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Introduction

P erforming a statistical analysis may be as appealing to you as filling
out a yearly stack of income tax forms. It’s something you know you
need to do, but you wish it weren’t such a hassle. Although this book doesn’t
help with your taxes, it does attempt to make the data analysis part of your
life a little easier. With over 50 combined years (egad!) of consulting and
teaching experience behind us, we hope to bring a little sanity to the process
that many researchers find unsettling.

This Statistical Analysis Quick Reference Guidebook is a practical hand-
book that “cuts to the chase” and explains the when, where, and how of
statistical data analysis as it is used for real-world decision making in a wide
variety of disciplines. It is designed to assist students and researchers who
have general statistical knowledge in applying the proper statistical proce-
dure to their data and reporting results in a professional manner consistent
with commonly accepted practice. Each upcoming chapter discusses the
following aspects of performing statistical analysis and interpreting your
experimental data:

e How to make sure you are using an appropriate application of the statistical
procedure

e What design considerations you should consider when using a particular
statistical procedure

e An explanation of the hypotheses tested by the procedure

e A description of tips and caveats you should know about the procedure

e An example (or two) illustrating the use of the procedure on a data set



2

Statistical Analysis Quick Reference Guidebook

e How to report the analysis results using standard American Psychological

Association (APA) and Modern Language Association (MLA) compatible
formats (APA, 2001; Gibaldi, 2003)

e A description of the step-by-step directions for how to perform the computa-

tions using SPSS

Before moving on to chapters that discuss specific statistical procedures,

the next few sections in this chapter contain general information that
pertains to the data analysis process. We cover this information here in part,
so it will not have to be repeated individually for later analyses. We encour-
age you to review the information in this chapter before moving on to the
subsequent chapters.

Getting the Most Out of This
Quick Reference Guidebook

The primary purpose of the Quick Reference Guidebook is to provide you

with information about how to use and understand the statistical data analy-
sis process. The analysis topics covered in the book are as follows:

Chapter 2: Describing and Examining Data. Explains how to use descriptive
statistics and graphs to understand and report information about your data.
Chapter 3: Comparing One or Two Means Using the t-Test. Explains one-
sample t-test, two-sample #-test, paired #-test, and appropriate confidence
intervals.

Chapter 4: Correlation and Regression. Explains correlation and simple
linear regression with a brief discussion of multiple linear regression and the
Bland-Altman analysis.

Chapter 5: Analysis of Categorical Data. Explains methods that are applica-
ble to count or categorical data, including contingency table analysis, mea-
sures of risk (including relative risk), and odds ratios and goodness of fit.
Chapter 6: Analysis of Variance and Covariance. Explains several methods
of comparing means, including one-way analysis of variance (ANOVA),
two-way ANOVA, repeated-measures ANOVA, and analysis of covariance
(ANCOVA).

Chapter 7: Nonparametric Analysis Procedures. Explains nonparametric
statistical procedures, including Spearman’s correlation, sign test, the Mann-
Whitney U, Kruskal-Wallis, and Friedman’s test.

Chapter 8: Logistic Regression. Explains logistic regression analyses, includ-
ing the cases of single or multiple independent variables, variable selection,
and evaluation of the model.
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Along with each analysis in these chapters, we include a brief “step-by-step”
section describing how to perform the calculations using SPSS. Additional
information that may be helpful to you in analyzing the example data sets
and selecting an appropriate analysis for your data is included in the
following appendices:

o Appendix A: A Brief Tutorial for Using SPSS for Windows. This tutorial
gets you started with the essential information needed to work through
the examples in this book. We recommend that if your SPSS is rusty, if you
have limited experience using SPSS, or if you are new to SPSS, you should go
through the examples in this appendix before working the examples in the
book.

o Appendix B: Choosing the Right Procedure to Use. This appendix includes a
decision chart that can help you decide which statistical procedure is appro-
priate to address your research question.

The remainder of this chapter contains material that we believe is impor-
tant for understanding the examples contained in this book. We know you
are in a hurry, faced with a deadline, and anxious to get to your analysis.
However, if you take only a few minutes to read the rest of the chapter,
it may save you hours of frustration down the road. The remaining topics
covered in this chapter are as follows:

o A Brief Review of the Statistical Process

e Understanding Hypothesis Testing, Power, and Sample Size
e Understanding the p-Value

¢ Planning a Successful Analysis

e Guidelines for Creating Data Sets

e Preparing Excel Data for Import

¢ Guidelines for Reporting Results

e Guidelines for Creating and Using Graphs

¢ Downloading Sample SPSS Data Files

e Opening Data Files for Examples

A Brief Review of the Statistical Process

Perhaps you are currently taking a statistics course or you struggled through
a statistics course in the past and the concepts you once knew are a bit fuzzy.
In this review, we remind you of the issues that typically motivate the use of
statistical data analysis and illustrate the types of analyses that are most
commonly used to describe data or make a decision based on observed data.
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Although we expect that you have studied these concepts before, you
might learn something new or gain some insights that hadn’t occurred to you
previously. In either case, we hope this review is helpful.

Most analyses can be categorized into one of these types:

e Description
e Comparison
e Association/correlation

Using Descriptive Statistics

Today’s world is filled with information. By some estimation, there are
more than two exabytes of new and unique information being created each
year. Considering that an exabyte is a billion gigabytes, that’s a lot of raw
data! The computer enables us to gather and create more information than
anyone can possibly remember and understand. Computer databases swell
with information such as medical data, demographic information, environ-
mental data, economic data—creating an almost enumerable list of numbers
and figures. The challenge is to interpret this information in some logical and
practical manner.

The best strategy is not to skim over the hundreds or thousands or tens
of thousands of “raw numbers” that have been collected. What is needed is
an intelligent summary of the information. You need to reduce the myriad
of data values and facts to a few explanatory measures that will give you an
idea of what’s going on and what conclusions are warranted.

For example, suppose you have been funded by a government agency
to evaluate the operation of two charity-sponsored counseling centers. As a
part of the analysis, a satisfaction survey is given to 109 clients over a period
of 1 month and measured on a scale of 1 to 100. In order to describe the
results of the survey, you wouldn’t want to present a list of raw results (109
scores). Instead, it would be more informative to report several summaries,
such as the following:

Average satisfaction score: 80.3 (on a scale of 0 to 100)

Lowest score: 58.6
Highest score: 94.1
This descriptive information gives you (and your coinvestigators) an idea

about the average level of satisfaction and something about the variability of
scores.
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Using Comparative Statistics

Since there are two counseling center locations, your research group
might be interested in knowing if there is a difference in level of satisfaction
among clients at the two locations. This could be important in deciding
which center receives additional funding. You have the following summary
data grouped by location:

Average score at the uptown location was 82.4 (based on 54 client scores)

Average score at the downtown location was 78.5 (based on 55 client scores)

Assuming that the clients are representative at each location, you have
some evidence to make a decision about which center is more effective in
terms of satisfaction score. Your data suggest that the uptown location may
do a better job as far as the satisfaction score is concerned since the score
for uptown is 3.9 points higher than the score for the downtown location.
However, what if the average scores were only 1 point apart? Or 10 points
apart? What level of difference would it take for you to conclude that the
average score for one location was significantly higher than for the other?
Could the difference in scores be due to some random fluctuation? If you did
the survey again during some other time period, is there a reasonable chance
that the downtown location would produce a better score? These questions
are addressed with a properly designed and executed statistical analysis.

Using Correlational Statistics

To learn more about your survey results, you could examine your data
in another way. Ignoring for a moment the location of the center, you may
want to compare the relationship between educational level of clients and
satisfaction scores. The variables survey scores and years of schooling are
plotted on a scatterplot in Figure 1.1, and a measure of how they are related
is summarized in a number called the correlation coefficient, which is found
to be 7 = 0.37. From this measure of association, you have evidence that sug-
gests there is a mild relationship between years of schooling and satisfaction
score. There is a tendency for clients with a higher education to have a higher
satisfaction score. (Correlation is discussed in more detail in Chapter 4:
Correlation and Regression.)

In each of these example analyses, the raw data are summarized into sum-
mary statistics or a graph that allows you to discover important information
about the data and to provide the basis for making informed decisions. This



6  Statistical Analysis Quick Reference Guidebook

[ ]
90.0 . ‘ s .
‘ [ ] ' [ ] [ ] ‘
[ ]
o848, ! .
© 80.0- R H
o PY ° ® °
% o
> ¢ 3
z ° ° °
@ 70.0 ° R °
° e ]
o o
[ ]
60.0-
[ ]
T T T T T
5 10 15 20 25

Years of Schooling

Figure 1.1 Scatterplot of Schooling by Survey Score

Quick Reference Guidebook provides you with the information needed to
use these and other types of statistical procedures and to interpret the results.

Understanding Hypothesis
Testing, Power, and Sample Size

To properly interpret a statistical analysis, you must understand the con-
cept of hypothesis testing. Otherwise, the entire process is so much gibber-
ish. This brief discussion is designed to refresh your memory about these
concepts.

Many people have likened hypothesis testing to a jury trial. You assume
the defendant is not guilty. Evidence is then presented to show guilt. If there
is a preponderance of evidence of the defendant’s guilt, you should conclude
that the defendant is indeed guilty (you reject innocence). In the same
way, a statistical analysis is based on a “null” hypothesis (labeled H,) that
there is “no effect” (e.g., no treatment differences). In research terms, the null
hypothesis will typically be a statement such as the following: There is no
difference in group means, no linear association between two variables, no
difference in distributions, and so on.
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An experiment is designed to determine whether evidence refutes the
null hypothesis. If your evidence (research result) indicates that what you
observed was extreme enough, then you would conclude that you have “sig-
nificant” evidence to reject the null hypothesis. However, if you do not
gather sufficient evidence to reject H,, this does not prove that the null
hypothesis is true, only that we did not have enough evidence to “prove the
case.”

In general, null and alternative hypothesis are of the following form:

e A “null hypothesis” (H,) is the hypotheses of “no effect” or “no differences”
(i.e., the observed differences are only due to chance variation).

¢ An alternative hypothesis (H,) states that the null hypothesis is false and that
the observed differences are real.

In the following chapters, the null and alternative hypotheses related to
each statistical test will be presented. They appear in the following form:

H,: p, =, (the population means of the two groups are the same).

H,: p,# W, (the population means of the two groups are different).

These particular hypotheses are for a two-sample #-test as described in
Chapter 3: Comparing One or Two Means Using the ¢-Test. In most cases,
we will present the hypotheses in both a mathematical form (such as 1, = ,)
and in words.

The alternative hypothesis is usually what the investigator wants to show
or suspects is true. The alternative in the example above is called a two-tailed
alternative (also called a two-sided alternative.) That is, reject H,, if there is
sufficient evidence that the null is not true. For a one-tailed alternative (e.g.,
H_: u, > u,), we would reject H; only if the evidence against H, tends to sup-
port H,. Further discussion of one- and two-tailed alternatives will be given
when appropriate for the discussion of various tests in future chapters.

In hypothesis testing, two types of errors can occur, as illustrated in
Table 1.1. The top classification is the “truth” that you do not know. The
left categories are your decisions. For example, if you reject H, when it is
false, you’ve made a correct decision. However, if you reject H, when it is
true, you’ve made a “Type I error.” Notice that of the four possible out-
comes summarized in the table, two are errors.

The Type I error is controlled by your choice of a decision-making crite-
rion, called alpha (o) or the level of significance. It is usually set small, at
0.05. Thus, you are willing to make a Type I error 5% of the time, or 1 in
20 times.
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Table 1.1 Hypothesis Test Decisions

Truth
Our decision H, true H, false
Reject H, Type I error (o) Correct decision (1 — B or power)
Do not reject H, Correct decision (1 — o) Type Il error (B)

If H, is false and you do not reject H,, you commit a Type II error. The
probability of committing a Type Il error is called beta (). The power of the
test is defined to be one minus . When a test has low power, it means that
you are likely to make a Type II error (i.e., fail to reject H, when it is actu-
ally false). Looking at it the other way, the higher the “power,” the better
your chance of rejecting H, when it is false—the better your chance of find-
ing a difference when it in fact exists.

An important point is that there are many ways in which a null hypoth-
esis can be “not true.” For example, if the null hypothesis is that there
is no difference in two population means (measured in inches), then, for
example, this hypothesis is “not true” if the actual difference between the
two means is 17, 57, or 50”. It may be very difficult to develop a test for
which we are able to detect a difference in population means of 1 inch. In
fact, such a difference may be of no practical importance. On the other hand,
it will likely be the case that a true difference of 50” may be very easy to
detect. That is, if the true difference is 50”, the power of the test will be large.

Another important point is that for any given level of significance (o),
power can be increased by increasing the sample size. Thus, sample size
should be a consideration when embarking on an experiment. Many nega-
tive (nonsignificant) studies reported in the literature are the result of inade-
quate sample size (resulting in poor power) (Friedman, Chalmers, Smith, &
Kuebler, 1978). Therefore, the process of selecting a sample size for your
analysis should begin early in your study. To follow with this example, the
experimenter should determine the level of difference it is desirable to detect
and then select a sample size that will detect this difference with an accept-
able power (say, at least 0.80). Often, a pilot study will be undertaken to
help determine the necessary sample size. SPSS offers a separate program
called SamplePower that allows you to calculate a sample size for a given
power or range of powers you select. Other commercial programs (PASS,
nQuery, and SAS) are also available for these purposes. Or, consult your
friendly local statistician for help. For more concerning hypothesis testing,



Introduction 9

see a standard statistical text such as Moore and McCabe (2006). For a good
discussion of power and sample size, see Keppel and Wickens (2004).

Understanding the p-Value

The “evidence” used to reject a null hypotheses is summarized in a proba-
bility called a p-value. The p-value is the probability of obtaining results as
extreme or more extreme than the ones observed given that the null hypoth-
esis is true. Thus, the smaller the p-value, the more evidence you have to
reject the null hypothesis.

When your rejection criterion, @, is set at 0.05, then if your p-value for
that test is 0.05 or less, you reject H,. All of the examples illustrating statis-
tical tests in this Quick Reference Guidebook use the criterion that a p-value
less than 0.05 indicates that the null hypothesis should be rejected.

However, don’t base your entire decision-making criterion on the p-value.
For example, suppose two sample means for systolic blood pressure (SBP) dif-
fer by one point and are found to be statistically significantly different (i.e.,
p <0.05). This could occur if the sample sizes are large, but such a finding may
have no practical or therapeutic significance, even though the results are sta-
tistically significant. On the other hand, an observed difference in mean SBP
of 20 based on small sample sizes may not be statistically significant (i.e., p >
0.05). However, such a finding may be of sufficient practical importance that
this (nonsignificant) result may indicate the need for further investigation with
larger sample sizes to increase the power to the extent that you would have a
good chance of detecting a difference of 20 if it really exists. The point here is
that the p-value is a valuable decision-making tool, but it should not be the
only criterion you use to judge the results of your research.

A word of warning: If you perform multiple statistical tests within the
same analysis, you should adjust your o level for individual tests to protect
your overall Type I error rate. For example, if 10 independent statistical tests
are reported for the same analysis (such as in a table comparing baseline val-
ues between two groups), each conducted at the 0.05 significance level, there
is a 40% chance that one or more significant differences would be found
even if there are no actual differences. That should be unacceptable to you—
and is usually unacceptable to journal reviewers. The proper response to this
is to adjust p-values in multiple tests using a standard technique such as the
Bonferroni correction. To perform this simple adjustment, divide your rejec-
tion criterion value (o) by the number of tests performed. For example,
if you are testing at the oo = 0.05 level and 10 tests are performed, then
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your rejection criterion for each test should be 0.05/10 = 0.005 in order to
maintain your 0.05 overall Type I error rate (Miller, 1981). To report these
results in your paper, use wording such as “p < 0.005 was considered statis-
tically significant for baseline comparisons according to a Bonferroni
correction. . . .”

All of the examples illustrating statistical tests in this Quick Reference
Guidebook use the criterion that a p-value less than 0.05 indicates that the null
hypothesis should be rejected.

Planning a Successful Analysis

Statistical data analysis begins with planning. Entire university courses are
devoted to properly designing experiments. An improperly designed experi-
ment can make data analysis a nightmare. Therefore, it is to the researcher’s
advantage to spend some up-front time considering how an experiment will
be analyzed before collecting the data. Although this book cannot cover all
the aspects of good experimental planning, a few important considerations
are the following;:

Formulate a Testable Research Question (Hypothesis)

Formulate a testable research question (hypothesis) before you collect
your data and formulate your research question in a way that is statistically
testable. For example, you might test the null hypothesis that there is no dif-
ference in satisfaction scores from the two counseling centers in the previous
example. You “test” this assumption by gathering data and determining if
there is enough information to cast sufficient doubt on your null hypothesis.
If there is such evidence, then you may reject the null hypothesis in favor of
the alternative (one location has a better satisfaction score than the other).

Collect Data Appropriate to Testing Your Hypotheses

Consider the types of variables you will need to answer your research
question:

An Outcome Variable. (Sometimes also called the dependent or response
variable.) This outcome variable measures the characteristic that you
want to test or describe in some way. It could be some outcome such
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as death, sales amounts, growth rate, test score, time to recovery, and
$O on.

Predictor Variable(s). (Sometimes called independent or explanatory
variables, or factors.) The predictor variables are often manipulated by the
experimenter (e.g., level or dosage, color of package, type of treatment),
although they may also be observed (such as cigarette smoking, blood pres-
sure, gender, amount of rainfall).

For Correlational Studies. If you are performing a correlational study (exam-
ining the association between variables), you will not have a specific out-
come variable. Keep in mind, however, that a correlational study by itself
cannot be used to conclude cause and effect.

Scales of Measurement. The method you use to measure an observation
affects the type of analysis that may be performed. As you design your study,
keep in mind these general ways of measuring data:

e Categorical scales include nominal and ordinal measures.
e Continuous scales include interval and ratio measures.

As various statistical analyses are discussed in this text, reference will be
made to the measurement types appropriate for the analysis. (More about
how SPSS classifies variables can be found in Appendix A: A Brief Tutorial
for Using SPSS for Windows.)

Decide on the Type of Analysis
Appropriate to Test Your Hypothesis

Do you need a descriptive, comparative, or association/correlation analy-
sis? See Appendix B: Choosing the Right Procedure to Use for help in decid-
ing which type of data analysis to use for testing your hypotheses. In general,
select the simplest statistical procedure that adequately answers your
research question. Wilkinson and the Task Force on Statistical Inference
(1999) state,

The enormous variety of modern quantitative methods leaves researchers with
the nontrivial task of matching analysis and design to the research question.
Although complex designs and state-of-the art methods are sometimes neces-
sary to address research questions effectively, simpler classical approaches
often can provide elegant and sufficient answers to important questions. Do
not choose an analytic method to impress your readers or to deflect criticism.
If the assumptions and strength of a simpler method are reasonable for your
data and research problem, use it. (p. 598)
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Properly Interpret and Report Your Results

As a part of the discussion of each analysis method in this Quick
Reference Guidebook, suggestions for interpreting your results and report-
ing them in a professional manner are presented.

While the above items are important considerations for your data analy-
ses, they are not comprehensive and cannot substitute for the expertise of a
professional statistician. If you do not understand the relevance of these
issues to your own analysis, we recommend that you consult a professional
statistician.

Guidelines for Creating Data Sets

A savvy information guru once remarked that data are no more information
than 50 tons of cement is a skyscraper. Like a builder that transforms raw
materials into a functional skyscraper, statistical data analysis transforms
raw data into meaningful and useful information. However, before you can
begin to perform your data analysis, you must get that raw data into the
software program.

Before entering data for analysis, there are several data issues you should
address. This discussion describes how to prepare a data set for use in any sta-
tistical software program. For specific requirements in SPSS, see Appendix A:
A Brief Tutorial for Using SPSS for Windows. Also, for a more complete gen-
eral discussion of this topic, see Elliott, Hynan, Reisch, and Smith (in press).

1. Decide What Variables You Need and Document Them

Your research question determines which variables are needed for your
analysis. Researchers should document their variables in a “data dictionary”
that contains the important information defining the variables. (Some texts
refer to this as a data codebook.) For an example of a data dictionary, see
Table 1.2.

This table is a document you create during your planning stage. It can be
created using a spreadsheet or a word processor. Creating this simple “dic-
tionary” before you collect your data not only forces you to consider which
variables you will need in your data set, their types, and how they will be
named, but it also provides documentation that can be a valuable tool in
performing and interpreting your analyses later on.

Variables may contain values that are either string (such as M and F
or A, B, and C) or numbers (such as 0 and 1) whose meaning may not be
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Table 1.2 Sample Data Dictionary

Variable Name Label Type (Width) Value Codes Missing Code
ID Identification String (4) None Not allowed

number to be missing
Age Age on Numeric (3.0) None -99

January 1, 2005
Sex Gender Numeric (1.0) 1 =Female 9

2 = Male
Tdate Test date Date (10) None Blank, “.” Or
(mm/dd/yyyy) 11/11/1111

Score Initial test score Numeric (6.2) None -99

completely clear. For example, if you coded a gender variable as 1 and 2 and
race as AA, C, H, O, and X, you will want to define those codes in your data
dictionary, as illustrated for the sex variable in Table 1.2.

Note that when you create a categorical variable, you should include an
“other” designation when the list does not include an exhaustive collection
of possibilities. For example, if you have a variable for “What magazine do
you enjoy the most?” and you include a list of 10 magazines, you should also
include an “Other” category since the answer for the person filling out the
questionnaire may not be in your list. You might also include “None” as an
answer for those people who don’t read magazines at all.

2. Design Your Data Set With
One Subject (or Observation) Per Line

The vast majority of data analyses require your data set to contain
one subject (or entity) per row. A properly designed data set should look
something like Table 1.3.

Notice how this data set is designed. Each row contains data from a
single subject. Each column contains the data from a single variable. You
may be tempted to have multiple rows per subject or to design your data set
with subjects as columns, but if you enter your data in that manner, you are
only asking for problems later on in most cases. If your data are already in
a data set where the subjects are in columns and your variables are in rows,
see the transpose example in Appendix A: A Brief Tutorial for Using SPSS
for Windows for a way to realign your data file.
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Table 1.3 Table Showing the First Three Records in a Typical Data Set

ID Age Sex Tdate Score
1001 45 M 07/10/2006 60
1002 34 F 06/12/2006 55
1003 65 M 12/02/2006 62

3. Each Variable Must Have
a Properly Designated Name

Variable names are often short designations such as ID for subject identi-
fication number, SSBP (supine systolic blood pressure), and so on. Each
statistical package has a set of restrictions for naming variables. The guide-
lines given here will help you design your data dictionary with variable
names that are acceptable to most statistical programs:

e Variable names should begin with a letter but may also include numbers.

e Keep variable names short. Some programs require variable names of 8 or
fewer characters, although many allow names up to 64 characters in length.

e Do not use blanks or special characters (e.g., !, 2, ¢, and *).

e Variable names must be unique; no duplicate names are allowed.

e Case usually does not matter. Use any mixture of uppercase and lowercase
characters when naming or referring to your variables.

4. Select Descriptive Labels for Each Variable

Creating a variable label allows you to associate a descriptive label with
each variable name. Variable labels are important because they help you
more clearly understand and interpret statistical output, particularly if the
variable names are ambiguous, similar, or difficult to decipher. Typical names
and labels might be the following:

Age: Age on January 1, 2005

SBP: Systolic blood pressure

S1 to S50: Answers to a satisfaction survey
Gender: Male or female

SWQ1: Sales for the southwest region during the first quarter
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5. Select a Type for Each Variable

Each variable designates a particular type of information. The most
commonly used variable types are numeric (a quantitative value) and char-
acter (also called string or text and often used for categorical-type data). A
good rule of thumb is to designate as numeric only those variables that
could be used in a calculation or that are factor or grouping codes for
categorical variables. For example, a Social Security number, an ID
number, and a telephone number are not really “numbers” that are used
in calculations, and they can be designated as character values. This pre-
vents the program from accidentally using that number in a calculation.
However, it is common to designate dichotomous or grouping variables
using numeric codes such as 0 and 1 or 1, 2, and 3, but care must be taken
if you use these numbers in calculations. Also, never use codes such as
“NA,” “Missing,” “> 100,” or “10 to 20” as entries in numeric fields
(which may occur if you first enter your data into a spreadsheet such as
Excel and then import the data into your statistics program). For a list of
specific data types in SPSS, see the section in Appendix A titled “Working
With Data in SPSS.”

6. Additional Tips for Categorical (Character) Variables

Keep Case Consistent. For coded variables that are of the character (string
or text) type, it is always good advice to maintain consistent case in data val-
ues. For example, use all uppercase (“M” and “F”) or all lowercase (“m”
and “f”) for a character-type gender variable. Even when case does not
matter for variable names, it does matter for the data contents of the vari-
ables. The computer recognizes uppercase M as a different character than
lowercase m. Therefore, if you haphazardly use M, m, F, and f as data
entries, your program may recognize the data as having four categories
instead of two.

Avoid Long Data Codes. Avoid long (and easy to misspell) string variables
such as Influenza or Timer Clock Malfunction. Use shortened codes such as
FLU and TCM instead. The Label field (see item number 4) can be used for

a more complete description of the variable if needed.

Consider Binary Coding. If your data are binary (having only two levels such
as male and female), creating a numeric variable that uses the values 0 and
1 may save time later since some analyses (such as regression) require
numeric data.
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7. Define Missing Values Codes

Sometimes data are lost or never collected. For example, a test tube is
broken, a subject refuses to answer, or a patient fails to show up for an
appointment. This type of data should be coded using a missing value code.
Always select a missing value code that is an “impossible value” for the par-
ticular variable. For example, a =99 (negative 99) is an appropriate missing
value code for age, weight, or height since that value would never be
observed for those variables. Specifically, avoid using a blank or a 0 as a
missing value code since that may cause confusion as to whether the data
value was ever recorded and may cause an incorrect number to be used in a
calculation. For a date variable, you can use a “highly unlikely” date such as
11/11/1111 as a missing value code (assuming your data do not include
observations from the 12th century!). Once you specify a missing value code
in your statistics program, the program will take that missing value into
account when performing an analysis.

8. Consider the Need for a Grouping Variable

A grouping variable is a code that tells the statistical program how to
separate records into groups—such as control group and experimental
group. Therefore, if your data set contains information on two or more
groups, you should include a variable that specifies the group membership
of each observation. A grouping specification could be a single character
(A, B, C), numeric (1, 2, 3), or names (CONTROL, TRT1, TRT2). For
example, suppose you will be comparing the mean heights of 24-month-old
males who were fed regularly with breast milk and those who were fed on
formula. You could choose numeric grouping codes to be 1 and 0, where 1
means breast-fed and 0 means formula-fed. Or you could use string group-
ing codes such as B and F or BREAST and FORMULA or any other desig-
nation that makes sense to you. For example, Table 1.4 contains a grouping
variable (named group) as well as two other variables, subject and height.

From this example, you can see how the program can tell that the height
30.4 belongs to Subject 1001 in Group B, the height 35.9 belongs to a subject
in Group F, and so on.

Preparing Excel Data for Import
A number of researchers choose to first enter data using the Microsoft

Excel program and then subsequently import that data set into a statistical
program. This section describes how you should prepare your data in Excel
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Table 1.4 Sample Grouped Data

Subject Group Height
1001 B 30.4
1002 F 35.9
1003 B 30.2
1004 B 38.0
1005 F 34.3
etc. . ...

(or any other spreadsheet or database program) for importation into a
statistics program. Using the guidelines in the previous section, here are sev-
eral additional items you should keep in mind. (The procedure for import-
ing an Excel spreadsheet into SPSS is illustrated in Appendix A: A Brief
Tutorial for Using SPSS for Windows.)

. Row 1 of your Excel spreadsheet should contain only variable names. Do not

extend names to row 2.

Each subsequent row (line) in the Excel spreadsheet should contain data for
a single subject or observed entity (in almost all cases).

Avoid blank rows—it will complicate your import and analysis.

If you have missing data in your data set, define a missing value code and
place that code in any cell that contains missing data.

Always use date variables with four-digit year formats in Excel. That is, enter
the date in Excel using the format 01/01/2005 and not 01/01/05. Otherwise,
the old Y2K gotcha can still be a problem for date calculations, where the
date 1/1/05 could either represent the year 1905 or 2005.

Use your data dictionary (previously discussed), making sure to include all of
the variables you will need. Use the specifications in the data dictionary such
as codes, formats, and data ranges to determine how you will enter your data
into Excel.

If you have the time or resources, enter your data twice (preferably using
two different data entry people) and compare the two files. See Elliott et al.
(in press) for an example of how to do a simple double-entry comparison in
Excel.
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8. Avoid putting any extraneous text into your spreadsheet. Instead, put
explanatory information in other sheets in the same spreadsheet file. Extra-
neous data in your primary spreadsheet can make importing the data more

difficult.

Guidelines for Reporting Results

All the statistics in the world will not get your point across unless you
properly report your results. Most journals and publications have guide-
lines that you must follow when submitting your results. Along with each
example in this Quick Reference Guidebook, we illustrate how you might
report your findings using statements that are compatible with generally
accepted formats. Since a number of guidelines are commonly adopted when
reporting statistics results, we present these general rules:

e Computer programs tend to report statistics to more digits than are
necessary or meaningful. A generally accepted practice is to report statistics to
one decimal place more than the resolution of the original measurements. For
example, if age is measured as integer, report the average age using one deci-
mal place. Occasionally, if precision is important, you may report more deci-
mals. APA guidelines state that two or three significant digits (e.g., digits that
convey information and are not merely placeholders) are usually sufficient for
reporting any statistic. (However, you should use all decimal places reported
in the computer output when using these results in further calculations.)

e For very large numbers, you may want to limit the number of signifi-
cant digits depending on the nature of the measure. For example, if you are
reporting the average salary of corporate presidents, you might report
a mean of $723,000 and a standard deviation of $59,000 rather than
$723,471.20 and $59,356.10.

e Whenever a number is less than 0, place a zero before the decimal. For
example, use 0.003 instead of .003.

e When reporting percentages, include the counts as well. For example,
“There were 19% males (12 of 64) represented in the sample.” Note also
that the percentage was rounded. In general, give percentages as whole
numbers if the sample size is less than 100 and to one decimal place if the
sample size is larger than 100 (Lang & Secic, 1997, p. 41).

e When using the APA format for reporting statistics, use the appropriate
abbreviations for common statistical measures. Examples are the following:
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Mean: M = 1.34

Standard deviation: SD = 3.21

Sample size: N = 203

p-value: p = 0.03 or p < 0.001

t-statistic with degrees of freedom: #(13) = 2.12
Chi-square results: ¥*(2, N=97) =7.6, p = 0.02

F-test: F(2, 21) = 3.33, p = 0.04

Guidelines for Creating and Using Graphs

The old adage about a picture being worth a thousand words may be altered
slightly when dealing with data. Our revised adage states, “A graph is worth
a thousand numbers.”

Graphs can be useful for identifying problems or interesting data points
in your data set. When reporting your results, graphs are useful for clarify-
ing findings. In general, graphs should be used as an alternative to tables
when the table would contain too many entries to be easily understood or
when the graph more clearly illustrates your results. Any number of text-
books and journal specifications contain guidelines relating to the use of
graphs (see Tufte, 1983). Here are a few general guidelines for using and
reporting graphs:

1. Use simple graphs when possible. Avoid three-dimensional graphs since they
often distort your message and contain spurious and distracting information.

2. Label all plots and axes clearly.

3. When creating two or more graphs that will be compared in some way, the
range of values for each axis on every graph should be the same. Axes should
generally begin with zero if that is the natural minimum. Otherwise, use the
minimum value of the measurement as the minimum value for the axis.

4. Axis intervals on plots should be equal.

5. Use bar charts instead of pie charts. (In The Visual Display of Quantitative
Data, Edward Tufte [1983] wrote, “The only worse design than a pie chart
is several of them” [p. 176]).

6. Stick with standard charts when possible. Avoid custom complex charts that
attempt to display several messages at once.
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Downloading Sample SPSS Data Files

This Quick Reference Guidebook references a number of data files that are
used to illustrate the procedures described in this book. These data files are
available for you to download from the Internet. To download these files
onto your local hard drive, point your browser to the following site (enter in
all lowercase):

http://www.alanelliott.com/spssdata

Follow the instructions on this Web page to download and install the files
onto your computer. Examples in the subsequent chapters assume that the data
files have been downloaded and stored in a directory (folder) on your computer
and that you know the name of the directory where the files are stored.

Examples in the subsequent chapters assume that the data files have been
downloaded and stored in a directory (folder) on your computer and that you
know the name of the directory where the files are stored.

Opening Data Files for Examples

Once you have downloaded the sample data onto your hard drive, you can
open these data files in the SPSS program using the following steps:
1. Begin SPSS. From the main menu select File/Open/Data. . . .

2. In the “Look In” option on the Open dialog box, drill down to the C:\SPSS-
DATA folder on your computer (or wherever you stored your data).

3. Select the file to open (such as EXAMPLE.SAV) and click OK. (Or simply
double-click on the file name.) The data will be opened into the SPSS data grid.

4. You are now ready to use that data in an analysis.

In the examples referenced in subsequent chapters, you should use the above
steps to open designated data files to perform the analyses under discussion.

Summary

This chapter includes a description of the goals of this book, a brief review
of statistical concepts, guidelines for creating a data set, entering data into
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Excel, presenting results, and instructions on how to download example
data. The next chapter plunges you into the analysis process, beginning with
a look at how to describe your data.
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Describing and Examining Data

I nformation is the currency of research. However, unlike real money, there
is often too much information. In most cases, data must be summarized
to be useful.

The most common method of summarizing data is with descriptive
statistics and graphs. Even if you’re planning to analyze your data using a
statistical technique such as a #-test, analysis of variance, or logistic regres-
sion, you should always begin by examining your data. This preliminary step
helps you determine which statistical analysis techniques should be used to
answer your research questions.

In fact, this process of examining your data often reveals information that
will surprise or inform you. You may discover unusually high or low values
in your data. Perhaps these “outliers” are caused by incorrectly coded data,
or they may reveal information about your data (or subjects) that you have
not anticipated. You might observe that your data are not normally distrib-
uted. You might notice that a histogram of your data shows two distinct
peaks, causing you to realize that your data show a difference between gen-
ders. Insights such as these often result from the proper use of descriptive
techniques.

The following sections of this chapter discuss the most commonly used
tactics for understanding your data for reporting information or preparing
your data for further analysis. The two major topics discussed in this chapter
are as follows:

23
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e Describing quantitative data using statistics and graphs
e Describing categorical data using statistics and graphs

Each section includes, where appropriate, methods for reporting your
data in a standard manner for a report or journal article.

Recall that the purpose of this Quick Reference Guidebook is to “cut to the
chase” and discuss only material that is typically important in performing a
well-planned and -analyzed experiment. Therefore, some statistics, tests, and
graphs that are presented in standard computer output are not discussed.

Example Data Files

Before continuing, there is one bit of housekeeping we need to cover;
we assume that you’ve installed the sample data sets on your computer, as
described in Chapter 1 in the section “Downloading Sample SPSS Data
Files.” What? You haven’t installed the sample data? Go back. Do not pass
Go. Do not collect $200.

Welcome back. Now that you have the sample data stored on your com-
puter, you are ready to proceed.

Describing Quantitative Data

Quantitative data are data on which computations such as addition and
subtraction make sense. (SPSS calls this “scale” data.) This type of data is
also referred to as numeric data. Quantitative data are sometimes categorized
as continuous (possible values fall along a continuum) and discrete (there are
a countable number of possible outcomes). Examples of continuous quanti-
tative data are height and weight, while examples of discrete data are number
of children in your family, number of years of schooling, and so on. Other
classifications of quantitative data include ratio (has a natural zero) and
interval (no natural zero) scaled data. We’ll use the general term quantitative
data to include all these types. Quantitative data are usually observed as mea-
surements or counts as in the example above. Examples of the types of data
that would fall into the quantitative category include the following:

e Rainfall (measured)

e Systolic blood pressure (measured)

e Number of peaches harvested from each tree (count)
® Years of smoking (count)
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It makes sense to talk about the average value of each of these variables
(even if there is no such thing as a part of a peach growing on a tree).

The determination of whether arithmetic computation for the data makes
sense is a key component in the decision regarding whether your data are
quantitative.

Observe the Distribution of Your Data

Since many common statistical procedures assume normally distributed
data, you may want to examine your data to determine whether they fit this
criterion. There are a number of ways to check the normality of your data.
For example, you can observe the shape of the data’s distribution using
graphs such as a histogram (which for normal data should produce a graph
that approximates a bell-shaped curve). Other plots that are helpful include
boxplots and normal probability plots. You must have a sufficient sample
size for these graphical methods to give you interpretable results. Several
graphical techniques can be used to assess the normality of your data. These
include the histogram, boxplot, Q-Q plot, and stem-and-leaf plot. These will
all be described in an upcoming example. These graphical methods are not
only valuable for assessing the normality of your data; they are also useful
in detecting unusual values that need further examination.

Testing for Normality

To supplement the graphical assessment of normality, you can formally
test for normality. For example, the Kolmogorov-Smirnov and Shapiro-
Wilk test reported in the SPSS Explore procedure can be used to test the
hypothesis that the distribution is normal. (SPSS recommends these tests
only when your sample size is less than 50.) The hypotheses used in testing
data normality are as follows:

H,: The distribution of the data is normal.

H,: The distribution of the data is not normal.

If a test does not reject normality, this suggests that a parametric proce-
dure that assumes normality (e.g., a #-test) can be safely used. However, we

emphasize again that it is always a good idea to examine data graphically in
addition to the formal tests for normality.
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The term normal distribution used here and in the remainder of the book
indicates that histograms of data sampled from this distribution will approxi-
mate a bell-shaped curve. The normal distribution is also referred to as a
Gaussian distribution (after the mathematician Karl Friedrich Gauss). We will
refer to data from a normal distribution as “normal data.” Figure 2.2, shown in
a later example in the chapter, shows a bell-shaped curve fitted to data.

Tips and Caveats for Quantitative Data
How to Use the Information About Normality

Given the fact that there is emphasis on normality in statistical proce-
dures, you’d think it was a “make-or-break” criterion for your analysis. This
is not necessarily the case. In fact, true normality is usually a myth. What is
important is to ascertain whether your data show a serious departure from
normality. Data showing a moderate departure from normality can usually
be used in parametric procedures without loss of integrity. Also, if you are
comparing means and your sample size (for each group) is “large” (say,
greater than 40), you can invoke the central limit theorem (CLT) to justify
using parametric procedures even when the data are not normally distrib-
uted. Briefly, the CLT states that sample means are approximately normal
for sufficiently large sample sizes even when the original populations are
nonnormal. In the criterion above, we define “large” to be 40 or more.
However, if your sample size is not large or you are not comparing means
and are concerned that your data are not normally distributed, you might
consider one of the following options.

e Perhaps there is some functional transformation of your data (e.g., logarithm
or square root) that produces approximate normality.

e Consider recoding your data into categories to create a categorical variable.
(See Appendix A: A Brief Tutorial for Using SPSS for Windows for informa-
tion on transforming, recoding, and categorizing your data.)

e Nonparametric tests may be available for your particular need (see Chapter 7:
Nonparametric Analysis Procedures).

If Data Are Not Normally Distributed, Don’t Report the Mean

Describe distinctly nonnormal data with the median and range or
interquartile range (Lang & Secic, 1997). Another way to report this type
of data is by using a five-number summary consisting of the minimum,
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25th percentile, 50th percentile, 75th percentile, and maximum. This five-
number summary is the basis for the boxplot.

When in Doubt, Report the SD Rather Than the SEM

When reporting descriptive statistics, there is sometimes a dilemma
regarding whether to report the standard deviation (SD) or standard error
of the mean (SEM), which is the SD divided by the square root of the sam-
ple size. You should report the SD if you are describing the variability of the
data and the SEM if you are reporting the variability of the mean. Some texts
and journals recommend that you always report the SD since the SEM can
be calculated easily from the SD and sample size, and the SEM may give an
uninformed reader a false impression about the variability of the data. If you
are unsure, the safe bet is to report the SD.

Use Tables and Figures to Report Many Descriptive Statistics

If you are reporting two or three descriptive measurements in a report
or article, we recommend that you include the statistics in the text. However,
if you have more than two or three measurements, consider using a table
or graph.

When You Have Large Sample Sizes

As mentioned earlier, if your sample size (for each group) is “large” (say,
greater than 40), you can invoke the central limit theorem to justify using
parametric procedures based on means, even when the data are not normally
distributed.

Break Down Descriptive Statistics by Group

Descriptive statistics should be broken down by group (i.e., calculated
separately for each group) for populations composed of distinct groups
rather than looking at aggregate data. For example, a mixture of normal
subpopulations will usually not have a normal appearance.

Quantitative Data Description Examples

The following examples illustrate techniques for describing quantitative
data using statistics and graphs.
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EXAMPLE 2.1: Quantitative Data With an Unusual Value

Describing the Problem

Hypothetical data from several branch banks in Southern California con-
tain information on how many IRAs (individual retirement accounts) were set
up in 19 locations during a 3-month period. The variable is called IRA Setup.
These data are counts and are appropriately classified as quantitative data
since, for example, it makes sense to calculate a mean number of accounts
per bank. Before calculating and reporting the mean or other parametric mea-
sures of these values, you may want to assess the normality of the data. One
way to do that is to perform a statistical test. Table 2.1 shows the results of
two statistical tests used to assess normality of the IRA Setup variable.

Table 2.1 Test for Normality on IRA Data

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
IRA Setup 173 19 .136 .878 19 .019

a. Lilliefors Significance Correction

The “Sig.” values in the “Tests of Normality” table are the p-values based
on testing the null hypothesis that the data are normally distributed. Both
tests are designed to determine whether the observed data closely fit the
shape of a normal curve. The Shaprio-Wilk test result is significant
(p = 0.019), which suggests that the data are not normal, while the
Kolmogorov-Smimov test result is nonsignificant (p = 0.136). This leaves
you without a convincing argument one way or another.

To further examine these data (and perhaps understand the reasons for
the discrepancy), you can visualize the distribution of the data using graph-
ical displays such as a histogram, boxplot, stem-and-leaf diagram, and
normal Q-Q plot (see Figure 2.1).

Here is a brief explanation of how to interpret each of these plots in the
context of normality:

e Histogram. When a histogram’s shape approximates a bell curve, it suggests
that the data may have come from a normal population.

e Boxplot. A boxplot that is symmetric with the median line in approximately
the center of the box and with symmetric whiskers somewhat longer than the
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subsections of the center box suggests that the data may have come from a
normal distribution.

e -0 Plot. A quantile-quantile (q-q) plot is a graph used to display the degree
to which the quantiles of a reference (known) distribution (in this case, the
normal distribution) differ from the sample quantiles of the data. When the
data fit the reference distribution, then the points will lie in a tight random
scatter around the reference line. For the IRA data, the curvature of the points
in the plot indicates a possible departure from normality, and the point lying
outside the overall pattern of points indicates an outlier.

o Stem-and-Leaf Plot. A stem-and-leaf plot is a method of displaying data that
shows the data in a histogram-like pattern but retains information about
actual data values. Each observation is broken down into a stem and a leaf
where, typically, the stem of the number includes all but the last digit and the
leaf is the last digit.

All four of these plots for IRA Setup indicate something unusual. There
is one small value (Case 15, as indicated by the boxplot) that is a potential
outlier (an unusually large or small value). Suppose that after carefully
examining the source documentation for these data, you discover that the
branch location for Case 15 was closed for 21 days because of localized
wildfires. After this type of discovery, you might be justified in excluding this
branch location from your analysis.

When this data value is excluded from the data set and the data are rean-
alyzed, the Shapiro-Wilk test yields a p-value of 0.73, and the Kolmogorov-
Smimov p-value is greater than 0.2, indicating that there is no reason to be
concerned about the normality assumption. Furthermore, after the removal
of the extreme data value, the revised histogram looks considerably more
normal (as does the boxplot). The histogram for the revised data is shown
in Figure 2.2. The superimposed normal curve helps you assess the normal-
ity assumption. Although not a perfect fit, the histogram suggests that it
is reasonable to assume that the data are from a normal population. The
boxplot, not shown here, is relatively symmetric and typical of normally dis-
tributed data containing no outliers or extreme values. The other plots also
suggest normality. The point of this example is to show that it is important
to not only look at statistics and tests but also to look at graphical displays
based on your data.

Once you are satisfied that a normality assumption makes sense for your
data, you can use statistics such as means, standard deviations, and so on
to describe your data. In the example here, note that we were justified in
removing the extreme value. In addition to reporting the sample mean of the
data, you may also want to report a confidence interval. For example, a 95%
CI (confidence interval) on the mean is based on the standard error of the
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Figure 2.2 Revised Histogram to Assess Normality in the IRA Setup Data

mean (SEM = .43) and is approximately 13.6 + 2 x .43, that is, (12.74,
14.46). Alternatively, you may also choose to report 13.6 + 1.8 (mean + SD).
Why should you choose one over the other? If you wish to report the preci-
sion of your estimate, you should report the 95% CI. The interpretation
of the 95% ClI is that if you repeated this experiment many times, the true
mean would fall within the calculated endpoints approximately 95% of the
time. If you want to describe the variability of your data, you would use the
expression mean = SD (see Lang & Secic, 1997).

This example does not imply that you should always remove extreme values
from your data set. You should carefully consider any unusual values and
determine whether they are valid observations before removing them from your
analysis. (It is a good practice to report any data values excluded from an analy-
sis in your write-up and to justify your actions.)
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Reporting Results for ExampLE 2.1: Quantitative Data With
an Unusual Value

The results for the analyses on the IRA data could be reported in the
following ways:

Narrative for the Methods Section

“One value in the data for IRA setups was eliminated because the bank was
closed for 21 days during the evaluation period. Descriptive statistics were
calculated on the remaining 18 values.”

Narrative for the Results Section

“IRA setups averaged 13.6 per branch (SD = 1.8, N=18).”

or
“The mean (+ SD) IRA setups was 13.6 (+ 1.8).”

If you are reporting the precision of your estimate, you could state the
following:

“The mean was 13.6 (95% CI = 12.71 to 14.52) IRA setups per branch.”

If you decide that you want to analyze the data without removing the
extreme value and therefore not make a normality assumption, you could
report your findings using the median and interquartile range. For example:

“The number of IRA setups per branch ranged from 5 to 17 setups with a
median (interquartile range) of 14 (3).”

Another way to describe nonnormal data is with a five-number summary
that consists of the minimum, 25th percentile, median, 75th percentile, and
maximum values of a data set. For example:

“A five-number summary of the IRA setups is (5, 12, 14, 15, 17).”

SPSS Step-by-Step. ExampLE 2.1: Quantitative Data With an
Unusual Value

Use the following steps to obtain the output for the IRA data analysis:

1. Open the data set IRA.SAV and select Analyze/Descriptive Statistics/Explore.
2. Select the IRASetup variable for the dependent list.
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3. Click on the Plots button and select the “Normality plots with tests” check-
box and “Histogram.” Click Continue and OK. Table 2.1 is displayed (along
with other output).

4. To eliminate the outlying value (IRASetup = 5), return to the data editor and
select Data/Select Cases . . . and select the option “If condition is satisfied. . . .”
Click on the “If .. .” button. In the formula text box, enter the expression
“IRASetup > 5” (without quotes). Click Continue and OK. A slash appears
in the IRA data file next to record 15, indicating that the record will not be
included in subsequent analyses. (For more information about filtering cases,
see “Transforming, Recoding, and Categorizing Your Data” in Appendix A.)

5. To display the revised histogram, select Graphs/Histogram and select
IRASetup as the analysis variable. Select the “Display normal curve” check-
box and click OK. The graph shown in Figure 2.2 is displayed.

6. To calculate the 95% confidence interval, select Analyze/Descriptive Statistics/
Explore. Select IRASetup as the variable and click OK.

7. To remove the “Select cases” criterion and calculate the interquartile range
and five-number summary using all of the data, return to the data editor and
select Data/Select Cases . . . and select the option “All cases” and OK. Select
Analyze/Descriptive Statistics/Explore. Select IRASetup as the variable. Click
the Statistics button and select the Percentiles option. Click Continue and
OK. The interquartile range appears in the Descriptives table output.

EXAMPLE 2.2: Quantitative Data by Groups

Describing the Problem

A survey was administered to 79 clinic patients to measure their satis-
faction with clinic services. Two versions of the survey were randomly
assigned to the participants. The following demographic information (by
group) is shown in Table 2.2.

The purpose of this table is to compare the respondents to the two types
of surveys on several important demographic variables. The p-values refer
to a test of the null hypothesis that the means are equal (see the two-sample
t-test examples in Chapter 3: Comparing One or Two Means Using the
t-Test). In this table, it appears that the number of years of schooling was
significantly higher for those who took the old survey.

Researchers disagree over whether to include the “p-Value” column in
tables of this type. The controversy arises in part over the known problem
of performing multiple tests within the same experiment. For a discussion of
p-values, see Chapter 1.
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Table 2.2 Table Reporting Group Statistics: Baseline Characteristics of
Patients in Study by Group

Mean (SD)
Old Survey New Survey
Characteristic N=34 N=45 p-Value
Age 34.3 (11.6) 30.2 (9.21) 0.08
Schooling 12.2 (2.43) 10.5 (2.33) 0.003
Temperature 99.1 (1.24) 99.5 (1.51) 0.27
Minutes 532 (337) 429 (309) 0.16

As described in Chapter 1, when multiple p-values are used in an analy-
sis, it is good practice to use Bonferroni-adjusted significance criteria. In this
case, the adjustment would entail using the p-value 0.05/4 = 0.0125 as the
rejection criterion for these tests. Thus, the only significant result in this table
would be for the schooling variable (where the reported p-value is 0.003).

Reporting the Results for EXAMPLE 2.2:
Quantitative Data by Groups

Narrative for the Methods Section

“The two versions of the survey were randomly assigned to patients as they
registered at the clinic.”

Narrative for Results Section

When there are several means to report, it is often clearer to the reader
if you report the results in a table such as the one shown in Table 2.2. If you
use a Bonferroni-adjusted p-value for your rejection criterion, you should
include a statement such as the following:

“To maintain the oo = .05 significance level for the table comparisons using a
Bonferroni adjustment, a p-value must be less than p = 0.0125 (i.e., 0.05 + 4)
to be considered statistically significant.”

In either case, the schooling difference remains the only significant com-
parison. We assume that the observed difference of 1.7 years of schooling is
a meaningful difference.
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When creating a table for publication, you should check the specifications for
the particular publication to which you will be submitting your article.

SPSS Step-by-Step. ExampLE 2.2: Quantitative Data by Groups

To calculate descriptive statistics for the survey data, follow these steps in
SPSS.

1. Open the data set SURVEY.SAV and select Analyze/Descriptive
Statistics/Explore. . . .

2. Select Age, Years of Schooling (Edu), Arrival Temperature (Temp), and
Minutes in Clinic (Stayminutes) for the dependent variables and Survey
Version for the factor list. Click OK to produce output that includes the
means and standard deviations listed in Table 2.2.

3. To calculate the p-values, select Analyze/Compare Means/Independent
samples #-test and select Age, Years of Schooling (Edu), Arrival Temperature
(Temp), and Minutes in Clinic (Stayminutes) as the “test variables” and
Survey Version as the “grouping variable.” Click on the “Define groups”
button and enter 1 and 2 for the group values. Click Continue and OK. In
the resulting “Independent Samples™ table, the p-values for each comparison
are listed in the “Equal variances assumed” row in the “Sig. 2-tailed”
column. More about the #-test and this table is discussed in Chapter 3:
Comparing One or Two Means Using the #-Test.

EXAMPLE 2.3: Quantitative Data With Unusual Values

Describing the Problem

Suppose you are interested in exploring the variables in a data set
from the U.S. Department of Energy (2005) containing fuel economy infor-
mation on 2005 model year automobiles. Your first strategy might be to
look for unusually large or small data values by finding the minimum and
maximum for each quantitative variable of interest. The results are shown in
Table 2.3 for four of the variables.

In this output, the minimum value for the cylinders variable is —1. This
seems impossible, but by examining the data, it can be seen that there are
two Mazda RX-8 models that have rotary engines without conventional
cylinders. The data are correct, but the -1 code indicates that the data for
rotary engines indicates a “missing” value rather than an actual number of
cylinders. Before analyzing the data, you should define this missing value for
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Table 2.3 Searching for Unusual Values

Descriptive Statistics

N Minimum | Maximum Mean Std. Deviation
Engine Size 1081 1.3 8.3 3.307 1.1748
Cylinders 1081 -1 12 5.78 1.587
CityMPG 1081 10 60 19.29 4.605
HwyMPG 1081 13 51 25.67 5.323
Valid N (listwise) 1081

that variable. On the other side of the scale, notice the very high miles per
gallon (mpg) ratings of 51 (city) and 60 (highway). These are legitimate mpg
ratings for the hybrid Honda Civic and Toyota Prius models. If your study
deals only with cars having conventional engines, you may want to exclude
both the rotary engine cars and hybrids from your analysis. (Assigning miss-
ing values and selecting cases in SPSS is discussed in Appendix A: A Brief
Tutorial for Using SPSS for Windows.)

Checks for extreme values will not find a slight miscoding of a data value. For
example, if an mpg were entered as 32 instead of 23, this procedure would not
catch the error.

Continuing with the automobile data, suppose you want to examine
city mpg between SUVs and non-SUVS in the 2005 automobile data set and
you want to investigate whether the normality assumption makes sense for
each group. The following graph in Figure 2.3 shows the boxplots for that
assessment.

Notice in these side-by-side boxplots that some observations (on the
high end of mpg) are indicated as outliers (marked as an “0”) and some as
extreme values (marked as an “*”). An outlier is defined (in SPSS) as a value
from 1.5 to 3 interquartile ranges (IQRs) beyond the 75th (or below the
25th) percentile, and an extreme value is greater than 3 IQRs beyond the
75th (or below the 25th) percentile. Figure 2.3 shows that there are a
number of outliers for non-SUV automobiles, but the data for SUVs are less
variable, with only two extreme values (both hybrid models).

SPSS Step-by-Step. EXAMPLE 2.3:
Quantitative Data With Unusual Values

To create the output in Table 2.3 and Figure 2.3, follow these steps in
SPSS:



38  Statistical Analysis Quick Reference Guidebook

1. Open the data set CARS2005.SAV and select Analyze/Descriptive Statistics/
Descriptives. . . .

2. Select the variables EngineSize, Cylinders, CityMPG, and HwyMPG.
3. Click OK, and the table in Table 2.3 is displayed.

4. To set the Cylinders missing value at -1, click on the Variable View tab in
the SPSS editor and click on the cell for Cylinders in the Missing column.
Click on the ellipses ( . .. ) and enter —1 as a discrete missing value.

5. To create the side-by-side boxplots in Figure 2.3, again using the
CARS2005.SAV data set, select Graphs/Boxplot. . . .

6. Select the “Simple” option and choose the radio button for “Summaries for
groups of cases.” Click the Define button.

7. Select CityMPG as the “Variable,” SUV as the “Category Axis,” and Model
for “Label Cases by.”

8. Click OK to produce Figure 2.3.
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Figure 2.3 Side-by-Side Boxplots Showing Outliers
and Extreme Values by Group
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Describing Categorical Data

Categorical data record a characteristic such as race, gender, presence of
a disease, or the color of a car model. Think of the word categories when
you’re analyzing categorical data. This data type is sometimes called quali-
tative and is further divided by the terms nominal (order not important) and
ordinal (having order). We will assume categorical data to be nominal unless
specified. In this section, two types of descriptive analyses are illustrated for
categorical data. They are as follows:

e Frequency tables
e Crosstabulations

Examples illustrate methods for examining categorical data and reporting
your results. Categorical variables include the following:

e Presence of a disease (1 = yes, 0 = no)

e Method of delivery (1 = USPS, 2 = UPS, 3 = FedEx, 4 = other)

e Marital status (1 = married, 2 = single never married, 3 = single divorced, 4 =
single widowed)

e Stage of a disease (1, 2, 3, or 4)

Each of these variables is an observation that places the subject or entity
into two or more categories. When we observe summaries of these variables,
they are typically given as counts (the number of subjects placed into each
category) and/or the corresponding percents.

Considerations for Examining Categorical Data

Notice in the examples above that some categories have order and some
do not. For example, in the marital status variable above, there are four
unordered categories, and although these categories are recorded in the data
set as numbers (1 to 4), these numbers are simply codes and are not mean-
ingful numerically. They should not be interpreted as implying an ordering
of the categories, nor should they be used in arithmetic calculations (e.g.,
mean, etc.). For the purposes of analysis, these categorical data are reported
as counts, frequencies, or percentages of subjects falling into various cate-
gories. In the marital status example, the categories have no order and are
thus nominal variables. On the other hand, stage of cancer (from 1 to 4),
rank in the military, and finish order in a race (first place, second place, etc.)
are ordinal categorical variables since categories have a logical order.
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Tips and Caveats

When Categorical Variables Can
Be Treated as Quantitative Data

Sometimes, ordinal data such as responses using a Likert scale (1 =
strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree) are
treated as quantitative data. As a general guideline, in order for the mean
and other arithmetically obtained quantities (e.g., standard deviation) to
make sense, it must be reasonable to assume that the differences between any
two categories are equal. For example, if the categories are 1, 2, 3, 4, 5, then
it must be reasonable to consider the difference between categories 2 and 3
to be the same as the difference between 4 and 5, and so on.

Describing Categorical Data Examples

The following examples illustrate techniques for assessing and describing
categorical data using statistics and graphs.

EXAMPLE 2.4: Frequency Table for Categorical Data

Describing the Problem

In a survey of 79 patients at a clinic, information was collected on how
they arrived (car, bus, or walked). You may want to examine the data using
a frequency table to report the number and percentage of patients who
arrived using each travel method along with a bar chart showing a visual-
ization of these percentages. Table 2.4 displays a frequency table for this
data set, and Figure 2.4 shows the associated bar chart. Note that the bar
chart information is displayed in percents rather than counts. We could
optionally have produced a similar chart using frequencies (counts).

Table 2.4 Frequency Table for How Arrived

How Arrived
Cumulative
Frequency Percent |Valid Percent Percent
Valid BUS 11 13.9 13.9 13.9
CAR 66 83.5 83.5 97.5
WALK 2 25 2.5 100.0
Total 79 100.0 100.0
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Figure 2.4 Bar Chart for How Arrived

In Table 2.4, the frequency is the number of patients who arrived using
each method of transportation. The percent (and valid percent, which is the
percent after removing missing values) tells you the percentage of patients
arriving by each method. It is clear both from the frequency table and the
bar chart that most patients arrived by car.

Some researchers prefer to display the bars in a bar chart for nominal data
in descending order of bar heights. This makes it easier to find the categories
with the most and fewest occurrences as well as view the categories in order
of frequency of occurrence. This type of bar chart is called a Pareto chart.
Figure 2.5 shows a Pareto chart for these data.

Reporting Results for Frequency Data

Narrative for Methods Section

“Arrival methods were examined by finding the number of subjects arriving at
the clinic using a car, bus, or by walking.”

Narrative for Results Section

“Subjects arrived by car 83.5% of the time (66 of 79), 13.9% by bus (11 of
79), and 2.5% by walking (2 of 79). (Round-off error makes the total slightly
under 100%.)”
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Figure 2.5 Pareto Chart for How Arrived

SPSS Step-by Step. EXAMPLE 2.4:
Frequency Table for Categorical Data

To create the output in Table 2.4 and Figure 2.4, follow these steps in
SPSS:
1. Open the data set SURVEY.SAV and select Analyze/Descriptive Statistics/
Frequencies.
2. Select How Arrived as the analysis variable.

3. Click on the Charts button and select Bar Chart, Percentages, Continue,
and OK.

To display the Pareto chart in Figure 2.5, follow these additional
instructions:
4. Using the SURVEY.SAV data set, select Graphs/Pareto.

5. Choose Simple type chart, select the radio button for “Counts or sums for
groups or cases,” and click on the Define button.
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6. Select How Arrived as the Category Axis and deselect the Display
Cumulative Line button and press OK to display the chart displayed in
Figure 2.5.

EXAMPLE 2.5: Crosstabulation of Categorical Variables

Describing the Problem

Using the 2005 automobile data, suppose you want to crosstabulate two
variables. Table 2.5 contains a crosstabulation of the variables SUV (sport
utility vehicle) and AWD (all-wheel drive).

Table 2.5 Output for Crosstabulation Example

SUV * AWD Crosstabulation

AWD
No Yes Total

SuUvV No Count 752 50 802
% within SUV 93.8% 6.2% 100.0%

% within AWD 76.5% 51.0% 74.2%

% of total 69.6% 4.6% 74.2%

Yes Count 231 48 279

% within SUV 82.8% 17.2% 100.0%

% within AWD 23.5% 49.0% 25.8%

% of total 21.4% 4.4% 25.8%

Total Count 983 98 1081
% within SUV 90.9% 9.1% 100.0%

% within AWD 100.0% 100.0% 100.0%

% of total 90.9% 9.1% 100.0%

Specific statistical tests to analyze this type of table are discussed in
Chapter 5: Analysis of Categorical Data. In this example, we are only inter-
ested in the descriptive information contained in the table. For example,
observe that 17.2% (48 of 279) of the SUVs in this data set have all-wheel
drive. Also note that 49% (48 of 98) of all-wheel-drive vehicles are SUVs
and that 9.1% (98 of 1,081) of all vehicles are SUVs with all-wheel drive. A
bar chart for these data is shown in Figure 2.6.
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Bar Chart

800 -

600
AWD
S = No

8 400
I Yes

200 -

0 .

No Yes
SUvV

Figure 2.6 Clustered Bar Chart for SUV Data

This bar chart allows you to visualize the relationship between SUVs and
whether they have all-wheel drive. In this chart, it is visually clear that most
non-SUVs do not have all-wheel drive, while a larger percentage (although
about the same number) of the vehicles classified as SUVs have all-wheel
drive. You can also see that there are many more non-SUVs than there are
SUVs in this data set.

Reporting Crosstabulation Results

To describe the information in a frequency table or crosstabulation in
your report or article, you should always include counts along with percent-
ages (Lang & Secic, 1997). For example, your description (from the infor-
mation in the crosstabulation above) might be as follows:

Narrative for Methods Section

“The relationship between model type and all-wheel drive was examined using
crosstabulation.”



Describing and Examining Data 45
Narrative for Results Section

“This table shows that 17.2% (48 of 279) of SUV models and 6.2% (50 of
802) of non-SUV models have all-wheel drive.”

SPSS Step-by Step. EXAMPLE 2.5:

Crosstabulation of Categorical Variables

Follow these steps to create the crosstabulation output from the
CARS2005 data set:

1. Open the data set CARS2005.SAV and select Analyze/Descriptive
Statistics/Crosstabs. . . .

2. From the dialog box, select the variable named SUV as the row variable and
AWD as the column variable.

3. Click on the Cells button and select Row, Column, and Total Percentages.
Click Continue.

4. To display the bar chart, select the “Display clustered bar charts” checkbox.

5. Click OK to display the results as shown in Table 2.5.

Summary

Understanding your data is the first step in any data analysis. This chapter
explains how to use descriptive statistics and graphs to understand and
report information about your data. Once you are satisfied that your data
are clean and that you understand the types of variables you are using, then
you are ready to move on to the following chapters that enter the realm of
inferential statistics.
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Comparing One or Two
Means Using the t-Test

he bread and butter of statistical data analysis is the Student’s #-test.

It was named after a statistician who called himself Student but whose
real name was William Gossett. As an employee of Guinness Brewery in
Dublin, Ireland, he tackled a number of practical statistical problems related
to the operation of the brewery. Since he was discouraged from publishing
under his own name, he adopted the Student moniker.

Because of Gossett’s work, today’s researchers have in their toolbox what
is probably the most commonly performed statistical procedure, the t-test.
The most typical use of this test is to compare means, which is the focus of
the discussion in this chapter. Unfortunately, because this test is easy to use,
it is also easily misused.

In this chapter, you will learn when, why, and how to appropriately per-
form a ¢-test and how to present your results. There are three types of t-tests
that will be discussed in this chapter. These are the

1. One-sample t-test, which is used to compare a single mean to a fixed number
or “gold standard”

2. Two-sample #-test, which is used to compare two population means based on
independent samples from the two populations or groups

3. Paired #-test, which is used to compare two means based on samples that are
paired in some way

47
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These three types of #-tests are discussed along with advice concerning
the conditions under which each of these types is appropriate. Examples are
given that illustrate how to perform these three types of #-tests using SPSS
software. The first type of #-test considered is the simplest.

One-Sample t-Test

The one-sample #-test is used for comparing sample results with a known
value. Specifically, in this type of test, a single sample is collected, and the
resulting sample mean is compared with a value of interest, sometimes a
“gold standard,” that is not based on the current sample. For example, this
specified value might be

e The weight indicated on a can of vegetables

o The advertised breaking strength of a type of steel pipe

e Government specification on the percentage of fruit juice that must be in a
drink before it can be advertised as “fruit juice”

The purpose of the one-sample #-test is to determine whether there is suffi-
cient evidence to conclude that the mean of the population from which the
sample is taken is different from the specified value.

Related to the one-sample #-test is a confidence interval on the mean.
The confidence interval is usually applied when you are not testing against a
specified value of the population mean but instead want to know a range of
plausible values of the unknown mean of the population from which the
sample was selected.

Appropriate Applications for a One-Sample t-Test

The following are examples of situations in which a one-sample #-test
would be appropriate:

e Does the average volume of liquid in filled soft drink bottles match the
12 ounces advertised on the label?

o [s the mean weight loss for men ages 50 to 60 years, who are given a brochure
and training describing a low-carbohydrate diet, more than 5 pounds after
3 months?

e Based on a random sample of 200 students, can we conclude that the average
SAT score this year is lower than the national average from 3 years ago?

Design Considerations for a One-Sample t-Test

The key assumption underlying the one-sample #-test is that the popula-
tion from which the sample is selected is normal. However, this assumption
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is rarely if ever precisely true in practice, so it is important to know how
concerned you should be about apparent nonnormality in your data. The
following are rules of thumb (Moore & McCabe, 2006):

o If the sample size is small (less than 15), then you should not use the
one-sample #-test if the data are clearly skewed or if outliers are present.

o If the sample size is moderate (at least 15), then the one-sample #-test can be
safely used except when there are severe outliers.

o If the sample size is large (at least 40), then the one-sample #-test can be safely
used without regard to skewness or outliers.

You will see variations of these rules throughout the literature. The last
two rules above are based on the central limit theorem, which says that
when sample size is moderately large, the sample mean is approximately nor-
mally distributed even when the original population is nonnormal.

Hypotheses for a One-Sample ¢-Test

When performing a one-sample #-test, you may or may not have a pre-
conceived assumption about the direction of your findings. Depending on the
design of your study, you may decide to perform a one- or two-tailed test.

Two-Tailed t-Tests

The basic hypotheses for the one-sample #-test are as follows, where
1 denotes the mean of the population from which the sample was selected,
and 1, denotes the hypothesized value of this mean. It should be reiterated
that |, is a value that does not depend on the current sample.

H,: u=y, (in words: the population mean is equal to the hypothesized value ).

H_: u#y, (the population mean is not equal to L,).

One-Tailed t-Tests

If you are only interested in rejecting the null hypothesis if the population
mean differs from the hypothesized value in a direction of interest, you may
want to use a one-tailed (sometimes called a one-sided) test. If, for example,
you want to reject the null hypothesis only if there is sufficient evidence that
the mean is larger than the value hypothesized under the null (i.e., 1), the
hypotheses become the following:

H,: W=y, (the population mean is equal to the hypothesized value p,).

H_: u>u, (the population mean is greater than ).
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Analogous hypotheses could be specified for the case in which you want
to reject H,, only if there is sufficient evidence that the population mean is
less than .

SPSS always reports a two-tailed p-value, so you should modify the
reported p-value to fit a one-tailed test by dividing it by 2 if your results
are consistent with the direction specified in the alternative hypothesis. For
more discussion of the issues of one- and two-sample tests, see the section
“Hypotheses for a Two-Sample #-Test” in this chapter.

EXAMPLE 3.1: One-Sample t-Test

Describing the Problem

A certain bolt is designed to be 4 inches in length. The lengths of a ran-
dom sample of 15 bolts are shown in Figure 3.1.

bolt.sav - SPSS Data Editor
File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help

SH|8| 8| o|| =k al e BlEE 3@
1: length 4
length var | var | var | var | var var

1 4.00

2 3.95

3 401

4 395

5 4.00

3 398

7 397

g 397

9 401

10 398

11 399

12 40

13 4.02

14 402

15 3.98

Figure 3.1 The Bolt Data

Since the sample size is small (N = 15), we need to examine the normal-
ity of the data before proceeding to the #-test. In Figure 3.2, we show the
boxplot of the length data from which it can be seen that the data are
reasonably symmetric, and thus the #-test should be an appropriate test.
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See the section “Observe the Distribution of Your Data” in Chapter 2 for a
discussion of tests for normality.

4.02 l
4.01 +

4.00

3.99 =

3.98

3.97

3.96

3.95

Length

Figure 3.2 Boxplot of the Bolt Data

Since the bolts will be out of design whether they are too short or too
long, we test the following hypotheses:

Null bypothesis (H,): L = 4(the population mean is equal to 4 inches).

Alternative bypothesis (H,): L # 4 (the population mean is not equal to 4 inches).

The output needed to perform this test is shown in Table 3.1.

In the “One-Sample Statistics” box, it can be seen that the sample mean
of the lengths is 3.9893 inches, with a standard deviation of 0.02314. (You
should report these values to fewer digits, as discussed in Chapter 1.) In the
“One-Sample Test” output, we see that t = —1.78 with a p-value of 0.096.
Thus, at the o0 =.05 level of significance, we do not reject the null, and we
do not conclude that there is a problem with the lengths.

We make the following comments concerning the output:

e The “mean difference” value of —0.01067 given in the table is X - p, (i.e.,
3.9893 - 4).

e The confidence interval above is given as (-0.0235, 0.0021). It should be
noted that this is a 95% confidence interval on the difference p— i, instead of
an interval for p. Thus, the fact that this interval contains zero indicates that
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Table 3.1 Output for the Bolt Data
One-Sample Statistics
Std. Error
Mean Std. Deviation Mean
length 15 3.9893 .02314 .00597
One-Sample Test
Test Value = 4
95% Confidence
Interval of the
Mean Difference
df Sig. (2-tailed) Difference Lower Upper
length -1.786 14 .096 -.01067 -.0235 .0021

the test would not be rejected at the oo=.05 level. Note also that this is a
nonstandard way of presenting the confidence interval. You will usually want

to find a confidence interval for the mean W, not a confidence interval for the
difference p— .

To obtain a confidence interval for the mean L, you can modify the inter-
val above by adding 4 to the lower and upper endpoints, or you can use the
SPSS Explore procedure to produce the table shown in Table 3.2. The 95%
confidence interval for the mean is (3.9765, 4.0021), and this is the interval
you would usually report.

Table

3.2

Explore Output Showing the Confidence Interval for p

Descriptives

Statistic Std. Error

length  Mean 3.9893 .00597
95% Confidence Lower Bound 3.9765
Interval for Mean Upper Bound 4.0021
5% Trimmed Mean 3.9898
Median 3.9900
Variance .001
Std. Deviation .02314
Minimum 3.95
Maximum 4.02
Range .07
Interquartile Range .04

Skewness -.346 .580

Kurtosis -.919 1.121
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Reporting the Results
The following examples illustrate how you might report this #-test in a
publication format.

Narrative for the Methods Section

“A one-sample Student’s #-test was performed to test the hypothesis that the
mean bolt length is 4 inches.”

Narrative for the Results Section

“The bolt lengths were not significantly different from 4 inches, #(14) =-1.79,
p=0.10."

Or, to be more complete,

“The mean bolt length (mean = 3.989, SD = 0.023, N = 15) was not
significantly different from the hypothesized value of 4 inches, #14) = -1.79,
p=0.10.”

A description of the confidence interval would read as follows:

“A 95% confidence interval on the mean bolt length using a Student’s ¢ distri-
bution with 11 degrees of freedom is (3.977, 4.002). Since this interval con-
tains 4 inches, there is not significant evidence that the mean bolt length is
different from 4.”

SPSS Step-by-Step. ExampLE 3.1: One-Sample t-Test

To run the one-sample #-test on the bolt data, follow these steps:

1. Open the data set BOLT.SAV and select Analyze/Compare Means/One-
Sample T Test. . ..
2. Select Length as the test variable and specify 4 as the test value.

3. Click OK, and Table 3.1 is displayed.

4. To display the boxplot in Figure 3.2, select Analyze/Descriptive
Statistics/Explore, add Length to the Dependent List, click on the Plots radio
button at the bottom left of the screen, and click Continue and then OK.

To obtain the confidence interval using the SPSS Explore procedure,
follow these steps:
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1. Open the data set BOLT.SAV and select Analyze/Descriptive Statistics/
Explore. . . .

2. Add Length to the Dependent List.

3. Click OK, and the output includes the information in Table 3.2.

Two-Sample t-Test

The two-sample (independent groups) #-test is used to determine whether
the unknown means of two populations are different from each other based
on independent samples from each population. If the two-sample means are
sufficiently different from each other, then the population means are
declared to be different. A related test, the paired #-test, to be discussed in
the next section, is used to compare two population means using samples
that are paired in some way.

The samples for a two-sample #-test can be obtained from a single popu-
lation that has been randomly divided into two subgroups, with each sub-
group subjected to one of two treatments (e.g., two medications) or from
two separate populations (e.g., male and female). In either case, for the two-
sample #-test to be valid, it is necessary that the two samples are independent
(i.e., unrelated to each other).

Appropriate Applications for a Two-Sample t-Test

In each of the following examples, the two-sample (independent group)
t-test is used to determine whether the population means of the two groups
are different.

e How Can My Flour Make More Dough? Distributors often pay extra to have
products placed in prime locations in grocery stores. The manufacturer of a
new brand of whole-grain flour wants to determine if placing the product on
the top shelf or on the eye-level shelf produces better sales. From 40 grocery
stores, he randomly chooses 20 for top-shelf placement and 20 for eye-level
placement. After a period of 30 days, he compares average sales from the two
placements.

o What’s the Smart Way to Teach Economics? A university is offering two
sections of a microeconomics course during the fall semester: (1) meeting once
a week with taped lessons provided on a CD and (2) having three sessions a
week using standard lectures by the same professor. Students are randomly
placed into one of the two sections at the time of registration. Using results
from a standardized final exam, the researcher compares mean differences
between the learning obtained in the two types of classes.
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e Are Males and Females Different? It is known that males and females often
differ in their reactions to certain drugs. As a part of the development of
a new antiseizure medication, a standard dose is given to 20 males and 20
females. Periodic measurements are made to determine the time it takes until
a desired level of drug is present in the blood for each subject. The researcher
wants to determine whether there is a gender difference in the average speed
at which the drug is assimilated into the blood system.

Design Considerations for a Two-Sample #-Test

The characteristics of the #-tests in the above examples are the following;:

A Two-Sample t-Test Compares Means

In an experiment designed to use the two-sample #-test, you want to
compare means from a quantitative variable such as height, weight, amount
spent, or grade. In other words, it should make sense to calculate the mean
of the observations. This measurement is called your “response” or “out-
come” variable. Also, the outcome measure should not be a categorical
(nominal/discrete) variable such as hair color, gender, or occupational level,
even if the data have been numerically coded.

You Are Comparing Independent Samples

The two groups contain subjects (or objects) that are not paired or
matched in any way. These subjects typically are obtained in one of two ways:

e Subjects (or items) are selected for an experiment in which all come from the
same population and are randomly split into two groups (e.g., placebo vs.
drug or two different marketing campaigns). Each group is exposed to identical
conditions except for a “treatment,” which may be a medical treatment, a
marketing design factor, exposure to a stimulus, and so on.

e Subjects are randomly selected from two separate populations (e.g., male vs.
female) as in the medical example above.

The t-Test Assumes Normality

A standard assumption for the #-test to be valid when you have small sam-
ple sizes is that the outcome variable measurements are normally distributed.
That is, when graphed as a histogram, the shape approximates a bell curve.

Are the Variances Equal?

Another consideration that should be addressed before using the #-test is
whether the population variances can be considered to be equal.
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The two-sample #-test is robust against moderate departures from the
normality and variance assumption, but independence of samples must
not be violated. For specifics, see the section below titled “Deciding Which
Version of the ¢-Test Statistic to Use.”

Hypotheses for a Two-Sample t-Test

As with any version of the #-test, when performing a two-sample #-test,
you may or may not have a preconceived assumption about the direction of
your findings. Depending on the design of your study, you may decide to
perform a one- or two-tailed test.

Two-Tailed Tests

In this setting, there are two populations, and we are interested in testing
whether the population means (i.e., i, and W,) are equal. The hypotheses for
the comparison of the means in a two-sample z-test are as follows:

Hy: u,=u, (the population means of the two groups are the same).

H,: u,# W, (the population means of the two groups are different).

One-Tailed Tests

If your experiment is designed so that you are only interested in detecting
whether one mean is larger than the other, you may choose to perform a
one-tailed (sometimes called one-sided) #-test. For example, when you are
only interested in detecting whether the population mean of the second
group is larger than the population mean of the first group, the hypotheses
become the following;:

H, u,=u, (the population means of the two groups are the same).

H,: p,>p, (the population mean of the second group is larger than the popu-
lation mean of the first group).

Since SPSS always reports a two-tailed p-value, you must modify
the reported p-value to fit a one-tailed test by dividing it by 2. Thus, if the
p-value reported for a two-tailed #-test is 0.06, then the p-value for this one-
sided test would be 0.03 if the results are supportive of the alternative
hypothesis (i.e., if X, > X,). If the one-sided hypotheses above are tested and
X, < X,, then the p-value would actually be greater than 0.50, and the null
hypothesis should not be rejected.
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If you intend to use a one-sided test, you should decide this before collecting
the data, and the decision should never be based on the fact that you could
obtain a more significant result by changing your hypotheses to be one-tailed.
Generally, in the case of the two-sample t-test, if there is any possibility that
there would be interest in detecting a difference in either direction, the two-
tailed test is more appropriate. In fact, you will find that some statisticians
(and some reviewers) believe that it is almost always inappropriate to use a
one-sided t-test.

Tips and Caveats for a Two-Sample -Test

Don’t Misuse the t-Test

Be careful! Don’t be among those who misuse the two-sample #-test.
Experimental situations that are sometimes inappropriately analyzed as two-
sample #-tests are the following:

Comparing Paired Subjects. A group of subjects receives one treatment, and
then the same subjects later receive another treatment. This is a paired design
(not independent samples). Other examples of paired observations would be
fruit from upper and lower branches of the same tree, subjects matched on
several demographic items, or twins. This type of experiment is appropriately
analyzed as a paired test and not as a two-sample test. See the “Paired #-Test”
section later in this chapter.

Comparing to a Known Value. Subjects receive a treatment, and the results
are compared to a known value (often a “gold standard”). This is a one-sample
t-test. See the “One-Sample ¢-Test” section.

Preplan One-Tailed t-Tests

As previously mentioned, most statistics programs provide p-values for
two-tailed tests. If your experiment is designed so that you are performing a
one-tailed test, the p-values should be modified as mentioned above.

Small Sample Sizes Make Normality Difficult to Assess

Although the #-test is robust against moderate departures from normality,
outliers (very large or small numbers) can cause problems with the validity of
the #-test. As your sample sizes increase, the normality assumption for the
two-sample #-test becomes less of an issue because of the central limit theo-
rem (i.e., sample means are approximately normal for moderately large
sample sizes even when the original populations are nonnormal). Refer back
to the guidelines regarding normality and sample size given in the section
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“Design Considerations for a One-Sample #-Test.” Studies have shown that
the two-sample #-test is more robust to nonnormality than the one-sample
methods. The two sample methods perform well for a wide range of distri-
butions as long as both populations have the same shape and sample sizes are
equal. Selection of sample sizes that are equal or nearly so is advisable when-
ever feasible (see Posten, 1978). In fact, if your sample sizes are nearly equal,
then the one-sample #-test guidelines about sample size requirements regard-
ing normality can be thought of as applying to the sum of the two sample
sizes in a two-sample #-test (see Moore & McCabe, 2006). A more conserva-
tive approach is to base your decision on the smaller of the two sample sizes,
especially when sample sizes are very different. If your sample sizes are small
and you have a concern that your data are not normally distributed, an alter-
native to the two-sample #-test is a nonparametric test called the Mann-
Whitney test (see Chapter 7: Nonparametric Analysis Procedures).

Performing Multiple t-Tests Causes Loss of
Control of the Experiment-Wise Significance Level

If an experiment involves the strategy of comparing three or more means,
the investigator may consider using the familiar #test to perform all pairwise
comparisons. However, this strategy leads to the loss of control over the
experiment-wise significance level (i.e., the probability of incorrectly finding
at least one significant difference in all possible pairwise comparisons when
all means are equal). A more appropriate procedure for comparing more
than two means is an analysis of variance (see Chapter 6: Analysis of
Variance and Covariance for more information).

Interpreting Graphs Associated With the Two-Sample ¢-Test

Graphs are useful tools in understanding an analysis. A graph produced by
many software programs in association with the z-test is the side-by-side box-
plot. This plot aids in the visual assessment of the normality (symmetry) of the
data as well as the equal variance assumption. In addition, the boxplots allow
you to visually assess the degree to which the two data sets are separated. The
histogram and normal probability plots are also helpful. For additional infor-
mation on the use of graphs, see Chapter 2: Describing and Examining Data.

Deciding Which Version of the t-Test Statistic to Use

Most statistics packages compute two versions of the #-statistic, denoted
here as #,, and #;,;. The statistic #,, is based on the assumption that the
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two population variances are equal, and a pooled estimate of the (equal)
population variances is used. Since the population variances are assumed
to be equal in this case, the pooled estimate of the common variance is
a weighted average of the two sample variances. The statistic #;,,,, does not
assume equal variances.

There are two common methods for determining which of the two
versions of the #-test to use for an analysis. Both methods make the same
assumptions about normality.

1. A simple conservative approach used by a number of recent statistics texts
(see, e.g., Moore & McCabe, 2006; Watkins, Scheaffer, & Cobb, 2004) is to
always use the #-test that does not assume equal variances unless you have
evidence that the two variances are equal. This is a conservative approach
and is based on studies that have shown that tests to determine equality of
variances are often unreliable.

2. The classical approach to deciding which version of the #-test to use is to
formally test the equal variance assumption using an F-test. The results of
these tests are typically provided in the output from statistical packages.
(SPSS uses Levene’s version of the F-test.) Typically, the decision criteria for
deciding on equality of variances are as follows: If the p-value for the F-test
is less than 0.05, you conclude that the variances are unequal and use the #-
test based on unequal variance. If the p-value for the F-test is greater than
0.05, you use the #-test based on a pooled estimate of the variances.

If you don’t know which of these two approaches to use, we recommend

3

that you use the conservative criterion. That is, always use the “unequal”
version of the ¢-test unless there is evidence that the variances are equal. In
most cases, both versions of the #-test will lead to the same conclusion. Here

are several items to consider when deciding which version of the #-test to use:

1. Although test statistic #;,;, does not actually follow a z-distribution even
when the populations are normal, the p-value given in the statistics packages
provides a close approximation. The degrees of freedom may not necessarily
be an integer.

2. There are a number of journal reviewers and professors who follow the
classical decision-making procedure that a test for equality of variances (and
maybe also for normality) be performed to determine which version of the
I-test to use.

3. If one or more of the sample sizes are small and the data contain significant
departures from normality, you should perform a nonparametric test in
lieu of the #-test. See the section “Tips and Caveats for a Two-Sample #-Test”
above.
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Two-Sample #-Test Examples

The following two examples illustrate how to perform a two-sample
I-test, create appropriate graphs, and interpret the results.

EXAMPLE 3.2: Two-Sample t-Test With Equal Variances

Describing the Problem

A researcher wants to know whether one fertilizer (Brand 1) causes plants
to grow faster than another brand of fertilizer (Brand 2). Starting with seeds,
he grows plants in identical conditions and randomly assigns fertilizer
“Brand 1” to seven plants and fertilizer “Brand 2” to six plants. The data
for this experiment are as follows, where the outcome measurement is the
height of the plant after 3 weeks of growth. The data are shown in Table 3.3.

Table 3.3 Fertilizer Data

Fertilizer 1 Fertilizer 2
51.0 cm 54.0 cm
53.3 56.1
55.6 521
51.0 56.4
58.5 54.0
53.0 52.9
52.1

Since either fertilizer could be superior, a two-sided #-test is appropriate.
The hypotheses for this test are H: U, = W, versus H: |, # W, or, in words,
the following;:

Null bypotbesis (H;): The mean growth heights of the plants using the two
different fertilizers are the same.

Alternative hypotbesis (H,): The mean growth heights of the plants using the two
fertilizers are different.
Arranging the Data for Analysis

Setting up data for this type of analysis is not intuitive and requires some
special formatting. To perform the analysis for the fertilizer data using most
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statistical software programs (including SPSS), you must set up the data
using two variables: a classification or group code and an observed (outcome/
response) variable. Thus, the way the data are listed in Table 3.3 (although
it may make sense in your workbook or spreadsheet) is zot how a statistical
software program requires the data to be set up to perform a two-sample
t-test. Instead, the data should be set up using the following format:

o Select a Grouping Code to Represent the Two Fertilizer Types. This code
could be numeric (i.e., 1, 2) or text (i.e., A, B or BRAND1, BRAND?2). For
this example, use the grouping code named Type, where 1 represents Brand1
and 2 represents Brand2.

o Name the Outcome Variable. The outcome (response) variable is the
observed height and is designated with the variable named Height.

o The Grouping Codes Specify Which Observation Belongs to Which Type of
Fertilizer. Thus, to set up the data for most statistics programs, place one
observation per line, with each data line containing two variables: a fertilizer
code (Type) and the corresponding response variable (Height).

Figure 3.3 illustrates how the data should be set up for most statistics
programs, where it should be noted that there is one item (plant) per row.

fertilizer.sav - SPSS Data Editor.
File Edt View Data Transform Analyze Graphs Utiities Add-ons Window Help
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1: type

type height | var | var | var I var | var
51.00
53.30
55 60
51.00]
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54.00]
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54.00
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Figure 3.3 SPSS Editor Showing Fertilizer Data
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The values 1 and 2 in the “type” column represent the two brands of
fertilizer and the “height” variable is the outcome height measurement on
the plants. (The codes 1 and 2 in this data set were arbitrarily selected. You
could have used 0 and 1 or any other set of binary codes.)

Before performing the #-test, you should check to see whether your data
meet the assumptions of normality and equality of variances. A visual way
to check those assumptions is with a boxplot. The boxplot for these data is
shown in Figure 3.4.
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Figure 3.4 Boxplots for the Fertilizer Study

From the listing of the data and boxplot, notice that the sample sizes
are small, with only seven observations in Group 1 and six observations in
Group 2. Also note that the distributions of both groups are relatively sym-
metric, and the variances appear to be fairly similar. There is no evidence of
any sizable outliers.

Do not interpret the large overlap in the boxes as providing conclusive
evidence that the means are not different. Although it will turn out that there
is no difference in this example, when sample sizes are large, you may see
considerable overlap in the boxes even when there is a significant p-value for
the t-test. (This would indicate that there is evidence that means are different
even though there is sizable overlap between the populations.)
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With this information in hand, you can proceed to perform a t-test. The
resulting output is shown in Table 3.4. The “Group Statistics” table shows
that the standard deviations (variances) for the two groups are similar, as
was visually seen in the boxplot. (Remember that the variance is the square
of the standard deviation.)

From the “Independent Samples Test” in Table 3.4, first notice the results
of the F-test (Levene’s test) for evaluating the equality of variance. There it

Table 3.4 Two-Sample #-Test Output for Fertilizer Data

Group Statistics

Std. Error
type N Mean Std. Deviation Mean
height 1 7 53.0714 1.90938 .72168
2 6 54.2500 1.70968 .69797
Independent Samples Test
Levene's Test for
Equality of Variances t-test for Equality of Means
95% Confidence
Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) | Difference Difference Lower Upper
height ~ Equal variances
assumed .075 790 -1.163 11 .269 -1.17857 1.01329 -3.40881 1.05166
Equal variances
not assumed -1.174 10.963 .265 -1.17857 1.00398 -3.38922 1.03208

can be seen that the p-value is 0.79, which indicates that the variances are
not significantly different. You now have two pieces of information that
indicate the variances are similar (the boxplot and Levene’s test).

Therefore, if you are comfortable with this information, the appropriate
t-test is the one that assumes equal variances. However, if you choose to
go with the conservative approach, you will use the “equal variances not
assumed” t-test. In this case, your final decision for the significance of the
t-test would not be different.

The following information discusses methods of interpreting the output
from the “Independent Samples Test” table.

e Making a Decision Based on the p-Value. The p-value for the equal variances
t-test is p = 0.269. Since this p-value is greater than 0.035, the decision would
be that there is no significant difference between the two groups. (Do not
reject the null hypothesis.) Thus, there is not enough evidence to conclude
that the mean heights are different. If you use the approach in which equal
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variances are not assumed, the p-value is p = 0.265, which is almost identical
to the “equal variance” p-value. Thus, your decision would be the same.

e Making a Decision Based on the Confidence Interval. The 95% confidence
intervals for the difference in means are given in the last two columns of Table
3.4. The interval associated with the assumption of equal variances is (-3.41 to
1.05), while the confidence interval when equal variances are not assumed is
(-3.39 to 1.03). Since these intervals include 0 (zero), we again conclude that
there is no significant difference between the means using either assumption
regarding the variances. Thus, you would make the same decisions
discussed in the p-value section above. The confidence interval gives
more information than a simple p-value. Each interval above indicates that
plausible values of the mean difference lie between about -3.4 and 1.0.
Depending on the nature of your experiment, the information about the range
of the possible mean differences may be useful in your decision-making process.

Reporting the Results of a (Nonsignificant) Two-Sample tTest

The following sample write-ups illustrate how you might report this two-

sample #-test in publication format. For purposes of illustration, we use the
“equal variance” ¢-test for the remainder of this example:

Narrative for the Methods Section

“A two-sample Student’s -test assuming equal variances using a pooled
estimate of the variance was performed to test the hypothesis that the resulting
mean heights of the plants for the two types of fertilizer were equal.”

Narrative for the Results Section

“The mean heights of plants using the two brands of fertilizer were not signif-
icantly different, #(11) =-1.17, p = 0.27.”

Or, to be more complete,

“The mean height of plants using fertilizer Brand 1 (M = 53.07, SD = 1.91,
N = 7) was not significantly different from that using fertilizer Brand 2
(M=54.25,SD =171, N=6), t(11)=-1.17, p = 0.27.”

A description of the confidence interval would read as follows:

“A 95% confidence interval on the difference between the two popula-
tion means using a Student’s # distribution with 11 degrees of freedom is
(-3.41, 1.05), which indicates that there is not significant evidence that the
fertilizers produce different mean growth heights.”
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SPSS Step-by-Step. EXAMPLE 3.2:

Two-Sample t-Test With Equal Variances

To run the two-sample #-test on the FERTILIZER.SAV data, follow these
steps:

1. Open the data set FERTILIZER.SAV and select Analyze/Compare
Means/Independent Samples T Test. . . .

2. Select Height as the test variable and Type as the grouping variable.
3. Click on the Define Groups button and define the group values as 1 and 2.
4. Click Continue and OK, and the tables shown in Table 3.4 are displayed.

5. To display the boxplot in Figure 3.4, select Graphs/Boxplot and choose
Simple Boxplot and then Define. Select Height as the variable and Type as
the category axis. Click OK.

ExAMPLE 3.3: Two-Sample t-Test With Variance Issues

Describing the Problem

Seventy-six subjects were given an untimed test measuring the dexterity
required for a particular job skill as a part of a research project at a job
placement center for inner-city youth. The sample consisted of 17 males and
59 females. Time to complete the test was recorded (in minutes). The
researcher wants to know whether the test is gender neutral. As a part of that
analysis, she wonders if the average time to complete the test will be the
same for both male and female participants.

Since the researcher is simply interested in determining whether there is a
difference in the average times for males and females, a two-sided #test is
appropriate. The hypotheses for this test could be written (in words) as follows:

Null hypotbesis (H,): The mean times to finish the skills test are the same for
both genders.

Alternative hypothesis (H,): The mean times to finish the skills test differ for the
two genders.

The data for this analysis are entered into a data set in a format similar
to the previous example, using one line per subject, with a group variable
(gender) containing two values (M and F) and a variable containing the
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response variable (time). As in ExampLE 3.2, it is a good practice to look at
a plot of the data. For this example, boxplots are shown in Figure 3.5.
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Figure 3.5 Side-by-Side Boxplots for Job Placement Data

The side-by-side boxplots show that the data are fairly symmetric and
thus consistent with approximate normality. The dots labeled “33,” “58,”
and “24” show that there are several “outliers,” although none appear
extreme. The difference in sizes of the boxes illustrates that the equality of
variances may be questionable.

Table 3.5 shows the results of performing the two-sample #-test. From the
“Group Statistics” table, note that there are 59 females and 17 males in the
sample. Also note that the standard deviation for males is almost twice as
large as that of the females.

In the “Independent Samples Test” table, the test for equality of vari-
ances, labeled “Levene’s Test,” yields a significant p-value (Sig.) of p =
0.013. This indicates that, according to this criterion, the variances cannot
be considered to be equal. This result indicates that you should use the
“equal variances not assumed” #-test. Using the conservative approach men-
tioned earlier, you would also choose to use the unequal variances #-test.
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Table 3.5 Two-Sample #-Test Results for Job Placement Data
Group Statistics
Std. Error
Gender N Mean Std. Deviation Mean
Time M 17 27.529 4.7318 1.1476
F 59 24.627 2.8881 .3760
Independent Samples Test
Levene’s Test for
Equality of Variances t-test for Equality of Means
95% Confidence
Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) | Difference Difference Lower Upper
Time  Equal variances
assumed 6.450 .013 3.126 74 .003 2.9023 .9285 1.0521 4.7525
Equal variances
not assumed 2.403 19.557 .026 2.9023 1.2077 .3795 5.4251

e Making a Decision Based on the p-Value. Because equal variances are not

assumed, you should use the set of statistics labeled “equal variances not
assumed” in the “#-test for equality of means” section of the “Independent
Samples Test.” The p-value for this version of the #-test is p = 0.026. Since this
p-value is less than 0.05, the decision would be that there is a significant
difference between the two group means. (Reject the null hypothesis.) Thus,
there is evidence to conclude that the mean times to complete the test differ
by gender. (Regardless of the statistical results, the researcher should evaluate
whether an average difference of 2.9 minutes [27.529 minus 24.627] is impor-
tant in terms of the goals of the research.)

Making a Decision Based on the Confidence Interval. To analyze these
data using confidence intervals, refer to the section of Table 3.5 labeled
“95% confidence interval of the difference” on the second line of statistics
labeled “equal variance not assumed.” The interval for the difference in
means (male minus female) is (0.3795, 5.4251). Since the interval does not
include 0 (zero), the conclusion is that (at the 0.05 level of significance) you
should reject the null hypothesis and conclude that there is a statistically sig-
nificant difference in the population means. Also, since the confidence inter-
val contains only positive values for the (male minus female) difference in
the means, there is evidence that males take longer on average to perform
the task.

Reporting Results for ExAMPLE 3.3:
Two-Sample t-Tests With Variance Issues

The following sample write-ups illustrate how you might report this #-test
in publication format:
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Narrative for the Methods Section

“Since a preliminary Levene’s test for equality of variances indicated that the
variances of the two groups were significantly different, a two-sample #-test
was performed that does not assume equal variances.”

Narrative for the Results Section

“There is evidence within the setting observed that males take a significantly
longer time on average to complete the untimed skills test than do females,
#(19.6) =2.40, p = 0.03.”

Or, more completely,

“The mean time required for females to complete the untimed aptitude test
(M =24.6 minutes, SD =2.89, N = 59) was significantly shorter than that required
for males (M = 27.53 minutes, SD = 4.73, N = 17), £20) = 2.40, p = 0.03.”

SPSS Step-by-Step. ExAMPLE 3.3:
Two-Sample t-Tests With Variance Issues

To create the side-by-side boxplots, use the following steps:

1. Open the data set JOB.SAV and select Graph/Boxplot/Simple . . . and click
Define.

2. Select Time as the variable and Gender for the category axis.

3. Click OK, and the plot shown in Figure 3.5 will be displayed.
To create the #-test output in SPSS for this example, follow these steps:

1. Using the data set JOB.SAV, select Analyze/Compare Means/Independent
Samples T Test. . ..

2. Select Time as the test variable and Gender as the grouping variable.
3. Click on the Define Groups button and define the group values as M and F.

4. Click Continue and then OK, and the output shown in Table 3.5 appears.

Paired t-Test

The paired #-test is appropriate for data in which the two samples are paired
in some way. This type of analysis is appropriate for three separate data
collection scenarios:
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e Pairs consist of before and after measurements on a single group of subjects
or patients.

e Two measurements on the same subject or entity (right and left eye, for
example) are paired.

e Subjects in one group (e.g., those receiving a treatment) are paired or matched
on a one-to-one basis with subjects in a second group (e.g., control subjects).

In all cases, the data to be analyzed are the differences within pairs (e.g.,
the right eye measurement minus the left eye measurement). The difference
scores are then analyzed as a one-sample #-test.

Associated Confidence Interval

The confidence interval associated with a paired #-test is the same as
the confidence interval for a one-sample #-test using the difference scores.
The resulting confidence interval is usually examined to determine whether
it includes zero.

Appropriate Applications for a Paired -Test

The following are examples of paired data that would properly be ana-
lyzed using a paired #-test.

e Does the Diet Work? A developer of a new diet is interested in showing that
it is effective. He randomly chooses 15 subjects to go on the diet for 1 month.
He weighs each patient before and after the 1-month period to see whether
there is evidence of a weight loss at the end of the month.

o Is a New Teaching Method Better Than Standard Methods? An educator
wants to test a new method for improving reading comprehension. Twenty
students are assigned to a section that will use the new method. Each of these
20 students is matched with a student with similar reading ability who will
spend the semester in a class using the standard teaching methods. At the end
of the semester, the students in both sections will be given a common reading
comprehension exam, and the average reading comprehension of the two
groups is compared.

e Does a New Type of Eye Drops Work Better Than Standard Drops? A phar-
maceutical company wants to test a new formulation of eye drops with its
standard drops for reducing redness. Fifty subjects who have similar problems
with eye redness in each eye are randomly selected for the study. For each
subject, an eye is randomly selected to be treated with the new drops, and the
other eye is treated with the standard drops. At the end of the treatment
schedule, the redness in each eye is measured using a quantitative scale.
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Design Considerations for a Paired #-Test
Pairing Observations May Increase the Ability to Detect Differences

A paired #-test is appropriate when variability between groups may be
sufficiently large to mask any mean differences that might exist between
the groups. Pairing is a method of obtaining a more direct measurement on
the difference being examined. For example, in the diet example above, one
method of assessing the performance of the diet would be to select 30 sub-
jects and randomly assign 15 to go on the diet and 15 to eat regularly for the
next month (i.e., the control group). At the end of the month, the weights of
the subjects on the diet could be compared with those in the control group
to determine whether there is evidence of a difference in average weights.
Clearly, this is not a desirable design since the variability of weights of
subjects within the two groups will likely mask any differences that might
be produced by one month on the diet. A better design would be to select 15
subjects and measure the weights of these subjects before and after the
month on the diet. The 15 differences between the before and after weights
for the subjects provide much more focused measurements of the effect of
the diet than would independent samples.

Paired t-Test Analysis Is Performed on the Difference Scores

The data to be analyzed in a paired #-test are the differences between pairs
(e.g., the before minus after weight for each subject in a diet study or differ-
ences between matched pairs in the study of teaching methods). The differ-
ence scores are then analyzed using a one-sample #-test.

The Paired t-Test Assumes Normality of the Differences

The basic assumption for the paired #-test to be valid when you have
small sample sizes is that the difference scores are normally distributed and
that the observed differences represent a random sample from the popula-
tion of differences. (See the section on testing for normality, “Describing
Quantitative Data,” in Chapter 2.)

Hypotheses for a Paired t-Test

The hypotheses to be tested in a paired #-test are similar to those used in
a two-sample #-test. In the case of paired data, p, and W, refer to the popu-
lation means of the before and after measurements on a single group of sub-
jects or to the first and second pair in the case of matched subjects. The null
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hypotheses may be stated as H,: u, = 1,. However, in the case of paired data,
it is common practice to make use of the fact that the difference between the
two population means (i.e., i, — W,) is equal to the population mean of the
difference scores, denoted W, In this case, the hypotheses are written as
follows:

H,: p, =0 (the population mean of the differences is zero).

H,: p,# 0 (the population mean of the differences is not zero).

ExampLE 3.4: Paired t-Test

Consider the diet example described above. The data for this example
include two variables reporting before and after weights for 15 randomly
selected subjects who participated in a test of a new diet for a 1-month
period. Figure 3.6 illustrates the data format, where it can be seen that the
before and after weights for a subject are entered on the same row. In this
case, we want to determine whether there is evidence that the diet works.
That is, if we calculate differences as d, = “before” weight minus “after”
weight, then we should test the following hypotheses:

H,: p, =0 (the mean of the differences is zero; i.e., the diet is ineffective).

H,: p, > 0 (the mean of the differences is positive; i.e., the diet is effective).

The first step in the analysis is to simply observe the distribution of the
differences using a boxplot. Figure 3.7 shows the plot for the diet data.

This plot shows that the distribution of the differences is fairly symmetric
and that the assumption of normality seems reasonable. Also, it can be seen
that only a small percentage of the differences were below 0 (no weight loss
or negative weight loss).

To analyze the data using a statistical test, we examine the output in the
“Paired Samples Test” shown in Table 3.6.

Table 3.6 Paired #-Test Output for ExampLE 3.4

Paired Samples Test

Paired Differences

95% Confidence

Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower [ Upper t df Sig. (2-tailed)

Pair 1 before - after 3.533 5.330 1.376 582 | 6.485 2.567 14 .022
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&2 DIET.sav [DataSet1] - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utiities Add-ons ‘Window Help

CHAD e =b H EEBHLE fs@:

1 : subject 1
' ~ subject before | after | var | var | yar var
1 1 210 204 | [ |
2 2 207 205
' 3 3| 163 | 182
’ 4] 4 195 196
| 5| 5 187 177
‘ 5 B 201 193
7| 7] 158/ 152
8 8| 180 182
' 9 9 173 165
_ 10| 10 198 186
' 11 11| 225 | 218
f 12| 12| 243 237 |
| 13 13 168 174
14 14 177 178
_ 15 15 19| 199
i5
| 17

Figure 3.6 SPSS Editor Showing Diet Data

-6 -

Difference

Figure 3.7 Boxplot of the Differences for ExampLE 3.4



Comparing One or Two Means Using the t-Test 73

In this output, it can be seen that the sample mean of the difference scores
is 3.533, with a standard deviation of the differences given by 5.330. The
calculated #-statistic (with 14 df) is given by 2.567, which has a p-value of
0.022. When interpreting these results, you should notice that the mean of
the “before minus after” differences is positive, which is supportive of the
alternative hypothesis that p, > 0. Since this experiment from its inception
was only interested in detecting a weight loss, it can be viewed as a one-sided
test. Thus, for a one-sided hypothesis test, the reported p-value should be
one-half of the p-value given in the computer output (i.e., p = 0.011). That
is, at the o = .05 level, we reject H, and conclude that the diet is effective.
The output also includes a 95% confidence interval on the mean difference.
It should be noted that this confidence interval is a two-sided confidence
interval. In this case, the fact that the confidence interval (0.58, 6.49) con-
tains only positive values suggests that u, > 0 (i.e., that the diet is effective).

Reporting the Results for EXAMPLE 3.4: Paired t-Test

The following sample write-ups illustrate how you might report this
paired #-test in publication format.

Narrative for the Methods Section

“A paired #-test was performed to ascertain whether the diet was effective.”

Narrative for the Results Section

“There is evidence that the mean weight loss is positive, that is, that the diet is
effective in producing weight loss, #(14) = 2.567, one-tailed p = 0.01.”

Or, more completely,

“The mean weight loss (M = 3.53, SD = 5.33, N = 15) was significantly greater
than zero, #(14) = 2.567, one-tailed p = 0.01, providing evidence that the diet
is effective in producing weight loss.”

SPSS Step-by Step. ExaMPLE 3.4: Paired t-Test

It should be noted that SPSS can be used to perform a paired #-test in two
different ways.

Using the Data Pairs

1. Open the data set DIET.SAV and select Analyze/Compare Means/
Paired-Samples T Test. . . .
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2. Select the two variables for which you want the difference to be taken. In this
case, click on Before and After and select them as the paired variables (click
on right arrow). The difference “Before — After” is used in the analysis.

3. Click OK, and Table 3.6 is displayed.

Programming Notes. It should be noted that the default order of the
difference (i.e., in this case, “Before — After”) is determined by the order in
which the variables are entered into the database. That is, using the paired
t-test option and the data in the data set DIET.SAV, SPSS will by default
calculate the difference “Before — After.” Calculation of the difference “After —
Before” can be obtained by directly calculating the difference and performing a
one-sample #-test on the difference scores, as illustrated in the next example.

Using the Difference Scores

The same results as those obtained in Table 3.6 can be obtained by
directly computing the “before — after” differences and performing a one-
sample z-test on the differences. (See the section “Creating a New Variable
Using Computation” in Appendix A.) After creating a new variable named
difference, a one-sample test will produce the output shown in Table 3.7.

Table 3.7 Paired #-Test Results Obtained Using
a Calculated Difference Variable

One-Sample Test

Test Value =0

95% Confidence
Interval of the

Mean Difference
t df Sig. (2-tailed) Difference Lower Upper
Difference 2.567 14 .022 3.53333 .5816 6.4850

The reported difference is 3.53333 (and the p-value for the test is p =
0.022). These results are consistent with those obtained earlier. If it were desir-
able, you could have calculated the differences using the formula “after —
before.” In this case, the mean difference would be —=3.53 and the #-value
would be —2.567, but the p-value would remain the same.

SPSS Step-by-Step. EXAMPLE 3.4:
Paired t-Test Using Difference Scores

To perform the one-sample #-test on the new variable called difference that
exists in the data set DIET_WITH_DIFFERENCE.SAV, follow these steps:
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1. Open the data set DIET_WITH_DIFFERNCE.SAV and select Analyze/
Compare Means/One-Sample T Test. . . .

2. Select Difference as the test variable and specify 0 as the test value.
3. Click OK, and Table 3.7 is displayed.

4. To display the boxplot of the difference scores in Figure 3.7, select
Analyze/Descriptive Statistics/Explore, add Difference to the Dependent
List, click on the Plots radio button at the bottom left of the dialog box, and
click OK.

Summary

The #-test is one of the most widely used statistical procedures. It comes in
three basic varieties: the single-sample #-test, the two-sample #-test, and the
paired #-test. This chapter presents a concise, but not exhaustive, description
of how to perform, interpret, and report the results of #-tests.
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Correlation and Regression

H ave you ever noticed that, on the average, the more money people earn,
the more expensive the car they drive? I drive a 9-year-old Toyota.
Does that tell you anything? You might refer to the association between
income and type of car using the term correlation. In statistical terms, a cor-
relation is a mathematical measure of the strength of association between two
quantitative variables—in this case, between income and value of the car.

A closely related cousin of correlation analysis is regression analysis. In
a classic study, the statistician Karl Pearson compiled the heights of 1,078
fathers and sons where the son had reached full height. As would be
expected, a scatterplot of the data shows that taller fathers tend to have taller
sons while shorter fathers tend to have shorter sons, as shown in Figure 4.1.
A correlation analysis involves measuring the extent to which the points in
the scatterplot tend to swarm about a line. Suppose, however, that you want
to know how well you can predict the height of a son if you know the height
of his father. Using the data, you can come up with a regression line (equa-
tion) for performing the prediction. In regression analysis, we are interested
in using the relationship between the two variables to predict the value of
one of the variables given a value of the other variable.

This chapter describes when and how to use correlation and regression
analyses. Specifically, these topics are covered:

e Correlation: measuring the linear association between two variables

o Simple linear regression: used to examine the relationship between a single
predictor and a response variable
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Figure 4.1 Pearson’s Scatterplot of Heights of Fathers and Sons

e  Multiple linear regression: used to examine the relationship between two or
more predictor variables with a response variable

e Bland-Altman analysis: used to assess the level of agreement between two
ways of measuring the same characteristic

Chapter 8 will deal with a specialized type of regression called logistic
regression.

Correlation Analysis

A statistic that is often used to measure the strength of a linear association
between two variables is the correlation coefficient. Specifically, the correla-
tion covered in this chapter is called Pearson’s correlation coefficient (yes—it’s
the same Pearson who measured the fathers and sons). In this section, we refer
to Pearson’s correlation coefficient as simply the “correlation coefficient.” The
theoretical correlation coefficient is often expressed using the Greek letter 7ho
(p) while its estimate from a set of data is usually denoted by 7.
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Unless otherwise specified, when we say “correlation coefficient,” we
mean the estimate () calculated from the data. The correlation coefficient is
always between —1 and +1, where —1 indicates that the points in the scatter-
plot of the two variables all lie on a line that has negative slope (a perfect
negative correlation), and a correlation coefficient of +1 indicates that the
points all lie on a line that has positive slope (a perfect positive correlation).
In general, a positive correlation between two variables indicates that as one
of the variables increases, then the other variable also tends to increase. If the
correlation coefficient is negative, then as one variable increases, the other
variable tends to decrease and vice versa.

A correlation coefficient close to +1 (or —1) indicates a strong linear rela-
tionship (i.e., that the points in the scatterplot are closely packed around a
line). However, the closer a correlation coefficient gets to 0, the weaker the
linear relationship and the more scattered the swarm of points in the graph.
Most statistics packages quote a #-statistic along with the correlation coeffi-
cient for purposes of testing whether the correlation coefficient is significantly
different from zero. A scatterplot is a very useful tool for viewing the rela-
tionship and determining whether a relationship is indeed linear in nature.

Appropriate Applications for Correlation Analysis

The correlation coefficient might be used to determine whether there is a
linear relationship between the following pairs of variables:

o What Is the Relationship Between Grades in English Rbetoric and Intro-
ductory Statistics? A sample of first-year students was selected at a certain
university, and their scores in English rhetoric and introductory statistics are
compared.

e How Do Internet Sales Relate to Advertising Costs¢ The monthly amount
spent on Google ads and monthly amount received in orders from an Internet
store site are compared.

o Fatigue Versus Performance. Managers track the number of overtime hours
worked and the daily cost of mistakes made at a chemical production facility.

Design Considerations for Correlation Analysis

1. The correlation coefficient measures the strength of a linear relationship
between the two variables. That is, the relationship between the two variables
measures how closely the two points in a scatterplot (X-Y plot) of the two
variables cluster about a straight line. If two variables are related but the rela-
tionship is not linear, then the correlation coefficient may not be able to
detect a relationship.
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2. Observations should be quantitative (numeric) variables. The correlation
coefficient is not appropriate for qualitative (categorical) variables, even if they
are numerically coded. In addition, tests of significance of the correlation coef-
ficient assume that the two variables are approximately normally distributed.

3. The pairs of data are independently collected. Whereas, for example, in a
one-sample -test, we make the assumption that the observations represent
a random sample from some population, in correlation analysis, we assume
that observed pairs of data represent a random sample from some bivariate
population.

Hypotheses for Correlation Analysis

The usual hypotheses for testing the statistical significance of a Pearson’s
correlation coefficient are the following;:

Hy: p =0 (there is no linear relationship between the two variables).

H, p#0 (there is a linear relationship between the two variables).

These hypotheses can also be one-sided when appropriate. This null hypoth-
esis is tested in statistics programs using a test statistic based on Student’s z.
(SPSS doesn’t actually give the ¢ value—just the associated p-value for the
two-sided test.) If the p-value for the test is small, then you reject the null
hypothesis and conclude that p is not 0. A researcher will then have to make
a professional judgment to determine whether the observed association has
“practical” significance. A correlation coefficient of » = 0.25 may be statisti-
cally significant (i.e., we have statistical evidence that it is nonzero), but
it may be of no practical importance if that level of association is not of
interest to the researcher.

Tips and Caveats for Correlation Analysis
One-Sided Tests

The two-sided p-values for tests about a correlation reported by most
statistics programs can be divided by two for one-sided tests if the calculated
correlation coefficient has the same sign as that specified in the alternative
hypothesis.

Variables Don’t Have to Be on the Same Scale

The correlation coefficient is unitless. For example, you can correlate height
(inches) with weight (pounds). In addition, given a set of data on heights and
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weights, it does not matter whether you measure height in inches,
centimeters, feet, and so on and weight in pounds, kilograms, and so on. In
all cases, the resulting correlation coefficient will be the same.

Correlation Does Not Imply Cause and Effect

A conclusion of cause and effect is often improperly inferred based on the
finding of a significant correlation. Only in the case where research is prop-
erly designed as a prospective study can cause and effect be concluded.

Correlations Provide an Incomplete Picture of the Relationship

Suppose, for example, that you have found that for first-year students at
a certain university, there is a very strong positive correlation between grades
(from 0-100) in rhetoric and statistics. Simply stating this finding would lead
one to believe that rhetoric and statistics grades are very similar (i.e., that a
student’s score in rhetoric will be very close to his or her score in statistics).
However, you should realize that you would get a strong positive correlation
if the statistics grade for each student tended to be about 20 points lower than
his or her rhetoric grade. (We’re not claiming that this is the case—it’s just a
hypothetical example!) For this reason, when reporting a correlation between
two variables, it is good practice to not simply report a correlation but also to
report the mean and standard deviation of each of the variables. In addition,
a scatterplot provides useful information that should be given in addition to
the simple reporting of a correlation. This is addressed in the following.

Examine Relationship With a Scatterplot and Waich for Outliers

Always confirm the linear nature of the correlation with a scatterplot
(X-Y plot) because it is possible for a correlation coefficient to appear impor-
tant when examination of the data themselves suggest otherwise. Figure 4.2
shows several examples of scatterplots, all of which have a computed corre-
lation coefficient of about 0.72. The upper left scatterplot has the typical
appearance of points swarming about a line with a correlation of about 0.72.
In the upper right scatter diagram, the apparent linear correlation is nearly
entirely due to the extreme value or outlier in the upper right-hand corner of
the plot. Without that value, there is no apparent relationship between the
two variables. This is an example of what is sometimes referred to as the lol-
lipop effect. (Can you see the lollipop?) In the middle left scatterplot, there
seems to be a strong linear relationship between the two variables (much
stronger than 0.72). However, notice that there is one data value in the lower
right-hand corner of the plot that does not fit this correlation structure. This
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Figure 4.2 Example Scatterplots Associated With » = .72

data value dramatically reduces the computed correlation coefficient. Note
that this unusual point would not be picked up as an outlier by looking at
the univariate (one variable at a time) techniques in Chapter 2 because it is
within an acceptable range of both variables. As always, whenever you see
unusual or extreme values in your data set, you should investigate whether
these values are “real.” Even if the outlying values in the upper right or mid-
dle left scatterplots are real, their effect on the correlation and resulting test
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of significance should be noted. In the middle right scatterplot, there appear
to be two groupings of data. These groups may correspond to subpopula-
tions, and it should be noted that there appears to be little or no linear rela-
tionship between the two variables within each group. In the lower left
scatterplot, the points follow a line with very small slope for x between 22
and 26 and follow a different and much steeper linear pattern for x greater
than 26. In the lower right scatterplot, the variables appear to be very
strongly (maybe functionally) related, but the relationship is nonlinear.

Don’t Assume That Linear Relationships
Observed Over Certain Ranges of the Variables
Will Continue to Exist if the Ranges Are Extended

Consider the case in which two variables have a strong linear relationship
over a certain range of variables. If the range on one or both of the variables
is expanded, then the linear relationship observed previously may or may
not continue to exist. Over an expanded range, the relationship may become
nonlinear or may disappear altogether. See, for example, the bottom left
graph in Figure 4.2. This is related to the advice against extrapolation that
we give related to linear regression analysis.

If Variables Are Not Normally Distributed

If you cannot assume normality of the X or Y variable, then you should use
Spearman’s correlation to measure agreement between the two variables. See
Chapter 7: Nonparametric Analysis Procedures for information on this topic.

ExAMPLE 4.1: Correlation Analysis

Describing the Problem

Data collected on 50 different children include the child’s age and the
times to complete four different hand-eye coordination tasks (labeled Timel
to Time4). The researcher is interested in understanding the extent to which
performances on these tasks are associated with the child’s age and with one
another. In a preliminary analysis, the correlation between Age and Timel
was measured. The correlation coefficient for these two variables is 7= 0.501
with p < 0.001. The scatterplot shown in Figure 4.3 confirms that there is a
mild increase in Timel as Age increases. This scatterplot is similar in appear-
ance to the father-son data in Figure 4.1, and in both cases, the correlation
is approximately » = 0.5.
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Figure 4.3 Scatterplot of Timel by Age

Because there are five quantitative variables involved (i.e., Age, Timel, . . .,
Time4), it might be useful to examine them all at once. A matrix of correla-
tion coefficients is displayed in Table 4.1. The top number in each cell is
7, the calculated correlation coefficient between the two variables under
consideration. The second number in each cell is the p-value, and the third
number is the sample size (i.e., the number of valid pairs that were observed).
In this case, all correlations are statistically significant because all p-values
are less than 0.05. The matrix is symmetric about the diagonal because, for
example, the correlation coefficient between Age and Timel (0.501) in the
first row and second column is the same as the correlation coefficient
between Timel and Age in the second row and first column. Note also that,
for example, there is a perfect correlation (i.e., 7 = 1) between Age and itself
in the first diagonal element. The correlation coefficients range from r = .381
to 7 = .834 (ignoring the diagonal).

It is also useful to examine a scatterplot matrix (i.e., a matrix of scatter-
plots) for these data to visualize the nature of the relationships. Figure 4.4
shows a matrix of scatterplots for these variables.
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Table 4.1 Matrix of Correlation Coefficients
Correlations
AGE TIME1 TIME2 TIME3 TIME4

AGE Pearson Correlation 1 .501** .381** .450%* 488**

Sig. (2-tailed) .000 .006 .001 .000

N 50 50 50 50 50
TIME1 Pearson Correlation .501* 1 764 .686** .826**

Sig. (2-tailed) .000 .000 .000 .000

N 50 50 50 50 50
TIME2 Pearson Correlation .381** 764%% 1 .834** 573

Sig. (2-tailed) .006 .000 .000 .000

N 50 50 50 50 50
TIME3 Pearson Correlation 450%* .686** .834** 1 .649**

Sig. (2-tailed) .001 .000 .000 .000

N 50 50 50 50 50
TIME4 Pearson Correlation .488** .826** 573** .649** 1

Sig. (2-tailed) .000 .000 .000 .000

N 50 50 50 50 50

**_Correlation is significant at the 0.01 level (2-tailed).

Time3 Time2 Timel Age

Time4

Age

Timel

Time2

Time3

Time4

Figure 4.4

Scatterplot Matrix
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Reporting the Results for a Pearson’s Correlation

The following example illustrates how you could report the results of a
correlation analysis using the variables Age and Timel. Note that the degrees
of freedom for the #-test of the correlation hypothesis is N — 2 (number of
cases minus 2).

Narrative for the Methods Section

“An evaluation of the linear relationship between the child’s age and the score
on the Timel coordination exercise was measured using Pearson’s correlation.”

Narrative for the Results Section

“An analysis using Pearson’s correlation coefficient indicated that there is
a significant linear relationship between age and performance on Timel,
7(48) = 0.50, p < 0.001. For these data, the mean (SD) for Age was 10.46
(2.43) and for Timel was 21.27 (1.72).”

SPSS Step-by-Step. ExampLE 4.1: Correlation Analysis

To calculate the correlation coefficient between Age and Timel and plot
the corresponding scatterplot, follow these steps:

1. Open the data set CORRELATION.SAV and select Analyze/Correlate/
Bivariate.

2. Select Age and Timel as variables. Make sure the Pearson checkbox is
selected and click OK.

3. To display a scatterplot of the variables as in Figure 4.3, select Graphs/
Scatter/Dot . . . /Simple Scatter and click Define.

4. Select Timel as the y-axis and Age as the x-axis variables and click OK.

To create the output in Table 4.1 that displays a matrix of correlation
coefficients, follow these additional steps:

1. Using the data set CORRELATION.SAV, select Analyze/Correlate/
Bivariate.

2. Select Age, Timel, Time2, Time3, and Time4 as variables. Make sure the
Pearson checkbox is selected and click OK.
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3. To display a scatterplot matrix of the same variables, select Graphs/
Scatter/Dot . . . /Matrix Scatter and click Define.

4. Select Age, Timel, Time2, Time3, and Time4 as variables and click OK. The
output shown in Figure 4.4 is displayed.

(Note: To produce the scatterplot of the fathers’ and sons’ heights shown
in Figure 4.1, use the same procedure outlined in Steps 1 to 4 above with the
data set named PEARSON.SAV.)

Simple Linear Regression

Simple linear regression (SLR) is a statistical tool used to examine the
relationship between one predictor (independent) variable and a single
quantitative response (dependent) variable. Simple linear regression analy-
sis produces a regression equation that can be used in prediction. A typical
experiment involves observing a sample of paired observations in which the
independent variable (X) may have been fixed at a variety of values of inter-
est and the dependent variable has been observed. This resulting set of
observations is sometimes referred to as a training sample. This sample is
then used to create an equation that can be used to predict the dependent
variable given a value of the independent variable.

Appropriate Applications for Simple Linear Regression

e How Good Is a New Medical Test? A new (less expensive) medical test is
developed to potentially replace a conventional (more expensive) test. A
regression equation is developed to determine how well the new test (inde-
pendent variable) predicts the results of the conventional test (dependent
variable).

e Systolic Blood Pressure and Smoking. A medical researcher wants to under-
stand the relationship between weight (independent variable) and systolic
blood pressure (dependent variable) in males older than 40 years of age who
smoke. A regression equation is obtained to determine how well the blood
pressure reading can be predicted from weight for males older than age 40
who smoke.

o Should I Spend More on Advertising? The owner of a Web site wants to know
if the weekly costs of advertising (independent variable) on a cable channel
are related to the number of visits to his site (dependent variable). In the data
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collection stage, the advertising costs are allowed to vary from week to week.
A regression equation is obtained from this training sample to determine how
well number of visits to the site can be predicted from advertising costs.

Design Considerations for Simple Linear Regression
There Is a Theoretical Regression Line

The regression line calculated from the data is a sample-based version of
a theoretical line describing the relationship between the independent vari-
able (X) and the dependent variable (Y). The theoretical line has the form

Y=0+BX+e

where o is the y-intercept, B is the slope, and € is an error term with zero
mean and constant variance. Notice that B = 0 indicates that there is no lin-
ear relationship between X and Y.

The Observed Regression Equation Is Calculated
From the Data Based on the Least Squares Principle

The regression line that is obtained for predicting the dependent variable
(Y) from the independent variable (X) is given by

y=a+bX

and it is the line for which the sum-of-squared vertical differences from
the points in the X-Y scatterplot to the line is a minimum. In practice, Y is
the prediction of the dependent variable given that the independent variable
takes on the value X. We say that the values @ and b are the least squares
estimates of o and B, respectively. That is, the least squares estimates are
those for which the sum-of-squared differences between the observed Y
values and the predicted Y values are minimized. To be more specific, the
least squares estimates a and b are the values of a and b for which the sum
of the quantities (Y, —a — bX,)?% i=1,..., N is minimized.

Several Assumptions Are Involved
These include the following:

1. Normality. The population of Y values for each X is normally distributed.

2. Equal variances. The populations in Assumption 1 all have the same variance.
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3. Independence. The dependent variables used in the computation of the
regression equation are independent. This typically means that each observed
X-Y pair of observations must be from a separate subject or entity.

You will often see the assumptions above stated in terms of the error term €.
Simple linear regression is robust to moderate departures from these assump-
tions, but you should be aware of them and should examine your data to under-
stand the nature of your data and how well these assumptions are met.

Hypotheses for a Simple Linear Regression Analysis

To evaluate how well a set of data fits a simple linear regression model, a
statistical test is performed regarding the slope (B) of the theoretical regres-
sion line. The hypotheses are as follows:

Hy: B =0 (the slope is zero; there is no linear relationship between the variables).

H_;: B#0 (the slope is not zero; there is a linear relationship between the variables).

The null hypothesis indicates that there is no linear relationship between
the two variables. One-sided tests (specifying that the slope is positive or
negative) can also be performed. A low p-value for this test (less than 0.05)
would lead you to conclude that there is a linear relationship between the two
variables and that knowledge of X would be useful in the prediction of Y.

The statistical test for the hypothesis that the slope is zero in a simple linear regres-
sion is mathematically equivalent to the test in correlation analysis that p = 0.

Tips and Caveats for Simple Linear Regression
Don’t Extrapolate

Once a regression line is obtained and it is concluded that there is indeed
a significant linear relationship upon which to base the predictions, you can
use the line for predicting Y values for a given value X. However, the linear
relationship that is established applies only to the range of X values used in
developing the regression line. Based on the analysis leading to the regression
equation, you have no way of knowing whether the observed linear rela-
tionship exists beyond the range of the observed X values. For example,
consider the data shown in the bottom left scatterplot in Figure 4.2. Suppose
you have access to only the data for which X < 26 and you find the regres-
sion line for predicting Y from X. It can be seen that this line will do a good
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job of predicting Y for X between 22 and 26. However, if you use this line
to predict the value of Y when X = 26.4, it is clear that the predicted Y will
be much lower than the actual Y because the nature of the relationship
between X and Y changed at about X = 26. The regression line you obtained
applies only to the range of X values used in its computation. Using the
regression line to predict Y for a value of X that is outside the range of X
values observed is called extrapolation. Don’t do it!

Analyze Residual Plots

Residuals are calculated as e = Y — Y for each pair of observations in the
data set, where Y is the prediction obtained from the regression line and Y is
the original data value. Note that for each X-Y pair in the data set, a resid-
ual is computed, and a scatterplot of these residuals is often plotted with the
independent variable on the horizontal axis and the residuals on the vertical
axis. If the assumptions are met, then this scatterplot should appear as ran-
dom points centered at zero. It may also be useful to plot the residuals using
run-order as the horizontal axis. (Run-order is the order in which the obser-
vations were observed.)

Examination of residual plots can help you determine whether the
assumptions are met. For example, if the residuals follow some sort of
nonlinear curve, then this may be an indication that a linear regression is not
appropriate. If the spread of the points around the center line tends to
change across the range of the independent variable, this may be an indica-
tion that the assumption of equal variances is not appropriate. If a pattern
appears in a run-order residual plot, you should determine if there was some
type of change over time (e.g., fatigue) that influenced the data values.

Sometimes, standardized residuals (residuals divided by their standard
error) are plotted. In this case, the basic patterns to be examined are the
same, but the standardizing makes it easier to identify outliers. If a stan-
dardized residual is larger than 2 or 3 in absolute value, it may indicate an
outlier or at least a data point of some interest. For more discussion of resid-
ual analysis, see Kleinbaum, Kupper, Muller, and Nizam (1997), and for
more on outlier detection, see Barnett and Lewis (1994).

Transformations

If the residuals do not appear to be random in the residual plot, you
may consider applying a transformation to one or both of the variables to
help eliminate the problem. Common transformations include the logarithm
and the square root. Depending on the type of nonlinearity observed, you
may want to apply this transformation to the independent variable, the
dependent variable, or both. Information on how to transform data to
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create new variables in SPSS is given in Appendix A: A Brief Tutorial for
Using SPSS for Windows. A good reference for learning more about trans-
formations is Kleinbaum et al. (1997).

Other tips and caveats similar to those in correlation analysis include the
following:

e Variables need not be on the same scale.

e A p-value less than 0.05 indicates only that there is some predictive value
when using X to predict Y.

e The finding of a significant predictive relationship does not imply cause and
effect.

e The two-sided p-values associated with the test for slope given by most sta-
tistics programs can be divided by two for one-sided tests if the slope estimate
has the same sign as that specified in the alternative hypothesis.

e Relationships should be examined using scatterplots.

Interval Estimates

There are several interval estimates used in simple linear regression.

o Confidence Interval for B. You can obtain confidence intervals on the param-
eter P related to the hypothesis test mentioned above. If the resulting 95%
confidence interval contains zero, then there is not sufficient evidence to
conclude that the theoretical slope is nonzero (i.e., there is not significant
evidence of a linear relationship).

o Confidence Interval for Mean of Y for Given Value of X. This is really a col-
lection of confidence intervals, one for each value of the independent variable.
The upper and lower limits of these confidence intervals are typically drawn
as curves across the range of observed values X (see Figure 4.5).

o Prediction Interval for Future Value of Y Given X. This interval is technically
not a confidence interval. The interpretation of a 95% prediction interval for
Y given X is as follows. Suppose we randomly select a new data pair for which
the independent variable takes on the value X. We are 95% sure that the cor-
responding value of Y will fall in this prediction interval. This interval is sim-
ilar to the confidence interval on the mean value of Y for a given value X but
is somewhat wider.

ExAMPLE 4.2: Simple Linear Regression

Describing the Problem

A random sample of 14 students is selected from an elementary school,
and each student is measured on a creativity score (Create) using a new test-
ing instrument and on a task score (Task) using a standard instrument. The
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Task score is the mean time taken to perform several hand-eye coordination
tasks. Because the test for the creativity test is much cheaper, it is of interest
to know whether you can substitute it for the more expensive Task score.
That is, can you create a regression equation that will effectively predict a
Task score (the dependent variable) from the Create score (the independent
variable)? In Figure 4.5, we show a scatterplot of these two variables along
with the regression line and the confidence intervals for Y given X. In the
plot, we use the standard practice of plotting the independent variable
(Create) on the x-axis and the dependent variable (Task) on the y-axis. By
observing the scatterplot (try to ignore the line and interval estimates for
now), it can be seen that there is a positive correlation between the two vari-
ables (in this case, 7 =.74), and it appears that knowing Create should help
in predicting Task. It is also clear that knowing Create does not in any way
perfectly predict Task.

9.0 1

8.0 1

7.0

6.0 1

Task

5.0 1

4.0

3.0 1

2.0 1 R Sq Linear = 0.553

T
20 30 40 50 60 70 80
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Figure 4.5 Scatterplot for Simple Linear Regression Example

Regression analysis results are shown in Table 4.2. The “create” line gives
the results of the two-sided hypothesis test that the theoretical slope of the
regression line for predicting Task from Create is 0. In this case, p = 0.002
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Table 4.2 Results of Simple Linear Regression Analysis

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 1.599 1.008 1.586 .139
create .083 022 744 3.856 .002

a. Dependent Variable: task

indicates that you should reject the null hypothesis and conclude that there
is a statistically significant linear relationship between the two variables and,
therefore, that Create should be useful in predicting Task.

Note that the p-value associated with the “Constant” term is for testing H,y:
o = 0 (i.e., that the theoretical y-intercept is zero). In most cases, this will not
be of interest to you. That is, usually the only p-value of interest will be the one
associated with the independent variable (i.e., the one used for testing whether
the slope is significantly different from zero).

The sample regression equation is created from the “Unstandardized
Coefficients” in the coefficients table. Thus, the regression equation for
predicting Task from Create is

Predicted Task = 1.599 + 0.083Create

or, in words, you predict the Task value by multiplying Create by 0.083 and
adding 1.599. Figure 4.5 shows the scatterplot along with the regression line,
which seems to provide reasonable estimates for Task for each value of
Create. For a new student who has a Create score of 52, you would predict
a Task score using the following equation:

Predicted Task = 1.599 + 0.083(52) = 5.915

which is visually consistent with the regression line in Figure 4.5 at X = 52.
A visual inspection of the scatterplot indicates, however, that although the
relationship is (strongly) statistically significant, the scatter of points around
the prediction line is not extremely tight. Therefore, although statistically
significant, these results may or may not lead you to conclude that the Create
test results can be adequately predicted using Task. This is a decision that
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Figure 4.6 Residual Plot for Simple Linear Regression Example

you will have to make based on your professional knowledge of the subject
matter. For example, you must determine whether you are willing to accept
the size of possible errors in estimates of Task obtained from the regression
line. Examining Figure 4.5, you can see that some values of Task are as much
as 2 units away from the fitted regression line. If making this magnitude of
a predictive error is life threatening or costly in some other way, you may
feel that the predictive capability of the equation, although statistically
significant, is not strong enough to be adopted for actual use.

A residual plot is shown in Figure 4.6. This plot suggests that the under-
lying assumptions are met because it shows a random scatter of points above
and below the zero line. With so few points, it is difficult to determine whether
there is any pattern of concern.

SPSS Step-by-Step. ExampLE 4.2: Simple Linear Regression

To perform the simple linear regression analysis in this example, use the
following steps in SPSS:

1. Open the file REGSIMP.SAV and select Analyze/Regression/Linear.

2. Select Task as the dependent variable and Create as the independent variable
and click OK. The output tables for the analysis, including Table 4.2, will be
displayed.
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To produce a scatterplot of the data as shown in Figure 4.5, select
Graphs/Scatter/Dot/Simple Scatter and Define. Select Task as the y-axis and
Create as the x-axis and click OK.

To draw the regression line on the plot, once the scatterplot appears, double-
click on it to enter the SPSS Chart Editor:

e From the Chart Editor menu, select Elements/Fit Line at Total.

e Click the Fit Line tab and select Linear as the fit method.

e In the Confidence Interval box, select Mean.

e Click Apply and Close.

Close the chart editor (File/Close). The plot in Figure 4.5 is displayed.

To obtain the residual plot in Figure 4.6, select Analyze/Regression/Linear,

selecting the independent and dependent variables as before, and then do the

following:

e Check the Save box and select unstandardized residuals.

e Click Continue and OK. (Note: This has placed a new variable, Unstand-
ardized Residual(Res_1), in the data file.)

o Select the Graphs/Scatter/Dot/Simple Scatter and select Unstandardized
Residual as the y-axis and Create as the x-axis and click OK.

To place a horizontal line at Y = 0, once the scatterplot appears, double-click
on it to enter the SPSS Chart Editor:

e From the Chart Editor menu, select Options/Y Axis Reference Line.

o Indicate the y-axis position as 0.

e Click Apply and Close.

e Close the chart editor (File/Close).

Multiple Linear Regression

Multiple linear regression is an extension of simple linear regression in which
there is a single dependent (response) variable (Y) and k independent (pre-
dictor) variables X,,i=1, . . ., k. In multiple linear regression, the dependent
variable is a quantitative variable while the independent variables may be
quantitative or indicator (0, 1) variables. The usual purpose of a multiple
regression analysis is to create a regression equation for predicting the
dependent variable from a group of independent variables. Desired out-
comes of such an analysis may include the following;:

1.

Screen independent variables to determine which ones are good predictors
and thus find the most effective (and efficient) prediction model.

Obtain estimates of individual coefficients in the model to understand the
predictive role of the individual independent variables used.
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Appropriate Applications of Multiple Linear Regression

e How Can the Selling Price of a House Be Predicted? A large city is broken
down into 50 “neighborhoods,” and for each neighborhood, the following
variables are collected: average selling price per square foot of houses in the
neighborhood (AST), population density, yearly crime rate, proportion of
nonbusiness acres, proportion of lots over 25,000 square feet, average
square footage for residential dwellings, distance to downtown, and aver-
age family income. It is desired to see how well AST can be predicted
using the other variables and which of the other variables are useful in
predicting AST.

e Does Tutoring Help? To assess the effectiveness of tutorial help in a psy-
chology course, the instructor wants to know how well the grade achieved
on the final exam can be predicted using all or a subset of the following
variables: amount of time spent on Web tutorials, time spent in small tuto-
rial classes, the time spent in one-on-one tutorial meetings, and student
gender.

o Can Emergency Room Costs Be Predicted by Observing Initial Injury
Measures? Administrators at a hospital want to know how well the cost of
a visit to the emergency room can be predicted using all or a subset of the
following variables: evidence of intoxication, AIS score (injury severity),
gender, type of injury (blunt, burn, or penetrating), GCS (Glasgow Coma
Scale) score, and initial systolic blood pressure.

Design Considerations for Multiple Linear Regression

A Theoretical Multiple Regression Equation
Exists That Describes the Relationship Between
the Dependent Variable and the Independent Variables

As in the case of simple linear regression, the multiple regression equation
calculated from the data is a sample-based version of a theoretical equation
describing the relationship between the k independent variables and the
dependent variable Y. The theoretical equation is of the form

Y=0+B,X, +B,X,+...+BX,+¢

where o is the intercept term and B, is the regression coefficient correspond-
ing to the ith independent variable. Also, as in simple linear regression, € is
an error term with zero mean and constant variance. Note that if B, = 0, then
in this setting, the ith independent variable is not useful in predicting the
dependent variable.
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The Observed Multiple Regression
Equation Is Calculated From the Data
Based on the Least Squares Principle

The multiple regression equation that is obtained from the data for pre-
dicting the dependent variable from the k independent variables is given by

Y=a+bX, +bX,+...+bX,

As in the case of simple linear regression, the coefficients a, b, b, . .., and
b, are least squares estimates of the corresponding coefficients in the theo-
retical model. That is, as in the case of simple linear regression, the least
squares estimates @ and b, ..., b, are the values for which the sum-of-
squared differences between the observed y values and the predicted y values
are minimized.

Several Assumptions Are Involved

These include the following:

1. Normality. The population of Y values for each of combination of indepen-
dent variables is normally distributed.

2. Equal Variances. The populations in Assumption 1 all have the same
variance.

3. Independence. The dependent variables used in the computation of the
regression equation are independent. This typically means that each observed
y value must be from a separate subject or entity.

Hypotheses for Multiple Linear Regression

In multiple regression analysis, the usual procedure for determining
whether the ith independent variable contributes to the prediction of the
dependent variable is to test the following hypotheses:

Hy B,=0
H: B;#0
fori=1,..., k. Each of these tests is performed using a #-test. There will be

k of these tests (one for each independent variable), and most statistical
packages report the corresponding ¢-statistics and p-values. Note that if
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there was no linear relationship whatsoever between the dependent variable
and the independent variables, then all of the Bs would be zero. Most
programs also report an F-test in an analysis of variance output that pro-
vides a single test of the following hypotheses:

Hy B,=B,=...=B,=0 (there is no linear relationship between the dependent
variable and the collection of independent variables).

H,: At least one of the B, s is nonzero (there is a linear relationship between the

a

dependent variable and at least one of the independent variables).

The analysis-of-variance framework breaks up the total variability in the
dependent variable (as measured by the total sum of squares) by that which
can be explained by the regression using X,, X,, . . ., X, (the regression sum
of squares) and that which cannot be explained by the regression (the error
sum of squares). It is good practice to check the p-value associated with this
overall F-test as the first step in the testing procedure. Then, if this p-value
is less than 0.05, you would reject the null hypothesis of no linear relation-
ship and proceed to examine the results of the t-tests. However, if the
p-value for the F-test is greater than 0.05, then you have no evidence of any
relationship between the dependent variable and any of the independent
variables, so you should not examine the individual #-tests. Any findings of
significance at this point would be questionable.

Most statistics programs also give the t-statistic and associated p-value for
testing the null hypothesis H,: o= 0. As in the case of simple linear regression,
you will usually not be interested in testing whether the y-intercept is
zero.

R-Square

Another measure that assesses the performance of the multiple regression
is the R* (R-squared) statistic. This statistic reports the strength of the rela-
tionship between the set of independent variables and the dependent vari-
able. R? ranges from 0 (meaning no linear relationship) to 1.0 (meaning
perfect linear relationship). R? is the ratio of the regression sum of squares
divided by the total sum of squares and measures the proportion of the
variation in the dependent variable that is accounted for by the regression.
For example, an R? of 0.89 would typically be described by reporting that
89% of the variability in the dependent variable is accounted for by the
regression.
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Model Selection Procedures for Multiple Linear Regression

It is often the case in working with multiple linear regression that there
are a number of candidate independent variables, and the goal is to create a
model that contains some group of these variables that will best and most
efficiently predict the dependent variable. Based on the discussion above
concerning testing hypotheses in a multiple regression, it is tempting to con-
clude that the best way to proceed is to enter all of the independent variables
of possible interest into the multiple regression equation and choose the ones
for which the corresponding p-values are less than 0.05. However, this may
not produce desirable results, often because of collinearity among the inde-
pendent variables.

Collinearity occurs when independent variables are themselves highly cor-
related or when one independent variable is nearly a linear combination of
two or more independent variables. The presence of collinearity among the
independent variables can cause problems in interpretation of the resulting
multiple regression equations. If there are strong interrelationships among
the independent variables, then coefficient estimates cannot be trusted to be
meaningful. For example, if an independent variable is by itself positively
related to the dependent variable, then you would expect the coefficient
associated with this variable to be positive.

Suppose that you have two independent variables that are each positively
correlated with the dependent variable and also strongly positively corre-
lated with each other. Because the two variables are highly positively corre-
lated with each other, they are introducing very similar information into the
regression equation for predicting the dependent variable, and it will often
be the case that only one of these independent variables is needed. However,
if these two variables are simultaneously placed into the regression equation,
this may result in confusing results such as one variable having a positive
coefficient and the other a negative coefficient, one or both variables appear-
ing to be insignificant, and so on.

One solution may be to create new variables that are themselves linear
combinations of the existing independent variables. Also, several techniques
have been developed for deciding which of a group of candidate indepen-
dent variables should be used in a final model. Among these are the
following:

1. Forward Selection. This procedure enters variables in a stepwise manner
using an entry criterion for selecting the next variable to be entered. At each
step, an associated p-value is checked to determine whether the selected
variable contributes enough to be included.
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Backward Elimination. All independent variables are initially entered into
the equation. At each step, there is a removal criterion for selecting the next
variable to be removed from the model and an associated p-value to deter-
mine whether the selected variable should be removed.

Stepwise Entry. This procedure adds independent variables one at a time as
in forward selection. However, at each step, a backward elimination proce-
dure is used to see whether any variables should be removed.

Best Subset Regression. This strategy reports the multiple regression based
on a subset of a specified number, say, 7, of independent variables for which
R? (or some other criterion) is maximized among all possible subsets of
independent variables. Note: This option is not available in SPSS but is avail-
able in statistics programs such as SAS (SAS Institute, 2003) and WINKS
(TexasSoft, 2004).

Other Techniques. Some researchers use hierarchical regression, which is a
technique in which the researcher decides on the order of entry of indepen-
dent variables. These variables may be entered individually or in blocks.

A few other issues that should be considered when selecting variables:

Include Only Variables That Make Sense. Variables selected for inclusion in
a prediction model should make sense in the context of the analysis. If it is
not clear why a variable should be predictive, it may be best to not include it
in your model, even if the selection criterion chooses it.

Force Important Variables Into a Model. You may sometimes want to force
variables of obvious importance to be included in a final model even if the
selection procedures do not choose it.

Be Wary of Variable Selection Results. It is interesting to note that the
various selection procedures described above may lead to different final mod-
els. It is good practice to use several of these techniques and to compare the
final models. (The stepwise and forward selection procedures are similar.
If one of these is being used, then also try backward elimination.) Some
researchers argue that backward elimination procedures are preferable to the
forward selection and stepwise procedures. Among other issues, it has been
shown that in forward selection and stepwise approaches, the R values are
biased high, and the resulting p-values do not have proper meaning. These
problems are not as severe in backward elimination methods (see Mantel,
1970). Our advice is that you should not let any automated variable selection
procedure be the sole criterion by which your final model is chosen.

Tips and Caveats for Multiple Linear Regression

Besides the tips and caveats described in the previous simple linear regres-
sion section above, here are some additional considerations:
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Using Indicator Variables

Your independent variables may include a categorical variable with two or
more categories. Examples might be race, location of hospital, brand of milling
machine, and so on. To include these variables in the equation, indicator
variables must be used. For example, if you have a variable called Race that
includes the categories White, African American, Hispanic, and Other (four
categories), you would need to create three indicator variables (i.e., the vari-
ables take on the values 0 and 1) to account for these categories. These new
variables might be named White, AA, and Hispanic and can be constructed as
follows: If a subject is “White,” the variables take on the following values:
White =1, AA =0, and Hispanic = 0. If a subject is African American, the vari-
ables take on the following values: White = 0, AA = 1, Hispanic = 0, and so
forth. Note that if the subject is “Other,” the variables take on the following
values: White = 0, AA = 0, and Hispanic = 0. Thus, these three indicator vari-
ables can uniquely account for all four categories using 0, 1 indicator variables.
In this case, all three variables (White, AA, and Hispanic) would be used as
independent variables in the multiple regression equation. Thus, a general rule
is that the number of independent variables required to account for a categor-
ical variable is the number of categories minus one.

Don’t Extrapolate

As with simple linear regression, predictions obtained using the multiple
regression equation should be used only for independent variables that are
(as a group) within the range of independent variables used in the computa-
tion of the regression equation.

Too Many Predictors?

The number of independent variables that should be used in your final
model is limited by the number of observations. A rule of thumb used by
some researchers is to limit the number of independent variables to one inde-
pendent variable for every 10 observations. Thus, if you have 50 observa-
tions, this rule would indicate that you should limit your final regression
model to a maximum of five independent variables.

Model Interpretation and Evaluation
for Multiple Linear Regression
Model evaluation is performed using graphs and statistical tests. Some

commonly used procedures for assessing the performance of a multiple
regression model are discussed here. These include the following:
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o Compare Competing R*> Values. Compare the R? values of competing models
to see if there is one that results in a larger R? value than the others. However,
you should be aware that if you start with a multiple regression with three
variables and add a fourth variable to this list, then the R* value will nearly
always increase and will never decrease. Thus, simple increase in R? is not
sufficient evidence for deciding to include an additional variable. Comparison
of R? values thus makes the most sense when you are comparing candidate
models with the same number of independent variables.

o Analyze Residual Plots. Plots of residuals similar to those discussed in the
section on simple linear regression are also useful in multiple regression. In
multiple regression, the residuals are again calculated as the difference
between an actual Y value and its corresponding predicted value. Again, these
plots should show a random behavior with no real pattern. As in simple lin-
ear regression, if a standardized residual is larger than 2 or 3, it may indicate
an outlier or at least a data point of some interest. In multiple regression, you
can plot separate residual plots for each of the independent variables on the
horizontal axis. It is also common practice to plot residuals versus the pre-
dicted Y values or against run-order.

ExAMPLE 4.3: Multiple Linear Regression Analysis

Describing the Problem

An employer wants to be able to predict how well applicants will do on
the job once they are hired. He devises four tests (Test1 to Test4) that are
designed to measure the skills required for the job. Current employees are
selected at random from a group of current workers and given the four tests.
These workers are then evaluated by a supervisor, who gives each employee
a job proficiency score (Jobscore). From the “training data,” we wish to
develop a multiple regression equation for predicting Jobscore from all or a
subset of the four test scores.

From the matrix of scatterplots in Figure 4.7, you can see that there
appears to be a linear relationship between Jobscore and Test1. The associ-
ation between Jobscore and the other variables is unclear.

To select the collection of independent variables to be used in the final
model, we investigate the use of variable selection methods. These auto-
mated methods are not foolproof, and as mentioned previously, you should
not rely on one method to find the best set of predictors.

Using a stepwise procedure, the variables Test1 and Test3 are entered into
the equation using the stopping rule that says that in order to be entered into
the equation, an entry p-value less than 0.05 is required while a p-value
greater than 0.10 is required for a variable to be removed. These results are
shown in Table 4.3, where it can be seen that (not surprisingly) Test1 was
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Figure 4.7 Matrix of Scatterplots for Jobscore Data
Table 4.3 Output for Stepwise Model Selection
Coefficients?
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -87.136 26.383 -3.303 .003
testl 2.575 .317 .861 8.124 .000
2 (Constant) -11.922 38.641 -.309 761
testl 2.406 .295 .805 8.168 .000
test3 -.768 311 -.244 -2.475 .022

a. Dependent Variable: jobscore
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selected as the first variable to be entered, Test3 was entered into the model
next, and no further variables satisfied the entry criterion.

When a second method, backward elimination, is used on the same data
(with the same stopping rule for removal), the final model contained the
variables Test1, Test3, and Test4.

Both models have a strong model fit (p < 0.001), according to the
ANOVA F-tests, so either one can be considered statistically significant. You
must choose between these two competing models.

Comparing the models on the basis of R? values, we see that the two-
variable model has R? =.798, and the three-variable model has R*=.827. As
mentioned earlier, one of the problems with comparing these models using
R? values is that simply from mathematical considerations, R* should be
larger for the model with Test1, Test3, and Test4 than for the model with
Test1 and Test3, even if Test4 is not providing significantly important new
information. If you decide that the three-variable model is not substantially
better, then you might choose the two-variable model based on the desire for
parsimony (i.e., selection of the model with the fewest variables if there is no
important difference in the models). Other criteria such as Mallows C,and
the Akaike information criterion (AIC) are designed for directly comparing
models with different numbers of independent variables (see Neter, Kutner,
Nachtsheim, & Wasserman, 1996).

Another way to assess the fit is to examine the contribution for each
individual variable in the proposed model. In Table 4.3, the “Sig.” column
reports the p-value associated with a test that the associated B coefficient is
zero for each of the predictors currently in the model. For the two predictors
Test1 and Test3 in Model 2 of the table, these p-values are both less than
0.05. If either of these p-values were large, it would suggest that the variable
was not providing important information to the equation and should possi-
bly be dropped.

When faced with several model candidates, you must decide not only
which one best fits the data but also which one makes the most sense in the
context of your research and which one uses the fewest variables to create
an acceptable model. For example, if each test costs $25 to administer and
there are potentially 1,000 candidates, eliminating a single unneeded test
would save $25,000.

Based on these considerations, let’s use the model with the two indepen-
dent variables (Test1 and Test3). The corresponding regression equation for
predicting Jobscore is given by

Predicted Jobscore = -11.922 + 2.406 Test1 — 0.768 Test3
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If the model is adequate, it should be helpful in using these two tests to
predict how new employees will perform on the job.

Residual Analysis

Figure 4.8 shows a plot of unstandardized residuals plotted against
the predicted Jobscore variable. Notice that the points are spread randomly
around the zero line, with 1 point for a predicted Jobscore of about 200
somewhat out of place. In addition, there is the appearance of a possible
increase in variability as the predicted Jobscore increases.
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Figure 4.8 Residual Plot for JOBSCORE.SAV Data

The “Casewise Diagnostics” table in the output (not shown here) indi-
cates that the record with the large residual (i.e., with a residual of approx-
imately 100) is a potential outlier since it has a standardized residual greater
than 3. The program identifies this as case number 7. You should investigate
this case to see if there is something unusual about this subject. Perhaps it is
a superstar employee who would be hard to predict using the developed
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model. You might consider rerunning the analysis without this unusual value
to see how that might influence your model.

SPSS Step-by-Step. ExAMPLE 4.3:
Multiple Linear Regression Analysis

To examine a matrix of scatterplots of all the variables in the JOB-
SCORE.SAV data set as shown in Figure 4.7, use these steps:

1. Open the data set JOBSCORE.SAV and select Graphs/Scatter/Dot/Matrix
Scatter and click Define.

2. Select the variables Jobscore, Testl, Test2, Test3, and Test4 as the matrix
variables and click OK. Figure 4.7 shows the resulting matrix of scatterplots.

To perform the variable selection procedure:

3. Select Analyze/Regression/Linear. . . .

4. Select Jobscore as the dependent variable and Test1 through Test4 as the
independent variables.

5. Select Stepwise as the entry criterion and click OK.

6. From this initial analysis, notice that the variables Test1 and Test3 are
entered into the equation, and Test2 and Test4 are excluded, as shown in
Table 4.3.

7. Rerun the analysis, this time selecting Backward as the entry criterion.

8. Notice that this method ends up with Test1, Test3, and Test4 in the model.

To evaluate the fit of the two-variable model (or whatever model you
select), you should examine the residuals. Follow these steps:

9. Select Analyze/Regression/Linear, selecting Jobscore as the dependent vari-
able, Test1 and Test3 as the independent variables, and Enter as the entry
criterion.

10. Check the Save box and select Unstandardized Predicted Values and
Unstandardized Residuals and click Continue. Note: This has placed new
variables, Unstandardized Predicted Value(Pre_1) and Unstandardized
Residual (Res_1), in the data file.

11. To select casewise diagnostic analysis, check the Statistics checkbox and
select Casewise Diagnostics. Click Continue and OK. This gives you the
information that subject number 7 has an unusually large residual.
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12. To obtain the residual plot in Figure 4.8, select Graphs/Scatter/Dot/Simple
Scatter and select Unstandardized Predicted Value as the x-axis variable and
Unstandardized Residual for the y-axis variable and click OK.

13. Double-click on the graph to enter the SPSS Chart Editor. Add a reference
(Options/Y Axis Reference Line) line at 0. Click Apply and Close.

Bland-Altman Analysis

The Bland-Altman analysis is a different type of animal. From the beginning,
you should realize that is it not a statistical test measured with a p-value.
Instead, it is a subjective process used to assess agreement between two
methods of measurement. That is, can the two different measures be used
interchangeably (Bland & Altman, 1986, 2003)? An important requirement
of the Bland-Altman method for measuring agreement is that the two
methods for measuring the same characteristic use the same scale of mea-
surement. This implies that when plotted, the points should line up along the
line y = x (line of identity).

This analysis does not depend on either method being a “gold standard”
but only that they measure the same characteristic consistently. It is possible
for two measures to have strong linear agreement using a Pearson’s correla-
tion (r) when they are not measuring the same quantity because, as men-
tioned previously, a correlation analysis does not require that the two
measurements be on the same scale or to even be measurements of the same
characteristic.

As mentioned above, there is no specific hypothesis test associated with
a Bland-Altman analysis. Instead, the analysis is based on examination of
two plots:

o Plot of Identity. This plot is a scatterplot of the two measurements along with
the line y = x. If the measurements are in basic agreement, then the points in
the scatterplot will line up closely to the line y = x.

e Bland-Altman Plot. For this plot, two new variables are created: the average
between the two measurements and the difference between the two measure-
ments. The Bland-Altman plot is a scatterplot of these new variables, with the
means plotted on the horizontal axis and the differences plotted on the verti-
cal axis. This plot shows the amount of disagreement between the two mea-
sures (via the differences) and lets you see how this disagreement relates to the
magnitude of the measurements. This plot includes approximate 95% limits
(based on an assumption of normal differences). If differences observed in this
plot are not deemed scientifically (or clinically) important (according to the
researcher’s own expertise), then this is a confirmation of agreement. (The
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decision as to what constitutes a clinically important difference should be
made in advance of the analysis.)

Design Considerations for a Bland-Altman Analysis

e The two different methods of measurement should be measuring the same
variable on the same scale.

e The mean and standard deviation (SD) of the differences should be constant
throughout the range of measurements, and the differences should be approx-
imately a normal distribution (Bland & Altman, 2003).

ExAmMPLE 4.4: Bland-Altman Analysis

Describing the Problem

Using an example from Bland and Altman (1986), suppose two measure-
ments of peak expiratory flow rate (PEFR) are compared. One of these mea-
surements uses a “large” meter and the other a “mini” meter. The research
question of interest is whether these two techniques are measuring the same
phenomenon. We first examine the plot of identity shown in Figure 4.9.
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Figure 4.9 Plot of Identity
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It should be noted that the line drawn here is the line y = x, not the regres-
sion line. If the scatter of points in this plot lies near the line, it indicates that
the two ways of measuring PEFR are similar. From the plot of identity in
Figure 4.9, you can see that the scatterplot falls close to the line, which sug-
gests that the two machines are measuring the same characteristic.

The Bland-Altman plot is shown in Figure 4.10. This plot is a scatterplot
of the average of the two measurements against the difference (large minus
mini) between measurements for each subject. This plot is a visual check that
the magnitudes of the differences are essentially constant throughout the
range of measurement. We also show 95% limit lines.
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Figure 4.10  Bland-Altman Plot

If the differences are approximately normally distributed, then you would
expect about 5% of the points to lie outside the limit lines, and this seems to
be the case in Figure 4.10. However, it should be noticed that the 95% limit
lines are at about + 75 for the differences between readings, and the graph
shows a few differences outside or close to the limit lines, that is, differences
in the neighborhood of + 75 (the actual limits are —75.4 and 79.6). Bland and
Altman (1986) argue that such large differences are clinically important
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(a decision not based on any p-value) and therefore conclude that the two
devices do not show sufficient agreement to be used interchangeably. It is
important to note that this lack of agreement is not apparent in Figure 4.9
(see Bland & Altman, 1986).

Reporting the Results of a Bland-Altman Analysis

The following example illustrates how you might report the results of a
Bland-Altman analysis in publication format.

Narrative for Methods Section

“A Bland-Altman assessment for agreement was used to compare the two peak
flow methods. A range of agreement was defined as mean bias +2 SD.”

or

“A Bland-Altman analysis was used to assess the level of agreement between
the two methods to compare the new technique to the established one.”

Narrative for Results Section

“The Bland-Altman analysis indicates that the 95% limits of agreement
between the two methods ranged from -75.4 to 79.6. The two methods do not
consistently provide similar measures because there is a level of disagreement
that includes clinically important discrepancies of up to 80 l/min.”

SPSS Step-by-Step. EXAMPLE 4.4: Bland-Altman Analysis

To create the plots used for the Bland-Altman analysis, follow these steps:

1. Open the data set BLAND_ALTMAN.SAV and select Graphs/Scatter/Dot/
Simple Scatter.

2. Select Mini for the x-axis and Large for the y-axis. Click OK.
3. When the plot appears, double-click on it to bring up the SPSS Editor.
4. From the Chart menu, select Edit/Select X Axis.

5. Click the Scale tab, uncheck “Auto” for minimum and maximum, and spec-
ify 200 as the minimum and 700 for maximum values. Click Apply and Close.

6. Set the same minimum and maximum values for the y-axis (Edit/Select Y Axis).
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7. Add a line of identity by selecting Options/Reference Line From Equation. In
the Properties dialog box, indicate an intercept of 0 and the slope of 1. Click
Apply and Close.

8. Exit the Chart Editor. The plot shown in Figure 4.9 is displayed.

To create the Bland-Altman plot in SPSS, you must first perform a few
calculations.

1. Using the BLAND_ALTMAN.SAV data set, compute the difference between
the two measures. This can be done by selecting Transform/Compute and
computing a new variable called Diff from the equation Large — Mini.

2. Compute the average of the two variables in the same way using Mean for
the variable name and the equation (Large + Mini)/2.

3. Determine the mean and standard deviation of Diff using Analyze/
Descriptive Statistics/Descriptives. The mean difference is -2.1176, and
SD = 38.76513.

4. Create a scatterplot (Graphs/Scatter/Dot/Simple Scatter) with Mean as the
x-axis and Diff as the y-axis.

5. Double-click on the graph to enter the SPSS Chart Editor. Add a reference
(Options/Y Axis Reference Line) line at —2.1176 + 2*38.76513 = 75.41
(Reference Line tab) and select a dashed-line style (Lines tab). Click Apply
and Close.

6. Add another reference line (Options/Y Axis Reference Line) at —2.1176 —
2%38.76513 = -79.65 using the same technique.

7. Finally, add a third reference line (Options/Y Axis Reference Line) at
—2.1176, making this dashed-line style solid.

8. Close the Chart Editor, and the Bland-Altman plot is displayed as shown in
Figure 4.10.

Summary

Correlation and regression are statistical techniques used to examine associ-
ations between numeric variables and to create predictive equations. Simple
and multiple regression techniques can be used to develop a model that
explains in a mathematical formula how one or more variables can be used
to predict the value of an outcome variable. However, correlations and
regression equations do not necessarily suggest cause and effect.
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Analysis of Categorical Data

P eople like to clump things into categories. Virtually every research
project categorizes some of its observations into neat, little distinct bins:
male or female; marital status; broken or not broken; small, medium, or
large; race of patient; with or without a tonsillectomy; and so on. When we
collect data by categories, we record counts—how many observations fall
into a particular bin. Categorical variables are usually classified as being of
two basic types: nominal and ordinal. Nominal variables involve categories
that have no particular order such as hair color, race, or clinic site, while the
categories associated with an ordinal variable have some inherent ordering
(categories of socioeconomic status, etc.). Unless otherwise stated, the pro-
cedures discussed here can be used on any type of categorical data. There are
some specific procedures for ordinal data, and they will be briefly discussed
later in the chapter.

Statisticians have devised a number of ways to analyze and explain
categorical data. This chapter presents explanations of each of the following
methods:

e A contingency table analysis is used to examine the relationship between two
categorical variables.

e McNemar’s test is designed for the analysis of paired dichotomous, categori-
cal variables to detect disagreement or change.

e The Mantel-Haenszel test is used to determine whether there is a relationship
between two dichotomous variables controlling for or within levels of a third
variable.

113
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o Interrater reliability (kappa) tests whether two raters looking at the same
occurrence (or condition) give consistent ratings.

e A goodness-of-fit test measures whether an observed group of counts matches
a theoretical pattern.

e A number of other categorical data measures are also briefly discussed.

To get the most out of this chapter, you should first verify that your
variables are categorical and then try to match the hypotheses you are test-
ing with the ones described in this chapter. If it is not clear that the hypothe-
ses you are testing match any of these given here, we recommend that you
consult a statistician.

Contingency Table Analysis (» X c)

Contingency table analysis is a common method of analyzing the associa-
tion between two categorical variables. Consider a categorical variable that
has r possible response categories and another categorical variable with
¢ possible categories. In this case, there are r X ¢ possible combinations of
responses for these two variables. The r X ¢ crosstabulation or contingency
table has 7 rows and ¢ columns consisting of 7 x ¢ cells containing the
observed counts (frequencies) for each of the 7 x ¢ combinations. This type
of analysis is called a contingency table analysis and is usually accomplished
using a chi-square statistic that compares the observed counts with those
that would be expected if there were no association between the two
variables.

Appropriate Applications of Contingency Table Analysis

The following are examples of situations in which a chi-square contin-
gency table analysis would be appropriate.

e A study compares types of crime and whether the criminal is a drinker or
abstainer.

e An analysis is undertaken to determine whether there is a gender preference
between candidates running for state governor.

e Reviewers want to know whether worker dropout rates are different for par-
ticipants in two different job-training programs.

e A marketing research company wants to know whether there is a difference
in response rates among small, medium, and large companies that were sent
a questionnaire.
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Design Considerations for a Contingency Table Analysis
Two Sampling Strategies

Two separate sampling strategies lead to the chi-square contingency table
analysis discussed here.

1. Test of Independence. A single random sample of observations is selected
from the population of interest, and the data are categorized on the basis of
the two variables of interest. For example, in the marketing research example
above, this sampling strategy would indicate that a single random sample
of companies is selected, and each selected company is categorized by size
(small, medium, or large) and whether that company returned the survey.

2. Test for Homogeneity. Separate random samples are taken from each of
two or more populations to determine whether the responses related to a
single categorical variable are consistent across populations. In the marketing
research example above, this sampling strategy would consider there to be
three populations of companies (based on size), and you would select a sam-
ple from each of these populations. You then test to determine whether the
response rates differ among the three company types.

The two-way table is set up the same way regardless of the sampling
strategy, and the chi-square test is conducted in exactly the same way. The
only real difference in the analysis is in the statement of the hypotheses and
conclusions.

Expected Cell Size Considerations

The validity of the chi-square test depends on both the sample size and
the number of cells. Several rules of thumb have been suggested to indicate
whether the chi-square approximation is satisfactory. One such rule sug-
gested by Cochran (1954) says that the approximation is adequate if no
expected cell frequencies are less than one and no more than 20% are less
than five.

Combining Categories

Because of the expected cell frequency criterion in the second sampling
strategy, it may be necessary to combine similar categories to lessen the
number of categories in your table or to examine the data by subcategories.
See the section that follows later in this chapter on Mantel-Haenszel compar-
isons for information on one way to examine information within categories.
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Hypotheses for a Contingency Table Analysis

The statement of the hypotheses depends on whether you used a test of
independence or a test for homogeneity.

Test of Independence

In this case, you have two variables and are interested in testing whether
there is an association between the two variables. Specifically, the hypothe-
ses to be tested are the following:

H,: There is no association between the two variables.

H, The two variables are associated.

Test for Homogeneity

In this setting, you have a categorical variable collected separately from
two or more populations. The hypotheses are as follows:

H,: The distribution of the categorical variable is the same across the populations.

H, The distribution of the categorical variable differs across the populations.

Tips and Caveats for a Contingency Table Analysis
Use Counts—Do Not Use Percentages

It may be tempting to use percentages in the table and calculate the chi-
square test from these percentages instead of the raw observed frequencies.
This is incorrect—don’t do it!

No One-Sided Tests

Notice that the alternative hypotheses above do not assume any “direc-
tion.” Thus, there are no one- and two-sided versions of these tests. Chi-
square tests are inherently nondirectional (“sort of two-sided”) in the sense
that the chi-square test is simply testing whether the observed frequencies and
expected frequencies agree without regard to whether particular observed
frequencies are above or below the corresponding expected frequencies.

Each Subject Is Counted Only Once

If you have 7 total observations (i.e., the total of the counts is 7), then
these 7 observations should be independent. For example, suppose you have
a categorical variable Travel in which subjects are asked by what means they
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commute to work. It would not be correct to allow a subject to check
multiple responses (e.g., car and commuter train) and then include all of
these responses for this subject in the table (i.e., count the subject more than
once). On such a variable, it is usually better to allow only one response per
variable. If you want to allow for multiple responses such as this, then as you
are tallying your results, you would need to come up with a new category,
“car and commuter train.” This procedure can lead to a large number of
cells and small expected cell frequencies.

Explain Significant Findings

Unlike many other tests, the simple finding of a significant result in a con-
tingency table analysis does not explain why the results are significant. It is
important for you to examine the observed and expected frequencies and
explain your findings in terms of which of the differences between observed
and expected counts are the most striking.

Contingency Table Examples

The following two examples of contingency table analysis illustrate a
variety of the issues involved in this type of analysis.

EXAMPLE 5.1: r X ¢ Contingency Table Analysis

Describing the Problem

In 1909, Karl Pearson conducted a now classic study involving the rela-
tionship between criminal behavior and the drinking of alcoholic beverages.
He studied 1,426 criminals, and the data in Table 5.1 show the drinking
patterns in various crime categories. (The term coining in the table is a term
for counterfeiting that is no longer in common usage.) This table is made up
of counts in 6 x 2 cells, and, for example, 300 subjects studied were abstain-
ers who had been convicted of stealing.

The hypotheses of interest are as follows:

H,: There is no association between type of crime and drinking status.

H_: There is an association between type of crime and drinking status.

In Table 5.2, we show output for these data where we see not only the cell
frequencies shown in Table 5.1 but also the expected cell frequencies and
the row percentages. That is, for each cell, the table gives the percentage
of the row total that this cell count represents. For example, there were
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Table 5.1 Pearson’s Crime Analysis Data

Crime Drinker Abstainer Total
Arson 50 43 93
Rape 88 62 150
Violence 155 110 265
Stealing 379 300 679
Coining 18 14 32
Fraud 63 144 207
Total 753 673 1426

93 arsonists, and 50 of these said they were drinkers. The row percentage in
this case tells us that 50 is 53.8% of 93. From the bottom of the table, it can
be seen that slightly more than half (i.e., 753 out of 1,426 or 52.8%) of the
subjects were drinkers.

If this pattern turns out to be consistent among all crime categories (i.e.,
if about 52.8% were drinkers in each crime category), then this would be
evidence against an association between type of crime and drinking status,
and we would thus not expect to reject the null hypothesis.

However, examination of the table reveals the interesting result that
while every other crime category has a few more drinkers than abstainers,
the crime category of “Fraud” shows a strong preponderance of abstainers.
Note that if there were no association between the two variables, then we
would expect, for example, that about 52.8% of the 93 arson subjects (i.e.,
49.1) would be drinkers and that about 47.2% of these 93 subjects (i.e.,
43.9) would be abstainers. In the case of arson, for example, the observed
frequencies are quite similar to these “expected” frequencies. In contrast, for
the criminals involved in fraud, the observed frequencies are very different
from the expected frequencies. Notice that while the expected count for
abstainers involved in fraud is 97.7, the observed count is 144—clearly a
large and unanticipated difference if there is no association between crime
and drinking status.

In Table 5.3, we show the statistical results related to the analysis of these
data. The value of the chi-square statistic is 49.731, with 5 degrees of free-
dom and p = 0.000 (this would be reported as p < 0.001), and thus we reject
the null hypothesis of no association and conclude that there is a relationship
between crime and drinking status. As previously mentioned, this relationship
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Table 5.2 Output for Crime Data

Crosstab
Drinker
Drinker Abstainer Total

Crime  Arson Count 50 43 93
Expected Count 49.1 43.9 93.0

% within Crime 53.8% 46.2% 100.0%

Rape Count 88 62 150
Expected Count 79.2 70.8 150.0

% within Crime 58.7% 41.3% 100.0%

Violence  Count 155 110 265
Expected Count 139.9 125.1 265.0

% within Crime 58.5% 41.5% 100.0%

Stealing  Count 379 300 679
Expected Count 358.5 320.5 679.0

% within Crime 55.8% 44.2% 100.0%

Coining Count 18 14 32
Expected Count 16.9 15.1 32.0

% within Crime 56.3% 43.8% 100.0%

Fraud Count 63 144 207
Expected Count 109.3 97.7 207.0

% within Crime 30.4% 69.6% 100.0%

Total Count 753 673 1426
Expected Count 753.0 673.0 1426.0

% within Crime 52.8% 47.2% 100.0%

is primarily due to the unusual fact that about 70% of the criminals convicted
of fraud were abstainers. (One wonders if there was some “fraud” involved
in these criminals’ answers to this question.) It can also be seen that the
expected frequencies are relatively close to the observed frequencies for each
cell except in the cells for fraud. The bar chart in Figure 5.1 provides a visual
confirmation that the pattern for fraud crimes is different than the other
crimes. All three pieces of information lead you to conclude that the crime
of fraud is more common to abstainers and that the other crimes are more
common to drinkers.

Before proceeding, it should be noted that the likelihood ratio statistic
given in Table 5.3 is an alternative to the Pearson chi-square. While these
two test statistics usually give similar results (as they did in this example),
most practitioners prefer Pearson’s chi-square.
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Figure 5.1 Bar Chart for Crime Versus Drinking Analysis

Table 5.3 Chi-Square Tests for Crime Data

Chi-Square Tests

Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 49,7312 5 .000
Likelihood Ratio 50.517 5 .000
N of Valid Cases 1426

a. 0 cells (.0%) have expected count less than 5. The
minimum expected count is 15.10.

Reporting the Results of a Contingency Table Analysis

The following illustrates how you might report this chi-square test in a
publication format.
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Narrative for the Methods Section

“A chi-square test was performed to test the null hypothesis of no association
between type of crime and incidence of drinking.”

Narrative for the Results Section

“An association between drinking preference and type of crime committed was
found, x* (5, N =1,426) =49.7, p < 0.001.”

Or, to be more complete,

“An association between drinking preference and type of crime committed
was found, %* (5, N = 1,426) = 49.7, p < 0.001. Examination of the cell fre-
quencies showed that about 70% (144 out of 207) of the criminals convicted
of fraud were abstainers while the percentage of abstainers in all of the other
crime categories was less than 50%.”

SPSS Step-by-Step. ExampLE 5.1: r x ¢ Contingency
Table Analysis

While most data sets in SPSS are stored casewise, you can store count data
such as that shown in Table 5.1. These data are available (in count form) in
file CRIME.SAV. To create this data set, follow these steps:

1. Select File/New/Data. . ..

2. This new data set will have three numeric variables: Crime, Drinker, and
Count. In the first column (i.e., for the Crime variable), enter the numbers 1
for arson, 2 for rape, 3 for violence, 4 for stealing, 5 for coining, and 6 for
fraud. These labels are specified using value labels (see Appendix A: A Brief
Tutorial for Using SPSS for Windows if you do not know how to do this).
The second column corresponds to the variable Drinker, where 1 indicates
drinker and 2 indicates abstainer. The third column corresponds to the
variable Count. For example, the observation 43 for the variable Count in
the second row of the table is the number of subjects who were arsonists
(Crime = 1) and abstainers (Drinker = 2).

3. Select Data/Weight Cases . .. and select the “weight case by” option with
Count as the Frequency variable.

The contents of CRIME.SAV are shown in Figure 5.2.
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Figure 5.2 CRIME.SAV Count Form Data Set

Once you have specified this information, you are ready to perform the
analysis. Follow these steps:
Select Analyze/Descriptives/Crosstabs.
Choose Crime as the row variable and Drinker as the column variable.
Select the checkbox labeled “Display Clustered Bar Charts.”

Click the Statistics button and select Chi-Square and Continue.

® N o @ ok

Click the Cells button and select Expected in the Counts box and select Row
in the Percentages section and Continue.

9. Click OK, and SPSS creates the output shown in Tables 5.2 and 5.3 along
with Figure 5.1.

Program Comments

In this example, we instructed SPSS to print out the table showing the
observed and expected frequencies under the Cells option. We can also ask
for the row, column, and total percentages. For example, if total percentages
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were selected, then the percentage that each observed frequency is of the
total sample size would be printed in each cell.

EXAMPLE 5.2: 2 x 2 Contingency Table Analysis

A number of experiments involve binary outcomes (i.e., 1 and 0, yes and no).
Typically, these occur when you are observing the presence or absence of a
characteristic such as a disease, flaw, mechanical breakdown, death, failure,
and so on. The analysis of the relationship between two bivariate categori-
cal variables results in a 2 x 2 crosstabulation table of counts. Although the
2 x 2 table is simply a special case of the general 7 X ¢ table, the SPSS output
for the 2 x 2 tables is more extensive.

Consider an experiment in which the relationship between exposure to
a particular reagent (a substance present in a commercial floor cleanser)
and the occurrence of a type of reaction (mild skin rash) was studied. Two
groups of subjects were studied: One group of 20 patients was exposed
to the reagent, and the other group was not. The 40 subjects were exam-
ined for the presence of the reaction. The summarized data are shown in
Table 5.4.

Table 5.4 Exposure/Reaction Data

Reaction No Reaction
Exposed 13 7 20
Not Exposed 4 16 20
17 23 40

Table 5.5 shows computer output where the observed and expected
frequencies are shown along with row percentages, and Table 5.6 shows
typical statistical output for a 2 x 2 table.

These results report a Pearson chi-square of 8.286 with 1 degree of
freedom and p = 0.004. It should be noted that in the 2 X 2 setting, use of
the rule of thumb that no more than 20% of the expected values are less
than 5 requires that none of the four expected values should be less than 5.
Footnote b reports this fact for these data.

The continuity correction statistic (Yates’s correction) is an adjustment of
the chi-square test for 2 x 2 tables used by some statisticians to improve the
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Table 5.5 Output for 2 x 2 Exposure/Reaction Data

Exposure * Reaction Crosstabulation

Reaction
Reaction | No Reaction Total

Exposure  Exposed Count 13 7 20
Expected Count 8.5 115 20.0

% within Exposure 65.0% 35.0% 100.0%

Not Exposed  Count 4 16 20

Expected Count 8.5 115 20.0

% within Exposure 20.0% 80.0% 100.0%

Total Count 17 23 40
Expected Count 17.0 23.0 40.0

% within Exposure 42.5% 57.5% 100.0%

Table 5.6 Statistical Output for 2 x 2 Exposure/Reaction Data

Chi-Square Tests

Asymp. Sig. | Exact Sig. | Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 8.286° 1 .004
Continuity Correction? 6.547 1 .011
Likelihood Ratio 8.634 1 .003
Fisher's Exact Test .010 .005
Linear-by-Linear
Associat)ilon 8.079 1 004
N of Valid Cases 40

a. Computed only for a 2x2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.50.

chi-square approximation. This correction has a more dramatic effect when
expected values are relatively small. The continuity correction reduces the
size of the chi-square value and thus increases the p-value. In this case, the
corrected chi-square value is 6.547 with p = 0.011. When there are small
expected values in the 2 x 2 table, many statisticians recommend reporting
the results of Fisher’s exact test. This test is based on all possible 2 x 2 tables
that have the observed marginal frequencies (i.e., 20 in each of the exposed
and nonexposed groups, with 17 having a reaction and 23 not experiencing
the reaction).

The probabilities of obtaining each of the possible tables when the null
hypothesis is true are obtained, and the p-value is the sum of these probabilities
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from all tables as rare, or rarer than, the one observed. For these data, the
resulting p-value for Fisher’s two-sided test is p = 0.010. There is no actual
test statistic to quote when using Fisher’s exact test, and there is a one-sided
version if that is desired. All of the results are consistent in leading to rejec-
tion of the null hypothesis at the o = 0.05 level and thus to the conclusion
that there is a relationship between the reagent and reaction. In this case, the
exposed subjects had a significantly higher rate of response to the reagent
(65% or 13 of 20) than did nonexposed subjects (20% or 4 of 20).

When there are small expected values in the 2 x 2 table, many statisticians
recommend reporting the results of Fisher’s exact test.

Reporting the Results of a 2 x 2 Contingency Table Analysis

The following illustrates how you might report this chi-square test in a
publication format.

Narrative for the Methods Section

“A chi-square test was performed to test the hypothesis of no association
between exposure and reaction.”

Narrative for the Results Section

“A higher proportion of the exposed group showed a reaction to the reagent,
¥ (1, N=40) =8.29, p = 0.004.”

Or, to be more complete,

“A higher proportion of the exposed group (65% or 13 of 20) showed a
reaction to the reagent than did the nonexposed group (20% or 4 of 20), x>
(1, N=40) = 8.29, p = 0.004.”

SPSS Step-by-Step. ExamPLE 5.2: 2 x 2 Contingency
Table Analysis

The data in this example are in file EXPOSURE22.SAV as 40 casewise
observations on the two variables, Exposure (0 = exposed, 1 = not exposed)
and Reaction (0 = reaction, 1 = no reaction). This data file was created using
Exposure and Reaction as numeric variables with the labels given above. A
portion of the data is shown in Figure 5.3.
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Figure 5.3 First 14 Cases of EXPOSURE22.SAV

To obtain the chi-square results in Table 5.6, open the data set EXPO-
SURE22.SAV and do the following:
1. Select Analyze/Descriptives/Crosstabs.
2. Choose Exposure as the row variable and Reaction as the column variable.
3. Click the Statistics button and select Chi Square and Continue.

4. Click the Cells button and select Expected in the Counts box and select Row
in the Percentages section and Continue.

5. Click OK.

Analyzing Risk Ratios in a 2 X 2 Table

Another way to analyze a 2 x 2 table is by examining measures of risk. In a
medical setting, for example, a 2 x 2 table is often constructed where one
variable represents exposure (to some risk factor) and the other represents
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an outcome (presence or absence of disease). In this case, the researcher is
interested in calculating measures of risk. The odds ratio (OR) is used as a
measure of risk in a retrospective (case control) study. A case control study
is one in which the researcher takes a sample of subjects based on their out-
come and looks back in history to see whether they had been exposed. If the
study is a prospective (cohort) study, where subjects are selected by presence
or absence of exposure and observed over time to see if they come down
with the disease, the appropriate measure of risk is the relative risk (RR).

A standard format for risk analysis data is given in Table 5.7. Note that
subjects with the outcome of interest are counted in the first column, and
those exposed to the risk factor are given in the first row so that “a” repre-
sents the number of subjects who were exposed to the risk factor and had
the outcome of interest.

Table 5.7 Standard Risk Analysis Table

Outcome
Risk Factor Present Absent Total
Exposed a b a+b
Not Exposed ¢ d c+d
Total a+c b+d N=a+b+c+d

For a retrospective study, the appropriate measure of risk is the odds
ratio. In this case, the observed odds of having the outcome when exposed
is a/b, while the corresponding odds when not exposed is c¢/d. Thus, the odds
ratio is estimated to be (a/b)/(c/d) = ad/bc. So, for example, if the odds ratio
is 3, then this means that the odds of having the outcome of interest are three
times larger in the exposed group than in the nonexposed group. Similarly,
in a prospective study, we use the relative risk. In this case, it makes sense to
say that the estimated risk of having the outcome of interest is a/(a + b) for
the exposed group and c¢/(c + d) for the nonexposed group. Thus, the esti-
mated relative risk is 242" b), and if, for example, the relative risk is 3, this
indicates that the observed risk of having the outcome of interest is three
times greater in the exposed group than in the nonexposed group.

When the outcome is rare, the values of the odds ratio and relative risk are
approximately equal.

In many retrospective analyses, we are interested in discovering if the
odds ratio is (statistically) different than 1. If the OR is shown to be greater
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than 1, for example, it provides evidence that a risk (measured by the size of
OR) exists. An OR that is not different from 1 provides no evidence that a
risk exists. If the OR is significantly less than 1, it implies that exposure to
the factor provides a benefit.

Appropriate Applications for
Retrospective (Case Control) Studies

The following are examples of retrospective (case control) studies in
which the odds ratio is the appropriate measure of risk.

e In order to investigate smoking and lung cancer, a group of patients who
have lung cancer (cases) are compared to a control group without lung can-
cer. Each of the subjects in these two groups is then classified as being a
smoker (i.e., the exposure) or a nonsmoker.

e In order to assess whether having received the measles, mumps, and rubella
vaccine increases the risk of developing autism, a group of autistic children
and a control group of nonautistic children are compared on the basis of
whether they have previously received the vaccine.

Appropriate Applications for Prospective (Cohort) Studies

e A group of football players with a history of concussion is compared over a
2-year period with a control group of football players with no history of con-
cussion to see whether those with such history are more likely to experience
another concussion during that period.

e Samples of 500 subjects with high cholesterol and 500 subjects without high
cholesterol are followed for the next 10 years to determine whether subjects
in the high-cholesterol group were more likely to have a heart attack during
that period.

In the following example, we reexamine the data analyzed in ExampLE 5.2
from the perspective of a risk analysis.

EXAMPLE 5.3: Analyzing Risk Ratios

for the Exposure/Reaction Data

Consider again the data in Tables 5.4 and 5.5 related to the exposure to a
reagent and the occurrence of a particular reaction. Risk analysis output is
shown in Table 5.8.



Analysis of Categorical Data 129

Table 5.8 Risk Analysis Results

Risk Estimate

95% Confidence
Interval
Value Lower Upper
Odds Ratio for Exposure
(Exposed/Not Exposed) 7.429 1778 31.040
For cohort Reaction =
Reaction 3.250 1.278 8.267
For cohort Reaction = No
Reaction 438 232 827
N of Valid Cases 40

In the previous discussion of these data, we intentionally did not specify
whether the data were collected for purposes of a prospective or retrospec-
tive study. In the following, we discuss both types of analyses.

Analysis as a Retrospective (Case Control) Study

We assume here that 17 subjects experiencing the reaction were selected
for study along with 23 subjects who did not experience such a reaction (see
Table 5.4). We then look back to determine which of these subjects experi-
enced the particular exposure in question. The calculated odds ratio (odds
ratio for exposure) of 7.429 estimates that the odds of having the reaction
when exposed is 7.429 times greater than the odds when not exposed. Since
the 95% confidence interval of the true odds ratio—that is, (1.778, 31.040)—
stays greater than 1, then you can interpret this result as being statistically
significant (i.e., you can conclude that the odds of having the reaction when
exposed is higher than the odds when not exposed).

Analysis as a Prospective (Cohort) Study

In this setting, we assume that 20 subjects who experienced the particu-
lar exposure and 20 who did not were chosen for the study. These subjects
were then followed over time to see whether they had the reaction. In this
case, the appropriate measure of risk is relative risk, and the value of 3.25,
labeled as “For cohort Reaction = Reaction,” indicates that the observed risk
of having the reaction is 3.25 times greater for the exposed group than for
the nonexposed group. The corresponding 95% confidence interval on the
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true relative risk is (1.278, 8.267), which again stays greater than 1 and thus
indicates a significant result.

A savvy researcher will use the confidence interval not only to assess signifi-
cance but to also determine what practical meaning this risk would entail if the
true value were at the lower or upper end of the interval. Also, it is helpful to
interpret confidence intervals in context with other published studies.

Reporting the Results of a Risk Analysis

The following illustrates how you might report risk analysis results in a
publication format.

Narrative for the Methods Section of a Retrospective (Case Control) Study

“To examine the relative risk of having the reaction when exposed, we calcu-
lated an odds ratio.”

Narrative for the Results Section of a Retrospective (Case Control) Study

“The odds of having the reaction were 7.43 times greater for subjects in the
exposed group than for subjects not exposed to the reagent (OR = 7.4, 95%
CI = 1.8, 31.0). Thus, the odds ratio is significantly greater than 1, suggesting
that the true odds of having the reaction are greater for the exposed group.”

Narrative for the Methods Section of a Prospective (Cohort) Study

“To examine the relative risk of having the reaction when exposed, we calcu-
lated relative risk.”

Narrative for the Results Section of a Prospective (Cohort) Study

“Subjects exposed to the reagent were 3.25 times more likely to have a
reaction as measured by relative risk (RR = 3.25, 95% CI = 1.3, 8.3). Thus,
the relative risk is significantly greater than 1, indicating that the risk of
having the reaction is greater for the exposed group.”

SPSS Step-by-Step. EXAMPLE 5.3:
Analyzing Risk Ratios for the Exposure/Reaction Data

In this example, we use the exposure data in EXPOSURE22.SAV. To
obtain the risk analysis results, open the data set EXPOSURE22.SAV and do
the following;:
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1. Select Analyze/Descriptives/Crosstabs.
Choose Exposure as the row variable and Reaction as the column variable.

Click the Statistics button and select the Risk checkbox and Continue.

el

Click OK.

The resulting output is displayed in Table 5.8.

Program Comments

For SPSS to calculate the correct values for the odds ratio, you will need
to set up your SPSS data set in a specific way so that the resulting 2 x 2 out-
put table appears in the standard display format shown in Table 5.7. In this
table, notice that subjects at risk are in the first row and subjects not at risk
are in the second row of the table. Similarly, those who experience the out-
come of interest are placed in column 1. For SPSS to produce this table, you
must designate row and column positions alphabetically or in numeric order.
That is, in the current example, the risk factor is coded so that 0 = exposed
and 1 = not exposed. You could also code them as 1 = exposed and 2 = not
exposed. Both of these coding strategies put the exposed subjects in the first
row of the table. If, for example, you used the opposite strategy where 0 =
not exposed and 1 = exposed, that would place those having the exposure in
the second row. This would cause the OR to be calculated as 0.135 (which
is the inverse of the actual value OR = 7.429). This coding conundrum is
unfortunate since most people intuitively code their data with 1 meaning
exposure and 0 meaning no exposure. However, to make the results come
out correctly in SPSS, you should use the guidelines listed above.

McNemar’s Test

In the section on contingency table analysis, we saw that a test for indepen-
dence is used to test whether there is a relationship between dichotomous
categorical variables such as political party preference (Republican or
Democrat) and voting intention (plan to vote or do not plan to vote). Also,
in EXAMPLE 5.2, researchers were interested in determining whether there was
a relationship between exposure to a risk factor and occurrence of a reac-
tion. While in these cases, it is of interest to determine whether the variables
are independent, in some cases, the categorical variables are paired in such a
way that a test for independence is meaningless. McNemar’s test is designed
for the analysis of paired dichotomous, categorical variables in much the
same way that the paired #-test is designed for paired quantitative data.
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Appropriate Applications of McNemar’s Test

The following are examples of dichotomous categorical data that are
paired and for which McNemar’s test is appropriate.

e An electrocardiogram (ECG) and a new scanning procedure are used to detect
whether heart disease is present in a sample of patients with known heart dis-
ease. Researchers want to analyze the disagreement between the two measures.

e A sample of possible voters is polled to determine how their preferences for
the two major political party candidates for president changed before and
after a televised debate.

e Consumers are selected for a study designed to determine how their impres-
sions of a particular product (favorable or unfavorable) changed before and
after viewing an advertisement.

In each case above, the pairing occurs because the two variables represent
two readings of the same characteristic (e.g., detection of heart disease, pres-
idential preference, etc.). You already know that the readings will agree to
some extent, and thus testing for independence using a contingency table
approach is not really appropriate. What you want to measure is disagree-
ment or change. That is, in what way do the two heart scan procedures
differ, how has the debate or the advertisement changed the opinions of the
subjects, and so forth?

Hypotheses for McNemar’s Test

In situations for which McNemar’s test is appropriate, the interest focuses
on the subjects for which change occurred. Following up on the third
bulleted example above, suppose an advertiser wants to know whether an
advertisement has an effect on the impression consumers have of a product.
A group of people is selected, and their feelings about the product before and
after viewing the advertisement are recorded as favorable or unfavorable.
Thus, there are four categories of “before versus after” responses:

(/) Favorable both before and after viewing the advertisement
(i) Favorable before and unfavorable after viewing the advertisement

(i) Unfavorable before and favorable after viewing the advertisement

(iv) Unfavorable both before and after viewing the advertisement

We are interested in determining whether the advertisement changed attitudes
toward the product. That is, we concentrate on the subjects in categories
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(¢7) and (). Was it more common for a subject to be in category (ii) than
in category (iii) or vice versa? The hypotheses of interest would be the
following:

H,: The probability of a subject having a favorable response to the product
before viewing the advertisement and an unfavorable response afterward is
equal to the probability of having an unfavorable response to the product
before viewing the advertisement and a favorable response afterward.

H_: The probability of a subject having a favorable response to the product
before viewing the advertisement and an unfavorable response afterward is
not equal to the probability of having an unfavorable response to the prod-
uct before viewing the advertisement and a favorable response afterward.

Clearly, the goal of the advertisement would be to improve people’s
attitudes toward the product; that is, there should be more people in cate-
gory (iii) than category (ii). The corresponding one-sided hypotheses reflect-
ing this goal are as follows:

H,: The probability of a subject having a favorable response to the product
before viewing the advertisement and an unfavorable response afterward is
equal to the probability of having an unfavorable response to the product
before viewing the advertisement and a favorable response afterward.

H_: The probability of a subject having a favorable response to the product
before viewing the advertisement and an unfavorable response afterward is
less than the probability of having an unfavorable response to the product
before viewing the advertisement and a favorable response afterward.

EXAMPLE 5.4: McNemar’s Test

Continuing with the advertising effectiveness illustration, suppose 20 sub-
jects were asked to express their opinions before and after viewing the adver-
tisement. A crosstabulation of the responses is shown in Table 5.9, where it
can be seen that 13 of the 20 subjects did not change their opinions of the
product after viewing the advertisement. The important issue concerns how
the other 7 subjects responded. That is, did those who changed their minds
tend to change from favorable before to unfavorable after or from unfavor-
able before to favorable after (clearly the advertiser’s preference)? In the
table, we see that 2 subjects changed from a favorable opinion before the
advertisement to an unfavorable opinion afterward, while 5 improved their
opinion after the advertisement.
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Table 5.9 2 x 2 Table for Advertising Effectiveness Data

before * after Crosstabulation

Count
after
Unfavorable | Favorable Total
before  Unfavorable 4 5 9
Favorable 2 9 11
Total 6 14 20

Suppose for the moment that the advertiser is simply interested in know-
ing whether the advertisement changes the perception of the viewer in either
direction. In this case, we would test the first set of hypotheses given previ-
ously. The results for this analysis are shown in Table 5.10.

Table 5.10 McNemar’s Test Results for Advertising Effectiveness Data

Chi-Square Tests

Exact Sig.
Value (2-sided)

McNemar Test 4532
N of Valid Cases 20

a. Binomial distribution used.

For this analysis, the test yields a p-value of 0.453. Since this p-value is
large, the null hypothesis of equal probabilities is not rejected. That is, there
is not enough evidence to say that those who will change their reactions after
the advertisement will do so in one direction more than the other.

As mentioned earlier, it is probably the case that the advertiser wants to
show that there is a stronger tendency for subjects to improve their opinion
after the advertisement; that is, it is more likely to be in category (ifi) than
category (7). In this case, you would want to test the second set of hypothe-
ses given previously (i.e., the one-sided hypotheses). The data support the
alternative of interest since 5 people who changed were in category (iii) and
only 2 were in category (if). Thus, for this one-sided hypothesis, the p-value
in the table should be cut in half, but even with this reduction, the results are
still not significant. (This negative result could have resulted from a sample
size too small to detect a meaningful difference. See the discussion of the
power of a test in Chapter 1.)
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Reporting the Results of McNemar's Test

The following illustrates how you might report these McNemar test
results in a publication format in the setting in which the alternative speci-
fies an improved impression after viewing the advertisement.

Narrative for the Methods Section

“McNemar’s test was used to test the null hypothesis that the probability of
changing from favorable before to unfavorable after viewing the advertisement
is equal to the probability of changing from unfavorable before to favorable
after viewing the advertisement.”

Narrative for the Results Section

“Using McNemar’s test, no significant tendency was found for subjects who

changed their opinion to be more likely to have a favorable opinion of the

product after viewing the advertisement (p = 0.23).”

SPSS Step-by-Step. EXAMPLE 5.4:
McNemar’s Test

The data set MCNEMAR.SAV contains two variables, labeled Before
and After, in casewise form. The data are all dichotomous, where 0 indicates

nonfavorable and 1 indicates favorable. To perform a McNemar’s test on
these data, open the data set MCNEMAR.SAV and follow these steps:

1.

el

Select Analyze/Descriptives Statistics/Crosstabs.
Select Before as the row variable and After as the column variable.
Click on the Statistics button and select McNemar and Continue.

Click OK, and the results in Table 5.10 are shown.

Mantel-Haenszel Comparison

The Mantel-Haenszel method is often used (particularly in meta-analysis) to
pool the results from several 2 x 2 contingency tables. It is also useful for the
analysis of two dichotomous variables while adjusting for a third variable
to determine whether there is a relationship between the two variables,
controlling for levels of the third variable.
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Appropriate Applications of the Mantel-Haenszel Procedure

e Disease Incidence. Case control data for a disease are collected in several
cities, forming a 2 x 2 table for each city. You could use a Mantel-Haenszel
analysis to obtain a pooled estimate of the odds ratio across cities.

o Pooling Results From Previous Studies. Several published studies have analyzed
the same categorical variables summarized in 2 x 2 tables. In meta-analysis,
the information from the studies is pooled to provide more definitive findings
than could be obtained from a single study. Mantel-Haenszel analysis can be
used to pool this type of information. For more on meta-analysis, see Hunt
(1997) and Lipsey and Wilson (2000).

Hypotheses Tests Used in Mantel-Haenszel Analysis

The hypotheses tested in the Mantel-Haenszel test are as follows:

H,: There is no relationship between the two variables of interest when con-
trolling for a third variable.

H_: There is a relationship between the two variables of interest when control-

ling for a third variable.

Design Considerations for a Mantel-Haenszel Test

A Mantel-Haenszel analysis looks at several 2 x 2 tables from the same
bivariate variables, each representing some strata or group (e.g., information
from different departments at a university, etc.) or from different results of
similar analyses (as in a meta-analysis). The test also assumes that the tables
are independent (subjects or entities are in one and only one table).

EXAMPLE 5.5: Mantel-Haenszel Analysis

A classic data set illustrating the use of the Mantel-Haenszel test is data col-
lected at the University of California at Berkeley concerning gender patterns
in graduate admissions (Bickel & O’Connell, 1975). The crosstabulated data
for acceptance (no or yes) versus gender is given in Table 5.11 for five sepa-
rate departments along with row percentages, showing the percentage of
each gender that was admitted within each program. From this table, it can
be seen that while Department 1 seems to have higher admission rates than
the other departments, the comparative acceptance rates for males and
females are about the same within departments, with there being a slight
tendency for females to be admitted at a higher rate.
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Table 5.11 Berkeley Graduate Admissions Data
Gender * Accepted * Department Crosstabulation
Accepted

Department No Yes Total
1 Gender Female Count 8 17 25
% within Gender 32.0% 68.0% 100.0%
Male Count 207 353 560
% within Gender 37.0% 63.0% 100.0%
Total Count 215 370 585
% within Gender 36.8% 63.2% 100.0%
2 Gender Female Count 391 202 593
% within Gender 65.9% 34.1% 100.0%
Male Count 205 120 325
% within Gender 63.1% 36.9% 100.0%
Total Count 596 322 918
% within Gender 64.9% 35.1% 100.0%
3 Gender Female Count 244 131 375
% within Gender 65.1% 34.9% 100.0%
Male Count 279 138 417
% within Gender 66.9% 33.1% 100.0%
Total Count 523 269 792
% within Gender 66.0% 34.0% 100.0%
4 Gender Female Count 299 94 393
% within Gender 76.1% 23.9% 100.0%
Male Count 138 53 191
% within Gender 72.3% 27.7% 100.0%
Total Count 437 147 584
% within Gender 74.8% 25.2% 100.0%
5 Gender Female Count 317 24 341
% within Gender 93.0% 7.0% 100.0%
Male Count 351 22 373
% within Gender 94.1% 5.9% 100.0%
Total Count 668 46 714
% within Gender 93.6% 6.4% 100.0%

The Mantel-Haenszel test can be used to test the following hypotheses:

H,: Controlling for (or within departments), there is no relationship between

gender and acceptance.

H_: Controlling for (or within departments), there is a relationship between

a

gender and acceptance.

Mantel-Haenszel results are shown in Table 5.12, where it can be seen
that p = 0.756, indicating that controlling for departments, there is no
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reason to conclude that there is a difference between male versus female
admission rates. As mentioned previously, the consistent pattern is that the
admission rates for males and females are about the same for each depart-
ment, with perhaps a slight tendency for females to have a higher rate of
admission. Cochran’s test is similar to the Mantel-Haenszel test but is not
commonly reported. In this example, Cochran’s test gives results consistent
with the Mantel-Haenszel test.

Table 5.12 Mantel-Haenszel Results for Berkeley Graduate Admissions Data

Tests of Conditional Independence

Asymp. Sig.
Chi-Squared df (2-sided)
Cochran's 125 1 724
Mantel-Haenszel .096 1 .756

Reporting Results of a Mantel-Haenszel Analysis

Narrative for the Methods Section

“Controlling for department, the relationship between gender and acceptance
is examined using a Mantel-Haenszel analysis.”

Narrative for the Results Section

“Adjusting or controlling for department, no significant difference was found
between male and female acceptance rates, x> (1, N=3,593)=0.10, p =0.76.”

SPSS Step-by-Step. EXAMPLE 5.5:
Mantel-Haenszel Analysis

The data in Table 5.11 are contained in the file BIAS.SAV. To perform
the Mantel-Haenszel analysis on the Berkeley admissions data, open the data
set BIAS.SAV and follow these steps:

1. Select Analyze/Descriptive Statistics/Crosstabs.

2. Select Gender as the row(s) variable and Accepted as the column(s) variable.
Select Department as the “Layer 1 of 1” variable.

3. Click the Statistics button and check the “Cochran’s and Mantel-Haenszel
Statistics” checkbox and Continue.
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4. Click the Cells button and select Row in the Percentages section and
Continue. Click OK, and the output includes the information in Tables 5.11
and 5.12.

5. To produce Table 5.13, leave off the Department variable in Step 2. To pro-
duce the percentages, select the Cells button and check the Row percentages
option.

Tips and Caveats for Mantel-Haenszel Analysis
Simpson’s Paradox

Historically, the real interest in the Berkeley admissions data set (and the
reason for Bickel and O’Connell’s [19735] article in Science) is the apparent
inconsistency between the conclusions based on evidence of a possible bias
against females using the combined data (see Table 5.13) and the conclu-
sions obtained previously based on the departmental data in Table 5.11 (i.e.,
within departments, the acceptance rates for men and women were not sig-
nificantly different). In Table 5.13, we show an overall comparison between
gender and admission combined over the five departments. Interestingly, in
Table 5.13, the overall admission rates for males is 37% (686/1,866), while
for females, it is only 27% (468/1,727). In addition, for this 2 x 2 table, the
chi-square test for independence (computer output not shown here) gives
p < 0.001, indicating a relationship between gender and admission. On the
surface, these data seem to indicate a sex bias against women.

Table 5.13 Berkeley Graduate Admissions Data
Combined Across Departments

Gender * Accepted Crosstabulation

Accepted
No Yes Total

Gender Female Count 1259 468 1727
% within Gender 72.9% 27.1% 100.0%

Male Count 1180 686 1866

% within Gender 63.2% 36.8% 100.0%

Total Count 2439 1154 3593
% within Gender 67.9% 32.1% 100.0%

To explain the reasons for these seeming contradictions, note that admis-
sions rates into Department 1 were substantially higher than were those for
the other four majors. Further examination of the data in Table 5.11 indi-
cates that males applied in greater numbers to Department 1, while females
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applied in greater numbers to departments into which admission was more
difficult. The important point is that relationships between variables within
subgroups can be entirely reversed when the data are combined across sub-
groups. This is called Simpson’s paradox. Clearly, analysis of these data by
department, as shown in Table 5.11, provides a better picture of the rela-

tionship between gender and admission than does use of the combined data
in Table 5.13.

Tests of Interrater Reliability

Interrater reliability is a measure used to examine the agreement between
two people (raters/observers) on the assignment of categories of a categori-
cal variable. It is an important measure in determining how well an imple-
mentation of some coding or measurement system works.

Appropriate Applications of Interrater Reliability

¢ Different people read and rate the severity (from 0 to 4) of a tumor based on
a magnetic resonance imaging (MRI) scan.

e Several judges score competitors at an ice-skating competition on an integer
scale of 1 to 5.

e Researchers want to compare the responses to a measure of happiness (scaled
1 to §) experienced by husbands and wives.

A statistical measure of interrater reliability is Cohen’s kappa, which
ranges from —1.0 to 1.0, where large numbers mean better reliability, values
near zero suggest that agreement is attributable to chance, and values less
than zero signify that agreement is even less than that which could be attrib-
uted to chance.

EXAMPLE 5.6: Interrater Reliability Analysis

Using an example from Fleiss (2000, p. 213), suppose you have 100 subjects
whose diagnosis is rated by two raters on a scale that rates each subject’s dis-
order as being psychological, neurological, or organic. The data are given in
Table 5.14.

The results of the interrater analysis are given in Table 5.15, where
kappa = 0.676 with p < 0.001. This measure of agreement, while statistically
significant, is only marginally convincing. Most statisticians prefer kappa
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Table 5.14 Data for Interrater Reliability Analysis
Rater A
Psychological Neurological Organic
Psychological 75 1 4
Rater B | Neurological 5 4 1
Organic 0 0 10

SOURCE: Statistical Methods for Rates & Proportions, Second Edition, copyright © 2000, by
Joseph L. Fleiss. Reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley &
Sons, Inc.

values to be at least 0.6 and most often higher than 0.7 before claiming a
good level of agreement. Although not displayed in the output, you can find
a 95% confidence interval using the generic formula for 95% confidence
intervals:

Estimate =+ 1.96 SE

Using this formula and the results in Table 5.15, an approximate 95%
confidence interval on kappa is (0.504, 0.848). Some statisticians prefer
the use of a weighted kappa, particularly if the categories are ordered. The
weighted kappa allows “close” ratings to not simply be counted as “misses.”
However, SPSS does not calculate weighted kappas.

Reporting the Results of an Interrater Reliability Analysis

The following illustrates how you might report this interrater analysis in
a publication format.

Narrative for the Methods Section

“An interrater reliability analysis using the kappa statistic was performed to
determine consistency among raters.”

Narrative for the Results Section

“The interrater reliability for the raters was found to be kappa = 0.68 (p <
.0.001), 95% CI (0.504, 0.848).”
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Table 5.15 Results for Interrater Reliability Analysis

Symmetric Measures

Asymp.
Value Std. Error? | Approx. T° | Approx. Sig.
Measure of Agreement Kappa .676 .088 8.879 .000
N of Valid Cases 100

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

SPSS Step-by-Step. EXAMPLE 5.6: Interrater Reliability Analysis

The data set KAPPA.SAV contains the data in Table 5.14 in count form.
You can create this data set in a manner similar to the data set CRIME.SAV
used earlier in this chapter. The data set contains the following variables:
Rater_A, Rater_B, and Count. Figure 5.4 shows the data file in count (sum-
marized) form.

kappa.sav - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities Add-ons
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Figure 5.4 Interrater Reliability Data in SPSS
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To analyze these data, follow these steps:

1. Open the file KAPPA.SAV. Before performing the analysis on these summa-
rized data, you must tell SPSS that the Count variable is a “weighted” vari-
able. Select Data/Weight Cases . . . and select the “weight cases by” option
with Count as the Frequency variable.

2. Select Analyze/Descriptive Statistics/Crosstabs.
3. Select Rater A as the row and Rater B as the column.
4. Click on the Statistics button and select Kappa and Continue.

5. Click OK to display the results for the kappa test in Table 5.15.

Goodness-of-Fit Test

A goodness-of-fit test is used to ascertain whether the distribution of
observed counts in the various categories of a categorical variable matches
the expected distribution of counts under a hypothetical model for the data.

Appropriate Applications of the Goodness-of-Fit Test

The following are examples of situations in which a chi-square goodness-
of-fit test would be appropriate.

e Genetic theory indicates that the result of crossing two flowering plants to
create a number of progeny should result in flowers that are 50% red, 25%
yellow, and 25% white. When the cross-bred flowers bloom, the observed
number of each color is compared with the numbers expected under the
theory to see whether the genetic theory seems to apply in this case.

e A zoologist wants to know whether there is a directional preference in the
positioning of nests for a particular species of birds. A sample of 300 nests is
observed, and each nest is categorized as facing north, northeast, and so on.
The counts for each of the eight directions are compared with the counts
expected if there is no directional preference.

e The U.S. Bureau of Labor Statistics provides the percentages of U.S. full-time
workers in 1996 who fell into the following five categories: less than high
school, high school degree—no college, some college, bachelor’s degree, and
advanced degree. A sample of 1,000 full-time workers is selected this year to
determine whether the distribution of educational attainment has changed
since 1996.
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Design Considerations for
a Goodness-of-Fit Test

1. The test assumes that a random sample of observations is taken from the
population of interest.

2. The appropriate use of the chi-square to approximate the distribution of the
goodness-of-fit test statistic depends on both the sample size and the number
of cells. A widely used rule of thumb suggested by Cochran (1954) is that the
approximation is adequate if no expected cell frequencies are less than 1 and
no more than 20% are less than 5.

Hypotheses for a Goodness-of-Fit Test

The hypotheses being tested in this setting are as follows:

H,: The population (from which the sample is selected) follows the hypothe-
sized distribution.

H,: The population does not follow the hypothesized distribution.

To test these hypotheses, a chi-squared test statistic is used that com-
pares the observed frequencies with what is expected if the hypothesized
model under the null is correct. Large values of the test statistic suggest
that the alternative is true, while small values are supportive of the null.
A low p-value suggests rejection of the null hypothesis and leads to the
conclusion that the data do not follow the hypothesized, or theoretical,
distribution.

Tips and Caveats for a Goodness-of-Fit Test
No One-Sided Tests

There are no one-sided/two-sided decisions to be made regarding these
tests. The tests are inherently nondirectional (“sort of two-sided”) in the
sense that the chi-square test is simply testing whether the observed
frequencies and expected frequencies agree without regard to whether
particular observed frequencies are above or below the corresponding
expected frequencies. If the null hypothesis is rejected, then a good inter-
pretation of the results will involve a discussion of differences that were
found.
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EXAMPLE 5.7: Goodness-of-Fit Test

As an illustration of the goodness-of-fit test, we consider a classic
experiment in genetics. Gregor Mendel, a Czechoslovakian monk in the
19th century, identified some basic principles that control heredity. For
example, Mendel’s theory suggests that the phenotypic frequencies resulting
from a dihybrid cross of two independent genes, where each gene shows
simple dominant/recessive inheritance, will be expected to be in a 9:3:3:1
ratio. In MendeD’s classic experiment using the garden pea, he predicted that
the frequencies of smooth yellow peas, smooth green peas, wrinkled yellow
peas, and wrinkled green peas would be in a 9:3:3:1 ratio. The hypotheses
being tested in this setting are the following:

H,: The population frequencies of smooth yellow, smooth green, wrinkled
yellow, and wrinkled green peas will be in a 9:3:3:1 ratio.

H, The population frequencies will not follow this pattern.

Mendel’s experiment yielded 556 offspring, so the expected frequencies
would be (9/16)556 = 312.75, (3/16)556 = 104.25, (3/16)556 = 104.25, and
(1/16)556 = 34.75 for smooth yellow, smooth green, wrinkled yellow, and
wrinkled green peas, respectively. The frequencies that Mendel actually

Table 5.16  Goodness-of-Fit Analysis for Mendel’s Data

Phenotype
Observed N | Expected N | Residual
Smooth Yellow 315 312.8 2.3
Smooth Green 108 104.3 3.8
Wrinkled Yellow 101 104.3 -3.3
Wrinkled Green 32 34.8 -2.8
Total 556

Test Statistics

Phenotype
Chi-Square? 470
df 3
Asymp. Sig. .925

a. 0 cells (.0%) have expected frequencies less than 5.
The minimum expected cell frequency is 34.8.
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observed were 315, 108, 101, and 32, respectively (i.e., quite close to those
expected).

In Table 5.16, we show the results for this analysis where you can see
the observed and expected frequencies. The chi-square statistic is .470 with
3 degrees of freedom and p = .925. That is, the observed phenotypic ratios
followed the expected pattern quite well, and you would not reject the
null hypothesis. There is no evidence to suggest that the theory is not cor-
rect. In general, if the p-value for this test is significant, it means that there
is evidence that the observed data do not fit the theorized ratios.

Reporting the Results of a Chi-Square Goodness-of-Fit Analysis

The following examples illustrate how you might report this goodness-of-
fit test in a publication format.

Narrative for the Methods Section

“A chi-square goodness-of-fit test was performed to test the null hypothesis
that the population frequencies of smooth yellow, smooth green, wrinkled
yellow, and wrinkled green peas will be in a 9:3:3:1 ratio.”

Narrative for the Results Section

“The results were not statistically significant, and there is no reason to reject
the claim that Mendel’s theory applies to this dihybrid cross, y? (3, N = 556)
=0.470, p =0.925.”

SPSS Step-by-Step. EXAMPLE 5.7:
Goodness-of-Fit Test

To perform a goodness-of-fit test in SPSS, you must have a data set
consisting of counts. This data set can be set up in two ways. If you know
the counts in each category, you can set up a data set consisting specifically
of these counts. If you have a standard casewise data set, then you can also
run a goodness-of-fit test using that file directly.

The file MENDELCNT.SAV contains the actual counts Mendel obtained.
To create a data set consisting of the counts and perform the goodness-of-fit
test in SPSS, follow these steps:

1. Select File/New/Data. . ..

2. This new data set will have two numeric variables: Phenotype and Count. In
the first column (i.e., for the Phenotype variable), enter the numbers 1 for



Analysis of Categorical Data 147

smooth yellow, 2 for smooth green, 3 for wrinkled yellow, and 4 for wrinkled
green, and in the second column, enter the corresponding counts (i.e., 315,
108, 101, and 32). Click on the variable View and enter the variable names
Phenotype and Count. In the values column, specify value labels associated
with the phenotype codes (i.e., 1 = smooth yellow, etc.). (See Appendix A: A
Brief Tutorial for Using SPSS for Windows if you do not know how to do this.)

3. Select Data/Weight Cases . .. and select the “weight case by” option with
Count as the Frequency variable.

4. Select Analyze/Nonparametric Tests/Chi Square . . . and select Phenotype as
the test variable.

5. In Expected Values, click on the Values radio button. Enter the theorized
proportions in the order you entered the data. Thus, enter a 9 and click Add,
enter 3 and click Add, enter another 3 and click Add, and finally add 1 and
click Add. This specifies the theoretical 9:3:3:1 ratio.

6. Click OK to display the output shown in Table 5.16.

Program Comments

e In this example, notice that we entered 9, 3, 3, and 1 as the expected
frequencies. You can enter any set of frequencies as long as they are multiples
of the expected proportions—in this case, 9/16, 3/16, 3/16, and 1/16. So, for
example, you could enter 18, 6, 6, and 2 and still obtain the same results. A
natural set of expected frequencies to use is 312.75, 104.25, 104.25, and
34.75, which are the expected frequencies out of 556. However, SPSS does
not allow an entry as long as 312.75. SPSS will accept 312.8 and so forth, and
use of these rounded expected frequencies results in very minor differences
from the results in Table 5.16.

e If you have a data set (such as the example described earlier involving
the directional preference in the positioning of nests for a certain species
of bird), you would select “All categories equal” in the “Expected Values”
section.

e The chi-square procedure in SPSS does not recognize string (text) variables.
This is the reason we assigned Phenotype to be a numeric variable and
assigned the associated value labels rather than simply specifying Phenotype
as a string variable and using the four phenotypes as observed values.

Other Measures of Association for Categorical Data

Several other statistical tests can be performed on categorical data. The test
performed depends on the type of categorical variables and the intent of the
analysis. The following list describes several of these briefly.
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Correlation. If both the rows and columns of your table contain ordered
numeric values, you can produce a Spearman’s rho or other nonparametric
correlations. See Chapter 7: Nonparametric Analysis Procedures for a
discussion of nonparametric procedures.

Nominal Measures. A number of other specialty measures can be calcu-
lated for crosstabulation tables in which both variables are nominal. These
include the following:

Contingency Coefficient. This is a measure designed for larger tables. Some
statisticians recommend that the table be at least 5 by 5. The values of the
contingency coefficient range from 0 to 1, with 1 indicating high association.
For smaller tables, this statistic is not recommended.

Phi. The phi coefficient is a measure of association that is adjusted accord-
ing to sample size. Specifically, it is the square root of chi-square divided by
n, the sample size. Phi ranges from -1 to 1 for 2 x 2 tables and, for larger
tables, from 0 to the square root of the minimum of r — 1 or ¢ — 1, where r
and ¢ denote the number of rows and columns, respectively. Phi is most
often used in a 2 x 2 table where the variable forms true dichotomies. In the
case of 2 x 2 tables, the phi coefficient is equal to Pearson’s correlation
coefficient.

Cramer’s V. This is a measure of association based on chi-square, where the
upper limit is always 1. In a 2 X 2 table, Cramer’s V is equal to the absolute
value of the phi coefficient.

Lambda. Also called the Goodman-Kruskal index, lambda is a measure of
association where a high value of lambda (up to 1) indicates that the inde-
pendent variable perfectly predicts the dependent variable and where a low
value of lambda (down to 0) indicates that it is of no help in predicting the
dependent variable.

Uncertainty Coefficient. Sometimes called the entropy coefficient, this is a
measure of association that indicates the proportional reduction in error (or
uncertainty) when predicting the dependent variable. SPSS calculates sym-
metric and asymmetric versions of the uncertainty coefficient.

Ordinal Measures. Ordinal measures of association are appropriate when
the two variables in the contingency table both have order.

Gamma. This statistic ranges between -1 and 1 and is interpreted similarly
to a Pearson’s correlation. For two-way tables, zero-order gammas are dis-
played. For three-way to n-way tables, conditional gammas are displayed.
Somer’s d. This measure of association ranges between -1 and 1. It is an
asymmetric extension of gamma. Asymmetric values are generated according
to which variable is considered to be the dependent variable.
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o Kendall’s tau-b. A measure of correlation for ordinal or ranked measures
where ties are taken into account. It is most appropriate when the number of
columns and rows is equal. Values range from -1 to 1.

e Kendall’s tau-c. This is similar to tau-b, except this measure ignores ties.

Eta. This is a measure of association that is appropriate when the depen-
dent variable is a quantitative measure (such as age or income) and the inde-
pendent variable is categorical (nominal or ordinal). Eta ranges from 0 to
1, with low values indicating less association and high values indicating a
high degree of association. SPSS calculates two eta values, one that treats
the row variable as the quantitative variable and one that treats the column
variable as the quantitative variable.

Summary

This chapter explains how to analyze categorical data using a variety of tech-
niques for measuring association and goodness-of-fit. The following chapter
examines a comparison of three or more means.
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Analysis of Variance
and Covariance

ometimes, that “keep it simple” principle just doesn’t meet your
needs. Occasionally, you’ve got to make the leap from simple models to

the more complex. This chapter takes the leap from the #-test to a series of
tests designed to compare three or more means at a time or to compare means
that are adjusted by some covariate. And even though it’s a bit more involved
than the #-test chapter, we’ll try to keep it as simple and straightforward as
possible. Specifically, this chapter discusses the following analyses:

Omne-Way Analysis of Variance (ANOVA): an extension of the two-sample
t-test used to determine whether there are differences among more than two
group means

One-Way Analysis of Variance With a Test for Trend: used to test for a poly-
nomial trend in the group means

Two-Way Analysis of Variance: used to evaluate the combined effect of two
experimental factors

Repeated-Measures Analysis of Variance: an extension of the paired #-test
for comparing means of the same or related subjects or objects over time or
in differing circumstances

Analysis of Covariance: a one-way ANOVA in which the group means are
adjusted by a covariate

These sections include discussion of multiple comparisons and graphs
where appropriate. Although this chapter covers the most commonly used
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analysis of variance models, there are in fact a smorgasbord of analyses that
can be classified under this umbrella. However, if you find that your exper-
imental design goes beyond what is covered here, or if you do not under-
stand how these models work, we suggest that you check out the references
at the end of the chapter. Even better advice is to consult a statistician.

One-Way ANOVA

The one-way ANOVA (also called a one-factor ANOVA or completely
randomized design) is a staple of almost every research discipline. It is widely
used and, as you will see, relatively easy to perform and interpret. This
model is a direct extension of the two-sample (independent group) t-test cov-
ered in Chapter 3: Comparing One or Two Means Using the #-Test. It is used
to determine whether there are differences among the group means.

Appropriate Applications for a One-Way ANOVA

Examples of research that might use this design include the following:

e Length of Hospital Stay. Anorexic patients in a psychiatric ward are
randomly grouped into a control treatment group (standard treatment) and
two experimental treatment groups to determine whether either of the two
experimental treatments reduces the average length of stay.

e [s Acme the Best Brand? The shear strengths of bolts manufactured by four
different companies are compared to establish whether there are differences
in the average shear strength.

e  What Is Best Package Color? A marketing study attempts to find out whether
average sales are different for three choices of packaging color.

Design Considerations for a One-Way ANOVA

The design of a one-way ANOVA is similar to that for a two-sample
(independent group) ¢-test, except that there are more than two groups. The
key factors in designing such an analysis include the following.

The One-Way ANOVA Assumptions

1. Independent Samples. The groups contain observed subjects (or
objects) that are split into groups but are not paired or matched in any way.
The groups are typically obtained in one of two ways:
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a. Random Split. Subjects (or items) all come from the same population and
are randomly split into groups. Each group is exposed to identical conditions,
except for a “treatment” that may be a medical treatment, a marketing design
factor, exposure to a stimulus, and so on.

b. Random Selection. Subjects are randomly selected from separate populations
(i.e., by race, stores by region, machine by manufacturer, etc.).

2. Normality. A standard assumption for the one-way ANOVA to be
valid is that the measurement variable is normally distributed within each
group. That is, when graphed as a histogram, the shape approximates a bell
curve (see Chapter 2: Describing and Examining Data).

3. Equal Variances. Another assumption is that the within-group vari-
ances are the same for each of the groups.

o Houw Stringent Are These Assumptions? As in the case of the #-test discussed
in Chapter 3, studies have shown the one-way ANOVA to be robust against
some departures from assumptions. Generally, nonnormality of the data is
not a concern unless you have small sample sizes or your data are highly non-
normal. If you have equal or near-equal sample sizes in each group, the equal
variance assumption becomes less important. However, the assumption of
independence of the subjects is critical (Glass, Peckham, & Sanders, 1972).

e An ANOVA Compares Means. Your outcome variable must be a quantitative
variable such as height, weight, amount spent, or grade.

e Control Group. The groups to be compared may or may not include a
control group. That is, one “control” group may receive a standard treat-
ment or no treatment, while the others receive experimental treatments. If the
experimental treatments are better than the control, then this may add more
credibility to their use than if they are simply compared to other experimen-
tal groups.

e Predefined Comparisons. The experimenter may have a special interest in
certain comparisons among group means. These can be tested using contrasts.
This topic is discussed later in this chapter.

o Are Group Sample Sizes Equal? The sample sizes in each group need not be
equal, but if they are not equal, then care must often be taken when per-
forming the post hoc analysis, as will be demonstrated in ExampLE 6.1. In
general, it is usually best to design your experiment so there are an equal (or
almost equal) number of subjects in each group.

e Are the Groups Ordered? 1f groups have an inherent ordering such as age
groups (0-15, 16-30, 31-50, 51 and above), torque pressure (mild, medium,
strong), or dose (four increasingly strong levels), then your analysis could
include an analysis of trend. The analysis in ExampLE 6.2 includes a trend
analysis.
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Hypotheses for a One-Way ANOVA

The hypotheses for the comparison of the means in a one-way ANOVA
are as follows:

Hy w,=u,=...=H, (the population means of the all groups are the same).

H; w# W for some i# j (the population means of at least two groups are

different).

Tips and Caveats for a One-Way ANOVA

o Sample Size Considerations. Inadequate sample sizes can result in a
test without adequate power and can result in a nonsignificant finding, even
if there are real differences in the group population means. Also, small sam-
ple sizes cause the normality assumption to be more important and more
difficult to assess.

o Why Not Simply Do Several t-Tests? Since a one-way ANOVA usu-
ally involves examining pairwise comparisons, you may wonder why you
would not simply perform the #-tests in the first place and make the analy-
sis simpler. These comparisons are done within the context of an ANOVA
to control the level of significance. For example, if you took four indepen-
dent samples from the same population (i.e., the null hypothesis is true) and
made all possible comparisons using z-tests, then there would be six total
comparisons, each performed at the 0.05 level of significance. However,
using this procedure, it can be shown that there isa 1 - (0.95)° = 0.26 prob-
ability that at least one of the six comparisons will result in a finding of a
significant difference. That is, there is a 0.26 probability of rejecting the null
hypothesis (which in this case is true). That is, the overall significance level
is no longer 0.05. By using the controlled environment of the one-way
ANOVA, you preserve the error rate for the experiment. No knowledgeable
reviewer would let a paper or article pass in which multiple #-tests are used
in lieu of an appropriate ANOVA. See Chapter 1: Introduction for more
discussion of these issues.

EXAMPLE 6.1: One-Way ANOVA

Describing the Problem

A university is experimenting with teaching a statistics course using three
different methods, including the classical 3-day-a-week lecture, 1-day-a-week
lecture plus CD lessons (including taped lectures), and 1-day—a-week lecture
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plus online (Internet) tutorials. Students are randomly placed into one of
the three methods, and all three methods are taught by the same instructor.
Identical 100-point final exams are given to each section of the course. We
will use the one-way ANOVA to compare the average learning (as measured
by the final exam) for these three types of classes. Although it is highly desir-
able to have the same sample size in each group, it often doesn’t work out
that way in practice. In this example, 98 students signed up for the course,
which means that the three groups will not have equal sample sizes if we use
all of the students.

Before performing the analysis, you should check out the assumptions
listed earlier. Because there are at least 32 subjects in each group, the ques-
tion of normality for each group is not a major concern. The students in each
section are independent and randomly assigned. To consider the question of
equal variances, you could examine the descriptive statistics for each group.

For these data, the following descriptive statistics were produced, as shown
in Table 6.1

Table 6.1 Descriptive Statistics for a One-Way ANOVA

Descriptives
GRADE
95% Confidence Interval for
Mean

N Mean Std. Deviation | Std. Error | Lower Bound | Upper Bound | Minimum | Maximum
Standard 33 83.5455 10.16148 1.76889 79.9424 87.1486 58.00 100.00
Internet 32 74.4688 12.70251 2.24551 69.8890 79.0485 45.00 94.00
CD Lessons 33 78.7879 12.60644 2.19450 74.3178 83.2579 49.00 100.00
Total 98 78.9796 12.32379 1.24489 76.5088 81.4504 45.00 100.00

Notice that the standard deviations are 10.16, 12.70, and 12.61, which
lend credence to the assumption of equal variances (remember that the vari-
ance is the square of the standard deviation). For further confirmation, a sta-
tistical test such as Levene’s test for homogeneity of variances may be used.
In this case, Levene’s test yields a nonsignificant p = 0.23 for the comparison
of these three variances.

Good advice is to examine a graph of your results, even if you do not
intend to include a graph with your final report. Side-by-side boxplots
(Figure 6.1) and a graph of means can be used to give a visual comparison
of the groups. In Figure 6.1, we see that there is no evidence of any sizable
outliers and that there is no obvious difference in variability for the three
groups. The graph also shows that the final exam scores for the standard
course were somewhat higher in general than for the two newer teaching
methods but that there was considerable overlap between the distributions.
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Until further analysis, we cannot draw conclusions about significance of the
differences in the mean final exam scores for the three methods.
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Figure 6.1 Boxplots for Course Data

Since there are no apparent violations of the assumptions, we next
examine the ANOVA table in Table 6.2. This table provides an omnibus test
of equality of means (labeled the “between-group” test). In this case, the
ANOVA table reports an F-statistic of 4.754 with 2 and 95 degrees of free-
dom and p = 0.011. Because this p-value is less than 0.05, we reject the null
hypothesis that all means are equal and conclude that there are some differ-
ences among the means. If the p-value had been nonsignificant, we would
not conclude that there are differences in the means. No further multiple
comparisons would be performed.

Failing to reject the null hypothesis does not indicate a finding that there are
no differences among the means. It simply indicates that we have been unable
to detect differences. See the section in Chapter 1 titled “Understanding
Hypothesis Testing, Power, and Sample Size.”
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Table 6.2 ANOVA Table for COURSE.SAV Data

ANOVA
GRADE
Sum of
Squares df Mean Square F Sig.
Between Groups 1340.293 2 670.147 4.754 .011
Within Groups 13391.666 95 140.965
Total 14731.959 97

Since this ANOVA table indicates an overall significant difference among
means, we now further investigate these differences using multiple compar-
isons. In this case, with three groups, there are three possible comparisons:
standard versus Internet, standard versus CD, and Internet versus CD.

There is an alphabet soup of multiple comparison tests available (most
named after the statistician who came up with the technique). These include
tests by the names of Tukey, Bonferroni, Duncan, Scheffé, R-E-G-W-F, and
others. These tests each have their own characteristics (e.g., Bonferroni’s test
is quite conservative), and there are many opinions about which test to use
and when. In this example, we limit our discussion to the use of Tukey’s
procedure to exemplify the technique. In practice, you may want to consider
others. You may want to familiarize yourself with your discipline’s literature
to find out which techniques are commonly used.

Most common of all post hoc tests are a comparison of all possible pairs
of means. These are called multiple comparison tests. The multiple com-
parison results, based on the Tukey procedure, are reported in Tables 6.3
and 6.4. Using this procedure, two means are considered to be significantly
different if the absolute difference in their corresponding sample means is
greater than a specific threshold value. When sample sizes are equal, the for-
mula for this threshold value involves this common sample size. When the
sample sizes are not equal, the harmonic mean of the corresponding sample
sizes is typically used. Note that the harmonic mean is reported in Table 6.4.
For a discussion of potential concerns associated with unequal cell sizes in
two-way ANOVA, refer to Elliott and Woodward (1986).

The sample means, in ascending order, are given in Table 6.4. There it can
be seen that based on this criterion, the standard classes and Internet classes
are significantly different while the other two comparisons (i.e., standard vs.
CD and CD vs. Internet) are not significant. The results are displayed in
Table 6.3 in a format that is often used for reporting the differences and can
be quickly understood at a glance. Specifically, any two means that are
underscored by the same line are not significantly different from each other.
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In Table 6.4, we show the SPSS output for this analysis. This output refers
to the groups that are not significantly different from each other as subsets.
Thus, Internet and CD formed one subset, while CD and standard formed
the other subset. Since Internet and standard do not both appear in the same
subset, they are significantly different from each other. Spend a moment to
see how Table 6.3 and Table 6.4 are reporting the same results. Notice that
SPSS warns that unequal sample sizes may compromise the results. In this
case, with the sample sizes nearly equal, this is not an important concern.

Table 6.3 Tukey Multiple Comparison Results

Standard CD Internet

83.5455 78.7879 74.4688

Table 6.4 Tukey Multiple Comparison Results as Reported by SPSS

GRADE

Tukey HSD2P

Subset for alpha = .05
SECTION N 1 2
Internet 32 74.4688
CD Lessons 33 78.7879 78.7879
Standard 33 83.5455
Sig. .310 243

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 32.660.
b. The group sizes are unequal. The harmonic mean
of the group sizes is used. Type | error levels are
not guaranteed.

To summarize, the overall ANOVA table results reported that at the
p = 0.011 level of significance, there was at least one mean that was differ-
ent from the rest. The post hoc Tukey test (performed at the 0.05 level of sig-
nificance) examined all possible pairwise comparisons and determined that
there was a statistically significant difference in the mean scores of the stan-
dard and Internet groups. Specifically, the standard teaching method seems
to have better average final exam performance than use of the Internet.
The standard method also has a higher mean score than the CD method,
although the difference is not significant.
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Reporting Results of a One-Way ANOVA

The following illustrates how you might report these one-way ANOVA
results in a publication format.

Narrative for the Methods Section

“A one-way ANOVA was performed to test the hypothesis that the average
final grades for the three course sections were equal. Multiple comparisons
were performed using the Tukey procedure.”

Narrative for the Results Section

“The average grades were found to be different across sections, F(2, 95) =
4.95, p =0.011. Tukey multiple comparisons performed at a 0.05 significance
level found that the average grade for the standard section is significantly
higher than that for the Internet section.”

Or, to be more complete,

“The average grades were found to be different across sections, F(2, 95) =
4.95, p = 0.011. The Tukey multiple comparisons performed at the 0.05 sig-
nificance level found that the mean final exam grade for the standard course
section (M = 83.5, SD = 10.16, N = 33) was significantly higher than that for
the Internet section (M = 74.5, SD = 12.7, N = 32) but not significantly higher
than the CD section (M = 78.8, SD = 12.6, N = 33). Mean exam grades for
the CD and Internet sections were not found to be significantly different from
each other.”

Other Comparison Tests for a One-Way ANOVA

There are times when the standard “all-possible multiple comparisons”
tests for a one-way ANOVA are not really what you want. Three alterna-
tives to the all-possible comparisons are briefly discussed here:

e Dunnett’s test
e Specified contrasts
e Trend analysis

Dunnett’s Test. Dunnett’s test is appropriate when the purpose of your
analysis is to compare one group (usually the standard or control) against
all other groups. For instance, in the previous example, we were interested
in comparing all courses with each other. However, the real interest may be
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only the comparison between the standard course and the new methods.
Thus, the standard method would be the control group to which the other
two methods are compared. The preliminary analysis of variance would be
performed exactly as above, and Dunnett’s test is a post hoc test designed
specifically for comparing treatment groups to a control group. It should be
noted that for Dunnett’s test, you can use two-sided or one-sided tests. In
this example, we will use a two-sided test if there is a question concerning
whether to expect the new sections to do better or worse. The Dunnett’s test
results are shown in Table 6.5.

Table 6.5 Dunnett’s Test Results

Multiple Comparisons
Dependent Variable: GRADE
Dunnett t (2-sided)?

Mean )
Difference 95% Confidence Interval
(I) SECTION  (J) SECTION (1-J) Std. Error Sig. Lower Bound | Upper Bound
Internet Standard -9.07670* 2.94564 .005 -15.6923 -2.4611
CD Lessons  Standard -4.75758 2.92290 .187 -11.3221 1.8069

*. The mean difference is significant at the .05 level.
a. Dunnett t-tests treat one group as a control, and compare all other groups against it.

The results reported in Table 6.5 are specifically for the comparison of
the Internet and CD sections against the standard section. The “Sig.” column
shows that there is a significant difference between the Internet section and
the standard section (p = 0.005) but no difference between the CD section
and the standard (p = 0.187). These findings are consistent with those
obtained using Tukey multiple comparisons previously.

Contrasts for a One-Way ANOVA. In some cases, you may simply want
to examine certain specific group comparisons. Customized comparisons
(planned contrasts) can be built around specific comparisons rather than
simply investigating all-pairwise comparisons that are typical of the post
hoc multiple comparison procedures. For example, suppose in the “course
data” experiment, our alternative hypothesis is that the standard teaching
method results in a higher mean final exam grade than the other two
methods. That is, we want to compare the standard group with the two
experimental groups in one comparison. To do that, we would need to
combine, in some sense, the experimental groups. Thus, our comparison
becomes the standard group versus the average of the experimental groups,
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and the null hypothesis of interest is H: pg= (W, + W) / 25 that is, Hg: pg—
(W, + KUe)/2 = 0, where pg, W, and p. denote the population means for the
standard, Internet, and CD sections, respectively.

A contrast is a weighted sum of means. The tricky part in designing a con-
trast is to assign weights (called contrast codes) to each group. These weights
specify how the comparison will be made. In general, you assign a positive
weight to one group or groups and negative weights to the remaining groups
so that the weights add to zero. Based on the second form of the null
hypothesis in the preceding paragraph, it makes sense to assign a weight
(i.e., contrast code) of 1 to the standard group and a —0.5 to each of the other
teaching methods. Multiplying a set of contrast codes by a constant gives
another set of contrast codes that will also be appropriate. For example, you
could also use 2 for the standard group and a -1 to each of the other teach-
ing methods. Results based on the contrast codes 1, 0.5, -0.5 are shown in
Table 6.6.

Table 6.6 Contrasts for Course Data

Contrast Tests

Value of
Contrast | Contrast | Std. Error t df Sig. (2-tailed)
GRADE Assume equal variances 1 6.9171 2.53789 2.726 95 .008
Does not assume equal 1 6.9171 2.36506 2.925 77.731 .005

Two versions of the contrast are given, one that assumes equal variances
and one that does not. Since we have already examined the variances and
found them similar, the equal variances test is sufficient. In this case, p =
0.008 so we conclude that the mean grade of the standard course is differ-
ent (higher) than the mean grades of the other two methods combined. If
there is any question about the equality of variances, you should use
the unequal variance option, which in this case gives a smaller p-value (p =
0.005) but leads to the same conclusion.

SPSS Step-by-Step. ExampLE 6.1: One-Way ANOVA

To perform a one-way ANOVA on the teaching method data, follow
these instructions in SPSS:

1. Open the data set COURSES.SAV and select Analyze/Compare Means/one-
way ANOVA.

2. Select Section as the factor and Grade as the dependent variable.
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3. Click Options to select the means plot and descriptive statistics and click
Continue.

4. Click Post Hoc to select the Tukey multiple comparison test (or whichever
you choose) or the Dunnett’s test. If you select the Dunnett’s test, also select
First as the Control category. Click Continue.

5. Click Contrasts to specify the contrast in the example above. Enter the
coefficients (1, =0.5, —=0.5) in the order of the sections. That is, enter 1 in the
Coefficients text box and click Add, then enter -0.5 and Add, and -0.5 and
Add to specify the complete contrast. Click Continue.

To create the side-by-side boxplots in Figure 6.1, use the following steps:

6. Using the COURSES.SAV data set, select Graph/Boxplot/ Simple. . . .
7. Select Grade as the variable and Section for the category axis.

8. Click OK, and the plot shown in Figure 6.1 will be displayed.

EXAMPLE 6.2: One-Way ANOVA With Trend Analysis

Describing the Problem

A wholesale nursery is experimenting with a plant supplement that is
designed to increase the number of flowers produced on a plant. To deter-
mine whether the supplement works and what strength to use, the nursery
randomly selects 12 plants for five different commercially available strengths
(1 to 5) of the supplement. After 2 weeks, the number of opened flowers per
plant is counted. Table 6.7 gives the number of flowers counted for the 60
plants. It should be noted that there is no pairing in the data in this table.
For example, the first entry under Strength 1 is not related in any way to the
first entry under Strength 2.

We present this table here to make a point that will be clearer in the
next section. For this example, notice that the way the data are presented in
Table 6.7 is not the format in which it should be entered into the computer
program. Rule 2 in “Guidelines for Creating Data Sets” given in Chapter 1
states that (usually) each line (row) of your data should contain the obser-
vations from a single subject. Each row in Table 6.7 contains observations
from 5 separate plants that are not related to each other in any way. In gen-
eral, the 60 observations in that table represent 60 randomly selected plants.
The computer data file structure for a one-way ANOVA should take the
form shown in Figure 6.2, which contains one subject (plant) per row and
contains a “grouping” variable called Strength to indicate the concentration



Analysis of Variance and Covariance 163

Table 6.7 One-Way ANOVA Data for EXAMPLE 6.2

Strength
1 2 3 4 S
25 45 51 45 56
36 36 38 54 43
41 40 38 45 49
39 32 48 44 40
28 37 45 47 53
44 28 50 52 57
36 32 46 59 56
33 38 45 59 38
40 44 42 54 45
26 40 48 59 57
42 45 49 51 42
41 39 36 54 55

of the supplement that was used for that plant. For this data set, there are
60 rows, one for each plant.

What makes this analysis different from a typical one-way ANOVA is
that the groups have an order (i.e., the strength 1 to 5). For this case, you
may want to perform a trend analysis rather than use nonordered pairwise
comparisons. A trend analysis tests the hypothesis that the means of the
ordered groups change in a linear or higher order (e.g., quadratic or cubic)
fashion. Figure 6.3 shows a plot of the mean number of flowers for each
supplement strength.

It appears that the number of flowers increases as the strength of the sup-
plement increases (up to a point). A test for a linear, quadratic, and cubic
trend is shown in Table 6.8. A quadratic trend is one that has a consistent
curving pattern either upward or downward, while a cubic trend is charac-
terized by a shift in curvature from upward to downward or vice versa.

In this analysis, the “Between (Combined)” test is the same as the stan-
dard ANOVA test, and it shows that there is a difference among means
across levels of strength (p = 0.000). The “Linear Term Contrast” test is a
test that there is a linear trend (p = 0.000). “Deviation” (p = 0.038) tests for
the existence of a more complex trend. In this case, the results indicate
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Figure 6.2 Data Entered for a One-Way ANOVA

that there is a more complex trend than linear. Therefore, we go to the
quadratic trend and find that there is not a significant quadratic (single-
curve) trend (p = 0.176), but there is still a more complex trend (p = 0.035).
That more complex trend is the cubic term (p = 0.011) and nothing more
complex (p = .657). The results of this analysis suggest that there is a some-
what linear increase in mean flower production as the level of the supple-
ment increases. The cubic term suggests (from examination of the plot) that
there is a faster increase as the strength is increased from 2 to 3 and a down-
turn in flower production when the strength reaches 5.

SPSS Step-by-Step. ExamPLE 6.2: One-Way ANOVA
With Trend Analysis

To perform the example on the TREND.SAV data set, follow these
instructions:
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Table 6.8 Test for Trend
ANOVA
Flowers
Sum of
Squares df Mean Square F Sig.
Between (Combined) 2304.100 4 576.025 15.851 .000
Groups Linear Term  Contrast 1976.408 1 1976.408 | 54.385 .000
Deviation 327.692 3 109.231 3.006 038
Quadratic Contrast 68.149 1 68.149 1.875 176
Term Deviation 259.543 2 129.771 3.571 035
Cubic Term  Contrast 252.300 1 252,300 6.943 011
Deviation 7.243 1 7.243 199 657
Within Groups 1998.750 55 36.341
Total 4302.850 59

1. Open the data set TREND.SAV and select Analyze/Compare Means/one-way
ANOVA. (Notice how the data set is set up with one flower per row and with
Strength as a grouping [factor] variable.)

2. Select Strength for factor and Flowers for the dependent variable.
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3. Click Options to select the means plot and descriptive statistics and click
Continue.

4. To specify the trend analysis, click on Contrasts and click the Polynomial
checkbox. From the drop-down box, select Cubic as the degree. Click
Continue and OK, and the output in Table 6.8 and the means plot in Figure
6.3 appear.

Two-Way Analysis of Variance

A two-way ANOVA is an analysis that allows you to evaluate the combined
effect of two experimental variables (factors). Each factor is a “grouping”
variable such as type of treatment, gender, brand, and so on. The two-way
ANOVA tests to see if the factors are important (significant) either sepa-
rately (called main effects) or in combination (via an interaction). Table 6.9
shows a typical setup for a two-way ANOVA. The two factors are Color and
Height of sales displays, and each cell of the table contains the observed sales
for a display containing each combination of characteristics (factors.)

Table 6.9 Two-Way ANOVA Data

Height/Color Blue Red Black

Short 24 31 35
25 28 32
30 33 31
28 35 38
25 32 35

Tall 31 36 41
32 32 36
33 33 34
36 41 32
32 34 39

It is important to point out that this design, like the one-way ANOVA
above, is based on the assumption that the observations in the cells are inde-
pendent within and between cells. There are no repeated objects or subjects
in any factor combination. Sometimes a two-way ANOVA is referred to as
a p x q factorial design, where there are p levels of one factor and g levels of
the other.
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Appropriate Applications for a Two-Way ANOVA

o Discrimination? How do age and gender affect the salaries of 10-year employ-
ees at a national department store?

e Product Display Strategies. A manufacturer who displays products for sale
wants to understand how the height of a display and the color of the display
(or the combined effects of both height and color) affect sales.

o Effectiveness of Cholesterol-Lowering Drug. Investigators want to know the
effects of dosage and gender on the effectiveness of a cholesterol-lowering drug.

Design Considerations for a Two-Way ANOVA

When conducting a two-way ANOVA, there are several design consider-
ations you should keep in mind. Most of these are extensions of those men-
tioned previously for the one-way ANOVA. These include the following:

Two-Way ANOVA Assumptions

1. Independent Samples. Subjects should be randomly assigned to treat-
ment combinations, that is, to the p X g possible combinations of factors
(cells). Observations are independent in that there are no repeated objects or
subjects in any factor combination.

2. Normality. Data within each cell of the design are assumed to be nor-
mally distributed.

3. Equal Variances. The population variances within each combination
of factors should be equal.

o How Stringent Are the Assumptions? As in the previous discussion for
the one-way ANOVA, studies have shown that ANOVA models are robust
against moderate departures from the assumptions of normality and equal
variances. In particular, the ANOVA is quite robust to the equal variance
assumption if the cell sizes are equal or nearly equal (Glass et al., 1972). As
with the #-test and one-way ANOVA, the assumption of independence of the
subjects is critically important.

o Comparing Means. Your outcome variable must be a quantitative variable
such as height, weight, amount spent, or grade.

o Are Sample Sizes Equal for Each Cell? The sample sizes in each group do not
have to be equal, but if they are not, then care must often be taken in
performing the analysis.

o Are Factor Categories Random or Fixed? In this guidebook, we discuss only
a fixed factor analysis. That is, the factor levels are selected by the experi-
menter, such as a selection of specific doses of an experimental drug. In some
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cases, factor categories are randomly selected from a larger list of possible
categories (a random selection of cities, for example). Random effects models
and mixed models, i.e., with fixed and random effects, are not discussed here.
For a discussion of random effects or mixed models, we recommend Winer
(1991); Neter, Wasserman, and Kutner (1990); and Keppel and Wickens
(2004).

Hypotheses for a Two-Way ANOVA

The statistical model for the two-way ANOVA includes the main effects
(i.e., the additive effects of each factor) along with an interaction effect.
Interaction measures the extent to which the combined effects of the factors
are not additive. To illustrate the effect of interaction, suppose your outcome
variable is annual income (in $1,000) and your two factors are gender and
job category, as shown in Figure 6.4, where the four means (hourly-male,
hourly-female, salaried-male, salaried-female) are plotted for two hypothet-
ical scenarios.

90 90
80 - 80
70 70 A
60 60 -
50 50 A
40 40
30 30 A
20 20 A
10 10 o
0 0
Hourly Salaried Hourly Salaried
—— Male  —— Female | | —O— Male —&— Female
Figure 6.4 Interaction Plots

The right-hand graph illustrates a situation in which the combined effects
of the two factors are additive and there is no interaction effect. In this case,
the salaried employees (both male and female) make about $55,000 to
$60,000 per year more than the corresponding hourly employees of the same
sex. Also, for each job category, the males make $5,000 to $10,000 more
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per year than the female employees on average. The result of this additive
behavior is that the lines are almost parallel.

The left-hand graph shows an interaction effect. Specifically, for hourly
employees, males and females have approximately the same average salaries.
However, for salaried employees, males make about $35,000 more per year
on average. This behavior is known as an interaction, and in the presence of
such an interaction, you cannot make a blanket statement comparing the
effect of gender on salary that applies to both job types. Instead, if you want
to discuss the effect of gender on salary, you will need to consider each job
category separately. Similarly, the effect that employee type (hourly vs.
salaried) has on salary is only really understood when it is considered
separately for males and females.

If you do not have a significant interaction (such as the right-hand
graph), you can meaningfully test the main effects of job type and gender.
However, if you have a significant interaction, such blanket statements
may be meaningless since these two factors are interrelated (i.e., they
“interact”).

The testing procedure in a two-way ANOVA is as follows:

1. First Test for Interaction

The interaction hypotheses are as follows:

H,: There is no interaction effect.

H,: There is an interaction effect.

2. Test for Main Effects

If there is not a significant interaction, then test the following hypotheses
regarding main effects:
The “main effects” hypotheses are

a. For Factor A:

H,: Population means are equal across levels of Factor A.

H,: Population means are not equal across levels of Factor A.
b. For Factor B:

H,: Population means are equal across levels of Factor B.

H,: Population means are not equal across levels of Factor B.
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These three tests (interaction and two main effects tests) are performed in
an analysis of variance table as F-tests. A low p-value (usually less than 0.05)
for a test indicates evidence to reject the null hypothesis in favor of the alter-
native. It may be useful to refer to a standard textbook on the subject
(e.g., Neter etal., 1990; Winer, 1991) for more discussion of the actual
statistical model.

Tips and Caveats for a Two-Way ANOVA
Unequal Sample Sizes Within Cells

A number of calculation and interpretation problems arise when you
have an unequal number of observations in the cells of a two-way ANOVA.
In SPSS, for example, if cell sizes are unequal, then it is important that the
calculations be performed using the Type Il ANOVA sum of squares (the
default in SPSS). Small departures from equal cell sizes are not a serious
concern, but you should examine why such unequal sizes exist. For
example, if your sampling procedure has caused some values in some cells
to be systematically eliminated, then you may be introducing bias into the
model (see Elliott & Woodward, 1986).

Significant Interactions

If an interaction exists, the effects of the factors should not be inter-
preted in isolation from each other, and tests for main effects will often not
be meaningful. It will usually be more appropriate, for example, to compare
effects of the first factor within levels of the second factor and vice versa.
That is, compare cell means rather than marginal means. A variety of
methods could be used, including some that make use of the mean square
error from the ANOVA table and others that involve considering each cell
as a sample for use with an independent sample #-test. Bonferroni or some
other adjustment is advisable. For more details, see Neter etal. (1990,
p. 739) and Keppel and Wickens (2004).

If an interaction exists, the effects of the factors should not be interpreted in iso-
lation from each other, and tests for main effects will often not be meaningful.
It will usually be more appropriate, for example, to compare effects of the first
factor within levels of the second factor and vice versa. That is, compare cell
means rather than marginal means.
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EXAMPLE 6.3: Two-Way ANOVA

Describing the Problem

A manufacturer of a consumer retail product wants to examine the effec-
tiveness of display strategies on sales. Six different displays are designed,
which include three different highlight colors (red, blue, and black) and two
different heights: short (45 inches) and tall (60 inches). To compare sales for
each combination of height and color, one of the six display combinations is
randomly placed at each of five discount department stores, a total of 30 dif-
ferent locations. After 2 months, the sales from each combination are com-
pared. The data for this analysis are given in Table 6.9, and we assume the
data in each cell are normally distributed.

Descriptive statistics for the data are shown in Table 6.10. A test for
homogeneity of variance within cells (Levene’s test) gives p = 0.654, sug-
gesting that the assumption of equal variances within cells is not a problem.
You may also examine side-by-side boxplots of data within each color-
height combination for a visual check of the homogeneity of variance
assumption. The ANOVA table for this analysis is shown in Table 6.11.

Table 6.10 Descriptive Statistics for Two-Way ANOVA

Descriptive Statistics

Dependent Variable: Sales

Display Height | Display Color Mean Std. Deviation N
Short Blue 26.40 2.510 5
Red 31.80 2.588 5
Black 34.20 2.775 5
Total 30.80 4.161 15
Tall Blue 32.80 1.924 5
Red 35.20 3.564 5
Black 36.40 3.647 5
Total 34.80 3.299 15
Total Blue 29.60 3.978 10
Red 33.50 3.440 10
Black 35.30 3.268 10
Total 32.80 4.213 30

To interpret the ANOVA table, you should first look at the interaction
term (Height* Color). The nonsignificant p = 0.268 means that the interac-
tion term is not significant. A graph to visually examine the possibility of an
interaction effect is shown in Figure 6.5.
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Table 6.11

Table for Two-Way ANOVA

Tests of Between-Subjects Effects

Dependent Variable: Sales

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 313.2002 5 62.640 7.457 .000
Intercept 32275.200 1 32275.200 | 3842.286 .000
HEIGHT 120.000 1 120.000 14.286 .001
COLOR 169.800 2 84.900 10.107 .001
HEIGHT * COLOR 23.400 2 11.700 1.393 .268
Error 201.600 24 8.400
Total 32790.000 30
Corrected Total 514.800 29
a. R Squared = .608 (Adjusted R Squared = .527)
Estimated Marginal Means of Sales
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Figure 6.5

Graph of Two-Way Interactions
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The lines showing the means for sales by height and color are fairly
close to parallel (as measured by the interaction p-value [p = 0.268]), so the
assumption of no interaction (i.e., that the effects are additive) seems plausi-
ble. Thus, it is appropriate to test for main effects, that is, to compare sales
by color and sales by height. This graph helps explain the main effects tests.
Before examining the statistical results, note that from the table, it can be
seen that tall displays tend to have higher sales (at all colors) and that at each
height, black displays yield the highest average sale followed by red and blue,
in that order. The significance of these differences will be examined below.

The main effect for height is significant (F = 14.286 with 1 and 24 degrees
of freedom, p = 0.001). This indicates that there is a statistically significant
difference in sales by height. Thus, taller displays produced significantly
greater sales. It should be noted that post hoc tests are not needed since there
are only two levels of height.

The main effect for color is also significant (F = 10.107 with 2 and 24
degrees of freedom, p = 0.001). This indicates that there is a statistically sig-
nificant difference in sales by color. However, post hoc tests are needed to
determine which differences are significant, although it is a safe conjecture
that black displays (top line in Figure 6.5) are significantly higher than blue
displays (bottom line). Table 6.12 shows the results of Tukey’s test to iden-
tify specific differences. In the table, it can be seen that sales for red and
black displays were not significantly different from each other, but both
were significantly higher than sales for the blue display. A graphical display
of the comparison results is shown in Table 6.13.

Table 6.12 Tukey Comparisons for Sales by Display Color
in a Two-Way ANOVA

Sales

Tukey HSD2P
Subset

Display Color N 1 2
Blue 10 29.60
Red 10 33.50
Black 10 35.30
Sig. 1.000 .362

Means for groups in homogeneous subsets are displayed.
Based on Type Il Sum of Squares
The error term is Mean Square (Error) = 8.400

a. Uses Harmonic Mean Sample Size = 10.000.

b. Alpha = .05.

In summary, the conclusion from this analysis is that taller displays are
better and that red and black displays are better than blue displays.
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Table 6.13 Tukey Comparison Results in Graphical Form

Blue Red Black

29.6 33.5 35.3

Reporting the Results of a Two-Way ANOVA

The following illustrates how you might report these two-way ANOVA
results in a publication format.

Narrative for the Methods Section

“A two-way ANOVA was performed to determine if there is a difference in
average sales for displays with different heights or highlight colors. In the pres-
ence of a significant difference, multiple comparisons were performed using the
Tukey procedure at the o= 0.05 significance level.”

Narrative for the Results Section

“The test for interaction was not significant, F(2, 24) = 1.393, p = 0.268. Since
there was no significant interaction, we tested main effects. The main effect
for height was significant, F(1, 24) = 14.286, p = 0.001, where it is seen that
taller displays have higher average sales. The main effect for color was also
significant, F(2, 24) =10.107, p = 0.001. Multiple comparisons using Tukey’s
test indicate that black and red displays have higher average sales than blue
displays. Statistics are displayed in Table 6.14.”

Table 6.14 Example Table Showing Descriptive Statistics
for a Two-Way ANOVA

Height/Color Blue Red Black Marginal

Mean | SD Mean SD Mean | SD Mean SD

Short 264 | 2.51 | 31.8 | 2.59 | 342 | 2.78 | 30.8 | 4.17
Tall 32.8 | 1.92 | 352 | 3.56 | 36.4 | 3.65 | 34.8 | 3.30
Marginal 29.6 | 3.98 | 33.5 | 3.44 | 353 | 3.27 | 32.8 | 4.21

NOTE: N for each cell is 5.
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SPSS Step-by-Step. ExampLE 6.3: Two-Way ANOVA

The output for the analysis can be obtained by following these instruc-
tions in SPSS:

1. Open the data set named DISPLAY.SAV and select Analyze/General Linear
Models/Univariate. . . .

2. Select Sales as the dependent variable and Height and Color as fixed factors.

3. Click on Plots and select Height for the horizontal axis and Color for sepa-
rate lines and click Add. Next select Color for the horizontal axis and Height
for separate lines and click Add. Click Continue.

4. Click Post Hoc test and select Color for post hoc tests. Select the Tukey (or
your favorite test under the equal variances assumed list). We won’t need a post
hoc comparison for Height since there are only two heights. Click Continue.

5. Click Options and select means for Height, Color, and Height* Color. Select
Descriptive Statistics and whatever other statistics you desire. Click
Continue. Click OK to produce the output (and more) that was used in the
Display Example.

Table 6.14, which contains summary statistics, was created using a word
processor. If you have a version of SPSS that contains the Tables add-in, you
can create a similar table using that procedure.

Repeated-Measures Analysis of Variance

A repeated-measures ANOVA (and its close cousin, the randomized com-
plete block design, or sometimes called the randomized block design) is an
extension of the paired #-test in the sense that observations are paired or
linked together. The one-way and two-way ANOVA models discussed pre-
viously are sometimes referred to as “independent group” ANOVAs since
there is no such pairing. In a repeated-measures ANOVA, observations are
taken from the same or related subjects or objects over time or in differing
circumstances. (In the randomized complete block design, we consider sev-
eral “blocks” of subjects or objects that are similar in some respect. Then
within a block, investigators randomly assign each treatment so that a dif-
ferent treatment is applied to each subject or object within the block.)

Appropriate Applications for a Repeated-Measures ANOVA

e  Which Drug Is Best? Four drugs to control high blood pressure are given to
a group of individuals. Each subject receives the drugs in a random order with
a washout period between doses.
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o What Type of Music Increases Sales? A study is designed to study the effects
of playing background music in grocery stores. Ten stores participate in the
study, and three music genres are tested (country, hip-hop, and oldies). Each
store cycles through the three genres in a randomly assigned order, using each
genre for a 1-month period. The researcher wants to know if the music
selection influences sales.

o Effectiveness of Gasoline Additive. Five different gasoline additives are
compared regarding their ability to improve gas mileage. Four cars are cho-
sen for testing, and each additive is used once for each car.

Design Considerations for a Repeated-Measures ANOVA

Repeated Measurements May Increase
the Ability to Detect Differences

An advantage of a repeated-measures design is that each subject acts
as his or her own control, and this can increase the ability to detect differ-
ences. That is, suppose a measurement is to be made on the cholesterol level
at four time points (1 month, 3 months, 6 months, 1 year) after receiving a
particular statin drug. Suppose we want 10 cholesterol readings at each of
the four times. One method for doing this would be to use one-way ANOVA
and select 40 patients on the medication and randomly select 10 to have
their cholesterol readings taken at the end of 1 month, select 10 other
patients to have cholesterol readings at the end of 3 months, and so on. This
is clearly a poor design since any time differences in cholesterol readings
may be obscured by the patient-to-patient variability in cholesterol levels. It
makes more sense to take, say, 10 patients and measure each patient at the
four times (repeated-measures design). Using this method, we more directly
measure the effect of the medication over time.

Two Steps in the Analysis

As in the one-way ANOVA, the analysis has two steps. First, an F-test is
used to test for a significant difference among the means across the repeated
measure. If a difference is detected, then post hoc tests are used to determine
where the differences lie.

Normality and Equal Variance Assumptions

The repeated-measures ANOVA assumes that the outcome measure is a
normal variable and that the variances across repeated measures are equal.
As with other versions of the ANOVA, the test is robust against moderate
departures from the assumptions of normality and equality of variances. An
additional assumption is that of sphericity, which assumes that the pairwise
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differences between treatment levels all have equal population variances.
Mauchly’s test for sphericity is commonly used to test this assumption (see
Keppel & Wickens, 2004).

Randomization

This model also assumes that the participants are randomly selected from
the population of interest.

Hypotheses for a Repeated-Measures ANOVA

The primary hypotheses for a repeated-measures ANOVA are written as
follows:

H,: There is no difference among means of the repeated measures.

H_: At least one pair of repeated means are different.

Tips and Caveats for a Repeated-Measures ANOVA

e Don’t Confuse One-Way ANOVA Types. Be careful not to confuse an
independent group (i.e., one-way and two-way) ANOVA with a repeated-
measures ANOVA. Use of an independent group ANOVA procedure to analyze
data that should be analyzed as a repeated measure is incorrect—don’t do it.

o Sample Size. As with other analyses, small sample sizes can lead to nonsignifi-
cant results even when a difference exists (see Moher, Dulberg, & Wells, 1994).

EXAMPLE 6.4: Repeated-Measures ANOVA

Description of Problem

A researcher is interested in comparing four different drugs that are
believed to temporarily reduce the amount of snoring. Eight patients are
given the drugs in a random order for 1 week. The number of minutes snor-
ing was compared to the results of each individual’s previous sleep test (base-
line), and a snoring index was calculated where 100 means no reduction
from baseline, less than 100 is a decrease, and more than 100 is an increase.
Between each episode of drug therapy, there is a 1-week period of washout
with no drug. Figure 6.6 shows the SPSS data file, and Figure 6.7 shows a
graph of the mean results for each of the four drugs. It should be noted that,
for example, the first entries under each drug are linked together since they
all are measurements on the same person. This should be contrasted with the
one-way ANOVA data in Table 6.7, in which the first entries under each
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treatment (strength) are unrelated to each other. In the current repeated-
measures example, each subject has four observations—thus four “drug”
entries per row in the data file—whereas in the data file for one-way
ANOVA shown in Figure 6.2, each subject (plant) has only a single obser-
vation (number of flowers), and there is only one observation per row (plus
a grouping value).

(= snoring.sav - SPSS Data Editor
File Edit Vew Data Transform Analyze Graphs Utilities Add-ons Window Help

WS ® || =k ol izl DIEE 9/

'1: Subject 1

' Subject | DRUG1 | DRUG2 | DRUG3 | DRUGHA |  var var |
1 1 89| 78 79| 9
2 2 88/ 74 75 89
3| 3| B0 75 76 94
4 4 79| 71| 77 95

, 5 5 91 68 83| 91
6 6 85| 81 77| 66|

_ 7| 7| 4 73 73| 104 |
8 8 86 76 76 93|
— | .

Figure 6.6 Data for Repeated-Measures ANOVA
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The purpose of this experiment is to determine whether there are any
differences among the drugs in their effect on snoring. Before examining the
results of the repeated-measures ANOVA, you should check the assump-
tions. To test for sphericity, you can perform Mauchly’s test. For these data,
Mauchly’s test yields p = 0.786, which indicates that we can safely assume
sphericity. The ANOVA results given in Table 6.15 are presented in four
versions. With sphericity as a plausible assumption, the standard F-test on
the top row of Table 6.15 can be used to test for a drug effect, and this gives
F=30.238 with 3 and 21 degrees of freedom and p = 0.000. Because of the
low p-value for the F-test on the drug effect, we reject the null hypothesis
that the drugs are equivalent and conclude that there is a difference in means
for the drugs. The other three tests in Table 6.15 are adjustments for the
standard F-test and are used if the assumption of sphericity is not acceptable.
Note that these alternative versions of the test give results consistent with the
standard F-test in this case.

Table 6.15  ANOVA Results for Repeated-Measures Analysis

Tests of Within-Subjects Effects
Measure: MEASURE_1

Type Ill Sum

Source of Squares df Mean Square F Sig.
drug Sphericity Assumed 1843.094 3 614.365 30.239 .000

Greenhouse-Geisser 1843.094 2.437 756.269 30.239 .000

Huynh-Feldt 1843.094 3.000 614.365 30.239 .000

Lower-bound 1843.094 1.000 1843.094 30.239 .001
Error(drug)  Sphericity Assumed 426.656 21 20.317

Greenhouse-Geisser 426.656 17.060 25.010

Huynh-Feldt 426.656 21.000 20.317

Lower-bound 426.656 7.000 60.951

Part two of this ANOVA analysis is to determine where these differences
lie. As in other ANOVA models, these differences can be examined using
pairwise comparisons. Table 6.16 shows SPSS output of pairwise compar-
isons using the Bonferroni method.

This table compares each pair of means for each drug. For example, the
comparison of Drugl to Drug2 gives a mean difference of 11.125 and a
p-value of 0.008. The overall conclusion of the pairwise comparisons is that
there is no significant difference between Drug2 and Drug3 (p = 1.0), but all
other drug differences are significantly different (at the 0.05 level). Since
Drug2 and Drug3 have the lowest means, our conclusion is that both Drug?2
and Drug3 are better at decreasing snoring than Drugl and Drug4, but we
don’t have sufficient evidence to choose between Drug2 and Drug3.
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Bonferroni Comparisons for Repeated-Measures ANOVA

Measure: MEASURE_1

Pairwise Comparisons

Mean 95% Confifience Interval for
) Difference?
Difference
() drug  (J) drug (1-9) Std. Error Sig.2 Lower Bound | Upper Bound
1 2 11.125* 2.142 .008 3.338 18.912
3 8.625* 1.451 .003 3.350 13.900
4 -8.125 2.482 .082 -17.148 .898
2 1 -11.125* 2.142 .008 -18.912 -3.338
3 -2.500 2.027 1.000 -9.868 4.868
4 -19.250* 2.678 .001 -28.985 -9.515
3 1 -8.625* 1.451 .003 -13.900 -3.350
2 2.500 2.027 1.000 -4.868 9.868
4 -16.750* 2.520 .002 -25.911 -7.589
4 1 8.125 2.482 .082 -.898 17.148
2 19.250* 2.678 .001 9.515 28.985
3 16.750* 2.520 .002 7.589 25.911

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
a. Adjustment for multiple comparisons: Bonferroni.

Reporting Results of a Repeated-Measures ANOVA

The following illustrates how you might report this repeated-measures
ANOVA in a publication format.

Narrative for the Methods Section

“A repeated-measures analysis of variance was performed to compare the
ability of each of the four drugs to reduce snoring (decrease the snoring index).
The assumption of sphericity was checked using Mauchly’s test, and the
Bonferroni method was used to perform pairwise comparisons following a sig-

nificant overall test result.”

Narrative for the Results Section

“Mauchly’s test found that an assumption of sphericity is plausible (p = 0.79).

The overall test for differences in means in the repeated-measures ANOVA was
significant, F(3, 21) = 30.2, p < 0.001. Pairwise comparisons indicate at the
overall 0.05 level that Drug2 (M = 74.5, SD = 4.04) and Drug3 (M =77.0, SD
= 3.0) were better at reducing snoring than Drugl (M = 85.6, SD = 4.21)
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or Drug4 (M =93.8, SD = 5.55). However, no significant difference was found
between Drug2 and Drug3.”

You might choose to include the comparison results in a table or include
the simple graphical display in Table 6.17 to summarize the pairwise
comparisons.

Table 6.17  Results of Bonferroni Comparison

Drug2 Drug3 Drugl Drug4

74.5 77.0 85.6 93.8

The interpretation of Table 6.17 is that any two drugs that are under-
scored by the same line are not significantly different. This display quickly
and succinctly illustrates that Drug2 and Drug3 are not significantly differ-
ent from each other and that Drugl and Drug4 are not significantly differ-
ent. However, the means for Drug2 and Drug3 are both significantly lower
than the means for Drugl and Drug4.

SPSS Step-by-Step. ExaMPLE 6.4: Repeated-Measures ANOVA

To perform the previous example in SPSS, follow these instructions:

1.

Open the data set SNORING.SAV and select Analyze/General Linear
Model/Repeated Measures. . . .

For the “Within-Factor” name, enter DRUG and 4 for number of levels.
Click Add and Define.

For the “Within-Subjects Variables,” select (in order) Drugl (click on right
arrow), Drug?2 (click), Drug3 (click), and Drug4 (click).

Click on Options and place the drug factor in the “Display Means for” box.
Select the “Descriptive Statistics” checkbox and any other measures you
want to observe. Click on the “Compare main effects” checkbox and select
Bonferroni confidence interval adjustment. (This produces the pairwise
comparisons.) Click Continue.

To produce the means plot, click on the Plots button and place the drug
factor in the horizontal axis list and click Add and Continue.

Click OK to produce all of the output used in the example.
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Analysis of Covariance

The final topic for this chapter is really a combination of analysis of variance
and regression. We consider a one-way analysis of covariance (ANCOVA),
which is essentially a one-way ANOVA with a twist. That twist is that the
means across groups are not compared directly. Instead, the means are
adjusted by some other quantitative variable called a covariate. Notice
that the covariate variable is not a value controlled by the researcher but is
instead a value that is intrinsic to the subject (or entity) observed. When an
appropriate covariate is used, an ANCOVA is an improvement over the cor-
responding ANOVA model since it explains additional variability and thus
results in a more precise analysis.

Appropriate Applications for Analysis of Covariance

o Which Promotion Is Most Effective? A car dealership wants to know if
placing trucks, SUVs, or sports cars in his outside display area affects the
number of customers who enter the showroom. However, he is also aware
that outside temperature may affect the number of customers. His study com-
pares customer traffic for the three different display options with daily high
temperature as a covariate.

e Which Drug Is Best? A researcher is comparing three drugs for decreasing
triglyceride levels and suspects that the effectiveness of the drugs is related to
the subject’s age. Therefore, she uses age as a covariate in the comparison.

o  Which Teaching Method Is Better? A school system is trying to decide among
three proposed methods for teaching math. The teaching methods are allo-
cated to randomly selected sections, and performance is evaluated using the
final exam. To standardize the comparisons, a pretest (covariate) is given to
each student at the beginning of the year.

Design Considerations for an Analysis of Covariance

Because an analysis of covariance is a combination of one-way ANOVA
and regression, considerations from both perspectives should be made when
performing this type of analysis:

1. Normality. A standard assumption for the ANOVA model to be valid is that
the measurement variable is normally distributed within each group. See
Chapter 2: Describing and Examining Data concerning how to assess these
characteristics for a variable.

2. The Groups Must Be Independent. Each subject (or entity) in each group
should be different. Subjects should be randomly assigned to each group.
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3. The Covariate Must Be Quantitative and Should Be Linearly Related to the
Outcome Measure in Each Group or Treatment Level. If the covariate is not
correlated with the outcome measure, it will be of little use in the analysis.
This assumption implies that for each treatment level, there is a regression
line relating the covariate with the response variable.

4. Homogeneity of Regressions. A key assumption in ANCOVA is that the
slopes of the regression lines discussed in Item 3 above are equal. That is, this
assumption specifies that these regression lines are parallel.

5. Other Considerations. As in all analysis of variance models, it is assumed that
the variances across groups are equal and error terms are uncorrelated. It is
also assumed that the treatments do not affect the covariates.

The covariate (also called a concomitant variable) should be something
that is observed prior to the study, or it should be a variable that is not influ-
enced by the study. Typical covariates include age, pretest scores, IQ, and
so on. As with the analysis of variance and #-test, the procedure is robust
against moderate departures from normality and variance assumptions, par-
ticularly if the sample size per group is moderately large. The independent
group assumption should not be violated.

Hypotheses for an Analysis of Covariance

An analysis of covariance model consists of two components: (1) the com-
ponent specifying the group effect as in an ANOVA model and (2) a com-
ponent indicating the linear relationship between the dependent variable and
the covariate. Typically, analysis of covariance testing proceeds in two steps:

1. Homogeneity of Regressions. The null hypothesis is tested that the regression
lines relating the dependent variable and the covariate have the same slopes
in all groups.

2. Group Effects. If the null hypothesis in (1) is not rejected, then we test the
group effect by testing the null hypothesis that the group regression lines are
not only parallel but also are actually equal to each other. If they are deter-
mined to be separate lines, then this is an indication of a group effect after
adjusting for the covariate.

The hypotheses related to the homogeneity of regressions assumption are
given as follows:

H,: The regression lines for each group are parallel.

H_: At least two of the regression lines for groups are not parallel.
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If the F-test for testing these hypotheses is not rejected, then we move on
to test for a group effect. These hypotheses can be stated very informally as
follows:

H,: All group means (adjusted by the covariate) are equal.

H, At least two means (adjusted by the covariate) are not equal.

An F-test is used to test for differences in adjusted group means. As with
a one-way ANOVA, if differences are found and there are more than two
groups, you may want to use a multiple comparison procedure to identify
the differences. For more discussion of ANCOVA models, see Keppel and
Wickens (2004).

EXAMPLE 6.5: Analysis of Covariance

Description of Problem

A school system is trying to choose among three proposed methods of
teaching math in the fifth grade. Nine classes are randomized to the three
methods and are taught for 3 months. Pretest and posttest scores are com-
pared. Using the pretest score as a covariate, an analysis is performed to
determine if there are any differences and, if so, which method or methods
are best.

To visually examine the data, a scatterplot of the pretest and posttest
scores is shown in Figure 6.8 along with the fitted within-group regression
lines.

It is always a good idea to study a plot of your data before performing
your analysis. In this case, you are interested in determining if the lines are
parallel and, if so, whether some are different from others (i.e., that some
teaching methods produce higher scores adjusted for a pretest). In the graph,
you can see three lines, each representing one of the methods. The top line
represents Method 3, and the other two lines represent Methods 1 and 2.
Visually, we see that these lines are not perfectly parallel but that the slopes
are quite similar. In addition, we see that two of the lines (for Methods 1 and
2) are quite similar, while the line for Method 3 seems to be distinct and
stays above the other two lines. This suggests that Method 3 is preferable to
the other two methods and that Methods 1 and 2 are very similar to each
other. Analysis of covariance is a formalized method for checking these
observations. The following procedure is used to perform the analysis of
covariance:
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With Reference Line for Pretest

1. An F-test is used to determine if the regression lines are parallel. This is sim-
ilar to an interaction test in a two-way analysis. The model required to cre-
ate this output is one that contains the fixed factor (Method), the covariate
(Pretest), and an interaction term (Method* Pretest).

2. If the assumption of parallel regression lines is not rejected, then another
F-test is used to compare the adjusted means to determine if any are different.

3. [If there are significant differences among the adjusted means, then a pairwise
comparison is performed to determine which methods are different.
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Step 1

Table 6.18 shows SPSS output related to this step. The table provides
output for the ANOVA model containing the terms Method, Pretest, and
Method*Pretest. The test for the significance of the interaction term (i.e.,
Method*Pretest) is the only test to consider at this stage to test the assump-
tion of parallel slopes (lines). Since p = 0.683 for this F-test, we conclude that
the assumption of parallel slopes for the lines is reasonable, and we can
proceed to Step 2, the test for differences in the adjusted means.

Table 6.18  ANCOVA Analysis Containing Test for Equal Slopes

Tests of Between-Subjects Effects

Dependent Variable: Posttest

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 698.1792 5 139.636 33.633 .000
Intercept 1.326 1 1.326 319 .582
Method .820 2 .410 .099 .907
Pretest 476.450 1 476.450 114.759 .000
Method * Pretest 3.262 2 1.631 .393 .683
Error 49.821 12 4.152
Total 25836.000 18
Corrected Total 748.000 17

a. R Squared = .933 (Adjusted R Squared = .906)

Step 2

The F-test designed to test for differences among adjusted means (assum-
ing parallelism) is given in Table 6.19, which is similar to Table 6.18 but
does not have an interaction term. In this case, we are interested in the term
labeled Method since that is the term that compares the three teaching
methods. Since p < 0.001 for this test, we reject the null hypothesis that
the adjusted means are equal and conclude that there is at least one pair of
adjusted means that are different.

Step 3

Since we found a difference among adjusted means, pairwise comparisons
(Table 6.20) can be used to identify which adjusted means are different. In
this case, the Bonferroni procedure is used to make the comparisons in the
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Table 6.19  Analysis of Covariance Test for Group Effects (on Method)

Tests of Between-Subjects Effects

Dependent Variable: Posttest
Type [l Sum

Source of Squares df Mean Square F Sig.
Corrected Model 694.9172 3 231.639 61.092 .000
Intercept 4.152 1 4.152 1.095 313
Method 105.981 2 52.990 13.976 .000
Pretest 627.917 1 627.917 165.605 .000
Error 53.083 14 3.792
Total 25836.000 18
Corrected Total 748.000 17

a. R Squared = .929 (Adjusted R Squared = .914)

format of Table 6.16. It can be seen that at the overall 0.05 level of signifi-
cance, Method 3 is significantly different from Method 1 and Method 2
(Bonferroni-adjusted p-values are p = 0.005 and p = 0.001, respectively), but
Methods 1 and 2 are not significantly different (Bonferroni-adjusted p =
1.0). It is clear from this analysis that Method 3 has a higher overall adjusted
mean on the standardized math test than either Method 1 or 2, which is
consistent with our initial visual observations.

Table 6.20

Analysis of Covariance Pairwise Comparisons

Pairwise Comparisons

Dependent Variable: Posttest

Mean 95% Confidence Interval for
Difference Difference?®

(I) Method  (J) Method (1-3) Std. Error Sig.2 Lower Bound | Upper Bound
1 2 1.022 1.156 1.000 -2.120 4.165
3 -4.738* 1.209 .005 -8.025 -1.451

2 1 -1.022 1.156 1.000 -4.165 2.120
3 -5.761* 1.138 .001 -8.853 -2.668

3 1 4.738* 1.209 .005 1.451 8.025
2 5.761* 1.138 .001 2.668 8.853

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

a. Adjustment for multiple comparisons: Bonferroni.

For illustrative purposes, Figure 6.8 includes a vertical reference line that
represents the mean of Pretest (33.06). The adjusted means, which are used
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to compare the groups under the ANCOVA model, are the values on the
vertical scale at which the reference line intersects the three regression lines.
These adjusted posttest means are given in Table 6.21.

The covariate has an important effect on the comparison among methods
for these data. Without the covariate model, the (unadjusted) means for the
Posttest scores are 39.17, 34.67, and 38.17 for teaching Methods 1, 2, and
3, respectively. It should be noted that if a one-way analysis of variance were
performed on the Posttest variable without using Pretest as a covariate, the
(unadjusted) means would not be significantly different (p = 0.50). These
results are in contrast to the results in Figure 6.8, in which it can be seen that
the adjusted means are 40.8 for Method 3 and 36.1 and 35.1 for Methods
1 and 2, respectively. That is, Method 3 yields a significantly higher adjusted
mean score, even though its associated raw mean score was slightly lower
than the mean for Method 1. Thus, the covariate model reveals a difference
that would not have been evident otherwise.

Table 6.21 Adjusted Means for Analysis of Covariance

Estimates

Dependent Variable: Posttest

95% Confidence Interval

Method Mean Std. Error Lower Bound Upper Bound
1 36.095(a) .830 34.314 37.875
2 35.072(a) 796 33.366 36.779
3 40.833(a) .822 39.071 42.595

a. Covariates appearing in the model are evaluated at the following values: Pretest = 33.06.

Reporting Results for an Analysis of Covariance

The following examples illustrate how you might report this analysis of
covariance in a publication format.

Narrative for the Methods Section
“An analysis of covariance (ANCOVA) was used to compare final math scores

by teaching method using a pretest as a covariate. Bonferroni pairwise com-
parisons were used to determine significant differences in the groups.”

Narrative for the Results Section

“The ANCOVA test for parallel within-group regression lines was not signifi-
cant (F = 0.39 with 2 and 12 df, p = 0.68). The resulting test for equality of
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adjusted means found a significant difference (F = 13.98 with 2 and 14 df,
p = < .001). The Bonferroni pairwise comparisons found that at the overall
0.05 level, the adjusted mean posttest under Method 3 (M, = 40.8, SE = 0.82)
is significantly different from Method 1 (M, = 36.1, SE = 0.83) and Method
2 (M, = 35.1, SE = 0.80), but Methods 1 and 2 are not different from each
other. It is clear from this analysis that Method 3 produced a higher overall
improvement in score on the standardized math test than either Method 1 or

2 when adjusted for pretest scores.”

SPSS Step-by-Step. EXAMPLE 6.5: Analysis of Covariance

To produce the output used in the example above, follow these steps:

1.

Open the data set MATH.SAV and select Graphs/Scatterplot/Dot/Simple
Scatter and Define to create a graphical comparison for these data.

Designate Posttest for the “y-axis,” Pretest for the “x-axis,” and Method for
“Set Markers.” Click OK to display the preliminary graph.

Double-click on the graph to enter the Chart Editor. From the Elements
menu, select “Fit Line at Subgroups.” Close the Properties dialog box and
exit the Chart Editor. The comparison graph will be displayed in the output.

To perform the analysis, select Analyze/General Linear Model/Univariate . . . and
then select Posttest as the dependent variable (this is your outcome variable),
Method as a fixed factor, and Pretest as a covariate.

To calculate the model containing the interaction term, click on the Model
button and select the Custom radio button. Click on Method and the right
arrow and Pretest and the right arrow. Make sure the “Build Terms” option
in the middle of the dialog box is set at “Interaction.” While holding down
the CTRL key, select both Method and Pretest and then click on the right
arrow. In the Model box, you should have three terms—Method, Pretest, and
Method* Pretest. Click Continue.

Click OK to display the preliminary F-test to test for parallelism. In this
case, this test yields a p-value of 0.683, which means that you can proceed to
create a table of comparisons for means.

Go back to the analysis setup (Analyze/General Linear Model/Univariate)
and click on the Model button. Click on the Method* Pretest term and the left
arrow to remove this term from the model. Click Continue and OK.

To create the pairwise comparisons, click the Options button. Place Method
in the “Display Means for” box. Select the “Compare Main Effects” check-
box and select the Bonferroni (or your choice) multiple comparison proce-
dure. Check the “Descriptive Statistics” checkbox and any others that you
want displayed. Click Continue and OK to produce the results in Table 6.20.
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Summary

This chapter explains the most common types of analysis of variance. For
more information on topics, including power and sample size for these types
of analyses, see Keppel and Wickens (2004).
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Nonparametric
Analysis Procedures

When “Plan A” doesn’t work out, it’s always good to have a “Plan B.”
The good news is that when the normality assumption for a stan-
dard parametric procedure such as the t-test, correlation, ANOVA, or others
cannot be verified, you have another option. A nonparametric procedure can
often be used in place of a parametric procedure.

The basic technique used by nonparametric procedures to get around the
normality assumption is that they do not use the raw data. Instead, in a non-
parametric procedure, the ordered or ranked values are used in the analysis.
That is, the smallest value receives a rank of 1, the next smallest a rank of 2,
and so on. There will be some instances in which the data are ranked with
respect to the entire data set and others in which the ranking will be done
within groups. For more discussion on the use of ranks (e.g., how they are
used in the case of ties, etc.), you should check a text with a good discussion
of nonparametric analysis. Several good ones are Conover (1998), Gibbons
(1993), Lehmann and D’Abrera (1998), and Siegel and Castellan (1988).
Nonparametric procedures are also useful if you don’t have exact data val-
ues but you do know how the data are ordered. This chapter presents
descriptions of several commonly used and reported nonparametric statisti-
cal procedures. They include the following:

o Spearman’s rank correlation (measure association between two variables): a
nonparametric alternative to Pearson’s correlation

191
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o  Mann-Whitney U (compare two independent groups): a nonparametric alter-
native to a two-sample #-test

o Kruskal-Wallis (compare two or more independent groups): a nonparametric
alternative to a one-way analysis of variance

o Sign test or Wilcoxon test (compare two repeated measures): nonparametric
alternatives to the paired #-test

o Friedman’s test (compare two or more repeated measures): a nonparametric
alternative to a repeated-measures analysis of variance

The chi-square tests (e.g., for association and for goodness of fit) can also
be considered to be nonparametric tests. These are covered in Chapter 5:
Analysis of Categorical Data.

In this chapter, you will learn when, why, and how to perform a non-
parametric test and how to present your results. The descriptions of the sta-
tistical tests in this chapter are sometimes abbreviated compared to other
chapters because these procedures often mimic many of the design consider-
ations of their parametric cousins.

Spearman’s Rho

Spearman’s rho (sometimes called Spearman’s rank correlation) is a
substitute for Pearson’s correlation coefficient discussed in Chapter 4:
Correlation and Regression when the normality assumptions for that mea-
sure cannot be assumed. Spearman’s rho measures the strength of an increas-
ing or decreasing relationship between two variables. Instead of using the
raw observed data, Spearman’s rho is based on the ranked data. Like
Pearson’s correlation, Spearman’s rho takes on values from -1 to 1 and
is interpreted in much the same way as Pearson’s correlation. In fact,
Spearman’s rho is computationally equal to Pearson’s correlation calculated
on the ranks instead of the original data.

Appropriate Applications for Spearman’s Rho

o Is Your Car a Status Symbol? Examine the association between people from
five categories of socioeconomic level and model year of car driven. Note that
socioeconomic level is an ordinal variable that may not satisfy the require-
ments of a quantitative variable. For discussion of variable types, see Chapter 2:
Describing and Examining Data.

o Tennis Rankings. Tennis rankings of American tennis players and amount of
income earned playing tennis (again, the tennis ranking variable is ordinal).



Nonparametric Analysis Procedures 193

Is Crime Rate Related to Education? A criminologist collects data on the
crime rates and median educational level for a sample of U.S. cities to exam-
ine the relationship. There is concern that the variables may not be normal
and that outliers may have too strong an effect on Pearson’s correlation.

Design Considerations for Spearman’s Rho

Situations in which Spearman’s rho would be chosen over Pearson’s cor-
relation are as follows:

Data Benefits From Ranking. When data values contain a few unusual values or
outliers, we showed in Chapter 4: Correlation and Regression that the Pearson
correlation can be unduly influenced by these values. Using Spearman’s rho
(which is based on ranks) in these situations can give a clearer measure of the
actual strength of the association by minimizing the influence of the extreme
values.

Data Observed as Ordinal Variables. When data are observed in ordered
values such as tiny, small, medium, large, very large, or < 10, 11-20, 21-30,
31-40, and so on, then Pearson’s correlation is not appropriate, whereas
Spearman’s rho can still be correctly used.

Sample Size Too Small. A measure of association between two variables is
needed in a situation in which sample size is small and the normality of at
least one of the variables is questionable.

Hypotheses for Spearman’s Rho

The hypotheses being tested are the following:

H,: There is no monotonic relationship between the two variables.

H, There is a monotonic relationship between the two variables.

Tips and Caveats for Spearman’s Rho

Verify Results With a Graph. As illustrated in Chapter 4, you should always
visually examine the relationship for your correlation using a scatterplot.
Correlation Does Not Imply Cause and Effect. The finding of a significant
correlation (either Pearson’s or Spearman’s) does not justify the conclusion of
a cause-and-effect relationship. A properly designed prospective study is
required before such a conclusion can be drawn.

Could Data Be Transformed? If you are using Spearman’s rho instead of a
Pearson’s correlation because your data distribution is nonnormal, another
strategy might be to transform to data that are more nearly normal using a
transformation such as the square root, logarithm, and so on.
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EXAMPLE 7.1: Spearman’s Rho

Describing the Problem

An educator wants to know how attendance (recorded as the percentage
of classes attended) is related to the final letter grade received by freshmen
students in an American history class at a community college. Because
the grades are given as A, B, C, D, and F (recorded as 1, 2, 3, 4, and 35),
Spearman’s rho is used to measure the association. A scatterplot of the data
is shown in Figure 7.1. The Spearman’s rho calculation yields a correlation
of —0.852 with p < 0.001. Spearman’s rho is appropriate in this case because
the letter grades (although coded with numbers) might not be considered to
be of equal distance apart (depending on the grading criteria).
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Figure 7.1 Scatterplot of Grade Versus Attendance Data

Reporting Results for Spearman’s Rho

The following example illustrates how you might report this test result in
a publication format.
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Narrative for the Methods Section

“Spearman’s correlation was used to examine the association between final
letter grades and course attendance.”

Narrative for the Results Section

“Spearman’s rho for grade and course attendance was rho =-0.85, p < 0.001.
This indicates that students with worse attendance had lower final grades in
the course.”

SPSS Step-by-Step. ExamPLE 7.1: Spearman’s Rho

To perform the analysis and generate the plot in SPSS, follow these steps:

1. Open the data set ATTENDANCE.SAV and select Analyze/Correlate/
Bivariate.

2. Select Grade and Attendance as the variables to analyze.

3. Check the Spearman’s checkbox and click OK to display the preliminary
output shown for Spearman’s rho.

4. To create the scatterplot, select Graph/Scatter/Dot/Simple Scatter . .. and
Define.

5. Select Attendance for the y-axis and Grade for the x-axis and click OK.

Mann-Whitney (Two Independent Groups Test)

The Mann-Whitney test (sometimes referred to as the Mann-Whitney U) is
similar to the two-sample #-test without the normality or equal variance
assumption. However, the data must meet the requirement that the two
samples are independent. Like other nonparametric procedures, the Mann-
Whitney procedure uses ranks instead of the raw data values. Specifically,
the data values are assigned ranks relative to both samples combined, and
Mann-Whitney’s test is designed to test whether observations in one popu-
lation tend to have higher values (and therefore higher ranks) than those
from the other population.

Typical settings appropriate for use of the Mann-Whitney test are those
in which
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e The sample sizes are small and normality is questionable.

e The data contain outliers or extreme values that, because of their magnitude,
distort the mean values and affect the outcome of the comparison.

e The data are ordinal

Side-by-side boxplots are also useful in this setting. For more information
on a two-sample #-test, see the discussion in Chapter 3: Comparing One or
Two Means Using the ¢-Test.

Hypotheses for a Mann-Whitney Test
The hypotheses being tested by the Mann-Whitney test are the following;:

H,: The two groups have the same distribution.

H, The two groups do not have the same distribution.

Note that Mann-Whitney tests equality of the distributions rather than
means, as was the case in the two-sample #-test. Medians are usually
reported for this type of data, but the Mann-Whitney test is not simply a test
comparing medians unless the only difference in the two distributions is a
shift in location.

EXAMPLE 7.2: Mann-Whitney Test

Describing the Problem

A researcher wants to know if one fertilizer (Brand 1) causes plants to
grow faster than another brand of fertilizer (Brand 2). Starting with seeds,
he grows plants in identical conditions and randomly assigns fertilizer
“Brand 1” to seven plants and fertilizer “Brand 2” to six plants. Note: This
is the same data set used in ExamMpLE 3.2. In the setting here, we assume that
because of the small sample sizes, normality cannot be assumed. Output is
shown in Table 7.1.

The “Ranks” table gives mean ranks for each group. As with other non-
parametric procedures, the Mann-Whitney test is performed on the ranked
data rather than on the actual values. Thus, the mean ranks are compared
rather than the actual means of the data. The “Test Statistics” table shows
a Mann-Whitney U statistic value of U = 12.5 and an exact p-value of p =
0.234. The asymptotic p-value is an approximation for large sample sizes.
In this case, with sample sizes of 7 and 6, you should use the “exact”



Nonparametric Analysis Procedures

Table 7.1 Mann-Whitney Analysis

197

Ranks
TYPE N Mean Rank | Sum of Ranks
HEIGHT 1 7 5.79 40.50
2 6 8.42 50.50
Total 13
Test StatisticsP
HEIGHT
Mann-Whitney U 12.500
Wilcoxon W 40.500
zZ -1.219
Asymp. Sig. (2-tailed) .223
Exact Sig. [2*(1-tailed
. 2342
Sig.)]

a. Not corrected for ties.
b. Grouping Variable: TYPE

p-value. The Mann-Whitney test and the Wilcoxon rank sum test are
different test statistics formed using the ranked data that yield equivalent
p-values. It is most common to refer to this as the Mann-Whitney test. It is
interesting to note that these results (i.e., not finding a significant difference
between fertilizers) are consistent with those found in ExampLE 3.2 using the

two-sample #-test.

Reporting Results for a Mann-Whitney Test

The following sample write-ups illustrate how you might report this

Mann-Whitney test in publication format.

Narrative for the Methods Section

“A Mann-Whitney test was used to test the hypothesis that the distribution of
heights of the plants for the two types of fertilizer was equal.”

Narrative for the Results Section

“The distribution of plant heights given fertilizer Brand 1 was not significantly
different from that given fertilizer Brand 2, Mann-Whitney U=12.5, p =0.23.”
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SPSS Step-by-Step. ExAaMPLE 7.2: Mann-Whitney Test

To create the output for the Mann-Whitney test, follow these steps:

1. Open the data set FERTILIZER.SAV and select Analyze/Nonparametric
Tests/2 Independent Samples. . . .

2. Select Height as the test variable and Type as the group variable. To specify
the range of values for the grouping variable, click Define Range. Enter 1 for
Group 1 and 2 for Group 2 (corresponding to the codes used for two groups)
and click Continue.

3. Make sure the Mann-Whitney checkbox is selected. Click OK to display
Table 7.1.

Kruskal-Wallis Test

The Kruskal-Wallis test is the nonparametric counterpart to the one-way
analysis of variance. With the Kruskal-Wallis test, there are no normality or
equal variance assumptions. Otherwise, the design considerations and data
collection issues are the same as those for the one-way ANOVA discussed in
Chapter 6: Analysis of Variance and Covariance. For more information on
the appropriate applications for this type of analysis, refer to the description
of the one-way ANOVA in Chapter 6. Graphical presentations discussed in
Chapter 6, such as side-by-side boxplots, are also useful here.

Hypotheses for a Kruskal-Wallis Test

The hypotheses being tested are as follows:

H,: There are no differences in the distributions of the groups.

H_: There are differences in the distributions of the groups.

EXAMPLE 7.3: Kruskal-Wallis Test

Describing the Problem

An agricultural researcher wants to know which of four possible feeds is
best in producing weight gain for sheep. Twenty-eight sheep are randomly
divided into four “feed” groups. Because the groups are small, the normal-
ity of the data cannot be adequately tested. Therefore, a Kruskal-Wallis test
is used to compare the four groups. The data for this analysis (in the SPSS
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data editor) are shown in Figure 7.2. Notice how these data have been
entered in the same way as the #-test or analysis of variance data in that there
is one observation per line and there is a grouping variable (Feed in this case)
that specifies a group identity for each observation.

FEED | WEIGHT |  var \
1 1 50.80
2 1 57.00/
3 1] 4460/
4 1] 51.70
5 1| 48.20|
6 1| 51.30
7 1] 49.00/
8 2 68.70/
[ 2 67.70
10 2| 66.30
11 2 69.80|
12 2| 66.90|
13 2| 65.20|
14 2| 62.00/
15 3| 8260/
16 3| 7410
17 3| 80.30|
18 3 80.50/
19 3 81.50|
20 3 7860/
21 3| 7610
22 4] 76.90
23 4] 72.20
24 4 73.70
25 4 74.20
26 4 7060/
27 4 75.30
28 4] 69.80/

Figure 7.2 Data for Kruskal-Wallis Example

The output for this analysis is shown in Table 7.2. The “Ranks” table
shows the mean rank for each group, and the “Test Statistics” table reports
the chi-square test statistic and associated p-value.

It should be noted that the ranking for the Kruskal-Wallis procedure is
done on the basis of all 28 observations. Thus, the smallest value in the list,
that is, 44.6 in Feed Group 1 (the third value from the top) in Figure 7.2, is
assigned Rank 1, 48.2 (also in Group 1) is assigned Rank 2, and so on, and
the largest value in the list, 82.6 (in Group 3), is assigned the largest rank of 28.
It is interesting to note that the weights in Feed Group 1 have a mean rank of
4. Because 4 is the mean of the ranks 1, 2, ..., 7, this implies that the seven
smallest weights were in Feed Group 1, a fact that can be verified by exam-
ining the data in Figure 7.2. This information seems to suggest that weights
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Table 7.2 Output for Kruskal-Wallis Analysis

Ranks
FEED N Mean Rank
WEIGHT 1 7 4.00
2 7 11.07
3 7 24.43
4 7 18.50
Total 28

Test Statistics®P

WEIGHT
Chi-Square 24.481
df 3
Asymp. Sig. .000

a. Kruskal Wallis Test
b. Grouping Variable: FEED

in Feed Group 1 are smaller than those in other groups, and this leads us to
us believe that the null hypothesis is not true. In fact, from the table, we see
that p < 0.001, verifying our observations. There is sufficient evidence to
reject the null hypothesis that the groups are the same and conclude that there
is a statistically significant difference in the weight gains by feed.

SPSS does not offer a multiple comparison test for the Kruskal-Wallis test.
Because the results are significant, you can safely conclude that the weight gains
for Feed 3 (MEDIAN = 80.3) are significantly higher than the weight gains for
Feed 1 (MEDIAN = 50.8). A description of how to do Tukey-style multiple
comparisons for a Kruskal-Wallis test may be found in Zar (1999). In general,
after obtaining a significant Kruskal-Wallis test, you could use multiple Mann-
Whitney tests to examine pairwise differences. There would be six such com-
parisons. A conservative approach (Bonferroni) would be to perform these
comparisons at the 0.05/6 = 0.0083 level. We will not go into this analysis here.

Reporting Results for a Kruskal-Wallis Test

The following example illustrates how you might report this Kruskal-
Wallis test in a publication format.

Narrative for the Methods Section

“A Kruskal-Wallis test was used to test for differences among feeds because
normality was questionable and sample sizes within each group are small.”
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Narrative for the Results Section

“The Kruskal-Wallis test for comparison of feeds indicates that there is a
statistically significant difference in the distribution of weight gain between the
groups, x*(3) = 24.5 and p < 0.001.”

SPSS Step-by-Step. ExampLE 7.3: Kruskal-Wallis Test

To create the output for the Kruskal-Wallis test, use the following steps
in SPSS:

1. Open the data set FEED.SAV and select Analyze/Nonparametric tests/K
independent samples.

2. Select Weight as the test variable and Feed as the grouping variable. To spec-
ify the range of values for the grouping variable, click Define Range. Enter 1
as the minimum and 4 as the maximum (corresponding to the codes used for
the four feeds) and click Continue.

3. Click OK to display the output for the Kruskal-Wallis test.

4. To calculate the medians by group, select Analyze/Descriptive Statistics/
Explore. . . . Select Weight for the dependent list and Feed for the factor list.
Click OK. The resulting tables include the median values for each “feed”

group.

Sign Test and Wilcoxon
Signed-Rank Test for Matched Pairs

The sign test and the Wilcoxon signed-rank test can be used to compare
paired data as nonparametric alternatives to the paired z-test. These tests are
used when you cannot justify a normality assumption for the differences.
Otherwise, the design considerations for these tests are the same as for the
paired t-test described in Chapter 3. Applications of paired-data analysis are
given in Chapter 3 and are applicable here.

The sign test is very simple in that it counts the number of differences that
are positive and those that are negative and makes a decision based on these
counts. The sign test can be used when the differences are ordinal or quan-
titative. The Wilcoxon signed-rank test goes one step further in that it uses
information about the magnitude of the differences. Specifically, the
absolute values of the differences are ranked from smallest to largest, and
then the sum of the ranks associated with positive differences is compared
with the sum of the ranks for the negative differences. It should be pointed
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out that the Wilcoxon signed-rank test assumes that the differenced data are
quantitative and the distribution of the differences is symmetric.

Hypotheses for a Sign Test or Wilcoxon Signed-Rank Test

The hypotheses being tested by the sign test and Wilcoxon signed-rank
test are as follows:

H,: The probability of a positive difference is equal to the probability of a

negative difference.

H_: The probability of a positive difference is not equal to the probability of a
negative difference.

EXAMPLE 7.4: Wilcoxon Signed-Rank Test and Sign Test

Using the Wilcoxon signed-rank test on the diet data in Examrie 3.4
(analyzed in Chapter 3 as a paired #-test) produces the output shown in
Table 7.3.

Table 7.3 Output for Wilcoxon Signed-Rank Test

Ranks
N Mean Rank | Sum of Ranks
after - before  Negative Ranks 10(a) 9.70 97.00
Positive Ranks 5(b) 4.60 23.00
Ties 0(c)
Total 15

a. after < before
b. after > before
c. after = before

Test Statistics(b)

after - before

z -2.108(a)
Asymp. Sig. (2-tailed) 035

a. Based on positive ranks.
b. Wilcoxon Signed Ranks Test

The differences are calculated as “after weight minus before weight,” and
the “Ranks” table indicates that there were 10 negative differences, 5 posi-
tive differences, and no ties. The statistic calculated for the test is Z =-2.108
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and p = 0.035. Similar output for the sign test (not shown) produces a
p-value of 0.302. In this case, the Wilcoxon signed-rank test produced a sig-
nificant result at the 0.05 level, and the less powerful sign test was not
significant (p = 0.302). The Wicoxon test is in general more powerful, and
in this example, it detected a difference when the sign test did not. Given
these somewhat contradictory results, you would use the Wilcoxon signed-
rank test if you can reasonably make the assumption that the distribution of
the differences is symmetric. You might choose the more conservative sign
test if you are uncomfortable with this assumption. It should be noted that
in ExamPLE 3.4 (where the data were analyzed using a paired ¢-test), the
results were significant (p = 0.02).

Reporting the Results for a Wilcoxon

Signed-Rank Test or Sign Test

The following illustrates how you might report the results of the
Wilcoxon signed-rank test or sign test in a publication format.
Narrative for the Methods Section

“The Wilcoxon signed-rank test (or sign test) was used to ascertain whether
the diet was effective.”

Narrative for the Results Section

“The Wilcoxon test showed the diet to be effective, with 10 of 15 subjects
losing weight (p = 0.035).”

or

“The sign test showed that the results were not significant, with 10 of
15 subjects losing weight (p = 0.302).”

SPSS Step-by-Step. EXAMPLE 7.4:
Wilcoxon Signed-Rank Test and Sign Test

To create the output for the Wilcoxon signed-rank test and sign test

example, follow these steps in SPSS:

1. Open the data set DIET.SAV and select Analyze/Nonparametric Tests/
2-Related Samples.

2. Click on Before and After to highlight them and click the right arrow to place
them in the “Test Pairs List.”
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3. Make sure the Wilcoxon and Sign checkboxes are selected and click OK. The
output shown in Table 7.3 is displayed. Note that by default, SPSS calculates
the difference as “after — before,” regardless of the order you enter the
variables in Step 2 above.

Friedman’s Test

Friedman’s test is a nonparametric alternative to a repeated-measures analy-
sis of variance used to compare observations repeated on the same subjects.
Unlike the parametric repeated-measures ANOVA, this test makes no assump-
tions about the distribution of the data (e.g., normality). Friedman’s test, like
many nonparametric tests, uses the ranks of the data rather than their raw
values to calculate the statistic. If there are only two readings per subject,
Friedman’s test is equivalent to the sign test.

The design considerations for this Friedman’s test are similar to those
for the repeated-measures ANOVA discussed in Chapter 6, except for the
normality assumption. We recommend that you review that discussion to
understand how and when Friedman’s test should be used.

Hypotheses for Friedman’s Test

The hypotheses being tested in Friedman’s test are as follows:

H,: The distributions are the same across repeated measures.

H_: The distributions across repeated measures are different.

EXAMPLE 7.5: Friedman’s Test

We use Friedman’s test to analyze the snoring data in ExaMPLE 6.3, where it
was analyzed as a repeated-measures ANOVA. The data (shown in Figure
6.5) compare the effects of four drugs on snoring for eight patients. The out-
put for Friedman’s test is shown in Table 7.4.

The data are ranked within patients across drugs. For example, using the
data in Figure 6.5, the snoring index for Patient1 for Drugl through Drug4
was 89, 78, 79, and 98, respectively. The resulting ranks are, then, 3, 1, 2,
and 4, respectively. This ranking is done separately for each patient. If a cer-
tain drug tended to be assigned a preponderance of low ranks, then this
would suggest it is better at reducing snoring. The output in Table 7.4 shows
the ranks by drug along with a chi-square and associated p-value. In that
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Table 7.4 Output for Friedman’s Test

Ranks
Mean Rank
DRUG1 3.06
DRUG2 1.25
DRUG3 1.75
DRUG4 3.94

Test Statistics?

N 8
Chi-Square 22.481
df 3
Asymp. Sig. .000

a. Friedman Test

table, we see that Drug2 had a mean rank of 1.25, while Drug4 had a mean
rank of 3.94. These mean ranks are consistent with the findings for Patient1
and suggest that there is a general tendency for Drug2 to perform best and
Drug4 to perform worst.

Table 7.4 shows that chi-square = 22.481 with p = 0.000 (usually
reported as p < 0.001). SPSS does not offer any automated multiple com-
parison procedure as is available in the one-way repeated-measures analysis.
A procedure for performing multiple comparisons following Friedman’s test
is discussed in Zar (1999, p. 267). A statement could be made that the results
for Drug4 were higher than for Drug2 because those are the two extremes.
Based on the fact that there is a significant difference among drugs, an ad
hoc multiple comparison procedure could be used in which the sign test is
used to compare all possible pairs of drugs (six total comparisons). These
comparisons are shown in Table 7.5. If you wanted to take the conservative
Bonferroni approach, then each of the p-values in Table 7.5 should be com-
pared to 0.05/6 = 0.0083.

Table 7.5 Multiple Comparisons for Friedman’s Test

Test StatisticsP

DRUG2 - | DRUG3- | DRUG4 - | DRUG3 - | DRUG4 - | DRUG4 -
DRUG1 DRUG1 DRUG1 DRUG2 DRUG2 DRUG3

Exact Sig. (2-tailed) .0082 .0082 .0162 .2192 .0082 .0082

a. Binomial distribution used.
b. Sign Test
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The resulting Bonferroni analysis shows that there is a significant differ-
ence between Drugl and Drug2, Drugl and Drug3, Drug2 and Drug4, and
Drug3 and Drug4. A simple graphical presentation of these results is given
in Table 7.6.

Table 7.6 Graphical Representation of Friedman’s Multiple Comparisons

Drug Drug Drug Drug
2 3 1 4

In this graphical representation, any two means underscored by the same
line are not significantly different at the 0.0083 significance level (i.e., at an
overall 0.05 level of significance). Note that it may be possible, particularly
because this is an ad hoc method, that the overall test could be significant
while all of these individual comparisons are nonsignificant. However, the
overall test at least specifies that the largest and smallest group medians are
different. It should be noted that the results for these data are consistent with
the findings for the repeated-measures ANOVA in EXaAMPLE 6.4.

Reporting Results for Friedman’s Test

The following illustrates how you might report this Friedman’s test in a
publication format.

Narrative for the Methods Section

“The difference between drugs was tested using Friedman’s test because the
assumption of normality could not be verified and the sample size for each
group was small. In the presence of a significant overall test, follow-up pair-
wise comparisons were performed using the sign test, with the p-values
adjusted using the Bonferroni correction to maintain an overall 0.05 compari-
son rate.”

Narrative for the Results Section

“Friedman’s test for comparison of feeds resulted in %*(3) = 22.5 and
p < 0.001. The drug producing the lowest snoring score was Drug2. Multiple
comparisons indicate that Drug2 and Drug3 were more effective at reducing
snoring than Drugl and Drug4, but there was no significant difference
between Drug2 and Drug3 or between Drugl and Drug4.”
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SPSS Step-by-Step. ExAMPLE 7.5: Friedman’s Test

To create the output for the Friedman’s test example, follow these steps
in SPSS:

1. Open the data set SNORING.SAV and select Analyze/Nonparametric
Tests/K-Related Samples.

2. Select Drugl to Drug4 as the test variables. Make sure the Friedman Test
checkbox is selected. Click OK to display the test results for the Friedman
test, as shown in Table 7.4.

3. To perform the multiple comparisons, select Analyze/Nonparametric
Tests/2-Related Samples.

4. To specify the “Test Pairs” list, click on (and highlight) Drugl and Drug2 and
click the right arrow. Do the same for all pairwise comparisons (there should
be a total of six pairwise comparisons). Make sure the Sign Test checkbox is
selected. Click OK to display the results of the pairwise comparisons, as
shown in Table 7.5.

Summary

Nonparametric tests are used when the assumptions for a standard para-
metric test cannot be reasonably assumed. Nonparametric tests are often less
powerful than their parametric cousins and should be used only when the
parametric test is not appropriate.
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Logistic Regression

Introduction to Logistic Regression

You’ve either got it or you don’t. That’s the point of logistic regression.
Binary logistic regression is defined by a response variable that can take on
only one of two values, typically 1 and 0 (often interpreted as yes or no, dis-
eased or not diseased, alive or dead, etc.). Typical reasons a researcher would
choose logistic regression for an analysis include the following:

e To predict the probability of an event occurring based on a list of one or more
predictor variables

e To rank the relative importance of predictor variables in explaining the
response variable

e To calculate an odds ratio that measures the importance of a predictor vari-
able on the response

This chapter begins by describing simple logistic models and then dis-
cusses the more complicated process of selecting a model from a list of pos-
sible predictors and evaluating that model. Thus, the topics that are covered
in this chapter include the following:

o Simple logistic regression: analyzing and interpreting a logistic regression model
with one predictor variable

e Multiple logistic regression: development of a logistic regression model based
on more than one predictor variable, including the following;:

209
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e Model selection: selection of the “best” variables to include in a model

e Model interpretation: interpretation of model coefficients and assessment of
the model fit

e Prediction: using a logistic model for prediction

Although this chapter specifically covers binary logistic regression, there
are also other types of logistic regression not discussed in this chapter, inclu-
ding multinomial logistic regression (where the dependent variable can have
more than two outcomes) and ordinal logistic regression (where the depen-
dent variable has two or more ordered categories). For the remainder of this
chapter, the term logistic regression will refer to only binary logistic regres-
sion. To keep this discussion at the level of the rest of this book, we will dis-
cuss models that do not include interaction terms. However, although we’ve
kept formulas to a minimum for most of the book, we felt it necessary to
include a few more here than in previous chapters for explanatory purposes.
If you need to delve deeper into this subject, we recommend that you refer
to Cohen, Cohen, West, and Aiken (2002); Daniel (2004); Hosmer and
Lemeshow (2000); Kleinbaum (1994); Neter, Wasserman, Nachtsheim, and
Kutner (1996); and Tabachnick and Fidell (2001).

Appropriate Applications for Logistic Regression

o What Variables Affect Voting Preference? Investigators want to predict how
a person will vote (two options) based on demographic characteristics of the
individual.

o [s This Customer a Good Candidate for a Loan? A bank wants to predict
whether a customer will default on a loan based on known demographic and
financial information.

o Will This Patient Develop Coronary Heart Disease? In a longitudinal study
of 450 patients, the independent variables age, gender, smoking behavior, and
blood pressure are used to predict whether patients will develop coronary
heart disease during the study.

As you can see from these examples, the characteristic that distinguishes
logistic regression from linear regression (discussed in Chapter 4: Corre-
lation and Regression) is the binary response (dependent) variable.
Otherwise, as in linear regression, the predictor (independent) variables can
be quantitative or binary.
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Simple Logistic Regression

Simple logistic regression is a logistic model based on a single independent
(predictor) variable that can be either dichotomous or quantitative. In logis-
tic regression, the independent variable is sometimes referred to as a covari-
ate. This section will examine the case in which the independent variable is
quantitative. Understanding how to interpret the simple logistic model will
help you understand the more complicated logistic regression equations later
in this chapter. This simple logistic equation takes on the following form:

eﬁo + By xPredictor

p 8.1]

= 1 + ebo+B1 «Predictor

where p is the probability that the dependent variable is equal to 1, B, is
the equation intercept (or constant), and B, is the coefficient for the predic-
tor variable. Think of these coefficients in a similar way as those in a simple
linear regression. As in simple linear regression, the parameters 3, and 3, are
estimated from the data, and a statistical test is used to determine whether
the coefficient 3, can be considered to be nonzero.

Hypotheses for Simple Logistic Regression

The typical null hypotheses tested in a simple logistic regression are the
following;:

Hy: B,=0 (the predictor variable is not related to the probability of occurrence).

H,: B,# 0 (the predictor variable is related to the probability of occurrence).

The role of B, is specified in Equation 8.1. If B, is zero, then the logistic equa-
tion shows that there is no logistic relationship between the predictor variable
and the probability of occurrence. If B, is found to be nonzero, then the inde-
pendent variable plays a role in predicting p.

Tips and Caveats for Simple Logistic Regression
Cause and Effect

As in linear regression, the creation of a prediction equation does not
necessarily imply a cause-and-effect relationship between the predictor and
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the response. Such a relationship can be implied only when the experimental
design is prospective.

EXAMPLE 8.1: Simple Logistic Regression

Describing the Problem

A major automaker is experimenting with rebates on a new line of SUVs.
At a local car show, 100 rebate coupons are handed out to attendees who
are classified as strong prospects to purchase the SUV. Each coupon is ran-
domly valued at anywhere between $250 and $5,150. During the following
month, dealers keep track of which coupons were redeemed as a part of
the purchase of an SUV. The automaker is interested in knowing how the
value of the rebate coupon is related to the probability that a customer will
purchase the SUV.

Because the rebate values are large (up to $5,150), it will help us obtain
a more understandable prediction equation if we create a new variable called
Rebate100, which has the value Rebate + 100. (This will be illustrated in the
upcoming example.) Otherwise, the coefficient for Rebate will be small and
could lead to rounding errors for predictions.

By performing a logistic regression analysis with Purchase as the depen-
dent variable and Rebate100 as the independent variable, we create the out-
put as shown in Table 8.1.

Table 8.1 Simple Logistic Regression Output

Variables in the Equation

95.0% C.l.for EXP(B)

B S.E. Wald df Sig. Exp(B) Lower Upper

Step  Rebate100 214 043 | 24597 1 .000 1.239 1.138 1.349
1% Constant -5.900 1.254| 22.137 1 .000 003

a. Variable(s) entered on step 1: Rebate100.

One way to make use of the information in Table 8.1 is to use the results
to predict the probability that a customer will redeem a coupon. To calcu-
late this value, use the prediction equation shown in Equation 8.1.

The second column in Table 8.1 (labeled “B”) refers to the estimates of
the B coefficients (f, and B,) mentioned above in the logistic equation and
hypotheses. We will use the notation b, and b, to denote estimates of §, and
B,, respectively. The Rebate100 coefficient is b, = 0.214 with p < 0.001.
This indicates that Rebatel100 is a statistically significant predictor of the
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probability of a purchase. Because B, is deemed nonzero, it is appropriate to
use the information in the table to construct a predictive logistic equation.
This simple logistic equation takes on the following form:

ebo + by *Rebate100

p = 1 + eb()+b1*Rebat2100

where p denotes the predictor of the probability of purchase, p. In this
case, by =-5.9 and b, = 0.214. For a $3,000 coupon (i.e., 3,000/100 = 30 is
the value used in the equation), the predicted probability of purchase would
be 0.627, as given by the following equation:

e—5.9+0.214*30

p = 1 + e—59+0.214x30

=0.627

A graphical technique for approximating the probabilities associated
with this logistic regression without using Equation 8.1 is to produce
the plot shown in Figure 8.1, a plot of the rebate values and the predicted
probabilities of purchase based on the model. Notice the vertical
line we’ve drawn at Rebate100 = 30. This line crosses the probability
curve at about 0.63. This tells you that there is approximately a 63%
chance that a customer with a $3,000 coupon will redeem this coupon,
which is consistent with the results of the computation above (which
yielded the probability 62.7%). (For more information on decision cut-
off values, see the discussion at the end of the section “Multiple Logistic
Regression.”)

Table 8.1 also contains information about the odds ratio (OR). The OR
for Rebatel00 is given in the column headed Exp(B) and is equal to 1.239.
(If we had used Rebate instead of Rebatel00, the OR would have been
1.002, which would have been more difficult to interpret.) The correspond-
ing 95% confidence interval for the OR is 1.138 to 1.349, which does not
cover the value 1.0 and thus tells us that the OR is statistically significant (at
the o = 0.05 level). In this case, the OR is interpreted as the change in odds
for each unit change in the predictor. That is, the odds of a customer pur-
chasing an SUV are 1.239 times greater for each $100 increase in the rebate
coupon.

These preliminary concepts for interpreting logistic regression are an impor-
tant foundation for the next section, which will discuss the development of a
model that contains more than one predictor variable.
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Figure 8.1 Graph of Logistic Regression for Car Rebate Data

Reporting the Results of a Logistic Regression

The following illustrates how you might report the odds ratio for the
logistic regression in a publication format.

Narrative for the Methods Section
“To examine the effect of coupon value on sales, we used a logistic regression.”
Narrative for the Results Section

“The odds ratio of a customer purchasing an SUV is 1.239. This implies that
every $100 unit increase in the size of the coupon yields a 23.9% increase in
the odds that a customer will use the coupon for a purchase.”

SPSS Step-by-Step. ExampLE 8.1: Simple Logistic Regression

To produce the output for ExampLE 8.1, follow these steps:
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1. Open the data set REBATE.SAV and choose Analyze/Regression/Binary
Logistic.

2. Select Purchase as the dependent variable and Rebate100 as the covariate
variable.

3. To produce the confidence intervals, click on Options and check CI for
Exp(B). Click Continue.

4. To produce the data used for the graph, click on the Save button and check
the Probabilities checkbox. Click Continue.

5. Click OK to produce Table 8.1.

To produce the plot in Figure 8.1, follow these steps.

1. Select Graphs/Scatter/Dot/Simple Scatter and click Define.

2. Select Predicted Probability as the y-axis and Rebate100 as the x-axis. Click
OK to produce the preliminary graph.

3. Double-click on the graph to enter the SPSS Chart Editor.

4. From the Options menu, select an x-reference line. Specify a value of 30
for the x-axis and click Close. Similarly from the Options menu, select a
y-reference line with value 0.627. Click Close. (The y-reference line is drawn
to assist the reader in visualizing the predicted probability.)

5. From the Elements menu, select the Interpolation line. Click Close.

6. Close the Chart Editor to display the graph shown in Figure 8.1.

Multiple Logistic Regression

A multiple logistic regression model has more than one independent variable
(also referred to as predictor variables or covariates). As such, it is analogous
to the multiple regression model in the case in which the dependent (response)
variable is binary. A common setting is the situation in which there are
several predictors to select from, and the task of the researcher is to select
the best set of possible predictors. The purpose of the analysis includes the
following:

e Determining which predictors are important and how they affect the response
e Creating a parsimonious and effective prediction equation
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Tips and Caveats for Multiple Logistic Regression
Qualitative Predictor Variables

The predictor variables for a multiple logistic regression may be either
binary or quantitative. If a potential categorical predictor variable has more
than two categories such as race, brand of pickup truck, or socioeconomic
status, the variable must be recoded into two or more binary indicator vari-
ables as in the multiple regression setting. For example, suppose an observed
variable is hair color, categorized as 1 = black, 2 = blonde, 3 = brown, and
4 = red. To recode this, you must create ¢ — 1 (i.e., the number of categories
minus 1) new binary variables. Let’s call these variables Black, Blonde, and
Brown. Thus, a person with black hair would have the following values:
Black = 1, Blonde = 0, and Brown = 0. A person with brown hair would
have the values Black = 0, Blonde = 0, and Brown = 1. A person with red
hair would have the values Black = 0, Blonde = 0, and Brown = 0, and so
forth. (Some people refer to this process as “dummy coding” and the vari-
ables as dummy variables.)

Variable Selection

The process used to select the best variables for the model is similar to the
process used in multiple linear regression.

Large Number Problem

If a continuous predictor variable contains values that are large, it may
cause the estimate of the corresponding B coefficient as well as the corre-
sponding OR to be small. This small number can lead to round-off errors in
predictions and make interpretation difficult. It is advisable to divide large
numbers by a constant to create smaller values for a predictor variable. This
was illustrated for the Rebate variable in ExamrLe 8.1 and for the Price vari-
able in the upcoming example. Another strategy is to standardize predictor
variables (i.e., subtract the mean and divide by the standard deviation). See
ExamrLE 8.2 for more discussion of these topics.

Use Binary Coding

If you have a variable that can take on only one of two values, it is
common practice to code that variable using 0 and 1 values. If you use some
other values, it will change the prediction equation and may make interpretation
more challenging.
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ExAMPLE 8.2: Multiple Logistic Regression

Describing the Problem

The sales director for a chain of appliance stores wants to find out what
circumstances encourage customers to purchase extended warranties after a
major appliance purchase. The response variable is an indicator of whether
or not a warranty is purchased. The predictor variables they want to consider
are the following:

e Customer gender

e Age of the customer

e Whether a gift is offered with the warranty
e Price of the appliance

e Race of customer

There are several strategies you can take to develop the “best” model for
the data. It is recommended that you examine several models before deter-
mining which one is best for your analysis. One approach is to use a hierar-
chical technique in which you select the order of entry of predictor variables
based on your knowledge of the problem. Another approach is to allow the
computer to select variables in the model using strictly statistical criteria. We
recommend a blend of these approaches in most situations. In this example,
we allow the computer to help specify important variables, but it is inadvis-
able to accept a computer-designated model without examining alternatives.
For this example, we begin by examining the significance of each variable in
a fully populated model. Table 8.2 shows the output resulting from includ-
ing all of the candidate predictor variables in the equation.

Table 8.2 Including All Predictor Variables
in the Logistic Regression Equation

Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step  Gender -3.772 2.568 2.158 1 .142 .023
18 Gift 2.715 1.567 3.003 1 .083 15.112
Age .091 .056 2.638 1 .104 1.096
Price .001 .000 3.363 1 .067 1.001
Race 2.827 3 419
Race(1) 3.773 13.863 .074 1 .785 43.518
Race(2) 1.163 13.739 .007 1 .933 3.199
Race(3) 6.347 14.070 .203 1 .652 570.898
Constant -12.018 14.921 .649 1 421 .000

a. Variable(s) entered on step 1: Gender, Gift, Age, Price, Race.
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Notice that the Race variable, which was originally coded as 1 = White,
2 = African American, 3 = Hispanic, and 4 = Other, has been changed (by
the SPSS logistic procedure) into three (4 — 1) indicator variables called
Race(1), Race(2), and Race(3). These three variables each enter the equation
with their own coefficient and p-value, and there is an overall p-value given
for Race.

The significance of each variable is measured using a Wald statistic. (Note
that SPSS reports a Wald chi-square and not the Wald z that is more com-
monly used. You can convert the Wald chi-square to a Wald z by taking
the square root of the chi-square value and assigning the sign of the corre-
sponding coefficient estimate, that is, b,. Using p = 0.10 as a cutoff criterion
for not including variables in the equation, it can be seen that Gender (p =
0.142) and Race (p = 0.419) do not seem to be important predictor vari-
ables. Age is marginal (p = 0.104), but we’ll leave it in for the time being.
The analysis is rerun without these “unimportant” variables, yielding the
output in Table 8.3.

Table 8.3 Results of Reduced Model

Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step  Gift 2.339 1.131 4.273 1 .039 10.368
12 Age .064 .032 4.132 1 .042 1.066
Price .000 .000 6.165 1 .013 1.000
Constant -6.096 2.142 8.096 1 .004 .002

a. Variable(s) entered on step 1: Gift, Age, Price.

This reduced model indicates that there is a significant predictive power
for the variables Gift (p = 0.039), Age (p = 0.042), and Price (p = 0.013).
Although the p-value for Price is small, notice that the OR =1 and the coef-
ficient for Price is zero to three decimal places. These seemingly contradic-
tory bits of information (i.e., small p-value but OR = 1.0, etc.) are suggestive
that the values for Price are hiding the actual OR relationship. If the same
model is run with the variable Price100, which is Price divided by 100, the
odds ratio becomes 1.041, and the estimated coefficient for Price100 is
0.040, as shown in Table 8.4. All of the other values in the table remain the
same. All we have done is to recode Price into a more usable number (simi-
lar to our creation of the Rebatel100 variable in Exampie 8.1). Another
tactic often used is to standardize values such as Price by subtracting the
mean and dividing by the standard deviation (see the section “Transforming,
Recoding, and Categorizing Your Data” in Appendix A for information on



Logistic Regression 219

how to do this). Using standardized scores eliminates the problem observed
with the Price variable and also simplifies the comparison of odds ratios for
different variables.

Table 8.4 Revised Model Using Price100

Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step  Gift 2.339 1.131 4.273 1 .039 10.368
1@ Age .064 .032 4.132 1 .042 1.066
Price100 .040 .016 6.165 1 .013 1.041
Constant -6.096 2.142 8.096 1 .004 .002

a. Variable(s) entered on step 1: Gift, Age, Price100.

The result is that we can now see that the odds that a customer who
is offered a gift will purchase a warranty is 10 times greater than the corre-
sponding odds for a customer having the same other characteristics but who
is not offered a gift. We also observe that for each additional $100 in Price,
the odds that a customer will purchase a warranty increases by about 4%.
This tells us that people tend to be more likely to purchase warranties for
more expensive appliances. Finally, the OR for age, 1.066, tells us that older
buyers are more likely to purchase a warranty.

One way to assess the model is to use the information in the Model
Summary table shown in Table 8.5. In general, when comparing models, the
lower the —2*(log likelihood) (—2LL) value, the better the fit. To determine
whether the inclusion of an additional variable in a model gives a significantly
better fit, you can use the difference in the —2LL values for the two models
to determine a chi-square test statistic. For example, for the model shown in
Table 8.5, 2LL = 22.278. By removing the Age variable from the equation
and rerunning the analysis, we get —2LL = 27.44. The difference (larger model
—2LL minus smaller model —2LL) has a chi-squared distribution with 1 degree
of freedom, and if this value is larger than 3.84, the log-likelihood criterion sug-
gests that the new variable should be included in the model. For this example,

x?> = Larger model (— 2LL) — Smaller model (- 2LL)
=27.44-22.278 =5.162

and we conclude that the model including Age is a better model. Other
criteria (shown in Table 8.5) that can be used to assess the model are the Cox
and Snell R-square and the Nagelkerke R-square, which are designed to pro-
vide information similar to the R-square in multiple regression.
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Another model evaluation technique is the Hosmer-Lemeshow goodness-
of-fit test. This test divides the data into several groups based on p values,
then computes a chi-square from observed and expected frequencies of
subjects falling in the two categories of the binary response variable within
these groups. Large chi-square values (and correspondingly small p-values)
indicate a lack of fit for the model. In Table 8.5, we see that the Hosmer-
Lemeshow chi-square test for the final warranty model yields a p-value of
0.987, thus suggesting a model that fits the data. Note that the Hosmer-
Lemeshow chi-square test is not a test of importance of specific model
parameters (which may also appear in your computer printout). It is a sepa-
rate post hoc test performed to evaluate a specific model.

Table 8.5 Model Diagnostics

Hosmer and Lemeshow Test

Step Chi-square df Sig.
1 1.792 8 .987

Model Summary

-2 Log Cox & Snell | Nagelkerke
Step likelihood R Square R Square

1 22.2782 .523 753

a. Estimation terminated at iteration number 8 because
parameter estimates changed by less than .001.

Interpretation of the Multiple Logistic Regression Model

Once we are satisfied with the model, it can be used for prediction just
as in the simple logistic example above. For this model, the prediction
would be

876.096 +2.339xGift + .064xAge + .04%Price100

- —6. +2.339%Gift +.064xAge + .04xPrice
p +e 6.096 4-2.339+G 064%A 04xPrice100

Using this prediction equation, we could predict the outcome for a cus-
tomer having the following characteristics:
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Age =55
Price (of appliance) = $3,850
Gift =1 (yes)

Placing these values in the equation yields the following:

6—6096 4 2.339x1 +.064%55 4 .04%38.5

p= 1 + 676'096+2‘339*1 +.064%55 +.04x38.5

=0.786

Thus, there is 78.6% chance a customer with these characteristics will
purchase a warranty if a gift is offered. If a gift is not offered while the other
characteristics stay the same, the equation becomes

e—6,096 +2.339%0 +.064%55 +.04x38.5

p - 1 + 26096 +2.339%0 +.064%55 +.04+38.5

=0.262

This information can be helpful in understanding the importance of the
gift in selling a warranty for a particular age bracket or price. Using this
information, it would be reasonable to predict that a person with the char-
acteristics in the first example (i.e., Age = 55, Price = $3,850, and Gift = 1)
would purchase a warranty because p = 0.786, and the person in the second
example (i.e., no gift offered) would not be predicted to purchase a warranty
because p = 0.262. The typical cutoff for the decision would be 0.5 (or 50%).
Thus, using this cutoff, anyone whose score was higher than 0.5 would be
predicted to buy the warranty, and anyone with a lower score would be pre-
dicted to not buy the warranty. However, there may be times when you want
to adjust this cutoff value. Neter et al. (1996) suggest three ways to select a
cutoff value:

e Use the standard 0.5 cutoff value.

e Determine a cutoff value that will give you the best predictive fit for your
sample data. This is usually determined through trial and error.

o Select a cutoff value that will separate your sample data into a specific pro-
portion of your two states based on a prior known proportion split in your
population.

For example, to use the second option for deciding on a cutoff value,
examine the model classification table that is part of the SPSS logistic out-
put, as shown in Table 8.6.
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Table 8.6 Model Classification

Classification Table?

Predicted
Bought Percentage
Correct
Observed No Yes
Step1 Bought No 12 2 85.7
Yes 1 35 97.2
Overall Percentage 94.0

a. The cut value is .500.

This table indicates that the final model correctly classifies 94% of the
cases correctly. The model used the default 0.5 cutoff value to classify each
subject’s outcome. (Notice the footnote to the table: “The cut value is .500.”)
You can rerun the analysis with a series of cutoff values such as 0.4, 0.45,
0.55, and 0.65 to see if the cutoff value could be adjusted for a better fit. For
this particular model, these alternate cutoff values do not lead to better pre-
dictions. In this case, the default 0.5 cutoff value is deemed sufficient. (For
more information about classification, see Cohen et al., 2002, p. 516.)

SPSS Step-by-Step. ExampLE 8.2: Multiple Logistic Regression

To create the output for ExampLE 8.2 using SPSS, follow these instructions:

1. Open the data set WARANTY.SAV and choose Analyze/Regression/Binary
Logistic.

2. Select Bought as the dependent variable and Gender, Gift, Age, Price, and
Race as the covariates (i.e., the independent or predictor) variables.

3. Click on the Categorical checkbox and specify Race as a categorical variable.
Click Continue and then OK. This produces Table 8.2.

4. To produce Table 8.3, again choose Analyze/Regression/Binary Logistic;
select Bought as the dependent variable and Gift, Age, and Price as the
covariates; and click OK.

5. To produce Table 8.4, repeat the steps in (4) with Pricel100 substituted for
Price.

6. To produce Table 8.5, click on the Options checkbox and select the Hosmer-
Lemeshow goodness of fit. Click Continue and OK.

7. To choose a cutoff value other than the default 0.5, select the Options (see Step
6) dialog box and enter the desired cutoff value in the box titled “Classification
Cutoff.”
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Summary

This presentation provides an example of a simple logistic regression. It also
describes how to perform a multiple logistic analysis if your response variable
is bivariate and your predictor variables are either categorical (converted to
indicator variables) or quantitative variables. The purpose of this analysis is
to discover which variables are significantly associated with the outcome and
how predictions are performed once a suitable logistic model is obtained.
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Appendix A

A Brief Tutorial for
Using SPSS for Windows

he SPSS program has been around for more than 35 years. Its origins

are in social science (thus the original name Statistical Package for
the Social Sciences), but it is now used in many other areas of research from
medicine to business. Although this book (and, in particular, this appendix)
is not meant to teach all the ins and outs of SPSS, this brief introduction
provides enough information for you to use the examples in this Quick
Reference Guidebook. (There is also a built-in tutorial in SPSS that can be
accessed by selecting Help/Tutorial from the main SPSS menu.)

The examples throughout this book are based on SPSS Version 14,
although most of the examples work in the same way for earlier (and prob-
ably later) versions of the program. In fact, SPSS is not one program
but many.

The core SPSS program is called SPSS Base, which is the heart of the SPSS
system. This SPSS Base program contains standard statistical procedures dis-
cussed in this Quick Reference Guidebook, including the following:

e Descriptive statistics: including frequencies and crosstabulations

e Comparing means: including t-tests and analysis of variance

e Regression: including correlation, simple linear regression, and multiple linear
regression

e Nomnparametric tests: including one-sample, two-sample, and related samples

225
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We also discuss several analyses found in the SPSS Advanced Models and
Regression Models Add-On products, including the following:

o General linear models: including repeated measures and analysis of covariance
o Logistic regression

These procedures are all contained in the SPSS Graduate Pack, which
is available to students at many university bookstores. We recommend that
you check with SPSS (spss.com) for information about the current status of
the commercial and educational versions of the program.

Although the examples are analyzed using SPSS for Windows, all of the
examples could be similarly analyzed using other versions of SPSS, including
SPSS for Apple Macintosh.

This Quick Reference Guidebook assumes you have access to these
modules in SPSS. Although SPSS offers many more analyses, these core fea-
tures make up the analysis toolkit needed for the vast majority of data analy-
sis projects.

When you first start up SPSS, the screen in Figure A1l is displayed. If a
preliminary dialog box appears asking “What would you like to do?” click
Cancel. The main SPSS screen looks a lot like a spreadsheet, but there are
differences. Notice the two tabs at the lower left of the screen labeled “Data
View” and “Variable View.” These two views will be used in the upcoming
examples to illustrate how to enter data into the program.

The SPSS menus at the top of this window will be referenced throughout
this book to describe how to select an SPSS option or analysis. Briefly, these
main menu items are as follows:

File: Create a new data file, open an existing data set, import and export data
Edit: Edit data in the SPSS spreadsheet, including copy, paste, and undo
View: Select options about how to view the SPSS data grid

Data: Manipulate data in the SPSS grid

Transform: Create new variables

Analyze: Perform a statistical analysis using the data in the SPSS data grid
Graphs: Create a graph from data in the SPSS data grid

Utilities: Select SPSS utility options
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Figure A1 The SPSS Data Editor Grid

Add-Ons: Provides a listing of add-on packages to which you do not currently
have access

Window: Manipulate windows

Help: Access the SPSS help system, including tutorials

In this Quick Reference Guidebook, we often refer to a series of menu
choices using a command list such as Analyze/Descriptive Statistics/
Frequencies . . . , which means to select the Analyze menu from the main
SPSS menu followed by selecting the Descriptive Statistics submenu and then
the Frequencies sub-submenu.

Working With Data in SPSS

Before performing any type of analysis, you must enter data into SPSS. There
are three typical ways to make data available for use by SPSS. They are the
following:

1. Open an existing SPSS data file (such as the example data files that are asso-
ciated with the examples in this book).
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2. Enter data into the SPSS spreadsheet using the keyboard.

3. Import data from another program such as Excel.

Whether you create your own data set or open or import a previously
created data set, you should pay some attention to each variable name and
type. Variable names and types were introduced in the section “Guidelines
for Creating Data Sets” in Chapter 1. The information for naming variables
in that discussion is sufficient for SPSS, but additional information is needed
for describing the specific data types available in SPSS. For each variable in
SPSS, you must select among the following list of data types.

e Numeric. Variables whose values are meaningful numbers. Subcategories of
numeric variables in SPSS include the following:

— Comma: numeric variables that are displayed with commas delimiting every
three places and with the period as a decimal delimiter

— Dot: numeric variables displayed with periods delimiting every three places
and with the comma as a decimal delimiter (a numeric format used in some
countries)

— Scientific notation: numeric variables displayed with an imbedded E (single
precision) or D (double precision) and a signed power-of-ten exponent such
as 1.22D3 (meaning 1220) or 1.22E-2 (meaning 0.0122)

— Custom currency: numeric variables displayed in accordance with a defini-
tion in the Currency tab of the Options dialog box

e Date. A variable that represents a calendar date or clock time.

o String. Categorical/text variables whose contents are not numeric. This can
include text descriptions such as “Has the Flu,” categorical designations such
as “Male” and “Female” or “M” and “F,” or noncalculated numbers such
as a patient ID number. However, before you create a categorical variable
that uses text instead of numbers, be aware that some procedures in SPSS
(such as regression) do not allow text variables to be used in the analysis. If
you choose to code categorical data using numbers (e.g., 1 and 0) instead of
text (e.g., Y and N), you will be able to specify the meaning of your numeric
code in the SPSS data editor using value labels.

The following sections provide examples describing how to enter data
into SPSS using these techniques.

Before using the examples in this Quick Reference Guidebook, you should
follow the procedures in Chapter 1: Introduction for downloading the example
data files and placing them on your computer so you can use the hands-on
exercises in this book.
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SPSS Step-by-Step. ExampLE Al:
Entering Data Into the SPSS Data Sheet

This example shows how to create a new data file in SPSS and how to
enter data into the SPSS data sheet. To create an SPSS data file correspond-
ing to the data specified by the data dictionary in Chapter 1, Table 1.2,
follow these instructions:

1. On the main SPSS page, click in the “Variable View” tab at the bottom of the
screen. Figure A2 shows the displayed grid.
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Figure A2 The SPSS Variable View Grid

Enter variable names and information into the Variable View grid, beginning
with the variable ID:

2. In the “Name” column, enter ID.

3. In the “Type” column, click on the ellipsis (... ), select “String,” and click
OK to designate that the ID variable is of string type.

4. In the “Width” column, change the value to 4. There are no decimals in a
string variable.

5. In the “Label” column, enter “Identification Number.” Ignore the other
columns.

6. Enter the descriptions for the other variables by using the information in the
data dictionary in Table 1.2. Using these criteria:

a. Define the variable Age as 3 digits with no decimal places and a missing
value of —99. To set the missing values code, click on the ellipse (...) in
the Missing column, select “Discrete Missing Values,” enter —99 as a miss-
ing value, and click OK.

b. Define the variable Sex as 1 digit wide, no decimal places. (Hint: Set the
decimals to O first, then the width to 1.) To enter the values for the Sex
code:
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(1) Click in the Values cell, then on the ellipse ( . .. ).

(2) Type in 1 as the value and Female as the value label and click Add.
(3) Type in 2 as the value and Male as the value label and click Add.
(4) Click OK.

c. Define the variable Tdate using mm/dd/yyyy, which automatically sets the
width at 10 characters.

d. Define the variable Score as 6 digits wide, 2 decimal places (accom-
modates the maximum possible score of 100.00). (This designation would
actually accommodate numbers up to 999.99.)

The resulting variable definitions are shown in Figure A3.

_’_ Neme |  Type | Widin | Decimals | Label | vawes | Missing | Coumns | Algn | Measure
11D Siring I [i] Identification Number |None MNone a Left Momanal
2|AGE |Humeric 3 0] Age None = 8 Right 'Scale
3|SEX |Numeric K] o |Gender {1, Fomale)_ 9 I£] Right |Scale
A|TOATE  |Date 10 0] [Test Date [None THone ] [Right [Scale
S|SCORE  |Numeric & 2 Initial Test Score 'None 80,00 8 "Right |Scale

5 ! ! | | | { | | I

Figure A3 The SPSS Variable Grid Showing Entered Definitions

Once your variables are defined, click on the “Data View” tab at the
bottom of the SPSS screen and enter the data in Table A1.

Table A1 Sample Data

ID AGE SEX TDATE SCORE
1001 23 1 10/22/2005 98.00
1002 43 2 10/23/2005 78.00
1003 24 2 11/03/2005 90.00
1004 36 1 11/06/2005 89.00
1005 29 2 11/10/2005 82.00
1006 26 2 11/15/2005 75.00
1007 19 1 11/20/2005 94.00
1008 32 1 11/23/2005 89.00
1009 35 1 11/30/2005 99.00
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After you’ve entered the data, save the data file by selecting File/Save As.
Save the data using the filename MYDATA1.SAV. These data are now ready
to analyze.

SPSS Step-by-Step. ExampLE A2:
Importing a Data File From Microsoft Excel

Data are sometimes entered and stored in a program other than SPSS.
When you are ready to perform an analysis, you will want to import that data
into SPSS. It is often useful to import a Microsoft Excel file into SPSS. This
example shows how you would import an Excel file into SPSS. (The proce-
dure is similar for other file types such as dBase files (.dbf) and Lotus (*.w*).)

Before importing Excel data into SPSS, review the guidelines in Chapter
1: Introduction in the section “Preparing Excel Data for Import.” The fol-
lowing example uses the spreadsheet named EXAMPLE.XLS, located in the
SPSS examples folder for this Quick Reference Guidebook. This file is
already in the proper format for importing into SPSS, discussed in Chapter
1, and is shown in Figure A4.

Ed Microsoft Excel - EXAMPLE.XLS
File Edit View [nsert Format Tools Data  Window Help  Adobe POF ﬂn' aefax
DeEg SRY FRBRA-¢ 9-~-@=-2lZ @ 2w - |8

Al ~ £ GROUP
Wi s | c | Dl EJF] 6 | H | I | J | K
[CROUPIAGE TIME1 TIME2 TIME3 TIME4 STATUS

12| 223) 253 282| 306
11 228 275 333 38
| 12) 228 300 328 310
12/ 185 260 290 273

8| 195/ 250) 253| 266

1] 235 288 342 356

8| 226/ 26.7| 280] 334

B| 210/ 267 275 295

7| 208 289 207 258

11 225 233 326 337

12| 234 292 304 31

14] 225/ 293 33.4] 348

DO rO000nrar >

S PO O Y ) O |
LRz ae m_wlmlm_n. w|ra =i
G I T NN

Figure A4 Data in Excel for Import Into SPSS

You do not need to open the Excel file to be able to import it into SPSS.
To import this Excel file, use the following steps (in SPSS):

1. Select File/Open/Data. . . .

2. In the “Files of Type” option in the Open dialog box, select files of “.xIs”
type.
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3. Select the file named EXAMPLE.XLS located in your C:\SPSSDATA direc-
tory (or wherever you stored the Quick Reference Guidebook examples files).
The dialog box, as shown in Figure A5, appears.

Opening Excel Data Source |Xl

C:HNSPSSDATANEXAMPLE XLS

[V [Read variable names from the first row of data.

Worksheet. [EXAMPLE [A1:G51] |
Range: |
Maximum width for string columns: I32?8?

[ ok ] Cancel | Help |

Figure AS Dialog Box for Excel Import

4. Since the data in this file are formatted for import, you may accept all the
defaults in this dialog box to import the data. (If there is information in
columns and rows that you do not want to import, you will need to enter a spe-
cific range of cells to import.)

5. Click OK to import the data into SPSS. The SPSS file will automatically
be opened in the SPSS Data View mode, as shown in Figure A6.

Eil Untitled - SPSS Data Editor
File Edit View Data Transform Analyze Graphs Utiities Add-ons Window Help

=|W|S| B of| k| &l Fli BlEE %l
[1:GROUP A

GROUP | AGE TMEl | TIMEZ [ TIMEZ [ TIME4 | STATUS | |
var yar yar

| 1 12| 23 253 %2 06| 5

2|A 11] 228| 75| 33| %8| 5|
[ 3le 12| 28| 300/ 328 310/ 4|
[ 1A 12| 185] 2%.0] 290] 79| 5
[ HE Ell 195  250| 253] 5 |
[ 6|6 1 235 X8 342[ 5]
[ 7]c 8 26 %7 280 3|
[ 8|8 8 210 %7 275 5|
[ B 7 2039 %3 27 2
[ 10]a 1 25 23 326 2]
[ 1l 19 Ra 243 N4 Ell

Figure A6 Data Imported From Excel

6. Click on “Variable View” and change any data definitions (labels, values,
missing value codes) that were not properly imported.
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7. Once your data file has been imported and you have added any “Variable
View” changes, you should save the data as an SPSS data file. For this example,
click on File/Save As . . . and save the file as IMPORTED.SAV.

8. The data are ready to analyze.

SPSS Step-by-Step. ExampLE A3: Performing an Analysis

Once you have entered data into SPSS by opening an existing file, typing in
your data, or importing data from Excel, you can perform an analysis. For
example, using the SPSS data file named TESTSCORES.SAV, you can cal-
culate the means of AGE and SCORE for this data file following these steps:

1. Open the TESTSCORES.SAV data file by choosing File/Open/Data. . . .

2. From the main SPSS menu, select Analyze/Descriptive Statistics/Descriptives.
... The dialog box shown in Figure A7 appears.

M Descriptives

& Test Date [TDATE]
& Initial Test Score [SCON D
[] Save standardized values as varisbles Dptions....

Figure A7 Dialog Box for Descriptives Analysis

3. Click on Age and the right arrow, then Initial Test Score and the right arrow.
This selects these two variables for the analysis.

4. Click on OK, and the output shown in Table A2 appears in the SPSS output
window showing descriptive statistics for these two variables.

Table A2 Output From Descriptives Procedure

Descriptive Statistics

N Minimum | Maximum Mean Std. Deviation
Age on Jan 1, 2005 9 19 43 29.67 7.550
Initial Test Score 9 76.00 99.00 88.3333 8.23104

Valid N (listwise) 9
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With these examples under your belt, you are ready to perform the analyses
discussed in this book.

Transforming, Recoding, and Categorizing Your Data

Even when information is carefully entered into the computer, researchers
often find it necessary to manipulate the data set to prepare it for analysis.
This could include the following;:

o Creating a New Variable Using Computation. Suppose a data set includes
height in inches, but the standard for an analysis is to work with centime-
ters. Using a conversion formula, you can use the SPSS Compute procedure
to transform the inches measurement into centimeters. This technique may
also be used to transform data that are not normally distributed, using a
function such as a square root or logarithm to create a new variable that is
more nearly normal in appearance.

o Removing Selected Data From Analysis Using Filtering. If a data set
includes information for people outside the ZIP codes needed for a project, use
the SPSS “Select Cases” option to filter out the unneeded records.

e Combining Groups. If a survey contains 14 different categories for
race, but most categories include only a small number of entries, you can
use the SPSS Recode procedure to combine the sparsely represented groups
into an “other” category and thus reduce the number of categories for
analysis.

Although not all data manipulation techniques can be covered in this brief
discussion, the following examples illustrate some commonly used techniques
for manipulating your data in SPSS.

SPSS Step-by-Step. ExamPLE A4:
Creating a New Variable Using Computation

SPSS allows you to calculate new variables as a function of current vari-
ables. This section illustrates how to perform this calculation and place
the result into your data set. For example, suppose you want to compute an
age-adjusted Timel variable from the EXAMPLE.SAV database in your
analysis by creating a new variable, named Timeladj, defined by dividing
Timel by the square root of Age. This can be accomplished using these
steps:
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1. Open the EXAMPLE.SAV data file and click on Transform/Compute.
2. In the Target text box, enter the new name Timelad,.

3. In the Numeric Expression text box, enter the following mathematical expres-
sion to perform the desired calculation:

TIME1/SQRT(AGE)

4. Click OK, and a new variable (column) appears in the SPSS data file, named
Timeladj. For example, the value of Timeladj for Record 1 is 6.44, which is
22.3N12.

Be Aware: Unlike a Microsoft Excel Spreadsheet (which updates your calcula-
tions when you change a value involved in the calculation), a calculation in
SPSS is a one-time event. If you go back to your data set and change a value
of Timel, for example, the corresponding value for TimeTadj will not change
unless you perform the Transform/Compute procedure again.

SPSS Step-by-Step. ExampLE AS: Transforming
Data to Make Data More Normally Distributed

Your data may be correctly entered but may still be in a form that is not
ideal for analysis. In this case, you can transform the data using one of these
techniques:

e Transforming quantitative data into standardized z-scores or other standard-
ized values

e Transforming data to induce normality by creating new variables that are
functions of current variables (using the Compute technique shown in the
previous section)

For example, suppose you want to express the Satisfaction variable in
the SURVEY.SAV data set as a standardized variable (z-score) by subtracting
the mean and dividing by the standard deviation. The following procedure
allows you to automatically create a standardized z-score variable in SPSS.

1. Open the data set SURVEY.SAV and select Analyze/Descriptive Statistics/
Descriptives. . . .

2. Select Satisfaction as the variable and check the box labeled “Save standard-
ized values as variables.”

3. Click OK. When the analysis is finished, notice that a new variable has been
added to your data set, ZSatisfaction, which is the z-score for Satisfaction.
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If you want the data to be standardized with mean 100 and standard devi-
ation of 15, you can create a new variable from calculation (as described
above) using the following expression:

ZSatisfaction100 = (ZSatisfaction * 15) + 100

You may also want to transform your data to make their distribution
more nearly normal before applying an analysis procedure that assumes
normal data. For example, taking the logarithm or the square root
of the values in a right-skewed data set can sometimes produce data
that are more nearly symmetric. The following example shows how
a logarithmic transformation can improve normality. The variable
Skewed in the TRANSFORM.SAV data set is highly skewed, as shown
in Figure AS.
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Mean = 293.383
Std. Dev. = 430.3633
N =50
0 T T T T T T
0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0
Skewed

Figure A8 Skewed Data
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We transform the data by taking the natural logarithm (the LN function
in SPSS) of this variable. You can perform this calculation using the Transform/
Compute . . . procedure in SPSS and entering the following expression:

Trdata = LN(Skewed)

A histogram of the transformed data (Trdata) is shown in Figure A9,
which appears to be much more “normal-like” in appearance than the his-
togram of the original data in Figure A8.

12~

Frequency

2 Mean = 5.0924
Std. Dev. = 1.06941
N =50

3.00 4.00 5.00 6.00 7.00 8.00
Trdata

Figure A9 Transformed Data

After transforming a variable for purposes of performing an analysis using
the transformed data, the results reported should usually consist of statistics
that have been transformed back into the original units.
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SPSS Step-by-Step. ExAMPLE AG6:
Removing Selected Data From Analysis Using Filtering

Sometimes a data set contains records that you choose to exclude from
your analysis. To exclude these records, you can filter them out (i.e., exclude)
using the Data/Select Cases procedure in SPSS, as illustrated in the following
example.

Filtering data in SPSS temporarily removes records from analysis. In the
CARS2005.SAV data set, for example, suppose the analysis calls for cars
with strictly combustion engines. Using Select Cases, you can define a filter
that will exclude cars with hybrid electric engines from an analysis. To create
such a filter, you must come up with some method of defining exclusion cri-
teria. For example, the Hybrid variable in the CARS2005 data set indicates
if the vehicle is a gas/electric hybrid vehicle. This variable can be used to fil-
ter these cars from the list. The following steps accomplish this:

1. Open the data set CARS2005.SAV select Data/Select Cases.

]

2. Click on the radio button option titled “If condition is satisfied . ..,” and

click on the “If . . .” button.

3. In the “Select Cases: If” dialog box, enter the following expression:
Hybrid = 0
(That is, we want to use only vehicles that are NOT hybrids.)

4. Click on Continue and click OK.

Once you define this filter, the records for the hybrid models have a slash
across the row label. This indicates that they will not be used in analyses as
long as this filter is in effect. The filter should have detected and filtered out
12 cars in the data file, including the Toyota Prius, Honda Civic Hybrids,
and several others.

Suppose you also want to eliminate any vehicles with more than eight
cylinders from the analysis. You would use the same steps described above,
but you would use the expression

Cylinders < 9

as your filter, which selects only those records with eight or fewer cylinders.
If you want to use both of the criteria (not hybrid and eight or fewer
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cylinders), you would string the two expressions together with a “&”
(AND) sign between them. For example,

Hybrid = 0 & Cylinders < 9

This tells SPSS to include only those records that meet both criteria. To
specify an OR condition instead of AND, you would use the vertical bar
symbol “|” in the expression instead of the “&” sign.

To verify that the combination filter has worked correctly, you can per-
form the following check using the filtered CARS2005.SAV data.

1. Select Analyze/Descriptive Statistics/Descriptives. . . .

2. Select CityMPG as the variable to analyze and click OK.

3. The analysis should use only 1,058 of the 1,081 records in the calculations.

Note: To revert back to the nonsubsetted (nonfiltered) data file,

1. Choose Data/Select Cases. . . .
2. Click on the “All Cases” radio button.
3. Click OK.

All of the slash marks in the row designations are removed, signifying that
all the data in the data file will now be used for future analyses.

SPSS Step-by-Step. ExampLE A7: Combining Groups
and Creating Categories From Quantitative Data

At times, the categories of a categorical variable may be ill defined or too
numerous to use in an analysis. In this case, you might want to recode the
data into a more usable set of categories. Examples include the following:

e Race. Suppose you observe a number of Caucasians, African Americans,
and Hispanics but very few Asians, American Indians, Eskimos, Pacific
Islanders, and so on. As a result, you may consider recoding the sparse cat-
egories into an “other” category.

e [ncome Bracket. Suppose more than half of your sample falls in a par-
ticular income bracket (High), and the rest are scattered among other lower
brackets. It might be appropriate to combine the other brackets and create
a binary variable indicating subjects in HIGHINCOME or not.
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e Type of Trauma. Suppose your original categories include penetrating
wounds, blunt wounds, and burns, but there are very few burns in your data
set. If, for your purposes, burn wounds are similar to penetrating wounds,
you may want to combine burn and penetrating wounds into one category
and analyze your data looking at blunt wounds versus all other types.

You must be careful when combining categories, and the combination
should make sense in terms of your needs. It is good practice to describe any
recoding you perform in your report or article.

Suppose you want to recode the variable SBP (systolic blood pressure)
in the BP.SAV data set into two categories: hypertensive (coded 1) and not
hypertensive (code 0), where SBP > 160 means hypertensive. Follow these
steps:

1. Open the data set BP.SAV and select Transform/Recode/Into Different
Variables. . . .

Select SBP as your input variable.

Name your output variable Hypertension. Click Change.

Click the button labeled “Old and New Values.”

Sk e

On the Recode dialog box, click on the “Range, Lowest through” radio but-
ton and enter the value 159. For “New Value,” enter 0, and click on the Add
button. This defines SPB < 159 as nonhypertensive.

6. To define hypertensive, click on the “All Other Values” radio button. For
“New Value,” enter 1, and click on the Add button. This defines SPB >159
as hypertensive.

7. To take care of missing values, click on the “System or User-Missing Values,”
enter =9 (or whatever missing value code you select) for the value, and click

Add.

8. Click Continue. Click OK. Observe that the new Hypertension variable is
included in the data set and contains the values 0 and 1.

9. Click on the “Variable View” tab on the datasheet and define the missing
value code and your category values (0 = nonhypertensive, 1 = hypertensive)
for your new Hypertension variable.

You can now use the new variable in an analysis. The trick with recoding
continuous data into categories is to find the cut-point (i.e., the point that
defines the categories into which the observations will be placed). A cut-point
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could be an obvious break in the data, a point that makes logical sense, or
one that you can otherwise justify.

SPSS Step-by-Step. ExampPLE A8: Transposing Data

Data for analysis are usually set up with one subject (or entity) per row
and variables as columns. This was discussed in the Chapter 1 section titled
“Planning a Successful Analysis.” However, it is not uncommon for data to
find their way into SPSS in just the opposite fashion (i.e., in which rows are
variables and columns are subjects). In this case, you must transpose your
data set before you can analyze it. The following example shows how this
can be accomplished. For example, suppose your data set in SPSS looks like
the data in Figure A10.

[z transpo.sav - SPSS Data Editor
Fle Edit View Data Transform Analyze Graphs Utiites Add-ons Window Help

#@|8| 8| o|| k| &l Eli= BEE el

| 18 : |
| ~ Name [ subji| sub2 | subd3 |  var |  var | Ve
1|Test1 1 5 1|
2|Test2 2 6 3|
3| Test3 3 5 5|
4|Test4 4 4 7
5|Test5 5 3| 9|
6 i
?' T
o

Figure A10  Data Prior to Transposing
To transpose this data set, follow these steps:

1. Open the data set TRANSPOSE.SAV and select Data/Transpose.
2. Place all three subject variables in the Variables list.

3. Place the Name variable in the Name list and click OK.

The resulting data set is shown in Figure A11. Notice that each row is
now a “subject,” and columns are variables. After transposing, you might
need to use the Variable View to adjust the variable definitions for the recon-
stituted data.



242 Statistical Analysis Quick Reference Guidebook

Untitled - 5P55 Data Editor
Fle Edt View Data Transform Analyze Graphs Utities Add-ons Window Help
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Figure A11  Data After Transposing

After going through the tutorials in this appendix, you will have the skills
to use the SPSS program to perform the statistical analysis examples in this
Quick Reference Guidebook.



Appendix B

Choosing the Right
Procedure to Use

he ideal time to choose the type of analysis you will perform on your

data is during the planning process. Knowing the analysis that will
be performed is crucial in designing your data collection strategy and deter-
mining a sample size. However, many times, it is true that data are collected
first, and only then is consideration given to the analysis that should be per-
formed. In either case, this appendix will help you determine which analyses
fit your needs. Remember, however, the earlier you address these statistical
issues, the better.

To select a proper analysis, your experimental question must be well
defined. If you do not know what hypotheses to test, then you cannot know
the proper statistical analysis to apply. The following guide leads you through
a series of questions that will assist you in deciding which statistical proce-
dure or procedures will address your research questions. Begin by deciding
which of the following scenarios addresses your analysis type:

1. Are you performing a descriptive analysis, a comparative (inferential) analy-
sis, or a correlation/association analysis? These analyses are described in the
section in Chapter 1 titled “Planning a Successful Analysis.”

2. What types of variables are you analyzing? Are you using quantitative
(numeric) or qualitative (categorical) data? Are your response (dependent)
variables normally distributed? These are the types of questions that you will
need to be able to answer to decide on the appropriate analysis. For more
details, see Chapter 2: Describing and Examining Data.

243
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Once you can answer these questions, the following decision tables help
you decide which analyses are appropriate. This is not an all-inclusive
decision-making tool and cannot substitute for the thoroughness that a pro-
fessional statistician would apply to your experimental question. If your data
and hypotheses do not conform to these simple rules, then your analysis may
be more complex than those covered here, or you may not have properly
defined your research questions.

How to Use the Tables

To use the following tables, first consider the type of analysis you want to
perform. This topic was described in more detail in the section in Chapter 1
titled “Planning a Successful Analysis.”

1. A Descriptive Analysis. Is the purpose of your analysis to summarize your
data into a few numbers?

For example, this would be the case if you want to characterize quantita-
tive data using descriptive statistics (such as a mean and standard deviation)
or you want to summarize information in a categorical variable using a fre-
quency table or graph.

If yes, go to Table B1, “Descriptive Statistics.”

2. A Comparative Analysis. Is the purpose of your analysis to compare one or
more groups to each other or to a standard?

If yes, go to Table B2, “Comparison Tests.”

3. Association and Correlation. Is the purpose of your analysis to determine if
there is a relationship between variables, or do you want to predict one vari-
able using one or more other variables? Examples of this would be a corre-
lation or regression analysis as well as crosstabulation of categorical
variables.

If yes, go to Table B3: “Relational Analyses (Correlation and Regression).”

For example, suppose you have collected information from two inde-
pendent groups of subjects and you have measured some characteristic for
each subject. Suppose further that you want to know if the means of the
measured characteristic are different for the two groups. This scenario fits
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the description of the second option. Therefore, you would go to Table B2
and, in the left-hand column, select the item labeled “You are comparing
data from two INDEPENDENT groups.” If you have determined that a nor-
mality assumption is plausible, then in the second column, you should select
“Normal” as your data type. In the third column, you see that an appropri-
ate analysis is a two-sample #-test. You can go to Chapter 3 and look over
the hypotheses, assumptions, caveats, and description of a two-sample #-test
to verify that this type of analysis is appropriate. If so, proceed with the
analysis as described in Chapter 3.

If none of these options relates to what you want to accomplish, you
should reexamine your research questions or consult a statistician to see what
type of analysis best fits your goals. We emphasize that these tables contain
only commonly used procedures and are not intended to provide an exhaus-
tive listing of statistical techniques.

Table B1 Descriptive Statistics

Make a decision by reading from left to right.

>

What Is the Data Type? | Analysis Procedure to Use (Chapter)

Normal Mean, SD, and so on, using
the Descriptive or Explore

Y tt
ou want to procedure (Chapter 2)

describe a
single Quantitative Median, histogram, and stem-and-
variable. leaf plot using the Explore
procedure (Chapter 2)
Categorical Frequency table (Chapter 2)
You want Both are normal Pearson’s correlation (Chapter 4)

to describe
two related

or paired Both categorical Crosstabulations (Chapter 2)
variables.

Both are at least ordinal | Spearman’s correlation (Chapter 7)
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Table B2

Comparison Tests

Statistical Analysis Quick Reference Guidebook

Make decision by reading from left to right.

>

You are comparing

a SINGLE SAMPLE
to a norm (gold

What Is the Data Type?

Procedure to Use

Normal

Single-sample #-test (Chapter 3)

data from two
INDEPENDENT

standard). At least ordinal Sign test (Chapter 7)
Categorical Goodness of fit (Chapter 5)
You are comparing Normal Two-sample #-test (Chapter 3)

At least ordinal

Mann-Whitney (Chapter 7)

PAIRED, REPEATED,
or MATCHED data.

groups. Categorical 2 X ¢ test for homogeneity/
chi-square (Chapter 5)
You are comparing Normal Paired #-test (Chapter 3)

At least ordinal

Sign test (Chapter 7)

means where the
model includes a
covariate adjustment.

Symmetric Wilcoxon signed-rank test
quantitative (Chapter 7)
Binary McNemar (Chapter 5)
(dichotomous)
More than Normal One-way ANOVA (Chapter 6)
two groups: At least ordinal Kruskal-Wallis (Chapter 7)
INDEPENDENT - -
Categorical 7 X ¢ test for homogeneity/
chi-square (Chapter 5)
More than Normal Repeated-measures ANOVA
two groups: (Chapter 6)
REPEATED At least ordinal Friedman’s test (Chapter 7)
MEASURES Categorical Cochran Q (not covered)
You are comparing Normal Analysis of covariance

(Chapter 6)

NOTE: In this table, the term Normal indicates that the procedure is theoretically based on
a normality assumption. In practice, normal-based procedures can be used if you have data for
which a normality assumption is plausible or your sample size is sufficiently large that the
normal-based procedures can be appropriately used. The term At least ordinal indicates that
your data have an order. This includes ordinal categorical data and any quantitative data.
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Table B3 Relational Analyses (Correlation and Regression)

Make decision by reading from left to right.

>

You want to What Is the Data Type? | Procedure to Use
analyze thAe Normal Pearson correlation, simple linear
relationship regression (Chapter 4)
between two
variables. At least ordinal Spearman correlation (Chapter 7)
(f regression, Categorical r X ¢ contingency table analysis
one variable is (Cha 5
s pter 5)
classified as a - — -
response variable | Binary Logistic regression (Chapter 8)
and one a
predictor
variable.)
You want to Normal Multiple linear regression
analyze the (Chapter 4)
relationship
between a
response variable
and two or
more predictor  |Binary Logistic regression (Chapter 8)
variables.

NOTE: In this table, the “data type” applies to the dependent variable for regression procedures.
For assessment of association (e.g., correlation, crosstabulation, etc.), the variable type applies
to both variables. See the footnote to Table B2 for a discussion of the normality assumption.
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two-sample #-test, 54-55

two-way ANOVA, 167

Bickel, P. J., 139
Binary coding, 216
Bland, J. M., 108
Bland-Altman analysis
defined, 107-108
design considerations, 108
examples, 108-111
results reporting, 110
SPSS application, 110-111
Bonferroni comparisons, 179, 180,
181, 186-187, 206
Boxplots, 28, 51
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Categorical data
combining, 115
considerations for examining, 39
crosstabulation of variables
in, 43-45
defined, 39
examples, 40-45
frequency table for, 40-43
nominal measures of, 148
ordinal measures of, 148-149
from quantitative data, 239-241
SPSS applications, 42-43
tips and caveats for, 40
treated as quantitative data, 40
Cause and effect conclusions,
81,211-212
Central limit theorem (CLT), 26
Chi-square test, 120-121, 124, 134
goodness-of-fit, 146
Cochran’s test, 138
Cohen, J., 210
Cohen, P., 210
Comparative statistics, 5
Comparison tests, 246
Computer programs, reporting results
using, 18
Confidence intervals
one-sample z-test, 52
paired #-test, 69
Conover, W. J., 191
Contingency coefficient, 148
Contingency table analysis
appropriate applications of, 114
criminal behavior versus drinking
preference, 117-123
defined, 114
design considerations, 115
examples, 117-126
exposure to reagent versus reaction,
123-126
hypotheses, 116
results reporting, 120-121, 125
SPSS application, 121-123,
125-126
Continuity correction statistic, 123

Contrasts, specified, 159, 160-161
Correlational statistics, 5-6
data collection for, 11
Correlation analysis
appropriate applications for, 79
assumptions about linear
relationships found using,
82-83
cause and effect
conclusions using, 81
defined, 78-79
design considerations, 79-80
examples, 83-87
hypotheses for, 80
one-sided tests, 80
providing incomplete pictures
of relationships, 81
results reporting, 86
scatterplots and, 81-87
SPSS application, 86-87
tips and caveats for, 80-83
using scatterplots with, 81-83
variables, 80-81
Cramer’s V, 148
Crosstabulation of categorical
variables, 43-45

Daniel, W., 210
Data
arrangement, 60-64
categorical, 39-45
collection appropriate to testing
hypotheses, 10-11
dictionaries, 12-13
entering SPSS, 229-231
filtering, 238-239
imported from Microsoft Excel,
231-233
outcome variable, 10-11
predictor variable, 11
quantitative, 24-38
scales of measurement of, 11
sets
designed with one subject
per line, 13



examples, 20
guidelines, 12-16
illustrated using graphs, 19
variables documented in, 12-13
SPSS, 227-234
transforming, recoding, and
categorizing, 234-242
transposing, 241-242
Descriptive statistics, 4, 27, 171, 245
Design considerations
analysis of covariance, 182-183
Bland-Altman analysis, 108
contingency table analysis, 115
correlation analysis, 79-80
data set, 13
goodness-of-fit test, 144
Mantel-Haenszel analysis, 136
multiple linear regression, 96-97
one-sample #-test, 48-49
one-way ANOVA, 152-153
paired #-test, 70
repeated-measures ANOVA, 176-177
simple linear regression, 88-89
Spearman’s rho, 193
two-sample #-test, 55-56
two-way ANOVA, 167-168
Dictionaries, data, 12-13
Distribution, quantitative data, 25
Documentation of variables, 12-13
Dunnett’s test, 159-160

Elliott, A. C., 157
Extrapolation
multiple linear regression, 101
simple linear regression (SLR),
89-90

Fidell, L. S., 210
Filtering using SPSS, 238-239
Formulation of testable research
questions, 10
Frequency table for categorical data,
40-43
Friedman’s test
defined, 204
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examples, 204-207
hypotheses for, 204
results reporting, 206
SPSS application, 207

Gamma statistic, 148
Gibbons, G. D., 191
Goodness-of-fit test
appropriate applications of, 143
defined, 143
design considerations, 144
examples, 145-147
Hosmer-Lemeshow, 220
hypotheses, 144
on Mendel’s data, 145-147
results reporting, 146
SPSS application, 146-147
tips and caveats for, 144
Gossett, William, 47
Graphs
associated with two-sample
t-test, 58
guidelines for creating and using, 19
one-way ANOVA, 155-156
scatterplot, 81-87
two-way interaction, 171, 172
Groups, quantitative data by, 34-36

Histograms, 28, 29, 30, 32
Homogeneity
of regressions, 183
test for, 115, 116
Hosmer, D. W., 210
Hosmer-Lemeshow goodness-of-fit
test, 220
Hypotheses
alternative, 60, 65
analysis of covariance, 183-184
contingency table analysis, 116
correlation analysis, 80
data collection appropriate to
testing, 10-11
deciding on type of analysis
appropriate to test, 11
formulating testable, 10
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Friedman’s test, 204
goodness-of-fit test, 144
Kruskal-Wallis test, 198
Mann-Whitney test, 196
Mantel-Haenszel analysis, 136
McNemar’s test, 132-133
multiple linear regression, 97-98
null, 6-8, 9-10, 51, 60
one-sample #-test, 49-50
one-way ANOVA, 154

paired #-test, 70-71
repeated-measures ANOVA, 177
sign test or Wilcoxon test, 202
simple linear regression (SLR), 89
simple logistic regression, 211
Spearman’s rho, 193

testing, power and sample size, 6-9

two-sample #-test, 56-57, 65
two-way ANOVA, 168-170

Identity, plot of, 107, 108
Independent samples, 55, 96, 115,
116, 152, 167, 182

Indicator variables, 101
Interaction hypothesis, 169
Interpretation of results, 12
Interrater reliability

appropriate applications of, 140

defined, 140

examples, 140-143

results reporting, 141-142

SPSS application, 142-143
Interval estimates, 91

Kendall’s tau-b, 149
Kendall’s tau-c, 149
Keppel, G., 170
Kleinbaum, D. G., 90, 210
Kolmogorov-Smirnov test, 25, 29
Kruskal-Wallis test
defined, 198
examples, 198-201
hypotheses for, 198
results reporting, 200-201
SPSS application, 201

Kupper, L. L., 90
Kutner, M. H., 210

Lambda measure, 148
Least squares principle, 88-89, 97
Lehmann, E. L., 191
Lemeshow, S., 210
Levene’s test, 155
Logistic regression
appropriate applications for, 210
introduction to, 209-210
multiple, 215-222
simple, 211-215
tips and caveats for, 211-212, 216

Main effects test, 169-170
Mann-Whitney test
defined, 195-196
hypotheses for, 196
results reporting, 197
SPSS application, 198
Mantel-Haenszel analysis
appropriate applications of, 136
of Berkeley graduate
admissions data, 136-140
defined, 135
design considerations, 136
examples, 136-140
hypotheses, 136
results reporting, 138
SPSS application, 138-139
tips and caveats for, 139-140
McNemar’s test
for advertising effectiveness,
133-135
appropriate applications of, 132
defined, 131
examples, 133-135
hypotheses for, 132-133
results reporting, 135
SPSS application, 135
Means
and nonnormal distribution
of data, 26-27
two-sample t-test comparing, 55



Mendel, Gregor, 145
Model
interpretation and evaluation for
multiple linear regression,
101-102
interpretation of multiple logistic
regression, 220-222
selection for multiple linear
regression, 99-100
Muller, K. E., 90
Multiple linear regression
appropriate applications of, 96
defined, 95
design considerations for, 96-97
examples, 102-107
hypotheses for, 97-98
model interpretation and
evaluation for, 101-102
model selection for, 99-100
residual analysis in, 105-106
R-square statistic in, 98
scatterplots and, 102, 103
SPSS application, 106-107
tips and caveats for, 100-101
Multiple logistic regression
defined, 215
examples, 217-222
model interpretation, 220-222
SPSS application, 222
tips and caveats for, 216

Nachtsheim, C. J., 210

Neter, J., 170, 210

Nizam, A., 90

Nominal measures of categorical
data, 148

Nonparametric analysis
procedures, 191-192

Normality

analysis of covariance and, 182

how to use information about, 26-27

one-sample ¢-test and, 55
one-way ANOVA and, 153
paired #-test and, 70

plots used to assess, 28-34

Index 253

repeated-measures ANOVA
and, 176-177
testing, 25-26
two-way ANOVA and, 167
Null hypotheses, 6-8
p-value and, 9-10
t-tests and, 51, 60, 65

Observed regression equations, 88-89
O’Connell, J. W., 139
One-sample #-tests
appropriate applications for, 48
confidence intervals, 52
defined, 48
design considerations, 48-49
example, 50-54
hypotheses for, 49-50
results reporting, 53
SPSS application, 53-54
One-tailed #-tests, 49-50, 56-57
preplanning, 57
One-way ANOVA
appropriate applications for, 152
defined, 152
design considerations, 152-153
Dunnett’s test and, 159-160
equal variances in, 153
examples, 154-166, 162-166
hypotheses for, 154
results reporting, 159
specified contrasts and, 159,
160-161
SPSS application, 161-162,
164-166
tips and caveats for, 154
with trend analysis, 162-166
Ordinal measures of categorical
data, 148-149
Outcome variables, 10-11
Outliers, scatterplot, 81-83

Paired #-test
appropriate applications for, 69
associated confidence interval, 69
defined, 68-69
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design considerations, 70 design considerations, 176-177
examples, 71-75 examples, 177-181
hypotheses for, 70-71 results reporting, 180-181
results reporting, 73 SPSS application, 181
SPSS application, 73-75 Residual analysis in multiple
Pearson, Karl, 77, 78, 117 linear regression, 105-106
Phi coefficient, 148 Residual plots, 90, 94
Plot of identity, 107, 108 Results reporting
Power and sample size, 8-9 analysis of covariance, 188-189
Predictor variables, 11 Bland-Altman analysis, 110
multiple linear regression, 101 contingency table analysis,
multiple logistic regression, 216, 120-121, 125
217-219 correlation analysis, 86
Procedures, choosing the right, 11 crosstabulation, 44-45
Prospective analysis, 128 frequency data, 41-42
example, 129-130 Friedman’s test, 206
P-value, 9-10, 63-64, 67, 93, 124-125 goodness-of-fit test, 146
guidelines, 18-19
Q-Q plots, 29 interrater reliability, 141-142
Quantitative data Kruskal-Wallis test, 200-201
with an unusual value, 28-34 logistic regression, 214-215
combining groups and creating Mann-Whitney test, 197
categories from, 239-241 Mantel-Haenszel analysis, 138
definition of, 24-25 McNemar’s test, 135
description examples, 27-38 one-sample -test, 53
distribution, 25 one-way ANOVA, 159
by groups, 34-36 paired #-test, 73
nonnormal distribution of, 26-27 proper interpretation and, 12
normality testing, 25-26 quantitative data by groups, 35
reporting the mean of, 26-27 quantitative data with an
SPSS application, 33-34, 36, 37-38 unusual value, 33
tips and caveats for, 26-27 repeated-measures ANOVA,
with unusual values, 36-38 180-181
when categorical variables can risk analysis, 130
be treated as, 40 Spearman’s rho, 194-195
two-sample t-test, 64, 67-68
Random selection, 153 two-way ANOVA, 174
Random split, 153 Wilcoxon or sign test, 203
Regression. See Logistic regression; Retrospective analysis
Multiple linear regression; appropriate applications for, 128
Simple linear regression (SLR) example, 129
Relational analyses, 247 format for, 126-128
Repeated-measures ANOVA Risk ratio analysis
appropriate applications for, examples, 128-131
175-176 for exposure/reaction data,

defined, 175 128-131



prospective, 128

results reporting, 130

retrospective, 127-128

SPSS application, 130-131
R-square statistic, 98
P-value, 9-10

Samples
independent, 55, 115, 116,
152, 167,182
random selection, 153
random split, 153
size, 115, 170
small size, 57-58
strategies for, 115
Scales of measurement, 11
Scatterplots
correlation analysis and, 81-83
multiple linear regression
and, 102, 103
Shapiro-Wilk test, 25, 29
Sign test
defined, 201-202
examples, 202-204
hypotheses for, 202
results reporting, 203
SPSS application, 203-204
Simple linear regression (SLR)
appropriate applications for, 87-88
defined, 87
design considerations, 88-89
examples, 91-95
extrapolation and, 89-90
hypotheses for, 89
interval estimates in, 91
least square principle and, 88-89
observed regression equation
in, 88-89
residual plots in, 90, 94
SPSS application, 94-95
theoretical regression line in, 88
tips and caveats for, 89-91
transformations and, 90-91
Simple logistic regression
defined, 211
examples, 212-215
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hypotheses for, 211
results reporting, 214
SPSS application, 214-215
tips and caveats for, 211-212
Simpson’s paradox, 140
Software programs, statistical, 8, 12.
See also SPSS
Somer’s d, 148
Spearman’s rho
appropriate applications for,
192-193
defined, 192
design considerations, 193
examples, 194-195
hypotheses for, 193
results reporting, 194-195
tips and caveats for, 193
Specified contrasts, 159, 160-161
SPSS applications. See also
Applications
Advanced Models and Regression
Models Add-On, 226
analysis of covariance, 189
Base, 225
Bland-Altman analysis, 110-111
combining groups and creating
categories from quantitative
data in, 239-241
contingency table analysis,
121-123, 125-126
correlation analysis, 86-87
creating new variables using
computation in, 234-235
crosstabulation of categorical
variables, 45
data files, sample, 20
entering data into, 229-231
frequency table for categorical
data, 42-43
Friedman’s test, 207
goodness-of-fit test, 146-147
Graduate Pack, 226
importing data from Microsoft
Excel into, 231-233
interrater reliability, 142-143
Kruskal-Wallis test, 201
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main menu, 226-227

Mann-Whitney test, 198

Mantel-Haenszel analysis, 138-139

McNemar’s test, 135

multiple linear regression, 106-107

multiple logistic regression, 222

normality testing, 25

one-sample #-test, 53-54

one-way ANOVA, 161-162,
164-166

paired #-test, 73-75

performing analyses in, 233-234

quantitative data by groups, 36

quantitative data with an unusual
value, 33-34

quantitative data with unusual
values, 37-38

removing selected data from analysis
using filtering in, 238-239

repeated-measures ANOVA, 181

risk ratio analysis, 130-131

simple linear regression (SLR),
94-95

simple logistic regression, 214-215

step-by-step instructions for,
229-242

transforming, recoding, and
categorizing data in, 234-242

transforming data to make data
more normally distributed,
235-237

transposing data in, 241-242

two-sample #-test, 60-63, 65, 68

two-way ANOVA, 175

Wilcoxon or sign test, 203-204

working with data in, 227-234

Standard deviation (SD),

reporting, 27

Standard error of the mean (SEM), 27
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Guidebook

appendices, 3

purpose of, 2

topics covered by, 1-2

Statistical Analysis Quick Reference Guidebook

Statistics
comparative, 5
correlational, 5-6, 11
descriptive, 4, 27, 171, 245
Stem-and-leaf plots, 29

Tabachnick, B. G., 210
Tables, how to use, 244-247
Task Force on Statistical Inference, 11
Testing
chi-square, 120-121, 124, 134
comparison, 246
deciding on type of analysis
appropriate to hypothesis, 11
homogeneity, 115, 116
hypothesis, 6-9
independence, 115, 116
normality, 25-26
one-sided, 144
p-value and, 9-10, 63-64, 67,
93, 124-125
Theoretical regression lines, 88
Tips and caveats
categorical data, 50
contingency table analysis, 116-117
correlational analysis, 80-83
goodness-of-fit test, 144
Mantel-Haenszel analysis, 139-140
multiple linear regression, 100-101
multiple logistic regression, 216
one-way ANOVA, 154
simple linear regression (SLR),
89-91
simple logistic regression, 211-212
Spearman’s rho, 193
two-sample #-test, 57-58
two-way ANOVA, 170
Transformations, 90-91
Transposition of data, 241-242
Trend analysis, 162-166
T-tests
appropriate applications for, 48,
54-55
confidence intervals, 52



design considerations, 48-49, 55-56
determining which statistic
to use from, 58-59
examples, 50-54, 60-68
hypotheses for, 49-50, 56-57, 65
misuse of, 57
multiple, 58
one-sample, 48-54
one-tailed, 49-50, 56-57
origins, 47
paired, 68-75
results reporting, 53
tips and caveats for, 57-58
two-sample, 54-68
two-tailed, 49, 56
types of, 47-48
Tufte, Edward, 19
Tukey test, 157-158, 173, 174, 200
Two-sample #-tests
appropriate applications for, 54-55
defined, 54
design considerations, 55-56
with equal variances, 60-65
examples, 60-68
graphs, 58
hypotheses for, 56-57
misuse of, 57
performing multiple, 58
preplanning, 57
results reporting, 64, 67-68
small sample sizes in, 57-58
SPSS application, 60-63, 65, 68
tips and caveats for, 57-58
with variance issues, 65-68
Two-tailed t-tests, 49, 56
Two-way ANOVA
appropriate applications for, 167
defined, 166
design considerations, 167-168
equal variances assumed by,
167-168
examples, 171-175
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hypotheses for, 168-170
results reporting, 174
SPSS application, 175
tips and caveats for, 170

Uncertainty coefficient, 148

Variables
abnormal distribution in
correlation analysis, 83
correlation analysis, 80-81
crosstabulation of categorical,
43-45
deciding on and documenting,
12-13, 99-100
independent, 55, 96
indicator, 101
and model selection for multiple
linear regression, 99-100
outcome, 10-11
predictor, 11, 101, 216, 217-219
qualitative predictor, 216
Variances
equal, 55-56, 60-65, 153,
167-168, 176-177
issues with, 65-68
Visual Display of Quantitative
Data, The, 19

Wasserman, W., 210
West, S. G., 210
Wickens, T. D., 170
Wilcoxon test
defined, 201-202
examples, 202-204
hypotheses for, 202
results reporting, 203
SPSS application, 203-204
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