two essential structural properties.
First, (3) is just a semi-definite polynomial minimization problem, whereas
(23) has a linear objective with a semi-infinite linear SDP constraint, where
the dependence on the parameter x is polynomial. Second, in the relaxation
for (3) we had to guarantee positivity for scalar polynomials, whereas (23)
involves a matrix-valued positivity constraint. Despite these structural differ-
ences the relaxations suggested in this section are similar to those in Section 3.

5.1 Scalar Constraints

Let us first consider scalar-valued semi-infinite constraints which corresponds
to F (x, y) being of dimension 1×1 in (23). If for some y there exist  > 0 and
SOS polynomials si(x), i = 1, . . . , ng, such that

F (x, y) +
ng

i=1

si(x)gi(x) −  is SOS in x, (24)

then it is very simply to verify that cT y is a lower bound on the optimal value
of (23). The best possible lower bound is achieved with the supremal cT y over
all  > 0 and all SOS polynomials si(x) satisfying (24), and we have equality
if G(x) = diag(g1(x), . . . , gng (x)) satisfies the constraint qualification (5). The
proof is a a variant of that of Theorem 1 and is hence omitted.

5.2 Scalarization of Matrix-Valued Constraints

Let us now assume that F (x, y) is indeed matrix-valued. Our intention is
to illustrate why a straightforward scalarization technique fails to lead to
the desired properties of the corresponding LMI relaxations. Indeed define
f(v, x, y) := vT F (x, y)v and

hi(v, x) = gi(x) i = 1, . . . , ng, hng+1(v, x) = 1−vT v, hng+2(v, x) = vT v−2.

Then F (x, y) 0 for all x with gi(x) ≤ 0, i = 1, . . . , ng, is equivalent to
f(v, x, y) > 0 for all (x, v) with hi(v, x) ≤ 0, i = 1, . . . , ng + 2. As in Sec-
tion 5.1 this condition can be relaxed as follows: there exists  > 0 and SOS
polynomials si(v, x), i = 1, . . . , ng + 2, such that

f(v, x, y) +
ng+2

i=1

si(v, x)hi(v, x) − is SOS
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(with exactness of the relaxation under constraint qualifications). Unfortu-
nately, despite f(v, x, y) is quadratic in v, no available result allows to guar-
antee that the SOS polynomials si(v, x), i = 1, . . . , ng + 2, can be chosen
quadratic in v without loosing the relaxation’s exactness. Hence one has to
actually rely on higher order SOS polynomials in v to guarantee that the relax-
ation gap vanishes. In our specific problem, v has 2n+m1+1 components such
that the relaxation size grows exponentially in the system state-dimension,
and we fail to achieve the desired polynomial growth in n.

5.3 Matrix-Valued Constraints

This motivates to fully avoid scalarization as follows. We replace (22) by
requiring the existence of  > 0 and SOS matrices Si(x) of the same dimension
as F (x, y) such that

F (x, y) +
ng

i=1

Si(x)gi(x) − I is an SOS matrix in x. (25)

It is easy to see that the optimal value of (23) is bounded from below by the
largest achievable cT y for which there exist  > 0 and SOS matrices Si(x)
with (25). It is less trivial to show that this relaxation is exact which has been
proved in our paper [31]. This is the key step to see that one can construct
a family of LMI relaxations for computing arbitrarily tight lower bounds on
the optimal of (23) whose sizes grow exponentially only in the number of
components of x.

Remark 6. We have performed partial dualization (in the high dimensional
variables) in order to arrive at the formulation of (23). It is interesting to
interpret the replacement of the semi-infinite constraint in (23) by (25) as a
second Lagrange relaxation step in the low dimensional variable x. In this
sense the suggested relaxation can be viewed as a full SOS Lagrange dualiza-
tion of the original nonlinear semi-definite program, and exponential growth
is avoided by the indicated split into two steps.

5.4 Verification of Matrix SOS Property

Let us now discuss how to construct a linear SDP representation of (25) if
restricting the search of the SOS matrices Si(x), i = 1, . . . , ng, to an arbi-
trary subspace of polynomials matrices. The suggested procedure allows for
complete flexibility in the choice of the corresponding monomial basis with a
direct and compact description of the resulting linear SDP, even for problems
that involve SOS matrices. Moreover it forms the basis for trying to reduce
the relaxation sizes for specific problem instances.
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u(x) = col(u1(x), . . . , unu(x))

whose components uj(x) are pairwise different x-monomials. Then S(x) of
dimension r × r is said to be SOS with respect to the monomial basis u(x) if
there exist real matrices Tj , j = 1, . . . , nu, such that

S(x) = T (x)T T (x) with T (x) =
nu

j=1

Tjuj(x) =
nu

j=1

Tj(uj(x) ⊗ Ir).

If U = (T1 · · · Tnu) and if P denotes the permutation that guarantees

u(x) ⊗ Ir = P [Ir ⊗ u(x)],

we infer with W = (UP )T (UP ) 0 that

S(x) = [Ir ⊗ u(x)]T W [Ir ⊗ u(x)]. (26)

In order to render this relation more explicit let us continue with the follow-
ing elementary concepts. If M ∈ Rnr×nr is partitioned into n × n blocks as
(Mjk)j,k=1,...,r define

Tracer(M) =


Tr(M11) · · · Tr(M1r)

...
. . .

...

Tr(Mr1) · · · Tr(Mrr)


as well as the bilinear mapping ., . r : Rmr×nr × Rmr×nr → Rr×r as

A, B r = Tracer(AT B).

One then easily verifies that [Ir⊗u(x)]T W [Ir⊗u(x)] = W, Ir ⊗ u(x)u(x)T
r
.

If we denote the pairwise different monomials in u(x)u(x)T by wj(x), j =
1, . . . , nw, and if we determine the unique symmetric Qj with

u(x)u(x)T =
nw

j=1

Qjwj(x),

we can conclude that

S(x) =
nw

j=1

W, Ir ⊗ Qj r wj(x). (27)

This proves one direction of the complete characterization of S(x) being SOS
with respect to u(x), to be considered as a flexible generalization of the Gram-
matrix method [27] to polynomial matrices.

For all these purposes let us choose a polynomial vector
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Lemma 1. The matrix polynomial S(x) is SOS with respect to the monomial
basis u(x) iff there exist necessarily unique symmetric Sj , j = 1, . . . , nw, such
that S(x) = nw

j=1 Sjwj(x), and the linear system

W, Ir ⊗ Qj r = Sj, j = 1, . . . , nw, (28)

has a solution W 0.

Proof. If W 0 satisfies (28) we can determine a Cholesky factorization of
PWPT as UT U to obtain W = (UP )T (UP ) and reverse the above arguments.

5.5 Construction of LMI Relaxation Families

With monomial vector vi(x) and some real vector bi for each i = 1, 2, . . . , ng

let us represent the constraint functions as gi(x) = bT
i vi(x), i = 1, 2, . . . , ng.

Moreover, let us choose monomial vectors ui(x) of length ni to parameterize
the SOS matrices Si(x) with respect to ui(x) with Wi 0, i = 0, 1, . . . , ng,
as in Section 5.4. With v0(x) = 1 and b0 = −1, we infer

−S0(x)
ng

i=1

Si(x)gi(x) =
ng

i=0

Wi, Ir ⊗ ui(x)ui(x)T
r

bT
i vi(x)

=
ng

i=0

Wi, Ir ⊗ ui(x)ui(x)T bT
i vi(x)

r

=
ng

i=0

Wi, Ir ⊗ ui(x)ui(x)T ⊗ bT
i vi(x)

r

=
ng

i=0

Wi, Ir ⊗ Ini ⊗ bT
i ui(x)ui(x)T ⊗ vi(x)

r
.

Let us now choose the pairwise different monomials

w0(x) = 1, w1(x), . . . , wnw(x)

to allow for the representations

ui(x)ui(x)T ⊗ vi(x) =
nw

j=0

Pijwj(x) and F (x, y) =
nw

j=0

Aj(y)wj(x), (29)

with symmetrically valued Aj(y) that depend affinely on y. Then there exist
> 0 and SOS matrices Si(x) with respect to ui(x), i = 0, . . . , ng, such that

F (x, y) +
ng

i=1

Si(x)gi(x) − I = S0(x) (30)
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if and only if there exists a solution to the following LMI system:

> 0, Wi 0, i = 0, . . . , ng, (31)

A0(y) +
ng

i=0

Wi, Ir ⊗ Ini ⊗ bT
i Pi0 r

− I = 0, (32)

Aj(y) +
ng

i=0 

Wi, Ir ⊗ Ini ⊗ bT
i 

 
Pij

 
r 

= 0, j = 1, . . . , nw. (33)

We can hence easily maximize cT y over these LMI constraints to determine
a lower bound on the optimal value of (23). Moreover these lower bounds
are guaranteed to converge to the optimal value of (23) if we choose ui(x),
i = 0, . . . , ng, to comprise all monomials up to a certain degree, and if we let
the degree bound grow to infinity.

5.6 Size of the Relaxation of LMI Problem

The size of the LMI relaxation for (23) is easily determined as follows.
The constraints are (31), (32) and (33). The condition on the matrices
Wi, i = 0, 1, . . . , ng, to be nonnegative definite in (31) comprises for each
i = 0, 1, . . . , ng one inequality in Srnui , where (as mentioned earlier in the
text) r and nui denote the number of rows in F (x, y) in (23) and the number
of monomials for the ith SOS matrix, i = 0, 1, . . . , ng, respectively. On top of
that (32) adds r2 and (33) adds nwr2 scalar equation constraints to the LMI
problem.

The decision variables in the LMI relaxation are the lower bound t, the
matrices for the SOS representation Wi ∈ Srnui , i = 0, 1, . . . , ng, and the
original optimization variables y ∈ Rny . Since a symmetric matrix in Srnui

can be parameterized by a vector in R 1
2 rnui

(rnui
+1), we end up in total with

1 + ny +
1
2

ng

i=0

rnui (rnui + 1) (34)

scalar variables in our LMI problem.
This number may be further reduced by using an explicit representation

of the degrees of freedom in Wi for each i ∈ {0, 1, . . . , ng} by constructing
a basis for the solution set of the linear constraints (32) and (33). Although
this explicit parameterization may lead to a smaller number of variables, we
consider for simplicity in the remainder of this text the implicit representation
with (32) and (33).

We can further specify the size of the LMI problem for the fixed order H∞
synthesis problem in terms of the sizes of dynamical system, which will show
that the size of the LMI’s depends quadratically on the number of states. If
P is a ball of radius M described by (1), then it can be described by one
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polynomial inequality such that ng = 1. The number of variables in y is
equal to the dimension of the subspace ZN : ny = N = dim(ZN ). Since Z
is a polynomial in p with matrix coefficients in Sn+m1 , ny grows at most
quadratically in n. The number r of rows of each sub-block of F (p, y) in (21)
is

Block F11(p, z) − t F22(p, z) Z(p, z) 1 − Tr(Z22(p, z))

Number of rows 1 n n + m1 1

which results in r = 2 + 2n + m1 rows. This number of rows is reduced by
about 50% to r = 2 + n if we replace the utmost right constraint in (15)
(Z(p) ≥ 0 for all p ∈ P) by requiring Z(p) to be SOS, as we suggested in
Remark 5.

The monomial vectors ui, i = 0, 1, should be chosen such that F (·, y) can
be expressed in terms of S0 and S1g1 as in (30) and they will be specified for
the concrete examples in Section 6. Note that nui , i = 0, 1, is independent of
n since ui, i = 0, 1, are polynomials in p.

Summarizing, ny grows at most quadratically in n, r grows linearly in n
and nui , i = 0, 1, are independent of n. Equation (34) therefore implies that
the number of LMI variables is indeed quadratic in n.

Remark 7. Although not limiting for unstructured controller synthesis [36],
the assumption D22 = 0 on the direct-feedthrough term is usually restrictive
if the controller is required to admit some structure. It is therefore useful to
discuss how a nonzero D22 can be taken into account in our method. For
D22 = 0 the closed-loop matrices are rational functions of p:

A(p) =
Aol + Bol

2 Q(p)DK(p)Col
2 Bol

2 Q(p)CK(p)

A21(p) AK(p) + BK(p)D22Q(p)CK(p)

B(p) =
Bol

1 + Bol
2 Q(p)DK(p)Dol

21

BK(p)D21 + BK(p)D22Q(p)DK(p)Dol
21

C(p) = Col
1 + D12Q(p)DK(p)Col

2 D12Q(p)CK(p)

D(p) = Dol
11 + Dol

12Q(p)DK(p)Dol
21

where A21(p) := BK(p)Col
2 + BK(p)D22Q(p)DK(p)Col

2 and

Q(p) := (I − DKpD22)
−1

.

This results in rational dependence of the left-hand sides of (13) and (14) on
p, such that we can not directly apply the SOS test. Under the well-posedness
condition that I − DK(p)D22 is nonsingular for all p ∈ P , we can multiply
(13) and (14) by det(I − DK(p)D22)2. Since then det(I − DK(p)D22)2 > 0
for all p ∈ P , the resulting inequalities are equivalent to (13) and (14) and
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polynomial in p. This implies that our problem is a robust polynomial LMI
problem (23) and we can apply the SOS technique. It is easy to see that testing
well-posedness is a robust LMI problem as well.

Remark 8. In a similar fashion we can introduce a rational parameterization
for Z(p). Let Zj : Rnp → Sn+m1 , j = 1, 2, . . . , N , be a set of linearly indepen-
dent symmetric valued rational functions in p without poles in P (instead of
polynomials as in Section 4.2). By multiplication of the inequalities (13)-(15)
with the smallest common denominator of Z(p) that is strictly positive for all
p ∈ P , their left-hand side becomes a polynomial of p. We expect such pa-
rameterizations of Z(p) with rational functions to be much better than with
polynomials, in the sense that they generate better lower bounds for the same
size of the LMI problem. Comparison of these parameterizations is a topic for
future research.

6 Application

We present lower bound computations for the fixed order H∞ problem of a
fourth order system and a 27th order active suspension system. The results of
this section have also been published in [16].

6.1 Fourth Order System

We consider an academic example with

 
A B1 B2

C1 D11 D12

C2 D21 D22

 =



−7 4 0 0.2 0.9 0.2 0

−0.5 −2 0 0 2 0.2 0

3 4 −0.5 0 0.1 0.1 0

3 4 2 −1 −4 0 −0.2

0 −10 −3 0 0 3 −4

0.8 0.1 0 0 0.3 0 0


and computed lower bounds on the closed-loop H∞-performance of all stabil-
ising static controllers in a compact subset of R2×1. The open loop H∞ norm

is 47.6. We first computed an initial feedback law Kinit = −38 −28
T

,
which gives a performance of 0.60. We computed bounds for the ball Pball =
p ∈ R2| p ≤ M with radius M = 1.5 around the initial controller, i.e.

K(p) := Kinit + p1 p2

T

. Observe that p ∈ P is equivalent to g1(p) ≤ 0
where

g1(p) := p2
1 + p2

2 − M2, (35)
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which is the only constraint on p, such that ng = 1 in (23). We therefore
optimize over 2 SOS polynomials S0 and S1, both of dimension 10 × 10. The
choice of the monomials u0 and u1 will be discussed below.

The resulting lower bound, the number of variables in the LMI and the
size of the LFT are shown in Table 1 for various degrees in u1 and Z. The
monomial vector u1 is represented in the table by (l1, l2), i.e. u1(p) = M l1,l2(p)
where M maps the maximal monomial orders l1 and l2 into a vector containing
all mononials

pi
1p

j
2, 0 ≤ i ≤ l1, 0 ≤ j ≤ l2.

In other words M l1,l2 is the monomial vector

M l1,l2(p) := 1 p1 p2
1 . . . pl1

1 p1p2 p2
1p2 . . . pl1

1 p2 . . . pl1
1 pl2

2 .

The vector (k1, k2) in the table denotes the maximal monomial degrees for Z in
a similar fashion, e.g, (k1, k2) = (2, 1) should be read as the parameterization

Z(p, z) = Z0 + N
j=1 zjEj + zj+Np1Ej + zj+2Np2

1Ej + zj+3Np1p2Ej+

+ N
j=1 zj+4Np2

1p2Ej + zj+5Np2Ej ,

where N = dim(Sn+m1 ) = 1
2 (n + m1 + 1)(n + m1) and Ej , j = 1, . . . , N, is

a basis for Sn+m1 . For this parameterization the number ny of variables in
y grows quadratically with n, which is the maximum growth rate of ny as
mentioned in Section 5.6. The monomial vector u0(p) = M q1,q2(p) is chosen
such that the monomials on the right-hand side of (30) match those on the
left-hand side, i.e.

qi =
2 + max{ki, 2li}

2
, i = 1, 2,

where x is the smallest integer larger than or equal to x. For instance
the lower bound in the right lower corner of Table 1 is computed with
q1 = 3, q2 = 3 such that u0(p) is a monomial vector of length 16.

By a gridding technique we have found an optimal controller popt =

1.33 0.69
T 

∈ P with performance 0.254. From Table 1 it seems that the
lower bound indeed approaches this value for increasing order in both u1 and
Z. The best lower bound is topt = 0.251, which is slightly smaller than the
optimal performance 0.254. The number of variables in our implementation of
the LMI relaxations is shown in Table 2. Each LMI problem has been solved
with SeDuMi [34] in at most a few minutes.

6.2 Active Suspension System

As a second example we consider the control of an active suspension sys-
tem, which has been a benchmark system of a special issue of the European
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Table 1. Lower bounds for 4th order system, various degrees of Z and S1

(l1, l2), monomials in u1

(0, 0) (1, 1) (2, 0) (0, 2)

(k
1
,k

2
),

m
o
n
o
m

ia
ls

in
Z (0, 0) 0.15584 0.16174 0.16174 0.16174

(1, 0) 0.20001 0.20939 0.20959 0.20183

(1, 1) 0.20319 0.21483 0.21331 0.20785

(2, 0) 0.22259 0.2298 0.23097 0.22396

(1, 2) 0.20642 0.22028 0.21886 0.21171

(2, 1) 0.22669 0.23968 0.23936 0.22959

(3, 0) 0.22361 0.24000 0.24212 0.22465

(4, 0) 0.22465 0.24263 0.24373 0.22504

(2, 2) 0.22737 0.24311 0.24298 0.23277

(4, 2) 0.22889 0.25047 0.25069 0.23414

Table 2. Number of LMI variables for 4th order system, various degrees of Z and u1

(l1, l2), monomials in u1

(0, 0) (1, 1) (2, 0) (0, 2)

(k
1
,k

2
),

m
o
n
o
m

ia
ls

in
Z (0, 0) 41 1514 970 1960

(1, 0) 220 1528 984 1974

(1, 1) 413 1556 1012 2002

(2, 0) 234 1542 998 1988

(1, 2) 1211 1584 1370 2030

(2, 1) 881 1584 1040 2030

(3, 0) 578 1556 1012 2002

(4, 0) 867 1570 1026 2016

(2, 2) 1253 1626 1412 2072

(4, 2) 2547 2920 2706 2981
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Fig. 1. Active suspension system

Journal of Control on fixed-order controller synthesis [21], see Figure 1. The
goal is to compute a low-order discrete-time controller such that the closed-
loop sensitivity and controller sensitivity satisfy certain frequency-dependent
bounds. The system has 17 states and the weights of our 4-block H∞ de-
sign contributed with 10 states, which add up to 27 states of the generalized
plant. The full order design has closed-loop H∞-norm 2.48. We computed a
5th order controller by closed-loop balanced residualization with performance
3.41. For more details on the fixed order H∞-design the reader is referred to
[18]. We computed lower bounds for changes in two diagonal elements of the
state-space matrices of the controller

K(p) =
AK(p) BK

CK DK

=



−78.2 1129.2 173.24 −97.751 −130.36 6.6086

−1240.9 −78.2 + p1 111.45 125.12 76.16 21.445

0 0 −6.0294 164.81 + p2 159 −11.126

0 0 0 −204.56 49.031 −12.405

0 0 0 −458.3 −204.56 −9.4469

−0.067565 0.19822 −1.0047 −0.069722 0.19324 0.0062862


where p1 and p2 are free scalar controller variables. Table 3 shows computed
lower bounds for various degrees in Z and u1 and various controller sets
Pball := {p |Rnp , p ≤ M}, M ∈ {5, 10, 50, 100}, together with the number
of LMI variables. It is interesting to note that the lower bounds are clearly
better than the bounds computed with the S-procedure in [17]. It is a topic
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Table 3. Lower bounds for suspension system, for various degrees of Z and S and
P balls with various radii.

monomials Radius M of P := {p|p ∈ Rnp , p ≤ M} # LMI variables

Z u1 5 10 50 100 M ∈ {5, 10, 50, 100}
(0, 0) (0, 0) 3.2271 3.0176 2.2445 1.9790 1719

(1, 0) (0, 0) 3.2570 3.0732 2.3975 2.1585 2313

(0, 1) (0, 0) 3.2412 3.0468 2.3725 2.2398 2313

of our current research to investigate why and for which type of problems the
relaxations based on SOS decompositions work better than those based on
the S-procedure.

The example illustrates that the lower bound computation is feasible for
larger order systems, although the size of the LMI problems still grows grad-
ually.

7 Conclusions

We have shown that there exist sequences of SOS relaxations whose optimal
value converge from below to the optimal closed-loop H∞ performance for
controllers of some a priori fixed order. In a first scheme we generalized a
well-established SOS relaxation technique for scalar polynomial optimization
to problems with matrix-valued semi-definite constraints. In order to avoid
the resulting exponential growth of the relaxation size in both the number
of controller parameters and system states, we proposed a second technique
based on two sequential Lagrange dualizations. This translated the synthesis
problem into a problem as known from robustness analysis for systems affected
by time-varying uncertainties. We suggested a novel relaxation scheme based
on SOS matrices that is guaranteed to be asymptotically exact, and that
allows to show that the size of the relaxations only grow quadratically in the
dimension of the system state.

We have applied the method to systems of McMillan degree 4 and 27
respectively. The first example illustrated that the lower bounds indeed con-
verge to the optimal fixed-order H∞-performance value. The second example
showed the feasibility of the approach for plants with moderate McMillan de-
gree, in the sense that we can compute nontrivial lower bounds by solving
LMI problems with about 2300 variables.
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A Proof of Strict Feasibility of the Dual Problem

Let us prove that (12) is strictly feasible for all p0 ∈ P . For an arbitrary
p0 ∈ P , we need to show that there exists some W with

A(p0)W11 + W11A(p0)T + B(p0)WT
12 + W12B(p0)T 0, (36)

Tr(W22) < 1, W 0.

Since (A(p0), B(p0)) is controllable, one can construct an anti-stabilizing
state-feedback gain, i.e., a matrix K such that A(p0) + B(p0)K has all its
eigenvalues in the open right-half plane. Hence there exists some P 0 with

(A(p0) + B(p0)K)P + P (A(p0) + B(p0)K)T 0 (37)

and rP also satisfies (37) for any r > 0. Then W defined by the blocks
W11 = rP , W T

12 = rKP and

W22 = WT
12W

−1
11 W12 + rI = r(KT PK + I)

in the partition (11) satisfies (36) and W 0 for arbitrary r > 0. The con-
structed W does the job if we choose in addition r > 0 sufficiently small to
achieve Tr(W22) = rTr(KT PK + I) < 1 .
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A general H∞ controller design technique is proposed for scalar linear sys-
tems, based on properties of positive polynomial matrices. The order of the
controller is fixed from the outset, independently of the order of the plant
and weighting functions. A sufficient LMI condition is used to overcome non-
convexity of the original design problem. The key design step, as well as the
whole degrees of freedom are in the choice of a central polynomial, or desired
closed-loop characteristic polynomial.

1 Introduction

This paper is a continuation of our research work initiated in [8], where a
linear matrix inequality (LMI) method was described to design a fixed-order
controller robustly stabilizing a linear system affected by polytopic structured
uncertainty. A convex LMI approximation of the stability domain in the space
of coefficients of a polynomial was obtained there, based on recent results on
positive polynomials and strictly positive real (SPR) functions. As explained
in [8], the key ingredient in the design procedure resides in the choice of a
central polynomial, or desired nominal closed-loop characteristic polynomial.

Paper [8] focused only on polynomial polytope stabilization, which we
believe is an interesting research problem, but remains obviously very far
from an actual engineering design problem. So in this paper we try to build
upon the ideas of [8] to derive a more practical controller design methodology.
Standard design specifications are formulated in the frequency domain, on
peak values of Bode magnitude plots of (possibly weighted) system transfer
functions, this is the so-called H∞ optimization framework surveyed e.g. in
[11].

The main characteristics of our approach, and its contribution with respect
to existing work in the area are as follows:

D. Henrion and A. Garulli (Eds.): Positive Polynomials in Control, LNCIS 312, pp. 73–85, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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• The order of the controller is fixed from the outset, which overcomes the
standard limitation of state-space H∞ techniques that the order of the
controller must be at least the same as the order of the plant. Note that,
as a consequence, with our techniques using weighting functions does not
entail increasing the controller order;

• We use convex optimization over positive polynomials and SPR rational
functions, just as in [4, 16, 3]. The main distinction is that we do not use
the infinite dimensional Youla-Kučera parametrization of all stabilizing
controllers as in [4, 16, 3], or analytical (stable) rational functions in H∞
[6], so that it is not necessary to resort to model reduction techniques to
derive a low-order controller;

• As in our previous work [8], all the degrees of freedom in the design pro-
cedure are captured in the choice of the so-called central polynomial, or
desired closed-loop characteristic polynomial. Note however that, contrary
to the design procedure of [13] or [18], the central polynomial will not
necessarily be the actual characteristic polynomial, but only a reference
polynomial around which the design is carried out. Influence of the cen-
tral polynomial on closed-loop performance is generally easy to predict. A
general rule of thumb is that open-loop stable poles must be mirrored in
the central polynomial, completed by sufficiently fast additional dynam-
ics. This is in contrast with the recent work in [14], where fixed order H∞
controller design is carried out with the help of Nevanlinna-Pick interpola-
tion, but the influence of design parameters (the so-called spectral zeros)
cannot be easily characterized.

Complementary features of our approach are as follows:

• We can enforce LMI structural constraints on the controller coefficients.
For example, we can enforce the controller to be strictly proper, or a
PID. We can also minimize the Euclidean norm of controller coefficients if
suitable;

• Contrary to standard H∞ techniques, there are no assumptions on open-
loop dynamics, presence of zeros along the imaginary axis, properness of
weighting functions etc.;

• Continuous-time and discrete-time systems are treated in a unified way,
as well as pole location in arbitrary half-plane or disks;

Finally, here is a list of current limitations of our H∞ design technique:

• As in [8], we use a sufficient convex (LMI) conditions that ensure closed-
loop specifications, possibly at the price of some conservatism. We are not
aware of any reliable method for measuring the amount of conservatism of
our method, even though the many numerical examples we have treated
seem to indicate that the approach generally performs at least as well as
other design techniques;

• Contrary to well-established state-space H∞ techniques, the numerical
behavior and performance of LMI or semidefinite programming solvers
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on these optimization problems over polynomials is still unclear. In the
conclusion we mention some research directions and some recent references
focusing on this important issue;

• Similarly to standard H∞ techniques, our design technique is iterative,
and a trial-and-error approach cannot be avoided to choose appropriately
the central polynomial.

2 Problem Statement

The scalar H∞ design problem to be solved in this paper can be formally
stated as follows, based on Kučera’s algebraic polynomial formulation [10].

Problem 1. Given a set of polynomials nk
i (s), dk

i (s) for i = 1, 2, . . ., k =
1, 2, . . ., as well as a set of positive real numbers γk, seek polynomials xi(s) of
given degrees such that

i nk
i (s)xi(s)

i dk
i (s)xi(s) ∞

< γk, k = 1, 2, . . . (1)

In the above inequalities

S ∞ = sup
s∈∂D

|S(s)|

denotes the peak value of the magnitude of rational transfer function S when
evaluated along the one-dimensional boundary ∂D of a given stability region

D = {s ∈ C :
1

s

d11 d12

d12 d22

1

s
< 0}

of the complex plane, where the star denotes transpose conjugate and Hermi-
tian matrix

D =
d11 d12

d12 d22

has one strictly positive eigenvalue and one strictly negative eigenvalue. Stan-
dard choices for D are the left half-plane (d11 = 0, d12 = 1, d22 = 0) and the
unit disk (d11 = −1, d12 = 0, d22 = 1). Other choices of scalars d11, d12 and
d22 correspond to arbitrary half-planes and disks.

The above H∞ design paradigm covers all the standard frequency domain
specifications arising in scalar control problems. For example, in the feedback
system of figure 1 the sensitivity of the control system output z to disturbances
v is characterized by the sensitivity function



76 D. Henrion

Fig. 1. Standard feedback configuration.

S =
1

1 + b
a

y
x

=
ax

ax + by

where plant polynomials a and b are given, and controller polynomials x and
y must be found, see [11]. As shown in [4], robustness of the closed-loop plant
to model uncertainty may be characterized by the complementary sensitivity
function

T = 1 − S =
by

ax + by

which is also the closed-loop system transfer function. As recalled in [2], sim-
plified yet sensible design specifications for a control law can be formulated
as

S ∞ < γS , T ∞ < γT

where typical values of γS range between 1.2 and 2.0 and typical values of γT

range between 1.0 and 1.5. This H∞ control problem, as well as many others,
can be formulated using the general paradigm proposed above.

3 H∞ Design Technique

Dropping for convenience the dependence on polynomial indeterminate s and
index k, the H∞ design inequality of problem 1 on polynomials xi

i nixi

i dixi ∞
< γ

can be written equivalently as

Re

γ + i nixi

i dixi

γ − i nixi

i dixi

 = Re
γ( i dixi) + i nixi

γ( i dixi) − i nixi
> 0 (2)

where Re denotes the real part of a complex number. In the above inequalities
it is implicit that polynomial indeterminate s describes the stability boundary,



so that all the polynomials are frequency-dependent complex numbers when
s ∈ ∂D.

In order to simplify notations, define

n = γ(
i

dixi) +
i

nixi, d = γ(
i

dixi) −
i

nixi (3)

and notice that strict positive realness requirement (2)

Re
n

d
=

1
2

n

d
+

n

d
=

Re n Re d + Im n Im d

d 2
2

> 0

is equivalent to the geometric argument condition

cos (n, d) =
Re n Re d + Im n Im d

n 2 d 2
> 0

or
|(n, d)| <

π

2
(4)

where (n, d) denotes the angle between complex numbers n and d.
Now introduce an auxiliary polynomial c, referred to as the central poly-

nomial for reasons that should become clear later on.

Lemma 1. Geometric condition (4) is equivalent to the existence of a central
polynomial c such that

|(n, c)| <
π

4
, |(d, c)| <

π

4

or equivalently
2cos2(n, c) > 1, 2cos2(d, c) > 1. (5)

Proof: Suppose first that polynomial c exists such that inequalities (5)
are satisfied. Geometrically, it follows that the angle between n and d never
exceeds π/2, which is inequality (4). Conversely, just choose c = n + d as a
valid central polynomial, and then inequalities (5) hold. ✷

Lemma 2. Inequalities (5) hold if and only if

Re n c Im n c

Im n c Re n c
0,

Re d c Im d c

Im d c Re d c
0 (6)

where 0 means positive semidefinite.
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Proof: The first inequality in (5) can be written explicitly as

2(Re n Re c + Im n Im c)2 > (Re2n + Im2n)(Re2c + Im2c)

or equivalently

(Re n Re c + Im n Im c)2 > (Re n Im c − Im n Re c)2.

Using a Schur complement argument, this can be reformulated as a 2-by-2
positive semidefiniteness constraint

Re n Re c + Im n Im c Re n Im c − Im n Re c

Re n Im c − Im n Re c Re n Re c + Im n Im c
=

Re n c Im n c

Im n c Re n c
0.

The second matrix inequality in (6) is obtained similarly. ✷

Defining the 2-by-2 polynomial matrices

N(s) =
n(s) 0

0 n(s)
, D(s) =

d(s) 0

0 d(s)
, C(s) =

c(s) c(s)

−c(s) c(s)

inequalities (6) can also be written as

N (s)C(s) + C (s)N(s) 0, D (s)C(s) + C (s)D(s) 0 (7)

for s ∈ ∂D. Inequalities (7) are positivity conditions on polynomial matrices .
Controller parameters, i.e. coefficients of polynomials xi(s), enter linearly

in polynomials n(s) and d(s), as well as in polynomial matrices N(s) and
D(s). So it means that as soon as central polynomial c is given, positivity
conditions (7) are linear in design parameters. Positivity conditions on poly-
nomial matrices depending linearly on design parameters can be formulated
as LMIs as follows.

Let

N = N0 N1 · · · Nδ , D = D0 D1 · · · Dδ , C = C0 C1 · · · Cδ

denote matrix coefficients of powers of indeterminate s in polynomial matrices
N(s), D(s) and C(s) respectively, where δ is the highest degree arising in
polynomials n(s), d(s) and c(s). Define

Π =



I2 0
. . .

...

I2 0

0 I2

...
. . .

0 I2





as a matrix of size 4δ-by-2(δ + 1), together with the linear mapping

H(P ) = ΠT (H ⊗ P )Π = ΠT aP bP

b P cP
Π

where square matrix P has dimension 2δ and ⊗ denotes the Kronecker prod-
uct. Then the following result is a corollary of lemma 2 in [7].

Lemma 3. Given polynomial matrix C(s), polynomial matrices N(s) and
D(s) satisfy positivity conditions (7) if and only if there exist matrices
Pn = Pn and Pd = Pd such that

N C + C N − H(Pn) 0, D C + C D − H(Pd) 0. (8)

Repeating this argument on all the frequency domain specifications (1),
we obtain the following central result:

Theorem 1. Given polynomials nk
i (s), dk

i (s), positive scalars γk and central
polynomials ck(s) for k = 1, 2, . . ., there exist polynomials xi(s) solving H∞
design problem 1 if problem (8) is feasible for each index k. This is a convex
LMI problem in coefficients of polynomials xi(s).

Based on the discussion of [8], central polynomial c plays the role of a target
closed-loop characteristic polynomial around which the design is carried out.
In particular, setting the degree of central polynomial c also sets the degree of
polynomials n and d in (3), as well as the degree of controller polynomials xi.
Sensible strategies for the choice of central polynomial c are discussed in [8],
but a general rule of thumb is that open-loop stable poles must be mirrored
in the central polynomial, completed by sufficiently fast additional dynamics.

Note finally that, since LMI (8) is a sufficient condition to enforce H∞
specifications (1), generally these specifications will be satisfied with a certain
amount of conservatism, i.e. γk is always an upper bound on the actual H∞
norm in (1) achieved by feedback.

4 Numerical Examples

The H∞ design technique of theorem 1 has been implemented in a documented
Matlab 6.5 m-file available at

www.laas.fr/∼henrion/software/hinfdes

that will be included to the next release 3.0 of the commercial Polynomial
Toolbox [15] for Matlab. An alternate code that does not require the Polyno-
mial Toolbox can be obtained by contacting the author.
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The numerical examples were treated with the help of Matlab 6.5 run-
ning under SunOS release 5.8 on a SunBlade 100 workstation. Operations on
polynomials were performed with the Polynomial Toolbox 2.5 [15]. The LMI
problems were solved with SeDuMi 1.05 [17] with default tuning parameters,
interfaced with SeDuMi Interface [12].

4.1 Optimal Robust Stability

Consider the optimal robust stability problem of section 11.1 in [4], where the
open-loop plant in figure 1 is given by

b

a
=

s − 1
(s + 1)(s − 0.5)

and we seek a controller y/x minimizing γT under the following weighted H∞
constraint on the closed-loop transfer function

WT ∞ =
s + 0.1
s + 1

by

ax + by ∞
< γT .

The following Matlab code seeks a first order controller for γT = 1.9:

a = (s+1)*(s-0.5); b = (s-1); gammaT = 1.9;
c = (s+0.1)*(s+1)^2*(s+3); % central polynomial
lmi = hinfdes([],’init’,[1 1]); % seek first order controller
lmi = hinfdes(lmi,(s+0.1)*[0 b],(s+1)*[a b],c,gammaT); % H-inf spec
out = hinfdes(lmi,’solve’); % solve LMI
x = out(1); y = out(2);

Central polynomial c is the key design parameter, and together with upper
bound γT they capture the whole degrees of freedom. Roots in c are just an
indication on where closed-loop poles should be located: generally, roots of
characteristic polynomial ax + by will be located around roots of c, but they
may also differ significantly due to structural constraints. The H∞ design pro-
cedure then consists in iteratively playing with the roots of c, while lowering
upper bound γT .

In table 1 we show different choices of roots for c, denoted by σ(c) (4
roots = 2 for the open-loop system, 1 for the weighting function, 1 for the
controller), together with actual poles of closed-loop transfer function T (3
roots) denoted by σ(ax+by), upper bounds γT and the actual weighted norms
WT ∞ achieved by the computed controllers. Each design requires about 1

second of CPU time on our computer.
We can see that a good strategy is to start with a central polynomial

with all its roots in −1, and a loose upper bound on γT . Decreasing γT ,
some closed-loop poles move away from −1, which gives indications on how
to move roots of the central polynomial. At the bottom of the table, we
can see that by allowing a very fast root in the central polynomial, γT can



Table 1. Optimal robust stability. Roots of central polynomial, characteristic poly-
nomial, H∞ upper bound and achieved H∞-norm.

be decreased significantly close to the theoretical infimum of 1.20. Yet the
closed-loop system also features a very fast pole, and the resulting controller
y/x = (−2046.2− 2039.7s)/(3744.0 + s) results impractical.

A good tradeoff here is indicated in boldface letters in table 1, where a
weighted H∞-norm of 1.47 is achieved with the first-order controller

y

x
=

−3.0456− 3.2992s

5.6580 + s
.

Note however that the sensitivity function has very poor norm S = 1−T ∞ =
13.1, due to the fact that no specifications were enforced on S. As a result, the
above controller can be very sensitive to perturbations, or fragile, as pointed
out in [9].

A more sensible design approach would then enforce an additional H∞
specification on S, such as

S ∞ =
ax

ax + by ∞
< γS

for some suitable value of γS . However, as shown in [1], for this numerical
example the ratio between the unstable open-loop pole and zero is small so
there is no controller that will give a reasonably robust closed-loop system.

Adding a line to the above Matlab code to enforce an additional spec-
ification on S ∞, we obtain (after about 2 seconds of CPU time) with
c(s) = (s+1)3(s+100), γT = 4 and γS = 4 the following first-order controller

y

x
=

−873.30− 816.37s

1202.4 + s

producing S ∞ = 3.44 and WT ∞ = 2.24.

4.2 Flexible Beam

Consider the flexible beam example of section 10.3 in [4]. The open-loop plant
in figure 1 is given by
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σ(c) σ(ax + by) γT WT ∞

-1,-1,-1,-1 −1.04 ± i1.08, -0.230 2.9 2.11

-1,-1,-1,-0.1 −0.731 ± i0.566, -0.118 2.3 1.74

-2,-1,-1,-0.1 −1.133 ± i0.586, -0.114 2.1 1.54

-3,-1,-1,-0.1 −1.383 ± i0.642, -0.0932 1.9 1.47

-10,-1,-1,-0.1 -6.775, -1.063, -0.1059 1.8 1.31

-500,-1,-1,-0.1 -1700, -0.992, -0.103 1.7 1.21



82 D. Henrion

b

a
=

−6.4750s2 + 4.0302s + 175.7700
5s4 + 3.5682s3 + 139.5021s2 + 0.0929s

.

For the closed-loop plant to approximate a standard second-order system with
settling time at 1% of 8 seconds and overshoot less then 10%, the following
frequency domain specification on the weighted sensitivity function is enforced
in [4]:

WS ∞ =
s2 + 1.2s + 1

s(s + 1.2)
ax

ax + by ∞
< γS .

Suppose we are looking for a second-order controller. The open-loop plant
has poles 0, −0.6660 · 10−3, and −0.3565± i5.270, and the weighting function
has poles at 0 and −1.2. The central polynomial must mirror open-loop stable
poles, so an initial choice of central polynomial features roots −0.6660 · 10−3,
−0.3565 ± i5.270, −1.2 plus two roots at −10−2 corresponding to the open-
loop plant integrator and the weighting function integrator, plus two roots
at −1 (arbitrary) corresponding to the controller poles. With this choice of
central polynomial and γS = 5 the H∞ LMI problem is solved in 15 seconds
but the resulting step response is too slow.

After a series of attempts, an acceptable step response was obtained with
the roots σ(c) = {−0.6660 ·10−3, −10−2, −0.3565± i5.270,−0.1, −1, −1, −1}
corresponding to the central polynomial c(s) = 0.1858 ·10−4+0.3000 ·10−1s+
3.178s2 + 37.33s3 + 94.06s4 + 90.50s5 + 33.45s6 + 3.824s7 + s8. With γS = 5
function hinfdes returns the controller

y

x
=

0.77489 · 10−4 + 0.16572 · 10−1s + 0.36537s2

0.41025 · 10−1 + 1.0437s + s2

producing
S ∞ = 1.27, T ∞ = 1.01

and a step response with settling time at 1% of 11.3 seconds and overshoot
of 4%. Bode magnitude plots of S and T are given in figure 2, and the step
response is shown in figure 3. Note that a similar performance was obtained
in [4] with a controller of eighth order.

5 Conclusion

We have proposed an iterative H∞ design technique where all the degrees
of freedom are on the choice of a central polynomial, or desired closed-loop
characteristic polynomial around which the design is carried out. Contrary to
most of the existing H∞ optimization techniques, the order of the controller is
fixed from the very outset, independently of the order of the plant or weighting
functions. Our H∞ design method is based on results on positive polynomial
matrices and convex optimization over LMIs . As a result, it could be easily
implemented in a Matlab and SeDuMi framework.



Fig. 2. Flexible beam. Bode magnitude plots of S and T .

We believe that a promising research direction may be the study of numer-
ical properties (computational complexity, numerical stability) of algorithms
tailored to solve the structured LMI problems arising from the theory of pos-
itive polynomials and polynomial matrices. As shown in [5], the Hankel or
Toeplitz structure can be exploited to design fast algorithms to solve Newton
steps in barrier schemes and interior-point algorithms. Numerical stability is
also a concern, since it is well-known for example that Hankel matrices are ex-
ponentially ill-conditioned. Alternative polynomial bases such as Chebyshev
or Bernstein polynomials may prove useful.
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Robust stability analysis of state space models with respect to real parametric
uncertainty is a widely studied challenging problem. In this paper, a quite gen-
eral uncertainty model is considered, which allows one to consider polynomial
nonlinearities in the uncertain parameters. A class of parameter-dependent
Lyapunov functions is used to establish stability of a matrix depending poly-
nomially on a vector of parameters constrained in a polytope. Such class,
denoted as Homogeneous Polynomially Parameter-Dependent Quadratic Lya-
punov Functions (HPD-QLFs), contains quadratic Lyapunov functions whose
dependence on the parameters is expressed as a polynomial homogeneous
form. Its use is motivated by the property that the considered matricial un-
certainty set is stable if and only there exists a HPD-QLF. The paper shows
that a sufficient condition for the existence of a HPD-QLF can be derived in
terms of Linear Matrix Inequalities (LMIs).

1 Introduction

Establishing robust stability of a system affected by parametric uncertainty is
a challenging problem that has been addressed since long time [1, 2]. Typical
state space uncertainty models considered in the literature include interval
matrices and polytopes of matrices. While satisfactory results have been ob-
tained for special classes of interval matrices (see [3, 4] and references therein),
the problem of assessing robust stability of generic polytopes of matrices is
computationally hard.

A standard way to tackle the problem is to formulate sufficient conditions,
based on the existence of a common Lyapunov function for all the matrices
in the polytope. Common quadratic Lyapunov functions (see e.g. [5]) provide
a viable solution, because their existence can be checked via the solution

D. Henrion and A. Garulli (Eds.): Positive Polynomials in Control, LNCIS 312, pp. 87–101, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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of a system of Linear Matrix Inequalities (LMIs), that are special convex
optimizations [6]. On the other hand, it is well known that the existence
of a common Lyapunov function is strictly related to the circle criterion of
absolute stability theory [7], and therefore the resulting sufficient condition
can be quite conservative.

In recent years, several techniques involving parameter-dependent quadratic
Lyapunov functions have been proposed in order to reduce conservatism
[8, 9, 10, 11]. Most of these techniques employ quadratic Lyapunov func-
tions that depend linearly on the uncertain parameters. In [12], a new class of
parameter-dependent quadratic Lyapunov functions has been introduced, for
which the dependence on the uncertain parameters is expressed as a polyno-
mial homogeneous form. Such class, denoted as Homogeneous Polynomially
Parameter-Dependent Quadratic Lyapunov Functions (simply abbreviated as
HPD-QLFs), has been shown to provide less conservative sufficient condition
for the stability of a polytope of matrices, with respect to linearly parameter-
dependent Lyapunov functions.

In this paper, a more general uncertainty model is considered, which al-
lows one to consider polynomial nonlinearities in the uncertain parameters.
The aim of the paper is to show that HPD-QLFs can be used to study robust
stability of matrices depending polynomially on uncertain parameters con-
strained in a polytope. The main motivation for using this class of Lyapunov
function, is that it is rich enough to provide a complete answer to the ro-
bust stability problem. Specifically, it turns out that the considered matricial
uncertainty model is stable if and only if there exists a HPD-QLF.

It is worth remarking that the potential of homogeneous polynomial forms
for the analysis of control systems has been recognized since long time (see
e.g., [13, 14]). In recent years, homogeneous forms gained a renewed interest,
motivated by the strong connection with semidefinite programming and con-
vex optimization techniques [15], which made it possible to exploit them for
solving several problems (see e.g. [16]).

The paper is organized as follows. The robust stability problem is formu-
lated in Section 2. A complete parameterization of homogeneous matricial
forms is provided in Section 3: this is essential in order to formulate sufficient
conditions for positivity of such forms in terms of LMIs. The main contribution
of the paper, i.e. the sufficient condition to determine the sought HPD-QLF,
is given in Section 4. The case of continuous-time systems is treated in detail,
while the extension to the discrete-time case is briefly sketched. Numerical ex-
amples are provided in Section 5 and concluding remarks are given in Section
6.

2 Problem Formulation and Preliminaries

The following notation is adopted in the paper:

• 0n, 0m×n: origin of Rn and of Rm×n;
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• Rn
0 : Rn \ {0n};

• In: identity matrix n × n;
• A : transpose of matrix A;
• A > 0 (A ≥ 0): symmetric positive definite (semidefinite) matrix A;
• A ⊗ B: Kronecker’s product of matrices A and B;
• sv([p1, p2, . . . , pq] ) [p2

1, p
2
2, . . . , p

2
q] .

Consider the continuous-time state space model

ẋ(t) = A(p)x(t), (1)

where x ∈ Rn is the state vector, and p = [p1, p2, . . . , pq] ∈ Rq is the uncertain
parameter vector which belongs to the set

P = p ∈ Rq :
q

i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , q . (2)

The matrix A(p) is assumed homogeneous in p of degree r, that is

A(p) =
i1≥0,...,iq≥0
i1+...+iq=r

pi1
1 · · · piq

q Ai1...iq (3)

where Ai1...iq ∈ Rn×n are given real matrices. Consider the set of matrices
defined as

A = A(p) ∈ Rn×n : p ∈ P . (4)

The problem we address can be stated as follows.

Robust stability problem:
Establish if the set A in (4) is Hurwitz, i.e., A contains only Hurwitz
matrices.

It is worth observing that the uncertainty model (4) is fairly general, as it
encompasses also families of matrices A(p) whose dependence on p is polyno-
mial (not necessarily homogeneous). Indeed, for any polynomial matrix

Ã(p) =
i1≥0,...,iq≥0
i1+...+iq≤r

pi1
1 · · · piq

q Ãi1...iq (5)

let us define the homogeneous polynomial matrix A(p) such that

A(p) =
i1≥0,...,iq≥0
i1+...+iq≤r

q

i=1

pi

r−i1−...−iq

pi1
1 · · · piq

q Ãi1...iq . (6)
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It turns out that A(p) = Ã(p) for all p ∈ P : therefore, there is no loss of
generality in considering A(p) as a homogeneous matricial form in p.

The key step for addressing the robust stability problem formulated above
is the construction of a Homogeneous Polynomially Parameter-Dependent
Quadratic Lyapunov Function (simply abbreviated as HPD-QLF)

vm(x; p) = x Pm(p)x, (7)

where Pm(p) ∈ Rn×n is a homogeneous matricial form of degree m, i.e., a
matrix whose entries are (real q-variate) homogeneous forms of degree m.

Let us introduce the following important property of HPD-QLFs.

Lemma 1. The set A is Hurwitz if and only if there exists a HPD-QLF
vm(x; p) such that Pm(p) > 0

A (p)Pm(p) + Pm(p)A(p) < 0
∀p ∈ P . (8)

Proof. Sufficiency is obvious. Regarding the necessity, let us suppose that A
is Hurwitz. Let Em̄(p) = Em̄(p) be any homogeneous matricial form of degree
m̄ such that Em̄(p) > 0 ∀p ∈ P , and let us consider the Lyapunov equation

A (p)P (p) + P (p)A(p) = −Em̄(p). (9)

The solution is a rational matricial function P (p) = P (p) > 0 ∀p ∈ P ,
whose entries have homogeneous numerators of degree m and the same de-
nominator d(p), such that d(p) > 0 ∀p. Hence, one can write P (p) as
P (p) = d−1(p)Pm(p). Then, it clearly follows that Pm(p) satisfies (8) (in
particular, A (p)Pm(p) + Pm(p)A(p) = −d(p)Em̄(p)).

Remark 1. A result analogous to that of Lemma 1 can be easily obtained
for discrete-time systems.

Remark 2. From the proof of Lemma 1, an upper bound on the de-
gree m of the homogeneous matricial form Pm(p) defining the HPD-QLF
can be derived. In particular, by choosing Em̄(p) = E0 constant, one has
m < 1

2rn(n + 1).

3 Parameterization of Homogeneous Matricial Forms

In order to give sufficient conditions for the existence of a HPD-QLF, it is use-
ful to introduce a suitable parameterization of homogeneous matricial forms.

First, let us recall the Complete Square Matricial Representation (CSMR)
of homogeneous scalar forms, which provides all possible representations of a
homogeneous polynomial form of degree 2m in terms of a quadratic form in



the space of the monomials of degree m (see [17] for details). Let w2m(p) be
a homogeneous form of degree 2m in p ∈ Rq. The CSMR of w2m(p) is defined
as

w2m(p) = p{m} (Wm + Lm(α))p{m}

where:

- p{m} ∈ Rσ(q,m) is the vector containing all monomials of degree m in p;
- Wm ∈ Rσ(q,m)×σ(q,m) is a suitable symmetric matrix;
- α ∈ Rσpar(q,m) is a vector of free parameters;
- Lm(α) is a linear parameterization of the set

Lm = Lm = Lm : p{m} Lmp{m} = 0 ∀p ∈ Rq .

The quantities σ(q, m) and σpar(q, m) are given respectively by ([17])

σ(q, m) =
(q + m − 1)!
(q − 1)!m!

, (10)

σpar(q, m) =
1
2
σ(q, m)[σ(q, m) + 1] − σ(q, 2m). (11)

Similarly to what has been done for scalar forms, one can introduce the
CSMR for homogeneous matricial forms. Let C2m(p) ∈ Rn×n be a homoge-
neous matricial form of degree 2m in p ∈ Rq. Then, C2m(p) can be written
as

C2m(p) = p{m} ⊗ In C̄m p{m} ⊗ In (12)

where C̄m ∈ Rnσ(q,m)×nσ(q,m) is a suitable matrix (denoted hereafter as a
SMR matrix of C2m(p)). Such a matrix is not unique and, indeed, all the
matrices C̄m describing C2m(p) are given by

C̄m + Ūm, Ūm ∈ Um (13)

where

Um = Ūm = Ūm ∈ Rnσ(q,m)×nσ(q,m) :

p{m} ⊗ In Ūm p{m} ⊗ In = 0n×n ∀p ∈ Rq .
(14)

Lemma 2. The set Um in (14) is a linear space of dimension

u(q, n, m) =
1
2
n σ(q, m)[nσ(q, m) + 1] − (n + 1)σ(q, 2m) . (15)

Proof. Set Um is a linear space since Z̄1, Z̄2 ∈ Um ⇒ z1Z̄1 + z2Z̄2 ∈
Um ∀z1, z2 ∈ R. Now, let us observe that nσ(q, m)(nσ(q, m) + 1)/2 is the
number of entries of a symmetric matrix of dimension nσ(q, m) × nσ(q, m),
while n(n + 1)σ(q, 2m)/2 is the number of independent terms (and, hence, of
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constraints) of a homogeneous n × n matricial form of degree 2m in q vari-
ables.

Let Ūm(α), α ∈ Ru(q,n,m), be a linear parameterization of Um. The CSMR of
C2m(p) is hence given by

C2m(p) = p{m} ⊗ In C̄m + Ūm(α) p{m} ⊗ In . (16)

4 Robust Stability Analysis via HPD-QLFs

In this section, sufficient conditions for robust stability are provided in terms
of LMIs. The aim is to find a HPD-QLF as in (7), such that Pm(p) satisfies
(8) in Lemma 1. The first condition to be satisfied is the positive definiteness
of the HPD-QLF matrix Pm(p) within the set P , i.e. the first inequality in
(8). In this respect, a parameterization of positive definite matrices Pm(p) is
provided next, in Section 4.1. The second inequality in (8) will be dealt with
in Section 4.2.

4.1 Parameterization of Positive Definite HPD-QLF Matrices

The following result exploits a basic property of homogeneous forms to give
an alternative characterization of the positivity of Pm(p).

Lemma 3. The condition

Pm(p) > 0 ∀p ∈ P (17)

holds if and only if
Pm(sv(p)) > 0 ∀p ∈ Rq

0. (18)

Proof. Being Pm(p) homogeneous in p, one has that (17) is equivalent to
Pm(κp) > 0 for all p ∈ P and for all positive κ, and hence to Pm(p) > 0 for
all p in the positive orthant (i.e., such that pi ≥ 0, i = 1, . . . , q, and p = 0n).
The latter condition can be equivalently expressed as in (18).

Remark 3. Notice that Lemma 3 still holds if the parametric uncertainty
region P is replaced by any set of the form {p : pi ≥ 0, i = 1, . . . , q; p = γ},
for any norm · and positive γ.

Observe that Pm(sv(p)) can be written as

Pm(sv(p)) = p{m} ⊗ In S̄m p{m} ⊗ In (19)



for some suitable matrix S̄m ∈ Sm where

Sm = S̄m = S̄m ∈ Rnσ(q,m)×nσ(q,m) : p{m} ⊗ In S̄m p{m} ⊗ In does not

contain entries pi1
1 pi2

2 . . . p
iq
q with any odd ij .

(20)
From the definition of Sm, an alternative way to write (19) is

Pm(sv(p)) = T̃m [sv(p)]{m} ⊗ In (21)

where T̃m ∈ Rn×nσ(q,m) is a suitable matrix. Hence, due to Lemma 3, one has
that if S̄m in (19) is positive definite, then the matrix

Pm(p) = T̃m p{m} ⊗ In

is positive definite for p ∈ P .
In order to increase the degrees of freedom in the selection of Pm(p), it is worth
noticing that matrix S̄m in (19) is not unique. The next lemma provides a
characterization of the set Sm.

Lemma 4. The set Sm is a linear space of dimension

s(q, n, m) =
1
2
n σ(q, m)[nσ(q, m) + 1] − (n + 1)[σ(q, 2m) − σ(q, m)] . (22)

Proof. The set Sm is a linear space since Z̄1, Z̄2 ∈ Sm ⇒ z1Z̄1 + z2Z̄2 ∈
Sm ∀z1, z2 ∈ R. Now, let us observe that nσ(q, m)(nσ(q, m) + 1)/2 is the
number of entries of a symmetric matrix of dimension nσ(q, m) × nσ(q, m),
while n(n + 1)(σ(q, 2m) − σ(q, m))/2 is the number of independent terms
(and, hence, of constraints) containing at least one odd power of a homoge-
neous n × n matricial form of degree 2m in q variables.

Let S̄m(β), β ∈ Rs(q,n,m), be a linear parameterization of Sm. Clearly, this
induces a corresponding linear parameterization T̃m(β) of matrix T̃m in (21).
Hence, one can choose the family of candidate HPD-QLF matrices

Pm(p; β) = T̃m(β) p{m} ⊗ In (23)

which depends linearly on the parameterization β of Sm. Following the above
reasoning, one has the next result, which is the key step for the formulation
of the sufficient condition for solving the robust stability problem.

Lemma 5. Let S̄m(β) belong to Sm in (20). If S̄m(β) > 0, then

Pm(p; β) > 0 ∀p ∈ P .
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4.2 LMI-Based Sufficient Conditions for Robust Stability

In the following, a sufficient condition for the solution of the robust stabil-
ity problem is provided. To this purpose, let us introduce the homogeneous
matricial form of degree m + r

Qm+r(p; β) = −A (p)Pm(p; β) − Pm(p; β)A(p) (24)

and the related homogeneous form Qm+r(sv(p); β), which can be written as

Qm+r(sv(p); β) = p{m+r} ⊗ In R̄m+r(β) p{m+r} ⊗ In , (25)

where R̄m+r(β) ∈ Rnσ(q,m+r)×nσ(q,m+r) is any SMR matrix of Qm+r(sv(p); β).
The following result yields the sought sufficient condition.

Theorem 1. The set A in (4) is Hurwitz if there exist a nonnegative integer
m, and parameter vectors α ∈ Ru(q,n,m+r) and β ∈ Rs(q,n,m) such that S̄m(β) > 0

R̄m+r(β) + Ūm+r(α) > 0
(26)

where S̄m(β) ∈ Sm, Ūm+r(α) ∈ Um+r, and R̄m+r(β) is defined by (24)-(25).

Proof. First, let Pm(p; β) be defined as in (23). Then, from (26) and Lemma
5 one has that Pm(p; β) > 0 ∀p ∈ P , and hence the first condition in (8)
holds. Second, let us observe that R̄m+r(β)+ Ūm+r(α) is the CSMR matrix of
Qm+r(sv(p); β) in (25). Hence, (26) implies that Qm+r(sv(p); β) > 0 ∀p ∈ Rq

0.
From Lemma 3 it turns out that Qm+r(p; β) > 0 ∀p ∈ P and, therefore, A is
Hurwitz.

The inequalities (26) form an LMI feasibility problem with s(q, n, m) +
u(q, n, m + r) free parameters. The size of the matrices is nσ(q, m) for the
first inequality and nσ(q, m+ r) for the second one. The solution can be com-
puted by using efficient convex optimization tools, like [18, 19].

A question that naturally arises is whether there exists a relationship be-
tween the families of HPD-QLFs of degree m and m + 1. The following result
clarifies that, if the sufficient condition of Theorem 1 is satisfied for m, then
it is satisfied also for m + 1.

Theorem 2. Let m be a nonnegative integer. If there exist parameter vectors
α ∈ Ru(q,n,m+r) and β ∈ Rs(q,n,m) such that (26) is satisfied, then there exist
parameter vectors α̃ ∈ Ru(q,n,m+r+1) and β̃ ∈ Rs(q,n,m+1) such that S̄m+1(β̃) > 0

R̄m+r+1(β̃) + Ūm+r+1(α̃) > 0
. (27)



Proof. From the proof of Theorem 1 we have that, ∀p ∈ P , Pm(p; β) > 0
and Qm+r(p; β) > 0. Define now Pm+1(p) = Pm(p; β) q

i=1 pi. It follows that
Pm+1(p) > 0 ∀p ∈ P and Qm+r+1(p) = Qm+r(p; β) q

i=1 pi > 0 ∀p ∈ P .
This means that vm+1(x; p) = x Pm+1(p)x is a HPD-QLF of degree m + 1
satisfying the condition of Lemma 1.
Let us show now that Pm+1(sv(p)) admits a positive definite SMR matrix, that
is there exists β̃ such that S̄m+1(β̃) > 0. Let Km+1 be the matrix satisfying

p ⊗ p{m} = Km+1p
{m+1} ∀p ∈ Rq.

Then,

Pm+1(sv(p)) = q
i=1 p2

i p{m} ⊗ In S̄m(β) p{m} ⊗ In

= p p p{m} ⊗ In S̄m(β) p{m} ⊗ In

= p ⊗ p{m} ⊗ In Iq ⊗ S̄m(β) p ⊗ p{m} ⊗ In

= Km+1p
{m+1} ⊗ In Iq ⊗ S̄m(β) Km+1p

{m+1} ⊗ In

= p{m+1} ⊗ In (Km+1 ⊗ In) Iq ⊗ S̄m(β) (Km+1 ⊗ In)

p{m+1} ⊗ In

= p{m+1} ⊗ In S̄m+1 p{m+1} ⊗ In

(28)
where

S̄m+1 = (Km+1 ⊗ In) Iq ⊗ S̄m(β) (Km+1 ⊗ In).

From (28), it is clear that S̄m+1 ∈ Sm+1, and hence there exists β̃ such that
S̄m+1(β̃) = S̄m+1. Moreover, since S̄m(β) > 0 and Km+1 is a matrix with full
column rank, it follows that S̄m+1(β̃) > 0.
Let us show now that Qm+r+1(sv(p)) admits a positive definite SMR matrix.
Following the same development as in (28), one gets

Qm+r+1(sv(p)) = p{m+r+1} ⊗ In R̄m+r+1(β̃) p{m+r+1} ⊗ In (29)

where

R̄m+r+1(β̃) = (Km+r+1 ⊗ In) Iq ⊗ R̄m+r(β) + Ūm+r(α) (Km+r+1 ⊗ In) .
(30)

Since R̄m+r(β) + Ūm+r(α) > 0 it follows that R̄m+r+1(β̃) > 0. There-
fore, Qm+r+1(sv(p)) admits the positive definite SMR matrix R̄m+r+1(β̃) +
Ūm+r+1(α̃) with α̃ = 0u(q,n,m+r+1), and (27) holds.

Remark 4. The proposed technique can be applied also to discrete-time
systems x(t + 1) = A(p)x(t), where A(p) belongs to the set in (4). An LMI-
based sufficient condition similar to (26) can be obtained by observing that

An LMI-Based Technique for Robust Stability Analysis of Linear Systems 95



96 G. Chesi et al.

Pm(p) − A (p)Pm(p)A(p) = Pm(p)
q

i=1

pi

2r

− A (p)Pm(p)A(p)

and the right term is a homogeneous matricial form of degree m+2r that can
be parameterized as

Qm+2r(p; β) = Pm(p; β)
q

i=1

pi

2r

− A (p)Pm(p; β)A(p).

Then, the sought sufficient condition is obtained by following the same rea-
soning that has led to Theorem 1. A result analogous to Theorem 2 can also
be derived.

5 Numerical Examples

In this section, some numerical examples are presented to illustrate the pro-
posed technique for robust stability analysis of uncertain systems.

5.1 Example 1

The first example is deliberately simple, in order to show how the LMIs in-
volved in the sufficient condition are generated. Consider the problem of com-
puting the robust parametric margin ρ∗ defined as

ρ∗ = sup ρ ∈ R : Â(θ) is Hurwitz for all θ ∈ [0, ρ]

where

Â(θ) =
−1 −1

4 −1
+ θ

0 −7

−13 3
+ θ2 0 6

14 −2
.

The equivalent matrix A(p; ρ) is computed by setting θ = ρ p1 and converting
the so-obtained polynomial matrix in p1 in a homogeneous one with respect
to p = [p1, p2] as described in (5)–(6) where p2 = 1 − p1. In particular, we
have

A(p; ρ) = p2
1

−1 − 1 − 7ρ + 6ρ2

4 − 13ρ + 14ρ2 − 1 + 3ρ − 2ρ2

+p1p2

−2 − 2 − 7ρ

8 − 13ρ − 2 + 3ρ
+ p2

2

−1 − 1

4 − 1

with q = n = r = 2. Note that the solution of the above problem amounts to
solving a one-parameter family of robust stability problems addressed in the
paper, namely one for each fixed value of ρ.



Consider first the case m = 0, which means that a common Lyapunov
function is sought for all the matrices of the polytope A (in other words,
the Lyapunov function does not depend on the uncertain parameter). The
sufficient condition in Theorem 1 involves the matrices

S̄0(β) =
β1 β2

β2 β3

, Ū2(α) =



0 0 0 − α1 α3 − α2 − α4

0 0 α1 0 α2 − α5

0 α1 2α3 α4 0 − α6

−α1 0 α4 2α5 α6 0

−α3 α2 0 α6 0 0

−α2 − α4 − α5 − α6 0 0 0


,

R̄2(β) =



r1 r2 0 0 0 0

r2 r3 0 0 0 0

0 0 r4 r5 0 0

0 0 r5 r6 0 0

0 0 0 0 r7 r8

0 0 0 0 r8 r9


where

r1 = 2β1 + (−8 + 26ρ − 28ρ2)β2

r2 = (1 + 7ρ − 6ρ2)β1 + (2 − 3ρ + 2ρ2)β2 + (−4 + 13ρ− 14ρ2)β3

r3 = (2 + 14ρ − 12ρ2)β2 + (2 − 6ρ + 4ρ2)β3

r4 = 4β1 + (−16 + 26ρ)β2

r5 = (2 + 7ρ)β1 + (4 − 3ρ)β2 + (−8 + 13ρ)β3

r6 = (4 + 14ρ)β2 + (4 − 6ρ)β3

r7 = −2β1 − 8β2

r8 = β1 + 2β2 − 4β3

r9 = 2β2 + 2β3.

The number of free parameters is u(2, 2, 2)+s(2, 2, 0) = 9 and the lower bound
of ρ∗ is ρ∗{m=0} = 0.22591.

By using higher values of m we find:

• ρ∗{m=1} = 0.76480, with u(2, 2, 3) + s(2, 2, 1) = 22;
• ρ∗{m=2} = 1.3005, with u(2, 2, 4) + s(2, 2, 2) = 43.

It turns out that the lower bound for m = 2 is tight, i.e. ρ∗
{m=2} = ρ∗. This

is verified by the fact that Â(ρ∗{m=2}) is marginally Hurwitz. The HPD-QLF
matrix corresponding to ρ∗

{m=2} is
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P ∗
2 (p) = p2

1

1 0.0928

0.0928 0.0086
+p1p2

−0.7400 0.1072

0.1072 1.1183
+p2

2

0.4849 0.0370

0.0370 0.2322
.

5.2 Example 2

Consider the problem of computing the robust parametric margin ρ∗ defined
as

ρ∗ = sup ρ ∈ R : Â(θ1, θ2) is Hurwitz for all θ = [θ1, θ2] ∈ ρΘ

where the set Θ is chosen as in Figure 1 according to

Θ = θ ∈ R2 : θ1 + θ2 ≤ 1, θi ≥ 0

and

Â(θ1, θ2) =
−1 − 2

5 0
+ θ1

0 − 5

−15 1
+ θ2

−8 − 6

−2 10

+θ2
1

0 6

14 − 2
+ θ2

2

8 8

0 − 12
.

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

θ1

θ 2

Fig. 1. Set Θ.

The equivalent matrix A(p; ρ) is computed by setting θ1 = ρ p1 and
θ2 = ρ p2 and converting the so-obtained polynomial matrix in p1, p2 in a
homogeneous one with respect to p = [p1, p2, p3] where p3 = 1 − p1 − p2. We
hence have q = 3 and n = r = 2.

By using Theorem 1 we find:

• ρ∗{m=0} = 0.09825 (u(3, 2, 2) + s(3, 2, 0) = 36);



• ρ∗{m=1} = 0.38279 (u(3, 2, 3) + s(3, 2, 1) = 138);
• ρ∗{m=2} = 0.56349 (u(3, 2, 4) + s(3, 2, 2) = 381).

It turns out that the lower bound for m = 2 is tight, i.e. ρ∗
{m=2} = ρ∗. This

has been verified in the following way. Define the degree of stability

δ(θ) = −max (λ) : λ is an eigenvalue of Â(θ) , (31)

where (λ) denotes the real part of λ. Figure 2 shows the plot of δ(θ) along
the hypotenuse of ρ∗

{m=2} Θ, i.e. the segment

θ(η) =
ρ∗{m=2}

0
η +

0

ρ∗{m=2}
(1 − η), η ∈ [0, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

δ(
θ
(η

))

Fig. 2. Degree of stability δ(θ) along the hypotenuse of the set ρ∗
{m=2} Θ.

6 Conclusions

The class of HPD-QLFs has been shown to be a viable tool for assessing robust
stability of uncertain linear systems. By expressing the dependence of the
Lyapunov function on the uncertain parameters as a polynomial homogenous
form, it is possible to formulate sufficient conditions in terms of LMI feasibility
tests, which are less conservative with respect to conditions derived for linearly
parameter-dependent Lyapunov functions.
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Ongoing research concerns the application of HPD-QLFs to systems in
which the uncertain parameters are allowed to be time-varying with a known
bound on the variation rate, and to the evaluation of robust performance in
control systems. Another topic of interest is the comparison of HPD-QLFs
with a class of Lyapunov functions in which also the dependence on the
state vector is expressed as a homogeneous polynomial form (not quadratic).
Whether such class can provide less conservative conditions with respect to
HPD-QLFs, for different uncertainty models, is still an open question.
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We study here the static state-feedback stabilization of linear finite dimen-
sional systems depending polynomially upon a finite set of real, bounded,
parameters. These parameters are a priori unknown, but available in real-
time for control. In consequence, it is natural to allow possible dependence of
the gain with respect to the parameters (gain-scheduling).

We state two main results. First, we show that stabilizability of the class
of systems obtained for frozen values of the parameters, may be expressed
equivalently by linear matrix inequalities (LMIs), linked to certain class of
parameter-dependent Lyapunov functions. Second, we show that existence of
such a Lyapunov function for the linear parameter-varying (LPV) systems
subject to bounded rate of variation of the parameters with respect to time,
may be in the same manner expressed equivalently by LMI conditions. In
both cases, the method provides explicitly parameter-dependent stabilizing
gain. The central arguments are linked to the existence of a decomposition
of some symmetric parameter-dependent matrices as sum of positive definite
terms.

1 Introduction

Linear parameter-varying (LPV) systems have recently received much atten-
tion, in connection with the gain-scheduling control design methodologies, see
[5, 12] for recent surveys and bibliography on the subject. LPV systems are
linear systems that depend upon time-varying real parameters. The latter are
not known in advance, but may be used in real-time for control purposes.
However, they are usually constrained to lie inside a known bounded set.

The issue of checking the stabilizability and determining a parameter-
dependent stabilizing gain for every frozen admissible value of the parameters,
is already a difficult task. As an example, a coarse application of the Lyapunov-
based synthesis techniques available for linear systems is impossible, as it leads
to solve an infinite number of linear matrix inequalities (LMIs). At this point,

D. Henrion and A. Garulli (Eds.): Positive Polynomials in Control, LNCIS 312, pp. 103–117, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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two types of methods are usually used (see the recent works [14, 7] on LPV
systems): either the controller gain is first computed for a bunch of parameter
values, and then interpolated between the nodes of this grid (but the stability,
and possibly performance, results are not guaranteed between the nodes); or
the solution of the parameter-dependent LMIs involved is sought for with
prespecified dependence with respect to the parameters, usually constant or
affine (at the cost of adding conservatism). Of course, the stabilization issue
is still more complicated when the parameters are time-varying.

In this paper, we show that, in principle, for linear systems depending
polynomially upon finite number of bounded parameters, the determination of
parameter-dependent stabilizing gain may be achieved without conservatism.
More precisely, we state two main results (Theorems 1 and 2 below), whose
contribution may be summarized as follows.

1. The stabilization of all the systems obtained for constant values of the
parameters in the admissible hypercube is equivalent to the existence for
the closed-loop system of a quadratic Lyapunov function polynomial with
respect to the parameters. For fixed value of the degree, the coefficients of
this polynomial may be found by solving a LMI.

2. The existence of a similar quadratic Lyapunov function (depending in the
same way upon the parameters) for the corresponding LPV system with
restricted rate of variation of the parameters, is also equivalent, for fixed
degree, to the solvability of a LMI.

3. In both cases, a parameter-dependent stabilizing gain is deduced from the
solution of the LMIs.

The originality of the results presented here lies in the nonconservative na-
ture of the LMI conditions proposed. They constitute a systematization of the
approaches based on parameter-dependent Lyapunov functions. Further work
should consider dynamic controller synthesis and performace verification.

Effective use of the results given here is subordinate to powerful LMI
solvers. A general idea for reducing the computation complexity consists in
performing first a subdivision of the admissible parameter set in subdomains
and applying the results presented below on these smaller regions. The present
paper provides a stage towards such a hybrid control (with switches according
to the parameter values), which in principle could lead to sensible diminution
of the (off-line) computational burden, but whose study is out of our scope
here.

The paper is organized as follows. The problem is presented in Sect. 2.
Notations are provided in Sect. 3. The result on systems with frozen parame-
ters (Theorem 1) is stated in Sect. 4. The results on systems with parameters
with bounded derivative (Theorem 2) is stated in Sect. 5. Elements of proof
are displayed in Sect. 6. Some technical results related to the computations
involved are gathered in Appendix.
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2 Problem Statement

We consider here the issue of state-feedback stabilization for the class of linear
systems

ẋ = A(σ(t))x + B(σ(t))u . (1)

In (1), the matrices A ∈ Rn×n, B ∈ Rn×p are supposed to be polynomials
of partial degree (at most) k with respect to the components of a vector

σ
def= (σ1, . . . , σm) of m real parameters.
We are interested in the design of stabilizing static state-feedback for (1),

under the assumption that ∀t ≥ 0, σ(t) ∈ [−1; +1]m. In the special case where
the components of σ are constant (σ̇ ≡ 0), this is equivalent to find, for any
σ ∈ [−1; +1]m, a gain K(σ) such that A(σ)+B(σ)K(σ) is Hurwitz. This leads
to study the following property.

Property I. There exist mappings P : [−1; +1]m → Sn, N : [−1; +1]m →
Rp×n such that, ∀σ ∈ [−1; +1]m

P (σ) > 0n, A(σ)P (σ) + P (σ)A(σ)T + B(σ)N(σ) + N(σ)T B(σ)T < 0n.

In this formula, Sn represents the set of symmetric matrices of size n× n.
Property I is equivalent to the stabilizability of (1) for every admissible choice
of the parameters.

As is well-known, the previous condition, guaranteeing stability for the
frozen parameter systems, is not enough to guarantee stability of the systems
with time-varying parameters. An attempt to extend the previous ideas to sta-
bilization of LPV systems with parameters having variation rate constrained
by |σ̇i| ≤ ī a.e., i = 1, . . . , m, leads to the following interesting issue.

Property II. There exist mappings P : [−1; +1]m → Sn, N : [−1; +1]m →
Rp×n, P differentiable, such that, ∀σ ∈ [−1; +1]m, ∀ i ∈ [− ī; ī],

P (σ) > 0n, A(σ)P (σ)+P (σ)A(σ)T +B(σ)N(σ)+N(σ)T B(σ)T−
m

i=1

i
∂P (σ)
∂σi

< 0n.

Property II is equivalent to the existence of a quadratic Lyapunov function
depending regularly upon the present values of the parameters. This property
is thus a priori stronger than the stability of the systems (1) attached to every
admissible trajectories of the parameters.

3 Notations and Preliminaries

• The matrices In, 0n, 0n×p are the n× n identity matrix and the n× n and
n×p zero matrices respectively. The symbol ⊗ denotes Kronecker product, the
power of Kronecker product being used with the natural meaning: M 0⊗ = 1,

Mp⊗ def= M (p−1)⊗ ⊗ M . Key properties are: (A ⊗ B)T = AT ⊗ BT , (A ⊗
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B)(C ⊗D) = (AC ⊗BD) for matrices of compatible size. The transpose and
transconjugate of M are denoted MT and M∗. The unit circle in C is denoted
as the boundary ∂D, and the set of positive integers N. Diagonal matrices
are defined by diag. Also, the set of symmetric real (resp. hermitian complex)
matrices of size n × n is denoted Sn (resp. Hn).

Last, we introduce some spaces of matrix-valued polynomials. Rn×n[σ]
(resp. Sn[σ]) will denote the set of polynomials in the variable σ ∈ Rm, with
coefficients in Rn×n (resp. Sn). We shall also consider in the sequel the set,
denoted Rn×n[z, z̄], of polynomials in z and z̄, z ∈ C, with coefficients in
Rn×n. The sets Sn[z, z̄], Hn[z, z̄] are defined similarly.

• We now introduce specific notations. For any l ∈ N, for any v ∈ C, let

v[l] def=


1

v
...

vl−1

 . (2)

This notation permits to manipulate polynomials. Notice in particular that,
for a free variable z ∈ Cm, the vector (z[l]

m ⊗ · · · ⊗ z
[l]
1 ) contains exactly the lm

monomials in z1, . . . , zm of degree at most l − 1 in each variable.
Using this notation, any element M(z) in Rp×n[z, z̄] may be represented

as
M(z) = (z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ Ip)∗Ml(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) . (3)

In this formula, for given l ∈ N, the matrix Ml ∈ Rlmp×lmn is unique, in the
sense that: M(z) = 0 for all z ∈ Cm iff Ml = 0. Independently of minimality,
the matrix Ml is called the coefficient matrix of this representation of M(z),
l − 1 its degree.

In the sequel, we shall use the following change of variables (i2 = −1):

ϕ : [−1; +1]m → (∂D)m, σ → z = ϕ(σ)

where zi
def= σi + i 1 − σ2

i , i = 1, . . . , m .
(4)

Basically (see the developments below), changing σ in z will permit to use
Kalman-Yakubovich-Popov lemma, “replacing” the free variables zi by matrix
multipliers in the parameter-dependent LMIs appearing in Properties I and
II. In particular, for z in the range of ϕ, ϕ−1(z) = z+z̄

2 . When z = (z1, . . . , zm)
covers (∂D)m, z+z̄

2 varies in the whole set [−1; +1]m.
Generally speaking, for M defined as in (3) and the change of variable ϕ

as in (4), M(ϕ(σ)) is a polynomial in σi and 1 − σ2
i , i = 1, . . . , m. Among

these polynomials, some will be of particular interest here, those leading to
polynomials in the σi only. It may checked easily that these are the polynomi-
als whose coefficients in the monomials i=1,...,m zαi

i z̄
αi

i and i=1,...,m zβi

i z̄
βi

i
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are equal when {αi, αi} = {βi, βi} for any i = 1, . . . , m. Indeed, up to fac-
torization by powers of |zi|2 (which is equal to 1 on ∂D), those polynomials
are functions of zi + z̄i = 2σi only. This property corresponds to matrices
Ml ∈ Rlmp×lmn in (3) having a particular mirror block structure, those per-
taining to the set

Rp×n,lm

M
def= {Ml ∈ Rlmp×lmn : ∀α1, . . . , αm, α1, . . . , αm ∈ {0, . . . , l − 1},

(eαm ⊗ · · · ⊗ eα1 ⊗ Ip)T Ml(eαm
⊗ · · · ⊗ eα1

⊗ In) depends only upon the sets

{α1, α1}, . . . , {αm, αm}} ,

where we put eT
α

def= 01×α 1 01×(l−α−1) .

The definition of Rp×n,lm

M is such that Ml ∈ Rp×n,lm

M iff M(ϕ(σ)) is poly-
nomial in σ ∈ [−1; +1]m, for M(z) defined by (3). The subset of those maps
M(z) of Rp×n[z, z̄] such that M(ϕ(σ)) is polynomial in σ ∈ [−1; +1]m, will

be denoted Rp×n
M [z, z̄]. Also, we define Sn

M [z, z̄] def= Rn×n
M [z, z̄] ∩ Sn[z, z̄].

Let us point out to the reader, that some technical results linked to the
matrix transformations induced by operations on polynomials, are gathered
in Appendix.

• We finally define some matrices. For l, l ∈ N, let Ĵl ,l, J̌l ,l ∈ Rl×(l+l ) be
defined by

Ĵl ,l
def= Il 0l×l , J̌l ,l

def= 0l×l Il . (5)

A key property of these matrices is that, ∀v ∈ C, for v[l] defined previously,

v[l] = Ĵl ,lv
[l+l ], vl v[l] = J̌l ,lv

[l+l ] . (6)

Last, define Ll ∈ Rl×l by:

Ll
def=



0 . . . 0 0

1 0

2
. . .

...

l − 1 0


. (7)

4 Constant Parameters

In the case where the parameters σ are constant, it turns out that Property
I is fulfilled if and only if it is fulfilled for certain P (σ), N(σ) depending
polynomially upon σ (see also [2]). This naturally introduces as new variables
the degree l − 1 of the polynomials, and the coefficient matrices of P and N .
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It turns out moreover, that, for given l, the coefficients may be found out by
solving an LMI. This permits to find in an explicit way stabilizing controllers,
as functions of the parameter σ.

Theorem 1. The following assertions are equivalent.

(i) Property I is fulfilled.
(ii)There exists (P (σ), N(σ)) ∈ Sn[σ] × Rp×n[σ] fulfilling Property I.
(iii)There exist an integer l ∈ N, 2 matrices Pl ∈ Slmn∩Rn×n,lm

M , Nl ∈ Rp×n,lm

M

and 2m matrices QP
l,i ∈ S(l−1)m−i+1li−1n, QR

l,i ∈ S(k+l−1)m−i+1(k+l)i−1n,
i = 1, . . . , m, such that the system (8) of 2 LMIs is fulfilled, where Rk+l =
Rk+l(Pl, Nl) ∈ S(k+l)mn is the coefficient matrix of R(z) defined in (9),
corresponding to P (z), N(z) with coefficient matrices Pl, Nl.

(8a)

(8b)

0lmn < Pl +
m

i=1

Ĵ
(m−i+1)⊗
1,l−1 ⊗ Ili−1n

T

QP
l,i Ĵ

(m−i+1)⊗
1,l−1 ⊗ Ili−1n

−
m

i=1

Ĵ
(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n

T

QP
l,i Ĵ

(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n ,

0(k+l)mn > Rk+l+
m

i=1

Ĵ
(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

T

QR
l,i Ĵ

(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

−
m

i=1

Ĵ
(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n

T

QR
l,i Ĵ

(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n ,

R(z) def= A(
z + z̄

2
)P (z)+P (z)A(

z + z̄

2
)T +B(

z + z̄

2
)N(z)+N(z)T B(

z + z̄

2
)T < 0n .

(9)
Moreover,

• given a solution of LMI (8), for P (z), N(z) having coefficient matrices

Pl, Nl, P (ϕ(σ)), N(ϕ(σ)) fulfil Property I, and K(σ) def= N(ϕ(σ))P (ϕ(σ))−1

is a stabilizing gain, rational in σ;
• if LMI (8) is solvable for the value l of the index, then it is also solvable

for any larger value.

The matrices Ĵ , J̌ have been defined earlier in (5). Details for a system-
atic computation of the matrix Rk+l and of the gain K(σ) may be found in
Appendix.

Theorem 1 offers a family of relaxations of Property I. These conditions
are less and less conservative when the index l increases. Asymptotically, the
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conservatism vanishes, as solvability of (8) for certain l is also necessary to
have Property I.

Notice that the two inequalities in (8) correspond respectively to the con-
ditions

P (
z + z̄

2
) > 0n

and

R(
z + z̄

2
) = A(

z + z̄

2
)P (z)+P (z)A(

z + z̄

2
)T +B(

z + z̄

2
)N(z)+N(z)T B(

z + z̄

2
)T < 0n

for all z ∈ (∂D)m. Elements of proof of Theorem 1 are provided in Sect.
6, but we briefly indicate here how to prove that feasibility of (8) implies
Property I. Right- and left-multiplication of (8a) by (z [l]

m ⊗ · · ·⊗ z
[l]
1 ⊗ In) and

its transconjugate yields, using (6) repeatedly:

0n < (z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)∗Pl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) +

m

i=1

(1 − |zi|2)

× (z[l−1]
m ⊗ · · · ⊗ z

[l−1]
i ⊗ z

[l]
i−1 ⊗ · · · ⊗ z

[l]
1 ⊗ In)∗QP

l,i

× (z[l−1]
m ⊗ · · · ⊗ z

[l−1]
i ⊗ z

[l]
i−1 ⊗ · · · ⊗ z

[l]
1 ⊗ In) ,

from which one deduces, putting |zi| = 1:

∀z ∈ (∂D)m, P (z) def= (z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)∗Pl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) > 0n .

Applying similar argument on (8b) with (z[k+l]
m ⊗ · · · ⊗ z

[k+l]
1 ⊗ In)) leads to

∀z ∈ (∂D)m, R(z) def= (z[k+l]
m ⊗· · ·⊗z

[k+l]
1 ⊗In)∗Rk+l(z[k+l]

m ⊗· · ·⊗z
[k+l]
1 ⊗In) < 0n .

It is now evident that solvability of (8) gives rise to a solution (P, N) of
Problem I of degree l−1 in z, z̄, and K(σ) as defined in the statement appears
as a stabilizing gain, for every admissible value of the parameters.

Remark that, writing the positive right-hand side of, say, (8a) as UT ΛU
with UT = U−1 and Λ = diag{Λi}, the previous computations show that, for
any z ∈ (∂D)m,

P (z) =
lmn

i=1

Λi U(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)

∗

i
U(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)

i
,

which thus appears as a sum of squares of matrix-valued polynomials.
Incidentally, stabilizability of a pair (A, B) is equivalent [4, §7.2.1] to the

existence of a definite positive matrix P such that AP + PAT < BBT . This
corresponds to the choice N = − 1

2BT in the LMI: AP +PAT +BN+NT BT <
0. Similarly, it may be checked that, replacing in (9) the matrix N(z) by
− 1

2BT ( z+z̄
2 ), provides a simpler stabilizability criterion. Another particular

case is B(σ) = 0, which provides a robust stability criterion, see also [1].
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5 Time-Varying Parameters with Bounded Variation

Contrary to the constant-parameter case, when Property II is fulfilled, there
is probably no necessity for existence of a parameter-dependent Lyapunov
function of the kind exhibited in Theorem 1. See however related results in
[8, 9, 10]. But it is worth noting that, for given degree, the existence of such
a Lyapunov function may be expressed without loss of generality as a LMI
problem, in a way similar to what was done for Property I in Theorem 1.
Analogously, stabilizing controllers are then found explicitly as functions of
σ(t).

Theorem 2. The following assertions are equivalent.

(i) There exists (P (σ), N(σ)) ∈ Sn[σ] × Rp×n[σ] fulfilling Property II.
(ii)There exist an integer l ∈ N, 2 matrices Pl ∈ Slmn ∩ Rn×n,lm

M , Nl ∈
Rp×n,lm

M , m matrices QP
l,i ∈ S(l−1)m−i+1li−1n, i = 1, . . . , m, and 2m matri-

ces QR,η
l,i ∈ S(k+l−1)m−i+1(k+l)i−1n, i = 1, . . . , m, η ∈ {−1, 1}m such that

the system (10) of (2m +1) LMIs obtained for all η in {−1, 1}m is fulfilled,
where Rk+l = Rk+l(Pl, Nl) has the same meaning than in Theorem 1 and
P̂k+l,i ∈ S(k+l)mn is a coefficient matrix of the map z → ∂P (ϕ(σ))

∂σi
|σ= z+z̄

2
.

0lmn < Pl +
m

i=1

Ĵ
(m−i+1)⊗
1,l−1 ⊗ Ili−1n

T

QP
l,i Ĵ

(m−i+1)⊗
1,l−1 ⊗ Ili−1n

−
m

i=1

Ĵ
(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n

T

QP
l,i Ĵ

(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n , (10a)

0(k+l)mn > Rk+l +
m

i=1

ηi īP̂k+l,i

+
m

i=1

Ĵ
(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

T

QR,η
l,i Ĵ

(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

−
m

i=1

Ĵ
(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n

T

QR,η
l,i Ĵ

(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n ,

(10b)

Moreover,

• given a solution of LMI (10), for P (z), N(z) having coefficient matrices
Pl, Nl, P (ϕ(σ)), N(ϕ(σ)) fulfil Property II, and, for any absolutely contin-
uous σ such that σ(t) ∈ [−1; +1]m, σ̇(t) ∈ m

i=1[− ī; + ī] almost every-
where,
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K(σ(t)) def= N(ϕ(σ(t)))P (ϕ(σ(t)))−1

is a stabilizing gain, rational in σ(t);
• if LMI (10) is solvable for the value l of the index, then it is also solvable

for any larger value.

The LMIs in Theorems 1 and 2 differ only by the presence of the terms in
P̂k+l,i in (10b). The latter correspond to the derivative terms ∂P (σ)

∂σi
appearing

in the inequality in Property II. See Appendix for details on the computations.

6 Elements of Demonstration

We only give here indications for proving Theorems 1 and 2. Application of
the same techniques may be found in [3, 1], under more detailed form.

6.1 Sketch of Proof of Theorem 1

1. The equivalence between (i) and (ii), i.e. the fact that P , N in Property
I may be supposed polynomial without loss of generality, is consequence of a
result on existence of polynomial solutions for LMIs depending continuously
upon parameters lying in a compact set, see [2].
2. Take now (ii) as departure: there exists (P, N) ∈ Sn

M [z, z̄]×Rp×n
M [z, z̄], with

coefficient matrices Pl ∈ Slmn ∩Rn×n,lm

M , Nl ∈ Rp×n,lm

M for a certain integer l,
such that, ∀z ∈ (∂D)m, (z[l]

m ⊗ · · ·⊗ z
[l]
1 ⊗ In)∗Pl(z

[l]
m ⊗ · · ·⊗ z

[l]
1 ⊗ In) > 0n and

(z[k+l]
m ⊗· · ·⊗z

[k+l]
1 ⊗In)∗Rk+l(z

[k+l]
m ⊗· · ·⊗z

[k+l]
1 ⊗In) < 0n, for Rk+l(Pl, Nl)

defined as in the statement. The proof consists in achieving joint reduction
of these two inequalities to the LMIs in (8). For simplicity, we expose this
procedure for one inequality only, the first one. For i = 0, . . . , m, denote
(Pi) the property: ∃l ∈ N, ∃QP

l,1 ∈ H(l−1)mn, . . . , ∃QP
l,i ∈ H(l−1)m−i+1li−1n,

∀(zi+1, . . . , zm) ∈ (∂D)m−i such that (11) holds:

z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin

∗
Pl +

i

j=1

Ĵ
(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

T

QP
l,j Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

−
i

j=1

Ĵ
(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

T

QP
l,j Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n


× z[l]

m ⊗ · · · ⊗ z
[l]
i+1 ⊗ Ilin > 0lin . (11)

Property (P0) is the part of (ii) devoted to P , whereas (Pm) is just (8a).
We indicate in the remaining, how to establish that (Pi) ⇔ (Pi+1) for any
i = 0, . . . , m − 1.
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Remark that

(z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin) = (z[l]

m ⊗ · · · ⊗ z
[l]
i+2 ⊗ Ili+1n)(z[l]

i+1 ⊗ Ilin)

and

(z[l]
i+1 ⊗ Ilin) = 

Ilin

zi+1 I(l−1)lin − zi+1(Fl−1 ⊗ Ilin)
−1 

(fl−1 ⊗ Ilin)

with

Fl 
def=

01×(l−1) 0

Il−1 0(l−1)×1

, fl
def=

1

0(l−1)×1

.

Applying discrete-time Kalman-Yakubovich-Popov lemma (see [13, 11]
and the statement in the complex case for the continuous-time case in
[6, Theorem 1.11.1 and Remark 1.11.1]) yields equivalence of (Pi) with:
∃l ∈ N, ∃QP

l,1 ∈ H(l−1)mn, . . . , ∃QP
l,i ∈ H(l−1)m−i+1li−1n, ∀(zi+2, . . . , zm) ∈

(∂D)m−i−1, ∃Q̃P
l,i+1(zi+2, . . . , zm) ∈ H(l−1)lin such that:

0li+1n < z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

∗
Pl

+
i

j=1

Ĵ
(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

T

QP
l,j Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

−
i

j=1

Ĵ
(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

T

QP
l,j Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n


× z[l]

m ⊗ · · · ⊗ z
[l]
i+2 ⊗ Ili+1n

+ Ĵ1,l−1 ⊗ Ilin

T

Q̃P
l,i+1 Ĵ1,l−1 ⊗ Ilin − J̌1,l−1 ⊗ Ilin

T
Q̃P

l,i+1 J̌1,l−1 ⊗ Ilin .

(12)

3. Using again the result in [2], Q̃P
l,i+1(zi+2, . . . , zm), solution of a LMI with

parameter in (∂D)m−i−1, may be chosen polynomial in its variables and their
conjugates. Let l̃ − 2 be its degree. If l̃ ≤ l, then Q̃P

l,i+1(zi+2, . . . , zm) =

(z[l−1]
m ⊗ · · · ⊗ z

[l−1]
i+2 ⊗ I(l−1)lin)∗QP

l,i+1(z
[l−1]
m ⊗ · · · ⊗ z

[l−1]
i+2 ⊗ I(l−1)lin), for a

coefficient matrix QP
l,i+1 ∈ H(l−1)m−ilin. If l̃ > l, it may be shown that, up to

an increase of l, the degree may be supposed the same, so same formula holds
(see [3, 1] for similar arguments).

At this point, the last two terms in inequality (12) have been transformed
in:
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Ĵ1,l−1 ⊗ Ilin

T

z[l−1]
m ⊗ · · · ⊗ z

[l−1]
i+2 ⊗ I(l−1)lin

∗
QP

l,i+1

× z[l−1]
m ⊗ · · · ⊗ z

[l−1]
i+2 ⊗ I(l−1)lin Ĵ1,l−1 ⊗ Ilin

− J̌1,l−1 ⊗ Ilin
T

z[l−1]
m ⊗ · · · ⊗ z

[l−1]
i+2 ⊗ I(l−1)lin

∗
QP

l,i+1

× z[l−1]
m ⊗ · · · ⊗ z

[l−1]
i+2 ⊗ I(l−1)lin J̌1,l−1 ⊗ Ilin ,

for a certain matrix QP
l,i+1 ∈ H(l−1)m−ilin.

4. Some matrix intervertions in the last two terms of the previous formula
finally yields equivalence between (Pi) and (Pi+1).
5. The assertion that solvability of (8) for index l implies the same property
for every larger index, is proved using the same techniques than the one evoked
(but not displayed) in point 3., to increase the size of the solution.
6. Last, the same argument is applied to (8b), with detail variations. Appli-
cation to (8a) and (8b) has to be done together, because of the coupling term
Pl. Due to the fact that solvability of (8a), resp. (8b), for a value l of the
index implies solvability for every larger value, taking a value for which both
inequalities are solvable yields equivalence of (ii) and (iii).

6.2 Sketch of Proof of Theorem 2

The demonstration is copied from the demonstration of the previous Theo-
rem. Due to the affine dependence upon the i in Property II, it is enough
to consider only the extremal values ± ī. It is hence required that: ∃l ∈
N, ∃Pl ∈ Slmn, ∃Nl ∈ Rp×n,lm

M , ∀η ∈ {−1, 1}m, ∀z ∈ (∂D)m, (z[l]
m ⊗

· · · ⊗ z
[l]
1 ⊗ In)∗Pl(z

[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In) < 0n and (z[k+l]

m ⊗ · · · ⊗ z
[k+l]
1 ⊗

In)∗ Rk+l + m
i=1 ηi īP̂k+l,i (z[k+l]

m ⊗ · · · ⊗ z
[k+l]
1 ⊗ In) < 0n.

The argument then essentially follows the proof of Theorem 1. One has
to check carefully that the process of increase of the degree (point 3. in Sect.
6.1) still works.

A Appendix on Polynomial Matrices

We give here details on the computations necessary for systematic use of
Theorems 1 and 2. It is explained in Sects. A.1 and A.2 how to compute
Rk+l(Pl, Nl), that is how to determine the coefficient matrices of the terms in
(9). Then in Sect. A.3 are provided formulas for explicit computation of K(σ)
as a function of σ, that is of P (ϕ(σ)) and N(ϕ(σ)) for P (z), N(z) defined
by their coefficient matrix Pl, Nl. Last, the computation of the term P̂k+l,i in
(10) is explained in Sect. A.4.

We first extend the notations defined in (5). For l, l ∈ N, l ≤ l , α =
0, 1, . . . , l , define Jα,l,l ∈ Rl×(l+l ) by:
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Jα,l,l
def= 0l×α Il 0l×(l −α) .

Then Ĵl ,l = J0,l,l , J̌l ,l = Jl ,l,l , and vαv[l] = Jα,l,l v[l+l ].

A.1 Representation of Polynomial Matrices

A rather natural representation for a matrix-valued polynomial M : Rm →
Rp×n (such as A(σ) and B(σ)) of degree l − 1 is

M(σ) = M̃l(σ[l]
m ⊗ · · · ⊗ σ

[l]
1 ⊗ In) , (13)

for a certain, uniquely defined, matrix M̃l ∈ Rp×lmn. From this, one should
be able to deduce the coefficient matrix of the map M( z+z̄

2 ), in order to apply
Theorems 1 and 2. The effect of the corresponding change of variable (4) is
summarized by Lemma 1.

Lemma 1. Let M̃l ∈ Rp×lmn, then M̃l
zm+z̄m

2

[l] ⊗ · · · ⊗ z1+z̄1
2

[l] ⊗ In =

(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ Ip)∗Ml(z

[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In), where the matrix Ml ∈

Rp×n,lm

M is given by the formula Ml
def= 0≤αi≤l−1(Jαm,1,l−1⊗· · ·⊗Jα1,1,l−1⊗

Ip)T M̃l(Kl,αm ⊗ · · · ⊗ Kl,α1 ⊗ In), in which, by definition, the i-th line

of the matrix Kl,α ∈ Rl×l is equal to 2−i+1 Ci−1
i−1 Ci−2

i−1 . . . C0
i−1 0 . . . 0 ,

Cα
i

def= i!
α!(i−α)! .

Proof. Kl,α defined in the statement is such that ∀v ∈ C, v+v̄
2

[l] =
l−1
α=0 v̄αKl,αv[l]. Thus,

M̃l
zm + z̄m

2

[l]

⊗ · · · ⊗ z1 + z̄1

2

[l]

⊗ In

=
0≤αi≤l−1

z̄α1
1 . . . z̄αm

m M̃l(Kl,αm ⊗ · · · ⊗ Kl,α1)(z
[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In) .

The conclusion then follows from the fact that ∀v ∈ C, vα = vαv[1] =
Jα,1,l−1v

[l], so vα∗ = v[l]∗JT
α,1,l−1.

A.2 Products of Polynomial Matrices

Solving the LMIs in Theorems 1 and 2 necessitates to be able to express the
coefficient matrix Rk+l of R(z) defined in (9), given the coefficient matrices
Pl, Nl of P (z), N(z). This in turn necessitates to express the coefficient ma-
trix of a product of matrix-valued polynomials, as function of the coefficient
matrices of the factors. This is the goal of Lemma 2.
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Lemma 2. Let l, l ∈ N, and M(z), M (z) with coefficient matrices Ml ∈
Rlmp×lmn, Ml ∈ Rl mn×l mq. Then, M (z) has coefficient matrix Ml ,

where l = l + l − 1 and Ml
def= 0≤αi≤l−1,0≤α

i
≤l −1

1≤i≤m

(Jαm,l,l −1 ⊗ · · · ⊗
Jα1,l,l −1⊗Ip)T Ml(Jαm,1,l−1⊗· · ·⊗Jα1,1,l−1⊗In)T (Jαm,1,l −1⊗· · ·⊗Jα1,1,l −1⊗
In)Ml (Jαm,l ,l−1 ⊗ · · · ⊗ Jα1,l ,l−1 ⊗ Iq).

Proof. One has, ∀v ∈ C,

v[l] =
l−1

α=0

vαJT
α,1,l−1, v[l]v[l ]∗ =

0≤α≤l−1,

0≤α ≤l −1

vαv̄α JT
α,1,l−1Jα ,1,l −1 ,

and the proof is achieved by using the fact that vαv[l ] = Jα,l ,l−1v
[l+l −1],

v̄α v[l]∗ = v[l+l −1]∗JT
α ,l,l −1.

A.3 Formulas Attached to the Inversion of the Map ϕ

Once the LMI (8) or (10) has been solved successfully (for a given l),
one has to express explicitly P (ϕ(σ)) and N(ϕ(σ)) to obtain the gain
K(σ) = N(ϕ(σ))−1P (ϕ(σ)), departing from the coefficient matrices Pl, Nl

of P (z), N(z). This is done with the help of the following result.

Lemma 3. Let N(z) ∈ Rp×n
M [z, z̄] with coefficient matrix Nl ∈ Rp×n,lm

M . Then,

N(ϕ(σ)) =
0≤αi,α

i
≤l−1

i=1,...,m

pα1−α1
(σ1) . . . pαm−αm

(σm)

× (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ Ip)Nl(Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T ,

where by definition, the polynomials pα are such that, for any φ ∈ R,
cos(αφ) = pα(cos φ).

The coefficients of the pα are easily found, allowing effective use of the previous
result. For example, cos 2φ = 2 cos2 φ−1, cos 3φ = 4 cos3 φ−3 cosφ, so p0(σ) =
1, p1(σ) = σ, p2(σ) = 2σ2 − 1, p3(σ) = 4σ3 − 3σ, and so on.

Forming, from the maps pα, the matrices Tl,|α| ∈ R1×l such that ∀α ∈
{−(l − 1), . . . , 0, . . . , l − 1}, ∀φ ∈ R, cos(αφ) = Tl,|α|(cosφ)[l], the formula
in Lemma 3 writes under matrix form as in (13), with M̃l replaced by

0≤αi,α
i
≤l−1

i=1,...,m

(Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ Ip)Nl(JT
αm,1,l−1Tl,|αm−αm| ⊗ · · · ⊗

JT
α1,1,l−1Tl,|α1−α1| ⊗ In).

Proof. As a direct consequence of the definition, N(z) is equal to
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0≤αi,α
i
≤l−1

i=1,...,m

zα1
1 z̄

α1
1 . . . zαm

m z̄
αm
m (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ Ip)Nl

× (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T .

Taking into account the fact that |zi| = 1, i = 1, . . . , m and that Nl ∈ Rp×n,lm

M ,
the previous expression is equal to

0≤αi,α
i
≤l−1,α1=α1

i=1,...,m

zα2
2 z̄

α2
2 . . . zαm

m z̄
αm
m (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ Ip)Nl

× (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T +

0≤αi,α
i
≤l−1

α1<α1, i=1,...,m

(zα1−α1
1 +z̄

α1−α1
1 )zα2

2 z̄
α2
2 . . . zαm

m z̄
αm
m (Jαm,1,l−1⊗· · ·⊗Jα1,1,l−1⊗Ip)Nl

× (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T .

Introducing the functions pi as defined in the statement, this is also equal to

0≤αi,α
i
≤l−1

i=1,...,m

pα1−α1
(σ1)zα2

2 z̄
α2
2 . . . zαm

m z̄
αm
m (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ Ip)Nl

× (Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T ,

because σ1 = Re z1. The result follows by induction on m.

A.4 Differentiation of Polynomial Matrices

Lemma 4 below permits to express the coefficient matrix of the terms
∂P (σ)

∂σi
|σ= z+z̄

2
in Property II as function of the coefficient matrix of P (z).

Notice that the formula therein provides directly the derivatives as a poly-
nomial of degree k + l − 1 (instead of l − 2), ready to be added to the term
A(σ)P (σ) + P (σ)A(σ)T + B(σ)N(σ) + N(σ)T B(σ)T in the matrix inequality
in Property II, which has precisely the same degree.

Lemma 4. Let M(σ) def= Ml(σ
[l]
m ⊗ · · · ⊗σ

[l]
1 ⊗ In). Then, for any nonnegative

integer k, ∂M(σ)
∂σi

= M̂k+l,i(σ
[k+l]
m ⊗· · ·⊗σ

[k+l]
1 ⊗In), with M̂k+l,i

def= Ml(Ĵ
(m−i)⊗
k,l ⊗

LlĴk,l ⊗ Ĵ
(i−1)⊗
k,l ⊗ In).

Proof. Indeed, ∂M(σ)
∂σi

= Ml(σ
[l]
m ⊗ · · · ⊗ ∂σ

[l]
i

∂σi
⊗ σ

[l]
i−1 ⊗ · · · ⊗ σ

[l]
1 ⊗ In) =

Ml(I
(m−i)⊗
l ⊗Ll ⊗ I

(i−1)⊗
l ⊗ In)(σ[l]

m ⊗ · · · ⊗ σ
[l]
1 ⊗ In) = M̂k+l,i(σ

[k+l]
m ⊗ · · · ⊗

σ
[k+l]
1 ⊗ In).
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We consider the problem of minimizing a form on the standard simplex [equiv-
alently, the problem of minimizing an even form on the unit sphere]. Two
converging hierarchies of approximations for this problem can be constructed,
that are based, respectively, on results by Schmüdgen-Putinar and by Pólya
about representations of positive polynomials in terms of sums of squares. We
show that the two approaches yield, in fact, the same approximations.

1 Introduction

1.1 Representations of positive forms on the simplex

We consider the problem of minimizing a form (i.e., homogeneous polynomial)
p of degree d on the standard simplex; that is, the problem of computing

pmin := min p(x) s.t. x ∈ ∆ := x ∈ IRn
+ |

n

i=1

xi = 1 . (1)

The polynomial
p̃(x) := p(x2

1, . . . , x
2
n)

is an even form of degree 2d and problem (1) can be reformulated as the
problem of minimizing p̃ on the unit sphere:

pmin = min p̃(x) s.t. x ∈ S := x ∈ IRn |
n

i=1

x2
i = 1 . (2)

Equivalently, this is the problem of finding the maximum scalar t for which

p̃(x) − t ≥ 0 ∀x ∈ S; equivalently, p̃(x) − t x 2d ≥ 0 ∀x ∈ IRn. (3)
�Supported by the Netherlands Organization for Scientific Research grant NWO

639.032.203.

D. Henrion and A. Garulli (Eds.): Positive Polynomials in Control, LNCIS 312, pp. 121–132, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Here, x 2 = n
i=1 x

2
i . Hence, lower bounds for the optimum value can be

obtained by replacing the condition (3) by some stronger conditions. Instances
of such stronger conditions are given below, for any integer r ≥ 0:

p̃(x) − t x 2d x 2r ∈ IR+
ev[X ] (4)

(p̃(x) − t x 2d) x 2r ∈ Σ2 (5)

p̃(x) − t ∈ IR+
ev,2(r+d)[X ] + (1 − x 2)IR[X ] (6)

p̃(x) − t ∈ Σ2
2(r+d) + (1 − x 2)IR[X ] (7)

Here, IR[X ] denotes the set of polynomials in the n variables x1, .., xn, IR+
ev[X ]

is the set of even polynomials with nonnegative coefficients, Σ2 is the set of
polynomials that are sums of squares, and a subscript 2(r + d) indicates the
bound 2(r + d) on the degree. (See section 1.2 for definitions and notation.)

Note that, in (4), one could replace IR+
ev[X ] by IR+[X ], since the polynomial

is even by construction.
Condition (4) can be equivalently reformulated in terms of the initial poly-

nomial p as p(x) − t
n

i=1

xi

d
 n

i=1

xi

r

∈ IR+[X ]. (8)

One can also reformulate condition (5) in terms of the original polynomial p,
using the following result of Zuluaga et al. [16].

Proposition 1 (Zualaga et al. [16]). Let p be a form of degree d and p̃(x) :=
p(x2

1, . . . , x
2
n) the associated even form. Then,

p̃ ∈ Σ2 ⇐⇒ p(x) =
I⊆{1,...,n}
|I|≡d mod 2

i∈I

xi pI , where pI ∈ Σ2

and pI is a form of degree d − |I|

The following implications obviously hold:

(4) =⇒ (5) =⇒ (3), (6) =⇒ (7) =⇒ (3).

Each of the conditions (4)-(7) permits to formulate a hierarchy of lower bounds
for pmin depending on r. For instance, the (linear) bound:

p
(r)
L := max t s.t. (4) (or (8)) holds, (9)

and the (semidefinite) bound:

p(r) := max t s.t. (5) holds. (10)
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Obviously,

p
(r)
L ≤ p

(r+1)
L , p(r) ≤ p(r+1), p

(r)
L ≤ p(r) ≤ pmin. (11)

Asymptotic convergence of the bounds p(r)
L to pmin as r goes to infinity, follows

from the following theorem of Pólya about representations of positive forms
on the simplex. .

Theorem 1 (Pólya [10]). Let p be a form which is positive on the standard
simplex ∆ = {x ∈ IRn | i xi = 1}. Then there exists an r ∈ IN such that

p(x) 

 
n

i−1

xi

r

∈ IR+[X ].

Two other hierarchies of lower bounds can be defined analogously, using (6)
and (7), and they satisfy the analogue of (11). Their asymptotic convergence
to pmin follows from the following theorem of Schmüdgen (or its refinement
by Putinar) about representations of positive polynomials on compact semi-
algebraic sets.

Theorem 2. Let F be a semi-algebraic set of the form:

F = {x ∈ IRn | p1(x) ≥ 0, . . . , pk(x) ≥ 0}, where p1, . . . , pk ∈ IR[X ].

(i) (Schmüdgen [15]) If F is compact, then every polynomial which is pos-

itive on F belongs to
I⊆{1,...,k} i∈I

pi Σ2.

(ii) (Putinar [13]) Assume that F is compact and that there exists a polyno-
mial p0 ∈ Σ2+p1Σ

2+. . .+pkΣ2 for which the set {x | p0(x) ≥ 0} is compact.
Then every polynomial which is positive on F belongs to Σ2+p1Σ

2+. . .+pkΣ2.

Corollary 1. Every polynomial which is positive on the unit sphere belongs
to Σ2 + (1 − n

i=1 x2
i )IR[X ].

This idea of constructing hierarchies of bounds for optimization over semi-
algebraic sets, based on real algebraic results about representations of positive
polynomials, has been explored by several authors.

In particular, Pólya’s result led Parrilo [8, 9] to introduce hierarchies of
conic relaxations for the cone of copositive matrices. These relaxations were
used by De Klerk and Pasechnik [6] for approximating the stable set problem
in graphs, and by Bomze and De Klerk [1] for constructing a PTAS for the
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minimization of degree 2 forms on the simplex. Hierarchies of conic relaxations
were introduced, more generally, for the cone of positive semidefinite forms,
in particular, by Faybusovich [2] (who also gives estimations on the quality of
the approximations) and by Zuluaga et al. [16]. These relaxations have been
used in the recent paper by De Klerk, Laurent and Parrilo [5] for giving a
PTAS for the minimization of a form of degree d on the simplex.

On the other hand, Putinar’s result led Lasserre [7] to define converging
hierarchies of semidefinite bounds for the approximation of polynomials on
(special) compact semi-algebraic sets.

The main contribution of this paper is to show that these two approaches,
based on Pólya’s and Schmüdgen-Putinar’s theorems, are in fact equivalent,
when applied to the problem of minimizing a form on the standard simplex
(or, equivalently, minimizing an even form on the unit sphere). More precisely,
we prove the following result in Section 2, showing that the assertions (4) and
(6) (resp., (5) and (7)) are equivalent.

Theorem 3. Let p be a form of degree d and let p̃(x) := p(x2
1, . . . , x

2
n) be the

associated even form of degree 2d. For every integer r ≥ 0, consider the linear
bound p

(r)
L (defined by (9)) and the semidefinite bound p(r) (defined by (10))

for the minimum value pmin of p over the standard simplex. Then,

p
(r)
L ≤ p(r) ≤ pmin,

p
(r)
L = max t s.t.

p̃(x) − t

n

i=1

x2
i

d
 n

i=1

x2
i

r

∈ IR+[X ]

= max t s.t. p̃(x) − t ∈ IR+
ev,2(r+d)[X ] + 1 −

n

i=1

x2
i IR[X ],

(12)

p(r) = max t s.t.

p̃(x) − t

n

i=1

x2
i

d
 n

i=1

x2
i

r

∈ Σ2

= max t s.t. p̃(x) − t ∈ Σ2
2(r+d) + 1 −

n

i=1

x2
i IR[X ].

(13)

We conclude with a ‘negative result’ in Section 3, concerning representa-
tions of polynomials positive on the unit sphere, namely

q ∈ Σ2 + 1 −
n

i=1

x2
i Σ2 ⇐⇒ q ∈ Σ2.

Compare this to the representation p ∈ Σ2 + (1− n
i=1 x2

i )IR[X ] in Corollary
1 that holds for any p positive on the unit sphere.



On the Equivalence of Algebraic Approaches 125

1.2 Notation

The following notation will be used throughout the paper.
IR[x1, . . . , xn], also abbreviated as IR[X ], is the set of polynomials in n

variables. Write p ∈ IR[X ] as α∈INn pαxα, where xα := xα1
1 · · ·xαn

n . Then,
pαxα is a term of p if pα = 0; |α| := n

i=1 αi is the degree of the term pαxα,
and the degree of p is the maximum degree of its terms. A polynomial p is a
form if all its terms have the same degree; p is an even polynomial if α1, . . . , αn

are even for every term pαxα of p.
IRd[X ] is the set of polynomials with degree ≤ d; IR+[X ] is the set of

polynomials with nonnegative coefficients: p = α pαxα with pα ≥ 0 for all
α; IRev[X ] is the set of even polynomials: p = α pαx2α. Moreover, IR+

d [X ] :=
IR+[X ] ∩ IRd[X ], IR+

ev[X ] := IR+[X ] ∩ IRev[X ], IR+
ev,d[X ] := IR+

ev[X ] ∩ IRd[X ].
Σ2 is the set of polynomials that can be written as a sum of squares

of polynomials: p =  f
2
 for some f  ∈ IR[X ], and Σ2

d := Σ2 ∩ IRd[X ].
Obviously, IR+

ev[X ] ⊆ Σ2.

2 Pólya’s and Putinar’s Theorems Give the Same
Bounds for Optimization on the Simplex

We prove here a slightly more general version of Theorem 3, which holds for
forms of even degree. We begin with some preliminary results.

Proposition 2. Let q be a form of even degree 2d ≥ 2. The following asser-
tions are equivalent:

q(x)
n

i=1

x2
i

r

∈ P (14)

q ∈ P + 1 − x 2 IR[X ] (15)

where P stands for IR+
ev,2(r+d)[X ] or Σ2

2(r+d).

Proof. Suppose first that (14) holds. Then, the polynomial

f(x) := q(x)
n

i=1

x2
i

r

belongs to P and

f(x) = q(x) 1 − 1 +
n

i=1

x2
i

r

= q(x) +
r

s=1

r

s
q(x)

n

i=1

x2
i − 1

s

,

which implies that
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q(x) = f(x) + 1 − x 2
r

s=1

r

s
q(x)

n

i=1

x2
i − 1

s−1

and, thus, (15) holds.

Suppose now that (15) holds; that is,

q(x) = s(x) + (1 − x 2)r(x)

where s ∈ P and r ∈ IR[X ]. Then, q x
x = s x

x and, thus,

q(x) x 2r = s
x

x
x 2(r+d) for all x ∈ IRn \ {0}. (16)

In what follows, we show that

f(x) := s
x

x
x 2(r+d)

is a polynomial belonging to P . This implies that the polynomial q(x) x 2r

coincides with f(x) (by continuity) and, thus, belongs to P , which shows that
(14) holds.

Suppose first that P = IR+
ev,2(r+d)[X ]. Then, s(x) = |α|≤r+d sαx2α, with

all sα ≥ 0. Therefore, f(x) = |α|≤r+d sαx2α x 2(r+d−|α|), which is an even
polynomial with nonnegative coefficients and, thus, belongs to P .

Suppose now that P = Σ2
2(r+d). We begin with observing that one can

assume that each term of s has an even degree. To see it, write s = s0 +
s1, where each term of s0 (resp., of s1) has even (resp., odd) degree. Then,
s0(−x) = s0(x) and s1(−x) = −s1(x) for all x. As q is a form of even degree,
q(−x) = q(x) for all x. In view of (16), this implies that s(−x) = s(x) for all
x with x = 1. Therefore, s1(x) = 0 and, thus, s(x) = s0(x) for all x with
x = 1. Hence, one can replace s by s0 in the definition of f .

As s ∈ Σ2
2(r+d), write

s = (s )2, s = u + v

where s are polynomials of degree ≤ r + d, u consists of the terms of s
whose degree has the same parity as r + d, and v := s − u . Thus,

s = (u )2 + (v )2 + 2 u v .

As each term of s, (u )2, and (v )2 has even degree, while each term of u v has
odd degree, we deduce that u v = 0, implying that s = (u )2 + (v )2.
Therefore,
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f(x) = s 
 
x

x
x 2(r+d) = u

x

x
x r+d

2

+ v
x

x
x r+d

2

.

Observe now that u x
x x r+d = ϕ (x) and v x

x x r+d = x ψ (x)
where ϕ and ψ are polynomials in x. Indeed, say, u (x) = α u ,αxα. Then,

u x
x x r+d is equal to α u ,αxα x r+d−|α|, which is a polynomial in x

since all r + d − |α| are even integers. Analogously for v . This shows that

f(x) = ϕ (x)2 + ψ (x)2(
n

i=1

x2
i )

belongs to P , thus concluding the proof.

Lemma 1. Let q be a form of even degree 2d and let t be a real number. The
following assertions are equivalent:

q(x) − t x 2d ∈ P + 1 −
n

i=1

x2
i IR[X ] (17)

q(x) − t ∈ P + 1 −
n

i=1

x2
i IR[X ], (18)

where P stands for IR+
ev,2(r+d)[X ] or Σ2

2(r+d).

Proof. If (17) holds, then q(x) − t x 2d = s + 1 − n
i=1 x2

i r, where s ∈ P
and r ∈ IR[X ]. Therefore, q(x) − t = s + 1 − n

i=1 x2
i r + t x 2d − 1 .

Now, x 2d − 1 = n
i=1 x2

i
d − 1 = ( n

i=1 x2
i − 1)u(x), for some polynomial

u. Therefore, (18) holds.
Conversely, if (18) holds, then q(x)− t = s+ 1 − n

i=1 x2
i r, where s ∈ P

and r ∈ IR[X ]. Then, q(x)− t x 2d = s+ 1 − n
i=1 x2

i r− t x 2d − 1 and,
thus, (17) holds.

Theorem 4. Let q be a form of even degree 2d, qmin the minimum of q(x)
over the unit sphere, and r ≥ 0 an integer. Then,

q
(r)
L ≤ q(r) ≤ qmin, where

q
(r)
L := max t s.t.

q(x) − t

n

i=1

x2
i

d
 n

i=1

x2
i

r

∈ IR+
ev[X ]

= max t s.t. q(x) − t ∈ IR+
ev,2(r+d)[X ] + 1 −

n

i=1

x2
i IR[X ],

(19)
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q(r) := max t s.t.

q(x) − t
n

i=1

x2
i

d
 n

i=1

x2
i

r

∈ Σ2

= max t s.t. q(x) − t ∈ Σ2
2(r+d) + 1 −

n

i=1

x2
i IR[X ].

(20)

Proof. Follows directly from Proposition 2 (applied to the form q(x)− t x 2d)
and from Lemma 1.

Therefore, Theorem 3 follows from Theorem 4 applied to the (even) form
q(x) := p̃(x).

We have formulated in Theorem 4 two bounds for the minimum of a form
q of even degree on the unit sphere: a linear bound q

(r)
L and a semidefinite

bound q(r) using, respectively, representations in terms of even polynomials
and sums of squares of polynomials. At that point, one should point out that
the hierarchy of linear bounds is interesting only when q is an even form.
Indeed, if the form q is not even, then q

(r)
L = −∞ for all r ≥ 0; this follows

from the following facts.

Lemma 2. A polynomial p ∈ IR[X ] is even if and only if

p(x1, . . . , xn) = p(−x1, x2, . . . , xn) = . . . = p(x1, . . . , xn−1,−xn). (21)

Proof. Necessity is obvious. Conversely, assume that (21) holds; we show that
p is even. For this, let p1 be the sum of the even terms of p and set q := p−p1.
Then, q = α qαxα where α has some odd component whenever qα = 0. As
p1 is an even form, it satisfies (21) and thus q too satisfies (21). We show that
q = 0, which implies that p = p1 is even. For this, write q = q1 + q2, where
q1 := α|α1 odd qαxα. Then, q(x) = q(−x1, x2, . . . , xn), q1(−x1, x2, . . . , xn) =
−q1(x), q2(−x1, x2, . . . , xn) = q2(x); hence,

q1(x) + q2(x) = q1(−x1, x2, . . . , xn) + q2(−x1, x2, . . . , xn) = −q1(x) + q2(x),

which implies that q1(x) = 0. From this follows that qα = 0 whenever α1 is
odd. The same reasoning applied to the other coordinates shows that all qα

are equal to 0.

Corollary 2. Given p ∈ IR[X ], the polynomial p(x)( n
i=1 x2

i )
r is even for

some r ≥ 0 if and only if p is even.

3 A Negative Result

Let us now turn to the question of existence of a stronger type of decomposi-
tion. Let q be a form of even degree 2d which is positive on the unit sphere.
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Then, q(x) > 0 for all x ∈ IRn \ {0}. In particular, q is positive on the unit
ball F := {x ∈ IRn | 1 − n

i=1 x
2
i ≥ 0} except at the origin where it is zero.

One may wonder whether an extension of Putinar’s result might still hold,
permitting to conclude that

q ∈ Σ2 + 1 −
n

i=1

x2
i Σ2. (22)

Scheiderer [14] has recently investigated such extensions of Putinar’s result
(see Corollary 3.17 in [14]).

Proposition 3 (Example 3.18 in [14]). Let p ∈ IR[X ] be a polynomial for
which the level set

K := {x ∈ IRn | p(x) ≥ 0}
is compact. Let q ∈ IR[X ] be nonnegative on K. Assume that the following
conditions hold:

1. q has only finitely many zeros in K, each lying in the interior of K.
2. the Hessian 2q is positive definite at each of these zeroes.

Then q ∈ Σ2 + pΣ2.

Unfortunately, in the case where K is the unit ball and q a positive semidef-
inite form of degree at least 4, this theorem does not apply (since the Hessian
of q is zero at the origin). In fact, one can show that in this case such a de-
composition (22) exists only when q itself is a sum of squares.

Proposition 4. Let q be a form of degree 2d. Then,

q ∈ Σ2 + 1 −
n

i=1

x2
i Σ2 ⇐⇒ q ∈ Σ2.

Proof. The ‘if’ part being trivial, we prove the ‘only if’ part. Assume that
q = f + (1 − n

i=1 x2
i )g, where f, g ∈ Σ2; we show that q ∈ Σ2. Write

f = f2 and g = k g2
k. Let s ≥ 0 be the largest integer for which each term

of f , gk has degree≥ s; that is, f (x) = |α|≥s f ,αxα, gk(x) = |α|≥s gk,αxα

for all , k and at least one of the polynomials f , gk has a term of degree s.
Define f as the sum of the terms of degree s in f and f := f − f ; then,

f (x) =
|α|=s

f ,αxα, f (x) =
|α|≥s+1

f ,αxα.
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Analogously, define

gk(x) := 
|α|=s

gk,αxα, gk (x) :=
|α|≥s+1

gk,αxα.

We have that

q = q1 + q2, where q1 := (f )2 +
k

(gk)2, and

q2 := 2 f f + 2
k

gkgk + (f )2 +
k

(gk )2 −
n

i=1

x2
i g.

Therefore, q1 is a (nonzero) form of degree 2s, while each term of q2 has degree
≥ 2s + 1. If s ≤ d − 1, then q is a form of degree 2d ≥ 2s + 2, which implies
that q1 = 0, a contradiction. Hence, s ≥ d and, in fact, s = d. From this
follows that q2 = 0 and, thus, q = q1 is a sum of squares.

4 Conclusion

We conclude with some comments on the computational implications of The-
orem 4 where we showed that

q(r) := max t s.t.

q(x) − t

n

i=1

x2
i

d
 n

i=1

x2
i

r

∈ Σ2

= max t s.t. q(x) − t ∈ Σ2
2(r+d) + 1 −

n

i=1

x2
i IR[X ].

The first representation of q(r) corresponds to various relaxations intro-
duced in the literature for different special cases of the problem

qmin = min q(x) s.t. x ∈ S := x ∈ IRn |
n

i=1

x2
i = 1 , (23)

by

1. De Klerk and Pasechnik [6] for obtaining the stability number of a graph;
2. Parrilo [9], Bomze and De Klerk [1], Faybusovich [2], and De Klerk, Lau-

rent and Parrilo [5] for minimization of forms on the simplex.

The difficulty with these approaches up to now was that — once an exact
relaxation was obtained — it was not clear how to extract a globally optimal
solution of problem (23).
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The second representation of q(r) in Theorem 4 corresponds exactly to the
dual form of the SDP relaxation obtained by applying the general methodol-
ogy introduced by Lasserre [7] to problem (23).

The approach of Lasserre [7] has now been implemented in the software
package Gloptipoly [3] by Henrion and Lasserre.

The authors have also described sufficient conditions for the relaxation
of order r to be exact, and have implemented an algorithm for extracting
an optimal solution if it is known that the relaxation of order r is exact.
The extraction procedure only involves linear algebra on the primal optimal
solution of the relaxation; see [4] for details.

Theorem 4 therefore shows how to apply the solution extraction proce-
dure implemented in Gloptipoly to the relaxations studied by De Klerk and
Pasechnik [6], Parrilo [9], Bomze and De Klerk [1] and Faybusovich [2].
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A Moment Approach to Analyze Zeros of
Triangular Polynomial Sets
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1 Introduction

Consider an ideal I := g1, . . . , gn ⊂ R[x1, . . . , xn] generated by polynomials
{gi}n

i=1 ⊂ R[x1, . . . , xn]. Let us call G := {g1, . . . , gn} a polynomial set and
let a term ordering of monomials with x1 < x2 . . . < xn be given.

We assume that the system of polynomials equations {gi(x) = 0, i =
1, . . . , n} is in the following triangular form,

gi(x) = pi(x1, . . . , xi−1)xri

i + hi(x1, . . . , xi) i = 1, . . . , n (1)

by which we mean the following :
- (i) xi is the main variable and pi(x1, . . . , xi−1)xri

i is the leading term of
gi.

- (ii) for every i = 2, . . . , n, every zero in Cn of the polynomial sys-
tem Gi−1 := {g1, . . . gi−1} is not a zero of the leading coefficient ini(gi) :=
pi(x1, . . . , xi−1) of gi.

The set G is called a triangular set. From (i)-(ii), it follows that I is a zero-
dimensional ideal. Conversely, any zero-dimensional ideal can be represented
by a finite union of specific triangular sets (see e.g. Aubry et al. [1], Lazard
[10]). For various definitions (and results) related to triangular sets (e.g. due
to Kalkbrener, Lazard, Wu) the interested reader is referred to Lazard [10],
Wang [6] and the many references therein; see also Aubry [2] and Maza [11]
for a comparison of symbolic algorithms related to triangular sets.

For instance, there are symbolic algorithms that, given I as input, generate
a finite set of triangular systems in the specific form gi(x) = xi−fi(x1) for all
i = 2, . . . , n. Triangular sets in the latter form are particularly interesting to
develop efficient symbolic algorithms for counting and computing real zeros
of polynomials sets (see e.g. Becker and Wörmann [4] and the recent work of
Rouillier [12]).

We here show that a triangular polynomial set G as in (1) has also sev-
eral advantages from a numerical point of view. Indeed, it also permits to

D. Henrion and A. Garulli (Eds.): Positive Polynomials in Control, LNCIS 312, pp. 133–150, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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define multivariate Newton sums, the multivariate analogue of Newton sums
for univariate polynomials (which can be used for counting real zeros as in
Gantmacher [7, Chap. 15, p. 200]). Namely, we show that :

(a) With a triangular system G as in (1) we may associate moment matri-
ces Mp(y) depending on the (known) multivariate Newton sums of G (to be
defined later) and on an unknown vector y. The condition Mp(y) 0 for some
specific p = r0 (meaning Mp(y) positive semidefinite) defines a unique solu-
tion y∗, the vector of all moments (up to order 2p) of a probability measure
μ∗ supported on all the zeros of G in Cn. As a consequence, a polynomial of
degree less than 2p is in 

√
I if and only if its vector f of coefficients satisfies

the linear system of equations Mp(y∗)f = 0.
(b) Moreover, given a set

K := {z ∈ Cn |wj(z1, . . . , zn, z1, . . . zn) ≥ 0, j = 1, . . .m} ⊂ Cn,

defined by some polynomials {wi} in C[z, z] (which can be viewed as a semi-
algebraic set in R2n), one may also check whether the zero set of G is contained
in K by solving a convex semidefinite program for which efficient software
packages are now available. The necessary and sufficient conditions state that
the system of LMI (Linear Matrix Inequalities)

Mr0(y) 0; Mr0(wiy) 0 i = 1, . . . , m,

for some appropriate moment matrix Mr0(y) and localizing matrices Mr0(wiy)
(depending on the Newton sums of G) must have a solution, which is then
unique, i.e. y = y∗ with y∗ as in (a). In fact, it suffices to solve the single
inequality Mr0(y) 0 which yields the unique solution y∗, and then check
afterwards whether Mr0(wiy

∗) 0, for all i = 1, . . . , m. For an introduction to
semidefinite programming, the interested reader is referred to Vandenberghe
and Boyd [14].

The basic technique that we use relies on a deep result of Curto and
Fialkow [5] for the K-moment problem.

2 Notation, Definitions and Preliminary Results

Some of the material in this section is from Curto and Fialkow [5]. Let Pr

be the space of polynomials in C[z1, . . . , zn, z1, . . . , zn] (in short C[z, z]) of
degree at most r ∈ N. Now, following notation as in Curto and Fialkow [5], a
polynomial θ ∈ C[z, z] is written

θ(z, z) =
αβ

θαβzαzβ =
α,β

θαβzα1
1 · · · zαn

n zβ1
1 · · · zβn

n ,

in the usual basis of monomials (e.g. ordered lexicographically)

1, z1, . . . zn, z1, . . . , zn, z2
1 , z1z2, . . . (2)
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We here identify θ ∈ C[z, z] with its vector of coefficients θ := {θαβ} in the
basis (2).

Given an infinite sequence {yαβ} indexed in the basis (2), we also define
the linear functional on C[z, z]

θ → Λ(θ) :=
α,β

θαβyαβ =
α,β

θαβyα1,...,αn,β1,...,βn .

2.1 The Moment Matrix

Given p ∈ N and an infinite sequence {yαβ} let Mp(y) be the unique square
matrix such that

Mp(y)f, h = Λ(fh) ∀f, h ∈ Pp

(see e.g. Curto and Fialkow [5, p. 3]).
To fix ideas, in the two-dimensional case, the moment matrix M1(y) is

given by

M1(y) =


1 y0010 y0001 y1000 y0100

y1000 y1010 y1001 y2000 y1100

y0100 y0110 y0101 y1100 y0200

y0010 y0020 y0011 y1010 y0110

y0001 y0011 y0002 y1001 y0101

 .

Thus, the entry of the moment matrix Mp(y) corresponding to column zαzβ

and row zηzγ is yα+γ,β+η, and if y is the moment vector of a measure μ on
Cn, then

Mp(y)f, f = Λ(|f |2) = 
 
|f |2 dμ ≥ 0 ∀f ∈ Pp, (3)

which shows that Mp(y) is positive semidefinite (denoted Mp(y) 0).

2.2 Localizing Matrices

Let {yαβ} be an infinite sequence and let θ ∈ C[z, z]. Define the localizing
matrix Mp(θy) to be the unique square matrix such that

Mp(θy)f, g = Λ(θfg) ∀f, g ∈ Pp. (4)

Thus, if θ(z, z) = αβ θαβzαzβ and Mp(y)(i, j) = yγη then

Mp(θy)(i, j) =
αβ

θαβyα+γ,β+η. (5)

For instance, with z → θ(z, z) := 1 − z1z1, M1(θy) reads
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1 − y1010 y0010 − y1020 y0001 − y1011 y1000 − y2010 y0100 − y1110

y1000 − y2010 y1010 − y2020 y1001 − y2011 y2000 − y3021 y1100 − y2110

y0100 − y1110 y0110 − y2020 y0101 − y1111 y1100 − y2110 y0200 − y1210

y0010 − y1020 y0020 − y1030 y0011 − y1021 y1010 − y2020 y0110 − y1120

y0001 − y1011 y0011 − y1021 y0002 − y1012 y1001 − y2011 y0101 − y1111

 .

It follows that if y is the moment vector of some measure μ on Cn, supported
on the set {z ∈ Cn | θ(z, z) ≥ 0}, we then have

Mp(θy)f, f = Λ(θ|f |2) = θ|f |2 dμ ≥ 0 ∀f ∈ Pp, (6)

so that Mp(θy) 0.

2.3 Multivariate Newton Sums

With x1 < x2, . . . < xn and given a fixed term ordering of monomials, consider
a triangular polynomial system G = {g1, . . . , gn} as in (1), that is,

gi(x) = pi(x1, . . . xi−1)xri

i + hi(x1, . . . , xi) = 0 ∀i = 1, . . . n (7)

(with p1 ∈ R), and the pi’s are such that for all i = 2, 3, . . . n,

gk(z) = 0 ∀k = 1, . . . , i − 1 ⇒ pi(z) = 0. (8)

For each i = 1, . . . , n, pi(x1, . . . , xi−1)xri

i is the leading term of gi. In the
terminology used in e.g. Wang [6, Definitions 2.1], G is a triangular set.

In view of the assumption on the gi’s, it follows that G has exactly
s := n

i=1 ri zeros {z(i)}s
i=1 in Cn (counting their multiplicity) so that

I = g1, . . . , gn is a zero-dimensional ideal and the affine variety VC(I) ⊂ Cn

is a finite set of cardinality sG ≤ s.
For every α ∈ Nn define sα to be the real number

sα := s−1
s

i=1

z(i)α =
s

i=1

zα1
1 zα2

2 · · · zαn
n (i) (9)

which we call the (normalized) α-Newton sum of G by analogy with the
Newton sums of a univariate polynomial (see e.g. Gantmacher [7, p. 199]).

Remark 1 Note that the Newton sums sα depend on G and not only on the
zeros {z(i)} because we take into account the possible multiplicities.

Proposition 1. Let the gi’s be as in (7)-(8) and sα be as in (9). Then each
sα is a rational fraction in the coefficients of the gi’s and can be computed
recursively.

For a proof see §5.1.
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Example 2 Consider the elementary example with G := {x2
1 +1, x1x

2
2 +x2 +

1}. Then, si0 is just the usual (normalized) i-Newton sum of x1 → x2
1 +1. And

for instance, it follows that s01 = 0, s02 = 0. Similarly, s11 = −1/2, s21 = 0,
s22 = 1/2, etc ...

Interestingly, given a polynomial t ∈ R[x1, . . . , xn], Rouillier [12, §3] also
defines extended Newton sums of what he calls a multi-ensemble associated
with a set of points of Cn. He then uses these extended Newton sums to
obtain a certain triangular representation of zero-dimensional ideals.

3 Main Result

In this section we assume that we are given a polynomial set G := {g1, . . . , gn}
in the triangular form (7)-(8).

3.1 The Associated Moment Matrix

The idea in this section is to build up the moment matrices (defined in §2.1)
associated with a particular measure μ∗ on Cn whose support is on all the zeros
of the polynomial set G. That is, let {z(i)} be the collection of s := n

j=1 rj

zeros in Cn of G (counting their multiplicity) and let μ∗ to be the probability
measure on Cn defined by

μ∗ := s−1
s

i=1

δz(i). (10)

where δz stands for the Dirac measure at the point z ∈ Cn.
By definition of μ∗, its moments zαdμ∗ are just the normalized α-Newton

sums (9). Indeed,

sα := zα dμ∗ = s−1
s

i=1

z(i)α. (11)

If we write
y∗

αβ := zαzβ dμ∗ α, β ∈ Nn, (12)

we have
sα = y∗

α0 = y∗
0α; y∗

αβ = y∗
βα α, β ∈ Nn. (13)
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3.2 Construction of the Moment Matrix of μ∗

With μ∗ as in (10) let {sα, y∗
αβ} defined in (11)-(12) be the infinite sequence

of all its moments.
We then call Mp(μ∗) the moment matrix associated with μ∗, that is, in

Mp(y) we replace the entries y0α or yα0 by sα and the other entries yαβ by
y∗

αβ . By Proposition 1, the entries sα are known and rational fractions of
the coefficients of the polynomials gi’s. They can be computed numerically
or symbolically. On the other hand, moments y∗

αβ do not have a closed form
expression in terms of the coefficients of polynomials gi’s.

Therefore, we next introduce a moment matrix Mp(μ∗, y) obtained from
Mp(μ∗) by replacing the (unknown) entries y∗

αβ by variables yαβ and look for
conditions on this matrix Mp(μ∗, y) to be exactly Mp(μ∗). For instance, in
the two dimensional case, the moment matrix M1(μ∗, y) reads

M1(μ∗, y) =


1 s10 s01 s10 s01

s10 y1010 y1001 s20 s11

s01 y0110 y0101 s11 s02

s10 s20 s11 y1010 y0110

s01 s11 s02 y1001 y0101

 .

(with sα = yα0 = y0α). Moreover, from the definition of μ∗, we may impose
Mp(μ∗, y) to be symmetric for all p ∈ N, because y∗

αβ = y∗
βα for all α, β ∈ Nn

(see (13)).
As G is a triangular polynomial system in the form (7)-(8), I = g1, . . . , gn

is a zero-dimensional ideal. Therefore, let H := {h1, . . . , hm} be a reduced
Gröbner basis of I with respect to (in short, w.r.t.) the term ordering already
defined (e.g. the lexicographical ordering x1 < x2 · · · < xn). As I is zero-
dimensional, for every i = 1, . . . n, we may label the first n polynomials hj

of H in such a way that x
ri

i is the leading term of hi (see e.g. Adams and
Loustaunau [3, Theor. 2.2.7]).

Proposition 2. Let G be the triangular polynomial system in (7)-(8) (with
some term ordering), and let H = {h1, . . . , hm} be its reduced Gröbner basis
(with x

ri

i the leading term of hi for all i = 1, . . . n).
Let μ∗ be the probability measure defined in (10). For every α, β ∈ Nn let

y∗
αβ := zαzβ dμ∗. (14)

Then, for every γ, η ∈ Nn, y∗
γη is a linear combination of the y∗

αβ’s with
αi, βi < ri for all i = 1, . . . n, that is,

y∗
ηγ =

α,β

uαβ(η, γ)y∗
αβ αi, βi < ri ∀i = 1, . . . , n, (15)

for some scalars {uαβ(η, γ)}.
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Proof. Let H = {h1, . . . , hm} be the reduced Gröbner basis of I w.r.t. the
term ordering, with xri

i the leading term of hi for all i = 1, . . . n ≤ m.
For η, γ ∈ Nn, write

zη =
m

i=1

qi(z)hi(z) + qη(z); zγ =
m

i=1

vi(z)hi(z) + vγ(z),

for some polynomials {qη, qi} and {vγ , vi} in R[x1, . . . , n], that is, zη (resp.
zγ) are reduced to qη(z) (resp. vγ(z)) w.r.t. H . Due to the special form of H ,
it follows that the monomials zα of qη, vγ satisfy αi < ri for all i = 1, . . . , n.
Hence,

qη(z)vγ(z) =
α,β

uαβ(η, γ)zαzβ αi, βi < ri ∀i = 1, . . . , n,

for some scalars {uαβ(η, γ)}. Therefore, from the definition of μ∗,

y∗
γη = zηzγ dμ∗ =

m

i=1

qi(z)hi(z) + qη(z)
m

i=1

vi(z)hi(z) + vγ(z) dμ∗

= qη(z)vγ(z) dμ∗ =
αβ

uαβ(η, γ) zαzβ dμ∗

=
α,β

uαβ(η, γ)y∗
αβ , αi, βi < ri ∀i = 1, . . . , n

The y∗
αβ ’s with αi, βi < ri, correspond to the irreducible monomials xα, xβ

with respect to the Gröbner basis H , which form a basis of R[x1, x2, . . . , xn]/I
viewed as a vector space over R. In fact, in view of the triangular form (7)-(8),
the Gröbner basis H of I w.r.t. to the lexicographical ordering x1 < . . . < xn

is such that ri = ri for all i = 1, . . . , n and H has exactly n terms (Rouillier
[13]).

In view of Proposition 2, we may redefine the moment matrix Mp(μ∗, y)
in an equivalent form as follows:

Definition 3 (Construction of Mp(μ∗, y)) Let H = {h1, . . . , hm} be a re-
duced Gröbner basis of I w.r.t. to the given term ordering (with x

ri

i the leading
term of hi for all i = 1, . . . , n ≤ m).

The moment matrix Mp(μ∗, y) is the moment matrix Mp(y) defined in
§2.1 and where :

- every entry yα0 or y0α of Mp(y) is replaced with the (known) α-Newton
sum sα of G.

- every entry yγη in Mp(y) is replaced with the linear combination (15) of
{yαβ} with αi, βi < ri for all i = 1, . . . , n.

Thus, in this equivalent formulation, only a finite number of variables yαβ

are involved in Mp(μ∗, y), all with αi, βi < ri for all i = 1, . . . , n.
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Remark 4 The above definition of Mp(μ∗, y) depends on the reduced Gröbner
basis H of G, whereas the entries sα only depend on the the gi’s.

Example 5 Let

G := {x3
1 + x1, (x2

1 + 3)x3
2 − x2

1x
2
2 + (x2

1 − x1 − 1)x2 − x1 + 1}.
Then,

H = {x3
1 + x1; 6x3

2 − 3x2
1x

2
2 + 4x2x

2
1 − 3x2x1 − 2x2 − x2

1 − 3x1 + 2},
and, for instance, denoting “ ” the reduction process w.r.t. H ,

z3
2  (3z2

1z
2
2 − 4z2z

2
1 + 3z2z1 + 2z2 + z2

1 + 3z1 − 2)/6,

and as z4
1  −z2

1 , we have

y4003 = (−3y2022 + 4y2021 − 3y2011 − 2y2001 − y2020 − 3y2010 + 2y2000)/6,

and the latter expression can be substituted for every occurrence of y4003.

Theorem 6. Let G be a triangular polynomial system as in (7)-(8) and let
{sα} be the Newton sums of G in (9). Let Mp(μ∗, y) be the moment matrix
as in Definition 3, and let r0 := 2 n

j=1(rj − 1). Then :
(i) For all p ≥ r0, Mp(μ∗, y) = Mp(μ∗) if and only if Mp(μ∗, y) 0.
(ii) For all p ≥ r0, rank(Mp(μ∗)) = rank(Mr0(μ∗)), the number of distinct

zeros in Cn of the polynomial system G.
(iii) Let f ∈ C[z, z] be of degree less than 2p. All the zeros in Cn of the

polynomial system G are zeros of f if and only if

Mp(μ∗)f = 0. (16)

In particular, a polynomial f ∈ R[x1, . . . , xn] of degree less than 2p is in
√

I
if and only if (16) holds.

The proof is postponed to §5.2.

Remark 7 (a) Theorem 6(i) also states that for all p ≥ r0, Mp(μ∗, y) 0 has
a unique feasible solution, namely the vector y∗ of moments of the probability
measure μ∗, truncated up to order 2p. In particular, solving Mr0(μ∗, y) 0
provides the vector y∗ of all moments of μ∗, truncated up to order 2r0. One
then gets all the other moments {y∗

αβ} by (15) in Proposition 2.
(b) Theorem 6(iii) has an equivalent formulation as follows. Let f ∈ C[z, z]

be of degree at most 2p and let f̂ be its reduction w.r.t. H , the Gröbner basis
of G defined in Proposition 2. Then the condition Mp(μ∗)f = 0 is equivalent
to Mr0 f̂ = 0.
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(c) Given a reduced Gröbner basis H of I, the condition Mr0(μ∗, y) 0 in
Theorem 6(i) is equivalent to the same condition for its submatrix Mr0(μ

∗, y)
whose indices of rows and columns in the basis (2) correspond to indepen-
dent monomials {zα} which form a basis of R[x1, . . . , xn]/I, their conjugate
{zα} and the corresponding monomial products zαzβ. Indeed, the positive
semidefinite condition on the latter is equivalent to the positive semidefinite
condition on the former.

Example 8 Consider the trivial example G := {x2+1} so that VC(I) = {±i}.
Then the condition Mr0(μ∗, y) 0 (see Remark 7(b)) reads

M2(μ∗, y) =


1 0 0 y11

0 y11 −1 0
0 −1 y11 0

y11 0 0 1

 0,

which clearly implies y11 = 1 = zz dμ∗. Moreover,

rank(Mr0(μ
∗, y)) = rank(Mr0(μ

∗, y)) = 2 = |VC(I)|.

Similarly, let G := {x2
1 + 1, x1x2 + 1} so that VC(I) = {(i,−i), (−i, i)}.

We have r0 = 2 and with the lexicographical ordering x1 < x2, H := {x2
1 +

1, x2 − x1} is a reduced Gröbner basis of I. Hence, in the moment matrix
Mr0(μ∗, y) every yα1α2β1β2 is replaced with yα1+β1,0,α2+β2,0. Moreover, we only
need to consider α1, β1 < 1. Therefore, we only need to consider the monomials
{z1, z2, z1, z2, z1z1} and and in view of Remark 7(b), the (equivalent) condition
Mr0(μ

∗, y) 0 reads (denoting y1010 = y)
1 0 0 0 0 y
0 y y −1 −1 0
0 y y −1 −1 0
0 −1 −1 y y 0
0 −1 −1 y y 0
y 0 0 0 0 1

 0,

which implies y = 1 = z1z1 dμ∗. Moreover,

rank(Mr0(μ
∗, y)) = rank(Mr0(μ

∗, y)) = 4 = |VC(I)|.

3.3 Conditions for a Localization of Zeros of G

Let wi ∈ C[z, z], i = 1, . . .m, be given polynomials and let K ⊂ Cn be the set
defined by

K := {z ∈ Cn |wi(z, z) ≥ 0, i = 1, . . . , m} (17)
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(which can be viewed as a semi-algebraic set in R2n). We now consider the
following issue :

Under what conditions on the coefficients of the polynomials gi’s are all
the zeros of the triangular system G contained in K?

Let Mp(wiy) be the localizing matrices (cf. §2.2) associated with the poly-
nomials wi, for all i = 1, . . . , m. As we did for the moment matrix Mp(μ∗, y)
in Definition 3, we define Mp(μ∗, wi, y) to be the localizing matrix Mp(wiy)
where the entries y0α and yα0 are replaced with the α-Newton sums sα, and
where all the yηγ are replaced by the linear combinations (15) of the {yαβ}
with αi, βi < ri for all i = 1, . . . , n. Accordingly, Mp(μ∗, wi) is obtained from
Mp(wiy) by replacing y with y∗ as in Proposition 2.

Theorem 9. Let G be the triangular system in (7)-(8) and let Mr0(μ∗, y) be
as in Theorem 6. Then, all the zeros of G are in K if and only if

Mr0(μ
∗, wi) 0, i = 1, . . . , m. (18)

Equivalently, all the zeros of G are in K if and only if the system of linear
matrix inequalities

Mr0(μ
∗, y) 0; Mr0(μ

∗, wi, y) 0 i = 1, . . . , m (19)

has a solution y.

Proof. The necessity is obvious. Indeed, assume that all the zeros of G are in
K. Let μ∗ be as in (10) and let y∗ := {sα, y∗

αβ} be the infinite sequence of
moments of μ∗. Then, of course, Mp(μ∗) 0 and

Mp(μ∗, wi) = Mp(wiy
∗) 0 i = 1, . . . , m,

for all p ∈ N, is a necessary condition for μ∗ to have its support in K. Thus,
y := {y∗

αβ} is a solution of (19).
Conversely, let y be a solution of (19). From Theorem 6(i) {sα, yαβ} is the

moment vector of μ∗, that is, {yαβ} = {y∗
αβ} for all α, β with αi, βi < ri,

for all i = 1, . . . , n. Then, all the other y∗
αβ can be obtained from the former

by (15). Therefore, and in view of the construction of the localizing matrices
Mp(μ∗, wi, y), we have

Mp(μ∗, wi, y) = Mp(μ∗, wi, y
∗) = Mp(μ∗, wi).

Moreover, using the terminology of Curto and Fialkow [5] (see also the proof
of Theorem 6), all the moment matrices Mp(μ∗, y) = Mp(μ∗) (p > r0)
are flat positive extensions of Mr0(μ∗, y) = Mr0(μ∗). As Mr0(μ∗, wi, y) =
Mr0(μ∗, wi) 0, it follows from Theorem 1.6 in Curto and Fialkow [5] that
μ∗ has its support contained in K. Hence, as μ∗ is supported on all the zeros
of G, all the zeros of G are in K.
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4 Conclusion

We have considered a system G of polynomial equations in triangular form
and show that several characterizations of the zeros of G may be obtained
from positive semidefinite (numerical) conditions on appropriate moment and
localizing matrices. In particular, the triangular form of G permits to define
the analogue for the multivariate case of Newton sums in the univariate case.

5 Proofs

5.1 Proof of Proposition 1

Proof. The proof is by induction. In view of the triangular form (7)-(8), the
zero set of G in Cn (or, equivalently, the variety VC(I) associated with I)
consists of s := n

j=1 rj zeros that we label z(i), i = 1, . . . , s, counting their
multiplicity.

In addition, still in view of (7)-(8), any particular zero z(i) ∈ Cn of G can
be written

z(i) = [z1(i1), z2(i1, i2), . . . , zn(i1, . . . , in)],

for some multi-index i1 ≤ r1, . . . , in ≤ rn, and where each zk(i1, . . . , ik) ∈ C is
a zero of the univariate polynomial x → gk(z1(i1), . . . , zk−1(i1, . . . , ik−1), x)
(where multiplicy is taken into account).

Therefore, for every α ∈ Nn, the α-Newton sum yα defined in (9) can be
written

syα :=
s

i=1

z(i)α =
i1≤r1,...,in≤rn

z1(i1)α1z2(i1, i2)α2 · · · zn(i1, . . . , in)αn .

(20)
Let us make the following induction hypothesis.

Hk. For every p, q ∈ R[x1, . . . , xk]

Sk(p, q) :=
i1,...,ik

p(z1(i1), . . . , zk(ik))
q(z1(i1), . . . , zk(ik))

=
i1,...,ik

α pαz1(i1)α1 · · · zk(ik)αk

α qαz1(i1)α1 · · · zk(ik)αk
(21)

is a rational fraction of coefficients of the polynomials gi’s, i = 1, . . . , k.
Observe that (20) is a particular case of (21) in Hn.
We first prove that H1 is true. Let p, q ∈ R[x1] and

S(p, q) =
r1

j=1

k pkz1(j)k

k qkz1(j)k
,

with {z1(j)} being the zeros of x1 → g1(x1), counting their multiplicity.
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Reducing to a common denominator, S(p, q) reads

S(p, q) = 
P (z1(1), . . . , z1(r1))
Q(z1(1), . . . , z1(r1))

,

for some symmetric polynomials P, Q of the variables {z1(j)} and whose co-
efficients are polynomials of coefficients of p, q.

Therefore, by the fundamental theorem of symmetric functions, both
numerator P (.) and denominator Q(.) are rational fractions of coefficients
of g1 (polynomials if g1 is monic). Thus, H1 is true and we can write
S1(p, q) = upq(g1)/vpq(g1) for some polynomials upq, vpq of coefficients of
g1. The coefficients of upq, vpq are themselves polynomials of coefficients of
the polynomials p, q.

Next, assume that Hj is true for all 1 ≤ j ≤ k, that is : for all j = 1, . . . , k
and p, q ∈ R[x1, . . . , xj ],

Sj(p, q) = upq(g1, . . . , gj)/vpq(g1, . . . , gj) (22)

for some polynomials upq, vpq of coefficients of the polynomials g1, . . . , gj .
We are going to show that Hk+1 is true. Let p, q ∈ R[x1, . . . , xk+1] and

Sk+1(p, q) =
i1,...,ik+1

α pαz1(i1)α1 · · · zk+1(i1, . . . , ik+1)αk+1

α qαz1(i1)α1 · · · zk+1(i1, . . . , ik+1)αk+1
.

Sk+1(p, q) can be rewritten as

Sk+1(p, q) =
i1,...,ik

[ (23)

rk+1

j=1

α pαz1(i1)α1 · · · zk(i1, . . . , ik)αkzk+1(i1, . . . , ik, j)αk+1

α qαz1(i1)α1 · · · zk(i1, . . . , ik)αkzk+1(i1, . . . , ik, j)αk+1

 .

In (23), the term

A :=

rk+1

j=1

α pαz1(i1)α1 · · · zk(i1, . . . , ik)αkzk+1(i1, . . . , ik, j)αk+1

α qαz1(i1)α1 · · · zk(i1, . . . , ik)αkzk+1(i1, . . . , ik, j)αk+1


can in turn be written as

A =
rk+1

j=1

p̃(zk+1(i1, . . . , ik, j))
q̃(zk+1(i1, . . . , ik, j))

, (24)

for some univariate polynomials p̃, q̃ ∈ R[x] of the variable zk+1(i1, . . . , ik, j),
which is a zero of the univariate polynomial
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x → gk+1(z1(i1), . . . , zk(i1, . . . , ik), x),

and whose coefficients are polynomials in the variables z1(i1), z2(i1, i2), . . . ,
zk(i1, . . . , ik). In view of H1

A = 
up̃q̃(gk+1)
vp̃q̃(gk+1)

,

for some polynomials up̃q̃, vp̃q̃ of the coefficients of gk+1.
The coefficients of the polynomials up̃q̃, vp̃q̃ are themselves polynomials of

coefficients of p, q and of z1(i1), . . . , zk(i1, . . . , ik). Hence, substituting for A
in (23) we obtain

Sk+1(p, q) =
i1,...,ik

α Uα(gk+1)z1(i1)α1 · · · zk(i1, . . . , ik)αk

α Vα(gk+1)z1(i1)α1 · · · zk(i1, . . . , ik)αk

= Sk(U(gk+1), V (gk+1))

for some polynomials U, V ∈ R[x1, . . . , xk] whose coefficients are polynomials
of coefficients of gk+1.

We next use the induction hypothesis Hk by which Sk(U(gk+1), V (gk+1))
is a rational fraction fUV (g1, . . . , gk)/hUV (g1, . . . , gk) of coefficients of the
polynomials g1, . . . , gk. As the coefficients of fUV , hUV are themselves rational
fractions of coefficients of gk+1 we finally obtain that

Sk+1(p, q) =
upq(g1, . . . , gk+1)
vpq(g1, . . . , gk+1)

,

that is, a rational fraction of coefficients of the polynomials g1, . . . , gk+1. Hence
Hk+1 is true, and therefore, the induction hypothesis is true.

Now Proposition 1 follows from Hn and the expression (20) for the α-
Newton sum yα. That the {yα} can be computed recursively is clear from the
above proof of the induction hypothesis Hk.

5.2 Proof of Theorem 6

Proof. (i) Let p > r0 be fixed, arbitrary, and write

Mp(μ∗, y) =

Mr0(μ∗, y) | B
− −
B | C

 .

Consider an arbitrary column
B(., j)
C(., j) . By definition of the moment matrix,

B(1, j) is a monomial zγzη for which γi > ri or ηk > rk for at least one index
i or k. By Proposition 2
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zγzη =
α,β

uαβ(η, γ)zαzβ αi, βi < ri, ∀i = 1, . . . , n, (25)

for some scalars {uαβ(η, γ)}, so that, from the construction of Mp(μ∗, y), we
have

B(1, j) = yηγ =
α,β

uαβ(η, γ)yαβ

=
α,β

uαβ(η, γ)Mr0(μ
∗, y)(1, jαβ),

where jαβ is the index of the column of Mr0(μ∗, y) corresponding to the mono-
mial zαzβ. Next, consider an element B(k, j) of the column B(., j). The el-
ement k of Mp(μ∗, y)(k, 1) is a monomial zpzq and from the definition of
Mp(μ∗, y), we have B(k, j) = yη+q,γ+p. Now, from (25) we have

zpzqzγzη =
α,β

uαβ(η, γ)zβ+pzα+q,

which implies
yη+q,γ+p =

α,β

uαβ(η, γ)yα+q,β+p,

or, equivalently,
B(k, j) =

α,β

uαβ(η, γ)Mr0(k, jαβ).

The same argument holds for C(., j). Hence,

B
C

(j) =
α,β

uαβ(η, γ)
Mr0(μ∗, y)

B
(j) ∀j,

which, in view of Mp(μ∗, y) 0, implies that

rank(Mp(μ∗, y)) = rank(Mr0(μ
∗, y)).

As p > r0 was arbitrary, and using the terminology of Curto and Fialkow [5],
it follows that the matrices Mp(μ∗, y) are flat positive extensions of Mr0(μ∗, y)
for all p > r0. This in turn implies that indeed, the entries of Mr0(μ∗, y) are
moments of some rank(Mr0(μ∗, y))-atomic probability measure μ.

We next prove that μ = μ∗, i.e., the condition Mr0(μ∗, y) 0 determines
a unique vector y = y∗ that corresponds to the vector of moments of μ∗, up
to order 2r0.

Given the Gröbner basis H = {hi}m
i=1 of I = g1, . . . , gn (already consid-

ered in the proof of Proposition 2), let hi ∈ C[z, z] be the conjugate polynomial
of hi, i.e., hi(z, z) = hi(z) for all i = 1, . . . , m. We first prove that

Mp(hiy) = 0; Mp(hiy) = 0, i = 1, . . . , m, p ∈ N, (26)
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where Mp(hiy) (resp. Mp(hy)) is the localizing matrix associated with the
polynomials hi (resp. hi).

By Proposition 2, recall that any entry yηγ of Mp(μ∗, y) is replaced by a
linear combination of the yαβ ’s with αi, βi < ri for all i = 1, . . . , n. This linear
combination is coming from the reduction of the monomials {zα}α∈Nn with
respect to H ; that is, let us call J the set of indices β corresponding to the
irreducible monomials zβ w.r.t. H . Then, the reduction of zα w.r.t. H yields

zα =
m

i=1

qi(z)hi(z) +
β∈J

uβ(α)zβ denoted zα

β∈J

uβ(α)zβ ,

and similarly,

zα =
m

i=1

qi(z)hi(z) +
β∈J

uβ(α)zβ denoted zα

β∈J

uβ(α)zβ .

From this, we obtain (see the proof of Proposition 2)

zγzη


β∈J

uβ(γ)zβ


β∈J

uβ(η)zβ


α,β∈J

uαβ(η, γ)zαzβ, (27)

for some scalars {uαβ(η, γ)}, and thus, the entry yηγ of Mp(μ∗, y) is replaced
with α,β∈J uαβ(η, γ)yαβ , or, equivalently,

yηγ −
α,β∈J

uαβ(η, γ)yαβ = 0. (28)

So let p ∈ N be fixed, and consider the entry Mp(hiy)(k, l) of the localizing
matrix Mp(hiy). Recall that Mp(y)(k, l) = yφζ for some φ, ζ ∈ Nn, and so,
Mp(hiy)(k, l) is just the expression zφzζhi(z) where each monomial zαzβ is
replaced with yαβ ; see (5). Next, by definition, zφzζhi 0 for all i = 1, . . . , m.
Therefore, when y is as in Definition 3 (that is, when (28) holds), writing

zφ zζhi =
η,γ∈Nn

vηγzηzγ 0,

and using (27)-(28), yields

Mp(hiy)(k, l) =
α,β∈J


η,γ∈Nn

vηγuαβ(η, γ)

 yαβ = 0.

Recall that p ∈ N, and k, l were arbitrary. Therefore, when y is as in Definition
3, we have Mp(hiy) = 0 (and similarly, Mp(hiy) = 0), for all i = 1, . . . , m,
and all p ∈ N. That is, (26) holds.
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Hence, let μ be the r-atomic probability measure encountered earlier (with
r := rank(Mr0(μ∗, y))), and let {z(k)}r

k=1 ⊂ Cn be the r distinct points of
the support of μ, that is,

μ =
r

k=1

ukδz(k),

r

k=1

uk = 1; 0 < uk, k = 1, . . . , r,

with δ• the Dirac measure at •.
For every 1 ≤ i ≤ r, let qi ∈ C[z, z] be a polynomial that vanishes at

all z(k), k = i, and with qi(z(i), z(i)) = 0. Let p ≥ deg qi. Then for all j =
1, . . . , m, we have (denoting also qi as the vector of coefficients of qi ∈ C[z, z])

0 = qi, Mp(hjy)qi = |qi(z, z)|2hj(z)μ(dz) = ui|qi(z(i), z(i))|2hj(z(i)),

and so, hj(zi) = 0 for all j = 1, . . . , m.
As this is true for all 1 ≤ i ≤ r, it follows that

hj(z(i)) = 0, i = 1, . . . , r; j = 1, . . . , m,

that is, μ has its support contained in G. Therefore, with {z(i)}s0
i=1 being the

distinct zeros in Cn of G,

μ =
s0

i=1

uiδz(i),

s0

i=1

ui = 1, ui ≥ 0, i = 1, . . . , n,

for some nonnegative scalars {ui}, whereas μ∗ = s−1 s
i=1 δz(i) (counting

their multiplicity) or μ∗ = s0
i=1 viδz(i) for some nonnegative scalars {vi}.

Remember that by definition of the matrices Mr0(μ∗) and Mr0(μ∗, y), their
entries {sα} (corresponding to the Newton sums) are the same. That is,

sα = zα dμ = zα dμ∗, αj ≤ rj − 1, j = 1, . . . , n.

Now, we also know that s0 is less than the number of independent mono-
mials {zβ(j)} (w.r.t. H) which form a basis of R[x1, . . . , xn]/I (with equality
if I =

√
I). Therefore, if μ = μ∗, we have

s0

i=1

(ui − vi)z(i)β(j)
= 0, j = 1, . . . s0, with u = v,

which yields that the square matrix of the above linear system is singular.
Hence some linear combination {λj} of its rows vanishes, i.e.,

s0

j=1

λjz(k)β(j)
= 0, ∀k = 1, . . . , s0,
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in contradiction with the linear independence of the {zβ(j)}. Hence u = v,
which in turn implies μ = μ∗. So it follows that Mr0(μ∗, y) 0 has only one
solution, namely y = y∗, the (truncated) vector y∗ of moments up to order
2r0, of the probability measure μ∗.

Finally, this implies that s0 = r = rank(Mr0(μ∗, y)) = rank(Mr0(μ∗))
because by Curto and Fialkow [5, Theor. 1.6], the number of atoms of μ = μ∗

is precisely rank(Mr0(μ∗, y)). This also proves that Mr0(μ∗, y) = Mr0(μ∗) and
thus, (i) and (ii).

To prove (iii), consider a polynomial f ∈ C[z, z] of degree less than 2p with
coefficient vector in the basis (2) still denoted f . It is clear that if f(z(i)) = 0
for all i = 1, . . . , s0 then

0 = |f |2 dμ∗ = Mp(μ∗)f, f ,

which in turn implies Mp(μ∗)f = 0. Conversely,

Mp(μ∗)f = 0 ⇒ 0 = Mp(μ∗)f, f = |f |2 dμ∗,

which in turn implies f(z) = 0, μ∗-a.e.
Finally, let f ∈ R[x1, . . . , xn]. Recall that

√
I = I(VC(I)) where VC(I)

={z(i)}s0
i=1, that is, f ∈ √

I if and only if f(z(i)) = 0 for all i = 1, . . . , s0. In
view of what precedes, f ∈ √

I if and only if Mp(μ∗)f = 0.

References

1. Aubry P., Lazard D., Moreno Maza M. (1999). On the theories of triangular
sets. J. Symb. Comp. 28: 105–124.

2. Aubry P., Moreno Maza M. (1999). Triangular sets for solving polynomial sys-
tems: A comparative implementation of four methods. J. Symb. Comput. 28:
125-154.

3. Adams W.W., Loustaunau P. (1994). An Introduction to Gröbner Bases, Amer-
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1 Introduction and Notation

Given a semialgebraic set K ⊆ RN determined by a finite set of polynomial
inequalities {g1 ≥ 0, . . . , gk ≥ 0}, we want to characterize a polynomial f
which is positive (or non-negative) on K in terms of sums of squares and the
polynomials gi used to describe K. Such a representation of f is an immediate
witness to the positivity condition. Theorems about the existence of such rep-
resentations also have various applications, notably in problems of optimizing
polynomial functions on semialgebraic sets.

In case K is compact, Schmüdgen has proved that any polynomial which
is positive on K is in the preorder generated by the gi’s, i.e., the set of finite
sums of elements of the form seg

e1
1 . . . gek

k , ei ∈ {0, 1}, where each se is a sum of
squares of polynomials. Putinar has proved that, under certain conditions, the
preorder can be replaced by the quadratic module , which is the set of sums
{s0 + s1g1 + · · ·+ skgk}, where each si is a sum of squares . Using this result,
Lasserre has developed algorithms for finding the minimum of a polynomial
on such compact K, which transforms this into a semidefinite programming
problem.

What happens when K is not compact? Scheiderer has shown that if K
is not compact and dim K ≥ 3, then Schmüdgen’s characterization can never
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hold, regardless of the gi’s chosen to describe K. Kuhlman and Marshall
settled the case where K is not compact and contained in R; the answer
here depends on chosing the “right” set of generators for K. In this paper
we consider some variations on these themes: we look at some canonical non-
compact sets in R2 which are products of intervals and at some stronger and
weaker versions of positivity.

We introduce some basic notation. Let S = {g1, . . . , gs} denote a finite set
of polynomials in Rn := R[x1, . . . , xn], and let

K = KS = 
j 

{a ∈ Rn | fj(a) ≥ 0}.

Write 
 
R2

n for the set of finite sums of squares of elements of Rn; clearly,
any σ ∈  

R2
n takes only non-negative values on Rn. We shall say that an

element of R2
n is sos. The preorder generated by S, denoted TS , is the set

of finite sums of the type σg 1
1 . . . g s

s where σ is sos and i ∈ {0, 1}. That
is, a typical element of TS has the shape

σ0 + 
I

σI

i∈I

gI ,

where the sum is taken over all non-empty I ⊆ {1, . . . , s}, and each σ− is
sos. An important subset of the preorder is the quadratic module, MS, which
consists of sums in which i i ≤ 1 for each summand. That is, a typical
element of MS has the shape

σ0 +
s

k=1

σkgk.

Clearly, MS ⊆ TS , and if s ≥ 2, then inclusion is formally strict. However,
there can be non-trivial equality. For example, if S = {1− x, 1 + x}, then the
identity

(1 + x)(1 − x) =
(1 − x)2

2
(1 + x) +

(1 + x)2

2
(1 − x) (1)

shows that (1 + x)(1 − x) is already in MS, so MS = TS for this case.

Various notions of positivity. For K ⊆ Rn and f ∈ Rn, we write f ≥ 0
on K if f(x) ≥ 0 for all x ∈ K and f > 0 on K if f(x) > 0 for all x ∈ K. We
consider a stronger version of positivity which considers positivity at “points
at infinity”. (This definition appeared in [13, Ch. 7], in the context of moment
and quadrature problems.)

For x = (x1, . . . , xn) ∈ Rn, write (x, 1) for (x1, . . . , xn, 1) ∈ Rn+1, and let

x∗ :=
(x, 1)
|(x, 1)| ∈ Sn ⊂ Rn+1.
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Suppose K ⊆ Rn is a closed set. Let K∗ = {x∗ | x ∈ K} and let K∗ be the
closure of {x∗ | x ∈ K}. For example, if K = R2, then K∗ consists of the
Northern Hemisphere, and K∗ is the Northern Hemisphere plus the equator.

Suppose p ∈ Rn of degree d and let p∗ ∈ Rn+1 be the homogenization of
p, i.e.,

p∗(x1, . . . , xn+1) := xd
n+1 p

x1

xn+1
, . . . ,

xn

xn+1
.

For x ∈ Rn, let Φn,d(x1, . . . , xn) := (1 + n
i=1 x2

i )
d/2 = |(x, 1)|d. It follows

from homogeneity that

p(x) = p∗(x, 1) = Φn,d(x)p∗(x∗). (2)

We say p is projectively positive on K if p∗ is positive on K∗, and write
p 0 on K. Clearly, p 0 on K ⇒ p > 0 on K. A simple example
shows that the converse is false: Let K = R2 and p(x, y) = x2y2 + 1, so that
p∗(x, y, z) = x2y2 + z4. Then p > 0 on K; but p∗(1, 0, 0) = 0, so p is not
projectively positive on K. Observe that K∗ is compact, and so if p 0 on
K, then p∗ achieves a positive minimum on K∗.

Proposition 1. Suppose K ⊆ Rn is closed and p ∈ R of degree d.

(i) There exists c > 0 so that p − c Φn,d ≥ 0 on K iff p 0 on K.
(ii) If K is compact, then p 0 on K iff p > 0 on K.
(iii) If (x1, . . . , xn+1) ∈ K∗ \ K∗, then xn+1 = 0.

Proof. By (2), we have p∗ ≥ c > 0 on K∗ if and only if

p(x) = Φn,d(x)p∗(x∗) ≥ c Φn,d(x).

for x ∈ K, proving (i). For (ii), it suffices to show that p > 0 on K implies
p 0 on K. Since Φn,d is bounded (say, by M) on the compact set K, p ≥ c
on K implies that p∗ ≥ c/M on K∗. Finally, suppose

(x1, . . . , xn+1) = lim
N→∞

(x(N)
1 , . . . , x

(N)
n+1),

where (x(N)
1 , . . . , x

(N)
n+1) ∈ K∗ and xn+1 > 0. Then x

(N)
n+1 > 0 for N ≥ N0, and

for each such N ,
x

(N)
1

x
(N)
n+1

, . . . ,
x

(N)
n

x
(N)
n+1

belongs to K. Since K is closed, the limit is in K, and by retracing the
definition, we see that (x1, . . . , xn+1) ∈ K∗.

Fix S, and let K = KS , M = MS and T = TS . We consider six properties
of S:
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(∗) f 0 on K ⇒ f ∈ T

(∗)M f 0 on K ⇒ f ∈ M

(∗∗) f > 0 on K ⇒ f ∈ T

(∗∗)M f > 0 on K ⇒ f ∈ M

(∗∗∗) f ≥ 0 on K ⇒ f ∈ T

(∗∗∗)M f ≥ 0 on K ⇒ f ∈ M

There is an immediate diagram of implications:

(∗∗∗) ⇒ (∗∗) ⇒ (∗)
⇑ ⇑ ⇑

(∗∗∗)M ⇒ (∗∗)M ⇒ (∗)M

In case s = 1, the two rows of properties coalesce; if K is compact, then the
last two columns coalesce.

We summarize what is known about these properties: Schmüdgen’s The-
orem [16] says that if K is compact, then (∗∗) holds, regardless of the choice
of S. Also, when K is compact, Putinar [12] has shown that (∗∗)M holds iff
M contains a polynomial of the form r − x2

i for some non-negative r.
On the other hand, Scheiderer [15] has shown that if K is not compact

and dim K ≥ 3, or if dimK = 2 and K contains a two-dimensional cone, then
(∗∗) fails. (Observe that K contains a two-dimensional cone iff K∗ contains
an arc on the equator of the unit sphere.) The proof is non-constructive. The
case of non-compact semialgebraic subsets of R has been settled completely by
Kuhlmann and Marshall [3]. They show that in this case, (∗∗) and (∗∗∗) are
equivalent and hold iff S contains a specific set of polynomials which generate
S (what they call the “natural set of generators”). They also show that (∗∗)M

and (∗∗∗)M are equivalent, and only hold in a few special cases.
In general, (∗∗∗) will not hold, even in the compact case. An easy example

is given by S = {(1− x2)3} , in which case KS = [−1, 1] but 1− x2 ∈ TS. See
[17] for details on this example.

The authors [10] previously considered two special cases in R, in which
K = [−1, 1] or [0,∞). (It is easily shown via linear changes of variable that
the case of closed intervals in R reduces to one of {[−1, 1], [0,∞), R}.) For
each of these intervals, (∗∗∗)M has been long known, for the “natural set of
generators”. Hilbert knew (and saw no need to prove) that if f(x) ≥ 0 for
x ∈ R, then f is a sum of (two) squares of polynomials; this corresponds
precisely to T∅. If we take S = {1 + x, 1 − x}, so that K = [−1, 1], then
Bernstein proved (∗∗) in 1915. On the other hand, if S = {1−x2}, then Fekete
proved (∗∗∗) (some time before 1930, the first reference seems to be [8]). The
authors showed as Corollary 14 in [10] that if S is given and K = [0,∞), then
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+ x ∈ TS for all iff S contains cx for some c > 0. In other words, (∗∗) fails
for the (non-compact) set [0,∞) unless the natural generator is included.

In view of the foregoing, this paper considers products of intervals in the
plane. There are, up to linear changes and permutation of the variables, six
cases of products of closed intervals in the plane, and we take the natural set
of generators:

K0 = [−1, 1]× [−1, 1] S0 = {1 − x, 1 + x, 1 − y, 1 + y};
K1 = [−1, 1]× [0,∞) S1 = {1 − x, 1 + x, y};
K2 = [−1, 1]× (−∞,∞) S2 = {1 − x, 1 + x};
K3 = [0,∞) × [0,∞) S3 = {x, y};
K4 = [0,∞) × (−∞,∞) S4 = {x};
K5 = (−∞,∞) × (−∞,∞) S5 = ∅.

Since K0 is compact, f > 0 and f 0 are equivalent and (∗∗) holds.
By the Putinar result, (∗∗)M holds in this case as well. Scheiderer recently
showed [15] that (∗∗∗) holds for K0. Thus all but the possibly (∗ ∗ ∗)M hold
hold for K0.

All properties fail for K5, by classical results of Hilbert and Robinson. K3

and K4 contain two-dimensional cones, so Scheiderer’s work implies that (∗∗)
fails for them; we shall present simple examples in the next section. In fact,
we will show that (∗) does not hold in these cases. Thus all properties fail for
K3 and K4.

Finally, we consider K1 and K2. We show that (∗∗)M does not hold for
K1 and that (∗) holds for K2. It is still an open question whether or not (∗∗)
holds for K1 or K2.

Projective positivity and optimization. Recently, there has been inter-
est in using representation theorems such as those of Schmüdgen and Putinar
for developing algorithms for optimizing polynomials on semialgebraic sets.
Lasserre [4] [5] describes a method for finding a lower bound for the mini-
mum of a polynomial on a basic closed semialgebraic set and shows that the
method produces the exact minimum in the compact case. Marshall [6] shows
that in the presence of a certain stability condition, the general problem can
be reduced to the compact case, and hence can be handled using Lasserre’s
method. It turns out that Marshall’s stability condition is intimately related
to projective positivity.

Definition 1 (Marshall). Suppose S = {g1, . . . , gs} ⊆ Rn and f ∈ Rn is
bounded from below on KS. We say f is stably bounded from below on KS if
for any h ∈ Rn with deg h ≤ deg f , there exists > 0 so that f − h is also
bounded from below on KS.
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Theorem 1 (Marshall). Suppose S is given as above and f is stably bounded
from below on KS. Then there is a computable ρ > 0 so that the minimum of
f on KS occurs on the (compact) semialgebraic set KS ∩ {x | ρ − ||x||2 ≥ 0}.

We now interpret Proposition 1 in terms of projective positivity.

Proposition 2. Given S = {g1, . . . , gs}, f ⊆ Rn. Then f 0 on KS implies
f is stably bounded from below by 0 on KS.

Proof. By Proposition 1, f 0 iff there is c ∈ R+ so that f − cΦ(n, d)(x) > 0
on KS. Given h ∈ Rn with deg h = d, then there is some N > 0 and  > 0 such
that p(x) < cΦ(n, d)(x) for ||x|| > N . Then f − p > 0 on KS ∩{x | ||x|| > N}
and this implies f − p is bounded from below on KS.

Thus for applications to optimization, projective positivity is the “right”
notion of positivity to consider. As Marshall remarks in [6]: “In cases where
f is not stably bounded from below on KS , any procedure for approximating
the minimum of f using floating point computations involving the coefficients
is necessarily somewhat suspect.”

2 The Plane, Half Plane, and Quarter Plane

In the section we consider the semialgebraic sets K3, K4, and K5 with gen-
erators S3, S4, and S5. As stated above, it has been shown that (∗∗) holds
neither for K5 (Hilbert) nor for K3 and K4 (Scheiderer). In this section, we
will construct explicit examples showing that (∗) does not hold, which implies
(∗∗) does not hold.

First we consider polynomials f ∈ R2 := R = R[x, y] which are non-
negative in the plane and review some results about when they are in ΣR2.
We shall use the standard terminology that p is psd if p ≥ 0 on R2 and p is pd
if p > 0 on R2 In 1888, Hilbert [2] gave a construction of a non-sos polynomial
which is psd on R2. This construction was not explicit, and the first explicit
example was found by Motzkin [7] in 1967. R. M. Robinson simplified Hilbert’s
construction [14]; we will use this example to construct the counterexamples
in this section:

Q(x, y, z) = x6 +y6 +z6 −(x4y2 +x2y4 +x4z2 +x2z4 +y4z2 +y2z4)+3x2y2z2.

For a ≥ 0, let Qa(x, y, z) = Q(x, y, z) + a(x2 + y2 + z2)3, then since Q is
psd, Qa is also pd for a > 0. It is shown in [14] (and the observation really
goes back to [2]) that the cone of sos ternary sextic forms is closed. Since
Q does not belong to this cone, it follows that for some positive value of a,
Qa is not sos. In fact, the methods of [1] can be used to show that Qa is
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pd but not sos for a ∈ (0, 1/48); we omit the details. Let qa(x, y) ∈ R[x, y]
be the dehomogenization of Qa, then for 0 < a < 1/48, qa is pd and not
sos. As already noted, K∗

5 is the Northerm Hemisphere plus the equator, and
q∗a = Qa, hence qa 0 on K5 and qa is not in T5. Thus (∗) does not hold for
K5.

Note that Q is even in x and so we can consider f(x, y) = qa(
√

x, y), so
that f(x2, y) = qa(x, y). Then f∗(x2, y, z) = Qa(x, y, z), hence f∗(x, y, z) ≥ 0
for x > 0. It is easy to see that K∗

4 is the quarter sphere plus half the equator;
thus f 0 on K4. But if f ∈ T4, then there exist sos σj so that

f(x, y) = σ0(x, y) + xσ1(x, y).

If we replace x by x2 above, we obtain

Qa(x, y) = f(x2, y) = σ0(x2, y) + x2σ1(x2, y).

This implies that Qa is sos, a contradiction.
A virtually identical argument shows that qa(

√
x,

√
y) 0 on K3 for

a > 0, but does not belong to T3.

3 Non-compact Strips in the Plane

Before we discuss K1 and K2, we make a detour to K = [−1, 1]. There are two
natural sets of generators for K. Let S1 = {1 − x, 1 + x} and S2 = {1 − x2}.
Then clearly KS1 = KS2 = K and MS2 = TS2 , because |S2| = 1. As remarked
earlier, (1) implies that MS1 = TS1 ; finally, TS2 ⊆ TS1 is immediate and

1 ± x = 
(1 ± x)2

2
+

(1 − x2)
2

(3)

shows the converse. Thus it does not matter whether one takes S1 or S2 (or
M or T ) in discussing [−1, 1].

What do (1) and (3) have to say in the plane? First, for K2, we might take
either S1 or S2 above as the set of generators, keeping in mind that the set
of possible σ’s is taken from R2

2, rather than R2
1 as above. Then, once

again M and T are not affected by the choice of generators and M = T . For
K1, we similarly have from (3) that T{1−x2,y} = T{1−x,1+x,y} and M{1−x2,y} =
M{1−x,1+x,y}. However, in this case, T = M . In fact, y(1−x), which evidently
is an element of T{1−x,1+x,y}, does not belong to M{1−x,1+x,y} = M{1−x2,y}.

Theorem 2. Suppose S = {f1(x), . . . , fm(x), y} is such that KS = K1. Then
for every f(x) ∈ R[x], we have g(x, y) = f(x) + y(1− x) ∈ MS. In particular,
(∗∗)M does not hold for S.
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Proof. We show that that there cannot exist an identity

g(x, y) = f(x) + y(1 − x) = σ0(x, y) +
m

i=1

σi(x, y)fi(x) + σm+1(x, y) · y, (4)

where the σi’s are sos. Suppose (4) holds, and let

I = {a ∈ [0, 1) |
i

fi(a) = 0};

I is the interval [0, 1) minus a finite set of points. Fix a ∈ I. Since (a, y) ∈ K1,
it follows that fi(a) > 0. Consider (4) when x = a:

f(a) + y(1 − a) = σ0(a, y) +
m

i=1

σi(a, y)fi(a) + σm+1(a, y) · y. (5)

Each σi(a, y) is sos, and hence psd, and so as a polynomial in y has leading
term ciy

2mi , where ci > 0. Let M = max mi. Then the highest power of y
occurring in any term on the right hand side of(5) is y2M or y2M+1, with
positive coefficient or coefficients, and so no cancellation occurs. In view of
the left hand side, this highest power must be y1. It follows that M = 0, so
that each σi(a, y) is a constant. Writing σi(x, y) = j A2

i,j(x, y), we see that,
degy Ai,j(a, y) = 0 for a ∈ I. Suppose now that degy Ai,j(x, y) = mi,j and
write

Ai,j(x, y) =
mi,j

k=0

Bi,j,k(x)yk,

We have seen that Bi,j,k(a) = 0 for a ∈ I if k ≥ 1. Any polynomials which
vanishes on I must be identically zero, hence Bi,j,k(x) = 0 for k ≥ 1. Thus
mi,j = 0 and each Ai,j(x, y) is, in fact, a polynomial in x alone, so that
σj(x, y) = σj(x). Therefore, (5) becomes

f(x) + y(1 − x) = σ0(x) +
m

j=1

σj(x)fj(x) + yσm+1(x).

Taking the partial derivative of both sides of this equation with respect to y,
we see that 1 − x = σm+1(x). This contradicts the assumption that σm+1 is
sos.

Let f(x) = for some > 0. Then g(x, y) = + y(1−x) is positive on K1,
but g ∈ M , thus (∗∗)M fails for K1. Observe, however, that if we take either
of the standard generators for K1, then

g(x, y) = + y(1 − x) = + y · (1 − x)2

2
+

y(1 − x2)
2

∈ TS .

This shows that TS = MS in this case. (The preceding construction works for
any polynomial f which is positive on [−1, 1].)
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Proposition 3. Let K = K2 = [−1, 1] × R and suppose f ∈ R[x, y]. The
following are equivalent:

(i) f 0 on K;
(ii) f > 0 on K and f∗(0, 1, 0) > 0;
(iii) f > 0 on K and the leading term of f as a polynomial in y

is of the form cyd, where c ∈ R and d = deg f .

Proof. It is not too hard to see that K∗ consists of the intersection of the unit
sphere with the set of (u, v, w) satisfying |u| ≤ w and w ≥ 0. Then (i) ⇒
(ii) is clear since (0, 1, 0) ∈ K∗. Suppose that (ii) holds. Let d = deg f and
write f = F0 + · · · + Fd, where Fi is the homogeneous part of f of degree
i, so that f∗(x, y, z) = d

j=0 zd−jFj(x, y). Then f∗(0, 1, 0) = Fd(0, 1), which
implies Fd(0, 1) > 0. Hence Fd(x, y) must be of the form cyd.

Finally, suppose that (iii) holds. We need to show that f(u, v, w) > 0 for
(u, v, w) ∈ S2 with |u| < w. If w = 0, then u = 0 and (u, v, w) = (0, 1, 0);
recall that f(0, 1, 0) > 0 by hypothesis. If w > 0, then (u, v, w) is in K∗, hence
(u/w, v/w) ∈ K. Since f(u/w, v/w) > 0, we have f ∗(u, v, w) > 0.

Our final result is that (∗) holds for K2. The proof uses an idea from [9]: For
g(x, y) 0 on K2, fix y = a and look at the one variable polynomial g(x, a).
This is positive on [−1, 1], a compact set, so we have representations of each
g(x, a) in T1±x ⊆ R[x]. We “glue” these together to form a representation of
g(x, y) in T2.

As in [10], for f(x) ∈ R[x] of degree d, we define f̃(x), the Goursat trans-
form of f , by the equation

f̃(x) = (1 + x)df
1 − x

1 + x
.

We collect some easy results from [10] about the Goursat transform:

Lemma 1. If f(x) ∈ R[x] of degree d, then

1. deg f̃ ≤ d with equality iff f(−1) = 0;
2. ˜̃f = 2df ;
3. f > 0 on [−1, 1] iff f̃ > 0 on [0,∞) and deg(f̃) = d.

We also need a quantitative version of an old result, proved as [10, Theorem
6]. This is stated using the improved bound for Pólya’s Theorem from [11].

Proposition 4. Suppose f(x) = d
i=0 aix

i ∈ R[x] and

λ = min{f(x) | −1 ≤ x ≤ 1} > 0.
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Let f̃(x) = d
i=0 ai(1 − x)i(1 + x)d−i = d

i=0 bix
i and let

L̃(f) := max{|bi| | i = 0, . . . d}.

Finally, let

N(f) :=
d(d − 1)

2
L̃(f)

λ
.

If N > N(f), then the coefficients of the polynomial (1+x)N f̃(x) are positive.

Theorem 3. Given N, d ∈ N, there exist polynomials Ci ∈ R[x0, . . . , xd],
0 ≤ i ≤ N + d, with the following property: If f(x) = d

i=0 aix
i ∈ R[x] is

positive on [−1, 1] and N > N(f), then Ci(a0, . . . , ad) > 0 and

f(x) =
N+d

i=0

Ci(a0, . . . , ad)(1 + x)i(1 − x)N+d−i.

Proof. Write

(1 + x)N f̃ =
N+d

j=0

bjx
j , (6)

where bj > 0 for all j.
For 0 ≤ j ≤ N+d, let cj(t0, . . . , td) be the coefficient of xj in the expansion

of

(1 + x)N
d

j=0

tj(1 − x)i(1 + x)d−i;

clearly each cj ∈ R[t0, . . . , td], and by construction, bj = cj(a0, . . . , ad).
Now apply the Goursat transformation to both sides of (6) to obtain

2N+df =
N+d

j=0

bj(1 − x)j(1 + x)N+d−j .

Setting Cj = 2−(N+d)cj , we have that Cj(a1, . . . , ad) > 0 for all j and f =
Cj(a0, . . . , ad)xj .

Example 1. For linear polynomials the proposition is easy. Suppose f(x) =
a1x+a0 > 0 on [−1, 1], then we can find a representation of the form specified
with N = 0. In this case, we have

f(x) = C0(a0, a1) · (1 − x) + C1(a0, a1) · (1 − x),

with C0(t0, t1) = 1
2 t0 − 1

2 t1 and C1(t0, t1) = 1
2 t0 + 1

2 t1. Note that f(x) > 0 on
[−1, 1] implies immediately that Cj(a0, a1) > 0.
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Suppose we are given g 0 on K2. For each r ∈ R, define gr(x) ∈ R[x]
by gr(x) = g(x, r) and note that gr(x) > 0 on [−1, 1] for all r. Let Lr denote
L̃(gr) and let λr = min{gr(x) | −1 ≤ x ≤ 1}.

Lemma 2. Suppose g 0 on K2. Then there is u > 0 such that

L̃r

λr
≤ u

for all r.

Proof. This is similar to [9, Prop. 1]. Let d = degx g and m = degy g, and
write

g(x, y) =
m

i=0

hi(x)yi.

Since g 0 on K2, by Proposition 3, the leading term in g as a polynomial
in y, hm(x), is actually a positive real constant c. For each i, 0 ≤ i ≤ m − 1,
there is Mi > 0 such that hi(x) < Mi for x ∈ [−1, 1]. Then, on [−1, 1],

gr(x) ≥ crm −
m−1

j=0

Mjr
j > wrm

for some positive constant w and |r| sufficiently large. In other words, for
sufficiently large |r|, we have λr ≥ wrm.

Now write g(x, y) as a polynomial in x: g = d
i=0 ki(y)xi. Then deg ki(y) ≤

m for all i, by assumption. This means that the coefficients of gr(x) are O(|r|m)
as |r| → ∞. The coefficients of g̃r(x) are linear combinations of the coefficients
of gr(x), so the same is true for g̃r(x). From this is follows that

L̃r

λr
≤ w rm

wrm

for some constant w and |r| sufficiently large and the result is clear.

Theorem 4. (∗) holds for K2: If g 0 on K2, then g ∈ T2.

Proof. Let u be as in the lemma and set N = d(d−1)
2 u, so that we can apply

Proposition 3 to each gr with this N .
For i = 0, . . . , N + d, let Cj ∈ R[t0, . . . , td] be as in the proposi-

tion. Writing g(x, y) = d
i=0 ei(y)xi, define P1, . . . , Pd+N ∈ R[y] by Pj =

Cj(e0(y), . . . , ed(y)). Then the conclusion of Theorem 3 implies that

g(x, y) =
d+N

j=0

Pj(y)(1 − x)i(1 + x)N+d−i. (7)
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For each r ∈ R and each j, we have Pj(r) = Cj(e0(r), . . . , ed(r)) and then,
since {e0(r), . . . , ed(r)} are the coefficients of gr, it follows from the conclusion
of Proposition 3 that Pj(r) > 0; that is Pj > 0 on R for all j. Thus, each Pj(y)
is a sum of two squares of polynomials and, plugging sos representations of
the Pj ’s into (7) yields a representation of g in T2.

Example 2. Let g(x, y) = y2 − xy + y + 1, then for each r ∈ R,

gr(x) = −rx + (r2 + r + 1) > 0

on [−1, 1]. By the above, we have, for each r, the representation

gr = 
1
2
(r2 + 2r + 1)(1 − x) +

1
2
(r2 + 1)(1 + x)

Then C0(y) = y2+2y+1 = (y+1)2 and C1(y) = y2+1 yields the representation

g(x, y) =
1
2
(y + 1)2(1 − x) +

1
2
(y2 + 1)(1 + x) ∈ T2
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1 Introduction

Stability of two–dimensional polynomials arises in fields as diverse as 2D digi-
tal signal and image processing ([11], [7], [18]), time–delay systems [14], repet-
titive, or multipass, processes [24], and target tracking in radar systems. For
this reason, there have been a large number of stability criteria for 2D poly-
nomials, which have been surveyed and discussed in a number of papers ([13],
[22], [9], [4], [5], [21]). In achieving the maximal efficiency of 2D stability tests,
the reduction of algebraic complexity offered by the stability criteria in [26]
has been useful. Apart from some minor conditions, the criteria convert sta-
bility testing of a 2D polynomial to testing of only two 1D polynomials, one
for stability and the other for positivity.

Due to inherent uncertainty of the underlying models, it has been long
recognized that in practical applications it is necessary to test robustness
of stability to parametric variations [27]. Almost exclusively, the 2D robust
stability tests have been based on the elegant Kharitonov solution of the
stability problem involving 1D interval polynomials ([6], [2], [23], [16], [31]).
In the context of 2D polynomials, the solution lost much of its simplicity
resulting in numerically involved algorithms. This fact made the testing of
2D polynomials with interval parameters difficult, especially in the case of
multiaffine and polynomic uncertainty structures.

The purpose of this paper is to present new criteria for testing stability
of 2D polynomials with interval parameters, which are based on the criteria
of [26] and the positivity approach to the interval parametric uncertainties
advanced in [29]. An appealing feature of the new criteria is the possibility of
using the efficient Bernstein minimization algorithms ([19], [8]) to carry out
the numerical part of the positivity tests. Furthermore, the proposed formula-
tion can handle the polynomic uncertainty structures having interval param-
eters, and can be easily extended to systems with time–delays along the lines
of [14].
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© Springer-Verlag Berlin Heidelberg 2005
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2 Stability Criterion

Let us recall the stability criteria [26] for a real two–variable polynomial

h(s, z) =
n

j=0

m

k=0

hjksjzk (1)

where s, z ∈ C are complex variables, and for some j, k the coefficients hjn

and hmk are not both zero. We are interested in stating the conditions under
which polynomial h(s, z) satisfies the stability property

h(s, z) = 0, s ∈ Cc
− ∩ z ∈ Cc

−, (2)

where Cc− is the complement of C− = {s ∈ C : Re s < 0}, the open left half
of the complex plane C.

As shown by Ansell [1], property (2) is equivalent to

h(s, 1) = 0, ∀s ∈ Cc
− (3a)

h(iω, z) = 0, ∀z ∈ Cc
− (3b)

To test (3a) we can use the standard Routh test (e.g., [17]). To verify (3b)
we follow Ansell’s approach and consider the polynomial c(z) = h(iω, z),

c(z) =
m

k=0

ckzk, (4)

where

ck =
n

j=0

hjksj (5)

and s = iω. With c(z) we associate the symmetric m × m Hermite matrix
C = (cjk) with elements cjk defined by (e.g., [17])

cjk = 2(−1)(j+k)/2

j

=1

(−1) Re (cm− +1c̄m−j−k+ ) , (j + k) even

cjk = 2(−1)(j+k)/2

j

=1

(−1) Im (cm− +1c̄m−j−k+ ) , (j + k) odd

(6)

where the overbar denotes conjugacy and j ≤ k. We recall that C > 0 if and
only if c(z) = 0 implies z ∈ C−. Since C = C(iω) is a real symmetric matrix,
we define a real even polynomial

g(ω2) = det C(iω) (7)

and replace ω2 by ω to get a polynomial g(ω).
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We also define a polynomial

f(s) = h(s, 1) (8)

and state the following [26]:

Theorem 1. A two–variable polynomial h(s, z) has the stability property (2)
if and only if

(i) f(s) is C−–stable.
(ii) g(ω) is R+–positive.
(iii) C(0) is positive definite.

Condition (i) means that f(s) = 0 implies s ∈ C−, while condition (ii) is
equivalent to g(ω) > 0 for all ω ≥ 0.

In stability analysis of recursive digital filters (e.g., [11], [7]), it is of interest
to establish necessary and sufficient conditions for a polynomial h(s, z) to have
the stability property

h(s, z) = 0, {s ∈ K̄0} ∩ {z ∈ K̄0}, (9)

where K = {s ∈ C : |s| = 1} is the unit circle, and K̄0 = K∪K0 is the closure
of K0 = {s ∈ C : |s| < 1}.

By following Huang [10], one can show that (9) is equivalent to

h(s, 0) = 0, ∀s ∈ K̄0 (10a)

h(eiω, z) = 0, ∀z ∈ K̄0. (10b)

Condition (10a) means that the new polynomial

f(s) = snh(s−1, 0) (11)

has all zeros in the open unit circle K0, that is, f(s) is K0–stable. To test
condition (10b), we consider

d(z) = zmh(eiω , z−1) (12)

which we write as a polynomial

d(z) =
m

k=0

dkzk , (13)

with coefficients

dk =
n

j=0

hj,m−ksk, (14)

and s = eiω.



With the polynomial d(z) we associate the Schur–Cohn m × m matrix
D = (djk) specified by

djk =
j

=1

(dm−j+ d̄m−k+ − d̄j− dk− ), (15)

where j ≤ k (e.g., [12]). The matrix D(eiω) is a Hermitian matrix and we
define

g(eiω) = det D(eiω), (16)

where g(·) is a self–inversive polynomial.
We state the following [26]:

Theorem 2. A two–variable polynomial h(s, z) has the stability property (9)
if and only if

(i) f(s) is K0–stable.
(ii) g(z) is K–positive.
(iii) D(1) is positive definite.

Positivity of g(z) on K, which is required by condition (ii), can be verified
by applying the methods of [25].

Finally, we show how the mixture of the two previous stability properties
can be handled using the same tools. The desired property is defined as

h(s, z) = 0, {s ∈ Cc
−} ∩ {z ∈ K̄0} . (17)

By following Ansell [1], one can show that this property is equivalent to

h(s, 0) = 0, ∀s ∈ Cc
− (18a)

h(iω, z) = 0, ∀z ∈ K̄0 (18b)

In this case, the polynomial d(z) is defined as

d(z) = zmh(iω, z−1) , (19)

which is used to obtain the polynomial g(·) via equations (13)–(16). From
(18a), we get the polynomial

f(s) = h(s, 0), (20)

then define I = {z ∈ C : Re z = 0} and arrive at [26]:

Theorem 3. A two–variable polynomial h(s, z) has the stability property (17)
if and only if
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(i) f(s) is C−–stable.
(ii) g(z) is I–positive.
(iii) D(0) is positive definite.

We note that I–positivity of g(z) can be reformulated as R+–positivity
(see [28]).

3 Uncertain Polynomials

We are now interested in studying stability properties of uncertain two–
variable polynomials with polynomic uncertainty structures. A polynomial
h(s, z; p) is given as

h(s, z; p) =
n

j=0

m

k=0

hjk(p)sjzk, (21)

where hjk(p) are polynomials themselves in uncertain parameter vector p ∈
Rr. We assume that p resides in a box

P = {p ∈ Rr : pk ∈ [p
k
, p̄k], k ∈ r} . (22)

We want to obtain the robust versions of stability properties defined in the
preceding section. In the case of (2), for example, we are interested in testing
the robust property

h(s, z; p) = 0, {s ∈ Cc
−} ∩ {z ∈ Cc

−} ∩ {p ∈ P}. (23)

To accommodate the uncertainty in h(s, z; p) we define the polynomial
families F = {f(·, p) : p ∈ P}, G = {g(·, p) : p ∈ P} and state a straightfor-
ward modification of Theorem 1.

Theorem 4. An uncertain two–variable polynomial h(s, z; p) has the robust
stability property (23) if and only if

(i) F is C−–stable.
(ii) G is R+–positive.
(iii) C(0, p) is positive definite for all p ∈ P.

Robust versions of the remaining two stability properties of the preceding
section can be tested by Theorem 4 via bilinear transformation in pretty
much the same way D–stability was tested in [29]. We also note the structural
similarity of Theorem 4 with theorems on robust SPR properties [30], which
motivates the work presented next.



Condition (i) in Theorem 4 obviously means that all zeros of f(s, p) lie
in C− for all p ∈ P. To establish this type of robust stability via polynomial
positivity, we define the magnitude function

f̂(s, p) = f(s, p)f(s, p) =
n

k=0

n

j=0

ak(p)āj(p)sls̄j (24)

where overbar denotes conjugation. We note immediately that the magnitude
function f̂(s, p) = |f(s, p)|2 is nonnegative for all s ∈ C. This obvious fact is
essential in the following development.

Let us form a family F̂ = {f̂(·, p) : p ∈ P} and use the result of [29] to
conclude that the family F is C−–stable if and only if the corresponding family
F̂ is I–positive, and f(s, p ) is C−–stable for some p ∈ P. Furthermore, from
(7) it follows that positivity of det C(0; p) is included in testing condition (ii)
of Theorem 4. This means that to test condition (iii) of Theorem 4, it suffices
to verify that C(0; p ) is positive definite for some p ∈ P. We finally arrive
at

Theorem 5. An uncertain two–variable polynomial h(s, z; p) has the robust
stability property (23) if and only if

(i) F̂ is R+–positive and f(s; p ) is C−–stable for some p ∈ P.
(ii) G is R+–positive.
(iii) C(0; p ) is positive definite for some p ∈ P.

Example 1. To illustrate the application of Theorem 5, let us use the two–
variable polynomial from [31],

h(s, z; p) = h11(p)sz + h10(p)s + h01(p)z + h00(p) , (25)

where

h11(p) = 0.9 − 0.1p1 − 0.3p2

h10(p) = 0.8 − 0.5p1 + 0.3p2

h01(p) = 1 + 0.2p1 + 0.3p2

h00(p) = 1.6 + 0.5p1 − 0.7p2

(26)

and
P = {p ∈ R2; p1 ∈ [−0.3, 0.4], p2 ∈ [0.1, 0.5]} . (27)

To test condition (i) we compute the polynomial

f(s; p) = (1.7 − 0.6p1)s + 2.6 + 0.7p1 − 0.4p2 (28)

and note that, in this simple case, we do not need to compute the correspond-
ing magnitude function f̂(ω; p). Robust C−–stability of f(s; p) follows directly
from positivity of its coefficients. Indeed,
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1.7 − 0.6p1 ≥ 1.46
2.6 + 0.7p1 − 0.4p2 ≥ 2.19

(29)

for all p ∈ P.

Since the matrix C(iω; p) is a scalar, condition (iii) is included in condition
(ii) which is satisfied because

g(ω; p) = (1 + 0.2p1 + 0.3p2)(1.6 + 0.5p1 − 0.7p2)
+ (0.9 − 0.1p1 − 0.3p2)(0.8 − 0.5p1 + 0.3p2)ω

≥ 0.4473ω + 1.0670
(30)

is obviously R+–positive.

Our analysis is elementary when compared to the stability testing proce-
dure of Xiao [31], which involves extensive computation required by the Edge
Theorem.

Let us consider more complex examples which will require the use of Bern-
stein’s algorithm.

Example 2. A two–variable polynomial is given as

h(s, z; p) =s2z2 + h21(p)s2z + h12(p)sz2 + h20(p)s2

+ h02(p)z2 + h11(p)sz + h10(p)s + h01(p)z + h00(p)
(31)

where

h21(p) = 3 − p1

h20(p) = p1p2

h11(p) = 3p1p2 − p2
1p2

h01(p) = 6 − 5p1 + 3p2 − p1p2 + p2
1

h12(p) = p1p2

h02(p) = 2 − p1 + p2

h10(p) = p2
1p

2
2

h00(p) = 2p1p2 − p2
1p2 + p1p

2
2

(32)

and
P = {p ∈ R2 : p1 ∈ [1, 2], p2 ∈ [1, 2]}. (33)

The polynomial f(s; p) is computed as

f(s; p) = (4 − p1 + p1p2)s2 + (4p1p2 − p2
1p2 + p2

1p
2
2)s

+ 8 − 6p1 + 4p2 + p1p2 + p2
1 − p2

1p2 + p1p
2
2

(34)



The corresponding minimizing polynomial

f(s) = 4s2 + 4s + 4 (35)

is obtained by minimizing each coefficient using Bernstein’s algorithm. Obvi-
ously, F is C−–stable since f(s) has positive coefficients.

Next, we compute

c(z; p) = c2(p)z2 + c1(p)z + c0(p) , (36)

where

c2(p) = 2 − p1 + p2 − ω2 + ip1p2ω

c1(p) = 6 − 5p1 + 3p2 − p1p2 + p2
1 − 3ω2 + p1ω

2 + i(3p1p2 − p2
1p2)ω

c0(p) = 2p1p2 − p2
1p2 − p1p2ω

2 + ip2
1p

2
2ω .

(37)

In this case, the 2 × 2 matrix C(iω; p) turns out to be a diagonal matrix

C(iω; p) = diag {c11(iω; p), c22(iω; p)} (38)

and conditions (ii) and (iii) of Theorem 5 reduce to positivity of the coefficients

c11(iω; p) = c̃11(ω2; p)

= (3 − p1)ω4 + (−12 + 10p1 − 6p2 + 2p1p2 − 2p2
1

+ 3p2
1p

2
2 − p3

1p
2
2)ω

2 + 12 − 16p1 + 12p2 − 10p1p2

+ 7p2
1 + 3p2

2 − p1p
2
2 + 2p2

1p2 − p3
1

c22(iω; p) = c̃22(ω2; p)

= (3p1p2 − p2
1p2)ω4 + (−12p1p2 + 10p2

1p2 − 6p1p
2
2

+ 2p2
1p

2
2 − 2p3

1p2 + 3p3
1p

3
2 − p4

1p
3
2)ω

2

+ 12p1p2 − 16p2
1p2 + 12p1p

2
2 − 10p2

1p
2
2 + 7p3

1p2 + 3p1p
3
2

− p2
1p

3
2 + 2p3

1p
2
2 − p4

1p2 .

(39)

By using Bernstein’s minimization algorithm we compute the minorizing
polynomials [29] and establish positivity of the two polynomials c11(iω; p) and
c22(iω; p) by obtaining the minima

min
p∈P

ω∈R+

c̃11(ω; p) = 1.3724 at p1 = 2, p2 = 1, ω = 0.1715

min
p∈P

ω∈R+

c̃22(ω; p) = 3.1185 at p1 = 2, p2 = 1, ω = 0.2487 .
(40)

Positivity of the minima implies robust stability property (25) for the
polynomial h(s, z; p) of (31).
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Stability of Interval Two–Variable Polynomials 173

4 Time–Delay Systems

Our objective in this section is to show how the tools presented in this chapter
can be applied to test robust stability of linear systems of the retarded type
described by a differential–difference equation

x(n)(t) +
n−1

j=0

m

k=0

hjk(p)x(j)(t − kτ) = 0 (41)

where τ > 0 is a fixed delay. The coefficients hjk(p) are polynomials in the
uncertain parameter vector p ∈ R which belongs to a box P.

It is well known [3] that for a fixed parameter p, a system (41) is stable if
and only if the corresponding quasipolynomial satisfies the following property:

h(s, e−τs; p) = sn +
n−1

j=0

m

k=0

hjk(p)sje−kτs = 0 , Re s ≥ 0 . (42)

The system is robustly stable if (42) holds for all p ∈ P.
The following theorem is a straightforward robustification of a theorem by

Kamen ([14], [15]):

Theorem 6. System (41) is robustly stable independent of delay if

h(s, z; p) = 0, {s ∈ Cc
−} ∩ {z ∈ K} ∩ {p ∈ P} . (43)

This condition is also necessary if

h(0, z; p) = 0, {z ∈ K} ∩ {p ∈ P} . (44)

To test condition (43) we first use the bilinear transformation

z =


1 + iω

1 − iω
, ω ∈ R when z ∈ K\{−1}

−1 , z = −1
(45)

to define the polynomials

h̃(s, iω; p) = (1 − iω)mh(s,
1 + iω

1 − iω
; p)

f(s; p) = h(s,−1; p) .
(46)

Then, by following Ansell’s approach [1], we consider the polynomial c(s; p) =
h̃(s, iω; p),

c(s; p) =
n

j=0

cj(p)sj (47)



where

cj(p) =
n

k=0

h̃jk(p)(iω)k . (48)

With c(s; p) we associate the symmetric n × n Hermite matrix C = (cjk)
having elements cjk defined in (6), and obtain the polynomial

g(ω2; p) = det C(iω; p) . (49)

Finally, with polynomials f(s; p) and g(ω2; p) at hand, we can imitate
Theorem 5 to state the following:

Theorem 7. System (41) is robustly stable independent of delay if

(i) F̂ is R+–positive and f(s; p ) is C−–stable for some p ∈ P.
(ii) G is R+–positive.
(iii) C(0; p ) is positive definite for some p ∈ P.

It is obvious that condition (44) of Theorem 6, which is included in (45),
can be tested via positivity as well.

To illustrate the application of Theorem 7 let us use the following:

Example 3. A time–delay system (41) is given as

x(2)(t) + p2x
(1)(t − τ) + p1x(t − τ) + x(1)(t) + (1 + p1p

2
2)x(t) = 0 (50)

with the uncertainty box

P = {p ∈ R2 : p1 ∈ [−0.5, 0.5], p2 ∈ [−0.5, 0.5]} . (51)

From (50), we compute the associated quasipolynomial

h(s, z; p) = s2 + (p2s + p1)z + s + 1 + p1p
2
2 , (52)

and test first the necessity of condition (43) by checking condition (44). Since

h(0, z; p) = p1z + 1 + p1p
2
2 (53)

and 1 + p1p
2
2 > |p1|, we conclude that (44) is satisfied. This implies that

condition (43) is necessary and sufficient for robust stability of system (50),
and we proceed to compute the polynomial

f(s; p) = s2 + (1 − p2)s + 1 − p1 + p1p
2
2 . (54)

To test robust stability of this polynomial we do not need to construct the
family F̂ . It suffices to check positivity of each coefficient, which we do by
using the Bernstein algorithm. The resulting minorizing polynomial
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f(s) = s2 + 0.5s + 0.5 (55)

implies robust stability of f(s; p), that is, condition (i) of Theorem 7 is satis-
fied.

For testing condition (ii) we need the polynomial

h̃(s, iω; p) = (1 − iω)s2 + [1 + p2 + (−1 + p2)iω]s

+ 1 + p1 + p1p
2
2 + (−1 + p1 − p1p

2
2)iω .

(56)

Using equations (47)–(49), we compute

g(ω; p) = 4(1 − p1 − 2p2 + 2p2
2 + 2p1p2 − 2p1p

3
2 + p1p

4
2)ω

2

+ 8(1 − 2p2
1 − p2

2 + p1p
2
2 − p1p

4
2)ω

+ 4(1 + p1 + 2p2 + 2p1p2 + p2
2 + 2p1p

2
2 + 2p1p

3
2 + p1p

4
2.

(57)

By applying the Bernstein algorithm to each coefficient of g(ω; p), we obtain
the minorizing polynomial

g(ω) = 0.625ω2 + 1.25ω + 0.375 , (58)

which is clearly R+–positive, and (ii) of Theorem 7 is satisfied.
Finally, the matrix of condition (iii) is computed as C(0, 0) = 2I2, where

I2 is the identity matrix of dimension 2, and robust stability independent of
delay of system (50) is established with respect to the uncertainty box P in
(51).

5 Conclusions

We have shown how stability of 2D polynomials and quasipolynomials with
interval parameters can be tested via polynomial positivity. To test stability
of polynomials with multiaffine and polynomic uncertainty structures, posi-
tivity of only two interval polynomials is required. A remarkable efficiency of
the proposed stability criteria is due to their suitability for applications of
Bernstein’s expansion algorithms.
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28. Šiljak D. D., and Šiljak M. D. (1998). Nonnegativity of uncertain polynomials.
Mathematical Problems in Engineering, 4:135–163.
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CH-8092 Zürich, Switzerland
parrilo@control.ee.ethz.ch

We present an overview of several different techniques available for exploit-
ing structure in the formulation of semidefinite programs based on the sum
of squares decomposition of multivariate polynomials. We identify different
kinds of algebraic properties of polynomial systems that can be successfully
exploited for numerical efficiency. Our results here apply to three main cases:
sparse polynomials, the ideal structure present in systems with explicit equal-
ity constraints, and structural symmetries, as well as combinations thereof.
The techniques notably improve the size and numerical conditioning of the
resulting SDPs, and are illustrated using several control-oriented applications.

1 Introduction

From an abstract computational viewpoint, the branch of mathematics best
suited to deal with a large fraction of the robustness analysis and synthesis
problems of control theory is real algebraic geometry. This discipline takes as
one of its main objects of study the solution set of polynomial equations and
inequalities over the reals, the so-called semialgebraic sets .

While a significant part of the computational algebra literature has dealt
extensively with the development of algorithmic tools for the manipulation
of semialgebraic sets (for instance, see [2, 15]), their use within the control
community has been sporadic (a few examples being [1, 9, 12]). Undoubtedly,
good motives for this are the demanding computational requirements of purely
algebraic methods. These, in turn, seem to be a necessary consequence of the
inherent hardness of the underlying problems, as well as a side effect of the
strict requirements on an exact computational representation of the solution.

For good practical reasons such as the ones mentioned, the main tools of
the control community have been slanted much more towards purely numerical
computation. The resounding success of convex optimization based approaches
to many control problems [4, 5] is but just one illustration of this phenomenon.
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It is our viewpoint that there is much to be gained from bringing these two
nearly separate mindsets together. In this direction, in [17] we have recently
introduced a computational framework based on sum of squares (SOS) de-
compositions of multivariate polynomials, that enables the use of semidefinite
programming (SDP) towards a full characterization of the feasibility and solu-
tions of polynomial equations and inequalities. This combination of concepts
from convex optimization and computational algebra has not only proven to
be extremely powerful in several control problems such as computation of
Lyapunov functions for nonlinear systems [17, Chapter 7], but also through
new applications in very diverse fields, such as combinatorial optimization and
quantum mechanics.

Despite the theoretical elegance of the sum of squares techniques, it is
clearly the case that for efficient practical performance in medium- or large-
scale problems, it becomes necessary to take a deeper look at the inherent
structure of the problem at hand. This is the motivation of the present work,
where we identify and isolate several abstract algebraic properties of a poly-
nomial system that are amenable to be exploited through the SOS/SDP ma-
chinery. While other algebraic techniques can (and do) exploit certain kinds
of structural features, our results show that the flexibility of convex optimiza-
tion allows in this case for a much higher degree of customization. Throughout
the paper, the main ideas of each approach are outlined in a concise way for
obvious space reasons, and are illustrated with simple, but representative ex-
amples.

A deeper issue related to these ideas, is the extent to which algebraic
properties of the input polynomial system are inherited by the corresponding
infeasibility certificates. The results in [10], for instance, show that symmetries
in the input data induce similar symmetries in the solution of the SDPs, and
this property can be successfully exploited. We will see a concrete instance of
this in the examples in section 7.

A description of the paper follows: in Section 2 we give an overview of the
basic SOS/SDP methods in the simplest case, that of dense polynomials. In
Section 3 we present the simplifications that are possible when the polynomials
at hand are sparse, in the sense of having “small” Newton polytopes. In the
following section we illustrate the reduction in the number of variables and
SDP size that are possible when equality constraints are present, by working
on the quotient ring. In Section 5 we discuss the case of symmetries, to finally
conclude with a few comments on the possibilities of combining the different
approaches and a control-oriented example.

2 The Basic SOS/SDP Techniques

We present next a brief description of the main ideas behind the use of semidef-
inite programming in the computation of sum of squares decompositions, as
well as its use in the certification of properties of basic semialgebraic sets. We
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refer the reader to [17, 19] (and the references therein) for a more thorough
introduction of the SOS/SDP machinery and applications, as well as to the
related work in [16, 13, 6].

An obvious sufficient condition for non-negativity of a polynomial is the
existence of a representation as a sum of squares of other polynomials. The
connections between sums of squares and non-negativity have been exten-
sively studied since the end of the 19th century, when Hilbert showed that in
the general case these two properties are not equivalent. The work of Choi,
Lam, and Reznick [7] presented a full analysis of the geometric structure of
sums of squares decompositions, and the important “Gram matrix” method
was formally introduced, already implicitly present in several of the authors’
earlier works. A parallel development focusing on the convex optimization side
appears in the early work of Shor [24]. Recently, new results and the use of ef-
ficient techniques based on semidefinite programming have given new impulse
to this exciting research area.

Consider a multivariate polynomial F (x) for which we want to decide
whether a sum of squares decomposition exists. As we will see, this question
is reducible to semidefinite programming, because of the following result:

Theorem 1. A multivariate polynomial F (x) is a sum of squares if and only
if

F (x) = uT Qu, (1)

where u is a vector whose entries are monomials in the xi variables, and Q
is a symmetric positive semidefinite matrix.

An efficient choice of the specific set of monomials u will depend on both the
sparsity structure and symmetry properties of F . For the simplest case of a
generic dense polynomial of total degree 2d, the variables u can always be
taken to be all the monomials (in the variables xi) of degree less than or equal
to d. Since in general the variables u will not be algebraically independent,
the matrix Q in the representation (1) is not unique. In fact, there is an
affine subspace of matrices Q that satisfy the equality, as can be easily seen
by expanding the right-hand side and equating term by term. When finding
a SOS representation, we need to find a positive semidefinite matrix in this
affine subspace. Therefore, the problem of checking if a polynomial can be
decomposed as a sum of squares is equivalent to verifying whether a certain
affine matrix subspace intersects the cone of positive definite matrices, and
hence an SDP feasibility problem.

Example 1. Consider the quartic form in two variables described below, and
define u = [x2, y2, xy]T .
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F (x, y) = 2x4 + 2x3y − x2y2 + 5y4

= 

 x2

y2

xy

T  q11 q12 q13

q12 q22 q23

q13 q23 q33

 x2

y2

xy


= q11x

4 + q22y
4 + (q33 + 2q12)x2y2

+2q13x
3y + 2q23xy3

Therefore, for the left- and right-hand sides to be identical, the following linear
equalities should hold:

q11 = 2, q22 = 5, q33 + 2q12 = −1, 2q13 = 2, 2q23 = 0. (2)

A positive semidefinite Q that satisfies the linear equalities can then be
found using semidefinite programming. A particular solution is given by:

Q = 

 2 −3 1
−3 5 0

1 0 5

 = LT L, L = 
1√
2

2 −3 1
0 1 3 ,

and therefore we have the sum of squares decomposition:

F (x, y) =
1
2
(2x2 − 3y2 + xy)2 +

1
2
(y2 + 3xy)2.

While polynomial nonnegativity is an important property per se, the
strength of the SOS/SDP ideas is that the same machinery can be extended
to the much larger class of semialgebraic problems, i.e., those that can be
describe with a finite number of polynomial equalities and inequalities.

The key result here is a central theorem in real algebraic geometry, usually
called Positivstellensatz and due to Stengle [3], that gives a full characteri-
zation of the infeasibility of systems of polynomial equations and inequalities
over the reals. The theorem states that if a system of polynomial inequalities
is infeasible, then there exists a particular algebraic identity that proves (in
an obvious way) that this is the case.

Example 2. Here is a very simple example (taken from [21]) to illustrate the
idea of Positivstellensatz certificates. Consider the system:

f := x − y2 + 3 ≥ 0 , h := y + x2 + 2 = 0. (3)

We want to prove that the system is inconsistent, i.e., there are no (x, y) ∈ R2

that satisfy (3). By the Positivstellensatz, the system {f ≥ 0, h = 0} has no
solution, if and only if there exist polynomials s1, s2, t1 ∈ R[x, y] that satisfy
the following:
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s1 + s2 · f + t1 · h ≡ −1 , where s1 and s2 are SOS. (4)

Sufficiency of this condition should be obvious: evaluating the expression
above at any candidate feasible point of (3) yields a contradiction, since the
left-hand side would be nonnegative, while the left-hand side is negative. Pos-
sible values of the polynomials certifying the inconsistency of the system are:

s1 = 1
3 + 2 y + 3

2

2 + 6 x − 1
6

2
, s2 = 2, t1 = −6.

It can be easily verified that these polynomials satisfy the identity (4), and
therefore prove the inconsistency of the system {f ≥ 0, h = 0}.

Positivstellensatz refutations are purely algebraic certificates of emptiness,
for which the verification process is immediate (compare this with SOS decom-
positions as “easy” certificates of nonnegativity). The reason why this relevant
in the context of this paper, of course, is because given a degree bound, we
can compute these refutations using semidefinite programming [17, 19]. To
see this in our example, notice that condition (4) is affine in the polynomial
unknowns si, and therefore can be naturally combined with the Gram matrix
procedure described earlier.

Clearly, once we have a way to address emptiness of semialgebraic sets in
a computationally attractive way, there are many problems that fall into this
domain through more or less obvious reformulations. Particularly important
are standard optimization problems (by considering the emptiness of sublevel
sets), set intersections, set propagation under nonlinear mappings, etc.

3 Sparsity

In the general dense case, multivariate polynomials can have a very large
number of coefficients. It is well-known, and easy to verify, that a dense poly-
nomial in n variables of degree d has n+d

d coefficients. Even for relatively
small values of n, d this can be a very large number. Nevertheless, most of
the higher degree polynomials that appear in practice usually have a lot of
additional structure. Just like most large-scale matrices of practical interest
are sparse, a similar notion is appropriate in the polynomial case.

For standard matrices the notion of sparsity commonly used is relatively
straightforward, and relates only to the number of nonzero coefficients. In
computational algebra, however, there exists a much more refined notion of
sparsity. This notion is linked to the so-called Newton polytope of a polynomial,
defined as the convex hull of the set of exponents, considered as vectors in Rn.

Example 3. Consider the polynomial p(x, y) = 1 − x2 + xy + 4y4. Its Newton
polytope New(p) is the triangle in R2 with vertices {(0, 0), (2, 0), (0, 4)}.
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Newton polytopes are an essential tool when considering polynomial arith-
metic because of the following identity:

New(g · h) = New(g) + New(h),

where + is the Minkowski addition of polytopes.
Sparsity (in this algebraic sense) allows a notable reduction in the compu-

tational cost of checking sum of squares conditions. The reason is the following
theorem due to Reznick:

Theorem 2 ([23], Theorem 1). If F = g2
i , then New(gi) ⊆ 1

2New(F ).

Example 4. Consider the following polynomial, taken from the SOSTOOLS
[22] manual:

F = (w4 + 1)(x4 + 1)(y4 + 1)(z4 + 1) + 2w + 3x + 4y + 5z.

The polynomial F has degree 2d = 16, and four independent variables (n = 4).
A naive approach, along the lines described earlier, would require a matrix
of size n+d

d = 495. However, the Newton polytope of F is easily seen to
be the four-dimensional hypercube with vertices at (0, 0, 0, 0) and (4, 4, 4, 4).
Therefore, the polynomials gi in the SOS decomposition of F will have at most
34 = 81 distinct monomials, and as a consequence the full SOS decomposition
can be computed by solving a much smaller SDP.

4 Equality Constraints

The Positivstellensatz refutations approach, discussed earlier, attempts to find
certificates of infeasibility of systems of polynomial equations and inequalities.
When explicit equality constraints are present in the problem, then some
notable simplifications in the formulation of the SDPs are possible. We explore
these ideas in this section.

Let I be the ideal defined by the equality constraints, and define the quo-
tient ring R[x]/I as the set of equivalence classes for congruence modulo I.
Then, provided computations can be effectively done in this quotient ring,
much more compact SDP formulations are possible. This is usually the case
when Gröbner bases for the ideal are available or easy to compute. The first
case usually occurs in combinatorial optimization problems, and the latter
one when only a few constraints are present (we illustrate this through an
example in Section 7.1).

For concreteness, consider the problem of verifying a nonnegativity condi-
tion of a polynomial f(x) on a set defined by equality constraints gi(x) = 0
(i.e., an algebraic variety). Let {b1, . . . bm} be a Gröbner basis of the corre-
sponding polynomial ideal I := gi(x) ; see [8] for an excellent introduction
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to computational algebra and Gröbner basis methods. It is easy to see then
that the two statements

f(x) +
i

λi(x)gi(x) is a sum of squares in R[x]

and
f(x) is a sum of squares in R[x]/I

are equivalent, and both are sufficient conditions for the nonnegativity of f
on the variety defined by gi(x) = 0.

Therefore, we only need to look at sum of squares on quotient rings. This
can be done by using exactly the same SDP techniques as in the standard
case. There are two main differences:

• Instead of indexing the rows and columns of the matrix in the SDP by
the usual monomials, we have to use the so-called standard monomials
corresponding to the chosen Gröbner basis of the ideal I. These are the
monomials which are not divisible by any leading term of the polynomials
bi in the Gröbner basis.

• All operations are performed in the quotient ring, i.e., we take normal
form of the terms after multiplication.

Example 5. Consider the problem of verifying if the polynomial F = 10−x2−y
is nonnegative on the curve defined by G := x2 + y2 − 1 = 0 (the unit circle).
According to our previous discussion, a natural starting point is to define the
ideal I = G , and to check whether F is a sum of squares in R[x, y]/I. We
choose a simple graded lex monomial ordering. Therefore, we pick a partial
basis of the quotient ring (here, we take only {1, x, y}) and write:

10 − x2 − y =

 1
x
y

T  q11 q12 q13

q12 q22 q23

q13 q23 q33

 1
x
y


= q11 + q22x

2 + q33y
2 + 2q12x

+2q13y + 2q23xy

≡ (q11 + q33) + (q22 − q33)x2 + 2q12x

+2q13y + 2q23xy mod I.

Equating coefficients, we obtain again a simple SDP. Solving, we have:

Q =

 9 0 − 1
2

0 0 0
− 1

2 0 1

 = LT L, L =
1√
2

3 0 − 1
6

0 0
√

35
6

,

and therefore
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Fig. 1. The polynomials F and (3 − y
6
)2 + 35

36
y2 take exactly the same values on

the unit circle x2 + y2 = 1. Thus, F is nonnegative on the feasible set.

10 − x2 − y ≡ (3 − y

6
)2 +

35
36

y2 mod I,

which shows that F is indeed SOS on R[x, y]/I. A simple geometric inter-
pretation is shown in Figure 1. By the condition above, the polynomial F
coincides with a SOS on the set defined by G = 0, and thus it is obviously
nonnegative on the variety.

Even though in the worst case Gröbner bases can be computationally
troublesome, for many practical problems they are often directly available,
or relatively easy to compute. A typical example is the case of combinatorial
optimization problems, where the equations defining the Boolean ideal x2

i−1 =
0 are already a Gröbner basis. Another frequent situation is when the ideal is
defined by just one equality constraint, in which case the defining equation is
again obviously a Gröbner basis of the corresponding ideal.

An advantage of the ideal-theoretic formulation is the ease by which struc-
tural results can be obtained through basic algebraic notions. For instance,
in [18] it is shown that a certain finite convergence property holds for all
zero dimensional radical ideals, generalizing earlier results by Lasserre [13] on
boolean programming.

5 Symmetries

Yet another useful property that can be exploited in the SOS/SDP context is
the presence of structural symmetries. While in some cases this mirrors the
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underlying structure of existing physical systems, these features can also arise
as a result of the chosen mathematical abstraction. In this regard, symmetry
reduction techniques have been explored in several different contexts related
to control theory, with dynamical systems [11] and geometric mechanics [14]
being two prominent examples.

In our earlier work [10], these symmetry ideas are explored in the SOS/SDP
framework using a dual approach that combines group representation and
invariant theory. Here we focus on the former class of methods, and sketch the
details in the remainder of this section. A particularly interesting application
is the optimization of symmetric polynomials via SOS methods. In [17, 21],
and based on [24], an SDP-based algorithm for the computation of a global
lower bound for polynomial functions is described. When the polynomial to be
minimized has certain invariance properties, then the theory described here
can be fruitfully applied.

There are several advantages in exploiting symmetries:

• Problem size. The first immediate advantage is the reduction in problem
size, as the new instance can have a significantly smaller number of vari-
ables and constraints.

• Degeneracy removal. In symmetric SDP problems, there are repeated
eigenvalues of high multiplicity, that are difficult to handle numerically.
These can be removed by a proper handling of the symmetry.

• Conditioning and reliability. Symmetry-aware methodologies have in gen-
eral much better numerical conditioning, and the resulting smaller size
instances are usually less prone to numerical errors.

The starting point in [10] is the definition of a general class of SDPs that
are invariant under the action of a symmetry group. As a direct consequence
of convexity, it is shown there that the solution of the SDP can always be
assumed to lie in the fixed point subspace of the group action. Using Schur’s
lemma of representation theory, it is possible to show that in the appropriate
symmetry-adapted basis, the matrices in the fixed-point subspace will have
a block-diagonal structure. This reduces the original problem to a collection
of smaller coupled SDPs, each block corresponding to an “isotypic compo-
nent,” and cardinality equal to the number of irreducible representations of
the group that appear nontrivially. This allows for a notable reduction in both
the number of decision variables and the size of the SDPs to be solved.

Example 6. Again, we illustrate the techniques with a specific example, this
time taken from [10, Example 5.4]. This polynomial has an interesting dihedral
symmetry, and is given by:

r(x, y) = x6 + y6 − x4y2 − y4x2 − x4 − y4 − x2 − y2 + 3x2y2 + 1. (5)
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This polynomial has the symmetry of the 8-element dihedral group D4, with
the actions on R2 generated by:

d := (x, y) → (−y, x), s := (x, y) → (y, x).

We are interested in finding a SOS decomposition of r. Using the standard
approach discussed earlier, we would need to solve an SDP of dimensions 10×
10. Using the methods discussed, a symmetry-adapted basis for the isotypic
components can now be obtained, obtaining the corresponding basis vectors:

B1 = {1, x2 + y2} B4 = {x2 − y2}
B2 = ∅ B1

5 = {x, x3, xy2}
B3 = {xy} B2

5 = {y, y3, yx2}.
Using this basis, and after symmetry reduction, the resulting SDPs are much
simpler:  

1 c1

c1 c2 

 
≥ 0

1 − 4c2 − 4c3 − 4c4 ≥ 0
−1 − c2 − 2c3 ≥ 0−1 − 2c1 c3 c4

c3 1 c5

c4 c5 −1 − 2c5

 ≥ 0,

so we have reduced the problem from one 10×10 SDP to four coupled smaller
ones, of dimensions 2, 1, 1, 3 respectively, which are considerably easier to
solve. Solving these small SDPs, it is easy to obtain the final decomposition:

r(x, y) =
3825
4096

+
x2 + y2

2
− 89

64

2

+ x3 − y2x − 5
8
x

2

+ y3 − x2y − 5
8
y

2

.

6 Combination of Techniques

A most appealing feature of the techniques described is the large extent to
which they are mutually compatible. For instance, it is possible to combine
very successfully sparsity and symmetry reduction techniques. For a particular
polynomial arising from a geometric theorem proving problem, for instance,
this combined use allowed the reduction from a very difficult 1001×1001 SDP,
to a collection of fourteen coupled SDPs of dimensions ranging from 2 × 2 to
11 × 11), much more manageable computationally [20].
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Table 1. Algebraic structures and SOS properties

Standard Equality constraints Symmetries

polynomial ring R[x] quotient ring R[x]/I invariant ring R[x]G

monomials (deg ≤ k) standard monomials isotypic components

1
(1−λ)n = ∞

k=0
n+k−1

k
· λk Hilbert series Molien series

Finite convergence Block diagonalization
on zero dimensional ideals

In Table 1 we present a summary of the different concepts and techniques
discussed earlier. Several of these complexity reduction techniques are already
included in the currently available version of SOSTOOLS [22], and the rest
will follow soon.

7 Examples

In this section we present an example of a control-oriented problem, where
several of the techniques are applied.

7.1 Domain of Attraction of a Lyapunov Function

This problem has been analyzed in [17, Section 7.3], where it has been shown
how use sum of squares techniques in the computation of positively invariant
subsets.

Specifically, the problem analyzed there was to find bounds on the largest
sublevel set of a Lyapunov function V that is positively invariant. This can
be done by solving the optimization problem:

γ0 := inf
x,y∈Rn 

V (x, y) subject to
 
V̇ (x, y) = 0
(x, y) = (0, 0)

(6)

Since the minimization problem is constrained to the algebraic variety
defined by the single equation V̇ = 0, we can easily work in the corresponding
quotient ring. Let’s see this in the concrete example analyzed in [17], taken
from [25, Example S7].

Example 7. Consider the vector field given by:

ẋ = −x + y

ẏ = 0.1x − 2y − x2 − 0.1x3
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and the Lyapunov function V (x, y) := x2 + y2. The system has three fixed
points, at (0, 0), (−5 ±√

6,−5 ±√
6).

A Gröbner basis of the ideal I generated by V̇ = 0 is given by the single
polynomial {10x2−11xy+20y2 +10yx2 + yx3}, which is just a scaled version
of V̇ . The leading monomial, using a graded lex monomial ordering, is yx3, so
a basis for the quotient ring is given by the monomials {xk, yk, xyk, x2yk, k ≥
0}.

To obtain a bound on the minimum of (6), we can find the largest value
of γ that satisfies

(V (x, y) − γ)(x2 + y2) is a sum of squares in R[x, y]/I.

Any value of γ verifying the condition above gives a lower bound on γ0, as is
clear by evaluating the expression on any candidate feasible solution.

Taking as a partial basis of the quotient ring the monomials {x, y, x2, xy, y2, yx2},
we obtain a 6 × 6 SDP that provides the exact answer, namely γ ≈ 7.111.

8 Conclusions

Sum of squares based techniques, while still at the early stages of their de-
velopment, have already shown an unprecedented flexibility and strength in
solving many interesting problems in systems and control theory and related
fields.

For their continuing success beyond the many current practical applica-
tions, it will be necessary to extend the size of the problems that can be re-
liably solved. While encouraging progress is continuously being made on the
SDP solvers front (particularly with alternatives to interior-point methods),
there is much to be gained from understanding their rich underlying algebraic
structure. It is our hope that the results presented here make a convincing
argument for the ideal suitability of the language and tools of computational
algebra for this task.
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University. ragnarw@isy.liu.se, hansson@isy.liu.se

We discuss fast implementations of primal-dual interior-point methods for
semidefinite programs derived from the Kalman-Yakubovich-Popov lemma, a
class of problems that are widely encountered in control and signal process-
ing applications. By exploiting problem structure we achieve a reduction of
the complexity by several orders of magnitude compared to general-purpose
semidefinite programming solvers.

1 Introduction

We discuss efficient implementations of interior-point methods for semidefinite
programming problems (SDPs) of the form

minimize qT x + L
k=1 Tr(QkPk)

subject to AT
k Pk + PkAk PkBk

BT
k Pk 0 +

p

i=1

xiMki Nk, k = 1, . . . , L.
(1)

The optimization variables are x ∈ Rp and L matrices Pk ∈ Snk , where Sn

denotes the space of symmetric matrices of dimension n × n. The problem
data are q ∈ Rp, Qk ∈ Snk , Ak ∈ Rnk×nk , Bk ∈ Rnk×mk , Mki ∈ Snk+mk ,
and Nk ∈ Snk+mk . If nk = 0, the kth constraint is interpreted as the linear
matrix inequality (LMI) p

i=1 xiMki Nk. The SDPs we study can therefore
include arbitrary LMI constraints. At the end of this section we will list several
assumptions made about the problem data. The most important of these
assumptions is that (Ak, Bk) is controllable for k = 1, . . . , L.
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We refer to SDPs of the form (1) as KYP-SDPs, and to the constraints in
the problem as KYP-LMIs, for the following reason. The Kalman-Yakubovich-
Popov (KYP) lemma states that the semi-infinite frequency domain inequality

(jωI − A)−1B
I

∗
M

(jωI − A)−1B
I

0, ω ∈ R, (2)

where A ∈ Rn×n does not have imaginary eigenvalues, holds if and only if the
strict LMI

AT P + PA PB
BT P 0 + M 0

with variable P ∈ Sn is feasible. Moreover, if (A, B) is controllable, then the
nonstrict frequency domain inequality

(jωI − A)−1B
I

∗
M

(jωI − A)−1B
I

0, ω ∈ R, (3)

holds if and only if the nonstrict LMI

AT P + PA PB
BT P 0 + M 0 (4)

is feasible (for a discussion of these results from a semidefinite programming
duality perspective, see [11]). The KYP lemma forms the basis of some of
the most important applications of SDPs in control; see, for example, [8, 42,
26, 39, 38, 31, 12, 29].

The constraints in the KYP-SDP (1) have the same general form as (4),
with M replaced with an affine function of the optimization variable x. If
Qk = 0, the KYP-SDP is therefore equivalent to the semi-infinite SDP

min. qT x

s.t.
(jωI − Ak)−1Bk

I

∗
(Mk(x) − Nk)

(jωI − Ak)−1Bk

I
0,

k = 1, . . . , L,

(5)

with variable x, where Mk(x) = p
i=1 xiMki. More details and examples,

including some applications in which Qk = 0, are given in §2.
KYP-SDPs are difficult to solve using general-purpose SDP software pack-

ages [44, 47, 3, 18, 9, 13, 24, 48]. The difficulty stems from the very high num-
ber of optimization variables (p+ k nk(nk +1)/2). Even moderate values of
nk (say, a few hundred) result in very large scale SDPs, with several 10,000
or 100,000 variables. This is unfortunate, because in many applications the
variables Pk are of little intrinsic interest. They are introduced as auxiliary
variables, in order to convert the semi-infinite frequency-domain constraint (3)
into a finite-dimensional LMI (4).
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For this reason, several researchers have proposed alternatives to standard
interior-point methods for solving KYP-SDPs. These methods include cutting-
plane methods (such as the analytic center cutting-plane method) [41, 32, 33,
34, 25], interior-point methods based on alternative barrier functions for the
frequency-domain constraint [32], and interior-point methods combined with
conjugate gradients [28, 29, 52, 20].

In this paper we examine the possibility of exploiting KYP-SDP prob-
lem structure to speed up standard primal-dual interior-point methods of
the type used in state-of-the-art solvers like SeDuMi [44, 45] and SDPT3 [47].
Straightforward linear algebra techniques will allow us to implement the same
interior-point methods at a cost that is orders of magnitude less than the cost
of general-purpose implementations. More specifically, if nk = n, mk = 1 for
k = 1, . . . , L, and p = O(n), then the cost per iteration of a general-purpose
solver grows at least as n6 as a function of n. Exploiting structure will allow
us to reduce the complexity per iteration to n3. Similar results have previ-
ously been obtained for dual barrier methods applied to special classes of
KYP-SDPs, for example, KYP-SDPs derived for discrete-time FIR systems
[6, 22, 25]. The results in this paper can be viewed as an extension of these
techniques to general KYP-SDPs, and to primal-dual interior-point methods.

Outline of the Paper

The paper is organized as follows. In §2 we give an overview of applications, il-
lustrating that KYP-SDPs are widely encountered in control. In §3 we present
some basic facts about SDPs, SDP duality, and primal-dual interior-point
methods for solving them. In §4 we explain in more detail the computations
involved in solving KYP-SDPs using general-purpose software, and justify our
estimate of an order n6 complexity per iteration. We also describe a dual refor-
mulation of the KYP-SDP which can be solved at a cost of roughly O(n4) per
iteration, using general-purpose software. In §5 we describe techniques that
exploit additional problem structure and result in a complexity of roughly
O(n3) per iteration, for either the primal or dual formulation. The relation
between the methods discussed in §4 and §5 is illustrated in Table 1. The

Primal formulation Dual formulation

General-purpose O(n6) (§4.1) O(n4) (§4.2)
Special-purpose O(n3) (§5) O(n3) (§5)

Table 1. Relation between the methods in §4 and §5, and estimates of their com-
plexity per iteration (for KYP-SDPs with L = 1, n1 = n, m1 = 1, p = O(n)).

results of some numerical experiments are described in §6. In §7 we discuss ex-
tensions of the techniques in §4 and §5, to problems with multiple constraints



198 L. Vandenberghe et al.

(L > 1), and KYP-LMIs for multi-input systems (mk > 1). Conclusions and
some suggestions for future research are presented in §8.

The paper also includes several appendices. Appendix A provides addi-
tional background on semidefinite programming, and a detailed summary of
the primal-dual interior-point of [46]. The other appendices contain proofs of
results in the paper, and discussion of relaxed assumptions.

Assumptions

We will assume that the pairs (Ak, Bk), k = 1, . . . , L, are controllable. Con-
trollability implies that the linear mappings Kk : Snk → Snk+mk , defined
by

Kk(P ) = 
AT

k P + PAk PBk

BT P 0 ,

have full rank (see §4.2). In addition, we assume that the matrices Mki are
such that the mapping

(P1, P2, . . . , PL, x) → diag(K1(P1)+M1(x), . . . , KL(PL)+ML(x)) (6)

has full rank, where Mk(x) = p
i=1 xiMki. In other words, the lefthand sides

of the constraints in (1) are zero if and only if Pk = 0, k = 1, . . . , L, and
x = 0.

In fact these two assumptions can be relaxed. Controllability of (Ak, Bk)
can be replaced with stabilizability, provided the range of Qk is in the control-
lable subspace of (Ak, Bk); see Appendix D. Moreover, a problem for which (6)
does not have full rank, can always be converted to an equivalent reduced or-
der problem for which the full rank assumption holds; see Appendix E.

Throughout the paper we assume that the problem data and parameters
are real. The generalization to complex data should be straightforward.

Notation

The space of symmetric l × l matrices is denoted Sl. For X ∈ Sl, svec(X)
denotes the l(l + 1)/2 vector containing the lower triangular elements of X :

svec(X) = (x11, x21, . . . , xl1, x22, . . . , xl2, . . . , xl−1,l−1, xl,l−1, xll).

The space of symmetric block-diagonal matrices with block dimensions l1,
. . . , lL is denoted Sl1 × Sl2 × · · · × SlL . If X1 ∈ Sl1 , . . . , XL ∈ SlL , then
diag(X1, . . . , XL) denotes the block-diagonal matrix with X1, . . . , XL as its
diagonal blocks.

The space of Hermitian l× l matrices is denoted Hl. For A ∈ Sl (A ∈ Hl),
A 0 means A is positive semidefinite, and the set of positive semidefinite
symmetric (Hermitian) matrices of dimension l is denoted Sl

+ (H
l
+). Similarly,
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A 0 means A is positive definite; Sl
++ and Hl

++ are the sets of positive
definite symmetric, resp. Hermitian, matrices.

The Hadamard (componentwise) product A ◦ B of two matrices A, B of
equal dimensions is defined by (A ◦ B)ij = aijbij . The ith unit vector is
denoted ei.

2 Applications of KYP-SDPs

While the form of the KYP-SDP (1) and the KYP-LMIs (2) and (3) may ap-
pear very special, they are widely encountered in control and signal processing.
We give a representative list of applications along with a brief description.

2.1 Optimization Problems with Frequency-Domain Inequalities

As we already noted, a KYP-SDP (1) with an objective that does not depend
on the variables Pk (i.e., Qk = 0), is equivalent to an optimization problem of
the form (5), in which we minimize a linear cost function subject to frequency-
domain inequalities (FDIs) of the form

Hk(ω, x) 0 ω ∈ R. (7)

Here Hk : R × Rp → Hm is defined as

Hk(ω, x) = 
(jωI − Ak)−1Bk

I

∗
(Mk(x) − Nk)

(jωI − Ak)−1Bk

I
.

Below we list a number of applications of problems with FDI constraints. It is
important to note that in these applications, x is usually the design variable
that we are interested in; the matrix P in the SDP formulation is an auxiliary
variable, introduced to represent an infinite family of inequalities (7) as a
single matrix inequality.

Linear System Analysis and Design

A well-known convex reformulation of the problem of linear time-invariant
(LTI) controller design for LTI systems is via the Youla parametrization; see
for example [7]. The underlying optimization problem here is to find x such
that

T (s, x) = T1(s) + T2(s) 

 
p

i=1

xiQi(s) T3(s),

satisfies a number of affine inequalities for s = jR, where Ti and Qi are given
stable rational transfer function matrices [7, 26, 39]. These inequalities are
readily expressed as FDIs of the form (7).
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Digital Filter Design

This application involves the discrete-time version of the FDI (7). The stan-
dard digital filter design problem consists of designing

T (z, x) =
p

i=1

xiTi(z),

where Ti : C → C are given transfer functions, and x is to be determined so
that G(z, x) satisfies certain constraints. When Ti(z) = z−i, we have a finite-
impulse response (FIR) design problem. The constraints can be magnitude
constraints of the form

|T (ejθ, x)| ≤ U(ejθ), θ ∈ [0, 2π), (8)

or phase constraints

∠T (ejθ, x) ≤ R(ejθ), θ ∈ [0, 2π), (9)

Extensions where Ti are more general filter banks, and when Ti are matrix-
valued transfer functions are immediate [10]. Other variations include optimal
array pattern synthesis [51].

When U(ejθ) and tan(R(ejθ)) are given (or can be approximated) as ra-
tional functions of ejθ, it is straightforward to express constraints (8) as the
unit-circle counterparts of inequalities (7).

Other types of filter design problems include two-sided magnitude con-
straints

L(ejθ) ≤ |T (ejθ, x)| ≤ U(ejθ), θ ∈ [0, 2π),

and no phase constraints. These constraints can be expressed as linear FDIs
via a change of variables; see [50, 5, 6, 14, 21].

Robust Control Analysis Using Integral Quadratic Constraints

Robust control [54, 23] deals with the analysis of and design for control system
models that incorporate uncertainties explicitly in them. A sufficient condition
for robust stability (i.e., stability of the model irrespective of the uncertainties)
can be unified in the framework of integral quadratic constraints (IQCs). The
numerical problem underlying the IQC-based robust stability conditions is
the following [38, 31, 12]: Find x ∈ Rm such that for  > 0 and for all ω ∈ R,

T (jω)
I

∗
Π(jω, x)

T (jω)
I

−2 I, (10)

where T : C → Cm×m is a given real-rational function, and Π : C × Rp →
C2m×2m is a linear function of x for fixed ω, and is a real-rational function of
ω for fixed x. Clearly, (10) corresponds to a special instance of (3).

Multiple FDIs of the form (10) result with more sophisticated (and bet-
ter) sufficient conditions for robust stability with the IQC framework; see for
example [17, 30].
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2.2 Linear-Quadratic Regulators

Consider the continuous-time dynamical system model

ẋ = Ax + Bu (11)

with initial value x(0) = x0, A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, and u(t) ∈
Rm. Assume that (A, B) is controllable.

Riccati Equations

Define the cost index

J = 
 ∞
0 

x
u

T

M 
x
u

dt (12)

where

M = 
 
Q S
ST R

 
∈ Sn+m

with R 0. It is well-known (see, e.g, [53]), that the infimal value of J with
respect to u(·) subject to (11) and such that limt→∞ x(t) = 0 is, whenever it
exists, given by xT

0 Px0, where P ∈ Sn solves the KYP-SDP

maximize xT
0 Px0

subject to
AT P + PA PB

BT P 0 + M 0.
(13)

The optimal u(·) is given as a state feedback u(t) = −R−1(PB + S)T x(t).
Here we see an application where the variable P is of intrinsic interest and
appears in the objective. For this special case, of course, the optimal P can
be found by solving an algebraic Riccati equation

AT P + PA + Q − (PB + S)T R−1(PB + S) = 0,

and very efficient methods based on the real ordered Schur form of an associ-
ated matrix pencil are available. The computational complexity of these meth-
ods is in the order of n3. However, numerical experience have shown that for
certain ill-conditioned algebraic Riccati equations the KYP-SDP-formulation
is not ill-conditioned. In some cases it can therefore be beneficial to solve
algebraic Riccati equations via the SDP formulation. Moreover, slight gen-
eralizations of the above problem formulation require the solution of general
KYP-SDPs. An example is given next.

Quadratic Constraints

Define the cost indices



202 L. Vandenberghe et al.

Ji = 
 ∞
0 

x
u

T

Mi 
x
u

dt, i = 0, . . . , p (14)

where Mi ∈ Sn+m. Consider the constrained optimization problem

minimize J0

subject to Ji ≤ ci, i = 1, . . . , p

(11) and limt→∞ x(t) = 0
(15)

with respect to u(·). The optimal value to this problem, whenever it exists, is
given by xT

0 Px0, where P solves the KYP-SDP

maximize xT
0 Px0 − cT x

subject to
AT P + PA PB

BT P 0 + M0 + p
i=1 xiMi 0

xi ≥ 0, i = 1, . . . , p

(16)

(see [8, page 151]). The optimal u(·) is given as a state feedback u(t) =
−R†(PB + S)T x(t), where

Q S
ST R

= M0 +
p

i=1

xiMi.

Here we see an application where both the variables P and x are of intrinsic
interest. Moreover, we have multiple constraints, some of which only involve
x.

2.3 Quadratic Lyapunov Function Search

Consider the continuous-time dynamical system model

ẋ = f(x, u, w, t), z = g(x, u, w, t), y = h(x, u, w, t) (17)

where x : R+ → Rn, u : R+ → Rnu , w : R+ → Rnw , z : R+ → Rnz ,
and y : R+ → Rny . x is referred to as the state, u is the control input,
w is the exogenous input, z is the output of interest and y is the measured
output. Models such as (17) are ubiquitous in engineering. (We have presented
a continuous-time model only for convenience; the statements we make are
equally applicable to discrete-time models.)

A powerful tool for the analysis of and design for model (17) proceeds via
the use of quadratic Lyapunov functions. Suppose that for some P ∈ Sn

++,

the function V (ψ) ∆= ψT Pψ satisfies

d

dt
V (x, t) < 0 along the trajectories of (17), (18)
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then all trajectories of model (17) go to zero. For a number of special in-
stances of system (17), the numerical search for Lyapunov functions results in
feasibility problems with KYP-LMI constraints; see, for example, [8]. As an
example, consider the system

ẋ = Ax + Bpp, q = Cqx + Dqpp, p = ∆(t)q, ∆(t) ≤ 1, (19)

where ∆ : R+ → Rm×m. The existence of a quadratic Lyapunov function
such that dV (x, t)/dt < 0 holds along the trajectories of (19) is equivalent to
the following KYP-LMI:

P 0,
AT P + PA + CT

q Cq PBp + CT
q Dqp

(PBp + CT
q Dqp)T −(I − DT

qpDqp)
0. (20)

If (A, Cq) is observable, the inequality P 0 is implied by the second LMI,
which is a (strict) KYP-LMI.

Variations of this basic idea underlie a very long list of recent results in
systems and control theory that lead to KYP LMIs; the following list is by no
means comprehensive:

• Robust stability of norm-bound systems with structured perturbations
[15, 43, 8].

• Robust stability of parameter-dependent systems [19, 8].
• H∞ controller synthesis [2].
• Gain-scheduled controller synthesis [40, 1, 49].

3 Interior-Point Algorithms for Semidefinite
Programming

3.1 Semidefinite Programming

Let V be a finite-dimensional real vector space, with inner product u, v . Let

A : V → Sl1 × Sl2 × · · · × SlL , B : V → Rr

be linear mappings, and suppose c ∈ V , D = diag(D1, D2, . . . , DL) ∈ Sl1 ×
· · · × SlL , and d ∈ Rr are given. The optimization problem

minimize c, y

subject to A(y) + D 0
B(y) + d = 0

(21)

with variable y ∈ V is called a semidefinite programming problem (SDP). The
dual SDP associated with (21) is defined as



204 L. Vandenberghe et al.

maximize Tr(DZ) + dT z

subject to Aadj(Z) + Badj(z) + c = 0
Z 0,

(22)

where
Aadj : Sl1 × · · · × SlL → V , Badj : Rr → V

denote the adjoints of A and B. The variables in the dual problem are Z ∈
Sl1 × · · · ×SlL , and z ∈ Rr. We refer to Z as the dual variable (or multiplier)
associated with the LMI constraint A(y) + D 0, and to z as the multiplier
associated with the equality constraint B(y) + d = 0.

3.2 Interior-Point Algorithms

Primal-dual interior-point methods solve the pair of SDPs (21) and (22) si-
multaneously. At each iteration they solve a set of linear equations of the
form

−W∆ZW + A(∆y) = R (23)
Aadj(∆Z) + Badj(∆z) = rdu (24)

B(∆y) = rpri, (25)

to compute primal and dual search directions ∆y ∈ V , ∆Z ∈ Sl1 × · · · × SlL ,
∆z ∈ Rr. The scaling matrix W and the righthand side R in these equations
are block-diagonal and symmetric (W, R ∈ Sl1 × · · · ×SlL ), and W is positive
definite. The value of W , as well as the values of the righthand sides R, rdu,
and rpri, change at each iteration, and also depend on the particular algorithm
used. We will call these equations Newton equations because they can be
interpreted as a linearization of modified optimality conditions. We refer to
appendix A, which gives a complete description of one particular primal-dual
method, for more details. Primal or dual interior-point methods give rise to
equations that have the same form as (23)–(25), with different definitions of
W and the righthand sides. In this paper we make no assumptions about
W , other than positive definiteness, so our results apply to primal and dual
methods as well.

Since in practice the number of iterations is roughly independent of prob-
lem size (and of the order of 10–50), the overall cost of solving the SDP is
roughly proportional to the cost of solving a given set of equations of the
form (23)–(25).

3.3 General-Purpose Solvers

In a general-purpose implementation of an interior-point method it is assumed
that V is the Euclidean vector space Rs of dimension s = dim V , and that A
and B are given in the canonical form
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A(y) =
s

i=1

yiFi, B(y) = By.

The matrices Fi ∈ Sl1 × Sl2 × · · · × SlL and B ∈ Rr×s are stored in a sparse
matrix format.

The equations (23)–(25) are solved by eliminating ∆Z from the first equa-
tion, and substituting ∆Z = W−1(A(∆y) − R)W−1 in the second equation.
This yields a symmetric indefinite set of linear equations in ∆y, ∆z:

Aadj(W−1A(∆y)W−1) + Badj(∆z) = rdu + Aadj(W−1RW−1) (26)
B(∆y) = rpri. (27)

Using the canonical representation of A and B, these equations can be written
as

H BT

B 0 

 
∆y
∆z

= rdu + g
rpri 

,

where

Hij = Tr(FiW
−1FjW

−1), i, j = 1, . . . , s

gi = Tr(FiW
−1RW−1), i = 1, . . . , s.

If the SDP has no equality constraints, the equations reduce to

Aadj(W−1A(∆y)W−1) = rdu + Aadj(W−1RW−1). (28)

i.e.,
H∆y = rdu + g.

The matrix H in this system is positive definite and almost always dense, so
the cost of solving the equations is (1/3)s3. This is only a lower bound on
the actual cost per iteration, which also includes the cost of forming H . Even
though sparsity in the matrices Fi helps, the cost of constructing H is often
substantially higher than the cost of solving the equations.

4 General-Purpose SDP Solvers and KYP-SDPs

In this section we use the observations made in §3 to estimate the cost of solv-
ing KYP-SDPs with general-purpose interior-point software. For simplicity we
assume that L = 1, n1 = n, m1 = 1, and consider the problem

minimize qT x + Tr(QP )

subject to AT P + PA PB
BT P 0 + p

i=1 xiMi N,
(29)

where A ∈ Rn×n, B ∈ Rn, with (A, B) controllable. The extension to prob-
lems with multiple inputs (m > 1) and multiple constraints (L > 1) is dis-
cussed in §7.
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In §4.1 we first make precise our earlier claim that the cost of a general-
purpose solver applied to (1) grows at least as n6, if p = O(n). In §4.2 we
then describe a straightforward technique, based on semidefinite programming
duality, that reduces the cost to order n4.

4.1 Primal Formulation

We can express the KYP-SDP (29) as

minimize qT x + Tr(QP )
subject to K(P ) + M(x) N

(30)

where

K(P ) =
AT P + PA PB

BT P 0 , M(x) =
p

i=1

xiMi. (31)

This is in the general form (21), with V = Sn × Rp, and

y = (P, x), c = (Q, q), D = N, A(P, x) = −K(P ) −M(x).

The adjoint of A is Aadj(Z) = − Kadj(Z),Madj(Z) , where

Kadj(Z) = A B Z
I
0 + I 0 Z

AT

BT , Madj(Z) =

Tr(M1Z)
...

Tr(MpZ)

 .

The dual problem of (32) is therefore

maximize Tr(NZ)
subject to Kadj(Z) = Q, Madj(Z) = q

Z 0,

(32)

with variable Z ∈ Sn+1.
A general-purpose primal-dual method applied to (30) generates iterates x,

P , Z. At each iteration it solves a set of linear equations of the form (23)–(25)
with variables ∆x, ∆P , ∆Z:

W∆ZW + K(∆P ) + M(∆x) = R1 (33)
Kadj(∆Z) = R2 (34)
Madj(∆Z) = r, (35)

for some positive definite W and righthand sides R1, R2, r. These equations
are solved by eliminating ∆Z, reducing them to a smaller positive definite
system (28). The reduced equations can be written in matrix-vector form as

H11 H12

HT
12 H22

svec(∆P )
∆x

=
r1

r2
. (36)
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The blocks of the coefficient matrix are defined by the identities

H11 svec(∆P ) = svec Kadj(W−1K(∆P )W−1)

H12∆x = svec Kadj(W−1M(∆x)W−1)

H22∆x = Madj(W−1M(∆x)W−1).

The exact expressions for the righthand sides r1, r2, and the positive definite
scaling matrix W are not important for our present purposes and are omitted;
see Appendix A for details.

The coefficient matrix in (36) is dense, so the cost of solving these equations
is (1/3)(n(n + 1)/2 + p)3 = O(n6) operations if we assume that p = O(n).
This gives a lower bound for the cost of one iteration of a general-purpose
interior-point solver applied to (29). The actual cost is higher since it includes
the cost of assembling the matrices H11, H12, and H22.

4.2 Dual Formulation

A reformulation based on SDP duality allows us to solve KYP-SDPs more
efficiently, at a cost of roughly O(n4) per iteration. The technique is well
known for discrete-time KYP-SDPs with FIR matrices [22, 16, 4, 6], and was
applied to general KYP-SDPs in [52].

The Reformulated Dual

The assumption that (A, B) is controllable implies that that the mapping K
defined in (31) has full rank, i.e., K(P ) = 0 only if P = 0. To see this, we can
take any stabilizing state feedback matrix K, and note that K(P ) = 0 implies

I
K

T
AT P + PA PB

BT P 0
I
K

= (A + BK)T P + P (A + BK) = 0,

and hence P = 0. It follows that the nullspace of Kadj (a linear mapping from
Sn+1 to Sn) has dimension n + 1. Hence there exists a mapping L : Rn+1 →
Sn+1 that spans the nullspace of Kadj:

Kadj(Z) = 0 ⇐⇒ Z = L(u) for some u ∈ Rn+1

S = K(P ) for some P ∈ Sn ⇐⇒ Ladj(S) = 0.

Some practical choices for L will be discussed later, but first we use this
observation to derive an equivalent pair of primal and dual SDPs, with a
smaller number of primal and dual variables.

The first equality in the dual SDP (32) is equivalent to saying that Z =
L(u) − Ẑ for some u, where Ẑ is any symmetric matrix that satisfies

Kadj(Ẑ) + Q = 0.
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Substituting in the dual SDP (32), and dropping the constant term Tr(N Ẑ)
from the objective, we obtain an equivalent problem

maximize Ladj(N)T u

subject to L(u) Ẑ

Madj(L(u)) = q + Madj(Ẑ)
(37)

with variable u ∈ Rn+1. This SDP has the form (21) with V = Rn+1, y = u,

A(u) = −L(u), B(u) = Madj(L(u)),

and c = −Ladj(N), D = Ẑ, d = −q −Madj(Ẑ).
The dual of problem (37) is

minimize (q + Madj(Ẑ))T v − Tr(ẐS)
subject to Ladj(S) − Ladj(M(v)) + Ladj(N) = 0

S 0,

(38)

with variables v ∈ Rp and S ∈ Sn+1. Not surprisingly, the SDP (38) can be
interpreted as a reformulation of the original primal problem (30). The first
constraint in (38) is equivalent to

S −M(v) + N = K(P ) (39)

for some P . Combined with S 0, this is equivalent to K(P ) + M(v) N .
Using (39) we can also express the objective function as

(q + Madj(Ẑ))T v − Tr(ẐS) = qT v + Tr((M(v) − S)Ẑ)
= qT v + Tr(NẐ) − Tr(PKadj(Ẑ))
= qT v + Tr(NẐ) + Tr(PQ).

Comparing this with (30), we see that the optimal v in (38) is equal the
optimal x in (30). The relation (39) also allows us to recover the optimal P
for (30) from the optimal solution (v, S) of (38).

In summary, the pair of primal and dual SDPs (37) and (38) is equivalent
to the original SDPs (30) and (32); the optimal solutions for one pair of SDPs
are easily obtained from the solutions of the other pair.

Newton Equations for Reformulated Dual

A primal-dual method applied to (37) generates iterates u, v, S. At each
iteration a set of linear equations of the form (26)–(27) is solved, which in
this case reduce to

Ladj(W−1L(∆u)W−1) + Ladj(M(∆v)) = R (40)
Madj(L(∆v)) = r (41)
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with variables ∆u ∈ Rn+1, ∆v ∈ Rp. (Again, we omit the expressions for W ,
R, r. In particular, note that W is not the same matrix as in §4.1.) In matrix
form,  

H G
GT 0 

∆u
∆v

= R
r 

, (42)

where H and G are defined by the identities

H∆u = Ladj(W−1L(∆u)W−1), G∆v = Ladj(M(∆v)).

The number of variables in (42) is p + n + 1.

Computational Cost

We now estimate the cost of assembling the coefficient matrix in (42), for a
specific choice of L. To simplify the notation, we assume that the Lyapunov
operator AX + XAT is invertible. This assumption can be made without
loss of generality: Since (A, B) is controllable by assumption, there exists
a state feedback matrix K such that A + BK is stable (or, more generally,
λi(A+BK)+λj(A+BK)∗ = 0, for i, j = 1, . . . , n). By applying a congruence
to both sides of the LMI constraint in (29) and noting that

I KT

0 I
AT P + PA PB

BT P 0
I 0
K I

=
(A + BK)T P + P (A + BK) PB

BT P 0 ,

we can transform the SDP (29) to an equivalent KYP-SDP

minimize qT x + Tr(QP )

subject to
(A + BK)T P + P (A + BK)A PB

BT P 0 + p
i=1 xiM̃i Ñ,

where

M̃i =
I KT

0 I
Mi

I 0
K I

, Ñ =
I KT

0 I
N

I 0
K I

.

We will therefore assume that the matrix A in (29) is stable.
It is then easily verified that Kadj(Z) = 0 if and only if Z = L(u) for some

u, with L defined as

L(u) =
n+1

i=1

uiFi,

where

Fi =
Xi ei

eT
i 0 , i = 1, . . . , n, Fn+1 =

0 0
0 2 . (43)

and Xi, i = 1, . . . , n, are the solutions of the Lyapunov equations

AXi + XiA
T + BeT

i + eiB
T = 0. (44)
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With this choice of L, the coefficient matrices H and G in (42) can be ex-
pressed as

Hij = Tr(FiW
−1FjW

−1)), i, j = 1, . . . , n + 1, (45)
Gij = Tr(FiMj), i = 1, . . . , n + 1, j = 1, . . . , p. (46)

To estimate the cost of this approach we assume that p = O(n). The
method requires a significant amount of preprocessing. In particular we have
to compute the solutions Xi of n + 1 Lyapunov equations, which has a total
cost of O(n4). The matrix G does not change during the algorithm so it can
be pre-computed, at a cost of order pn3 if the matrices Mi and Xj are dense
(i.e., O(n4) if we assume p = O(n)). In practice, as we have seen in §2, the
matrices Mi are often sparse or low-rank, so the cost of computing G is usually
much lower than O(n4).

At each iteration, we have to construct H and solve the equations (42).
The cost of constructing H is O(n4). The cost of solving the equations is O(n3)
if we assume p = O(n). The total cost is therefore O(n4), and is dominated
by the cost of pre-computing the basis matrices Xi, and the cost of forming
H at each iteration.

5 Special-Purpose Implementation

We now turn to the question of exploiting additional problem structure in a
special-purpose implementation. As should be clear from the previous section,
the key to a fast implementation is to solve the linear equations that arise
in each iteration fast. This can be done for either the primal or the dual
formulation described in §4. We will see that these two approaches lead to
methods that are almost identical, and have the same complexity.

5.1 Reduced Newton Equations

In §4 we noted a large difference in complexity between solving the original
KYP-SDP (29) and solving the reformulated dual problem (37). The differ-
ence is due to the different dimension and structure of the Newton equations
in each iteration, and the way in which special-purpose codes handle those
equations. In a custom implementation, the distinction between the two for-
mulations disappears: the equations (33)–(35) that arise when solving the
primal formulation can be solved as efficiently as the equations (40)–(41) that
arise when solving the dual formulation.

Solving Newton Equations via Dual Elimination

To show this, we describe an alternative method for solving (33)–(35). As
in §4.2, let L : Rn+1 → Sn+1 be a linear mapping that spans the nullspace of
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Kadj. Let Z0 be any symmetric matrix that satisfies Kadj(Z0) + R2 = 0. The
equation (34) is equivalent to saying that

∆Z = L(∆u) − Z0

for some ∆u ∈ Rn+1. Substituting this expression in (33) and (35), we obtain

WL(∆u)W + K(∆P ) + M(∆x) = R1 + WZ0W

Madj(L(∆u)) = r + Madj(Z0).

Next we eliminate the variable ∆P , by applying Ladj to both sides of the first
equation, and using the fact that Ladj(K(∆P )) = 0 for all ∆P :

Ladj(WL(∆u)W ) + Ladj(M(∆x)) = Ladj(R1 + WZ0W ) (47)
Madj(L(∆u)) = r + Madj(Z0). (48)

This is a set of n + p + 1 linear equations in n + p + 1 variables ∆u, ∆x. In
matrix form,  

H G
GT 0 

∆u
∆x

= 
Ladj(R1 + WZ0W )

r + Madj(Z0) 
, (49)

where H and G are defined by the identities

H∆u = Ladj(WL(∆u)W ), G∆x = Ladj(M(∆x)).

Since L has full rank, the matrix H is nonsingular, so the equations (49) can
be solved by first solving

GT H−1G∆x = GT H−1Ladj(R1 + WZ0W ) − r −Madj(Z0)

to obtain ∆x, and then computing ∆u from

H∆u = Ladj(R1 + WZ0W ) − G∆x.

After solving (49), we can compute ∆Z as ∆Z = L(∆u). Given ∆Z and ∆x,
we find ∆P by solving

K(∆P ) = R1 − W∆ZW −M(∆x),

which is an overdetermined, but solvable set of linear equations.
We will refer to (49) as the reduced Newton equations.

Computational Cost

We now estimate the complexity of solving the reduced Newton equations.
Note that (47)–(48) have exactly the same form as (40)–(41), with different
values of W and the righthand sides. In particular, our discussion of the
complexity of solving (40)–(41) also applies here.
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We work out the details assuming the Lyapunov operator AX + XAT is
invertible. If this is not the case, the equations (33)–(35) can be transformed
into an equivalent set

TWT T (T−T ∆ZT−1)TWT T + TK(∆P )T T + TM(∆x)T T = TR1T
T

Kadj(T T T−T ∆ZT−1T ) = R2

Madj(T T T−T ∆ZT−1T ) = r,

where

T = I KT

0 I 
, T−1 = I −KT

0 I 

and K is a stabilizing state feedback matrix. Replacing ∆Z with a new variable

∆S = T−T ∆ZT−1,

gives

W̃∆SW̃ +
(A + BK)T ∆P + ∆P (A + BK) ∆PB

BT ∆P 0 +
p

i=1

∆xiM̃i = R̃1

A + BK
B

T

∆S
I
0 + I

0

T

∆S
A + BK

B
= R2

Tr(M̃i∆S) = ri, i = 1, . . . , p,

where W̃ = TWT T , M̃i = TMiT
T , R̃1 = TR1T

T . These equations have
the same structure as the original equations (33)–(35), with A replaced by
A + BK.

If we assume that AX + XAT is invertible, we can choose L as in §4.2:
L(u) = n+1

i=1 uiFi with the matrices Fi defined as in (43). If the matrices Xi

are pre-computed (at a total cost of O(n4)), then the cost of constructing the
coefficient matrix H in (49) is O(n4). The cost of computing G is O(pn3) if
we assume the matrices Xi are known, and we do not exploit any particular
structure in Mj. The cost of solving the equations (49), given H and G, is
O(n3) if we assume p = O(n).

Comparison with Dual Method

The above analysis demonstrates that a custom implementation of a primal-
dual method for solving the original KYP-SDP (29) can be as efficient as a
primal-dual method applied to the reformulated dual (37). Both methods are
based on eliminating dual variables, either in the original dual SDP, or in the
Newton equations. In fact, if we use the same mapping L in both methods,
the reduced linear equations are identical. However, a custom implementation
offers three important advantages over a general-purpose primal-dual method
applied to the reformulated dual.
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• In a custom implementation we can avoid the need to compute and store
the basis matrices Fi (or Xi), which are required in the dual formulation
(see §5.2 for details). These matrices Xi are the solution of n Lyapunov
equations of order n. For large n, they are expensive to compute and store.

• Additional problem structure can be exploited in a custom implementa-
tion. Two methods that achieve an O(n3) complexity per iteration are
described in §5.2.

• In a custom implementation, we can make a different choice for the map-
ping L, which is used to eliminate dual variables, in each iteration.
For example, in §4.2 we pointed out that state feedback transformations
preserve the KYP structure in the SDP, while in §5.1 we made a similar
observation about the Newton equations. Of course, these two viewpoints
are just different interpretations of the same property. We can first use
state feedback to transform the SDP and then derive the Newton equa-
tions, or we can write down Newton equations for the original SDP and
then apply a state feedback transformation. Both transformations result
in the same equations. However the second viewpoint opens the possibility
of selecting a different state-feedback matrix K in each iteration, in order
to improve the numerical stability of the elimination step.

5.2 Fast Construction of Reduced Newton Equations

We now examine two methods that allow us to construct the matrices H and
G in (49) fast, in roughly O(n3) operations.

Diagonalizable A

Suppose A is stable (or equivalently, a state feedback transformation has been
applied as described in §5.1, to obtain equivalent equations with a stable A).
We make the same choice of L as in §5.1, i.e., L(u) = n+1

i=1 uiFi, with Fi

defined in (43).
In appendix B we derive the following expression for the matrix H in (49):

H = 
H1 0
0 0 + 2 

W11

W21
H2 0

 
+ 2 

HT
2

0 W11 W12

+ 2W22W + 2 W12

W22

 
W21 W22 (50)

where

(H1)ij = Tr(XiW11XjW11), H2 = X1W12 X2W12 · · · XnW12

 
(51)

and

W = 
W11 W12

W21 W22
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with W11 ∈ Sn×n. Similarly,

G = 2 
G1

0 + 2 
M1,12 M2,12 · · · Mp,12

M1,22 M2,22 · · · Mp,22
, (52)

where
G1 = Y1B Y2B · · · YpB ,

Yj is the solution of
AYj + YjA

T + Mj,11 = 0,

and Mj,11 ∈ Sn, Mj,12 ∈ Rn are the 1, 1- and 1, 2-blocks of Mj . Formulas (50)
and (52) show that the key to constructing H and G fast (i.e., faster than in
O(n4) and O(pn3) operations, respectively), is to compute the matrices H1,
H2, and G1 fast.

A simple approach is based on the eigenvalue decomposition of A. Our
assumption that (A, B) is controllable implies that is possible to find a linear
state feedback matrix K so that A+BK is stable and diagonalizable [35]. As
mentioned in §5.1, we can transform the Newton equations into an equivalent
set of equations in which the matrix A is replaced by A+BK. We can therefore
assume without loss of generality that A is diagonalizable.

Let A = V diag(λ)V −1 be the eigenvalue decomposition of A, with V ∈
Cn×n and λ ∈ Cn. It can be shown that the matrices H1 and H2 defined
in (51) can be expressed as

H1 = 2 Re V −T ((ΣW11) ◦ (ΣW11)T ) + V −∗(W11 ◦ (ΣW11Σ
∗)T ) V −1

(53)
H2 = −V (Σ∗ diag(W12))V̄ −1 − V diag(ΣW12)V −1 (54)

where ◦ denotes Hadamard product, Σ ∈ Cn×n is defined as

Σij =
1

λi + λ∗
j

, i, j = 1, . . . , n,

Σ = Σ diag(V −1B)∗, W11 = V ∗W11V , W12 = V ∗W12, and V̄ is the complex
conjugate of V . The above formulas for H1 and H2 can be evaluated in O(n3)
operations, and do not require pre-computing the basis matrices Xi. We refer
to appendix C for a proof of the expressions (53) and (54).

There is a similar expression for G1:

G1 = V (M1 ◦ Σ)V ∗B (M2 ◦ Σ)V ∗B · · · (Mp ◦ Σ)V ∗B .

where Mj = V −1Mj,11V
−∗. The cost of computing Mj can be reduced by

exploiting low-rank structure in Mj,11. Given the matrices Mj , G1 can be
computed in O(n2p) operations.
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A in Companion Form

In this section we present an O(n3) method for solving the Newton equations
when A is an n × n ‘shift matrix’ and B = en:

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , B =


0
0
...
0
1

 . (55)

KYP-SDPs of this form arise in a wide variety of LMI problems in robust
control [27]. The method is also useful for handling matrices A in companion
form: in order to solve the Newton equations for a KYP-SDP with

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

 , B =


0
0
...
0
1

 ,

we can first apply a state feedback transformation with

K = a1 a2 · · · an ,

as explained in §5.1, and then solve an equivalent set of equations in which A
is replaced with the shift matrix A + BK.

With A and B defined as in (55), the equations (33)–(35) reduce to

W∆ZW + 0 0
∆P 0 + 0 ∆P

0 0 +
p

i=1

∆xiMi = R1 (56)

0 I ∆Z
I
0 + I 0 ∆Z

0
I

= R2 (57)

Tr(Mi∆Z) = ri, i = 1, . . . , p. (58)

We can follow the method of §5.1, with L : Rn+1 → Sn+1 defined as
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L(u) =



u1 0 u2 0 u3 · · · 0 uk+1

0 −u2 0 −u3 0 · · · −uk+1 0
u2 0 u3 0 u4 · · · 0 uk+2

0 −u3 0 −u4 0 · · · −uk+2 0
...

...
...

...
...

...
...

uk 0 uk+1 0 uk+2 · · · 0 u2k

0 −uk+1 0 −uk+2 0 · · · −u2k 0
uk+1 0 uk+2 0 uk+1 · · · 0 u2k+1


, n = 2k

L(u) =



u1 0 u2 0 u3 · · · uk+1 0
0 −u2 0 −u3 0 · · · 0 −uk+2

u2 0 u3 0 u4 · · · uk+2 0
0 −u3 0 u4 0 · · · 0 −uk+3

...
...

...
...

...
...

...
0 −uk+1 0 −uk+2 0 · · · 0 −u2k+1

uk+1 0 uk+2 0 uk+3 · · · u2k+1 0
0 −uk+2 0 −uk+3 0 · · · 0 −u2k+2


, n = 2k + 1.

In other words, the even anti-diagonals of L(u) are zero. The elements on
the odd anti-diagonals have equal absolute values and alternating signs. The
nonzero elements in the first row and column are given by u.

To obtain efficient formulas for the matrix H in (49), we represent L as
L(u) = n+1

i=1 uiFi, where

(Fi)jk = (−1)j+1 j + k = 2i
0 otherwise.

We also factor W as W = n+1
k=1 vkvT

k (for example, using the Cholesky fac-
torization or the eigenvalue decomposition). The i, j-element of H is

Hij = Tr(FiWFjW ) =
n+1

k=1

n+1

l=1

(vT
l Fivk)(vT

k Fjvl).

Next we note that for v, w ∈ Rn+1,

vT Fiw =
j+k=2i

(−1)j+1vjwk

=
min{n+1,2i−1}

k=max{1,2i−n−1}
(−1)k+1wkv2i−k

= (v ∗ (Dw))2i−1,

where D = diag(1,−1, 1, . . .), and v ∗ (Dw) denotes the convolution of the
vectors v and Dw. Therefore,

(vT
l F1vk, vT

l F2vk, . . . , vT
l Fn+1vk) = E(vl ∗ (Dvk))
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where

E = 


1 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0
... 

... 
... 

...
... 

...
0 0 0 0 · · · 0 1

 ∈ R(n+1)×(2n+1).

Using this notation we can express H as

H = E

n+1

k=1

n+1

l=1

(vl ∗ (Dvk))(vk ∗ (Dvl))T ET .

This expression can be evaluated in O(n3) operations using the discrete
Fourier transform (DFT). Let WDFT ∈ C(2n+1)×(n+1) be the first n + 1
columns of the DFT matrix of length 2n + 1, i.e., WDFTv is the zero padded
(2n + 1)-point DFT of a vector v ∈ Rn+1. Let

Vk = WDFTvk, Ṽk = WDFTDvk, k = 1, . . . , n + 1,

be the DFTs of the vectors vk and Dvk. Then

H =
1

(2n + 1)2
EW ∗

DFT

n+1

k=1

n+1

l=1

(Vl ◦ Ṽk)(Vk ◦ Ṽl)∗ WDFTET

=
1

(2n + 1)2
EW ∗

DFT

n+1

l=1

VlṼ
∗
l ◦

n+1

k=1

ṼkV ∗
k WDFTET .

The matrix in the middle is the Hadamard product of the (2n + 1)× (2n + 1)
matrix k VkṼ ∗

k with its conjugate transpose, so the cost of evaluating this
expression is O(n3).

The matrix G in (49) has elements

Gij = Tr(FiMj), i = 1, . . . , n + 1, j = 1, . . . , p,

and is easily computed in O(n2p) operations, since only O(n) elements of Fi

are nonzero. For sparse or low-rank Mj the cost is even lower.

6 Numerical Examples

In Table 2 we compare four algorithms, applied to randomly generated KYP-
SDPs of the form (29), with dimensions n = 25, 50, 100, 200, and p = n. Each
problem was constructed so it is strictly primal and dual feasible. (However
the algorithms were started at infeasible starting points.) The execution times
listed are the CPU times in seconds on a 2GHz Pentium IV PC with 1GB of
memory. All times are averages over five randomly generated instances.



218 L. Vandenberghe et al.

Table 2. Computational results for the general-purpose SDP solvers SeDuMi and
SDPT3 applied to KYP-SDPs with dimensions n = p = 25, . . . , 200, applied to
the original problem (‘Primal’), and to the reformulated dual SDP (‘Dual’). Tp is
the time in seconds required for preprocessing, and consists mainly of the cost of
computing an explicit basis for the solution set of the dual equality constraints. Ts

is the solution time per iteration, excluding preprocessing time.

The first method, SeDuMi (primal), solves the SDP (29) using the general-
purpose solver SeDuMi (version 1.05R5) [44]. The second method, SDPT3
(primal), solves the same problem using the general-purpose solver SDPT3
(version 3.02) [47]. Both solvers were called via the YALMIP interface [36].
We skip the last problem (n = 200), due to excessive computation time and
memory requirements. The numbers Ts are the CPU times needed to solve
each problem, divided by the number of iterations.

The other methods, SeDuMi (dual) and SDPT3 (dual), solve the reformu-
lated dual problem (37), for the choice of basis matrices described in §5.1. In
addition to the number of iterations and the time per iteration Ts, we also
give Tp, the preprocessing time required to compute the parameters in the
reformulated dual problem (37). This preprocessing step is dominated by the
cost of of solving the n + 1 Lyapunov equations (44).

The results confirm that the cost per iteration of a general-purpose method
applied to the primal SDP (29) grows much more rapidly than the same
method applied to the reformulated dual problem (37).

Table 3 shows the results for a second experiment with randomly generated
KYP-SDPs of dimensions n = 100, . . . , 500, and p = 50. Again, all values
are averages over five problem instances. The data in the column KYP-IPM
are for a customized Matlab implementation of the primal-dual interior-point
method of Tütüncü, Toh, and Todd [46, 47], applied to the dual problem, and
using the expressions (53) and (54) to compute the coefficient matrix of the
reduced Newton equations. The preprocessing time for this method includes
the eigenvalue decomposition of A and the computation of the matrix G in
the reduced system (42). The table shows that the preprocessing time and
execution time per iteration grow almost exactly as n3.

For the same set of problems, we also show the results for SeDuMi applied
to the reformulated dual problem. To speed up the calculation in SeDuMi, we
first transform the dual problem (37), by diagonalizing A. This corresponds
to a simple change of variables, replacing Z with V −1ZV −∗ and z̃ with V −1z̃.

SeDuMi (primal) SDPT3 (primal) SeDuMi (dual) SDPT3 (dual)
n #itrs Ts #itrs Ts Tp #itrs Ts Tp #itrs Ts

25 10 0.3 8 0.8 0.1 12 0.04 0.1 9 0.06
50 11 8.1 9 4.9 1.1 11 0.3 1.1 9 0.26
100 11 307.1 8 107.2 21.4 14 3.3 21.4 10 1.4
200 390.7 12 30.9 390.7 10 15.3
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Table 3. Results for KYP-SDPs of dimension n = 100,. . . , n = 500, and p = 50.
The first method is a customized Matlab implementation of a primal-dual method
as described in §5, using the formulas (53) and (54). The second method is Se-
DuMi applied to the reformulated dual SDP (37), after first diagonalizing A. The
third method solves the same reformulated dual SDP using SDPT3, without the
diagonalization of A (except in the preprocessing).

We then eliminate the (1,1)-block in the dual variable as in the SeDuMi (dual)
method of Table 2, which gives a problem of form (37), with complex data
and variables. Since A is diagonal, the basis matrices Xi are quite sparse and
easier to compute (at a cost of O(n3) total). Despite the resulting savings, it
is clear from the table that the execution time per iteration grows roughly as
n4. 

The third column (SDTP3 (dual)) gives the results for SDPT3 applied to
the reformulated dual problem. Since the version of SDPT3 we used does not
accept complex data, we only used diagonalization of A in the preprocessing
step, to accelerate the solution of the Lyapunov equations (44). Results are
reported for the first three problems only, due to insufficient memory. As for
SeDuMi, the results show an O(n4)-growth for the solution time per iteration.

7 Extensions

In this section we discuss some extensions of the techniques of §4 and §5 to
the general problem (1).

7.1 Multiple Constraints

Consider a KYP-SDP with multiple constraints,

minimize qT x + L
k=1(QkPk)

subject to Kk(Pk) + Mk(x) Nk, k = 1, . . . , L,

where Kk : Snk → Snk+1 and Mk : Rp → Snk+1 are defined as

Kk(Pk) = 
AT

k Pk + PkAk PkBk

BT
k Pk 0 , Mk(x) =

p

i=1

xiMki.

KYP-IPM SeDuMi (dual) SDPT3 (dual)
n Tp #itrs Ts Tp #itrs Ts Tp #itrs Ts

100 1.0 9 0.6 0.5 12 1.5 3.6 12 1.3
200 8.3 9 4.7 3.5 13 24.4 44.4 13 13.8
300 28.1 10 16.7 11.7 12 155.3 194.2 14 77.7
400 62.3 10 36.2 26.7 12 403.7
500 122.0 10 70.3 51.9 12 1068.4
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We assume (Ak, Bk) is controllable for k = 1, . . . , L. The Newton equations
that need to be solved at each iteration take the form

Wk∆ZkWk + Kk(∆Pk) + Mk(∆x) = Rpri,k, k = 1, . . . , L

Kadj
k (∆Zk) = Rdu,k, k = 1, . . . , L

L

k=1

Madj
k (∆Zk) = r,

with variables ∆Pk ∈ Snk , ∆x ∈ Rp, ∆Zk ∈ Snk+1. The values of the positive
definite matrix Wk and the righthand sides change at each iteration. As in the
single-constraint case, we solve the Newton equations by eliminating some of
the dual variables, and expressing ∆Zk as

∆Zk = Lk(∆uk) − Ẑk,

where Lk : Rnk+1 → Snk+1 parametrizes the nullspace of Kadj
k , and Ẑk satis-

fies
Kadj

k (Ẑk) + Rdu,k = 0.

We then apply Ladj
k to both sides of the first group of equations and obtain

Ladj
k (WLk(∆uk)W ) + Ladj

k (Mk(∆x)) = Ladj
k (Rpri,k + WkẐkWk),

for k = 1, . . . , L, and

L

k=1

Madj
k (Lk(∆uk)) = r +

L

k=1

Madj
k (Ẑk).

In matrix form,
H1 0 · · · 0 G1

0 H2 · · · 0 G2

...
...

. . .
...

...
0 0 · · · HL GL

GT
1 GT

2 · · · GT
L 0




∆u1

∆u2

...
∆uL

∆x

 =


Ladj

1 (Rpri,1 + W1Ẑ1W1)
Ladj

2 (Rpri,2 + W2Ẑ2W2)
...

Ladj
L (Rpri,L + WLẐLWL)
r + L

k=1 Madj
k (Ẑk)

 . (59)

To solve these equations we first solve

L

k=1

GT
k H−1

k Gk∆x = −r −
L

k=1

Madj
k (Ẑk) − GT

k H−1
k Ladj

k (Rk + WkẐkWk)

(60)
for ∆x, and then solve

Hk∆uk = Ladj
k (Rpri,k + WkẐkWk) − Gk∆x, k = 1, . . . , L,
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to determine ∆uk. As in the single-constraint case, the cost of this method
is dominated by the cost of forming the coefficient matrices Hk and Gk, the
coefficient matrix of (60), and the cost of solving this system. The matrices
Gk can be pre-computed. Assuming nk = O(n) for k = 1, . . . , L, the cost of
forming Hk is O(n4), or O(n3) if we use one of the methods of §5. Assuming
p = O(n), the cost of forming and solving the equations (60) is O(Ln3).
Overall, the cost increases linearly with L.

7.2 Multivariable Systems

The extension to systems with multiple inputs (mk > 1) is also quite straight-
forward, although the formulas get more involved. The Newton equations in-
clude constraints

Kadj
k (∆Zk) = Ak

Bk 

T

∆Zk 
I
0 + I

0

T

∆Zk 

 
A
B 

= Rpri,k, k = 1, . . . , L.

By representing ∆Zk as

∆Zk = Lk(∆uk) − Ẑk

where L : Rnkmk+mk(mk+1)/2 → Smk+nk , we can obtain reduced Newton
equations of the form (59). If mk nk this offers a practical and efficient
alternative to standard general-purpose methods.

8 Conclusion

We have described techniques for exploiting problem structure in interior-
point methods for KYP-SDPs, a class of large-scale SDPs that are common
in control applications. The method is very effective if the SDP includes one or
more inequalities with large state space dimension, and a relatively small num-
ber of inputs. Preliminary numerical results illustrate that a special-purpose
interior-point implementation based on these techniques can achieve a dra-
matic gain in efficiency compared with the best general-purpose solvers.

Several open questions remain.

• There is considerable freedom in choosing the mapping L, used to eliminate
a subset of the dual variables. The representation used in §5.1, for example,
is parametrized by a state feedback matrix K. It is not clear how this choice
affects the numerical stability of the method.

• The main idea in our approach is to use direct linear algebra techniques to
solve the Newton equations in an interior-point method fast. This allows
us to speed up the computation, without compromising the reliability and
speed of convergence of a primal-dual interior-point method. It seems likely
that other common classes of SDPs in control can benefit from similar
techniques.
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A Primal-Dual Interior-Point Method for Semidefinite
Programming

In this appendix we review the definition and key properties of the semidefinite
programming problem (SDP). We also describe a primal-dual method for
solving SDPs.

A.1 Optimality Conditions

We first state a few basic properties of the pair of primal and dual SDPs (21)
and (22). We will express the (primal) SDP (21) as

minimize c, y

subject to A(y) + S + D = 0
B(y) + d = 0
S 0,

(61)

where S ∈ Sl1 × · · · × SlL is an additional variable.
The duality gap associated with primal feasible points y, S and a dual

feasible Z is defined as
Tr(SZ).

It is easily verified that

Tr(SZ) = c, y − Tr(DZ) − dT z

if y, S, Z, z are primal and dual feasible. In other words the duality gap is
equal to the difference between the objective values.

If strong duality holds, then y, S, Z, z are optimal if and only if they are
feasible, i.e.,

S 0, A(y) + S + D = 0, B(y) + d = 0, (62)

and
Z 0, Aadj(Z) + Badj(z) + c = 0, (63)

and the duality gap is zero:
SZ = 0. (64)

The last condition is referred to as complementary slackness.
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A.2 Algorithm

We briefly describe an infeasible primal-dual interior-point method for solving
the pair of SDPs (61) and (22). Except for a few details, the method is the
algorithm of [46, 47], which has been implemented in the state-of-the-art SDP
solver SDPT3.

We assume that the mapping (A, B) has full rank, i.e., A(y) = 0 and
B(y) = 0 imply y = 0. We define m = l1 + l2 + · · · + lL.

Outline

The algorithm starts at initial y, z, S, Z satisfying S 0, Z 0 (for example,
y = 0, z = 0, S = I, Z = I). We repeat the following five steps.

1. Evaluate stopping criteria. Terminate if the following four conditions are
satisfied:

A(y) + S + D ≤ feas max{1, D }
B(y) + d ≤ feas max{1, d }

Aadj(Z) + Badj(z) + c ≤ feas max{1, c }
Tr(SZ) ≤ max{ abs, − rel c, y , rel(Tr(DZ) + dT z)},

where feas, abs, rel are given positive tolerances, or if a specified maxi-
mum allowable number of iterations is reached. Otherwise go to step 2.

2. Compute the scaling matrix R. The scaling matrix is a block-diagonal
matrix, and defines a congruence that jointly diagonalizes S−1 and Z:

RT S−1R = diag(λ)−1, RT ZR = diag(λ) (65)

where λ ∈ Rm
++.

3. Compute the affine scaling directions ∆ya, ∆Sa, ∆Za, ∆za, by solving
the set of linear equations

H(∆ZaS + Z∆Sa) = −diag(λ)2 (66)
∆Sa + A(∆ya) = −(A(y) + S + D) (67)

Aadj(∆Za) + Badj(∆za) = −(Aadj(Z) + Badj(z) + d) (68)
B(∆ya) = −(B(y) + d), (69)

where H is defined as

H(X) = 
1
2
(RT XR−T + R−1XT R).

4. Compute the centering-corrector steps ∆yc, ∆Zc, ∆Sc, by solving the set
of linear equations
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H(∆ZcS + Z∆Sc) = μI −H(∆Za∆Sa) (70)
∆Sc + A(∆yc) = 0 (71)

Aadj(∆Zc) + Badj(∆zc) = 0 (72)
B(∆yc) = 0. (73)

The coefficient μ is given by

μ = 
Tr(SZ)

m

Tr((S + α∆Sa)(Z + β∆Za))
Tr(SZ)

δ

,

where

α = min{1, sup{α | S + α∆Sa 0}}
β = min{1, sup{β | Z + β∆Za 0}}

and δ is an algorithm parameter. Typical values of δ are δ = 1, 2, 3.
5. Update the primal and dual variables as

y := y+α∆y, S := S+α∆S, Z := Z+β∆Z, z := z+β∆z,

where ∆y = ∆ya + ∆yc, ∆S = ∆Sa + ∆Sc, ∆Z = ∆Za + ∆Zc, ∆z =
∆za + ∆zc, and

α = min{1, 0.99 sup{α | S + α∆S 0}}
β = min{1, 0.99 sup{β | Z + β∆Z 0}}.

Go to step 1.

Discussion

Starting Point

The method is called infeasible because it does not require feasible starting
points. The initial values of y, z, S, Z must satisfy S 0 and Z 0, but
do not have to satisfy the linear equations A(y) + S + D = 0, B(y) + d = 0,
Aadj(Z) + Badj(z) + c = 0.

The update rule in Step 5 ensures that S 0, Z 0 throughout the
algorithm. If started at a feasible starting point, the iterates in the algorithm
will remain feasible. This is easily verified from the definition of the search
directions in Steps 3 and 4.

Termination

If we start at feasible points, the iterates satisfy A(y) + D + S = 0, B(y) +
d = 0, Aadj(Z) + Badj(z) + c = 0 throughout the algorithm, so the first
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three conditions are automatically satisfied. If we start at infeasible points,
these conditions ensure that at termination the primal and dual residuals
A(y)+D +S, B(y)+ d, Aadj(Z)+Badj(z)+ c are sufficiently small. A typical
value for feas is 10−8.

At each iteration, we have S 0, Z 0, and hence Tr(SZ) > 0. The
fourth condition is therefore satisfied if one of the following conditions holds:

• Tr(SZ) ≤ abs

• c, y ≤ 0 and Tr(SZ) ≤ rel| c, y |
• Tr(DZ) + dT z > 0 and Tr(SZ) ≤ rel(Tr(DZ) + dT z).

Assuming y, S, z, Z are feasible, the first of these conditions implies that the
duality gap is less than abs, and therefore

c, y − p  ≤ abs, d  − Tr(DZ) − dT z ≤ abs,

i.e., the absolute errors between the primal and dual objective values and
their optimal values p  and d  are less than abs.

If either the second or the third condition holds, then

c, y − p

|p | ≤ rel,
d − Tr(DZ) − dT z

|d | ≤ rel,

i.e., we have determined the optimal values with a relative accuracy of at least
abs. Typical values of abs, rel are abs = rel = 10−8.

Scaling Matrix

The scaling matrix R is efficiently computed as follows. We first compute the
Cholesky factorization of S and Z:

S = L1L
T
1 , Z = L2L

T
2 ,

where L1 and L2 are block-diagonal with lower-triangular diagonal blocks of
dimensions m1, . . . , mL. Next, we compute the SVD of LT

2 L1:

LT
2 L1 = U diag(λ)V T ,

where U and V are block-diagonal with block dimensions l1, . . . , lL, UT U = I,
V T V = I, and diag(λ) is a positive diagonal matrix of size m × m. Finally,
we form

R = L1V diag(λ)−1/2.

It is easily verified that RT S−1R = diag(λ)−1 and RT ZR = diag(λ).
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Search Directions

The definition of H and the definition of the affine scaling and centering-
corrector directions may be justified as follows. The central path for the
pair of primal and dual SDPs (61) and (22) is defined as the set of points
(y(μ), S(μ), Z(μ)) that satisfy S(μ) 0, Z(μ) 0, and

A(y(μ)) + S(μ) + D = 0, B(y(μ)) + d = 0
Aadj(Z(μ)) + Badj(z(μ)) + c = 0

Z(μ)S(μ) = μI,
(74)

for some μ > 0. In the limit for μ → 0, these equations reduce to the op-
timality conditions (62)–(64). Central points with parameter μ have duality
gap Tr(S(μ)Z(μ)) = mμ. Most interior-point methods can be interpreted as
damped Newton methods for solving a symmetrized version of the central-
path equations (74), for a decreasing sequence of values of μ.

A unified description of different symmetric formulations of the central
path was developed by Zhang [55], who notes that positive definite matrices
S, Z satisfy SZ = μI if and only if there exists a nonsingular matrix P such
that

1
2
(PT ZSP−T + P−1SZP ) = μI.

The algorithm outlined above uses P = R defined in Step 2 (known as the
Nesterov-Todd scaling matrix), but many other choices are possible.

Using Zhang’s parametrization, the central path equations can be ex-
pressed as

H(Z(μ)S(μ)) = μI

S(μ) + A(y(μ)) + D = 0
Aadj(Z(μ)) + Badjz + c = 0

B(y(μ)) + d = 0.

The Newton directions at some y, Z 0, S 0 are obtained by linearizing
these equations and solving the linearized equations

H(∆ZS + Z∆S) = μI −H(ZS) (75)
∆S + A(∆y) = −(A(y) + S + D) (76)

Aadj(∆Z) + Badj(∆z) = −(Aadj(Z) + Badj(z) + c) (77)
B(∆y) = −(B(y) + d). (78)

We can now interpret and justify the search directions defined in Steps 3,
4, and 5 as Newton directions. We first note that, if we choose R as in Step 2,

H(ZS) =
1
2
(RT ZSR−T + R−1SZR) = diag(λ)2,
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so the Newton equations (75)–(78) reduce to

H(∆ZS + Z∆S) = μI − diag(λ)2 (79)
∆S + A(∆y) = −(A(y) + S + D) (80)

Aadj(∆Z) + Badj(∆z) = −(Aadj(Z) + Badj(z) + c) (81)
B(∆y) = −(B(y) + d). (82)

Comparing this system with the sets of equations (66)–(69) and (70)–(73),
we see that, except for the term H(∆Za∆Sa), these equations are identical
to the Newton equations. More precisely, if we delete the term H(∆Za∆Sa),
the solution (79)–(82) is given by ∆y = ∆ya + ∆yc, ∆S = ∆Sa + ∆Sc,
∆Z = ∆Za + ∆Zc, ∆z = ∆za + ∆zc.

A distinguishing feature of the predictor-corrector method is that the New-
ton equations are solved in two steps, by solving the two sets of linear equa-
tions (66)–(69) and (70)–(73) separately, instead of solving a single set of
equations (79)–(82). This strategy has proven to be very successful in primal-
dual methods for linear programming [37], and offers two advantages. The
first, and most important, advantage is that it allows us to select the value
of μ adaptively. In the algorithm described above, this idea is implemented
as follows. In Step 3 we compute the affine scaling direction, i.e., the limit of
the Newton direction for μ → 0. In Step 4, we first assess the ‘quality’ of the
affine direction as a search direction, by computing the ratio

η = 
Tr((S + α∆Sa)(Z + β∆Za))

Tr(SZ)
,

where we take α = 1, β = 1 if possible, and otherwise take the maximum α
and β that satisfy S + α∆Sa 0, resp. Z + β∆Za 0. The ratio η gives the
reduction in Tr(SZ) that we can achieve by using the affine scaling direction.
If the ratio is small, we assume the affine scaling direction is a good search
direction and we choose a small value of μ; if the ratio η is large, we choose
a larger value of μ. Choosing μ = ηδ Tr(SZ)/m means that we select the
Newton step for central points y(μ), S(μ), Z(μ), with

Tr(S(μ)Z(μ) = ηδ Tr(SZ).

The second advantage of solving two linear systems is that we can add a
higher-order correction term when linearizing the equation H(Z(μ)S(μ)) =
μI. In Newton’s method we linearize this equation by expanding

H((Z + ∆Z)(S + ∆S)) = H(ZS) + H(∆ZS + Z∆S) + H(∆Z∆S)

and omitting the second-order term, which yields a linear equation

H(ZS) + H(Z∆S + ∆ZS) = μI.

The combined directions, ∆Z = ∆Za + ∆Zc, ∆S = ∆Sa + ∆Sc, used in the
predictor-corrector method, on the other hand, satisfy
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H(ZS) + H((∆Za + ∆Zc)S + Z(∆Sa + ∆Sc)S) + H(∆Za∆Sa) = μI,

which includes part of the second-order term, and can therefore be expected
to be more accurate.

We conclude by pointing out that the two sets of linear equations (66)–
(69) and (70)–(73) only differ in the righthand side, so the cost of solving both
systems is about the same as the cost of solving one system.

Step Size

After computing the search directions, we update the variables in step 5. We
use different step sizes α and β for the primal and dual variables. If possible,
we make a full step (α = 1, β = 1). If this is unacceptable because it results
in values of S and Z that are not positive definite, we decrease α and/or β,
and make a step equal to a fraction 0.99 of the maximum steps that satisfy
S + α∆S 0 and Z + β∆Z 0.

A.3 Solving the Newton Equations

When applied to an SDP that is primal and dual feasible, the predictor-
corrector method usually converges in 10–50 iterations. As a rule of thumb,
the overall cost of solving the SDP and its dual is therefore equal to the cost
of solving 10–50 linear equations of the form

H(∆ZS + Z∆S) = D1 (83)
∆S + A(∆y) = D2 (84)

Aadj(∆Z) + Badj(∆z) = D3 (85)
B(∆y) = D4. (86)

It can be shown that these equations have a unique solution if (A, B) has full
rank [46, p.777].

The Newton equations can be simplified by eliminating ∆S. Using the
definition of R in (65), we first note that equation (83) can be written as

(RT ∆ZR + R−1∆SR−T )diag(λ)+diag(λ)(R−1∆SR−T + RT ∆ZR) = 2D1.

The general solution of the homogeneous equation (D1 = 0) is ∆S =
−RRT ∆ZRRT . A particular solution is ∆Z = 0,

∆S = 2R(D1 ◦ G)RT

where Gij = 1/(λi + λj). All solutions of (83) can therefore be written as

∆S = −RRT ∆ZRRT + 2R(D1 ◦ G)RT .

Substituting in (84) gives an equivalent set of linear equations
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−W∆ZW + A(∆y) = D (87)
Aadj(∆Z) + Badj(∆z) = D3 (88)

B(∆y) = D4 (89)

where W = RRT , D = D2 − 2R(D1 ◦ G)RT .
A general-purpose SDP solver like SDPT3 solves (87)–(89) by eliminating

∆Z from the first equation, which yields

Aadj(W−1A(∆y)W−1) + Badj(∆z) = D3 + Aadj(W−1DW−1) (90)
B(∆y) = D4, (91)

and solving for ∆y and ∆z.

B Derivation of (50) and (52)

B.1 Expression for H

Let H ∈ Sn+1 be defined as

Hij = Tr(FiWFjW ), i, j = 1 . . . , n + 1,

where

Fi = Xi ei

eT
i 0 , i = 1, . . . , n, Fn+1 = 0 0

0 2 ,

and Xi ∈ Sn. To simplify the expressions for H we first note that if we
partition W as

W = W11 W12

WT
12 W22

,

with W11 ∈ Sn, W12 ∈ Rn, and W22 ∈ R, then

WFi =
W11Xi + W12e

T
i W11ei

WT
12Xi + W22e

T
i WT

12ei
, i = 1, . . . , n, WFn+1 =

0 2W12

0 2W22
.

The leading n × n block of H is given by

Hij = Tr((W11Xi + W12e
T
i )(W11Xj + W12e

T
j )) + eT

i W11(XjW12 + ejW22)

+ (WT
12Xi + W22e

T
i )W11ej + eT

i W12W
T
12ej

= Tr(W11XiW11Xj) + 2eT
i W11XjW12 + 2W T

12XiW11ej + 2W22e
T
i W11ej

+ 2eT
i W12W

T
12ej

for i, j = 1, . . . , n. The last column is given by

Hi,n+1 = 2(W T
12Xi + W22e

T
i )W12 + 2eT

i W12W22

= 2W T
12XiW12 + 4(eT

i W12)W22
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for i = 1, . . . , n, and
Hn+1,n+1 = 4W 2

22.

In summary,

H = 
H1 0
0 0 + 2 

W11

WT
12

H2 0
 
+ 2 

HT
2

0 W11 W12

+ 2W22
W11 W12

WT
12 W22

+ 2 W12

W22

 
WT

12 W22

where

(H1)ij = Tr(XiW11XjW11), i, j = 1, . . . , n

H2 = X1W12 X2W12 · · · XnW12

 
.

This proves (50).

B.2 Expression for G

Let G ∈ R(n+1)×p be defined by

Gij = Tr(FiMj), i = 1, . . . , n, j = 1, . . . , p.

We will partition Mj as

Mj = 
Mj,11 Mj,12

MT
j,12 Mj,22

,

with Mj,11 ∈ Sn. We have

Gij = Tr(XiMj,11) + 2eT
i Mj,12, i = 1, . . . , n, Gij = 2Mj,22.

From this it is easy to see that

G = 2 
Y1B Y2B · · · YpB

0 0 · · · 0 + 2 
M1,12 M2,12 · · · Mp,12

M1,22 M2,22 · · · Mp,22
,

with Yj is the solution of AYj + YjA
T + Mj,11 = 0.

C Derivation of (53) and (54)

Let X(v) be the solution of the Lyapunov equation

AX(v) + X(v)AT + vBT + BvT = 0,

i.e., X(v) = n
i=1 viXi. The matrices H1 and H2 satisfy

vT H1v = Tr(X(v)W11X(v)W11, H2v = X(v)W12

for all v.



Interior-Point Algorithms for Semidefinite Programming Problems 231

C.1 Expression for H1

First suppose A is diagonal, A = diag(λ), with λ ∈ Cn. Define Σ ∈ Hn×n as

Σij =
1

λi + λ̄j
, i, j = 1, . . . , n.

The solution of diag(λ)Y + Y diag(λ)∗ + Gw∗ + wG∗ = 0, where G ∈ Cn, is
given by

Y (w) = −(Gw∗ + wG∗) ◦ Σ. (92)

Therefore, for general S ∈ H(n+1)×(n+1),

Tr(Y (w)SY (w)S) = Tr(((Gw∗ + wG∗) ◦ Σ)S((Gw∗ + wG∗) ◦ Σ)S)
= Tr(DGΣD∗

wSDGΣD∗
wS) + Tr(DGΣD∗

wSDwΣD∗
GS)

+ Tr(DwΣD∗
GSDGΣD∗

wS) + Tr(DwΣD∗
GSDwΣD∗

GS)

where Dx = diag(x). Now we use the property that for A, B ∈ Cn×n,

Tr(DxADyB) =
n

i=1

n

j=1

xiAijyjBji = xT (A ◦ BT )y.

This gives

Tr(Y (w)SY (w)S)
= w∗((SDGΣ) ◦ (SDGΣ)T )w̄ + w∗(S ◦ (ΣD∗

GSDGΣ)T )w
+ wT ((ΣD∗

GSDGΣ) ◦ ST )w̄ + wT ((ΣD∗
GS) ◦ (ΣD∗

GS)T )w
= 2 Re(wT ((ΣD∗

GS) ◦ (ΣD∗
GS)T )w) + 2 Re(w∗(S ◦ (ΣD∗

GSDGΣ)T )w). (93)

Now suppose A is not diagonal, but diagonalizable, with AV = V diag(λ).
The solution of AX + XAT + BvT + vBT = 0 is given by

X(v) = V Y (V −1v)V ∗

where Y (w) is the solution of

diag(λ)Y + Y diag(λ)∗ + V −1Bw∗ + wBT V −∗ = 0.

Therefore, for W11 ∈ Sn+1,

Tr(X(v)W11X(v)W11) = Tr(Y (V −1v)V ∗W11V Y (V −1v)V ∗W11V ),

so we can apply (93) with w = V −1v, S = V ∗W11V , G = V −1B, and

Tr(X(v)W11X(v)W11)
= 2 Re(vT V −T ((Σ diag(V −1B)∗V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V )T )V −1v)

+ 2 Re(vT V −∗(V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V diag(V −1B)Σ)T )V −1v).

In conclusion,

H1 = 2 Re(V −T (Σ diag(V −1B)∗V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V )T V −1)

+ 2 Re(V −∗ (V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V diag(V −1B)Σ)T V −1).
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C.2 Expression for H2

With Y (w) defined as in (92), and s ∈ Cn,

Y (w)s = −((Gw∗ + wG∗) ◦ Σ)s
= −DGΣD∗

ws − DwΣD∗
Gs

= −DGΣDs w̄ − DwΣD∗
Gs

= −DGΣDsw̄ − diag(ΣD∗
Gs)w.

To determine H2 we apply this expression with s = V ∗W12, G = V −1B, and
w = V −1v:

X(v)W12 = V Y (V −1v)V ∗W12

= −V diag(V −1B)Σ diag(V ∗W12)V̄ −1v

− V diag(Σ diag(V −1B)∗V ∗W12)V −1v.

Therefore,

H2 = −V diag(V −1B)Σ diag(V ∗W12)V̄ −1−V diag(Σ diag(V −1B)∗V ∗W12)V −1.

D Non-controllable (A, B)

In this appendix we discuss how the assumption that (Ak, Bk) is control-
lable can be relaxed to (Ak, Bk) stabilizable, provided the range of Qk is in
the controllable subspace of (Ak, Bk). For simplicity we explain the idea for
problems with one constraint, and omit the subscripts k, as in (29). We define
M(x) = p

i=1 xiMi−Ni, and assume the problem is strictly (primal) feasible.
Let T be a unitary state transformation such that

Ã =
Ã1 Ã12

0 Ã2
= T T AT, B̃ = B̃1

0
= BT

where (Ã1, B̃1) is controllable and Ã2 is Hurwitz. Note that

T T 0
0 I

AT P + PA PB
BT P 0

T 0
0 I

=
ÃT P̃ + P̃ Ã P̃ B̃

B̃T P̃ 0

where P̃ = T T PT . Let

P̃ = P̃1 P̃12

P̃T
12 P̃2

, Q̃ = Q̃1 Q̃12

Q̃T
12 Q̃2

= TQT T

and let

M =

 M̃1 M̃12 M̃13

M̃T
12 M̃2 M̃23

M̃T
13 M̃T

23 M̃3

 = T T 0
0 I

M(x) T 0
0 I

.
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Then it holds that (29) with strict inequality is equivalent to

minimize qT x + Tr( ̃Q1P̃ ) + 2Tr(Q̃12P12) + Tr(Q̃2P̃2)

subject to

 P̃1Ã1 + ÃT
1 P̃1 P̃1Ã12 + P̃12Ã2 + ÃT

1 P̃12 P̃1B̃1

∗ P̃T
12Ã12 + P̃2Ã2 + ÃT

12P̃12 + ÃT
2 P̃2 P̃T

12B̃1

∗ ∗ 0


+

 M̃1 M̃12 M̃13

M̃T
12 M̃2 M̃23

M̃T
13 M̃T

23 M̃3

 0.

(94)

By the Schur complement formula the above constraint is equivalent to

P̃1Ã1 + ÃT
1 P̃1 P̃1B̃1

B̃T
1 P̃1 0

+
M̃1 M̃13

M̃T
13 M̃3

0

and

P̃T
12Ã12 + P̃2Ã2 + ÃT

12P̃12 + ÃT
2 P̃2 + M̃2

− P̃1Ã12 + P̃12Ã2 + ÃT
1 P̃12 + M̃12

BT
1 P̃12 + M̃T

23

T
P̃1Ã1 + ÃT

1 P̃1 + M̃1 P̃1B̃1 + M̃13

B̃T
1 P̃1 + M̃T

13 M̃3

−1

× P̃1Ã12 + P̃12Ã2 + ÃT
1 P̃12 + M̃12

B̃T
1 P̃12 + M̃T

23

0.

Now by our assumption that the range of Q is in the controllable subspace
of (A, B), we have Q̃2 = 0 and Q̃12 = 0. Then P̃12 and P̃2 only appear
in the latter matrix inequality. This shows that it is possible to partition
the optimization problem into one problem of the original form for which
(Ã1, B̃1) is controllable involving the variables x and P̃1, and a feasibility
problem involving P̃12 and P̃2. Notice that feasible P̃12 and P̃2 can be found
by solving a Lyapunov equation for P̃2. Hence all results presented in this
article extend to the case when (A, B) is stabilizable. Notice however that
there does not exist strictly dual feasible Z if (A, B) is not controllable.

E Linear Independence

In this appendix, we relax the assumption that the mapping (6) has full rank.

E.1 Change of Variables

Consider the constraint in (29) which can be written as

−A(P, x) = 
PA + AT P PB

BT P 0 +
p

i=1

xi
M1,i M12,i

MT
12,i M2,i

N1 N12

NT
12 N2

.



234 L. Vandenberghe et al.

Let Pi solve
AT Pi + PiA = M1,i, i = 1, . . . , p

and let M̃12,i = M12,i − PiB, i = 1, . . . , p. Then with

P̄ = P −
p

i=1

xiPi

it holds that the above LMI is satisfied for P = P T and some x if and only if
P̄ and x satisfy

−Ã(P̄ , x) = P̄A + AT P̄ P̄B
BT P̄ 0 +

p

i=1

xiM̃i N

where

M̃i =
0 M̃12,i

M̃T
12,i M2,i

.

Hence it is no loss in generality to assume that the LMI constraint is of a
form where the M1,i-entries are zero. The objective function is transformed
to q̃T x+TrQP̄ , where q̃i = qi +TrQPi. We remark that this structure of the
constraint is inherent in certain applications such as IQCs as they are defined
in the Matlab IQC-toolbox. Moreover, notice that we could have defined the
change of variables slightly differently using an affine change of variables such
that N would also have had a zero 1,1-block. However, the notation would
have been more messy, and it would also complicate the presentation in what
follows.

E.2 Linear Independence

The full rank property of A(P, x) is needed for uniqueness of the solution of
the Newton equations. In this subsection we show that a sufficient and more
easily verified condition is that A is Hurwitz and M̃i, i = 1, . . . , p, are linearly
independent. We make use of the specific structure developed above to show
that A(P, x) = 0 implies (P, x) = 0. By the change of variables in the previous
subsection, A(P, x) = 0 is equivalent to Ã(P̄ , x) = 0. In the 1,1-position this
equation reads

P̄A + AT P̄ = 0

and since A is Hurwitz it follows that P̄ = 0. This implies that
p

i=1

xiM̃i = 0

and since M̃i, i = 1, . . . , p, are linearly independent it follows that x = 0. By
the definition of the change of variables it is now true that (P, x) = 0. We
remark that the above proof easily extends to the general problem formulation
in the introduction.
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E.3 Linear Dependence

In case M̃i, i = 1, . . . , p, are linearly dependent, then either the objective
function is not bounded from below, or the problem can be reduced to an
equivalent problem with fewer variables for which M̃i, i = 1, . . . , p, are linearly
independent. To this end define

M̃ = svec(M̃1) svec(M̃2) · · · svec(M̃p) .

Apply a singular value decomposition to M̃ :

M̃ = U Σ1 0 V T
1

V T
2

,

where Σ1 has full column rank. Define a change of variables for x via

x̄ = x̄1

x̄2
= V T

1

V T
2

x

Now clearly M̃x = M̄x̄1, where M̄ = UΣ1. Therefore we can rewrite the
constraint in the variables x̄1 and with a set of linearly independent matrices,
M̄i, given by the inverse symmetric vectorization of the columns of M̄ . The
part of the primal objective function involving x can be written as as

cT x = cT V1 V2
V T

1

V T
2

x = c̄T
1 x̄1 + c̄T

2 x̄2

where c̄1 = V T
1 c, c̄2 = V T

2 c. Since x̄2 is not present in the constraint the
objective function is bounded below only if

c̄2 = V T
2 c = 0

Hence, this is a necessary condition for the optimization problem to have a
solution. Therefore either the problem is not bounded below or there is an
equivalent problem involving fewer variables for which M̄i, i = 1, . . . , p are
linearly independent.

The cost of the above operation is O(n3), where we assume that p is O(n).
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36. J. Löfberg (2002). Yalmip. Yet another LMI parser. University of Linköping,
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Optimization problems over several cones of non-negative polynomials are
described; we focus on linear constraints on the coefficients that represent in-
terpolation constraints. For these problems, the complexity of solving the dual
formulation is shown to be almost independent of the number of constraints,
provided that an appropriate preprocessing has been performed. These results
are also extended to non-negative matrix polynomials and to interpolation
constraints on the derivatives.

1 Introduction

Non-negative polynomials are natural objects to model various engineering
problems. Among the most representative applications are the filter design
problems [1, 2, 5]. Recently, self-concordant barriers for several cones of non-
negative polynomials have been proposed in the literature [12]. They are usu-
ally based on results dating back to the beginning of the 20 th century [10].
Indeed, these cones and their properties were extensively studied by several
well-known mathematicians (Fejér, Riesz, Toeplitz, Markov, . . . ), as testified
by their correspondences and papers.

Nowadays, convex optimization techniques allow us to efficiently treat
these cones, which are parametrized by semidefinite matrices [13, 16]. Al-
though general semidefinite programming solvers could be used to solve the
associated problems, the inherent structure of these polynomial problems must
be exploited to derive much more efficient algorithms [1, 6, 7]. They are based
on the matrix structure that shows up in the dual problem. In particular,
solving the standard conic formulation on cones of non-negative polynomials
using the dual matrix structure has been studied in [6].

In this chapter, we consider particular conic formulations, of which the
linear constraints are interpolations constraints. Indeed, natural linear con-
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© Springer-Verlag Berlin Heidelberg 2005
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straints on the coefficients of a polynomial are obtained as interpolation con-
ditions on the polynomial or its derivatives; each of them has an unambigu-
ous interpretation. We show that the associated optimization problems can
be solved very efficiently in a number of flops almost independent of the poly-
nomial degree. Moreover, these formulations have some interesting properties
that are worth pointing out.

In Section 2, we remind the reader of the characterization of non-negative
scalar polynomials using the cone of positive semidefinite matrices. This step
is of paramount importance before formulating the conic convex problems of
interest, i.e., minimizing a linear function of the coefficients of a non-negative
polynomial subject to interpolation constraints, see Section 3. Under mild as-
sumptions, these problems can be solved very efficiently as described in Section
4. Although non-negative matrix polynomials can also be characterized using
positive semidefinite matrices, closed formulas and nice interpretations are
more difficult to obtain. Section 5 shows how to extend our previous results
to this new setting. In Section 6, interpolation constraints on the derivatives
are considered. Although we could have started this paper with the general set-
ting (non-negative matrix polynomials with general interpolation constraints),
this general approach and the associated notation would have shadowed most
of the basic ideas underlying our results.

Notation

The optimization problems considered hereafter are assumed to be stated
in terms of appropriate scalar products defined over the space of complex
matrices. For any couple of matrices X and Y , let us set their Frobenius
scalar product as follows

X, Y F 
.= Re(TraceXY ∗) ≡ Re

m

i=1

n

j=1

xi,jyi,j , (1)

where {xi,j}i,j and {yi,j}i,j are the scalar entries of the matrices X and Y ,
respectively. Both matrices must have the same dimension m×n, but they are
not necessarily square. The above definition can thus be applied to vectors.
Since this scalar product induces the Frobenius norm, i.e. X 2

F = X, X F ,
it is called the Frobenius scalar product. It also follows from the definition
that

X, Y F = Re(X), Re(Y ) + Im(X), Im(Y )

where ·, · stands for the standard scalar product of matrices, i.e. X, Y =
TraceXY ∗. Positive semidefiniteness of a matrix Y is denoted by Y 0. The
sets of positive semidefinite real symmetric and complex Hermitian matrices
(of order n) are denoted by S+

n and H+
n , respectively. The column vector

πn(s) = 1 s · · · sn T
,
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with s = x or z, is often used to represent a polynomial by its coefficients. The
(block) diagonal matrix defined by the (block) vector y is denoted by diag(y).
The complex unit is written as i, i.e. i2 = −1. The elements of the canonical
basis are written as {ek}k, i.e. In = e0 . . . en−1

 
is the identity matrix of size

n. 
n
k

is the binomial coefficient n!
(n−k)!k! .

2 Non-negative Polynomials

Let us summarize a few facts about non-negative polynomials. First of all,
the characterization of such polynomials depends on the curve of the complex
plane on which they are defined. These curves are typically the real axis R,
the unit circle eiR or the imaginary axis iR. Optimization problems on the
latter curve are not considered in what follows; they can be reduced in a
straightforward manner to optimization problems on the real line. The set of
non-negative polynomials on any of these three curves is clearly a convex cone
K, i.e.

K + K ⊆ K, αK ⊆ K, ∀α ≥ 0

In this article, this special structure is used to formulate various optimiza-
tion problems in conic form, based on interpolation constraints. Let us now
examine the cones of interest and their duals.

2.1 Real Line

Denote the cone of polynomials (of degree 2n) non-negative on the whole real
line R by

KR = {p ∈ R2n+1 : p(x) =
2n

k=0

pkxk ≥ 0, ∀x ∈ R}

and define the inner product between two real vectors p = p0, . . . , p2n
T

and

q = q0, . . . , q2n
T by p, q R

.= 2n
k=0 pkqk = p, q . As a direct consequence

of Markov-Lukács Theorem , the cone KR can be characterized as follows [12].

Theorem 1. A polynomial p(x) = 2n
k=0 pkxk is non-negative on the real

axis if and only if there exists a positive semidefinite symmetric matrix Y =
{yij}n

i,j=0 such that (yij = 0 for i or j outside their definition range)

pk =
i+j=k

yij , for k = 0, . . . , 2n. (2)

Remark 1. Identities (2) can be rewritten as p(x) = Y πn(x), πn(x) .
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Remember that the dual cone KR is defined by

KR = {s ∈ R2n+1 : p, s R ≥ 0, ∀p ∈ KR}.

Let H(s) be the Hankel matrix defined by the vector s ∈ R2n+1, i.e.,

H(s) =


s0 s1 · · · sn

s1 ... ...
...

... ... ... s2n−1

sn · · · s2n−1 s2n

 . (3)

Then the cone dual to KR is characterized by H(s) 0, i.e.,

KR = {s ∈ R2n+1 : H(s) 0}.

The operator dual to H(·) allows us to write (2) as p = H∗(Y ), which means
that

pk = Y, H(ek) , k = 0, . . . , 2n.

Let us now interpret the primal and dual objects. Given p ∈ intKR, there
exists a positive definite matrix Y such that p = H∗(Y ) and such that its
inverse is a Hankel matrix, say Y = H(s)−1 [12]. Remember that any positive
definite Hankel matrix H(s) admits a Vandermonde factorization [3]

Y −1 = H(s) = V diag({pi}n
i=0)

−1V T (4)

where pi > 0, ∀i and V is a nonsingular Vandermonde matrix defined by the
nodes {xi}n

i=0, i.e.

V =


1 . . . 1
x0 . . . xn

...
...

xn
0 . . . xn

n

 . (5)

Let LT be the inverse of V , i.e. LT V = In+1. It is well known that the rows
of LT are the coefficients of the Lagrange polynomials {li(x)}n

i=0 associated
with the distinct points {xi}n

i=0 :

li(xj) = Lei, πn(xj) = δij , 0 ≤ i, j ≤ n,

where δij is the Kronecker delta. Therefore, we obtain an explicit expression
of the positive definite matrix Y in terms of the Lagrange polynomials

Y = L diag({pi}n
i=0)L

T . (6)

This representation is equivalent to the decomposition of p(x) as a weighted
sum of n + 1 squared Lagrange polynomials
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p(x) =
n

i=0

p(xi)(li(x))2.

To see this, we plug expression (6) into the identity p(x) = Y πn(x), πn(x) ,
which can subsequently be rewritten as

p(x) = L diag({pi}n+1
i=1 )LT πn(x), πn(x) =

n

i=0

pi Leie
T
i LT , πn(x)πn(x)T

=
n

i=0

pi( Lei, πn(x) )2 =
n

i=0

pi(li(x))2

As {li(x)}n
i=0 are the Lagrange polynomials associated with the points {xi}n

i=0,
it is straightforward to check that pi = p(xi), ∀i.

2.2 Unit Circle

On the unit circle, the non-negative polynomials of interest are the trigono-
metric polynomials. Remember that a trigonometric polynomial of degree n
has the form

p(θ) =
n

k=0

[ak cos(kθ) + bk sin(kθ)], θ ∈ [0, 2π]. (7)

where {ak}n
k=0 and {bk}n

k=0 are two sets of real coefficients. Without loss of
generality, we can assume that b0 = 0.

If we define the complex coefficients {pk}n
k=0 as

pk = ak + ibk, k = 0, . . . , n,

the pseudo-polynomial

p(z) = p, πn(z) F = Re(
n

k=0

pkz−k), |z| = 1, (8)

evaluated on the unit circle is equivalent to trigonometric polynomial (7).
Therefore, we can use either (7) or (8) to represent the same mathematical
object.

Denote the cone of trigonometric polynomials (of degree n) non-negative
on the unit circle by

KC = {p ∈ R × Cn : p, πn(z) F ≥ 0, z = eiθ, θ ∈ [0, 2π)}.

and define the inner product between two vectors p = p0, . . . , pn
T ∈ R×Cn

and q = q0, . . . , qn
T ∈ R×Cn by p, q C

.= p, q F . As a direct consequence
of Fejér-Riesz Theorem , see e.g., [15, Part 6, Problems 40 and 41], this cone
can be characterized as follows [12].
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Theorem 2. A trigonometric polynomial p(z) = p, πn(z) F is non-negative
on the unit circle if and only if there exists a positive semidefinite Hermitian
matrix Y = {yi,j}n

i,j=0 such that (yi,j = 0 for i or j outside their definition
range)

pk = i−j=0 yi,j , k = 0
2 i−j=k yi,j , k = 1, . . . , n

(9)

Remark 2. As before, identities (9) can be rewritten using the vector πn(z),
i.e. p(z) = Y πn(z), πn(z) .

By definition, the cone dual to KC is the set of vectors s ∈ R×Cn satisfying
the inequalities

p, s C ≥ 0, ∀p ∈ KC.

Let T (s) be the Hermitian Toeplitz matrix defined by the vector s ∈ R×Cn,
i.e.,

T (s) =


s0 s̄1 · · · s̄n

s1
. . . . . .

...
...

. . . . . . s̄1

sn
. . . s1 s0

 . (10)

Then the cone dual to KC is characterized by T (s) 0, i.e.

KC = {s ∈ R × Cn : T (s) 0}.
The operator dual to T (·) allows us to write (9) as p = T ∗(Y ), which means
that

pk = Y, Tk , k = 0, . . . , n

where the matrices {Tk}n
k=0 are defined by the identity T (s) = 1

2
n
k=0(Tksk+

T T
k sk), ∀s ∈ R × Cn.

As before, a better understanding of the primal and dual objects is ob-
tained by considering the decomposition of p(z) ∈ intKC as a weighted sum
of squared Lagrange polynomials.

3 The Optimization Problem

The problem of optimizing over the cone of non-negative polynomials, subject
to linear constraints on the coefficients of these polynomials, has already been
studied by the authors in a wider framework [6]. Remember that this class of
problems is exactly the standard conic formulation introduced in [13]. In this
section, we now focus on the particular case of scalar polynomials constrained
by interpolation constraints. The consequent structures of the primal and dual
problems lead to efficient algorithms for solving such problems.
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3.1 Real Line

Several important optimization problems on the real line can be formulated
as the following primal problem

min c, p
s. t. ai, p = bi, i = 0, . . . , k − 1,

p ∈ KR,
(11)

where the matrix of constraints A = {ai}k−1
i=0 ∈ Rk×(2n+1) is a full row rank

matrix. Clearly, the constraints Ap = b are linear constraints on the coef-
ficients of the polynomial p(x) = 2n

i=0 pix
i whereas the constraint p ∈ KR

is semi-infinite. Note that the number k of linear constraints must satisfy
1 ≤ k ≤ 2n + 1. Moreover, if k = 2n + 1, (11) is clearly not an optimization
problem.

From a computational point of view, the problem dual to (11) has a con-
siderable advantage over its primal counterpart. It reads as follows

max b, y

s. t. s + k−1
i=0 aiyi = c,

s ∈ KR.

(12)

Since its constraints are equivalent to H(c − AT y) 0, the Hankel structure
allows us to solve this dual problem efficiently [6].

Using Theorem 1, the primal optimization problem (11) can also be recast
as a semidefinite programming problem :

min H(c), Y
s. t. H(ai), Y = bi, i = 0, . . . , k − 1,

Y ∈ Sn+1
+ .

Let us now focus on interpolation constraints. Clearly, an interpolation
constraint on a polynomial p is a linear constraint :

p(xi) = p, π2n(xi) = bi.

Assume that all linear constraints of (11) are interpolation constraints, i.e.

ai, p
.= π2n(xi), p = bi, i = 0, . . . , k − 1. (13)

Then the dual problem (12) is equivalent to

max b, y

s. t. H(c) − k−1
i=0 yiH(π2n(xi)) 0.

As the Hankel structure satisfies

H(π2n(x)) = πn(x)πn(x)T , ∀x ∈ R,
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we finally obtain the following formulation

max b, y
s. t. H(c) − V diag(y)V T 0,

(14)

where the Vandermonde matrix V is defined by the nodes {x0, . . . , xk−1}, i.e.

V =


1 . . . 1
x0 . . . xk−1

...
...

xn
0 . . . xn

k−1

 .

Assumption 1. The components of vector b are strictly positive.

Remark 3. Since we work with non-negative polynomials, this assumption is
not restrictive. If there exists an integer i such that bi = 0, one can factorize
p(x) as p(x) = p̃(x)(x − xi)2 and rewrite the optimization problem using the
polynomial p̃(x).

3.2 Unit Circle

Several important optimization problems on the unit circle can be formulated
as the following primal problem

min c, p C
s. t. ai, p C = bi, i = 0, . . . , k − 1,

p ∈ KC,
(15)

with linearly independent constraints. From a computational point of view,
the problem dual to (15) has again a considerable advantage over its primal
counterpart. This dual problem reads as follows

max b, y

s. t. s + k−1
i=0 yiai = c,

s ∈ KC.

(16)

As in the real line setting, one can use the Toeplitz structure of its constraints
to get fast algorithms. Using Theorem 2, the primal optimization problem
(15) can be reformulated as the semidefinite programming problem

min T (c), Y
s. t. T (ai), Y = bi, i = 0, . . . , k − 1,

Y ∈ Hn+1
+ .

.

An interpolation constraint on the trigonometric polynomial p corresponds
to
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p(θi) =
n

k=0

[ak cos(kθi) + bk sin(kθi)] = bi ≥ 0, θi ∈ [0, 2π],

and is equivalent to the linear constraint

ai, p
.= p(zi) = p, πn(zi) = bi, zi = eiθi. (17)

Note that the identity

T (π2n(z)) = πn(z)πn(z)∗, ∀z ∈ T,

holds for the Toeplitz structure. If all linear constraints of (15) are interpola-
tion constraints, the dual can therefore be written as

max b, y
s. t. T (c) − V diag(y)V ∗ 0,

(18)

where the Vandermonde matrix V is defined by the points {z0, . . . , zk−1}, i.e.

V =


1 . . . 1
z0 . . . zk−1

...
...

zn
0 . . . zn

k−1

 .

As before, we make the next non-restrictive assumption.

Assumption 2. The components of vector b are strictly positive.

4 Solving the Optimization Problem

In this section, we focus on problems with interpolation conditions, see (13)
and (17). We discuss the interpretation of the so-called “strict feasibility”
assumption in our context of polynomials. Then we give the explicit solution
of three particular optimization problems (one interpolation constraint, two
interpolation constraints, property of the objective function). In the general
setting, we show that solving the dual problem can be done very efficiently,
provided that strict feasibility holds.

4.1 Strict Feasibility

The standard assumption on the primal and dual problems is the so-called
“strict feasibility” assumption. This assumption is necessary in order to prop-
erly define the primal and dual central-paths and thus to solve our pair of
primal and dual problems [11]. Moreover, it ensures that the optimal values
of both problems coincide, which is an important property to solve our class
of problem efficiently.
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Assumption 3 (Strict feasibility). There exist points p̃ ∈ intK, s̃ ∈ intK
and ỹ ∈ Rk that satisfy the following linear systems

ai, p̃ = bi, 0 ≤ i ≤ k − 1,

ŝ +
k−1

i=0

aiỹi = c.

As mentioned in Table 1, the interiors of the primal and dual cones are
characterized in terms of polynomials and structured matrices, respectively.
However, our particular problem classes allow us to further discuss the inter-
pretation of the previous assumption. More specifically, we shall see that some
information about strict feasibility of our problems is known in advance.

Real Line

First, we analyze strict feasibility of the primal constraints. If the number of
interpolation points is less or equal to n + 1, i.e. k ≤ n + 1, it is clear that
there exists a strictly positive polynomial p̃ such that Ap̃ = b. Assume that
k = n + 1 and let {li(x)}n

i=0 be the set of Lagrange polynomials of degree
n associated with the interpolation points. By definition, these polynomials
satisfy the identities

li(xj) = δij , 0 ≤ i, j ≤ n,

where δij is the well-known Kronecker delta. The polynomial

p̃(x) =
n

i=0

bi(li(x))2

clearly satisfies all our interpolation constraints and belongs to intKR. For
the case k < n + 1, we can add n + 1 − k “extra” interpolation constraints
and check that the (original) primal problem is always strictly feasible. If the
number of interpolation points is strictly greater that n + 1, we cannot say
anything in advance about primal strict feasibility.

Let us now analyze strict feasibility of the dual constraints. Because of the
structure of our interpolation constraints, the interior of the dual space is the
set of vectors s = c − AT y such that

Table 1. Interiors of primal and dual cones

K = KR K = KC
p ∈ intK p(t) > 0, ∀t ∈ R and p2n > 0 p(z) > 0,∀|z| = 1

s ∈ intK H(s) is positive definite T (s) is positive definite
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H(s) = H(c − AT y) = H(c) −
k−1

i=0

yiπn(xi)πn(xi)T 0.

If k ≥ n+1, we conclude from this inequality that there always exists s = c−
AT y ∈ intKR. Another simple situation arises when c ∈ intKR, i.e H(c) 0.
Then the dual problem is always strictly feasible. For instance, this situation
occurs when minimizing the integral of the polynomial p(x) on a finite interval
I ⊆ (−∞, +∞) :

c, p =
I

p(x)dx =
2n

i=0

pi(
I

xidx),

subject to interpolation constraints. This situation is frequent in practice and
one easily checks that c ∈ intKR in this case. Indeed, the inner product c, p
is positive for all non-zero p ∈ KR.

Remark 4. If the dual problem is strictly feasible, one can always reformulate
the problem in order to ensure that c ∈ intKR.

We have summarized our discussion on Figure 1. Let us point out a re-
markable property of our class of problems, which is clearly exhibited on this
figure. If the number of constraints is equal to n + 1, both primal and dual
problems are strictly feasible and this property is independent of the data.
Except for this particular case, there usually exists a trade-off between strict
primal and dual feasibility.

Unit Circle

Using exactly the same argument, one can show that the primal problem is
always strictly feasible if the number of interpolation constraints is less or
equal to n + 1. As in the real line, there exists a trade-off between strict

✲
1 n+1 2n+1

Generic strict primal feasibility

Generic strict dual feasibility

Strict dual feasibility if c ∈ intK

Fig. 1. Generic strict feasibility as a function of the number of interpolation con-
straints
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feasibility of the primal and dual constraints unless k = n + 1. If c ∈ intKC,
i.e T (c) 0, the dual problem is always strictly feasible.

Therefore, the largest class of interpolation problems on non-negative poly-
nomials (degree 2n or n, in the real line or unit circle setting, respectively) for
which strict feasibility holds and does not depend on the interpolation points,
satisfies the following assumption.

Assumption 4. The number k of interpolation constraints is less or equal
to n + 1 and the objective vector c satisfies H(c) 0 (real line setting) or
T (c) 0 (unit circle setting), i.e. c ∈ intK .

From now on, we focus on problems that fulfil this assumption. First, we
consider several problems for which explicit solutions are easily computed
from the data.

4.2 One Interpolation Constraint

Real Line

Suppose that one wants to solve the primal problem

min{ c, p : p(x̄) = b, p ∈ KR}.
The dual problem reads as follows

max by
s. t. H(c) yπn(x̄)[πn(x̄)]T .

Without loss of generality, the scalar b is assumed to be equal to 1. Therefore,
the optimal value of this problem

1
H(c)−1πn(x̄), πn(x̄)

,

is equal to the optimal value of y. Using Assumption 4, the optimal vector p
is thus given by

p = H∗(qqT ), q =
H(c)−1πn(x̄)

H(c)−1πn(x̄), πn(x̄)
.

One can check that

p(x̄) = π2n(x̄), p = πn(x̄)πn(x̄), qqT = ( πn(x̄), q )2 = 1,

c, p = H(c), qqT =
1

H(c)−1πn(x̄), πn(x̄)
.

As p is feasible and the corresponding objective value c, p is equal to the
dual optimal one, the polynomial p(x) = p, π2n(x) is optimal.
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Unit Circle

Let us now solve the primal problem

min{ c, p : p(z̄) = p, πn(z̄) R = b, p ∈ KC}. (19)

As in the real line setting, both primal and dual optimal solutions are com-
puted explicitly by making use of Assumption 4. They are equal to :

y =
1

T (c)−1πn(z̄), πn(z̄)
,

p = T ∗(qq∗), q =
T (c)−1πn(z̄)

T (c)−1πn(z̄), πn(z̄)
.

Example 1 (Moving average system, [14]). Let h[n] be a discrete time signal
and H(eiω) be its Fourier transform. The function |H(eiω)|2 is known as the
energy density spectrum because it determines how the energy is distributed
in frequency. Let us compute the signal that has the minimum energy

2πE =
π

−π

|H(eiω)|2dω

and satisfies |H(ei0)| = 1.
This is exactly an example of the problem class (19). Since p(eiω) =

|H(eiω)|2 is a trigonometric polynomial, π

−π p(eiω)dω = p0. The vector c that
defines the objective function is thus equal to c = [1, 0, . . . , 0]T = e0. The
interpolation constraint is obviously defined by z̄ = πn(ei0) = e and b = 1.

Therefore, the optimal primal solution is given by

p = T ∗(qq∗), q =
[1, . . . , 1]T

n + 1
.

and the corresponding Fourier transform H(eiω) can be set to

H(eiω) =
n

i=0

1
n + 1

e−iω.

Note that |H(eiω)|2 is an approximation of a low-pass filter, see Figure 2. The
corresponding signal is exactly the impulse response of the moving average
system :

h[k] =
1

n+1 , 0 ≤ k ≤ n + 1,

0, otherwise.

Since convolution of a discrete signal x[n] with h[n] returns a signal y[n] such
that

y[k] =
1

n + 1

n

l=0

x[k − l],

y[n] is the “moving average” of x[n].
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Fig. 2. Energy density spectrum (|H(eiω)|2 – n=7)

4.3 Two Interpolation Constraints

Before investigating problems with two interpolation constraints, we need to
solve explicitly a 2-dimensional semidefinite programming problem.

Proposition 1. Let b0, b1 ∈ int R+ and α, γ ∈ R and β ∈ C. The optimal
value of the optimization problem

max b0y0 + b1y1

s. t. α β
β γ

y0 0
0 y1

(20)

is reached at the optimal point

y0 = α − |β| b1

b0
, y1 = γ − |β| b0

b1

and it is equal to b0α + b1γ − 2|β|√b0b1.

Proof. The constraints are equivalent to

α − y0 ≥ 0, γ − y1 − |β|2
α − y0

≥ 0.

Maximizing the linear function b0y0+b1y1 on this 2-dimensional convex region
is straightforward (see Figure 3). Clearly, the system of equations

|β|2
(α − y0)2

=
b0

b1
, y1 = γ − |β|2

α − y0
,

provides us with the optimal point (y0, y1).
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Real Line

If the number of interpolation constraints is equal to 2, the dual problem (12)
is given by

max b, y
s. t. H(c) y0πn(x0)[πn(x0)]T + y1πn(x1)[πn(x1)]T

.

Equivalently, the dual constraint can be recast as

H(c) − πn(x0) πn(x1)
y0 0
0 y1

πn(x0) πn(x1)
T 0.

Let us define the matrix MH(c; x0, x1) by

MH(c; x0, x1) = H(c)−1πn(x0), πn(x0) H(c)−1πn(x1), πn(x0)
H(c)−1πn(x0), πn(x1) H(c)−1πn(x1), πn(x1)

.

If diag(y) is positive definite at the optimum, then the previous linear matrix
inequality can be recast as

MH(c; x0, x1)−1 diag(y).

Indeed, this reformulation follows from the Schur complement formula. Oth-
erwise, our hypothesis on the objective function, c ∈ intKR, can be used so
as to obtain the same reformulation. We delay the proof of this fact to the
general setting, see Proposition 3.
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Consequently, Proposition 1 allows us to solve our dual problem explicitly :

y0 =
1

det(MH)
H(c)−1πn(x1), πn(x1) − | H(c)−1πn(x0), πn(x1) | b1

b0
,

y1 =
1

det(MH)
H(c)−1πn(x0), πn(x0) − | H(c)−1πn(x0), πn(x1) | b0

b1
,

with det(MH) = det(MH(c; x0, x1)).
Our primal optimization problem can also be solved explicitly. To see this,

define the vector v = v1 v2
T as the solution of the linear system

1 0
0 σ

MH(c; x0, x1)
1 0
0 σ

v0

v1
=

√
b0√
b1

where σ ∈ {−1, +1} is the sign of H(c)−1πn(x0), πn(x1) . Then the vector

p = H∗(qq∗), q = H(c)−1 πn(x0) πn(x1)
1 0
0 σ

v0

v1

defines a non-negative polynomial p(x) = ( q, πn(x) )2 that satisfies p(x0) =
b0 and p(x1) = b1. Indeed, we have

q(x0)
q(x1)

= πn(x0) πn(x1)
T

q =
√

b0

σ
√

b1

Moreover, the inner product c, p is equal to the optimal dual value : the
vector p is thus optimal.

Unit Circle

As in the real line setting, the dual problem can be rewritten as

max b, y
s. t. MT (c; z0, z1)−1 diag(y)

where

MT (c; z0, z1) =
T (c)−1πn(z0), πn(z0) T (c)−1πn(z1), πn(z0)
T (c)−1πn(z0), πn(z1) T (c)−1πn(z1), πn(z1)

.

The optimal dual solution is now equal to

y0 =
1

det(MT )
T (c)−1πn(z1), πn(z1) − | T (c)−1πn(z0), πn(z1) | b1

b0
,

y1 =
1

det(MT )
T (c)−1πn(z0), πn(z0) − | T (c)−1πn(z0), πn(z1) | b0

b1
,
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with det(MT ) = det(MT (c; z0, z1)). Let us define the vector v0 v1
T as the

solution of the linear system

1 0
0 σ

∗
MT (c; z0, z1)

1 0
0 σ

v0

v1
=

√
b0√
b1

where σ is equal to e−i arg T (c)−1πn(z1),πn(z0) . The vector

p = T ∗(qq∗), q = T (c)−1 πn(z0) πn(z1)
1 0
0 σ

v0

v1

corresponds to a trigonometric polynomial p(z) = |q(z)|2 that satisfies our
interpolation constraints and such that c, p = b, y . This vector p is thus
the (primal) optimal one.

4.4 More Interpolation Constraints (k ≤ n + 1)

If Assumption 4 holds and k ≤ n + 1, the previous analysis can always be
carried out. We first focus on the unit circle setting and show the connection
with spectral factorization of trigonometric polynomials. The real line problem
is then solved using a similar methodology. Let us start with two preliminary
results.

Preliminary Results

Proposition 2. Let C ∈ intHn
+ be a positive definite matrix and V =

V0 V1 ∈ Cn×n be a nonsingular matrix. If the matrix W =
W0

W1
is the

(left) inverse of V with compatible partitions, i.e. W0V0 W0V1

W1V0 W1V1
= I 0

0 I
,

then we have

(V ∗
1 C−1V1)−1 = W1CW ∗

1 − W1CW ∗
0 (W0CW ∗

0 )−1W0CW1.

Proof. Let us apply the well-known Schur complement identity

E F
G H

= I 0
Ge−1 I

E 0
0 H − Ge−1F

I e−1F
0 I

, det(E) = 0

to the matrix product

WCW ∗ = W0CW ∗
0 W0CW ∗

1

W1CW ∗
0 W1CW ∗

1
.

Clearly, we obtain that
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WCW ∗ = 
I 0

(W1CW ∗
0 )(W0CW ∗

0 )
−1 I

W0CW ∗
0 0

0 W1/W0

 
I (W0CW ∗

0 )
−1(W0CW ∗

1 )
0 I

with W1/W0 = W1CW ∗
1 −(W1CW ∗

0 )(W0CW ∗
0 )

−1(W0CW ∗
1 ). Because the ma-

trix WCW ∗ is nonsingular (by assumption), we have

(WCW ∗)−1 = 
I −(W0CW ∗

0 )
−1(W0CW ∗

1 )
0 I

W0CW ∗
0 0

0 W1/W0

−1 
I 0

−(W1CW ∗
0 )(W0CW ∗

0 )
−1 I

.

Hence, the lower right block of the identity

(WCW ∗)−1 = V ∗C−1V = V ∗0 C−1V0 V ∗0 C−1V1

V ∗1 C
−1V0 V ∗1 C

−1V1

is exactly equivalent to

V ∗1 C
−1V ∗1 = (W1CW ∗

1 − (W1CW ∗
0 )(W0CW ∗

0 )
−1(W0CW ∗

1 ))
−1.

Proposition 3. Let C ∈ intHn
+ be a positive definite matrix and V1 ∈ Cn×k

be a matrix with full column rank (k ≤ n). Then the linear matrix inequality

C V1 diag(y)V ∗1 (21)

is equivalent to
(V ∗1 C

−1V1)−1 diag(y). (22)

Proof. If k = n, the proof is trivial. Indeed, both inequalities (21) and (22)
are congruent. This congruence is defined by the nonsingular matrix V −1

1 . If
k < n, Proposition 2 must be used. Let V0 ∈ Cn×(n−k) be a matrix such that
V = V0 V1

 ∈ Cn×n is nonsingular. The (left) inverse of V is denoted by

W = 
W0

W1
. If the rows of W are partitioned according to the partition of V ,

we have

WV = W0V0 W0V1

W1V0 W1V1
= I 0

0 I .

The linear matrix inequality (21), which can be rewritten as

C − V0 V1
0 0
0 diag(y)

 
V ∗0
V ∗1 

 
0,
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is thus equivalent to

W0

W1
C W ∗

0 W ∗
1 

 − 0 0
0 diag(y)

 
0 (23)

by congruence. Because W0CW ∗
0 is positive definite by assumption, the pre-

vious inequality is equivalent to positive semidefiniteness of its Schur comple-
ment in (23),

W1CW ∗
1 − (W1CW ∗

0 )(W0CW ∗
0 )

−1(W0CW ∗
1 ) diag(y).

We complete the proof by making use of Proposition 2.

Unit Circle

Remember that the optimization problem of interest is

min c, p R
s. t. p, πn(zi) R = bi, i = 0, . . . , k − 1,

p ∈ KC.
(24)

If the non-negative trigonometric polynomial p(z) is written as a square by
making use of an arbitrary spectral factor q(z), i.e. p(z) = |q(z)|2 or p =
T ∗(qq∗), the primal optimization problem can be rewritten as

min T (c)q, q
s. t. q, πn(zi) = 

√
bieiθi , i = 0, . . . , k − 1,

(25)

where {θi}k−1
i=0 is a set of phases.

Define the vector σ by σi =
√

bieiθi , i = 0, . . . , k − 1 and the matrix MT

by

MT (c; z0, . . . , zk−1) = πn(z0) · · · πn(zk−1)
∗

T (c)−1 πn(z0) · · · πn(zk−1) .

As a function of σ, the optimal solution of (25) is equal to

q = T (c)−1 πn(z0) · · · πn(zk−1) MT (c; z0, . . . , zk−1)−1σ (26)

and the corresponding optimal value is

T (c)q, q = MT (c; z0, . . . , zk−1)−1σ, σ .

Remark 5. A direct consequence of (26) is that our spectral factor q(z) is
decomposed as a sum of “Lagrange-like” polynomials :

q(z) = q, πn(z) C =
k−1

i=0

eiθiσili(z)

where li(zj) = δij , ∀i, j.
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Finally, the optimal solution of problem (25) is obtained by minimizing
over the vector σ,

min MT (c; z0, . . . , zk−1)−1σ, σ
s. t. |σi|2 = bi, i = 0, . . . , k − 1.

(27)

If m > 2, an explicit solution is difficult to obtain easily from this new formu-
lation. However, we can solve the semidefinite relaxation of problem (27) :

min M−1
T (z0, . . . , zk−1), X ,

s. t. diag(X) = b,
X ∈ Hk

+,
(28)

where diag(X) is the vector defined by the diagonal elements of X . In gen-
eral, a quadratic problem of the form (27) is np-hard to solve, see the Ap-
pendix. Nevertheless, the particular structure of the quadratic objective func-
tion yields an extremely interesting result.

Theorem 3. If Assumption 4 holds, relaxation (28) of quadratically con-
strained quadratic problem (27) is exact.

Proof. Using standard convex duality theory, the dual of problem (28) is

max b, y
s. t. M−1

T (z0, . . . , zk−1) diag(y), (29)

which is exactly the dual of the original problem (24) :

max b, y

s. t. T (c) πn(z0) . . . πn(zk−1)
 
diag(y) πn(z0) . . . πn(zk−1)

∗
.

(30)

To see this, we define the matrix V1 as V1 = πn(z0) . . . πn(zk−1)
 
and we

apply Proposition 3 with C = T (c). Because the (dual) constraints of (29)
and (30) are equivalent, both problems are identical.

By assumption the original problem (24) has no duality gap. Since both
problems (24) and (28) have the same dual, the relaxation has also a zero
duality gap. This last observation completes our proof.

The optimal coefficients p can be obtained from the solution X of (28) via
the identity

p = T ∗(T (c)−1V1M
−1
T XM−1

T V ∗1 T (c)−1)

where V1 = πn(z0) . . . πn(zk−1)
 
and MT = MT (c; z0, . . . , zk−1). To see this,

note that
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c, p = T (c), T (c)−1V1M
−1
T XM−1

T V ∗1 T (c)−1

= T (c)−1V1M
−1
T XM−1

T V ∗1 , I

= V ∗1 T (c)−1V1M
−1
T XM−1

T , I

= X, M−1
T 

and that, for all i,

p, πn(zi) = T (πn(zi)), T (c)−1V1M
−1
T XM−1

T V ∗1 T (c)−1

= πn(zi)πn(zi)∗, T (c)−1V1M
−1
T XM−1

T V ∗1 T (c)−1

= (πn(zi)∗T (c)−1V1M
−1
T )X(M−1

T V ∗1 T (c)−1πn(zi)), I
= eie

∗
i , X = bi.

Real Line

Remember that the optimization problem of interest is

min c, p
s. t. p, π2n(xi) = bi, i = 0, . . . , k − 1,

p ∈ KR.
. (31)

If we use any complex spectral factor q(x) of our unknown polynomial p(x) =
|q(x)|2 as a variable, the previous analysis can be carried out in the real
line setting. It leads exactly to the same formulae provided that the following
substitutions are performed :

1. T (c) is replaced by H(c);
2. the interpolation points {zi}k−1

i=0 are replaced by {xi}k−1
i=0 ;

3. the matrix MT (c; z0, . . . , zk−1) is replaced by its “Hankel counterpart”

[MH(c; x0, . . . , xk−1)]ij = πn(xi)∗H(c)−1πn(xj).

Let us summarize the most important steps. First, the primal optimization
problem (31) is reformulated as

min H(c)q, q
s. t. q, πn(xi) =

√
bieiθi , i = 0, . . . , k − 1,

(32)

which is equivalent to

min MH(c; x0, . . . , xk−1)−1σ, σ
s. t. |σi|2 = bi, i = 0, . . . , k − 1.

(33)

In practice, this last optimization problem is solved using the following relax-
ation

min M−1
H (x0, . . . , xk−1), X ,

s. t. diag(X) = b,
X ∈ Hk

+.
(34)

As before, the structure of quadratic problem (33) leads to an exact
semidefinite relaxation.
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Theorem 4. If Assumption 4 holds, relaxation (34) of quadratically con-
strained quadratic problem (33) is exact.

Proof. Using standard convex duality theory, the dual of problem (28) is

max b, y
s. t. M−1

H (x0, . . . , xk−1) diag(y), (35)

which is exactly the dual of the original problem (31) :

max b, y

s. t. H(c) πn(x0) . . . πn(xk−1) diag(y) πn(x0) . . . πn(xk−1)
∗
. 

(36)

To see this, we define the matrix V1 as V1 = πn(z0) . . . πn(zk−1)
 
and we

apply Proposition 3 with C = T (c) and V1. Because the (dual) constraints of
(35) and (36) are equivalent, both problems are identical.

By assumption the original problem (31) has no duality gap. Since both
problems (31) and (34) have the same dual, the relaxation has also a zero
duality gap. This last observation completes our proof.

Complexity

The complexity of solving relaxation (34) or (28) is only a function of the
desired accuracy  and the number of interpolation constraints k. If Assump-
tion 4 holds and if the original problem has been pre-processed, it can be
solved in a number of iterations that does not depend on the degree n. In-
deed, solving the dual problem (35) or (29) using a standard path-following
scheme requires O(

√
k log 1 ) Newton steps. At each iteration, computing the

gradient and the Hessian of a barrier function of the type

f(y) = − log det(M−1 − diag(y))

requires O(k3) flops. Note that the pre-processing can be done via fast Hankel
or Toeplitz solvers, see [9].

4.5 Still More Interpolation Constraints (m > n + 1)

If the number of interpolation constraints is strictly greater than n + 1, strict
feasibility of the primal problem depends on the data. Therefore, a general
procedure that solves efficiently the primal problem and uses the structure of
the interpolation constraints is not likely to exist. Indeed, the primal problem
might be infeasible ! Let us illustrate this fact by a simple example.

Example 2. Consider the set of polynomials of degree 2n = 4, non-negative
on the real line, and four interpolation points x = [−2,−1, 1, 2]. The vector
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b = [1, 1, 1, 1] gives a strictly feasible primal problem. Indeed, the polynomial
p(x) = 1

3 (x4 − 5x2 + 7) satisfies our interpolation constraints and belongs
to intKR. If the vector b is equal to [1, 10, 1, 1], the polynomial family that
satisfies our interpolation constraints is p(x; λ) = 1

4 ((λ − 7)x4 + 6x3 + (29 −
5λ)x2 − 24x + 4λ), λ ∈ R. If p(x; λ) belonged to intKR, λ would be greater
than 7. As p( 5

4 ; λ) = 1
1024 (−371λ − 3255), ∀λ > 0, these data correspond to

an infeasible primal set. . .

Of course, the dual structure can still be exploited to try reducing the
computational cost. For instance, consider a problem on the unit circle with
m > n+1 interpolation constraints. Clearly, the corresponding Vandermonde
matrix V can be divided into a nonsingular square Vandermonde matrix V0

and a rectangular one V1

V = V0 V1 , detV0 = 0.

If the dual vector is divided accordingly, the dual constraint can be recast as
T (c) V0 diag(y0)V ∗

0 +V1 diag(y1)V ∗
1 . Since V0 is nonsingular, it is equivalent

to
V −1

0 T (c)V −∗
0 − V −1

0 V1 diag(y1)V ∗
1 )V −∗

0 diag(y0).

Therefore, an appropriate preprocessing leads to the following dual constraint

Ĉ − V̂ diag(y1)V̂ ∗ diag(y0).

Since the Toeplitz structure of the dual is lost, the resulting algorithm cannot
use the underlying displacement operator nor a divide-and-conquer strategy to
evaluate the gradient and the Hessian of the self-concordant barrier function.
This strategy will thus be slower than the one designed in [6]

4.6 Property of the Objective Function

If H(c) or T (c) is not positive definite, the corresponding dual problem can
sometimes be solved explicitly.

Real Line

If the vector c is such that H(c) can be factorized as

H(c) = V W
diag(λv) 0

0 diag(λw)
V T

WT (37)

where V ∈ Rk×(n+1) is the Vandermonde matrix defined by the interpolation
constraints and W ∈ R(n+1−k)×(n+1) is such that V W is full rank, one can
easily compute an explicit solution of the optimization. From a theoretical
point of view, there exist vectors c such that the proposed factorization does
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not exist. From a computational point of view, it may also be difficult to
compute accurately.

The dual constraints now reads as follows

diag(λv − y) 0
0 diag(λw) 0.

If diag(λw) is not positive semidefinite, the dual optimization problem is in-
feasible and the primal problem is unbounded. Otherwise, the solution is ob-
tained by setting the dual variables yi to their upper bounds, i.e. y = λv. This
provides us with either a lower bound or the exact value of the optimization
problem, depending on whether the problem has a duality gap.

Unit Circle

The same factorization technique can be applied to T (c), i.e.

T (c) = V W
diag(λv) 0

0 diag(λw)
V ∗

W ∗ , (38)

and leads to the same results and drawbacks.

5 Matrix Polynomials

In this section, we show that most of the previous results still holds in the
context of non-negative matrix polynomials. As before, these non-negative
polynomials could be defined on the real line, on the imaginary axis and on
the unit circle. To avoid redundancies, we only consider the cone of matrix
polynomials non-negative on the real line, which is again denoted by KR,

0 P (x) =
2n

k=0

Pkxk, ∀x ∈ R; Pk = P ∗
k ∈ Rq×q, ∀k. (39)

Theorem 1 can then be extended to the matrix case [6].

Theorem 5. A matrix polynomial P (x) is non-negative on the real axis if
and only if there exists a positive semidefinite symmetric block matrix Y =
{Yij}n

i,j=0 such that (Yij = 0 for i or j outside their definition range)

Pk =
i+j=k

Yij , for k = 0, . . . , 2n. (40)

As shown in [6], the dual cone is the set of Hermitian matrix coefficients
S = S0 S1 . . . S2n such that the corresponding block Hankel matrix
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H(S) =


S0 S1 · · · Sn

S1 ... ...
...

... ... ... S2n−1

Sn · · · S2n−1 S2n

 , (41)

is positive semidefinite, i.e. KR = {S : H(S) 0}.

5.1 The Optimization Problem

Using matrix interpolation constraints, our optimization problem (11) could
be extended to

min C, P ≡ 2n
=0 C , P

s. t. P (xi) = 2n
=0 P xi = Bi, i = 0, . . . , k − 1

P (x) 0, ∀x ∈ R
. (42)

where {Bi}k−1
i=0 is a set of positive definite matrices. Its dual is readily seen to

be equal to
max B, Y ≡ k−1

i=0 Bi, Yi

s. t. S + k−1
i=0 xiYi = C , = 0, . . . , 2n

H(S) 0,

. (43)

5.2 Strict Feasibility

As before, primal strict feasibility holds if the number k of matrix interpolation
constraints is less or equal to n + 1. To see this, consider n + 1 distinct inter-
polation points {xi}n

i=0 and the associated Lagrange polynomials {Li(x)}n
i=0

of degree n. These polynomials are defined by the identities

Lj(xi) = δijIm, 0 ≤ i, j ≤ n.

Then the polynomial

P (x) =
n

i=0

Li(x)P (xi)LT
i (x) =

n

i=0

Li(x)BiL
T
i (x)

can be rewritten as

P (x) = L diag({P (xi)}k−1
i=0 )LT Πn(x), Πn(x)

where L is nonsingular, diag({P (xi)}k−1
i=0 ) is positive definite and Πn(x) =

πn(x) ⊗ Im. By construction, we see that P (x) ∈ intKR and P (xi) = Bi, ∀i.
Since the dual constraints (43) are equivalent to

H(C)
k−1

i=0

Πn(xi)YiΠn(xi)T ,

the dual is strictly feasible if k ≥ n + 1.
Let us state the matrix counterpart of Assumption 4 for future use.
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Assumption 5. The number k of interpolation constraints is less or equal to
n + 1 and the objective block vector C satisfies H(C) 0.

Hereafter, we focus on problems satisfying this assumption.

5.3 One Interpolation Constraint

Let us consider a matrix interpolation problem with one constraint :

min C, P

s. t. P (x̄) = 2n
=0 P x̄ = B 0,

P (x) 0, ∀x ∈ R
.

Without loss of generality, B is assumed to be the identity matrix, i.e. B = Im.
Using the dual matrix variable Y , the dual problem reads

max I, Y
s. t. H(C) Πn(x̄)Y Πn(x̄)T .

Because H(C) 0, a standard Schur complement approach shows that the
optimal dual variable is

Y = [Πn(x̄)T H(C)−1Πn(x̄)]−1.

The spectral factor

Q = H(C)−1Πn(x̄)[Πn(x̄)T H(C)−1Πn(x̄)]−1

allows us to compute the optimal primal variable P

P (x) = Q(x)Q(x)∗ ifandonlyif P = H∗(QQ∗).

It is easy to check that this value of P is optimal, i.e.

C, P =
2n

=0

C , P = H(C)Q, Q = I, [Πn(x̄)T H(C)−1Πn(x̄)]−1 = I, Y

and
P (x̄) = Πn(x̄)T QQ∗Πn(x̄) = Im = B.

5.4 More Interpolation Constraints

If the number of matrix interpolation constraints is less or equal to n + 1, we
can again use an arbitrary spectral factor to get an efficient algorithm, the
complexity of which mainly depends on k and m.

Indeed, let Q(x) be an arbitrary spectral factor Q(x) of our unknown
polynomial P (x), i.e P (x) = Q(x)Q(x)∗. Then the optimization problem can
be rewritten as
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min H(C)Q, Q

s. t. Q(xi) = 2n
=0 Q xi = B1/2

i Ui, i = 0, . . . , k − 1
(44)

where {Ui}k−1
i=0 is a set of unitary matrices, i.e. U ∗

i Ui = Im, ∀i.
If the definition of MH is adapted to the matrix case,

[MH(C; x0, . . . , xk−1)]ij = Πn(xi)∗H(C)−1Πn(xj),

then the optimal solution of (44), written as a function of

U =

 U0

...
Uk−1

 ,

is equal to

Q = H(C)−1 Πn(x0) · · · Πn(xk−1)

MH(C; x0, . . . , xk−1)−1 diag({B1/2
i }k−1

i=0 )U.

As in the scalar case, the optimal solution of the original problem is obtained
via the quadratic optimization problem

min diag({B1/2
i }k−1

i=0 )MH(C; x0, . . . , xk−1)−1 diag({B1/2
i }k−1

i=0 )U, U
s. t. U∗

i Ui = Im, i = 0, . . . , k − 1.
(45)

The associated semidefinite relaxation is

min MH(C; x0, . . . , xk−1)−1, X
s. t. Xii = Bi, i = 0, . . . , k − 1

X ∈ Hmk
+

(46)

where Xii is the ith m × m diagonal block of X . Its dual is given by

max B, Y

s. t. MH(C; x0, . . . , xk−1)−1 diag({Yi}k−1
i=0 )

(47)

and is equal to the dual of the original problem. Therefore, we could proceed
as before to obtain the following theorem :

Theorem 6. If Assumption 5 holds, relaxation (46) of quadratically con-
strained quadratic problem (45) is exact.

Provided that the original problem has been pre-processed, solving the
dual problem (47) does not depend on the degree 2n of P (x). This result is
similar to the scalar case. As Assumption 5 guarantees that strict feasibility
holds, we obtain an efficient algorithm to solve our problem class.
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6 Interpolation Conditions on the Derivatives

In this section, we present the straightforward extension of our previous results
to interpolation conditions on the derivatives. We only consider the scalar case
to keep our equations as small as possible.

6.1 Real Line

In the real line setting, interpolation constraints on the derivatives are formu-
lated as

p( )(xi) = p, π
( )
2n (xi) = bi

where π( )
2n (·) is the component-wise th derivative of π2n(·). Such constraints

will be called “interpolation-like” constraints.
If all the linear constraints of (11) are interpolation-like constraints, i.e.

ai, p
.= π

( i)
2n (xi), p = bi, i = 0, . . . , k − 1,

the dual problem (12) reads now as follows

max b, y

s. t. H(c) − k−1
i=0 yiH(π( i)

2n (xi)) 0.
(48)

Let us now prove that H(π( i)
2n (xi)) has a special structure.

Proposition 4. Let ≥ 0. Then

H(π( )
2n (x)) =

r=0
r

π(r)
n (x)(π( −r)

n (x))T , ∀x ∈ R (49)

and the rank of this matrix is min{ , 2n− } + 1.

Proof. Since H(π2n(x)) = πn(x)πn(x)T and H(·) is a linear operator, equation
(49) is a direct consequence of the chain rule. The rank condition originates
from the fact that π

(n+1)
n (x) = 0.

This proposition allows us to improve the formulation (48) of the dual
problem. First of all, assume that the interpolation points are distinct and
that i ≤ n, ∀i. Let us define a block diagonal matrix

∆(y) = diag({∆0(y), . . . , ∆k−1(y)})

where ∆i(y) is a ( i + 1) × ( i + 1) matrix defined by
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∆i(y) =


0 i

i
yi

...

i

0 yi 0

 , i = 0, . . . , k − 1.

Using the above proposition, the dual problem can be written as

max b, y
s. t. H(c) − V ∆(y)V T 0,

(50)

where V is the non-square confluent matrix

V = π
(0)
n (x0) . . . π

( 1)
n (x0) | . . . | π

(0)
n (xm) . . . π

( m)
n (xm) .

If the interpolation points are not distinct or if there exists at least one
index i such that i > n, the matrix V and the block-diagonal matrix ∆(y)
must be redefined in order to get a dual problem similar to (50). Because the
appropriate reformulation is evident, but cumbersome, it has been omitted.

If H(c) 0 and the numbers of rows of V is greater than its number of
columns, the dual constraint (50) is easily recast using Proposition 3 :

(V T H(c)−1V )−1 ∆(y).

The complexity of solving the dual problem (50) depends mostly on the di-
mension of ∆(y). That is, an appropriate preprocessing tends to eliminate the
dependence on the degree 2n. Because primal strict feasibility cannot be guar-
anteed from the knowledge of k, we cannot guarantee that the semidefinite
relaxation is exact.

6.2 Unit Circle

In the unit circle setting, interpolation constraints on the derivatives, p( i)(θi) =
bi, are equivalent to the linear constraints

p( i)(zi) = (−iN) ip, πn(zi) = p, (iN) iπn(zi) = bi, zi = eiθi (51)

where N = diag(0, 1, . . . , n).
If all linear constraints of (15) are interpolation-like constraints, i.e.

ai, p
.= p, (iN) iπn(zi) = bi, zi = eiθi , i = 0, . . . , k − 1,

the dual problem (16) reads now as follows

max b, y

s. t. T (c) − k−1
i=0 yiT ((iN) iπn(zi)) 0

. (52)

Note that T ((iN)liπn(z)) has a special structure.
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Proposition 5. Let  ≥ 0. Then

T ((iN) πn(z)) =
r=0

r
(iN)rπn(z)[(iN) −rπn(z)]∗ (53)

and the rank of this matrix is min{ , n} + 1.

Proof. Since T (πn(z)) = πn(z)πn(z)∗, ∂
∂θ (πn(z)|z=eiθ) = iN(πn(z)|z=eiθ) and

T (·) is a linear operator, it is straightforward to check equation (53).

Assume that the interpolation points are distinct and define the block
diagonal matrix

∆(y) = diag({∆0(y), . . . , ∆k−1(y)})
as before. Using the above proposition, the dual problem can be written as

max b, y
s. t. T (c) − W∆(y)W ∗ 0.

where W is the non-square matrix

W = (iN)0π(0)
n (z0), . . . , (iN) 1π( 1)

n (z0)| . . . |

(iN)0π(0)
n (zk−1), . . . , (iN) k−1π( k−1)

n (xk−1) .

If i ≤ 1, ∀i, the matrix W is the product of a confluent Vandermonde matrix
V and a diagonal scaling D, i.e. W = V D. If T (c) 0 and the numbers of
rows of V is greater than its number of columns, the complexity of solving
the reformulated dual problem

max b, y
s. t. (W ∗T (c)−1W )−1 ∆(y),

depends mostly on the dimension of ∆(y). That is, an appropriate prepro-
cessing tends to eliminate the dependence on the degree n. However, primal
strict feasibility cannot be guaranteed from the knowledge of k so that the
exact semidefinite relaxation cannot be certified in general.

7 Conclusion

Conic optimization problems on several cones of non-negative polynomials,
with linear constraints generated by interpolation-like constraints, are studied
in this chapter. They naturally induce semidefinite programming problems
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min C, X
s. t. Ai, X = bi i = 1, . . . , m

X 0
(54)

with low-rank matrices {Ai}m
i=1. Conditions which guarantee that strict fea-

sibility holds are investigated, see Assumption 3 and the associated discus-
sion. Using Proposition 3, the associated dual problems can be reformulated
efficiently; the complexity of solving the reformulated duals is almost inde-
pendent of the primal space dimension. Finally, new classes of quadratically
constrained quadratic programs with exact semidefinite relaxation are de-
scribed.

Appendix

The proof presented in Appendix is based on ideas of A. Nemirovskii.

Proposition 6. Let A = A∗ be a Hermitian matrix of order 2n+1. Then the
quadratic optimization problem

min Az, z
s. t. |zi| = 1, i = 0, . . . , 2n

(55)

is np-hard.

Proof. Let {ai}n
i=0 ⊆ Z be a finite set of integers. Checking whether there

exist {xi}n
i=0 ⊆ {−1, +1} such that the equality

2n

i=0

aixi = 0 (56)

holds is related to the subset sum problem [4, SP13] and is thus np-complete.
Let {z }2n

=0 ⊆ C be a finite set of complex numbers of modulus one and
define the quadratic functions

P (z) = |z0 − z2 −1|2 + |z2 −1 − z2 |2 + |z0 − z2 |2, = 1, . . . , n.

Assume that z0 is equal to 1 without loss of generality. Then the optimization
problem

max{
n

=1

P (z) : |zi| = 1, ∀i}

can be solved explicitly, see Figure 4. Note that the inequality

max{
n

=1

P (z) − |
n

=0

a (z2 +1 − z2 +2)|2 : |zi| = 1, ∀i}

≤ max{
n

=1

P (z) : |zi| = 1, ∀i}
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Fig. 4. Solution of max{P (z) : |zi| = 1, ∀i}

is tight if and only if Problem (56) is solvable. Since its left hand side is an
instance of (55), this quadratic problem is hard to solve.

Acknowledgement. A research fellowship from the Belgian National Fund for Sci-
entific Research is gratefully acknowledged by the first author. This text presents
research results of the Belgian Program on Interuniversity Poles of Attraction ini-
tiated by the Belgian State, Prime Minister’s Office, Science Policy Programming.
The scientific responsibility is assumed by the authors.

References

1. B. Alkire and L. Vandenberghe (2002). Convex optimization problems involving
finite autocorrelation sequences. Math. Programming, 93:331–359.

2. T. N. Davidson, Z.-Q. Luo, and J. F. Sturm (2002). Linear matrix inequality
formulation of spectral mask constraints with applications to FIR filter design.
IEEE Trans. Signal Process., 50:2702–2715.

3. S. Feldmann and G. Heinig (1996). Vandermonde factorization and canonical
representations of block Hankel matrices. Linear Algebra Appl., 241–243:247–
278.

4. M. R. Garey and D. S. Johnson (1979). Computers and intractability: a guide
to the theory of NP-completeness. W. H. Freeman, San Francisco, CA.

5. Y. Genin, Y. Hachez, Y. Nesterov, and P. Van Dooren (2000). Convex optimiza-
tion over positive polynomials and filter design. Proc. UKACC International
Conference on Control, CD-ROM Paper SS-41, University of Cambridge, UK.

6. Y. Genin, Y. Hachez, Y. Nesterov, and P. Van Dooren (2003). Optimization
problems over positive pseudo-polynomial matrices. SIAM J. Matrix Anal. Appl.,
25:57–79.



Optimization Problems over Non-negative Polynomials 271

7. Y. Hachez (2003). Convex optimization over non-negative polynomials: struc-
tured algorithms and applications. PhD thesis, Université Catholique de Lou-
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In this chapter we present SOSTOOLS, a third-party MATLAB toolbox for
formulating and solving sum of squares optimization problems. Sum of squares
optimization forms a basis for formulating convex relaxations to computation-
ally hard problems such as some that appear in systems and control. Currently,
sum of squares programs are solved by casting them as semidefinite programs,
which can in turn be solved using interior-point based numerical methods.
SOSTOOLS helps this translation in such a way that the underlying compu-
tations are abstracted from the user. Here we give a brief description of the
toolbox, its features and capabilities (with emphasis on the recently added
ones), as well as show how it can be applied to solving problems of interest in
systems and control.

1 Introduction

There has been a great interest recently in sum of squares polynomials and
sum of squares optimization [34, 1, 31, 17, 18, 13, 11], partly due to the fact
that these techniques provide convex polynomial time relaxations for many
hard problems such as global, constrained, and Boolean optimization, as well
as various problem in systems and control. The observation that the sum
of squares decomposition can be computed efficiently using semidefinite pro-
gramming [17] has initiated the development of software tools that facilitate
the formulation of the semidefinite programs from their sum of squares equiv-
alents. One such a software is SOSTOOLS [24, 25, 26], a free third-party
MATLAB4 toolbox for solving sum of squares programs.

A multivariate polynomial p(x1, . . . , xn) p(x) is a sum of squares (SOS),
if there exist polynomials f1(x), . . . , fm(x) such that

4A registered trademark of The MathWorks, Inc.
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p(x) =
m

i=1

f2
i (x). (1)

It follows from the definition that the set of sums of squares polynomials in
n variables is a convex cone. The existence of an SOS decomposition (1) can
be shown to be equivalent to the existence of a positive semidefinite matrix
Q such that

p(x) = ZT (x)QZ(x), (2)

where Z(x) is the vector of monomials of degree less than or equal to deg(p)/2,
i.e., its entries are of the form xα = xα1

1 . . . xαn
n , where the α’s are nonnegative

integers and α1 + . . . + αn ≤ deg(p)/2. Expressing an SOS polynomial as a
quadratic form in (2) has also been referred to as the Gram matrix method
[1, 20]. The decomposition (1) can be easily converted into (2) and vice versa.
This equivalence makes an SOS decomposition computable using semidefinite
programming, since finding a symmetric matrix Q 0 subject to the affine
constraint (2) is nothing but a semidefinite programming problem.

It is clear that a sum of squares polynomial is globally nonnegative. This
is a property of SOS polynomials that is crucial in many control applications,
where we replace various polynomial inequalities with SOS conditions. How-
ever, it should be noted that not all nonnegative polynomials are necessarily
sums of squares. The equivalence between nonnegativity and sum of squares
is only guaranteed in three cases, those of univariate polynomials of any even
degree, quadratic polynomials in any number of indeterminates, and quar-
tic polynomials in three variables [31]. Indeed nonnegativity is NP-hard to
test [12], whereas the SOS conditions are polynomial time verifiable through
solving appropriate semidefinite programs. Despite this, in many cases we are
able to obtain solutions to computational problems that are otherwise at the
moment unsolvable, simply by replacing the nonnegativity conditions with
SOS conditions.

A sum of squares program is a convex optimization problem of the follow-
ing form:

Minimize
J

j=1

wjcj (3)

subject to

ai,0(x) +
J

j=1

ai,j(x)cj is SOS, for i = 1, ..., I, (4)

where the cj’s are the scalar real decision variables, the wj ’s are given real
numbers, and the ai,j(x) are given polynomials (with fixed coefficients). See
also another equivalent canonical form of SOS programs in [24, 25]. While
the conversion from SOS programs to semidefinite programs (SDPs) can be
manually performed for small size instances or tailored for specific problem
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SOSP SDP

SOSP
Solution Solution

SDP

SeDuMi/
SDPT3

SOSTOOLS

SOSTOOLS
Fig. 1. Diagram depicting relations between sum of squares program (SOSP),
semidefinite program (SDP), SOSTOOLS, and SeDuMi or SDPT3.

classes, such a conversion can be quite cumbersome to perform in general. It is
therefore desirable to have a computational aid that automatically performs
this conversion for general SOS programs. This is exactly what SOSTOOLS
is useful for. It automates the conversion from SOS program to SDP, calls
the SDP solver, and converts the SDP solution back to the solution of the
original SOS program (see Figure 1). The current version of SOSTOOLS uses
either SeDuMi [35] or SDPT3 [37], both of which are free MATLAB add-ons,
as the SDP solver. The user interface of SOSTOOLS has been designed to be
as simple, as easy to use, and as transparent as possible, while keeping a large
degree of flexibility.

In addition to the optimization problems mentioned above (a related re-
cent software in this regard is GloptiPoly [8], which solves global optimization
problems over polynomials, based on the method in [11]), sum of squares poly-
nomials and SOSTOOLS find applications in several control theory problems.
These problems include stability analysis of nonlinear, hybrid, and time-delay
systems [17, 15, 23, 14], robustness analysis [17, 15, 23], estimation of domain
of attraction [17, 33], LPV analysis and synthesis [39], nonlinear synthesis
[9, 28, 27], safety verification [22], and model validation [21]. Other areas in
which SOSTOOLS is applicable are, for instance, geometric theorem proving
[19] and quantum information theory [2].

In Section 2, we present the main features of SOSTOOLS and point out
improvements that have been made in the user interface, custom-made func-
tions, and modularity with respect to the choice of semidefinite programming
solver. Some control oriented application examples will then be provided in
Section 3. In particular, we will consider nonlinear stability analysis, paramet-
ric robustness analysis, analysis of time-delay systems, safety verification, and
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nonlinear controller synthesis. We show how sum of squares programs corre-
sponding to these problems can be formulated, which in turn can be solved
using SOSTOOLS.

2 SOSTOOLS Features

It has been mentioned in the introduction that the main purpose of SOS-
TOOLS is to efficiently transform SOS programs of the form (3)–(4) into
semidefinite programs (SDPs), which can then be solved using an SDP solver.
The solution is then retrieved from the solver and translated into the orig-
inal polynomial variables. In this way, the details of the reformulation are
abstracted from the user, who can work at the polynomial object level.

Polynomial variables in SOSTOOLS can be defined in two different ways:
as a symbolic object through the use of the MATLAB Symbolic Math Tool-
box, or as a custom-built polynomial object using the integrated Multivariate
Polynomial Toolbox. The former option provides to the user the benefit of
making use of all the features in the Symbolic Math Toolbox, which range
from simple arithmetic operations to differentiation, integration and polyno-
mial manipulation. On the other hand, the Multivariate Polynomial Toolbox
allows users that do not have access to the Symbolic Math Toolbox to use SOS-
TOOLS. Some basic polynomial manipulation functions are also provided in
this toolbox.

To define and solve an SOS program using SOSTOOLS, the user simply
needs to follow these steps:

1. Initialize the SOS program.
2. Declare the SOS program variables.
3. Define the SOS program constraints, namely Eq. (4).
4. Set the objective function, namely Eq. (3).
5. Call solver.
6. Get solutions.

We will give a short illustration of these steps in Section 2.1. However, we
will not entail in a discussion of how each of these steps is performed nor the
SOSTOOLS commands relevant to this. A detailed description can be found
in the SOSTOOLS user’s guide [25].

In many cases, the SOS program we wish to solve have certain structural
properties, such as sparsity, symmetry, and so on. The formulation of the SDP
in this case should take into account these properties. This will not only reduce
significantly the computational burden of solving it, as the size of the SDP
will reduce considerably, but also it removes numerical ill-conditioning. With
regard to this, provision has been taken in SOSTOOLS for exploitation of
polynomial sparsity when formulating the SDP. The details will be described
in Section 2.2.
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The frequent use of certain sum of squares programs, such as those corre-
sponding to

• finding the sum of squares decomposition of a polynomial,
• finding lower bounds on polynomial minima, and
• constructing Lyapunov functions for systems with polynomial vector fields

are reflected in the inclusion of customized functions in SOSTOOLS. Some of
these customized functions will be discussed at the end of the section.

2.1 Formulating Sum of Squares Programs

In the original release of SOSTOOLS, polynomials were implemented solely
as symbolic objects, making full use of the capabilities of the MATLAB Sym-
bolic Math Toolbox. This gives to the user the benefit of being able to do
all polynomial manipulations using the usual arithmetic operators: +, -, *, /,
^; as well as operations such as differentiation, integration, point evaluation,
etc. In addition, it provides the possibility of interfacing with the Maple5 sym-
bolic engine and the Maple library (which is very advantageous). On the other
hand, this prohibited those without access to the Symbolic Toolbox (such as
those using the student edition of MATLAB) from using SOSTOOLS. In the
current SOSTOOLS release, the user has the option of using an alternative
custom-built polynomial object, along with some basic polynomial manipula-
tion methods to represent and manipulate polynomials.

Using the Symbolic Toolbox, a polynomial is created by declaring its
independent variables as symbolic variables in the symbolic toolbox and
constructing it in a similar way. For example, to create the polynomial
p(x, y) = 2x2 + 3xy + 4y4, one declares the variables x and y by typing

>> syms x y

and constructs p(x, y) as follows:

>> p = 2*x^2 + 3*x*y + 4*y^4

In a similar manner, one can define this polynomial using the Multivari-
ate Polynomial Toolbox, a freely available toolbox that has been integrated
in SOSTOOLS for constructing and manipulating multivariate polynomials.
Polynomial variables are created with the pvar command. Here the same
polynomial can be constructed by declaring first the variables:

>> pvar x y

Note that pvar is used to replace the command syms. New polynomial objects
can now be created from these variables, and manipulated using standard
addition, multiplication, and integer exponentiation functions:

>> p = 2*x^2 + 3*x*y + 4*y^4

5A registered trademark of Waterloo Maple Inc.
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Matrices of polynomials can also be created from polynomials using horizon-
tal/vertical concatenation and block diagonal augmentation. A few additional
operations exist in this initial version of the toolbox such as trace, transpose,
determinant, differentiation, logical equal, and logical not equal.

The input to the SOSTOOLS commands can be specified using either
the symbolic objects or the new polynomial objects. There are some minor
variations in performance depending on the degree/number of variables of
the polynomials, due the fact that the new implementation always keeps an
expanded internal representation, but for most reasonable-sized problems the
difference is minimal.

For an illustration, let us now consider the problem of finding a lower
bound for the global minimum of the Goldstein-Price test function [5]

f(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]...
... [30 + (2x1 − 3x2)2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)].

The SOS program for this problem is

Minimize −γ,
such that

(f(x) − γ) is SOS.

It is clear that any value of γ for which f(x) − γ is an SOS will serve as a
lower bound for the polynomial, since in that case f(x) − γ is nonnegative.
By maximizing γ (or equivalently, minimizing −γ), a tighter lower bound can
be computed.

In this example, the SOS program is initialized and the decision variable
γ is declared using the following commands (assuming that we use the poly-
nomial objects)

>> pvar x1 x2 gam;
>> prog = sosprogram([x1; x2],gam);

The function f(x) is constructed as follows

>> f1 = x1+x2+1;
>> f2 = 19-14*x1+3*x1^2-14*x2+6*x1*x2+3*x2^2;
>> f3 = 2*x1-3*x2;
>> f4 = 18-32*x1+12*x1^2+48*x2-36*x1*x2+27*x2^2;
>> f = (1+f1^2*f2)*(30+f3^2*f4);

Then the SOS program constraint “f(x)−γ is SOS” and the objective function
are set, and the SOS program is solved using the following commands

>> prog = sosineq(prog,f-gam);
>> prog = sossetobj(prog,-gam);
>> prog = sossolve(prog);
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The optimal lower bound is then retrieved by

>> gam = sosgetsol(prog,gam);

The result given by SOSTOOLS is γ = 3. This is in fact the global minimum
of f(x), achieved at x1 = 0, x2 = −1. The same example can also be solved
using the customized function findbound as follows

>> [gam,vars,xopt] = findbound(f);

2.2 Exploiting Sparsity

The complexity of computing a sum of squares decomposition for a polynomial
p(x) depends on two factors: the dimension of the independent variable x and
the degree of the polynomial. As mentioned previously, when p(x) has special
structural properties, the computation effort can be notably simplified through
the reduction of the size of the semidefinite program, removal of degeneracies,
and better numerical conditioning.

The first type of simplification can be performed when p(x) is sparse. The
notion of sparseness for multivariate polynomials is stronger than the one com-
monly used for matrices. While in the matrix case this word usually means
that many coefficients are zero, in the polynomial case the specific vanishing
pattern is also taken into account. This idea is formalized by the concept of
Newton polytope [36], defined as the convex hull of the set of exponents, con-
sidered as vectors in Rn. It was shown by Reznick in [30] that Z(x) need only
contain monomials whose squared degrees are contained in the convex hull of
the degrees of monomials in p(x). Consequently, for sparse p(x) the size of the
vector Z(x) and matrix Q appearing in the sum of squares decomposition can
be reduced which results in a decrease of the size of the semidefinite program.

Since the initial version of SOSTOOLS, Newton polytopes techniques have
been available via the optional argument ’sparse’ to the function sosineq,
and in the new release, the support for sparse polynomials has been improved.
SOSTOOLS takes the sparse structure into account, and chooses an appro-
priate set of monomials for the sum of squares decompositions with the con-
vex hull computation performed either by the native MATLAB command
convhulln (which is based on the software QHULL), or the specialized ex-
ternal package CDD [3]. Special care is taken with the case when the set of
exponents has lower affine dimension than the number of variables (this case
occurs for instance for homogeneous polynomials, where the sum of the de-
grees is equal to a constant), in which case a projection to a lower dimensional
space is performed prior to the convex hull computation.

A special sparsity structure that appears frequently in robust control the-
ory when considering, for instance, Lyapunov function analysis for linear sys-
tems with parametric uncertainty (see Section 3.2), is called the multipartite
structure (see [26] for a definition). Such a structure also appears when con-
sidering infinitely constrained linear matrix inequalities (LMIs) of the form:
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Minimize
J

j=1

wjcj

subject to

A0(x) +
J

j=1

Aj(x)cj 0 ∀x ∈ Rn,

where the cj ’s and wj ’s are again the decision variables and given real numbers,
respectively, and the Aj(x)’s are given symmetric polynomial matrices. By
introducing a new set of indeterminates y, defining pj(x, y) = yT Aj(x)y, and
replacing the positive semidefiniteness condition A0(x) + Aj(x)cj 0 by
sum of squares condition

p(x, y) = p0(x, y) +
J

j=1

pj(x, y)cj is SOS, (5)

obviously the original LMIs can be computationally relaxed to an SOS pro-
gram (a positive semidefinite matrix A(x) for which yT A(x)y is an SOS is
called an SOS matrix in [4]). The resulting polynomial (5) has the multipar-
tite structure (in this case it is actually bipartite): its independent variable
can be naturally partitioned into two sets x and y, where the degree of the
polynomial in x can be arbitrary, and the degree in y is always equal to two.
What distinguishes this case from a general sparsity, is that the Newton poly-
tope of p(x, y) is the Cartesian product of the individual Newton polytopes
corresponding to the blocks of variables. Because of this structure, only mono-
mials of the form xαyi will appear in the monomial vector Z(x, y). The current
version of SOSTOOLS provides a support for the multipartite structure via
the argument ’sparsemultipartite’ to the function sosineq, by computing
a reduced set of monomials in an efficient manner.

To illustrate the benefit of using the sparse multipartite option, consider
the problem of checking whether a polynomial matrix inequality

F (x) = F T (x) 0 ∀x ∈ Rn

holds, where F ∈ R[x]m×m. A sufficient test for positive semidefiniteness of
F (x) is obtained by showing that the bipartite polynomial yT F (x)y is a sum
of squares (equivalently, showing that F (x) is an SOS matrix). We denote the
degree of F by d. For various values of (m, n, d), the sizes of the resulting
semidefinite programs are depicted in Table 1.

2.3 Customized Functions

The SOSTOOLS package includes several “ready-made” customized functions
that solve specific problems directly, by internally reformulating them as SOS



SOSTOOLS and Its Control Applications 281

(m, n, d) Without multipartite option With multipartite option

(3, 2, 2) 15 × 15, 90 constraints 9 × 9, 36 constraints
(4, 2, 2) 21 × 21, 161 constraints 12 × 12, 60 constraints
(3, 3, 2) 21 × 21, 161 constraints 12 × 12, 60 constraints
(4, 3, 2) 28 × 28, 266 constraints 16 × 16, 100 constraints
(3, 2, 4) 35 × 35, 279 constraints 18 × 18, 90 constraints
(4, 2, 4) 53 × 53, 573 constraints 24 × 24, 150 constraints
(3, 3, 4) 59 × 59, 647 constraints 30 × 30, 210 constraints
(4, 3, 4) 84 × 84, 1210 constraints 40 × 40, 350 constraints

programs. One of these functions is findbound, a function for finding a lower
bound of a polynomial, whose usage we have seen at the end of Section 2.1.
In the new version, these customized functions have been updated and sev-
eral new capabilities have been added. For instance, the customized function
findbound, which previously could only handle unconstrained global polyno-
mial optimization problems, can now be used to solve constrained polynomial
optimization problems of the form:

minimize f(x)
subject to gi(x) ≥ 0, i = 1, ..., M

hj(x) = 0, j = 1, ..., N.

A lower bound for f(x) can be computed using Positivstellensatz-based relax-
ations. Assume that there exists a set of sums of squares σj(x)’s, and a set of
polynomials λi(x)’s, such that

f(x) − γ = σ0(x) +
j

λj(x)hj(x) +
i

σi(x)gi(x)+

+
i1,i2

σi1,i2(x)gi1(x)gi2 (x) + · · · (6)

then it follows that γ is a lower bound for the constrained optimization
problem stated above. This specific kind of representation corresponds to
Schmüdgen’s theorem [32]. By maximizing γ, we can obtain a lower bound
that becomes increasingly tighter as the degree of the expression (6) is in-
creased.

Another new feature can be found in the customized function findsos,
which is used for computing an SOS decomposition. For certain applications,
it is particularly important to ensure that the SOS decomposition found nu-
merically by SDP methods actually corresponds to a true solution, and is not
the result of roundoff errors. This is specially true in the case of ill-conditioned
problems, since SDP solvers can sometimes produce in this case unreliable re-
sults. There are several ways of doing this, for instance using backwards error

Table 1. Sizes of the semidefinite programs for proving F (x) 0, where F ∈
R[x]m×m has degree d and x ∈ Rn, with and without the sparse multipartite option.
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analysis, or by computing rational solutions, that we can fully verify symboli-
cally. Towards this end, we have incorporated an experimental option to round
to rational numbers a candidate floating point SDP solution, in such a way to
produce an exact SOS representation of the input polynomial (which should
have integer or rational coefficients). The procedure will succeed if the com-
puted solution is “well-centered,” far away from the boundary of the feasible
set; the details of the rounding procedure will be explained elsewhere. Cur-
rently, this facility is available only through the customized function findsos,
by giving an additional input argument ‘rational’. On future releases, we
may extend this to more general SOS program formulations.

3 Control Applications

We will now see how sum of squares programs can be formulated to solve
several problems arising in systems and control, such as nonlinear stability
analysis, parametric robustness analysis, stability analysis of time-delay sys-
tems, safety verification, and nonlinear controller synthesis.

3.1 Nonlinear Stability Analysis

The Lyapunov stability theorem (see e.g. [10]) has been a cornerstone of non-
linear system analysis for several decades. In principle, the theorem states that
a system ẋ = f(x) with equilibrium at the origin is stable if there exists a
positive definite function V (x) such that the derivative of V along the system
trajectories is non-positive.

We will now show how the search for a Lyapunov function can be formu-
lated as a sum of squares program. Readers are referred to [17, 15, 23] for more
detailed discussions and extensions. For our example, consider the systemẋ1

ẋ2

ẋ3

 =

 −x3
1 − x1x

2
3

−x2 − x2
1x2

−x3 − 3x3
x2
3+1

+ 3x2
1x3

 , (7)

which has an equilibrium at the origin. Notice that the linearization of (7)
has zero eigenvalue, and therefore cannot be used to analyze local stability of
the equilibrium. Now assume that we are interested in a quadratic Lyapunov
function V (x) for proving stability of the system. Then V (x) must satisfy

V − (x2
1 + x2

2 + x2
3) ≥ 0,

− ∂V

∂x1
ẋ1 − ∂V

∂x2
ẋ2 − ∂V

∂x3
ẋ3 ≥ 0. (8)

The first inequality, with being any constant greater than zero (in what
follows we will choose = 1), is needed to guarantee positive definiteness of
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V (x). We will formulate an SOS program that computes a Lyapunov function
for this system, by replacing the above nonnegativity conditions with SOS
conditions. However, notice that ẋ3 is a rational function, and therefore (8)
is not a polynomial expression. But since x2

3 + 1 > 0 for any x3, we can just
reformulate (8) as

(x2
3 + 1) − ∂V

∂x1
ẋ1 − ∂V

∂x2
ẋ2 − ∂V

∂x3
ẋ3 ≥ 0.

Next, we parameterize the candidate quadratic Lyapunov function V (x) by
some unknown real coefficients c1, ..., c6:

V (x) = c1x
2
1 + c2x1x2 + c3x

2
2 + ... + c6x

2
3,

and the following SOS program (with no objective function) can be formulated

Find a polynomial V (x), (equivalently, find c1, ..., c6)
such that

V (x) − (x2
1 + x2

2 + x2
3) is SOS,

(x2
3 + 1) − ∂V

∂x1
ẋ1 − ∂V

∂x2
ẋ2 − ∂V

∂x3
ẋ3 is SOS.

In this example, SOSTOOLS returns V (x) = 5.5489x2
1 + 4.1068x2

2 + 1.7945x2
3

as a Lyapunov function that proves the stability of the system.

3.2 Parametric Robustness Analysis

When the vector field of the system is uncertain, e.g., dependent on some un-
known but bounded parameters p, robust stability analysis can be performed
by finding a parameter dependent Lyapunov function, which serves as a Lya-
punov function for the system for all possible parameter values. Details on
computation of such Lyapunov functions can be found in [15, 39].

We will illustrate such robustness analysis by considering the system:

d

dt

x1

x2

x3

 =

 −p1 1 −1
2 − 2p2 2 −1

3 1 −p1p2

x1

x2

x3


where p1 and p2 are parameters. The region in the parameter space (p1, p2)
for which stability is retained is shown in Figure 2. Operating conditions for
this system are p1 ∈ [p1, p1] and p2 ∈ [p2, p2], where pi, pi are real numbers
and pi ≤ pi. We capture this parameter set by constructing two inequalities:

a1(p) (p1 − p1)(p1 − p1) ≤ 0

a2(p) (p2 − p2)(p1 − p2) ≤ 0.
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We assume that the nominal parameter value is (2.7, 7), which is the center of
the rectangular regions shown in Figure 2. The robust stability of this system
will be verified by constructing a Lyapunov function. We look for a parameter
dependent Lyapunov function of the form V (x; p) that is bipartite: quadratic
in the state x and any order in p. To ensure that the two Lyapunov inequalities
are satisfied in the region of interest, we will adjoint the parameter constraint
ai(p) ≤ 0 multiplied by sum of squares multipliers qi,j(x; p) to the two Lya-
punov inequalities, using a technique that can be considered as an extension
of the S-procedure [40]. In this way, the search for a parameter dependent
Lyapunov function can be formulated as the following SOS program:

Find V (x; p), and qi,j(x, p),
such that

V (x; p) − x 2 +
2

j=1

q1,j(x; p)ai(p) is SOS,

− V̇ (x; p) − x 2 +
2

j=1

q2,j(x; p)ai(p) is SOS,

qi,j(x; p) is SOS, for i, j = 1, 2.

In this case, the Lyapunov function candidate V (x; p) and the sum of squares
multiplier qi,j(x, p)’s are linearly parameterized by some unknown coefficients,
which are the decision variables of our SOS program. We choose the qi,j(x, p)’s
to be bipartite sums of squares, quadratic in x and of appropriate order in p.

When the Lyapunov function V (x; p) is of degree zero in p, we can prove
stability for p1 ∈ [2.19, 3.21] and p2 ∈ [6.47, 7.53]. When V (x; p) is affine in p,
then we can prove stability for p1 ∈ [1.7, 3.7] and p2 ∈ [5.16, 8.84]. When it
is quadratic in p, we can prove stability for the maximum rectangular region
centered at the nominal parameter value, i.e., p1 ∈ [1.7, 3.7] and p2 ∈ [5, 9].
See Figure 2.

This example also illustrates the benefit of exploiting the bipartite struc-
ture. In the case of quadratic parameter dependence, if the bipartite structure
of the conditions is not taken into account then the dimension of the vector
Z(x; p) corresponding to a non-structured V (x; p) is 279; taking into account
the bipartite structure this number is reduced to 90.

3.3 Stability Analysis of Time-Delay Systems

The stability analysis of time-delay systems, i.e., systems described by func-
tional differential equations (FDEs), can be done by constructing appropriate
Lyapunov certificates, which are in the form of functionals instead of the well
known Lyapunov functions that are used in the case of systems described
by ordinary differential equations (ODEs). This difference is due to the fact
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Parameter region and stability certificates
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V affine in p      
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Fig. 2. The full stability region (shaded) and the regions for which stability can
be proven by constructing bipartite Lyapunov functions using SOSTOOLS. Bigger
regions require higher order certificates, which nonetheless can be easily computed
because of their structure.

that the state-space in the case of FDEs is the space of functions and not an
Euclidean space [7].

Consider a time delay system of the form:

ẋ = f(xt), (9)

where xt = x(t + θ), θ ∈ [−τ, 0] is the state. In order to obtain stability
conditions for this system, we use the Lyapunov-Krasovskii functional:

V (xt) = a0(x(t)) +
0

−τ

0

−τ

a1(θ, ξ, x(t), x(t + θ), x(t + ξ))dθdξ +

+
0

−τ

t

t+θ

a2(x(ζ))dζdθ +
0

−τ

t

t+ξ

a2(x(ζ))dζdξ (10)

where by a1(θ, ξ, x(t), x(t+θ), x(t+ξ)) we mean a polynomial in (θ, ξ, x(t), x(t+
θ), x(t + ξ)). In the case in which the time delay system is linear, of the form

ẋ(t) = A0x(t) + A1x(t − τ) = f(xt), (11)

the above functional (10) resembles closely the complete Lyapunov func-
tional presented in [6] and we can further restrict ourselves to specially struc-
tured kernels, i.e., the polynomial a1 need only be bipartite - quadratic in
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(x(t), x(t+ θ), x(t+ ξ)) but any order in (θ, ξ). The polynomials a0 and a2 are
also quadratic in their arguments. There is also a symmetric structure that
should be taken into account:

a1(θ, ξ, x(t), x(t + θ), x(t + ξ)) = a1(ξ, θ, x(t), x(t + ξ), x(t + θ)).

Here we present the Lyapunov-Krasovskii conditions for stability for concrete-
ness:

Theorem 1 ([6]). The system described by Eq. (11) is asymptotically stable
if there exists a bounded quadratic Lyapunov functional V (xt) such that for
some  > 0, it satisfies

V (xt) ≥ x(t) 2 (12)

and its derivative along the system trajectory satisfies

V̇ (xt) ≤ − x(t) 2. (13)

The Lyapunov-Krasovskii conditions for stability can be satisfied by im-
posing sums of squares conditions on the kernels of the corresponding con-
ditions. There are also extra constraints that have to be added, in the sense
that the kernels need to be non-negative only in the integration interval:

g1(θ) = θ(θ + τ) ≤ 0
g2(ξ) = ξ(ξ + τ) ≤ 0.

Such constraints can be adjoined to the Lyapunov conditions as in the previous
example. This yields the following SOS program:

Find polynomials a0(x(t)), a1(θ, ξ, x(t), x(t + θ), x(t + ξ)), a2(x(ζ)), > 0
and sums of squares qi,j(θ, ξ, x(t), x(t + θ), x(t + ξ)) for i, j = 1, 2
such that

a0(x(t)) − x 2 is SOS,

a1(θ, ξ, x(t), x(t + θ), x(t + ξ)) +
2

j=1

q1,jgj is SOS,

a2(x(ζ)) is SOS,

−


da0

dx(t)f(xt) + τ2 ∂a1
∂x(t)f(xt) − τ2 ∂a1

∂θ − τ2 ∂a1
∂ξ +

+τa1(0, ξ, x(t), x(t), x(t + ξ)) − τa1(−τ, ξ, x(t), x(t − τ), x(t + ξ))+
+τa1(θ, 0, x(t), x(t + θ), x(t)) − τa1(θ,−τ, x(t), x(t + θ), x(t − τ))+

+2τa2(x(t)) − τa2(x(t + θ)) − τa2(x(t + ξ))

 + . . .

− x 2 +
2

j=1

q2,jgj is SOS.

The first three conditions guarantee positive definiteness of the functional (10)
and the last condition guarantees negative definiteness of its time derivative.
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Order of polynomial a in θ and ξ 0 1 2 3 4 5 6

τ 4.472 4.973 5.421 5.682 5.837 5.993 6.028

In order to keep the symmetric and sparse structure in the corresponding sum
of squares conditions we have to make a judicious choice for the multipliers
qi,j .

As an example, consider the following time delay system:

ẋ1(t) = −2x1(t) − x1(t − τ) f1

ẋ2(t) = −0.9x2(t) − x1(t − τ) − x2(t − τ) f2.

The system is asymptotically stable for τ ∈ [0, 6.17]. The best bound on τ
that can be obtained with a simple LMI condition is τ ∈ [0, 4.3588] in [16].
More complicated LMI conditions that yield better bounds and which are
based on a discretization procedure can be found in [6]. Using the Lyapunov
functional (10) we get the bounds given in Table 2, where we see that as the
order of a with respect to θ and ξ is increased, better bounds are obtained
that approach the analytical one.

The symmetric structure and sparsity of the kernels should be taken into
account in the construction of the functionals, as this not only reduces the size
of the corresponding semidefinite programs but also removes numerical errors.
This can be done using the ’sparsemultipartite’ feature in SOSTOOLS.
The construction of Lyapunov functionals can also be extended to uncertain
nonlinear systems where delay-dependent and delay-independent conditions
can be obtained in a similar manner [14].

3.4 Safety Verification

Complex behaviors that can be exhibited by modern engineering systems make
the safety verification of such systems both critical and challenging. It is often
not enough to design a system to be stable, but a certain bad region in the
state space must be completely avoided. Safety verification or reachability
analysis aims to show that starting at some initial conditions, a system cannot
evolve to an unsafe region in the state space. Here we will show how safety
verification can be performed by solving an SOS program, based on what is
termed barrier certificates. See [22] for detailed discussions and extensions.

For example, let us consider the system (from [22]),

ẋ1 = x2,

ẋ2 = −x1 +
1
3
x3

1 − x2,

Table 2. The maximum delay τmax for different degree polynomials a1 in θ and ξ
corresponding to the example in Section 3.3.
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Example 1

Fig. 3. Phase portrait of the system in Section 3.4. Solid patches are (from the left)
Xu and X0, respectively. Dashed curves are the zero level set of B(x), whereas solid
curves are some trajectories of the system.

whose safety we want to verify, with initial set X0 = {x : gX0(x) = (x1−1.5)2+
x2

2−0.25 ≤ 0} and unsafe set Xu = {x : gXu(x) = (x1 +1)2+(x2+1)2−0.16 ≤
0}. Here we will find a barrier certificate B(x) which satisfy the following three
conditions: B(x) < 0 ∀x ∈ X0, B(x) > 0 ∀x ∈ Xu, and ∂B

∂x1
ẋ1 + ∂B

∂x2
ẋ2 ≤ 0.

It is clear that the existence of such a function guarantees the safety of the
system, and the zero level set of B(x) will separate an unsafe region from all
system trajectories starting from a given set of initial conditions. By using the
higher degree S-procedure and replacing nonnegativity by SOS conditions, we
can formulate the following SOS program:

Find B(x), and σi(x),
such that − B(x) − 0.1 + σ1(x)gX0(x) is SOS,

B(x) − 0.1 + σ2(x)gXu(x) is SOS,

− ∂B

∂x1
ẋ1 +

∂B

∂x2
ẋ2 is SOS,

σi(x) is SOS, for i = 1, 2.

In this example, we are able to find a quartic barrier certificate B(x) proving
the safety of the system, whose zero level set is shown in Figure 3.
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3.5 Nonlinear Controller Synthesis

For a system ẋ = f(x) + g(x)u, where f(x) and g(x) are polynomials, appli-
cation of the SOS technique to the state feedback synthesis problem amounts
to finding a polynomial state feedback law u = k(x) and a polynomial Lya-
punov function V (x) such that V (x) − φ(x) and − ∂V

∂x (f(x) + g(x)k(x)) are
sums of squares, for some positive definite φ(x). Yet the set of V (x) and k(x)
satisfying these conditions is not jointly convex, and hence a simultaneous
search for such V (x) and k(x) is hard — it is equivalent to solving some bilin-
ear matrix inequalities (BMIs). Because of this, a dual approach to the state
feedback synthesis based on density functions [29] has also been proposed,
which has a better convexity property. The idea in this case is to find a den-
sity function ρ(x) and a controller k(x) such that ρ(x)f(x)/|x| is integrable
on {x ∈ Rn : |x| ≥ 1} and

[ · (ρ(f + gk)](x) > 0 for almost all x. (14)

If such ρ(x) and k(x) can be found, then for almost all initial states x(0) the
trajectory x(t) of the closed-loop system exists for t ∈ [0,∞) and tends to
zero as t → ∞. See [28] for details. It is interesting to note that even if the
system is not asymptotically stabilizable, it is sometimes possible to design a
controller which makes the zero equilibrium almost globally attractive.

Consider for example the system (taken from [28]).

ẋ1 = −6x1x
2
2 − x2

1x2 + 2x3
2,

ẋ2 = x2u,

whose zero equilibrium is not asymptotically stabilizable, since any state with
x2 = 0 is necessarily an equilibrium. Using the following parameterization

ρ(x) =
a(x)

(x2
1 + x2

2)α
; ρ(x)k(x) =

c(x)
(x2

1 + x2
2)α

,

the positivity of ρ(x) and the divergence condition (14) can be formulated as
the following SOS program:

Find a(x) and c(x),
such that

a(x) − 1 is SOS,

[b · (fa + gc) − α b · (fa + gc)](x) is SOS,

where b(x) = x2
1 + x2

2. For α = 3, we find that the SOS conditions are fulfilled
for a(x) = 1 and c(x) = 2.229x2

1−4.8553x2
2. Since the integrability condition is

also satisfied, we conclude that the controller u(x) = c(x)
a(x) = 2.229x2

1−4.8553x2
2

renders the origin almost globally attractive. The phase portrait of the closed
loop system is shown in Figure 4.
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Fig. 4. Phase portrait of the closed-loop system in Section 3.5. Solid curves are
trajectories; dashed line is the set of equilibria.

4 Conclusions

In this chapter we have presented some of the features of SOSTOOLS, a
free MATLAB toolbox for formulating and solving SOS programs. We have
shown how it can be used to solve some control problems, such as nonlinear
stability analysis, parametric robustness analysis, stability analysis of time-
delay systems, safety verification, and nonlinear controller synthesis. Future
improvements to SOSTOOLS will incorporate symmetry reduction and SOS
over quotients, e.g., to handle the case where an SOS decomposition is sought
for a polynomial p(x) that is invariant under the action of a finite group.
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GloptiPoly is a Matlab/SeDuMi add-on to build and solve convex linear ma-
trix inequality (LMI) relaxations of non-convex optimization problems with
multivariate polynomial objective function and constraints, based on the the-
ory of moments. In contrast with the dual sum-of-squares decompositions of
positive polynomials, the theory of moments allows to detect global optimality
of an LMI relaxation and extract globally optimal solutions. In this report, we
describe and illustrate the numerical linear algebra algorithm implemented in
GloptiPoly for detecting global optimality and extracting solutions. We also
mention some related heuristics that could be useful to reduce the number of
variables in the LMI relaxations.

1 Introduction

Consider the global optimization problem

p = minx g0(x)
s.t. gi(x) ≥ 0, i = 1, 2 . . . , m

(1)

where the mappings gi : Rn → R, i = 0, 1, . . . , m are real-valued polynomials,
that is, gi ∈ R[x1, . . . , xn] for all i = 1, . . . , m. Depending on its parity, let
deg gi = 2di − 1 or 2di, and denote d = maxi di. Define

vk(x) = 1 x1 x2 . . . xn x2
1 x1x2 . . . x1xn x2

2 x2x3 . . . x2
n . . . xk

1 . . . xk
n

T

(2)
as a basis for the space of polynomials of degree at most k.

A polynomial g ∈ R[x1, . . . , xn] can be written

x → g(x) =
α∈Nn

gαxα
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where
xα = xα1

1 xα2
2 · · ·xαn

n

is a monomial of degree |α| = n
i=1 αi.

Following the methodology described in [12], we define for (generally non-
convex) problem (1) a hierarchy {Qk} of (convex) LMI relaxations

Qk

 p∗k = miny α(g0)αyα

s.t. Mk(y) 0
Mk−di (giy) 0, i = 1, 2, . . . , m

(3)

where

• each decision variable yα of y = {yα} corresponds to a monomial xα,
• Mk(y) is the positive semidefinite moment matrix of order k, and
• Mk−di (y) is the positive semidefinite localizing matrix of order k − di as-

sociated with the polynomial gi, for all i = 1, . . . , m.

Solving the sequence {Qk} of LMI relaxations (3) of increasing orders
k = d, d + 1, . . ., it is proved in [12] that under some mild assumptions on
the polynomials {gi}, we obtain a monotone sequence of optimal values p∗

k

converging asymptotically to the global optimal value p∗ of the original opti-
mization problem in (1), i.e. p∗k ↑ p∗ as k → ∞. Experimental results reveal
that in practice p∗k is very close to p∗ for relatively small values of k. In addi-
tion, in many cases the exact optimal value p∗ is obtained at some particular
relaxation Qk, that is, p∗ = p∗k for some relatively small k.

GloptiPoly is a user-friendly Matlab/SeDuMi add-on to build and solve
these LMI relaxations , see [10] and

www.laas.fr/∼henrion/software/gloptipoly.

In this report we describe the algorithm used in GloptiPoly to detect whether
the global optimum p∗ in (1) has been reached at some LMI relaxation Qk in
(3), i.e. whether p∗k = p∗ for some index k. We also describe how to extract
(one or several) global minimizers x∗ ∈ Rn to original problem (1), given a
solution y∗ of the LMI relaxation Qk in (3).

Note that there exist a dual approach to build hierarchy of LMI relaxations,
based on real algebraic geometry and sum-of-squares (SOS) decompositions of
positive polynomials [16]. In contrast with the theory of moments which works
in the space of measures on the primal space of solutions x ∈ Rn, the SOS
approach rather works in a (dual) space of polynomials, to obtain certificates
ensuring validity of bounds on the objective function. As a result, and so far,
in the latter approach there is no sufficient condition to check whether the
exact optimal value is obtained, and no solution extraction mechanism.

In section 2 we state an algebraic condition ensuring global optimality of an
LMI relaxation, and we describe the numerical linear algebra algorithm used
to extract globally optimal solutions. In section 3 we mention some heuristics
based on this algorithm that can used to reduce significantly the number
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of variables in the LMI relaxations. Finally, in section 4 we comment on a
numerical behavior of GloptiPoly on unconstrained minimization problems.
Illustrative numerical examples are inserted throughout the text.

2 Extracting Globally Optimal Solutions

2.1 Global Optimality Condition

Let y∗ be an optimal solution of the LMI relaxation Qk in (3) (of order k). A
sufficient rank condition ensuring global optimality of the LMI relaxation is

rank Mk(y∗) = rank Mk−d(y∗). (4)

This condition can be checked numerically with the help of the singular value
decomposition [8]. Note however that the rank condition (4) is not necessary,
i.e. the global optimum p∗ may have been reached at some LMI relaxation of
order k (i.e., p∗ = pk), and yet rank Mk(y∗

k) > rank Mk−d(y∗
k).

That condition (4) is sufficient to ensure that p∗ = pk is a consequence of a
deep result of Curto and Fialkow [6]. In our present context, if condition (4) is
true, then by Theorem 1.6 in [6], y∗ is the vector of moments of a rankMk(y∗)-
atomic measure supported on the feasible set K = {x ∈ Rn | gi(x) ≥ 0, i =
1, . . . , m}.

In the important special case where the feasible set K can be writen

K = {x ∈ Rn | gi(x) = 0, i = 1, . . . , n; gn+j(x) ≥ 0, j = 1, . . . , m},
and the polynomial ideal I = g1, . . . , gn ⊂ R[x1, . . . , xn] is zero-dimensional
and radical, then condition (4) is guaranteed to hold at some index k. For
instance this is the case for boolean (or 0-1) optimization problems, and more
generally, bounded discrete optimization problems. For more details the in-
terested reader is referred to [13, 14, 15, 17].

2.2 Extraction Algorithm

Assume that the LMI relaxation Qk in (3) has been solved, producing a vector
y∗. Assume further that the rank condition (4) is satisfied. Then the main steps
of the extraction algorithm can be sketched as follows.

Cholesky Factorization

As condition (4) holds, y∗ is the vector of a rankMk(y∗)-atomic measure
supported on K. Hence, by construction of the moment matrix Mk(y∗), we
have

Mk(y∗) =
r

j=1

vk(x∗(j))(vk(x∗(j))T = V ∗(V ∗)T
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where
r = rank Mk(y∗) (5)

and
V ∗ = vk(x∗(1)) vk(x∗(2)) · · · vk(x∗(r))

where vk(x) is as in (2), and {x∗(j)}r
j=1 are r global minimizers of (1).

Extract a Cholesky factor V of the positive semidefinite moment matrix
Mk(y∗), i.e. a matrix V with r columns satisfying

Mk(y∗) = V V T . (6)

Such a Cholesky factor can be obtained via singular value decomposition, or
any cheaper alternative [8].

Matrices V and V ∗ span the same linear subspace, so the solution ex-
traction algorithm consists in transforming V into V ∗ by suitable column
operations. This is described in the sequel.

Column Echelon Form

Reduce matrix V to column echelon form

U =



1
x
0 1
0 0 1
x x x

...
. . .

0 0 0 · · · 1
x x x · · · x

...
...

x x x · · · x


by Gaussian elimination with column pivoting [8]. By construction of the
moment matrix, each row in U corresponds to a monomial xα in polynomial
basis v. Pivot elements in U (i.e. the first non-zero elements in each column)
correspond to monomials xβj , j = 1, 2, . . . , r of the basis generating the r
solutions. In other words, if

w = [xβ1 xβ2 . . . xβr ]
T (7)

denotes this generating basis, then it holds

v = Uw (8)

for all solutions x = x∗(j), j = 1, 2, . . . , r.
In summary, extracting the solutions amounts to solving polynomial sys-

tem of equations (8).
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Solving the Polynomial System of Equations

Once a generating monomial basis is available, it turns out that extracting
solutions of polynomial system of equations (8) amounts to solving a linear
algebra problem.

As pointed out to us by Monique Laurent, this fact has been rediscovered
many times. It is called Stickelberger theorem in textbook [19], and it is
credited to Stetter and Müller in [4], see also the recent work [9]. The method
can be sketched as follows.

Multiplication Matrices

For each first degree monomial xi, i = 1, 2, . . . , n extract from U the r-by-
r multiplication matrix Ni containing coefficients of monomials xixβj , j =
1, 2, . . . , r in generating basis (7), i.e. such that

Niw = xiw, i = 1, 2, . . . , n. (9)

Common Eigenvalues

As shown in [19], the entries of solutions x∗(j), j = 1, 2, . . . , r are common
eigenvalues of multiplication matrices Ni, i = 1, 2, . . . , n.

In order to compute these eigenvalues, we follow [4] and build a random
combination of multiplication matrices

N =
n

i=1

λiNi

where the λi, i = 1, 2, . . . , n are non-negative real numbers summing up to
one. Then, compute the ordered Schur decomposition [8]

N = QTQT (10)

where
Q = q1 q2 · · · qr

is an orthogonal matrix (i.e. qT
i qi = 1 and qT

i qj = 0 for i = j) and T is upper-
triangular with eigenvalues of N sorted increasingly along the diagonal.

Finally, the i-th entry x∗
i (j) of x∗(j) ∈ Rn is given by

x∗
i (j) = qT

j Niqj , i = 1, 2, . . . , n, j = 1, 2, . . . , r. (11)
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2.3 Example

Consider the non-convex quadratic optimization problem [12, Ex. 5]

p∗ = minx −(x1 − 1)2 − (x1 − x2)2 − (x2 − 3)2

s.t. 1 − (x1 − 1)2 ≥ 0
1 − (x1 − x2)2 ≥ 0
1 − (x2 − 3)2 ≥ 0.

Applying the first (k = 1) LMI relaxation we obtain p∗
1 = −3 and

rank M1(y∗) = 3.
With the second (k = 2) LMI relaxation we obtain p∗

2 = −2 and
rank M1(y∗) = rank M2(y∗) = 3. Rank condition (4) ensures global opti-
mality, so p∗ = p∗2 = −2.

The moment matrix of order k = 2 reads

M2(y∗) =


1.0000 1.5868 2.2477 2.7603 3.6690 5.2387
1.5868 2.7603 3.6690 5.1073 6.5115 8.8245
2.2477 3.6690 5.2387 6.5115 8.8245 12.7072
2.7603 5.1073 6.5115 9.8013 12.1965 15.9960
3.6690 6.5115 8.8245 12.1965 15.9960 22.1084
5.2387 8.8245 12.7072 15.9960 22.1084 32.1036


and the monomial basis (2) is

v2(x) = 1 x1 x2 x2
1 x1x2 x2

2
T

.

The Cholesky factor (6) of the moment matrix is given by

V =


−0.9384 −0.0247 0.3447
−1.6188 0.3036 0.2182
−2.2486 −0.1822 0.3864
−2.9796 0.9603 −0.0348
−3.9813 0.3417 −0.1697
−5.6128 −0.7627 −0.1365


whose column echelon form reads (after rounding)

U =


1
0 1
0 0 1

−2 3 0
−4 2 2
−6 0 5

 .

Pivot entries correspond to the following generating basis (7)

w = [1 x1 x2]
T .
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From the subsequent rows in matrix U we deduce from (8) that all the
globally optimal solutions x satisfy the polynomial equations

x2
1 = −2 + 3x1

x1x2 = −4 + 2x1 + 2x2

x2
2 = −6 + 5x2.

Multiplication matrices (9) of monomials x1 and x2 in generating basis w are
readily extracted from rows in U :

N1 = 

 0 1 0
−2 3 0
−4 2 2

 , N2 = 

 0 0 1
−4 2 2
−6 0 5

 .

Then choose e.g.

N = 0.6909N1 + 0.3091N2 = 

 0 0.6909 0.3091
−2.6183 2.6909 0.6183
−4.6183 1.3817 2.9274


as a random combination of matrices N1 and N2. The orthogonal matrix in
Schur decomposition (10) is given by

Q = 

 0.4082 0.1826 −0.8944
0.4082 −0.9129 −0.0000
0.8165 0.3651 0.4472

 .
From equations (11), we derive the 3 optimal solutions

x∗(1) = 
1
2 , x∗(2) = 

2
2 , x∗(3) = 

2
3 .

2.4 Numerical Stability

As shown in [8], all the operations of the solution extraction algorithm are
numerically stable, except the Gaussian elimination step with column pivot-
ing. Practical experiments with GloptiPoly however reveal that ill-conditioned
problem instances leading to a failure of Gaussian elimination with column
pivoting are very scarce. This experimental property of Gaussian elimination
was already noticed in [8].

2.5 Number of Extracted Solutions

In virtue of relation (5), the number of solutions extracted by the algorithm is
equal to the rank of the moment matrix. Up to our knowledge, when solving
an LMI relaxation there is no easy way to control the rank of the moment
matrix, hence the number of extracted solutions.
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If there is no objective function in problem (1), by default GloptiPoly
minimizes the trace of the moment matrix. As a result, its rank is indirectly
minimized as well. Note however that, in constrast with trace minimization,
rank minimization under LMI constraints is a difficult non-convex problem.
Practical experiments reveal that low rank moment matrices are preferable
from the numerical point of view: they ensure faster convergence to the global
optimum. See also example 3.1 for an illustration of the impact of the trace
minimization heuristic on the number of extracted solutions.

3 Applications of the Extraction Algorithm

When rank condition (4) is not satisfied, then we still can attempt to apply
the extraction algorithm described in section 2. If the algorithm is successful
and returns feasible solutions reaching the relaxed optimal value p∗

k, then by
definition of the relaxation Qk, these solutions are global minimizers. This
is the topic of section 3.1. Unfortunately, this heuristic does not work sys-
tematically, and extracted solutions can be infeasible, as illustrated with a
counterexample in section 3.2.

If the algorithm is not successful, the column echelon form of the Cholesky
factor of the moment matrix may contain useful information that can some-
times be exploited to reduce significantly the number of variables, hence the
computational burden, in subsequent LMI relaxations. This heuristic is de-
scribed in section 3.3.

3.1 Rank Condition Non Satisfied but Global Optimum Reached

Even though rank condition (4) is not satisfied, the extraction algorithm can
be applied successfully, as shown by the following example.

Trace Minimization Heuristic

With the help of this example we also return to the comments of section 2.5
on the number of extracted solutions and the trace minimization heuristic.

Consider the polynomial system of equations [4, Ex. 5.2]

x2
1 + x2

2 − 1 = 0
x3

1 + (2 + x3)x1x2 + x3
2 − 1 = 0

x2
3 − 2 = 0.

There is no objective function to be minimized, so as indicated above
GloptiPoly solves the LMI relaxations by minimizing the trace of the moment
matrix.

Applying the least order (k = 2) LMI relaxation we obtain rankM1(y∗) = 4
and rankM2(y∗) = 7, so global optimum cannot be ensured via rank condition
(4).
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With the third LMI relaxation (k = 3) we obtain rank M1(y∗) =
rank M2(y∗) = rank M3(y∗) = 2, so rank condition (4) ensures global op-
timality.

From the extraction algorithm we derive the two globally optimal solutions

x∗(1) = 

 0.5826
−0.8128
−1.4142

 , x∗(2) = 

−0.8128
0.5826

−1.4142

 .

Now replacing the minimum trace LMI objective function in GloptiPoly
with a zero objective function, the third LMI relaxation returns rankM1(y∗) =
4 and rank M2(y∗) = rank M3(y∗) = 6, so rank condition (4) cannot ensure
global optimality.

However, by applying the extraction algorithm, we are able to extract 6
solutions

x∗(1) = 

−0.8128
0.5826

−1.4142

 , x∗(2) = 

 0.5826
−0.8128
−1.4142

 , x∗(3) = 

 0.0000
1.0000

−1.4142

 ,

x∗(4) = 

 1.0000
0.0000

−1.4142

 , x∗(5) = 

 0.0000
1.0000
1.4142

 , x∗(6) = 

1.0000
0.0000
1.4142


thus proving global optimality of the LMI relaxation.

3.2 Infeasible Extracted Solutions

When rank condition (4) is not satisfied, it may happen that solutions ex-
tracted by the algorithm are infeasible for the original optimization problem.
Since solutions are extracted from a convex LMI relaxation, they may be
feasible for a subset of the original constraints only.

Example

We consider the polynomial systems of equations arising from a test for nu-
merical bifurcation, originally described in [11] and listed in problem collection
[2]:

5x9
1 − 6x5

1x2 + x1x
4
2 + 2x1x3 = 0

−2x6
1x2 + 2x2

1x
3
2 + 2x2x3 = 0

x2
1 + x2

2 = 0.265625.

This system has 8 distinct real solutions.
The lowest order (k = 5) LMI relaxation yields rank M1(y∗) = 3 and

rank M2(y∗) = rank M3(y∗) = rank M4(y∗) = rank M5(y∗) = 4. Since d = 5,
rank condition (4) cannot ensure global optimality.
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The extraction algorithm on moment matrix M2(y∗) returns 4 solutions

x∗(1) = 

 0.3653
−0.3636
−0.0153

 , x∗(2) = 

 0.3653
0.3636

−0.0153

 ,

x∗(3) =

−0.3653
−0.3636
−0.0153

 , x∗(4) =

−0.3653
0.3636

−0.0153

 .

These solutions satisfy the second and third equations of the original problem,
but not the first equation. Indeed, since the solutions are extracted from a
convex relaxation of the original problem, they may be infeasible for a subset
of the original constraints.

Proceeding with the 6th order LMI relaxation, we obtain rankMi(y∗) = 2
for all i = 1, 2, . . . , 6, hence ensuring global optimality. The two extracted
solutions are

x∗(1) =

−0.2619
0.4439

−0.0132

 , x∗(2) =

 0.2619
0.4439

−0.0132

 .

3.3 Reducing the Number of LMI Variables

Suppose that at the LMI relaxation of order k, equation (8) holds for the solu-
tions to be extracted, i.e. some monomials in standard basis (2) are expressed
as linear combinations of monomials of generating basis (7).

If constraints of the original optimization problem become redundant
when replacing linearly dependent monomials with combinations of generating
monomials, then this results in a reduction of the monomial basis over which
subsequent LMI relaxations are built. A similar idea is used in 0-1 quadratic
problems to reduce the number of variables in successive LMI relaxations, see
[14].

In summary, application of the reduction algorithm at earlier LMI relax-
ations – at which global optimality cannot be ensured with rank condition
(4) – may result in a significant reduction of the problem dimensions. This
can be seen as a (heuristic) alternative to the (systematic) algebraic reduction
techniques of [7].

Example with Continuous Variables

Consider the following non-convex quadratic optimization problem suggested
by Etienne de Klerk and Radina Dontcheva:

p∗ = minx −(x1 − 1)2 − (x2 − 1)2 − (x3 − 1)2

s.t. 1 − (x1 − 1)2 ≥ 0
1 − (x2 − 1)2 ≥ 0
1 − (x3 − 1)2 ≥ 0

(12)

whose global optimum is p∗ = −3.
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At the first (k = 1) LMI relaxation, the 4x4 moment matrix M1(y∗) has
rank 4, so obviously no solution can be extracted. However, we obtain p∗

1 = −3,
so the global optimum is reached.

When k = 2, we have rank M1(y∗) = 4 and rank M2(y∗) = 7, and the
column echelon form of the Cholesky factor of the 10x10 moment matrix
M2(y∗) is given by

U =



1
0 1
0 0 1
0 2 0
0 0 0 0 1
0 0 0 0 0 1
0 0 2 0 0 0
0 0 0 0 0 0 1
0 0 0 2 0 0 0


in the monomial basis (2)

v2(x) = 1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

T
.

Pivot entries in matrix U correspond to the following generating basis (7)

w(x) = [1 x1 x2 x3 x1x2 x1x3 x2x3]
T

which has 7 monomials.
From the rows in matrix U we deduce from (8) that solutions x to be

extracted satisfy the polynomial equations

x2
1 = 2x1

x2
2 = 2x2

x2
3 = 2x3.

(13)

The extraction algorithm fails however, because third degree monomials are
missing in U to build multiplication matrices (9).

Note however that when substituting monomials as in (13), constraints of
the original problem (12) become redundant since 1− (xi−1)2 = −x2

i +2xi =
0 ≥ 0, for i = 1, 2, 3. We can therefore replace monomials x2

i with 2xi and
remove constraints in the next LMI relaxation.

So when k = 3, instead of having a basis (2) with 20 monomials of degree 3,
we can use only 8 monomials to build the third LMI relaxation – with respect
to the previous basis of the second LMI relaxation, the only new element is
the third degree monomial x1x2x3. Using 8 monomials instead of 20 reduces
significantly the computational burden when solving the LMI relaxation. A
further reduction is achieved since redundant constraints can be removed and
the third LMI relaxation does not feature any localizing matrix.
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When applying the reduction algorithm on the moment matrix M3(y∗) of
rank 8, we obtain that monomial x1x2x3 belongs to the generating basis. Mul-
tiplication matrices are readily obtained, and the 8 expected globally optimal
solutions are extracted

x∗(1) = 

 0
0
0

 , x∗(2) = 

 2
0
0

 , x∗(3) = 

0
2
0

 , x∗(4) = 

 2
2
0

 ,

x∗(5) =

 0
0
2

 , x∗(6) =

 2
0
2

 , x∗(7) =

0
2
2

 , x∗(8) =

 2
2
2

 .

Example with Discrete Variables

Consider the Max-Cut problem

min − 1
2 i<j wij(1 − xixj)

s.t. xi ∈ {−1, +1}
in the case of a complete K5 graph with adjacency matrix

W =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 .

The first (k = 1) LMI relaxation yields p∗
1 = −6.25 and rank M1(y∗) = 5.

When k = 2 we obtain p∗2 = −6.25 and rankM1(y∗) = 5, rankM2(y∗) = 10.
When k = 3, we get p∗3 = −6 and rank M1(y∗) = 5, rank M2(y∗) = 10,

rank M3(y∗) = 20. The extraction algorithm returns
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U =



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−2 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 −2 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 0
0 −1 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 −1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0


so that linearly dependent monomials in polynomial system of equations (9)
are as follows

x4x5 = −2 − x1x2 − x1x3 − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 − x3x4 − x3x5

x1x2x3 = x4x5

x1x2x4 = x1x2x3

x1x2x5 = x1x2x4

x1x3x4 = x1x2x5

x1x3x5 = x1x3x4

x1x4x5 = −2x1 − x2 − x3 − x4 − x5 − x4x5 − x1x2x3 − x1x2x4 − x1x2x5 − x1x3x4

x2x3x4 = −x1 − x2 − x3 − x4 − x4x5 − x1x2x3 − x1x2x5

x2x3x5 = −x1 − x2 − x3 − x5 − x4x5 − x1x2x4 − x1x3x4

x2x4x5 = x1 + x3 + x4x5 + x1x2x5 + x1x3x4

x3x4x5 = x1 + x2 + x4x5 + x1x2x3 + x1x2x4.

From these relations, fourth degree monomials can be expressed in gener-
ating basis (7)



306 D. Henrion and J.-B. Lasserre

x1x2x3x4 = (x1x2x3)x4 = (x4x5)x4 = x5

x1x2x3x5 = (x1x2x3)x5 = (x4x5)x5 = x4

x1x2x4x5 = (x1x2x4)x5 = (x1x2x3)x5 = (x4x5)x4 = x5

x1x3x4x5 = (x1x3x4)x5 = (x1x2x5)x5 = x1x2

x2x3x4x5 = (x2x3x4)x5 = (−x1 − x2 − x3 − x4 − x4x5 − x1x2x3 − x1x2x5)x5

= −x1x5 − x2x5 − x3x5 − x4x5 − 2x4 − x1x2

and the only fifth degree monomial readily follows

x1x2x3x4x5 = (x1x2x3x4)x5 = 1.

At this stage, it is useless to proceed with higher order LMI relaxations since
no more linearly independent monomials of higher degree can be produced.

Consequently, the global optimum p∗ = p∗3 = −6 has been reached and 20
globally optimal solutions can be extracted from the above matrix U .

4 A Remark on the Numerical Behavior of GloptiPoly

Finally, we want to comment on a nice and surprising behavior of GloptiPoly
that we observed on some examples of unconstrained minimization.

In the case of unconstrained global minimization, that is when K is Rn,
only one LMI relaxation is useful, namely Mk(y) if deg g0 = 2k or 2k − 1.
Indeed,

(a) either g0 − p∗ is SOS and then p∗k = p∗, or
(b) g0 − p∗ is not SOS and then p∗k+j = p∗k < p∗ for all j = 1, 2, . . .

Therefore there is no need to try relaxations with orders higher than k.
However, in case (b) it may be worthy to still try higher order relaxations! In-
deed, because of the numerical inaccuracies involved in the solving procedure,
one may obtain convergence in a finite number of steps to a value and min-
imizers, very close to the exact value and the exact minimizers respectively!
Let us try to explain why.

If the space of polynomials x → g(x) = α gαxα is equipped with the
norm g = α |gα|, then the cone Σn of SOS polynomials is dense in the set
of polynomials nonnegative over the multidimensional box [−1, 1]n, see e.g.
[1]. 

Therefore, consider a nonnegative polynomial g0 that is not SOS, and
assume that g0 has a global minimizer x∗ ∈ [−1, 1]n with g0(x∗) = p∗. Then,
one may hope that an SOS polynomial gk, close to g0 (i.e., with gk −g0 < )
will provide a global minimizer close to x∗. Observe that for all x ∈ [−1, 1]n,

|gk(x) − g0(x)| = |
α 

[(gk)α − (g0)α] xα| ≤ gk − g0 ≤ .

However, one does not know how to construct such a sequence of SOS poly-
nomials {gk} with gk − g0 → 0.
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But let us see how GloptiPoly behaves on the following well-known exam-
ple of a non-negative polynomial which is not SOS, namely the polynomial
obtained by dehomogenization of Motzkin’s form:

g0(x) = 
1
27

+ x2
1x

2
2(x

2
1 + x2

2 − 1).

This polynomial is nonnegative (p∗ = minx g0(x) = 0 attained at |x1| = |x2| =√
3/3) but is not SOS.

• The least order (k = 3) LMI relaxation is unbounded, returning no useful
information. In principle one should stop here; we have detected that g0

is not SOS.
• when k = 4 the LMI relaxation is unbounded too.
• when k = 5 the LMI relaxation returns p∗

5 = −0.4036 and all the moment
matrices have full rank (in GloptiPoly we use a relative threshold of 10−3

to evaluate the numerical rank of a matrix)
• when k = 6 the LMI relaxation returns p∗

6 = −0.08241 and all the moment
matrices have full rank

• when k = 7 the LMI relaxation returns p∗
7 = −0.01675 and all the moment

matrices have full rank
• when k = 8 the LMI relaxation returns an almost zero optimum p∗

8 =
3.022 · 10−10, and rank M1(y∗) = 3, rank M2(y∗) = rank M3(y∗) = 4, thus
proving global optimality.

The moment matrix of second order reads

M2(y∗) =


1.0000 0.0000 0.0000 0.3333 0.0000 0.3333
0.0000 0.3333 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.3333 0.0000 0.0000 0.0000
0.3333 0.0000 0.0000 0.1111 0.0000 0.1111
0.0000 0.0000 0.0000 0.0000 0.1111 0.0000
0.3333 0.0000 0.0000 0.1111 0.0000 0.1111


from which we readily extract the four globally optimal solutions

x∗(1) = −0.5773
−0.5773 , x∗(2) = 0.5773

−0.5773 ,

x∗(3) =
−0.5773

0.5773 , x∗(4) =
0.5773
0.5773 .

From the dual LMI [12, 16], we can obtain the SOS decomposition

g8(x) =
32

i=1

a2
i q

2
i (x) + εr(x) ≈ g0(x) on [−1, 1]2,

where
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• polynomials qi(x) and r(x) are normalized such that their coefficient vec-
tors have unit Euclidean norm,

• ε ≤ 10−8 < a2
i , i.e. positive scalar parameter ε is less than a given thresh-

old, and positive scalar coefficients a2
i in the decomposition are greater

than the threshold,
• deg qi(x) ≤ 8, since GloptiPoly solved the eighth LMI relaxation,
• there are 32 (!) terms in the SOS decomposition.

The above SOS decomposition is approximate in the sense that parameter ε
is small, but non-zero. It turns out that in GloptiPoly numerical inaccuracy
(roundoff errors) helped to find a higher degree SOS polynomial g8 close to
Motzkin polynomial on [−1, 1]2.

Thus, everything looks like if in the solving procedure of the dual relaxation
Q∗

k (see [12] for notations) the constraints

X, Bα = (g0)α, |α| ≤ 2k,

are replaced automatically by

X, Bα = (g0)α + α, |α| ≤ 2k,

with appropriate small perturbations { α}, chosen by the solver!
In a similar vein, it can be useful to add a redundant constraint of the

type
g1(x) = R2 − x 2

2 ≥ 0,

and consider the optimization problem min{g0(x) | g1(x) ≥ 0}, to obtain guar-
anteed convergence of the successive associated LMI relaxations.

Now consider problem (1) where g0(x) is the above Motzkin polynomial
and g1(x) is the above radius constraint with R = 1 (to include the 4 global
minima). With GloptiPoly we obtain already at the third LMI relaxation the
SOS decomposition

g0(x) =
6

i=1

a2
i q

2
i (x) + g1(x)

2

i=1

b2
i r

2
i (x)

with only 6 and 2 terms such that deg qi ≤ 3 and deg ri ≤ 2, respectively.

5 Conclusion

Solution extraction is straightforward when the moment matrix has rank-one:
in this case the solution vector is equal to the first order moment vector.
When the moment matrix has rank greater than one, we have proprosed in
section 2 a systematic extraction procedure, implemented in version 2.2 of the
GloptiPoly software.
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The extraction algorithm is applied when moment matrices satisfy rank
condition (4), in which case it is always successful and yields globally optimal
solutions. However, as pointed out in section 3, when the rank condition is
not satisfied, a heuristic consists in applying the extraction algorithm anyway.
Either the algorithm is successful and we are done (see section 3.1) or the
algorithm fails, but still some information can be exploited to reduce the
number of variables in subsequent LMI relaxations (see section 3.3). Note
however that these ideas are not currently implemented in GloptiPoly.

Note finally that an incomplete extraction procedure was sketched in [3] in
the case of LMI relaxations for polynomial systems of equations, and partly
motivated us to devise a more general algorithm. A specific extraction proce-
dure was also described in [18, Section 5] in the case of quadratic optimization
problems with one (possibly non-convex) quadratic constraint, or one linear
constraint jointly with one concave quadratic constraint.
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