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Preface

This book is a survey of the history of physics, together with the as-

sociated astronomy, mathematics, and chemistry, from the begin-

nings of science to the present. I pay particular attention to the

change from a deterministic view of nature to one dominated by

probabilities, from viewing the universe as running like clockwork to

seeing it as a crapshoot. Written for the general scientifically inter-

ested reader rather than for professional scientists, the book presents,

whenever needed, brief explanations of the scientific issues involved,

biographical thumbnail sketches of the protagonists, and descrip-

tions of the changing instruments that enabled scientists to discover

ever new facts begging to be understood and to test their theories.

As does any history of science, it runs the risk of overemphasizing

the role of major innovators while ignoring what Thomas Kuhn

called “normal science.” To recognize a new experimental or observa-

tional fact as a discovery demanding an explanation by a new theory

takes a community of knowledgeable and active participants, most of

whom remain anonymous. The book is not a detailed history that

judges the contributions of every one of the individuals involved in

this enterprise, important as some of them may have been, nor does

it trace the origin of every new concept to its ultimate source. More

modest in scope at the historical micro-level, its focus is on the gen-

eral development of ideas.



I have greatly benefited from conversations with my colleagues,

especially Don Lichtenberg and Edward Grant, and from the re-

sources of the Indiana University library, particularly from the help

of Robert Noel, head of the Swain-Hall library. I also thank Holis

Johnson, in our astronomy department, for his advice, and my wife,

Ruth, for invaluable editorial assistance.
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Prologue

For well over six thousand years people have been assembling facts

about their world, recording them when possible, and handing them

down to their offspring. As this activity evolved into what is now

called science, it became more than just a collection of disconnected

facts. Important as these remained, they began to serve primarily to

anchor a larger conception of the workings and structure of nature, a

conception that forms one of the grandest achievements of the hu-

man spirit. In the course of this long historical development, as more

facts were discovered, concepts changed, sometimes radically. But

certain large-scale themes persisted, informing the questions scien-

tists and scientifically inclined philosophers asked and the kinds of

answers they expected.

One theme became clearly recognizable early on, and gradually

separated the branch now called physics from the other parts of sci-

ence: it was the ability to predict future events with some confidence

of success. Whether dealing with the reliable functioning of instru-

ments of agriculture, engineering, and war or with a description of

the course of the awesome heavenly bodies, the goal of understand-

ing was predictability and its causes. The Greek Leucippos articu-

lated this purpose in the fifth century bce by declaring “Nothing



happens without reason, everything has a cause and is the result of

necessity.” Chinese Taoist writings expressed similar sentiments in

the third century bce: “All phenomena have their causes. If one does

not know these causes, although one may be right [about the facts],

it is as if one knew nothing.” By the time of Aristotle, the explicit goal

of physics (or “physiology,” as it was then called) was to understand

causes and to use this understanding for prediction. Aristotle himself

set down laws governing the movements of the heavenly bodies and

rules determining the motions of objects on earth.

Surviving the vicissitudes of history, including the fall of the Greek

and Roman civilizations and the rise of Christianity and Islam, the

effort to understand nature by discovering fundamental laws culmi-

nated in the great scientific revolution led by Galileo Galilei and Isaac

Newton. Aided by Newton’s new mathematics, determinism found

its apex of expression at the end of the eighteenth century in Laplace,

who foresaw a science to which “nothing would be uncertain and the

future, as the past, would be present to its eyes.” However, since we

could not possibly know enough to make such all-encompassing pre-

dictions, we would have to make do with probabilities, and he pro-

vided the needed mathematical tools. Before long, the pervading de-

terminism was further eroded: the second half of the nineteenth

century witnessed the direct introduction of the alien concept of

probability into physics, and probability dominated basic science

throughout the twentieth century. At the most fundamental level,

chance took the place of necessity.

But another equally important change accompanied the shift from

causality to probability, as we shall see. With reliable prediction of

future events at the submicroscopic level no longer within reach, the

focus of explanatory theories moved away from their previous Aris-

totelian purpose of postulating laws of motion to a rather more Pla-

tonic goal of explaining structure. In a certain sense, How? questions

were replaced by Why? Since the question “How does an electron

move?” could not be answered, it was replaced by “Why does an elec-
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tron exist?” and “Why does it have the mass it has?” Physics began to

explain the detailed properties of matter, both in bulk and in the

form of its constituents.

The change in the explanatory aims of physics during the last half

century goes even further. Physicists no longer consider it sufficient

for physical understanding to point to a force with certain character-

istics—or in more modern terminology, an interaction—as Newton

had done for the solar system with the force of gravity. They believe

that a unified and grand “final theory” will follow logically from a

general abstract principle of symmetry, which they accept as an ax-

iom, or else will simply arise because it is the only mathematically

possible way for nature to be. If Galileo thought that mathematics

was the language of nature, some physicists now go even further, be-

lieving that the laws of nature should be mathematical theorems.

The course of this development will be outlined in this book.
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one

Beginnings

When and where what we now call science started, nobody knows.

But we do know that it slowly grew from humans’ awe at the heavens

and from the arts of healing, hunting, construction, and war. Seeds

of it appeared during the Stone Age, in the invention of such hunt-

ing implements as the bow and arrow. While the early hunters surely

did not try to understand the flight of the arrow, the arrow’s effec-

tiveness depended on the predictability of its flight, which was taken

for granted. Similarly, agriculture owed its development to experi-

mentation and reliance on previously observed outcomes. Very early

hints of what eventually grew into medical science appeared in Mes-

opotamia—roughly the region now making up Iraq and Syria—and

in Egypt, where circumcision was practiced as early as 4000 bce.

Signs of its use have been found in bodies exhumed from prehistoric

graves, and the operation is clearly depicted on the walls of a tomb

of the sixth dynasty in Egypt, which ruled c. 2625–2475 (Fig. 1).

Imhotep, the earliest physician known by name—an astronomer and

an architect as well, later venerated as a god—lived about 3000 bce.

Good archeological evidence also indicates that trepanation—cut-

ting out disks from the skull—was performed on living people in

prehistoric times. And some of them survived the procedure—we



know this because living bone tends to heal itself, and new growth

has been unambiguously identified on some of these skulls. Why and

how this delicate operation was done is unknown.

Interest in the heavens served less practical purposes and may

therefore perhaps be regarded as the proper precursor of “pure sci-

ence,” but that interest seems always to have been closely associated

with religion. Individual stars were identified either with specific

gods or with the homes of deities. Capricious as the gods were in

general, the regular movements of their celestial images offered a re-

assuring sign of order, while unusual events such as eclipses of the

moon or the sun were frightening disruptions of that order. Anyone

able to predict these unsettling phenomena was regarded as possess-

ing extraordinary powers. Though it could be found in other places

as well, an intense interest in the movements of the heavenly bodies

is definitely known to have existed quite early in Egypt, as the devel-
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Figure 1 A representation of circumcision with a stone knife, beginning of
the Sixth Dynasty in Egypt. (Sarton, Introduction to the History of Science,
vol. 1, p. 43.)

[To view this image, refer to  

the print version of this title.] 

 

 

 



opment of its stellar-based calendar clearly shows; this calendar can

be traced back as far as 4236 bce. (Note the precision, probably the

earliest known date in history.) The construction of a calendar, of

course, is the surest sign of faith in the regularity of daily life.

Along with such proto-scientific learning, Egyptian technology be-

came increasingly sophisticated as well. The measurements of blocks

used for the pyramids constructed during the thirtieth century bce

are remarkably precise; for example, the leveling of a 50-foot beam

was done correctly with an error of only 0.02 inches. “The accuracy

of three granite sarcophagi of Senusert II, Twelfth Dynasty (2000–

1788), averages 0.004 inches from a straight line in some parts, 0.007

inches in others,” according to the science historian George Sarton.1

Such accuracy implies considerable practical knowledge of stereom-

etry (measurement of solids). Similarly, the construction and erec-

tion of enormous Egyptian obelisks required not only practical skill

but also great technical know-how.

Hand in hand with the study of astronomy and the acquisition of

technical expertise came a developing knowledge of mathematics.

Τhe Egyptians’ invention of papyrus, on which they wrote in hiero-

glyphics (a system of writing with pictures), enabled them to leave a

voluminous and long-lasting record of their accomplishments. Early

papyri show that the Egyptians knew how to manipulate fractions

and even how to determine the volume of the frustum (a truncated

pyramid) of a square pyramid, possibly as early as the nineteenth

century bce. But they let their mathematical knowledge rest at this

point, never developing it any further. (Many historians believe that

the Egyptians knew the Pythagorean theorem and used it for land

surveillance, but Sarton regards the basis for this belief as no more

than guesswork.)

What is known about Mesopotamian proto-science and mathe-

matics is based on modern readings of a large number of clay tablets

bearing cuneiform inscriptions in the Sumerian and Accadian lan-

guages. Cuneiform employs wedge-shaped signs incised by means of

a reed on soft clay, quite different from Egyptian hieroglyphics. The
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Sumerian civilization flourished from the beginning of the third un-

til the middle of the second millennium bce, and its number system

was position-based, analogous to our own. In such a system the value

of any numeral in a given number depends on its position in relation

to the other numerals. But since the Sumerians lacked a zero, their

numbers were sometimes ambiguous; and after an early period in

which the decimal system was used, they employed a peculiar mix-

ture of bases 10 and 60. The Egyptians’ number system, by contrast,

though based on 10 like our decimal system, was analogous to Ro-

man numerals, in which position played little or no role; this system

was a dead end, because it did not allow arithmetic to develop. The

principle of position had to be reintroduced in Europe a thousand

years later by way of India, where it had been in use at least since the

third century bce.

The Mesopotamian civilizations directed their quasi-scientific at-

tention primarily toward astronomy and commerce. Sumerian as-

tronomers began by constructing a lunar calendar, which they later

modified, assuming the year consisted of 360 days and dividing the

day into 12 equal hours, the legacy of which echoed through the

ages. But the greatest astronomical achievements of the later Babylo-

nians were many extremely detailed lunar and stellar observations,

and in particular an accurate tabulation of the rising and setting of

the planet Venus. Living in the fourth century bce, the astronomer

Kidenas (also known as Kidinnu) is believed by some historians to

have discovered the precession of the equinoxes—the slow circular

motion of the point in the sky above the North Pole (approximately

the position of the North Star) about which the whole body of stars

in the northern hemisphere is seen to rotate once every 24 hours.

There is a similar circle above the South Pole in the southern hemi-

sphere. As a result of this slow motion, the intersection of the plane

of the earth’s equator with the ecliptic (the plane of the orbit of the

earth about the sun) rotates as well, and this intersection determines

the equinoxes (thus the name).

As we now know, the motion is caused by a precession of the axis

Beginnings 7



of rotation of the Earth, so that the inclination of this axis with re-

spect to the ecliptic wobbles with a period of about 26,000 years.

Historians therefore have good reason to regard the Babylonians as

the founders of an early form of scientific astronomy. Two hundred

years later, the precession of the equinoxes was clearly discovered by

the great Greek astronomer Hipparchus, albeit relying not only on

his own observations but also on early Babylonian star data, without

which he could not have made the discovery.

The many unearthed tablets recording business transactions, in-

ventories, payrolls, and accounts testify to the strong interest of the

Sumerians in matters of trade. As a result of this preoccupation, they

made important advances in problems connected with weights and

measures, focusing their mathematical attention primarily on arith-

metic, at which they excelled. For example, one of the tablets, of

c. 2000 bce, solves the problem of calculating how long it would take

for a given sum of money to double at 20 percent compound inter-

est. Others show that they were able to solve not only simultaneous

linear equations for many unknowns but two simultaneous qua-

dratic equations for two unknowns, as well as some special cubic

equations (though they did not actually use equations as such). They

even manipulated negative numbers, a facility that Europe did not

acquire until more than three thousand years later.

In geometry, the Babylonians knew the areas of right and isosceles

triangles, as well as the volumes of a rectangular parallelepiped (a

solid with six faces, each a parallelogram), of a right circular cylinder,

and of the frustum of a square pyramid. There is also convincing evi-

dence that they had some knowledge of the Pythagorean theorem,

but in circular measurements they were behind the contemporary

Egyptians: the Egyptian value of 3.16 for was closer to its correct

value of approximately 3.14 than the Babylonian value of 3.

The manufacture of glass, pottery, and glazes, as well as paints,

drugs, cosmetics, and perfumes, was a precursor of the science of

chemistry, and the Sumerians produced all of these. Archeologists
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have even found a remarkable small cuneiform tablet that contains

an actual recipe for the creation of a glaze. By far the earliest record

of its kind, it dates from the seventeenth century bce, and archeolo-

gists have unearthed nothing like it from the next thousand years.

The famous Code of Hammurabi contains, among its lengthy list

of laws and regulations, a specific pay schedule for the performance

of various surgical procedures on persons of different ranks. King

Hammurabi ruled Babylonia in the first half of the eighteenth cen-

tury bce, and his specified fees indicate that surgeons were able to

perform their art with bronze lancets on various parts of the body,

including the eye. Later Greek sources as well as Egyptian documents

going back to the fourth millennium show that the practice of medi-

cine, in both Babylonia and Egypt, was extremely specialized, with

different specialists for each part of the body and each disease. Clay

models of the liver made by Babylonians and Hittites—a civilization

that flourished in the second millennium in Anatolia and subse-

quently spread to Mesopotamia—can be seen in various museums

around the world. Internal medicine in Babylonia was closely allied

with people’s religious beliefs, and physicians worked hand in hand

with priests, relying heavily on incantation and divination.

The gradual replacement of bronze by the much harder metal iron

in the Mesopotamian and Egyptian region produced a great up-

heaval that lasted for several centuries around 1000 bce. The advan-

tages of the new iron weapons were quickly exploited by their pos-

sessors, shifting the centers of power but leaving little time for the

disinterested acquisition of knowledge. As a result, further develop-

ments that might have led to advances in science or quasi-science

were severely disrupted and had to await a rebirth, which eventually

took place in the Aegean area of the Mediterranean. No other civili-

zation anywhere else in the world, so far as historians know, devel-

oped a comparable level of knowledge at a time prior to 1000 bce.

During the middle of the second millennium, the eastern Medi-

terranean had been dominated by the Minoan culture centered on
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the island of Crete. Whether the demise of this flourishing civiliza-

tion should be attributed primarily to the gigantic eruption of the

volcano Thera on the nearby island of Santorini is still a matter of

controversy, but the tardiness of the Minoans in adopting iron tech-

nology led to their defeat, first by the Dorians from the north, fol-

lowed by the Phoenicians from the south, who continued to colonize

and dominate the entire Mediterranean coast.

The greatest contribution of the Phoenician civilization, without

which the subsequent development of Greek culture and all of West-

ern science surely would have been impossible, was the invention

of the alphabet. Even the Hindus learned the art of alphabetical writ-

ing from the Phoenicians. In its original form it had no signs for

short vowels—and neither Hebrew nor Arabic have such signs to this

day—but when the Greeks imitated the Phoenician alphabet, they

added symbols for these vowels as well. The newly acquired writing

skills enabled them to advance beyond the oral Homeric lore.

As we enter the era of Greek civilization, the state of proto-scien-

tific knowledge in the world may be characterized as descriptive,

with aims that were mostly practical or technological, but in part also

religious and mystical. In the areas of medicine, agriculture, war-

fare, hunting, and construction, the accumulated know-how served

the purpose of making daily tasks easier and more reliable. Care-

ful observers of the regularity of celestial bodies used their powers

of prediction either for reassurance or for further mystification. At

this stage, no attempt was yet being made to understand or explain

nature.

10 From Clockwork to Crapshoot



two

The Greek Miracle

Many of the proto-scientific ideas of the early Greeks had their roots

in the Egyptian and Babylonian traditions they inherited. This in-

cluded the art of astronomical observation and a knowledge of spe-

cific regularities such as the (approximately) 18-year cycle, called the

saros, which brought the moon and the sun in the same relative posi-

tion, enabling the more or less reliable prediction of eclipses. How-

ever, the desire to go beyond observations of regularity and to look

for a rational explanation for the movements of heavenly bodies—

the beginning of astronomy as a science in the modern sense—seems

to have been typically Greek. It differed substantially from the occult

and mystical astrology that had come down to them from the Baby-

lonians and Egyptians and which continued to retain its appeal for

millennia, even to this day.

Real science was just one component of a sudden emergence of

high culture, beginning in the sixth century bce, that is sometimes

hailed as the “Greek miracle.” The cradle of this miracle was located

in Ionia, on the west coast of Asia Minor (Fig. 2). Ionia was the

meeting place of many caravan routes from beyond the Black Sea,

from Mesopotamia, and from Egypt, and of sea trade with the Aegean

islands and all of the eastern Mediterranean. Miletos, one of the
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principal Ionian harbors, grew wealthy from the numerous colonies

it had set up along that coast, and that city had the additional good

fortune of giving birth to Thales, a man remembered long after his

death in about 547 bce. His fame was based in part on an enduring

but no doubt apocryphal legend that he had correctly predicted (us-

ing the saros) the solar eclipse of May 28, 585, which occurred in the

middle of a stand-off between the armies of the Lydians and the Per-

sians. The sudden darkness so impressed the two kings that they

ceased fighting and made peace. Whereupon the oracle of Delphi

pronounced the person who had had the knowledge and wisdom to

predict the event a wise man, and Thales of Miletos remained forever

included among the otherwise variable group of legendary Seven

Wise Men of the early Greek tradition. To be able to successfully

foretell such an important phenomenon as a solar eclipse was a sign

of the greatest intellectual power.

Benefiting from extensive travels to Egypt, Thales was both the

first Greek mathematician and the first Greek astronomer, but he was

also a very practical politician and businessman. Aristotle records the

tale that Thales, after predicting that next year’s weather would pro-

duce a large olive harvest, proved his business acumen by immedi-

ately buying up all the olive presses he could lay his hands on, mak-

ing a fortune when his prediction came true and he could lease them

out at great profit—the first scientific entrepreneur on record. As an

engineer, Thales is credited by Herodotus with diverting the River

Halys to allow King Croesus’s army to cross safely, thereby demon-

strating that the flow of rivers was not governed by the gods.

On the basis of what he had learned during his travels in Egypt,

Thales was able to perform such geometrical tricks as accurately esti-

mating the height of buildings and the distance of ships from shore.

What sets him apart is that he did not stop there but tried to un-
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derstand the principles underlying the solutions of such practical

problems and to explain them; he was the founder of geometry as a

science. Whether he was actually able to prove all the geometrical

principles and theorems he discovered we do not really know. Never-

theless, he was the first person anywhere who is known to have un-

derstood that such general theorems were needed, and that explain-

ing practical solutions to problems on the basis of general principles

is of far greater value than merely solving individual cases. He was

therefore the first real scientist, and his influence on later Greek de-

velopments was profound.

Just as Thales was not satisfied with solving certain specific geo-

metrical problems without insight into the underlying principles, so

he tried to understand the world by asking what it was ultimately

made of—and his conclusion was that the basic stuff was water. If

that strikes us as naive, it was not really so unreasonable, Sarton

points out, considering the life-giving and life-renewing role that wa-

ter played in the Mediterranean climate.

Fifteen years his junior, Anaximander of Miletos shared Thales’s

strong desire to understand the nature and workings of things. What

we know from his few writings left to us is that in the case of the mo-

tion of the sun he pursued this search for understanding by means of

detailed observations at various times of the day and seasons of the

year, recording the length and direction of the shadow cast by a

gnomon, a vertical stick stuck in the ground with a clear horizontal

area around it (or an isolated, tall pointed vertical artifact such as an

obelisk). This instrument had already been used for marking the

time of day by the Babylonians and the Egyptians, but Anaximander

employed it for serious astronomical purposes, determining the dates

of equinoxes and solstices. In his theories concerning the constitu-

tion of the world (including both the nature of the earth and the

evolution of life), he shared the desire, which permeated the emerg-

ing Greek science, to explain it all by means of a small number of

general laws. However, in order to avoid some of the difficulties with
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Thales’s theory that everything is ultimately made of water, he took

refuge in an abstract, metaphysical concept he called apeiron, the na-

ture of which remained obscure.

Anaximander’s successor in the quest for a primary substance,

Anaximenes of Miletos, returned to the more down-to-earth spirit of

the Milesian tradition by postulating air, or the wind, as permeating

and underlying everything. None of his writing has survived, but his

approach seems to have appealed to his fellow Milesians more than

Anaximander’s.

Looking around the world for contemporaries of these early Ionian

scientists (or, as they called themselves, physiologists), we find Con-

fucius in China, who subsequently exerted an enormous, long-lasting

influence. However, as Joseph Needham informs us in his magisterial

Science and Civilisation in China, the contributions of the Confu-

cians to science were almost entirely negative. Chinese civilization

had to wait another three centuries for the Taoists, enemies of the

Confucians, to equal the Ionian insights into nature. Opposing the

kind of scholastic pursuit of knowledge of the Confucians, based as

it was on book learning divorced from the world of nature and

concerned primarily with matters of rank and privilege among the

feudal society of the day, the Taoists pursued the “Tao of Nature” by

observation. The legendary Tao philosopher Lieh Tzu, whose very

existence is uncertain, is said to have discussed cosmology and the

infinity of time and space in his work.

Near the end of the period of the Warring States, during the reign

of the first emperor Chhin Shih Huang Ti, scientists under the pa-

tronage of Lü Pu-Wei compiled a set of Taoist writings entitled Lü

Shih Chhun Chhiu. Completed in 239 bce, this compilation reveals a

spirit not unlike that of the early Greek physiologists: “All phenom-

ena have their causes. If one does not know these causes, although

one may happen to be right [about the facts], it is as if one knew

nothing, and in the end one will be bewildered . . . The fact that wa-

ter leaves the mountains and runs to the sea is not due to any dislike
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of the mountains and love for the sea, but is the effect of height

as such . . . Therefore the sage does not inquire about endurance or

decay, nor about goodness or badness, but about the reasons for

them.”1 Needham, “had no doubt that” the main motive of the Taoist

philosophers in wishing to engage in the observation of nature was

“to gain that peace of mind which comes from having formulated a

theory or hypothesis, however provisional, about the terrifying man-

ifestations of the natural world surrounding and penetrating the frail

structure of human society . . . This distinctly proto-scientific peace

of mind the Chinese knew as ching hsin. The atomistic followers of

Democritus and the Epicureans knew it as . . . ataraxy.”2

In the contemporary Hindu realm, Prince Gautama, the Buddha,

who lived from c. 560 to c. 480, developed a philosophy based on ag-

nosticism, rejection of superstition, and respect for reason and truth.

His teachings, which developed into a widespread religion, would

have made an excellent basis for science, had it not been for the Bud-

dha’s total lack of scientific curiosity about the world. Jainism, an-

other heretical offshoot of Brahmanism started during the Buddha’s

lifetime, found physical science more congenial and postulated that

matter was composed of atoms with a variety of qualities. This quali-

tative doctrine had little in common with the atomism developed by

the Greeks.

Let us then return to Greece and the sixth century, but this time to

the western part of Greece, which saw a great flowering of religion

hand in hand with the emergence of science. The man who embod-

ied this fertile combination was Pythagoras, about whose life there

exist only dubious accounts written long after his death. Born on

Samos, an island near Miletos, he may have been a student of Thales,

who supposedly recognized his genius at an early age. As an adult,

Pythagoras is said to have fled the tyranny of Polycrates, the ruler of

Samos, traveled much in Babylonia and Egypt, and eventually settled

in the Dorian colony of Croton, near the southern tip of Italy. Sur-

rounding himself there with a community of male and female disci-
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ples who shared his secrets, observed his dietary taboos, and lived

simply and poorly, Pythagoras established an influential cult of reli-

gious mystics. The secrecy of the Pythagorean religion prevented

many of its details, as well as those in the life of Pythagoras himself,

from being known. After his death in about 500 bce his cult contin-

ued to exist for another fifty years before it was suppressed.

Following the Milesian tradition of Thales—namely, establishing

a theorem rather than remaining satisfied with knowing special in-

stances—Pythagoras is, of course, generally best known for his fa-

mous theorem in geometry: the square of the hypotenuse of a right

triangle is equal to the sum of the squares of the other two sides. The

proof he is said to have given is very simple and is still taught in high

schools today (Fig. 3).

Pythagoras also established a number of other geometrical theo-

rems and contributed extensively—largely by speculation—to arith-

metic. For example, he appears to have been the first to make a dis-

tinction between even and odd numbers. This distinction seems

trivial to us now because in our number system even and odd num-

bers are easily recognized by their last digits. At the time of Pythago-

ras, however, the use of literal numerals by the Greeks was still very

cumbersome. His primary arithmetical tools were drawing dots in

sand, and counting out pebbles. (The word calculate stems from the

Greek word for pebble.)

The idea of a spherical earth probably originated with Pythagoras,

and it seems to have been based primarily on the observation that

distant ships become gradually visible on the horizon from the tops

of their masts down. However, at the center of Pythagorean philoso-

phy was the concept of spheres and circles as ideal shapes, and that

surely must have influenced him as well, just as Plato’s analogous

views exerted their influence later on the astronomical ideas of Ptol-

emy. Pythagoras explained the movements of the planets in terms of

uniform motions on individual circular orbits. No longer satisfied

with merely describing these motions by means of numerical tables,
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Pythagoras wanted to understand them, a seminal scientific step. At

the same time, the notion that heavenly events were governed by or-

derly laws and by the gods, while those on earth were subject to

chaos, disorder, disease, and death, engendered a philosophical dual-

ism that cast a shadow over both science and religion for millennia.

Another part of science to which Pythagoras significantly contrib-

uted would turn out to be an early precursor of acoustics. System-
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atically experimenting with string instruments, such as the lyre and

the cithara, which had been long known in Babylonia and Egypt as

well as in Greece, he discovered that the sounds produced by strings

whose lengths were in ratios of 12:9:8:6 were harmonious. In his cus-

tomary generalizing manner he concluded that numbers were the es-

sence of all things, and proportions in particular played a mystical

role. Transferring these notions to the celestial sphere, subsequent as-

tronomers hailed Pythagoras for making “the universe sing in har-

mony.” Both the important later role of mathematics in science and

the abuse of mystical numerology by pseudo-scientists and quacks

can be traced back at least in part to the influence of the Pythag-

oreans.

As we enter the fifth century bce, the first major Greek scientist

we encounter is Empedocles (c. 492–c. 430), born in the Sicilian city

of Agrigentum, which was then a beautiful and wealthy center of cul-

ture before being destroyed by the Carthaginians in 406 bce. In ad-

dition to making a number of contributions to medicine, such as

identifying the labyrinth of the ear, recognizing the importance of

the skin as well as the heart for respiration, and appreciating the role

of the blood vessels as the bearers of heat, Empedocles played a social

role in what we would now call public health, and he also performed

physical experiments and made systematic observations. On the ba-

sis of these activities, he came to the conclusion, which remained ex-

tremely influential in one form or another for a very long time, that

everything is made up of four elements—fire, air, water, earth—and

subject to two forces, the centripetal force of love and the centrifugal

force of strife. The heavens, he thought, consisted of a crystalline egg-

shaped surface to which the stars were attached, with the planets re-

maining free to move independently.

More important, Empedocles’ experiments with a clepsydra—an

early timing device—convinced him that air had a corporeal sub-

stance. The main body of a clepsydra consisted of a vessel with an

opening at the top for pouring in water, and one or more holes at the
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bottom that allowed the water to drain at an even rate, thereby serv-

ing as a clock. Dipping this vessel into a bath, he found that water

filled it through the holes on the bottom when the hole at the top

was open, but when the top hole was closed, no water would enter

because the air in the vessel had no escape. Air, therefore, had to be a

substance that needed to be removed before water could take its

place.

Empedocles also tried to understand vision and light. Pythagoras

had explained vision in terms of particles emitted by the seen object,

and others had explained it by postulating that the eye emitted rays

that felt the object. (If the latter seems absurd to you, remember that

bats “see” objects by emitting sound waves and receiving echoes.)

Empedocles reached a compromise solution. For him, the rays emit-

ted by the eye met the emanations from a body.3 Perhaps his most

important conjecture—and that is all it remained—was that light

travels with a finite velocity, a speculation not empirically confirmed

until more than two thousand years later (not long after René Des-

cartes had declared all of his own philosophy null and void unless

light traveled with infinite speed). Legend has Empedocles ending his

life while trying to prove his immortality by leaping into the crater of

Mount Etna. Witnesses were said to have reported that the volcano

contemptuously burped up one of his sandals.

No doubt the most important scientific contribution of fifth-cen-

tury Greece was the atomic theory, which originated with Leucippos

and was further developed in much more detail thirty years later

by Democritus. Though little is known about Leucippos—even his

birthplace is uncertain—and none of his writings has survived, he is

credited with a saying that not only characterizes the science of that

time but that may be regarded as the leitmotif of physical science for

the next twenty-three centuries: “Nothing happens in vain [without

reason], everything has a cause and is the result of necessity.” With a

few exceptions, physical scientists would subscribe to this credo in

one form or another until the nineteenth century, and it would not
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be decisively abandoned until the twentieth. But that, of course, is

jumping way ahead of the story.

Democritus of Abdera, born c. 460 bce, is the more famous of

the two originators of atomism. Abdera, at the northern end of the

Aegean, and thus removed from both Ionia and southern Italy as well

as Athens, had the reputation, obviously undeserved, of being inhab-

ited by a bunch of dummies. After inheriting a considerable fortune

from his father, Democritus spent many years traveling in Egypt,

Babylonia, Persia, and possibly even India, searching for and absorb-

ing the knowledge and wisdom of the ancients, which the Greeks be-

lieved could be found in the East. Contemporary Egyptians, it seems,

looked down on their Greek visitors as childlike newcomers to the

world of learning. As an astronomer, Democritus was second-rate: in

contrast to the Pythagoreans, he believed the earth to be flat. But he

was a good mathematician, who, like Zenon of Elea, thirty years his

senior, thought seriously about problems associated with continuity

and infinity.

Archimedes later credited Democritus with the discovery that the

volumes of a cone and a pyramid are one third of those of a cylinder

and prism, respectively, of the same base and height, though exactly

how he discovered this fact, later proved by Eudoxos, is not known.

However, Democritus’s fame rests primarily on his development of

the notion of atoms suggested by Leucippos.

Whether the atomic concept was imported from the East or was

completely original with Leucippos (who, unlike Democritus, was

not widely traveled) is unclear. Similar ideas appeared in Indian phi-

losophy, but four hundred years later. Another tradition ascribes the

origin of atomism to the Phoenicians.4

In Democritus’s view, everything other than the vacuum was made

up of atoms—indivisible, eternal, indestructible, infinite in number,

and different from one another only in shape, order, and position.

Although his theory was completely deterministic, the origin of the

atoms’ motion remained unexplained. The whole concept was, of
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course, of an entirely philosophical character and without any em-

pirical support. Nevertheless, in one form or another it remained

alive for many centuries. Experimental evidence that would turn it

into a real scientific theory had to wait for John Dalton at the begin-

ning of the nineteenth century.

The fifth century bce produced a number of other significant

Greek mathematicians, the greatest of whom was Hippocrates of

Chios (not to be confused with the originator of the scientific ap-

proach to medicine, Hippocrates of Cos), regarded by some as the

father of geometry. He was the first to use letters to refer to geometri-

cal points and to identify lines by the letters designating their end-

points, though in a somewhat more laborious fashion than Euclid

did later on. The most famous of the fifth-century Greek philoso-

phers, of course, was Socrates (470–399 bce), a man of enduring

philosophical impact upon Western culture, whose independence of

spirit earned him the death penalty for corrupting the youth of Ath-

ens. He had little positive effect on science, except perhaps for his

skepticism toward the evidence underlying all the scientific specula-

tions of his contemporaries. Let us then turn to the fourth century,

dominated by Plato (428–347) and Aristotle (384–322), and Aris-

totle’s prize pupil, Alexander (356–323).

The enormously influential school of philosophy called Acade-

mia (located on a piece of land whose original owner was named

Academos) was founded by Plato. “Let no one enter here who is ig-

norant of mathematics” read the inscription over its gate. Plato’s phi-

losophy, which perceived reality as a pale image of a world of ideal

eternal Forms, made an imprint on the thought processes of mathe-

maticians and other intellectuals that can still be felt today. But his

scientific contributions were minimal, and the influence of his

thought upon science was not generally fruitful (though, as we shall

see at the end of this book, that influence has had a somewhat sur-

prising re-emergence of late). Who discovered that there could be no
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more than five regular solids, the so-called Platonic solids (the tetra-

hedron, or pyramid, the cube, the octahedron, with eight triangu-

lar sides, the dodecahedron, whose twelve faces are pentagons, and

the icosahedron, with twenty triangular faces) is unclear, though

Teaitetos of Athens, who studied at Plato’s Academy, seems to have

been the first to write about them. However, it was Plato who at-

tached great cosmological and metaphysical significance to these five

regular polyhedra, all based on fantasy.

The greatest mathematician of that age, Eudoxos of Cnidus

(c. 408–355), another pupil of Plato’s at the Academy, struggled with

the extension of what is meant by a number. This problem—not

fully solved until the nineteenth century—arose from the Pythago-

rean discovery of irrational numbers. (A number is irrational if it

cannot be expressed as the ratio of two whole numbers.) His most

important substantive mathematical feat was the invention of the

“method of exhaustion,” a distant precursor of the integral calculus

developed by Isaac Newton, and his methodology exerted a strong

influence upon Euclid. Eudoxos was also an important astronomer.

Not only did he carefully observe the stars, but his application of

spherical geometry and the introduction of 27 concentric spheres in

order to explain the apparent rotation of the fixed stars, the moon,

the sun, and the complicated motions of the planets, as seen from the

earth, was the first attempt to understand these motions in mathe-

matical terms. This is why he is regarded by many historians as the

real founder of scientific astronomy. However, it was Heracleides of

Pontos (c. 388–315) who advanced an astronomical idea that was

very far ahead of its time: whereas the earth, he taught, was at the

center of the solar system, with the moon, the sun, and the “superior

planets” revolving around it and with the “inferior planets,” Venus

and Mercury, circling the sun, he had the earth rotating daily on its

own axis, thereby accounting for the apparent rotation of the body of

the stars in the opposite direction. There was not enough observa-
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tional evidence at the time to convince his contemporaries, but the

idea of a rotating earth did not get lost and was repeatedly resur-

rected (and ignored again) by later astronomers.

Which brings us to Aristotle. Born in 384 bce in the city of

Stageira on the easternmost leg of the three-pronged Macedonian

peninsula of Chalcidice at the northern end of the Aegean Sea—his

father a physician at the court of the Macedonian king—Aristotle

was sent to Athens at the age of seventeen to be educated. There he

started out as a disciple of the aging Plato and, except for extensive

travel in Asia Minor, remained in Athens for twenty years but se-

ceded from the Academy while his teacher was still alive. When King

Philip II of Macedonia needed a tutor for his thirteen-year-old son

Alexander, Aristotle moved to Pella and served in that role for three

years until the boy had to act as regent of the kingdom in his father’s

absence. Soon after Alexander succeeded to the throne upon Philip’s

assassination, Aristotle moved back to Athens to create his own new

school, the Lyceum, under the generous patronage of the young Mac-

edonian king, to whom he remained a trusted friend and advisor.

The zoo of the Lyceum was stocked largely with animals sent there

by Alexander the Great—as the Macedonians (but not the Greeks)

called him—during his Asian campaign, and its collection of manu-

scripts would form the basis of the great library eventually estab-

lished in Alexandria. After the early death of his royal patron, who

had meanwhile conquered a large part of the known world, Aris-

totle’s situation in the anti-Macedonian atmosphere of Athens be-

came perilous, and, to avoid the fate of Socrates, he took refuge in

the city of Chalcis in his native Chalcidice, where he died of disease

shortly thereafter in 322.

Of Aristotle’s many writings, only later edited versions of his notes

and lectures have come down to us. These include the Organon, a

collection of treatises on logic; the Physica, on natural science; the

Historia Animalium, a classification of animals; and De Caelo, on as-

tronomy and cosmology.
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In contrast to Plato’s Academy, the intellectual orientation of the

Lyceum was in large part scientific. Perhaps owing to Aristotle’s fam-

ily background in medicine, this scientific disposition leaned heavily

in the direction of fact-collecting and experimentation rather than

imaginative speculation. But it was not enough for him to record the

facts; they had to be explained, and unlike Plato, he was always look-

ing for explanations based in the natural world. Though the phe-

nomena came first, their explanations, if possible, should lend them-

selves to generalizations and bring forth a theory. Even mathematics

was for Aristotle a branch of science about the physical world rather

than about a Platonic universe of transcendent ideas.

To understand the workings of nature, Aristotle looked for causes

of phenomena, and among these he distinguished four kinds: (1) the

efficient cause, which figuratively brings about an effect by a physical

effort, (2) the material cause, which furnishes the material of which

an object is made, (3) the formal cause, which states the law that un-

derlies an occurrence, and (4) the final cause, which points to its pur-

pose. He looked for mechanisms to gain understanding, and thus for

efficient causes, but his scientific explanations often included teleo-

logical ideas, that is, final causes. Mechanisms were, in his time, often

hard to come by, and teleological explanations were more easily at

hand; if the “how” could not be discovered, the “why” would do, and

even when the “how” was understood, the “why” was still important.

The shape of the earth, Aristotle agreed with Pythagoras, must be

spherical. He based this conclusion on several arguments, the first

Platonic and the others empirical: the sphere is the perfect, symmet-

rical shape; the shadow seen on the moon during an eclipse has a cir-

cular edge; and, as you travel north or south, the body of visible stars

changes: new stars that had not been seen before rise above the hori-

zon. From the last observation he deduced that the earth cannot be

very large, for otherwise that change in the heavens would not be so

readily noticeable. In fact, using the shift of the visible stars with a

given length of travel, he was able to calculate the diameter of the

The Greek Miracle 25



earth to within about 50 percent of its true value (depending on the

length of the unit of measurement, the stadium, which varied from

time to time and from place to place).

Seeking to improve on Eudoxos’s system of homocentric spheres

to account for the motion of the stars and planets, Callippos of

Cyzicos (a younger collaborator of Aristotle’s at the Lyceum) had in-

creased the number of these spheres to 33, each rotating with its own

speed. Aristotle, however, was dissatisfied with this purely mathe-

matical theory, and so he attempted to transform it into a mechani-

cal one by adding 22 new spheres and imagining all of these 55

spheres physically interacting with one another. The result, unfortu-

nately, did not improve the fit of the theory with the data—which

consisted of age-old tables assembled by Egyptians and Babylonians,

since few of the observations needed for a comparison of these theo-

retical ideas with reality were made by Greek astronomers. In the

later history of astronomy, the prestige attached to Aristotle’s views,

sometimes conflicting with those of Ptolemy, tended to have a re-

tarding effect on the development of that science.

An important step forward came from Aristotle’s notion that as-

tronomy could not be completely divorced from physics—it had to

be a part of it. Nevertheless, he divided the universe into two essen-

tially separate regions: the world below the moon and all the remain-

der. Questions of physics arose primarily in the sublunar sphere, and

those of astronomy in the region of the moon and beyond. The

sublunar world was distinguished from the heavens by being subject

to irregularities and accidents, but even these were not inexplicable:

physics too was governed by laws.

Aristotle’s laws began with his doctrine of “natural motion.” Re-

jecting atomism and all theories that based physical changes on re-

arrangements of some basic stuff with fixed characteristics, he re-

garded the world as made up of five elements: earth, water, fire, air,

and ether. The first four permeated the sublunar sphere and the last

the translunar region. The natural motion of the former was rectilin-
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ear unless blocked, centripetal or downward for earth and water,

and centrifugal or upward in the case of fire and air. The downward

motion was faster in proportion to an object’s weight. For the fifth

element, ether, the natural motion was circular and could never be

blocked. In the translunar sphere, filled with ether, there existed no

bodies in the usual sense, no location, and no time.

The other law of motion was meant to be applicable to ordinary

objects in everyday circumstances, such as packhorses or oxen haul-

ing heavy burdens. He said in effect that to move an object of mass M

a distance D requires the application of a force F—for Aristotle, that

force was essentially the strength required before fatigue sets in—for

a time T such that FT was proportional to MD, a proposition that

agrees eminently with our experience in a world in which frictional

and other resistance to motion are ubiquitous. The magnitude of this

resistance was here taken as fixed, but for different friction—motion

in water versus motion in air, for example—the constant of propor-

tionality (though he does not put it that way) between FT and MD

was assumed to increase with this friction. Aristotle believed that if it

were possible to produce a vacuum, which would enable objects to

move without friction, any force would move an object with infinite

speed, from which he drew the important conclusion that in the

sublunar region a vacuum had to be physically impossible.

Since D/T is the distance traveled divided by the time it took, that

ratio is the average velocity V of the moving object; therefore, the

Aristotelian law of motion was later interpreted as decreeing that the

required force F is proportional to the product MV of the mass of the

moving object times its velocity, and it was considered valid until ab-

rogated by Isaac Newton. It should be remembered, though, that Ar-

istotle did not intend his law of motion to be taken out of its context

of earthbound experience, and it did not occur to him to apply it to

objects such as the planets in the translunar world.

Aristotle’s writings—which were translated into Latin and Arabic

in ancient times, and from Arabic back into Latin during the medi-
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eval period, after the original Latin translations were lost—had a

profound impact on Western thought and beyond. In the Middle

Ages, the Catholic Church became actively hostile to his philosophy,

to the point of prohibiting the reading of his works, a proscription

that turned out to expand their study. Healthy and stimulating at

first, eventually Aristotle’s scientific doctrines became stultifying be-

cause of the rigidity with which they were applied. His sway did

not end until the scientific renaissance brought about by Galileo

and Isaac Newton. However, even the later development of physics

showed the lingering influence of Aristotle in the continuing pri-

macy of the search for explanations of the way things change and

move, with less emphasis on Platonic elucidations of the way they

are. Only in the second half of the twentieth century would Plato’s

way come back into vogue.

The end of Alexander’s conquest marked the beginning of the

Hellenistic age (a period when Greek culture dominated the Medi-

terranean and whose name derived from the word hellene, which the

Greeks used to describe themselves), and Euclid was its first great

mathematician. His singular work, the Elements of Geometry, made

an indelible imprint for well over two millennia. Little is known

about the man or his life, not even the dates and places of his birth

and death. He probably received his mathematical education in Ath-

ens at the Academy and spent most of his life in Alexandria, the great

city founded by Alexander after his conquest of Egypt.

Euclid’s Elements consists of thirteen books that have come down

to us in their entirety. The first six deal with plane geometry, includ-

ing much of algebra viewed from a geometric perspective; books

seven through ten address arithmetic and the theory of numbers;

and books eleven through thirteen take up solid geometry. The im-

portance of this work rests on two characteristics: the beauty and

power of the methods employed and the richness of the proposi-

tions announced and proved. The influence of both Euclid’s general

methodology and his geometrical approach to algebra would still be
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expressed in Newton’s Principia (though this particular aspect of Eu-

clid’s influence makes the Principia very hard to read; Euclid’s geo-

metrical approach to algebra is no longer fashionable).

The clean and minimalist elegance of the organization and pre-

sentation of the Elements, in which propositions (now called theo-

rems) are clearly stated and then proved and followed by conclu-

sions, their order dictated by their logical succession, is proudly

imitated by mathematicians to this day. Definitions and axioms (ba-

sic assumptions that are made in logical reasoning) are followed by a

set of postulates (basic mathematical propositions that are not sus-

ceptible to proof but have to be accepted; today, these are usually also

called axioms). From these definitions, axioms, and postulates, all

the theorems follow and all geometrical problems can be solved by

logical reasoning without the need for any additional, extraneous as-

sumptions. Aristotle’s influence led Euclid to accept the need for

such postulates but also to reduce their number to its absolute min-

imum.

This “axiomatic method,” which had been slowly evolving for

some time before Euclid became its prime expositor, continues to

have a profound impact on the way in which mathematicians formu-

late and communicate the results of their work, sometimes even in-

fluencing scientists in other fields. What is more, Euclid’s particular

choice of geometric postulates has shaped the modern development

of this field of mathematics, and of physics as well.

One postulate, in particular, continued to stick in the craw of ev-

eryone who seriously thought about geometry: the fifth and last one,

which he stated this way: “If a straight line crossing two straight lines

makes the sum of the interior angles on the same side less than two

right angles, the two straight lines, if continued indefinitely will meet

on that side on which the two angles add up to less than two right

angles” (Fig. 4).

This statement seems so obvious that almost everyone will accept

it and may see no need even to mention it explicitly. However, ever
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since Euclid’s day, mathematicians have tried to do away with it as a

postulate, either by replacing it without disturbing the rest of geome-

try, or else by relying on Euclid’s other four postulates and proving

the fifth as a theorem. Replacing it by another without ill effect on

geometry turned out to be easy enough, though to little advantage.

Several substitutes were proposed, an example of which is “Through

a given point only one parallel can be drawn to a given straight line,”

but they all turned out to be essentially equivalent to Euclid’s. (This

is why the fifth postulate is often stated in the form given in the last

sentence and referred to as the “parallel postulate.”)

A proof that the fifth postulate could not be deduced as a theo-

rem from the other four had to await the great nineteenth-century

mathematician Karl Friedrich Gauss. The work of other nineteenth-

century mathematicians demonstrated that it could be replaced by a
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different, contradictory postulate, thereby constructing alternative

geometries known as non-Euclidean. These turned out to have a pro-

found effect on physics and on our conception of the structure of the

universe.

An anecdote illustrates why Euclid may be regarded as the founder

of what we now call basic science. When one of his students asked

him what it would profit him to learn all the things Euclid taught,

the teacher gave him an obol (a Greek coin), so that he might gain

from what he learns. The basic purpose of science is not its applica-

tion and profit, but understanding what makes nature tick.

Science in Hellenistic Greece continued with the astronomers Ar-

istarchus (c. 320–250) and Hipparchus (second century bce). Born

on the island of Samos off the Ionian coast near Miletos, Aristarchus

contributed two important sets of ideas. The first, contained in his

preserved treatise On the Sizes and Distances of the Sun and Moon,

was to use what amounted to trigonometry (though trigonometry as

such did not exist) to estimate the sizes of the sun and moon, albeit

using grossly deficient observational data and therefore arriving at

results that were highly inaccurate. Nevertheless, his trigonometric

methods represented a decisive step forward.

For example, at the time of a half moon, when our line of sight to

the moon and the line from the moon to the sun must make a right

angle (so that we see the moon lit up exactly from the side), he mea-

sured the angle between the lines of sight to the moon and the sun

(Fig. 5). From his result of 87° he was able to conclude that the dis-

tance from earth to the sun was nineteen times that from the earth to

the moon. Had he used the correct value of 89° 50′ for that angle, he

would have arrived at the correct ratio, which is about 400.

However, his most important work (with which we are familiar

only because of a report by Archimedes, a younger contemporary)

described Aristarchus’s view of the universe. He regarded the sun

and the fixed stars as unmoving, the earth and the planets as circling

the sun, the moon as circling the earth, and, to account for the ap-

The Greek Miracle 31



parent rotation of the fixed stars in the heavens, the earth as revolv-

ing on its own axis, just as Heracleides had it. The size of the cosmos,

he believed, was very much larger than had been thought before, the

distance to the fixed stars so large that the orbit of the earth around

the sun was, in comparison, like a point. Thus, Aristarchus roughly

anticipated Copernicus and modern astronomy by eighteen centu-

ries. Moreover, he did this not through wild speculation but through

careful astronomical reasoning. Since his observations, faulty though

they were in detail, had led him to the correct conclusion that the sun

is very much larger than the earth, he could not believe that it would

be the larger sun that revolved around the smaller earth; it had to be

the other way around. For good reason, Aristarchus has been called

“the Copernicus of antiquity.” Removing the earth from the center of

the universe earned him the same accusations of impiety that Coper-

nicus would suffer later on. Though his views were not completely

lost, they were more or less ignored. (An exception was the Babylo-

nian astronomer Seleucus, who lived in the early part of the second

century bce, probably in the city of Seleuceia on the Tigris.)
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At this point we might want to take another look at China, on

the other side of the world, to see what contemporary mathemati-

cians and astronomers there were doing. The substance of the great-

est arithmetical Chinese classic, Chiu-chang suan-shu, or Arithmetic

in Nine Sections, whose original date is uncertain—tradition ascribes

it to the twenty-seventh century bce—has come down to us via the

mathematician Chang Ts’ang, who died in 152 bce at an age of

over 100. Revised and enlarged in the next century by Keng Shou-

ch’ang, minister to the emperor Hsuan-Ti, it contains measurements

of plane and solid geometrical figures, extraction of square and cube

roots, linear equations with several unknowns, problems involving

quadratic equations, the earliest known mention of negative quanti-

ties since the Babylonians, and the Pythagorean theorem; the value

of π in it is 3. In the third century ce, the mathematician Wang Fan

would improve the value of π to 3.155.

Concerning astronomy, the authors of a very instructive little book,

The Way and the Word: Science and Medicine in Early China and

Greece, tell us that the traditional Chinese view of the beginnings

of astronomy comes from the Institutions of the Emperor Yao, writ-

ten in the second half of the fourth century bce, though claimed

by tradition to be much older. The emperor “commanded the Hsi

and Ho [families of hereditary astronomers] reverently to follow au-

gust heaven, calculating and delineating the sun, moon, and other

celestial bodies in order respectfully to grant the seasons to the peo-

ple.” After calculating a reliable calendar, “if you earnestly supervise

all your functionaries, your achievements will be resplendent.”5 The

study of the heavens and the earth, in other words, was done at the

command of the ruler and for the direct benefit of his subjects. Note

the contrast between this command performance for the benefit of

the people and the individual, curiosity-driven research for under-

standing by the Greek scientist, to whom we now return.

We find that even the greatest observational astronomer of antiq-

uity, Hipparchus, regressed to a geocentric model for the universe,
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Aristarchus’s insights notwithstanding. In order to account for his

vast set of assembled precise data with a minimum of hypotheses, he

stuck to the traditional view of the earth at the center of the universe.

Little is known about the life of Hipparchus, except that he was born

in Nicea, now called Iznik, in northern Asia Minor just east of the

Sea of Marmara, and that he did most of his observational work on

the island of Rhodes, using a number of instruments of his own in-

vention. Listing the positions of about 850 stars ordered by their

magnitude, he assembled the first-ever star catalogue, employing a

system that resembled the one in use today. So accurate was his work,

and so extensive, that it was not only taken over in toto by Ptolemy

(which led to subsequent accusations of plagiarism against the latter)

but was used even by Edmund Halley at the end of the seventeenth

century.

Ptolemy, or Claudius Ptolemaeus, was of course the famous Egyp-

tian astronomer, astrologer, and philosopher of the second century

ce whose model of the solar system exerted an enormous influ-

ence on European science—and even religion—for many centuries

to come. Except for the fact that he lived and worked mostly in Alex-

andria, which had by then fallen under Roman domination, very lit-

tle is known about his life. The Almagest (its Arab name) contained

Ptolemy’s model for the motion of the moon, sun, planets, and stars,

all orbiting the earth. The essence of his geocentric system—like

Hipparchus, he abandoned the heliocentric model Aristarchus had

proposed—was strongly influenced by the views of Plato: as circles

were the perfect shapes, all the motions of the heavenly bodies had to

be uniform and basically circular. How, then, to account for the ob-

served periodically retrograde motion of the planets? This he ex-

plained by a system of epicycles: the trajectory of each planet con-

sisted of a circle whose center, in turn, uniformly moved along a

larger circle centered at the earth. The resulting planetary motion

was therefore not circular, and as seen from the earth—the center—

there were times when a planet appeared to be moving backward.
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Complicated as the Ptolemaic model was, it did not really account

for the observed data very well, but European civilization stuck with

it for some 1,300 years.

Meanwhile, we must not forget the greatest of the Greek scien-

tists, Archimedes, who lived just before Hipparchus. Son of the as-

tronomer Pheidias, Archimedes was born in 287 bce in the Greek

outpost of Syracuse on the Carthaginian-dominated island of Sicily,

but also spent some time in Alexandria, then the center of the scien-

tific world. When the Romans besieged Syracuse in 212, Archimedes

was reported to have assisted the defense of the city by a variety of

machines of his own invention, including catapults and an arrange-

ment of concave mirrors whose reflected sunlight set Roman ships

on fire. Legend had Archimedes slain by a Roman soldier during the

sack of Syracuse as he was drawing geometrical figures in the sand,

unwilling to be interrupted. His tomb, neglected for many years, was

restored and the tombstone described by Cicero in 75 bce, but its lo-

cation is now unknown.

Archimedes was that rare combination, an accomplished mathe-

matician and scientist and at the same time an inventor with an ex-

tremely fertile imagination for practical machinery. His most origi-

nal mathematical work was in geometry, including proofs of the

formulas for the volume and surface of a sphere (4/3 πr3 and 4πr2,

respectively). He was so proud of these proofs that he ordered an im-

age of a cylinder circumscribing a sphere to be placed on his tomb

after his death. Archimedes did not use equations; the formulas for

the volume and surface area of the sphere were expressed as ratios

to the corresponding figures for the cylinder that circumscribed a

sphere (hence the image for the tombstone, now unfortunately lost).

The remarkable thing is that these results were obtained without the

use of calculus, of which Archimedes is regarded as a precursor.

In order to find a good value for the number , he calculated the ar-

eas of two regular 96-sided polygons respectively inscribed in and

circumscribing a circle, which resulted in the inequalities (3 + 1/7)
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> π > (3 + 10/71), or (in modern decimal notation) 3.142 > π >
3.141.

The Archimedean spiral bears his name to this day (Fig. 6). By his

definition, it is formed “if a straight line of which one extremity re-

mains fixed, be made to revolve at a uniform rate in a plane until it

returns to the position from which it started, and if, at the same time

as the straight line revolves, a point moves at a uniform rate along

the straight line, starting from the fixed extremity, the point will de-

scribe a spiral.” (In modern language, on any ray, the distance from

the center is proportional to the angle the ray makes with a fixed line:

r = αθ.) Though severely hampered by the lack of a useful notation

system, Archimedes also invented expressions for extremely large

numbers (such as his estimate of the number of grains of sand that

would fill the universe), a facility that lay dormant for many centu-

ries to come.

In physics, Archimedes made contributions to astronomy and op-

tics, but his work was primarily concerned with the parts of mechan-

ics known today as statics and hydrostatics, of which he may be re-
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garded as the founder. Writing in a Euclidean style, beginning with

definitions and postulates, his approach to physical problems made

him the first mathematical physicist that we know of. For exam-

ple, after stating two postulates involving weights in equilibrium, he

proves that “two magnitudes, whether commensurable or not, bal-

ance at distances reciprocally proportional to them,” on the basis of

which he solves the problem of “how to move a given weight by a

given force.” His solution induced him to make the legendary an-

nouncement, “Give me a point of support and I shall move the

world.” To demonstrate to the king that this was not an empty boast,

he lifted an entire ship, with its crew and freight, by means of a com-

pound pulley.

In hydrostatics he discovered what is still known as the Archi-

medean principle: the weight of a body wholly or partially immersed

in a fluid is reduced by an amount equal to the weight of the fluid

that the body displaces. According to legend, after noticing the light-

ness of his body in his bath and suddenly realizing why this was so,

he ran naked through the streets of Syracuse shouting Eureka. The

principle leads to an easy method of detecting when an object (such

as a king’s crown) is made of pure gold or is adulterated by an ad-

mixture of lighter metals: if its weight in air is W and its weight when

immersed in water is w, the ratio of the weight in air to the difference

between the two weights, W/(W w), should be the same as the cor-

responding ratio for any other object known to be made of pure

gold, no matter its size or shape. If the ratio is less, it is not pure. That

ratio is the average specific weight of the material that constitutes it,

if the specific weight of water is taken to be 1.

If the theoretical and mathematical work of Archimedes was for-

gotten for many years, not so his legends and practical inventions.

Perhaps the best known of the latter is the Archimedes screw (Fig.

7), which is still used in modern factories to move powdery sub-

stances. It consists of a circular cylinder within which a tight-fitting

spiral screw can be turned by a handle at one end. If the lower end of
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the ingenious device, tilted upward, is dipped into a liquid and the

spiral is turned, it will gradually be filled and spill its contents at the

upper end.

It is interesting again to glance toward China and to contrast the

ease with which the Greeks accepted new technology and new practi-

cal inventions such as those of Archimedes with the dim view of

technical innovation taken by the Chinese at the time. The prevailing

contemporary philosophy toward science, Taoism, was not hostile to

science as such. But, new inventions that might make certain burden-

some tasks easier were viewed with deep suspicion. A good example

is given in the Taoist text Chuang Tzu, where a farmer is shown a new

device, called the swape, that would make irrigation of his field much

easier. “I have heard from my master,” he responds, “that those who

have cunning devices use cunning in their affairs, and those who use

cunning in their affairs have cunning hearts. Such cunning means
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the loss of pure simplicity. Such a loss leads to restlessness of the

spirit, and with such men the Tao will not dwell. I knew all about

[the swape], but I would be ashamed to use it.”6 Needham’s explana-

tion of this suspicion is the Taoists’ generalized complaint against

their contemporary society, which became a hatred of all “artifici-

ality” and their view that technical inventions had contributed to the

differentiation of classes.

The last of the great Greek mathematicians, Apollonius, was born

in about 260 bce in the town of Perga on the south coast of Asia Mi-

nor, which at the time belonged to the kingdom of Pergamon. He

studied at the school founded by Euclid in Alexandria and continued

to flourish there, but very little is known about the rest of his life. His

major legacy is his work, contained in an eight-volume treatise, on

conic sections—the curves formed by cutting a circular cone with a

plane at various angles: circles, ellipses, parabolas, and hyperbolas.

(The names of all but the first of these were coined by Apollonius.)

These particular curves turned out later to have great significance in

dynamics and in studying the trajectories of projectiles and the or-

bits of planets as well as comets.

Let us, then, summarize the state of physical science in the West at

the waning of the classical Greek and Hellenistic civilizations and the

rise of the Roman empire and the Christian era. Scientists—this

word is an anachronism, of course, since nowhere in the world did

they call themselves by such a name—were no longer satisfied just

knowing facts and tricks of the trade; they were searching for under-

standing and explanations, preferably in terms of mechanical or tele-

ological causes.

In the Greek realm, explanations, especially in astronomy, were

often formulated in mathematical terms. Competing theories of the

constitution of matter and the structure of the universe were, for the

most part, based on nothing but philosophical speculation, but some

used sound reasoning to draw valid conclusions, albeit incorrect in

their details owing to poor observational data. Records of detailed
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observations of the celestial bodies existed in the Hellenistic world

as well as in China and India. Several different models of the solar

system and the cosmos were put forward, but the one closest to

the modern view, the heliocentric model of Aristarchus, was gener-

ally ignored in favor of a complicated geocentric construction by

Ptolemy.

In mathematics, important progress had been made in geometry,

algebra, arithmetic, and number theory, but except for the field of

geometry, the most advanced formulations of mathematical ideas by

Greeks were still severely impeded by a very clumsy and primitive

notation. The crucial step forward was the concept that it was not

sufficient to treat each individual mathematical problem by itself

as it arises, but to prove theorems that would encompass the solu-

tions for whole classes of problems, irrespective of their contexts.

The quintessentially Greek notion of an airtight logical proof of a

theorem turned out to be of seminal importance not only to as-

sure correctness of results, but also for the further progress of mathe-

matics. The most valuable proofs opened up entirely new vistas of

research—and it remains so to this day. Though they contributed

significant mathematical results, Chinese and Indian thinkers never

came up with this idea, much to the detriment of mathematical de-

velopments in their cultures.

Compared with the state of physical science in the world some

seven hundred years earlier, the Greeks had made enormous ad-

vances, even though their progress was based in large part on earlier

Babylonian and Egyptian traditions. With that we turn to the story

as it developed after Christianity slowly began to dominate Europe,

with the help of the Roman empire. At the beginning of the Chris-

tian era, the overarching conviction carried by scientifically knowl-

edgeable philosophers was that nature was orderly, subject to regular

rules, and deterministic. This was perhaps the most significant scien-

tific legacy of classical Greece.

40 From Clockwork to Crapshoot



three

Science in the Middle Ages

As the power of Rome gradually rose, interest in philosophy and sci-

ence, even among the Greek-speaking and Greek-educated intellec-

tual elite, declined. The empire created by Roman military might

produced vast technical improvements such as a far-flung network of

roads and aqueducts, as well as cities with paved streets and plumb-

ing facilities. But its citizens, including the most educated among

them, had less interest in abstract or theoretical matters. As a result,

even though during the early centuries of the Roman republic there

were still a number of good Greek scientists, mysticism and astrology

flourished while progress in science languished, starved by want of

an intellectual milieu to nurture rational creativity. For a prolonged

period, not only did original scientific thinking wane, but eventually

parts of the old knowledge were lost. This was true particularly in the

western part of the later empire, where a steadily dwindling class of

the population read Greek, without which they had no access to the

works of the classical mathematicians, astronomers, and natural phi-

losophers.

One of the few original contributors to the propagation of classi-

cal thought was the Epicurean poet Titus Lucretius Carus, who prob-

ably lived from 99 to 44 bce. Almost nothing is known about his life,



other than calumnies written about him some 475 years later by St.

Jerome, who disliked him because of his anti-religious views. His De

rerum natura, an epic treatise written in Latin dactylic hexameters

and running almost as long as the Aeneid, is a work of scientific phi-

losophy dealing with atomic physics and cosmology. For Lucretius,

nothing existed in the infinite universe but indestructible atoms of

various shapes, without color, sound, taste, odor, or temperature,

moving irregularly in empty space.

As a substitute for original thinking, writers in subsequent centu-

ries turned to the compilation of scientific handbooks and encyclo-

pedias, which, in order to be accessible to those without the Greek

tongue, appeared, not always adequately, in Latin. The greatest of the

early Latin encyclopedists, Pliny the Elder (23–79 ce), was a Roman

cavalry commander who retired from service under the emperor

Nero to devote himself to a compilation of all the known sciences of

the day, along with much history and grammar, and who died in the

eruption of Mount Vesuvius that inundated the cities of Pompeii and

Herculaneum. His Natural History served as the main source of sci-

entific information for the next thousand years. Three of the best of

the late antique encyclopedists, who continued to exert considerable

influence throughout the early Middle Ages, were the Roman scholar

and statesman Ancius Manlius Severinus Boethius (c. 480–524), who

was executed for treason by the Ostrogoth King Theodoric, whom he

had served in Ravenna; St. Isidore (c. 560–636), bishop of Seville; and

the English theologian Venerable Bede (c. 673–735).

The greatest mathematician of the era, Diophantus, who probably

flourished during the late third century, made important contribu-

tions to number theory, algebra, and the theory of equations (one

kind of which still bears his name). But other than Diophantus and

Ptolemy, the only thinkers about physical science during the first

millennium of the Christian era worth mentioning were Hero of Al-

exandria, who lived in the first century ce, before the rapid growth

of Christianity and the establishment of the Christian Church, and
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John Philoponus (John the Grammarian), who flourished in the

sixth century.

Still the center of science in the Greek and Roman world, Alexan-

dria was an appropriate place for Hero to set up a technical school

with a strong emphasis on research. His most notable contributions

were experiments with steam pressure, which led him to recognize

that air was an elastic medium, capable of compression and expan-

sion. Though regarded for a long time as a third-rate tinkerer rather

than a serious scientist, Hero’s conclusion that air consisted of min-

ute moving particles was some fifteen centuries ahead of its time. He

also contributed to the science of mechanics and to mathematics, es-

pecially in regard to geometric measurements.

The importance of the Christian neoplatonist philosopher Phil-

oponus, who also lived in Alexandria, derives from his extensive crit-

ical and original commentaries on Aristotle. Based on experiments,

and anticipating the concept of inertia, he refuted Aristotle’s doc-

trine that heavier bodies fall faster than lighter ones as well as his

stricture against the possibility of a vacuum. His ideas, though they

put him a whole millennium ahead of his time, remained essentially

unknown in the Latin West during that entire period.

After the emperor Constantine became a Christian early in the

fourth century, Christianity spread to the far reaches of the crum-

bling western empire, including the areas populated by Germanic

tribes. The preservation of the remnants of the scientific tradition

that had come down from the Greek natural philosophers now de-

pended almost entirely on the attitude of the Church. Fortunately,

after strong initial hostility, the Christians’ view of the pagan Greek

knowledge that many of them (including St. Augustine, 354–430)

had learned in their youth was cautiously accepting, certain spe-

cific objections notwithstanding. As St. Clement (c. 150–215) and his

disciple, the theologian Origen of Alexandria (c. 185–254), taught,

whether Greek philosophy was good or bad depended entirely on

how Christians used it. Pagan astronomy and philosophy, includ-
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ing natural philosophy, if studied warily—and, if necessary, rein-

terpreted—could help in preparing for the study of the Bible and

improving one’s deeper understanding of it. The view that pre-

Christian learning could thus serve a useful purpose as handmaiden

to Christian theology much facilitated the further development of

science in medieval Europe.1 Later, the Church would express antag-

onism toward certain scientific discoveries, such as the Copernican

heliocentric model of the solar system and Darwinian evolution.

But the development of Western science could have been seriously

impeded, if not wholly foreclosed, had Christianity in the Middle

Ages adopted a more fundamentally hostile stance toward the pagan

philosophical ideas Europe inherited from the Greek civilization and

toward their off-spring, which eventually grew into modern science.

With the collapse of the western Roman empire and the shrink-

ing of its cities, one of the major benefits of civilization—the edu-

cation of an elite (at that time meaning mostly the future clergy)—

became confined first to rural monasteries and later to cathedral

schools, where it was pursued entirely in Latin. A number of teachers

at the cathedral schools in major cities became widely known. They

included the Benedictine monk Gerbert (c. 946–1003), sometimes

credited with the invention of the escapement, a crucial element in

clocks, who had a wide knowledge of astronomy and later became

Pope Sylvester II; and the French philosopher Peter Abelard (1079–

1142), who attracted large numbers of students. The subject matter

of their instructions tended to be quite broad, including as much sci-

ence and mathematics—which was usually relatively elementary—as

they could find in the classical Latin literature and in Latin transla-

tions of Arabic treatises imported via Spain. Few of the great Greek

works on natural philosophy or mathematics were directly translated

into Latin until the thirteenth century, which is why the Latin ency-

clopedias and the new influx of science and natural philosophy com-

ing from the Arabs became crucial sources of information.

The year 622 saw the birth of Islam and the beginning of the rapid
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Arab conquest of the area from India, across northern Africa, and

into Spain. As Christian Western Europe turned inward, the expand-

ing Muslim world experienced a great flowering of intellectual activ-

ity. Caliph Harun-al-Rashid, a contemporary of the Holy Roman

Emperor Charlemagne, actively encouraged the translation of all the

treasures of knowledge to be found in Greek into the Arabic lan-

guage, as had the earlier caliph al-Mansur, the founder of Baghdad.

During the ninth century, almost every significant mathematician

was also an astronomer or astrologer. And in this part of the world,

including Islamic Europe, they were, with a few Jewish and Christian

exceptions, Muslims, all speaking and writing in Arabic. Arab culture

assimilated Greek knowledge, and most of the existing Greek manu-

scripts, including the texts of Aristotle, Plato, Euclid, and Ptolemy,

were translated into Arabic and Syriac, thereby greatly assisting their

later survival in Western Europe.

Islamic intellectuals and scholars were primarily supported by

secular patrons; in contrast with their Christian counterparts, they

were not clerics, which allowed their thought more leeway. On the

other hand, this freedom from religious affiliation subsequently ex-

posed them to much more ferocious suppression by clerical authori-

ties, which may go a long way in explaining why the exuberant flow-

ering of Islamic culture in the Middle Ages did not spawn a scientific

revolution comparable to that in Christian Europe.2

The most influential of the ninth-century Arab mathematicians

(and an astronomer as well) was al-Khwarismi, a corruption of whose

name eventually produced the word algorithm for any systematic

rule of calculation. (Similarly, the word algebra originated from a

corruption of the title Al-jabr, his work based on earlier achieve-

ments of Diophantus and of the great Indian mathematician and as-

tronomer Brahmagupta of the seventh century, which gave an ex-

haustive exposition of linear and quadratic equations.) He was the

first to expound, systematically, the Hindu number system (without

any claim that it was his own invention). The transfer of this system
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from India to the Arabs and thence in the twelfth century to Western

Europe (where these numbers became known as Arabic numerals)

was of seminal importance to the subsequent scientific development

of Western culture.

The decimal place-value number system—the system in use ev-

erywhere today, in which 3756 stands for (6 × 100) + (5 × 101) + (7

× 102) + (3 × 103)—had been evolving in India for several centuries

before its appearance in the influential versified work Aryabhatiya by

Aryabhata in 499 ce. It still took some time after that for the system

to develop to the point where only nine symbols were used to denote

any number, no matter how large. Even then it was still the same as

the place-value system employed much earlier by the Sumerians—

since no symbol for zero existed as yet—and it may have been im-

ported from there. The first documented appearance of a zero is in

an inscription dated 876. Of the three elements of the so-called

Arabic numeral system—the decimal base, positional notation, and a

simple symbol for each of the ten numerals, including zero—none

was really original with the Hindus; they all were much older. But the

Hindus apparently were the first to combine all three, and the Arabs,

via Al-Khwarismi, learned the system from them. (A positional num-

ber system was also independently invented in the Western Hemi-

sphere by the Mayas, whose civilization flourished from the third to

the tenth century.)

Another ninth-century Arab mathematician of note, Thabit ibn-

Qurra, founded a school of scribes who performed the invaluable

job of translating into Arabic many of the works of Euclid, Archime-

des, Apollonius, and Ptolemy in the second half of the century. But

equally important, he also commented on these Greek works and

suggested valuable generalizations and modifications. Thabit ibn-

Qurra and al-Battani (known in Europe as Albategnius), who was

primarily an astronomer and lived well into the tenth century, both

further developed the trigonometry that had come down to them

from the Greeks and the Hindus. Whereas Ptolemy had employed for
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his astronomical data the relation between the length of a chord of a

circle to the angle subtended at the center, the Surya Siddhanta—

written about 400 ce, though there are variously dated versions of

it—had used for the first time the relation between the half-chord

and the corresponding half-angle, thereby effectively introducing the

sine function. (The word sine derives from a mistranslation of the

Arab version of the Hindu word jiva.)

The greatest of the Muslim natural philosophers, Ibn al-Haitham,

known in the Latin West as Alhazen, was born c. 965 in Basra but

flourished in Egypt and died about 1039 in Cairo. In addition to

commentaries on Aristotle and Galen, he wrote a work on optics,

Kitab al-manazir, which dealt with the properties of spherical and

parabolic mirrors, spherical aberration, refraction, the magnifying

power of lenses, optical illusions, properties of the eye, and the rain-

bow. A translation of this work into Latin continued to exert a

powerful influence on Western science for many centuries to come.

Alhazen also had a correct explanation for the apparent increase of

the size of the sun and the moon as they approached the horizon,

and he was the first to explain in detail the principle of a camera

obscura. (A camera obscura is a dark room or box with a small hole

on one side through which light shines onto the opposite wall, proj-

ecting an inverted image of the outside scene. It had been in use in

China as early as the fifth century bce, and Aristotle had noticed the

inverted crescent image of a partially eclipsed sun projected on the

ground through small gaps in tree foliage. After the invention of

photographic emulsion, small versions of the camera obscura, with a

photographic plate or film placed opposite its pin hole, became the

popular box camera.)

Twelfth-century Christian Europe underwent a decided intellec-

tual shift in its view of how God governed the world, though this

subject continued to remain controversial for several hundred years.

Rather than determining every occurrence in nature, God came to be

seen as responsible for setting up nature in such a way that chains of
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events caused other chains of events, and natural philosophy be-

came the appropriate discipline for the study of these phenomena of

the world. Theological objections notwithstanding, the universe was

once again viewed in the way that many of the Greek natural philos-

ophers had seen it: as a self-operating, regularly functioning ma-

chine, created and set in motion by the hand of God but running on

its own. William of Conches, a philosopher in the School of Chartres

and one-time tutor of the young Henry II, defiantly declared that

“the reason behind everything should be sought out,” and he was not

alone.3 It was important for Christians to know the laws of nature in

order to appreciate the sublime masterpiece God had created.

This curiosity about nature among Western European scholars

was sparked in large part by their discovery of a treasure trove of

works by Greek mathematicians and natural philosophers, Aristotle

above all, in the libraries of Toledo, Segovia, and Cordoba. By the

twelfth century, Spain had been in the hands of the Moors for some

five hundred years, but its Christian reconquest was well under way.

Among the treasures the Christians claimed were the writings of

Arab mathematicians as well as classical works, some in the original

Greek, others in Arabic translations, accompanied with elucidating

commentaries by such Islamic scholars as Averroes (Ibn Rushd,

1126–1198), Jewish sages such as Moses Maimonides (1135–1204),

and others.

These discoveries created among the comparatively ignorant Chris-

tians of Europe an insatiable thirst for the knowledge of the much

more civilized pagans and infidels, a thirst that could be slaked only

by translating all the old fonts of wisdom into Latin so as to make

them readily available to Western scholars. Great translation centers

grew up both in Spain and in Sicily—which the Arabs had wrested

from the Byzantine empire and the Normans had subsequently con-

quered. The influx of first- and second-hand ancient Greek as well as

more recent Arab and Jewish learning rekindled embers that eventu-

ally sparked the Renaissance and its scientific revolution.
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As cities started to regain their vitality in Western Europe, the

twelfth century saw the establishment of the first European universi-

ties. Paris and Oxford in particular played important roles in physi-

cal science and natural philosophy, while Bologna confined itself

to law and medicine. The difference between universities in Chris-

tian Europe and their analogues, the madrasas in the Islamic world,

is noteworthy.4 The latter, set up on the basis of private endow-

ments, were exclusively for the propagation of religious knowledge

and Islamic law; philosophy or the natural sciences, the so-called for-

eign sciences, were never a focus of attention there, particularly be-

cause Aristotle’s teachings were sharply at variance with those of

the Quran. The foreign sciences were available in Arabic libraries

(though occasionally they were burned), but, much as some promi-

nent independent Arabic thinkers admired them, they were rarely

taught to madrasa students.

The influence of the translated works of Aristotle at that time is

impossible to overstate; the following encomium by Averroes is an

example of the medieval opinion held by Islamic and Christian think-

ers alike: “The teaching of Aristotle is the supreme truth, because his

mind was the final expression of the human mind. Wherefore it has

been well said that he was created and given to us by divine provi-

dence that we might know all that is to be known. Let us praise God,

who set this man apart from all others in perfection, and made him

approach very near to the highest dignity humanity can attain.”5 Ar-

istotle’s teachings were taken as gospel—and inevitably this led to a

clash with the guardians of the real gospels.

The place where, in the thirteenth century, the conflict was espe-

cially fought out was the University of Paris, whose most important

house of learning was founded in 1257 by the theologian Robert

Sorbon and is associated with his name to this day. The strife at the

university between Aristotelians and the conservative powers of the

Church led to an official ban of Aristotle’s books dealing with natural

philosophy that stayed in effect for about forty years, though it did
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not extend to other universities such as Oxford. Even after the ban

was lifted, the struggle between the faculties of theology, where of

course faith reigned supreme, and arts, where the works of “the phi-

losopher” were revered, continued until the bishop of Paris in 1277

issued an edict explicitly condemning 219 of Aristotle’s propositions.

At least some Church officials had given up on the idea that natural

philosophy could serve as the handmaiden of theology. To demon-

strate which was supreme, faith or reason, the arts masters at Paris

were obliged, by oath, to resolve any conflict arising between the two

in favor of faith.

The theologians objected most vociferously to three of Aristotle’s

propositions: the eternity of the world, the doctrine of the double

truth, and the limits on God’s power. “The world as a whole was not

generated,” Aristotle taught, “and cannot be destroyed, as some al-

lege, but is unique and eternal, having no beginning or end of its

whole life.”6 This clearly was in conflict with the account of creation

by Genesis. How did Christian scholars deal with such contradic-

tions between philosophy, based on reason, and theology, based on

faith? As the thirteenth-century Scandinavian, Boethius of Dacia, put

it, “Who does not believe these things is a heretic; whoever seeks to

know these things by reason is a fool.”7 Faith and reason simply oper-

ate on different planes and are incommensurate. While conservative

theologians objected, the Dominican friar Thomas Aquinas (1224–

1274) agreed: “That the world had a beginning . . . is an object of

faith, but not of demonstration or science.”8 The world was created

by God, and yet it might, nevertheless, be eternal. What is more,

Aquinas preached, studying the laws governing this world allows us

to discern God’s intentions in creating it, a view strongly opposed by

the Scottish Franciscan friar and Aristotelian philosopher John Duns

Scotus (c. 1266–1308).

Thus, medieval Western Europe managed to find a compromise

that prevented Christian faith from blocking reason altogether and

made the later rise of science possible. The price was an implied doc-
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trine—never acknowledged and in fact explicitly condemned by the

edict of 1277—of “the double truth,” which allowed the truth of reli-

gion to coexist with the truth of science or reason.9

The third and perhaps most important issue dealt with in the

Paris edict was God’s absolute power. The question was whether God

could do things that contradicted the laws of nature (the specific

laws enunciated by Aristotle, to be sure, but the same problem would

arise later with respect to other natural laws). Aristotle had declared

that a vacuum was impossible. Did that mean God did not have the

power to make a vacuum? Every occurrence had a cause, according

to Aristotle; so God could not produce any occurrence he wished,

natural cause or no? It was, in essence, the question whether miracles

could happen, and of course the Church could not tolerate a natural

philosophy that denied their existence. The bishop of Paris effectively

decreed that God had the power to do anything he desired, lawful or

not. That Christians were obliged to obey the bishop’s decree caused

complications for science, but these proved surmountable.

Christian Western Europe did produce a certain number of cred-

itable physical scientists and mathematicians in the thirteenth cen-

tury. The greatest of these was the Italian Leonardo Fibonacci (or Le-

onardo Pisano, c. 1170–1240), who was the first to give a complete

explanation of the Hindu numerals as well as of Hindu and Arabic

arithmetic to the Christians. His use of algebra to solve geometrical

problems was a novelty in medieval Europe, but today Fibonacci is

primarily known for the sequence 1,2,3,5,8,13,21, . . . (each term of

which is the sum of the two preceding terms), which turned out to

have applications in biology.

Others of note were the German mathematician and physical sci-

entist Jordanus de Nemore (Nemorarius), thought by some to have

been identical with the Dominican Jordanus Saxo, who died at sea in

1237 while returning from the Holy Land; the French Franciscan

mathematician Alexandre de Villedieu, who died about 1240; the

English mathematician and astronomer Joannes de Sacrobosco (or
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John of Halifax), who studied at Oxford but lived most of his life in

Paris, where he died about 1250; and the English astronomer and

physician William the Englishman (or Marsiliensis), who flourished

in Marseilles c. 1231.

Nemorarius made original contributions both to static mechan-

ics, concerning the lever and the inclined plane, and to an idea about

a kind of gravity, as well as to the theory of numbers. Villedieu’s

extremely popular didactic poem on arithmetic, Carmen de algo-

rismo, translated into English, French, and Icelandic, greatly helped

to spread the use of Hindu numerals throughout Europe. It was the

first Latin text that used zero simply as one of the numerals. Sacro-

bosco’s treatises on astronomy (including of course astrology), arith-

metic, and the calendar, though lacking in originality, remained enor-

mously popular for several centuries, and his Algorismus vulgaris,

which referred to the Arabs as the inventors of the algorithm, became

the source of the name Arabic for the Hindu numerals.

Though not very accomplished as a practicing scientist, the En-

glish Franciscan friar and Aristotelian philosopher Roger Bacon

(c. 1220–1292), who puzzled over the problem of the transmission of

a mechanical force (a problem that would cause some difficulties for

Isaac Newton four centuries later), exerted a great and long-lasting

influence upon the later development of science. What singles him

out among medieval thinkers is his strongly expressed emphasis on

experience and experimentation, in contrast to pure reasoning, in

spite of the fact that he also appreciated the value of mathematics

in science. Here were the first stirrings of what was needed for a sci-

entific revolution. William of Ockham (c. 1285–1347) was another

English Franciscan philosopher who had an impact upon scientific

thought. In his case it was the enunciation of what became known as

Ockham’s razor: “Pluralitas non est ponenda sine necessitate,” or

“Plurality should not be posited without necessity.” Not original but

stressed by him with unusual force, this injunction to prefer simplic-
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ity over unnecessary elaboration would be taken to heart by many

scientists.

Even though the eastern part of what remained of the Roman

empire had the intrinsic advantage of speaking Greek, which en-

abled them to read the pagan natural philosophers and mathemati-

cians without having to wait for translations, the contributions of

Byzantine Christian Europe during this time were insignificant. The

emperor Justinian had closed Plato’s Academy in 529, and the an-

cient Greek tradition was neglected. Scientific developments outside

Christian Europe, on the other hand, were not insignificant. The

greatest astronomer of the time was al-Hasan al-Marrakusi, a Mus-

lim living in Morocco, who in the thirteenth century wrote an elabo-

rate treatise on practical astronomy containing a catalogue of 240

stars. This work also included a mathematical part with trigonomical

tables of sines, arc sines, and arc cotangents.

At the same time, Islamic Persia produced a great mathematician

and scientist, Nasir al-Din al-Tusi (1201–1274), who wrote in both

Persian and Arabic and for many years served as astrologer to Hulagu

Khan, the Mongol chief who sacked Baghdad in 1258. He wrote

works on philosophy, logic, theology, ethics, and poetry, but more

important from our point of view, extensive and elaborate commen-

taries on the works of Euclid, especially on Euclid’s fifth postulate, as

well as on the works of Archimedes. His principal treatise dealt with

plane and spherical trigonometry, the first textbook ever to treat that

subject independently of astronomy.

In the service of Hulagu, Nasir al-Din constructed both a library,

which contained a large number of volumes that the Mongol armies

had “collected” on their march through Persia, Mesopotamia, and

Syria, and an observatory in the city of Maragha. He was the first di-

rector of this well-equipped observatory, which was said to have sev-

eral Chinese astronomers and scientists in residence whom Hulagu

had brought with him from China. On the basis of his observations
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there and those of earlier astronomers, Nasir al-Din compiled a large

set of astronomical tables listing the motions of planets (ephem-

erides), as well as astrological data, which were enormously popular

as far away as China and remained so for a long time. His treatises

on astronomy contained, among other things, detailed criticisms of

the Ptolemaic system and ingenious attempts to simplify the com-

plicated machinery of the Almagest, though without conspicuous

success.

Meanwhile, two widely separated parts of China produced two

great mathematicians: Ch’in Chiu-Shao, who flourished from 1244

to 1258 under the Sung on the Yangtze River in the south, and Li Yeh,

who lived under the Nu Chen Tartars in the north from 1178 to

1265. The principal work of the first, completed in 1247, consisted of

a collection of problems involving equations of higher degree that he

solved by a very original numerical method called t’ien yuan, or “the

celestial element,” anticipating much later Western work. (The celes-

tial element was the unknown quantity in an algebraic problem, and

its computation included the use of a zero, which may have been im-

ported from India.)10 Li Yeh, who was primarily an algebraist, re-

markably enough also used a slightly different variant of t’ien yuan.

If they derived their versions of this procedure from a common ori-

gin, this origin was unknown outside the Far East.

A third great mathematician, Chu Shin-Chieh, flourished some-

what later, from 1280 to 1303, but almost nothing is known about his

life. The importance of one of his works resides primarily in its influ-

ence upon Japanese mathematics after its arrival there via Korea. His

second work applied the t’ien yuan for the first time to systems of

linear equations with four unknowns. Sarton regards the thirteenth-

century development of mathematics in China as “very mysterious.”11

As the fourteenth century dawned, interest in physical phenom-

ena began to pick up again. Stimulated by a fascination with astrol-

ogy and consequently with the visually oriented sciences of astron-

omy and meteorology, interest in optical phenomena reawakened,
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both in the Christian West and in the Muslim East. St. Thomas Aqui-

nas started it in Western Europe with a commentary on the meteo-

rology of Aristotle, but the common source for this simultaneous

study in disparate geographical areas was the Kitab al-manazir of

Ibn al-Haitham, described earlier. Mentioned both in Genesis and

Ezekiel, the rainbow in particular begged to be understood by Bibli-

cal scholars.

The leading expert on optical phenomena in the West, the Do-

minican friar Dietrich von Freiberg (c. 1250–1310), not only carried

out numerous optical experiments at a time when experimentation

was not yet a common scientific practice but came up with an expla-

nation of the cause of the rainbow that required only relatively mi-

nor later modification to be correct. It was produced, he said, by a

combination of internal refractions and reflections of light by the

spherical water droplets in the atmosphere, a view that was also,

quite independently, put forward at about the same time by the Per-

sian Muslim Qutb al-Din al-Shirazi and by his disciple Kamal al-Din

al-Farisi. Born in 1236 in Shiraz and living until 1311, Qutb al-Din,

who, contrary to Aristotle, regarded light as the source of all mo-

tion, made contributions not only to optics but also to medicine

and astronomy, in which he introduced important modifications of

the Ptolemaic model of the solar system. His student Kamal al-Din

contributed an elaborate reinterpretation of the theories of Ibn al-

Haitham, including observations on aerial perspective, and he recog-

nized that the speed of light could not be infinite.

Progress in the science of optics led to the invention of spectacles,

probably near the end of the thirteenth century, though owing to

both technical and psychological difficulties it took a long time be-

fore many people would actually use them. The new intellectual fer-

ment in Christian Europe, however, was both broader and deeper

than a renewal of the study of optical phenomena, and it was becom-

ing more heated, with the doctrines of the revered Aristotle undergo-

ing modifications in various ways. The thirteenth century was the
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time of cultural crossover. While the Christian civilization of Europe

gained energy, the Muslim-dominated region, for reasons that have

never been adequately explained, entered an intellectual and scien-

tific decline.12 Nevertheless, some Muslim astronomers at that time

raised a question that did not occur to any of their contemporary

colleagues in Christian Europe—with the singular exception of the

Cistercian monk Pierre Ceffons, who carefully demolished all the ob-

jections to the thesis but nevertheless refused to accept it: is the earth

in motion rather than at rest? On the basis of elaborate proofs, their

answer, in every instance, was the same as Ceffons’s: it was certainly

not moving. Still, raising the question meant taking it seriously.

In fourteenth-century England, the mathematician Thomas Brad-

wardine (1290–1349) worked in geometry, arithmetic, the theory of

proportions, and the Aristotelian laws of mechanics, and died thirty-

eight days after being consecrated archbishop of Canterbury. While

he stuck to Aristotle’s view that the speed with which an object

moved was determined by the force acting on it and the resistance it

experienced, he reformulated Aristotle’s laws of motion so that a

doubling of the velocity of an object required the ratio of force to

resistance to be squared, rather than doubled, as Aristotle had it.

In modern form, this means that Bradwardine postulated F/R =
(const.)V rather than Aristotle’s F/R = const. × V, if F is the force, R

the resistance, and V the velocity. The reason for this change was a

perceived problem with Aristotle’s law of motion when the force is

diminished, or the resistance increased, until force and resistance are

equal; at this point, any motion was expected to come to a stand-still.

But whereas Aristotle’s form of the law does not predict this out-

come, Bradwardine’s does. The old aim of physics to predict the mo-

tion of all objects had not been lost sight of.

France produced two philosophers of note in the fourteenth cen-

tury, Jean Buridan and Nicole Oresme. Buridan is popularly known

primarily through a caricature of his writings about human motiva-
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tion and its determination by desires: “Buridan’s ass,” standing half-

way between two bales of hay and immobilized by desires pulling

him in opposite directions, dies of starvation. An Aristotelian philos-

opher and logician, Buridan (1300–1358) had studied under William

of Ockham at the University of Paris and eventually became the rec-

tor of that university. He was the first scientific theorist to assume

that celestial bodies were subject to the same laws of motion as ob-

jects in the sublunar world, a daring conjecture that would be fleshed

out and confirmed by Isaac Newton. What is more, Buridan took

up Philoponus’s concept of inertial “impetus”—in modern language,

momentum—which, contrary to Aristotle, kept objects moving even

when there was no longer a force to push them. Audacious ideas such

as these made him famous all over Europe.

The scholastic philosopher, mathematician, and theologian Nicole

Oresme (1320–1382) was of Norman origin, but little is known about

his youth and upbringing except that he studied at the College of

Navarre at the University of Paris, where he became grand maître in

1356. Serving as a canon at the Sainte Chapelle in Paris and at the

Cathedral of Rouen, where he became dean, he was consecrated

bishop of Lisieux in 1377. In a development reminiscent of Aristotle

himself, Oresme also served as advisor to King Charles V, whose

tutor he had been when Charles was the young dauphin. Perhaps be-

cause of this association, he adopted the very unusual habit of writ-

ing many of his works in French rather than Latin, thereby introduc-

ing a number of previously unknown scientific terms into the French

language.

An important problem that had been ignored in medieval Europe,

though not among Islamic scholars, was now beginning to focus the

attention of both Buridan and Oresme: is the earth at rest, with the

sun, the moon, and the stars circling about it, or is it rotating, pro-

ducing in its inhabitants the impression of a diurnal rotation of the

heavens? Even to raise this point seriously meant questioning the
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majestic authority of Aristotle and Ptolemy, as well as that of the Bi-

ble. But it had been addressed long ago by Aristarchus and was then

more or less forgotten.

Buridan argued that you really could not tell the difference be-

tween a sun and body of stars circling the fixed earth and a fixed ce-

lestial sphere and sun with a rotating earth: the observed astronomi-

cal phenomena would be the same in both cases. Furthermore, if

nature preferred simplicity, she would certainly choose to keep the

heavens at rest and have the earth rotate. Nevertheless, he could not

bring himself to believe that the earth rotated, and his major argu-

ment against it was based on his impetus theory: an arrow shot

straight up into the air would land west of its launching place if dur-

ing the time of its rise and fall the earth had moved to the east under

it. Since this had never been observed, he concluded from this physi-

cal rather than astronomical argument that the earth could not be

moving. The same reasoning would be used again and again by oth-

ers until it was finally put to rest by means of Newton’s equations of

motion.

Nicole Oresme went on to demolish this conclusion with a coun-

ter-argument that placed him well ahead of his time. He decomposed

the motion of the arrow into a horizontal and a vertical component.

If the earth were rotating, the bow would share the horizontal mo-

tion of the ground and impart it to the arrow launched by it. There-

fore, its flight would consist of a combination of two motions, a ver-

tical component, straight up, and a horizontal one that would be

exactly equal to the horizontal motion of the launcher standing still

on the earth. Hence, the arrow would land at its launching point,

whether the earth moved or not. In addition, Oresme produced a

Biblical argument: as every good Christian knew, God had inter-

vened on the side of Joshua’s army, lengthening the day by making

the sun stand still over Gibeon. Would it not have been very much

simpler for God to achieve the same effect by stopping the rotation
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of the little earth rather than by bringing both the sun and the entire

huge celestial sphere to a halt? This miracle thus could have been

performed with greater economy of effort if the earth were rotating.

Reasoning based on simplicity, a version of Ockham’s razor, was be-

ginning to play a powerful role in scientific thought.

Oresme’s ingenious arguments set important precedents for later

discussions at the time of Copernicus, but they did not in the end

persuade their author, who chose to stick with the Bible, convinced

that the earth was at rest. Habits of thought, reinforced by the weight

of authority, were difficult to break. His anti-Aristotelian reasoning

showed, however, that logic could not prove the immobility of the

earth; the basis for that assumption had to be faith, and that conclu-

sion was momentous.

Viewed from the perspective of the pervasiveness of determinism

in physics until the twentieth century, the most interesting aspects of

Oresme’s thinking were his arguments against an old Greek doctrine,

resurrected by some neoplatonists and taken up prominently five

hundred years later by Friedrich Nietzsche: the eternal return, that

every occurrence in history would repeat itself over and over again,

ad infinitum. Its astrological underpinnings, of crucial importance

at the time, posited that the planets in the sky, which, after all, were

believed to determine the entire course of history, could not avoid

returning to any position they once occupied and subsequently ex-

actly repeating their earlier motion after a period which the Stoic

philosophers called the “Great Year.” If the heavenly machinery could

not avoid repeating its motion infinitely many times, so necessarily

would human history as well, with the length of the “Great Year” es-

timated to be about 36,000 years.

Oresme’s attack on the idea of the eternal return is based on

mathematics. In On the Commensurability or Incommensurability of

the Celestial Motions, he argues that if two objects in regular circular

motion have velocities that are commensurable, then there will nec-
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essarily have to come a time when they both return to their start-

ing points.13 Suppose that object A has the velocity V1 and B has the

velocity V2, and that the ratio of the two velocities is V1/V2 = a/b,

where a and b are two whole numbers. (This is what is now meant

by “commensurability”; Oresme’s definition was somewhat different,

but no matter.) Then the time T for A to complete a rotations is ex-

actly equal to the time for B to complete b rotations, so that at the

time T after their start, both will be precisely at their initial positions,

and the motion will repeat itself. However, he goes on, if their veloci-

ties are incommensurable, so that no such whole numbers a and

b exist, then there will never be a time at which the two simulta-

neously return to their starting point. What is more, he argues (with-

out giving any good reason, except for an analogy with “perfect

numbers,” which are the sum of their divisors other than them-

selves—pretty rare) that the probability is much against two planets

having commensurable velocities. He then considers more compli-

cated systems consisting of more than two planets in circular mo-

tion, and he comes to the same conclusion. If two planets are in con-

junction at one time (the astrological event of greatest significance),

the probability is against their having been in exact conjunction at

any earlier time or being again in conjunction at some future time.

Three things are remarkable about these ideas: first, Nicole Oresme

anticipates the nineteenth-century ideas of Henri Poincaré that we

will take up later; second, he anticipates more precise mathematical

findings about the frequency with which rational numbers occur

among the irrational; third, and most important from our point of

view, for the first time the notion of probability enters into physical

science. In the fourteenth century Oresme’s thinking was certainly

anomalous, and we shall see nothing of its kind again for five cen-

turies.

As far as other philosophers and natural scientists were con-

cerned, the fourteenth century was still dominated by Aristotle—

both the questions he raised and the answers he gave. Since medieval
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thinking and its educational system were dominated by “questions”

and long disputes about each of them, this is meant literally. While

men often disagreed about the detailed mechanisms involved in the

functioning of the world, the basic “questions” about it were always

concerned with whether the world could have existed from eternity

or was created, whether a multiplicity of other worlds existed and

what that meant, whether the world was “perfect” or corruptible,

what material the world was composed of, and how the celestial bod-

ies, the sun, the stars, the moon, and the planets moved. These ques-

tions, of course, always skirted along the edges of theological dogma,

and thinkers had to beware of offending either authorities or their

own Christian beliefs. Observational astronomy, to the extent that it

was pursued, primarily served two purposes: the first and foremost,

as everywhere in the world, was astrological; the second, however,

was the more intellectually constructive one of aiming at a better un-

derstanding of how the cosmos worked.

In India, by contrast, where astronomy had long been a promi-

nent and productive pursuit, this science was looked at somewhat

differently. Its primary aim was astrological, just as it was in Europe.

But it was also considered of divine origin and therefore not subject

to changing interpretations; furthermore, its principal non-astrolog-

ical goal was computational rather than kinematic. Astronomers fo-

cused their creativity and energy on making detailed listings and

mathematical computations, and, differing from their colleagues in

Europe, they did not give much thought to the relation of astronomy

to natural philosophy or to physical explanations of the motions of

the heavenly bodies.

The combination of the Black Death of 1348 and the Hundred

Years’ War from the middle of the fourteenth to the middle of the fif-

teenth century produced a hiatus in the advance of science. Perhaps

appropriately, the only significant developments in physics during

the fifteenth century concerned natural phenomena that tended to

strike fear into people: several impressive comets were observed dur-
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ing that period. The dominant explanation for the nature of comets

that Europe inherited from Greek antiquity was provided by Aris-

totle, who did not regard them as celestial objects because he defined

the latter as “eternal and not subject to increase or diminution” (On

the Heavens 1.3).14 He disagreed with Anaxagoras and Democritus,

who thought of comets as conjunctions of known planets, and with

the Pythagoreans and others, who believed comets to be planets that

became visible only occasionally, the tail caused by a reflection of the

sun on moisture attracted to the planet. Instead, Aristotle’s view was

that comets were localized fires caused by friction between the upper

layer of the atmosphere, the terrestrial sphere, which is constantly

in irregular motion, and the steadily moving celestial sphere. They

were therefore located at the edge of the upper atmosphere, relatively

close by, and their existence was a simple consequence of his cosmol-

ogy. Regarding them entirely as astrological phenomena, Ptolemy ac-

cepted this Aristotelian view of the proximity of comets and men-

tioned them almost nowhere in his writings.

Such power did the thought of Aristotle (supported by Ptolemy)

exert that until the fifteenth century neither Christian Europe nor

the Islamic world generated new ideas about comets or even paid

much attention to them. However, the appearance of one during

most of the months of February and March in 1402 occasioned a

lengthy treatise by Jacobus (Engelhart) Angelus of Ulm, probably a

native of Swabia, who served as physician to Prince Leopold, duke of

Austria. The treatise describes detailed observations of the comet at

various times and discusses its astrological significance. The later

comets of 1433, 1449, 1456, 1457, and 1472 were observed and de-

scribed with unprecedented precision and detail by the Florentine

Paolo Toscanelli dal Pozzo, who lived from 1397 to 1482. Acquainted

with Brunelleschi, who was then in the process of constructing the

basilica of Santa Maria del Fiore in Florence, with its magnificent

dome, Toscanelli installed a gnomon—the highest ever built—in the

cupola of that church and used it for precise astronomical observa-
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tions such as the date of the summer solstice. However, neither An-

gelus nor Toscanelli had anything new to add about the nature or

distance of comets.

The first astronomer to take a stab at estimating the distance of a

comet from actual parallax observations was Georg Peurbach, who

was born 1423 in Peurbach, Austria, and died in 1461 in Vienna,

where he had taught at the university. Parallax is the altered angle at

which an object is seen when viewed from different positions. That

angular difference makes it possible to determine the distance be-

tween the object and the observer. He too left detailed descriptions of

the 1456 comet, and on the basis of his and Toscanelli’s precise ob-

servations it could later be identified as the same comet that returned

in 1758. Since this comet was predicted by the astronomer Edmund

Halley in 1705, it became known as Halley’s comet. Astrological

myth has Halley’s comet visible at both Mark Twain’s birth in 1835

and his death in 1910. Though the visibility of the comet is apocry-

phal, the years are correct. Taking Aristotle’s assumption that comets

are located at the interface between the terrestrial and the celestial

spheres more or less for granted, Peurbach attempted to estimate the

height of that region by a parallax measurement (Fig. 8). However,

as his figures were mistaken and his calculations in error, he arrived

at results that were quite incorrect.15

Johannes Müller, born in 1436 in Königsberg, Bavaria, who be-

came widely known under the name of Regiomontanus (a latiniza-

tion of the name of his birthplace), studied at the University of

Vienna under Peurbach, receiving his bachelor’s degree there at the

age of fifteen. Owing to university regulations, he had to wait until he

was twenty-one to receive his master’s degree and become a member

of the faculty in Vienna. Considered the greatest astronomer of the

fifteenth century, he spent much time and effort on attempts to de-

termine the size and distance of comets, which he regarded as having

no proper motion. This erroneous assumption may have been the

fundamental source of his faulty parallax observations, and he never
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discovered that comets are in fact much more distant than Aristotle

had taught; that discovery had to wait for Tycho Brahe in the six-

teenth century.

Perhaps Regiomontanus’s most fruitful work in the long run was

his critical annotated Latin translation, in cooperation with his teacher

Peurbach, of Ptolemy’s Syntaxis, under the title Epitome, in which he

criticized Ptolemy’s model for variations in the apparent lunar diam-

eter that were greatly at odds with observations. Copernicus’s read-

ing of this critical passage was one of the stimuli for producing his
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revolutionary new model of the solar system. Regiomontanus died in

Rome in 1476, probably of the plague, but rumors circulated that he

was poisoned by a professional rival.

At the threshold of the sixteenth century, two more mathemati-

cians of some importance made an appearance. The first, Niccolò

Fontana, son of a poor postman, was born in 1499 in Brescia, near

Venice. He had been severely injured when French troops sacked

his home town and was left with a permanent speech defect that

gave rise to his nickname, Tartaglia, the stutterer. Tartaglia grew up

largely self-educated, particularly in mathematics and physics, read-

ing whatever sources he could find. Eventually he became professor

of mathematics in Venice, and he died there in 1557 in very humble

circumstances. His work toward the solution of cubic equations was

his principal mathematical contribution; in physics he applied his

understanding of mechanical problems primarily to matters of mili-

tary defense. He was the first to state what is still sometimes known

as Tartaglia’s theorem: the trajectory of a projectile is a curved path,

with the maximum range attained if the firing elevation is 45° (in

vacuum), though he provided a faulty proof for this correct proposi-

tion. Tartaglia also translated both Euclid and Archimedes into Ital-

ian, their first rendering in a modern language.

The second was Girolamo Cardano, born in 1501. Though he was

widely known at the time primarily as a physician and was the first

person to give a clinical description of typhus fever, his book Ars

Magna played an important role in the history of algebra. (Note here

the first mention of a book: Gutenberg’s Western invention of the

printing press employing movable type had taken place in the mid-

dle of the fifteenth century; his Bible was first printed in 1455.) It

contained the solution of the cubic equation, based on the work of

Tartaglia, as well as a solution of the equation of fourth order, which

he owed to his former servant Lodovico Ferrari. Cordano’s Liber de

ludo aleae was the first book dealing with the systematic computa-

tion of probabilities.
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Inconsolable over the loss of his favorite son, who was executed in

1560 for poisoning his wife, Cordano was arrested for heresy in 1570

and never again permitted to publish a book. He died in 1576 in

Rome. In reaction to the Reformation, the Catholic Church by this

time was cracking down on any perceived enemies.
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four

The First Revolution

The flowering of science in Western Europe that began in the six-

teenth century did not sprout in a desert. The medieval period had

already seen the great works of Dante Alighieri and Chaucer, and the

Renaissance would soon produce Cervantes and Shakespeare. The

Italian rebirth in architecture and the arts was in full swing, begun,

by the usual reckoning, with the painter Giotto at the beginning of

the fourteenth century, followed by Brunelleschi, Leonardo da Vinci,

Michelangelo, and Raphael, to mention but a few of the greatest. As

far as our image of the universe is concerned, the opening shot of

the first scientific revolution was reluctantly but decisively fired by

Nicolaus Copernicus, and it reverberated far and wide.

Copernicus was born in 1473 in the city of Torun on the Vistula

River in Poland, south of the Baltic seaport Gdansk. The son of a

well-to-do merchant who died when the boy was ten years of age,

Copernicus grew up in the house of his uncle Lucas Watzenrode,

soon to be bishop of Varmia. He began his studies in liberal arts at

the University of Krakow and continued in Bologna, where the as-

tronomer Novara introduced him to two works that turned out to

have a seminal influence on his thinking: Pico della Mirandola’s Dis-

putations against Divinatory Astrology and Regiomontanus’s critical



translation Epitome of Ptolemy’s Almagest. (Astronomy and astrology

were at that time regarded as two subdivisions of “the science of the

stars.”) The first pointed out that since astronomers had never agreed

among themselves about the order of the planets, astrologers were

foolish to base their divinations on the different powers exerted by

various planets, as these powers depended on unreliable data about

their order. The second found glaring discrepancies between Ptol-

emy’s geocentric model of the solar system and actual observations.

The seeds of doubt concerning accepted views of the universe, based

on both Aristotle and Ptolemy, were thus planted in the young man’s

mind.

After continuing his studies at the University of Padua, primar-

ily in medicine (a subject that at the time was intimately connected

with astrology), Copernicus received his doctorate in canon law at

Ferrara, obtaining a sinecure at Wroclaw, which his uncle had ar-

ranged for him, and a canonship in the cathedral chapter of From-

bork (Frauenburg). As these positions left him with plenty of spare

time for his primary interest, astronomy, he built himself a little

roofless stone tower in Frombork that he used as an observatory

(though he never actually made many observations of his own). He

died in Frombork in 1543.

In his first publication, called Commentariolus, Copernicus chal-

lenged the views of Aristotle and Ptolemy by proposing a heliocen-

tric planetary system, without claiming any priority for this idea. His

model for the solar system, with the sun at the center and both the

earth and the planets revolving in circles about it, allowed the planets

to be arranged in an orderly and unambiguous way, with increasing

orbital periods: Mercury (88 days), Venus (225 days), Earth (1 year),

Mars (1.9 years), Jupiter (12 years), and Saturn (30 years). His later

work, De revolutionibus orbium celestium libri vi, laid out this system

in all its detail, but he was so reluctant to publish it that he delayed its

printing for 36 years, until a year before his death. He also took great
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care not to mention Aristarchus, because he knew that this earliest

proponent of a heliocentric system had suffered for the audacity of

his unorthodox proposal by being accused of impiety.

In addition to having the sun at the center of the universe and

having the planets, including the earth, revolve about it, the Coperni-

can solar system had the earth spinning about an axis through its

center that tilts away from the vertical with respect to the plane (the

ecliptic) of the earth’s orbit about the sun. Moreover, that tilting axis

itself slowly wobbled, describing a cone, like the axis of a spinning

top, thereby accounting for the precession of the equinoxes. The uni-

verse, he argued, had to be very large because otherwise the orbital

motion of the earth would give the stars a noticeable parallax, which

had never been observed. On the other hand, his universe was not

infinite, because if it were, it would make no sense to place the sun at

its center. (Where is the center of an infinite space?) In contrast to all

earlier theories, which he portrayed as disorderly monstrosities, he

depicted his newly created image of the world as an orderly, harmo-

nious composition, no part of which could be altered without de-

stroying the whole.

What made the ideas of Copernicus revolutionary was not simply

the suggestion of a heliocentric rather than a geocentric solar system;

such proposals had been made, and forgotten, several times in antiq-

uity. It was the fact that he insisted on presenting his system not

merely as a model, convenient for astronomical computations, but as

physically real: he meant it to be a true representation of the cosmos.

Many of the readers of De revolutionibus nevertheless accepted his

proposal as no more than a model because that was easier than

coming to terms with its revolutionary implications. Such a view of

reality implied a complete break with Aristotle, who had made a fun-

damental distinction between the sublunar world and the sphere be-

yond, the first filled with earth, fire, water, and air and the second

with ether. Moreover, objects in these two regions moved according

The First Revolution 69



to basically different laws. This picture of the universe was incompat-

ible with what Copernicus proposed and would have to be aban-

doned to accommodate his views.

Not to mention the contradiction between the Copernican pro-

posal and the Bible. His system shrank human beings from their

primary place in God’s creation at the center of a relatively small,

homelike cosmos to creatures inhabiting a minor planet eternally re-

volving about the sun, all located in a vast space occupied by the

stars. Very intricate mechanical clocks, still rare and unreliable but

much admired, existed by that time, and the young Georg Rheticus,

an ardent Lutheran follower of Copernicus, compared this newly

proposed universe to the well-oiled wheel mechanism of a clock. A

flag-waving barricade-stormer Copernicus was not, but his message

was revolutionary all the same.

And the Church recognized it. The first Copernican to bear the

brunt of Rome’s wrath, though largely for unrelated reasons, was the

Dominican priest Giordano Bruno. The son of a professional soldier,

Bruno was born in 1548, five years after the death of Copernicus.

Following his studies of the humanities in Naples, he was attracted to

the philosophy of Averroes as well as to Arianism, a heretical doc-

trine that denied the divinity of Christ. Bruno came to believe that

he was reviving the religion of ancient Egypt, with magical insights

into nature that enabled him to understand the Copernican system

better than Copernicus himself. He envisaged an infinite universe

that contained innumerable animated worlds. Fleeing from Italy to

Geneva, he became temporarily a Calvinist, and then moved on to

Paris and London. Always provocative and repeatedly excommuni-

cated by various churches, he stayed at the court of Queen Elizabeth

for some years, attacking the old-fashioned Aristotelians at Oxford,

where he lectured on the Copernican system.

Finally, Bruno made the fatal mistake of returning to Italy, where

he was denounced to the Venetian Inquisition for heresy. After saving

himself by partially recanting his views there, he was extradited to
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the fiercer Roman Inquisition. During a trial in Rome that lasted

eight years, he refused to retract anything and was finally convicted.

In 1600 he was burned alive in the Campo de’ Fiori.

The fiery death of Giordano Bruno has sometimes been misinter-

preted as the iconic expression of the Catholic Church’s reaction to

the scientific revolution begun by Nicolaus Copernicus. Occasion-

ally, Bruno’s upright refusal to retract in Rome has been favorably

compared with Galileo’s “craven” recanting at his later trial there.

However, Bruno’s scientific views and his advocacy of the Coperni-

can solar system were not the real cause of his condemnation by the

Inquisition. He was condemned by the Church for heresy because of

alleged diabolical magical practices and because he denied the divin-

ity of Christ. Nevertheless, the fate of this Copernican would serve

as a warning for a long time to come: scientists who angered the

Church were disturbing a dragon.

The Danish astronomer Tycho Brahe, an almost exact contempo-

rary of Bruno, does not really belong in the company of the revolu-

tionaries. Nonetheless, his work paved the way for Kepler, thus en-

abling the revolution to continue. Tycho Brahe, whose father was

governor of the castle of Helsingborg, was born in 1546, abducted at

a young age by his wealthy uncle, and raised in the latter’s castle at

Tostrup, Scania. He began his education by studying law at the Uni-

versity of Copenhagen and continued, three years later, at Leipzig.

However, the experience of witnessing a total eclipse of the sun in

1560, together with the fact that the date of the startling event had

been predicted with near accuracy by astronomers, made such an

impression on the fourteen-year-old boy that he decided to devote

his life to observing the stars.

Listening to lectures on law in the daytime, he studied Ptolemy’s

Almagest in the evening, and with the help of some of his teachers

he began to construct instruments for measuring the positions of

stars and made his first small globes for plotting them. At the age of

seventeen he observed and recorded his first planetary conjunction,
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between Jupiter and Saturn, and discovered that all the existing as-

tronomical tables, including those of Copernicus, were grossly inac-

curate in their predictions of this event. He resolved then and there

to change this state of affairs and to spend all his efforts making and

recording accurate observations of the heavens and correcting all the

existing tables.

After losing part of his nose in a duel at the age of twenty and hav-

ing it replaced by a cover made of gold, silver, and copper, Tycho

traveled throughout Europe, acquiring a large number of astronomi-

cal instruments on the way. Upon his return he settled on his inher-

ited estate and built himself a small observatory. On November 11,

1572, he suddenly saw a new star in the constellation of Cassiopeia,

brighter than Venus, which, by careful observation, he ascertained to

be beyond the distance of the moon. Disturbing the perfect and un-

changing Aristotelian harmony of the celestial sphere, this first ob-

servation of a nova in Europe (several had already been recorded in

China, but Europeans were unaware of this) was a very unsettling

phenomenon, both to him and to everyone else. Its publication in-

stantly made the young Tycho famous all over Europe. In order to

keep the celebrated Dane in Denmark, King Frederick II granted him

title to the island of Ven in the middle of the sound near Copenha-

gen, as well as financial support for research and for the construction

of an observatory, which he called Uraniborg, after Urania, the muse

of astronomy. There, he and his staff made and recorded with un-

precedented accuracy many important observations that substan-

tially corrected nearly all the known astronomical tables, just as he

had resolved to do at age seventeen.

When his friend the king died, Tycho lost most of his income and,

under the patronage of the Holy Roman Emperor Rudolph II, he

moved to Prague. Four years later, in 1601, he died there, leaving all

his accumulated data to Johannes Kepler, who had been his assistant

during his final year. His very precise observations—remember, this

was before the invention of the telescope—had shown him the inad-
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equacy of the Ptolemaic system and how much of an improvement,

though still imperfect, the Copernican model was. But he still had

not been able to bring himself to accept the idea of the sun at the

center as a reality, and in a step backward from Copernicus, he had

devised his own configuration, in which the sun orbited a stationary

earth and the planets revolved about the sun. Tycho’s data would

soon serve to bolster the next stage in the revolution, Kepler’s new

model of the solar system.

Johannes Kepler was born in 1571 in the small town of Weil der

Stadt near Stuttgart in Germany, son of a mercenary soldier who

abandoned his family. A small, frail man, he was bothered by stom-

ach ailments and fevers all his life. Though he did not like to rock the

boat—as he later declared in the dedication of one of his books, “I

like to be on the side of the majority”—that is just what he turned

out to do, with great effect.

A ducal scholarship enabled him to attend a Lutheran seminary at

the University of Tübingen with the intent of becoming a theologian,

though his interest in astronomy and astrology had already been

aroused by his early viewing of the comet of 1577. At Tübingen, the

astronomer Michael Mästlin introduced him to the works of Coper-

nicus, of whom Mästlin was an ardent but publicly cautious admirer,

tutoring him in the details of the system. For Kepler, the Copernican

universe showed the unmistakable mark of divine planning, includ-

ing the creation of the human mind to understand and celebrate the

structure of the world. The solar system, as presented by Copernicus,

represented for Kepler a pure symbolic image of the Trinity, and he

would give up theology and spend his life substantiating all its glori-

ous perfection.

After teaching mathematics and astronomy in Graz for several

years, where he published his first major paper and fell into some

trouble as a Lutheran, Kepler moved to Prague in 1600, becoming

Tycho Brahe’s assistant a few months before the great astronomer’s

sudden death, and subsequently his successor as imperial mathema-
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tician to emperor Rudolph II. In 1610 he was given his first tele-

scope—just invented in Holland and improved by Galileo—and after

the deposition and death of Rudolph he moved to Linz as district

mathematician for Upper Austria, later becoming the private mathe-

matician of General Wallenstein, duke of Friedland. For a number of

years, Kepler was plagued by personal problems—his mother was ac-

cused of witchcraft but finally exonerated, his wife died, one of his

sons succumbed to smallpox—and he was continually caught up in

the religious strife of the time, but he was a remarkably resilient man.

His first step in the direction of showing the splendor of the cos-

mos as conceived by Copernicus occurred to Kepler in 1595, when

he remembered Plato’s five perfect polyhedra. Striving to satisfy his

strong sense of order and harmony, he thought he had found the key

to the perfection of the universe. His calculations showed that if he

placed the orbits of Copernicus’s planets between the five regular sol-

ids, nested as Plato had suggested, their radii would come out cor-

rectly to within 5 percent—except for Jupiter. But that planet was so

far away that it was no wonder it was exceptional. The long-lasting

influence of Plato’s mode of thinking was not conducive to scientific

progress, and misguided attempts to explain the relative distances of

the planets from the sun would continue to be made occasionally

without success as late as the nineteenth century.

Kepler, whose ruling belief was that the functioning of the solar

system had to be explained by physics, clarified his purpose in a letter

to a friend with these words: “My aim . . . is to show that the celestial

machine is to be likened not to a divine organism, but rather to a

clockwork . . . in so far as nearly all the manifold movements are car-

ried out by means of a single, quite simple . . . force, as in the case of

a clockwork [all motions are caused] by a simple weight.”1 His inspi-

ration for a fresh way of looking at the planetary system was the

work of William Gilbert (1544–1603), the most distinguished scien-

tist at the court of Queen Elizabeth, who had explained the workings

of the compass by introducing the idea of an attraction reaching
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from one magnet to another. Kepler concluded that the motion of

the planets must be somehow centrally directed by the sun. Follow-

ing Gilbert’s theory, he therefore thought magnetism must be the

causative agent, the weight that made the clock run. Specifically,

what kept the solar system in motion was that the earth and the

planets were magnets dragged around by the rotating sun through its

magnetic force, the strength of which decreased with the distance.

A minute examination of the high-precision data he had inherited

from Tycho Brahe convinced him that Mars could not be moving

uniformly in a circle, and the attenuating pull from the sun could

easily account for its slowing down at greater distance if the orbit

were not circular.

After a temporary diversion in 1604—the discovery of another

new star, later called Kepler’s Nova (now known to have been a

supernova)—he announced three novel rules of planetary motion;

these are nowadays usually referred to as Kepler’s three laws. (Not

published all at once, the three rules appeared in various of his publi-

cations.) The first law states that the orbit of each planet, including

the earth, is not a circle but an ellipse, with the sun at one of its foci.

Destroying the beautiful perfection of the circular orbits that in one

way or another—in Ptolemy’s model by piling epicycles upon cy-

cles—had dominated all previous models of the solar system, this

feature was regarded by many as unacceptably ugly. The second law

says that the straight line from the sun to a given planet traces out

equal areas in equal times, implying that when a planet is traversing a

part of its orbit that is closer to the sun, it moves faster than when

farther away. Again, the comforting beauty of uniform motion in the

heavens was abandoned. The third law states that the squares of the

periods of the planets are proportional to the cubes of their mean

distance from the sun, a rule that especially satisfied Kepler’s mathe-

matical mysticism and made the whole system quite harmonious in

his eyes. Finally, building on his predecessor’s earlier labors, he com-

pleted Tycho’s precise planetary and stellar records, known as the
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Rudolphine Tables, which became invaluable for later astronomers as

well as for astrologers.

In addition to his path-breaking astronomical work, Kepler also

contributed to the physics of optics, particularly concerning the phe-

nomenon of refraction and its effect on vision. Though eyeglasses

had been invented more than two hundred years earlier, he was the

first to explain why they actually worked, and he wrote a treatise on

the optics of the telescope that included a description of a novel type

with two convex lenses. He also dabbled in the theory of tiling, com-

ing up with some quite remarkable designs.2 Curiously, Kepler wrote

a book of rather prescient science fiction, Somnium seu astronomia

lunari, that describes a dream-fantasy voyage to the moon, whose

overtones of witchcraft ended up playing an embarrassing role at

his mother’s trial. After General Wallenstein, his patron at the time,

lost his position as commander-in-chief in 1630, Kepler traveled to

Regensburg, where he became seriously ill and died that same year.

His grave has been lost, a victim of the Thirty Years’ War.

The Islamic world during this period was dominated by the Otto-

man Empire, which had arisen in the fourteenth century and con-

quered Constantinople in 1453. Islam bore no religious preconcep-

tions concerning the earth as the center of the universe. Since its civili-

zation had a strong tradition in astronomy, and some of its models

of the solar system could be regarded as mathematically equivalent

to that of Copernicus, the scientific developments in Christian Eu-

rope were naturally of great interest to Ottoman astronomers. This

was especially so because some of the new, more accurate stellar ta-

bles generated in the West might be relevant to the lunar-based Mus-

lim calendar. The new tables were therefore quickly imported, and

Sultan Selim III ordered fresh calendars to be published in confor-

mity with these improved data. The controversy over the reality of

the heliocentric versus the geocentric solar system that generated so

much heat in Christian Europe left Muslims cold. They looked at the
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change from one system to the other simply as a change of coordi-

nates, a technical matter of no religious or metaphysical significance.

The work of Copernicus and Kepler effectively freed European as-

tronomy from the powerful influence of Aristotle and pointed in the

direction of explaining the functioning of the heavens by the same

physical laws that governed the motions of objects on earth, trans-

forming the regular celestial movements into a clocklike machinery.

These underlying physical laws, however, were still thought to be the

same as those promulgated by Aristotle. It remained for Galileo and

Newton to sever the last strings that bound the ancient philosopher

to accepted physical science.

Born in Pisa in 1564, the same year as Shakespeare, Galileo Galilei,

the eldest of seven children of a musician, was educated at the mon-

astery of Santa Maria at Vallombrosa near Florence and at the Uni-

versity of Pisa as a medical student. A lively man with a pugnacious

disposition, full of sarcastic wit but rarely personally disliked, he was

respectful of authority in matters of religion and politics but could

be offensive to administrators and scathing to his philosophical ad-

versaries.

When the subject of medicine failed to hold much interest for

him, he began to take private lessons in Aristotelian physics and in

mathematics, particularly devoting himself to Euclid and Archime-

des. He also made his first significant discovery: the isochronism of

the pendulum. He found that the period of a simple oscillating pen-

dulum, such as a chandelier swinging in the wind, did not vary with

the width of its swing (so long as it did not swing too widely). This

discovery would turn out to have a profound influence on the con-

struction of reliable clocks and on the most basic fields of physics

over the next four centuries.3

After delivering invited lectures on a mathematical treatment of

the geography of Dante’s Inferno and applying unsuccessfully for the

vacant chair in mathematics at the University of Bologna, he was ap-
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pointed to the mathematics chair at Pisa. At this time his father was

engaged in controversies over the connection between the length of

strings of musical instruments and the resulting harmonies, which

first stimulated Galileo’s life-long emphasis on testing mathematical

relations among physical phenomena by detailed observations. Even

though for him such observations more often served as convincing

demonstrations than as experimental searches for new knowledge,

this approach represented a definite break with the previous practice

of relying entirely on the power of reasoning to arrive at physical

truth.

As time went on, Galileo became completely disenchanted with

the prevailing Aristotelian legacy in physics, and he made no bones

about it to his philosophical colleagues. The famous spectacle of his

dropping cannon balls of different sizes from the leaning tower of

Pisa probably never took place, but if it did, it was surely meant as a

public exhibition to the philosophers that Aristotle had been wrong

to claim heavier objects fall faster than lighter ones, rather than as an

experiment to find out if the ancient philosopher was wrong or right.

His first work on the motion of bodies was a treatise, commonly re-

ferred to as De motu, which dealt not only with falling objects but

also with their speeds of descent on inclined planes. As his initial

conclusions here were contradicted by experiments, he was led to the

recognition that, contrary to Aristotelian teachings, it was accelera-

tion rather than just speed that played the essential role in the laws

governing moving objects, a point that would be crucial in his un-

derstanding of movements along circular paths. Even though his new

perspective amounted to a complete denial of Aristotle’s split be-

tween “natural” and forced motion, he still stuck with a geocentric

view when applying his ideas to the earth. But he was at that time

simply not yet very interested in astronomy.

When friction with his colleagues and with the university admin-

istration (he ruffled feathers by, among other things, writing a poem

poking fun at the wearing of academic robes) led to the loss of his
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position at Pisa, Galileo was appointed to the chair of mathematics at

the University of Padua. At this gathering place for scholars from all

over the continent, the intellectual atmosphere was more conducive

to his further development. His notes on mechanics, written for his

students, began to circulate throughout Europe, translated into both

French and English. By this time, he had become convinced of the

virtues of the Copernican system, probably more because of its abil-

ity to use the motion of the earth to account for physical effects like

the tides than because of astronomical arguments. Galileo’s view that

the tides could not be explained without taking the motion of the

earth into account was correct, though his actual theory to account

for the tides was not.

When he received a copy of Kepler’s first book, Galileo wrote to

its author that he supported Copernicanism, but he did not do so

openly. In any event, he did not like Kepler’s elliptical planetary or-

bits, as their elongated shapes offended his aesthetic sense. Pursuing

with renewed interest the problem of accelerated motion, both in

free fall and along circular arcs, he began to write a systematic trea-

tise on the subject. Also while in Padua, he took a Venetian mistress

who bore him two daughters and a son. When he left Padua, she re-

mained in Venice and eventually married another man.

The supernova of 1604, Kepler’s Nova, which made a considerable

stir in Europe, finally awakened Galileo’s interest in astronomy. But

the crucial event for him occurred a few years later, when he received

word of the invention of the telescope by the Dutch lens grinder

Hans Lipperhey. Galileo immediately set to work constructing such a

device for himself, much improving it in the process, so that by 1609

he had achieved about thirty-fold magnification. The Venetian gov-

ernment, which as a maritime power immediately recognized the

value of a telescope for naval purposes, offered him a lifetime ap-

pointment to its university at an unheard-of salary, but he declined

and returned to Florence to accept a position as philosopher and

mathematician at the court of the grand duke of Tuscany and as pro-
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fessor of mathematics at the University of Pisa, without any teaching

duties.

In 1610 Galileo turned his telescope to the heavens—he was the

first one to use the device in that way—and what he saw startled him:

the moon was full of mountains, the Milky Way was a collection of a

vast number of stars, and Jupiter was accompanied by four satellites

of its own. Within three months he managed to write it all up, ex-

tremely accurately, and to publish it with the title Siderius nuncius, or

The Starry Messenger. The book created excitement throughout Eu-

rope, as well as considerable controversy, which the author uncharac-

teristically ignored; he was too busy observing the sky and making

new discoveries. Next were the rings of Saturn, which he mistook for

satellites because his telescope was too weak to resolve them, and,

more important, the phases of Venus, which added confirmation for

the Copernican system. When he traveled to Rome to exhibit his tele-

scope and talk about his discoveries, he was honored by the Jesuits,

several cardinals, and the pope himself, and was made a member of

the Accademia dei Lincei, the first scientific society in existence.

After publishing a treatise about the behavior of objects under

water, favoring Archimedes over Aristotle, Galileo became involved

in a controversy concerning sunspots. This led him to write a book in

which he introduced the important concept of conservation of angu-

lar momentum. The angular momentum of an object rotating about

a central point is equal to its momentum multiplied by its distance

from that center. For the first time, Galileo supported the Coperni-

can system in print. During the disputes that arose as a result, he

took the position that theological interference in purely scientific

questions was inadmissible. Neither the Bible nor nature, he asserted,

could speak falsely; however, nature was the province of scientists,

and it was up to theologians to reconcile the facts discovered by sci-

entists with the language of the Bible. Needless to say, this did not

endear him to the Church.

Against the advice of his friends, he traveled to Rome in 1615 to
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clear his name. He personally succeeded in this, but Pope Paul V also

set up a commission to investigate the theological status of the mo-

tion of the earth. On the basis of its conclusions, Galileo was of-

ficially instructed in 1616 to refrain from either holding the Coperni-

can view or defending it. Returning to Florence, he busied himself

with less controversial problems, such as using the eclipses of his

newly discovered satellites of Jupiter as a universally visible celestial

clock that could be used for the determination of longitude at sea.

This proposal turned out to be impractical, as Jupiter’s satellites are

too difficult to see from a wind-tossed ship.

While Galileo was engaged in research concerning comets—three

of them had startled Europe in 1618—and in further controversies as

well, an old friend and patron of science, Cardinal Maffeo Barberini,

became Pope Urban VIII. To pay his respects, Galileo journeyed to

Rome in 1624 and obtained the pope’s permission to write a book

discussing the Copernican system, provided he impartially presented

both the Copernican and the Ptolemaic view. The Dialogue Concern-

ing the Two Chief World Systems took him six years to write, and it

was hardly impartial. He first tried to have it published under the

auspices of the Accademia dei Lincei, but Rome was tardy in giving

permission. When he quickly managed nevertheless to have it pub-

lished in Florence in 1632, it initially caused no problems. After a

short delay, however, the printer was ordered to cease further sales

and Galileo was summoned to Rome.

A hostile ecclesiastical faction at the Vatican had been able to per-

suade the originally quite friendly Pope Urban that Galileo had both

caricatured him personally in the Dialogue, putting Barberini’s argu-

ments in the mouth of a simple-minded Aristotelian, and deceived

him by concealing that he had been under a personal injunction

from Pope Paul never to discuss the Copernican system. (This last

point was either incorrect or based on a misunderstanding; Galileo

felt himself to be innocent of the charge of deception.) As a result,

the case against him was vindictively pursued with great force, and
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the pope insisted that he come to Rome to face trial, even though it

was the middle of winter and Galileo was seriously ill; otherwise he

would be brought there in chains. Finally, the grand duke, having ex-

hausted all his own attempts to help, arranged for him to be taken as

comfortably as possible by litter to Rome in 1633.

At the trial, during which the memory of Giordano Bruno’s fate

could not have been far from his mind, Galileo was made to abjure

the “heresy” of Copernicus, the Dialogue was placed on the index of

forbidden books, and he was sentenced to life imprisonment. (The

judgment of heresy against the Copernican system and Galileo’s dis-

coveries that supported it was not officially rescinded until 1992, by

Pope John Paul II. Galileo’s trial itself was not declared in error, how-

ever, because in contrast to Giordano Bruno, Galileo ran afoul of the

Church fundamentally not because of heresy but because of insubor-

dination.) The prison sentence was immediately commuted to su-

pervised house arrest, and he was sent to Siena, under the charge

of Archbishop Piccolomini. Treating him with great consideration,

the archbishop—possibly a former student of Galileo’s—managed,

within a few weeks, to raise his crushed spirits, and he began to make

plans for writing up all of his results in physics.

In order to avoid another scandal when the Roman Inquisition,

unavoidably, got wind of the honored treatment of the scientist by

the archbishop in Siena, Galileo was finally moved in 1634 to his

house at Arcetri near Florence. As he was leaving Siena, he probably

uttered the famous words “Eppur si muove” (“And yet, it does move”)

which legend has him muttering under his breath on his knees after

abjuring the Copernican heliocentric system with its moving earth.

Galileo had been particularly anxious to get back to Arcetri, to be

near his oldest daughter, Virginia, who lived in a convent under the

name of Maria Celeste and who had been extremely helpful to him

during the time of his dispiriting experiences with the Inquisition.

Shortly after his return, to his great sorrow, Virginia died after a brief

illness, and it took him some time to recover from the resulting de-
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pression. Recover, however, he did, and he finished his final work,

Discourses and Mathematical Demonstrations Concerning Two New

Sciences, usually referred to simply as Two New Sciences, within less

than a year. To have it printed, though, presented another obstacle:

the printing of any of his books, old or new, had been forbidden by

the Congregation of the Index. So a manuscript copy was surrepti-

tiously taken to France and thence to the Netherlands and finally to

Leiden, where it was printed in 1638. By that time Galileo was 74

years old and completely blind.

The sciences referred to in the title of Two New Sciences are those

of the strength of materials, essentially an engineering subject, and

the mathematical science of motion. Galileo discusses a large num-

ber of problems relating to the constitution of matter, the nature of

sound, the speed of light, and the weight of air, as well as the nature

of mathematics and the place of reason and experiment in physics, in

addition to detailed treatments of uniform and accelerated rectilin-

ear motion and the parabolic trajectories of projectiles. Objects fall-

ing freely, or descending on an inclined plane, move with uniform

acceleration, though they do so only in a vacuum, he states; in a re-

sisting medium such as air, they attain a fixed terminal velocity. He

also devotes considerable attention to the swinging motion of the

pendulum, whose isochronism was his earliest discovery, giving the

relation between its period and its length and pointing out that this

period did not depend on the mass of its bob. However, he did not

manage to explain the reason for its isochronism.

In his mathematical discussions he distinguishes between finite,

infinitesimally small, and infinitely large quantities, without flinch-

ing from paradoxes that arise and appear unresolvable. On the sub-

ject of infinite quantities, for example, he points out that such con-

cepts as “less than,” “greater than,” and “equal to” are not necessarily

applicable, which he exemplifies by showing that the infinite set of

natural numbers can be put into one-to-one correspondence with

the set consisting of their squares. These are problems with a defi-
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nitely modern flavor that would preoccupy mathematicians in the

nineteenth century.

After the publication of his last book, the great scientist lived for

another four years. His son Vincencio took notes on his reflections

and assisted him in the design of a clock employing the pendulum

and an especially designed escapement. On orders of Grand Duke

Ferdinand II, a large clock based on Galileo’s plan was eventually

built and installed twenty-five years after his death in the tower of

the Palazzo Vecchio in Florence, where it still remains, accurate to

within one minute per week. He died at Arcetri in 1642 and was bur-

ied at Santa Croce in Florence. Contrary to the wishes of the grand

duke, no suitable tomb could be erected for fear of offending the

Holy Office—Pope Urban had even denied Galileo’s request to at-

tend mass on Easter and to consult doctors in Florence about his

failing eyesight—until almost a century later, when his grave was

marked with an appropriate monument and inscription.

The primary characteristics of Galileo’s approach to physics were,

first, his reliance on observational or experimental evidence rather

than pure reasoning to demonstrate the truth of a statement about

nature. The world we see was, in his opinion, real, not an imperfect

image of an ideal Platonic universe that could be constructed by the

human mind. Second, he emphasized the mathematical description

of observed physical processes. The language of nature, he believed,

was mathematics, and it was impossible to understand the natural

world without knowing that language. His jealously guarded inde-

pendence of judgment on matters subject to his own direct observa-

tion against the pressures of traditional authority exerted a strong

general influence on the educated public all over Europe, as did his

support of Copernican astronomy. And although his immediate sci-

entific influence was not very great, in the long run his mode of

thinking penetrated deeply into subsequent physics.

That he felt no need to search for efficient causes of events when

a mathematical description was available distinguished him from
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many of his immediate successors, but this mode of thinking would

eventually become dominant and remains fashionable to this day.

Galileo’s formulation of physical laws in mathematical terms began

to transform the idea of a clockwork solar system into a more general

view of nature as a whole, run, like a machine, by gears consisting of

algorithms (in modern terms, like a computer). Carried further by

the influential René Descartes and by Christiaan Huygens, this trans-

formation led to the work of Isaac Newton, which was the culmina-

tion of the first scientific revolution.

Descartes was born in 1596 in La Haye, Touraine. Following eight

years at a Jesuit college, studying grammar, literature, philosophy,

theology, and his favorite subject, mathematics, he entered the Uni-

versity of Poitiers to study law. Upon graduation, he joined the army

of Prince Maurice of Nassau as a military engineer, but decided after

a vivid dream that he would devote his talents to the goal of inter-

connecting all the sciences with mathematics and reducing all of

physics to geometry. He began his efforts with algebra. Six years later

he returned to France, sold his estate, and spent seven years travel-

ing and meeting scientists throughout Western Europe. For the next

twenty years he settled in the Netherlands. At the age of 53, Descartes

accepted an invitation to instruct Queen Christina in Stockholm,

where he became ill and died in 1650. His remains were returned to

France and buried in Paris.

Descartes’ greatest contribution to mathematics, which turned out

to be enormously fruitful in its application to physics as well as other

areas of science, was the introduction of a way of reducing all of ge-

ometry to manipulations of numbers. It was the beginning of the

field of analytic geometry. With the help of what are now called Car-

tesian coordinates, this technique allows geometrical problems to be

solved by means of algebra—that is, many curves can be described

and classified in terms of algebraic equations.

Descartes’ work in physics turned out to be less enduring. Ac-

cepted for almost a hundred years, though mostly in France, be-
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cause of his reputation as a philosopher and mathematician, his gen-

eral theory of the universe, expounded in Principia Philosophiae,

described a universe filled with vortices of matter. Originally set in

motion by God, these vortices gave rise to both sun spots and the

planets, which they push along in their orbits, with the earth carried

around the sun by a vortex of matter with respect to which it re-

mained stationary. This version of a heliocentric solar system al-

lowed Descartes to dodge a personal attack by the Roman Catholic

Church as being a supporter of Copernicus and to avoid the fate of

Galileo. Based on nothing but philosophical speculation, these ideas

lacked any kind of observational or scientifically coherent theoreti-

cal support, and they retarded acceptance on the continent of New-

ton’s vastly superior theory. Descartes’ approach, which reinforced

the view of the world as a smoothly running machine, exerted a

strong influence on science and philosophy in the decades to come.

Born at the Hague in the Netherlands in 1629, Christiaan

Huygens, the son of a diplomat, poet, and composer, grew up in

a home full of culture and tradition where Descartes was a fre-

quent guest. After studying mathematics and law at the universities

of Leiden and Breda, he decided to devote himself completely to

physical science, which he did for sixteen years at home, supported

by an allowance from his father. In 1666 he was invited to Paris by

the Académie Royale des Sciences, where he remained and worked

for the next fifteen years until his delicate health forced him to return

home. After that, he only occasionally traveled abroad to meet other

great scientists, including Newton. In 1695 he died at the Hague.

The work of Huygens covered a wide area, from mathematics to a

variety of experimental and theoretical subjects in physics, ranging

from hydrostatics to mechanics and the nature of light. While he dis-

covered early versions of the conservation of momentum, of kinetic

energy, and of the center of gravity of colliding bodies, in studying

the notion of centrifugal and gravitational force he was hampered by

lacking both the concept of acceleration and the powerful tool of the
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calculus, which had not yet been invented. His improvement of Gali-

leo’s pendulum clock has led some historians to regard him as the ac-

tual inventor of this important timepiece.

Huygens left his most permanent mark in the field of optics,

in which he performed experiments and to which he contributed

theoretical ideas. He and his brother Constantijn—both skillful lens

grinders—constructed the best telescopes of the day, one of which he

used to recognize Saturn’s rings and to discover its moon Titan. He is

best known for his ideas on the nature of light. In his view, light was

propagated in a material medium he called ether, which consisted of

an irregular conglomeration of particles that are, in a light beam,

pushed forward and backward like a wave. He did not succeed in ex-

plaining optical phenomena involving polarization, however. This

quite new wave theory of light was completely overshadowed by

Newton’s much less innovative corpuscular theory until early in the

nineteenth century, when several decisive experiments determined

that Huygens had been right. However, the particle-versus-wave con-

troversy also turned out to sow the seeds for one of the ingredients of

the second revolution in physical science, to which we shall turn in

Chapter 10. In sum, while most of Huygens’s scientific contributions

served as significant stepping stones for other scientists such as New-

ton, his wave theory of light was a path-breaking innovation in its

own right.

Empedocles had been the first to recognize that air has a corporeal

substance, and some five centuries later Hero of Alexandria discov-

ered that air could be compressed and expanded. But significant

advances in our physical knowledge of air and other gases did not

occur until the seventeenth century, when the Italian physicist Evan-

gelista Torricelli (1608–1647) invented the barometer. Puzzling over

Galileo’s observation that no pump could lift a column of water

higher than about 30 feet, he did a similar experiment with a vertical

glass tube, closed on top but open at the bottom, filled with mercury.

The longest column of mercury he could sustain in a glass tube
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closed at the top was about 30 inches. As the density of mercury is

about fourteen times that of water, he concluded that, rather than

nature’s supposed horror of the vacuum, it must be the outside at-

mospheric pressure that holds up both the water and the mercury

column. Moreover, he noticed that the length of the mercury column

varied somewhat from day to day: the atmospheric pressure must be

subject to slight variations. Thus, he had invented a way of measur-

ing these changes—the barometer. A famous experiment confirm-

ing the notion of atmospheric pressure was performed in 1654 by

Otto von Guericke (1602–1686), who used two hollow bronze hemi-

spheres, carefully fitted edge-on-edge and evacuated by means of a

pump of his own construction. Teams of eight horses, harnessed to

each hemisphere and driven in opposite directions, were unable to

separate them.

The next decisive step in our understanding of the behavior of

gases was taken by the British natural philosopher Robert Boyle, who

discovered the law that is still named after him: if temperature is held

constant, the volume of a gas varies in inverse proportion to the

pressure exerted upon it.4 Boyle was a member of the Experimental

Philosophy Club at Oxford, a group of intellectuals that included

Christopher Wren and John Locke and which in 1662 was granted a

charter by Charles II to form the Royal Society of London for Im-

proving Natural Knowledge, known later simply as The Royal Soci-

ety. Born in 1627 in Lismore Castle, the seventh son of the earl of

Cork, he learned to speak Latin and French at an early age and was

educated at Eton College beginning at the age of eight. After travel-

ing in Italy as a teenager and returning to England for a fourteen-

year stay at Oxford, he moved to London, where he lived for the rest

of his life with his sister, supporting his scientific experiments with

his own ample funds. He died in 1691.

Boyle’s scientific importance rests primarily on extreme care in

performing experiments, which, for him, did not merely serve the

purpose of convincing skeptics but as basic tools for discovering new
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knowledge. In this respect he went beyond Galileo. Effectively trans-

forming alchemy into chemistry, he was the first to recognize that

chemistry was a physical science rather than just a tool for perform-

ing services and mysterious tricks. Different chemical substances,

he believed, were constituted of different arrangements of corpus-

cles (though not of indestructible atoms), the motions of which we

sense as heat. He even recognized the distinction between mixtures

and compounds. This new science of chemistry would soon come

into full bloom with the French scientist Antoine Laurent Lavoisier

(1743–1794), who was guillotined during the French Revolution.

The most celebrated of the laboratory instruments Boyle con-

structed for himself, with crucial help from his assistant, Robert

Hooke, was the first really effective air pump. This piece of apparatus

allowed him to produce a better vacuum than anyone had before,

leading him to the conclusion that Aristotle’s doctrine, nature abhors

a vacuum, had to be wrong. It also enabled him to perform a number

of decisive experiments, one leading to the gas law mentioned above,

another to the recognition that sound required air for its propaga-

tion, and yet another to the conclusion that combustion could not

take place without air. A hundred years would pass before the Eng-

lish chemist Joseph Priestley (1733–1804) would discover that oxy-

gen was the needed component of air.

The man who brought the first scientific revolution to its comple-

tion and at the same time personified the new physics to which that

revolution gave birth was Isaac Newton. According to the Julian cal-

endar still used in England at the time, he was born prematurely on

Christmas day of the year of Galileo’s death, 1642 (according to the

Gregorian calendar adopted by continental Europe, his birthday was

January 4, 1643), in Woolsthorpe near Colsterworth in Lincolnshire.

His parents were without formal education; his father had died

before he was born and his mother had remarried when he was

three. Newton was brought up by his grandparents in a house with-

out affection. The emotional damage of his childhood would be
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manifest in his neurotic and tortured personality for the rest of his

life. At the age of twelve he was sent to grammar school in Grantham,

where the curriculum consisted almost entirely of Latin and Bible

studies, with very little arithmetic or mathematics. Later remem-

bered for “his strange inventions and extraordinary inclination for

mechanical works,” he filled his garret room with tools and spent his

time constructing waterclocks, sundials, models of machinery, and

other gadgets, and became quite proficient in drawing.5

Thanks to the advice of an uncle and with the grudging consent

of his mother, he escaped “the idiocy of rural life” and matricu-

lated at Cambridge University at the age of eighteen, entering Trinity

College as a subsizar—a student who earned his keep performing

chores for the fellows and for more affluent students. The university

environment surrounding him was still dominated by a stultifying

Aristotelianism, but he immersed himself in the works of Galileo,

Descartes, and Pierre Gassendi, the French philosopher and mathe-

matician, a forceful advocate of a mechanistic atomism, who had

died in 1655.

Newton filled his notebook with a large number of critical ques-

tions (“quaestiones”) probing a variety of subjects, indicating a grow-

ing acceptance of the Cartesian mechanistic philosophy, modified by

atomism (which Descartes had not accepted), and a total rejection of

Aristotle. The notebook also showed that he placed great value in

checking the detailed experimental consequences of any theory, and

he performed some of these experiments himself, almost ruining his

eyes by looking at the sun and slipping a bodkin “betwixt my eye &

ye bone as near to ye backside of my eye as I could” to test his ideas

on light, color, and vision. He also began to exhibit in his quaestiones

a sudden great interest in mathematics, in which he was practically

an autodidact, as the university almost entirely ignored that subject

before establishing the Lucasian Chair in Mathematics in 1663. Only

later would he study Euclid, whose style and methodology subse-

quently exerted a great influence on his own.
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The years 1664 to 1666, often referred to as the anni mirabiles,

were the time of Newton’s most fecund scientific work, when he laid

the foundations of his invention of the calculus, of the universal law

of gravitation, of his laws of motion, and of his discoveries in optics.

He often forgot to eat, and he slept erratically. Nevertheless, he grad-

uated with a bachelor of arts degree in 1665. That same year Cam-

bridge was hit by the plague, the university was closed, and he re-

turned to Woolsthorpe for eighteen months to continue his intensely

solitary work, living in a universe of his own and wanting assistance

or advice from no one. Asked later how he managed to discover the

law of gravitation, he replied, “by thinking on it continually.”6 What

he focused on first, however, was mathematics.

In 1666 he completed three papers containing extensive original

work on infinite series and the differential and integral calculus (which

he called the method of fluxions), including what is now known as

“the fundamental theorem of the calculus,” always motivated directly

by problems of motion, both rectilinear and curvilinear, which he

analyzed in detail. The calculus was an independent, powerful gener-

alization of what had been hinted at in Archimedes’ method of ex-

haustion and in the infinitesimals of the French mathematician Pi-

erre de Fermat (1601–1675). It would eventually blossom into a vast

area of mathematics called analysis. The fundamental theorem of the

calculus states that the integral and differential calculus are inverses

of one another.

Shortly after returning to Cambridge Newton became a fellow of

Trinity College and received the master of arts degree in 1668. The

only one who knew about his path-breaking papers, which were

never published, was the first incumbent of the Lucasian chair, Isaac

Barrow, who promptly vacated his position so that Newton could be-

came the Lucasian Professor of Mathematics at the age of twenty-six.

He remained in Cambridge for nearly thirty years, in contact with

other leading European scientists by letter and through the Royal So-

ciety, to which he was elected in 1672.
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After abruptly losing interest in mathematics, Newton turned his

concentrated attention to mechanics, beginning with the notion of

inertia employed by both Galileo and Descartes as internal tenden-

cies of bodies to remain in motion. Generalizing this idea, he applied

it to collisions between objects and to circular motion when the cen-

trifugal force (so named by Huygens) makes its appearance. It was

also during these fertile years that he became interested in gravity—

stimulated, according to his own account, by watching an apple fall

from a tree. Could the same force that made the apple fall extend all

the way into space and make the moon “fall” around the earth? If the

moon would fall, pulled by the same force as the apple, he conjec-

tured, it was the centrifugal force that would balance this pull and

keep the moon in its orbit. That insight did not just come in a flash

of intuition; it took him another twenty years to work it all out and

to complete these studies, which he had begun between 1664 and

1666.

Meanwhile, Newton was also intensely engaged in optical experi-

ments and in unorthodox theological speculations in sympathy with

Arianism, risky though such thoughts were for his future at Cam-

bridge, as well as in alchemy. He had been introduced to chemistry

by Robert Boyle, with whom he corresponded until the latter’s death,

but he explicitly gave it up and turned to alchemy, which he regarded

as more profound.

Experimenting with prisms, Newton discovered that the white

light of the sun actually consisted of a mixture of colored compo-

nents. He had found that the index of refraction of glass varies with

the color of the light shining through it, so that in a prism, different

colors were bent by different angles (Fig. 9). Taking advantage of

this fact, he was able to separate the various constituents of white

sunlight by allowing it to pass through a prism, so that the colors in

it emerged at distinct angles. Directing all these separate pencils of

colored light through another prism, he was also able to reconstitute

them back into a single ray of white light. Other experiments with
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thin films and circular lenses placed on flat panes of glass led him to

an explanation of the resulting multicolored circles; the colored rings

we see when sunlight falls on oil films floating on water are still

called Newton’s rings.

Another outcome of his optical experiments was the invention

and construction of the first reflecting telescope, in which the light,

instead of passing straight through several lenses before emerging at

the other end, is internally reflected by a concave mirror. This design

allows the telescope to be very much shorter and less cumbersome as

an instrument for observing the sky. Newton’s ideas on the corpus-

cular nature of light, on the other hand, would mislead the scientific

world for almost two hundred years. Contrary to Huygens’s view,

which would be proved essentially correct early in the nineteenth

century, he saw light as made up of a stream of small particles.

Newton’s greatest work was the monumental Philosophae Natu-

ralis Principia Mathematica, which he presented to the Royal Society

in 1686 but which, because of a shortage of funds, could not be pub-

lished until 1687, after his friend, the astronomer Edmund Halley

(1656–1742), strongly pushed for—and paid for—its printing. The

book contained his two most important contributions to physics, the
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laws of motion and the universal law of gravitation. After its publica-

tion, which caused a sensation in Europe, Newton lost interest in

these subjects and devoted himself to more mundane matters, such

as being elected a member of Parliament representing Cambridge

University. He also became involved in a number of unpleasant, pro-

tracted priority disputes that revealed the prickly side of his charac-

ter, particularly his extreme sensitivity to any hint of criticism.

The best known of these quarrels involved the German philoso-

pher and mathematician Gottfried Wilhelm Leibniz, who was born

in Leipzig in 1646 and entered its university at the age of fifteen.

There, he studied law, philosophy, and Euclidean geometry, and, on

his own, the scientific works of Galileo, Kepler, Descartes, and others.

Receiving his doctorate in law at the age of twenty, he traveled about

Europe and soon entered the service of the elector and archbishop of

Mainz, who employed him for diplomatic missions and the devising

of plans to preserve the peace in Europe. At the invitation of King

Louis XIV he went to Paris, where he stayed about three years and

became seriously interested in mathematics. In 1672 he constructed a

calculating machine that could multiply, divide, and extract roots.

After the death of the elector of Mainz, a visit to London deepened

Leibniz’s acquaintance with the work of Isaac Newton as a mathema-

tician and led to his election to the Royal Society.

As he began to work on mathematical problems, in 1675 Leibniz

independently invented the differential and integral calculus, em-

ploying a notation and terminology that were much more user-

friendly, as we would say today, than Newton’s; Leibniz’s system won

out and still remains in use. After accepting the position of librarian

to the House of Brunswick in Hanover, while he continued his diplo-

matic missions, Leibniz was instrumental in the establishment of an

academy of science in Berlin in 1700, of which he was appointed

president for life. As imperial privy counselor in Vienna from 1712 to

1714, he spent the last years of his life embittered by his quarrel with
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Newton and suffering from gout. He died in Hanover in 1716, ig-

nored by both the Berlin Academy and the Royal Society.

The dispute over the invention of the calculus arose primarily be-

cause Newton’s original paper of about 1665, seen by Barrow only,

had remained unpublished, and Newton continued to be neuroti-

cally uncommunicative and even secretive about his work. When

Leibniz invented the same mathematical method ten years later and

published it, at a time when Newton’s interests had shifted to other

things, Newton (whose paranoia was as active as ever) publicly ac-

cused Leibniz of plagiarism. Leibniz’s appeal to the Royal Society was

adjudicated by a committee appointed by Newton, who then wrote

its “impartial” report himself and even anonymously reviewed it.

The result of this bad treatment of Leibniz, justifiably viewed on the

continent as blatantly unfair, was a long-lasting isolation of British

mathematics from the rest of Europe, to the detriment of both.

Another great feud involving Newton was his drawn-out contro-

versy with Robert Hooke (1635–1703), one of the founders of the

Royal Society and its long-time curator and secretary. Hooke was a

versatile scientist of great distinction, whose temperament was as

disputatious as that of Newton. His Micrographia, published in 1665,

dealt with the nature of light (he agreed with Huygens’s view that

light was a wave phenomenon), optics, and microscopy, including

many improvements of the microscope. It contained, as well, a num-

ber of remarkably detailed drawings of microscopic animals, made

from his own observations. His most significant contribution to phys-

ics was the discovery of the proportionality of strain and stress in an

elastic body (still called Hooke’s law), which was the reason why a

spring vibrates with a regular period, just like a pendulum.

The source of Hooke’s arguments with Newton—just one of

many priority disputes Hooke vigorously pursued—was his work on

gravitation, an idea that had occurred to many other scientists at the

time. Hooke had even played with the notion that the force of gravity
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obeyed an inverse-square law that was in some way responsible for

the orbits of the planets. When Newton, fully aware of this work,

published his universal law of gravitation without any credit or refer-

ence to it, Hooke accused him of plagiarism. (In his biography of

Newton, Never at Rest, Richard Westfall argues in detail that, al-

though the ideas Hooke expressed in his correspondence with New-

ton sounded superficially as though they anticipated Newton, they

were quite confused, in contrast to those of Newton, which were very

precise.)

The intensity of his concentration and the stress produced by his

various recurring disputes finally began to have an effect on New-

ton’s health, and in 1692 he fell into a severe, disabling depression

that lasted for several years. After his recovery, he no longer pursued

his work in physics and mathematics with his previous zeal, and in-

stead accepted an appointment as warden of the Mint, becoming

master in 1699. He took this position very seriously, devising new

methods to prevent forgery and clipping of coins. In 1703 he was

elected president of the Royal Society, the following year he pub-

lished his Opticks, which contained all the results of his optical re-

search, and the year after that Queen Anne knighted him.

Sir Isaac spent the remaining years of his life revising the Prin-

cipia, and when he died in 1727 he was accorded a state funeral at

Westminster Abbey “like a king,” as Voltaire remarked. To this day,

judgments of Newton as a scientist differ drastically from judgments

of him as a human being. Aldous Huxley put it succinctly: “The price

Newton had to pay for being a supreme intellect was that he was in-

capable of friendship, love, fatherhood, and many other desirable

things. As a man he was a failure; as a monster he was superb.”7

The two great theories contained in the Principia are Newton’s

laws of motion and his law of universal gravitation. The first is in-

tended to govern the way all physical objects move under the influ-

ence of given forces of any kind; the second describes the action of

one particular force, that of gravity. The laws of motion comprise the
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following three specific rules. The first states that any object, left un-

disturbed and not subject to any force, will remain either at rest or in

a state of uniform rectilinear motion forever. The second, based on

the stipulation that every physical object has a property called mass,

says that an object of mass m, subject to force F, will experience an

acceleration a in the same direction as F and of magnitude a = F/m.

(The law was actually explicitly stated in this form for the first time

by Euler in 1750.)8 The third law dictates that if object A exerts a

force on object B, then B exerts an equal force on A in the opposite

direction.

Newton’s laws of motion build on Galileo’s recognition of the cru-

cial importance of the role of acceleration as well as Huygens’s idea

of momentum conservation and even on Buridan’s notion of impe-

tus. As Newton himself had declared, “If I have seen farther, it was by

standing on the shoulders of giants.” (This famous aphorism seems

to have been a standard phrase of long standing, and Newton’s in-

tended meaning is controversial—he may have meant it as a sarcastic

dig at the plagiarism accusations of Robert Hooke, who was of small

stature and somewhat deformed.)9 The law of universal gravitation

says that gravity is a force of attraction that acts between any two ob-

jects of masses m and M a distance D apart, attracting the mass m to

M and the mass M with equal force to m; the magnitude of that force

is proportional to mM/D2.

The power of these detailed laws consists in their universal appli-

cability. Assuming that we know all the forces, if any, in addition

to gravity (for example, Hooke’s spring forces) acting between any

given group of physical objects, they, together with Newton’s calcu-

lus, allow us in principle to calculate the future behavior of all of

them if we know their positions and velocities now. Newton himself

applied these laws to the sun, the earth (including the tides), the

other planets, and the moon, as well as to comets, to determine their

orbits in the solar system, assuming that the only force acting among

them is that of gravity, and he managed to derive from them all of

The First Revolution 97



Kepler’s laws. The division of the laws underlying the movements of

a group of bodies into general laws of motion on one hand, applica-

ble no matter what the forces on or among them may be, and laws

that govern the action of specific kinds of forces on the other hand

has had an enormous impact on all of physics to this day, with the

exception of Einstein’s general theory of relativity. Forces that New-

ton knew nothing about have been discovered since, but his laws of

motion are still regarded as valid, except when velocities approach

the speed of light or when the objects are of submicroscopic size.

When NASA sends a probe to Mars, it relies on Newton’s laws of mo-

tion, as well as on his law of gravity, in calculating the space capsule’s

trajectory.

Whereas the general response among physicists to the laws of mo-

tion was quite positive, the reaction to Newton’s law of gravitation

was revulsion, especially from Leibniz. Lacking an explanation of

how one object managed to exert a force on another without touch-

ing it, his “action at a distance”—postulated and described purely

mathematically in terms of its dependence on how far apart two ob-

jects are from one another—was universally regarded as repugnant,

even initially by Newton himself. Its coldly abstract form differed

dramatically from the more intuitive physical picture of the vorti-

ces Descartes had postulated. Though gravitation was gradually ac-

cepted, the time would come, some 150 years later, when the new

idea of a “field” enabled physicists to eliminate action at a distance,

rendering that concept once again taboo.

As a consequence of Newton’s achievement, physicists would be

able to look at the entire universe, in microcosm as well as macro-

cosm, as a giant machine not just in a metaphorical sense but in the

more literal sense that they could imagine themselves actually be-

ing able to predict in detail the future course of events, both in the

heavens and here on earth. Newton, of course, did not have full

knowledge of all the physical processes that would enable anyone to

imagine such predictions could be realized. It took until the end of
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the nineteenth century to acquire even a semblance of the needed

knowledge. But it was through his unification of celestial and terres-

trial mechanics, together with both his thorough-going mathemati-

zation of physical science and his invention of the required mathe-

matical tools, that a dream of such predictive power would not seem

totally far-fetched.

We should not conclude from this that Newton himself or his

contemporaries interpreted his laws as implying a machinelike uni-

verse running on its own forever once set in motion by God. In a fa-

mous exchange of letters between Leibniz and Samuel Clarke, a royal

chaplain and a supporter of Newton who was in touch with the mas-

ter, Leibniz accused Newton of expecting occasional intervention by

God in the running of the universe, like a clockmaker who needs to

adjust his mechanism from time to time.10 It was particularly New-

ton’s expressed view of space as the “sensorium of God” that Leibniz

could not swallow: he saw that as opening the world up for miracles.

By contrast, Leibniz’s view was that the cosmos ran like a well-oiled

machine, perfectly constructed by God and never in need of any fur-

ther tinkering. Such arguments made Leibniz vulnerable to accusa-

tions of materialism, as his clockwork universe had no need of God.

Thus, though it was Newton who made it possible to regard the

world as a smoothly running machine, Newton himself was still too

much of a “magician”—in John Maynard Keynes’s phrase—to see it

that way himself.
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Newton’s Legacy

With the death of Isaac Newton, the first scientific revolution ended

and physics entered a new era, distinguished by two dominant char-

acteristics: a strong emphasis on experimental evidence for theories

and a penchant for formulating these theories in mathematical lan-

guage. During the next two centuries, progress in physical science

also included new observations in astronomy that changed much of

our view of the universe. This progress fell into two categories. The

first comprised a fleshing out and enormous further evolution of the

calculus and its consequences for the laws of mechanics. The second

consisted of the discovery of new physical phenomena and the con-

firmation they provided for such old conjectures as atomism, as well

as the invention of novel theories to explain them. The areas that pri-

marily benefited from this progress were those of sound, light, elec-

tricity, magnetism, and heat, the last contributing most directly to

the next scientific upheaval.

In astronomy, three observers added a large number of new and

very precise observational facts to our knowledge of the universe,

some of which would play important roles both in verifying the

accuracy of the Newtonian laws and eventually in demonstrating

their limitations. Frederick William Herschel was born in 1738 in



Hanover, Germany, and spent his early life as a musician, playing

the oboe in a military band. He emigrated to England at the age of

nineteen, earning a living as a conductor, composer, organist, and

music teacher. Gradually developing an ever more intense interest

in astronomy, he began grinding lenses and mirrors and building

telescopes, greatly assisted by his sister, whom he had fetched from

Hanover. His serious astronomical work began in 1773, and he cre-

ated a sensation in 1781 by discovering the first new planet since an-

tiquity. Though he wanted to call it Georgium Sedum in honor of

King George III, the name Uranus was ultimately chosen for this sev-

enth planet in the solar system. Later, he also discovered two satellites

of Uranus (Titania and Oberon), as well as two of Saturn (Enceladus

and Mimas).

One of Herschel’s lasting contributions consisted of two system-

atic surveys of the whole sky, which he carried out by means of a

large reflector telescope of his own construction, the best anywhere

to be found at the time. His attention was particularly focused on

double stars—two stars that appear to be very close to one another—

of which he assembled three catalogues, listing a total of 848 such

pairs. He discovered that the relative motion of some of them could

be explained only by assuming they were rotating about one another,

evidently held together by gravity—the first appearance of that force

outside the solar system. The resolving power of his telescope en-

abled him to determine that the indistinct stellar objects called nebu-

lae were in fact large conglomerations of stars—galaxies—which he

assembled in two systematic catalogues, the first listing 2,500 and the

second 5,000. The existence of such large numbers of galaxies led

him to formulate the first scientific theory of the development of the

universe: it began as a disorganized distribution of stars, which even-

tually clumped together, forming galaxies. Herschel may thus be re-

garded as the father of modern observational cosmogony—the study

of the origin and history of the universe.

From observations of the sun, Herschel was able to draw two im-
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portant conclusions. The first originated from his use of a variety of

darkening glasses of different colors for solar observations. Since

some of these gave him a distinct sensation of warmth while others

did not, he concluded that the heat must be caused by some of the

radiation emanating invisibly from the sun. He thus discovered the

heat radiation that we now call infrared. Second, he demonstrated

that the data published by others of varying solar positions relative

to the stars made sense only if interpreted as originating from a

proper motion of the sun itself. Thus, the sun was displaced from the

center of the universe and, by implication, the position of the earth

was further diminished.

Herschel continued to build telescopes for sale until he married a

wealthy widow, with whom he had a son, John, who subsequently

became a prominent astronomer in his own right, carrying on the

legacy of his father. Herschel was awarded many honors, appointed

court astronomer, and knighted in 1816. He died peacefully in 1822

in Slough.

The second astronomer of note, though of lesser stature than

Herschel, was Heinrich Wilhelm Matthäus Olbers (1758–1840), who

was born and died in Bremen, Germany. His main interest was in as-

teroids and comets, but he is remembered primarily for formulating

a paradox that continued to puzzle astronomers long after his death

and would not be resolved for 150 years. Olbers’s paradox is this: if

the universe is infinitely large and more or less uniformly populated

with stars, all shining like the sun, why is the night sky dark, rather

than brightly lit at every point by this infinite glow? The only way he

was able to explain this was by assuming that interstellar space was

not entirely transparent but absorbed a small amount of starlight, so

that we can see the nearby stars against a dark background. This res-

olution of Olbers’s paradox was incorrect, but an accurate solution

would have to await the discovery of red shift and the expansion of

the universe in the twentieth century.

Friedrich Wilhelm Bessel, the third of our trio of astronomers,
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was born in 1784 in Minden, Germany. His paper on Halley’s comet,

written at the age of nineteen, so impressed Olbers that he arranged a

position for the young man at Lilienthal Observatory. Four years

later he was commissioned by the Prussian government to construct

a large observatory in Königsberg, where he was subsequently ap-

pointed professor of astronomy and remained until his death in

1846. Tabulating the positions of about 50,000 stars, Bessel set new

standards for their position measurement. He assembled personal

statistics on the idiosyncrasies of each observer and made a system-

atic study of instrumental errors, taking into account not only the

technical imperfections of his own telescope but also external distur-

bances in the atmosphere.

Knowing the angular positions of distant stars precisely allowed

Bessel to calculate the distances of the nearer ones by very accurately

measuring the parallax caused by the motion of the earth in its orbit

around the sun; their positions relative to the background of faraway

stars would change in the course of half a year, facilitating the exact

measurement of their parallax. In another major discovery, he found

two bright stars, Sirius and Procyon, that had minute motions of

their own, which indicated to him that they must each have invisi-

ble partners with which they interacted gravitationally, executing a

ghostly dance like Herschel’s double stars. After his death, these com-

panions of Sirius and Procyon were indeed found by means of more

powerful telescopes. For the convenience of his detailed calculations,

Bessel defined a large set of functions, now known as Bessel func-

tions, that are still indispensable as tools in mathematical physics and

chemistry.

While alive and active, Isaac Newton had been able to defeat all his

questioners and adversaries by his sheer intellectual power as a supe-

rior mathematician wielding a new weapon of his own invention, the

calculus. This combination of talent and tool enabled him to calcu-

late the precise consequences of his law of gravity, one of which was

to prove Kepler’s laws. All the revulsion for action at a distance not-
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withstanding, there was no denying that the law of gravity worked, as

he could convincingly demonstrate. However, the calculus proved to

be a mathematical method of vastly greater potential than either

Newton or Leibniz initially envisioned, and it took most of the eigh-

teenth and nineteenth centuries for mathematicians to exploit it fully

and plumb its depths.

In the meantime, the laws of mechanics also needed to be applied

to the explanation of the behavior of fluids, which after all, if the at-

omists were right, were made up of particles that ought to obey New-

ton’s laws. The first modern work on fluids, or hydrodynamics, was

done by the Swiss mathematician Daniel Bernoulli, the second son

of the mathematician Jean Bernoulli (1667–1748) and nephew of

Jacques Bernoulli (1654–1705), also a mathematician. Both Daniel’s

father and his uncle made important contributions to the calculus

and to the theory of probability. Born in 1700 in Groningen, the

Netherlands, Daniel was appointed to the chair of mathematics at

the St. Petersburg Academy of Science in 1725, but eight years later

he returned to Switzerland and moved to the University of Basel,

where he remained until his retirement; he died in Basel in 1782.

Bernoulli was a polymath, making significant contributions to as-

tronomy, mathematics, and physics, among other fields. His work on

gases and liquids was both practical and theoretical, based on the as-

sumption that these fluids were composed of tiny particles. He found

an equation that determined the dependence of atmospheric pres-

sure on altitude; and as a consequence of the conservation of energy,

he derived the principle that still bears his name: the pressure in a

fluid decreases as its velocity increases. This principle is responsible

for the lift a properly shaped airplane wing produces as it forces the

air on its upper side to move faster than on its underside. He also

made important advances in the theory of partial differential equa-

tions—an outgrowth of the calculus that turned Newton’s mechanics

into an engine for large-scale predictions of the motions of interact-

ing bodies. Together with Leonard Euler, whom he had met in St. Pe-
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tersburg, he also did extensive work on the differential equations

governing vibrations.

Leonard Euler was born in Basel in 1707, son of a Protestant min-

ister with a lively interest in mathematics who had himself attended

lectures by Jacques Bernoulli. With a prodigious capacity for mental

calculations and great scientific curiosity, Euler studied under Jean

Bernoulli in Basel and earned his master’s degree there in 1723 but

could not find a position in Switzerland. Invited by Daniel Bernoulli

to St. Petersburg, he obtained a post as professor of physics and,

when Bernoulli left St. Petersburg, Euler succeeded him there as pro-

fessor of mathematics. In 1744, having come to Berlin at the request

of King Frederick the Great of Prussia, he was appointed director of

the Berlin Academy of Sciences, but returned to St. Petersburg in

1766 at the invitation of Catherine the Great to become director of

the academy there. Shortly after that, a cataract in one of his eyes left

him totally blind, since he had earlier lost the sight in his other eye by

looking at the sun for extensive periods of time, pursuing astronomy.

He died in 1783.

Euler contributed significantly to all the classical fields of mathe-

matics, especially those relevant to physics. Formulating the calculus

in algebraic terms rather than in geometric ones as Newton had

done, he cast it in the form we employ today. His use of differential

equations in celestial mechanics and in particular for the analysis of

the motions of the earth and the moon led him to a detailed explana-

tion of the rhythm of the tides, and from there to the behavior of

fluids. Many of his results remain as permanent pieces in the founda-

tion of mathematics and mechanics.

Seven other great mathematicians who overlapped from the eigh-

teenth to the nineteenth century followed a similar path of work-

ing in, and notably advancing, both the calculus and its applica-

tion in Newtonian mechanics or other areas of physics. They were

Karl Friedrich Gauss of Germany and six Frenchmen: Jean le Rond

d’Alembert, Joseph Louis Lagrange, Pierre Simon de Laplace, Adrien-
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Marie Legendre, Jean Baptiste Joseph Fourier, and Augustin-Louis

Cauchy. During the nineteenth century their successors along this

line were the Scot William Rowan Hamilton (1805–1865), the Ger-

man Karl Gustav Jacobi (1804–1851), and the Frenchman Joseph

Liouville (1809–1882), as well as Jules Henri Poincaré, whose life ex-

tended into the twentieth century. In addition, the work of the nine-

teenth-century pure mathematicians Évariste Galois and Bernhard

Riemann turned out to have seminal consequences for physics.

Jean le Rond d’Alembert was found on the doorstep of a church in

Paris shortly after his birth in 1717, but the Chevalier Destouches-

Canon, assumed to have been his father, took care of his financial

needs during childhood; his mother was a courtesan. He was schooled

in law and medicine at the Jansenist Mazarin College but soon aban-

doned these fields and turned to mathematics, which he pursued for

the rest of his life, making important contributions to the develop-

ment of the calculus and its applications to dynamics.

The problem in celestial mechanics that fascinated d’Alembert

in particular was that of three bodies subject to mutual gravitational

attraction. Newton had completely solved the two-body problem:

the earth or another planet and the sun, or the earth and the moon,

attracting one another by gravity. But when three bodies are in-

volved simultaneously, the problem of determining their motion be-

comes so difficult that it would challenge and frustrate many great

mathematicians long after Newton; and indeed, it is not completely

solved to this day. However, as often happens in mathematics, even

when a difficult problem defies solution, the attacks on it generate

new methods that turn out to be very useful in other contexts.

D’Alembert’s ideas fertilized the entire area of differential equations,

and he used some of them to put Newton’s notion of the precession

of the equinoxes on a sound mathematical foundation, explaining

the motion of the earth’s axis with respect to the ecliptic. D’Alembert

became a member of the Encyclopedistes, contributing articles on

scientific topics and acting as an editor. He died in Paris in 1783.
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Joseph Louis Lagrange, born in Turin, Italy, in 1736, of a French

father and Italian mother, was almost entirely self-taught in mathe-

matics but showed such formidable powers that he was appointed

professor of mathematics at the Royal Artillery School in Turin at the

age of nineteen. There he remained until 1766, when he was invited

by Frederick the Great to succeed Leonard Euler as director of the

Berlin Academy of Sciences. In 1787 King Louis XVI invited him to

come to Paris as a member of the French Royal Academy, and ten

years later he was appointed professor of mathematics at the École

Polytechnique.

Lagrange’s early work on an important calculus problem that had

long stymied Euler so impressed the elder man that he delayed the

publication of his own solution until Lagrange’s discovery was in

print. Lagrange then began to think about the celestial three-body

problem that d’Alembert had tried to tackle. Though not completely

successful in solving it, he won the Grand Prix of the French Acad-

emy for his contribution to its solution, and he won the same prize

again two years later for his work on the even more complicated

problem of Jupiter and the four satellites discovered by Galileo. He

then assembled all his contributions to the use of differential equa-

tions in Newtonian mechanics in his great treatise Mécanique Ana-

lytique. The phrase analytical mechanics is still used for that sub-

ject, and his approach to the mathematical formulation of equations

of motion remains very influential to this day. He was particularly

proud of the fact that his entire tome did not contain a single dia-

gram; in contrast to Newton, he worked it all out algebraically.

Later in his life, Lagrange was appointed president of a commis-

sion to standardize weights and measures, where he successfully ad-

vocated the universal use of base 10 rather than 12, thereby becom-

ing the father of the metric system now used in most of the world

outside the United States. He died in Paris in 1813 and was given the

special honor of being buried in the Panthéon.

The mathematician Pierre Simon de Laplace represents the per-
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sonification of deterministic physics, as he is the author of the fa-

mous declaration, “Given for an instant an intelligence which could

comprehend all the forces by which nature is animated . . . an intelli-

gence sufficiently vast to submit these data to analysis—it would em-

brace in the same formula the movements of the greatest bodies and

those of the lightest atoms; for it nothing would be uncertain and the

future, as the past, would be present to its eyes.”1 Here we have the

universe as clockwork in a nutshell. However, this very statement

was made in a context justifying the use of probabilistic procedures,

to which Laplace made seminal contributions. A perfect clockwork

though the world was, we lack the detailed knowledge needed to ex-

ploit its machinelike constitution for telling its future; therefore, we

have to resort to statistics and probabilities for our less-than-perfect

predictions.

Born in 1749 in Beaumont-en-Auge, Normandy, Laplace was edu-

cated from age seven until he was sixteen at the Benedictine Col-

lege in Beaumont-en-Auge, destined for a career in the Church. In-

stead of following that path, he entered Caen University and after

two years went on to Paris with a letter of recommendation to

d’Alembert, whom he quickly impressed as a promising mathemati-

cian and who arranged for him to be appointed as a professor at the

École Militaire. At the age of twenty-four he was elected to the Royal

Academy of Sciences, where he eventually became one of the lead-

ing members. Widely disliked by other scientists, ambitious and of-

fensive at times to many, including both Legendre and Lagrange,

Laplace was nevertheless recognized as a mathematician peerless in

his ability to extend and generalize ideas, often those initiated by oth-

ers. After narrowly escaping the fate of Lavoisier during the Revolu-

tion, he was appointed by Napoleon first as his minister of the inte-

rior and then as a senator. However, he later voted to overthrow

Napoleon in favor of the Bourbon monarchy, to which he remained

loyal for the rest of his life. After the restoration of the monarchy,
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Laplace was rewarded by being made a marquis. He died in Paris in

1827.

The first set of problems that attracted Laplace’s interest were all

connected with celestial mechanics. To the great puzzlement of as-

tronomers, it had been observed that the orbit of Jupiter seemed to

be continually shrinking while the orbit of Saturn appeared to be ex-

panding. Was there something wrong with Newton’s law of gravita-

tion? To the contrary, Laplace explained the phenomenon perfectly

within the framework of Newton’s theory. Owing to the interaction

of the two planets and the fact that their periods were almost com-

mensurable, the size of their orbits could be expected to change peri-

odically, with a period of 929 years. He next attacked the problem of

the exact motion of the moon around the earth, which had frus-

trated both Euler and Lagrange. The moon’s orbit is determined

principally by the moon-earth attraction, but the pull of the distant

sun also plays a minor role, which changes with time as the orbit of

the earth responds to the perturbing presence of the other planets.

As a result, the mean motion of the moon slowly speeds up while

that of the earth slows down, with a period of some millions of years.

This was Laplace’s first application of a mathematical method of

his invention, called perturbation theory, which, despite several nu-

merical errors in his calculations, would turn out to be enormously

useful in many other contexts in physics. When a problem that in-

volves relatively weak perturbing influences on a dominant system is

too difficult to solve exactly (such as the earth and its close-by moon

being disturbed by the far-away sun and other planets), perturbation

theory can often be used to find an excellent approximation to a so-

lution. The method served him well for finding the answer to an-

other celestial problem that worried him: can we be sure that the

planetary system as a whole, with all the gravitational pulls of the

planets on one another, is really stable? Is there a chance that the en-

tire assembly will eventually break up, with each planet flying off in a
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different direction, some perhaps crashing into the sun? To his relief,

he could prove that the system was stable and there was no need to

worry. While this conclusion was true to the extent that perturbation

theory was a reliable approximation, and the solar system will indeed

be stable for a very long time, we now know that eventually it will

break up, owing to the mutual interactions of all its constituents.

Laplace was also able to calculate with great precision both the

ebb and flow of the tides and the precession of the equinoxes. The

elaborate theory he devised for the formation of the solar system,

however, turned out to be flawed; it could not correctly account for

some of the properties of the sun and the planets. In addition to his

great work in astronomy, Laplace made deeply influential contribu-

tions to all parts of analysis, and to the development of partial differ-

ential equations in particular. To this day, there is hardly an area of

mathematical physics that does not make use of a technique invented

or a result obtained by Laplace.

Adrien-Marie Legendre, born in Paris in 1752 and educated there

at the Collège Mazarin, did not impress the world of mathematics

until the age of thirty, when he won a prize awarded by the Berlin

Academy of Science. A year later elected to the French Academy, he

began to publish important papers in mathematics and became a

member of the Royal Society. After the Revolution, which inter-

rupted his work for a while, he was appointed professor of mathe-

matics at the Institut de Marat in Paris and head of the department

set up to standardize weights and measures on a decimal basis as de-

creed by the revolutionary regime. In 1813 he succeeded Laplace as

the head of the Bureau de Longitudes, a position he retained until his

death in Paris in 1833.

Though Legendre’s stature as a mathematician is somewhat lower

than that of the others in this group, he made important contribu-

tions to number theory, elliptical functions, the calculus of varia-

tions, and celestial mechanics. In the physical sciences and astron-

omy he is mostly remembered for his introduction of the Legendre
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polynomials, solutions of a differential equation named after him.

These polynomials have turned out to be extremely useful in many

areas of physics.

Jean Baptiste Joseph Fourier is the fifth of the eighteenth-century

French mathematicians relevant to this story of how the calculus de-

veloped into an indispensable tool for all physical science. He was

born in Auxerre in 1768, the son of a tailor but orphaned when quite

young; he was educated at the local military academy and subse-

quently at a Benedictine school. After the outbreak of the Revolu-

tion, he was arrested for defending victims of the Terror but was

released after Robespierre was executed. By that time he had dis-

covered his strong interest in mathematics, and he went to Paris to

study at the École Normale. Soon he became a lecturer at the École

Polytechnique. In 1798 Napoleon selected him to come along on his

Egyptian campaign, where he performed diplomatic missions. Upon

his return to Paris, Napoleon appointed Fourier prefect of Isère in

southern France and later prefect of the Département du Rhône, ad-

ministrative positions for which he showed a strong aptitude. As a

reward for his services, Napoleon made him a baron and subse-

quently a count.

All the while, Fourier did mathematics in his spare time. However,

in protest against the emperor’s autocratic rule during the hundred

days after his return from Elba, he resigned his post and managed to

be appointed head of the Bureau of Statistics, where he could pursue

mathematics full time. He was elected a member of the French Acad-

emy of Sciences, of which he became the permanent secretary, and

the Académie Française, as well as a foreign member of the Royal So-

ciety. He died in 1830 as a result of a disease contracted while in

Egypt.

Fourier’s primary mathematical interest was in the area of par-

tial differential equations, to which he made a contribution that has

become a crucial tool in all fields of physical science, especially in

physics. He discovered that every periodic function (a function that
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repeats itself over and over) can be analyzed and expressed as an

infinite sum of trigonometric functions, that is, sines and cosines.

If the solution of a linear partial differential equation—these were

ubiquitous in all the newly emerging areas of physics—is written in

the form of such a Fourier series, each term in the sum separately

satisfies an equation that is much easier to solve than the original

one. The fields of electromagnetism and quantum mechanics are un-

thinkable without Fourier analysis.

This brings us to the man often called the prince of mathemati-

cians. Karl Friedrich Gauss was born in 1777 in Braunschweig, Ger-

many, to a poor and uneducated family. After teaching himself to

read and count, he was spotted at the age of eight by his grammar

school teacher as an outstanding mathematical talent. The teacher

had assigned his class the task of adding up all the numbers from 1 to

100, expecting to have peace and quiet for some time. However,

young Karl presented him with the desired sum S within a few min-

utes: he had written all the numbers once in their regular order and

underneath in reverse order. Since each of the resulting 100 columns

of two numbers added up to 101, he concluded that if he multiplied

100 × 101, the result would have to be twice the sum S, once for each

of the two rows. In other words, at the age of eight he had found the

formula 1 + . . . + 100 = (100 × 101)/2. The teacher concluded that

there was little he could teach his young pupil, and Karl should be

educated for a profession.

At the age of fourteen he was presented to the court of the duke of

Brunswick, whom he so impressed with his calculating talent that

the duke supported him with a generous allowance until his own

death in 1806. He attended the University of Göttingen from 1795 to

1798, and by the time he received his doctorate at the University of

Helmstedt, he had already made most of the many fundamental dis-

coveries in mathematics for which he is famous. In his doctoral dis-

sertation he proved what is known as the fundamental theorem of

algebra, which states that every algebraic equation with complex
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coefficients has at least one root that is a complex number. (A com-

plex number is a number of the form a + ib, where i is the “imagi-

nary number” −1, and a and b are ordinary real numbers. Imagi-

nary numbers were not yet fully recognized by all mathematicians at

that time, but today they are indispensable tools in all physical sci-

ences and engineering.) Gauss also invented the now universally em-

ployed system of representing complex numbers as points in a plane.

He then developed an interest in astronomy and was appointed not

only professor of mathematics but also director of the Göttingen ob-

servatory, a position he retained for the rest of his life.

Although Gauss was recognized early by European mathemati-

cians, made a foreign member of the Royal Society in London, in-

vited to join the French and Russian academies of sciences, and of-

fered a position in St. Petersburg, he never had a happy private life.

After suffering as a youth from being brought up by a difficult father,

his relationships with his own sons were less than cordial. And owing

to the political turmoil of the Napoleonic wars, his financial situa-

tion was always precarious. Politically very conservative and unsym-

pathetic to the contemporary revolutions in Europe, he was regarded

as cold and distant by those who knew him. Much of his ground-

breaking work remained unpublished until after his death, when

many other mathematicians discovered that, unbeknown to them, he

had anticipated their results. There is hardly any part of mathematics

or its applications to physics to which Gauss did not make basic, in-

dispensable contributions.

While Gauss’s mathematical work habits were solitary, he devel-

oped a long-lasting friendship with Alexander von Humboldt that

left its imprint on German science, and he had many active corre-

spondents in astronomy, a field he avidly pursued by scrutinizing the

heavens. His method of calculating the orbit of an asteroid or planet

on the basis of only three observations remains a classic. (Long after

his death, the 1001st planetoid to be discovered was named Gaussia.)

He also did pioneering research in crystallography, optics, and me-
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chanics as well as electricity and magnetism. In recognition of his

work on magnetic phenomena, a unit of magnetic flux density is

named after him. At the age of 62 he added to his linguistic accom-

plishments by learning Russian, and in 1855 he succumbed to heart

disease in Göttingen at the age of 77.

Twelve years younger than Gauss, Augustin-Louis Cauchy was

born in 1789 in Paris. To escape the Terror, his family moved to the

village of Arceuil, where Pierre Laplace turned out to be their neigh-

bor. Receiving his early education from his father, a prominent law-

yer and classical scholar, he also came to the attention of Lagrange,

who recognized his talent but, as the story goes, urged his father to

give the boy a good classical, literary education and not to let him

look at a mathematics book until the age of seventeen. This intro-

duction to mathematics finally took place at the École Polytechnique

in Paris, after which he studied engineering at the École de Ponts et

Chausses. For the next four years, he worked as a civil engineer and

subsequently returned to Paris, where, at the age of 27, he became

a professor at the École Polytechnique. That same year, the Bour-

bon monarchy was restored, and some prominent scientists who had

been republicans and Bonapartists were expelled from the Academy

of Sciences. As a replacement, Cauchy was appointed to the academy,

having just won its Grand Prix for one of his mathematical papers.

This marked the beginning of a very productive mathematical career,

and he was soon appointed to a chair at the Collège de France.

Like many other French scientists, Cauchy suffered the vicissi-

tudes of the political turmoil brought about by the Revolution and

its aftermath. Because he refused to take the new oath of allegiance

after the overthrow of the Bourbon king Charles X in 1830, he was

forced to resign his professorship. He had meanwhile married and

become the father of two daughters, whom he had to leave when he

went into exile in Fribourg, Switzerland, to live among the Jesuits.

His next stop was the University of Turin, where he was appointed to

the chair of mathematical physics. Joined by his family, he served as
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tutor of the son of Charles X in Prague from 1833 to 1838, with a

barony as a reward. In 1838 Cauchy finally returned to Paris and to

his professorship at the École Polytechnique. From 1848 to 1852 he

served as a professor at the Sorbonne and died at Sceaux, near Paris,

in 1857.

Cauchy’s best work was all published in the 1820s, in the form of

three treatises: Cours d’Analyse de l’Ecole Polytechnique; Résumé des

leçons sur le calcul infinitésimal; and Leçons sur les applications de

calcul infinitésimal à la géométrie. His principal contribution con-

sisted in making the basis of the calculus mathematically clean and

rigorous, and he was the first to give a proof of the Taylor expansion

of a function. The Taylor expansion of a function of x expresses that

function in the form of an infinite sum of successive powers of x, a

form that has found a great variety of applications in most areas of

science. In the Cours d’Analyse he provided the first general analysis

of functions of complex numbers. Cauchy is regarded by many as

one of history’s greatest mathematicians.

By the middle of the nineteenth century, mathematical techniques

for the calculation of planetary orbits using Newton’s law of gravity

and his laws of motion—at this time these were usually expressed in

the form given to them by Euler, Lagrange, or the French mathemati-

cian and physicist Siméon-Denis Poisson (1781–1840), or else in the

alternative forms invented by Hamilton and Jacobi—were so robust

and reliable that any slight discrepancy between predictions and ob-

servations were regarded as serious scientific problems. One such

discrepancy was the fact that the major axis of the elliptical orbit of

the planet Mercury appeared to be rotating at a rate of 38 seconds

per century. No satisfactory explanation of this phenomenon could

be found, and it was left as an unsolved puzzle until early in the

twentieth century, when its solution would be provided by Einstein’s

general theory of relativity.

The second discrepancy concerned the planet Uranus, which

Herschel had discovered in 1781 and for whose motion the mathe-
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matical astronomer Alexis Bouvard (1767–1843) had calculated pre-

cise tables in 1821. However, by the mid 1840s these tables were al-

ready found to be grossly inaccurate. When the French astronomer

Urbain Jean Joseph Leverrier (1811–1877) learned about this failure

of astronomical predictions, he suggested that the cause of the dis-

turbance of the orbit of Uranus may be the attraction of another

planet, yet unknown, the existence of which had already been conjec-

tured by Herschel. He even went so far as to use the observed pertur-

bation of Uranus to publish a calculated prediction of both the posi-

tion and size of the unknown object. Sure enough, the astronomers

Johann Galle and Louis d’Arrest at the Berlin Observatory promptly

found the new planet within 1° of Leverrier’s prediction; since it ap-

peared to have a greenish hue, it was named Neptune. Because a

young English astronomer, John Couch Adams, had already made

the same calculation as Leverrier and sent it to George Airy, the as-

tronomer royal, who failed to read it until he saw Leverrier’s paper in

print, a priority dispute arose, which was aggravated by chauvinism

in both Britain and France. The name Neptune rather than Leverrier

was chosen as a compromise.

The last of the great mathematicians to contribute decisively to

the development of the deterministic system of Newtonian mechan-

ics was Jules Henri Poincaré. At the same time, he also discovered

that this system was not quite as deterministic as had been thought.

Poincaré was born in 1854 in Nancy; his father was a physician and

professor of medicine at the local university with a family back-

ground of distinguished government service. Henri’s first cousin

Raymond would serve as prime minister of the Third Republic and

as president of France during the First World War. Tutored before el-

ementary school by his mother, Poincaré’s mathematical ability was

recognized early, along with his excellence in written composition

(he won first prizes in the concours générale, the competition for stu-

dents of all French lycées).

After attending the École Polytechnique and the École National
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Supérieure des Mines, he worked briefly as an engineer and received

his doctorate in 1879. Appointed as an instructor in mathematical

analysis at the Univerity of Caen, he moved to the University of Paris

in 1881, where he remained for the rest of his life as a professor of

mathematical physics, mathematical astronomy, and celestial me-

chanics. He died in Paris in 1912.

As the dominant figure in mathematics at the turn of the cen-

tury, Poincaré made profound contributions to practically all areas

of mathematics as well as to mathematical physics, and his prolific

writings exerted a long-lasting influence on the philosophy of sci-

ence. Philosophically, he was a conventionalist—mathematics and

parts of science were, for him, human conventions, which is to say,

human inventions. No Platonic universe of ideas for him! Newtonian

mechanics was the area in which his work in physics had the most

enduring effect, and two ideas in particular are of interest.

The first was his proof of what became known as Poincaré’s recur-

rence theorem: every mechanical system confined to a finite spatial

region must necessarily eventually return to any given area, no mat-

ter how small, near its starting point. The theorem does not say the

system must return precisely to its starting point; as Nicole Oresme

had already recognized in the fourteenth century, the probability

for that would be nil. By the end of the nineteenth century, how-

ever, mathematics was able to deal more satisfactorily with what for

the fourteenth century was an insurmountable obstacle. Although

Oresme had been correct in denying exact recurrence for almost all

systems, there was a recurrence of a fuzzier kind nevertheless.

Poincaré’s second contribution of special interest was the discov-

ery of the phenomenon of chaos, which demolished the grand deter-

ministic vision so eloquently expressed by Laplace. The origin of his

discovery goes back to his early work in celestial mechanics.2 He had

written a brilliant paper on the motion of several objects, such as

planets, influencing one another gravitationally—a notoriously dif-

ficult problem when the number is three or greater. However, after it
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had been published and won a prize from the king of Sweden, he re-

alized to his horror he had made an important error invalidating his

conclusion that the motion, as expected, would be quite smooth and

predictable. So he spent all his prize money buying up as many of the

copies as he could find of the journal in which the erroneous paper

had been published, to prevent it from being disseminated. In cor-

recting the error, he found that in most instances the motion of these

objects would, in fact, be chaotic, as we would say nowadays.

What prevents the motion of most bodies in interaction with each

other from being predictable in any ordinary sense of that word—

thus, chaotic—is a phenomenon called sensitivity to initial condi-

tions, as Poincaré discovered. This means that if either their posi-

tions or their velocities at the initial instant are altered by small

amounts, their speeds and locations at a later time may be vastly dif-

ferent. Two identical systems starting out almost the same way will,

after a while, be in entirely different states and no longer resemble

one another at all. In other words, even though the Newtonian equa-

tions of motion determine their later configuration exactly if their

initial data are precisely given—in that sense the laws are determinis-

tic—the slightest error at the start produces a large and unpredict-

able deviation at a later time, making the motion, for practical pur-

poses, unpredictable.

From a modern perspective, remember that every computer does

numerical calculations with a finite number of digits, and all its data

necessarily have small errors whose size is determined by the number

of digits used. If such a computer is employed to calculate motion,

these errors will grow out of control, rendering the calculation even-

tually useless. This is one reason why weather prediction is so dif-

ficult. The grand illusion of having finally attained the long-standing

goal of making the workings of nature completely predictable was

thus decidedly dimmed by the monkey wrench Poincaré threw into

the delicate machinery of classical mechanics in the form of the so-
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called butterfly effect—a butterfly batting its wing in the Amazon

rain forest may cause a tornado in Wisconsin.

We should recognize, however, another important mathematician

whose work made a significant contribution not only to Newtonian

physics but also to the new physics, exerting a decisive influence on

our view of the way nature works. Born in Erlangen, Germany, in

1882, the oldest child of Max Noether, a well-known mathematician,

Amalie Emmy Noether was prevented for two years from continuing

her education past high school by a rule barring women from full

status as university students. After informally listening to lectures on

linguistics and mathematics at the University of Erlangen from 1900

to 1902, she managed to matriculate and received her doctorate in

1907. However, since a university career was not open to her, she had

to do her research independently. Owing to the constant, strong sup-

port of David Hilbert, she was invited to lecture at the University of

Göttingen from 1915 to 1916, given unofficial professorial status in

1919, and finally officially made an associate professor in 1922 with a

minimal salary. She spent the year 1928–1929 as a visiting professor

at Moscow University. Her position in Göttingen, however, lasted

only until 1933 when, dismissed as a Jew, she emigrated to the United

States, where she became a professor of mathematics at Bryn Mawr

College in Pennsylvania until her death of a postsurgical infection in

1935.

While most of Emmy Noether’s work was in algebra, her impor-

tance in physics rests on a specific theorem that she proved in the

context of classical physics but whose validity turned out to be far

wider. Noether’s theorem states that whenever the equations of mo-

tion of any system are invariant with respect to some change in pa-

rameters, the system has a corresponding conserved quantity. For ex-

ample, if a physical system is invariant under translation, that is, it

does not change when shifted in space, it is subject to the law of con-

servation of momentum; if it is invariant under translations in time,
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that is, it will behave tomorrow as it does today, then its energy is

conserved. In other words, Noether’s theorem establishes a quite re-

markable connection between the symmetries of a physical system

and its conserved quantities, a connection that has acquired particu-

lar importance for the entire body of modern physics because of the

emphasis all contemporary theories put on both symmetries and

conservation laws.

Before turning to the upheaval in physics that occurred during the

nineteenth and twentieth centuries—related to but not caused by

Poincaré’s finding of chaos—it is important to describe the great

new advances achieved in the areas of sound, light, electricity, mag-

netism, and heat, as well as those achieved in the final confirmation

of atomism. At the end of the eighteenth century, only a small frac-

tion of the phenomena now familiar to physics was known, and of

those known, few were understood. Gravity was the only force in na-

ture, other than Hooke’s spring force, that had been described math-

ematically, which limited the application of Newton’s laws of motion

almost entirely to celestial mechanics. Much remained for physi-

cists to discover, to explain, and to describe mathematically before

Laplace’s dream of determinism could be realized.

Some of the new physics would lead to basic revisions of Newton’s

laws, but astonishing as they were, these revisions were not really rev-

olutionary. It was the common phenomenon of heat, as we shall see

in the next chapter, that would turn out to contain the seeds of an

upheaval spelling the end of the deterministic dream and ushering in

a new era in which nature was seen as governed by chance rather

than necessity.
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six

New Physics

First proposed in the fifth century bce by Leucippos, subsequently

adumbrated by Democritus, and later independently reinvented by

the Hindus, the notion that the world is made up of unchanging and

indestructible atoms had been resurfacing in science for well over

two thousand years. But the idea that underlying the appearance of

the great variety of color, sound, shape, and temperature of all we see

is nothing but different arrangements of certain colorless, cold, and

permanent building blocks did not advance beyond speculation until

early in the nineteenth century. The solid scientific evidence for this

view got its initial support from John Dalton.

The third of six children of a weaver and devout Quaker, Dalton

was born in 1766 in the village of Eaglesfield, Cumberland, England.

After attending a Quaker school, he learned mathematics and science

largely from public lectures given in nearby Kendal and from the

blind natural philosopher John Gough (known from Wordsworth’s

Excursion). He was excluded from Oxford and Cambridge, which

at that time were open only to members of the Church of England.

Before long, Dalton gave public lectures himself, mostly about me-

teorology and color blindness—which afflicted both him and his



brother—at the Manchester Literary and Philosophical Society, of

which he later became president.

In 1793 Dalton was appointed professor of natural philosophy

and mathematics at the New College in Manchester, a post he quit

after seven years to set up his own Mathematical Academy, offering

courses in mathematics, natural philosophy, and chemistry. Though

the quintessential outsider—he never married—he was elected in

1816 as a corresponding member of the French Academy of Sciences

and in 1822, over his objections, to the Royal Society. He received the

Royal Medal in 1826, honorary degrees from the universities of Ox-

ford and Edinburgh, and a government pension in 1833. He died in

Manchester in 1844.

Dalton’s interest in meteorology led him to study gases, and in

1803 he proposed his law of partial pressures, known ever since as

Dalton’s law, which states that the total pressure of a mixture of gases

in a given volume is the sum of the pressures that each of the constit-

uents would separately exert if they alone occupied the same volume.

The explanation he offered for this was that the constituent gases

were made up of different particles, each of which exerted repulsive

forces upon the particles of their own kind but ignored those of the

other kinds. (He had concluded that gases and liquids are made up of

particles because gases can be absorbed by liquids such as water,

which he explained by postulating that the gas particles occupied in-

terstices between those of the water.)

The following year he announced his chemical law of multiple

proportions. A chemical compound is made up of a fixed ratio of

weights of its constituents—the law of definite proportions, already

known. But Dalton’s more informative law of multiple proportions

states that if two given elements can combine with each other in

more than one compound, their weight ratios in the various cases

differ by factors that are small whole numbers. For example, nitrogen

and oxygen are able to form five different compounds; in these five

oxides 14 grams of nitrogen combine with 8, 16, 24, 32, and 40 grams
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of oxygen, which differ by factors of 2, 3, 4, and 5. From these two

laws he drew the conclusion that the elements must be made up of

particles—atoms—which, for a given element, are all alike and have

the same weight, and which in chemical compounds attach them-

selves to one another to form what we now call molecules. In the ex-

ample of nitrogen oxides, the molecules would consist of one atom

of nitrogen and either 1, 2, 3, 4, or 5 atoms of oxygen. From the law

of definite proportions he concluded that the weight ratio of ele-

ments A and B in a given unique compound of the two must be

identical to the weight ratio of their respective atoms. (He was still

somewhat confused about the difference between atoms and mole-

cules of gases made up of elements.)

Dalton did not get the constitution of all the molecules right; he

thought, for example, that a water molecule consisted of one atom of

oxygen and one atom of hydrogen. And his relative atomic weights,

based on the assumption that the molecule of the unique compound

of A and B must consist of one atom of each, were often wrong. But

his basic concept was certainly correct. Atomism had finally been put

on a scientific basis, whose solidity was cemented by a great variety

of evidence steadily accumulated over the next hundred years. Most

of the new physics developed during the nineteenth century made

use of it in one way or another, despite a few skeptics such as the re-

spected Austrian physicist Ernst Mach. Today the concept of atoms is

regarded as a foundation stone of physics and chemistry. Perhaps the

visually most convincing proof was eventually provided after 1827,

when the Scottish botanist Robert Brown observed, under his micro-

scope, a mysterious irregular motion of pollen grains suspended in

water. These visible movements, thereafter called Brownian motion,

were direct evidence for the particulate nature of water, though that

fact was not recognized until after 1905, when Albert Einstein ex-

plained their cause to be the result of fast-moving water molecules,

too small to be seen, colliding with the visible grains.

A refinement of Dalton’s discovery was soon provided by the Ital-
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ian physicist Avogadro, using evidence provided by Gay-Lussac. In

1802 the French chemist Joseph Louis Gay-Lussac (1778–1850) had

announced a universal law governing the expansion of gases, namely,

that for a given rise in temperature all gases expanded by the same

fraction of their volume. The French physicist Jacques Alexandre

César Charles (1746–1823) had already discovered this fact in 1787

but had not published it; for this reason it is known today as

Charles’s law. Furthermore, in 1808 Gay-Lussac found what is now

called Gay-Lussac’s law of combining volumes: when two gases com-

bine chemically, the volumes they and the product (if a gas) occupy

at a fixed pressure always stand in simple numerical ratios. For exam-

ple, two gallons of hydrogen and one gallon of oxygen yield two gal-

lons of steam.

Amedeo Avogadro was born in Turin in 1776, son of a distin-

guished lawyer. He too started out as a lawyer and did not take les-

sons in mathematics and physics until the age of 24, but he made

rapid progress. In 1820 he was appointed to the newly established

professorship in mathematical physics in Turin, the first such profes-

sorship in Italy, which temporarily fell victim to the political turmoil

at the time before being re-established permanently and held for a

short while by Cauchy; there Avogadro remained until his retirement

in 1850. Subsequently regarded as the founder of physical chemistry,

he was a man of great modesty, who never received any recognition

during his lifetime for his important work. He died in Turin in 1856.

Avogadro’s most significant achievement was the formulation of

Avogadro’s law, an idea that Dalton had already considered but un-

wisely rejected. It states that at any given temperature all gases con-

tain the same number of molecules per unit volume. Basing his hy-

pothesis on Charles’s law of gas expansion developed by Gay-Lussac

(who also invented the word molecule), Avogadro then used it to ex-

plain Gay-Lussac’s law of combining volumes in a rational fashion,

thereby lending his hypothesis additional support. Considering the

large differences in weight, and therefore presumably in size, between
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molecules of various gases, Avogadro’s law would be rather surpris-

ing if these molecules were closely packed, as Dalton believed. His

law therefore lent support to the view that there are relatively large

spaces between the molecules of a gas. Despite its ample verification

in many contexts, this law is still often referred to as Avogadro’s hy-

pothesis.

Note that Avogadro’s law can be used to find the relative weight—

relative to that of hydrogen—of each molecule of a gas directly from

the density of that gas: the ratio of the weight of each molecule of gas

A to that of each molecule of hydrogen is equal to the ratio of the

weights of a unit volume of A to that of a unit volume of hydrogen,

that is, the ratio of the density of A to the density of hydrogen. This

was a more reliable method of determining molecular weights than

Dalton’s. By translating Avogadro’s law into weights rather than vol-

umes, we state it the following way, which avoids the need to men-

tion temperature: the number of molecules in a gram mole (a quan-

tity of gas whose weight in grams is equal to its relative molecular

weight) of any gas is a universal constant, now known as Avogadro’s

number (whose numerical value, 6.022 × 1023, was not established

until the end of the nineteenth century). In other words, this is the

number of molecules in 2 grams of hydrogen or in 32 grams of oxy-

gen or in 18 grams of water. Each molecule of hydrogen gas contains

two hydrogen atoms, each molecule of oxygen gas contains two oxy-

gen atoms, and each molecule of water contains two hydrogen atoms

and one oxygen atom. That is why two gallons of hydrogen and one

gallon of oxygen make two gallons of steam. Chemists refer to the

number N = 6.022 × 1023 of molecules required to make a gram

mole of gas as a mole.

One area of physics that reached theoretical completion on the

basis of the particulate nature of gases, together with Newtonian me-

chanics, was acoustics. Until the middle of the seventeenth century

the dominant view was that the sound of ringing was produced by a

stream of particles originating from the bell. Galileo, as well as his
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younger contemporary, the French natural philosopher, theologian,

and mathematician Marin Mersenne (1588–1648), found that the

pitch of a musical note is proportional to the frequency of the vi-

bration producing it. Prizing precision in scientific work above all

else, Mersenne also discovered that the intensity of sound decreased

as the square of the distance from its source, and that its speed was

independent of its pitch and loudness. Today, he is regarded as the

founder of the field of musical acoustics.

The myth that sound consisted of a stream of particles, and there-

fore required no air to be heard, was finally demolished by an ex-

periment still performed in physics classes to this day, first done by

the German Jesuit scholar Athanasius Kircher (1601–1680) and de-

scribed in his book Musurgia universalis, published in 1650. The

demonstration consists of a ringing bell enclosed in a tightly closed

jar, from which the air is gradually removed by means of a pump.

The ringing we hear gets dimmer and dimmer until it finally be-

comes inaudible when the jar is totally evacuated, thereby showing

convincingly that air was required for the propagation of sound. Un-

fortunately, Kircher’s apparatus was unable to achieve a good enough

vacuum to extinguish the sound completely, and he erroneously con-

cluded that air was unnecessary for the propagation of sound. It took

the much improved air pump devised by Robert Boyle to make

Kircher’s experiment really persuasive.

This is where knowledge of sound stood at the time of Newton,

whose equations of motion would finally make a detailed under-

standing of the propagation of these vibrations in the air possible.

The first mathematician to employ Newton’s equations for a detailed

study of vibratory motion was Daniel Bernoulli. During the nine-

teenth century, the different characteristics of sound in various gases

were studied by the Irish physicist George Gabriel Stokes (1819–

1903), who made many other contributions to the field of fluid dy-

namics as well. He also suggested that under certain circumstances

sound waves would undergo sharp discontinuities, a phenomenon
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we now call shock waves; but he was persuaded to retract this pro-

posal because it appeared to contradict the conservation of energy.

Investigating the physiology of hearing, the German physicist Her-

mann von Helmholtz developed a theory of musical timbre in which

he recognized that the variations in the timbre of the same notes

produced by various musical instruments are caused by the admix-

ture of different overtones. Finally, the field of acoustics was brought

to its theoretical completion by the great English physicist John Wil-

liam Strutt, better known as Lord Rayleigh (though the practical ap-

plication of acoustics in the construction of concert halls still bedev-

ils architects to this day).

John William Strutt, born in 1842 at Langford Grove in Essex,

England, was the son of Baron Rayleigh, whose title he inherited

upon his father’s death. As a boy, he was forced by poor health to

withdraw from Eton and Harrow and be privately tutored, but at the

age of eighteen he entered Trinity College, Cambridge, from which

he graduated in 1865, becoming a Fellow the following year. He de-

voted the rest of his life to the pursuit of science, an uncommon step

for a member of the landed aristocracy, who usually made their ca-

reers either in the Church or the military if they were not content to

live the life of a country squire. Instead of taking the customary

Grand Tour of the European continent, Strutt chose to visit the

United States for a couple of years, and after his return he set up his

own research laboratory at the family estate, Terling Place, where he

performed most of his subsequent work in physics. In 1871 he mar-

ried Evelyn Balfour, sister of Arthur James Balfour, the man who

would later become prime minister and serve as foreign secretary

during the First World War.

From 1879 to 1884, Lord Rayleigh, as he was now titled, aban-

doned his laboratory to become Cavendish Professor of Experimen-

tal Physics at Cambridge University, succeeding James Clerk Max-

well, who had died unexpectedly early. Elected to the Royal Society,

which he would later serve as secretary, he accepted the position of
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president of the British Association for the Advancement of Science

and made another visit to America before resigning the Cavendish

professorship and returning to Terling, which remained his primary

residence and scientific headquarters from then on. In 1908 Rayleigh

was appointed chancellor of Cambridge University, an honorary post

he retained until his death at Terling in 1919.

One of the most productive theorists and experimenters of the

nineteenth century, Lord Rayleigh made fundamental contributions

to all areas of what is now called “classical” physics, as well as sowing

some of the seeds of the revolution to come (for which he had no

taste). His discovery of the element argon simultaneously with the

chemist William Ramsey earned him the 1904 Nobel Prize in physics,

while Ramsey received the Nobel in chemistry. (The annual ritual of

Nobel Prize awards had begun in 1901 and quickly became, in the

minds of many people, the touchstone of scientific achievement.)

Most of his theoretical work dealt, in one form or another, with wave

propagation, a subject that crossed many boundaries—his theory of

the scattering of light by small particles, still called Rayleigh scatter-

ing, led to an explanation of why the sky is blue—and he made his

greatest contribution, and the one most relevant to our narrative, in

his two-volume treatise The Theory of Sound.

The writing of this work had begun during an extended journey

by houseboat up the Nile, together with his young wife, in order to

recuperate from a serious attack of rheumatic fever. The Theory of

Sound contained detailed mathematical descriptions of the nature of

sound as a longitudinal wave made up of minute variations in the

pressure of its surrounding fluid or solid, caused by differences in the

density of the constituent particles—alternating condensations and

rarefactions—and its propagation in different media and under vari-

ous conditions. These pressure variations originate from vibrations

in its source, be it a musical instrument, a bell, or an explosion, and

they travel at a fixed velocity that varies with the medium but is inde-

pendent of the velocity of the source. However, a moving source vi-
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brating at a given frequency produces sound of a higher frequency in

its forward direction and of a lower frequency in its backward direc-

tion because the pressure waves are compressed in one direction and

stretched out in the other. This effect, audible as a drop in pitch when

a moving sound source such as a train passes a listener, was discov-

ered in 1842 by the Austrian physicist Johann Christian Doppler

(1803–1853), after whom it was named. In its many editions, which

were kept up to date on such evolving developments as binaural ef-

fects in human hearing and newer ideas on shock waves (the subject

that Stokes had abandoned), Rayleigh’s treatise remains the bible on

sound propagation to this day.

The nature of the other primary sensory medium of human per-

ception, light, also remained for the nineteenth century to untangle.

At the end of the eighteenth century the rivalry between Newton’s

corpuscular theory and Huygens’s wave theory was unresolved. The

decisive experimental blow against Newton was delivered at the very

beginning of the new century when the English physicist Thomas

Young (1773–1829) discovered the phenomenon of interference. In

addition to being a physicist, Young, a Quaker, was a physician and

an accomplished linguist, proficient not only in Greek and Latin but

conversant with eight Middle Eastern languages, from Hebrew to

Ethiopic, and among the first to decipher Egyptian hieroglyphics. In

1801 he performed one of the truly crucial experiments in the his-

tory of physics. His arrangement consisted of a beam of monochro-

matic light shining first through a slit in a screen, then falling on two

narrow parallel slits on a second screen, and finally shining on a third

screen, where it was observed (Fig. 10).

To the consternation of supporters of the particle theory, the im-

age on the third screen did not show two bright stripes in a field of

darkness, as would be produced by a stream of particles, but several

bands of alternating light and dark stripes, generally referred to as

“fringes” (Fig. 11). Young’s explanation of this curious phenome-

non was that the fringes were produced by interference—light waves
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from the two slits successively adding or subtracting one another, de-

pending on the difference in the distance of a given spot on the third

screen from the two slits in the second—thereby conclusively show-

ing that light was a wave. He thought of it as analogous to a sound

wave; in this, however, he was to be proven wrong within twenty

years.

Young’s diffraction experiment was independently duplicated in

1815 by the French physicist Augustin Jean Fresnel (1788–1827). Un-

aware of the work of either Huygens or Young and experimenting in

his spare time only (he had a government position as a civil engi-

neer), Fresnel specialized in research on the properties of light with

the goal of disproving the particle theory and demonstrating its wave

nature. At the suggestion of Poisson (whose intent was to disprove

the wave theory), he also performed an experiment of directing a

beam of light at an opaque circular disk and, to his delight and Pois-

son’s dismay, he found a bright central spot in the middle of the

shadow on a screen behind it: another result of interference and

proof of the wave theory, though it is not entirely clear that Poisson

was convinced. Fresnel then went on to construct a detailed mathe-
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matical description of the interference phenomenon in more general

contexts.

In the meantime, the French physicist Étienne Louis Malus (1775–

1812) had discovered that, under certain conditions, light possessed

a property he called polarization. This conclusion was based on his

analysis of experiments with light shining through birefringent crys-

tals such as calcite, which split a ray shining on its surface into two

rays refracted at different angles and with different properties, as can

be demonstrated by allowing these two to shine on a second piece of

the crystal: the two rays are differently polarized. (The polarization

of light can be demonstrated more simply today with Polaroid sun-

glasses.) Fresnel’s explanation was that light must be a transverse

wave, with the vibration of a polarized beam swinging at right angles

to the direction of its propagation, rather than a longitudinal wave

such as sound, in which the pressure vibrations oscillate along the

line of propagation. But a wave of what? Sound was a wave of vibra-

tions of a medium such as air, but light required no air or other gas;
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it went right through a vacuum. Some other kind of medium must

be carrying it, and the name chosen for this mysterious phenome-

non, the nature of which remained to be unraveled, was ether, echo-

ing Aristotle.

The velocity of light had been measured for the first time in 1679

by the Danish astronomer Ole Christensen Römer (1644–1710), based

on variations in the times at which the planet Jupiter eclipsed its

moon Io, depending on Jupiter’s distance from the earth. His suc-

cessful prediction of a delay by ten minutes of the next expected

eclipse, and his explanation of the reason for this delay, caused a sen-

sation. The notion that light traveled with infinite speed was still ac-

cepted by many, including Descartes. The speed implied by Römer’s

measurements, 225,000 km/sec (140,000 miles/sec), was remarkably

close to the now-accepted value of 299,792 km/sec and so large that

its measurement in a laboratory on earth would present enormous

difficulties. Römer did not actually calculate the speed but only stated

that light would take about 22 minutes to cross the earth’s orbit, and

11 minutes to travel from the sun to the earth. This observation was

subsequently converted into a numerical velocity by Huygens. The

feat of measuring the speed of light in a laboratory was finally ac-

complished by the French physicist Armand Hippolyte Louis Fizeau

(1819–1896), who also found that light traveled more slowly in water

than in air, another nail in the coffin of particulate theories of light:

Newton had predicted that it should move faster in water.

Along with light, two other puzzling phenomena had been un-

der scrutiny in the seventeenth and eighteenth centuries: electricity

and magnetism. Both had been known since antiquity. Thales of

Miletus is credited with the discovery that a piece of amber, after be-

ing rubbed, will attract other small objects to itself; the word electric

stems from the Greek word for amber. And the fact that a lodestone

attracted iron was mentioned by Lucretius. The magnetic compass

was used for navigation by the Chinese and by Western Europeans in

the twelfth century, by the Arabs in the thirteenth, and by Scandina-
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vians in the fourteenth century. In the sixteenth century William

Gilbert tried to understand lodestones and compasses (though not

amber), and his ideas, collected in his treatise De magnete, inspired

Kepler in his search for an explanation of the motion of the planets.

During the seventeenth century, much of the pursuit of mathe-

matics and physics on the continent was in the hands of Jesuit schol-

ars and teachers. Whenever a conflict between science and religion

arose, they resolved it by regarding scientific results as mere mathe-

matical models rather than the truth. When no conflict appeared,

some Jesuits used science to defend their theology. The most impor-

tant of these was the widely admired Athanasius Kircher, who, after

moving from Germany to Rome because of the Thirty Years’ War, as-

sembled a circle around him there. Much baffled by strange influ-

ences on electrostatic phenomena exerted by ambient humidity, of

which they were unaware, they argued at length about whether elec-

tric and magnetic attractions were caused by effluvia and currents in

the air surrounding electrified objects. The principal properties of

electric and magnetic bodies were, they assumed, a certain fattiness

and glueyness. Descartes, on the other hand, constructed a theory of

“electrics” that, though simplistic, did away with any effluvia and

stickiness, in favor of corpuscles and vortices.

In England, interest in electrics and magnetics was kept alive after

Gilbert by the Jesuit theologian Thomas White (1593–1676), better

known as Blacklow, and a few others. Experiments by Robert Boyle

using his vacuum pump did much to elevate the scientific discourse,

discrediting all theories involving the air in electrical attraction. Otto

von Guericke contributed to the discussions as well, particularly be-

cause of his demonstration of electric repulsion as well as attraction.

Huygens also became interested in electric phenomena, performing

experiments and applying Cartesian ideas to Guericke’s discovery of

electrostatic repulsion, though he published none of these results.

Shortly after his installation as chief experimentalist of the Royal

Society, which coincided with the tenure of Isaac Newton as presi-
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dent, Francis Hauksbee (c. 1666–1713) publicly demonstrated a new

electrostatic effect. Employing an “electrical machine” to perform

elaborate demonstrations of electrostatic repulsions, he astonished

his audience by rubbing the exterior of a partially evacuated glass

globe, thereby producing an intense glow of light within it, which

gradually disappeared as air was allowed back into the globe. An-

other new electric phenomenon was discovered by Stephen Gray

(1666–1736), an inspired amateur who managed to become a mem-

ber of the Charterhouse foundation and devoted most of his time to

electrical experimentation. Electric attractions, he found, could be

communicated from one object to another through the air—some-

times with a visible spark—and through other bodies, a property

that he investigated and publicly demonstrated in a great variety

of ways.

The capstone of eighteenth-century discoveries of electrostatics

was provided by the French infantry officer Charles François de

Cisternay Dufay (1698–1739), who, immediately upon his retirement

at the age of 25, became a member of the Paris Academy of Science

(assisted by family connections). He found not only that all non-

metal objects solid enough to rub could be electrified and that metals

communicated “electrical virtues” differently from other substances,

but also that two different kinds of electricity existed, accounting for

attractions and repulsions. Some substances always generated one

kind, others always the second kind. Objects with unlike electrifica-

tion attracted one another, while those with like electrification re-

pelled one another.

By about 1740, mostly stimulated by Gray and Dufay, electricity

had become a very fashionable topic of intellectual and genteel dis-

course. This is when Benjamin Franklin (1706–1790) entered the

picture. Going much beyond the observation of electric attractions

and repulsions, Franklin experimented with Musschenbroeck’s magic

bottle, a device invented in the 1740s by Pieter van Musschenbroeck

(1692–1761) of Leiden that became known as a Leiden jar. It facili-
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tated the accumulation of large amounts of static electricity, and

Franklin fascinated visitors to his laboratory by using these jars to

produce long sparks from sharply pointed metallic objects. His fa-

mous experiment with an iron key dangling from a kite in a thun-

derstorm demonstrated that lightning was an electric phenomenon.

Franklin’s most famous practical application of this insight, together

with his experiments using pointed metal objects, was his invention

of the lightning rod.

The English natural philosopher Henry Cavendish (1731–1810),

who discovered hydrogen and was the first to measure Newton’s

gravitational constant directly on earth (by measuring the minute at-

traction between two lead spheres), proposed a single-fluid theory

for the flow of electricity. He also found that the electric attraction

between two oppositely charged objects varies as the inverse square

of the distance between them, a law that had been first conjectured

in 1767 by the English chemist and Presbyterian theologian Joseph

Priestley (1733–1804), the reluctant discoverer of oxygen. Drawing

on Priestly’s work and that of others, Cavendish intended to write a

great treatise on electricity that would be analogous to Newton’s

Principia. But he never did, and owing to his extremely reclusive—by

some accounts, almost autistic—nature, most of his work remained

unknown for some fifty years. Today the physics laboratory at Cam-

bridge University is named in his honor.

Priestley was an outspoken dissenter from the Church of England

and a vocal supporter of the French Revolution, which made him ex-

tremely unpopular in Birmingham, where he lived. When even a

move to London did not alleviate the hostility surrounding him, he

emigrated to America. Rejecting an offer of a professorship at the

University of Pennsylvania, he settled in Northumberland, Pennsyl-

vania, where he died in 1804. Priestley had been a promoter of the

phlogiston theory, which held that combustion produced the gas

phlogiston in air. But then he discovered that, on the contrary, com-

bustion as well as respiration required the presence of a gas that he
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called “dephlogistinated air.” It was Lavoisier, a strong opponent of

the phlogiston theory, who named it oxygen.

The French physicist Charles Coulomb (1736–1806) is credited

with the discovery that the force between two electrically charged ob-

jects is proportional to the product of the charges they carry and in-

versely proportional to the square of the distance between them

(provided that the size of these objects is small compared to their

distance), and similarly for the magnetic force. The instrument both

he and Cavendish employed for measuring these tiny forces was a

torsion balance, whose degree of twist could be sensitively measured.

Coulomb is commemorated by having the inverse-square law of elec-

trical force as well as the unit of electrical charge named after him.

Poisson later formulated and generalized Coulomb’s experimental

results in mathematical terms, transferring them to magnetism as

well. He also invented two-fluid theories for electricity and for mag-

netism, both of which were later discarded.

While Coulomb and Cavendish dealt exclusively with static elec-

tricity, Franklin also experimented with the flow of electric currents

through wires. For the source of these currents he employed the vol-

taic pile, which had been invented in 1800 by the Italian physi-

cist Alessandro Volta (1745–1827). A forerunner of the modern

battery, this invention, which produced strong electric current, con-

sisted of alternating layers of silver and zinc discs separated by brine-

moistened cardboards. Its use led to the important discovery by the

German physicist Georg Simon Ohm (1789–1854) that the current

through a wire varied in inverse proportion of the wire’s resistance, a

quantity that is proportional to its length and inversely proportional

to the area of its cross section (depending also on the material the

wire is made of).

A discovery that the Danish physicist Hans Christian Oersted

(1777–1851) made in 1820, however, would have much more far-

reaching consequences. As he had anticipated on philosophical

grounds—in his opinion all forces ought to be interrelated—he
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found that a wire carrying an electric current produced magnetism:

it could deflect a compass needle. He had been looking for such an

effect for seven years without finding it because, whereas he had ex-

pected the magnetic force to be in the same direction as the current,

it turned out to be perpendicular to it. Thus electromagnetism was

born; the two phenomena of electricity and magnetism were inti-

mately connected.

This connection was further strengthened when the French math-

ematician, physicist, and chemist André Marie Ampère (1775–1836),

stimulated by witnessing a demonstration of Oersted’s discovery,

found that two parallel current-carrying wires attracted or repelled

one another, depending on whether the currents in them ran in the

same or in opposite directions. The conclusion had to be that not

only did electrical currents produce magnetic forces, but these mag-

netic forces in turn also acted on currents. He presented all the re-

sults of his studies in mathematical form in his Mémoire sur la théorie

mathématique des phénomènes électrodynamiques uniquement déduite

de l’expérience, and the mathematical law embodying the relation be-

tween electric currents and magnetic force now carries his name, as

does the unit of current.

If Oersted and Ampère discovered that electric currents produce

magnetism, the inverse effect, that magnetism can produce currents,

was found by the American physicist Joseph Henry and the English

physicist and chemist Michael Faraday. Henry (1797–1878), the son

of a laborer, was born in Albany, New York, and educated at the

Albany Academy. After discovering in 1830 what came to be called

electromagnetic induction, he was appointed professor of natural

philosophy at New Jersey College (subsequently renamed Princeton

University) and later became the first president of the National Acad-

emy of Sciences of the United States. A year after Henry’s discov-

ery, the same induction phenomenon was independently found in

England by Faraday, who had been searching for this effect since

François Arago (1786–1853) announced in 1824 that a rotating cop-
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per disk caused a compass needle above it to be deflected. It hap-

pened that Faraday published his discovery before Henry, and the

law embodying it came to bear Faraday’s name. Apart from tighten-

ing the knot between electricity and magnetism, induction turned

out to have important practical applications, governing the function-

ing of transformers as well as electric motors and generators. The

first electric generator was built by Faraday himself.

The son of a blacksmith, Michael Faraday was born in 1791 in

Newington, Surrey. With little schooling but a voracious appetite for

reading the Encyclopedia Britannica, he was sent as an apprentice to a

book binder in London, but grew up to be a scientist with an ex-

traordinary genius for experimentation. His brilliant promise was

discovered and nurtured by the great chemist Humphry Davy (1778–

1829), who took him on a tour of Europe, during which Faraday be-

came acquainted with many of the top scientists of the day. On his

return to England, he obtained a position at the Royal Institution,

where he remained to make most of his discoveries in chemistry and

physics. A renowned scientist, he became an extremely popular sci-

entific lecturer to the public as well. However, at the age of 47 he suf-

fered a breakdown from which he never fully recovered. Though he

returned to his research six years later, with renewed productivity, he

never fully regained his mental powers, possibly as a result of inad-

vertent poisoning during his earlier chemical work. After resigning

his position at the Royal Institution in 1862, he retired to live, cour-

tesy of Queen Victoria, in an apartment at Hampton Court, where he

died in 1867.

Faraday made many fundamental contributions to organic chem-

istry and discovered the basic laws of electrolysis; in physics, his most

significant work focused on electricity and magnetism. In addition

to the discovery of electromagnetic induction, he introduced an idea

that turned out to have important consequences in physics to this

day. In order to avoid the repugnant concept of action at a distance

that underlay Newton’s gravitational force and threatened to raise its
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ugly head again to account for electric and magnetic forces, he con-

ceived of the notion of a field. Instead of thinking of an electric

charge at point A in space directly exerting a force on another charge

at a distant point B, the charge at A would produce a condition in

space everywhere, called a field, consisting of “lines of force” that

would act on the corresponding charge at point B directly. Hence-

forth electromagnetic influences would always be described in terms

of electric and magnetic fields. However, he lacked the mathematical

tools to flesh out this idea, a task subsequently accomplished by

Maxwell.

Faraday also made the discovery that the polarization of a ray of

light could be changed by a magnetic field, an experimental observa-

tion which clearly indicated that the nature of light was related to

electromagnetism. Exploiting this indication, shortly after his recov-

ery from his nervous breakdown, Faraday put forward the idea in

1846 that light was simply a rapid oscillation of the electromagnetic

field, explicitly rejecting the need for a medium such as ether to carry

the vibrations. A bold thought indeed, jumping ahead of Maxwell to

Einstein! Further evidence for the relation between light and electro-

magnetism was provided by the fact that the precise mathematical

expressions for Ampère’s and Faraday’s laws both contained within

them as a numerical factor the ratio of the different units of electric

charge employed in electrostatic and electrodynamic measurements,

such as dealing with moving charges in currents. The two German

physicists Wilhelm Eduard Weber (1804–1891) and Rudolph Herr-

mann Arndt Kohlrausch (1809–1858) discovered in 1855 that the ra-

tio of these units was equal to the speed of light, though they appar-

ently did not regard their discovery as especially significant.

Born in Edinburgh, Scotland, in 1831, the son of a lawyer, James

Clerk Maxwell grew up as the only child in a well-to-do, intellectu-

ally oriented family. His mother died when he was eight years old,

and a year later an aunt took him from the charge of an incompetent

tutor, who considered him a slow learner, and enrolled him in the
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Edinburgh Academy. Fascinated with mechanical models and geom-

etry, he published his first scientific paper at the age of fourteen. Two

years later he entered the University of Edinburgh, remaining there

for only three years and moving on to Cambridge University in 1850.

There, his mathematics tutor recognized his exceptional powers in

any area of physics but bemoaned his lesser talent in mathematical

analysis. He declined a fellowship in Trinity College and, because of

his father’s failing health, returned home. Soon he was appointed

professor of natural philosophy at Marischal College in Aberdeen

and married the daughter of its principal two years later. When

Marischal College and King’s College, Aberdeen, merged in 1860 to

form the new University of Aberdeen, Maxwell was appointed to the

professorship of natural philosophy at King’s College, London, and

one year after that he was elected to the Royal Society.

In 1865, after his father’s death, Maxwell resigned his professor-

ship and retired to his family estate, Glenair, in order to devote him-

self to the research needed to complete his monumental Treatise on

Electricity and Magnetism. Returning to Cambridge University in

1871 as its first professor of experimental physics, he set up the

Cavendish Laboratory in 1874. In 1879 Maxwell died of the same

kind of cancer as his mother, and at the same age.

Initially working on color vision, in the course of which he pro-

duced the first color photograph (employing a three-color process),

Maxwell next attacked the problem of Saturn’s rings, whose stability

had long resisted explanation. He showed that, if a ring was made up

of many small orbiting objects, it could be stable. But the achieve-

ment on which his fame rests more than any other took him many

years to accomplish, beginning in 1855. Stimulated by Faraday’s ideas,

he planned to construct a complete theory of the electric and mag-

netic fields, including light as one of their manifestations. Inveter-

ate model builder that he was, he constructed the entire impressive

mathematical edifice on the basis of an elaborate mechanical model
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of the structure of the ether. The mathematical theory has remained

(and has served for the calculation and explanation of electromag-

netic effects and as a standard model for many theories describing

other fields to this day), but the underlying mechanical construct was

discarded almost immediately. As Heinrich Hertz put it in his own

book Electric Waves, “Maxwell’s theory is Maxwell’s system of equa-

tions.”

That system of differential equations (constructed by means of

the differential calculus) allowed the calculation of all electric and

magnetic fields—always appearing in combination—caused by elec-

tric charges and by magnets, whether moving or at rest, as well as the

resulting forces acting on such charges and magnets. (The forces ex-

erted by electromagnetic fields on moving electric charges were ex-

plicitly determined from Maxwell’s equations by the Dutch physicist

Hendrik Antoon Lorentz [1853–1928], and they bear Lorentz’s name

to this day.) His theory explained the nature of light as a combina-

tion of rapidly transversely oscillating electromagnetic waves, the

perceived color depending on its wavelength. At the same time, the

equations predicted the existence of waves of the same kind but of

longer wavelengths to which the human eye is insensitive. In 1888,

such waves, later called radio waves, were discovered by the German

physicist Heinrich Hertz (1857–1894), whose name now serves as the

unit of frequency: one hertz means one oscillation per second.

Maxwell’s second great contribution to our understanding of na-

ture was his kinetic theory of gases, to which we shall return in

Chapter 8. His electromagnetic theory brought to a close, in the lan-

guage and with the tools of what we now call classical physics, the

puzzles posed by light, electricity, and magnetism. On the other hand,

his kinetic theory of gases, as we shall see, marks the beginning of a

new paradigm, in which probability takes the place of deterministic

prediction. He thus straddled the upheaval that shook physics during

the nineteenth and twentieth centuries. But before exploring that
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story, first we must take up the last branch of physics left over from

the eighteenth century and completed in the nineteenth, dealing

with heat.

Empedocles as well as Aristotle regarded fire (by which they meant

heat) as one of the elements making up the world. That a hot body

warmed up a cooler one in contact with it was known, of course, but

the nature of the heat that seemed to flow from one to the other

in this process remained a mystery even in the eighteenth century.

Stimulated by his discovery of specific heat (the amount of heat re-

quired to raise the temperature of one gram of a substance by one

degree), the Scottish chemist and physicist Joseph Black (1728–1799)

in 1760 reintroduced the idea, going back to Lucretius and Heracli-

tus, that heat was a substance: an indestructible fluid that filled the

interstices of all materials and that flowed from a body of higher

temperature to one of lower temperature in contact with it, as natu-

rally as water flows downhill. (Galileo is usually credited with in-

venting the modern method of measuring temperature, though the

thermometer was also almost simultaneously invented by Cornelius

Drebbel in Holland and the idea of a heat-measuring device had

been around since antiquity.) Black’s caloric theory, adopted by

Lavoisier, held sway until well into the middle of the nineteenth cen-

tury, though it had to compete all the while with the older vis viva or

kinetic theory of which Robert Boyle had been a champion and

which Daniel Bernoulli had also favored.

The decisive experiment overthrowing the caloric theory, at least

in the minds of many scientists, was performed by Count Rumford.

This physicist and colorful soldier of fortune was born Benjamin

Thompson in 1753 in Woburn, Massachusetts, but later moved to

Rumford (now Concord, New Hampshire), where he married a

wealthy widow. This match lasted but three years, when they perma-

nently separated. As a loyalist and possibly a secret agent of the

Crown, he was forced to flee to London during the American Revo-

lution, returning as an officer with a British regiment. After the
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war, Thompson lived permanently in Europe, eventually in Bavaria,

where he was appointed minister of war and head of the Bavarian

army, as well as grand chamberlain of the elector, who made him a

count of the Holy Roman Empire. As a count, he adopted the name

Rumford.

In the meantime, a lengthy scientific paper he had written on the

properties of gun powder and cannon vents led to his election to the

Royal Society, and when he returned to England, he became a co-

founder (with Joseph Banks) of the Royal Institution, whose pur-

pose was, and still is, the popularization of science. He also endowed

a substantial scientific prize that was named the Rumford medal.

Finally, he settled in Paris, where he married the widow of Lavoisier,

though that match did not last long either. Count Rumford died in

1814 in Auteuil, near Paris, in his will endowing the Rumford profes-

sorship at Harvard University.

Always intensely interested in the properties of heat—he designed

new uniforms for soldiers to mitigate their loss of body heat and de-

vised both a more efficient domestic range and a better fireplace—

Thompson made an observation in 1798 that would have a decisive

effect on the controversy concerning the nature of heat. As a military

commander in Bavaria, he was concerned with the manufacture of

cannons, which were bored from iron blocks by means of drills, a

process that made the barrels red hot. According to the caloric the-

ory, the cutting of the drills into the iron allowed heat in the form of

caloric fluid to escape. However, he observed that while a very blunt

drill bit would cut no iron, it would generate even more heat. The

heat had to be produced by the work done in turning the drill, a con-

clusion which supported the idea that heat was a form of vibratory

motion of the constituents of matter. (At the same time he had, in ef-

fect, performed the first experiment showing the conversion of me-

chanical work into heat.) Five years later, Humphry Davy came to the

same conclusion after melting two pieces of ice by rubbing them to-

gether. If heat could be produced by means of mechanical work, how
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could it be a fluid flowing through matter? Decisive as the argument

seems to us, it took another half century for the caloric theory to dis-

appear entirely.

As a completely phenomenological theory, the newly born science

of thermodynamics did not depend on whether the caloric or the ki-

netic theory carried the day. It dealt with the behavior of heat, its

conduction through objects, and its transfer from one body to an-

other, as well as its relation to other phenomena such as pressure and

volume changes of gases, rather than with its fundamental nature.

Some of the main contributors to thermodynamics continued to be-

lieve in the caloric fluid. What stimulated the development of this

science in the nineteenth century was primarily the Scottish engineer

James Watt’s 1765 invention of the condenser for the steam engine,

which became the driving force, figuratively and literally, of the In-

dustrial Revolution in Europe and America. While the technical im-

provement of the steam engine was the job of engineers like Watt,

understanding the fundamental principles by which it functioned

was the province of physicists, though the two objectives often over-

lapped.

The first step was to transform Benjamin Thompson’s qualitative

observation into a quantitative law. This was done by the British

physicist James Prescott Joule (1818–1889), who had received some

of his early scientific instruction from John Dalton but was otherwise

scientifically self-taught. Supporting his laboratory research with his

own funds (as the son of a wealthy brewery owner he could afford

that) and never taking an academic position, Joule did much of this

research in his off-hours before and after his work at the family’s

brewery. His great strength as an experimenter lay in his inspiration

and in his patience and extreme precision in measuring temperatures

with unprecedented accuracy.

Using these skills, he determined the mechanical equivalent of

heat. First, he arranged a set of paddles rotating in a bucket of water,

thereby raising its temperature, which allowed him to measure ex-

144 From Clockwork to Crapshoot



actly how much work, turning the paddles, was required to raise the

temperature of a measured amount of water by one degree. Similarly,

he managed to determine the electrical equivalent of heat by having

an electric motor turn the paddles, and he also measured the heat

produced in the process of electrical conduction. After the first pub-

lication of his result in 1843 was totally ignored, he published an im-

proved version with very high precision in 1845. However, he had

difficulties getting his results known before William Thomson (later

to become Lord Kelvin) and George Stokes took notice of them in

1847. Nevertheless, Joule established that in all these processes the

total amount of energy was conserved. It can be converted from me-

chanical or electrical form to heat, but none of it will be gained or

lost in the process. What is more, the amount of heat obtained from

a given quantity of work does not depend on the method used for

the conversion or its speed. This justifies the definition of energy as a

physical concept that manifests itself in different forms in various

parts of physics, convertible from one into the other but always con-

served. (When your exercise machine tells you the amount of calo-

ries you have burned up after a workout, it makes use of the conser-

vation of energy, converting the amount of work you have done into

heat, measured in calories.)

At the beginning of the nineteenth century, the notion of energy

was not yet well established; physicists used the words force and en-

ergy interchangeably, though force also meant the push needed, ac-

cording to Newton’s laws of motion, to accelerate an object. Just as

the understanding of what was meant by caloric was tied to the idea

that this heat-fluid was conserved, so it took the discovery of conser-

vation in the conversion from one form to another to clarify the

meaning of energy, a concept that today is regarded as one of the

most fundamental in all of physics.

A priority dispute, exacerbated by national pride, somewhat com-

plicated the history of the conservation law. In addition to Joule, a

second player in this drama was Robert Mayer, born in Heilbronn,
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Germany, in 1814. Mayer studied medicine at the University of Tü-

bingen, where he showed little intellectual promise and irked the au-

thorities with his rebelliousness and stubbornness—for example, he

reacted to a one-year suspension from the university with a six-day

hunger strike. After passing his doctoral examination, he took a posi-

tion as ship’s surgeon on a vessel sailing to the East Indies, which left

him bored and restless but keen-eyed: he noted a distinct change in

the color of sailors’ venous blood as they traveled from Europe to the

tropics and concluded that in hot climates less work was required

than in cool surroundings for the extraction of oxygen from the

blood in order to keep the body at its normal constant temperature.

From this he arrived at his conservation law by a somewhat convo-

luted chain of reasoning, in part oversimplified and in part simply

wrong. However, he recognized that underlying his observation was

something fundamental; as chemistry, in his view, was based on the

conservation of mass, so physics should be the science bound to-

gether by a “conservation of force.”

When, upon his return, he wrote up his conclusions, based on an

erroneous understanding of mechanics, and submitted the paper to

the Annalen der Physik und Chemie in 1841, it was rejected. With the

assistance of a mathematician he improved his arguments, and the

new version, which included a calculation of what amounted to the

mechanical equivalent of heat, was published in 1842 in the Annalen

der Chemie und Pharmacie. This publication included only the result

of his calculation, however, without offering any of the needed de-

tails; these he supplied in an extended paper in 1845, the very year in

which Joule published his own impressively precise experimental re-

sult (which differed from Mayer’s by more than 15 percent). Mayer’s

detailed 1845 paper, however, was rejected by the Annalen der

Chemie und Pharmacie, and he published it privately. Although dis-

tributed widely, to his great disappointment it attracted no attention

whatsoever.

Mayer was now visited by severe personal problems: the death of
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three of his children within three years and the deterioration of his

marriage. Suffering a serious breakdown, he made an unsuccessful

suicide attempt in 1850, entered a sanatorium to recuperate, and was

subsequently committed to an asylum. Released in 1853, the doctors

having given up on him, he returned to Heilbronn and cautiously re-

sumed his medical practice while, for ten years, avoiding all scientific

work. This was an intense period in the development of thermody-

namics, when the energy concept became accepted, but Mayer’s work

remained unappreciated. The scientific world’s lack of attention to

him went as far as an erroneous report of his death by the editor of

the Annalen der Chemie und Pharmacie.

In the 1860s Mayer, though scientifically retired, suddenly became

the center of a heated priority dispute instigated by the Irish physicist

and popular lecturer John Tyndall (1820–1893). While preparing a

series of lectures on heat, he was informed by Rudolf Clausius, with

support from Hermann von Helmholtz, that Mayer had been the

first to understand the concept of energy and its conservation, and

Clausius sent him copies of Mayer’s papers. Having previously re-

garded these papers as of no consequence, Clausius seems to have

carefully read them for the first time on this occasion. From that mo-

ment, Tyndall (who loved controversy) became Mayer’s new cham-

pion in Britain, going on the warpath against the established ac-

ceptance of Joule as the discoverer of the energy concept and the

conservation law. Joule, supported by William Thomson and P. G.

Tait, a professor of natural philosophy at Edinburgh, insisted that the

proof required experimental work, while Mayer had been merely

speculating. The heated controversy continued for some time, even-

tually dying down when the Royal Society awarded the Copley medal

first to Joule in 1870 and then to Mayer in 1871.

The third scientist sometimes credited with the discovery of the

conservation of energy was the versatile German physiologist and

physicist Hermann Ludwig Ferdinand von Helmholtz (1821–1894).

Born in Potsdam, to a father who taught him ancient languages as
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well as Italian, French, and Arabic and to a mother who descended

from William Penn, the founder of the state of Pennsylvania,

Helmholtz showed an early interest in physics. However, he went on

to study medicine because the financial aid available in that field (in

return for later military service) enabled him to afford a university

education. After performing his required military duty as a surgeon

and subsequently occupying professorial positions in physiology suc-

cessively at the universities of Königsberg, Bonn, and Heidelberg, he

was appointed to the chair of physics at the University of Berlin in

1871. Suffusing his approach with a broad and philosophical view,

Helmholtz dominated German science during the second half of the

nineteenth century.

Helmholtz conceived the principle of conservation of energy in

1847, two years after Joule had published his mechanical equiva-

lent of heat. Unaware of Mayer’s work, he had arrived at the same

conclusion by similar physiological reasoning, but, using Joule’s re-

sult, he managed to express the law more effectively and precisely

than Mayer. Later called the first law of thermodynamics, it serves in

part to define what is meant by energy and in part to prohibit certain

processes: it forbids the construction of a perpetuum mobile, a ma-

chine that would be able to run indefinitely without a source of en-

ergy. Generations of clever but ignorant inventors have tried in vain

to patent such miracle engines, and some occasionally do to this day.

Of course, the new science of heat was not confined to prohi-

bitions. The French engineer Nicolas Leonard Sadi Carnot (1796–

1832) was motivated by the desire to understand the basic principles

underlying the steam engine and, if possible, to improve its effi-

ciency. For this purpose he invented an idealized cyclical method for

extracting work from the heat flowing from a substance at a higher

temperature (a “reservoir”) to another at a lower temperature. In his

ideal cycle, a piston, driven by the expansion of a gas in a cylinder,

performs work—like raising a weight—while extracting heat from

the warmer and expelling some of it to the colder reservoir. Run-
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ning the cycle backwards converts the heat engine into a refrigerator,

which uses mechanical work to pump heat from the colder body to

the hotter one. Close examination of this process shows that the

efficiency of his engine—the ratio of the work it produces to the

amount of heat it extracts from the hot reservoir—depends on noth-

ing but the temperatures of the two reservoirs between which it op-

erates, and that even under ideal conditions this efficiency is neces-

sarily limited by the need to eject some of the heat extracted from the

hot body into the cooler one as waste heat.

Sadi Carnot’s invention of his idealized engine stimulated the dis-

covery of what came to be called the second law of thermodynamics,

which would eventually become the seed-bed for the conceptual rev-

olution in physics leading to the demise of determinism. As Lord

Kelvin formulated it, the second law says that for an engine such as

Carnot’s to work, the two substances between which heat is trans-

ferred must be at different temperatures. In other words, work can-

not be obtained by extracting heat from a reservoir and letting some

of it flow back into the same reservoir or into one at the same tem-

perature. If this were not true, an engine could be built to run by ex-

tracting heat from the vast heat reservoir of the world’s oceans and

allowing some of it to leak back into the ocean. Such an engine

would be called a perpetuum mobile of the second kind. Clausius, on

the other hand, put the second law this way: There can be no process

whose only effect is to transfer heat from a cold to a hot thermal res-

ervoir. The two formulations were proved to be equivalent.

Lord Kelvin, named William Thomson at his birth in Belfast in

1824, was educated at home by his father, a professor of engineering

at Belfast University. After his father accepted a professorship of

mathematics at the University of Glasgow, young William entered

that university at the age of ten to study natural philosophy, but he

later changed to Cambridge University, where he graduated in 1845.

After a year in Paris, he was appointed professor of natural philoso-

phy at Glasgow, since Cambridge at that time had no such professor-
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ship; Isaac Newton notwithstanding, it was, with respect to science,

still rather old-fashioned. In Glasgow he set up the first physics labo-

ratory at any British university. In 1866 he was knighted and in 1892,

while president of the Royal Society, he was given a peerage, taking

the title Baron Kelvin of Largs. He died at Largs, Ayrshire, in 1907

and was buried in Westminster Abbey, next to Isaac Newton.

One of the most prominent physicists of the nineteenth century,

Kelvin worked in many parts of physics, beginning with electricity

and magnetism. He developed Faraday’s discoveries in magnetism

into a fuller theory, including oscillating circuits later used to broad-

cast radio waves, and prepared the ground for Maxwell and his path-

breaking theory of electromagnetism. Kelvin disliked Maxwell’s the-

ory, however, as he did not believe in the model its inventor had used

as a scaffold. The first successful transatlantic telegraph cable was

laid according to Kelvin’s detailed specifications. But his most impor-

tant contributions dealt with heat. Stimulated by the work of both

James Joule, whom he had met in 1847, and Carnot—though he dis-

agreed with the latter’s acceptance of the caloric theory—he devised

a new temperature scale on which the description of Carnot’s cycle

could be based.

At that time just as now, two different temperature scales were in

general use. One had been devised by the Polish-born Dutch physi-

cist Daniel Gabriel Fahrenheit (1686–1736), who set the zero point

of his scale as the temperature of a mixture of sea salt, ice, and water

and defined the normal human blood temperature to be 96° (now

more accurately known to be 98.6°). The other scale we owe to the

Swedish astronomer and physicist Anders Celsius (1701–1744), who

chose the freezing point of water as 0° and its boiling point at sea

level as 100° (32° and 212°, respectively, on the Fahrenheit scale; ac-

tually, Celsius designated the boiling point as 0° and the freezing

point as 100°, but this was later reversed). This centigrade or Celsius

scale is used in most of the world.

Both temperature scales have the peculiarity of entirely arbitrary
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zero points, which limits their scientific usefulness. For example, the

gas law that Robert Boyle discovered stated that the product PV of

the pressure P and the volume V of a gas is a constant if the tempera-

ture is held fixed. But as Charles and Gay-Lussac discovered, if the

temperature is varied, that product increases linearly with the tem-

perature. Kelvin, sticking to the size of each degree set by Celsius,

proposed a scientifically more useful scale so that Boyle’s law could

be stated in the simple form PV = RT, which would be achieved by

choosing as the zero point −273.16° Celsius. In this form, the num-

ber R in Boyle’s law is called the universal gas constant. While it im-

plies that the volume of a gas shrinks to zero at 0° K, this implication

is inconsequential, since no substance remains gaseous at very low

temperatures. Kelvin’s scale, indicated by the letter K, is now also

called absolute temperature and is employed universally by physi-

cists.

Kelvin played a less positive role in the Darwinian debate con-

cerning evolution. Estimating the rate at which the earth had cooled

since its initial formation, he came to the conclusion in 1862 that it

could not be older than 400 million years, with 100 million as the

most likely figure. Eight years earlier, Helmholtz had arrived at an es-

timate of about 25 million years, assuming that the heat of the sun

was generated by gravitational contraction. Such erroneous estimates

of the age of the earth severely constrained the time span available

for evolution and, coming as they did from extremely reputable sci-

entists, presented a formidable challenge to Darwin’s theory. The

reasons for Kelvin’s and Helmholtz’s gross underestimation of the

earth’s age were their ignorance of the nuclear reactions that were the

real source of the sun’s heat as well as their ignorance of the radioac-

tivity that warms the interior of the earth. Both of these processes

were discovered in the twentieth century.

The other originator of the second law of thermodynamics,

Rudolf Julius Emmanuel Clausius, was born in 1822 in the Prussian

city of Köslin (now Polish). He studied at the University of Berlin,

New Physics 151



obtained his doctorate at the University of Halle, and after teaching

at the Royal Artillery and Engineering School in Berlin, he was ap-

pointed professor of physics at the newly established Polytechnicum

in Zurich but returned to Germany twelve years later as a professor

of physics at Würzburg and on to the University of Bonn, where he

remained until his death in 1888. His last years were blighted by a

painful wound he had suffered during the Franco-Prussian War—he

had organized a volunteer ambulance service run by his students—

and by the death of his first wife in childbirth, after which he took

care of his six children by himself (remarrying two years before his

death).

Clausius’s most famous paper was published in 1850, shortly after

he obtained his Ph.D. Rejecting the caloric theory and basing his

work on that of Carnot and Lord Kelvin, he formulated the second

law of thermodynamics in the form stated above, but in so doing he

also introduced the concept of entropy, a name he coined from the

Greek word for transformation. A change of entropy is defined as the

heat flowing into a body divided by its temperature. In a Carnot cy-

cle, which is reversible, the total change in entropy is zero, but when

heat is simply allowed to flow from a hot substance to a cooler one,

the total entropy increases—the hot substance loses less entropy than

the cool one gains—whereas it would decrease if heat flowed from

cold to hot. The second law of thermodynamics can therefore be

stated in this form: The total entropy of an isolated physical system

can never decrease; it can only increase or remain the same.

The rest of thermodynamics lays down detailed rules governing

how the flow of heat through or into a body depends on the proper-

ties of the material making it up, the behavior of fluids when their

temperature, pressure, or volume changes, and the way the state of a

substance changes, from a gas to a liquid to a solid or vice versa, as its

temperature or pressure changes. However, the formulation of the

first and second laws is the most important achievement of thermo-

dynamics. The first law differs from the individual laws of energy
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conservation that already existed within each of the other disciplines,

such as mechanics, sound, and electromagnetism (though they had

not really been recognized as such before the energy concept became

clarified through thermodynamics) only by the wide reach of its

sweep, its generality, and of course its inclusion of heat as a form of

energy. The second law, however, introduced an entirely new notion

into physics. In contrast to all other known physical principles, it

contained an arrow of time, defined by the inexorable and irrevers-

ible increase in entropy. The concept of time’s irreversible flow, pop-

ular and influential in philosophy and literature, had finally found its

way into physics.

Both of these basic laws begged a fundamental question: if all

matter is made up of particles subject to Newton’s laws of motion,

what is the explanation of the first and second laws and the other

rules of thermodynamics? At this point they seem to be entirely ad

hoc. What was needed was a precise, quantitative understanding of

the nature of heat. Such an understanding, and, with it, an explica-

tion of the laws of thermodynamics, would lead to a complete up-

heaval of how physicists viewed nature. This is where probability

entered into physics, replacing the strict determinism that had gov-

erned physical science up to that time.

But before pursuing that story, we have to turn to another impor-

tant development in classical physics, a development that would both

change and enlarge the scope of deterministic physics, carrying it all

the way through the twentieth century, where it coexisted with the

acausal quantum theory, each valid in its own sphere.
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seven

Relativity

As enormously successful as Maxwell’s theory of electromagnetism

was, it contained an unexplained element: that all-pervading sub-

stance called ether, the vibrations of which manifested themselves as

light. Maxwell’s theory seemed to imply the reality of this mysterious

stuff, by this point called the luminiferous ether, whose existence had

been surmised, in one form or another, since Aristotle. The challenge

of finding independent evidence for it was taken up by a team of two

Americans, Albert Abraham Michelson (1852–1931, German-born)

and Edward Williams Morley (1838–1923).

The reasoning underlying the Michelson-Morley experiment was

very simple: if the ether filled the universe, presumably the earth ro-

tated with respect to it and moved through it in its orbit around the

sun. Since light moves at a fixed speed in the ether, just as sound does

in air, the speed of a light beam as seen on the earth should vary de-

pending on the direction of the beam in relation to the direction of

motion of the laboratory on earth where it is measured. Because the

speed of a point on earth relative to the ether, though unknown, was

presumably extremely small as compared to the vast speed of light, it

would of course be very difficult to detect the variation of the light

speed with changing direction.



A master at employing interference effects of light beams as ex-

tremely sensitive sensors for the measurement of distances, Michel-

son, professor of physics at the Case School of Applied Science in

Cleveland, Ohio, had originated a branch of experimentation that

came to be called interferometry. The Michelson interferometer was

its best-known device. In 1887 he and Morley set up a large plat-

form on which two coherent monochromatic light beams, one of

which moved along most of its way at right angles to the other, were

brought together and made to interfere with each other. They hy-

pothesized that the peaks of the waves of one would not be exactly at

the position of the peaks of the other because of the difference in the

time it took the two beams to traverse their paths, which in turn de-

pended not only on the lengths of their paths but also on the differ-

ent speeds during their journeys. The resulting peak shift would be

visible as light and dark bands on a screen, just like Thomas Young’s

interference fringes. If the entire platform was then slowly rotated—

it floated on a bed of mercury and, to prevent any shaking of the ap-

paratus, the traffic in the streets around the laboratory was tempo-

rarily stopped—so that the two paths exchanged places, the resulting

change in the observed interference pattern would enable the experi-

menters to infer the difference in speeds, and from this, the speed of

the entire apparatus with respect to the ether.

The outcome of this elaborate experiment, variations of which

have been repeated by others, was an extreme disappointment: as the

apparatus rotated, the fringes did not budge. Though various im-

plausible ad hoc explanations for this puzzling result were subse-

quently offered, the apparently nonsensical conclusion was unavoid-

able: no matter how fast or in what direction the laboratory in which

it is measured moves, the speed of light is always the same. How

could a light signal move with the same speed relative to two observ-

ers, one of whom moves along with it and the other moves in the op-

posite direction? It took a new physical theory to account for this

strange conclusion: Einstein’s theory of relativity. Pushing determin-
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istic physics to its farthest limit, Einstein would at the same time re-

place Newton’s monumental theory of gravity with a new structure.

Albert Einstein was born in 1879 in Ulm, Germany. Attending

school in Munich, where the family had moved, and chafing under

the discipline customary in German schools at the time, he showed

no early promise. He received his higher education in physics and

mathematics at the Eidgenössische Technische Hochschule (ETH) in

Zurich, from which he graduated in 1900. After spending a year as a

school teacher, he landed a job at the Swiss Patent Office in Bern and

became a Swiss citizen. Soon afterward he entered a marriage that

would end in divorce in 1919. Shortly after divorcing his first wife,

Mileva, he married his cousin Elsa.

The year 1905 was Einstein’s anno mirabilis—the analogue of

Newton’s plague years away from Trinity College—in which he pub-

lished three profound papers. The first introduced the idea of “light

quanta” (some twenty years later they were named photons) and

thereby explained puzzling experimental results found by the Ger-

man physicist Philipp Lenard (1862–1947) on the photo-emission of

electrons by metals. The second explained Brownian motion as being

the result of the irregular movements of water molecules. The third

explained the negative result obtained by Michelson and Morley

(though at the time he appears to have been unaware of that experi-

ment, and his paper never mentioned it). The first paper would

become a foundation stone in the revolutionary twentieth-century

quantum theory; the second bolstered the molecular constitution of

fluids; and the third would overturn our notion of space and time. In

a fourth paper published the same year, he applied the results of the

third to derive his famous equation E = mc2, establishing the equiva-

lence of mass and energy. Like Maxwell, Einstein thus straddled the

great deterministic-probabilistic paradigm shift, making critical con-

tributions to the completion of the old as well as to the birth of the

new physics.

To the few physicists who read them, these papers initially ap-
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peared somewhat enigmatic. Nevertheless, they led to the offer of a

junior professorship at the University of Zurich in 1909 and to a full

professorship in Prague in 1911 and in Zurich in 1912. He moved to

Berlin in 1914, where he was appointed director of the Institute

of Physics at the Kaiser Wilhelm Institute and was freed of teaching

duties so that he could pursue his research. In 1915 Einstein pub-

lished his crowning achievement, the general theory of relativity.

Even though the First World War had barely ended at the time, the

British astronomer Arthur Stanley Eddington (1882–1944) led an

expedition in 1919 to West Africa to observe to best advantage a solar

eclipse from the island of Principe, in order to check out one of the

predictions of general relativity: that as the light from a star passed

near the sun, the force of the sun’s gravity would bend it by a pre-

cisely calculated amount that could be observed during the eclipse.

The verification of this prediction instantly made Einstein world fa-

mous, the successor of Isaac Newton as the architect of our under-

standing of the universe.

While the rest of the world celebrated the great scientist wherever

he went on his travels, at home in Germany he was reviled as a Jew by

the Nazis, whose ideology had attracted even some of his scientific

colleagues. When Hitler came to power in 1933, Einstein happened

to be visiting Western Europe and the United States, and he decided

against returning to Berlin, where government thugs had already

ransacked his home and his office while he was away. Resigning his

directorship at the Kaiser Wilhelm Institute, he accepted a position at

the Institute for Advanced Study in Princeton, New Jersey, which was

established primarily to accommodate the famous man, and he re-

mained there until his death in 1955.

According to Einstein’s own recollection, the intellectual origin of

the special theory of relativity went back to his youth, a time when he

tried to imagine what it would be like to ride along on a wave of

light. He decided that Maxwell’s equations prohibited such a ride,

since, no matter how fast he moved pursuing the light, he would al-
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ways have to see it travel at the same speed. Such a conclusion re-

quired rethinking some basic and apparently obvious assumptions. If

two observers in motion relative to one another see their clocks run-

ning at the same rates and their yardsticks to be of equal length, they

cannot see the same light signal move at the same speed. Therefore

one, or both, of these assumptions must be wrong; they had to be re-

placed by new ones: if you are moving with respect to me, I see your

clock going slow and your yardsticks contracted, and symmetry de-

mands that you see my clock going slow and my yardsticks con-

tracted too. The reason why this had never been noticed before and is

still difficult to notice is that these effects are minute unless our rela-

tive speed is close to the speed of light. There is no universal space in

which the world moves along a universal time, as Newton had taken

for granted. The standards of measurement for both space and time

have to be separately established for each observer.

The special theory of relativity is based on the postulates that the

speed of light has to be the same for all laboratories in uniform mo-

tion relative to one another, and that the laws of physics must have

the same form in all of them—this had already been the case for

Newton’s laws of motion, but it is the universal nature of this “in-

variance” requirement for all laws, including those of Maxwell, that

was new. Its essence is contained in a mathematical relation that ex-

presses the location and time of every physical event as determined

by an observer in the second laboratory in terms of those determined

by one in the first. This relation is called the Lorentz transformation,

because it had first been proposed by Hendrik Lorentz, who, how-

ever, had not drawn the correct physical conclusions from it.

Hereafter, and to this day, all physical theories dealing with veloci-

ties near that of light had to be Lorentz invariant: they must be such

as not to change form when the location and time in them are sub-

jected to a Lorentz transformation. (Einstein first wanted to attach

the name “invariance” to his theory rather than “relativity,” and he

later regretted that it was the name “relativity” that stuck.) The the-
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ory also implied some important specific predictions, namely that no

material body and no information can be transported faster than

light and that mass and energy are equivalent, or convertible into one

another, as expressed in the famous formula E mc2, in which c is

the speed of light. This equation underlies the enormous energy re-

leased by a nuclear explosion, in which some of the mass in atomic

nuclei is converted into energy.

Einstein’s theory of 1905 came to be called the special theory

of relativity because it was restricted to constant, uniform motion.

However, it did not take Einstein long to begin thinking about more

general, accelerated motion, realizing it would have to involve gravi-

tation as well. Newton’s force of gravity, after all, violated one of the

prohibitions of his special theory: it was transmitted with infinite

speed. Were the sun to disappear in a flash, the earth and the other

planets would be instantly released from its pull and wander off on

their own. So the special theory of relativity required that Newton’s

great universal gravitation theory be modified. This was an extremely

demanding task, and it took Einstein ten years to fulfill it with the

publication, in 1915, of the general theory of relativity. Its mathe-

matical basis went back to the innovative work of several mathe-

maticians of the nineteenth century: Gauss, Riemann, Bolyai, and

Lobachevsky.

The special status of Euclid’s fifth postulate (the parallel postu-

late), which implied that the interior angles of a triangle add up to

180°, had been recognized for over two millennia, but no mathemati-

cian had been able to prove it from the other four postulates, or to do

geometry without it. And yet it always felt extraneous. Why was na-

ture constructed according to Euclidean geometry? The eighteenth-

century German philosopher Immanuel Kant, believing it to be a ne-

cessity for human thought, saw it indelibly imprinted on our de-

scription of nature. When, in the nineteenth century, some coura-

geous mathematicians began to consider whether geometry could do

without the infamous fifth postulate, the mathematical community
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looked askance. The great Gauss, who had made profound studies of

the geometrical properties of curved surfaces, was intellectually well

situated to judge this question, and he came to the private conclusion

that a geometrical system without the parallel postulate would in-

deed be possible. Conservative and reticent as he was, however, he

filed his work away and did not utter or publish a word.

Born in 1802 in Kolosszvár, Hungary, János Bolyai was the son of

Farkas Bolyai, a mathematician and friend of Gauss’s, who was ob-

sessed with the problem of proving Euclid’s fifth postulate from the

other four. Even after he thought he had discovered such a proof and

sent it to Gauss, who had found a flaw in his argument, he continued

his futile quest. Meanwhile, young János had grown up with a great

talent for the violin and mathematics, but had entered the army en-

gineering corps. Nevertheless continuing to pursue his mathematical

interests, he came to the firm conclusion that his father was chasing a

mirage: the proof he sought would remain impossible. By 1823 he

had succeeded in constructing a geometry that violated Euclid’s par-

allel postulate: in the plane of a given point P and a given line L, a

whole fan of lines through P would be possible without ever inter-

secting L. The opening angle of this fan characterized the geometry

as a parameter; if this parameter was allowed to shrink to zero, his

geometry would become Euclidean. He had found the first non-Eu-

clidean geometry, and he wrote it up in a paper entitled “The Abso-

lute True Science of Space.”

When János’s skeptical father sent the paper to Gauss, the reply

they received after a considerable delay astonished them both: Gauss

had been thinking along similar lines for over thirty years and had

come to the same conclusion as János. The young Bolyai felt de-

prived of the pride of priority, but since Gauss had published noth-

ing about it, he saw no obstacle to his own publication. János’s paper

was finally printed in 1832 in the form of an appendix to an article

by his father. It remained the only work János Bolyai ever published

in his lifetime, and not even under his own name. To the deep disap-
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pointment of both father and son, the paper received little attention,

and they retreated dejectedly from the world, living in the same

house for a while. János eventually fathered three children and died

in 1860, four years after his father.

The second, independent discoverer of non-Euclidean geometry

was the Russian mathematician Nikolai Ivanovich Lobachevsky, born

in 1792 in Nizhni Novgorod (now Gorki). His father, a low-level gov-

ernment clerk, died when Nikolai was a child, leaving his mother to

raise him alone and provide his early schooling. At the age of four-

teen Nikolai entered the University of Kazan, where he studied math-

ematics and remained as a librarian, professor, dean of physics and

mathematics, and eventually as rector until 1846. In 1832 he mar-

ried a wealthy woman with whom he had seven children, and Tsar

Nikolas I raised him to the hereditary nobility in 1837. During his

last years he was nearly blind from cataracts in both eyes, and he died

in 1856 in Kazan.

Lobachevsky’s and Bolyai’s discoveries of the same kind of geome-

try overlapped in time. After fruitlessly attempting, like Bolyai, to

prove the fifth postulate from the others and abandoning that search,

Lobachevsky presented an outline of his new geometry in 1826 to his

colleagues in Kazan and published his first two papers on it in 1829

and 1830 in the Kazan Messenger. In his geometry, as in Bolyai’s, the

interior angles of triangles add up to a total of less than 180°. (This

kind of geometry is now called hyperbolic; Lobachevsky called it

“imaginary.”) Its existence demonstrates that Euclid’s fifth postulate

was independent of the others and could be altered with no harm.

Like Bolyai, Lobachevsky never received any recognition for his path-

breaking work during his lifetime. And neither Bolyai nor Loba-

chevky proved that their geometry might not contain internal con-

tradictions. That proof of consistency was supplied in 1860 by the

Italian mathematician Eugenio Beltrami (1835–1899).

A different kind of non-Euclidean geometry was discovered by

Bernhard Riemann, a mathematician of much wider sweep and in-
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fluence than either Bolyai or Lobachevsky. The shy and frail son of a

Lutheran pastor, Georg Friedrich Bernhard Riemann was born in

1826 in Breselenz, Hanover, Germany, and showed a distinct mathe-

matical aptitude early on. At the age of nineteen he entered the Uni-

versity of Göttingen to study theology but soon switched to mathe-

matics. Since the sole notable mathematician in Göttingen at the

time was Gauss, who taught only elementary classes, he went to the

University of Berlin after one year. But then he returned to Göttingen

to study under the aging Gauss, writing a brilliant doctoral disserta-

tion on what came to be called Riemann surfaces. To qualify for a

university career, he submitted a Habilitationsschrift on Fourier series

but, at the suggestion of Gauss, he also studied the foundations of

geometry. The rest of his short life he spent as a professor at the Uni-

versity of Göttingen, eventually taking the place of Gauss after the

latter’s death. At the age of 36 he married Elise Koch and fathered a

daughter. That same year, however, he came down with pleuritis and

subsequently developed tuberculosis, the same disease from which

his mother and four of his siblings had died. To recuperate, he re-

peatedly traveled to Italy, both for the art he greatly admired and the

climate. He died in 1866 at Selasca on Lago Maggiore.

The influence of Riemann on mathematics and mathematical phys-

ics is impossible to overstate. Rather than a developer of formalisms,

he was a profoundly conceptual thinker. The entire large subject

known as the theory of analytic functions is based upon his ideas

and Cauchy’s. The Riemann hypothesis, connecting the zeros of the

Riemann zeta-function, which is defined in terms of an infinite sum

with no apparent connection to the theory of numbers, with the dis-

tribution of prime numbers among the integers, is to this day per-

haps the deepest unsolved puzzle in mathematics. As the mathemati-

cian David Hilbert put it, “If I were to awaken after having slept for a

thousand years, my first question would be: has the Riemann Hy-

pothesis been proven?”

But Riemann made his most profound contributions to the field
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of geometry, especially to what is now called differential geometry, a

subject he approached philosophically and not just technically, tak-

ing into account the possible interaction between physical objects

and the space in which they are situated. This idea would have an im-

portant influence, half a century later, on the thinking of Albert Ein-

stein. What is more, in the paper on the foundations of geometry

that he wrote at Gauss’s suggestion as part of his Habilitation—un-

published until a year after his death—he discovered a non-Euclid-

ean geometry that differed from the Bolyai-Lobachevsky version. In

this geometry, every straight line in the plane of a given line L inter-

sects L, and the sum of the angles in a triangle is greater than 180°

(how much greater depends on the size of the triangle). This kind of

geometry is now called elliptic or Riemannian. Both elliptic and hy-

perbolic geometries are characteristics of curved spaces (the concept

of curvature had been precisely defined by Gauss); Euclid’s fifth pos-

tulate is valid only if the space is flat, that is, its curvature is ev-

erywhere zero.

These ideas are all most easily visualizable for two-dimensional

spaces (surfaces). The surface of a sphere is a Riemannian space of

constant positive curvature, and great circles are straight lines. (A

ship sailing a straight course is really following a great circle on the

ocean.) Any two of these straight lines necessarily intersect some-

where, and the interior angles of a triangle made up of pieces of great

circles add up to more than 180°. For example, you can form a large

triangle on the surface of the earth whose sides consist of part of the

equator and the two meridians of 0° and 90° longitude; all three of its

interior angles are 90°, adding up to 270°. A much smaller triangle

drawn in the sand, whose sides of course are also pieces of great cir-

cles, has interior angles that add up to only 180°. Thus in a curved

space, the sum of the angles in a triangle depends on its size: the ge-

ometry in a region small enough compared to the curvature of the

space is always approximately Euclidean. The geometry on a surface

of constant negative curvature, on the other hand, is hyperbolic.
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Such a surface looks like two welded-together straight bugles with

infinitely long stems and is called a pseudosphere.

With this background in mind, let us return now to Einstein and

his struggle to construct a form-invariant theory of gravitation, that

is, a theory in which the equations take the same form in any physical

laboratory, even in one that is moving or accelerated by the force

of gravity. In such a theory the action of gravitation would not be

instantaneous, as in Newton’s. During the year 1912, after he had

moved to Zurich, Einstein wrestled most intensely with the problem,

hampered by his limited knowledge of the needed mathematical

tools. He finally saw the light with the help of a mathematician, his

best friend, Marcel Grossmann, who had been instrumental in bring-

ing him back to Zurich. As Einstein described in a talk he gave ten

years later in Kyoto, “If all [accelerated] systems are equivalent, then

Euclidean geometry cannot hold in all of them . . . This problem re-

mained insoluble to me until 1912, when I suddenly realized that

Gauss’s theory of surfaces holds the key for unlocking this mystery

. . . However, I did not know at that time that Riemann had studied

the foundations of geometry in an even more profound way . . . I re-

alized that the foundations of geometry have physical significance . . .

So I asked my friend [Marcel Grossmann] whether my problem

could be solved by Riemann’s theory.”1 The way now lay open for

him to express his theory by means of the tensor calculus, a branch

of mathematics that few physicists at the time were familiar with.

By 1915 he had it all wrapped up and the general theory of relativ-

ity was published, though almost no one understood it. Nevertheless,

it led to two specific astronomical implications: the bending of light

by gravity, which Eddington verified on his expedition to Africa in

1919, and an explanation of the precession of the axes of the planet

Mercury’s orbit, an unsolved puzzle dating from the beginning of

the nineteenth century. In the general theory of relativity, Newton’s

gravitational field is replaced by the influence that any object exerts

on the geometry of all its surroundings: the mass of a large star
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bends the very space of the universe. And, rather than being pulled

by the force of gravity, other objects respond by simply moving

in this curved space along geodesics, that is, along lines that are

“straight” in the resulting Riemannian geometry.

This theory resolves what had always been a bit of a mystery in

Newton’s equations: the equality between the inertial mass of an ob-

ject on one hand, such as the mass that resists a change in velocity,

which appears on the right-hand side of the equation F = ma, and,

on the other hand, its gravitational mass, to which the force of grav-

ity is proportional. Simply an unexplained ad hoc assumption in

Newton’s physics, this equality has the curious result that the motion

of any object subject to nothing but gravity is completely indepen-

dent of its mass. As this fact is extremely well verified by elaborate ex-

periments, Einstein made it a cornerstone of the general theory of

relativity; without this principle of equivalence, his geometrization

of gravity would have been impossible.

Difficult as Einstein’s equations are to solve in general, the Ger-

man astronomer Karl Schwarzschild (1873–1916) found an exact

spherically symmetric solution of these equations, thereby greatly fa-

cilitating the study of some of the theory’s consequences. One of

these turned out to be a singularity into which, as Robert Oppen-

heimer pointed out, every sufficiently massive object would irretriev-

ably collapse. John Wheeler called them black holes, as not even light

could escape from them, and the name stuck. Nothing approaching a

black hole to within its Schwarzschild radius could get away from its

gravitational pull. (This statement would later be somewhat modi-

fied by the English physicist Stephen Hawking, b. 1942, on the basis

of quantum mechanics.) Although general relativity is essential for

the details of this phenomenon, already in the late eighteenth cen-

tury Laplace had remarked that the gravitational pull of a sufficiently

small and massive stellar object would have an escape velocity—the

speed required to overcome its gravity so as to get away from it—

greater than the speed of light. As it therefore could not emit light, it
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would be invisible but might be detected by having planets or other

stars circling about it. On the basis of just such evidence, astrono-

mers now believe they have found these objects, often at the centers

of galaxies, including our own galaxy, the Milky Way.

Another consequence of replacing Newton’s action-at-a-distance

gravity by a field theory is that, just as Maxwell’s theory implied elec-

tromagnetic waves, Einstein’s implied gravitational waves. These

would be very difficult to detect, and, in spite of a number of at-

tempts and some erroneous claims of success, direct evidence for

them has not yet been found. However, in 1975 the American physi-

cists Russell Alan Hulse (b. 1950) and Joseph Hooton Taylor, Jr. (b.

1941) discovered indirect evidence in the behavior of two pulsars or-

biting one another. Details of the orbits of these two neutron stars

could be well explained by their emission of gravitational radiation.

Einstein’s gravitational theory represented the culmination of all

of deterministic physics, and the problem that the twenty-first cen-

tury inherited was to make this theory come to terms with the

probabilistic revolution in physics that pervaded the nineteenth and

twentieth centuries. In the meantime, however, general relativity

served as the backbone of the entire structure of twentieth-century

cosmology, which began with the American astronomer Harlow

Shapley (1885–1972), who introduced a new understanding of galax-

ies and their distances. Following detailed measurements on the rela-

tively rare variable stars among globular clusters (roughly spherical

systems of tens of thousands of stars, gravitationally bound together)

he had performed at the newly constructed 100-inch reflecting tele-

scope at Mount Wilson Observatory near Pasadena, California, he

devised a method of determining distances across vast interstellar

spaces. This he did by using a connection between the luminosities

of the “Cepheid variables” and the periods of their varying light out-

puts. (Luminosity is the intrinsic brightness of a star, as distinct from

its apparent brightness as seen by us at a distance. Knowing both the

apparent brightness of a Cepheid variable and, on the basis of its
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period, its intrinsic luminosity allowed Shapley to use the inverse-

square law to calculate how far away it was.)

Henrietta Leavitt (1868–1921), a tireless “computer” working at

the Harvard Observatory, had discovered that the periods of Cepheid

variables were correlated with their apparent brightness. The final

step was taken by the Danish astronomer Ejnar Hertzsprung (1873–

1967), who used the motion of the entire solar system, first observed

by William Herschel, as a basis for a parallax calculation that estab-

lished the connection between Cepheids’ period and their intrinsic

luminosities. They could now serve as cosmic milestones to measure

the distance to other stars and galaxies.

Astronomers employ three different units to state such distances.

The first is the astronomical unit, or AU, which is approximately the

average distance between the sun and the earth in its elliptical orbit

(about 93 million miles); the second is the parsec, abbreviated as pc

and defined as how far from us an object would be if it produced a

parallax of 1″ (one second of arc) when seen from the sun and the

earth; the third is the light year, the distance that light travels in one

year (1 pc = 3.262 light years). The custom of stating astronomical

distances in terms of light years—at least when talking to the pub-

lic—seems to have been introduced by Edwin Hubble in the 1930s.

This new means of determining interstellar distances enabled

Shapley to radically increase astronomers’ estimate of the size of

our own galaxy, the Milky Way, giving it a diameter of some 300,000

light years. Furthermore, he calculated the distances to some spiral

nebulae well outside our own galaxy. (At that time, the word nebula

was applied to any stellar object that was not simply a star.) That

these spiral nebulae were actually huge star systems—galaxies like

the Milky Way—was shown in 1924 by Hubble.

Edwin Powell Hubble was born in 1889 in Marshfield, Missouri.

When he was eight, the family moved to a suburb of Chicago, first

Evanston then Wheaton, where he graduated from high school at

sixteen, excelling in both sports and academics. He went on to the
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University of Chicago, earning a B.S. in mathematics and astronomy

and also doing well as an amateur heavyweight boxer. Awarded a

Rhodes Scholarship, his interests changed to law and he obtained a

degree in jurisprudence at Queen’s College, Oxford, in 1912, at the

same time continuing his endeavors in athletics, particularly in track

and field events. After returning to the United States, he practiced

law in Louisville, Kentucky, for a year but, becoming bored with it, he

re-entered the University of Chicago to earn a Ph.D. in astronomy,

doing research for the degree at the university’s Yerkes Observatory

at Williams Bay, Wisconsin.

During the ensuing war he served in the infantry in France, and in

1919 he obtained a post as astronomer at the Mount Wilson Obser-

vatory, where he remained an active observer of galaxies for the rest

of his life. During World War II he served as a ballistics expert for the

U.S. War Department. Hubble died in 1953 in San Marino, Califor-

nia. NASA’s first telescope placed in orbit around the earth in 1990

was named after him.

After discovering galaxies external to our own and proceeding

to classify them according to their shapes and velocities, Hubble

made the remarkable discovery in 1927 that all these external galax-

ies seemed to be receding from the Milky Way. The method for de-

termining the speed with which a star is moving away from us, or to-

ward us, is based on observing the spectral composition of its light.

Every element, when heated, emits light composed of a characteristic

set of colors, which, when sent through a prism, separate themselves

into spectral lines. Therefore, the elements making up any given star

can be identified from its spectrum. What Hubble found was that all

the spectral lines from stars in far-away galaxies were shifted toward

the red end of the spectrum, meaning that their wavelengths were

stretched. The obvious interpretation of this red shift was that it rep-

resented a Doppler shift analogous to the lowering of the tone of a

receding siren. Conversely, if these galaxies had been moving toward
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us, their spectra would have been blue-shifted, just as the sound of a

siren approaching us seems to have a higher pitch.

Hubble’s interpretation of the spectral shifts of galaxies was not

immediately accepted. Some astronomers believed the red shift was

caused by something in the interstellar medium traversed by the

light. As late as 1936 Hubble himself harbored doubts about the

Doppler shift explanation for red shift—and hence also about the re-

cession of the galaxies.2 What is more, Hubble not only discovered

that all the galaxies are moving away from us, but in 1929 he found

that the speed at which a galaxy was receding was proportional to its

distance from us. The constant of proportionality is now called Hub-

ble’s constant, and it is one of the basic parameters of the universe

(despite the fact that Hubble’s own calculation of the numerical

value of this constant turned out to be incorrect).

The idea that the universe should be constantly expanding not

only contradicted the earlier universal view that the cosmos was

static, but it had a number of remarkable consequences. Since the ve-

locity of recession of a galaxy is proportional to how far away it is, at

some great distance away the speed of recession starts to approach

and even equal the speed of light. Therefore, the light emitted by

stars farther away from us than this Hubble radius can never reach

us. The Hubble radius, then, defines the radius of the knowable uni-

verse.

Hubble’s discovery of the expansion of the universe had an imme-

diate effect on the theory employed to explain the structure of the

cosmos, the general theory of relativity. When Einstein, shortly after

developing the theory, began to apply it to cosmology, he found that

his equations had no solutions that described a static, closed universe

of fixed dimensions, with relatively slowly moving stars in it, as the

cosmos was thought to be at that time. To adjust his theory to accord

with this assumed fact, in 1917 he introduced an artificial fudge fac-

tor in his equations, which came to be known as the cosmological
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constant.3 However, when Hubble discovered that the universe is ex-

panding in size, Einstein removed the ugly fudge factor, calling it

“the greatest mistake in my life.” Ironically, the cosmological constant

was resurrected some 75 years later for other reasons, as we will see.

Another consequence of an expanding universe concerned its be-

ginning. The Belgian Jesuit priest and cosmologist Georges Edouard

Lemaître (1894–1966), who had become fascinated with Einstein’s

theory and studied it deeply, had arrived at the independent conclu-

sion that the general theory of relativity implied that the universe

must be expanding, as Hubble confirmed. But how and when did

this expansion start? After becoming professor of astrophysics at the

University of Louvain, he published his Discussion on the Evolution of

the Universe in 1933, which contained his theory that the universe

began between 20 and 60 billion years ago with what was subse-

quently called a Big Bang, which he visualized as an explosion of a

“primal atom.” While the primal atom has been discarded, the Big

Bang, improved in 1946 by the Russian-born American physicist

George Gamow (1904–1968), is still the generally accepted explana-

tion for the beginning of the cosmos among physicists.

Lemaître’s was not the only model of the universe constructed by

means of the general theory of relativity. Another model, employing

a different geometry, was built in 1917 by the Dutch mathematician

and astronomer Willem de Sitter (1872–1934), and a third by Arthur

Eddington in 1930. These all differed in the overall curvature they as-

signed to space in their universes, and which of them is closer to real-

ity has not yet been definitely decided by observation.

The twentieth century generated new knowledge and theories of

many other astrophysical aspects of cosmology, but those theories

rely on quantum mechanics, the culmination of the revolutionary

change in physics from determinism to probability, and their de-

scription will have to wait until Chapter 11. We will first turn to the

beginning of this paradigm shift, statistical mechanics.
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eight

Statistical Physics

That the heat content of a body consisted of nothing but the motion

of its constituents was not a new notion at the beginning of the nine-

teenth century. Many versions of it had been around at least since the

time of Robert Boyle, who regarded the springlike pushing by the

molecules of a gas as the cause of the pressure the gas exerted on the

walls of its container. These theories tended to suffer under the influ-

ence and authority of Isaac Newton, who declared at one time that

the molecules of a gas attract one another, at other times that they re-

pel one another, and at still others that they are simply independent

hard spheres.

The initiator of the modern kinetic theory was John Herapath

(1790–1868). A mathematical prodigy, he grew up in Bristol with lit-

tle formal schooling but, after learning French at an early age, edu-

cated himself by studying the works of the great French mathemati-

cians. He then decided to become a teacher of mathematics, setting

up his own school. Although he published a two-volume treatise en-

titled Mathematical Physics, he always remained a scientific amateur

and eventually turned to a successful career in journalism as the edi-

tor of Herapath’s Railway Journal.

Herapath’s scientific interest began with Newtonian celestial me-



chanics and from there shifted to heat and gases in a futile attempt to

explain gravity without recourse to action at a distance. Considering

the absolute temperature of a gas as proportional to the momentum

of its constituent molecules, that is, proportional to the product mv

of their mass m and velocity v, he managed to derive a version of

Boyle’s gas law that had been found by Bernoulli in 1738 (though

Herapath did not know of Bernoulli’s work), PV = 1/3Nmv2 where N

is the number of molecules in the volume V. This, of course, meant

that Herapath’s version of the gas law had PV proportional to T 2,

contradicting the Gay-Lussac version, according to which PV was

proportional to T. The paper containing these results was rejected in

1820 by the Royal Society but eventually published in the Annals of

Philosophy. Herapath’s book Mathematical Physics contained more

details of the derivation as well, and it was read with interest by Joule

when he developed the mechanical equivalent of heat. His work was

thus noticed by some of the important creators of thermodynamics,

but it was otherwise forgotten.

The next step in the kinetic theory was taken by another amateur

scientist, John James Waterston (1811–1883), who was born in Edin-

burgh. Waterston studied civil engineering, but at the University of

Edinburgh he also attended lectures in mathematics and physics as

well as chemistry and anatomy. Eventually, he became a naval in-

structor with the East India Company in Bombay and held this posi-

tion until he resigned in 1857, returning to Scotland, where he de-

voted his life to scientific work and lived on his savings.

Waterston’s interest in the behavior of gases, like that of Herapath,

evolved from trying to explain the action of gravity by means of the

push of particles. In a book entitled Thoughts on the Mental Func-

tions, published in 1843, he outlined his ideas on kinetic theory, ap-

parently unaware of either Herapath or Bernoulli. These ideas in-

cluded a connection between the temperature of a gas and the vis

viva, that is, mv2 of its molecules. The correct expression for the ki-
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netic energy, or vis viva, is 1/2mv2, but the needed factor of 1/2 was not

always included. A long paper he sent to the Royal Society in 1845

was more explicit: on the basis of a model of a gas consisting of elas-

tic spheres that collided with one another after traveling freely for a

certain distance, the absolute temperature should be proportional

to mv2.

As a consequence, he fashioned a law whose generalization later

came to be known as the equipartition theorem: in a mixture of

gases consisting of molecules of different weights, the mean-square

velocity (that is, the average of v2) of the molecules of each of them

should vary inversely with their densities. This is so because all of the

gases in the mixture should have the same temperature, and hence

the same average mv2. (Notice here the first mention of averages.)

The Royal Society not only rejected it (the two referees regarded it as

nonsense) but refused to return the paper, of which he had retained

no copy. After Waterston’s death, Lord Rayleigh found it in the ar-

chives of the Royal Society. His work remained unknown during his

lifetime, his influence nil. The book, with its uninformative title, re-

mained unread until J. B. S. Haldane discovered it and had it re-

printed in 1928.

On the other hand, the German chemist August Karl Krönig

(1822–1879), a high school teacher who edited Fortschritte der

Physik, seems to have received more attention for a short paper he

published in 1856 in Annalen der Physik than is warranted by the

originality of its content; though independent of the work of Hera-

path and Joule, it made no real advance over their work. Rudolf

Clausius was the one who carried the ball farther, making the ki-

netic theory a substantial part of thermodynamics, to which he had

contributed in an important way. His paper, “Ueber die Art der

Bewegung, welche wir Wärme nennen” (“About the kind of motion

we call heat”), published in 1857, made the final, decisive break with

the caloric theory, presenting the molecules of a gas as moving freely,
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with no forces acting between them (some other physicists had seen

the molecules as vibrating about fixed centers), the temperature be-

ing a measure of the vis viva of their motion.

What is more, the molecular motion was made up of more than

straight-line movements but included the possibility of rotations and,

for gas molecules containing more than one atom, internal vibra-

tions of these atoms relative to one another. Recognizing radiant heat

as similar to light (this was before Maxwell’s theory of light), he envi-

sioned a simple transfer of the vibratory motion of the ether to

the kinetic energy of moving molecules as the explanation of how

the absorption of heat radiation managed to warm up a gas. For

Clausius, this was the final proof that the caloric theory was inade-

quate.

The “ideal gas” described by Clausius consisted of molecules which,

though not just points, occupied an extremely small part of the total

volume of the gas and were within the ranges of one another’s forces

during collisions for a very short time only; otherwise they exerted

no influence on one another. In a liquid, on the other hand, the mol-

ecules were never far enough apart to escape the influence of their

mutual forces, and in a solid they vibrated or rotated about fixed

equilibrium positions. In his calculations Clausius generally attri-

buted to each molecule the average velocity they had in the gas, pay-

ing no attention to deviations from this average. However, he based

his explanation of the phenomenon of evaporation of a liquid on the

assumption that, whereas the average velocity of the molecules was

too low for them to overcome the attractive forces between them, a

few deviated far from the average, moving fast enough to be able to

escape from the surface. Only beyond the boiling point would they

all move so fast that the intermolecular forces could no longer hold

them together and could from then on be neglected. To accomplish

this change of state from liquid to gas (and similarly, from solid to

liquid) required the addition of a certain amount of extra heat, called
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latent heat, the extra energy needed to overcome the mutual at-

tractions.

One of the objections raised against the final version of the kinetic

theory, in which molecules moved freely without any forces between

them except at very short distances, was that it seemed to imply a

very rapid diffusion of a new gas entering into a mixture. The speed

with which molecules moved could be estimated using the Bernoulli

version of the gas law, and it came out to be on the order of about

2,000 feet per second. But in fact, a new odor introduced into a room

was not noticeable that quickly at a distance. Clausius’s answer was

to introduce the concept of the mean free path, the average distance

that a molecule travels in a gas before being deflected from its origi-

nal direction by hitting another. As a result of such collisions, the ac-

tual zigzag path of a molecule from one end of a room to the other is

very much longer than a straight line, and diffusion is considerably

slower.

Given the size of a molecule, its mean free path in a gas could be

calculated or it could be inferred from other measurements and then

the size of molecules could be deduced from it. This is how the Aus-

trian chemist and physicist Joseph Loschmidt (1821–1895) estimated

the size of molecules in 1865. Deducing the mean free path from

measurements of viscosity and calculating the fraction of the volume

of a gas occupied by the molecules themselves from a comparison of

the densities of the same substance in gaseous and liquid form, he

concluded that the diameter of a molecule of air is about 10−7 cm

(this is about four times too large, but a respectable estimate) and

that the number of molecules of an ideal gas in a cubic centimeter is

N = 2 × 1018, which is sometimes called Loschmidt’s number. (Its

presently accepted value is 2.687 × 1019.)

While the contributions of Clausius to the kinetic theory of gases

were important, they stopped short—notwithstanding his mean-free-

path argument—of the steps taken by Maxwell and Boltzmann, who
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initiated the revolution brought about by the introduction of the

concept of probability into physics. Clausius almost always assumed

that all gas molecules moved with their average speeds. “In reading

Clausius we seem to be reading mechanics,” wrote J. Willard Gibbs;

“in reading Maxwell, and in much of Boltzmann’s most valuable

work, we seem rather to be reading in the theory of probabilities.”1 In

view of the size of the numbers of Avogadro and Loschmidt, it was,

of course, inevitable that probabilistic considerations would enter

when the behavior of macroscopic bodies had to be understood in

terms of their microscopic constituents. To follow the individual

paths of a billion trillion molecules was quite impossible and not re-

ally relevant for the task of explaining how a gas behaved. The focus

of Herapath and Waterston had still been on shooting down the

caloric theory and establishing the kinetic theory in its place. For

Maxwell, that issue was settled, and he endeavored to understand the

consequences of the kinetic theory in all its details. Probability was at

that point unavoidable, and there was nothing inherently revolution-

ary about using this concept in physics, nor did Maxwell feel like a

revolutionary while the story slowly unfolded. The real extent of the

resulting paradigm shift would not become apparent until after the

work of Boltzmann.

In contrast to Clausius, Maxwell was not satisfied with imprecise,

qualitative statements like some molecules of a gas at a given temper-

ature moved faster, and some more slowly, than the average. He

wanted to know exactly how their various velocities were distributed

around the average. On the basis of a few simple, reasonable as-

sumptions (that all directions of motion should be on the same foot-

ing and that positive and negative deviations from the average were

equally likely), in 1860 he derived—and in 1867 he improved—a for-

mula of a similar form as the one Laplace had found for a normal

distribution of errors. If the gas has the temperature T, the probabil-

ity for the speed of a molecule to be found between v and v + d, for

small increments d, can be plotted, as shown in Fig. 12. It has its
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maximum at v = 2kT m/ , where m is the mass of the molecules and

k is a fundamental constant, later called the Boltzmann constant. In

other words, the most probable speed of a molecule in the gas in-

creases as the square root of the temperature. Boltzmann subse-

quently gave a more general argument for this Maxwellian distribu-

tion law, the first appearance of an explicit probability distribution in

physics.

As one of the applications of his distribution law of molecular

speeds, Maxwell calculated the viscosity of gases at various tempera-

tures and pressures, and he and his wife then went ahead and per-

formed the actual measurements in 1865. In agreement with his

prediction, they found that over the ranges they had studied, the vis-

cosity of a gas is independent of its pressure. Many other applications

followed, including a derivation of Dalton’s law of partial pressures

and investigations of heat conduction. Among Maxwell’s last innova-

tions before his death in 1879 was the introduction of the notion of

ensemble averaging as a device for solving statistical problems.

From a probabilistic point of view, the problem was to understand
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the meaning of the averages and of the probabilities that played such

an important role in going from microscopic to macroscopic physics.

Maxwell’s technique was, first of all, to employ Hamilton’s formula-

tion of the Newtonian equations, which used both the position coor-

dinates and the momenta of particles as the fundamental variables to

be tracked during their motion. This had the advantage that know-

ing both positions and momenta of particles at one instant allowed

the complete prediction of their future motion. The precise speci-

fication of the state of a system consisting of n particles therefore re-

quired 6n numbers (three each for the coordinates of their locations

and of their momenta): their motion had to be described as taking

place in a space of 6n dimensions, called the phase space. The motion

of all the n molecules of a gas was thus described as a simple trajec-

tory in a 6n-dimensional phase space, and at most one such trajec-

tory passed through any given point in that space.

The next step was to introduce an ensemble, an infinite collection

fictitiously made up of systems all of the same kind and the same en-

ergy but with different initial conditions (different starting positions

and momenta compatible with the same total energy). In order to

calculate, at a given instant of time, the probability of finding any

specified property of the molecules—for example, a given distribu-

tion of speeds—one simply needed to determine the fraction of the

members of the ensemble whose molecules had that property, and

similarly for averages. But what was the relation between this ensem-

ble average (a term later introduced by Gibbs) of a property of indi-

vidual molecules and its time average? For instance, is the average

speed of the molecules of a given gas at a fixed instant of time the

same as the average speed of individual molecules in the course of

their motion?

The answer to this question was thought to be provided by the

ergodic hypothesis: the trajectory of a given system, confined by the

equation of energy conservation to a (6n − 1)-dimensional surface

in phase space, would eventually pass through every given point on
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that surface. This assumption quickly turned out to be impossible

and had to be replaced by the quasi-ergodic hypothesis, which would

be sufficient: given any area, no matter how small, on the energy sur-

face, every trajectory on this surface eventually passes through it. An-

other way of saying the same thing is that every trajectory on a given

energy surface eventually covers this surface densely. Obviously, not

every mechanical system is ergodic in this sense. A planet orbit-

ing the sun remains confined to a one-dimensional orbit. However,

Poincaré proved that almost all mechanical systems of sufficient

complexity are, in fact, quasi-ergodic. (Mathematically speaking, “al-

most all” means that the exceptions have probability zero. Since the

set of mechanical systems is infinitely large, probability zero does not

mean there are no exceptions. The required complexity is not very

large; systems consisting of three particles are complex enough.)

Ergodicity alone, it was eventually realized, was not sufficient to

assure the equality of ensemble averages and time averages, but the

additional assumptions needed were later supplied. The first to do

this, in 1911, was the Austrian-born Dutch physicist Paul Ehrenfest

(1880–1933), assisted by his wife Tatyana, a mathematician. A sim-

pler procedure, and one often adopted nowadays, is to assume for

statistical purposes that the probability of finding an individual sys-

tem in a given region of the energy surface is proportional to the area

of that region, and that all systems within that region have equal a

priori probabilities. It should be clear by now that Maxwell’s intro-

duction of probabilities had opened a can of worms, but there was

no way of getting them back into the can.

The second physicist responsible for the probabilistic revolution

in physics was Josiah Willard Gibbs, the first American theoretical

physicist to acquire an international reputation. Born in 1839 in New

Haven, Connecticut, and educated at Yale, where his father was a

professor of sacred literature, Gibbs received his Ph.D. in 1863. Three

years later, after both of his parents and two of his sisters had died, he

traveled to Europe, accompanied by his two remaining sisters, and
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spent a year each at the universities of Paris, Berlin, and Heidelberg,

attending lectures and reading widely in mathematics and physics.

Upon his return to America, he settled in New Haven in the house

where he had been born, never again to leave the United States and

rarely even New Haven. He never married, sharing the house with his

two sisters and the family of one of them. Appointed professor of

mathematical physics at Yale (though for nine years he did not re-

ceive a salary and supported himself with his inheritance), he re-

mained there until his death in 1903.

Though Maxwell had been the first to introduce probabilities and

ensembles, Gibbs was the real founder of the science of statistical

mechanics. He published his first two papers on thermodynamics in

1873 and followed them shortly with a major work on the subject,

giving the concept of entropy much more prominence and power, as

well as clarity, than anyone before him, including Clausius himself,

who had introduced it. The venue for these publications was the

Transactions of the Connecticut Academy of Arts and Sciences, a pro-

vincial journal of small circulation, but Gibbs sent individual copies

to a large number of prominent European scientists. One of his read-

ers turned out to be Maxwell, who thereupon became one of Gibbs’s

strongest and most enthusiastic supporters in Europe. Nevertheless,

he remained relatively unknown on the continent until the chemist

Friedrich Wilhelm Ostwald, who regarded Gibbs’s results on chemi-

cal equilibrium as fundamentally important for his field, translated

his papers into German, and Henri Le Châtelier, who thought they

were comparable to Lavoisier’s work, translated them into French.

A year before his death, Gibbs published his book Elementary

Principles in Statistical Mechanics Developed with Special Reference to

the Rational Foundations of Thermodynamics (the term statistical me-

chanics was his coinage), which summarized his contributions. De-

liberately leaving the nature of the constituents of gases open, he de-

clared, “Certainly, one is building on an insecure foundation, who

rests his work on hypotheses concerning the constitution of matter.”2
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Instead, he schematically dealt with the statistical behavior of sys-

tems whose number of “degrees of freedom”—essentially the num-

ber of coordinates required to specify them—was of the same large

order of magnitude as the number of molecules in a gas.

Gibbs was fully aware of the gaps left in the “rational foundations”

that he was unable to fill. Even though he treated the thermodynamic

approach to equilibrium from the statistical point of view, he did not

really explain the mystery of irreversibility, that is, how the second

law of thermodynamics could contain an arrow of time—the always

increasing entropy—when the underlying equations of motion of

the constituent particles were completely reversible, with no such

directionality. It was Boltzmann who explicitly provided the solution

to this puzzle, though after a struggle that exacted a heavy personal

price. Even though Gibbs credited Boltzmann in his book as one of

the founders of the statistical approach, he did not mention his solu-

tion to the arrow-of-time puzzle.

Ludwig Eduard Boltzmann, born in Vienna in 1844, received his

elementary education from a private tutor at home and his second-

ary schooling in Linz after his family moved there. In addition to his

enthusiasm for science and mathematics, he showed an early inter-

est in music, taking piano lessons from Anton Bruckner. At the age

of nineteen he entered the University of Vienna, studying under

Loschmidt and Josef Stefan (1835–1893), and received his doctorate

after three years. Nine years later he married a woman who had be-

gun studying mathematics at the university after meeting him but

was prevented from continuing when the faculty decided to exclude

women students. The marriage eventually produced five children.

Boltzmann was a sociable, restless, neurotic man endowed with a

lively sense of humor and a disdain for formality, sometimes to the

dismay of his more formal colleagues. When the imperial court even-

tually offered him a title of nobility, he refused it. He held consecu-

tive professorships at the universities of Graz (where he became rec-

tor), Munich, Vienna, and Leipzig. Several times he traveled to the
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United States, first in 1899, again in 1904 to lecture at the World’s

Fair in St. Louis, and in 1905 to the University of California at Berke-

ley as well as to Stanford. He wrote a hilarious description of his ex-

periences in California, in a piece entitled “A German Professor’s

Journey into Eldorado.”3 By this time Boltzmann was suffering from

deep depression, among other maladies, and in 1906, after a previous

unsuccessful attempt, he committed suicide at Duino, near Trieste,

by hanging himself.

Boltzmann’s entire work was dedicated to the atomic theory of

matter, and he regarded the kinetic theory as an essential part of at-

omism. At the end of the nineteenth century, however, a few promi-

nent scientists—Ernst Mach and Friedrich Ostwald among them—

accepted the kinetic theory but not the atomic constitution of mat-

ter. The disagreement centered on the “real” existence of indestructi-

ble particles, too tiny ever to be observed. Opponents based the ki-

netic theory on abstract “centers of energy” and saw no need for

atoms or molecules. The rancorous debate between the adherents of

atomism and those of “energetics” became at times quite heated, es-

pecially in Vienna, where Mach lived. Boltzmann, a strong propo-

nent of the atomic side, was in the middle of the controversy, endur-

ing attacks on him personally and on his work. He found more

hospitable soil for his views in Britain and acquired a large reputa-

tion there before the German-speaking countries accepted his ideas.

Although these attacks did not precipitate his suicide, which was un-

doubtedly the result of the bipolar disorder from which he had suf-

fered for most of his life, the unpleasant atmosphere surrounding

him must surely have contributed to his depression.

It is a sad irony that about a year before Boltzmann’s death, and

unknown to him, Einstein had published his paper on Brownian

motion, which finally made the evidence for molecules palpable. And

experiments performed three years after Boltzmann’s death by the

French physicist Jean Baptiste Perrin (1870–1942) provided convinc-

ing proof of the reality of molecules. Using particles of known mass,
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he was able to apply Einstein’s ideas to deduce Avogadro’s number

from the details of his observations of their irregular movements.

His result substantially agreed with the number obtained in other

ways, clinching the case for atomism and vindicating Boltzmann.

What Boltzmann learned about the kinetic theory from reading

Maxwell had impressed him deeply, and he immediately proceeded

to build on the new statistical approach, generalizing Maxwell’s dis-

tribution to hold even when forces acted on the particles. In that

case, the kinetic energy in the Maxwellian distribution is simply re-

placed by the total energy, resulting in a probability that decreases

exponentially with the energy—more slowly as the temperature rises.

This energy distribution, which characterizes the state of equilibrium

of any many-particle system, is still called the Boltzmann factor.

The more difficult problem was this: before it arrives there, how

does such a system approach equilibrium? Maxwell had been unable

to answer this question, which involves the second law of thermody-

namics with its relentless, puzzling increase in entropy. Boltzmann’s

crucial contribution was the idea that the rising thermodynamic en-

tropy corresponds to a growing degree of disorder at the molecular

level. This increasing chaos, or randomness, and the concomitant in-

crease in the probability of its state are responsible for the phenome-

non of irreversibility that distinguishes the behavior of macroscopic

objects consisting of large numbers of microscopic molecules from

the reversible motions of these constituents. He promulgated an ex-

act relation between the entropy S of a system in a given macro-

scopic state and the number W of the possible molecular configura-

tions corresponding to that state, so that W is proportional to the

state’s probability. This relation can be written in the form of the

equation S = k log W (an equation that would be engraved on his

tombstone), where k is the same Boltzmann constant that appears in

the Boltzmann factor and the Maxwellian velocity distribution. In

order to calculate W, Boltzmann schematically considered the possi-

ble molecular energies divided up into discrete steps. The primary
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consideration that enters the resulting value of W is the number of

ways in which the identical molecules of a gas could be exchanged

without altering its macroscopic state, as we will see below.

For a many-particle system’s development from a general state to-

ward equilibrium, Boltzmann derived an equation governing trans-

port processes in fluids, based on collisions between its molecules,

provided that the probability of such pairwise collisions is known.

This nonlinear Boltzmann equation, the first equation ever proposed

to govern how a probability changes with time, still plays an impor-

tant role in many different research contexts involving plasmas, neu-

tron gases, or other fluids. Instrumental in his approach to an under-

standing of how the entropy of a system manages to increase while

its constituents move around reversibly was a function that he in-

vented, later called the H-function. It may be regarded as a measure

of the distance between the given state of a system and its equilib-

rium state, in which its constituents have Maxwell-Boltzmann dis-

tributions. He then demonstrated that H obeys what subsequently

became known as Boltzmann’s H-theorem: the function H always

decreases in the course of time unless the molecules have a Max-

wellian distribution of velocities, in which case H stays constant.

Here then is an explicit derivation of the irreversibility implied by

the second law of thermodynamics from underlying equations of

motion that are completely reversible. It also showed that the Max-

wellian distribution is uniquely associated with the equilibrium state.

Indeed, Boltzmann was even able to show that his H-function differs

from the entropy only by a minus sign and a constant factor.

Serious objections to this curious result were raised in short order:

the reversibility argument and the recurrence argument. The first,

also called Loschmidt’s paradox, says that, given the course of a sys-

tem from some given nonequilibrium state A to a state B of equilib-

rium, with a corresponding increase in entropy, one need only re-

verse the momenta of all the molecules in state B and the system will

run through its original course backward to state A, thereby decreas-
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ing its entropy. The other objection, called Zermelo’s paradox after

the German mathematician Ernst Zermelo (1871–1953), was based

on Poincaré’s recurrence theorem. Since every system must eventu-

ally return arbitrarily closely to its initial configuration, its entropy

must decrease in the course of this return if it increased initially.

For the resolution of both objections it is important to remember

that we are dealing with probabilities and statistics, not deterministic

predictions of the behavior of individual systems. In the course of

the development of a system consisting of many particles, such as a

gas, the entropy varies and fluctuates, sometimes wildly. The states

called equilibrium are by far the most probable because there are so

many of them, all practically indistinguishable from one another.

The entropy in these states is maximal. Any individual state far from

equilibrium is very improbable—it has low entropy—because there

are very few states like it or almost like it. Such states are always set

up by external intervention; they almost never arise spontaneously in

an isolated system.

Consider, for example, two adjacent rooms at very different tem-

peratures. The second law of thermodynamics dictates that when a

door is opened between them, the temperature will tend to equalize,

with a concomitant rise in entropy. The initial state A of the two con-

nected rooms of unequal temperature and low entropy could surely

not be expected to arise by itself. However, it could have arisen spon-

taneously as an extremely rare fluctuation, taking the system from

a state of high entropy to one of low entropy. A plot of an isolated

system’s entropy over the course of a long period, showing all its

fluctuations, is symmetric in time in its general shape, showing no

features that distinguish between the future and the past. If we ar-

tificially set up the system in a state of low entropy—opening the

door between a hot and a cool room—then it is vastly more probable

for it to develop into a state of higher entropy than to go to one of

even lower entropy. The air molecules have many more states avail-

able to them in which the difference in temperature between the two
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rooms has decreased than states in which that difference has in-

creased. Of course if we could freeze the situation after the two

rooms have reached more or less equal temperatures (call this state

S) and reverse the momenta of all the air molecules (call that state

S′), the two rooms would revert back to being hot and cold, with a

corresponding decrease in entropy, and the molecular state S′ will

no doubt eventually be reached, at least approximately, as a sponta-

neous, extremely rare fluctuation, but it is for practical purposes

impossible to arrange externally. Thus the reversibility objection is

made harmless.

As for the recurrence argument, it too is answered by referring

to fluctuations. Indeed, a system in a state of low entropy will, as

Poincaré decreed, eventually return to an almost identical state of

equally low entropy, but “eventually” here means that the waiting pe-

riod for the recurrence to happen in an inevitable fluctuation is

many times longer than the age of the universe. This is not a wild

guess but can actually be calculated.

The statistical explanation of the second law of thermodynamics

is also haunted by a ghost called Maxwell’s demon. Of the same size,

roughly, as the molecules of a gas, this little nimble-fingered ficti-

tious imp operates a sliding door (without friction, requiring no

work) on an opening between two containers filled with gases of un-

equal temperatures, like the two rooms above. Taking advantage of

the fact that not all the molecules in a given container move at the

same speed—they have Maxwellian velocity distributions—she care-

fully watches the particles approaching her gate from the cool side

and, whenever one of them moves much faster than the average, she

opens the portal and lets it pass to the hot side. In order to keep the

pressures equal in the two vessels, she then allows a molecule moving

particularly slowly on the hot side to pass over to the cool vessel. The

result of this little game, after a while, will be to increase the temper-

ature of the hot container and to decrease it in the cool one. In other
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words, the demon has managed to defeat the second law, allowing

heat to flow from cold to hot without doing any work.

Much thought and ingenuity, over many years, has been expended

on finding a flaw in Maxwell’s demon: for example, to see the mole-

cules, the imp needs something like a flashlight, whose electromag-

netic radiation will also have to be in thermal equilibrium with the

gases; and furthermore, energy has to be expended by it. The essen-

tial point, however, is that for the second law of thermodynamics to

hold, there has to be an unbreachable division between the macro-

scopic world and its microscopic substructure. In recent years a new

field of physics has opened up which operates at the borderline be-

tween the microscopic and the macroscopic; it is called mesoscopic

physics. In this domain the second law of thermodynamics holds

with a somewhat lower probability. The measure of this division is

the large size of Avogadro’s and Loschmidt’s numbers. Because these

numbers are so enormous, “small probabilities” of certain occur-

rences, in the context of the second law of thermodynamics and the

associated fluctuations, are really extremely tiny. The reason is this.

From a macroscopic point of view—looking at a room full of

air—there is no way of distinguishing between small differences in

the way molecules are arranged. A specific point that totally escapes

notice is the difference between having two molecules A and B of

the same kind in places X and Y (in phase space), respectively, on

one hand, and having them in places Y and X, respectively, on the

other—that is, having their locations and momenta exchanged. Now,

if you count the number of ways in which n particles of the same

kind can be exchanged, that number starts out growing slowly with n

but ends up growing extremely fast. There is a vast difference be-

tween the number of exchanges possible between the molecules of

our two connected rooms when all of them are distributed á la

Boltzmann at one temperature as compared to the number of ex-

changes possible if half of them are distributed according to one
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temperature and half according to another. In fact, that difference in

the number of arrangements, not difficult to calculate, dwarfs the

number of atoms in the entire universe. It is because of such num-

bers that the probability of encountering a violation of the second

law of thermodynamics is so small as to be totally negligible.

Now it may appear that there is no point in making a distinction

between a law that is certain to hold and one that has a completely

negligible probability of ever being found violated. However, in prin-

ciple the difference is revolutionary, and physicists accustomed to

thinking of the second law as one of the most fundamental laws of

nature, whose violation was unthinkable, had a very hard time ac-

cepting the idea that its violation was just extremely improbable.

And if someone ever were to observe a spontaneous fluctuation—

suddenly one of two connected rooms turning cold and the other

hot, with no discernible cause—no one would believe it. The obser-

vation, being so very rare, would be impossible to repeat and hence

of no scientific value. There is no denying that the introduction of

probabilities in physics represented a genuine paradigm shift with

some very counter-intuitive consequences, some of them not recog-

nized until the invention of quantum mechanics and then ascribed

to the weirdness of that theory. For example, the predictions of any

probabilistic theory vary, depending upon whether a system was

observed at some intermediate time or remained unobserved, even

if we do not care what the result of the intermediate measure-

ment was.4

Thus, the second revolution in physics, which replaced determin-

ism by probabilistic predictions, began with the introduction of sta-

tistical mechanics in the second half of the nineteenth century and

would come to its completion in the course of the twentieth century

with quantum mechanics. Before turning to that topic, however, we

will take a closer look at the meaning of the concept of probability

and its history.
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nine

Probability

The notion of probability originated from games of chance, and

gambling is as old as history. The talus, the heel bone of a running

animal such as deer and sheep, was found, sometimes polished and

engraved, in Sumerian and Assyrian sites as well as in ancient Egyp-

tian tombs, accompanied by score boards and other illustrations. The

shape of a talus assures that it can rest on a level surface only in one

of four ways. No doubt it was a precursor of the die, though a loaded

one—every talus has its own bias. However, even though gambling

was certainly a pastime in antiquity for many centuries (Marcus

Aurelius was said to have been an avid thrower of dice), no mathe-

matician appears to have taken an interest in it until the sixteenth

century. Galileo clearly recognized that in computing the probability

of a throw by several dice, what mattered was the number of permu-

tations adding up to the same outcome, rather than the number of

“partitions,” as many others thought and some continued to believe.

When rolling two dice, what are the chances of an outcome of 2 as

compared to 3? The only way to get 2 is for the dice to show 1 and 1;

the only way of getting 3 is for them to show 1 and 2. Thus for both

outcomes the number of “partitions” is the same. On the other hand,

whereas the partition 1 and 1 can be obtained only one way, the par-



tition 1 and 2 can be obtained by two permutations: die one showing

1 and die two showing 2, or die one showing 2 and die two showing

1. So counting partitions leads to equal probabilities for 2 and 3,

while counting permutations leads to the conclusion that 3 is twice

as probable as 2. It was not obvious at the time which was the correct

calculation, and it seems that even Leibniz once made the mistake

of counting partitions for probability calculations. (The difference

between counting permutations and partitions would later on, in

quantum mechanics, be precisely the difference between Maxwell-

Boltzmann statistics and Bose-Einstein statistics. If the two dice were

totally indistinguishable, as elementary particles are according to

quantum mechanics, permutations would be of no account and only

partitions would matter.)

How the decision in favor of permutations was finally arrived at is

not entirely clear, but it was probably made on the basis of the expe-

rience of knowledgeable gamblers, that is, by observing long runs of

rolling dice. Actually, it was more common in the Renaissance to play

with three dice rather than two, and Galileo calculated the relative

probabilities of the outcome of 12 as compared to 11. The number of

partitions of each of these two outcomes is six, but the six partitions

of 12 contain 25 permutations, while those of 11 contain 27. This is

the reason, he says, why gamblers regard 11 as more advantageous

than 12.1

The first book on games of chance, entitled Liber de ludo aleae,

was written by Girolamo Cardano about 1564 but not printed until

1663. In his computations of probabilities, he defined what he meant

by the numbers he calculated in terms of long series of trials, a

definition that was ignored until reinvented about two hundred years

later by John Venn. Indeed, the very existence of Cardano and his

work was forgotten for centuries. It was Pascal who originated the

modern foundation of probability theory, mostly in the course of his

extensive correspondence with Fermat.

Born in 1623 in Clermont-Ferrand, France, Blaise Pascal was
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brought up by his father, a civil servant but also a mathematician, as

his mother died when he was three. At the age of twelve, already

showing exceptional abilities, he began his scientific studies by read-

ing Euclid’s Elements, and by the age of sixteen he started participat-

ing in meetings of Mersenne’s Académie Parisienne, held at the Con-

vent of Place Royale, where other participants included Descartes,

Fermat, and Thomas Hobbes. The death of his father induced him to

adopt a more spiritual mode of life, and at 23 he converted to Roman

Catholicism in the rigorous form of Jansenism. After a fervent reli-

gious experience one night at the age of 31, Pascal became quite

withdrawn and wrote only at direct request from his religious adviser

among the monks at the Place Royale. As his health deteriorated, he

devoted himself to designing a public transport system for the city of

Paris, which in fact was inaugurated during the year of 1662, when

he died in Paris of a malignant stomach ulcer.

Not only was Pascal an important mathematician, but he would

also acquire a wide reputation as a religious philosopher and a great

writer, his fame resting principally on his Pensées, a book not pub-

lished until eight years after his death. This volume contains his

widely known wager concerning the existence of God, the underlying

logic of which, as a byproduct, evolved into the art of conjecturing

and would eventually form the seed for a theory of decision-making.

If there is no God, you lose nothing by not believing and gain noth-

ing by believing; but if God exists, you are saved if you believe and

eternally damned if you don’t believe. Hence the wiser course is to

believe. Pascal was convinced that such belief was under your con-

trol: it was sure to come if you faithfully followed pious religious

practice. The book also contains a sentence reputed to be the most

beautiful in the French language. The sentence, in pensée no. 206, de-

scribes Pascal’s reaction to viewing the night sky; it reads “Le silence

éternel de ces espaces infinis m’effraie.” (The eternal silence of these

infinite spaces frightens me.) Generations of French school children

have had to memorize and recite it.
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Pascal’s first significant mathematical work was based on a treatise

by Gérard Desargues (1593–1662) that dealt with the intersection of

a cone with a plane. As Desargues studiously avoided the use of Car-

tesian coordinates, his work was not understood by other mathema-

ticians, and Pascal became his main disciple, gaining fame by creat-

ing a new branch of mathematics that would be called projective

geometry. His treatise on this subject, however, was never published,

and its contents became known only through reports from Leibniz,

who had seen it in manuscript form.

Pascal’s second project, pursued simultaneously with his work

on projective geometry, was the design of a mechanical computing

machine to help his father in his accounting chores. He devised a

model in 1645 that served as a basis for the manufacture and sale of

the first mechanical computer (seven of which still exist). Inspired by

Torricelli’s experiments, Pascal also made original contributions to

hydrostatics, completing a treatise on the subject at the age of 31.

Pascal’s law governs the transmission of pressure in a fluid in equilib-

rium. In his honor, the international unit of stress in a fluid is called

the pascal.

Among Pascal’s most important work was his theory of probabil-

ity (a word he never used). This theory evolved in the course of a

long correspondence with Pierre de Fermat concerning two spe-

cific problems. The first was the probability of throwing a specified

face of a die in a given number of successive throws, and the second

was how fairly to distribute the leftover pot of stakes to the players

when a game was interrupted. The correspondence developed all the

needed techniques for calculating aleatory probabilities, that is, those

necessary for computing odds in games of chance.

The introduction of quantitative measures for epistemic probabil-

ities was another matter, however. Pascal’s wager was an example of

the application of probability in logical thinking without resorting to

numerical comparisons. The first use of the concept of probability as

something measurable in the context of general reasoning seems to
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have occurred in the book La logique, ou l’art de penser, written

by some of Pascal’s associates at the Port Royal (exactly who the

authors were and how much each contributed remains under dis-

pute). It was published first in 1662 and remained enormously popu-

lar, with translations into many languages, well into the nineteenth

century.

Whereas La logique modeled the numerical measures of episte-

mic probabilities after games of chance, Leibniz’s use of measurable

probability stood on its own, before he even knew much mathemat-

ics. For him, probability meant degree of certainty, and he applied it

largely to legal reasoning. The crucial distinction between the alea-

tory and the epistemic approach to probability lies in the fact that the

latter is based on our knowledge of a situation rather than on its fac-

tual reality. As a result, epistemic probabilities contain a strong ele-

ment of subjectivity, whereas aleatory ones may be called objective

probabilities. This duality in the meaning of probability haunts the

subject to this day, and as we shall see in the next chapter, it would

have reverberating echoes in quantum mechanics in the twentieth

century.

The notion of an average outcome, or an expected result, obvious

as it seems to us now, was not at all a clearly defined concept until the

later part of the seventeenth century. It was primarily the contribu-

tion of Christiaan Huygens, who equated a “fair price” for a prod-

uct of uncertain value with the “expectation,” that is, the average.

Applying the same concept to life expectancies, he carefully distin-

guished between the average and the median. Suppose the individual

annual incomes of five given people are $15,000, $16,000, $18,000,

$20,000, and $100,000. Their average income then is ($15,000 +
$16,000 + $18,000 + $20,000 + $100,000)/5 = $33,800, whereas

their median income is $18,000: there are as many of them with in-

comes less than $18,000 as there are with higher incomes. Ignorance

of this distinction is sometimes exploited by politicians.

Words for neither of these concepts existed at the time, and it
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was not obvious how to use available mortality tables to answer

such questions as the chance that a newborn child will die before the

age of eighteen. Life-insurance premiums and the price of annuities

were, of course, intimately bound up with such calculations. (Until

1789, the price of an annuity offered by the British government did

not depend on the buyer’s age.)2

The science of probability was brought to maturity by the Swiss

mathematician Jacques Bernoulli, older brother of Jean Bernoulli,

Daniel Bernoulli’s father. Born in 1654 in Basel, Jacques was origi-

nally trained to become a theologian but studied mathematics on his

own. Subsequent to a trip to England, where he met Robert Boyle,

and after reading the work of Leibniz and corresponding with him,

he decided to devote himself to science. In 1687 he was appointed

professor of mathematics at the University of Basel, where he re-

mained until his death in 1705. His most important papers formed

the beginnings of what later became the calculus of variations, a

subject that would have many applications in physics. However, his

most significant achievement was his book on probability, called Ars

conjectandi, which took him twenty years, off and on, to write and

was not published until eight years after his death.

Patterned after the Port Royal Ars cogitandi (the Latin title of La

logique), Bernoulli’s book was extremely innovative and at the same

time summed up all that was known about the subject at the time.

He had a knack for relating mathematical terms, such as expectation,

to everyday language, which is particularly important for the subject

of probability, a field of mathematics close to common experience

but in which misconceptions abound on the part of nonmathema-

ticians. Employing vivid examples, he demonstrated, for instance,

that the rule of adding probabilities holds at best for cases of inde-

pendent events. Since for Bernoulli probability meant degree of cer-

tainty rather than degree of belief, he does not regard all probabilities

of independent events as necessarily additive. The most important

result in the book, however, is his proof of a limit theorem, now
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called the weak law of large numbers, establishing a relation between

probability and observed frequency of occurrence. Here is what his

theorem says.

Suppose we have a set-up in which at every individual trial the

probability of winning is p and, running n trials in succession, we

win sn times, so that the relative frequency of winning in such a run is

sn/n. Then, the probability that sn/n differs from p by no more than a

given amount a, no matter how small, increases to 1 as n is made

larger. The theorem even explains how to calculate n to make sure

the probability that the difference between sn/n and p is less than a

differs from 1 by no more than another given number b. In other

words, playing an honest slot machine (one on which the house takes

no cut), you are essentially assured not to lose more than a penny if

you play long enough, and you can even calculate how many times

you have to pull the lever in order to be “morally certain” (that is,

with a probability of, say, 0.999) to come out almost even.

Great as the advance was that Bernoulli’s theorem made in proba-

bility theory, it did not provide the answer to a question that would

preoccupy many later probabilists: while the theorem tells us the

length n of a run of trials to make almost sure that the relative fre-

quency sn/n of winning in the run is close to the given probability p

of winning in each trial, it does not tell us the length n required to

make almost sure a given sn/n is close to an unknown p. In other

words, suppose you count your winnings after pulling the lever n

times on a slot machine: how large does n have to be to make you

confident that the probability of winning an individual game—a

probability that is not given—is almost the same as the ratio of wins

to pulls you have calculated from your winnings? Even though the

two questions, one based on the assumption that the individual prob-

ability is given and the other on the assumption the relative fre-

quency in a run of fixed length is given, have sometimes later been

confused, they are not identical and Bernoulli provided an answer

only to the first.
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The other weakness of Bernoulli’s theorem is this: rather than

assuring that for sufficiently large n the difference between the rela-

tive frequency sn/n and the probability p is necessarily small, it only

promises that the probability of that difference being small is close to

one. That still leaves open the chance that in an individual long run

the relative frequency sn/n may be quite different from p. A slight

strengthening of his theorem allowed Bernoulli to find the length n

of a run that would maximize the probability that sn/n is close to a

given p, no matter what the value of that p is. Thus his theorem al-

lowed one, before performing the trials with a p that is not given, to

estimate the length of a run needed in order to be morally certain the

relative frequency found will be close to p. His theorem, later to be

strengthened by Laplace and Poisson into what came to be called the

central limit theorem of probability theory, provided the first as-

surance of the stability of long trial runs, an assurance on which all

subsequent applications of statistics would depend. Before Laplace,

however, two other, less prominent mathematicians made significant

contributions to the science of probability: the religious outsiders

Abraham de Moivre and Thomas Bayes.

Born in 1667 in Vitry-le-François, Champagne, Abraham de

Moivre was the son of a provincial surgeon. Because he was brought

up a Huguenot, he had a hard time finding suitable schooling until

he moved to Paris at the age of seventeen, where he received instruc-

tion in mathematics, reading Huygens on probability as well as Eu-

clid. Having been imprisoned for twelve months for his religious

beliefs, he left for England, where he read Newton’s Principia and be-

came a friend—to the extent anyone could be—of Isaac Newton and

of Edmund Halley. Elected to the Royal Society, he later served on

the Grand Commission that tried to settle the priority dispute over

the calculus between Newton and Leibniz. He eked out a living as a

mathematics tutor and as a consultant to insurance companies and

gambling syndicates but never obtained a permanent position. He

died in London in 1754.
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De Moivre made important contributions to trigonometry—an

equation is named after him—but his masterpiece was his book The

Doctrine of Chances, dedicated to Newton and republished in ex-

panded versions both in Latin and English several times by the Royal

Society. It contained the first statement of what later came to be

called the normal or Gaussian distribution, a crucial element in the

use of statistics (Fig. 13). The question it answered was this: in a se-

ries of trial runs with a given probability p as envisioned by Ber-

noulli, how were the wins and losses distributed? While the probabil-

ity for a specific number of wins and losses in a run of length n can

be laboriously calculated (leading to what is called a binomial distri-

bution), the normal distribution, the now familiar bell-shaped curve,

is an approximation that becomes increasingly exact as n increases

and that is fairly accurate even for small values of n.

This same distribution also arises in an apparently quite different

context that fascinated both Gauss and Laplace: suppose a certain

quantity Q is measured by instruments of limited precision, so that

every time a measurement of Q is performed, the result is not exactly
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Q but Qi, which differs from Q by a certain error Di. How are the

numbers Qi distributed and how do they characterize the accuracy of

these measurements? The answer is, again, that they can always be

expected to be distributed “normally,” and the width of the bell-

shaped curve at its half-maximum can be used as an indication of

the precision of the measurement, a methodology that is used in ex-

perimental physics, as well as in other sciences, to this day. Sadly, the

value of de Moivre’s work was not recognized until long after his

death.

Now to the second of the religious mavericks. Thomas Bayes was

born in London in 1702, at a time when religious dissent had just

ceased to be dangerous in England. His father was one of the first or-

dained Nonconformist theologians. Thomas was privately educated

and spent his life as a minister at the chapel in Tunbridge Wells. After

publishing his book Introduction to the Doctrine of Fluxions (a de-

fense of Newton’s calculus against an attack on its logical founda-

tions by Bishop Berkeley), Bayes was elected to the Royal Society; he

died in 1761. His fame rests on his “Essay towards Solving a Problem

in the Doctrine of Chances,” published posthumously in 1763, a

short essay containing what is still known as Bayes’s theorem.

Here is the point of this theorem. Suppose a variety of possible

mutually exclusive assumptions Ai, whose individual a priori proba-

bilities are P(Ai), enable the event E to occur with the probability

P(E�Ai)—the probability of E on the assumption of Ai. (It is custom-

ary to call a probability based on no initial assumptions an a priori

probability; on the other hand, a probability calculated by taking

into account that a certain relevant event has happened is called an a

posteriori probability.) Then the a posteriori probability P(Ai�E) of

the assumption Ai, given that E has happened, is equal to the ratio

of the product P(Ai)P(E�Ai) divided by the sum of the products

P(A1)P(E�A1) + P(A2)P(E�A2) + . . . . Note that if all the assumptions

Ai are equally likely, then the P(Ai) drop out of the ratio and we have

a simple formula for the a posteriori probability of Ai, given that E



has happened, in terms of the probabilities for E on the basis of each

of the assumptions, P(Ai�E) = P(E�Ai)/[P(E A1) + P(E A2) + . . .]. For

example, in a toss of three pennies, the probability that the first one

shows heads, given that the total number of heads shown is two,

equals the probability that the total number of heads shown is two,

given that the first one shows heads, which equals 1/2, divided by the

sum of the probability for the total number of heads shown to be

two on the assumption the first one shows heads ( = 1/2) plus the

probability for the total number of heads to be two on the assump-

tion that the first one shows tails ( = 1/4); the result is 2/3.
Bayes’s theorem later came to be used in an extremely controver-

sial manner for the calculation of the a posteriori probabilities of the

correctness of competing theories, given that an event compatible

with all of them was observed. What makes this Bayesian argument

controversial is that it is based on the supposition that the a priori

probabilities of the correctness of all proposed theories are the same.

Back, then, to Bernoulli’s reasoning about probabilities. His basic

assumption, like that of everyone else at the time, was that the indi-

vidual probability p was fundamental, and it was determined by a set

of outcomes each of which was equally possible either in a physical

sense or else in the symmetry sense that there was no reason to think

the occurrence of one of them to be more likely than any other. For a

well-constructed and balanced die, thrown fairly, there was no physi-

cal cause to make a landing on one side more possible than on any

other. When used in a game of chance, the notion of fairness added

to the need to assume equal probabilities for all elementary out-

comes.

“Equal possibility” as the basis for all probability calculations was

also the starting point for Laplace, the mathematician who gave the

final polish to what is now referred to as classical probability theory.

Laplace had provided the epitome of the deterministic view of the

universe, the kind of physics that in the nineteenth century was to be

overthrown—and this same scientist also molded the underlying
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mathematical structure of the new thinking that was to replace de-

terminism.

Since there could be no such thing as chance in the laws of phys-

ics, Laplace thought, the basis of the notion of chance necessarily had

to be sought in our ignorance. That is why he had to choose the

equal possibility of a set of outcomes as the cornerstone of a theory

that dealt with instances in which we lacked full information or firm

control. One such case, with which he was intensely preoccupied for

a time, was the problem of induction: how much confidence could

we have that the sun would rise tomorrow? This philosophical ques-

tion had been raised with great skeptical effect by David Hume in his

Treatise of Human Nature, published in 1739. Laplace tried to give a

numerical answer to it, without achieving convincing success, but

since it has little specific physical relevance, we shall leave it aside.

Hume’s criticism did, however, have great philosophical relevance for

the meaning of causality, and it motivated Immanuel Kant to try to

rescue science from what he saw as its devastating effects.

There were two good reasons why probability theory required

modification and further development, though neither of them re-

ceived serious attention until the twentieth century. One was that not

all elementary natural events begging for probabilistic analysis were,

in fact, equipossible. Not only did biased dice exist and made their

appearance in games of chance, but the average number of girls born

during a year did not usually equal the number of boys born, and

these numbers were basic for the calculation of the premiums for

certain insurance policies. In addition, it occurred to some imagina-

tive thinkers to pose questions involving infinite numbers of possi-

bilities and even continuous distributions of events rather than just

finite numbers of them.

The famous problem posed in 1777 by the French naturalist

George-Louis Leclerc Comte de Buffon (1707–1788) is an example

of a probability with a continuous number of cases. A horizontal

board is ruled by a series of equidistant parallel lines, and a fine nee-
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dle, shorter than the distance between the lines, is thrown randomly

on it. What is the probability that the needle will intersect one of the

lines? The answer will depend on exactly what is meant by “thrown

randomly.” The position of the needle may be described by giving the

distance of its midpoint from the nearest line and the acute angle it

makes with a perpendicular dropped from this midpoint to the near-

est line. Equipossibilities can then be approximated by first dividing

half the distance between the lines into n equal sections and the right

angle into m equal parts, postulating equal possibilities for each of

these n × m cases for the position of the needle, finally making both

n and m larger and larger so as to approach the continuous case. On

the basis of this reasoning the probability for the needle to intersect

one of the lines turns out to be p = 2l/hπ if h is the distance between

the lines and l is the length of the needle. It is remarkable that the

number π appears in this. Between 1849 and 1853, the astronomer

R. Wolf in Zurich performed an experiment, dropping a needle 5,000

times, with a result that could be interpreted as an experimental de-

termination of the value of π, namely 3.1596, which differs from the

correct value by less than 0.02. Similar experiments performed later

led to even closer results.

This way of dealing with continuously infinite numbers of possi-

bilities, however, was mathematically rather primitive. More than a

hundred years after Buffon, Poincaré raised a question reminiscent

of one answered without a real mathematical basis by Nicole Oresme

in the fourteenth century: what is the probability that a randomly

picked number between 0 and 1 is rational? Moreover, Poincaré ar-

gued in his famous recurrence theorem that the probability for a dy-

namical system to start with initial conditions that would prevent it

from returning arbitrarily closely to these conditions is zero. It was

to deal with questions like these that more sophisticated mathemati-

cal methods were needed. And in the late nineteenth and early twen-

tieth century, mathematicians, beginning with the Danish-born Ger-

man Georg Ferdinand Ludwig Philip Cantor (1843–1918), developed
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such procedures. They go by the name of measure theory, and they

were meant for such other purposes as set theory and newer versions

of the integral calculus, but their use for the calculation of probabili-

ties was immediately apparent and quickly exploited.

The problem was how to assign a “volume” to a given infinite set

of numbers or of points in some given space, whether that set is

countable or not. (A set is countable if each member can be assigned

a unique positive integer. The set of all real numbers between 0 and 1

is an example of an uncountable set.) Once the notion of volume

was defined, it could be used for such sets to take the place of the

number of equipossible finite numbers of cases. The French mathe-

maticians Émile (Félix-Eduard-Justin) Borel (1871–1956) and Enri

Léon Lebesgue (1875–1941) and the German mathematician Felix

Hausdorff (1868–1942) were the first to develop this idea in a sys-

tematic way. The lives of both Borel and Hausdorff were decisively

touched by the central political events of the twentieth century. Ar-

rested in Paris in 1940 by the Germans, Borel joined the Resistance

upon his release and was awarded the Resistance Medal after the war.

Hausdorff retired in 1935 as professor of mathematics at the Univer-

sity of Berlin under Nazi law—he was Jewish—and facing the pros-

pect of internment in a concentration camp in 1942, he and his wife

ended their lives by suicide.

Among Borel’s and Lebesgue’s significant contributions to the

theory of functions and integration theory is Borel’s definition, in

1898, of “measurable sets” of numbers and of a “measure” of such

sets. (The integral calculus of Newton and Leibniz had been put on a

rigorous mathematical foundation by Riemann, but the Lebesgue in-

tegral, which Lebesgue published in 1900 as one of his first papers,

was applicable under much more general conditions.) He did this by

generalizing the notion of the length of an interval on a line, a defini-

tion that still today is known as the Borel measure and that has the

virtue of being actually computable to any desired accuracy; the

Lebesgue measure, which was contained in Lebesgue’s doctoral dis-
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sertation, is a powerful generalization of Borel’s. Though Hausdorff ’s

definition of measure never played as important a role in probability

theory as those of Borel and Lebesgue, it turned out to be very use-

ful in another part of physics that supplanted determinism, namely

chaos theory.

The man who brought the mathematical basis of probability the-

ory to its completion was the Russian mathematician Andreä Niko-

laevich Kolmogorov. Born in 1903 in Tambov, where his mother had

stopped on the way home from the Crimea and died giving birth to

him, he was brought up by his mother’s sister, Vera Yakovlevna, and

her father in the village of Tunoshna, not far down the Volga from

Yaroslavl, where his father was exiled, serving as a district council

statistician. (He would die in 1919 in the revolutionary war.) Already

by the age of seven, Kolmogorov showed great mathematical talent in

school, and his aunt and adoptive mother moved to Moscow with

him, where he attended the E. A. Repman private gymnasium, a

school of excellent quality. Primarily interested in biology and Rus-

sian history, he studied independently while having to work with fel-

low senior students on railroad construction. He graduated in 1920

in the midst of revolutionary turmoil and enrolled in the Physics and

Mathematics Department of Moscow University as well as in the

mathematics section of the D. I. Mendeleev Institute of Chemical

Engineering. Though he at first still maintained a serious interest in

ancient Russian history, this was the time when he decided to devote

himself entirely to mathematics.

By 1922 Kolmogorov began writing his first papers on set and in-

tegration theory, some of which attracted considerable attention, and

by 1924 he turned his focus to probability theory. His first article,

jointly with A. Ya. Khinchin (1894–1959), published in 1925, not

only solved an important problem but also established some quite

new methods that were later used repeatedly. By the time he was

awarded the degree of doctor of the physical and mathematical sci-

ences in 1935, he had developed his axiomatization of probability

Probability 203



theory and done his fundamental work on the law of large num-

bers, extending and essentially completing the development begun

by Bernoulli. The magnum opus, Grundbegriffe der Wahrscheinlich-

keitsrechnung (Fundamental concepts of the calculus of probability),

considered a classic today, was published in 1933 in German (the

Russian edition followed in 1936).

In 1929 Kolmogorov joined the Institute of Mathematics and Me-

chanics at Moscow University, where he remained for the rest of

his life, except for the time he spent at his dacha, a big old manor

house in the woods near the village of Komarovka, where he loved to

ski, walk, row, and swim in the nearby river while his aunt Vera

Yakovlevna managed the household. He was promoted to professor

in 1931 and appointed director of the Scientific Research Institute of

Mathematics at Moscow University in 1933; eventually he would

serve as dean of mechanics and mathematics from 1954 to 1958. In

1942 he married a friend from his school days.

The 1930s were an extremely productive period in Kolmogorov’s

life, with papers on applications of probability to biology, genetics,

geology, and physics, including several papers on Brownian motion.

However, around 1940 his interests began to shift toward the notori-

ously nettlesome problem of turbulence in the motion of fluids, to

which he applied his newly evolved theory of random processes.

These were the war years, though, and he also spent considerable ef-

forts working for the military, applying statistics to the effectiveness

of gunnery systems. When the war was over, Kolmogorov became the

mathematics editor of the new Great Soviet Encyclopedia, writing 88

of its mathematics articles himself. For twelve years he served as

president of the Moscow Mathematical Society and from 1982 on as

editor-in-chief of the newly established journal Uspekhi Matama-

ticheskikh Nauk.

After taking up a fresh interest in information and ergodic the-

ory, he began to attack the problem of what constitutes a random

sequence. This question had become particularly acute because of
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the work of Richard von Mises, who advocated a definition of proba-

bility on the basis of observed frequencies in long runs of repeated

trials. Other interests that preoccupied him during those years were

statistics in speech and poetics, and, above all, secondary science ed-

ucation. He was instrumental in the founding of a boarding school,

named after him and affiliated with Moscow University, in which he

was personally active for some fifteen years. Kolmogorov died of Par-

kinson’s disease in a Moscow hospital in 1987.

The mathematics of probability brought to completion by Kol-

mogorov, there remained the important question of its physical ap-

plication and philosophical meaning. The basic Laplacian assump-

tion of an underlying determinism in nature, still accepted in the

nineteenth century even while probabilistic reasoning entered into

physics and became prominent through statistical mechanics, began

to crumble at the beginning of the twentieth. Consequently, simple

ignorance and equipossibilities ceased to serve as the only accept-

able basis for the use of probabilities, and other foundations had to

be seriously explored. The French applied mathematician Antoine-

Augustin Cournot (1801–1877) had already concluded that, apart

from what he called philosophical probability, strict determinism

was not in conflict with an objective understanding of chance, that is,

probability not based on ignorance. Others who had explored this

line of reasoning were the Czech mathematician Bernardus Bolzano

(1781–1848), the British logician John Venn (1834–1923), as well

as the American logician and philosopher Charles Sanders Peirce

(1839–1914). The most important innovator in this field, however,

was von Mises.

The second son of Arthur Edler von Mises, a technical official of

the Austrian state railways, and his wife Adele, Richard von Mises

was born in 1883 in the city of Lemberg, Austria (now Lviv, Ukraine),

where his father was on temporary assignment. His parents were

Jewish, but as a young man Richard converted to Catholicism, in

which he later became deeply intellectually interested. After receiving
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a traditional classical and humanistic education at the Akademische

Gymnasium, he earned his doctorate at the University of Vienna

(his family’s hometown) in 1907 and was appointed professor of ap-

plied mathematics at the University of Strassburg in 1909. His older

brother Ludwig became an internationally prominent economist.

During the First World War Von Mises designed, supervised con-

struction of, and personally test-flew the first large airplane for the

Austro-Hungarian Flying Corps as well as filling the role of adjutant

to the commander of the air force. When Strassburg became French

after the war, he lost his position there and many of his possessions,

and after short stints at the University of Frankfurt and the Technical

University of Dresden, he was called to Berlin, where he served from

1920 to 1933 as professor and director of the Institute of Applied

Mathematics at the university.

In Berlin he met Hilda Geiringer, originally from Vienna, who was

his student, then his assistant and collaborator, and eventually his

wife. After Hitler’s rise to power, von Mises emigrated to Turkey

and taught at the University of Istanbul until his immigration to

the United States in 1939 to join the faculty of Harvard University.

Appointed Gordon McKay Professor of Aerodynamics and Applied

Mathematics in 1944, he remained at Harvard until his death in

1953.

Von Mises had a deep interest in poetry and philosophy: he was

a recognized expert on the poet Rainer Maria Rilke, eventually own-

ing the largest private Rilke collection in the world, and writing a

book about him, Bücher, Theater, Kunst, published while von Mises

was in Istanbul. He also traveled frequently between Istanbul and Vi-

enna, where he remained a member of the Vienna Circle of logical

positivists; his book Kleines Lehrbuch des Positivismus was published

in 1939 in Holland and translated into English under the title Positiv-

ism in 1952.

The primary interest of von Mises as an applied mathematician

was the field of hydrodynamics, on which he wrote a book while at
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Strassburg and a second one, Fluglehre (Theory of flight), begun and

first published while in the Flying Corps. However, the arenas in which

he exerted his most profound influence is that of probability, on

which he published two books; the first, Wahrscheinlichkeit, Statistik

und Wahrheit, in 1928, and the second, Wahrscheinlichkeitsrechnung,

in 1931. A third, Mathematical Theory of Probability and Statistics,

based on his lectures in the early fifties, was published posthumously.

For von Mises, the probability of the outcome of a trial is defined

by its relative occurrence in an infinite repetition of that same trial.

There is no underlying definition based on equal possibilities: the

probability of throwing a seven with two given dice, honest or not, is

simply its relative frequency in an infinite sequence of trials, that is,

the ratio of the number of times of obtaining seven to the total num-

ber of throws if the dice are thrown over and over again, infinitely

many times.

The problem with this approach becomes apparent if you look

back at Bernoulli’s theorem. No matter how honest the dice, occa-

sionally there will be long sequences—even infinitely long ones—of

nothing but snake eyes, or of alternating fives and sixes, and so on;

such runs have a probability of zero, but they do occur. Von Mises

tried to deal with this problem by admitting only “random sequences”

for determining a probability, but that raised another problem: how

do you determine if a given sequence is “random,” especially if you

are able to examine only a finite part of it? Furthermore, he would

admit only sequences for which the frequency of any outcome, calcu-

lated for a finite piece of the sequence, tended to a definite limit as

that piece is made longer and longer, thus putting an additional re-

striction on what he would admit as a “collective.” (Another way of

putting von Mises’s requirements on a collective is to rule out any

possibility of a successful gambling system based on its structure.)

These difficulties led many mathematicians to denigrate von Mises’s

frequency theory of probability or to ignore it altogether while rely-

ing entirely on the measure-theoretical approach of Kolmogorov,
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even though Kolmogorov himself, throughout his work, used the fre-

quency theory of von Mises when it came to applications of proba-

bility to physical problems. Eventually, the theory of random se-

quences, to which Kolmogorov substantially contributed in the 1960s,

led to a resolution of the difficulty (particularly, two papers of 1966

and 1971 by Per Martin-Löf, a student of Kolmogorov’s at the time).

The frequency theory remains the most commonly used “objective”

interpretation of probability.

An opposing view, subscribed to by the British economist John

Maynard Keynes (1883–1946), considers probability as a subjective

quantity. The most extreme expositor of this attitude in the twenti-

eth century—now quite divorced from any Laplacian determinism—

was the Italian mathematician and philosopher Bruno de Finetti

(1905–1985). For Finetti, “probability does not exist,” as he stated in

capital letters in the preface to his book Theory of Probability. Com-

paring the notion of an objectively existing probability to “supersti-

tious beliefs about the existence of Phlogiston, the Cosmic Ether, Ab-

solute Space and Time, . . . or Fairies and Witches,” he considered

probability “as a degree of belief a given individual has in the occur-

rence of a given event. Then one can show that the known theorems

of the calculus of probability are necessary and sufficient conditions

in order for the given person’s opinions not to be intrinsically con-

tradictory and incoherent.”3 Echoes of this view would soon be heard

in some interpretations of quantum mechanics, in which physics is

suffused with probability and chance.

The perceived requirement of being able to realize infinite repeti-

tions or copies of a given system was seen by many physicists and

philosophers as a real stumbling block, particularly when it came to

probabilistic reasoning applied to cosmology or the universe as a

whole. Karl Raimund Popper (1902–1994) made an attempt to avoid

it. Born in Vienna, Popper spent most of his life at the London

School of Economics and at the University of London. In 1965 he

was knighted by Queen Elizabeth II. His general reputation rests pri-
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marily on his influence in the philosophy of science, particularly his

denial that scientific theories are products of a systematic procedure

of induction and his emphasis on falsifiability as a crucial ingredi-

ent of scientific meaning. He maintained that theories are generated

as conjectures, which are subsequently subjected to experimental

checks that attempt to falsify them. Once a theory has successfully

weathered a sufficient number of such tests, it is provisionally ac-

cepted until either falsified or replaced by another theory of wider

scope.

His ideas concerning probability were expounded primarily in his

Postscript to the Logic of Scientific Discovery, called Realism and the

Aim of Science. Based in principle on the frequency theory, Popper’s

propensity theory of probability emphasized that a von Mises collec-

tive, in order to be meaningful in defining the probability of an

event, has to be generated by specific experimental conditions, such

as this particular pair of dishonest dice thrown over and over again

in that special manner. Therefore, the probability defined by the rela-

tive frequency in the sequence generated in this particular way may

be regarded as a “propensity” of the conditions required to set it up.

As a consequence, it becomes possible to speak of the probability of a

singular occurrence under the specified conditions, without the need

for an actual collective. On the negative side, Popper appeared to en-

dow such propensities with physical—some would say, metaphysi-

cal—reality, like a force field. Such interpretations aside, his propen-

sity theory is simply a reasonable variant of the frequency theory.

Now back to physics, and the completion of the probabilistic rev-

olution that began in the nineteenth century.
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The Quantum Revolution

The dawn of the twentieth century saw the birth of a new era in

physical science. Even as both its practical applications and the num-

ber of its practitioners grew at an enormous rate, its underlying phi-

losophy changed drastically. The story started with heat radiation, a

subject that physicists thought they understood and had just brought

under control. The simplest entity on which to test this understand-

ing was a so-called black body, an idealized object that absorbs all the

electromagnetic radiation falling on it from outside without reflect-

ing any of it back. (Such a physical system can also be realized by a

hollow cavity with a small hole as its only opening.) The way the en-

ergy radiated by a black body at a given temperature is distributed

over various frequencies and how that energy distribution changes

with the temperature was known from experiments—for example,

heating up a piece of iron until it was red-hot and noting how the

color changed as the temperature increased. The German physicist

Wilhelm Wien (1864–1928) had been able to show that the most in-

tense radiation was emitted at a wavelength that was inversely pro-

portional to the temperature; this was known as Wien’s displacement

law. However, no one had succeeded in justifying this law on the ba-

sis of Maxwell’s theory combined with thermodynamics, a glaring



failure of basic physical theory exacerbated by the fact that a detailed

relation describing the emitted frequency distribution at a given tem-

perature that Lord Rayleigh had derived strongly disagreed with ex-

perimental results. (This law, later independently derived by the Brit-

ish astrophysicist James Jeans [1877–1946], became known as the

Rayleigh-Jeans law.) An imaginative leap was required to rescue phys-

ics, and this leap, which led to much intellectual ferment, was taken

not by a young revolutionary but by an already well-established Ger-

man physicist, Max Planck.

Max Planck was born in Kiel, Germany, in 1858, the sixth child

of a professor of jurisprudence at the University of Kiel. When he

was eight years old, the family moved to Munich, where he was edu-

cated at the Maximilian Gymnasium and subsequently at the Univer-

sity of Munich. After studying mathematics and physics with Gustav

Kirchhoff and Hermann Helmholtz in Berlin, he obtained his doc-

torate at Munich in 1879 with a dissertation on thermodynamics.

His first academic position was at the University of Kiel, after which

he moved to the University of Berlin, where he became professor of

physics in 1892, a position he retained until his retirement in 1926.

Married twice—his first wife died in 1909—Planck had four chil-

dren. His eldest son died as a soldier in the First World War, both of

his twin daughters died shortly thereafter, during childbirth, and his

second son was executed in 1944, accused of being involved in a con-

spiracy against Hitler.

A religious and politically conservative man, Max Planck was one

of the signatories of a notorious manifesto “of ninety-three intellec-

tuals” issued in 1914 that disclaimed any German responsibility for

the war and denied that the widely reported alleged misconduct by

its army in Belgium could possibly have occurred, but he soon bit-

terly regretted his rash signature. This lapse notwithstanding, for the

entire first half of the twentieth century Max Planck would represent

what was best in German science at a time when remaining honor-

able was difficult and even dangerous in his country. He was instru-
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mental in persuading Einstein to come to Berlin in 1914, creating a

special position for him there. Appointed president of the Kaiser

Wilhelm Institute in Berlin in 1930, he resigned from this post in

1937 in protest against the treatment of Jewish scientists by the Nazi

government. After the Second World War, the Institute was renamed

the Max Planck Institute and moved to Göttingen, with Planck rein-

stated as its president. He died in Göttingen in 1947.

Scientifically, Max Planck embodied the reluctant but willing tran-

sition of the old guard from classical physics to an entirely new

probabilistic paradigm in which iron-clad laws changed to statistical

regularities. To admit the possibility, even if rare, of a violation of the

second law of thermodynamics by a fluctuation was a wrenching

thought for him, and he only grudgingly accepted atoms, which, af-

ter all, were ultimately responsible for the statistical nature of ther-

modynamics. Yet he was the physicist who fired the first shot in a sci-

entific revolution that he did not welcome. In 1900, without any

underlying rational justification other than strictly mathematical pur-

poses, he applied Boltzmann’s probabilistic reasoning to calculate the

entropy of the energy distribution in a black body by means of

an unheard-of assumption: that the energy E of electromagnetic

radiation of a given frequency f emitted or absorbed by the walls of

a cavity could not take on any arbitrary value but had to be pro-

portional to that frequency, E = hf, or integer multiples thereof.

The constant of proportionality, h, now considered one of the most

fundamental in nature, came to be known as Planck’s constant. (Ac-

tually, Boltzmann himself had used discrete energies for his calcula-

tion of probabilities, but his discretization was not tied to a radiation

frequency as Planck’s was.) In that way—and only that way—Planck

was able to obtain Wien’s displacement law, and eventually even

to derive a new energy-distribution law for black bodies to take

the place of the Rayleigh-Jeans formula. Planck’s new radiation law

turned out to agree well with experimental data. This would not be
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the last time in this field that imaginative scientists generated pro-

ductive new theoretical ideas that appeared totally unjustified.

The next step in the revolution was taken by Einstein in 1905, but

to understand it we have to retrace our steps a bit. In the course of

their research on electrical conduction through gases, the German

physicists Julius Plücker (1801–1868) and Johann Wilhelm Hittorf

(1824–1914) had found a new kind of ray, now called cathode rays,

whose presence becomes visible by a glow either in a gas or on the

surface of a glass vessel containing a gas (such as the CTR monitor of

a computer or television picture tube). The nature of these mysteri-

ous rays, which could be deflected by a magnet—now known to be

streams of electrically charged particles called electrons—was uncov-

ered in 1897 by the British physicist J. J. Thomson (1856–1940).

(This discovery was not unique to Thomson. The two German physi-

cists Emil Wiechert [1861–1928] and Walter Kaufmann [1871–1947]

both also independently discovered the nature of cathode rays at

about the same time.)1 In the meantime, Heinrich Hertz had found

in 1887 that electric spark discharges were enhanced by exposure to

bright light. What he had discovered came to be known as the photo-

electric effect. In terms of J. J. Thomson’s discovery, Hertz had found

that when light shines on a metal surface, the surface emits electrons.

Some fifteen years later, when Philipp Lenard investigated the photo-

electric phenomenon in more detail, his data showed something very

puzzling about this emission: increasing the brightness of the light

produced more electrons, but it did not increase their speed, which

was entirely determined by the color of the light. No one was able to

understand this puzzle until Einstein solved it as part of one of his

three groundbreaking papers in the year 1905.

If light of frequency f consisted of particles, later called photons,

each of which had the energy E = hf (the same connection between

energy and frequency that Planck had used in a somewhat different

context, and with the same constant h), then Lenard’s observation
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was easily explained: the ejection of each electron was the result of a

collision with a photon; the brighter the light, the more photons, and

hence more electrons; blue light has a higher frequency than red, so

its more energetic photons will give the electrons a bigger kick than

red light will.

Did this mean that Einstein denied the validity of Thomas Young’s

interference experiment and wanted to return to Newton’s corpuscu-

lar theory of light? No: in the first of many counter-intuitive aspects

of the quantum theory, light, somehow, behaved both as a wave of

frequency f and as a particle of sorts of energy E = hf (though pho-

tons could not be just “little billiard balls”). Thus was born the quan-

tum theory of light. The most direct confirmation of the particle na-

ture of light came in 1923, when the American physicist Arthur

Holly Compton (1892–1962) discovered what came to be known as

the Compton effect: when electromagnetic waves, such as X-rays, are

scattered by electrons, their wavelengths are changed exactly as if

they were particles colliding at an angle, bouncing off with reduced

energy (consequently with reduced frequency, by Planck’s relation,

therefore with increased wavelength, since the wavelength is inversely

proportional to the frequency).

In the last decade of the nineteenth century all sorts of new rays

were found, and the unraveling of their nature added unexpected as-

pects to the still controversial theory of atoms. First came the discov-

ery of X-rays in 1895 by the German physicist Wilhelm Konrad

Röntgen (1845–1923). In the course of studying the properties of

cathode rays, which caused luminescence in certain chemicals, he

found that the glow continued to be produced when the cathode-ray

tube was covered by cardboard, and even when the chemical was

taken into the next room. The penetrating rays were obviously not

the same as cathode rays but were produced as cathode rays hit the

glass walls of the tube. He named these previously unknown, myste-

rious rays X-rays. When he went public with his discovery, showing

photographs of his hand with its bone structure made visible be-
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cause the X-rays easily penetrated skin and tissues but were absorbed

by bones, he caused a sensation. In 1912, when the German physicist

Max von Laue (1879–1960) sent X-rays through crystals, he found

a diffraction pattern similar to the one Thomas Young had found

when shining light through slits. He concluded from this experiment

that X-rays (which could not be deflected by electric or magnetic

fields) were electromagnetic radiation like light but of much shorter

wavelength. Von Laue’s patterns also demonstrated that crystals were

made up of regular arrangements of atoms and that the observed

fringes gave detailed information about the structure of the diffract-

ing crystals—a fact established by the young British physicist Wil-

liam Lawrence Bragg (1890–1971), together with his father William

Henry Bragg (1862–1942). Some forty years later, this insight would

help in the unraveling of the structure of DNA by Francis Crick and

James Watson.

During the same year, 1896, that Röntgen announced his dis-

covery of X-rays, the French physicist Henri Becquerel (1852–1908)

quite accidentally found radioactivity. In his investigation to deter-

mine if the fluorescence of certain crystals when exposed to light

produced Röntgen’s X-rays, he had left some uranium salts wrapped

in paper on a photographic plate in a drawer. Since the salts were

in the dark, they could not fluoresce. To his astonishment he later

found that the plate was clouded, which indicated that the uranium

salt must have emitted a new kind of radiation that penetrated the

paper and clouded the plate. His subsequent experiments revealed

that the emitted radiation, later called beta rays, could be deflected

by a magnet and seemed to have the same properties as the particle

rays J. J. Thomson had found: they consisted of electrons. Becquerel’s

serendipitous finding, however, was only the first step in the discov-

ery of radioactivity; the real heroine of that story was Marie Curie.

Born in 1867 in Warsaw, Poland, at that time under Russian dom-

ination, Maria Sklodowska was the fifth child of parents who were

both teachers. Her father taught mathematics and physics at a sec-
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ondary school and her mother managed a private boarding school

for girls. When Manya, as she was called, was ten, her mother died.

As her father was kept from decent teaching positions for political

reasons, the family had to make ends meet by taking in boarders.

After graduating from high school with a gold medal, Manya took a

job as a governess, sending part of her earnings to support her older

sister Bronia, who was studying medicine in Paris. In addition to a

passionate involvement in Polish political causes, Manya voraciously

read not only science but all the literature she could lay her hands

on, from Dostoevsky to Karl Marx, and gave lessons to the peas-

ant children on the estate of her employers. Following her sister to

Paris at the age of 23, she managed to obtain a scholarship and

quickly passed her licence in physics and mathematics, both with

high honors.

Three years later Manya met the physicist Pierre Curie, eight years

older than she and employed as director of laboratory work at the

École Municipale de Physique et Chimie. Pierre had been born in

1859 in Paris, the son of a physician, educated at home and subse-

quently at the Sorbonne. His experimental research made several

lasting contributions to our knowledge of the way magnetic proper-

ties of materials change with temperature. In 1895 Manya and Pierre

were married, and after two years Manya gave birth to their daughter

Irène, who would grow up to become a famous physicist in her own

right.

From 1896 on, Marie Curie became intensely interested in the

new discoveries by Röntgen and especially in the rays given off by

uranium that Becquerel had found. What she wanted to investigate,

together with Pierre, who abandoned his own work to join her, was

whether there might be other substances emitting such radiation. Af-

ter finding that thorium did too, and that the mineral pitchblende

emitted much more radiation than could be accounted for by its ura-

nium content, they discovered two new radioactive elements, polo-

nium and radium. All these substances produced other radioactive
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elements as well as either helium or beta rays. Αll of this research was

done in a substandard laboratory in the École de Physique et Chimie,

which was the only place of work available to them. Many honors

followed, but it was not until the year after their joint Nobel Prize in

physics with Becquerel in 1903 that Marie was appointed as Pierre’s

assistant with a salary—she had been working without pay until

then. In 1904 their second daughter, Eve, was born, and Pierre was

appointed to a newly created chair in physics at the Sorbonne.

Two years later, after Pierre Curie was accidentally killed by a

horse-drawn carriage, Marie was appointed to the chair her husband

had occupied, the first woman to teach at the Sorbonne. In 1910 she

declined the Legion of Honor, as had Pierre in 1903, and she never

accepted any royalties for the lucrative industrial applications of ra-

dium. The following year Marie Curie was awarded the Nobel Prize

in chemistry for isolating polonium and radium as pure metals; it

was the first time that a person had won two Nobel Prizes in science,

and would remain the only time for more than half a century.

During the First World War, Marie Curie aided the French army’s

care for the wounded by helping to equip ambulances with X-ray

apparatus, and the International Red Cross appointed her head of

its Radiological Service. Assisted by her daughter Irène, she also cre-

ated new courses in radiology for medical orderlies. Impressed by

Madame Curie’s generosity and scientific accomplishments, Ameri-

can women made her a gift of a gram of radium, paid for by na-

tional subscription and presented to her in 1921 by President Har-

ding while she was on a tour of the United States. By the late 1920s,

however, her health began to deteriorate; she underwent four cat-

aract operations and developed lesions on her fingers, the result

of handling radium without proper protection. A few months after

Irène (1897–1956) and her husband Frédéric Joliot (1900–1958) an-

nounced their discovery of artificial radioactivity, Marie Curie en-

tered a nursing home and then a sanatorium in Sancellemoz in the

French Alps, where she died in 1934.
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However important the discovery of radioactivity as a fact of na-

ture was, its long-range significance consisted in raising basic ques-

tions: Where did the electrons and the helium originate? Why were

new radioactive elements produced as byproducts? Rather than be-

ing the stable ultimate building blocks of nature, were atoms them-

selves changeable or unstable? Did the ejection of energetic particles

not imply that conservation of energy was violated? These were fun-

damental questions, and the first physicist to offer some answers

while at the same time adding immensely to our knowledge of atoms

was Ernest Rutherford.

Born in 1871 near Nelson, New Zealand, his father a farmer and

wheelwright, Rutherford loved to build models and showed himself

to be a very bright boy, but he exhibited no special scientific aptitude

as a child. After entering Nelson College (what we would call a prep

school) at the age of sixteen, he went on to Canterbury College,

Christchurch, receiving his B.A. degree at 21, and began studying

physics and mathematics, obtaining B.S. and M.A. degrees. In 1895

he sailed for England to study in Cambridge at the Cavendish Labo-

ratory, as J. J. Thomson’s first research student. Three years later, he

left for Montreal, where he had been offered a professorship in phys-

ics at McGill University. The laboratory facilities there, at that time

superior to any in Britain, enabled him to perform experiments on

radioactivity. In 1900 he returned to New Zealand to marry Mary

Newton, with whom he had fallen in love while in Christchurch.

They had one daughter, born in 1901. Leaving Montreal for England

in 1907, he accepted the chair in physics at Manchester University,

where he built a world-famous laboratory, second in England only to

Thomson’s Cavendish, and studied the atom.

After working on methods for locating submarines during the

First World War, Rutherford moved to Cambridge as professor of

physics and director of the Cavendish Laboratory, succeeding

Thomson, and was appointed professor of natural philosophy at the

Royal Institution as well. He was knighted in 1914, given a peerage in
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1921 (taking the title Lord Rutherford of Nelson), and was person-

ally presented with the Order of Merit by King George V. From 1925

to 1930 he served as president of the Royal Society, and during the

1930s he was president of the Academic Assistance Council, helping

refugee scientists who had escaped Nazi Germany. Rutherford, a man

who “had no cleverness—just greatness,” died in Cambridge in 1937,

after an accidental fall while gardening.2 The greatest experimental

physicist of the twentieth century was buried in Westminster Abbey.

A few weeks after Röntgen discovered X-rays, Thomson put his

new research student to work on measuring the effects of these rays

on electric discharges in gases. Rutherford found that they produced

carriers of positive and negative electricity, the negative ones shortly

to be identified by Thomson as identical to his electrons. When ra-

dioactivity was discovered by Becquerel in uranium and by the Cu-

ries in other elements such as radium, Rutherford turned his atten-

tion to the emissions in these processes. He found that there were

two quite disparate kinds, one easily absorbed and the other more

penetrating; he named them alpha and beta rays. The former would

later be shown to be doubly ionized helium atoms—in other words,

helium atoms carrying a double positive electric charge—and the

latter, electrons. (Rutherford made this identification after moving

to Manchester and after the chemists Frederick Soddy [1877–1956,

English] and William Ramsay [1852–1916, Scottish] had ascertained

that indeed helium was produced in the course of the transmutation

of radium.) However, with Soddy’s extremely valuable collaboration

in these experiments at McGill, he also found that some of the ema-

nations, as he called them, of radioactive elements produced radioac-

tivity themselves, giving rise to other radioactive daughters until the

chain ended with a stable element; in the case of radium, the end

product was lead. The activity of most of these daughter elements

decreased according to an exponential curve, each with a characteris-

tic half-life (the time during which an individual atom has a 50/50

probability of decaying, or in statistical terms, the time after which
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half of any given large number of radioactive atoms have decayed).

Exactly how the helium atoms and electrons could emerge from the

radioactive atoms was still a mystery.

In 1902 Rutherford and Soddy announced a rather surprising the-

ory they called transmutation. In the course of radioactivity, they

said, elements are transformed into one another; it is both an atomic

phenomenon and a chemical one, in which new kinds of matter are

produced, as though alchemy had been resurrected. The reason why

the activities of some elements such as radium and thorium seemed

to remain constant and never diminish—thus appearing to create

energy out of nothing—was simply that their half-lives were ex-

tremely long. Since these activities nevertheless tended to disappear

eventually, together with the elements that caused them, radioactiv-

ity did not violate the conservation of energy, as some had feared.

The new theory of radioactivity was almost instantly accepted, aside

from a few conservative skeptics like the elderly Lord Kelvin.

When he came to Manchester, Rutherford focused on experiments

with his alpha particles, the positively charged helium ions, which,

he found, produced visible scintillations when striking a luminescent

screen. Later, Hans Geiger, the research assistant who had helped

with these experiments, invented a more convenient method of de-

tecting charged particles, which is still known as the Geiger coun-

ter. In 1909, Rutherford and Geiger suggested to Ernest Marsden,

an undergraduate at the time, that he investigate the scattering of

alpha particles as they pass through a thin metal foil, paying par-

ticular attention to large-angle scattering. To their surprise, Mar-

sden, with Geiger’s help, found that a small but significant num-

ber of alphas were deflected by more than ninety degrees, that is,

in the backward direction! “It was almost as incredible as if you

fired a fifteen-inch shell at a piece of tissue paper and it came back

and hit you,” was Rutherford’s reaction. The model of the atom that

Kelvin and J. J. Thomson had proposed to account for the radio-

active emission of electrons—the negatively charged electrons dis-
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tributed like plums in a positively charged pudding, leaving the

atoms neutral—could not possibly account for these experimental

results.

By 1910 Rutherford came to the conclusion that the only way such

backward deflection of alpha particles, much heavier than electrons,

could occur was for the positive electric charge in an atom, and most

of its mass, to be concentrated in a central region whose diameter

was only about a 100,000th of that of the atom, the electrons some-

how surrounding this nucleus and leaving most of the atom empty

space. Rutherford had discovered the nuclear atom, and his discovery

would occupy physicists intensely for the next half century, with re-

percussions ranging from geology to astrophysics to world politics.

But at first, the scientific community could not have cared less.

Then in 1912 a young Danish theoretical physicist who joined Ruther-

ford’s laboratory not only paid attention but used and extended the

new knowledge to brilliant advantage. His name was Niels Bohr. It

was clear to him that radioactivity had to be an action of the central

nucleus, whereas chemical phenomena were the action of the elec-

trons in the atom.

With the help of Bohr’s intuitive theoretical understanding, Ruth-

erford’s discoveries of the nucleus and of the regularity properties

of radioactivity—its intrinsic randomness notwithstanding—would

pave the way for an eventual physical basis of the periodic table

of the elements, which the Russian chemist Dmitri Ivanovich

Mendeleyev (1834–1907) had introduced with great effect in chemis-

try but which was still regarded by many as no more than a fortu-

itous book-keeping device. Rutherford’s discoveries would also usher

in the age of atomic and nuclear physics, especially after he went on,

a short time after World War I ended, to discover artificial transmu-

tations of nuclei, in which the collision of an alpha particle with a

stable nucleus knocks off a proton—a hydrogen nucleus—thereby

bringing forth a new element. In 1934 Rutherford even achieved

for the first time what later would be called fusion; together with
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Paul Harteck (1902–1985, German) and Marcus Oliphant (1901–

2000, Australian), he produced helium as well as tritium by using the

newly discovered heavy water to bombard deuterium with deuterons.

(In modern language, a deuteron is a nuclear particle made up of a

proton and a neutron; deuterium is the analogue of hydrogen, but

with a deuteron as its nucleus rather than a proton; heavy water is a

compound like water, except that deuterium replaces hydrogen. Tri-

tium is the analogue of hydrogen, but with a triton as its nucleus; a

triton is made up of a proton and two neutrons.) In other words, two

lighter atoms were fused into one heavier one. Fundamental as atoms

were, they could no longer be regarded as the ultimate, stable, and

unalterable constituents of matter.

Niels Bohr was born in 1885 in Copenhagen. His father was a pro-

fessor of physiology at the University of Copenhagen and his mother

the daughter of a Jewish banker. His younger brother, Harald, proba-

bly the more brilliant of the two boys, grew up to become a well-

known mathematician. After showing himself in school to be tal-

ented but not outstanding, Niels entered the University of Copenha-

gen to study physics, mathematics, and chemistry, earning his doc-

torate at the age of 25 with a dissertation on the behavior of electrons

in metals. Leaving immediately for Cambridge but finding Thomson

indifferent to his ideas, he moved on to Manchester, the domain of

Rutherford, who had just discovered the nuclear atom.

The next year, 1912, Bohr returned to Copenhagen, unsuccessfully

applied for a professorship in physics at the university, and married

Margrethe Nørlund. Between the years 1916 and 1928 they had six

sons. Christian, the eldest, died tragically at the age of seventeen in a

sailing accident, his father on board but unable to help. After return-

ing to Manchester, where Bohr became famous for his model of the

atom, he prevailed upon the Danish government to appoint him to a

professorship at the University of Copenhagen. The government also

built the Institute for Theoretical Physics for him, of which he be-
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came the director in 1920, a position he retained until his death in

1962.

Bohr’s institute became the center for the development of quan-

tum mechanics, at its height attracting all the major players from

around the world at least for a temporary stay. After the ascent of

Hitler, he joined the governing board of the Danish committee for

the support of refugee intellectuals. During the Second World War,

when the German army occupied Denmark, Bohr was active in the

resistance movement. But being in special danger because of his Jew-

ish mother, he escaped to Sweden in a fishing boat, and from there

flew to England. He then sailed to the United States, where he partic-

ipated in the development of the atomic bomb at Los Alamos (re-

taining the code name Nicholas Baker he had used during his escape

from German-occupied Denmark). After the war, Bohr became a

strong advocate for international control of nuclear weapons, writing

a famous open letter to the United Nations in which he pleaded for a

free exchange of ideas among all nations of the world. In 1952 he was

instrumental in the establishment of CERN, the European Centre for

Nuclear Research at Geneva. Bohr died of heart failure in Copenha-

gen in 1962.

When Bohr joined Rutherford’s Manchester laboratory, he made

it his primary task to try to understand how the nuclear structure of

the atom could possibly remain stable. The particle nature of elec-

tricity, that is, the electric charge of the electron, was finally pinned

down in 1913 by the American physicist Robert Andrews Millikan

(1868–1953) by means of an accurate measurement known as the

Millikan oil-drop experiment, repeated with some difficulty by phys-

ics students to this day the world over. But the Maxwell equations de-

creed that an atomic structure such as the one proposed by Ruther-

ford would quickly collapse, since electrons orbiting a central charge

(like planets in the solar system) would lose their energy by radiating

electromagnetic waves as they spiraled toward the center. Taking his
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cue from Planck, Bohr postulated as an ad hoc solution that an elec-

tron in the atomic solar system would remain stable only in certain

specific orbits, namely those for which its angular momentum is an

integral multiple of Planck’s constant h. Moreover, when an electron

makes a jump from an orbit of energy E1 down to one of lower en-

ergy E2, it emits electromagnetic radiation whose frequency f is con-

nected to the energy loss E = E1 - E2 of the atom by Planck’s relation

E = hf. (Conversely, an atom of energy E2 on which radiation of that

same frequency shines will absorb it and jump to the energy E1.) In

the orbit of lowest energy, called its ground state, the atom remains

stable forever. None of these rules was based on, or even compatible

with, any known physical laws. But they could easily be applied to the

simplest atom, that of hydrogen, which contained only one electron,

and compared to the spectrum of light emitted by heated hydrogen

gas, whose atoms were “excited” by collisions.

Every element, when heated up, was known to emit light consist-

ing of a mixture of characteristic colors or frequencies called its spec-

trum. When passed through a prism, as in Newton’s experiments,

these colors are separated and, on a photographic plate, form a series

of spectral lines that identify the element like a fingerprint. The sci-

ence of spectroscopy had been initiated by the German physicists

Joseph von Fraunhofer (1787–1826) and Gustav Robert Kirchhoff

(1824–1887). Fraunhofer also discovered dark lines in the spectrum

of the sun, which were later understood to be caused by the absorp-

tion of light rather than emission. Perhaps the most spectacular re-

sult of spectroscopy was the discovery of the element helium in the

sun before it was known on the earth. The spectrum of hydrogen had

been handily expressed in 1885 by the Swiss school teacher Johann

Jacob Balmer (1825–1898) in a simple formula, and Bohr’s rules for

the energy levels led exactly to Balmer’s formula for the spectrum of

the emitted radiation. Justified or not, the Bohr atom worked. In-

deed, it was further confirmed in 1914 by an experiment carried out

by the German-born American physicist James Franck (1882–1964)
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together with Heinrich Hertz. Directing a beam of electrons at a bulb

of mercury vapor, they observed that at certain specific energies the

electrons experienced “resonances’’ and the mercury vapor began to

glow. What was happening, they realized, was that some beam elec-

trons were colliding with electrons in the mercury atoms, kicking

them up to an excited level, subsequent to which these atomic elec-

trons jumped back down, causing the emission of light, all in accor-

dance with Bohr’s picture.

At this point, Einstein again entered the picture by making a di-

rect connection between Bohr’s quantum jumps and Planck’s expla-

nation of the spectral distribution of black-body radiation. Prompted

by the observed randomness and unpredictability of individual ra-

dioactive emission, he introduced the idea of probability—forever

after the prime characteristic associated with the quantum theory—

to explain the absorption and emission of radiation by atoms and

molecules in one of Bohr’s quantum states. This transition probabil-

ity, translated into statistics for large numbers of atoms, would ac-

count for the variations in intensity of light emitted by elements in

different atomic transitions. Bohr’s discovery of the atomic emission

of radiation of a specific frequency was thereby directly connected to

Planck’s hypothesis in the black-body law. Though this did not en-

dow either of these notions with any more physical justification, at

least it reduced the number of postulates that had to be swallowed

ad hoc.

Calculating the probability of emission of photons by atoms, Ein-

stein distinguished between spontaneous transitions and stimulated

ones. The latter occurred when electromagnetic radiation of the

proper frequency shined on an atom in an excited state, inducing it

to jump to a lower state and emit radiation of the same frequency

on its own. Some forty years later, the American physicist Charles

Townes (b. 1915) and independently the Russians Nikolai Gennadi-

yenich Basov (1922–2001) and Aleksandr Mikhailovich Prokhorov

(1916–2002) would experimentally exploit this process in their in-
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vention of the maser (acronym for “microwave amplification by

stimulated emission of radiation”) in 1953, which was followed up

with the first construction of a laser (“light amplification by stimu-

lated emission of radiation”) by Townes together with Arthur Leon-

ard Schawlow (1921–1999) and independently shortly thereafter

by the American physicist Theodore Maiman (b. 1927). After the

Dutch-born American Nicolaas Bloembergen (b. 1920) began to de-

velop the experimental area of laser spectroscopy, the new fields of

optical pumping and quantum optics turned out to have enormous

practical repercussions in many areas of physics and technology. The

theoretical underpinning of these fields was provided, respectively,

by the French physicist Alfred Kastler (1902–1984) and the American

physicist Roy J. Glauber (b. 1925).

Forming the beginning of what later came to be known as the

“old” quantum theory, Bohr’s rules were soon generalized by the

German physicist Arnold Sommerfeld (1868–1951) and by Einstein

to make them applicable to mechanical systems other than atoms,

but the resulting conglomeration of ad hoc rules could hardly be

called a theory. In addition to its reliance on probabilities, its central

feature, well confirmed by experiments, was that physical systems

which previously were thought to have a continuous range of possi-

ble energies were now allowed only specific discrete values—just as

Planck had anticipated in order to account for black-body radiation,

and Einstein had for light—but it still lacked any kind of internal co-

herence. Nevertheless, the Bohr model of the atom explained many

intricate aspects of the spectra of light emitted by elements, and it

also accounted for the regularities of the periodic table of the ele-

ments, except for a puzzling feature: in order to build up an atom of

a heavy element in its stable ground state, its many electrons all had

to be assumed to move in different orbits. Why did they not all con-

gregate in the level with the lowest energy? The puzzle was solved by

Wolfgang Pauli.

The son of a distinguished professor of chemistry, Pauli was born
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in 1900 in Vienna. While in high school, he filled periods of boredom

reading the history of classical antiquity, advanced works in mathe-

matics, and Einstein’s papers on the general theory of relativity. To

study theoretical physics, he went to Munich and worked with Ar-

nold Sommerfeld, who gave him the task of writing an article about

Einstein’s theory for the newly published Encyklopädie der mathema-

tischen Wissenschaften. The result was a 250-page monograph, writ-

ten with such critical acumen and clarity by the nineteen-year-old

Pauli that it remained in print as a classic for many years.

For the rest of his life, Pauli would be the super-critic whose judg-

ment about new ideas, avidly sought and often acidly expressed, was

extremely acute and almost always correct—with a few glaring ex-

ceptions. (An example will be given later.) He was also so clumsy in

the laboratory that if an experiment failed within a mile of him, he

was jokingly blamed. After receiving his doctorate in 1922 he became

Max Born’s assistant in Göttingen, absorbed the wisdom of Bohr in

Copenhagen, moved in 1923 to the University of Hamburg, and then

in 1928 moved to Zurich, succeeding Peter Debye upon his retire-

ment as professor of theoretical physics at the Eidgenössische

Technische Hochschule (ETH). The following year he married a

young dancer, Käthe Deppner, who soon left him, driving Pauli into

psychoanalysis with a man he greatly admired, Carl Jung. His subse-

quent marriage to Francisca Bertram in 1934 turned out to be stable.

He remained at the ETH until the end of his life, except for a stay at the

Institute for Advanced Study in Princeton from 1940 to 1945. Upon

his return he became a Swiss citizen, and he died in Zurich in 1958.

Apart from his extremely constructive role as a critic, Pauli made

two important contributions to fundamental physics. The first was

his improvement on the Bohr atom. With no more basic physical jus-

tification than Bohr’s idea that the electrons’ orbits had to be defined

by certain specific quantum numbers, he postulated what came to be

known as Pauli’s exclusion principle: no two electrons were permit-

ted to occupy an orbit with the same quantum numbers. This princi-
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ple at once produced the ladder of atoms whose electrons moved in

larger and larger orbits—rather than all squirming into the lowest

one—so as to account for the regularities of the periodic table. Later

it would play an extremely important role in explaining the structure

of matter and the constitution of atomic nuclei.

As an incidental byproduct of this suggestion, he also postulated

that a fourth quantum number, with only two possible values, be

added to the three previously used (two quantum numbers specified

the magnitude and z-projection of the angular momentum, and the

third, called principal, specified the electron’s order in the hierar-

chy). He thereby clarified some of the earlier spectral formulas that

did not quite work. His two-valued quantum number, for the ma-

nipulation of which he later introduced a very useful mathematical

technique, would soon turn out to be physically explained by a novel

property of the electron: its spin angular momentum, discovered

in 1925 by two young Dutch doctoral students at the University

of Leiden, Samuel Goudsmit (1902–1978) and George Uhlenbeck

(1900–1988).

Pauli’s second fundamental contribution was his explanation in

1930 of a puzzling apparent loss of energy and angular momentum

during the process of radioactivity in which an electron was emitted

(also called beta decay). Whereas Bohr was ready, in desperation, to

call the sacred conservation laws into question, Pauli suggested that

the culprit was a massless—or almost massless—electrically neutral

particle emitted at the same time, carrying away both some kinetic

energy and half a unit of angular momentum. Enrico Fermi later

named this elusive particle, which interacted only extremely weakly

with any others and hence was very hard to detect directly, the neu-

trino. Although indirect evidence for its existence accumulated rap-

idly, almost thirty years passed before it was found. The neutrino was

experimentally detected in 1959 by Frederick Reines (1918–1998),

Clyde L. Cowan (1919–1974), and their collaborators F. B. Harrison,

H. W. Kruse, and A. D. MacGuire. (Today, we say that a neutrino ac-
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companies the emission of a positron, and an antineutrino that of an

electron.)

For the production of a much more general theory than the Bohr-

Sommerfeld “old quantum theory,” eventually called quantum me-

chanics, with all the needed coherence and comprehensiveness, we

have to thank three physicists: Heisenberg, Schrödinger, and Dirac,

as well as Max Born, but Niels Bohr also played an important part.

Werner Karl Heisenberg, born in 1901 in Würzburg, Germany, was

the son of a very scholarly father who taught ancient languages at a

Gymnasium (later appointed professor of Greek philology at the

University of Munich). Beginning piano lessons at an early age,

Heisenberg became an excellent player, an accomplishment he re-

tained throughout his life. In school he showed an outstanding mathe-

matical talent and intended to study pure mathematics when he

entered the University of Munich, but instead he wrote his doctoral

dissertation under the guidance of the mathematical physicist Ar-

nold Sommerfeld, obtaining his Ph.D. in 1923.

These were years of political turmoil in postwar Germany, and

Heisenberg shared the romantic ideals of a nationalistic German

youth movement in which he became a leader. But in science his

most profound inspiration came from Niels Bohr, whose lectures he

had occasion to attend in 1922. For the next three years Heisenberg

served as assistant to Max Born in Göttingen, with several extended

visits to Munich and Copenhagen to work with Bohr, whose assis-

tant he became in 1926. In 1927 he accepted a professorship in theo-

retical physics at the University of Leipzig, where he remained until

his appointment as director of the Max Planck Institute in Berlin in

1942. He married Elisabeth Schumacher in 1937, and they had seven

children.

After Hitler came to power, Heisenberg verbally defended Jewish

and leftist physicists against the Nazi government, without notable

success; a German nationalist but no Nazi, he refused to leave Ger-

many in protest. The leaders of the “German physics” movement,
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Johannes Stark (1874–1957) and Philipp Lenard, and their followers,

attacked him for representing “Jewish physics”—this meant theoreti-

cal physics, with Albert Einstein their arch-villain. Heisenberg’s pre-

cise role in Germany’s unsuccessful endeavor, which he headed, to

develop nuclear energy and possibly a nuclear bomb during the Sec-

ond World War remains controversial. After the war, he became di-

rector of the Max Planck Institute in Göttingen, which in 1958 was

moved to Munich, and he remained its director until 1970. Heisen-

berg died in 1976 in Munich.

Born in 1887 in Vienna, Erwin Schrödinger was the oldest of the

three founders of quantum mechanics, barely two years younger

than Bohr. He was the only child in an educated, upper middle-class

family, brought up as a Protestant in a mostly Catholic country. After

elementary home-schooling, he attended the Akademisches Gymna-

sium, which offered a traditional curriculum in the humanities, and

excelled especially in the ancient grammars, as well as in mathemat-

ics and physics. Enrolled in the University of Vienna, he began study-

ing theoretical physics as soon as it was offered again after the death

of Boltzmann, but he also regularly attended the theater, taking notes

on the backs of the printed programs. At the age of 22 he received his

doctorate and remained at the university as an assistant until the

outbreak of the First World War four years later.

During the war, he served as an artillery officer at a post where he

could pass his time immersed in the philosophy of Spinoza and

Schopenhauer when he was not reading physics, and particularly

learning about Einstein’s general theory of relativity. The war over

and the Austrian monarchy destroyed, the only job immediately avail-

able to him was his old assistantship back in Vienna. He also met

Annemarie Bertel, whom he married in 1920. Academic positions in

Germany being easier to come by, he accepted a number of short-

term appointments in Jena, Stuttgart, and Breslau before moving to

Switzerland to become professor of physics at the University of Zu-

rich in 1921. In 1927 Schrödinger was offered the chair at the Univer-
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sity of Berlin vacated by Max Planck at his retirement, which he ac-

cepted.

Outraged at the dismissal of outstanding Jewish scientists and

others by the Hitler government, Schrödinger left Germany in 1933,

becoming a fellow at Magdalen College, Oxford. By 1936 he felt so

homesick that he returned to Austria, accepting a position at the

University of Graz. Germany’s annexation of Austria put an end to

this homecoming, when he was subjected to retaliation for his earlier

flight from Germany and dismissed from his post. Coming to his res-

cue, Eamon de Valera, the prime minister of Ireland at the time, ar-

ranged for him to leave Austria, to pass through England after the

outbreak of the Second World War on his way to Ireland, and se-

cured a position for him at the newly established Dublin Institute for

Advanced Studies. There Schrödinger remained for the next seven-

teen years, working on various aspects of quantum mechanics and

on the general theory of relativity, as well as pursuing studies in In-

dian philosophy. He also became intensely interested in biology, and

in particular the application of quantum mechanics to the founda-

tion of life. His little book, What Is Life? persuaded a number of

young physicists to turn their interest to biology, where some of

them became very productive and prominent (Francis Crick among

them). In 1956 Schrödinger returned to Vienna, which welcomed

him warmly and showered him with honors. He retired from the

university in 1957 and died of heart disease in the Tyrolean village of

Alpbach in 1961.

Paul Adrien Maurice Dirac, the youngest of the three creators

of quantum mechanics, was born in 1902 in Bristol, England, his

mother British and his father an immigrant from French Switzer-

land. From childhood, he was a loner, preferring to think by himself

while taking long walks or gardening. He excelled in science and

mathematics at school, but although his pathbreaking later work in

physics would be strongly motivated by aesthetics, he tended to ne-

glect literature and the arts. At the age of sixteen Dirac entered Bris-
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tol University to be trained as an electrical engineer, while also at-

tending lectures on philosophy, followed by two years of studying

mathematics there. In 1923 he transferred to St. John’s College at

Cambridge, where he became fascinated with the general theory of

relativity and for the first time learned about the Bohr-Rutherford

atom, earning his Ph.D. degree in 1926.

After spending a year traveling and visiting all the most active

research centers in theoretical physics, including Copenhagen and

Göttingen, Dirac was elected a fellow of St. John’s College and in

1932 appointed the Lucasian professor of mathematics at Cambridge

University, a position he retained until 1969. In 1937 he married

Margit Wigner, sister of the prominent theoretical physicist Eugene

Wigner, whom he had met while visiting the Institute for Advanced

Study in Princeton; they had two daughters. In 1971 he moved to the

United States, becoming professor of physics at Florida State Univer-

sity. Dirac died in Miami, Florida, in 1984.

Now to the theoretical structure that the three young pioneers

erected. Animated by two primary desires, to construct a “mechan-

ics” à la Newton out of mathematical elements but using only di-

rectly observable entities, Heisenberg began working with mathemati-

cal arrays of Einstein’s transition probabilities for Bohr’s quantum

jumps between various allowed states of atomic systems, arrays that

mathematicians call matrices. He soon discovered, to his consterna-

tion, that the multiplication of these matrices was not commuta-

tive, that is, xy was not necessarily equal to yx, but he forged ahead,

and what emerged out of this strange and unintuitive set of rules,

with the help of Max Born and a young expert on matrices, Pascual

Jordan (1902–1980), was a coherent theory they called matrix me-

chanics.

One of Heisenberg’s first important results emerging from the

new theory, after extensive correspondence with Pauli, was based on

analysis of experimental measurements. Published in 1927, it came

to be known as Heisenberg’s uncertainty principle (or, more cor-
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rectly translated, indeterminacy principle; he regarded it as a fun-

damental statement of indeterminacy at the submicroscopic level).

Suppose an experiment is set up to determine the position of a parti-

cle with an accuracy A and, at the same time, its momentum with

an accuracy B; then the two error limits A and B cannot both be

made arbitrarily small. The best that can ever be achieved is that

their product equal Planck’s constant h: AB = h. In other words, if

you want to know the position of the particle extremely accurately,

making A very small, then you cannot at the same time demand to

know its momentum extremely accurately; the best you can achieve

is B = h/A.

Heisenberg’s conclusion from this surprising principle was that

quantum mechanics could not be deterministic: in order to predict

the future behavior of a particle, both its initial position and its ini-

tial momentum had to be known, but the indeterminacy principle

prevented you from knowing both precisely. In fact, even to speak of

a particle’s motion made little sense, since this would presuppose an

exact simultaneous knowledge of both its place in space and its ve-

locity, and such knowledge could not be obtained. As soon as Bohr

learned of Heisenberg’s new result, which was applicable to any pair

of physical variables technically called conjugate, he generalized it,

transforming it into a principle of complementarity of wide philo-

sophical sweep but little concrete basis.

As Heisenberg, in Göttingen, was struggling with the unfamiliar

mathematics of matrices, he consulted the great mathematician Da-

vid Hilbert at the same university, who told him that in his experi-

ence, matrices usually arose in the context of differential equations.

While this remark seemed very puzzling to the young physicist, it

turned out to be extraordinarily prescient. Schrödinger was up to ex-

actly that: a formulation of quantum mechanics in the language of

differential equations, which turned out to be equivalent to Heisen-

berg’s matrix mechanics.

Meanwhile, a new idea had come to the French physicist Louis-
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Victor de Broglie (1892–1987), a doctoral student at the Sorbonne

whose reputation in Copenhagen was rather mixed after some run-

ins with Bohr. Mulling over the strange notion, put forward by Ein-

stein, that light had a dual nature, manifesting itself both as a particle

(photon) and as a wave with interference effects, it occurred to him

that this wave-particle duality might be a general phenomenon: per-

haps the entities we know as particles, such as electrons, have a wave

nature as well. De Broglie postulated that the concomitant wave-

length λ should be related to the particle’s momentum p by p = h/λ,

where h is Planck’s constant. If that were the case, Bohr’s postulate

that the allowed orbits of an electron in an atom are those for which

their angular momentum is an integer-multiple of h would become

the plausible assumption that the electron should form a standing

wave in its orbit; that is, the length of the orbit should be just a

whole-number multiple of the electron’s wavelength.

If Copenhagen was cool to de Broglie’s notion, Einstein was en-

thusiastic, and again he was proved right. It was experimentally con-

firmed in 1927 by the two American physicists Clinton Joseph

Davisson (1881–1958) and his assistant Lester Germer (1896–1971),

as well as later in the same year by the Scottish physicist George

Thomson (1892–1975), son of J. J. Thomson. They all found that a

beam of electrons exhibited the same kind of interference phenom-

ena first observed by Thomas Young that had definitively demon-

strated the wave nature of light.

Stimulated by de Broglie’s idea of particles as waves, Erwin Schrö-

dinger attempted to emulate an elegant formulation of Newton’s

laws of motion by William Rowan Hamilton that bore much resem-

blance to the laws of wave optics. The result was that he envisioned

the motion of particles governed by a “wave function,” for which

he devised a differential equation. Although wave mechanics—the

version of quantum mechanics centered on the Schrödinger equa-

tion published in 1926—appeared to be entirely different from

Heisenberg’s matrix mechanics, it did not take long for Hilbert’s
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judgment, that matrices usually arise in the context of differential

equations, to turn out right. The two were mathematically equiva-

lent; one could be readily translated into the other. However, for pur-

poses of actual calculations and comparison with experimental ob-

servations, Schrödinger’s version would reveal itself to be very much

more useful; it also had the added advantage of being more intuitive

and easier to visualize.

But the important question of the meaning of the wave function

remained. Whereas Schrödinger’s initial idea was that it simply indi-

cated particles were somewhat spread out in space rather than being

concentrated at a point, this view could not be long maintained: his

equation forced the wave function to spread very quickly all over

space, and no particle could be expected to do that. It was Max Born,

the mentor of both Pauli and Heisenberg, who offered the interpre-

tation that was finally accepted.

Born entered the world in 1882 in Breslau, Germany (now Wro-

claw, Poland), where his father was a professor of anatomy at the lo-

cal university. He received his doctorate in physics and astronomy in

Göttingen in 1907 and, after military service during World War I, he

was appointed professor of physics at the University of Frankfurt-

am-Main. But in 1921 he moved to Göttingen, which he managed to

transform, for the next twelve years, into a world center of physics,

second only to Berlin (which had Einstein). Because he was Jewish,

he left Germany in 1933 for Cambridge, subsequently becoming pro-

fessor of natural philosophy at the University of Edinburgh in 1936

and a British citizen in 1939. Upon his retirement in 1953 he re-

turned to Göttingen, where he died in 1970.

Born made a number of important contributions to quantum

mechanics (a term he coined), but none rivaled his crucial inter-

pretation of the physical meaning of Schrödinger’s wave function:

its square denoted the probability of a particle’s location. (Strictly

speaking, the value of the wave function of a particle is a complex

number, and the square of its absolute magnitude at a point in space
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is the probability density of finding the particle there.) Probability

thus came to be located right at the heart of quantum mechanics, a

characteristic strengthened by Heisenberg’s indeterminacy principle,

which made statistics into an intrinsic feature of every measurement

process.

Dirac entered into the development of quantum mechanics in

1925, at a time when the two quite disparate versions just invented by

Heisenberg (with Born and Jordan) and by Schrödinger were making

the rounds. He immediately reformulated Heisenberg’s matrix me-

chanics into what later would be called operator language, though

he called the operators q-numbers, their main characteristic being

that they did not commute (xy was not always equal to yx). Like

Schrödinger, he was guided by classical formulations of Newton’s

laws of motion, but his model was Poisson’s rather than Hamilton’s

way. His transformation theory was a very elegant and general form

of quantum mechanics that started from the Newtonian equations

of motion, quantized them by replacing all the physical variables

by q-numbers, and ended up in equations that encompassed both

Schrödinger’s and Heisenberg’s versions.

By 1927 the trio of Heisenberg, Schrödinger, and Dirac had com-

pleted, up to a point, the non-relativistic formalism of quantum

mechanics. What had not yet been accomplished was to take the spe-

cial theory of relativity into account, nor could the equations ac-

commodate the spin of the electron in any way other than ad hoc.

Schrödinger had tried his hand at recasting his theory so as to make

it conform to relativity, but his new equation led to predictions for

the spectrum of hydrogen that disagreed with experimental data. A

novel idea was needed, and Dirac provided it.

Many physicists, Schrödinger and Einstein among them, were

guided in their search for new insights by aesthetic considerations;

beauty was an important criterion for them. This does not mean that

they ignored experimental facts, but they were able to generate ab-
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stract mathematical ideas relying on their personal sense of beauty

and to retain their faith in being right even when, among the always-

present welter of initially confusing and unsorted experimental ob-

servations, some appeared to prove them wrong. Dirac made no

bones about being strongly influenced by aesthetics; as he wrote in

capital letters on a blackboard during a lecture in Moscow in 1955,

“Physical laws should have mathematical beauty.”3 And the relativis-

tic electron equation he found is universally acknowledged by physi-

cists to be remarkably beautiful. But more important, the predictions

based on it turned out to agree extremely well with experimental re-

sults.

Fully accommodating the special theory of relativity as well as

taking the spin of the electron into account in a completely natural

manner, the Dirac equation nevertheless appeared to contain a major

flaw: his equation had solutions for positive as well as infinitely many

negative energies; there was no ground state in which the electron

could remain without jumping further downward, emitting photons.

Availing himself of Pauli’s exclusion principle, Dirac found an inge-

nious solution to this problem: he postulated that the vacuum con-

tained an infinite sea of electrons occupying all the negative-energy

states, thus preventing any electron of positive energy from descend-

ing there. The bottom of the positive-energy states therefore serves as

the stable ground state.

This neat picture came with a price, however. Just as it was possi-

ble for a photon of the right energy to hit an electron in an atom at

any level, thereby being absorbed and kicking the electron to a higher

level, so a photon could hit one of the electrons in the negative-en-

ergy sea, raising it to a positive energy, while the photon disappeared.

The result would be the appearance of a pair consisting of an elec-

tron of positive energy and a hole in the sea of negative-energy elec-

trons. This hole, being the absence of a particle of negative energy

and negative electric charge, would then act like a particle of posi-
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tive energy and positive charge. At that time no such particles were

known to exist, but it took only a few years for experimenters to

catch up with Dirac’s beauty-guided ingenious insight into nature.

In 1932 the American physicist Carl David Anderson (1905–1991)

discovered the positron, a particle like the electron in every respect,

except that its electric charge was positive and of the same magni-

tude as that of the electron. In later terminology, the positron was the

electron’s antiparticle, the first such antiparticle to be discovered.

Thus, completing its triumph, the Dirac equation contained the pre-

diction of pair creation: under certain conditions, a photon could

disappear and give rise to an electron-positron pair, a direct manifes-

tation of Einstein’s famous equivalence of mass and energy expressed

in the formula E = mc2. This phenomenon would not only soon be

observed but would, in more general form, turn out to be of enor-

mous importance in the future development of physics.

With the skeleton of the quantum mechanics of particles now

complete, it remained to be fleshed out both in its interpretation (af-

ter all, it relied to an inordinate extent on probability) and in its

mathematical machinery. We will look first at the major mathemati-

cians who provided the needed structure. At the head of the line was

David Hilbert, undoubtedly the most influential mathematician of

the twentieth century.

Born in 1862 in Königsberg, East Prussia (now Kaliningrad, Rus-

sia), Hilbert inherited his interest in mathematics from his mother.

After receiving both his high school and university education locally,

he obtained his doctoral degree from the University of Königsberg in

1885, after which he traveled to Paris and Leipzig. He returned to

Königsberg to launch his academic career, and became professor of

mathematics there in 1893. In 1895 he accepted an appointment as

professor at the University of Göttingen, where he remained until his

retirement in 1930, though his scientific activity was cut short in

1925 when he fell ill with pernicious anemia, from which he recov-

ered. He died in Göttingen in 1943.
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Although politically conservative, Hilbert abhorred nationalism

and was one of the few prominent German intellectuals (another was

Einstein) to refuse to sign the infamous “manifesto of the ninety-

three” during the First World War. Asked by a high Nazi government

official after Hitler came to power whether he did not agree that Ger-

many was better off without all those Jewish scientists, he is said to

have replied, “Their loss destroyed German science.” Hilbert’s work

in mathematics was enormously wide-ranging, as indicated by his

address to the International Congress of Mathematicians held in

Paris in 1900, in the course of which he listed 23 unsolved problems,

in all fields of mathematics—a list that exerted a powerful influence

on twentieth-century mathematics. Many of these problems are still

unsolved in the twenty-first century, and every time a question on

the list yields to solution, it creates a sensation among mathemati-

cians.

For years Hilbert, both in his own work and in his support of

others, actively pursued the aim to place all of mathematics on a

firm, formal axiomatic basis, meaning thereby to assure it of perma-

nence. This put him at odds with a strong movement early in the

century, called intuitionism, whose most prominent exponent was

the Dutch mathematician L. E. J. Brouwer. The intuitionists pro-

posed that mathematics allow only proofs that were constructive.

This meant that they denied the validity of a very popular method, in

which a theorem was proved by showing that its denial would lead to

a contradiction. In Hilbert’s publicly stated view, the success of intu-

itionism would destroy mathematics. The intuitionist movement has

now lost momentum, but Hilbert’s axiomatic program was dealt a

mortal blow from another direction, by the work of the Austrian

mathematician Kurt Gödel (1906–1978). Gödel’s famous theorem

states that in every consistent and sufficiently strong formal axiom-

atic system there would necessarily arise statements that could be

neither proved nor disproved within that system. Restricted to proofs

within formal mathematical systems, Gödel’s theorem has no rele-
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vance outside the foundations of mathematics, the opinion of some

prominent physicists notwithstanding.

From the point of view of physics and of quantum mechanics in

particular, Hilbert’s most important contribution was his work deal-

ing with differential equations, especially his introduction of infi-

nite-dimensional spaces defined by the solutions of such equations.

Ever since the refinement of Dirac’s formulation of the theory by

John von Neumann, the mathematical structure of quantum me-

chanics, along with the intuition of practitioners emerging from it,

has been based fundamentally on Hilbert spaces and the geometrical

language associated with them.

Born in Budapest, Hungary, in 1903, the eldest son of a prosper-

ous Jewish banker, John von Neumann was a child prodigy who, at

the age of six, could divide eight-digit numbers in his head and ex-

change jokes with his father in classical Greek. He was privately

schooled until he entered the Lutheran Gymnasium, where his math-

ematical abilities were soon recognized and nourished by individual

guidance. After the end of the First World War, he left Hungary (the

University of Budapest had a restrictive quota for Jewish students) to

study at several German universities, earned a degree in chemical en-

gineering at the Eidgenössische Technische Hochschule in Zurich,

and in 1926 received his doctoral degree in mathematics at the Uni-

versity of Budapest. Following post-doctoral work in Göttingen un-

der David Hilbert, he moved to the United States, becoming profes-

sor of mathematics at Princeton University and, in 1933, joining the

Institute for Advanced Study, also in Princeton, as its youngest pro-

fessor. He remained there for the rest of his life. Meanwhile von

Neumann had married Marietta Kovesi, and they had a daughter,

Marina, but the marriage ended in divorce in 1937. The following

year he married Klara Dan from Budapest.

A naturalized American citizen, von Neumann began doing con-

sulting work for the U.S. Army, and after the United States entered

the Second World War, he joined J. Robert Oppenheimer (1904–
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1967) at Los Alamos, New Mexico, in the so-called Manhattan Proj-

ect to develop a nuclear bomb. The need for large-scale, time-con-

suming numerical computations at this laboratory awakened his in-

terest in building calculating machines, and immediately after the

war he designed and supervised the construction of the first pro-

grammable electronic calculator. After the war ended, von Neumann

continued to be involved with the design of the hydrogen bomb as

well as many other defense projects of the American government.

Shortly after President Eisenhower appointed him to membership in

the Atomic Energy Commission, he became ill with bone cancer and

died in 1957 in Washington, D.C.

The second area, in addition to programmable computing, on

which von Neumann left a lasting impression was game theory, which

he invented as early as 1926 and for which he wrote, together with

the economist Oskar Morgenstern, the very influential treatise The-

ory of Games and Economic Behavior, published in 1944. However, in

physics, von Neumann’s most important work was his attempt at an

axiomatization of quantum mechanics, published in 1932 under the

title Mathematical Foundation of Quantum Mechanics. While his sys-

tematization did not, in the end, prove quite successful, he neverthe-

less laid the basis for a rigorously mathematical approach to quan-

tum theory, which had evolved from several disparate and partly

confused origins.

Beginning with the observation that radioactive emissions spew

out particles apparently at random, statistics and probability have

become part of the very foundation of physics, initiated by Einstein’s

transition probabilities for Bohr’s quantum jumps. After statistics

was introduced into physics in the nineteenth century to explain heat

and the behavior of fluids, Boltzmann had shown how these statistics

were grounded in an underlying substratum of molecules, each of

which followed the Newtonian equations of motion. Disconcerting

as such probabilistic laws were to the old guard of physicists, the

quantum laws were much more repugnant. Here, there was no as-
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sumption of a classical, causal substratum, the ignorance of which

necessitated resort to probabilistic laws on the surface. In a quantum

worldview, probabilities were at the very heart of the theory.

The now generally accepted physical interpretation of the proba-

bilistic laws postulated for quantum mechanics emerged in 1926 out

of long discussions in Copenhagen, primarily between Bohr and

Heisenberg, though Dirac and Schrödinger also came for visits and

participated, not always in full agreement. The Copenhagen interpre-

tation is based on a renunciation of all assumptions of the reality of

entities and processes not observable or measurable: nothing is real

until it is measured. If Heisenberg’s indeterminacy principle prevents

us from precisely measuring them at the same time, simultaneous

position and momentum of a particle are meaningless concepts, and

hence so is a particle’s motion. Its position gains reality when it is

measured; its momentum becomes real when it is observed. But to

ask “Where is the particle now and how fast is it moving?” makes no

sense; such a question is therefore not permitted in quantum me-

chanics.

The state of a physical system, such as a collection of particles, de-

termined in classical Newtonian mechanics by specifying all their

positions and momenta, is determined in quantum mechanics by

specifying its wave function. While the behavior of this wave func-

tion follows the Schrödinger equation in a deterministic manner—a

given state now determines the state at a later time—knowing the

wave function does not imply knowing all the physical attributes of

the system precisely; for some of them the wave function implies

only probabilities. The concept of causality is lost: we cannot trace

every event back to an earlier event, or set of events, causing it. What

is more, when an observation takes place, the previous wave function

is changed—it is “reduced” or it “collapses.” This is because after a

certain physical property (say, the position) is almost precisely deter-

mined, the new wave function must express the fact that others (the

momentum, say) have to be correspondingly “smeared out.” To put it
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another way, a previously given probability is “reduced” when a new

relevant condition is added.

There is another crucial feature of the new view of the way na-

ture works. The Schrödinger equation has the property—technically

speaking, it is linear and homogeneous—that if f and g are two solu-

tions of it, then so is f + g; this is called the superposition principle.

But on the other hand, the probabilities are the squares of these

functions, and (f + g)2 is not the same as f 2 + g2, which seems

to contradict the rule for adding the probabilities of independent

events if f and g describe independent states.

As might be expected, the ramifications of this way of describing

the workings of nature were regarded as objectionable by some phys-

icists, Einstein most prominently among them; other consequences

were misinterpreted. At its most intuitive, we have Einstein’s famous

statement that “God does not play dice with nature.” Of course, for

believers, God had been primarily responsible for bringing the dice

to the table, but Einstein’s point was that probabilities could not be

fundamental; there had to be a deeper level where causality reigned,

so that the probabilities were merely expressions of our ignorance

(just like Laplace’s view a century and a half earlier).

However, Einstein’s objection was more profound than mere un-

ease with probabilities. Although he conceded its success in account-

ing for experimental data, he did not believe that this theory was ca-

pable of completely describing reality, as he pointed out, together

with Boris Podolsky (1896–1966) and Nathan Rosen (1909–1995) in

a famous paper entitled “Can Quantum Mechanical Description of

Physical Reality Be Considered Complete?” published in 1935 in the

Physical Review (usually called the EPR paper). Using the correlation

between the individual states of two particles implied by a two-parti-

cle wave function, the article constructed an example in which the

position of one particle could be accurately measured and at the

same time its momentum could just as accurately be inferred from a

measurement performed on the other one, without ever coming near
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the first and disturbing it. (Heisenberg had intuitively justified his in-

determinacy principle as the result of an irreducible disturbance of

one of these variables by a measurement of the other.) This demon-

strated, the authors claimed, that the simultaneous position and mo-

mentum of a particle constituted “elements of physical reality,” and

yet quantum mechanics did not permit us to define or use them.

Hence, they concluded, the theory could not be a “complete descrip-

tion of reality.”

Bohr’s view, on the other hand, was encapsulated in his statement,

“There is no quantum world. There is only an abstract quantum me-

chanical description.”4 Agonizing over his disagreement with Ein-

stein, whom he admired enormously, he replied with a paper pub-

lished in the same issue of the Physical Review. Its essence was Bohr’s

contention that “the extent to which an unambiguous meaning can

be attributed to such an expression as ‘physical reality’ . . . must be

founded on a direct appeal to experiments and measurements.” As

these short quotes show, the philosophical issues raised by the new

physics were profound.

Most physicists having little patience for philosophy, few paid

much attention to the EPR debate. But other questions were equally

vexing. The superposition principle appeared to indicate that quan-

tum mechanics violated a basic rule of probability theory and hence

of traditional logic. In response, some mathematicians advocated the

substitution, in quantum mechanics, of multi-valued logic in place

of the traditional two-valued logic, which contained only two “truth

values,” true and false. However, the apparent conflict between the

superposition principle and probability theory was really illusory. As

Dirac clearly recognized in his book The Principles of Quantum Me-

chanics, first published in 1930, the superposition principle implied a

kind of correlation between otherwise seemingly independent states

of a physical system that “cannot be explained in terms of familiar

physical concepts,” and it is this correlation that gives rise to what

would, in its absence, be a contradiction with the addition of proba-
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bilities.5 This characteristically quantum-mechanical correlation is usu-

ally called entanglement, and it is one of the counter-intuitive fea-

tures of the theory. As it seems to reach across space even at long sep-

arations, Einstein called it “spooky action at a distance,” and its effect

is to make quantum mechanics into a non-local theory.

In addition to these perceived difficulties, the various attitudes to-

ward the nature of probability played themselves out among physi-

cists. Some took a strictly subjective, information-based point of

view. As Edwin Kemble (1889–1984), one of the first American phys-

icists to absorb the new physics developed in Europe, put it: “If the

[wave function] is to be reduced, the interaction must have produced

knowledge in the brain of an observer. If the observer forgets the re-

sult of his observation, or loses his notebook, the [wave function] is

not reduced.”5 The contemporary physicist Bernard d’Espagnat pub-

lished an article in 1979 in Scientific American with the subheading

“The doctrine that the world is made up of objects whose existence is

independent of human consciousness turns out to be in conflict with

quantum mechanics and with facts established by experiment.”6

While probably most physicists today adhere to an objective view

of probability, and hence of the meaning of the wave function, a sub-

stantial number are bothered by the frequency interpretation, partic-

ularly those who work in cosmology. When dealing with the wave

function of the universe, they take the need for an actual ensemble or

infinite sequence literally and ask, What does it mean to postulate

an ensemble of universes? A relatively recent form of quantum me-

chanics, based on “histories,” is meant to evade this conundrum, but

there is no sign that it is catching on.7 It was precisely to avoid the

need for real ensembles that Popper invented his propensity ap-

proach to probability theory, but his view does not seem to have

caught on much among physicists either.

Stimulated early on by Einstein’s skepticism, the question whether

quantum mechanics with its irksome probabilities was really funda-

mental or a mere surface phenomenon, with an unobservable world
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of hidden variables underneath, has come up repeatedly. John von

Neumann thought he had mathematically exorcised this ghost, but

his “proof” turned out to be ineffective. However, in 1964 the Irish

physicist John S. Bell (1928–1990) elevated the issue to a physically

more accessible level by proving a theorem that permitted a clear-cut

experimental determination of whether observable correlations be-

tween the states of physical systems could be accounted for by ortho-

dox local (without action at a distance) classical means, or whether a

quantum mechanical explanation was required. When the needed

experiments were performed by A. Aspect and collaborators, quan-

tum mechanics proved to be the winner.8

There was, nevertheless, a serious attempt at doing without the

quantum, begun by Louis de Broglie and carried to its full flowering

by the American physicist David Bohm (1917–1994). Claiming that

his theory could reproduce all the results of quantum mechanics,

he postulated a world of hidden entities and forces in which causal-

ity reigned, so that the probabilities governing observable phenom-

ena were the result of our ignorance of this netherworld. The rub

was that the entities populating the hidden realm interacted non-

locally—by an intrinsic action at a distance. This hidden-variable

theory evaded Bell’s theorem and Aspect’s experiments by its non-

locality. Could Bohm’s proposed replacement really duplicate with

equal accuracy all the successes of quantum mechanics? It has never

been fully, seriously tested, simply for lack of interest among physi-

cists. Why should they care about a theory that offered only to be less

offensive to our classical intuition, on the questionable assumption

that its intrinsic nonlocality was less spooky than the quantum the-

ory, but promised no new results?

Quantum mechanics remains, to this day, the framework theory

for our understanding of all physical phenomena. But like Newto-

nian mechanics, it had to be supplemented with specific laws for the

interactions of the entities that it is meant to govern. The discovery

of these laws and of more fundamental particles to be governed by
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them, as well as the extension of the quantum theory to fields, such

as the electromagnetic field, will be the subject of the next chapter.

Why are all hydrogen atoms exactly alike? Why does a helium

atom weigh four times as much as a hydrogen atom? Why is the

spectrum of the yellow light emitted by heated sodium made up of

its specific frequencies? One might have expected that quantum me-

chanics, dealing in probabilities as it does, could lead only to rela-

tively vague or tenuous predictions compared to the definite ones

coming out of the classical determinism. Instead, it turned out that

the quantum framework, when combined with specific assumptions

of forces, was able to yield many predictions of enormously pre-

cise numbers, which, when compared to equally precise experimen-

tal measurements, proved extremely accurate. While today physicists

still harbor various degrees of doubt about some of the ingredients

with which to fill the quantum frame, the framework itself, with its

probabilities, has shown not the slightest inclination to fail.
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Fields, Nuclei, and Stars

The starting point of any calculation in nonrelativistic quantum me-

chanics was the assumption of a fixed, given number of particles

acted upon by certain given forces. Dirac’s relativistic electron equa-

tion, however, had demonstrated that when quantum mechanics was

combined with the special theory of relativity, this schema no longer

worked. As electrons emitted or absorbed radiation, photons were

created or destroyed. And since the phenomenon of pair creation

made it impossible to keep the total number of electrons fixed, it

made no sense to regard the solution of the Dirac equation as a wave

function for a single electron à la Schrödinger. The solution of this

problem was to invent a quantum theory of fields, a process begun

by Dirac in 1927 and continued by Jordan, Heisenberg, and Pauli, as

well as by Enrico Fermi. It encompassed two kinds of entities, elec-

tromagnetism on one hand and electrons on the other. As Dirac’s

equation included the forces that electromagnetism exerted on elec-

trons, and Maxwell’s equations included electrons as the sources of

the electromagnetic field, these two sets of equations would have to

be considered together.

The quantization of the electromagnetic field consisted of two

steps: the first was to subject Maxwell’s equations to the analysis in-



troduced by Fourier, so that one frequency at a time could be dealt

with. The effect of this was that the total field was mathematically

viewed as consisting of infinitely many harmonic oscillators, each

acting like a simple pendulum swinging with its own period. The

second step was to treat each of these oscillators quantum mechani-

cally, with the result that their allowed energies made up a ladder of

discrete levels. Now, it is the special property of the spectrum of a

harmonic oscillator’s energies that all its steps from one level to the

next are of equal size, call them ΔE. It takes as much energy for the

oscillator to jump from its ground state to its first excited state as to

jump from the fourth to the fifth. One may therefore view the pro-

cess in which the energy of the oscillator jumps from one level to the

next up as creating a lump of energy ΔE, and when it descends one

level as destroying it. Furthermore, the energy lumps are connected

with the frequency f of the oscillator by the formula ΔE = hf, just like

Planck’s. In other words, the quantization of Maxwell’s electromag-

netic field leads to Einstein’s photons—they are simply the quanta of

the electromagnetic field.

A similar procedure works for the Dirac equation, the solution of

which is now no longer a wave function but a quantum field. This

process is called second quantization, as Dirac’s original equation is

already a quantum treatment of electrons. However, whereas a wave

function is a mathematical device for the calculation of probabilities,

a quantum field is a condition of physical space. In this case the ener-

gies of the quanta of the field automatically have the relativistically

correct relation to their momenta; the quanta of this “matter field”

are electrons, just as the quanta of the electromagnetic field are pho-

tons. The combination of equations for the electron field (including

radiation) and for the radiation field (including electrons) is called

quantum electrodynamics or QED for short.

A very clever and promising theory it was, which should lead to

many observable phenomena. For instance, as the radiation field was

capable of producing electron-positron pairs, it could be expected to
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produce a polarization of the vacuum; that is, the vacuum should

have electric properties analogous to those of a piece of matter im-

mersed in an electric or magnetic field. The minimal energy E re-

quired for producing a real electron-positron pair equals the relativ-

istic rest energy 2mc2 of the two, where m is the mass of an electron

and c is the velocity of light, but Heisenberg’s indeterminacy princi-

ple allows their “virtual” production for short periods of time by

photons of lower energy. Similarly, the energy of an electron sur-

rounded by a cloud of such virtual pairs should change, and the en-

ergies of atomic levels should shift by small amounts.

The precise magnitudes of all such effects, called radiative correc-

tions, should be calculable by means of the equations of QED. How-

ever, as soon as physicists tried to perform these calculations they

discovered that all the numbers came out infinite. There were always

either too many contributions from “soft” photons (photons of low

energy) or too many from “hard” ones (photons of high energy).

One of the sources of these infinities was the fact that the ground

state of a harmonic oscillator of frequency f has the energy 1/2hf, and

since there are infinitely many of them, they add up to an infinite en-

ergy. QED stood at an impasse for more than fifteen years, and physi-

cists were beginning to doubt that the theory would ever be able to

produce sensible, verifiable predictions, until it was rescued by two

Americans and a Japanese, all working independently and causing

great excitement in the physics community in the late 1940s.

Julian Seymour Schwinger was born to Jewish immigrants from

eastern Europe in 1918 in New York City. The family was prosperous,

as his father’s clothing business was doing well. Though precocious,

studious, and extremely quick as a child, Julian stood in his older

brother’s shadow. After attending Townsend Harris, an outstanding

high school associated with the College of the City of New York, he

entered CCNY, intensely interested in physics, especially in the pa-

pers of Paul Dirac, and co-authored his first publication in the Physi-
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cal Review at the age of seventeen, quickly following it up with sev-

eral others.

Despite a mediocre academic record at CCNY, Schwinger trans-

ferred to Columbia University with the help of Isidore I. Rabi (1898–

1988), who recognized his outstanding ability. Graduating from Co-

lumbia in 1936, he stayed there as a graduate student, earning his

Ph.D. in three years at the age of twenty with a dissertation he had

essentially written as an undergraduate. Two years at the University

of California at Berkeley with J. Robert Oppenheimer followed, then

two years as an instructor and assistant professor at Purdue Univer-

sity, before he joined the Radiation Laboratory at the Massachusetts

Institute of Technology to do war-related work on radar and micro-

waves. His formulations and solutions of wave-guide problems dat-

ing from that time turned out to be very influential.

After the end of World War II, Schwinger moved from MIT to

Harvard, where he became a full professor in 1947, and married

Clarice Carol. A very shy and gentle man with nocturnal work habits,

Schwinger attracted many doctoral students, and his lectures were

legendary for their elegance and clarity. In 1972 he moved to Califor-

nia, becoming professor of physics at the University of California at

Los Angeles; he died of cancer in 1994.

Richard Phillips Feynman was born in 1918 in the borough of

Queens of the city of New York, his father a Jewish immigrant from

Russia employed as a sales manager of a clothing company, his

mother from a well-to-do American family; neither of his parents

was college educated. Encouraged early on by his father to be curious

about why things are the way they are, as a pupil attending local

schools he particularly enjoyed chemistry and mathematics. For his

undergraduate studies he went to MIT, initially intending to major in

mathematics, but soon switched to physics and impressed his teach-

ers with his completely independent and innovative way of solving

problems. He published his first paper in the Physical Review and
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graduated in 1939, then enrolled at Princeton University, where the

young American physicist John Archibald Wheeler (b. 1911), who

had just joined Princeton’s faculty as an assistant professor, took him

under his wing, guiding him to his Ph.D. Immediately after receiving

his doctorate in 1942, he married Arline Greenbaum, whom he had

known since the age of thirteen or fourteen. As he was fully aware,

Arline was ill with Hodgkin’s disease, and she died three years later.

In 1942 Feynman joined the Manhattan Project at Los Alamos,

where the first nuclear bomb was being developed under Oppen-

heimer’s directorship, and where he found himself in the company of

Enrico Fermi, Edward Teller (1908–2003), Niels Bohr, Hans Bethe,

John von Neumann, and other luminaries in physics and mathemat-

ics. After the war, he received many offers and accepted an assistant

professorship at Cornell University, where Bethe, whom he greatly

admired, taught physics. He soon acquired a wide reputation for a

remarkable teaching talent, in an intuitively appealing and flam-

boyant style, laced with humor and showmanship, instructing and

inspiring both graduate students and freshmen. After a year of teach-

ing in Brazil, he moved to California, married Mary Louise Bell,

whom he had met at Cornell, and became professor of physics at the

California Institute of Technology. His second marriage ended in di-

vorce in 1956. Four years later he married Gweneth Howarth, an

English woman he had met in Geneva. This marriage lasted until his

death, producing two children, Carl and Michelle. In 1986 Feynman

became widely known to the public as a very critical and outspoken

member of the commission formed by President Reagan to investi-

gate the explosion of the space shuttle Challenger. Already suffering

from abdominal cancer at that time, Feynman died in Los Angeles in

1988.

The third member of the trio that saved Dirac’s QED and trans-

formed it into the numerically most successful physical theory in his-

tory, Sin-itiro Tomonaga, was born in 1906 in Tokyo, the oldest son

of a professor of philosophy. Sickly as a child but fascinated by a
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great variety of chemistry and physics experiments, he attended a re-

nowned school in Kyoto after his father secured a professorship at

the Imperial University in that city. Matriculating at Kyoto Univer-

sity, he learned quantum mechanics by reading the papers of Heisen-

berg, Schrödinger, Jordan, Dirac, and Pauli, obtained the Japanese

equivalent of a bachelor’s degree in 1929, and remained there as a

research student for another three years. Then Tomonaga moved to

Tokyo to become assistant to Yoshio Nishina (1890–1951) at his

Riken Science Research Institute, where he remained until 1940, save

for a couple of years with Heisenberg in Leipzig, working primarily

on nuclear physics. He obtained his doctoral degree in 1939 from To-

kyo University and also collaborated with Nishina and others in

translating Dirac’s book on quantum mechanics into Japanese. In

1940 he married Ryoko Sekiguchi, with whom he would have three

children. A year later he became professor of physics at Tokyo Col-

lege of Science and Literature (which was later renamed Tokyo Uni-

versity of Education).

Essentially isolated from the rest of the physics world during the

war years, Tomonaga worked on wave guides and microwaves, all the

while thinking about QED. When the war ended, he was at the cen-

ter of the effort to re-establish the theoretical-physics community

in the abysmal conditions in Tokyo. Remaining at the Tokyo Univer-

sity of Education and recipient of many honors, he served as presi-

dent of the university from 1956 to 1962 and became director of

the university’s Institute of Optical Research and president of the

Science Council of Japan from 1963 to 1969, at which time he re-

tired. Tomonaga died in Tokyo in 1979.

Two specific experimental results obtained in 1947 were the impe-

tus for a concerted effort at making QED a viable theory, capable of

yielding precise predictions. Both results were measurements of the

frequency of the radiation emitted in a transition between atomic

energy levels and therefore were capable of high precision, if done

with sufficient care and ingenuity. They were performed in full rec-
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ognition that they might test the existence and exact values of “radia-

tive corrections,” provided that theorists could find a way of calculat-

ing them by means of QED.

The first, carried out by the German-born American experimental

physicist Polycarp Kusch (1911–1993) together with H. M. Foley, al-

lowed an inference on the precise value of the magnetic moment of

the electron, that is, the strength of its magnetism. That strength was

predicted by the Dirac equation to have a value of 1 Bohr magneton,

but QED was expected to change it by a small amount, and the most

precise number deduced from several experiments was 1.001146 Bohr

magnetons (with an experimental uncertainty of 0.000012). The sec-

ond, performed by the American physicists Willis Lamb, Jr., (b. 1913)

and Robert Retherford (1912–1981), measured, to within a possi-

ble experimental error of 0.1 percent, the splitting of two hydrogen

levels that, according to the Dirac equation, should have identical

energies but which QED was expected to separate, and was named

the Lamb shift after the experiment. A theoretical calculation by

means of QED had been attempted by Hans Bethe, and although

he came close, he had been stymied by the usual infinities. It was

Julian Schwinger who, in 1947, found a way of surmounting the dif-

ficulties with QED and published theoretical calculations for both

the Lamb shift and the magnetic moment of the electron that agreed

with their experimental values. The most precise value of the mag-

netic moment of the electron calculated in 1950 by means of QED

was 1.0011454 Bohr magnetons, which agrees with the experimental

result to seven significant places.

The method invented by Schwinger and essentially simulta-

neously by Richard Feynman and Sin-itiro Tomonaga (though in

Tomonaga’s case without the stimulus of the experiments of Kusch

and Lamb, of which he was unaware at the time) came to be known

as renormalization. It consisted of sidestepping any attempt at using

QED to predict radiative corrections to the mass and the charge of

the electron and instead simply employing their experimentally de-
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termined values, a procedure made unambiguous by the rigorous de-

mands of the special theory of relativity. When the calculation of

these two specific radiative corrections was sidestepped, all other ra-

diative corrections turned out to be free of infinities. The English-

born American physicist Freeman Dyson (b. 1923) shortly thereaf-

ter showed that this renormalization method of QED could be ex-

pected to work in all other future calculations of radiative correc-

tions as well.

These calculations of numerical predictions of QED, though agree-

ing with experimental data extremely well, were of course not exact.

The theory, made nonlinear by combining equations for the quan-

tized electromagnetic field with electrons as sources and Dirac’s equa-

tion for the electrons subject to electromagnetic forces, was far too

complicated for that. Instead, they used perturbation theory, the

method originally invented by Laplace and introduced with great ef-

fect into quantum mechanics by Schrödinger and others. Its effec-

tiveness here depended primarily on the small value (approximately
1/137) of the fine-structure constant, usually denoted by the Greek let-

ter α, a dimensionless measure of the strength of the electric charge

of the electron. (“Dimensionless” means that it does not depend on

the units employed in the measurements of the electronic charge, the

velocity of light, and Planck’s constant, all of which enter into its

definition; α is one of the fundamental constants of the universe.)

Lengthy as all such calculations of radiative corrections are, Feyn-

man’s ingenuity led him to introduce an intuitive graphical proce-

dure that proved very helpful and became extremely popular among

physicists. Each individual part of a long computation was identified

with a Feynman diagram almost as though it described an actual

physical process involving electrons and photons. Feynman himself,

for whom, just as for Heisenberg, particles rather than fields were the

primary objects of nature, did ascribe more physical reality to the

processes depicted by his diagrams than did many others, for whom

they were nothing but calculational devices (Fig. 14).
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Let’s go back now to about 1930 in order to catch some experi-

mental discoveries and the inventions that made them possible. One

of these was the 1932 discovery by the English physicist James Chad-

wick (1891–1974) of the neutron, a nuclear constituent whose exis-

tence Rutherford had suspected for some time. As these particles are

electrically neutral, they were hard to detect directly, and Chadwick

inferred their emission in collisions of alpha particles with beryllium

atoms from an appropriate amount of missing energy, just as the ex-

istence of the neutrino had been inferred by Pauli. (The neutrino, be-

ing massless, or nearly so, was, however, even more elusive than the

neutron.) With a mass almost equal to that of the proton, though

slightly heavier, the neutron finally completed the inventory of the

atomic nucleus.

It was now clear that if the number of protons in the nucleus de-

termined an element’s atomic number, its position on the periodic
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Figure 14 Examples of Feynman diagrams. The wiggly lines are photons,
and the solid lines are electrons if the arrow points upward, or positrons, if
downward. (a) The creation of an electron-positron pair. (b) A “virtual”
pair created and annihilated, a process that contributes to vacuum polar-
ization. (c) Two diagrams for the scattering of an electron by a photon: the
Compton effect.



table, and all its chemical properties, the total number of protons

and neutrons (they would later both be referred to as nucleons)

made up its atomic weight. (Naturally occurring elements, usually

made up of mixtures of different isotopes—atoms whose nuclei have

the same number of protons but somewhat different numbers of

neutrons—have atomic weights that are generally not whole num-

bers.) Attempts to understand the structure of this nucleus and the

process giving rise to radioactivity, which had begun as soon as

Rutherford discovered it, would preoccupy a large part of the physics

community for the next forty years or so.

As the Rutherford-Marsden-Geiger experiment had indicated, the

most promising way to learn the structure of atoms and their con-

stituent nuclei was to bombard them with other particles. But to

penetrate into the interior of the positively charged nucleus with

other positively charged particles such as protons or alpha particles

(since negatively charged electrons were not massive enough to make

much of an impact) required that the missiles carry a large momen-

tum so as to overcome electrostatic repulsion. This could be done

by accelerating the particles by means of an electric field generated

using high-voltage electrodes. In a tour-de-force technical feat, the

Englishman John D. Cockcroft (1897–1967) and the Irishman Ernest

T. S. Walton (1903–1995) constructed a device to produce sufficiently

high voltages for this purpose. Almost immediately, utilizing their

Cockcroft-Walton electrostatic generator of 710,000 volts, they suc-

ceeded in transforming lithium into helium by accelerating a beam

of protons toward a lithium target and detecting the production of

alpha particles. From then on, the energies of particles would always

be measured in electron volts, eV, that is, the energy a particle with

the charge of an electron would have if accelerated by a voltage

difference of one volt; soon, the needed unit would be MeV, that is,

one million electron volts, and eventually still larger units would be

needed.

Another kind of electrostatic generator was invented by the Amer-
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ican physicist Robert Jemison van de Graaff (1901–1967). Its first

working model, built in 1929, generated 80,000 volts, and his ma-

chine was eventually capable of producing 5 million volts. However,

electrostatic generators were quickly made obsolete as particle accel-

erators by the American physicist E. O. Lawrence’s (1901–1958) in-

vention of the cyclotron. Lawrence’s brilliant idea was to obviate the

need for high-voltage generators, bending the path of the particles

to be accelerated into a spiral by means of a magnetic field and sub-

jecting them to repeated small electric kicks every time they came

around. The crucial fact that made this idea feasible, he realized, was

that according to the Maxwell equations, the time it took for a charged

particle to circulate once in a given magnetic field remained the same

as it went through its accelerating, ever widening, spiraling trajec-

tory. Therefore the electric kicks could be administered at fixed inter-

vals. The first cyclotron he built in 1932 at the University of Califor-

nia in Berkeley had a diameter of only 10 inches but it accelerated

protons to an energy of 1 MeV.

Soon, improved versions of the cyclotron were built at universities

all over the world, the largest at Berkeley, constructed during the Sec-

ond World War, with a diameter of 184 inches. That size turned

out to be the upper limit, as determined both by the stability of the

spiraling beam and by the special theory of relativity applied to the

fast-moving protons or electrons. Modifications called synchrocyclo-

trons and later synchrotrons were invented by the American physicist

E. M. McMillan (1907–1991) and the Russian physicist V. I. Veksler

(1907–1966); larger and larger models of such machines would pro-

duce beams of protons at hundreds of MeV.

Even these energies, however, eventually became insufficient when

the purpose of accelerators turned from nuclear physics to the pro-

duction of particles. A large part of the knowledge gained in physics

laboratories in the second half of the twentieth century was gener-

ated by scattering experiments, for which accelerators were instru-

mental. When particles come close to one another or collide, quan-
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tum mechanics predicts the probability that they will be found

deflected by a given angle, and quantum field theory predicts the

probability that a given number of specific new particles will be pro-

duced, analogous to pair-creation in the Dirac equation. These prob-

abilities are called scattering cross sections or production cross sec-

tions, respectively, and their sizes depend on the forces assumed to be

acting and on the applicable conservation laws. Experimental statis-

tical data for scattering or particle production therefore yield infor-

mation about these forces and the manner in which different fields

interact.

Because according to the theory of relativity the energy E required

to produce an object of mass m is at least E = mc2, machines with in-

creasingly high energies were required to search for the existence of

new, heavier particles and to measure the probabilities of their pro-

duction by a given process. This is what drove the international race

for larger and larger accelerators, most of them constructed for the

sole purpose of discovering a specific kind of particle predicted by a

promising theory. Their energies would now be measured in units of

GeV, billions of electron volts, or even TeV, trillions of electron volts,

the diameters of their circular beams in tens of miles, and their costs

in hundreds of millions of dollars. Very large linear accelerators, em-

ploying microwaves, were also built, primarily to speed up electrons,

the biggest one being SLAC at Stanford University, built by the Ger-

man-born American Wolfgang K. H. Panofsky (b. 1919). Linear ac-

celerators avoided the energy loss through radiation that happened

when fast particles moved in circles. The era of big science had

begun.

One new idea for improving the power of the impact was to shoot

beams of particles at one another rather than direct a beam at a sta-

tionary target. This is analogous to a head-on collision in a car, ex-

cept that the theory of relativity enhances the difference between the

two results if their speeds come close to the speed of light. These col-

lisions were achieved by storing the accelerated particles in two ring-
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shaped tunnels, where they would keep on circulating and eventually

hit one another head-on. The Superconducting Super Collider, or

SSC, was originally planned to have two colliding proton beams,

each of 20 TeV energy, one of its rings with a circumference of 55

miles. This expensive project, to be built in Texas, was finally can-

celed by the United States Congress. The economic limit of feasible

accelerators had clearly been reached, at least for the time being.

A scattering experiment requires not just instruments to speed up

particles but also a means to measure the outcome: detectors are

needed to find how much the missiles have been deflected or what

kinds of particles have been produced, and at what angles. The na-

ture of these detecting devices for charged particles (neutral ones are

very hard to detect directly; their presence can usually be inferred

only from missing energy and momentum) has evolved over the

years, along with accelerators. The first of them goes back to an in-

vention by the Scottish physicist Charles T. R. Wilson (1869–1959),

who, fascinated by atmospheric cloud formation, discovered that the

essential ingredient for the formation of water droplets (rain) in su-

persaturated water vapor was the presence of ions rather than dust,

as had previously been thought. Applying this idea in 1911, he con-

structed a clever device for detecting the passing of a charged parti-

cle: a transparent chamber, closed with a movable piston and filled

with air above a basin of water, so as to contain saturated water va-

por. When the piston is suddenly moved outward, lowering the pres-

sure and temperature, the vapor becomes supersaturated, and visible

water droplets form at the positions of any ions present. If, at this

moment, a fast charged particle passes through, ionizing the air mol-

ecules all along its path by collisions, its entire trajectory through the

chamber becomes visible as a chain of water droplets. Stereographic

photographs of the Wilson cloud chamber reveal the entire track of

the passing intruder; moreover, a magnet causes its path to curve, re-

vealing its charge and velocity.

This device was used by the Austrian physicist Victor F. Hess

260 From Clockwork to Crapshoot



(1883–1964) in his 1912 discovery of cosmic rays, which eventually

revealed themselves as ultra-high-energy charged particles entering

the earth’s atmosphere from outer space, producing showers of sec-

ondaries by colliding with air molecules. The cloud chamber served

for many years as an indispensable detector of fast-moving charged

particles produced by accelerators. However, in 1952 it was super-

seded by the bubble chamber, invented by the American physicist

Donald Glaser (b. 1926). In this instrument the place of the supersat-

urated vapor would be taken by a superheated liquid such as ether or

liquid hydrogen under pressure, and a chain of tiny bubbles formed

by local boiling would show the trajectory of the passing particle.

Later, the detector of choice consisted simply of a thick layer of pho-

tographic emulsion that would directly retain a record of the passage

of charged particles.

Other, more specialized detectors were scintillation counters and

îerenkov counters. The first relied on the fact that zinc sulphide

emits a visible flash when hit by an alpha particle, and the second

made use of the îerenkov radiation emitted by any charged object

traveling through a fluid at a speed greater than that of light in the

same medium. This radiation was experimentally discovered by the

Russian physicist Pavel Alekseyevich îerenkov (1904–1990) and the-

oretically explained by the Russians Ilya Mikhailovich Frank (1908–

1990) and Igor Yevgenyevich Tamm (1895–1971).

All of these detecting devices had the great drawback of requir-

ing the individual scanning of thousands of photographs by techni-

cians trained to recognize the signature of each individual particle on

the basis of the thickness and curvature of its track (Fig. 15). As

more and more sophisticated and faster computers became available,

the previous instruments were eventually replaced by large arrays of

spark chambers. Here, the passage of an electric charge between two

conducting plates at a high voltage difference produces a spark, re-

cording the arrival of a charged particle at its position and feeding

that information directly into a large computer, to be automatically
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analyzed. Much-superior invisible efficiency thus replaced the more

picturesque photographic records.

Nuclear physics was the field that first made the heaviest use of the

elaborate instrumentation described. The structure of the outer parts

of the atom being pretty well understood, there remained its mysteri-

ous nucleus, whose various properties began slowly to emerge. What

did it consist of? And how could radioactivity, which Bohr had rec-

ognized as originating in the tiny nucleus rather than in the outer

layers of the atom, be explained? As to the first question, the nucleus

was believed to be made up of protons and electrons until Chadwick

discovered the neutron; from then on it was clear that its constitu-

ents were protons and neutrons. To account for radioactivity—there

was of course no quantum mechanical way to resolve the random
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Figure 15 A photograph of the tracks of charged particles in a bubble
chamber. A magnetic field makes them curved, revealing their velocity and
the sign of their charge.
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nature of individual radioactive emissions, which could be predicted

only probabilistically—and particularly for the difference between its

two forms, alpha and beta, was a lengthy process. The alpha particles

emitted by a specific radioactive element all had the same energy, but

the energies of the beta particles, strangely, were distributed over a

fairly wide range. As Chadwick had discovered in 1914, all that could

generally be predicted was the probability of finding an electron of a

given energy in a continuous emission spectrum.

Not until 1928 was alpha radioactivity explained on the basis of a

typical quantum-mechanical phenomenon. Three American physi-

cists, Ronald Gurney (1909–1953), Edward Condon (1902–1874),

and the Russian-born George Gamow (1904–1968), independently

recognized that alpha particles would manage to penetrate the force-

barrier (the origin of this force was not yet understood) that kept nu-

cleons confined inside the nucleus. Furthermore, the probability of

tunneling though this barrier, and therefore their rate of escape,

could be calculated by means of the Schrödinger equation. The en-

ergy of the alpha particles, on the other hand, was determined by the

nuclear quantum levels and thus fixed. The energy distribution of

the beta rays, however, remained a continuing puzzle until Pauli’s

suggestion of the simultaneous ejection of an invisible neutrino: if

the energy had to be shared between three particles, an electron, a

neutrino, and the recoiling nucleus, the fraction carried away by any

one of them depended on their relative directions. The process of

beta radioactivity itself, though, remained mysterious until partially

illuminated by ideas of Heisenberg and by Enrico Fermi’s theory that

the guilty party was the neutron, which had the intrinsic property of

beta decay.

Born in Rome in 1901, Fermi had a special aptitude for physics

and mathematics that was recognized and nurtured from the time he

was a teenager. He attended the Scuola Normale Superiore of the

University of Pisa, where he obtained his doctorate in 1922. After

spending most of 1923 in Göttingen with Max Born in a group that
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included Heisenberg and Pauli, he went on to Leiden, supported by a

Rockefeller fellowship, to study with Paul Ehrenfest and was ap-

pointed lecturer in mathematics at the University of Florence in

1924. This is where he made his first major theoretical contribu-

tion, the discovery in 1926 of the special statistics governing particles

subject to Pauli’s exclusion principle. As these replacements of the

Maxwell-Boltzmann statistics were discovered independently by

Dirac, they have been known ever since as Fermi-Dirac statistics,

while the particles to which they apply are called fermions.

The statistics of indistinguishable particles not subject to the Pauli

principle, such as photons, had been discovered in 1924 by the In-

dian physicist Satyendranath N. Bose (1894–1974) and Einstein; they

are called Bose-Einstein statistics and the particles obeying them,

bosons. Einstein’s prediction of the existence of a condensate consist-

ing of many bosons at very low temperature, all congregated on the

same quantum level of lowest energy—later called a Bose-Einstein

condensate—was not experimentally verified until 1995. Indirectly,

on the other hand, the existence of such condensates had already

played an important role much earlier in the explanation of the

properties of liquid helium. All fermions have a spin angular mo-

mentum that is a half-integral multiple of Planck’s constant, like the

electron, and all bosons have integral spin, like the photon. The later

explanation of this spin-statistics connection was one of the major

achievements of relativistic quantum field theory. But back to Fermi.

In 1927 Fermi was appointed to the newly established chair of

theoretical physics at the University of Rome, and a year later he

married Laura Capon, the daughter of an admiral, with whom he

would have two children. A highly unusual combination of adroit ex-

perimenter, imaginative theorist, and clever problem-solver, in 1927

he invented an influential statistical model of the atom, known as

the Thomas-Fermi model after the independent British-born Ameri-

can co-inventor Llewellyn H. Thomas (1903–1992). And in 1934

he made the serendipitous and surprising discovery, which subse-
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quently would turn out to be of great practical as well as theoretical

importance, that slow neutrons are much more effective in instigat-

ing nuclear reactions than fast ones. In response to the recently en-

acted racial laws of Fascist Italy—his wife was Jewish—he used the

Nobel Prize money he received in 1938 to leave Italy with his family

via Stockholm, and emigrated to the United States. (He dissolved the

gold medal that came along with the prize money in a jar of acid to

hide his valuable possession along the way.)

While Fermi was getting settled at Columbia University, Niels

Bohr arrived in the United States from Copenhagen with momen-

tous news. Shooting neutrons at uranium in Berlin, the two German

radiochemists Otto Hahn (1879–1968) and Fritz Strassmann (1902–

1980) had discovered an unusual reaction. However, because the

long-term physicist member of their team, the Jewish Austrian Lise

Meitner (1878–1968), had just fled Nazi Germany for Copenhagen,

Hahn and Strassmann were unable to interpret what they had seen.

Notified of the details, Meitner, who had participated in the experi-

ment until just before its success, and her nephew, the physicist Otto

Frisch (1904–1979), together found the correct explanation: the ura-

nium nucleus, struck by a neutron, had fissioned, one of its frag-

ments being the barium Hahn and Strassmann had observed. This

discovery sent a tremor through the physics community because, as

all knowledgeable physicists realized, it opened the door to a possible

chain reaction that could release an enormous amount of energy.

The masses of the fragments produced added up to less than the

mass of a uranium nucleus, so that the difference would have to be

accounted for by kinetic energy and radiation according to Einstein’s

E = mc2.

Events unfolded following a famous letter from Einstein and the

Hungarian-born American physicist Leo Szilard (1898–1964) in 1939

to President Roosevelt, urging governmental support of nuclear re-

search, out of fear that the Germans might develop a uranium

weapon first. The pressure escalated after Japan’s attack on Pearl
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Harbor and America’s entry into the war. Having found that the iso-

tope U235 was the one fissionable by slow neutrons rather than the

more abundant U238, and building on his discovery of the effective-

ness of slow neutrons, Fermi led a group of physicists at the Univer-

sity of Chicago in the construction of the first self-sustaining nuclear

reactor, or atomic pile. The impact of a slow neutron on a nucleus of

U235 would break it into lighter fragments, releasing both a large

amount of energy and several slow neutrons. These could thereupon

in turn break apart other nuclei of U235, thus leading to an explosive

snowballing effect unless carefully controlled by neutron-absorbing

graphite.

After becoming an American citizen in 1944, Fermi joined the Los

Alamos laboratory, where a nuclear chain reaction without such con-

trols was being used for the construction of the first atomic bomb in

1945. Two such bombs, released over Hiroshima and Nagasaki with

devastating effects near the end of the Second World War, imprinted

the science of nuclear physics on the public imagination for a long

time. Upon leaving Los Alamos in 1945 after the war was over, Fermi

became a professor of physics at the University of Chicago and con-

tinued his work in nuclear physics. He died in 1954 in Chicago. The

element of atomic number 100, discovered in 1955, was named fer-

mium, and the unit of length equal to 10−15 m is called the fermi.

Shortly after the discovery of the neutron, Fermi developed a the-

ory to explain the nature of beta decay. Modeled after QED, it took

advantage of Heisenberg’s idea that the neutron and proton were ba-

sically the same kind of particle, a nucleon, distinguished only by a

two-valued quantum number called isospin—analogous to the spin

of the electron but unconnected to angular momentum. (Heisenberg

too had proposed a beta-decay theory, but it failed to take the neu-

trino into account.) The fundamental interaction involved the trans-

formation of a neutron into a proton with the emission of an elec-

tron—so that the sum of the electric charges would remain zero—

and a neutrino, with an extremely small coupling constant, that is,
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the analogue of the fine structure constant α in QED. It would later

be found that, as befitted such a weak interaction strength, neutrinos

could penetrate miles of dense matter without being deflected or ab-

sorbed.

The decay of the neutron was actually observed and its half-life

measured for the first time in 1950; it is now known to be 615 sec-

onds. The reason why, despite the neutron’s instability, not all nuclei

containing neutrons are subject to beta decay is that in most of them

there is no free state available for the proton resulting from the decay

of a neutron; the Pauli principle prevents it from joining another

proton in a state already occupied. The receptivity of unoccupied

states to emitted protons also determines the different decay proba-

bilities of radioactive nuclei.

While Fermi’s schematic idea led to a number of successful pre-

dictions over many years, it suffered from a basic theoretical flaw: in

contrast to QED, it contained infinities and could not be renormal-

ized. The underlying problem was, essentially, that whereas the basic

interaction of QED involved two particles, the electron and the pho-

ton, the basic interaction of the Fermi field involved three, the nu-

cleon, the electron, and the neutrino. Some fifty years later, it would

be superseded by the electroweak theory.

The picture of the atomic nucleus at this point was one in which,

somehow, neutrons and protons were held together quantum me-

chanically at certain allowed energy levels. These levels were experi-

mentally observable, analogous to atomic levels, by nuclear spectros-

copy, except that when an excited nucleus descended to a lower level

it emitted a gamma ray, that is, a photon of much greater energy

(shorter wavelength) than a photon of light or of X-rays. Generally,

the total energy of such a bound system had to be lower than that of

its constituents; otherwise there would be enough energy for the sys-

tem to break apart spontaneously. An alternative would be for a

force-wall to keep the nucleons inside. But whereas classically such a

wall would be unbreachable, quantum mechanics allowed tunneling
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through it with a certain probability. This was the explanation of al-

pha decay proposed by Gamow, Gurney, and Condon.

But the big question remained: what was the nature of the force

that held the nucleus together? True enough, Fermi’s theory would

imply a force between the nucleons, just as QED implied a force be-

tween electrons, but that force would be far too weak to overcome

the strong electromagnetic repulsion between the equally charged

protons. By 1936, proton-proton scattering experiments had shown

that, in addition to the Coulomb repulsion, there had to be a strong

attractive force between protons, between neutrons and protons, and

between neutrons. In the meantime, a field theory had been pro-

posed to explain this force.

The first paper of the Japanese physicist Hideki Yukawa (1907–

1981), a close friend and classmate of Tomonaga’s, published in 1934,

contained the proposal of a field theory that would account for the

nuclear force, modeled after QED. However, whereas the Coulomb

force between electrons had a very long range—it decreased as the

inverse square of the distance—the nuclear force between nucleons

would have to have a very short range, because outside the nucleus

it had never been observed. By the rules of quantum field theory,

this implied that the quantum of this field—the analogue of the

photon—could not be massless like the photon; in fact, the mass

of Yukawa’s U-particle could be estimated from the range of the

force, which could be no larger than the size of the nucleus. It should

weigh several hundred times as much as an electron. The mass of

the electron is 0.51 MeV/c2; so the mass of the U-particle was ex-

pected to be between 100 and 200 MeV/c2. (If energies are measured

in MeV, then, according to the Einstein relation, masses are measured

in MeV/c2.)

This was a time of much research on the various components of

cosmic rays which, as Victor Hess had discovered, were impinging

on the atmosphere from space. In 1936 the two American physicists

Carl Anderson and Seth Neddermeyer (1907–1988) had been puz-
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zled by some tracks in their cloud chambers that seemed to belong to

particles much heavier than electrons but lighter than protons, and

similar ones had been seen by the German physicist Paul Kunze

(1897–1986), the French physicist Louis Leprince-Ringuet (1901–

2000), and an English team led by P. M. S. Blacket (1897–1974). By

1937 they had been observed by several others too, and Yukawa, as

well as Oppenheimer and Robert Serber (1909–1997), speculated

that the mesotron seen by Anderson and Neddermeyer might be the

U-particle, which was renamed the meson. However, after a few years

of uncertainty it became clear that the cosmic ray mesotron could

not be Yukawa’s meson because it did not strongly interact with nu-

clei, as was evident from its ability to penetrate through deep layers

of earth. It took until 1947 for the real meson to be discovered by

the British physicist Donald Perkins (b. 1925) in London, and the

team of Cecil F. Powell (1903–1969) and Giuseppe Occhialini (1907–

1993), an Italian expatriate, at Bristol. Soon, Yukawa’s mesons would

be artificially produced at the synchrocyclotron in Berkeley, and their

properties were established: they had spin 1, that is, the same intrin-

sic angular momentum as the photon; they came in three varieties,

positive, negative, and neutral; the mass of the charged ones was

139.6 MeV/c2 and that of the neutral one was 135 MeV/c2; they were

renamed pions. The cosmic ray mesotron, on the other hand, with a

mass of 105.7 MeV/c2 and spin 1/2, like the electron, was renamed the

muon.

After the Yukawa force was accepted as the strong attraction that

kept nucleons together, there remained the question of the structure

of the nucleus. For the purpose of understanding nuclear reactions

and fission, George Gamow and Niels Bohr had developed a model

based mostly on prequantum physics—further detailed by Frisch

and Meitner as well as by John Wheeler—that pictured the nucleus

as resembling a liquid drop. Invaded by a slow neutron, it would be-

gin to vibrate and eventually have a certain probability of dividing,

its shape changing like a drop of water slowly dripping from a faucet.
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A much more detailed quantum-mechanical model was indepen-

dently devised in 1949 by the German-American physicist Maria

Goeppert-Mayer (1906–1972) and the German physicist Hans Jen-

sen (1907–1973). Called the shell model, it resembled Bohr’s idea

of the electrons in an atom, except that the nucleus lacked the heavy

attractive center of the atom. Instead, all the equally heavy nucle-

ons moved along shells (or trajectories) forming the quantum-

mechanical energy levels in an average mutual attractive force field.

Concurrently, however, Aage Niels Bohr (b. 1922), the son of Niels

Bohr, and the American theorists Ben Roy Mottelson (b. 1926) and

James Rainwater (1917–1986) developed a quite different collective

model, which accounted for certain prominent features of nuclear

spectra by viewing the nucleus as a more or less solid body subject to

vibratory deformations and rotations. The actual problem of many

strongly interacting protons and neutrons forming a heavy nucleus

was much too difficult to solve; therefore simplified models yielding

well-verified results had to do, even when more than one of them

was required simultaneously.

Experimental discoveries during this period included many new

isotopes of known elements, most of them radioactive. The first

transuranic element, No. 93 (these have atomic numbers above that

of uranium, No. 92) was found in 1940 by Edwin Matteson

McMillan (1907–1991) and Philip H. Abelson (1913–2004), and they

named it neptunium (after the planet Neptune).

The unraveling of the properties of the tiny nucleus at the center

of the atom—the fly in the cathedral, as Rutherford had put it—

turned out to have wide-ranging applications, not only for making

bombs and producing controlled nuclear energy by means of reac-

tors but also in geology and in astrophysics. First of all, as early as

1903 radioactivity was recognized as making a significant contribu-

tion to the heating of the earth, thereby removing Lord Kelvin’s in-

fluential young-earth objection to Darwinian evolution. The first

people to point this out were the Irish geologist John Joly (1857–
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1933) and Rutherford’s former collaborator Frederick Soddy. In 1925

the English geologist Arthur Holmes (1890–1965) used radioactive

heating to calculate that the earth had to be at least 1.6 billion years

old. Furthermore, as Rutherford had already realized early on, based

on the characteristic half-lives of decaying elements, radioactivity

could be used to determine the age of geological strata and rocks.

This method led to the presently accepted value of 4.55 billion years

as the age of the earth, a number Holmes had arrived at by the time

of his death.

As far as astrophysical applications of nuclear physics were con-

cerned, the greatest contributor was Hans Bethe, who did impor-

tant work in nuclear physics in general as well. Born in 1906 in

Strassburg (which was part of Germany at that time), little Hans was

the only child of Albrecht Bethe, a professor of physiology, and Anna

Kuhn, the daughter of a professor. Both were Jews. Precocious in

mathematics but frail of health, he was privately tutored until the

family moved to Frankfurt in 1915, where his father had been invited

to set up a department of physiology at the university; there he at-

tended the Goethe Gymnasium. At the age of eighteen he entered the

University of Frankfurt, but two years later moved to the University

of Munich, where he earned his doctorate at the age of 22 under

the guidance of Arnold Sommerfeld (who nurtured an astonishing

number of brilliant young physicists).

Bethe’s first appointments were at the University of Frankfurt

and at the Technical College at Stuttgart, working with Paul Ewald

(1888–1985), but he spent most of the years from 1929 to 1932 visit-

ing Cambridge University and Enrico Fermi in Rome, supported by a

Rockefeller Foundation fellowship. Appointed in 1932 as an assistant

professor at the University of Tübingen, he was dismissed after one

year, as Hitler had come to power; Hans Geiger, with whom he had

become friendly in Tübingen, withdrew his friendship at this time.

By contrast, Sommerfeld made efforts to find positions for him and

other Jewish academics.
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After two years in temporary positions in Manchester and Bristol,

Bethe immigrated to the United States in 1935, invited as an assistant

professor to Cornell University, where he remained for the rest of his

life, except for an interruption during the Second World War. In 1939

he married Rose Ewald, his former mentor’s daughter, who had emi-

grated and was a student at Smith College; they had two children, a

son, Henry, and a daughter, Monica. Naturalized in 1941, he worked

for a time on shock waves with Edward Teller and on the develop-

ment of radar at MIT. In 1942 he accepted Oppenheimer’s invitation

to join the Manhattan Project at Los Alamos as director of the theo-

retical physics division.

In 1946 Bethe left Los Alamos and returned to Cornell to resume

teaching and research; he also became active in the disarmament

movement, advocating civilian control over nuclear energy and par-

ticipating in the nuclear test ban discussions in 1958. From 1956

to 1959 he served on the President’s Science Advisory Committee.

Scientifically productive to the end, Hans Bethe died in 2005 in

Ithaca, New York; his last paper was published posthumously.

The two principal problems in astrophysics that involved nuclear

physics (and which would turn out to be closely connected) were (1)

to account for the origin and the distribution of the elements in the

universe and (2) to find the source of the power heating up the stars.

In 1936 George Gamow had published a book that included the ideas

of thermonuclear reactions in stars and the possible effectiveness of

neutron capture in nuclei in building up the heavy elements from

helium and hydrogen, which were known to be abundant in stars. A

thermonuclear reaction is caused in a high-temperature environ-

ment, where the molecules move so energetically that their mutual

collisions are able to overcome the electrostatic repulsion between

their atomic nuclei to enable them to fuse. In such nuclear fusion,

two nuclei combine to form a new, heavier nucleus, which weighs

somewhat less than the sum of the weights of the original two. The

excess mass is turned into energy according to E = mc2, either in the
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form of kinetic energy of some expelled protons, neutrons, or other

particles, or else in the form of gamma rays.

With temperatures reaching millions of degrees, the interiors of

many stars were recognized to have suitable conditions for thermo-

nuclear reactions, and in 1939 Bethe proposed and calculated in

detail the probabilities of two specific sequences of reactions. The

first, called the pp-cycle, which had already been suggested in a gen-

eral way by the German physicist Carl Friedrich von Weizsäcker (b.

1912), went through a series of three steps, beginning with the fusion

of two hydrogen nuclei and ending with a helium nucleus and two

protons, which could then proceed to initiate a new sequence of the

same kind. The second, called the CNO-cycle, forms helium out of

hydrogen nuclei in a series of six steps that uses a carbon nucleus as a

catalyst. Both of these cycles are able to produce enough energy to

keep the sun and other stars shining for billions of years. What is

more, as a byproduct, the pp-cycle as well as the CNO-cycle gives rise

to neutrinos, which are able to escape from the interior of the sun

without difficulty; these should be observable on earth and recogniz-

able by their characteristic energy distributions, thereby testifying to

the correctness both of Bethe’s theory and of our ideas of the consti-

tution of the sun.

A detailed model of the sun’s interior was calculated by the Amer-

ican physicist John Bahcall (1935–2005), who then also calculated

the precise total number of neutrinos the sun would emit in various

energy ranges per second by the CNO-cycle and the pp-cycle. A

verification of these numbers would have to wait until methods were

found, primarily by the American physicist Raymond Davis, Jr. (b.

1914), to detect the elusive neutrinos. When such procedures were

finally developed that could count solar neutrinos in mine shafts un-

derground at a depth to which other particles could not penetrate,

their number turned out to be short by a factor of three when com-

pared to Bahcall’s model. The solar neutrino puzzle was finally

solved in 2003 by means of a new theory according to which there
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were three kinds of neutrinos, converting into one another in an os-

cillatory fashion, thereby reducing the number of the kind emitted

by the sun arriving on earth. Bethe’s proposal, as well as the accepted

model of the interior of the sun, were finally found to be right on the

mark.

Of course, other stars are also powered by thermonuclear reac-

tions, especially the conversion of hydrogen into helium. The Indian-

born American astrophysicist Subrahmanyan Chandrasekhar (1910–

1995), usually called Chandra, played a particularly important role in

studying the consequences of this phenomenon. The theory he an-

nounced in 1935 was this: as a star uses up more and more of its hy-

drogen and thus cannot emit as much radiation as in its youth, the

radiation pressure becomes too weak to overcome the star’s own

gravitational pull, and it begins to contract and finally collapses into

a state of such high density that electrons are unable to move in their

normal orbits and atoms cease to exist. A star in this late stage of ex-

istence, called a white dwarf, is a very small, dense object of great

mass.

However, this fate awaits only relatively small stars like the sun.

If its mass is more than 1.4 times the mass of the sun—the Chan-

drasekhar limit, later more accurately determined to be 1.2 solar

masses—the star, unless it can somehow shed some of its weight, will

spectacularly explode as a supernova. The remnant of such an explo-

sion is either a white dwarf or else a neutron star, an enormously

dense object, two or three times as massive as the sun but with a di-

ameter of only a few miles, consisting of nothing but neutrons. That

such entities could exist had been first shown by George Gamow in

1937 and further studied shortly thereafter by the Russian physicist

Lev Landau as well as by Oppenheimer and the Russian-born Ameri-

can George Volkoff (1914–2000). Astronomers observed them for

the first time in 1967 in the form of radio pulsars, quasi-stellar

objects emitting regularly pulsed long-wavelength electromagnetic

radiation. (The means of astronomical observation had, since the

274 From Clockwork to Crapshoot



1950s, been enormously broadened beyond visible light to include

radio waves as well as X-rays and gamma rays; eventually even neu-

trinos would serve observational purposes.) In 1990 the Hubble

Space Telescope was launched, orbiting the earth beyond its atmo-

spheric disturbances and adding greatly to the clarity and reach of

what astronomers could observe.

The energy production in stars, involving as it does the “burning”

of hydrogen, the lightest element, to make helium, constitutes at the

same time the first step up a ladder in which each rung would pro-

duce a heavier element either by a process of nuclear fusion or else by

neutron capture followed by beta decay. (Adding to a nucleus a neu-

tron, which then decays into a proton while emitting a fugitive elec-

tron, raises the element up one step in its atomic number.) Under-

standing how the heavier elements were built up in the course of the

development of the universe took some time to untangle, primarily

because there were gaps between some of the atomic masses that

were hard to bridge by any known processes. However, the American

physicist William Alfred Fowler (1911–1995) and the English astron-

omer Fred Hoyle (1915–2001), performing elaborate calculations,

managed to account for the abundances, from helium to the heavy

elements, observed in the stars by means of spectroscopic data.

Although calculations of nucleosynthesis, based on quantum me-

chanics, are probabilistic, they readily lend themselves to reliable sta-

tistical predictions for the resulting distribution of elements. Astro-

physicists refer to these distributions as abundances. Still, the age-old

question remained: was the universe eternal or did it have a begin-

ning?

In 1948 a paper authored by Ralph Alpher (b. 1921), Bethe, and

Gamow—Bethe’s name was added gratuitously by the playful Gamow

to give the list of authors the catchy sound of alpha, beta, gamma—

proposed that the universe began with a “hot big bang,” consisting of

a dense, very high temperature sea of neutrons, from which all the el-

ements would then be synthesized step by step in the course of time.
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The same year, Alpher, together with Robert Herman (1914–1997),

expanded on this idea but calculated that the early universe would

have to have been filled with gamma rays as well, and they came to

the remarkable conclusion that as the processes of nucleosynthesis

and expansion gradually cooled the cosmos, a remnant of the origi-

nal gamma radiation should still be visible today in the form of pho-

tons with wavelengths distributed like those emitted by a black body

at a temperature of about 5° K, putting them in the microwave

region.

And indeed, in 1965 the German-born American astrophysicist

Arno Allan Penzias (b. 1933) and the American astronomer Robert

Woodrow Wilson (b. 1936) serendipitously detected just such an all-

pervading background microwave radiation at a temperature of 2.7°
K. This discovery laid to rest an alternative cosmology proposed and

vigorously advocated by Hoyle. In that theory the universe had no

beginning—the name Big Bang for its birth in the alternative theory

was Hoyle’s derisive coinage—but existed in a steady state in which

particles would be constantly created out of nothing to make up for

the expansion. Unable to account for the cosmic microwave radia-

tion found by Penzias and Wilson, the steady-state theory was dead.

So by the second half of the twentieth century the universe was

understood to have had a beginning some 14 billion years ago in a

“big bang,” the cooled-down remnant of its radiation dust still de-

tectable in the form of a ubiquitous microwave background and

open to examination. However, detailed observations of the distribu-

tion of this primordial radiation presented a new problem: it showed

a remarkable uniformity that was hard to reconcile with any model

of the initial stage of the cosmos. This puzzle was solved in the early

1980s by the American physicist Alan Guth (b. 1947) and the Rus-

sian-born American Andrei Linde (b. 1948), who independently sug-

gested that the big bang was followed by a short period during which

the newly born universe expanded at an enormous rate—this period

is referred to as the time of inflation—wiping out all nonuniformity
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that may have been initially present. This inflationary scenario im-

plied that the special geometry of the universe, when it settled down,

should be flat (exactly on the dividing line between being closed like

a ball, with positive curvature, or open with a negative curvature, like

a saddle), which more or less agrees with known data.

This was not the end of the story, however. One of the fruits of the

new observational power available to astronomers was the discovery

in 1998 that some of the very distant supernovae of the kind that can

serve as “standard candles” for distance measurements were farther

away than expected on the basis of their observed red shift and the

Hubble diagram. Unless another explanation could be found—and

all such attempts have so far proven unsuccessful—the obvious con-

clusion was that the expansion of the universe was accelerating. The

surprise with which this news was received rivaled the one greeting

Hubble’s original discovery of the expansion in 1927. Owing to the

gravitational attraction of all the mass in the universe, astrophysicists

had expected the flight of very distant galaxies to be slowing down

rather than speeding up, especially since recent analyses of the mo-

tion of galaxies had shown there was much more matter in the uni-

verse than what revealed itself by emitting light. The cosmos seemed

to be filled with dark matter, the nature of which is still unknown, all

of it tending to pull far-away masses to a stop. What could account

for their being pushed away faster and faster? One possibility would

be Einstein’s old cosmological constant, the one he had hastily intro-

duced, to his later regret, in order to keep the universe from expand-

ing. To provide a physical explanation of the otherwise ad hoc cos-

mological constant, cosmologists are also entertaining the idea of an

all-pervading “dark energy” of unknown origin. The issue is still un-

resolved.

The remaining discoveries of the twentieth century, all their ex-

planations based ultimately on quantum mechanics, deal with the

structure of matter and the fundamental constituents of the uni-

verse. However, these areas of physics are not to be thought of as en-
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tirely separate from those we have been discussing, as was forcefully

brought home by a discovery made in 1958. The German physicist

Rudolf Ludwig Mössbauer (b. 1929) found that the energies of the

gamma rays emitted by nuclei of atoms that are part of a rigid crystal

lattice at very low temperature reflect the energies of the nuclear lev-

els more accurately than those emitted by nuclei of freely moving at-

oms. This is because they suffer a much smaller shift owing to the re-

coil of the emitting nucleus—in the crystal, the entire heavy lattice

recoils, rather than just the individual nucleus, thus making the re-

coil motion much slower. This Mössbauer effect greatly facilitated

the experimental verification of the influence of gravity upon pho-

tons that had been predicted by the general theory of relativity—a

minute shift, difficult to detect. Notwithstanding the increasing trend

toward specialization of scientists, the various areas of physics do

hang together and form a whole, frequently complementing one an-

other.
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twelve

The Properties of Matter

Prior to the twentieth century, the structure of matter was primarily

the domain of mineralogy, and its properties that of thermodynam-

ics. Mineralogists measured the angles between the faces of crystals

making up a given mineral and studied all the symmetry types possi-

ble in nature (echoes of Platonic solids); thermodynamics dealt with

the heat-related behavior of matter. After the discovery of X-rays

by Röntgen, the techniques of studying crystalline solids began to

change, starting with Max von Laue’s discovery that crystals dif-

fracted Röntgen’s rays, and continuing with the research of the two

Braggs, father and son, who developed the field of X-ray crystallogra-

phy. That neutrons too could be diffracted by crystals was initially re-

alized in 1936 but could not be fully exploited until the construction

of the first nuclear reactor by Fermi in 1942 made substantial neu-

tron beams available. In the meantime, electron diffraction had been

discovered by Davisson and Germer in 1927, and that technique was

used for the study of crystals as well.

While these experimental investigations added a great deal to our

factual knowledge of the structure of solid matter, quantum me-

chanics began to lead to a theoretical understanding of this structure

(particularly when an approximation technique invented by Born



and Oppenheimer was employed, based on the large discrepancy be-

tween the speeds of the ponderous, slow nuclei and the much lighter,

faster electrons in an atom). The first quantum mechanical calcula-

tions of the way the atoms in a molecule are held together were done

in 1927 by the American physicist Edward Uhler Condon (1902–

1974), the Swiss Walter Heitler (b. 1904), and the German—later

American—Fritz London (1900–1954). It turned out that the cohe-

sive force arises predominantly from a sharing of electrons among

these atoms. (However, there is also an additional interatomic force

first discovered in the nineteenth century by the Dutch scientist

Johannes Diderik van der Waals [1837–1923] and later explained by

quantum mechanics.)

In a comprehensive paper in 1931, followed by the book The Na-

ture of the Chemical Bond, published in 1939, the American chemist

Linus Pauling (1901–1994) provided a large generalization with a

powerful influence on chemistry. Other important contributions to

our understanding of molecules were made by the Dutch physical

chemist Peter Joseph Willem Debye (1884–1966), whose work on X-

ray diffraction transformed such analyses into a much more versatile

tool.

The nature of molecules clarified, there remained many bulk

properties of matter that begged for explanation, such as their spe-

cific heats and particularly the phenomena of magnetization, electri-

cal conduction, and phase transitions—the sudden change of a prop-

erty as the temperature increases or decreases, such as the freezing

and boiling of water.

Owing primarily to the work of Faraday, it had been known since

the nineteenth century that the magnetic properties of materials fell

into three distinct classes: ferromagnetic, paramagnetic, and diamag-

netic. Only three elements possessed the strong—sometimes perma-

nent—property called ferromagnetism at room temperature: iron,

cobalt, and nickel. Other materials became very weakly magnetic, to

various degrees, when placed in an external magnetic field, in the
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same direction as the external field if paramagnetic, and opposed to

it if diamagnetic. In the late nineteenth and early twentieth centu-

ries, the characteristics of diamagnetism and paramagnetism, partic-

ularly their temperature dependence, had been studied by Pierre

Curie and Paul Langevin, as well as by the French physicist Pierre

Ernst Weiss (1865–1940). Although William Gilbert already knew in

the sixteenth century that a permanent magnet loses its magnetism

when heated to high temperature, it was Pierre Curie who in 1895

definitively established the existence of a critical temperature (now

called the Curie point) above which a given ferromagnetic material

becomes paramagnetic through a phase transition. As Weiss found,

many paramagnetic substances turned ferromagnetic at very low tem-

peratures; they too had a Curie point. The phenomenon of antiferro-

magnetism—strong resistance to becoming magnetized—was dis-

covered by the French physicist Louis Néel (1904–2000).

What accounted for the magnetism of all these materials? Ever

since Faraday’s and Ampère’s discovery of the connection between

magnetism and electricity and Maxwell’s promulgation of his equa-

tions, which contained provisions for electric charges as sources of

electric fields but none for magnetic poles, magnetic properties of

matter were regarded as originating from the motions of charges.

This turned out to be correct for diamagnetism, in which the moving

charges in a molecule were influenced by an applied magnetic field,

but not for paramagnetism, which owed its existence to the magnetic

properties of the electrons. At the turn of the century, the Dutch

physicist Pieter Zeeman (1865–1943) had discovered that an applied

magnetic field could influence atomic spectra. But the resulting shifts

of spectral lines, known as the Zeeman effect, remained only partially

understood (despite elucidation by Hendrik Lorentz) before quan-

tum mechanics was able to give a complete quantitative explanation,

based on the intrinsic magnetism associated with the spin of the

atomic electrons rather than on the motion of these electric charges.

Similarly, paramagnetism in matter arises from the permanent
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spin magnetism of atoms. As the magnetism of the electrons in an

atom’s inner orbits cancels out in pairs, the spin magnetism of its

outermost electron turns an atom with an odd number of electrons

into a little permanent magnet of its own. Paramagnetic resonance

became a useful new tool: with the atomic magnets lined up by a

uniform applied magnetic field, an oscillating magnetic signal at

right angles would be strongly absorbed just at the frequency corre-

sponding to the energy needed to yank an atomic magnet around to

point the other way. A similar tool, called nuclear magnetic reso-

nance or NMR, was found to exist for the nuclear magnetism, caused

by the spin magnetism of the nucleus’s constituents in the same way

as atoms owe their magnetism to the spin magnetism of their elec-

trons. However, as the nuclear magneton is very much smaller than

the Bohr magneton, the nucleus is a much weaker magnet than the

electron and contributes little to that of the atom as a whole.

Much of our detailed quantum-mechanical knowledge of the

magnetism of matter was developed by the American physicist John

Hasbrouck Van Vleck (1899–1980), as well as by Louis Néel. A ferro-

magnet consists of microscopic crystalline domains, each made up of

a large number of atomic magnets, all lining up in the same direc-

tion when placed in a magnetic field and remaining that way when

the field is removed. However, as the temperature is increased and

random thermal motions become more violent, this line-up eventu-

ally collapses and the ferromagnetism is lost. What remained unex-

plained was why ferromagnetism should disappear suddenly, at a

critical temperature. Why a phase transition? This was a difficult

mathematical problem, made particularly hard to answer because no

system consisting of a finite number of elements would exhibit the

discontinuous change in its properties as a function of temperature

that is characteristic of a phase transition. As indicated by Avogadro’s

number, the number of molecules in an ordinary piece of matter is

so large that real phase transition in physics can be regarded as dis-

continuous for all practical purposes.
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As is often the case when faced with an intractable mathematical

problem, physicists make do with a simplified model that contains

just enough of the essentials to be relevant but not enough of the

complications to be unmanageable. This is what the German physi-

cist Ernst Ising (1900–1998) did with ferromagnetism in 1925, when

he set up and treated thermodynamically an infinite schematic array

of “magnets,” able to point up or down and influencing only their

nearest neighbors. Even for this simple model, the proof that at low

temperature there was “long-range order”—large domains with all

their magnets lined up the same way—which disappeared above a

Curie temperature, was a difficult mathematical problem. In one di-

mension, it was quickly realized, there was no critical point, but as

the Norwegian-born American chemist Lars Onsager (1903–1976)

eventually proved, for a two-dimensional array a temperature does

indeed exist above which the long-range order disappears—an im-

pressive result establishing the existence of a phase transition on

mathematical grounds. Alas, it was in two dimensions only; in the

physically most relevant case of three dimensions even the Ising

model is too difficult, and the existence of a Curie temperature re-

mains an open mathematical question to this day.

The properties of real phase transitions, or critical phenomena,

rather than those in models, remained subject to research for many

years, and in 1966 the American physicist Leo Kadanoff (b. 1937)

found that their graphical description contained a universal feature

called scaling, a quantum generalization of what had first been sug-

gested on classical grounds by the Dutch-American physicist George

Uhlenbeck. The American Kenneth Geddes Wilson (b. 1936) soon

gave this idea a more general mathematical form called the renor-

malization group. Rooted in quantum field theory, the concept be-

came quite influential in many areas of physics.

The other conspicuous property of matter that begged to be ex-

plained was electrical conduction. In 1879 the American physicists

Edwin Herbert Hall (1855–1938) and Henry Augustus Rowland
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(1848–1901) made the discovery that a magnetic field at right angles

to a current-carrying conductor produced a sideways voltage differ-

ence orthogonal to both, which came to be known as the Hall effect

and allowed the inference that the carriers of electricity were nega-

tively charged. (The electron had not yet been discovered.) Once at-

oms were understood to make up all substances and were seen to

consist of a nucleus surrounded by electrons à la Bohr and Ruther-

ford, it became clear that these carriers of electric currents had to be

moving electrons, and the Hall effect was understood as originating

from the Lorentz force exerted on the electrons by the magnetic field.

However, in 1978, the Polish physicist Klaus von Klitzing (b. 1943)

discovered that at very low temperatures the transverse Hall-voltage

difference was not proportional to the applied magnetic field but in-

stead rose in discrete steps as the strength of this magnetic field was

raised, with wide plateaus of no increase in the voltage. This came to

be known as the quantum Hall effect. A partial explanation of this

phenomenon was based on quantum-mechanical work of Lev Lan-

dau published as early as 1930, but it is still a live research subject.

What remained to be explained was why some materials—notably

metals—were conductors, others semiconductors, still others insula-

tors, and why the resistivity of conductors was roughly proportional

to the temperature (as had been known for a long time), whereas

that of semiconductors decreased as they warmed up. There had also

been the surprising discovery of superconductivity.

After the Dutch physicist Heike Kamerlingh Onnes (1853–1926)

had in 1908 succeeded in liquefying helium by cooling it down to

4.2° K, he spent the next fifteen years trying to make it freeze, with-

out success. All he found was that at 2.2° K there appeared to be a

transition to another kind of fluid he called helium II, but until 1936

no one noticed the remarkable characteristics of this superfluid, as it

came to be called: having extremely low viscosity, it can flow through

the finest cracks, and it will flow out of any container open at the top

by creeping up its wall. In addition, it conducts heat 800 times better
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than copper. These properties of helium II were discovered and stud-

ied in quantitative detail by the Russian physicist Pyotr Leonidovich

Kapitza (1894–1984). Their explanation was provided after the end

of the Second World War on the basis of Bose-Einstein conden-

sation, by Fritz London, the Hungarian-American Laszlo Tisza (b.

1907), the Russian Nikolai N. Bogolubov (1902–1992), and in greater

depth and detail by Lev Davidovich Landau.

Lev Davidovich Landau was born in 1908 in Baku, on the Caspian

Sea. He studied at the University of Baku and at the University of Le-

ningrad, where he published his first scientific paper. In 1929, Dau,

as he was by then universally called, began an eighteen-month jour-

ney abroad, visiting the scientific centers in Europe and meeting all

the originators of quantum mechanics except Fermi, the man he ad-

mired most. When working with Rutherford in Cambridge, he made

the acquaintance of Pyotr Kapitza, but his longest stay was in Copen-

hagen with Niels Bohr.

After returning to Leningrad in 1931, he moved to Kharkov to

head the Theoretical Institute, and in 1937 he married Kora Dro-

bantseva; they had one son, Igor, who eventually became an experi-

mental physicist. This was the time when Landau became interested

in low-temperature physics, and promptly in 1937, Kapitza, whom

Stalin had summoned back to the Soviet Union from Cambridge, in-

vited him to come to Moscow to head the theoretical division of the

Institute for Physical Problems. The following year, however, he was

arrested as a German spy, his Jewish background notwithstanding,

and spent a year in prison, returning emaciated and sickly. During

the Second World War, Landau, appointed professor of physics at

Moscow State University, contributed to the Russian war effort, and

after the war he participated in the Soviet nuclear weapons program

as well as in the development of rockets.

Landau was very unconventional in his personal habits, and his

acute critical faculties and sharp tongue were often compared to

Pauli’s. His influence on Russian physics is impossible to overesti-
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mate. Only the exigencies of history and geography prevented the

school he created around him from becoming comparable to the ear-

lier one of Arnold Sommerfeld. An automobile accident ended his

scientific creativity in 1962; he never fully recovered and died after

surgery in 1968.

As for Onnes, he now had liquid helium at his disposal in his lab-

oratory as a cooling medium. In order to study the electrical resistiv-

ity of metals at low temperatures, he used this new capability to take

them down below 4.2° K and found to his astonishment that at 3° the

resistance of mercury for all practical purposes totally disappeared:

he had discovered superconductivity, subsequently finding it in lead,

tin, and several other metals. An electric current established in a

superconducting wire loop would circulate forever without diminu-

tion, but a magnetic field of sufficient strength would destroy the su-

perconductivity. What is more, as the two German physicists Walther

Meissner (1882–1974) and Robert Ochsenfeld (1901–1993) discov-

ered in 1933, a superconductor immersed in an external magnetic

field too weak to destroy its superconducting property will entirely

expel the field from its interior—this strange phenomenon is usually

referred to as the Meissner effect. Both the zero resistance and the

Meissner effect have great potential technological applications that

remain to be exploited.

Theoretical understanding of regular electrical conduction, based

on quantum mechanics, began with a paper by Arnold Sommerfeld

in 1928. Whereas he envisaged the crystals of a metal formed by a

regular array of ionized atoms, their outer electrons moving about

in the smoothed-out electrostatic atomic field but constrained by

the Pauli exclusion principle, a more realistic view was introduced

by the Swiss physicist Felix Bloch (1905–1983). His ideas, as well

as those of the German-born British physicist Rudolf Ernst Peierls

(1907–1995) and the French-born American physicist Léon Brillouin

(1889–1969), formed the beginning of what is now called solid-state

physics or condensed-matter physics, a field brought to full flowering
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by the American physicists Frederick Seitz (b. 1911), John C. Slater

(1900–1976), and John Bardeen, and the English physicist Sir Nevill

Francis Mott (1905–1996), as well as Van Vleck, Wigner, and Landau.

In the resulting picture of a metallic conductor, electrons be-

have as a Fermi gas—obeying the Pauli principle, they are subject to

Fermi-Dirac statistics—in conduction bands above a Fermi surface,

below which all quantum states are occupied. The resistance of such

conductors is the result of impurities, which introduce into the regu-

larity of the crystals underlying Bloch’s theory a certain measure of

disorder. The principal developer of the theoretical and mathemati-

cal understanding of such disordered materials was the American

physicist Philip W. Anderson (b. 1923), who also made important

contributions to other areas of condensed-matter physics.

The semiconducting materials, such as silicon and germanium,

are situated between conductors and insulators, and their electrical

resistivity decreases with rising temperature, rather than increasing

like that of metallic conductors, indicating that their conducting

properties required a different explanation from those of metals.

Their importance resided primarily in the fact that they had been

recognized to be suitable for the construction of rectifiers and am-

plifiers—transistors, as they came to be called—which were much

more compact and efficient than vacuum tubes. The development of

electronic computers after World War II made such devices particu-

larly urgent. The primary contributors to our understanding of these

substances were the German physicist Walter Hans Schottky (1886–

1976) and the Americans William Bradford Shockley (1910–1990),

Walter Houser Brattain (1902–1987), and John Bardeen.

Bardeen was born in 1908 in Madison, Wisconsin, to Charles

Bardeen, a professor of anatomy and dean of the Medical School

at the University of Wisconsin, and his wife Althea, an artist and

teacher. Intellectually encouraged by his parents, especially in mathe-

matics, which he loved, he skipped three grades and graduated from

high school at the age of fifteen, after which he entered the Univer-
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sity of Wisconsin, majoring in electrical engineering, with minors in

physics and mathematics, graduating in 1928 and obtaining a mas-

ter’s degree a year later. His first job was with the Gulf Research and

Development Corporation, thinking up new methods for locating oil

deposits. Dissatisfied with this work, he went to Princeton University

for graduate studies. He began doctoral research on electrons in met-

als under the direction of Eugene Wigner but soon interrupted his

stay to take up a three-year junior fellowship to Harvard, where he

worked with Van Vleck as well as Percy Bridgman (1882–1961), and

returned to Princeton to get his Ph.D. in 1936.

Bardeen’s first academic appointment was at the University of

Minnesota in 1938. For the duration of the war, he was stationed at

the Naval Ordnance Laboratory in Washington, D.C., working on the

magnetic detection of submarines, and when the war was over, he

took a position at Bell Laboratories in Murray Hill, New Jersey, where

Brattain and Shockley were pursuing research on semiconductors

with the aim of making vacuum tubes obsolete. By 1948 Bardeen’s

infusion of new ideas into the groundwork laid by the other two led

to the first successful construction of a transistor.

By that time, Bardeen had left Bell Labs in 1951 and moved to the

University of Illinois as professor of electrical engineering and phys-

ics, where he resumed his earlier investigation of superconductivity,

laid aside during the war. Although Lev Landau, Vitalii Lazarevich

Ginzburg (b. 1916), and Fritz London had taken some steps toward

explaining it, this phenomenon still remained puzzling, and Bardeen

undertook to unravel it, assisted by his postdoctoral research associ-

ate Leon Neil Cooper (b. 1930) and his graduate student J. Robert

Schrieffer (b. 1931). Success came in 1956, and its three authors,

Bardeen, Cooper, and Schrieffer, were honored in 1972 with the No-

bel Prize in physics, the second such award for Bardeen, who remains

the only person to have won the prize for physics twice; he had won

the first jointly with Brattain and Shockley, for the invention of the
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transistor. (One of Madame Curie’s two Nobels was in chemistry.)

Bardeen retired in 1975 and died of heart failure in Boston in 1991.

The BCS theory, as it was soon called, was based on the forma-

tion of “Cooper pairs” of electrons, whose mutual attraction results

from a distortion of the ambient crystal lattice—somewhat analo-

gous to the polarization of the vacuum in QED. Within a short time

it turned out that these Cooper pairs manifested themselves in other

characteristically quantum-mechanical ways. As the Welsh physicist

Brian D. Josephson (b. 1940) theorized and was quickly found to

be correct, they could tunnel through a barrier between two super-

conductors. The surprising properties of such a Josephson junction

turned out to have a number of very useful applications that made

quantum mechanical effects directly visible at the macroscopic level.

For the remainder of the twentieth century, many attempts would

be made to find materials that became superconducting at higher

transition temperatures, the holy grail being a room-temperature su-

perconductor. The principal reason, of course, was practical, as such

a substance would have enormously important technological appli-

cations. While this goal has remained elusive, the critical tempera-

tures have been pushed increasingly high as time went on, eventually

reaching about 150° K. All the high-temperature superconductors

are very complicated chemical compounds, and BCS theory does not

appear to be adequate for understanding them, but no fully satisfac-

tory substitute has yet been developed.

After this survey of the physics of condensed matter, we turn now

to the area of physics dealing with the most basic constituents of the

universe, the area that came to be called either particle physics or

high-energy physics.
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thirteen

The Constituents of the Universe

Before delving into the twentieth-century discoveries about the ulti-

mate constituents of the universe, we have to discuss an area of

mathematics that had first become prominent in physics in the con-

text of nuclear physics and whose importance grew as time went on:

the field that exploits the consequences of symmetries in nature. (As

a symmetry of a system implies that the system remains invariant

under certain transformations—rotational symmetry means invari-

ance under rotations—another name for this property is invariance.)

We have already touched upon it when we discussed Noether’s theo-

rem, as a result of which the conservation laws of energy and mo-

mentum in classical mechanics and field theories are consequences

of invariance under time shifts and under spatial translations, re-

spectively, and the conservation of angular momentum is a conse-

quence of invariance under rotations.

With the advent of quantum mechanics, such connections be-

tween symmetries and conservation laws acquired much more promi-

nence. The strength of classical, deterministic physics was to predict

the detailed behavior of systems, such as the sun and the planets.

When chance took over, prediction was no longer the primary aim of

physics; instead, physicists searched for permanent structures in na-



ture: Why are atoms the way they are? Why is the nucleus the way it

is? Why are spectral lines of radiation emitted by atoms and nuclei at

those characteristic frequencies? Why do solid materials form crys-

tals? In order to explain the most prominent features of these struc-

tures, it was found in many cases to be unnecessary to solve the

dynamical equations, such as the Schrödinger equation: they were

simple consequences of underlying symmetries. In the language of

Aristotle, the second half of the twentieth century replaced efficient

causes with formal causes as the dominant explanatory paradigm in

physics.

The field of mathematics that turned out to be indispensable for

the milking of symmetry properties originated with the young French

revolutionary republican Evariste Galois (1811–1832), whose aim

was to find methods to solve algebraic equations and to prove under

what conditions such solutions were impossible. This was one of the

many instances in which a field of mathematics turned out to be ex-

tremely useful in physics for purposes other than those for which it

had been invented. With the aid of Joseph Liouville, the notes Galois

left after his death in a duel at the age of twenty blossomed into what

is now called group theory.

A set of mathematical operations is called a group if performing

one after another is equivalent to performing a single operation of

the same kind, and if each can be undone by an operation called its

“inverse.” Examples are operations such as rotations, translations,

and reflections. In fact, rotations by arbitrary, continuously varying

angles form a continuous group; the theory covering such groups

was founded by the Norwegian mathematician Sophus Lie (1842–

1899) and further developed by the French mathematician Élie Cartan

(1869–1951). The physicist who most fruitfully applied group theory

to quantum mechanics was the Hungarian-born American Eugene

Wigner (1902–1995).

Here is what this mathematical device can do for any quantum-

mechanical theory. If all the forces on a given system are invariant
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under the operations of a certain group, one can, without perform-

ing any of the hard equation-solving work required for calculating

the numerical values of the various energies allowed for the system,

classify them according to the number of states allotted to each en-

ergy level. This “multiplicity” of a given energy level equals the di-

mensionality of the symmetry group’s “representation” to which the

level belongs, and these numbers can be determined from the prop-

erties of the group alone. Furthermore, group theory gives informa-

tion about transition probabilities from one level to another and in-

dicates when such transitions are forbidden, that is, they have zero

probability. Thus, just knowing the symmetries of a system allows

physicists to draw valuable conclusions about the structure of its en-

ergies and its spectrum, irrespective of the other details of the forces

acting in and on it. This ability turned out to be invaluable.

Moving now to physics, recall that at mid-century the elementary

particles that had been discovered were the electron (and its antipar-

ticle, the positron), the proton, the neutron, the neutrino, the pion

(in its three forms, positive, negative, and neutral), and the muon

(negative, and its antiparticle positive). On the basis of the Dirac

equation, which was assumed to be applicable, at least approxi-

mately, to protons as well as to electrons, everybody expected the ex-

istence of an antiproton analogous to the antielectron, even though it

could not be found in nature. The first of the new high-energy accel-

erators, the Bevatron at Berkeley, California, was constructed spe-

cifically to speed up protons to an energy at which they could, when

colliding with another proton at rest, produce a proton-antiproton

pair, and this process was indeed observed in 1955 by the Italian-

American Emilio Segrè (1905–1989) and the American Owen

Chamberlain (1920–2006). If this did not surprise anyone, its impor-

tance lay in the fact that, had the antiproton not been found, the im-

plications would have been devastating. The second half of the twen-

tieth century would see an explosion of discoveries of new particles,
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driven by and in turn driving the construction of ever bigger acceler-

ators.

About the same time as the discovery of the antiproton, evidence

accumulated from cosmic-ray showers—and soon from accelerator

beams as well, detected by means of cloud chambers and photo-

graphic emulsions—that there existed a number of “strange” parti-

cles of various masses, electrically positive, neutral, and negative. All

unstable, they were regarded as strange because their half-lives were

much longer than would have been expected on the basis of their co-

pious production. In other words, if a particle is produced by the

same kind of interaction with others that also eventually makes it de-

cay into daughter particles, decay being the same process as produc-

tion run backwards, a half-life long enough for it to leave an easily

visible long track in an emulsion, as these did, should imply that it

cannot be easily produced, whereas these objects seemed to be made

in relatively large numbers, given enough energy.

The proposed explanation was that there had to be a new conser-

vation law at work in the strong interaction, allowing the easy si-

multaneous, or “associated,” production of two particles with com-

pensating quantum numbers but preventing their decay. That they

decayed nonetheless, though slowly, would then presumably be the

result of a much weaker interaction—like the one responsible for

beta decay—which violated this conservation law.

The particles found were in two classes: the first were hyperons

(fermions heavier than protons and neutrons) called Lambda (neu-

tral), Sigma (positive, negative, and neutral), and Xi (negative and

neutral); the second, K-mesons or kaons (positive, negative, and two

different neutral ones)—bosons lighter than protons but heavier than

pions. To account for the observed production and decay regulari-

ties, the American physicist Murray Gell-Mann (b. 1929) and the

Japanese Kazuhiko Nishijima (b. 1926) devised a scheme of “strange-

ness quantum numbers,” which at the same time implied the exis-

The Constituents of the Universe 293



tence of two kinds of neutral kaons with different half-lives, a predic-

tion that was soon confirmed by experiments at the Cosmotron

accelerator at Brookhaven National Laboratory.

Not all the particles to be discovered in the course of the next

twenty-five years, however, lived long enough to leave a visible track

in an emulsion. The evidence for most of them was a “resonance”

seen in the plot of a scattering cross section. It was one of the re-

sults of quantum mechanics that if two particles could form a com-

pound system that remained together for some length of time, the

plot of the probability of their scattering when one is shot against the

other—their collision cross section—would show a distinct reso-

nance bump, whose width is inversely proportional to the half-life of

the unstable compound system: the longer it takes for the unstable

system to decay, the sharper the spike in the scattering plot. There-

fore the search for new unstable particles concentrated primarily on

finding visible resonances in the graphs of cross sections as functions

of the energy, ambiguous though their identification often was—es-

pecially when the bump in the plot was very broad. And indeed, in a

few instances, announced discoveries of particles detected in this

manner turned out to be spurious and had to be withdrawn.

What schema was at the bottom of these newly discovered hy-

perons, and what was the new conservation law that explained their

long lives? As we have seen before, a conservation principle was al-

ways the result of a symmetry in the underlying equations, and the

multiplicities of equal-energy quantum states—there were a total of

eight heavy fermions called baryons, comprised of the proton, the

neutron, and the six hyperons—could be calculated algebraically by

means of group theory. The symmetry group that did the trick,

found by Gell-Mann and independently by the Israeli physicist Yuval

Ne’eman (1925–2006), was called SU(3), and it had indeed an eight-

dimensional “representation” (Gell-Mann called it the “eightfold

way”) that exactly accommodated the eight baryons. Moreover, the

same symmetry group also accounted for the mesons, that is, the
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three pions and the four kaons, plus a subsequently discovered me-

son to be called eta. If the underlying field equations were exactly in-

variant under the SU(3) symmetry, the eight baryons should have

the same mass, and so should the eight mesons, contrary to experi-

mental facts. So Gell-Mann and the Japanese-born American physi-

cist Susumu Okubo (b. 1930) devised a way in which that exact sym-

metry was slightly broken, and they calculated the resulting mass

changes, obtaining reasonable agreement with the data. But that was

not all.

In the meantime, nine particles had been found which seemed to

be excited states of the baryons: one excited state of each of the three

Sigmas and the two Xis, and four of the two nucleons, called delta,

neutral, negative, positive, and doubly positive. These nine states

fit perfectly into a ten-dimensional representation of SU(3), with all

the charges exactly accounted for. However, the tenth place of the

scheme was experimentally unoccupied, reserved for an unknown

negatively charged particle called the omega-minus, with all its quan-

tum numbers and its mass (based on the previously employed Gell-

Mann–Okubo mass formula) determined by the schema proposed

by Gell-Mann and Ne’eman. Two years after its prediction by Gell-

Mann, it was found in 1964 in a bubble-chamber photograph at

Brookhaven National Laboratory.

If these discoveries illustrated symmetry laws in nature and their

effect on the classification of newly found elementary particles, at

about the same time a spectacular discovery violated one of nature’s

seemingly sacred symmetry principles: invariance under mirror re-

flection. All the known equations expressing physical laws remained

unchanged when a given system was replaced by its mirror image:

this invariance led in quantum mechanics to parity conservation,

parity being a positive or negative quantum number assigned to a

given state. Two of the strange mesons discovered in the 1950s, called

theta and tau, presented a puzzle: although they had exactly—to

within experimental error—equal masses and half-lives, their intrin-

The Constituents of the Universe 295



sic parities seemed to be different: the theta decayed into two pions

and the tau into three. Since the intrinsic parity of the pion was neg-

ative and parity was assumed to be conserved, this meant that the

theta had positive parity, the tau negative, and—their equal masses

and lifetimes notwithstanding—the two could not be the same par-

ticle.

The Gordian knot of the tau-theta puzzle was ingeniously cut in

1956 by the two Chinese-born American physicists Chen Ning Yang

(b. 1922) and Tsung-Dao Lee (b. 1926), who proposed that tau and

theta were the same particle but that their decay violated the law of

parity conservation. To bolster their argument that in this weak de-

cay, which they assumed to be caused by the same interaction as beta

decay (this was the crux of the matter), parity was not conserved,

they proposed that conservation of parity ought to be checked ex-

perimentally in other instances of beta decay, and they pointed out

several such possible tests. Because parity conservation had always

been taken for granted, such specific studies of radioactivity had

never been done before. However, later re-examination of older ex-

perimental data revealed indications of its violation, which had been

ignored as obviously erroneous. When the Chinese-born American

physicist Chien-Shiung Wu (1912–1997) quickly performed an ap-

propriate experiment on carbon-12 (the carbon isotope of atomic

weight 12), she confirmed what Lee and Yang had suggested: the

beta-decay interaction, in fact, strongly violated the conservation law

of parity. (Pauli’s first reaction to the proposal of Lee and Yang had

been, “I can’t believe God is a weak left-hander.” He soon ate crow.)

Nature’s violation of mirror symmetry, which had been thought

sacrosanct, opened a Pandora’s box. In fact, the emerging weak-inter-

action theory violated not only P, that is, parity, but also C (a symme-

try transformation called charge conjugation, which turns particles

into their antiparticles) in such a way that their combination CP

stayed inviolate. There remained a third fundamental transforma-

tion called T (time reversal). Nature’s invariance under T assured
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that a video tape of a fundamental process run backwards showed an

equally possible process, and it was one of the proud results of rela-

tivistic quantum field theory that the combination CPT had to re-

main invariant, even if a particular theory allowed violations of C, P,

or T. Theoretical studies had shown that the weak decays of the two

neutral kaons were the most promising experimental ways of testing

whether CP was in fact conserved, and in 1964 an American team led

by James Watson Cronin (b. 1931) and Val Logsdon Fitch (b. 1923)

found its violation after a detailed analysis of their data. Presumably

this implied that T symmetry also had to go, and indeed their data

were subsequently found to imply—without assuming CPT invari-

ance—that time-reversal symmetry was violated as well.

The discovery of strong parity non-conservation in beta decay

had a shattering impact on the theory of the neutrino and its interac-

tion with the neutron and the electron, the source of beta-radioac-

tivity. The easiest way to account for the parity violation observed

was to return to an older mathematical description of neutrinos

with roots going back to the German-born American mathematician

Hermann Weyl (1885–1955): the neutrino is an intrinsically “left-

handed” particle; its spin rotation together with its direction of mo-

tion gives it the screw-sense, called helicity, of a left-handed screw—a

property it could permanently retain only if its mass was exactly zero.

The mirror image of a left-handed screw is right-handed; this lack of

mirror symmetry is why the Weyl theory had previously been dis-

carded. Experimental confirmation of the neutrino’s helicity was not

long in coming. An ingenious experiment by the American team of

Maurice Goldhaber (Austrian-born in 1911), Lee Grodzins (b. 1926),

and Andrew William Sunyar (b. 1920) confirmed it in 1958. How-

ever, neutrino oscillations, which solved the solar neutrino puzzle,

are possible only if the mass of the neutrino is not exactly zero, so

helicity cannot be a neutrino’s permanent state.

Within two years, Feynman and Gell-Mann reformulated the man-

ner in which this altered neutrino interacted, based on a universal
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kind of current-mediated force subsequently exploited more fully by

Gell-Mann. The resulting theory of beta radioactivity was called the

V-A law. It was also independently put forward by the American

physicists E. C. G. (George) Sudarshan (born in India in 1931) and

Robert E. Marshak (1916–1992). Eventually, this approach was trans-

lated into the replacement of Fermi’s beta-decay theory by a more

conventional field theory, in which a new boson, later named W,

acted as an intermediary. There was one hitch: the assumption of its

universal nature led to the prediction of the decay of the muon into

an electron, with the emission of a gamma ray, at a rate sufficient to

have been observed; but that decay had never been seen. This could

be explained only if the neutrino involved in the weak muon inter-

action was different from the one participating in the weak electron

interactions. In 1962 the two-neutrino hypothesis was indeed ex-

perimentally confirmed at the Brookhaven National Lab and shortly

thereafter at the CERN laboratory in Switzerland. The search for the

W and an associated particle called Z, however, proved frustrating

until they were finally found in 1983 at CERN by the Italian physicist

Carlo Rubbia (b. 1934) and the Dutch physicist Simon van der Meer

(b. 1925).

The idea of the W boson allowed the use of a field theory analo-

gous to electromagnetism to describe the way leptons—electrons,

muons, and neutrinos—interacted with one another, with the W

playing the part of the photon. Some ten years earlier C. N. Yang, to-

gether with the American physicist Robert Laurence Mills (b. 1927),

had shown that the form of the beta-decay force could be explained

by a general symmetry analogous to a concept in electromagnetism,

long familiar to physicists, called gauge invariance. Field theories em-

bodying this symmetry would henceforth be called Yang-Mills theo-

ries, and the idea proved so stimulating that all subsequently in-

vented field theories would follow it.

In the particular instance of the weak interaction mediated

by the W boson, its similarity to electromagnetism had led Julian
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Schwinger early on to the thought that the weak and electromag-

netic actions might be different aspects of the same phenomenon.

Whereas initially misleading experimental observations on the W

appeared unfavorable, Schwinger’s student Sheldon Lee Glashow (b.

1932) carried the idea to fruition, except for one remaining flaw: the

gauge-invariance of the theory, crucial for freeing it of infinities like

QED, would imply that the W and Z were massless like the photon.

This obstacle, however, was finally overcome using ideas partly im-

ported from the BCS theory of superconductivity by Philip Ander-

son and the Japanese-born American physicist Yoichiro Nambu (b.

1921), as well as those of the English physicists Jeffrey Goldstone (b.

1933) and Peter Higgs (b. 1929), based on concepts called dynamical

symmetry breaking and spontaneous symmetry breaking. The basic

notion here is that although the equations of a theory may be invari-

ant under a certain transformation, some of their solutions may not

be. A classical instance: the Newtonian equations of motion of the

planets around the sun are rotationally symmetric, but the elliptical

orbits of the planets are not. At the same time, the spontaneous sym-

metry breaking would generate a new particle, widely referred to as

the Higgs particle. In a sense, the theory holds the Higgs particle re-

sponsible for the masses of the W and the Z. The principle of sponta-

neous symmetry breaking would turn out to be a very influential

idea; all-pervading as the exploitation of symmetries had become,

assuming their spontaneous violation would also turn out to be very

handy at some crucial junctures.

Independently of Glashow, the American physicist Steven Wein-

berg (b. 1933) and the Pakistani Abdus Salam (1926–1996) exploited

the Higgs mechanism for the same purpose, unifying the weak and

electromagnetic interactions. All these ideas, however, were widely

ignored—particularly since they implied the existence of a weak neu-

tral current, which had never been seen in any laboratory—until the

Dutch theorist Gerardus ‘t Hooft (b. 1946) proved that the theo-

ries were renormalizable like QED, that is, their predictions were not
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beset by infinities. Thus was born the electroweak theory. What is

more, the missing neutral currents were finally discovered, some of

the evidence for them even hiding in misinterpreted old data.

Meanwhile, the strong interactions among particles—those re-

sponsible for the stability of atomic nuclei, absent their beta decay

caused by the weak interaction—remained to be understood. Al-

though the dynamics involved were still obscure, Gell-Mann’s suc-

cessful exploitation of SU(3) for classifying the strange particles led

in the right direction. In 1964 he proposed to exploit the funda-

mental representation of SU(3), which was three-dimensional—

SU(3) is a transformation in three dimensions, though not in physi-

cal space—and postulated that all the particles previously regarded

as elementary could be made up of three more basic fermions he

called quarks (from the line “three quarks for Muster Mark” in James

Joyce’s Finnegans Wake). Each quark would have an electric charge

equal to a fraction of the electron’s: two of them positive with 2/3 of

the electronic charge, and one of them negative, 1/3 its strength. A

similar scheme was proposed independently by the Russian-born

American physicist George Zweig (b. 1937), who named the particles

“aces”; however, “quarks” stuck.

Since no such particles with fractional electronic charges had ever

been seen, Gell-Mann initially regarded his picture, according to

which each baryon consisted of three quarks and each meson (the

pions, kaons, and some newly discovered ones, all with integral spin

quantum numbers) of a quark and an antiquark, as no more than a

mathematical scheme devoid of reality. Real or not, it also helped to

explain why only the eight-dimensional and the ten-dimensional

representations of SU(3) were realized in nature. Experimentalists

had been searching in vain for evidence of particles belonging to

other representations of the same group. However, as independent

evidence from scattering experiments, analyzed by Feynman and

others, began to indicate that nucleons may be made up of point-

like partons—analogously to the way the Geiger-Marsden experi-
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ment showed Rutherford that the atom had a nucleus—the notion of

quarks acquired reality, though the search for them outside the con-

fines of baryons or mesons has been in vain to this day.

As fundamental building blocks, quarks brought explanatory or-

der to the bewildering, apparently chaotic zoo of new elementary

particles that were being discovered at the big accelerators in the

form of resonances, just as the discovery of the constituents of atoms

had explained the periodic table of the elements. Why quarks would

never be found isolated was subsequently argued, though not proved,

to be the result of a feature called asymptotic freedom, elucidated by

three American physicists, David Gross (b. 1941), David Politzer (b.

1949), and Frank Anthony Wilczek (b. 1951). The attractive force be-

tween quarks is assumed to diminish at small distances but to re-

main constant at large distances—so the intuitive argument goes—as

a result of which any attempt to separate them requires enough en-

ergy to produce quark-antiquark pairs—thus, mesons—instead of

achieving the aim of separation.

A conundrum about the appropriate statistics for quarks never-

theless remained. They needed to have the same half-integral spin

as electrons and protons, and therefore should be fermions obeying

the Pauli principle, but that did not seem to fit the data. The puz-

zle was solved by Nambu together with the Korean-born American

Moo-Young Han (b. 1934), who suggested the existence of an addi-

tional quantum number: each quark came in three different “colors”

(nothing to do with actual color; the name is entirely metaphorical,

though the concept is precise). Just as the spin quantum number al-

lowed every state in an atom to be occupied by two electrons, one

with spin up and another with spin down, instead of by one only,

thereby leading to the systematics of the periodic table that agreed

well with the data of chemistry, so the color quantum number al-

lowed quarks of different color to occupy the same state, which

brought agreement with the experimental particle data.

Also waiting to be explained were intriguing parallels between
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the hadrons (strongly interacting particles) and the leptons. For one

thing, there appeared to be connections between three different kinds

of decays, the decays of hadrons with and without changes in strange-

ness, and the decays involving leptons; this issue was clarified to great

effect by the Italian theorist Nicola Cabibbo (b. 1935). For another,

there was a striking parallelism between the ways the hadrons and

the leptons were classified (a parallelism that was in fact required by

the theory in order for it to be renormalizable, that is, free of in-

finities), if it were not for one missing quark: there were four leptons

(the electron, the muon, and their separate neutrinos) but only three

quarks. To fill up this hole, Glashow and the American James D.

Bjorken (b. 1934) proposed the existence of an additional quark that

differed from the others by being “charmed.” Increasing even further

the complications of particle physics, in 1975 the American physicist

Martin Perl (b. 1927) discovered an additional lepton, named tau,

whose mass was more than twice that of the proton. Since the tau,

like the electron and the muon, was also found to have its own neu-

trino, this raised the total number of leptons to six. The number of

different quarks thus finally also had to grow to six, their “flavors”

named Up, Down, Strange, Charmed, Top, and Bottom. (The last

two are sometimes also called Truth and Beauty; long gone are the

days when new scientific terms were coined in stodgy Latin.) Οnly

the first two are stable; the other four are much heavier and have

finite lifetimes.

The experimental verification of the existence of the additional

quarks turned out to be difficult and full of confusion. The Top

quark was not found until 1995, at Fermilab, and its mass turned out

to be approximately 180 times that of the proton (almost as heavy as

a tungsten atom). The first Charmed meson, called D, was found in

1976 by the German-born American physicist Gerson Goldhaber (b.

1924). It came as a doublet (hence the D): one neutral, consisting of

a Charmed quark and an anti-Up quark, and the other positive,
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made up of a Charmed quark and an anti-Down quark. Meanwhile,

the first evidence for “charmonium”—a composite of a Charmed

quark and a Charmed antiquark—was found in 1974 simultaneously

by the Americans Samuel C. C. Ting (b. 1936) at Brookhaven Na-

tional Lab and Burton Richter (b. 1931) at the SLAC accelerator lab-

oratory at Stanford University. As Ting had named the particle he

discovered J and Richter had dubbed the one he found Psi, it came to

be known as J/Psi. By now the production of Charmed particles by

accelerators has become routine, and the quark scheme appears to be

complete, though additional flavors cannot be completely ruled out.

Confusing as the road to an understanding of the enormous mé-

lange of elementary particles was, the systematics and classification

introduced by the notion of constituent quarks in three colors and

six flavors has clarified the picture as much as the Bohr-Rutherford

atom clarified chemistry by furnishing a basis for the periodic table.

The existence of quarks as basic constituents of all hadrons, of

course, required a quantum field theory to explain the strong forces

holding them together, and this theory came to be called quantum

chromodynamics or QCD, a name that echoed QED, after which it

was modeled. A gauge theory à la Yang-Mills, built on the underly-

ing symmetry of SU(3), it uses the three colors (hence the chromo

prefix) of particles in place of the one electric charge employed by

electrodynamics, and the quanta of its force-field, the analogues of

photons, are called gluons. There are some fundamental differences

between QED and QCD, however. The eight gluons, which belong to

an eight-dimensional representation of SU(3), just like Gell-Mann’s

original eight-fold way leading to quarks, themselves carry color and

hence directly interact with one another and are able to change the

color of a quark. In contrast to photons, they so strongly attract one

another at low energy that they can form “glueballs.” (No glueball

has been experimentally found as yet, however.) At high energy, on

the other hand, the strength of the interaction mediated by gluons
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decreases: this is asymptotic freedom, thought to be responsible for

the fact that neither quarks nor gluons can ever be seen roaming

freely.

While QCD has succeeded in predicting (mostly post hoc, to be

sure) the general structure of the observed hadrons and many quali-

tative aspects of their production and scattering probabilities, even

approximately yielding the hadron masses once the quark masses are

given, this theory cannot rival QED in the precision of its calculable

predictions of observable results. The principal reason for this failing

is that, in contrast to QED, it does not contain a parameter of small

numerical value—like the fine-structure constant—to facilitate reli-

able approximate computations. Nevertheless, the combination of

the two quantum field theories, QCD and the electroweak theory

(incorporating QED), is now called the standard model of the ele-

mentary particles. This model still contains many adjustable param-

eters, such as the quark masses and the greatly different strengths of

the three contributing theories.

The general idea now is that at extremely high energies (or at ex-

tremely small distances) the three interactions become equally pow-

erful, and the emerging Grand Unified Theory (GUT, as it is called)

is generated by a symmetry that puts quarks and leptons on an equal

footing, forcing the quark masses to vanish. These masses would be

resurrected by the Higgs mechanism, which would manifest itself

in the appearance of a heavy Higgs particle. The overarching invari-

ance would include supersymmetry, a symmetry not previously envi-

sioned between bosons and fermions, uniting particles of integral

spin and half-integral spin by postulating that every particle of given

spin S has a partner of approximately the same mass whose spin dif-

fers from S by half a unit. At this point, no experimental evidence ex-

ists for any such partners, and the search for the Higgs particle has so

far remained unsuccessful. On the other hand, the solution of the

solar-neutrino problem provided evidence that neutrinos could not

be entirely massless. Subject to the effects of the Higgs mechanism,
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neutrinos too would end up with non-zero masses in the standard

model.

A further consequence of the envisioned grand unification would

be to make the proton unstable, in violation of one of the most basic

laws of particle physics: baryon conservation. The Russian physicist

Andre Sakharov (1921–1989) speculated in 1967 that the puzzling

large preponderance of baryons over antibaryons that has been ob-

served in the universe could be explained by a combined breaking of

both CP conservation and baryon conservation at a period in the

universe’s history when it was out of thermal equilibrium. However,

extremely sensitive searches for proton decay have been able to push

the half-life of the proton—if it is indeed unstable—beyond 1033

years, far beyond the age of the universe, a result that rules out some

versions of GUT but not others.

The attempts at grand unification so far mentioned leave out the

weakest interaction of all, but the one most important for the struc-

ture of the universe as a whole: gravitation. The principal reason for

this is that Einstein’s general theory of relativity has never been suc-

cessfully combined with his other brain child, the quantum. This lack

of compatibility is particularly troubling because, while in the realm

of ordinary particle physics gravity is indeed negligibly small, there is

an energy, which Max Planck already recognized as a “natural” unit

(it can be calculated just from Planck’s constant, the speed of light,

and the gravitational constant that enters into Newton’s law of grav-

ity) beyond which the strength of the force of gravity rivals the oth-

ers. This Planck energy has the enormous value of 1019 GeV, but it

is not very much higher than the energy at which the strong and

the electroweak forces are assumed to become comparable and the

grand-unifying symmetry is supposed to swing into action. Thus,

while at this ghostly energy all the interactions might be imagined

united, gravity was still a force apart.

In order to remedy this glaring deficiency in our understanding of

nature at the Planck scale of energy (the estrangement between the
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standard model and gravity), an entirely new class of theories has

been pursued, called string theories or, when combined with super-

symmetry, superstring theories. First recognized by the American

physicist John Henry Schwarz (b. 1941) and the British physicist Mi-

chael Boris Green (b. 1946) as naturally incorporating a graviton-like

entity (graviton would be the name of the quantum of gravity if ever

the gravitational field could be quantized) and therefore promising

to lead to a theory of quantum gravity, this research program became

extremely active during the last quarter of the twentieth century. Its

two most prominent contributors were the American Edward Witten

(b. 1951) and the Israeli-born American Nathan Seiberg (b. 1956).

This theory replaces point particles with one-dimensional, stringlike

objects of Planck length—again a “natural unit” whose length is

about 10−35 m, far smaller even than nuclear sizes—vibrating in nine

space dimensions (plus one time dimension, though the total num-

ber of dimensions varies somewhat among some versions of these

theories). To account for the fact that the known physical space has

three dimensions, the space in which the strings live is imagined as

curled up, “compactifying” the extra dimensions and rendering them

unobservable.

While the promise of combining gravity with quantum mechanics

makes string theories attractive, their drawback is that they cannot

be subjected to experimental tests at feasible energies. There is no

hope of ever constructing an accelerator reaching 1019 GeV, an energy

far beyond even those of cosmic-ray particles. As a consequence,

string theories are judged primarily by aesthetic criteria. They are ad-

mired for their mathematical beauty and elegance, with the ultimate

hope that the final “theory of everything” might emerge as both the

most beautiful and the only one logically possible. If realized, the

definitive answer to Einstein’s question “Did God have any choice in

the way He constructed the universe?” would be no. Absent such

uniqueness and experimental evidence, elegance may have to do.

To account for specific dimensionless numerical fundamental con-
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stants contained in the physical laws governing the universe, such as

the fine structure constant, other coupling strengths, and the ratios

of masses of elementary particles, some physicists have proposed an

argument known as the anthropic principle. Its basic idea is that im-

portant characteristics of our world, such as the existence of stars

and galaxies as well as the stability of many elements, including car-

bon, are sensitive to the values of these constants. If they were altered

even slightly, the universe would be so different that intelligent life

could not exist in it. The fact that we humans are here, the argument

goes on, explains why these constants have the values they have. This

causal reasoning, with its quasi-teleological flavor, can be interpreted

in a variety of ways, ranging from the religious to the probabilistic:

there may be many universes, all with different values of the funda-

mental constants, but only one that is inhabited by intelligent beings.

The anthropic principle is extremely controversial among physicists

but does have some prominent adherents.

Though Aristotle’s specific laws were abrogated some four hun-

dred years ago by Galileo and Newton, his search for laws of motion

remained the prime motivating force of most physicists for almost

two and a half millennia. Today, however, we seem to have reached

an era that would be more palatable to Plato. Whether any of the

imaginative concepts proposed in recent years will survive in physics

(as opposed to mathematics, where string theory has turned out to

be quite fertile) remains an open question. One thing is sure: the end

of physics is nowhere in sight.
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Epilogue

Covering a time span of some six millennia, this book has followed

the development of the part of science that was called physiology by

the ancient Greeks, natural philosophy at a later time, and now phys-

ics. We have seen that the attention of early physical scientists was

primarily focused on describing the motions of the heavens and on

postulating the constitution of matter. The Greek philosophers be-

gan to search for the rules by which objects moved the way they did,

and Aristotle was the first to lay down specific causal laws governing

these motions, which gradually led to a view of the heavens as mov-

ing like clockwork (unless God intervened). However, it took until

the first scientific revolution, wrought by Galileo Galilei and Isaac

Newton more than two thousand years later, for this view to be un-

ambiguously brought down to earth and applied not only to the

heavens but to the falling apple as well.

Aristotle’s general search for the rules by which things moved re-

mained central to physics, but his specific laws of motion were found

wanting and replaced by Newton in a form that proved implement-

able by calculations. Newton not only cast his own laws in the form

of equations, but he also devised the essential mathematical tools

required to solve these equations. By the time of Laplace, nature



viewed as clockwork was seen as all-pervasive and could even be

imagined, given sufficient data and means of calculation, to be ex-

ploited for practical purposes.

The nineteenth century foreshadowed the second scientific revo-

lution by destroying the Aristotelian dream and disconcertingly in-

troducing probabilities into physics, the temple of certainty. A hith-

erto sacred law such as the second law of thermodynamics became

subject to possible violation—though with a very low probability, to

be sure. Nevertheless, the mere possibility was shocking. As the twen-

tieth century dawned, the edifice based on strict causality was pulled

down by two revolutionaries, Einstein and Bohr, its place taken by

the probabilistic architecture of quantum mechanics designed by

Heisenberg, Schrödinger, and Dirac, leading to a wrenching disori-

entation of a large part of entrenched philosophy.

But another feature of quantum mechanics turned out to play a

much more important role in the development of physics over the

course of the second half of the twentieth century, a feature intro-

duced into the theory right from the beginning by Bohr’s model of

the atom: its ability to sharply characterize a physical system by

means of discrete energy levels—according to Einstein’s special the-

ory of relativity this implies masses—and other quantum numbers.

If the primary aim of physicists before the second revolution was to

describe and understand the motions, the dynamics, of physical enti-

ties—an aim at which they succeeded admirably—their principal

aim after this paradigm shift changed to understanding the architec-

ture of physical systems rather than their behavior. The goal of phys-

ics shifted from explaining change to explaining being.

Whereas classical physics, including relativity, had been, and still

is, extremely reliable at predicting the future motion of objects such

as planets and other heavenly bodies, as well as of rockets and space

probes, it had never been very successful at elucidating structures.

For instance, it had never succeeded in explaining the structure of

the solar system, that is, why the distances between the various plan-
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ets and the sun are what they are. From the perspective of classical

physics, such an explanation fell outside its purview. Similarly, all at-

tempts to explain, on the basis of classical electromagnetic theory,

why the mass of the electron had the value experiments revealed did

not succeed. Even the existence of atoms, half-heartedly accepted by

some classical physicists, either enthusiastically defended or heatedly

denied by others, was not fully demonstrated until the new physics

came into being. Classical physics could, in any event, do no more

than acknowledge atoms, while the new physics was able to explain

why they existed, why they were stable, and why the atoms of a given

element were all alike.

Quantum mechanics, of course, is also basically a dynamical the-

ory, its equations able to predict the future course of the state of a

physical system (not of individual events, though, as the state of a

system is defined probabilistically), and the equations of quantum

field theories such as those of the standard model of elementary par-

ticles define the dynamics of the fields. However, to the extent that

these equations are approximately solvable, as in QED, they are rarely

used for the purpose of predicting motions (exceptions being calcu-

lations of statistical predictions in the form of scattering and produc-

tion cross sections). The equations are used predominantly, and in

the case of QED extremely successfully, for predicting structure—

atomic and nuclear energy levels, their multiplicities, and the result-

ing electromagnetic spectra, including the precise colors of the light

emitted by the stars. Since motion and events can no longer be reli-

ably predicted, the primary focus of physics now falls on what any

quantum-mechanically based theory excels at, namely, explaining

why there are families of particles with certain specific masses and

other qualities, and why solid or fluid matter has the special proper-

ties it has. (Cosmology, which includes the description of large-scale

motions, is an exception to this general statement, but here the un-

derlying schema is primarily the classical theory of relativity rather

than quantum mechanics.)
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With a de-emphasis on dynamics in the new physics and a strong

focus on why certain entities exist, it was inevitable that underlying

abstract mathematical principles would play a dominant role, and

symmetries as fundamental agents served that purpose very well.

The cause of acceleration in Newton’s mechanics was an anthropo-

morphically pushing force; the cause of the existence and anatomy

of quarks, baryons, mesons, and leptons was a set of invariance prin-

ciples. In the language of ancient Greek philosophy, there was a pro-

nounced change from searching for Aristotelian efficient causes

acting on given objects to seeking Platonic formal causes for the exis-

tence of these objects.

This shift is clearly visible from the heyday of QED to the present

search for a “final theory.” The very basis of the renormalization pro-

gram that turned QED into the highly successful theory it became

had been the trick of inserting “by hand” the particle masses (and

some other parameters) rather than expecting the theory to predict

them. In striking contrast, the theorists searching for the “theory of

everything” are seeking the holy grail of a theory uniquely defined by

an underlying general mathematical principle—a symmetry—able

to predict the masses and other properties of all the fundamental

constituents of the universe. If the grail is ever found, Aristotle’s goal

of understanding the relations between facts found by patient obser-

vation and experimentation will have lost out to Plato’s approach to

nature, which prized eternal intellectual, abstract principles over raw

empiricism.

Does the history of physics outlined in this volume indicate that

science “makes progress” in the sense of ultimately arriving at the

truth about nature? Or can the activities of scientists over the last six

thousand years be described as a mere succession of paradigm shifts,

with no discernible direction, as the science historian Thomas Kuhn

suggested in his influential book The Structure of Scientific Revolu-

tion? Readers will have to answer this question for themselves. My

own view is that while physics has not arrived at the truth about the
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universe, nor will it ever, our activities are surely not aimless mean-

derings from one paradigm to another. Science has progressed, in the

sense of ever more closely approaching an understanding of the

workings of nature, even though the mathematics we use to describe

this understanding may not turn out to be uniquely determined by

nature itself. The twenty-first century will no doubt get us even

closer to this kind of truth, either by way of Aristotle or Plato.
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