
Lecture Notes in Computer Science 4758
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Flavio Oquendo (Ed.)

Software
Architecture

First European Conference, ECSA 2007
Madrid, Spain, September 24-26, 2007
Proceedings

13

Volume Editor

Flavio Oquendo
University of South Brittany
VALORIA – Formal Software Architecture and Process Research Group
B.P. 573, 56017 Vannes Cedex, France
E-mail: flavio.oquendo@univ-ubs.fr

Library of Congress Control Number: 2007935168

CR Subject Classification (1998): D.2.11, D.3, H.2.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-75131-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75131-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12161744 06/3180 5 4 3 2 1 0

Preface

Software architecture has emerged as an important subdiscipline of software
engineering encompassing a broad set of languages, styles, models, tools, and
processes. The role of software architecture in the engineering of software-intensive
applications has become more and more important and widespread. Indeed,
component-based and service-oriented architectures have become key to the design,
development, and evolution of most software systems.

The European Conference on Software Architecture (ECSA) is the premier
European conference dedicated to the field of software architecture, covering all
architectural features of software and service engineering. It is the follow-up of a
successful series of European workshops on software architecture held in the United
Kingdom in 2004 (Springer LNCS 3047), Italy in 2005 (Springer LNCS 3527), and
France in 2006 (Springer LNCS 4344). Due to its success, it has evolved into a full-
fledged series of European conferences whose first edition was ECSA 2007, held in
Madrid, Spain September 24–26, 2007.

ECSA 2007 provided an international forum for researchers and practitioners from
academia and industry to present innovative research and to discuss a wide range of
topics in the area of software architecture. It focused on formalisms, technologies, and
processes for describing, verifying, validating, transforming, building, and evolving
software systems, in particular founded on component-based and service-oriented
architectures. Covered topics included architecture modeling, architectural aspects,
architecture analysis, transformation and synthesis, quality attributes, model-driven
engineering, and architecture-based support for developing, adapting, reconfiguring,
and evolving component-based and service-oriented systems.

The conference attracted paper submissions from 26 countries (Algeria, Argentina,
Australia, Belgium, Brazil, Canada, Chile, Denmark, Egypt, Finland, France,
Germany, Ireland, Italy, Japan, Korea, Mexico, New Zealand, Poland, Portugal,
Spain, The Netherlands, Tunisia, UK, Uruguay, and USA). In all, 89 abstracts were
submitted of which 62 papers were actually uploaded on the conference submission
Web site.

All submissions were reviewed by three members of the Program Committee.
Papers were selected based on originality, quality, soundness, and relevance to the
conference.

The Program Committee selected papers according to four types, for presentation
in paper sessions:

• Full research papers: they describe novel contributions to software architecture
research and cover work that has a sound scientific/technological basis and has
been fully validated.

• Emerging research papers: they present promising results from work-in-progress in
a topic of software architecture research and cover work that has a sound basis, but
has not yet been validated in full.

VI Preface

• Experience papers: they describe significant experiences related to software
architecture practice and present case studies or real-life experiences of benefit to
practitioners and researchers.

• Research challenge papers: they present significant research challenges in theory or
practice of software architecture or the state of the art on different topics related to
software architecture.

These papers are published in the conference proceedings as long papers (16 pages),
short papers (8 pages), or position papers (4 pages). Full research papers always
appear as long papers; research challenge papers typically as position papers; the
others as long or short papers.

In addition, papers accepted as posters to be presented in a poster session are
published as extended abstracts (4 pages).

The Program Committee selected 18 papers out of 62 submissions: 12 long papers
(5 as full research papers, 1 as full state-of-the-art paper, 6 as emerging research
papers), 4 short papers (3 as emerging research papers, 1 as experience paper), and 2
position papers (research challenge papers). This gives an acceptance rate of 10% for
full papers, +10% for emerging research (long) papers, +10% for short and position
papers. In addition, 16 papers were selected to be presented as posters, i.e., +25%.

Credit for the quality of the proceedings goes to all authors of papers. In addition,
the conference included three keynote talks. The opening day keynote was presented
by David Garlan, from Carnegie Mellon University, USA, on "Software Architectures
for Task-Oriented Computing"; the second keynote was delivered by Ron Morrison,
from the University of St. Andrews, UK, on "An Active Architecture Approach to
Dynamic Systems Co-evolution"; the last keynote speaker was Michael P.
Papazoglou, from the University of Tilburg, Netherlands, on "What's in a Service?".

We would like to thank the members of the Program Committee for providing
thoughtful and knowledgeable reviews and for their substantial effort in making
ECSA 2007 a successful conference.

The ECSA 2007 submission and review process was extensively supported by the
Paperdyne Conference Management System. We are indebted to Thomas Richter for
his timely support.

On the organizational front, we deeply acknowledge the Conference Secretary,
Verónica Andrea Bollati, for her great work beyond the call of duty, and all the
members of the Organizing Committee for their excellent service.

Finally, we acknowledge the prompt and professional support from Springer which
published these proceedings in printed and electronic volumes as part of the Lecture
Notes in Computer Science series.

September 2007 Flavio Oquendo

 Carlos E. Cuesta
 Esperanza Marcos

Organization

Conference Co-chairs

Carlos E. Cuesta
Rey Juan Carlos University, Spain
carlos.cuesta@urjc.es

Esperanza Marcos
Rey Juan Carlos University, Spain
esperanza.marcos@urjc.es

Program Committee

Program Committee Chair

Flavio Oquendo
University of South Brittany – VALORIA, France
flavio.oquendo@univ-ubs.fr

Program Committee Members

Yamine Ait Ameur
ENSMA, France

Dharini Balasubramaniam
University of St. Andrews, UK

Thais Batista
University of Rio Grande do Norte – UFRN, Brazil

Marco Bernardo
University of Urbino, Italy

Antoine Beugnard
ENST Bretagne, France

Jan Bosch
Nokia Research Center, Finland

Pere Botella
Polytechnic University of Catalonia, Spain

Francisco Curbera
IBM Research Center, USA

Rogerio de Lemos
University of Kent, UK

VIII Organization

Laurence Duchien
INRIA and University of Lille, France

José Luiz Fiadeiro
University of Leicester, UK

Régis Fleurquin
University of South Brittany – VALORIA, France

David Garlan
Carnegie Mellon University, USA

Carlo Ghezzi
Polytechnic of Milan, Italy

Ian Gorton
Pacific Northwest National Lab, USA

Mark Greenwood
University of Manchester, UK

Paul Grefen
Eindhoven University of Technology, The Netherlands

Volker Gruhn
University of Leipzig, Germany

Wilhelm Hasselbring
University of Oldenburg, Germany

Juan Hernández
University of Extremadura, Spain

Valérie Issarny
INRIA Rocquencourt, France

Natalia Juristo
Polytechnic University of Madrid, Spain

René Krikhaar
ICT NoviQ and Vrije Universiteit Amsterdam, The Netherlands

Philippe Kruchten
University of British Columbia, Canada

Frédéric Lang
INRIA Rhône-Alpes, France

Nicole Levy
University of Versailles St-Quentin en Yvelines – PRiSM, France

Antonia Lopes
University of Lisbon, Portugal

Jeff Magee
Imperial College London, UK

Carlo Montangero
University of Pisa, Italy

 Organization IX

Ron Morrison
University of St. Andrews, UK

Robert L. Nord
Software Engineering Institute, USA

Henk Obbink
Philips Research Europe, The Netherlands

Mourad Oussalah
University of Nantes – LINA, France

Mike P. Papazoglou
Tilburg University, The Netherlands

Jennifer Pérez
Polytechnic University of Madrid, Spain

Dewayne E. Perry
University of Texas at Austin, USA

Mario Piattini
University of Castilla-La Mancha, Spain

Frantisek Plasil
Charles University, Czech Republic

Eltjo Poort
LogicaCMG, The Netherlands

Amar Ramdame-Cherif
University of Versailles St-Quentin en Yvelines – PRiSM, France

Isidro Ramos
Polytechnic University of Valencia, Spain

Ralf Reussner
University of Karlsruhe, Germany

Clemens Schäfer
University of Leipzig, Germany

Bradley Schmerl
Carnegie Mellon University, USA

Clemens Szyperski
Microsoft Research, USA

Richard N. Taylor
University of California at Irvine, USA

Miguel Toro
University of Sevilla, Spain

Brian Warboys
University of Manchester, UK

Eoin Woods
UBS Investment Bank, UK

X Organization

Additional Reviewers

Edoardo Bontà
University of Urbino, Italy

Fabien Dagnat
ENST Bretagne, France

Anna Grimán Padua
Polytechnic University of Madrid, Spain

Marta Lopez Fernandez
Polytechnic University of Madrid, Spain

Radu Mateescu
INRIA Rhône-Alpes, France

Luca Padovani
University of Urbino, Italy

Olivier Ponsini
INRIA Rhône-Alpes, France

Maria-Teresa Segarra
ENST Bretagne, France

Wendelin Serwe
INRIA Rhône-Alpes, France

Organizing Committee

Conference Secretary

Verónica Andrea Bollati
Rey Juan Carlos University, Spain

Financial Chair

Belén Vela
Rey Juan Carlos University, Spain

Local Arrangements Chair

César J. Acuña
Rey Juan Carlos University, Spain

Publicity and Liaisons Chair

Javier Garzás
Kybele Consulting and Rey Juan Carlos University, Spain

Posters Chair

Jennifer Pérez
Polytechnic University of Madrid, Spain

 Organization XI

Registration Chair

Valeria de Castro
Rey Juan Carlos University, Spain

Webmasters

Diana Marcela Sánchez
Rey Juan Carlos University, Spain

Juan Manuel Vara
Rey Juan Carlos University, Spain

Organizing Members

Nour Ali
Polytechnic University of Valencia, Spain

Paloma Cáceres
Rey Juan Carlos University, Spain

José María Cavero
Rey Juan Carlos University, Spain

Marcos López
Rey Juan Carlos University, Spain

Steering Committee

Flavio Oquendo
University of South Brittany – VALORIA, France

Carlos E. Cuesta and Esperanza Marcos
Rey Juan Carlos University, Spain

John Favaro
Consorzio Pisa Ricerche, Italy

Volker Gruhn
University of Leipzig, Germany

Ron Morrison
University of St. Andrews, UK

Mourad Oussalah
University of Nantes – LINA, France

Brian Warboys
University of Manchester, UK

Sponsorship

ECSA 2007 was sponsored by several public institutions under competitive grants and
by private companies and organizations. They are listed in several categories,
reflecting the extent of their support and funding.

XII Organization

Platinum Sponsorship

The Spanish Ministry of Education and Science (MEC)
The Managing Director’s Office for Universities and Research (DGUI) from the
Autonomous Government of Madrid (CM)
Rey Juan Carlos University (URJC)

Gold Sponsorship

Kotasoft Soluciones Informáticas, Ltd.
Kybele Consulting, Ltd.
Open Canarias, Ltd.

Silver Sponsorship

InterSystems Corporation

Moreover, the conference had the collaboration of the Spanish Office of the World-
Wide Web Consortium (W3C).

Table of Contents

Keynotes

Software Architectures for Task-Oriented Computing 1
David Garlan

An Active Architecture Approach to Dynamic Systems Co-evolution . . . 2
Ron Morrison, Dharini Balasubramaniam, Flavio Oquendo,
Brian Warboys, and R. Mark Greenwood

What’s in a Service? . 11
Michael P. Papazoglou

Full Research Papers

Pattern-Based Evolution of Software Architectures 29
Isabelle Côté, Maritta Heisel, and Ina Wentzlaff

Formal Design of Structural and Dynamic Features of Publish/Subscribe
Architectural Styles . 44

Imen Loulou, Ahmed Hadj Kacem, Mohamed Jmaiel, and
Khalil Drira

An Ontology-Based Approach for Modelling Architectural Styles 60
Claus Pahl, Simon Giesecke, and Wilhelm Hasselbring

FIESTA: A Generic Framework for Integrating New Functionalities
into Software Architectures . 76

Guillaume Waignier, Anne-Françoise Le Meur, and
Laurence Duchien

Beyond ATAM: Architecture Analysis in the Development of Large
Scale Software Systems . 92

Andrzej Zalewski

Emerging Research Papers

Enabling Adaptivity in User Interfaces . 106
Javier Cámara, Carlos Canal, Javier Cubo, and Juan Manuel Murillo

Architecture Migration Driven by Code Categorization 115
Rui Correia, Carlos M.P. Matos, Reiko Heckel, and
Mohammad El-Ramly

XIV Table of Contents

Effective Tool Support for Architectural Knowledge Sharing 123
Rik Farenhorst, Patricia Lago, and Hans van Vliet

A Goal-Oriented Approach for the Generation and Evaluation of
Alternative Architectures . 139

Gemma Grau and Xavier Franch

Hierarchical Verification in Maude of Lf P Software Architectures 156
Chadlia Jerad, Kamel Barkaoui, and Amel Grissa Touzi

First Class Connectors for Prototyping Service Oriented
Architectures . 171

Kristian Ellebæk Kjær

Wireless Sensor Network Application Development: An
Architecture-Centric MDE Approach . 179

Fernando Losilla, Cristina Vicente-Chicote, Bárbara Álvarez,
Andrés Iborra, and Pedro Sánchez

A Distributed Staged Architecture for Multimodal Applications 195
Alessandro Costa Pereira, Falk Hartmann, and Kay Kadner

On the Modularity of Software Architectures: A Concern-Driven
Measurement Framework . 207

Cláudio Sant’Anna, Eduardo Figueiredo, Alessandro Garcia, and
Carlos J.P. Lucena

Experience Papers

Lightweight Web Services for High Performace Computing 225
Adrián Santos, Francisco Almeida, and Vicente Blanco

Research Challenge Papers

The Art and Science of Software Architecture . 237
Alan W. Brown and John A. McDermid

Issues in Applying Empirical Software Engineering to Software
Architecture . 257

Davide Falessi, Philippe Kruchten, and Giovanni Cantone

Leveraging Architecture Patterns to Satisfy Quality Attributes 263
Neil B. Harrison and Paris Avgeriou

Poster Papers

Architecture for Developing Adaptive and Adaptable Collaborative
Applications . 271

Mario Anzures-Garćıa, Miguel J. Hornos, and
Patricia Paderewski-Rodŕıguez

Table of Contents XV

Analyzing Styles of the Modular Software Architecture View 275
Rogelio Limon Cordero and Isidro Ramos Salavert

Dynamic Reconfiguration of Software Architectures Through Aspects . . . 279
Cristóbal Costa, Nour Ali, Jennifer Pérez, José Ángel Carśı, and
Isidro Ramos

Model-Driven Approach for Designing Industrial Control Systems 284
Elisabet Estevez and Marga Marcos

Informed Evolution . 288
Katrina Falkner, Dharini Balasubramaniam, Henry Detmold, and
David S. Munro

Using Connectors to Model Crosscutting Influences in Software
Architectures . 292

Lidia Fuentes, Nadia Gámez, Mónica Pinto, and Juan A. Valenzuela

From Mobile Business Processes to Mobile Information Systems 296
Volker Gruhn and Clemens Schäfer

An Architectural Model for Small-Scale Component-Oriented
Frameworks . 300

Sérgio Lopes, Adriano Tavares, João Monteiro, and Carlos Silva

UML Profile for the Platform Independent Modelling of
Service-Oriented Architectures . 304

Marcos López-Sanz, César J. Acuña, Carlos E. Cuesta, and
Esperanza Marcos

Managing Separation of Concerns in Grid Applications Through
Architectural Model Transformations . 308

David Manset, Hervé Verjus, and Richard McClatchey

Aqueducts : A Layered Pipeline-Based Architecture for XML
Processing . 313

Miguel A. Mart́ınez-Prieto, Carlos E. Cuesta, and Pablo de la Fuente

On the Interplay of Crosscutting and MAS-Specific Styles 317
Ambra Molesini, Alessandro Garcia, Christina Chavez, and
Thais Batista

Processes for Creating and Exploiting Architectural Design Decisions
with Tool Support . 321

Francisco Nava, Rafael Capilla, and Juan C. Dueñas

Supporting the Automatic Generation of Proto-Architectures 325
Elena Navarro, Patricio Letelier, Javier Jaén, and Isidro Ramos

XVI Table of Contents

AspectLEDA: Extending an ADL with Aspectual Concepts 330
Amparo Navasa, Miguel A. Pérez, and Juan Manuel Murillo

Experiences Using a Component-Oriented Architectural Framework for
Robots and Its Improvement with a MDE Approach 335

Francisco J. Ortiz, Juan A. Pastor, Diego Alonso,
Bárbara Álvarez, and Pedro Sánchez

Author Index . 339

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Architectures for Task-Oriented Computing

David Garlan

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213 USA
garlan@cs.cmu.edu

Abstract. Recent advances in ubiquitous computing and artificial intelligence
have led to a desire to better support user-oriented tasks by placing more
intelligence in the computing infrastructure. This infrastructure helps mediate
between computing resources and legacy applications on the one hand, and a
user's high-level goals on the other hand. In this talk I survey recent research in
developing software architectures to support these new capabilities. Key
features of these architectures are the ability to interface with legacy
applications, but still add considerable support for user tasks; the ability to
incorporate machine learning so that the system adapts to the user over time;
and the ability to cope with resource variability and user mobility. I outline
some of the consequent software engineering challenges that arise in this
setting.

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 2 – 10, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Active Architecture Approach to Dynamic
Systems Co-evolution

Ron Morrison1, Dharini Balasubramaniam1, Flavio Oquendo2, Brian Warboys3,
 and R. Mark Greenwood3

1 University of St Andrews
St Andrews, KY16 9SX, UK

{ron,dharini}@cs.st-andrews.ac.uk
2 University of South Brittany – Valoria
BP 573, 56017 Vannes Cedex, France
Flavio.Oquendo@univ-ubs.fr

3 University of Manchester, Manchester, M13 9PL, UK
{brian,markg}@cs.man.ac.uk

Abstract. The term co-evolution describes the symbiotic relationship between
dynamically changing business environments and the software that supports
them. Business changes create pressures on the software to evolve, and at the
same time technology changes create pressures on the business to evolve. More
generally, we are concerned with systems where it is neither economically nor
technologically feasible to suspend the operation of the system while it is being
evolved. Typically these are long-lived systems in which dynamic co-evolution,
whereby a system evolves as part of its own execution in reaction to both
predicted and emergent events, is the only feasible option for change. Examples
of such systems include continuously running business process models, sensor
nets, grid applications, self-adapting/tuning systems, routing systems, control
systems, autonomic systems, and pervasive computing applications.

Active architectures address both the structural and behavioural require-
ments of dynamic co-evolving software by modelling software architecture as
part of the on-going computation, thereby allowing evolution during execution
and formal checking that desired system properties are preserved through
evolution. This invited paper presents results on active architectures from the
Compliant System Architecture and ArchWare projects. We have designed and
constructed the ArchWare-ADL, a formal, well-founded architecture
description language, based on the higher-order typed π-calculus, which
consists of a set of layers to address the requirements of active architectures.
The ArchWare-ADL design principles, concepts and formal notations are
presented together with its sophisticated reflective technologies for supporting
active architectures and thereby dynamic co-evolution.

1 Introduction

Where software cannot change to keep up with the changing business goals, the
business loses efficiency, and the perceived value of the software decreases [17].

 An Active Architecture Approach to Dynamic Systems Co-evolution 3

Conversely, a business must continually intercept the potential of new technology to
maintain its effectiveness and remain competitive. Thus business changes create
pressures on the software to evolve, and at the same time software changes create
pressures on the business to evolve [32]. We use the term co-evolution to describe the
concept of the business and the software evolving sympathetically, but at potentially
different rates, to satisfy changing requirements.

More generally, we are concerned with what Milner termed “wide informatic
systems” [21] to describe systems, assembled from components, that co-evolve with
their environment. Such systems recognise that the business effects of introducing, or
changing, a software system are potentially emergent, especially in terms of non-
functional requirements such as safety, reliability and performance. Typically these
are long-lived applications in which dynamic co-evolution, whereby a system evolves
as part of its own execution, is the only feasible option for change. Examples of such
systems include continuously running business process models, sensor nets, grid
applications, self-adapting/tuning systems, routing systems, control systems, and
pervasive computing applications.

Active architectures address the structural and behavioural requirements of
dynamic co-evolving software by modelling the software architecture as part of the
on-going computation, thereby allowing evolution during execution. They facilitate
the design and engineering of dynamic co-evolving systems in a way that preserves
the flexibility to adapt to new requirements while ensuring that important properties
can be continuously verified. Fundamentally, users and developers must be able to
understand a system, and its interactions with the environment, to define the
appropriate evolutions. In our approach active architectures manage the co-
evolutionary process using: a formal description of the system’s structure and
behaviour; self-monitoring capabilities to provide a view of the system’s dynamic
behaviour; sophisticated evolutionary mechanisms including a model of the system
itself at the appropriate level of abstraction and incremental checking tools for
formally verifying that desired system properties are preserved over evolution.

We have designed and constructed the ArchWare-ADL [26][27], a formal, well-
founded architecture description language based on the higher-order typed π-calculus
[19], which consists of a set of layers to address the requirements of active
architectures. The ArchWare-ADL design principles, concepts and formal notations
are presented along with sophisticated reflective technologies for supporting active
architectures and thereby dynamic co-evolution.

2 Active Software Architecture

A key aspect of the design of a software system is its architecture; the fundamental
organisation of the system embodied in its components, their relationships to one
another and to the environment. Two viewpoints are frequently used in describing
software architectures: structural and behavioural [13].

The structural viewpoint may be specified in terms of:

• components – units of computation of a system,
• connectors – interconnections among components for supporting their interactions, and
• configurations – of components and connectors.

4 R. Morrison et al.

From a structural viewpoint, an architecture description should provide a formal
specification of the architecture in terms of components and connectors, how they are
composed, and how the architectural structure may change.

The behavioural viewpoint may be specified in terms of:

• actions a system executes or participates in,
• relations among actions to specify behaviours,
• behaviours of components and connectors, and how they interact and change,
• the state of the active system.

We define an active architecture as dynamic in that it can evolve during execution
by creating, deleting, reconfiguring and moving components, connectors and their
configurations at runtime. Importantly, active architectures require the structural and
behavioural viewpoints to specify static and dynamic behoviour and properties. A
challenge for an Architecture Description Language (ADL) is to support active
architectures by finding the abstractions and technologies that accommodate the
dynamic evolution of components, connectors and configurations through their
actions, relationships and behaviours.

3 The Archware ADL

The ArchWare-ADL [26] is a novel architecture description language (ADL)
designed to accommodate active architectures. It is:

• a formal, theoretically well-founded language based on the higher-order typed π-
calculus;

• automated by tools, i.e. a specification and verification toolset providing support
for automated checking; and

• supported by a set of reflective technologies for dynamic co-evolution.

The ArchWare-ADL takes its roots in previous work on the use of π-calculus as
semantic foundation for architecture description languages [4][5]. When augmented
with domain-specific architectural extensions it blends Turing completeness and high
architecture expressiveness with a simple formal notation.

The novelty of ArchWare lies in its holistic view of formal development,
encompassing languages for formal specification, (i.e. ArchWare ADL), formal
verification [18], and formal transformation [28]. As such it goes beyond existing
formal methods in supporting architecture-centric model-driven engineering of
software systems.

Like formal methods such as B [1], Z [6], VDM [7], and FOCUS [31], ArchWare
provides full support for formal description and development of software systems.
Unlike these formal methods, ArchWare is based on a process algebra, the higher-
order typed π-calculus, and provides architectural support for formal architecture-
centric software engineering.

The ArchWare-ADL consists of a set of layers to address the structural and
behavioural requirements of active architectures. The novelty is that it models the

 An Active Architecture Approach to Dynamic Systems Co-evolution 5

architecture as part of the on-going computation, thereby allowing the evolution of the
architecture in step with execution.

There are five layers in the ArchWare-ADL:

• The base layer defines a coordination language without data values correspond-
ding to the monadic π-calculus.

• The first order layer adds data values and abstractions and corresponds to
polyadic π-calculus.

• The higher order layer corresponds to higher-order polyadic π-calculus.
• The analysis layer enables the specification of constraints on the styles.
• The style layer allows the specification of components and connectors.

The style layer provides constructs from which the base component-and-connector
style and other derived styles can be defined. Conceptually, an architectural style
provides:

• a set of abstractions for architectural elements;
• a set of constraints (i.e. properties that must be satisfied) on architectural

elements, including legal compositions; and,
• a set of additional analyses that can be performed on architecture descriptions

constructed in the style.

Thus the ArchWare-ADL provides a framework for formalising software architect-
tures based on the concepts of components and connectors. Styles are used to define
families of architectures that have a common structure and satisfy the same properties.

The style layer makes use of both the underlying π-calculus layers and the analysis
layer. Styles in ArchWare are defined as property-guarded abstractions that may be
applied to yield instances of an architecture conforming to the style. The structure and
behaviour of an architecture family are specified using the ArchWare-ADL [11] with
the constraints on the family being specified using the analysis layer.

The essential property of dynamic co-evolutionary systems is the ability to
(partially) stop and decompose a running system into its constituent components, and
compose evolved or new components to form a new system, while preserving any
state or shared data if desirable. Once a co-evolving system receives an internal or
external stimulus for evolution it can: (partially) suspend the component(s) to be
evolved; decompose them into constituent parts; modify the components separately;
recompile the components and bind them into the executing system. The support
technologies for this are a decomposition operator, linguistic reflection and a system
representation capable of capturing closure, called hyper-code [14].

4 Dynamic Co-evolution

A dynamic co-evolving system is constantly in a state of flux as it evolves in reaction
to external and internal stimuli. To understand and manage the co-evolutionary
process, we introduce the concepts of incarnation, evolutionary step and locus [24].

A dynamic co-evolving system mutates from one incarnation to the next via an
evolutionary step. Within a context we can observe a sub-system through a sequence of
incarnations. Each incarnation includes a period of normal execution, followed by an

6 R. Morrison et al.

evolutionary step. The end of the evolutionary step defines the start of the next
incarnation. Thus an incarnation can be considered as system execution between the end
points of two subsequent evolutionary steps and consists of the code, data and meta-data
not only for carrying out its present purpose, including architectural constraint checking,
but also for a variety of possible future evolutionary steps. The change context, i.e. the
set of entities that will change during an evolutionary step, is known as the locus. An
evolutionary step is defined as a change to a locus and is made by an evolver internal to
the locus. Thus it is the locus that evolves itself, in reaction to some external or internal
stimulus. During normal execution, the locus continually monitors the incarnation to
determine when an evolutionary step is necessary.

A co-evolving application may be constructed in terms of loci. The internal evolver
produces new incarnations of the locus. The structuring of loci within an application
is static where it is possible to predict the sets of loci and interactions that are subject
to change. In such cases, an evolver produces a new incarnation of its locus and the
application changes without changing the structure of the loci. Where it is not
possible to predict the sets of loci and interactions that are subject to change, a new
locus may be defined dynamically to undertake the desired evolutionary step. Thus
the structuring of the loci is dynamic. In both cases the locus determines those factors
that change and those that remain constant during the evolutionary step. The objective
is to make explicit the distinction between what can change and what remains
unaffected by each evolutionary step, even though this may not be completely
statically defined.

We offer this initial set of intrinsic requirements for dynamic co-evolution [24]:

• a method for structuring dynamic co-evolving systems as loci;
• a technique for programming with incremental design;
• a method of monitoring the internal and external environment;
• a method of partially stopping and decomposing loci and their interactions;
• a method of dynamically reifying the state of the computation;
• a method of generating new loci using the reified state (IR6);
• and, a method of rebinding the new loci into the executing system.

5 Co-evolving Active Architecture

We have developed the following technologies that satisfy the needs of the intrinsic
requirements of adaptation [3][23][33][34]

• Decomposition: a decompose operator to suspend execution and break up a
locus into its constituent parts.

• Reification: a reify operator to yield a dynamic representation of the executing
locus.

• Generation: a method of transforming the representation to create new
representations.

• Reflection: a reflect operator to compile the resultant representations and bind
them into the running computation [30].

• Probes: a software mechanism to provide feed forward and feedback stimuli [2].

 An Active Architecture Approach to Dynamic Systems Co-evolution 7

• A persistent environment
• Dynamic property checking

Figure 1 illustrates the use of dynamic property checking to ensure that the execution
and evolution of the active architecture preserves the essential properties of the
system. The architectural style is expressed in terms on elements and constraints
among these elements. These map on to the active architecture. The property checker
monitors the execution and dynamically checks properties. When a violation occurs
this is fed back to the executing architecture that then may form loci (ellipses) to
evolve the architecture.

Importantly, since the property checker is part of the active system, it may itself
evolve to check new properties or use new technology.

Fig. 1. A Dynamically Co-evolving System

6 Decomposition and Hyper-code

The two most unusual technologies supported by the Archware ADL are decomposi-
tion and hyper-code.

Decomposition suspends execution and breaks up a locus into its constituent parts.
Unusually the semantics of decomposition are well suited for definition in the π-
calculus by allowing each constituent part to run to its reduction limit, that is where it
is waiting for an interaction, and then breaking the communication channel and
stopping the execution.

Hyper-code is a representation of an active executing graph linking source code
and existing values. It allows state and shared data to be preserved during evolution.
Thus at any point during the computation the state of the execution may be inspected
by viewing the hyper-code.

8 R. Morrison et al.

The importance of hyper-code is that it is rich enough to represent executing code
since it captures the state of the computation. Since hyper-code can represent closure,
it may be used to introspect an executing system, and thereby can be used to return
the result of a decomposition operation. Together the facilities of hyper-code,
decomposition, reflection and reification permit users to stop part of an executing
system (while the rest of the system continues to execute), inspect its specification
and state, evolve the part as necessary, and recompose the system. The generation
may be performed by specifying a series of semantics preserving transformations
using a programmable interface to the hyper-code graph such as supplied by the
Metaprogramming Framework [19].

7 Conclusions

There are many complementary architectural approaches to system evolution [8][9] [10]
[12][15][16][25][29][35]. Active architectures address the structural and behavioural
requirements of dynamic co-evolving software by modelling the software architecture
as part of the on-going computation, thereby allowing it to evolve during execution.

The judicious mixture of formality in the Archware-ADL and its sophisticated
support technologies yield an innovative approach to implementing active
architectures for dynamic co-evolution. The language can describe the system’s
specification, the executing software and the reflective evolutionary mechanisms
within a single computational domain in which all three may evolve in tandem.

Acknowledgements

The ArchWare Project was partially funded by the Commission of the European
Union under contract No. IST-2001-32360 in the IST-V Framework. The work
reported here also builds on earlier EPSRC-funded work in Compliant Systems
Architectures [22] (GR/M88938 & GR/M88945).

References

[1] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

[2] Balasubramaniam, D., Morrison, R., Mickan, K., Kirby, G.N.C., Warboys, B.C.,
Robertson, I., Snowdon, R., Greenwood, R.M., Seet, W.: Support for feedback and
change in self-adaptive systems. In: WOSS’04. Proc. ACM SIGSOFT Workshop on Self-
Managing Systems, Newport Beach, CA, USA, pp. 18–22. ACM Press, New York (2004)

[3] Balasubramaniam, D., Morrison, R., Kirby, G.N.C., Mickan, K., Warboys, B.C.,
Robertson, I., Snowdon, B., Greenwood, R.M., Seet, W.: A software architecture
approach for structuring autonomic systems. In: DEAS 2005. Proc. ICSE Workshop on
the Design and Evolution of Autonomic Application Software, St Louis, MO, USA, pp.
59–65 (2005)

[4] Chaudet, C., Greenwood, M., Oquendo, F., Warboys, B.: Architecture-Driven Software
Engineering: Specifying, Generating, and Evolving Component-Based Software Systems.
IEE Journal: Software Engineering 147(6) (December 2000)

 An Active Architecture Approach to Dynamic Systems Co-evolution 9

[5] Chaudet, C., Oquendo, F.: A Formal Architecture Description Language Based on
Process Algebra for Evolving Software Systems. In: ASE’00. Proceedings of the 15th
IEEE International Conference on Automated Software Engineering, Grenoble,
September 2000, IEEE Computer Society, Los Alamitos (2000)

[6] Davies, J., Woodcock, J.: Using Z: Specification, Refinement and Proof. Prentice Hall
International Series in Computer Science (1996)

[7] Fitzgerald, J., Larsen, P.: Modelling Systems: Practical Tools and Techniques for
Software Development. Cambridge University Press, Cambridge (1998)

[8] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer 37(10),
46–54 (2004)

[9] Godfrey, M.W., Tu, Q.: Evolution in Open Source Software: A Case Study. In: ICSM’00.
Proceedings of the International Conference on Software Maintenance, Washington, DC,
October 11 - 14, 2000, pp. 131–142. IEEE Computer Society, Los Alamitos (2000)

[10] Gorlick, M.M., Razouk, R.R.: Using Weaves for Software Construction and Analysis. In:
Proc. 13th International Conference on Software Engineering, Austin, Texas, United
States, pp. 23–34. IEEE Computer Society Press, Los Alamitos (1991)

[11] Greenwood, M., Balasubramaniam, D., Cimpan, S., Kirby, N.C., Mickan, K., Morrison,
R., Oquendo, F., Robertson, I., Seet, W., Snowdon, R., Warboys, B., Zirintsis, E.: Process
Support for Evolving Active Architectures. In: Oquendo, F. (ed.) EWSPT 2003. LNCS,
vol. 2786, Springer, Heidelberg (2003)

[12] Groenewegen, L.P.J., de Vink, E.P.: Evolution-On-The-Fly with Paradigm. In:
Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 97–
122. Springer, Heidelberg (2006)

[13] IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems (October 2000)

[14] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M., Morrison, R.:
Persistent hyper-programs. In: Albano, A., Morrison, R. (eds.) Persistent Object Systems,
1992. Proc. 5th International Conference on Persistent Object Systems, Italy, pp. 86–106.
Springer, Heidelberg (1993)

[15] Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Trans. on Software Engineering 16(11), 1293–1306 (1990)

[16] Kramer, J., Magee, J.: Analysing Dynamic Change in Software Architectures: A Case
Study. In: CDS 98. Proc. IEEE 4th Int. Conference on Configurable Distributed Systems,
Annapolis, USA, May 1998, pp. 91–100. IEEE Computer Society Press, Los Alamitos
(1998)

[17] Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) EWSPT
1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

[18] Mateescu, R., Oquendo, F.: pi-AAL: An Architecture Analysis Language for Formally
Specifying and Verifying Structural and Behavioural Properties of Software
Architectures. ACM Software Engineering Notes 31(2) (March 2006)

[19] Mickan, K.: A Meta-Programming Framework for Software Evolution. Ph.D. Thesis,
University of St Andrews (2006)

[20] Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, Cambridge (1999)

[21] Milner, R.: Computing in space. In: 17th International Congress on Computer Assisted
Radiology and Surgery (CARS2003) (2003), http://www.cl.cam.ac.uk/users/rm135/

[22] Morrison, R., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes, K.,
Munro, D., Warboys, B.C.: A Compliant Persistent Architecture. Software, Practice &
Experience 30, 1–24 (2000)

[23] Morrison, R., Kirby, G.N.C., Balasubramaniam, D., Mickan, K., Oquendo, F., Cîmpan,
S., Warboys, B.C., Snowdon, B., Greenwood, R.M.: Support for evolving software

10 R. Morrison et al.

architectures in the ArchWare ADL. In: WICSA 4. Proc. 4th Working IEEE/IFIP
Conference on Software Architecture, Oslo, Norway, pp. 69–78 (2004)

[24] Morrison, R., Balasubramaniam, D., Kirby, G.N.C., Warboys, B.C., Greenwood, R.M.: A
Framework for Supporting Dynamic Systems Co-evolution. Journal of Automated
Software Engineering (accepted for publication, 2007)

[25] Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-Based Runtime Software
Evolution. In: Proc. 20th International Conference on Software Engineering, Kyoto,
Japan, pp. 177–186. IEEE Computer Society, Los Alamitos (1998)

[26] Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R., Gallo, F., Garavel, H.,
Occhipinti, C.: ArchWare: Architecting Evolvable Software. In: Oquendo, F., Warboys,
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, Springer, Heidelberg (2004)

[27] Oquendo, F.: π-ADL: an architecture description language based on the higher-order
typed π-calculus for specifying dynamic and mobile software architectures. ACM
Software Engineering Notes 29(3) (2004)

[28] Oquendo, F.: pi-ARL: An Architecture Refinement Language for Formally Modelling the
Stepwise Refinement of Software Architectures. ACM Software Engineering Notes 29(5)
(September 2004)

[29] Schmerl, B., Garlan, D.: Exploiting architectural design knowledge to support self-
repairing systems. In: SEKE ’02. Proceedings of the 14th international Conference on
Software Engineering and Knowledge Engineering, Ischia, Italy, July 15-19, 2002,
vol. 27, pp. 241–248. ACM Press, New York (2002)

[30] Stemple, D., Fegaras, L., Stanton, R.B., Sheard, T., Philbrow, P., Cooper, R.L., Atkinson,
M.P., Morrison, R., Kirby, G.N.C., Connor, R.C.H., Alagic, S.: Type-safe linguistic
reflection: a generator technology. In: Atkinson, M.P., Welland, R. (eds.) Fully Integrated
Data Environments, pp. 158–188. Springer, Heidelberg (1999)

[31] Stolen, K., Broy, M.: Specification and Development of Interactive Systems. Springer,
Heidelberg (2001)

[32] Warboys, B.C., Kawalek, P., Robertson, I., Greenwood, R.M.: Business Information
Systems: A Process Approach. McGraw-Hill, New York (1999)

[33] Warboys, B.C., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes, K.,
Morrison, R., Munro, D.S.: Collaboration and Composition: Issues for a Second
Generation Process Language. In: Nierstrasz, O., Lemoine, M. (eds.) Software
Engineering - ESEC/FSE ’99. LNCS, vol. 1687, pp. 75–91. Springer, Heidelberg (1999)

[34] Warboys, B.C., Greenwood, R.M., Robertson, I., Morrison, R., Balasubramaniam, D.,
Kirby, G.N.C., Mickan, K.: The ArchWare Tower: The Implementation of an Active
Software Engineering Environment using a π-calculus based Architecture Description
Language. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 30–
40. Springer, Heidelberg (2005)

[35] Zhang, J., Cheng, B.H.: Model-based development of dynamically adaptive software. In:
ICSE ’06. Proc. of the 28th international Conference on Software Engineering, Shanghai,
China, May 20-28, 2006, pp. 371–380. ACM Press, New York (2006)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 11 – 28, 2007.
© Springer-Verlag Berlin Heidelberg 2007

What’s in a Service?

Michael P. Papazoglou

INFOLAB, Tilburg University, Dept. of Information Systems and Management,
Tilburg 5000 LE, The Netherlands

mikep@uvt.nl

Abstract. Automated services help enterprises create new value from reuse of
software and resources and achieve new levels of agility through greater
flexibility and lower cost structures. As services come in many flavors and
guises they have differing characteristics. In this paper we describe the most
necessary aspects and features of automated services. We also focus on the
interplay of SOAs and Business Process Management technologies and argue
that the key enablers for Service Oriented Architectures (SOAs) should focus
on four inter-related elements: engineering and planning the SOA, SOA
implementation, SOA management and monitoring and SOA governance.

Keywords: automated services, Service Oriented Architecture, business
processes, Enterprise Service Bus, service-oriented design and development.

1 Introduction

Software services (or simply services) are self-contained, platform-agnostic computa
tional elements that support rapid, low-cost and easy composition of loosely coupled
distributed software applications [10]. The functionality provided by a service can range
from answering simple requests to executing sophisticated processes requiring peer-to-
peer relationships between multiple layers of service consumers and providers. Services
are described, published, discovered, and can be assembled to create complex service-
based systems and applications. Services help integrate applications that were not written
with the intent to be easily integrated with other applications and define architectures and
techniques to build new functionality while integrating existing application functionality.

Service-based applications are developed as independent sets of interacting
services offering well-defined interfaces to their potential users. This is achieved
without the necessity for tight coupling of applications between transacting partners,
or for pre-determined agreements to be put into place before the use of an offered
service is allowed.

Services may be implemented on a single machine or on a large number and variety of
devices, and be distributed on a local area network or more widely across several wide
area networks (including mobile and ad hoc networks). A particularly interesting case is
when the services use the Internet (as the communication medium) and open Internet-
based standards. The resulting Web services share the characteristics of more general
services, but they require special consideration as a result of using a public, insecure,
low-fidelity mechanism for service-mediated interactions. Web services constitute a

12 M.P. Papazoglou

distributed computer infrastructure made up of many different interacting application
modules trying to communicate over private or public networks (including the Internet
and Web) to virtually form a single logical system. Web services expose their features
programmatically over the Internet (or intra-net) using standard Internet languages (based
on XML) and standard protocols, and are implemented via a self-describing interface
based on open Internet standards.

Web services1 can vary in function from simple requests (for example, credit
checking and authorization, pricing enquiries, inventory status checking, or a weather
report) to complete business applications that access and combine information from
multiple sources, such as, for instance, an insurance brokering system, an insurance
liability computation, an automated travel planner, or a package tracking system.

In this paper we shall examine the service concept more closely and deconstruct its
meaning. First, we shall concentrate on the various facets and characteristics of services
and provide a more complete view of how its various parts fit together. Subsequently, we
shall provide a brief overview of Service Oriented Architecture (SOA) and examine key
SOA enablers that form the core of (inter- and cross)-enterprise integration.

2 The Multiple-Aspects of a Service

Services come in many flavors and guises and thus have many aspects to them. In the
following we summarize the most necessary aspects of a service.

2.1 Service Types

Topologically, services can come in two flavors: (simple) informational or complex
services. Each of these two models exhibits several important distinguishing
characteristics that are briefly described below.

Informational services are services of relatively simple nature. They either provide
access to content interacting with an end-user by means of simple request/response
sequences, or alternatively they may expose back-end business applications to other
applications. Informational services can be of various kinds:

1. Pure content services, which give programmatic access to content such as simple
financial information, stock quote information, design information, news items and
so on.

2. Seamless aggregation services, which provide seamless aggregation of information
across disparate systems and information sources including back-end systems.
These give programmatic access to a business service so that the requestor can
make informed decisions. Consider for example, “pure” business services, such as
logistic services, where automated services are the actual front-ends to fairly
complex physical organizational business processes.

3. Information syndication services, which are services offered by a third-party and
run the whole range from commerce-enabling services, such as logistics, payment,
fulfillment, and tracking services, to other value-added commerce services, such as
rating services.

1 In this paper we shall use the terms Web service and service interchangeably.

 What’s in a Service? 13

Fig. 1. A typical manufacturing business processes

An informational service is stateless in that it does not keep any memory of what
happens to it between requests.

Complex services typically involve the assembly and invocation of many pre-
existing services, possibly found in diverse enterprises, to complete a multi-step
business interaction – called a business process. Consider for instance a supply-chain
application involving an Original Equipment Manufacturer (OEM) such as the one
depicted in Figure 1. The business process in Figure 1 handles order management,
sourcing, inventory control, financials and logistics. The OEM in Figure 1 is shown to
deal with suppliers, distributors, customers and contract manufacturers. OEMs
typically outsource the manufacturing of subassemblies or entire products to contract
manufacturers who perform functions including product design, sourcing, planning,
production, fulfillment, and reverse logistics. Numerous document exchanges will
occur in the business process illustrated in Figure 1 including requests for quotes,
returned quotes, purchase order requests, purchase order confirmations, delivery
information and so on.

In many circumstances complex services combine programmatic behavior with
interactive behavior delivering thus business processes that combine typical business
logic functionality with user interactivity whenever this is required as part of the process.

2.2 Service Facades

A service contains minimally four facade elements, which are part of its specification:

1. Structural facade: This focuses on defining the service types, messages, interfaces
and operations. The structural façade deals mainly with the syntax of a service.

14 M.P. Papazoglou

2. Behavioral facade: This entails understanding the effects and side effects of
service operations and the semantics of input and output messages. If, for example
we consider an order management service we might expect to see a service that
lists "place order," "cancel order," and "update order," as available operations. The
behavioral specification for this ordering service might then describe how a user
cannot update or cancel an order she did not place, or that after an order has been
cancelled it cannot be updated.

3. Policy facade: To address quality of service (QoS) considerations a service policy
specification mechanism is necessary. Policy specification describes policy
assertions and constraints on the service, which prescribe, limit, or specify any
aspect of a business agreement that is agreed to among interacting parties. Policies
may describe constraints external to constraints agreed by interacting parties in a
transaction and include universal legal requirements, commercial and/or
international trade and contract terms, public policy (e.g., privacy/data protection,
product or service labeling, consumer protection), laws and regulations that are
applicable to parts of a business service. Policy assertions usually cover non-
functional characteristics including security, performance rates, transactional
features, and so on. For instance, a policy specification may indicate that certain
elements of the order need be encrypted, denoting the encryption techniques to be
used, certificates to use, and so forth. Such non-functional requirements can be
specified using appropriate constructs from the WS-Policy specification framework
[1].

4. Vocabulary and best practices façade: This part includes definition of common
business processes, e.g. sending a purchase order to achieve canonization and
standardization of processes and services; definition of common data-interchange
formats i.e., messages that are exchanged in the context of the above
processes/transactions; and, definition of a common terminology at the level of
data items and messages seeking a way to bridge varying service terminologies.

2.3 Provisioning and Charging Model

For services to create economic value it is important that service providers come up
with viable business models that address factors such as business service metering,
rating and billing.

Service providers can develop a service-metering model that estimates the use of a
service by a client in case that the service provider requires usage-based billing. In
this case the service provider needs to audit the business service (see following
section for a definition) as it is used and bill for it. This could typically be done on a
periodic basis and requires that a metering and accounting model for the use of the
service be established. Alternatively, a pricing (rating) model could determine
subscriber rates based on subscription and usage events. For example, the pricing
model could calculate charges for services based on the quality and precision of the
service and on individual metering events based on a service-rating scheme. Finally,
service charging model may include alternatives such as payment on a per use basis,
payment on a subscription basis, payment on a leasing basis, lifetime services, free
services, and free services with hidden value.

 What’s in a Service? 15

2.4 Operational Categories of Services

We may discern three broad categories of services classified according to their
operational characteristics: business functionality services, technical services and
utility services.

A business service automates a generic business task with significance to the
business, e.g., creating a customer record, creating an invoice or closing an open
customer service ticket. It provides value to an enterprise and is part of standard
business process.

A Web services environment contains a collection of technical services, which
are coarse-grained services that provide the technical infrastructure enabling the
development, delivery, maintenance and provisioning of singular business services
and their integration into processes as well as capabilities that maintain QoS such as
security, performance, and availability. It also contains another breed of technical
services that monitor the health of SOA applications, giving insights into the health of
systems and networks, and into the status and behavior patterns of applications
making them thus more suitable for mission-critical computing environments (see
section-6).

Finally, a Web services environment contains a collection of fine-grained utility (or
commodity) services, which provide value to and are shared by business services
across the organization. Examples of utility services include services implementing
calculations, algorithms, directory management services and so on.

3 Service Oriented Architecture

Service orientation utilizes services as constructs to support the rapid, low-cost and
easy composition of distributed applications. Key to this concept is the service-
oriented architecture (SOA), which is a logical way of designing a software system to
provide services to either end-user applications or to other services distributed over a
network, via published and discoverable interfaces. A well-constructed SOA can
empower a business environment with a flexible infrastructure and processing
environment by provisioning independent, reusable automated business processes (as
services) and providing a robust foundation for leveraging these services.

Business processes form the foundation for SOAs and require that multiple steps
occur between physically independent yet logically dependent services. Underlying the
need for flexibility in SOA is the ability to rapidly assemble new services and business
processes to address business needs. An important characteristic of SOAs is that they are
impacted by industry regulations. Without explicit business process definitions, flexible
rules frameworks, and audit trails that provide for non-repudiation, organizations face
litigation risks. Acts such as the Sarbanes-Oxley requires all organizations to review their
business processes and ensure that they meet the compliance standards set forth in the
legislation. This can include, but is not limited to, data acquisition and archival,
document management, data security, financial accounting practices, and shareholder
reporting functions. When a compliance-model, such as the Sarbanes-Oxley Act, is used
to drive business processes enforces the exchange of reliable, credible information,

16 M.P. Papazoglou

adherence to regulations as well as visibility and transparency of business processes
between interacting parties.

The following key SOA enablers form the core of (inter- and cross)-enterprise
integration: engineering and planning the SOA, SOA implementation, SOA
management and monitoring, and governing the SOA.

We shall examine each of these SOA enablers in turn in the following sections.

4 Engineering and Planning the SOA

When software developers are building a service-oriented application, they must rely
on a service-based development methodology [8]. Such a methodology focuses on
analyzing, designing and producing an SOA in a way that it aligns with business
process interactions between trading partners in order to accomplish a common
business goal, e.g., requisition and payment of a product, and stated functional and
non-functional business requirements, e.g., performance, security, scalability, and so
forth. Without a service-based development methodology, projects aiming at building
SOA processes are doomed to be overtime, violate quality criteria, incorporate
designs that infringe basic principles (such as loose-coupling), are hard or virtually
impossible to manage, and, are likely to result in systems that are notably intricate,
time-consuming and costly to maintain.

A service-oriented design and development (SoDD) methodology provides
sufficient principles and guidelines to specify and construct business processes
choreographed from a set of internal and external Web services [16]. Adopting a
service-oriented approach to solutions development necessitates a broader review of
its impact on how solutions are designed; what it means to assemble them from
disparate services; and how deployed services-oriented applications can evolve and be
managed. This requires addressing common concerns such as the identification,
specification and realization of services, their flows and composition into processes,
as well as the enterprise-scale components needed to realize them and ensure the
required QoS.

4.1 SOA Layers of Abstract Functionality

SOA-based development is facilitated when we view the way that SOA operates as
comprising a number of layers of abstract functionality, each with its own category of
artifacts that is characterized by its own set of properties and relationships. Each layer
helps organize SOA functionality at the most appropriate level of detail. This is
illustrated in Figure 2, where the basic SOA model is divided into six major layers of
abstraction: domains, business processes, business services, infrastructure services,
service realizations and operational systems.

The logical flow employed in the layered SOA development model usually focuses
on a top-down, a bottom-up or a meet-in-the middle development approach. The top-
down development approach requires an holistic view of business processes and their
interactions in an enterprise and emphasizes how business domains are decomposed
into a collection of business processes, how business processes are decomposed into
constellations of business services, and how these services are implemented in terms

 What’s in a Service? 17

Fig. 2. SOA layers of abstract functionality

of pre-existing enterprise assets. The bottom-up approach emphasizes how existing
enterprise assets (e.g., databases, enterprise information systems, legacy systems and
applications) are transformed into business services and how business services are in
turn composed into business processes. The bottom-up approach can originate on the
departmental and group level, starting by exposing existing applications as services
and building around those services. The most common approach is, however, to
combine top-down and bottom-up approaches, starting at each end and meeting in the
middle.

Figure 2 shows that a service domain such as distribution, which is part of the
complex application in Figure 1, is subdivided into a small number of higher-level
standard business processes such as purchasing, order management and inventory.
The order management business process in Figure 2 typically performs order volume
analysis, margin analysis, sales forecasting and demand forecasting across any region,
product or period.

In Figure 2, the order management process provides business services for creating,
modifying, suspending, canceling, querying orders, for creating and tracking orders
for a product, a service or a resource, and capturing customer-selected service details.
Business processes orchestrate the execution of several finer-grained business
services to fulfill the required business functionality and are thus the units of
decomposition into (top-down approach) or composition from (bottom-up approach)
business services. Business services are the appropriate units of business process and
transaction analysis as they identify business processes and transactions and

18 M.P. Papazoglou

associated business costs, and achieve reuse of resources across enterprises and
business units [7].

In an SOA the business services layer provides a kind of conceptual bridge
between the higher-level business-oriented layers and the lower-level technical
implementation layers. We may thus collectively think of the service domain,
business processes and business services sections as comprising the logical part of
services development life cycle, see Figure 2.

Business services are supported by infrastructure, management and monitoring
services such as those providing technical utility, for instance, logging, security, or
authentication, and those that manage resources. These services provide the
infrastructure often considered as part of the Enterprise Service Bus (see section-5).

Service domains, business processes and services are layered on a backdrop of a
collection of operational functions and data available from resources such as ERP,
databases, and CRM systems as well as other enterprise resources. The component
realization layer in an SOA identifies and characterizes a large number of components
that provide service implementations in terms of existing resources. Here, bottom-up
analysis of exiting applications and systems is required.

In a similar manner to the logical part of Web services development life cycle, we
may think of the infrastructure services, the component-based realizations, and the
operational systems sections as comprising the physical part of Web services
development life cycle. The physical part of the Web services development life cycle
is intended to accelerate service implementation.

4.2 Phases in Service-Oriented Design and Development Methodology

The main concern of SoDD is that business goals and requirements should drive
downstream design, development, and testing to transform business processes into
composite applications that automate and integrate enterprises. In this way business
requirements can be traced across the entire lifecycle from business goals, through
software designs and code assets, to composite applications.

A SoDD methodology comprises a number of phases typically encompassing
planning, analysis and design, construction and testing, provisioning, deployment,
execution and monitoring. These phases are traversed iteratively and feedback is
cycled to and from phases in iterative steps of refinement and the methodology may
actually be built using a blend of forward- and reverse-engineering techniques or
other means to facilitate the needs of the business. This approach considers multiple
realization scenarios for business processes and services that take into account both
technical and business concerns. In the following we briefly summarize the service
analysis and design phases of SoDD. More information about the remaining phases as
well as the SoDD methodology can be found in [8] and [10].

4.2.1 Service Analysis
Service analysis aims at identifying and describing the processes and services in a
business problem domain, and on discovering potential overlaps and discrepancies
between processes under construction and available system resources that are needed
to realize singular services and business processes. Service analysis helps prioritize
business processes and services where SOA can contribute to improvements and offer

 What’s in a Service? 19

business value potential. It also helps center efforts on business domains within an
enterprise that can be mapped to core business processes.

The analysis phase reviews the business goals and objectives of an enterprise, since
these drive the development of business processes. It helps focus SOA initiatives by
creating a high-level process map that identifies business domains and processes of
particular interest to an enterprise. Business processes are ranked by criteria related to
their value and impact, reuse and high consumption, feasibility and technical viability.
From the process map, analysts can identify candidate business services that relate to
these processes. Service analysis is aimed at enabling the business analyst to model
their current (as-is) and new (to-be) processes using modeling environments, simulate
their processes to test for effectiveness and impact, define their processes, and
manage business processes proactively, feeding business-activity management
information back to the analyst for ongoing optimization (see section-6.2).

4.2.2 Service Design
Designing a service-oriented application requires developers to define related, well-
documented interfaces for all conceptual services identified by the analysis phase,
prior to constructing them.

The design phase encompasses the steps of singular service specification, business
process specification, and policy specification for both singular services and business
processes. Service design is based on a twin-track design approach that provides two
production lines – one along the logical part and one along the physical part of the
SOA – and considers both functional and non-functional service characteristics. The
purpose of logical service design is to define singular services and assemble
(compose) services out of reusable singular service constellations. This calls for a
business process model that forces developers to determine how services combine and
interact jointly to produce higher level services. The physical design trajectory
focuses on how to design component implementations that provide services at an
acceptable level of granularity. Physical design is thus based on techniques for
leveraging legacy applications and component-based development.

5 Implementing the SOA

A successful SOA deployment requires adopting and installing a service integration
backbone that mediates differences between services, known as an Enterprise Service
Bus (ESB) [3, 5, 14]. The ESB is an open, standards-based message bus designed to
enable the implementation, deployment, and management of SOA-based solutions
with a focus on assembling, deploying, and managing distributed SOA [12]. The ESB
provides the distributed processing, standards-based integration, and enterprise-class
backbone required by the extended enterprise [4].

An ESB provides a necessary layer of intermediation in SOA, insulating services’
end points from direct connection to each other, and a powerful backbone for those
services to plug into. The purpose of an ESB is to enable service composition across
the entire lifecycle of service delivery—from connecting heterogeneous services
running on various enterprise systems (legacy, packaged, and custom applications), to
dynamically mediating and transforming messages between disparate services to

20 M.P. Papazoglou

Fig. 3. ESB functionality layers

accomplish steps within a business process, to managing and monitoring service
interactions to ensure QoS and Service Level Agreement (SLA) compliance. Figure 3
illustrates the key functional layers of an ESB.

The ESB becomes the foundation for further expansion of enterprise integration for
SOA. It achieves this by streamlining communication between disparate services by
removing the integration logic from the service end points. This capability shields
services, processes, and users from service changes. As part of this streamlining, the
service-integration layer extends to and bridges multiple protocols, message styles,
security policies, and data formats.

The most common ESB components are:

• Leveraging existing assets: the objective is to leverage legacy assets and integrate
them with modern technologies and applications.

• Service communication: service interactions must be routed through a variety of
protocols, and transformed from one protocol to another where necessary. Another
important aspect of an ESB implementation is the capacity to support service-
messaging models consistent with the SOA interfaces, as well as the ability of
transmitting the required interaction context, such as security, transaction, or
message correlation information.

• Dynamic connectivity: Web services can connect dynamically without using a
separate static API or proxy for each service. The dynamic connectivity API is the
same regardless of the service implementation protocol (Web services, JMS,
EJB/RMI, etc.).

• Topic/content-based routing: should facilitate not only topic-based and itinerary-
based routing but also, more sophisticated, content-based routing (with declarative
routing rules).

• Transformation and mapping: to ensure that messages and data received by any
component is in the format it expects, thereby removing the burden to make
changes. Transformation can range from simply mapping data formats of message

 What’s in a Service? 21

payloads to providing rich aggregation or decomposition of service semantics so
that each side of the conversation is unaware of details of the other.

• Service orchestration, aggregation, and process management: fine-grained services
should be aggregated into coarse-grained services. To that effect, many ESB vendors
provide service orchestration tools and BPEL-based runtimes.

• Endpoint discovery with multiple QoS: SOAs need to discover, locate, and bind to
services with different values to the business. Several scenarios make it desirable
for the client to select the best endpoint at run-time, rather than hard-coding
endpoints at build time.

• Reliable messaging: supports asynchronous store-and-forward delivery as well as
guaranteed delivery capabilities. Primarily used for handling events, this capability
is crucial for responding to clients in an asynchronous manner, and for a successful
ESB implementation.

• Security model: should be provided to service consumers and should integrate with
the (potentially varied) security models of service providers. Both point-to-point
(e.g., SSL encryption) and end-to-end security capabilities are supported. To
address these intricate security requirements trust models, WS-Security [13] and
other security related standards have been developed.

• Monitoring and management: a crucial goal of the ESB is to manage applications
that cross system and organizational boundaries, overlap, and may ultimately
change over time (see following section).

6 Managing the SOA

In SOA solutions, service usage patterns, SLA criteria and metrics, and failure data
should be continuously collected and analyzed. Without such information, it is often
quite challenging to understand the root cause of an SOA-based application’s
performance or stability problems. A Web services measurement and management
infrastructure provides comprehensive ways of understanding exactly what is
involved in a business process so it can cross organizational boundaries and function
as an integral element in an end-to-end process chain that spans organizations and
value chains.

Web services need to be managed in at least two dimensions [10]:

1. The operational (or infrastructure) management dimension, in which a systems
administrator starts and stops Web services and keeps track of how many instances
of a Web service are running, in which containers, and on which remote systems.

2. The tactical (or business) management dimension that provides a number of
business activity monitoring and analytics capabilities that enable some human
agent to watch over business operations, identifying opportunities and diagnosing
problems as they occur so as to ensure that the Web services supporting a given
business task are performing in accordance with service level objectives.

We shall examine these two Web services management dimensions in what
follows.

22 M.P. Papazoglou

6.1 Distributed Infrastructure Services Management

An orchestrated service implementation forms a logical network of services layered
over the infrastructure (including software environments, servers, legacy applications,
and back-end systems) and the physical connectivity network. Any such environment
should be managed in order to provide the security, usability, and reliability needed in
today's business environment.

Web services management is defined as the functionality required for discovering
the existence, availability, performance, health, patterns of usage, extensibility, as
well as the control and configuration, life-cycle support and maintenance of a Web
service or business process within the context of SOAs [10]. This definition suggests
a manageability model that applies to both Web services and business processes in
terms of manageability topics, (identification, configuration, state, metrics, and
relationships) and the aspects (properties, operations and events) used to define them
[11]. A Web services management framework performs four activities as part of end-
to-end Web services management [10]:

1. Measuring end-to-end levels of service for user-based units of work, e.g.,
individual Web services, business processes, application transactions, and so on.

2. Breaking such units of work down into identifiable, measurable components, e.g.
requests for application transactions.

3. Attributing end-to-end service levels and resource consumption to such units and
their components. This involves tracing and monitoring them through multi-
domain, geographical, technological, application, and supplier infrastructures.

4. Identifying and predicting current problems and future requirements in user terms.

To perform the above activities a Web services management framework must take
into consideration a number of interrelated Web services management aspects. The
most prominent functions of service management include the following.

• Performance indicators and metrics: service-focused management requires measu-
rable key performance indicators (KPIs) for applications and services to ensure
quality. Generic KPIs for business applications include service availability, response
time, transaction rate, service throughput, service idle time, and security. Service
providers set the service KPIs and their objectives, and are able to measure, analyze,
and report on the KPI values achieved against these objectives.

• Auditing, monitoring, and troubleshooting: Web services should be audited and
these measurements can be used to compare against service level agreements.
Resources should be monitored for bottlenecks and for user-defined thresholds that
exceed the prescribed limits. These measurements can be recorded and the
historical performance data collected and used for capacity planning.

• Infrastructure monitoring: distributed resources, such as servers and networks, but
also critical software infrastructure, must be monitored for availability, perfor-
mance and utilization so that developing problems can be quickly detected. The
management infrastructure must know how many instances of a service are
running, whether a service is performing adequately and when a service has
stopped functioning and how to readily connect and disconnect services and their
clients without breaking applications or infrastructure.

 What’s in a Service? 23

• Resource provisioning: when a Web services-based application is running careful
monitoring of system activity can help to identify potential problems before they
are manifested in overloads or failures. For instance, when a server cluster no
longer has the capacity to handle the demands being made upon an application,
additional servers are provisioned and configured.

In a Web services management environment a resource manager is the module that
implements a control loop that collects details regarding a managed resource and acts
accordingly. The resource manager realizes the management capabilities and
functions of management solutions. To achieve this, it collects the details it needs
from a Web service (or business process); analyzes these details to determine if
something needs to change; it then creates a plan, or sequence of actions, that
specifies the necessary changes; and finally it performs these actions. These four parts
work in tandem to provide the control loop functionality.

A resource manager relies on a monitor module that aggregates, correlates and filters
managed resource meta-data such as metrics, topology information, configuration
property settings, offered capacity, throughput and so on, and organizes them into
symptoms that require analysis. A resource manager uses such monitored data, for
instance, during the analysis process, to generate a change request or the execute function
to perform system self-optimization. Selected monitored data also could be presented to a
systems administrator on a management console.

6.2 Business Process Management

Tactical Web services management provides end-to-end visibility and control over all
parts of a long-lived, multi-step transaction/process that spans multiple applications
and human actors in one or more enterprises. Tactical Web services management
issues, e.g., management of end-to-end SLAs, metrics that ensure conformance, and
so on, are usually addressed by Business Process Management (BPM).

BPM manages the lifecycle of a process starting from business goals and
definition, through deployment, execution, measurement, change, and redeployment.
A BPM suite offers advanced modeling and simulation tools that give the ability to
not only model graphical representations of a process, but also to simulate the impacts
of changes to a process to measure its effect on numerous variables and KPIs
including cost, profitability, resource utilization, throughput speed, and other critical
business objectives. Statistical analysis models, such as Six Sigma, can also work
within the simulation environment. As processes run, the BPM engine continuously
captures snapshots of instance data and aggregates them in visible performance
metrics, both built-in and user-defined.

BPM is a natural complement to SOA, and a mechanism through which an
organization can apply SOA to high-value business challenges. The objective is to
effectively align technical initiatives with the strategic goals of the business user at
every level within the organization to achieve a comprehensive approach to real
business transformation.

Both SOA and BPM can each be pursued without the other, but the two approaches
in concert offer reciprocal benefits. Layering BPM on top of a solid SOA allows

24 M.P. Papazoglou

Fig. 4. The business and infrastructure levels for Web services management

actions within business processes to be exposed via automated services and SOAs.
With BPM orchestration, the exposure of key business events and information to
users at the appropriate times and in the appropriate contexts adds tremendous
business value that might not otherwise be achieved with a conventional SOA. In
addition, BPM helps deliver control over business processes, fostering standardization
across a company or an end-to-end process chain and compliance with regulations,
policies, and best practices. It also enables some services required by the business
process to be outsourced to trading partners, and opens up brand-new business models
in which the enterprise’s own business processes can be exposed as services to new
customers, both internal and external. Figure 4 illustrates how the SOA and BPM
approaches are pursued in concert.

6.3 Connecting the Business Service and Infrastructure Channels in an SOA

Figure 5 is a further illustration of how management and business application
channels can be developed in accordance with SOA principles [10]. This architecture
continuously connects to the Web services application channel and directs it into the
management channel. Typical management services that are common across both the
business applications and management channels, include:

1. SLA and QoS management, including the measurement of performance and

availability, as well as alerting services.

 What’s in a Service? 25

2. Visibility and control capabilities, including interactive monitoring, administration,
and reporting.

3. Service adaptability, including versioning, routing, differentiated services, and
message transformation.

4. Web-services and XML-based security mechanisms, i.e., WS-Security related
standards.

An enterprise based on this architecture can extend business applications with

special management capabilities or add management capabilities as required.
In the architecture depicted in Figure 5, service management involves a collection

of management infrastructure services that communicate with each other — passing
data or coordinating some activity — to facilitate the delivery of one or more business
services. The architecture is generic and does not prescribe the use of a particular
management protocol or instrumentation technology; it can rather work with existing
and future technologies and standards.

In Figure 5, managed resources include physical and logical hardware and software
resources. These resources expose their management capabilities as Web services that
implement various management interfaces, such as those defined in the Web Services
Distributed Management (WSDM) standard [15]. WSDM defines a protocol for the
interoperability of management information and capabilities via Web services. To
resolve distributed system management problems, WSDM focuses on two distinct
tasks: management using Web services (MUWS) and management of Web services
(MOWS).

Fig. 5. Developing and managing Web services-based applications

26 M.P. Papazoglou

Figure 5 shows that a business process integrates basic services such as credit
validation, shipping, order processing, and inventory services originating from two
collaborating enterprises. The architecture’s management applications, such as
performance management, capacity planning, asset protection, job control, manage
resources through their management interfaces or management infrastructure services
[6]. A resource’s management interface is described by a WSDL document, resource
properties schema, metadata documents, and (potentially) a set of management-related
policies. Resource managers interact with managed resources and management
infrastructure services using the Web services interfaces. In addition, service managers
leverage Web services technologies, such as BPEL, to describe and execute management
processes that perform a “scripted” management function [6].

7 Governing the SOA

A significant challenge to widespread SOA adoption is for SOAs to deliver value. To
achieve this, there must be control in areas ranging from how a cross-organizational
end-to-end business process that is composed out of variety of service fragments is
built and deployed, how QoS is enforced, proven and demonstrated to service
consumers, to granular items such as XSD schemas and WSDL creation. This
requires efficient SOA governance.

SOA governance refers to the organization, process, policies and metrics that are
required to manage an SOA successfully [7]. In particular, SOA governance is a
formalization of the structured relationships, procedures and policies that ensure the
IT functions in an organization support and are aligned to business functions, with a
specific focus on the life cycle of services. SOA governance is primarily designed to
enable enterprises to maximize business benefits of SOA such as increased process
flexibility, improved responsiveness, and reduced IT maintenance costs.

Services that flow between enterprises have defined owners with established
ownership and governance responsibilities, including gathering requirements, design,
development, deployment, and operations management for any mission critical or
revenue generating service. SOA governance introduces the notion of business domain
ownership, where domains are managed sets of services sharing some business context to
guarantee that services their functional and QoS objectives both within the context of a
business unit and the enterprises within which they operates [2].

Two different governance models are possible [10]. These are central governance
versus federated governance. With central governance, the governing body within an
enterprise has representation from each business domain as well as from independent
parties that do not have direct responsibility for any of the service domains. With
federated governance each business unit has autonomous control over how it provides
the services within its own enterprise, while a central governance committee, which
has an advisory role, can provide guidelines and standards to different teams.

Figure 6 illustrates the role that the ESB plays with respect to SOA governance. As
this figure illustrates, the ESB can play an important role in SOA governance by
monitoring business activities and handling exceptions, by providing runtime
monitoring capabilities to check policy compliance and provide audit trails,
facilitating service management, resource and business process optimization.

 What’s in a Service? 27

Fig. 6. Developing and managing Web services-based applications

8 Summary

Automated services help enterprises create new value from existing investments,
reuse of software and resources, and achieve new levels of agility through greater
flexibility and lower cost structures. As services come in many flavors and guises
they have differing characteristics. We argue that the most necessary and minimal set
of characteristics for services must include elements such as two service types:
informational and complex services, service facades such as a structural, a behavioral,
and a policy façade, a vocabulary of terms, as well as a provisioning and charging
model.

Service Oriented Architectures empower a business environment with a flexible
infrastructure and processing environment by provisioning independent, reusable
automated business processes (as services) and providing a robust foundation for
leveraging these services. Effective SOAs must rely on a set of core of core enablers,
which include engineering and planning the SOA, SOA implementation, SOA
management and monitoring, and governing the SOA.

References

1. Bajaj, S., et al.: Web Services Policy Framework (WS-Policy) Version 1.2 (March 2006),
available at: http://xml.coverpages.org/ws-policy200603.pdf

2. Bieberstein, N., et al.: Service-Oriented Architecture (SOA) Compass. IBM Press (2006)
3. Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc. (2004)
4. Chappell, D.: ESB myth busters: Clarity of Definition for a Growing Phenomenon. Web

Services Journal, 22–26 (February 2005)
5. Colan, M.: Service-Oriented Architecture Expands the Vision of Web Services, Part 2.

IBM DeveloperWorks (April 2004)
6. Kreger, H.: A Little Wisdom about WSDM. IBM DeveloperWorks, available at:

http://www-128.ibm.com/developerworks/library/ws-wisdom

28 M.P. Papazoglou

7. Marks, E.A., Bell, M.: Service-oriented Architecture: A Planning and Implementation
Guide for Business and Technology. J. Wiley, Chichester (2006)

8. Papazoglou, M.P., van den Heuvel, W.J.: Service-oriented Design and Development
Methodology. Int. J. Web Engineering and Technology 2(4), 412–442 (2006)

9. Papazoglou, M.P., van den Heuvel, W.J.: Service Oriented Architectures: Approaches,
Technologies and Research Issues. The VLDB J. 16(3), 389–415 (2007)

10. Papazoglou, M.: Web Services: Principles and Technology. Prentice-Hall, Englewood
Cliffs (2007)

11. Potts, M., Sedukhin, I., Kreger, H.: Web Services Manageability – Concepts (WS-
Manageability). IBM, Computer Associates International, Inc., Talking Blocks, Inc.
(September 2003), available at: www3.ca.com/Files/SupportingPieces/ web_service_
manageability_concepts.pdf

12. Ritter, T., Scott Evans, R.: SOA Research Costs and Benefits. Gartner Custom Research
(2006), available at: http://www.gcrinsight.com/

13. Rosenberg, J., Remy, D.: Securing Web Services with WS-Security. Sams Publishing
(2004)

14. Schulte, R.: Predicts 2003: Enterprise Service Buses Emerge. Report, Gartner (December
2002)

15. Vambenepe, W. (ed.): Web Services Distributed Management: Management Using Web
Services (MUWS 1.0) Part 1. OASIS Standard (March 2005), available at: http://docs.
oasis-open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf

16. Zimmerman, O., Korgdahl, P., Gee, C.: Elements of Service-oriented Analysis and
Design. IBM DeveloperWorks (June 2004), available at: http://www-106.ibm.com/
developerworks/library/ws-soad1

Pattern-Based Evolution of Software Architectures

Isabelle Côté, Maritta Heisel, and Ina Wentzlaff

University Duisburg-Essen, Faculty of Engineering, Department of Computational and
Cognitive Sciences - CoCoS, Working Group Software Engineering, Germany

{isabelle.cote, maritta.heisel,ina.wentzlaff}@uni-due.de

Abstract. We propose a pattern-based software development method compris-
ing analysis (using problem frames) and design (using architectural and design
patterns), of which especially evolving systems benefit. Evolution operators guide
a pattern-based transformation procedure, including re-engineering tasks for ad-
justing a given software architecture to meet new system demands. Through ap-
plication of these operators, relations between analysis and design documents are
explored systematically for accomplishing desired software modifications. This
allows for reusing development documents to a large extent, even when the ap-
plication environment and the requirements change.

1 Motivation

Splitting the software life cycle into several, more or less independent development
phases is a need to create manageable engineering activities. Patterns introduce a fur-
ther enhancement, because they provide a concept for reusing software development
knowledge. Hence, a vast quantity of patterns specific to and applicable in the different
phases of the software life cycle can be found today.

It has been observed that the life-span of software often covers several years, in some
cases even decades. During this long lifetime, it is necessary to modify and update
existing software to accommodate it to new requirements or a changing environment,
where it is deployed in. Modifying existing software systems to adapt them to new
or changed requirements is called software evolution. Existing software development
processes, however, are not designed to incorporate new or changing requirements into
an existing system. They usually consider a system that has to be built from scratch.
This is a striking fact, as experts see the fraction of maintenance/evolution at 80% of
the overall effort for a software project [9]. For this reason, it is necessary to provide
systematic support for the evolution task. Ideally, this support can be embedded into
an existing development process. This puts new demands on the relation of software
development process and pattern usage. Re-engineering techniques and reuse, as well
as the traceability between the different development artifacts are crucial in this context.

Each phase of the software life cycle has different objectives. However, even if the
engineering activities of the respective software development steps are independent of
each other, the resulting artifacts are not. Sudden architectural change by innovation
is not desirable. Instead, architectural changes are usually motivated by the need for

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 29–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 I. Côté, M. Heisel, and I. Wentzlaff

adding new functionality or reorganizing existing functionality to cope with new en-
vironmental circumstances. Therefore, we investigate the role of application environ-
ment and requirements change for architectural evolution. Our approach presented here
stresses the early development stages. We introduce evolution operators that guide a
systematic software architecture adjustment by establishing profitable pattern relations.

Patterns for software development have become widely accepted, especially during the
last decade. They are a means for understanding a given development problem (problem
frames [7]), or structuring its solution (as architectural styles [1] or design patterns [5]).
Relating these patterns for different phases of the software life cycle [2, 10, 11, 14] in
a methodical manner avoids to construct throw-away models. Thus, artifacts of the
respective steps that are build on patterns depend on each other, explicitly.

Guiding the transfer of artifacts of the analysis phase to artifacts of software de-
sign by a pattern-based transformation procedure takes advantage of this underlying,
pattern-based linkage between artifacts and its resulting traceability. Therefore, we ex-
tend an existing development process through suitable evolution operators. These oper-
ators guide the engineering process in evolving given artifacts. They also assist in the
reuse of related development artifacts in successive development phases and provide
help with selecting appropriate patterns. Because of its general nature, our pattern-based
development method is applicable to a variety of software development problems and
assists system evolution.

Section 2 describes our general development method. To illustrate our approach, we
present as an example the architectural evolution of a chat system that is introduced in
Section 3. Section 4 presents the evolution operators we have defined and attached to
the development method of Section 2. In Sections 5 and 6, two evolution scenarios are
given, describing the accomplishment of a pattern-based evolution of the original chat
software architecture. Finally, Section 7 concludes this work with a brief summary of
our contribution and future prospects.

2 A Pattern-Based Software Development Method

Our pattern-based software development procedure is based on Jackson’s problem
frames approach [7]. It consists of the following four steps:

1. Understand the problem situation

After investigating the problem domain and identifying its current shortcomings,
relevant domain knowledge is collected, and the system mission together with the
corresponding requirements are recorded, as shown in Table 1. Domain knowledge
(consisting of facts F and assumptions A) and requirements R (describing the chat
system in its environment) are collected for detailing the system mission (SM).

The given problem situation is structured by a context diagram, which represents
the desired system, shown in Figure 1. It represents the overall problem situation. A
context diagram covers the domain knowledge and the requirements of Table 1 by
corresponding domains (boxes) and their interactions (shared phenomena at labeled
interfaces). The machine domain (indicated by two vertical stripes) represents the
software we are going to build.

Pattern-Based Evolution of Software Architectures 31

Table 1. Initial Set of Requirements and Domain Knowledge for a Chat Application

SM A text-message-based communication platform shall be developed, which allows multi-
user communication via private I/O-devices.

R1 Users can phrase text messages, which are shown on their private graphical display.
R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ graphical display.
... . . .

F1 Users communicate in a local network.
A1 Users follow the course of the chat on their private graphical display.

a

d

b
c

network
e

text
message

chat
application

display

user

a : {phraseTextMessage, sendTextMessage}
b : {showTextMessage}
c : {readDisplay}
d : {editTextmessage, MessageText}
e : {distributeTextMessage, pickUpTextMessages}

Fig. 1. Context Diagram for a Chat Application

2. Decompose overall problem into simple subproblems

The requirements guide a knowledge-based decomposition of the overall problem
that is represented by a context diagram into several simple problems. A simple
problem is represented by a problem diagram, which expresses what the subprob-
lem is about by referring to the involved domains and related shared phenomena.
These subproblem representations together with the given domain knowledge suf-
fice to derive a software specification describing the interface behavior of the ma-
chine. Figures 2 and 3 represent two simple subproblems for requirements R2 and
R3. 1

3. Fit subproblems to (variants of) problem frames

When using a pattern-based development method, the subproblems are classified by
instantiating suitable problem patterns, called problem frames (PF) [7]. These are
patterns categorizing software development problems into problem classes during
the analysis phase. Thus, each problem frame represents a problem category, which
can be linked to patterns of a corresponding solution class. Via analogies, they
can be related to patterns of software design, resulting in a smooth transition from
requirements engineering documents into design artifacts [11].

4. Instantiate corresponding architectural and design patterns

Finally, we make use of the problem/solution-pattern relationship discussed in the
previous Step 3 to derive a software design appropriate for the given problem

1 Figures 2 and 3 are explained in more detail in Section 3.

32 I. Côté, M. Heisel, and I. Wentzlaff

situation documented in Steps 1 and 2. As an instance of a problem frame, each
derived subproblem assigns values to its related architectural styles or design pat-
terns. As a result, we obtain a more or less coarse-grained design (see Figures 4, 6,
and 7) for each subproblem. These subproblem solutions can be used as a starting
point for additional solution refinement, component deployment, or coding.

Therefore, using a specific pattern in the analysis phase results in a predetermined
choice of patterns in the design phase. If a subproblem fits to a problem frame (as
in Figures 2 and 3), related architectural or design patterns (see Figures 4, 6, and 7)
can offer a solution structure for it.

In the following, we use design patterns such as Forwarder-Receiver [1], which are
comparable to architectural styles for developing software architectures. However, com-
posing the overall (architectural) design out of several subproblem solutions [3] is out
of scope of this paper. We consider subproblems that contribute to a common solution
design in this paper.

3 Example: Developing a Chat System

The starting point of our initial software development project is the system mission in
Table 1. As described in Steps 1 and 2 of our development method, domain knowledge
and requirements are collected, and a context diagram is set up (see Figure 1). The
problem diagrams of Figures 2 and 3 represent two of the subproblems derived for the
chat application. They refer to the requirements R2 and R3.

network

user

text
message

chat
application

e

a

c

b

d

f

R2

a : US!{sendTextMessage}
b : CA!{distributeTextMessage}
c : TM!{MessageText}
d : ”message text”
e : ”transmit message”
f : ”user input”

Fig. 2. ”Message Forwarder” subproblem (instance of a variant of the commanded behaviour PF)

If a problem requirement such as R2 and R3 can be fitted to a problem frame, cor-
responding domains and shared phenomena for describing it in detail become identifi-
able. Then, the dashed oval contains the corresponding requirements. The dashed lines
demonstrate the relationships between these requirements and the different problem do-
mains, see for example Figure 2. An arrowhead pointing at a problem domain denotes a
requirements constraint, which stipulates the development of a machine controlling the
problem domain as stated in the requirements. Then, the frame diagram supports the
derivation of a specification, which is a technical description sufficient for developing
the desired software. For this, the interfaces at the machine domain are of particular
importance. They specify what services the desired software shall provide.

Pattern-Based Evolution of Software Architectures 33

chat
application R3

a d

network

display

b c
a : CA!{showTextMessage}
b : NW!{pickUpTextMessages}
c : ”obtaining message”
d : ”update display content”

Fig. 3. ”Message Receiver” subproblem (instance of information display PF)

In addition to the interfaces of a context diagram, in problem diagrams an abbrevia-
tion of the domain name (like US for user) is given. An exclamation mark at the labeled
interfaces indicates which domain controls a shared phenomenon or a set of shared phe-
nomena. An example for this is a: US!{sendTextMessage} in Figure 2. It means that
the user initiates commands for sending chat text messages.

As recommended by Step 3 of our pattern-based software development method, both
subproblems of Figures 2 and 3 are instances of problem frames [7]. In Figure 4, we il-
lustrate how to transform a pattern for software analysis to a pattern for software design
in order to accomplish Step 4.

First, we translate the subproblems into a class diagram known from Unified Model-
ing Language (UML) [13] (see classes chat application and network of Figure 4). This
eases linking them to patterns of software design, which in general are represented in
UML notation. Thus, in our approach, problem frames and problem diagrams take the
role of UML use cases, which are a means for requirements elicitation and problem
decomposition. In contrast to use cases, problem frames and problem diagrams refer to
their respective requirements explicitly. Furthermore, they represent necessary objects
and their interactions in more detail, which facilitates for a more coherent development.
And in addition, they support our aim of an integrated pattern-based development pro-
cedure. Consequently, problem frames do not replace common development notations
such as UML, but they extend them in a profitable way.

The upper part of the class diagram shown in Figure 4 represents the Forwarder-
Receiver design pattern [1]. The two classes chat application and network are taken
from the subproblems in Figures 2 and 3. They are related to the Forwarder-Receiver
design pattern via analogy:

The software we are going to build, namely the chat application is related to the
class Peer in Figure 4. Both have in common that they constitute the core chat sys-
tem controlled by a user, who can call specific services, such as sendTextMessage.
Therefore, we relate them via an inheritance relation. The network domain in Figure 2
takes the role of the class Forwarder in Figure 4, implementing its operations by distrib-
uteTextMessage. In the subproblem of Figure 3, network takes the role of a Receiver,
which again is expressed by an inheritance relation in Figure 4, where network imple-
ments the Receiver operations by pickUpTextMessages. In the following, the domain
text message of Figure 2 and the domain display of Figure 3 are assumed to be part
of the chat application or peer. For sake of simplicity, we will not consider them any
further, because they have no architectural effects in our example.

34 I. Côté, M. Heisel, and I. Wentzlaff

receiveMsg

sendTextMessage

receive
unmarshal
receiveMsg

Peer

service

marshal
deliver
sendMsg

n

sendMsg

chat application

Forwarder

Receiver

distributeTextMessage
pickUpTextMessages

network

...

...

Fig. 4. Relating Problem Diagrams with Design Pattern Forwarder-Receiver

Figure 4 shows an initial software design, which is constructed entirely with patterns.
Implementing this design results in a peer-to-peer chat system. For our example, we first
finish the development process at this point.

4 Considering Evolution Through the Development Life Cycle

To support evolution, we define a corresponding evolution step for each step of the
method described in Section 2. The work of O’Cinneide and Nixon [8] may seem sim-
ilar to our approach. However, we do not perform refactoring to introduce design pat-
terns into a given system. In contrast, our system is already composed of design patterns.

Our evolution method consists of several steps each providing evolution operators
for the respective development phase. Changes to the original method introduced in
Section 2 are indicated in bold face. The evolution operators document what the change
is and how it should be carried out. This results in a corresponding set of operators
for each step of our development method, e.g. the addition or deletion of a domain in
the context diagram in Step 1. In the following, we concentrate on illustrating those
operators which are applied to our example.

1. Understand the new problem situation

Evolution takes place when a change request is present. This request has differ-
ent effects, depending heavily on whether or not requirements or domain knowl-
edge are modified. In the following, we refer to new or changed requirements
as evolution requirements eR and new or additional domain knowledge as aD
(aD ≡ aF ∧ aA). The above-mentioned modifications of requirements and/or
domain knowledge make it necessary to gain an understanding of the new circum-
stances. This may result in a modification of the context diagram, using evolution
operators. The operators relevant for this phase are:
eAD – evolution operator add new domain:

A new domain has to be added to the context diagram.

Pattern-Based Evolution of Software Architectures 35

The eR and/or the aD introduce a new relevant domain. Relevant means that
the domain is necessary to develop the specification for the machine. Usually,
this implies that the new domain is directly connected to the machine domain.
This domain has to be added to the context diagram. The new phenomena that
occur have to be treated with eAP (add new phenomenon) or eMP (modify
existing phenomenon) (described below).

eMD – evolution operator modify existing domain:
A domain contained in the context diagram has to be modified. Possible modi-
fications are for example splitting or merging of domains.

In contrast to eAD, the eR and aD do not necessitate a new domain in this
case. However, they make it necessary to modify a given domain in the context
diagram. This may occur when the eR and/or the aD are extended or changed,
resulting in a possible application of eAP.

eAP – evolution operator add new phenomenon:
A new phenomenon is added to an interface of the context diagram.

Whenever eAD is applied, it is also necessary to add new phenomena to the
newly created interfaces between the added domain and the domains connected
to it. It may also occur that a new phenomenon has to be added to an already
existing interface (perhaps as a consequence of applying eMD).

eMP – evolution operator modify existing phenomenon:
An existing phenomenon has to be modified in the context diagram, e.g. by
renaming.

The domains contained in the context diagram suffice to capture the new sit-
uation. The shared phenomena, however, have to be changed in order to handle
the modified behavior derived from eR and/or aD.

In some cases, it may also occur that neither domains nor shared phenomena are
newly introduced. Then, no changes to the context diagram are necessary in Step
1, but the new requirements/domain knowledge may require changes in later steps.
A reason for this is that at this stage, only the static aspects of the system and not
the dynamic aspects are taken into account. The resulting context diagram now
represents the new overall problem situation.

2. Decompose overall problem into simple subproblems, and adapt existing ones
It is necessary to investigate the existing subproblems, applying evolution opera-
tors as necessary. The eR are the driving force behind this investigation, as they
determine whether or not it is necessary to create a new subproblem or to adapt an
existing one. Examples of evolution operators for this step are:
eIR – evolution operator incorporate eR into a given subproblem:

New domains and associated shared phenomena may be added to an existing
problem diagram. This is possible if the eR references at most the same do-
mains as the given subproblem. Conflicting requirements may occur at this
point. However, resolving such conflicts will not be addressed here.

eCS – evolution operator create new subproblem:
Either the eR is assigned to a given subproblem, but the resulting subprob-
lem then gets too complex. Hence, it is necessary to split the subproblem into
smaller subproblems.

36 I. Côté, M. Heisel, and I. Wentzlaff

Or the eR cannot be assigned to a given subproblem, and a new subproblem
has to be created.

For the next steps, only newly introduced and adapted subproblems have to be taken
into further consideration, as only these will undergo changes. The subproblems
which have not been addressed in this step can be disregarded for now. They will
only become relevant again in later steps, when the solutions of the subproblems
are composed to the overall solution.

3. Fit subproblems to (variants of) problem frames and adjust problem frame in-
stances

The operators for this step include:

eFF – evolution operator fit to a problem frame:
Each newly introduced subproblem is fitted into a problem frame by instanti-
ating it according to the general procedure of Section 2.

eCF – evolution operator choose different problem frame:
For each adapted subproblem, it is checked whether its underlying problem
frame is still valid, or whether another problem frame is now more appropriate.
The corresponding problem frame is then instantiated accordingly.

4. Modify and instantiate corresponding architectural and design patterns

Comparable to evolution Step 2 driven by eR, this step is guided by aD. Evolution
operators applicable in this step are:

eAA – evolution operator adjust given architecture:
Adapted subproblems, which still fit into already instantiated problem frames,
can usually be incorporated into the given architecture without difficulties.

eCA – evolution operator choose different architectural style or design pattern:
New subproblems or subproblems that fit to different problem frames than be-
fore lead to a new investigation of the solution.

This investigation may result in a (re-)assignment of existing subproblems
to new architectural styles or patterns.

Furthermore, aD can cause a change in the problem/solution-pattern rela-
tion, resulting in a reallocation of subproblem elements to corresponding parts
of solution patterns via new analogies. For instance, this fact distinguishes evo-
lution scenario I from evolution scenario II (see Sections 5 and 6).

In the subsequent sections, we illustrate the usage of these evolution operators by
two evolution scenarios for our chat application.

5 Evolution Scenario I

The starting point for this first software evolution scenario is a chat system as described
in Section 3 for local communication (cf. F1 in Table 1), for example via a bluetooth
device as an implementation of the network domain.

A limitation of such a chat application is that users are restricted to the range of their
bluetooth devices. This limitation has to be removed now. An extended fact aF1 about

Pattern-Based Evolution of Software Architectures 37

Table 2. Changed Requirements and Domain Knowledge for Evolution Scenario I

SM A text-message-based communication platform shall be developed, which allows multi-
user communication via private I/O-devices.

R1 Users can phrase text messages, which are shown on their private graphical displays.
R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ graphical displays.
eR5 Users want to chat via long distances. Therefore it is necessary to pass the data

from the local network to the wide access network (and vice-versa).
aF1 Users communicate in a local network, or via a wide area access network.
A1 Users follow the course of the chat on their private graphical display.

the application domain is introduced, see Table 2: Users communicate [...] via a wide
area access network.

However, there is also a constraint restricting the evolution procedure: The structure
of the original application should be maintained. This constraint stresses the maximal
possible reuse of artifacts of the existing system. Therefore, it will be necessary to
maintain the existing architecture in its original form as far as possible. We now follow
the procedure described in Section 4 for evolving the given chat system:

1. Understand the new problem situation

Analyzing the change of domain knowledge results in an additional requirement,
which is added to Table 2 as eR5.

It is not necessary to add a new domain into the context diagram. The set of
existing phenomena suffices, as well. Therefore, it is not necessary to make any
changes to the existing context diagram. It still looks as shown in Figure 1.

2. Decompose overall problem into simple subproblems and adapt existing ones

We apply the operator eCS (create new subproblem) of Section 4 and create a new
subproblem. The formerly used network is not able to provide a wide area access.
Taking the above constraint into consideration, as well, we obtain the following
new subproblem represented in Figure 5. We need to transfer the data from our
bluetooth network to another network, which will deal with passing the data to
or receiving the data from the wide area access network. The other subproblems
remain unchanged.

3. Fit subproblems to problem frames and adjust problem frame instances

chat
application eR5

a d

networkb c

network

a : CA!{distributeTextMessage}
b : NW!{pickUpTextMessages}
c : ”obtaining message”
d : ”route message”

Fig. 5. ”Message Dispatcher” subproblem (instance of a variant of the transformation PF)

38 I. Côté, M. Heisel, and I. Wentzlaff

As we have created a new subproblem, the evolution operator eFF (fit to a problem
frame) described in Section 4 has to be applied. Accordingly, the new subproblem
becomes an instance of a transformation problem frame variant.

4. Modify and instantiate corresponding architectural and design patterns

By having a closer look at the new problem diagram in Figure 5, we see that what
is performed by this subproblem can be characterized as a kind of dispatching.
Now the evolution operators eAA (adjust given architecture) and eCA (choose
different architectural style or design pattern) have to be considered. The oper-
ator eAA preserves the Forwarder-Receiver architecture for the subproblems in
Figures 2 and 3. These problem diagrams stay untouched, and so does their cor-
responding architecture. To the newly created subproblem, we apply the operator
eCA. As we know that we need a dispatcher, this leads us to the pattern of Client-
Dispatcher-Server [1], because a dispatcher is responsible for establishing a (wide
area) connection between two parties. Another alternative could be the design pat-
tern Proxy. However, we choose the first pattern, namely Client-Dispatcher-Server,
to illustrate the evolution in this scenario. To satisfy the accompanying evolution
constraint to reuse as many development artifacts as possible, we attach the Client-
Dispatcher-Server to the already applied Forwarder-Receiver pattern, resulting in
a hybrid design pattern. Here, we follow in general the pattern-oriented analysis
and design (POAD) approach [15]. As shown in Figure 6, the new solution pattern
for the added subproblem in Figure 5 can therefore simply be “plugged together”
on the conceptual level with the existing one in Figure 4.

The connection between the two solution patterns namely Forwarder-Receiver
and Client-Dispatcher-Server is realized through dependencies. We want to main-
tain the original patterns as much as possible. The class Forwarder and Client share
the responsibility for sending some content or requests. Therefore, we can reuse

registerService

locationMap

locateServer
unregisterService

establishConnection
getChannel

Dispatcher

acceptConnection
runService
receiveRequest

Server

doTask
sendRequest

Client

receiveMsg

sendTextMessage

receive
unmarshal
receiveMsg

Peer

service

marshal
deliver
sendMsg

n

sendMsg

chat application

Forwarder

Receiver

distributeTextMessage
pickUpTextMessages

network

requests
services

result
returns

connection
requests

registers

<<uses>>

<<uses>>
connection

accepts link

etablishes

Fig. 6. Evolved Class Diagram of the Chat Application (Hybrid Style)

Pattern-Based Evolution of Software Architectures 39

Forwarder for implementing sendRequest of class Client. The same holds for the
class Receiver, which is responsible for realizing the Server operation
receiveRequest.

The chat application and network class derived from our subproblem descrip-
tions are related to the combined solution patterns via generalization/specialization
relations. Where chat application takes the role of a peer that provides services such
as sendTextMessage, and network takes the role of forwarder and receiver for han-
dling the reception of messages by pickUpTextMessage and their delivery through
distributeTextMessage. In its role as a Dispatcher, chat application uses its reference
to network for controlling its message handling, respectively.

Interesting is the role of the network, because it is part of all three subproblems.
For the subproblems in Figures 2 and 3, the network is responsible for providing
the Forwarder/Receiver functionality. For the subproblem in Figure 5, it implements
Dispatcher operations. For the Dispatcher the network connects the different chat
peers via long distances, whereas each peer is a Client as well as a Server commu-
nicating via a Forwarder-Receiver mechanism.

It is clearly visible that in this first evolution scenario the modification of aF1 and the
addition of eR5 resulted in the creation of a new subproblem. Because of this new
subproblem, it was necessary to make a new design decision. Considering the given
constraint, the decision leads us to an extension of the existing Forwarder-Receiver
architecture to a hybrid Forwarder-Receiver/Client-Dispatcher-Server style.

6 Evolution Scenario II

The second evolution scenario is based on the results of Section 5. With the current chat
application it is possible to communicate with other users via bluetooth or a network
providing wide area access. The devices used so far are general purpose computers.
Mobile devices such as portable phones or personal digital assistants (PDA) are not
supported yet. This describes the limitation that we remove in this second evolution
scenario: The usage of portable devices should be possible, as well. Once more the
evolution steps described in Section 4 are applied:

1. Understand the new problem situation

New domain knowledge is added, described by the additional fact aF2 in Table 3:
The devices used are general purpose computers as well as portable phones
and PDAs. This new fact describes hardware constraints referring to the machine
domain. No additional requirements are necessary. Therefore, the context diagram
remains unchanged, even though new domain knowledge has been introduced. The
reason is that aF2 influences internal characteristics of the machine, and not its
behavior. These characteristics, however, cannot be described by a context diagram.

2. Decompose overall problem into simple subproblems and adapt existing ones

The distribution of the overall problem situation into subproblems stays unchanged,
because the requirements do not change.

40 I. Côté, M. Heisel, and I. Wentzlaff

Table 3. Changed Requirements and Domain Knowledge for Evolution Scenario II

SM A text-message-based communication platform shall be developed, which allows multi-
user communication via private I/O-devices.

R1 Users can phrase text messages, which are shown on their private graphical displays.
R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ graphical displays.
eR5 Users want to chat via long distances. Therefore it is necessary to pass the data from

the local network to the wide access network (and vice-versa).
aF1 Users communicate in a local network, or via a wide area access network.
aF2 The devices used are general purpose computers as well as portable phones and

personal digital assistants (PDAs).
A1 Users follow the course of the chat on their private graphical display.

registerService

locationMap

locateServer
unregisterService

establishConnection
getChannel

Dispatcher

acceptConnection
runService
receiveRequest

Server

doTask
sendRequest

Client

sendTextMessage

chat application

requests
services

result
returns

connection
requests

registers
accepts link

pickUpTextMessages
distributeTextMessage

network

etablishes
connection

Fig. 7. Resulting architectural design based on Client-Dispatcher-Server

3. Fit subproblems to problem frames, and adjust problem frames instances

No changes have to be performed in this step, because no changes were performed
in the previous step.

4. Modify and instantiate corresponding architectural and design patterns

This step is the nontrivial one in this scenario, because here the effect of the newly
introduced domain knowledge becomes visible. Fact aF2 influences the decision
which pattern to select in the solution space. Mobile devices such as PDAs or mo-
bile phones do not possess the same resources as general purpose computers do.
The new fact thus imposes a constraint on the selection of design patterns and ar-
chitectural styles. Here, it leads to a re-design of the present architecture by means
of the evolution operator eCA.

Pattern-Based Evolution of Software Architectures 41

The new domain knowledge enforces a reorganization of the given subproblems,
resulting in a different choice of architectural style or design pattern out of the
related solution class. For our example, the three subproblems are matched with
the Client-Dispatcher-Server pattern only (cf. Figure 7).

The former forwarder and receiver components are merged with the client and
server components. The chat application now consists of two parts namely, a server
and a client part. The functionalities formerly represented by the peer are now par-
tially realized by the server and client classes, respectively.

In the first evolution scenario, we had to deal with a constraint. This constraint is still
present in the second scenario, however, in a weakened form: all the subproblems not
involved in the data transmission/reception remain unchanged, and the development
documents related to them can be reused as is. In this second scenario, adding domain
knowledge in form of aF2 results in a complete restructuring of the architecture. The
reason is that the new domain knowledge leads to a different matching of subproblems
to architectural patterns, resulting in a new, more appropriate and simpler architecture.

7 Conclusion and Future Work

We have introduced a pattern-based development method, incorporating evolution in
each step, and driven by evolution operators. With this method, it is possible to per-
form software evolution systematically whenever new requirements or changes in the
application environment occur.

Through a chat application example, we have shown the usage of our method. We
illustrated how a system evolved from a straight peer-to-peer architecture via a hybrid
architecture to a client-dispatcher-server system. This evolution is achieved by applying
evolution operators. They allow for identifying those development documents, which
have to undergo change. Thus, they provide guidance for performing the necessary
modifications in phases to come.

This approach enables us to perform a systematic rework on the affected develop-
ment documents by means of patterns. We have shown that it is possible to link the
artifacts of the analysis phase to the artifacts of the design phase. Therefore, changes in
the analysis help to perform an analogous procedure in the design phase.

Our method does not intend to replace existing methods or notations. It rather ex-
tends them by a goal-oriented, pattern-based approach resulting in coherent and precise
specifications. The method does not postulate a dogmatic approach, always resulting in
exactly one unique solution. We intend to constrain the possible solutions (design space)
to provide a small, most promising set of patterns useful for solving the problem.

Also non-functional requirements can be treated with our approach: If these quality
aspects are specified in the problem frames (such as HCIFrames [14] or using Secu-
rity Problem Frames [6]), they will lead to solutions that address these non-functional
issues, see evolution scenario one in Section 5. Additionally, non-functional aspects
that are manifested in domain knowledge can be covered, see evolution scenario two in
Section 6.

42 I. Côté, M. Heisel, and I. Wentzlaff

In summary, the advantages of our approach are the following:

– Our method is pattern-to-pattern, integrating evolution. Hence, it has all assets that
come with the use of patterns, in particular, reuse of established analysis and design
knowledge.

– Our evolution operators provide guidance concerning pattern selection and trans-
formation. They help to adapt the development problem and to find new solutions
if necessary.

– Non-functional requirements can be treated, as well.

Currently, we are working on a formalization of the problem frames. For that purpose,
we are building a formal metamodel using the formal specification language Object-Z
[12]. The graphical representation of the formalization is given through UML class dia-
grams [13]. The metamodel is equipped with integrity conditions to ensure the validity
of a frame with respect to the metamodel. It is planned to create an Eclipse [4] plug-in
for this metamodel. The plug-in will work as an editor to create valid frame diagrams
in the context of our metamodel. The metamodel will also serve as a basis for inves-
tigating which of the evolution operators can be formalized and incorporated into the
metamodel. In a further step, the plug-in will be extended to allow for an automation of
the identified and formalized evolution operators presented here.

In the future, we also plan to analyze the effects of domain knowledge within the
evolution process in more depth. Additionally, we plan to examine the impact of the
change in the architectural structures to later documents of the software life cycle, es-
pecially considering the source code. Furthermore, we intend to put stronger emphasis
on distinguishing internal and external quality aspects and how they are successfully
covered by our method. It is also planed to have a detailed look at the decompositions
and compositions of the subproblems with respect to the architecture, which would also
contribute to investigate the scalability of problem frames. We further will investigate
which problem frames should be related to which architectural design patterns or archi-
tectural styles for completing our method.

References

[1] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-
ware Architecture: A System of Patterns. John Wiley & Sons, Chichester (1996)

[2] Choppy, C., Hatebur, D., Heisel, M.: Architectural Patterns for Problem Frames. IEE Pro-
ceedings - Software 152(4), 198–208 (2005)

[3] Choppy, C., Hatebur, D., Heisel, M.: Component composition through architectural pat-
terns for problem frames. In: Proc. XIII Asia Pacific Software Engineering Conference,
pp. 27–34. IEEE Computer Society Press, Los Alamitos (2006)

[4] Foundation, T.E.: Eclipse - an open development platform (2007),
http://www.eclipse.org

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

[6] Hatebur, D., Heisel, M., Schmidt, H.: Security engineering using problem frames. In:
Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 238–253. Springer, Heidelberg (2006)

http://www.eclipse.org

Pattern-Based Evolution of Software Architectures 43

[7] Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, Reading (2001)

[8] O’Cinneide, M., Nixon, P.: Automated Software Evolution Towards Design Patterns
(2001), http://citeseer.ist.psu.edu/671812.html

[9] Pfleeger, S.L.: Software Engineering: Theory and Practice. Prentice-Hall, Englewood Cliffs
(2001)

[10] Rapanotti, L., Hall, J.G., Jackson, M.A., Nuseibeh, B.: Architecture-driven Problem De-
composition. In: RE’04. Proceedings of the 12th IEEE International Requirements Engi-
neering Conference, Kyoto, Japan, IEEE Computer Society Press, Los Alamitos (2004)

[11] Schmidt, H., Wentzlaff, I.: Preserving Software Quality Characteristics from Requirements
Analysis to Architectural Design. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS,
vol. 4344, Springer, Heidelberg (2006)

[12] Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers, Dordrecht
(2000)

[13] UML Revision Task Force: OMG Unified Modeling Language: Superstructure (2007),
http://www.omg.org

[14] Wentzlaff, I., Specker, M.: Pattern-based Development of User-Friendly Web Applications.
In: ICWE. Workshop Proceedings of the 6th International Conference on Web Engineering,
ACM Press, New York (2006)

[15] Yacoub, S.M., Ammar, H.H.: Pattern-oriented Analysis and Design: Composing Patterns
to Design Software Systems. Addison-Wesley, Reading (2003)

http://citeseer.ist.psu.edu/671812.html
http://www.omg.org

Formal Design of Structural and Dynamic

Features of Publish/Subscribe Architectural
Styles

Imen Loulou, Ahmed Hadj Kacem, Mohamed Jmaiel, and Khalil Drira

University of Sfax
Research Unit ReDCAD

B.P. W.3038 Sfax, Tunisia
Imen.loulou@tunet.tn, Ahmed@fsegs.rnu.tn, Mohamed.Jmaiel@enis.rnu.tn

LAAS-CNRS
7 avenue de Colonel Roche

31007 Toulouse Cedex 4, France
Khalil@laas.fr

Abstract. This paper proposes a compositional formal approach to de-
sign correct publish/subscribe architecture styles. We provide a set of
patterns and the corresponding composition rules to build architecture
styles. The defined patterns and rules respect the principle of informa-
tion propagation requiring that produced information have to reach all
the subscribed consumers. We describe patterns as graphs and we use
the Z notation to specify formally the semantic of each pattern and each
rule. We prove consistency and correctness using the Z-Eves theorem
prover. We show how to consider the interconnection topology between
dispatchers as well as the subscription mechanism by simple refinements.
We also show how to construct the Z specification of the designed archi-
tecture style based on applied rules. Moreover, we describe the dynamics
of architecture via guarded graph-rewriting rules whose body describe
the structural constraints and whose guards mainly describe the func-
tional constraints of the system. We express these rules entirely with the
Z notation also, obtaining a unified approach which handles both the
static and the dynamic aspects.

Keywords: software architecture, publish/subscribe style, style compo-
sition, formal specification, architecture modeling, dynamic architecture,
graph rewriting.

1 Introduction

An increasingly common architectural style for component-based systems is
publish-subscribe. The strength of this event-based interaction style lies in the
full decoupling in time, space, and synchronization between the components that
have generated events, called producers, and the receivers, called consumers. This
decoupling is due to the event-service which is the glue that ties together dis-
tributed components in Publish/Subscribe architecture. The event service could

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 44–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Formal Design of Structural and Dynamic Features 45

be centralized and implemented as a single entity called dispatcher or distributed
and implemented as a network of dispatchers. This makes the publish-subscribe
style relatively easy to add or remove components in a system, introduce new
events, register new consumers on existing events, or modify the network of
dispatchers.

The gain in flexibility is counterbalanced by the difficulty to the designer
in preserving the correctness and the reliability of a designed publish-subscribe
style. In fact, the design phase has to consider the principle of information propa-
gation requiring that produced information reaches all the subscribed consumers.
Another major issue is to preserve the system consistency during reconfiguration.
The system must be left in a correct state after reconfiguration, by maintain-
ing the conformity of its new architecture with respect to a set of structural
properties or architecture style. The complexity of designing and building these
systems could be reduced by focusing on the architectural level and the ambi-
guity could be eliminated by using formal descriptions. Indeed, by abstracting
away from implementation details, a formal architectural description makes a
system design intellectually tractable and exposes the properties most crucial to
its success. It is often the key technical document used to determine whether a
proposed new system will meet its most critical requirements.

This paper makes a contribution in these directions by proposing a visual
and formal approach which aims to help the architect to design correct pub-
lish/subscribe architecture styles. Instead of designing an architecture style from
the scratch, we rather provide a reusable set of simple patterns and the corre-
sponding composition rules to build complex event-based architecture styles. In
addition, we show how to consider the interconnection topology of a distributed
event service as well as the subscription mechanism by simple refinements. To
validate and reason about the architecture styles designed from the building
blocks, we propose the use of the formal method Z notation [1]. We elaborate
a formal specification for each basic pattern, and we show how each visual op-
eration of composition is specified in Z. We show also how we construct the Z
specification of the designed architectural style using the formal specification of
each operation applied by the architect and how to refine it. We use the Z-Eves
theorem prover to check and reason about our specifications.

We propose an approach which benefits from the expressive power of func-
tional notations and graph grammars to describe and to reason about architec-
tures. We describe reconfiguration operations via a new notation based on graph
rewriting rules and Z notation. This integration offers to software architects an
intuitive and formal way to specify the dynamic aspect of software architec-
ture based on visual notations. We propose also to specify the semantic of each
reconfiguring operation in the same notation (Z), thus obtaining a unified ap-
proach. These rules take into account both structural and functional constraints
of a system in their application conditions ensuring, in this way, its consistency
during its evolution. We use Z-Eves theorem prover to check that all reconfigur-
ing operations respect the defined architecture style.

46 I. Loulou et al.

The remainder of this paper is organized as follows: in section 2, we present
a survey of the related work. In section 3, we present the main features of a
publish/subscribe architecture style. In section 4, we describe our methodology
to design correct styles. We also explain how to refine a designed style to consider
the interconnection topology and the subscription mechanism. Section 5 presents
our approach to specify reconfiguration and we explain the verification process.
Section 6 presents a case study which illustrates our approach. In section 7, we
give our concluding remarks and the future work perspectives.

2 Related Work

This survey will focus on research done in the area of software architecture de-
scription, on one hand. On the other hand, it will concentrate on some works that
address the static as well as the dynamic aspect of publish/subscribe systems.

Considerable research has been done on the description of the static as well as
the dynamic aspect of software architecture. We can classify together works de-
scribing the system architecture like Architecture Description Languages
(ADLs). The most prominent among them are Rapid [2], π -Method [3], Wright
[4], and ACME [5]. They provide modelling tools which help the designers to
structure a system and to compose its elements. Generally, ADLs allows to de-
scribe only predefined dynamics. That is, they are interested only in systems
having a finite number of configurations which must be known in advance. In
addition, few of them [3,4,5] allow various architectural styles to be distinguished.
It should be stressed that we don’t propose an alternative to ADLs approaches.
Our models can be integrated into π -Method (π -ADL) or into other ADLs.
Functional languages have been also proposed. They introduce abstract nota-
tions allowing to describe dynamic software architectures in terms of properties.
In [6], the authors developed a formal framework, specified in Z, to describe the
dynamic configuration of software architectures. They did not address the design
phase. Other works use graph grammars techniques. Graph grammars consist
in using graphs for representing software architectures. They represent the most
intuitive mathematical tool for modelling complex situations. In this context,
[7] describes the software architecture style using a context-free graph grammar
and verifies the conformity of an architecture to its style. In this work, the au-
thor addresses the client-server problem. Reconfiguration is described with a set
of rewriting rules whose definition is rather simple and comprehensible. These
rules explain clearly the topological changes, but they don’t allow to express
post-conditions of an operation to describe what must be ensured after its ap-
plication, or to specify certain logical conditions which permit, for example, to
reason about the instance number of a given component.

Past research addresses implementing efforts for publish/subscribe systems
with scalable, distributed architectures. Several infrastructures were proposed
such as SIENA [8]and JEDI [9]. Foundational research has also addressed formal
reasoning for publish/subscribe systems using model checking ([10,11]). Other
approaches include formal computational models for the event-based paradigm

Formal Design of Structural and Dynamic Features 47

like [12] where authors define a computational model to capture connectivity in
the communication topology of P2P systems. The work which is most closely
related to our work is described in [10]. Authors introduce an approach to model
and validate publish/subscribe systems at the architectural level. The model-
ing phase specifies how components react to events. However, authors consider
neither the communication between dispatchers nor the interconnection topol-
ogy. So, we can’t reason about the event propagation inside an event service.
In addition, they don’t consider the subscription mechanism which is the way
subscribers can express the events they are interested in. This feature allows to
precise which events are produced or consumed by which components.

Recent research addresses the dynamic reconfiguration of Publish/Subscribe
systems. However, the major issues which have been addressed are about no-
tification and (un)subscription loss as well as duplication during reconfigura-
tion [13,14]. In addition, most of them consider reconfiguration by repeatedly
exchanging a single link in the network of dispatchers. In [13] for instance,
presented algorithms prevent the loss and duplication of notifications and main-
tain the message ordering. In [14], authors present a description and analy-
sis of a novel algorithm to deal with the reconfiguration of the dispatching
infrastructure.

Our work will help the architect to design correct and elaborated publish/
subscribe styles by simply composing the necessary provided patterns. Our
formalisation allowed us to characterise key structural properties of the pub-
lish/subscribe architectural style formally and at a high level of abstraction.
We address also the dynamic aspect by offering a new notation which is suffi-
ciently expressive and easy to understand. To ensure that the system is evolving
correctly, we elaborate a verification process which validates each rule, whose
semantic is described in Z notation, using the Z-EVES theorem prover.

3 Publish/Subscribe Architecture Style

Publish/Subscribe architectures could use a centralized event service, imple-
mented as a single entity called dispatcher, or a distributed service implemented
as a network of dispatchers that provide access points to clients. Dispatchers
cooperate together to route information from the producers to the subscribed
entities. This interaction is governed by a principle of information propagation
requiring that produced information have to reach all subscribed consumers.

In addition, several interconnection topologies have been proposed: hierarchi-
cal, acyclic peer-to-peer, and general peer-to-peer [8]. The hierarchical topology
is an extension of the centralized approach in which a set of interconnected
dispatchers maintain a master/client relationship with other dispatchers. In the
acyclic peer-to-peer topology, dispatchers communicate with each other symmet-
rically as peers, adopting a protocol that allows a bidirectional flow of subscrip-
tions, advertisements, and notifications. In this topology, any two dispatchers are

48 I. Loulou et al.

connected with at most one path. Removing the constraint of acyclicity from the
acyclic peer-to-peer topology, we obtain the general peer-to-peer topology.

Another characteristic is worth a particular attention: the way subscribers can
express the events they are interested in (usually called subscription schema).
The existing literature distinguishes among topic-based and content-based
systems[15,9]. The topic-based subscription schema is based on the notion of
topic or subject . Publishers generate events belonging to one or more topics,
while subscribers express interest in some of these topics and will therefore re-
ceive notifications about events published in that particular topic. The content-
based publish/subscribe variant improves on topics by introducing a subscription
schema based on the actual content of the considered events.

4 A Methodology to Design Correct Pub-Sub Styles

In this section, we show how to identify the generic building patterns which
can be composed to design a correct publish/subscribe style. By correctness, we
mean two properties:

– Produced information have to reach all the subscribed consumers;
– The interaction schemas must be in conformance with the communication

rules.

The interactions between the components and the event channels are speci-
fied for architectures that use a centralized or a distributed event service. The
interaction schemas must be in conformance with the communication rules. By
ensuring this property, we ensure the propagation of events between producers
and dispatchers, on the one hand and between dispatchers and consumers one
the other hand. The propagation of events from producers to interested con-
sumers is completely ensured if we guarantee the routing inside an event service
which will be done later.

The communication between producers and event dispatchers can be estab-
lished through the push mode if the producer is the initiator. The pull mode is
used for interaction when the event dispatcher is the initiator of communication.
The communication between consumers and event dispatchers can be established
through the pull mode when the consumer is the initiator of communication. The
push mode is used when the event dispatcher is the initiator of communication.

To characterize the generic patterns, our idea is to consider on the one hand
the number of interaction links between the different components and the dif-
ferent event dispatchers. the first case corresponds to the situations where one
link is considered between each pair of interacting entities. The second case cor-
responds to the situations where two links are considered. On the other hand,
we distinguish the different modes of interaction. This allows us to character-
ize for each of the previous two cases, the different patterns of corresponding
architectures.

For example, if we consider the communication between producers and dis-
patchers, the second case where two links of communication are considered,

Formal Design of Structural and Dynamic Features 49

(Prod,Producer,P) (SDisp,EvDispatcher,D)

PullD

PushP

C P3[Producer ,EvDispatcher]

P : FProducer
D : EvDispatcher
PushP : Producer ↔ EvDispatcher
PullD : EvDispatcher ↔ Producer

∀ p : P • (p,D) ∈ PushP ⇒ (D , p) ∈ PullD
∀ p : P • (D , p) ∈ PullD ⇒ (p,D) ∈ PushP

Fig. 1. A communication pattern between producers and a single dispatcher

involves one pattern (C P3) in which producers may actively produce events
towards event dispatchers using the push mode and event dispatchers may ac-
tively pull information from producers using the pull mode. This pattern is
depicted by figure 1. A node is described with three labels: Role, Type, Variable
name. So, a node N labeled (Prod , X , P) denotes that P is a set of producer
components typed X . The type and variable names will be instantiated by the
architect while the role is kept unchanged. Formally, this pattern is specified with
the generic schema C P3[Producer , EvDispatcher]. Since we are not interested
now in the specification details of the components (producers and dispatchers),
we introduce them as basic types as follows: [Producer , EvDispatcher].

In the declaration part of the schema C P3, we declare a set of producing
entities (P), and a single event dispatcher (D). All communication links are also
declared. We specify them as relations (PushP , PullD). In the predicate part, we
precise the following: given a producer p and an event dispatcher D , then they
are connected via the two links PushP and PullD or they are not connected.

In addition, we take into consideration the fact that an entity can behave
as both a producer and a consumer (P/C). To characterize the corresponding
generic patterns, we have to offer at least two links between a P/C entity and
an event dispatcher: One link for the producer communication and one link for
the consumer communication. So, we characterize other design patterns.

However, architectures exploiting a distributed event service need in addition
the details of the interactions between dispatchers. This interaction is governed
by the principle of information propagation. To guarantee this property in the
case of a distributed event service, we make two constraints:

– C1 : all event dispatchers have to be interconnected.
– C2 : if two dispatchers communicate together then it is necessary that the

information coming from the one reaches the other. So, the communication
has to be bidirectional.

For example, the formal specification of the pattern involved by the second
case where producers may actively produce events towards event dispatchers
using the push mode and event dispatchers may actively pull information from
producers using the pull mode is described with the schema D P3 where the
two last predicates describe the constraints C1 and C2. We have to notice also

50 I. Loulou et al.

that event dispatchers communicate together using the push mode to propagate
events.

D P3 [Producer , EvDispatcher]

P : FProducer
D : F EvDispatcher
PushP : Producer ↔ EvDispatcher
PullD : EvDispatcher ↔ Producer
PushDD : EvDispatcher ↔ EvDispatcher

∀ p : P ; d : D
• (p, d) ∈ PushP ⇒ (d , p) ∈ PullD ∧ (d , p) ∈ PullD ⇒ (p, d) ∈ PushP

∀ x , y : D ;i : N | x �= y
• ∃ T : seq EvDispatcher

• i + 1 ≤ #T ∧ i ≥ 1 ∧ ran T ⊆ D
∧ (Ti ,T (i + 1)) ∈ PushDD ∧ T1 = x ∧ T (#T) = y

∀ x , y : D
• (x , y) ∈ PushDD ⇒ (y , x) ∈ PushDD

4.1 How to Compose a Style?

In this section, we define the allowed operations of composition to design a
correct publish/subscribe style and we show how to construct the formal spec-
ification of the designed style based on pattern specifications and according to
the applied operations of composition.

– Add pattern: When the architect adds a pattern, its corresponding schema
name is included in the declaration part of the style schema as follows:

Style
pattern name

– Modify labels : The architect can rename the node labels corresponding to
the formal parameters and the declaration variables. The specification is
accordingly modified as follows:

Style
pattern name[Par1, ..., Parn][New/Old]

The first part corresponds to the supplied formal parameters which are op-
tional. In the second part, we use the renaming option in Z notation where
the new names of variables are given by the architect.

– Merge disp: Given two graphs, we can merge their dispatcher nodes if both
of them correspond to a single dispatcher or a set of dispatchers. In addition,
we distinguish two cases :

• If we have two separate graphs, the merging is possible without any
constraint.

Formal Design of Structural and Dynamic Features 51

• If these graphs have a common node (Producer or consumer or Prod/
Cons), then this node must communicate in the same manner with the
two dispatcher nodes, otherwise it has no sense to merge them.

When the merging is applied, this is described by renaming the variable S
(EvDispatcher or F EvDispatcher) so that formally the two graphs have the
same variable referring to the same node.

– Merge Prod, Merge Cons or Merge PC : Given two graphs, we can merge
their producer nodes (resp. Cons, Prod/Cons) in two cases:

• If the nodes in question are connected to the same event dispatcher node,
then they must be connected with the same types of links.

• If the nodes in question are not connected to the same event dispatcher
node, the merging is possible regardless of the types of links.

4.2 Interconnection Topologies

We provide to the architect the possibility to refine the designed styles in order to
consider the interconnection topology underlying dispatchers. For this purpose,
we propose to specify the hierarchical, acyclic peer-to-peer, and general peer-
to-peer topology in Z notation, so that, the interested architect can choose the
desired topology and the formal specification will be refined systematically by
adding the schema name of the topology in the declaration part of the style
schema. For example, the Z specification of acyclic P2P is as follows:

acyclic P2P [EvDispatcher]

D : F EvDispatcher
PushDD : EvDispatcher ↔ EvDispatcher

∀ x , y : D ; H ,T : seq EvDispatcher ; i : N
• 1 + i ≤ #H ∧ 1 + i ≤ #T ∧ i ≥ 1

∧(Ti ,T (i + 1)) ∈ PushDD ∧ (Hi ,H (i + 1)) ∈ PushDD
∧T1 = x ∧ T (#T) = y ∧ H 1 = x ∧ H (#H) = y
⇒ T = H

4.3 Subscription Mechanism

We will show in this section, how to refine a composed style to consider the
underlying subscription mechanism. This characteristic allows the architect to
define and check which events are produced (consumed) to (by) which com-
ponents. We propose to refine the specifications of communicating entities and
the event dispatchers, so that they are not considered anymore like basic types.
Producers have to maintain the list of topics on which they want to publish
events, the consumers have to maintain the list of topics they are interested in,
the producer/consumer components have to keep the two lists and the event
dispatcher has to keep the list of supported topics. So, the resulting specification
of a consumer component for example is as follows:

52 I. Loulou et al.

Consumer
topic cons : FTOPIC

We will illustrate in section 6 how much it is interesting to specify the sub-
scription mechanism and its impact on the system understanding .

4.4 Proving Consistency

A Z schema may be inconsistent, i.e. it includes a not satisfiable predicate or
contradiction between predicates. If such a schema is elaborated to describe the
state of a system, then that system could not be realized. Suppose that State
describes the state of the system, and that StateInit characterizes the initial
state. If we can prove that

∃ State • StateInit

then this would show that an initial state exists, and hence also that the re-
quirements upon the state components are consistent. This result is called the
initialization theorem.

5 The Dynamic Aspect

The four fundamental reconfiguration operations, provided by almost all lan-
guages and systems, are creation and removal of components and connections
[16]. Graph grammars showed their relevance to express these operations of
reconfiguration in particular in the works described in [16] and [7]. A graph
production rewrites a graph into another graph, deleting some elements (nodes
and edges), generating new ones and preserving others. A graph rewriting rule
expresses the structural constraints (existence/absence of a motif) via four sec-
tions:

– Retraction : the fragment of the graph removed during the rewrite.
– Insertion : the fragment that is created and embedded into the graph during

the rewrite.
– Context : the fragment that is identified but not changed during the rewrite.
– Restriction : the fragment of the graph that must not exist for the rewrite to

occur. If the subgraph matching the context and retraction can be extended
to match the restriction, then the production cannot be applied to that
subgraph

In publish/subscribe architecture styles, we need also to specify constraints
on some attributes values related to the subscription mechanism. Furthermore,
we need to define the post-conditions of an operation to describe what must be
ensured after the application of an operation. Indeed, any operation defined to
reconfigure the network of dispatchers, for instance, has to ensure at least the
constraints C1 and C2 (described in section 3) after its application. In addition,

Formal Design of Structural and Dynamic Features 53

sometimes it is easier to express some structural restrictions functionally (called
Negative Application Condition (NAC) in the sequel) rather than visually. So,
we propose a new notation which contains a structural part following the graph
grammar notations, and an analytic part specified in Z notation. Given a rule
r , it is applied to a graph g by the following steps:

1. A subgraph isomorphic to gl = context ∪ retraction is identified in g.
2. If no isomorphic subgraph exists or if the isomorphic subgraph can be ex-

tended to match gl plus the restriction (if one exists), r cannot be applied
to g.

3. The NAC , the Application condition and the post-conditions parts are eval-
uated. They must be satisfied otherwise r cannot be applied.

4. The elements of the subgraph isomorphic to the retraction are removed from
g, leaving the host graph.

5. A graph isomorphic to the insertion is embedded into the host graph by the
edges between the context and the insertion in r .

5.1 Formal Semantic

Besides the fact that our notation fills the identified limits, the partial intro-
duction of the formal description constitutes a preparation for a total formal
semantic translation in a purpose of analysis and verification. So, we propose to
describe the semantic of each reconfiguring operation via a schema operation Z
as follows:

Rule Name
Δsystem name
in1?;in2?; . . . ;inn?

NAC + Restriction :

structural and functional constraints
Application conditions :

functional constraints
structural constraints

Post − conditions
Reconfiguration :

(Insertion / Retraction)

Where:

– ini? is an input parameter of the operation,
– Δsystem name indicates that the rule will change the system state.
– The functional constraints are about the attributes values, the number of

component instances, etc.

54 I. Loulou et al.

5.2 Correctness Preservation During Evolution

In order to verify that a given reconfiguring operation makes the system evolve
correctly, we propose to use the precondition theorem provided in Z notation.
This theorem can identify the necessary pre- and post-conditions for an operation
to preserve the properties defined by the architecture style. This theorem is
described as follows:

Theorem. correct preconditions
∀ State;in? : INPUT | precondition(State, in?) • pre Op

Where:

– State is the schema name of the designed style,
– in? the input parameters of the operation,
– precondition(State, in?) are the preconditions upon state variables and input

parameters which must be satisfied beforehand,
– Op is the schema operation name,
– and pre Op characterizes the collection of before states and inputs for which

some after state can be shown to exist.

So, the theorem allows to verify the following: what ever could be the system
state, with the input parameters given in the schema operation and the defined
pre- and post-conditions, a correct after state can be shown to exist.

The first step in the verification process is to prove this theorem for each
reconfiguring operation. Once proved, we can check if the preconditions identified
by this theorem and those described in the schema operation are the same. If
they tally, then we can say that the operation is valid.

Furthermore, we propose to use the same theorem to correct invalid opera-
tions. Indeed, we can complete or replace the pre- and post-conditions described
in the schema operation by those which are identified by the theorem.

6 Case Study

To illustrate our approach, we choose a case study in the context of emergency
operation activities occurring during a crisis situation [17]. The application in-
volves structured groups of robots or military personnel which cooperate for the
realization of a common mission. The activity is divided into two successive steps:
an exploration step of the investigating field and an action step following the
discovery of a critical situation. A team of emergency intervention is constituted
of participants having different jobs: a controller and several coordinators and
investigators. In the exploration step, investigators provide continuous descrip-
tive feedbacks (D Inv) and periodical Produced feedbacks (P Inv), expressing
the analysis of the situation, to their responsible coordinators. The coordinators
complete the received analysis to send them (P Coord) thereafter to the con-
troller. Having discovered a critical situation, the concerned investigator keeps

Formal Design of Structural and Dynamic Features 55

the same functions as in step 1 but provides feedbacks D Inv to the other inves-
tigators. Now, the other investigators report only feedbacks P Inv to controllers
on the basis of feedbacks D Inv transmitted by the investigator who has discov-
ered the critical situation. The propagation of events between these participants
is mediated by a network of event dispatchers called managers. Both investiga-
tors and coordinators are associated with producer/consumer components and
the controller is associated with only a consumer entity.

6.1 Style Design

To design the corresponding architecture style, we apply the rule Add Pattern to
the pattern D C2 and to D PC1 twice. Then, we apply the operation Modify
labels to supply the desired parameters and to rename some declaration variables.
After that, we apply the rule Merge disp twice to obtain the managers node M .
So the resulting graph is depicted in figure 2. The formal specification is obtained
on the basis of applied rules. To explicit the declaration and the predicate part,
we propose to expand the obtained schema as follows:

[Controller , Investigator , Coordinator , Manager]

Emergency
Cont : F Controller
M : F Manager
Inv : F Investigator
Coord : FCoordinator
Push M : Manager ↔ Controller
Push IM : Investigator ↔ Manager
Push MI : Manager ↔ Investigator
Push MC : Manager ↔ Coordinator
Push CM : Coordinator ↔ Manager
PushDD : Manager ↔ Manager

∀ c : Cont ;m : M • (m, c) ∈ Push M ∨ (m, c) �∈ Push M
∀ i : Inv ;m : M • (i ,m) ∈ Push IM ⇒ (m, i) ∈ Push MI
∀ i : Inv ;m : M • (m, i) ∈ Push MI ⇒ (i ,m) ∈ Push IM
∀ cr : Coord ;m : M • (cr , m) ∈ Push CM ⇒ (m, cr) ∈ Push MC
∀ cr : Coord ;m : M • (m, cr) ∈ Push MC ⇒ (cr , m) ∈ Push CM
∀ m1,m2 : M • (m1,m2) ∈ PushDD ⇒ (m2,m1) ∈ PushDD
∀ x , y : M ;i : N | x �= y

• ∃ T : seq EvDispatcher
• i + 1 ≤ #T ∧ i ≥ 1 ∧ ran T ⊆ M
∧ (Ti ,T (i + 1)) ∈ PushDD
∧ T1 = x ∧ T (#T) = y

It should be noticed that architecturally, one can understand that the controller
can consume the events coming from both investigators and coordinators, what
is not in conformity with the description of the application. So, the architect

56 I. Loulou et al.

(Cons,Controller,Cont) (NDisp,Manager,M)
Push_M

(PrCons,Coordinator,Coord)

Push_CM Push_MC

(PrCons,Investigator,Inv)

Push_IM

Push_MI

Fig. 2. Emergency Operations scenario

may decide to refine his style to describe the subscription mechanism, let’s say
topic-based, to specify which information is consumed (produced) by (to) which
component. One solution would be to add this semantic in the graph itself using
either a label or a color for every topic. The disadvantage of this solution is the
overload of the graph if several topics would be concerned. We rather propose
to make it possible to the user to add the necessary constraints in the predicate
part of the style schema, as follows:

Emergency refined subscription
Emergency

∀ x : Cont • x .topic cons = {P Coord}
∀ y : Inv • y .topic prod = {D Inv ,P Inv} ∧ y .topic cons = {D Inv}
∀ z : Coord • z .topic prod = {P Coord} ∧ z .topic cons = {D Inv ,P Inv}
∀ w : M • w .topics = {D Inv , P Inv ,P Coord}

The topic-based refinement is done as it is described in section 4.3, but with
respect to the actual supplied parameters. So, the specification of controller , for
example, is described by the schema Controller accordingly to his role consumer:

Controller
topic cons : FTOPIC

Let’s consider now the interconnection topology underlying managers. In the
acyclic as well as in the hierarchical topology, the lack of redundancy in the
topology constitutes a limitation in assuring connectivity, since a failure in one
manager m isolates all the subnets reachable from those managers directly con-
nected to m. Since the considered situations are critical, one may choose the
P2P topology. The refinement is done by simply including the topology schema
name in the declaration part of the schema Emergency.

6.2 Reconfiguration Specification

Because of the lack of space, we present the specification of only one rule (and
only the formal semantic) allowing evolving our Emergency system while taking
into account its defined properties.

Formal Design of Structural and Dynamic Features 57

– Link exchange: An existing link between two managers is removed from
the topology and a new link is added instead. In this case, we have to ensure
that once this operation is applied the topology of managers remains inter-
connected according to the constraint C1 described by the last predicate
of the schema Emergency. In addition, we have to ensure that the connec-
tion/disconnection respect the constraint C2 described by the 6th predicate.
These post-conditions are described in the analytic part of this rule which
semantic is described by the schema Link Exchange.

Link Exchange
ΔEmergency refined subscription
m1?,m2?,m3? : Manager

m1? ∈ M ∧ m2? ∈ M ∧ m3? ∈ M
(m2?,m3?) ∈ PushDD ∧ (m3?,m2?) ∈ PushDD
∀ x , y : M ;i : N | x �= y
• ∃T : seqEvDispatcher
• i + 1 ≤ #T ∧ i ≥ 1 ∧ ranT ⊆ M
∧ (Ti ,T (i + 1)) ∈ PushDD \ {(m2?,m3?), (m3?,m2?)} ∪ {(m1?,m3?), (m3?,m1?)}
∧ T1 = x ∧ T (#T) = y

PushDD ′ = PushDD \ {(m2?,m3?), (m3?,m2?)} ∪ {(m1?,m3?), (m3?,m1?)}

– Validation of Link Exchange: As it is explained in section 5.2, the first
step of the verification process is to identify the necessary pre- and post-
conditions of an operation. So, for the Link Exchange operation, we proved
the following theorem:

Theorem. precondition exchange
∀ Emergency refined subscription;m1?, m2?, m3? : Manager ;inv2? : Investigator

| m1? ∈ M ∧ m2? ∈ M ∧ m3? ∈ M
∧ (m2?, m3?) ∈ PushDD ∧ (m3?, m2?) ∈ PushDD
∧ (∀ mg1, mg2 : M

• ((mg1, mg2) ∈ PushDD \ {(m2?, m3?), (m3?, m2?)}
∪{(m1?, m3?), (m3?, m1?)}

⇒ (mg2, mg1) ∈ PushDD \ {(m2?, m3?), (m3?, m2?)}
∪{(m1?, m3?), (m3?, m1?)}))

∧ (∀ x , y : M ;i : N | x �= y
• (∃ T : seq EvDispatcher

• (i + 1 ≤ #T ∧ i ≥ 1 ∧ ran T ⊆ M
∧ (Ti , T (i + 1)) ∈ PushDD \ {(m2?, m3?), (m3?, m2?)}
∪{(m1?, m3?), (m3?, m1?)}

∧ T1 = x ∧ T (#T) = y)))
• pre Link Exchange Inv

As we can notice, the theorem requires a post-condition which is not specified
in the schema operation. In fact, the principle of this theorem is to ensure the
conformity of the after state with respect to the architecture style. So, since

58 I. Loulou et al.

the relation between managers has been changed (PushDD ′), the theorem
verifies all the properties related to this relation and described in the schema
style Emergency. Whence the post-condition related to the constraint C2.

In this case, the second step of the verification process is to correct the
schema operation Link Exchange by adding the identified post-condition, so
that we can confirm that this reconfiguring operation leaves the system in a
correct state.

7 Conclusion

In this paper, we proposed a compositional formal approach to design correct
publish/subscribe architecture styles. We provided a reusable set of patterns
and the corresponding composition rules to build architecture styles. We have
gone further existing informal studies by proposing a logic-based approach to
model the identified basic patterns and to generate new patterns by compo-
sition. So, we can verify and reason about the obtained styles. Our approach
ensures that the defined patterns and operations respect the principle of infor-
mation propagation and ensures that any produced information have to reach
all the subscribed consumers. We also offer the possibility to refine the designed
style to consider the subscription mechanism and the interconnection topology.
Moreover, we proposed a formal approach for the specification of the dynamic
aspect. This approach is based on an integration of graph-based semantics in the
framework of the formal language Z . Our approach allows to formally describe
the dynamic of a software architecture using graph rewriting rules. We elabo-
rate a verification process using the Z/EVES theorem prover to check that all
defined operations preserve the consistency of the architecture style during its
evolution.

From an experimental point of view, we are developing a plugin into Eclipse
allowing software architects to design visually, using an extended UML-based
notation, correct by design Architecture Styles and the corresponding reconfigu-
ration operations. The proposed functions include also generating automatically
valid and correct Z specifications.

References

1. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

2. Luckham, D.C., Kenney, J.L., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and analysis of system architecture using Rapide. IEEE Transactions
on Software Engineering 21(4), 336–355 (1995)

3. Oquendo, F.: π-Method: A Model-Driven Formal Method for Architecture-Centric
Software Engineering. ACM SIGSOFT Software Engineering Notes 31(3), 1–13
(2006)

4. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology 6(3), 213–249 (1997)

Formal Design of Structural and Dynamic Features 59

5. Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of component-
based systems, pp. 47–68. Cambridge University Press, Cambridge (2000)

6. Carneiro de Paula, V.C., Ribeiro-Justo, G.R., Cunha, P.R.F.: Specifying and veri-
fying reconfigurable software architectures. In: PDSE ’00: Proceedings of the Inter-
national Symposium on Software Engineering for Parallel and Distributed Systems,
pp. 21–31 (2000)

7. Le Métayer, D.: Describing software architecture styles using graph grammars.
IEEE Transactions On Software Engineering 24(7), 521–533 (1998)

8. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19(3), 332–383
(2001)

9. Cugola, G., Di Nitto, E., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering 27(9), 827–850 (2001)

10. Baresi, L., Ghezzi, C., Zanolin, L.: Modeling and validation of publish/subscribe
architectures. In: Beydeda, S., Gruhn, V. (eds.) Testing Commercial off the shelf
Components And Systems, pp. 273–292 (2005)

11. Fenkam, P., Gall, H., Jazayeri, M.: A systematic approach to the development
of event based applications. In: SRDS 2003. The 22nd Symposium on Reliable
Distributed Systems, Florence, Italy, October 2003, pp. 199–208 (2003)

12. Baldoni, R., Scipioni, S., Tucci-Piergiovanni, S.: Communication channel manage-
ment for maintenance of strong overlay connectivity. In: ISCC ’06. Proceedings of
the 11th IEEE Symposium on Computers and Communications, Washington, DC,
USA, pp. 63–68. IEEE Computer Society Press, Los Alamitos (2006)

13. Parzyjegla, H., Muhl, G.G., Jaeger, M.A.: Reconfiguring publish/subscribe overlay
topologies. In: ICDCSW ’06. Proceedings of the 26th IEEE International Confer-
enceWorkshops on Distributed Computing Systems, Washington, DC, USA, p. 29.
IEEE Computer Society Press, Los Alamitos (2006)

14. Cugola, G., Frey, D., Murphy, A.L., Picco, G.P.: Minimizing the reconfiguration
overhead in content-based publish-subscribe. In: SAC 2004, pp. 1134–1140. ACM
Press, New York (2004)

15. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

16. Wermelinger, M.A.: Specification of software architecture reconfiguration. PhD
thesis, Université Nova de Lisbon, Septembre (1999)

17. Chassot, C., Guennoun, K., Drira, K.: Architectural adaptability management for
mobile cooperative systems. In: MUE’07. International Conference on Multimedia
and Ubiquitous Engineering, Seoul, Korea, pp. 1130–1135 (2007)

An Ontology-Based Approach for Modelling

Architectural Styles

Claus Pahl1, Simon Giesecke2, and Wilhelm Hasselbring2

1 Dublin City University, School of Computing, Dublin 9, Ireland
cpahl@computing.dcu.ie

2 University of Oldenburg, Software Engineering Group, D-26111 Oldenburg,
Germany

{giesecke,hasselbring}@informatik.uni-oldenburg.de

Abstract. The conceptual modelling of software architectures is of cen-
tral importance for the quality of a software system. A rich modelling
language is required to integrate the different aspects of architecture
modelling, such as architectural styles, structural and behavioural mod-
elling, into a coherent framework. We propose an ontological approach for
architectural style modelling based on description logic as an abstract,
meta-level modelling instrument. Architectural styles are often neglected
in software architectures. We introduce a framework for style definition
and style combination. The link between quality requirements and con-
ceptual modelling of architectural styles is investigated. The application
of the ontological framework in the form of an integration into exist-
ing architectural description notations such as ACME and UML-based
approaches, and also service ontologies is illustrated.

Keywords: Software architecture modelling, architecture ontology, ar-
chitectural style, description logics, quality-driven development.

1 Introduction

Architecture descriptions are used as conceptual models in the software devel-
opment process, capturing central structural and behavioural properties of a
system at design stage [1]. The architecture of a software system is a crucial
factor for the quality of a system implementation. The architecture influences
a broad variety of properties such as the maintainability, dependability or the
performance of a system [2]. While architecture description languages (ADLs)
exist [3], these are not always suitable to support rich conceptual modelling of
architectures [12]. Only a few, such as ACME [2], support the abstraction of
architectures into styles and patterns. If formally defined, these can be used to
reason about architectures and their properties [7].

We present an architectural style ontology to address this problem, which
serves as a modelling basis. Beyond achievements in ACME, we aim to address

– a rich and easily extensible semantic style modelling language,
– operators to combine, compare, and derive architectural styles,

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 60–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Ontology-Based Approach for Modelling Architectural Styles 61

– an independent style language that can be applied to extend existing ADLs
with style support.

For all three cases, an ontology-based approach to represent architectural knowl-
edge – here in terms of a description logic, which is an underlying logic of on-
tology languages – is the ideal formal framework [14]. Our architectural style
ontology focuses primarily on static, structural aspects of components and con-
nectors. The terminological level of the ontology provides vocabulary and a type
language for architectural styles. Instances of this type language are concrete ar-
chitecture specifications. The structural modelling of architectures is currently
adequately supported [5,4,3,1,2] and shall therefore not be addressed in this
ontological framework.

The determination of an architectural style, based on a given set of quality
requirements, should ideally be the first step in software design [11]. We use a
description logic to define an ontology for the description and development of
software architectures based on architectural styles that consists of

– an ontology to define architectural styles through a type constraint language,
– an operator calculus to relate and combine architectural styles.

Our aim is to present a conceptual, ontology-based modelling meta-level frame-
work for software architectures, that allows the integration of style aspects into
existing architectural description languages (ADLs) without an explicit notion
of architectural styles.

We introduce the necessary ontology and description logic foundations in Sec-
tion 2. We then present an ontology-based modelling approach for architectural
styles in Section 3. Relating these styles is the focus of Section 4. We discuss pos-
sible extensions to deal with composition in Section 5 and relate the modelling
approach to quality-driven development in Section 6. The application of the ar-
chitectural style language is illustrated in Section 7, before discussing related
work and ending with some conclusions.

2 Ontologies and Description Logic

Before presenting the style ontology, we introduce the core elements of the de-
scription logic language ALC, which is an extension of the basic attributive
language AL [14]. ALC provides a set of combinators and logical operators that
suffices for the style ontology. Ontologies formalise knowledge about a domain
(intensional knowledge) and its instances (extensional knowledge). A description
logic, such as ALC, consists of three types of basic notational elements.

– Concepts are the central entities. Concepts are classes of objects with the
same properties. Concepts represent sets of objects.

– Roles are relations between concepts. Roles allow us to define a concept in
terms of other concepts.

– Individuals are named objects.

62 C. Pahl, S. Giesecke, and W. Hasselbring

Individuals can be thought of as constants, concepts as unary predicates, and
roles as binary predicates. We can define our language through Tarski-style model
semantics based on an interpretation I that maps concepts and roles to corre-
sponding sets and relations, and individuals to set elements [16]. Properties are
specified as concept descriptions:

– Basic concept descriptions are formed according to the following rules: A is
an atomic concept, and if C and D are concepts, then so are ¬C (negation),
C � D (conjunction), C � D (disjunction), and C → D (implication).

– Value restriction and existential quantification, based on roles, are concept
descriptions that extend the set of basic concept descriptions. A value re-
striction ∀R.C restricts the value of role R to elements that satisfy concept
C. An existential quantification ∃R.C requires the existence of a role value.

– Quantified roles can be composed, e.g. ∀R1.∀R2.C is a concept description
since ∀R2.C is one.

These combinators can be defined using their classical set-theoretic interpreta-
tions. Given a universe of values S of values, we define the model-based semantics
of concept descriptions as follows1:

�I = S
⊥I = ∅
(¬A)I = S\AI

(C � D)I = CI ∩ DI

(∀R.C)I = {a ∈ S | ∀b ∈ S.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ S | ∃b ∈ S.(a, b) ∈ RI ∧ b ∈ CI}

An individual x defined by C(x) is interpreted by xI ∈ S with xI ∈ CI . Struc-
tural subsumption is a relationship defined by subset inclusions for concepts and
roles.

– A subsumption C1 C2 between two concepts C1 and C2 is defined through
set inclusion for the interpretations CI

1 ⊆ CI
2 .

– A subsumption R1 R2 between two roles R1 and R2 holds, if RI
1 ⊆ RI

2.

Structural subsumption (subclass) is weaker than logical subsumption (implica-
tion), see [14]. Subsumption can be further characterised by axioms such as the
following for concepts C1 and C2: C1 � C2 C1 or C2 → C1 implies C2 C1.
C1

.= C2 represents equality.

3 Modelling Architectural Styles

3.1 Basic Architectural Style Ontology

The ALC language shall now be used to define an architectural style ontology,
providing a type and constraint language. The central concepts in this ontol-
ogy are configuration, component, connector, role, and port types – all of which
1 Combinators � and → can be defined based on � and ¬ as usual.

An Ontology-Based Approach for Modelling Architectural Styles 63

are derived from a general concept called an architectural type that captures
all architectural notions. These are the elementary architectural types. Compo-
nents and connectors are at the core of style definitions. Components encapsulate
computation and connectors represent communication between the components.
Components can communicate through ports. Connectors connect to other com-
ponents through connectors via their ports, where each port plays a specific role
in the context of a connector. Often, a provided and a required port interface is
distinguished to add a direction to connectors. Configurations are compositions
of components and connectors with their ports and roles.

This vocabulary consisting of five elements needs to be constrained in the
ontology in order to ensure the desired semantics:

ArchType Component � Connector � Role � Port � Configuration
and

Configuration
.= ∃hasPart.(Component � Connector � Role � Port)

Component
.= ArchType � ∃hasInterface.Port

Connector
.= ArchType � ∃hasEndpoint.Role

The roles hasPart, hasEndpoint and hasInterface are part of the basic vocab-
ulary. This vocabulary of types can be extended to add further elements using
the same mechanisms based on subsumption and concept descriptions.

3.2 Defining Architectural Styles

Defining architectural styles is actually done by extending the basic vocabulary of
elementary architectural types. The subsumption relationship serves to introduce
specific types that form an architectural style.

The Pipe-and-Filter Architectural Style. The specification of architectural
styles shall be illustrated using the pipe-and-filter style. We start with an ex-
tension of the hierarchy of elementary architectural types in order to introduce
style-specific components and ports:

PipeF ilterComponent Component
P ipeF ilterPort Port

These new elements shall be further detailed and restricted to express their con-
nector semantics. Three types of pipe-filter components, DataSource, DataSink
and Filter, shall be distinguished. Their respective connectivity through input
and output ports is defined as follows:

DataSource
.= ≤ 1 hasPort � ∃hasPort.Output

DataSink
.= ≤ 1 hasPort � ∃hasPort.Input

F ilter
.= = 2 hasPort � ∃hasPort.Input � ∃hasPort.Output

DataSource, DataSink, and Filter are defined as components of a pipe-filter ar-
chitectural style. Each of these components is characterised through the number
and types of component ports using so-called predicate restrictions on a numer-
ical domain (≤ n and = n are used to express hasPort.(n|n ≤ 1) for instance)

64 C. Pahl, S. Giesecke, and W. Hasselbring

and the usual concept descriptions. In addition to these more structural con-
ditions that define the connections between the component types, a number of
classification constraints shall be formulated that further refine the initial enu-
meration of pipe-filter components by describing how subtype classification is
applied.

– Disjointness requires the individual components to be truly different:

DataSouce � DataSink � Filter = ⊥

– Completeness requires pipe-filter components to be made up of only the three
specified types:

PipeF ilterComponent
.= DataSource � DataSink � Filter

The Hub-and-Spoke Architectural Style. In addition to the well-known
pipe-and-filter style [7,2], we introduce another architectural style, the hub-and-
spoke style. This style abstracts a system that manages a composition from a
single location, the hub, which is normally the participant initiating the compo-
sition. The composition controller (the hub) is usually remotely accessed by the
participants (the spokes). This is the most popular and usually default distrib-
ution configuration for service compositions. We would specify:

Hub Component and Spoke Component

with suitable completeness and disjointness constraints.

Hub
.= ∃hasPort.Input and Spoke

.= ∃hasPort.Output

explains that hubs receive incoming requests from spokes. Further constraints
would limit the number of hubs to one, whereas spokes can be instantiated in
any number.

3.3 Architectural Styles and Architecture Modelling

Sofar,wehaveaddressedspecificationsofarchitecturalpropertiesatthearchitectural
type level. These specifications are constraints that apply to concrete architecture
descriptions formulated using the defined architectural types. The question is
how these type-level specifications are applied to act as architectural styles. An
instantiationofthesetype-levelproperties,i.e.anarchitecture,couldbedescribedby
instantiatingtheelementarytypesonly, fully ignoringanystyle-specificconstraints.
Thus, a specification of architectural properties is notwhatwewould commonly see
as an architectural style. The configuration type matches what an architectural
style needs to express. It defines a specific vocabulary of components and other
elements and their constraints. Therefore, we define an architectural style to be
a subtype (subsumption) of the configuration type.

PipeF ilterStyle Configuration
P ipeF ilterStyle

.= ∃hasPart.(PipeF ilterComponent � PipeF ilterConnector
�Role � Port)

An Ontology-Based Approach for Modelling Architectural Styles 65

is, together with related concept descriptions, a style definition. What clearly
identifies a style is the configuration subtype that acts as a root of the style
definition. An architecture description conforming to an architectural style is a
subtype of the defined style configuration, e.g. PipeF ilterStyle. All elements
linked to the style (or its subtypes) directly or transitively through hasPart and
the other predefined roles can be used to describe an architecture.

A distinguishing property of our approach is that the basic architecture vo-
cabulary with notions like component or connector is defined with the same
mechanism at the same layer as the architectural styles. The basic architectural
style ontology itself is consequently an architectural style, albeit an abstract and
unconstraining one – with the trivial equality as the required subsumption.

The ontology and the styles defined based on the ontology aim to provide a
type language for architecture definitions. Components in an architecture defin-
ition are instances of the elements of an architectural style. In terms of descrip-
tion logics, the architecture elements are instances of the concepts that define
an architectural style. The style constrains the use of the architecture elements.
This architecture layer – the instances layer in terms of our ontology – shall not
be addressed in terms of our framework. Instead we will demonstrate how this
framework is independent of specific ADLs and can be applied to them as a style
sublanguage in Section 7. Our aim is not to define yet another ADL.

4 Relating Architectural Styles

Each architectural style is defined by a separate specification as an extension of
the basic ontology of elementary architecture elements. In order to reuse archi-
tectural styles as specification artefacts, these styles are often related to each
other, e.g. to be compared to each other or to be derived from another [21]. Dif-
ferent styles can be related based on ontology relationships. We give an overview
of the central operators restriction, union, intersection and refinement and define
the semantics of this operator calculus. Instead of general ontology mappings,
we introduce a notion of style specification and define style comparison and
development operators on it.

4.1 Style Syntax and Semantics

Before defining the operators, the notions of architecture specification and styles
and their semantics need to be made more precise. We assume a style to be a
specification Style = 〈Σ, Φ〉 based on the elementary type ontology with

– a signature Σ = 〈C, R〉 consisting of concepts C and roles R,
– concept descriptions φ ∈ Φ based on Σ.

Style is interpreted by a set of models M . The model notion [16] refers to
algebraic structures that satisfy all concept descriptions φ in Φ. The set M
contains algebraic structures m ∈ M with

– sets of objects CI for each concept C and

66 C. Pahl, S. Giesecke, and W. Hasselbring

– relations RI ⊆ CI
i × CI

j for all roles R : Ci → Cj

such that m satisfies the concept description. This satisfaction relation is as
usual defined inductively over the connectors of the description logic ALC.

The combination of two styles should be conflict-free, i.e. semantically, no
contradictions should occur. A consistency condition can be verified by ensuring
that the set-theoretic interpretations of two styles S1 and S2 are not disjoint,
SI

1 ∩ SI
2 �= ∅, i.e. their combination is satisfiable and no contradictions occur.

Note, that this calculus of operators is not strictly an algebra in terms of
styles – only in terms of specifications. A resulting specifications can be defined
as a style by identifying a new root configuration.

4.2 Restriction

While often architectural styles are used as-is in combinations and relationships,
it is sometimes desirable to focus on specific parts, before for instance refining
an architectural style. Restriction is an operator that allows architectural style
combinations to be customised and undesired elements (and their properties) to
be removed. A restriction, i.e. a projection or view, can be expressed using the
restriction operator 〈Σ, Φ〉|Σ′ for a specification, defined by

〈Σ, Φ〉|Σ′
def= 〈Σ ∩ Σ′, {φ ∈ Φ | rls(φ) ∈ rls(Σ ∩ Σ′) ∧ cpts(φ) ∈ cpts(Σ ∩ Σ′)}〉

with the usual definition of role and concept projections rls(Σ) = R and cpts(Σ) =
C on a signature Σ = 〈C, R〉. Restriction preserves consistency as constraints are,
if necessary, removed.

4.3 Intersection and Union

Two architectural styles S1 = 〈Σ1, Φ1〉 and S2 = 〈Σ2, Φ2〉 shall be assumed.

– The intersection of S1 and S2, expressed by S1 ∩ S2, is defined by

S1 ∗ S2
def= 〈Σ1 ∩ Σ2, (Φ1 ∪ Φ2)|Σ1∩Σ2〉

Intersection is semantically defined based on an intersection of style inter-
pretations, achieved through projection onto common signature elements.

– The union of S1 and S2, expressed by S1 ∪ S2, is defined by

S1 + S2
def= 〈Σ1 ∪ Σ2, Φ1 ∪ Φ2〉

Union is semantically defined based on a union of style interpretations.

In the case of fully different architectural styles, their intersection results in the
elementary architecture types and their properties. Both operations can result
in consistency conflicts.

An Ontology-Based Approach for Modelling Architectural Styles 67

4.4 Refinement

Consistency is a generic requirement that should apply to all combinations of ar-
chitecture ontologies. A typical situation is the derivation of a new architectural
styles from an existing one [9]. The refinement operator that we are going to in-
troduce is a consistent derivation. Refinement can be linked to the subsumption
relation and semantically constrained by an inclusion of interpretations, i.e. the
models that interpret a style. Refinement carries the connotation of preserving
existing properties, for instance the satisfiability of the original style specifica-
tion. In this terminology, the pipe-and-filter style is actually a refinement of
the basic architectural type vocabulary. As the original types are not further
constrained, the extension is consistent.

An explicit consistency-preserving refinement operator shall be introduced to
provide a constructive subsumption variant that allows

– new subconcepts and new subrelationships to be added,
– new constraints to be added if these apply consistently to the new elements.

Assume a style S = 〈Σ, Φ〉. For any specification 〈Σ′, Φ′〉 with Σ ∩ Σ′ = ∅, we
define a refinement of S by 〈Σ′, Φ′〉 through

S ⊕ 〈Σ′, Φ′〉 def= 〈Σ + Σ′, Φ + Φ′〉

The precondition Σ ∩ Σ′ = ∅ implies Φ � Φ′ = ⊥, i.e. consistency is preserved.
In this situation, existing properties of S = 〈Σ, Φ〉 would be inherited by S ⊕
〈Σ′, Φ′〉. Existing relationships can in principle be refined as long as consistency
is maintained – which might require manual proof in specific situations that go
beyond the operator-based application.

4.5 Architectural Style Development

The main aim of these operators is to support the development of architectural
styles. We imagine a catalogue of styles that is used by the software architect to
describe architectures.

– The operator calculus allows individual styles from the catalogue to be com-
pared. For instance, two styles can be united to test if the set of concepts
they describe overlap. The consistency condition is used for this test.

– An existing style can be adapted. Refinement allows to add further elements
and constraints, making the style more specific. Styles can also be made
more general by removing constructs and properties through restriction.

This catalogue could be implemented as a repository.
The hub-and-spoke style shall be extended using the refinement operator.

The idea is to add a broker component, which spokes would initially contact
and which would assign a hub to them.

BrokeredHubSpokeStyle
.= HubSpokeStyle ⊕ 〈Σ, Φ〉

68 C. Pahl, S. Giesecke, and W. Hasselbring

where the signature Σ is defined by

〈 { BrokerComponent, BrokerSpokeConnector, BrokerHubConnector,
HubRegistrationRole, SpokeAllocationRole } , { } 〉

and the properties Φ are defined by

BrokerComponent
.= HubSpokeComponent � ∃hasInterface.Port

BrokerSpokeConnector
.= HubSpokeConnector �

∃hasEndpoint.SpokeAllocationRole
BrokerHubConnector

.= HubSpokeConnector �
∃hasEndpoint.HubRegistrationRole

We would automatically get BrokeredHubSpokeStyle HubSpokeStyle as a
consequence of the application of the refinement.

5 Composite Elements in Architectural Styles

An explicit support for composition is an important element of conceptual mod-
elling languages. Composition is also central for software architectures. As an
extension, we introduce two types of composite elements for architectural style
specifications.

5.1 Components

Component hierarchies shall consist of unordered subcomponents, expressed us-
ing a component composition operator “|=”, which adds another dimension to
the subsumption-based subtype relationship. An example is Configuration |=
Port, meaning that a Configuration consists of Ports as parts. This is actually
a reformulation of the previously used hasPart relationship. In order to provide
this with an adequate semantics, interpretations of configurations would have to
be seen as tuple-structured elements.

5.2 Connectors

Connectors can be process assemblies that consist of ordered process elements,
expressed using a set of process composition operators sequence “;”, iteration “!”,
and choice “+”. An example is C

.= D; E, meaning that connector C is actually
a process sequence of connectors D and E. This sequence can be semantically
defined by requiring D.in

.= C.in, E.in
.= E.out, and C.out

.= E.out in order to
express sequencing dependencies.

5.3 Discussion

Note, that these operators are specific to the respective architecture element.
While the structural composition is often sufficient, full process specifications
with interaction and data flow elements, however, cannot be expressed in the
notational format introduced here. Ontological support for, for instance, the

An Ontology-Based Approach for Modelling Architectural Styles 69

process combinators exists in description logics [14]. While this aspect of com-
position could not have been investigated here in detail, we felt it important to
briefly discuss the benefits and also the potential of ontologies and description
logics to provide adequate language support.

6 Quality-Driven Architecture

The use of styles in architecture design implies certain properties of software
systems, as these styles are abstractions of successfully implemented systems
that are usually easy to understand, to manage, or to maintain [11,12]. While
of course functional properties of components are vital, non-functional quality
aspects ranging from availability, performance, and maintainability guarantees to
costs are equally important and need to be captured to clearly state the quality-
of-service (QoS) requirements. The reliability of a system, the availability of
services, and the individual component and overall system performance are often
crucial. Links exist between architecture models, that based on the component
and connector view allocate function to structure, and QoS properties of these
systems [8,10]. A mere statement of required QoS properties is therefore often
not sufficient to actually guarantee these properties. We look at architectural
styles to illustrate this point.

6.1 Style-Based Quality Description

A catalogue of architectural styles or patterns [15], consisting of styles such as pipe-
and-filter and hub-and-spoke, may be utilised by software architects to build ar-
chitectures that exhibit some desired quality properties. Each of the styles in the
catalogue is associated with certain QoS characteristics, that would be exhibited
during the deployment and execution of system compositions. The ISO 9126 stan-
dard for software product quality to support the evaluation of software can serve
as a starting point here that defines quality attributes and metrics [19,20].

We illustrate this using an architectural style. Some of the advantages of the
hub-and-spoke architectural style in terms of QoS aspects are:

– Composition is easily maintainable, as composition logic is all contained at
a single participant, the central hub.

– Low deployment overhead as only the hub manages the composition.
– Composition can include externally controlled participants. Web service

technologies, for instance, would enable the reuse of existing service com-
ponents.

The main disadvantages of this architectural style are:

– A single point of failure at the hub provides poor reliability and availability.
– A communication bottleneck at the hub results in restricted scalability.

SOAP messages have considerable overhead for message deserialisation and
serialisation.

– The high number of messages between hub and spokes is sub-optimal.

70 C. Pahl, S. Giesecke, and W. Hasselbring

The style ontology can be extended by a quality ontology to capture a vocabulary
of quality attributes and corresponding metrics using quality-specific properties.

HubSpokeStyle
.= ∃hasAdvQual.(Maintainable � LowOverhead � Reusable) �

∃hasDisadvQual.(¬Reliable � ¬Scalable � ¬Performant)

Some of these quality concepts are based ISO 9126. Further formalised descrip-
tions such as the association of metrics, for instance in the format Performant

.=
∃hasMetric.ResponseT ime, are possible.

6.2 Quality Evaluation

Quality-driven development requires quality attributes to be evaluated and con-
firmed. The qualities of newly derived styles cannot always be taken for granted.
Only through empirical evaluations can these expected qualities be confirmed.

A Goal-Question-Metric (GQM) approach to quality goal evaluation [18], a
method which allows metric to be derived from abstract quality criteria, can sup-
port this quality evaluation endeavour. Implemented systems can be evaluated
using the metrics derived from the quality goals via GQM.

7 Integration with Architecture Description Languages

Our aim is not to define yet another ADL. Our aim is to define a versatile
architectural style language that can be combined with existing ADLs for a
variety of reasons:

– to semantically define an existing style language and to allow reasoning
within this semantic framework,

– to provide an ADL-independent style language that can be added to ADLs
that do not have an explicit notion of styles,

– to provide a generic terminological framework into which quality aspects can
be integrated.

We will look at ACME to illustrate the first point, at UML to illustrate the
second point, and at service ontologies like WSMO to illustrate the third point.
The architectural style ontology could be used in the first case to formally define
the ACME style language. In the second case, the style ontology could be mapped
to MOF, giving it an abstract syntactical definition through MOF. Equally,
an integration with a service ontology such as WSMO or OWL-S is another
application of our approach.

We will not fully formalise these mappings for the three applications here –
our aim is solely the motivation of these possibilities and the benefits from them.
The focus of this paper is only on the definition of the style ontology.

7.1 ACME

ACME is an ADL that supports the component and connector view on archi-
tectures [2]. For that purpose, a basic set of architecture elements is introduced.

An Ontology-Based Approach for Modelling Architectural Styles 71

ACME

styles

architectures

processes

UML/OCL

classes

constraints

Architectural Style
Ontology

Architecture
Profile

UML
Metamodel

extends

defines

generate

development

semantics
and

reasoning

WSMO

interface

capabilities

extends

Fig. 1. Application of the Architectural Style Ontology to ACME, UML and WSMO

These include the same terms that we have defined. ACME provides specific sup-
port to define architectural styles. The basic architecture elements are supported
by the corresponding types. A style, called a family in ACME, is then a collection
of constrained type definitions. Invariants can be expressed using a constraint
language based on properties. Properties in ACME are name-value pairs. ACME
does not provide native support for the interpretation these properties.

Our architectural style ontology can provide a standard semantics for prop-
erties. Due to the syntactic equality of the elementary types, a mapping from
ACME into our ontological framework can easily be defined. The intended se-
mantics of ACME types matches the formal semantics we have introduced here.
This has the following benefits for ACME:

– The ACME type language is formally defined through the architectural style
ontology.

– A framework for the analysis and reasoning about styles and their properties
is introduced.

– The operator calculus enriches the mechanisms to develop architectural
styles effectively and consistently.

7.2 UML and OCL

UML is often used to describe software architectures [22]. Class diagrams define
components and connections between components through classes and associa-
tions. Additional constraints can be added using the Object Constraint Language
OCL [23].

In terms of UML, architectural styles are MOF meta-level models, i.e. archi-
tectural style definitions correspond to the M2 level. Description logic can be
translated to MOF easily, thanks to the Ontology Defintion Metamodel (ODM)
[29], which defines a number of MOF-based metamodels including description
logics and UML and a range to central transformations between them. This

72 C. Pahl, S. Giesecke, and W. Hasselbring

reference framework can be used to translate a given architectural style into a
MOF-compliant metamodel. The difficulty here is only that this MOF meta-
model is not UML-metamodel compliant. This means that compliance can only
be achieved by adapting the standard transformation to define a suitable UML
profile. The problem is similar to the need to clearly identify a style and to
guarantee its correct application. The profile needs to provide UML-compliant
model elements that must only be used in a style-conformant way.

7.3 WSMO

WSMO [24] is, like OWL-S [24], an ontology-based approach to describing ser-
vices. In the traditional understanding, these two are not ADL [3]. Their aim
is to provide a vocabulary that allows the description on functional and non-
functional attributes of services and their operations in terms of pre- and post-
conditions or quality attributes. Nonetheless, looking at service ontologies helps
us to understand how quality attributes, possibly ISO 9126-compliant, can be
integrated into an architectural style-driven ADL. This is also one of the rea-
sons for us to use an ontological approach in the first place. Services and their
operations are the concepts in WSMO (or OWL-S). Functionality information
and quality attributes in WSMO are categorised into interface (syntax) and ca-
pability (semantics, quality) attributes and are described in terms of properties
in the ontology.

8 Related Work

Formalising architectural styles is the first step of understanding their properties
and the resulting impact on architectures and software systems. A seminal paper
in this context is [7]. A formal framework based on the model-theoretic specifica-
tion language Z is given. Abowd et al. introduce the detailed formal specification
of architectural styles, e.g. for the pipe-and-filter style. This work has started the
integration of semantics into architectural descriptions. The description logic we
have used here provides the same expressive power to formulate structural archi-
tectural properties (we discuss the behavioural properties addressed by Abowd
et al. below). The reason for choosing an ontological approach in our case are
pragmatic. An ontological framework for this approach is an ideal choice since
extension through subsumption is a natural choice to develop a catalogue of
styles. The existence of meta-level frameworks such as the Ontology Definition
Metamodel ODM with its predefined transformations makes ontologies and their
dynamic logic foundations suitable as an interoperable notation that can be in-
tegrated with existing ADLs.

An ontology-based approach is also taken by work addressing service and
process ontologies. OWL-S [24] and WSMO [24] are examples for service on-
tologies, which we have already discussed. WSPO [27,26] and SWSF [28] are
ontological frameworks with a stronger focus on service processes. These are
of interest from an architectural perspective as they address service orches-
tration and choreography as two forms of architectural configuration in the

An Ontology-Based Approach for Modelling Architectural Styles 73

form of component interaction. While we have not addressed this aspect and
have rather limited our discussion to more structural properties, an integra-
tion of an architectural style ontology with these service ontologies is promising
[17,14].

Around the notion of an architectural style, similar concepts have emerged
[6]. In [13], a notion of an architectural scenario is used to aid analyses in the
design of architectures. Direct and indirect scenarios are used to view software
systems as information processing software artefacts or to view these artefacts
as subjects in a change and evolution process, respectively. The dynamic nature
of software architectures is emphasised in contrast to the more static view of
architectural styles and their application. A similar argumentation is followed
by [30]. Associating a system to a single architectural style is often not sufficient.
The notion of a mode, similar to a scenario, is introduced. Modes can be changed
through structural and evolution constraints, which aims to support the self-
organisation of service-based systems.

9 Conclusions

In addition to structural and behavioural properties of software architectures,
meta-level constructs such as architectural styles, scenarios, or modes have re-
cently received much interest in the software architecture community. Architec-
tural styles have emerged as architecture abstractions that strongly influence the
quality of architectures and their implementations. Our discussion of quality-of-
service attributes reflects this observation. Architectural styles are often also
linked to platforms; middleware platforms often support only specific styles. In
this context, architectural styles help to determine essential aspects of software
systems.

Using an ontological, description-logic-based setting for software architec-
ture has a number of benefits, such as a concise and precise notation with
formal semantics [7], an extensible type language based on subsumption and
constraints [14], and a style combination algebra based on ontology technolo-
gies. The tractability of reasoning is a central issue for description logics. The
logic ALC that we have used for this architectural style ontology is decidable,
i.e. provides the basis for termination and reliable tool support.

Overall, ontology mechanisms provide an ideal conceptual modelling support,
using a classical ontology approach. The notation is adequate, as the examples
have demonstrated, to model architectural styles. While the notation is suited
to formulate and relate architectural styles focusing on structural aspects, the
introduction of composite element has demonstrated the lack of process mod-
elling capabilities in the notation introduced here. Concepts are not meant to
model the details of structured behaviour; using concepts to express structured
processes is therefore not an adequate solution. While an integration with ser-
vice or process ontologies is desirable, the seamless integration requires further
investigations.

74 C. Pahl, S. Giesecke, and W. Hasselbring

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
SEI Series in Software Engineering. Addison-Wesley, Reading (2003)

2. Garlan, D., Schmerl, B.: Architecture-driven modelling and analysis. In: Cant, T.
(ed.) SCS’06. Proceedings of the 11th Australian Workshop on Safety Related Pro-
grammable Systems. Conferences in Research and Practice in Information Tech-
nology, vol. 69 (2006)

3. Medvidovic, N., Taylor, R.N.: A Classification and Comparison framework for Soft-
ware Architecture Description Languages. In: Jazayeri, M. (ed.) ESEC 1997 and
ESEC-FSE 1997. LNCS, vol. 1301, pp. 60–76. Springer, Heidelberg (1997)

4. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans-
actions on Software Engineering and Methodology 6(3), 213–249 (1997)

5. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software
Architectures. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp.
137–153. Springer, Heidelberg (1995)

6. Cuesta, C.E., del Pilar Romay, M., de la Fuente, P., Barrio-Solorzano, M.: Archi-
tectural Aspects of Architectural Aspects. In: Morrison, R., Oquendo, F. (eds.)
EWSA 2005. LNCS, vol. 3527, Springer, Heidelberg (2005)

7. Abowd, G., Allen, R., Garlan, D.: Formalizing style to understand descriptions of
software architecture. ACM Transactions on Software Engineering and Methodol-
ogy 4(4), 319–364 (1995)

8. Spitznagel, B., Garlan, D.: Architecture-based performance analysis. In: SEKE’98.
Proceedings of the 1998 Conference on Software Engineering and Knowledge En-
gineering (June 1998)

9. Baresi, L., Heckel, R., Thöne, S., Varro, D.: Style-based refinement of dynamic
software architectures. In: WICSA4. Proc. 4th Working IEEE/IFIP Conference on
Software Architecture, pp. 155–164. IEEE, Los Alamitos (2004)

10. Cortellessa, V., Di Marco, A., Inverardi, P.: Software performance model-driven
architecture. In: SAC ’06. Proceedings of the 2006 ACM symposium on Applied
computing, pp. 1218–1223. ACM Press, New York (2006)

11. Giesecke, S.: A Method for Integrating Enterprise Information Systems based on
Middleware Styles. In: ICEIS’06. International Conference on Enterprise Informa-
tion Systems, Doctoral Symposium, pp. 24–37. INSTICC Press (2006)

12. Giesecke, S., Bornhold, J., Hasselbring, W.: Middleware-induced Architectural
Style Modelling for Architecture Exploration. In: Proc. Working IEEE/IFIP Con-
ference on Software Architecture, IEEE Computer Society Press, Los Alamitos
(2007)

13. Kazman, R., Carriere, S.J., Woods, S.G.: Toward a Discipline of Scenario-based
Architectural Evolution. Annals of Software Engineering 9(1-4), 5–33 (2000)

14. Baader, F., McGuiness, D., Nardi, D., Schneider, P.P. (eds.): The Description Logic
Handbook. Cambridge University Press, Cambridge (2003)

15. Barrett, R., Patcas, L.M., Murphy, J., Pahl, C.: Model Driven Distribution Pat-
tern Design for Dynamic Web Service Compositions. In: ICWE’06. International
Conference on Web Engineering, Palo Alto, US, ACM Press, New York (2006)

16. Kozen, D., Tiuryn, J.: Logics of programs. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 789–840. Elsevier, Amsterdam (1990)

17. Schild, K.: A Correspondence Theory for Terminological Logics: Preliminary Re-
port. In: Proc. 12th Int. Joint Conference on Artificial Intelligence, Sydney, Aus-
tralia (1991)

An Ontology-Based Approach for Modelling Architectural Styles 75

18. Basili, V., Caldiera, G., Rombach, D.: The Goal/Question/Metric approach. In:
Encyclopedia of Software Engineering, vol. I, pp. 528–532. Wiley, Chichester (1994)

19. Jung, H.-W., Kim, S.-G., Chung, C.-S.: Measuring software product quality: A
survey of ISO/IEC 9126. IEEE Software 21(5), 88–92 (2004)

20. ISO/IEC: Software engineering – Product quality – Part 1: Quality model. Pub-
lished standard (June 2001)

21. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software
architectures. Science of Computer Programming 41, 105–138 (2001)

22. Bachmann, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, J., Nord, R.,
Stafford, J.: Documenting Software Architecture: Documenting Behavior. Techni-
cal Report CMU/SEI-2002-TN-001. SEI, Carnegie Mellon University (2002)

23. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language – Precise Modeling
With UML, 2nd edn. Addison-Wesley, Reading (2003)

24. Lara, R., Stollberg, M., Polleres, A., Feier, C., Bussler, C., Fensel, D.: Web Service
Modeling Ontology. Applied Ontology 1(1), 77–106 (2005)

25. DAML-S Coalition: DAML-S: Web Services Description for the Semantic Web.
Horrocks, I., Hendler, J. (eds.): ISWC 2002. LNCS, vol. 2342, pp. 279–291.
Springer, Heidelberg (2002)

26. Pahl, C.: An Ontology for Software Component Matching. International Journal on
Software Tools for Technology Transfer (STTT), Special Edition on Component-
based Systems Engineering 7 (in press, 2007)

27. Pahl, C., Casey, M.: Ontology Support for Web Service Processes. In:
ESEC/FSE’03. Proc. European Software Engineering Conference and Foundations
of Software Engineering, ACM Press, New York (2003)

28. Semantic Web Services Language (SWSL) Committee: Semantic Web Services
Framework (SWSF) (2006), http://www.daml.org/services/swsf/1.0/

29. Object Management Group: Ontology Definition Metamodel - Submission (OMG
Document: ad/2006-05-01). OMG (2006)

30. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for Software Architectures. In:
Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, Springer, Heidelberg
(2006)

http://www.daml.org/services/swsf/1.0/

FIESTA: A Generic Framework for Integrating

New Functionalities
into Software Architectures

Guillaume Waignier, Anne-Françoise Le Meur, and Laurence Duchien

LIFL, INRIA team ADAM
Université des Sciences et Technologies de Lille

59655 Villeneuve d’Ascq, France
{waignier,lemeur,duchien}@lifl.fr

Abstract. When an application must evolve to cope with new context
and user requirements, integrating new functionalities into its software
architecture is necessary. The architect has thus to manually modify the
architecture description, which is often tedious and error prone.

In this paper, we propose FIESTA, a generic framework for automat-
ically integrating new functionalities into an architecture description.
Our approach is inspired by TranSAT, an integration framework. How-
ever, TranSAT is dedicated to a specific architecture description language
(ADL) while our approach is ADL-independent. We have performed a
domain analysis, studying for many ADLs how to integrate new function-
alities. Based on this analysis, we have defined a generic ADL model to
manipulate and reason about architectural elements that are involved
in integration. Furthermore, we have developed a generic integration
engine.

1 Introduction

A software architecture is an abstract specification of a system structure. It
enables the architect to identify the various components of the system, their
interfaces and to reason about their assembly, without having to consider imple-
mentation details. Many architecture description languages (ADLs) have been
proposed to represent various system properties [18].

An architecture description facilitates the comprehension, the analysis and
the prototyping of a system, as well as being a good basis for its evolution. A
system may need to evolve to take into account new functionalities in order to
better address the application environment and user requirements. Nevertheless,
adding a new functionality implies that the architect has to manually modify
the architecture description. These modification operations are often low-level,
tedious and prone to error, particularly in the case of cross-cutting functionalities
that require invasively modifying specifications in several files.

The TranSAT framework proposes an approach to automatically integrating
new functionalities into a software architecture description [6,7]. This approach,

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 76–91, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

FIESTA: A Generic Framework for Integrating New Functionalities 77

inspired by Aspect Oriented Programming [16], relies on both the definition of
architecture integration patterns1 and the use of a weaver to automatically inte-
grate patterns into the target architecture. An architecture integration pattern
makes explicit and reusable all the knowledge and expertise required to inte-
grate a given functionality into a software architecture. A pattern consists of
three parts: a new plan, a join point mask and a set of transformation rules. The
new plan is a component assembly corresponding to a given functionality. The
join point mask expresses properties that the target architecture must satisfy
for the integration to be possible. Finally, the set of transformation rules spec-
ifies the operations that the weaver has to perform to integrate the new plan
into the target architecture. TranSAT is however dedicated to a single ADL,
SafArchie [5], which limits its applicability.

In this paper we present FIESTA, a Framework for Incremental Evolution of
SofTware Architectures. FIESTA generalizes the TranSAT approach in order to
be independent of any specific ADL, keeping only the general ideas of defining
architecture integration patterns and using a weaver to perform the integration.
To generalize the TranSAT approach, we have performed a domain analysis to
understand the integration process in architectures described in various ADLs.
This analysis has allowed us to identify the common architecture elements that
are involved in integration, leading to the definition of a generic ADL model. This
analysis has also enabled us to define more abstract expressions to specify a join
point mask and the transformation rules. Overall, the FIESTA framework assists
the architect during the integration process, only requiring him to specify his
design choices. Furthermore, our generic framework can be extended to support
new ADLs by specifying ADL-specific properties in functions dedicated to the
configuration of our framework.

The rest of this paper is organized as follows. Section 2 describes our domain
analysis and Section 3 presents our framework, FIESTA, including our definition
of architecture integration patterns, our generic ADL model and our weaver.
Section 4 describes some related work. Section 5 concludes and provides some
future work.

2 Domain Analysis

In our domain analysis we have focused on the problem of adding new function-
alities to the Comanche Web server. Comanche is provided as an example of the
use of Julia, the Java implementation of the Fractal component model [8]. We
have manually integrated several new functionalities into this application, such
as caching, logging, encryption/decryption and authentication. Furthermore, to
understand the integration process for different ADLs, we have performed these
integrations not only in the context of Fractal ADL [9] but also in the context
of CCM [19], Olan [4], SOFA [15] and SafArchie [5]. This domain analysis has
led us to identify, for each of these ADLs, the elements involved in integration.

1 Originally called software architecture patterns.

78 G. Waignier, A.-F. Le Meur, and L. Duchien

We have also studied other ADLs, such as Unicon [21], Darwin [17], Wright [2],
AADL [3], Acme [12] and UML2 [20], for a total of 15 ADLs. From our domain
analysis, we have established a common vocabulary to abstract architectural el-
ements that are involved in an integration process. Furthermore, we have deter-
mined that adding a new functionality can be performed through two categories
of integration.

2.1 Common Vocabulary Across ADLs

We have identified six architectural elements that the software architect needs
to reason about when integrating new functionality into a component-based
architecture description: component, connector, configuration, communication
point, communication element and role. We define them as follows:

– A component is a computational element or a data store of a system;
– A connector describes the interactions between components;
– A configuration represents an assembly of components and connectors, which

corresponds to the structure of the application;
– A communication point is an element of a component that enables the com-

ponent to communicate with its environment, i.e., the other components;
– A communication element corresponds to what is exchanged through con-

nectors between components;
– A role is a participant of the interaction represented by the connector.

Furthermore, we distinguish primitive components from composite components,
as well as direct communication points from delegated communication points. A
primitive component is a basic computational element and a composite defines a
given assembly of primitive and composite components. A direct communication
point is the source or the sink of communication. A delegated communication
point propagates communication elements toward another communication point.

Table 1 illustrates how these six elements map to the specific elements of
Fractal ADL, CCM, SafArchie, SOFA, Unicon, AADL and UML2. We have
chosen these ADLs because they are representative of various characteristics
that can be found in many other ADLs.

As shown in Table 1, the concepts of primitive and composite components
exist in numerous ADLs but some, such as CCM, only provide primitive com-
ponents. Connectors are often simple bindings, but they can also be dedicated
software entities, as in SOFA and Unicon. For example in SOFA there are three
predefined connectors (CSProcCall, EventDelivery, and DataStream) and the
user may also define new connector types. The concept of configuration may be
explicit as in AADL and CCM, or implicit, i.e., the global structure of the appli-
cation corresponds to the most outwards (i.e., higher-level) defined composite.

A communication point is often called an interface or port, depending on the
ADL. Furthermore, if the ADL is service-oriented, an interface or a port may
be qualified as client or server, which is equivalent to declaring them as required
or provided, respectively. In the case of a data-oriented ADL, the direction of
the dataflow may be indicated, e.g., in AADL, in (resp. out) specifies that the

FIESTA: A Generic Framework for Integrating New Functionalities 79

Table 1. Common architecture elements

ADL Component Connector Configuration Communication Role Communication
point element

Fractal primitive, binding composite client/server client/server synchronous
composite interface method call

CCM primitive binding component port (Facet, client/server asyn/syn
assembly receptacles, event method call,
descriptor source, event sink) syn event

SafArchie primitive, binding composite port endpoints synchronous
composite method call

SOFA primitive, software composite required/provided required/ asyn/syn
composite entity interface provided method call

Unicon primitive, software composite player caller, definer, syn method call,
composite entity participant, asyn event,

load, etc. syn typed flow
AADL primitive, binding system in/out data port, input/output synchronous

composite event port, typed flow
event data port

UML2 primitive, link composite required/provided connectorEnd asyn/syn
composite (binding) interface, operation

required/provided/
complex port

dataflow is coming in (resp. out) of the communication point. Other kinds of
communication points can be found as in Unicon where communication points
are known as players, 14 player types are defined in total.

A role corresponds to the access point of a connector. For example, in Frac-
tal and CCM, there are two roles, one at each endpoint of the connector, one
endpoint being client and the other one server. There is also one role at each
endpoint of SafArchie connectors, but they have no name. There may be more
than two roles as illustrated by Unicon, which provides 11 predefined roles.

Finally, communication elements are contained within a communication point.
Communication elements differ across ADLs. In the Java implementation of
the Fractal component model, communication is performed through calls to
methods that are defined in interfaces. Method calls may be synchronous or
asynchronous. In SafArchie, methods are further declared as required or provided,
indicating whether the component requires or provides the operation to function.
Consequently, in SafArchie a communication port is not declared as required (resp.
client) or provided (resp. server) as it may contain both required and provided
methods. Communication elements may also be for example events or typed flows.

2.2 Two Categories of Integration

When performing our domain analysis we have identified two categories of in-
tegration. An integration may correspond to (i) adding a new connector or (ii)
modifying an existing connector, or both. To illustrate these two categories, we
consider the manual integration of a logging and a caching functionality into the
Comanche Web server application. The examples are specified in Fractal ADL.

A high-level representation of the structure of the Comanche application is
shown in Figure 1. When the Request receiver receives a URL request from

80 G. Waignier, A.-F. Le Meur, and L. Duchien

File request

Request
Receiver

Frontend

Comanche

Scheduler

Request
analyser

Request
dispatcher

Logger

handler
Request handler

Backend

handler

Error request

Fig. 1. Structure of the Comanche Web server

LoggerP1
(Logging)

public interface Logging {
public void log(String msg);
}

<interface name="P1"
role="server"
signature="Logging"/>

Fig. 2. Definition of the Logger component

a client, it triggers the Scheduler to create a new thread to handle the client.
The request is first forwarded to the Request analyzer, then to the Request
dispatcher and finally to the File request handler. If the file specified by
the URL is found on the filesystem then the Request dispatcher sends file
back to the client, otherwise it calls the Error request handler.

Adding a Connector: The Logging Example. We propose to add a Logger
component that will be connected to the Request analyzer component in order
to log all the requests sent to the Web server. The Logger component is shown
in Figure 2. It has a communication point P1, which provides the log method
through the Logging interface.

To integrate the Logger component, the architect has to add a new communi-
cation point, say P8, on the Request analyzer component. The communication
point P8 should be created so that it is compatible with P1. As our example is
specified in Fractal ADL, compatibility implies that P8 contains the Logging
interface and is declared as client. To complete the integration, the Logger com-
ponent should be placed in the Backend composite, and P1 and P8 connected
using a connector.

Modifying a Connector: the Caching Example. We now consider adding
a Cache component between the Request dispatcher and the File request

FIESTA: A Generic Framework for Integrating New Functionalities 81

(Send)
Cache

(Send)
P3P2

public interface Send {

public Object send(Object data);

}

<interface name="P2"

role="server"

signature="Send"/>

<interface name="P3"

role="client"

signature="Send"/>

Fig. 3. Definition of the Cache component

P6dispatcher

Request handler

File request
handlerP5

(URL) (URL)

Request
public interface URL {

public String getPage(URL u);

}

Fig. 4. Excerpt definition of the Request handler composite

A2
(Send)

P12 P13
(URL)(URL)

P10
(Send)

P11A1

Fig. 5. Adapters

handler components to reduce the number of disk accesses performed by File
request handler. This integration requires the modification of a connector.

The Cache component has two communication points P2 and P3, as shown
in Figure 3. Data is received through the communication point P2, which offers
the Send interface, containing the method send. In Fractal ADL, P2 is a server
interface. If the data passed as the argument of the send method is already in
cache, then the cached data is returned. Otherwise, the request is forwarded
through the method send of the communication point P3, which returns the
requested data. This data is cached for later requests and then sent back to the
caller of P2’s send method.

To integrate the Cache component, the architect has to remove the connector
between the Request dispatcher and File request handler components il-
lustrated in Figure 4. The Cache component is placed into the Request handler
composite. The communication points P5 and P6 are transformed so that they
are compatible with P2 and P3, respectively. To do so, adapter components are

82 G. Waignier, A.-F. Le Meur, and L. Duchien

A1 Cache
Request
dispatcher

File request
handler

Request handler

P5 P2 P3P11P10 P12 P13 P6
(URL) (Send) (Send) (URL)

A2

Fig. 6. Result of the integration of the Cache component

used to perform type conversion. The adapters A1 and A2, shown in Figure 5,
provide this feature. In Fractal, this amounts to creating two components A1 and
A2, such that A1 has a server interface URL, named for example P10, and a client
interface Send, P11, and A2 has a server interface Send, P12 and a client interface
URL, P13. Finally, the adapters are placed in the Request handler composite
and connectors are created between P5 and P10, P11 and P2, P3 and P12, and P13
and P6. Figure 6 illustrates the result of the integration of the Cache component.

3 The FIESTA Framework

Figure 7 provides an overview of the FIESTA framework. Our framework is di-
rectly inspired by TranSAT. Consequently, FIESTA relies on the creation of ar-
chitecture integration patterns and a weaver. The weaver both determines where
a pattern can be applied in a target architecture and performs the integration.

While TranSAT is dedicated to the SafArchie ADL, our approach is decoupled
from any specific ADL. Being ADL-independent has required defining new means
to express architecture integration patterns, as well as developing a generic inte-
gration engine. In this section, we present how to specify architecture integration
patterns in our approach, as well as our generic architecture internal represen-
tation model and weaver, which are the key parts of our generic integration
engine.

3.1 Architecture Integration Patterns

An architecture integration pattern describes a given functionality and contains
all the information needed to integrate this functionality into an architecture. It
may be developed independently of any specific architecture by an architecture
integration pattern developer, and reused on different architectures by a soft-
ware architect. In the FIESTA approach, an architecture integration pattern is
composed of a new plan, a join point mask and a set of integration rules.

New Plan. A new plan is an assembly of components describing a functional-
ity. For example, the Logger component (Figure 2) and the Cache component
(Figure 3) can be considered as new plans. Some communication points of the
assembly may not be connected yet. These points will be the points at which
connectors will be attached to integrate the new plan into the base architecture,
i.e., the target architecture.

FIESTA: A Generic Framework for Integrating New Functionalities 83

Fractal
Reader

CCM
SOFA

Architecture internal
representation

Weaver
Fractal
Writer

CCM
SOFA

New plan Mask Integration
 rules

Architect

Pattern developer

Base
architecture

Design
choices

Transformed
base

architecture

Transformed
representation

New plan internal
representation

Architecture
integration pattern

Fig. 7. Overview of the FIESTA framework

A new plan is described in a given ADL. It could be SafArchie, Fractal ADL
or SOFA, etc. We have chosen not to specify the new plan with a generic ADL in
order to keep all the expressiveness and the specific characteristics of each ADL,
and to also not force the pattern developer to learn another ADL. The new plan
will be automatically transformed into our generic architecture internal repre-
sentation for use during the integration process. All the information described in
the new plan will still remain in the architecture resulting from the integration.

Join Point Mask. In our approach, a join point mask specifies a valid inte-
gration site as an abstract component assembly description. More precisely, it
expresses structural properties that the base architecture must satisfy for the
integration to be possible.

A join point mask is composed of component masks, connector masks and
communication point masks. These mask elements abstract the general concepts
of component, connector and communication point and thus are not specific
to any ADL. Furthermore, communication point masks are constrained to be
linkable with specific communication points of the new plan. Since the new plan
is expressed in a given ADL, the resolution of the linkable property will be
specific to this ADL and determined at integration time.

Figure 8 illustrates the mask to associate with the Logger component. This
mask can match any existing component of the base architecture since the log-
ging functionality may be added anywhere. At integration time, the architect will
specify which component should be concerned by the integration of the logging
functionality.

84 G. Waignier, A.-F. Le Meur, and L. Duchien

ComponentMask Cm1;

Fig. 8. Join point mask for the logging functionality

ComponentMask Cm1, Cm2;

CommunicationPointMask Pn on Cm1

linkable with Cache.P2;

CommunicationPointMask Pm on Cm2

linkable with Cache.P3;

ConnectorMask{Pn,Pm};

Fig. 9. Join point mask for the caching functionality

Figure 9 depicts the mask for the caching functionality. This mask specifies
that in order to add caching the base architecture must contain two compo-
nents connected through a connector. Implicitly, the connector may go through
delegated communication points if the components are not within the same com-
posite. The communication point masks Pn and Pm are declared to be linkable
with the communication points P2 and P3 (Fig. 3), respectively.

At integration time, the weaver searches all the integration sites satisfying the
mask and the architect specifies which of these sites to affect. Each abstract name
associated to a mask element is then unified with the actual name contained in
the architecture description.

Integration Rules. Integration rules are specified using integration primitives.
FIESTA provides two integration primitives, one for each category of integra-
tion that we have identified during our domain analysis. We present these two
primitives via the logging and caching examples presented in Section 2.

Adding of a new connector in the logging example is expressed using the
primitive addConnector as follows:

addConnector Logger.P1 on Cm1;

This rule specifies that the communication point P1 of the Logger component
of the new plan must be connected to the component associated with the com-
ponent mask Cm1. This rule implies that a compatible new communication point
will have to be created on Cm1 and a connector will have to be added between this
communication point and P1. These operations will be automatically performed
by the weaver. Design choices, such as choosing the name of the new communi-
cation point will have to be provided by the architect, he will be prompted by
the weaver at integration time.

FIESTA: A Generic Framework for Integrating New Functionalities 85

Fig. 10. Architecture internal representation model

Modifying an existing connector in the case of the cache example is expressed
using the primitive modifyConnector as follows:

modifyConnector from Cm1.Pn to Cache.P2
and from Cache.P3 to Cm2.Pm;

This rule indicates that the connector between Pn and Pm must be removed and
replaced by a connector between Pn and P2 and another connector between P3
and Pm. Design choices, such as using adapters or directly modifying the com-
munication points P2 and P3 to make the types compatible, are postponed until
integration time.

3.2 The FIESTA Integration Process

Our domain analysis has shown that integrating a new functionality requires
manipulating elements that are common across ADLs. Accordingly, we propose
to build a generic integration framework rather than one framework for each
ADL. To do so, our framework relies on both a generic architecture internal
representation model to express a component assembly, and a generic weaver.

The FIESTA integration process is illustrated in Figure 7. A base architecture
and a new plan both expressed in, say Fractal ADL, are transformed by an ADL-
specific reader (in our case a Fractal ADL reader), each into an internal represen-
tation, according to our generic ADL model (Figure 10). The weaver transforms
the architecture internal representation following the information contained by
the architecture integration pattern. Finally, the transformed representation is
translated by a ADL-specific writer back into a Fractal ADL specification.

Generic Architecture Internal Representation Model. Our internal rep-
resentation, which results from our domain analysis, is described in Figure 10. To
handle commonalities and variations between ADLs, our model relies on two sets

86 G. Waignier, A.-F. Le Meur, and L. Duchien

Test :
bool isCompatible(CPoint p1, CPoint p2);

bool isAvailable (CPoint p);
bool isConnectable(CElt e1, CElt e2);
bool isAddable(CPoint p, Component c);

Reconfiguration :

Connector getConnector(CPoint p1, CPoint p2);
void makeConnection (CPoint p1, CPoint p2);

void destroyConnection(List<CPoint> pts);
Adapter createAdapter(CPoint p1, CPoint p2, List<CElt> elts);

Introduction :

CPoint createCompatible(CPoint p);
CPoint createComplement(CPoint p, List<CElt> elts);

void add(CPoint p, Component c);
void remove(CPoint p);

Fig. 11. Low-level ADL-specific functions

of information: common structural information and ADL-specific non-structural
information.

Since integrating a new functionality requires transforming the instance of the
system structure at a given time, our model captures only the static structure
of an architecture. The structural elements of the model are the ones identified
in Section 2. Accordingly, a configuration is an assembly of components and
connectors. A component may be a primitive component with direct communi-
cation points, or a composite component with delegated communication points.
Communication points contain communication elements and are connected to
connectors through roles. A composite component is formed of primitive and/or
composite components, and connectors.

Our model takes into account the specific characteristics of each ADL and
stores all the information contained in the original ADL description in order to
be able to recreate it at the end. ADL-specific variabilities are stored into sets of
properties, one set per structural element. These properties are represented as
associations (key, value). For example, in the case of the communication point
P2 of the Cache component, a property ‘signature’ is associated with the value
‘Send’ and a property ‘role’ with the value ‘server’. Other information, such as
the name of the file where an architectural element is specified in the original
ADL description, is also stored.

Weaver. The weaver carries out the integration of a pattern with some input
from the architect. First, it determines from the internal representation of the
architecture the set of integration sites with respect to the join point mask of the
pattern, i.e., the set of component sub-assemblies of the architecture that match
the structural requirements expressed by the join point mask. Then the architect
chooses the sites to affect. For each selected site, the weaver first instantiates
the mask elements specified in the integration rules with the base architecture
elements forming a valid integration site, and finally executes the instantiated
rules to integrate the new plan.

The integration site search, as well as each integration primitive, correspond
to algorithms that are generic and thus independent of the ADL used to rep-
resented the base architecture. These algorithms rely on low-level operations.
These operations are ADL-specific and have been provided once to configure
our framework to support a given ADL.

FIESTA: A Generic Framework for Integrating New Functionalities 87

// Fractal ADL
bool isCompatible(CPoint p1, CPoint p2) {
return

p1.getProperty(’signature’).equals(
p2.getProperty(’signature’))

&&
((p1.getProperty(’role’).equals(’client’) &&

p2.getProperty(’role’).equals(’server’))
||
(p1.getProperty(’role’).equals(’server’) &&

p2.getProperty(’role’).equals(’client’))
);

}

// CCM
bool isCompatible(CPoint p1, CPoint p2) {
return

p1.getProperty(’interface’).equals(
p2.getProperty(’interface’))

&&
((p1.getProperty(’type’).equals(’facet’) &&

p2.getProperty(’type’).equals(’receptacle’))
||
(p1.getProperty(’type’).equals(’receptacle’) &&

p2.getProperty(’type’).equals(’facet’))
||

(p1.getProperty(’type’).equals(’event source’) &&
p2.getProperty(’type’).equals(’event sink’))

||
(p1.getProperty(’type’).equals(’event sink’) &&
p2.getProperty(’type’).equals(’event source’))

);
}

Fig. 12. Definitions of the function isCompatible for Fractal ADL and CCM

Low-level ADL-specific functions. The behavior of the algorithms related to the
integration can be configured through the definition of 12 low-level operations.
There are three kinds of operations: test, introduction and reconfiguration. The
functions corresponding to these operations are shown in Figure 11.

Test functions are used to evaluate a priori whether a transformation implied
by an architecture integration pattern can be performed without breaking the
ADL semantics. For example, the function isCompatible(p1,p2) determines if
the communication points p1 and p2 can be connected with each other without
using an adapter. Specifically, in Fractal ADL, two communication points are
compatible if they have the same signature and if one is declared as client and
the other as server. In CCM, the notion of compatibility amounts to checking
that both communication points have the same interface and that one is a facet
(resp. event source) and the other a receptacle (resp. event sink). These two
definitions of the operation isCompatible are shown in Figure 12.

The three other test functions, isAvailable, isConnectable and isAddable,
are respectively used to check if a given communication point can accept another
connection; if two communication elements e1 and e2 can be connected so that
there is no information loss between the two communication elements; and if a
communication point p can be attached to a component c.

Introduction functions modify the interface of the components. The func-
tion add attaches a given communication point to a component, the function
remove detaches a communication point from its parent component, the function
createCompatible generates a communication point that is compatible with a
given communication point, and the function createComplement clones a given
communication point from which some communication elements have been re-
moved.

Reconfiguration functions modify the interactions between components. They
provide the capacities to obtain an appropriate connector, to connect two com-
munication points, to destroy the connection between two communication points,
and to create a specific adapter.

88 G. Waignier, A.-F. Le Meur, and L. Duchien

C
ho

ic
e

of
 th

e
na

m
e

of
 th

e
co

m
m

un
ic

at
io

n
po

in
t

isConnectable

and isAvailable
isCompatible

End

Begin

createAdapter

does not
exist

exists yes

yes

no

For each composite

no

Add new compatible

communication point

Create new

connection

Low-level function

Low-level test function

Succesion of low-level
functions

Fig. 13. Generic algorithm for the integration primitive addConnector

Generic algorithms. Most of the code of the integration tool is generic and thus
ADL-independent. The behavior of the algorithms related to integration only
vary where the ADL-specific functions are called. These functions are used in
both the algorithms to search integration sites and the ones to perform the inte-
gration. For example, the function isConnectable is used to resolve the linkable
property that may be declared in a join point mask, enabling the identification
of the integration sites. It is also used in the algorithms associated with the two
integration primitives.

During the execution of the generic algorithms, some design choices have to
be made by the architect. Consequently, the weaver may ask the architect to
name new communication points, to decide whether adapters should be created
or communication points directly modified, to choose the type of the connec-
tor, or also to decide in which composite a new component should be placed.
The number of design choices depends directly on the ADL used, as some ADLs
offer more possible actions than others. Nevertheless, the architect can also spec-
ify default design choices in a file so that he will not be prompted during the
integration process.

As an example, Figure 13 gives an overview of the generic integration algo-
rithm associated with the integration primitive addConnector P on C. If the
name of the communication point provided by the architect exists on the com-
ponent C then tests are performed to detect whether a connection can be created
between this communication point and P. If needed, an adapter is introduced
and all the connections are created, delegated communication points being re-
cursively added as composites are crossed. Otherwise, if the name does not exist,
then an appropriate communication point is created, then connected to P.

Implementation Status. The current implementation of our framework has
been developed in Fractal and fully supports integrating functionalities for ar-
chitectures expressed in Fractal ADL and SOFA. FIESTA can be extended to
support a new ADL by defining the 12 ADL-specific functions shown in Fig-
ure 11. We have expressed these functions for Fractal ADL, SOFA, Wright,
CCM and Unicon, and found that most of these functions are very similar to
specify. Furthermore, a reader and a writer for the new ADL must also be de-
veloped, however, they can be most of the time adapted from the existing tools
associated with this ADL.

FIESTA: A Generic Framework for Integrating New Functionalities 89

4 Related Work

The TranSAT approach [6,7] introduced the concept of architecture integration
pattern to modularize a given functionality and specify under which conditions
the functionality can be integrated as well as the associated transformation rules
to perform the integration. Our approach is built on the same concept but is more
generic since our join point mask specification and integration rules are decoupled
from any specific ADL. Furthermore, we provide higher-level abstractions to
express how to integrate a new functionality than the TranSAT transformation
rules, which remain low-level. Our approach reduces the risk for errors on the
part of the pattern developer and also simplifies the verification of the coherence
of the integration pattern.

Some works, such as Acme [12] or xADL [10], have proposed a generic ADL
model to represent different ADLs. Though these two models have commonali-
ties with ours, they do not provide enough details about communication between
components. For example, they do not offer the notion of communication ele-
ments and direct or delegated communication points, which are required for our
purpose. Furthermore, it is not possible to configure these generic ADLs to add a
given semantics, consequently manipulating the generic representation requires
the tool to know about the underlying ADL semantics, which complicates the
support of new ADLs. For example, the verification of compatibility between
two communication points must be done by external tools specific to each ADL.

Some ADLs enable the architect to extend their architecture description with
architectural constraints, but to do so they impose to use a given formalism, such
as invariants in ACME/Armani [13]. Our model can also be extended to support
architectural constraints but does not impose any given formalism. Indeed, con-
traints are stored in our model within the component properties. Thus adding
support for a new formalism, such as invariants or OCL, does not require any
modification of our model. The associated verifications only have to be specified
once and for all in the low-level functions, to be performed at each modification
of the architecture.

Some approaches to dynamic adaptation enable the modification of an archi-
tecture [1,11,14]. However they only rely on low-level functions that are ADL-
dependent. The architect must thus specify all the required steps to add a new
functionality. For example, in [11] the architect has to write each time the adap-
tation operations that must be performed, depending on the rules that govern
how the architectural elements may be composed. Our work is at a higher level of
abstraction since we provide two transformation rules that are ADL-independent
and that are automaticaly transformed into the appropriate sequence of low-level
function calls.

5 Conclusion and Future Work

We have presented FIESTA, a generic framework that enables the integration of
new functionalities into an architecture description. Our approach is built on a

90 G. Waignier, A.-F. Le Meur, and L. Duchien

domain analysis that has led to the identification of the architectural elements
involved in the integration process, independently of the ADL used, which has
enabled the definition of a generic ADL model. Our approach is thus decoupled
from any given ADL. Furthermore, we have provided higher-level abstractions
to describe the join point mask and transformation rules of an architecture inte-
gration pattern than the TranSAT approach, simplifying the task of the pattern
developer. Our weaver carries out the integration of new functionalities, making
easier the task of the architect. The architect only has to decide which integration
sites to affect and to provide information related to design choices.

Our integration engine is generic and can be configured to support new ADL
through the specification of 12 low-level functions. Currently, we have defined
these low-level functions for several of the ADLs we have studied and have fully
implemented our framework for Fractal ADL and SOFA. In the near future,
we plan to handle more ADLs, such as SafArchie. This will require extending
our model and rules in order to capture and manipulate SafArchie behavioral
information.

Adding support for a new ADL requires also to develop a reader and a writer.
As the writer is in charge of converting the generic internal architecture repre-
sentation corresponding to an instance of the architecture back into its original
ADL, it may have to rebuild the types associated with the element instances if
this is required by the ADL. To ease this task, we plan to work on the design of
a generic type model to represent the types of the elements of our generic ADL
model.

Furthermore, we would like to apply our approach to the development of
more applications to better evaluate our proposition. Finally, we are interested
in investigating the possibilities to adapt our approach in order to provide func-
tionality integration capabilities at runtime.

References

1. Abdelmadjid, K., Noureddine, B.: Open framework for the dynamic reconfiguration
of component-based software. In: SERP, pp. 948–951 (2004)

2. Allen, R.: A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, CMU-CS-97-144 (January 1997)

3. AS-2 Embedded Computing Systems Committee SAE: Architecture Analysis &
Design Language (AADL). SAE Standards nAS5506 (November 2004)

4. Balter, R., Bellissard, L., Boyer, F., Riveill, M., Vion-Dury, J.-Y.: Architecturing
and configuring distributed application with Olan. In: Proceedings of the 1st IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing, The Lake District, UK, pp. 241–256. Springer, Heidelberg (September
1998)

5. Barais, O., Duchien, L.: SafArchie studio: An ArgoUML extension to build safe
architectures. In: Architecture Description Languages, pp. 85–100. Springer, Hei-
delberg (2005)

6. Barais, O., Duchien, L., Le Meur, A.-F.: A framework to specify incremental soft-
ware architecture transformations. In: EUROMICRO-SEAA’05. Proceedings of the

FIESTA: A Generic Framework for Integrating New Functionalities 91

31st EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, Porto, Portugal, pp. 62–69. IEEE Computer Society, Los Alamitos (Septem-
ber 2005)

7. Barais, O., Lawall, J., Le Meur, A.-F., Duchien, L.: Safe integration of new concerns
in a software architecture. In: ECBS’06. Proceedings of the 13th Annual IEEE
International Conference on Engineering of Computer Based Systems, Potsdam,
Germany, pp. 52–64. IEEE Computer Society, Los Alamitos (March 2006)

8. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: An open com-
ponent model and its support in Java. In: Crnković, I., Stafford, J.A., Schmidt,
H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Hei-
delberg (2004)

9. Bruneton, E., Coupaye, T., Stefani, J.-B.: The Fractal Component Model (February
2004), online documentation http://fractal.objectweb.org/specification/

10. Dashofy, E.M., der Hoek, A.V., Taylor, R.N.: A highly-extensible, XML-based
architecture description language. In: WICSA’01. Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, p. 103. IEEE Computer Soci-
ety, Washington, DC, USA (2001)

11. Garlan, D., Cheng, S.-W., Schmerl, B.: Increasing system dependability through
architecture-based self-repair. Architecting Dependable Systems (2003)

12. Garlan, D., Monroe, R., Wile, D.: Acme: An architecture description interchange
language. In: CASCON’97. Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research Processing, Toronto, Ontario, Canada,
pp. 169–183 (November 1997)

13. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press, Cambridge (2000)

14. Hillman, J., Warren, I.: An open framework for dynamic reconfiguration. In: ICSE,
pp. 594–603 (2004)

15. Kalibera, T., Tůma, P.: Distributed component system based on architecture de-
scription: The SOFA experience. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS
2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 981–994. Springer,
Heidelberg (2002)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

17. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software ar-
chitectures. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, Springer,
Heidelberg (1995)

18. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

19. Object Management Group: CORBA Component Model, v3.0, formal/2002-06-65
(June 2002)

20. OMG: Unified Modeling Language (UML): Superstructure. 2.0 edn. Needham, MA,
USA (August 2005)

21. Zelesnik, G.: The UniCon Language Reference Manual. School of Computer Science
Carnegie Mellon, Pittsburgh, Pennsylvania (May 1996)

http://fractal.objectweb.org/specification/

Beyond ATAM: Architecture Analysis in the

Development of Large Scale Software Systems

Andrzej Zalewski

Warsaw University of Technology, Institute of Automatic Control and Computational
Engineering, Warsaw, Poland
a.zalewski@ia.pw.edu.pl

Abstract. Large scale software developments require substantial invest-
ment and are exposed to high level of risk. Architectural decisions taken
at early stages of the development can substantially influence the entire
level of technical risk. In this paper architectural decisions are divided
into two basic groups: early – top level system organization decision
establishing system organization patterns (the notion introduced in this
paper) and detailed ones. However as it was shown on notable examples of
large scale developments carried out in recent ten years in Poland, wrong
decisions concerning system organization pattern can trigger severe risks
that can lead to the development crisis. These risks are frequently con-
nected with the complexity explosion syndrome – sudden, undetected
growth of design complexity that exceeds the capabiblity of the develop-
ment team and time budget. To manage these risks properly appropriate
architecture analysis method has been introduced. On the contrary to
the traditional scenario-based architecture analysis methods, like ATAM,
it was based on GQM approach. A complete assessement framework have
been defined comprising three goals: complexity control, organizational
adequacy and satisfactory perforormance and reliability; a set of ques-
tions related to these goals, as well as metrics for the qualities expressed
by these questions. The conclusion contains ex post analysis of exem-
plary large scale systems showing that the proposed framework provides
adequate assessement of design risk. It has also been indicated that the
critical risks identified during the evalution of the system organization
pattern should be carefully managed.

1 Introduction

Architecture Trade-off Analysis Methods (ATAM) [4], being a successor of early
architecture analysis methods like SAAM [8], SAMCS, ESAAMI, SAAMER (a
complete survey – [1]), represents the state-of-the-art in architecture analysis
with quite a broad record of applications e.g. [14], [15], [16], [17], [19]. ATAM
is based on specifying quality requirements in terms of quality scenarios. In
large scale developments early architectural decisions are fundamental to the
success of the whole project and should be assessed as early as it is possible.
However, as we show in the course of this paper, scenario-oriented architecture
analysis methods can hardly be applied to the early architectural design of large

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 92–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Beyond ATAM: Architecture Analysis in the Development 93

scale developments. Therefore, the paper is aimed at supplementing existing
approaches so that early architectural design could be effectively assessed.

The paper starts from the introduction and description of the following no-
tions: large scale software system, system organization pattern (result of early
architectural decisions) and phenomenon of complexity explosion syndrome. On
that basis the limitations of ATAM as a technique for analysing system organi-
zation pattern have been discussed. As a solution for these shortcomings a novel
approach for the evaluation of system organization pattern has been proposed.
The architecture evaluation is performed by the use of adopted and special-
ized GQM technique. The adequacy of proposed assessement approach has been
verified on the sample of large scale software system developments.

2 Large Scale Software Systems

The class of large scale software systems can be distinguished by the following
technical features:

– Strong geographical distribution – large scale software is typically built on
the commission of country- or world-wide public or private organizations.

– Large volumes of data being stored and processed.
– Large number of concurrent users being served – the number of users usually

reflects the number of organization’s employees and typically exceed 1000
users.

– Distribution of computational and data resources – results from the geo-
graphical distribution feature; the main concern here is the allocation of
storage and processing to the locations as well as organization’s units.

– Managing large distributed data resources – distribution of data resources
(distributed databases, local databases in thick-client architecture) usually
require to resolve issues of data synchronization, transactions and data ex-
change between system units.

– Long and short distance communication solutions assuring data flow be-
tween system’s units – communication mechnisms, protocols, message pass-
ing schemes, etc.

3 System Organization Pattern

Architecture development may be perceived as a series of architectural decisions
(compare: [20], [21], [22]) concerning different level of scope and obviously differ-
ent level of detail: from the very top enterprise level to a very detailed software
components level [23]. In this paper we focus on the early architectural decisions,
which play particularly important role in the development of large scale software
systems. These top level architectural decisions have been referred to as system
organization pattern and comprise the following basic elements:

94 A. Zalewski

– Decomposition into a set of subsystems/applications – defines a coarse
grained functional decomposition. Subsystems are here meant as single appli-
cations or suites of the applications accompanied by a common infrastructure
(e.g. databases, application servers), prepared for a single functional domain.
Each application or a subsystem encompasses a portion of system’s function-
ality. The allocation of functionality is a crucial aspect of the decomposition
onto a set of subsystems/applications.

– Geographical and organizational allocation of subsystems/applications – the
structure of the system has to reflect the structure and geographical— disc-
tribution of a taget organization. System organization pattern provides
information on the organization’s units for which certain applications are
provided as well as information on the geographical situation of these units
and corresponding subsystems/applications.

– Organization of data input – concerns defining and allocating points, where
external data is entered into the system. This includes emplacement of the
system remote access points, data entry (typing) points, scanning devices
etc.

– Organization of data storage and processing:
• Data storage distribution – defines the distribution of permanent data

resources (typically databases),
• Data processing organization – is basically about choosing data process-

ing architecture (client-server, multi-tier, thin/thick client).
• Distributed data storage management – concerns the means of synchro-

nization of distributed databases, transmitting data onto remote sys-
tems, upload of data from local to main data store.

• Transaction management – regards selection of solutions assuring trans-
actionality. This involves both short and long transactions, nevertheless,
short ACID [13] transactions are offered by the database engines, which
is not sufficient for long ones, which require specialized advanced solu-
tions like transaction monitors.

– Communication framework – defines the communication mechanisms be-
tween equivalent system entities (e.g. processes, applications), communica-
tion protocols used to transmit data between system entities.

To ilustrate the concepts described above let us consider parcel/mail movement
tracking system discussed further in p. 5. The system has been suited for five
regional mail/parcel distribution centers of national post located in five largest
cities of Poland. The centers are identical in terms of their organizational struc-
ture. The draft of system organization pattern is presented below:

– Decomposition into a set of subsystems/applications – subsystems handling
automatic mail sorting machinery as well as users applications have been
defined.

– Geographical and organizational allocation of the subsystems/applications –
structurally the same subsystems and applications have been deployed at
each of the five distribution centers.

Beyond ATAM: Architecture Analysis in the Development 95

– Organization of data input – data inputs are: sorting machines and users
terminals – all located at the same premises.

– Organization of data storage and processing:
• Data storage distribution – relational database management systems

have been provisioned for each center.
• Data processing organization – applications/subsystems follow the client-

server pattern.
• Distributed data storage management – data is transmitted to remote

locations by a proven, commercial message queueing system.
• Transaction management – there is only necessity to handle short trans-

actions only.
– Communication framework – the messege queueing system communicates

over IP network.

The decisions listed above are to smaller or greater extent present in every
software development. In large scale software developments, all of them are vital
and not trivial. The notion of ‘pattern’ has been applied as the elements of
system organization pattern are multiplicated in the system’s structure, e.g. if
it’s been decided to have local databases servicing local client software for each
company’s location this architectural pattern will be multiplicated in all the
locations.

4 Complexity Explosion Syndrome

In recent ten years there have been a number of large scale software systems
developments in Poland. These projects have been carried out on the commission
of governmental and private financial institutions as well as of large industrial
enterprises. Some of these developments encountered serious problems that lead
to crisis. These situations can be attributed to the negligence of various classes.
To the most severe ones belongs the lack of appropriate architecture evaluation
at early design phases together with inefficient risk management.

Faulty system organization pattern causes unexpected, sudden, often unde-
tected explosion of software complexity, which cannot be managed by the de-
velopment team. This phenomenon has been referred to as complexity explosion
syndrome. It usually affects critical elements of the whole design and can lead
to general development crisis if it is not managed properly. The inability to
cope with the design complexity is typically a result of a mismatch between
the software construction problems that have to be solved and the experience
and competences of the development team as well as time available for project
completion.

Let us consider two notable examples of complexity explosion syndrome –
these are software crisis stories.

PR.1. Election support system – the system consisted of central subsystem
situated at the headquarters‘ premises and local systems located in the middle-
level local electoral authorities. Low-level electoral authorities are involved in

96 A. Zalewski

direct vote collection and summation providing with the paper protocols, while
middle-level ones aggregate data provided by the low-level authorities. It was
provisioned for an extensive communication between middle-level and head-
quarters’s subsystems for the purpose of the synchronization of fragments of
databases. The following architectural decisions turned out to be wrong:
– Synchronous communication between local and central systems – this caused

local systems to hang waiting for the reply from overloaded headquarters.
– Decision to implement synchronization mechanism almost from scratch,

while the development team had rather little experience in such a field.
– The low cohesion of a local application – its operation depended on the

successful upload of data from the headquarters.
– High coupling between local and central subsystems – proper operation of

each depended on the proper operation of the other system.
PR.2. Pipeline passportization system was commissioned by the operator
of the gas pipeline system. The system consisted of a central subsystem located at
company’s headquarters and autonomous local systems. In this case the following
architectural decisions turned out to be misleading and lead to the complexity
explosion:

– Data processing organization – thick local client solution was chosen. This
introduced processing of long transactions.

– Transaction management – it was implemented using conventional frame-
work provided by the database engine for short transactions – this caused
other users applications to hang on blocked rows of the database, these in
turn imposed their blocks on other parts of the database, users restarted
hung applications leaving the blocks on the database – the system was per-
ceived as unable to operate properly.

What was missing in the above examples, was:

– Architecture analysis of system organization pattern and further architec-
tural design models.

– Risk analysis based on the findings of early architectural design as well as
further risk monitoring and control techniques supplied with the information
resulting from the architecture analysis.

The phenomenon described above has both rich history and supposedly bright
future as the developments in software design paradigms, methods and tools
provide with newer and newer risks – e.g. SOA, being currently a buzzword in the
commercial IT world, provide with a number of pitfalls causing high development
risk like missing long transaction solution that has to be supplemented by the
developers (for more see: [7]).

5 Other Examples of the Impact of System Organization
Pattern on the Development Process

Complexity Explosion Syndrome is the most severe consequence of wrong early
architectural decisions. These may lead to less serious problems (see below: prob-

Beyond ATAM: Architecture Analysis in the Development 97

lem story) than the latter ones. However, right early architectural decision will
provide a sound foundation for further development (see below: success story).

Problem story: PR.3. Medical services registration – the system was
developed on the commission of national health care found, its architecture was
similar to the architecture in the crisis examples – the system consisted of lo-
cal and central subsystems, data (information on the executed medical services)
was to be uploaded from local data storage (systems placed in hospitals, surg-
eries, ambulatories, etc.) to central subsystem. It was chosen that communica-
tion would be based on SMTP protocol. The solution was aimed at providing
data queuing without introduction of specialized software (like IBM MQ Series).
It turned out in the course of exploitation that the communication is unreli-
able as well as the development team could not fully cope with SMTP (Simple
Mail Transfer Protocol) services properly. This resulted in replacing self-designed
SMTP transfer services with manual solutions: the data was transferred onto CD-
W, sent via conventional post to the headquarters, and uploaded there manually
from the provided CD.

Success story: PR.4. Parcel/mail movement tracking – the system has
been designed for the mail distribution centers of the Polish Post (Poczta Polska).
It was aimed at transferring data connected with the movement of mail and
parcels between the distribution centers. The data communication had bursty
characteristics – large data loads had to be transferred when transport of the
mail was leaving for or arriving at another distribution center. The transport
of the mail or parcel was to be accompanied by the transfer of the appropriate
information to the destinate distribution center – to provide information on
the expected mail transport – as well as delivery confirmation was expected
to be sent back to the source distribution center. Identical subsystems have
been placed in every distribution center, the information transfer was based on
asynchronous queuing solutions from IBM: MQSeries (now: IBM WebSphere
MQ). The system turned out to operate successfully – the data was timely and
consistently transferred between the distribution centers.

6 Limitations of Scenario-Oriented Architecture Analysis
Methods

Architecture analysis methods started to evolve in the middle nineties – SAAM
[8] appeared in 1994. Even in 2000 it was said in [1] that ATAM [4], which
now seems to be the most mature architecture analysis method, was still under
research. This sheds light on the reasons of the lack of architectural analysis in
the developments carried out during last ten years in Poland.

Although architecture analysis methods have developed considerably since the
beginning of 21st century, there is still much to do about analysing architecture at
early design phases. In ATAM software architecture is analysed from the software
quality attributes point of view [4], [5]. The quality requirements are expressed
by ‘quality scenarios’. A quality scenario consists of a chain of: source – stimulus

98 A. Zalewski

– artifact – response – response measure. Quality scenario patterns have been
proposed in [4] for the following quality attributes: availability, modifiability,
performance, security, testability, usability.

However, system organization pattern is hardly amenable to scenario-oriented
analysis due to the following reasons:

1. In the ATAM software architecture is analysed from the point of view of soft-
ware quality attributes like those defined in ISO 9126 [3]. However, system
organization pattern can hardly be related to the final software properties
making accurate and meaningful evaluation hard to achieve.

2. The expression power of quality scenarios is that quality attributes are ex-
pressed in terms of concrete expectations of project stakeholders. However,
these can be successfuly expressed and evaluated when the requirements
and design is sufficiently detailed, which is usually not the case of system
organization pattern of a large scale software system.

3. Although there exist numerous case studies on ATAM applications – at least
18 case studies carried out by SEI of Carnegie Mellon University mentioned
in [18] (e.g. [14], [15], [16], [17]) and other evaluations reported in confer-
ence papers like [19] – there is rather a sparse record of using ATAM to
assess early architectural desing. These analyses use usually 4+1 views of
software architecture (or its subset). This confirms indirectly the premises
given above; compare also a survey [1].

A novel approach based on the features distinct from the final software quality
attributes is need to cope with system organization pattern analysis. Thus, the
task is to:

– define attributes applicable for the assessment of system organization pat-
tern,

– provide evaluation technique,
– define the whole assessment framework consisting of evaluation techniques,

attributes being assessed, definition of stakeholders involvement, architecture
models used as a basis for the evaluation.

7 A Framework for the Assessment of System
Organization Pattern

Apart from the software quality attributes, the qualities of architecture itself are
also studied in literature. In [5] there have been mentioned conceptual integrity,
correctness, completeness and buildability as features of an architecture itself.
These features are generally difficult to define in a quantitive manner. Except
for buildability, it is also difficult to define them qualitatively.

Basing on the large scale software systems listed in p. 4 and 5 it was concluded
that early architectural design expressed in the system organization pattern can
affect the ability to achieve the following goals:

Beyond ATAM: Architecture Analysis in the Development 99

– Complexity control – software architecture is one of the means of managing
software complexity. Therefore, the goal of complexity control reflects the
ability of a given architectural design to keep system’s complexity under
control avoiding unexpected complexity growth or explosion. It is notable
that the more detailed architectural decisions are, the smaller parts of the
system they affect – therefore, detailed architectural decisions cannot lead
to complexity explosion, while early ones can.

– Organizational adequacy – provides assurance that system architecture is
in line with the internal structure and geographical distribution of a given
organization.

– Satisfactory performance and reliability – are meant traditionally reflecting
the ability of assuring timely processing of the external requests (user, data
loaded onto the system, etc.) as well as proper and uninterrupted system
operation.

Goal, Question, Metric (GQM) [9] approach has been adopted for the evalu-
ation of system organization pattern.

7.1 Evaluation Method

The evaluation methods was based on GQM and comprises of:

– goals – expected attributes of the software architecture,
– questions – characterizing software architecture in the context of expected

attributes,
– metrics – expressing quantitatively attributes connected with questions.

Below the adaptation of GQM framework to the assessment of system orga-
nization pattern has been presented. It is organized as follows: for each of the
three goals there have been defined set of questions, for each of these questions
one or more measures have been indicated. Scales for the measures have also
been provided if it was necessary: the metric values have been ranked ascending
(from the worst to the best). Critical values for each of the metrics have also
been defined – they indicate existance of a critical risk.

GOAL: Complexity Control

– Decomposition into a set of subsystems/applications [10]
• DSA.01. Are the specified subsystems/applications functionally consis-

tent?
Metric: level of cohesion.
Scale: Coincidental, Logical, Temporal, Procedural, Communicational,
Sequentional, Functional.
Critical values : Coincidental, Logical.

• DSA.02. Are the specified subsystems/applications sufficiently indepen-
dent?
Metric: level of coupling.
Scale: Content, Common, Control, Stamp, Data.

100 A. Zalewski

Critical values : Content, Common, Control.
Comment : the metrics of coupling and cohesion have been proposed
in the 70s in Stevens et al. [10] and Yourdon and Constantine [11]. The
scales given below stem from [10] and are equally useful when subsystems
or applications comprising a single large scale system are considered as
software modules.

– Data storage distribution
• DSD.01. Does the data storage distribution together with functional

decomposition imply the necessity of communicating data between data-
bases?
Metric: level of database dependence;
Scale: High – there are data storages dependent of each other – syn-
chronization or upload/download is necessary; Low – databases are in-
dependent or there is a single database, thus synchronization between
databases is not needed.
Critical values : High.

– Data processing organization.
• DPO.01. Is advanced local data storage needed for client application?

Metric: kind of client application.
Scale: Thick, Hybrid, Thin.
Critical values : Thick.
Comment : only thick client contains advanced local data storage (e.g.
relational database), which can give rise to the problems of long trans-
actions and/or data synchronization between local and central storages.

• DPO.02. What is the duration of transactions connected with managing
data storage of a client application?
Metric: Length of transactions.
Scale: Unknown, Long, Short.
Critical values : Unknown, Long.
Comment : this question encompasses the case of client storage in a multi-
tier application.

• DPO.03. Will ‘central’ data be uploaded/downloaded from/onto local
applications/subsystems?
Metric: existence of the need for local data upload/download.
Scale: Exists / Not existing
Critical values : Exists.

– Management of distributed data storage.
• DSM.01. What is the confidence in the chosen database synchronization

solutions?
Metric: level of confidence.
Scale: Low – the synchronization will be implemented entirely by the
development team; High – the synchronization will base on proven com-
mercial or proven open source solution.
Critical values : Low.

– Transaction management framework.

Beyond ATAM: Architecture Analysis in the Development 101

• TMF.01. What is the confidence in the selected long transaction man-
agement framework?
Metric: level of confidence.
Scale: none – the problem of long transactions has not been noticed, low
– the long transaction management will be designed by the development
team, high – proven solution will be used (e.g. commercial transaction
monitor)
Critical values : none, low.

– Communication framework.
• CF.01. Does the development technologies of choice provide with uni-

form communication framework assuring data exchange between equiv-
alent software units (e.g. processes, distributed objects, etc.)?
Metric: Existence of uniform communication mechanisms for the whole
software.
Scale: No, Yes.
Critical values : No.

• CF.02. Is the communication between system entities uniform from the
software developer point of view?
Metric: number of protocols that developer has to be aware of?
Critical values : greater than one.

GOAL: Organizational Adequacy

– Geographical and organizational allocation of the subsystems/applications.
• GOA.01. Is the the allocation of subsystems/applications to organiza-

tion’s units adequate to the organization structure?
Metrics : a) Number of organizational units, where necessary functions
are unavailable; b) number of organizational units to which superfluous
applications/subsystems have been allocated.
Critical value: a) any higher than 0; b) not specified.

• GOA.02. Is the geographical allocation of subsystems/applications ad-
equate to the geographical distribution of a given organization?
Metrics : a) Number of locations, where necessary functions are unavail-
able; b) number of locations where superfluous applications/subsystems
have been allocated.
Critical value: a) any higher than 0; b) not specified.

– Organisation of data input
• ODA.01. Are the physical data input points (scanning devices, typing

stations) placed at the points nearest to the sources of entered docu-
ments?
Metrics : Time need to move the documents from source to the data
input point, distance between source and data input points.
Critical value: to be established individually.

• ODA.02. Is the electronic data input accessible to the users or systems
entering data?
Metrics : share of users or external systems that cannot input data elec-
tronically being adequately equipped.
Critical value: to be established individually.

102 A. Zalewski

GOAL: Satisfactory Performance and Reliability

– The questions below refer by analogy to the respective system organization
pattern artifacts indicated above.

• TMF.01. – defined earlier
• DSM.02. Is the communication mechanism planned for distant database

synchronization capable of coping with varying intensity of data load?
Metric: Level of suitability for varying data load.
Scale: Weak – only synchronous communication has been planned; Strong
– asynchronous communication including queuing services have been pro-
visioned for.
Critical values : Weak.

• DPO.02. Defined earlier.
• CF.03. Do the communication mechanisms provide sufficient communi-

cation reliability?
Metric: failure ratio, ratio of the number of negative application report
to the total number of applications.
Critical value: to be established individually.

7.2 Stakeholders Involvement in the Evaluation

Because early architectural decisions are vital to the success of the entire soft-
ware development it is recommandable that all stakeholders should take part in
the system organization pattern evaluation: developing organization’s manage-
ment, end users, maintenance organization, customer (compare: [5]). The system
organization pattern should be formally aproved by the stakeholders.

7.3 Architecture Models Used as a Basis for the Evaluation

The proposed evaluation method does not require any particular form of the
documentation of the system organization pattern. The latter is typically a text
document, sometimes accompanied by the diagrams illustrating the logical, phys-
ical and process view of the architecture (compare: [5]).

8 Analysing the Risk of Failure: A Case Study

The evaluation can take a tabular form shown in the tables 1, 2 presenting
evaluation of projects characterized in p. 4 and 5 against the goals of ‘complexity
control’ and ‘satisfactory performance and reliability’. The bold typeface has
been used to indicate the critical metric values.

The number of critical metric values for the questions listed above for PR.1
and PR.2 indicates high level of design risk (most of the question metrics have
critical values). The congestion of critical values indicates the risk of complexity
exlosion syndrome or performance / reliability pitfalls. On the contrary to the
latter, successfull project PR.4 indicates well-chosen architectural decisions (all
the question metrics have non critical values).

Beyond ATAM: Architecture Analysis in the Development 103

Table 1. Evaluation of complexity control goal attribute of the developments presented
in p. 4 and 5

Question PR.1 PR.2 PR.3 PR.4

DSA.01 Logical Functional Functional Functional
DSA.02 Content Data Data Data
DSD.01 High High High Low
DPO.01 Hybrid Thick Hybrid Hybrid
DPO.02 Short Long Short Short
DPO.03 Exists Exists Exists Not exist
DSM.01 Low Low N/A High
TMF.01 N/A None N/A N/A
CF.01 No Yes Yes Yes
CF.02 1 1 1 1

Table 2. Evaluation of the sufficient performance and reliability goal of the develop-
ments presented in p. 4 and 5

Question PR.1 PR.2 PR.3 PR.4

DSA.01 Logical Functional Functional Functional
DSA.02 Content Data Data Data
TMF.01 N/A None N/A N/A
DSM.02 Weak N/A Strong Strong
DPO.02 Short Long Short Short
CF.03 High High Low High

9 Managing Critical Design Risks

All the critical values identified during the system organization pattern evalu-
ation indicate a critical design risk, which may result in an unexpected com-
plexity growth or exposion. This risk information should become input to the
risk management procedures and carefully monitored during the whole course
of the project. For each of these risks appropriate mitigation tactic should be
applied – e.g. the risk associated with coping with the long transactions can be
mitigated by the introduction of a commercial transaction monitoring solution
or enhancing development team with appropriate special field experts.

10 Conclusion

The paper was devoted to the problem of early architectural design assesse-
ment. The notion of system organization pattern comprizing early architectural
decisions have been introduced and defined. The phenomenon of complexity ex-
plosion observed in the large scale software projects have been defined as well.

104 A. Zalewski

A novel assessement approach, basing on the GQM evalution technique desti-
nated to the assessement of the system organization pattern have been proposed.
Therefore, a set of top level architectural decisions has been defined together with
a method for the assessement of these decisions. The proposed approach has been
successfully evaluated ex post on real life large scale software developments.

The qualities of system organization pattern evaluated in the proposed frame-
work belong to the class of ‘ever-green problems’: coupling/cohesion, transaction
management, database synchronization, etc. These problems may recur as newer
and newer software technologies evolve perpetually.

The proposed GQM architecture evaluation framework can easily be expanded
with another goals, questions and metrics. It is also recommandable to perform
such an ex post evaluation on a greater number of large scale software projects.
This could form an extensive project assessments database. It would enable
to identify on a representative sample risk patterns typical for certain types of
design failures. Such a repository would become a valuable source of information
to the software architects.

References

1. Dobrica, L., Niemelä, E.: A Survey on Software Architecture Analysis Methods.
IEEE Transactions on Software Engineering 28(7), 638–653 (2002)

2. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engi-
neering 26(1), 70–93 (2000)

3. ISO: IEC: ISO/IEC 9126-1:2001 Software engineering —- Product quality —- Part
1: Quality model. ISO/IEC (2001)

4. Kazman, R., Klein, M., et al.: The Architecture Tradeoff Analysis Method. In:
ICECCS’98. Proceedings of Fourth IEEE International Conference on Engineering
of Complex Computer Systems, pp. 68–78. IEEE Computer Society Press, Los
Alamitos (1998)

5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Reading (2003)

6. Albin, S.T.: The Art of Software Architecture: Design Methods and Techniques.
John Wiley & Sons, Chichester (2003)

7. Kaye, D.: Loosely Coupled: The Missing Pieces of Web Services. RDS Press (2003)

8. Kazman, R., Bass, L., et al.: SAAM: A Method for Analysing the Properties of
Software Architectures. In: Proceeding of 16th Int’l Conf. Software Engineering,
pp. 81–90 (1994)

9. Basili, V.R., Caldiera, G., Rombach, H.: The Goal Question Metric Paradigm. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 1, pp. 578–583.
John Wiley & Sons, Chichester (1994)

10. Stevens, W.P., et al.: Structured design. IBM Systems Journal 13(2), 115–139
(1974)

11. Yourdon, E., Constantine, L.L.: Structured Design. Yourdon Press (1978)

12. Gallagher, B.P.: Using the Architecture Tradeoff Analysis Method to Evaluate a
Reference Architecture: A Case Study SEI. Technical Note CMU/SEI-2000-TN-
007. Carnegie Mellon University (June 2000)

Beyond ATAM: Architecture Analysis in the Development 105

13. Garcia-Molina, H., Ullman, J.D., Widom, J.D.: Database Systems: The Complete
Book. Prentice-Hall, Englewood Cliffs (2001)

14. Kazman, R., Barbacci, M., et al.: Experience with Performing Architecture Trade-
off Analysis. In: Proceedings of the 1999 International Conference on Software
Engineering, Los Angeles, pp. 54–63 (May 1999)

15. Bergey, J.K., Fisher, M.J.: Use of the Architecture Tradeoff Analysis Method
(ATAM) in the Acquisition of Software-Intensive Systems SEI. Technical Note
CMU/SEI-2001-TN-009. Carnegie Mellon University (September 2001)

16. Jones, L.G., Lattanze, A.J: Using the Architecture Trade-off Analysis Method
to Evaluate a Wargame Simulation System: A Case Study. SEI. Technical Note
CMU/SEI-2001-TN-022. Carnegie Mellon University (December 2001)

17. Clements, P., et al.: Using the SEI Architecture Tradeoff Analysis Method to Eval-
uate WIN-T: A Case Study Technical Note CMU/SEI-2005-TN-027, Carnegie Mel-
lon University (September 2005)

18. Barbacci, M., Nord, R., et al.: Risk Themes Discovered Through Architecture
Evaluations. TECHNICAL REPORT CMU/SEI-2006-TR-012 ESC-TR-2006-012.
Carnegie Mellon University (September 2006)

19. Boucké, N., Weyns, D., et al.: Applying the ATAM to an Architecture for De-
centralized Control of a Transportation System. In: Hofmeister, C., Crnkovic, I.,
Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 180–198. Springer, Heidelberg
(2006)

20. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design De-
cisions. In: WICSA05. Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture, IEEE Computer Society Press, Los Alamitos (2005)

21. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Software, 19–27 (March-April 2005)

22. Malan, R., Bredemeyer, D.: Software Architecture: Central Concerns, Key Deci-
sions, http://www.bredemeyer.com/pdf files/ArchitectureDefinition.PDF

23. Malan, R., Bredemeyer, D.: Less is More with Minimalist Architecture. IEEE IT
Professional 4(5), 46–48 (2002)

http://www.bredemeyer.com/pdf_files/ArchitectureDefinition.PDF

Enabling Adaptivity in User Interfaces�

Javier Cámara1, Carlos Canal1, Javier Cubo1,
and Juan Manuel Murillo2

1 Department of Computer Science, University of Málaga
Campus de Teatinos, 29071. Málaga, Spain

{jcamara,canal,cubo}@lcc.uma.es
2 Dept. of Computer Science, University of Extremadura, Spain

Avda. de la Universidad s/n, 10071. Cáceres, Spain
juanmamu@unex.es

Abstract. The development of adaptive user interfaces has tradition-
ally been restricted to research prototypes and few commercial products.
Although there have been relevant achievements in the architectural sup-
port for self-adaptive context-aware systems [3,19], the notion of context
commonly supported is restricted and does not explicitly contemplate the
facets of context related to user-application interaction. Furthermore, ap-
plications need to comply with the proposed architectures, making the
incorporation of adaptivity more difficult (or not possible at all) in the
case of already existing applications. This work addresses key issues for
the incorporation of self-adaptive behaviour in GUI-Based applications,
and proposes an aspect-based framework in order to overcome current
limitations.

1 Introduction

As computing applications become more complex and sophisticated, users tend
to spend more time and effort trying to instruct and configure them, having to
explicitly state an ever-increasing amount of information in order to efficiently
carry out the tasks they are demanded. This happens because computing ap-
plications are not context-aware entities, and must be supplied with additional
(context related) information that we, as human beings, implicitly assume in dif-
ferent situations. Contextual information has a dynamic nature and changes as
we interact with our environment. The notion of a changing context dependent
on user-application interaction has been subject to research by the Computer
Science Community by many years [18], producing a broad range of interactive
systems with the same philosophy in common: that it can be worth learning
something from the user and adapt to it in some non-trivial way. This kind of
system has been labelled in different ways, ranging from personalized systems to

� This work has been partially supported by the project TIN2004-07943-C04-01 funded
by the Spanish Ministry of Education and Science (MEC), and project P06-TIC-
02250 funded by the Andalusian local Government.

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 106–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enabling Adaptivity in User Interfaces 107

Intelligent User Interfaces (IUIs). We will refer to them as User Adaptive Sys-
tems, or more specifically as Adaptive User Interfaces (AUIs) [11]. These contrast
with traditional user interfaces, rigid and passive, which allow only a small de-
gree of user customization by setting preferences. Making interfaces flexible and
adaptable to the user implies the extraction of a user model by retrieving infor-
mation based on the interaction of the user with the interface. Then, based on
predictions made using that information, the system modifies its behaviour and
structure for a better interaction with the user.

Dey and Salber define context in [19] as: Any information that can be used
to characterize the situation of an entity. An entity is a person, or object that
is considered relevant to the interaction between a user and an application, in-
cluding the user and application themselves. Specifically, in our proposal we deal
with two types of context-related information:

– Application context : Information related to UI description, application do-
main, and task specifications.

– User context : Information related to user behaviour and preferences.

There is a third kind of Contextual information relevant to the application
referred to as environmental or sensed [7]. This information is indirectly related
to the behaviour of the user and includes location, time, etc. However, in this
work we focus just on application and user context information, since the use of
environmental context has been broadly studied in the field of context-aware ap-
plications [2]. In this work we advocate for the adoption of a new architectural
approach to the development of adaptive interfaces based on Aspect-Oriented
Programming (AOP) [17], which provides the foundations to enable adaptive
behaviour in applications which have already been deployed. Hence, rather than
dealing with user modeling or learning algorithms, this work is focused on how
aspects can be used to apply such techniques on already existing systems, ex-
tending them with adaptive capabilities.

The rest of this paper is organised as follows: Section 2 points out the main
issues for the incorporation of adaptive behaviour in UIs. Section 3 and 4 describe
and detail the design and implementation of the framework. Section 5 describes
some related work. Finally, section 6 discusses the benefits our proposal purports
as well as some open issues.

2 Issues Reusing and Enabling Adaptivity

(i) Poor reusability. Building an AUI involves the inclusion of additional re-
quirements to the system, such as user modeling techniques (which implies re-
trieving information derived from the interaction with the user) or dynamic re-
configuration of structure and behaviour. Developing these mechanisms is costly,
and often requires the use of sophisticated techniques specifically tailored to each
individual application. As a result, the application code which corresponds to
the adaptive mechanisms is tightly coupled with the rest of the application,
hampering reusability.

108 J. Cámara et al.

(ii) Lack of transparency. Even when the architectural support for the AUI
provides a good modularization, AUIs are generally tailored for an specific ap-
plication [10,20]. In such a way, the effective reuse of new behaviour is affected
by its underlying representation.
(iii) User model fragmentation and redundancy. Different applications
tend to have different user models. Moreover, each application retrieves and
stores its own information locally, and with its own representation, impeding
the reuse of this information by other applications. This results in a fragmented
and heterogeneous user model which only reflects a partial view of the user’s
behaviour and preferences to different applications.
(iv) Lack of coordination. Conventional techniques do not consider the possi-
bility of coordinating adaptation between different existing applications located
within a shared context. In such a way, applications cannot communicate with
each other in order to carry out tasks collaboratively.

3 Framework Architecture

This section describes our aspect-oriented framework, intended to enable adap-
tive capabilities on passive GUI-based applications. The architecture of this
framework is structured using a modified version of the the Adaptability Aspects
[4] architectural pattern in order to provide better maintainability and modu-
larity. Adaptability Aspects are applied to a base application for the adaptation
of its interface. As it can be observed in Figure 1, the framework incorporates
the following functional elements:

– Context Manager. Identifies context changes and triggers adaptive actions
implemented by the aspects. It constantly monitors user input through the
UserMonitor aspect, and the UI through the UIMonitor aspect, identifying
the structure, properties, and relations between its components.

– Adaptation Data Provider. Consists on a set of classes which manage the
information related to the different models required for UI adaptation and its
processing. Specifically, the User Model holds up information about user
context, while Task Model, Domain Model, and UI Model comprise
information about application context. These elements provide the input
to the Reasoner module, where the specific adaptive logic is implemented
(learning and inference). The reasoner produces an Adaptation Model as
the result of the application of the adaptive mechanisms, which is used as a
specification for the adaptation to be performed on the interface.

Adaptability Aspects adapt the interface using the adaptation model when-
ever they match user-generated or UI events. For that purpose, they use a set
of Auxiliary Classes intended to improve reusability. These provide common
mechanisms for the addition, modification, or removal of UI components.

Figure 2 depicts how the elements of the framework interact when a context
change triggers an adaptation on the application behaviour:(a) The application
starts execution.(b) The context manager begins to monitor the context contin-
uously.(c) Whenever an event in the UI is detected, both adaptability aspects

Enabling Adaptivity in User Interfaces 109

Adaptability
Aspects

<<aspect>>
AdaptationAspects

Adaptation Data
Provider

Context Manager
Base Application

<<group>>
User Interface

<<group>>
Application Logic

<<aspect>>
UIMonitor

pointcut renderUIContainer

<<aspect>>
UserMonitor

pointcut userEvent

<<group>>
UI Model

<<group>>
User Model

<<group>>
Domain Model

<<group>>
Task Model

<<group>>
Reasoner

<<aspect>>
AdaptabilityAspect

<<aspect>>
AdaptabilityAspect

Auxiliary Classes

<<uses>>

<<affects>>

 <<affects>>

 <<uses>>
 <<affects>>

ContextEventVerifier

getEventInfo():EventDescriptor
setEventProperties(...)

EventDescriptor

source:String
type:String
...

<<aspect>>
AdaptationProtocol<<affects>>

The information obtained
by User and UI monitors

is used to update their
respective models.

<<aspect>>
GenericAdaptabilityAspect

applyAdaptation(ruleSet r)

Adaptation Model

ruleSet getRules(EventDescriptor)

<<aspect>>
ObserverProtocol

Fig. 1. Framework Architecture. Stereotypes <<affects>> and <<uses>> are used in
some dependency relationships to represent classes whose behavior is monitored or
changed by an aspect, or those used as auxiliary classes by an aspect, respectively

and adaptation data provider are notified.(d) The adaptation data provider
updates the adaptation model.(e) Adaptability aspects access the adaptation
model to verify if adaptation should be performed. (f)Aspects change the ap-
plication behavior making use of the auxiliary classes. It is worth noticing that
when adaptability aspects are notified about a context change, the adaptation to
be performed is not carried out inmediately. On the contrary, adaptive behavior
is introduced on the base application just after the adaptation model has been
updated.

4 Detailing the Framework

Currently, there is a wide range of toolkits which can be used in order to build
GUI-based computer applications, such as KDE/Qt, GNOME/GTK/GTK+,
MFC, JFC, etc. All of them provide similar abstractions and basic mechanisms
both for the programmer and the user. Although our approach is applicable
to other toolkits and aspect languages, we use JFC (specifically Swing) and
AspectJ[12] in the implementation of our prototype for their widespread use.

Within the Context Manager, the UIMonitor aspect obtains information
about the structure, properties, and relations between UI components. In Swing

110 J. Cámara et al.

Adaptability
Aspects

Auxiliary
Classes

Adaptation
Data Provider

(c) notifies UI/User
generated event

Context
Manager

Base
Application (UI)

(b) UI/User generated event

(a) starts

(f) uses
(f) applies changes

(d) updates
adaptation
model

(e) verifies if adaptation should be performed

Fig. 2. Dynamics of the process followed for UI adaptation

and other toolkits, components can either be regular, or have the capability to
group other components together. Such components act as containers and in-
clude panels, windows, frames, and dialogs. The structure of a container (e.g.,
a window), along with its nested components in a hierarchical structure is ob-
tained defining a renderUIContainer pointcut to match the join points where a
container is rendered. It can be observed how the Container object is exposed to
the body of the advice applied to the join point. The inspection code in the ad-
vice builds recursively a structure with all the child components of the container,
which is incorporated into the UI Model along with component properties.

1: aspect UIMonitor {
2: java.util.List myComponents=new java.util.ArrayList<Component>();
3: pointcut renderUIContainer (Container c):
4: call (* java.awt.Container.setVisible(*)) && target(c);
5: void getComponentList(Container container,
5: java.util.List<Component> components){
6: for (Component component : container.getComponents()){
7: if (component instanceof Container)
8: getComponentList((Container) component, components);
9: components.add(component); }
10: } ...
11: after (Container c): renderUIContainer(c){
12: if (!UIModel.getComponent(c.getName())){
13: UIModel.add(getComponentList (c, myComponents));
14: myComponents.clear(); }
15: }
16: }

Enabling Adaptivity in User Interfaces 111

The extraction of the properties of each of the components in the structure
is realised through reflection. It is worth mentioning that textual information is
of special relevance to the purpose of our framework. This kind of information
is present in almost any UI component. Note that Menu Items, Buttons, Labels,
CheckBoxes, etc. have well defined properties (e.g., Text, ToolTipText, etc.)
which provide semantic information about the role of the component in the
application.

The implementation of the User Monitor as an aspect provides a way of
retrieving user implicit information unobtrusively. While interacting with the
UI, every time the user types a character or clicks on an object, an event
occurs. To detect user action on the interface, an object must implement the
ActionListener interface. The program must register this object as an action
listener on the button (i.e., the event source), using the addActionListener
method. When the user clicks the button, it fires an action event. This results in
the invocation of the action listener’s actionPerformed method. The argument
to the method is an ActionEvent object that gives information about the event
and its source. The userEvent pointcut is defined in the UserMonitor aspect to
match any invocations of an actionPerformed method within the scope of the
application:

pointcut userEvent(EventObject e, EventListener l):
execution (void *.*(*)) && args(e) && target(l);

Both EventListener and the EventObject are exposed to the body of the
advice applied, which incorporates relevant information about the event (source
object, time, action performed, etc.) to the user model. Hartman and Bass [9]
provide a detailed discussion about this approach to capturing interaction be-
tween user and applications.

Adaptability Aspects are notified by the context manager whenever a spe-
cific event occurs. This is achieved extending an implementation of the Observer
pattern described in [8]. Specifically, whenever an event is matched by monitor
aspects, the EventDescriptor in the ContextEventVerifier class is updated
by the aspect. Then, the following AdaptationProtocol updates all the observ-
ing aspects, applying adaptation if the adaptation model determines that the
produced event requires adaptation.

1: public aspect AdaptationProtocol extends ObserverProtocol{
2: declare parents: ContextEventVerifier implements Subject;
3: declare parents: AdaptivityAspect implements Observer;
4: protected pointcut subjectChange(Subject s):
5: call (call ContextEventVerifier.setEventInfo(..)) && target(s);
6: protected void updateObserver(Subject s, Observer o) {
7: ContextEventVerifier cev = (ContextEventVerifier) s;
8: ((AdaptivityAspect)o).applyAdaptation(
8: am.getRules(cev.getEventDescriptor());
9: }
10: }

112 J. Cámara et al.

A) C)

B)

Fig. 3. A) Sample application dialog.B) Component hierarchy.C) Lattice representa-
tion of the UI Model ontology extended with the component hierarchy from the dialog.

The Adaptation Data Provider produces appropriate correspondences be-
tween user action and UI adaptation. This module enables the system to ap-
propriately process the information which has been previously acquired. In or-
der to represent UI components, the framework uses UI-specific ontologies, and
domain-specific ontologies for representing the application’s domain. Semantic
information present in components is used to establish relations between UI
and domain-specific ontologies. For the task model, we integrate a task ontology
based on ConcurTaskTrees [16], which is a hierarchical notation which allows the
specification of (sub)tasks or nodes that need to be performed to successfully
complete a task.

The generation of an Adaptation Model involves significant decision-making
capability. Hence, the Reasoner must support the writing of rules specifying the
decisions that need to be made. Although these decisions may be sometimes
relatively simple, truly adaptive behaviour implies that most of the time adap-
tation rules are likely to change over time. For this reason the prototype uses a
rules engine, where a set of rules can be repeatedly applied to the collection of
facts available in the different model ontologies. Rules that apply are executed,
modifying the Adaptation Model accordingly. Specifically, the framework uses
Jess [5], which is very convenient since it allows direct creation and manipulation
of Java objects.

5 Related Work

SupportingGUIadaptationbasedonAOPisnotanewidea.Send́ınetal.takein[21]a
non-intrusive approach to the problem ofGUI plasticity, but depending exclusively
on environmental context information. Hence, the UI is adapted depending on
device characteristics, location, etc., but it is not responsive to user interaction.

Proposals such as the Context-Broker Architecture (CoBrA) or the Context
Toolkit [3,19] relievedevelopers frombuilding specificadaptivemechanisms, letting
them focus on adaptive behaviour. However, these proposals do not explicitly deal

Enabling Adaptivity in User Interfaces 113

with the particularities of user interfaces, and lack the transparency of the AOP
approach since applications have to comply with the architecture’s specifications.

To our knowledge, there is no proposal available focused on enabling adaptiv-
ity in already existing applications based on user-computer interaction context.
Furthermore, ours is a non intrusive approach that enables the use of an additive
plug-in structure to reuse general patterns of adaptive behaviour.

6 Conclusions

This work advocates for an aspect-based approach to enable adaptive behaviour
on already existing, GUI-based applications. We have presented a framework
which allows to overcome the different problems described in section 2: (i)Poor
reusability and (ii) Lack of transparency. The framework’s architecture
enables reusability and transparency, providing an explicit and non-invasive way
of altering and extending the UI. The use of the presented framework permits
to apply general adaptation patterns to different facets of regular applications
in a transparent way (i.e.,the application does not need to be specifically pre-
pared for adaptation and will still benefit from adaptive behaviour not specifi-
cally designed for it).(iii)User model fragmentation and redundancy. The
framework is able to collect user information unobtrusively and in a centralized
manner. The use of a global user model accessible to all applications through a
generic user modeling server [13] enables adaptive applications to cooperatively
retrieve and use both implicit and explicit (i.e., preferences) information from
the user. This ensures data consistency, and a fast growth of the amount of
information obtained from users. As a result, learning and inference based on
that information is more accurate and efficient, since applications have better
user models available in shorter periods of time. User information is precious
to AUIs, to the point that learning algorithms are specifically tailored to work
with very restricted sets of information [14]. (iv)Lack of coordination. The
ontology model supported by the Adaptation Data Provider enables coordinated
adaptation since cross-inference and learning can be performed on different ap-
plication UIs. Domain and Task Models can be developed to comprise several
applications, bridging tasks across different UIs.

Currently, our framework prototype is being extended in order to apply it
to real-world examples of adaptive systems. We intend to validate our proposal
implementing systems which have already been described in the literature [6,10]
with our approach to test its applicability. In this sense, we have a special interest
in applying it to end-user/Programming by Demonstration (PBD) development
systems [15,1], a field in which our approach can realise its full potential.

References

1. Burnett, M.M., Cook, C.R., Rothermel, G.: End-user software engineering. Com-
mun. ACM 47(9) (2004)

2. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Dartmouth College (2000)

114 J. Cámara et al.

3. Chen, H., Finin, T., Joshi, A.: An intelligent broker for context-aware systems. In:
Proc. of UBICOMP’03 (2003)

4. Dantas, A., Borba, P.: Adaptability aspects: An architectural pattern for structur-
ing adaptive applications with aspects. In: Proc. of SugarLoafPLoP’2003 (2003)

5. Friedman-Hill, E.: Jess in Action. Manning Publications (2003)
6. Gajos, K.Z., Czerwinski, M., Tan, D.S., Weld, D.S.: Exploring the design space for

adaptive graphical user interfaces. In: Proc. of AVI’06 (2006)
7. Gray, P., Salber, D.: Modelling and using sensed context information in the design

of interactive applications. In: Nigay, L., Little, M.R. (eds.) EHCI 2001. LNCS,
vol. 2254, Springer, Heidelberg (2001)

8. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proc. of OOPSLA’02 (2002)

9. Hartman, G.S., Bass, L.: Logging events crossing architectural boundaries. In:
Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, Springer,
Heidelberg (2005)

10. Hermens, L.A., Schlimmer, J.C.: A machine-learning apprentice for the completion
of repetitive forms. IEEE Expert 9(1) (1994)

11. Jameson, A.: The Human-Computer Interaction Handbook. In: Adaptive Interfaces
and Agents, Lawrence Erlbaum Associates (2003)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
Springer, Heidelberg (2001)

13. Kobsa, A.: The Adaptive Web: Methods and Strategies of Web Personalization.
In: Generic User Modeling Systems, Springer, Heidelberg (2007)

14. Langley, P.: Machine learning for adaptive user interfaces. In: Brewka, G., Habel,
C., Nebel, B. (eds.) KI-97: Advances in Artificial Intelligence. LNCS, vol. 1303,
Springer, Heidelberg (1997)

15. Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V.: Component-
based technologies for end-user development. Commun. ACM 47(9) (2004)

16. Paterno, F., Mancini, C., Meniconi, S.: Concurtasktrees: a diagrammatic notation
for specifying task models. In: Proc. of INTERACT’97 (1997)

17. Filman, R.E., Friedman, D.: Aspect-Oriented Software Development. In: Aspect-
Oriented Programming is Quantification and Obliviousness, Addison-Wesley,
Reading (2004)

18. Ross, E.: Intelligent user interfaces: Survey and research directions. Technical Re-
port CSTR-00-004, University of Bristol (2000)

19. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development
of context-enabled applications. In: Proc. of CHI’99 (1999)

20. Segal, R., Kephart, J.O.: Mailcat: An intelligent assistant for organizing E-mail.
In: Proc. of Agents’99 (1999)

21. Send́ın, M., Lorés, J., Montero, F., López-Jaquero, V.: Towards a framework to
develop plastic user interfaces. In: Chittaro, L. (ed.) Mobile HCI 2003. LNCS,
vol. 2795, Springer, Heidelberg (2003)

Architecture Migration Driven by Code

Categorization

Rui Correia1,2, Carlos M.P. Matos1,2, Reiko Heckel1,
and Mohammad El-Ramly3

1 Department of Computer Science, University of Leicester, University Road,
Leicester, LE1 7RH, United Kingdom

{rmc20,cmm22,reiko,mer14}@mcs.le.ac.uk
2 ATX Software, Rua Saraiva de Carvalho 207C, 1350-300 Lisboa, Portugal

3 Computer Science Department, Cairo University, Egypt

Abstract. In this paper, we report on the development of a method-
ology for the evolution of software towards new architectures. In our
approach, we represent source code as graphs. This enables the use of
graph transformation rules, allowing the automation of the transforma-
tion process. Prior to its model representation, the source code is subject
to a preparatory step of semi-automatic code annotation according to the
contribution of each of its parts in the target architecture. This paper
first describes the overall methodology and then focuses on the code an-
notation and model transformation parts. We also discuss issues of the
implementation of the approach based on existing tools.

1 Introduction

As business and technology evolve and software becomes more complex, re-
searchers and vendors of tools in reengineering are constantly challenged to come
up with new techniques to effectively support the transition of legacy systems
to modern architectures.

In this paper, we introduce a methodology to fill the gap that exists in ad-
dressing systematically the complexity of architecture migrations. We argue that,
starting from a legacy application, such transitions involve different steps of de-
composition. Depending on the target architecture, these are made along one
or both technological and functional dimensions. Technological decomposition
is used in the layering of software systems and may, for example, lead to a 3-
tiered architecture, separating logic, data, and user interface (UI). Functional de-
composition, used to move to Service Oriented Architectures (SOAs), separates
components which, when removing their UI tier, represent candidate services.

Based on a metamodel for both source and target architecture, the methodol-
ogy presented in this paper consists in (1) categorizing the source code according
to the different elements of the target architecture they shall be mapped to, (2)
obtaining a metamodel-based representation of the code, (3) transforming it into
the target architecture, and (4) generating the target code.

At this point, we have implemented in an automated way the transformation
and partially implemented the semi-automatic code categorization, but only for

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 115–122, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

116 R. Correia et al.

Fig. 1. Methodology for architectural migration

the technological decomposition (or layering). This is where the paper concen-
trates on. Its main contribution is the automation of the architectural migration
using graph transformation rules over a model of the annotated source code. This
allows us to: abstract (in large parts of the process) from the specific languages
involved and describe transformations in a more intuitive way (compared to code
level transformations). Along the paper a small Java client-server application is
used to exemplify the implementation of some of the steps. The intended target
architecture is 3-tier.

The remainder of this paper is organized as follows: Section 2 presents our
methodology for architectural transformation. The code annotation and the
model transformation parts of our approach are discussed in Sections 3 and 4
respectively. We review related work in Section 5 and discuss conclusions and
further work in Section 6.

2 Architectural Transformation Methodology

In this section we discuss methodological aspects of our approach to architec-
tural redesign. We are following the Horseshoe Model [1], refining it to support
automation and traceability. Our methodology consists of the three steps of re-
verse engineering, redesign, and forward engineering, preceded by a preparatory
step of code annotation, as illustrated in Figure 1.

A metamodel composed of a type graph that represents the technological
paradigm of the system and a list of the code categories needed regarding the
target architecture is used. Target constraints are also used to ensure that the
target model is achieved and complies to the expected one.

1. Code Annotation. The source code is annotated by code categories, distin-
guishing its constituents (classes, methods, or fragments thereof) with respect
to their foreseen association to architectural elements of the target system.

The annotation is done by means of comments in the original source code
and even though the code is categorized statement by statement, in the end,
consecutive statements of the same category are grouped making possible for
a whole class or package being annotated with just one code category. This
procedure makes the graph model representation of the source code much simpler

Architecture Migration Driven by Code Categorization 117

than if there was no categorization step, since the level of detail used can be much
lower. Simpler graph models make the redesign step easier to scale.

This semi-automatic code annotation is based on categorization rules defined
at the level of the Abstract Syntax Tree (AST), taking into account information
obtained through dependency analysis and inputs by the developer. The results
may have to be revised and the propagation repeated in several iterations, leading
to an interleaving of automatic and manual annotations.

2. Reverse Engineering. From the annotated source code, a graph model is cre-
ated, whose level of detail depends on the annotation. For example, a method
wholly annotated with the same code category is represented as a single node,
but if the method is fragmented into several categories, each of these fragments
has to have a separate representation in the model. The relation R1 between
the original (annotated) source code and the graph model is kept to support
traceability. This step is a straightforward translation of the relevant part of the
AST representation of the code into its graph-based representation.

3. Redesign. The source graph model is restructured in order to comply to the
target architecture. In our approach, code categories provide the control required
to automate the transformation process, focussing user input on the annotation
phase. During this redesign step, the relation with the original source code is
kept as R2 in order to support the code generation.

This code category-driven transformation is specified by graph transformation
rules, conceptually extending those suggested by Mens et al [2] to formalize
refactoring by graph transformation.

4. Forward Engineering. The target code is generated from the target graph
model and the original source code, using their relation R2 as an input. The
result of this step, the annotated code in relation with a graph model, has the
same structure as the input to Step 1. Hence, the process can be iterated. This
is particularly relevant if the reengineering is directed towards service-oriented
systems, because the transformation has to address first the technological and
then the functional decomposition.

3 Code Annotation

The annotated source code is obtained through an iteration of manual defini-
tion of the categorization rules and the automatic application of them, based
on the categories defined in the metamodel. After each iteration, manual input
might be needed to refine the categorization rules in order to achieve code fully
categorized.

In the example mentioned in section 1, our goal is to reach a three-tier ar-
chitecture, thus we can use the following code categories: User Interface (UI),
Logic, Data, Control: UI to Logic, Control: Logic to UI, Control: Logic to Data.
For different target architectures, other categories might be defined as well as
more complex ways to represent them.

118 R. Correia et al.

Fig. 2. Categorization rule example

The rules used in the categorization process are applied over the AST. They
can be programming language specific or depend on previously categorized code
and taking into account information obtained through dependency analysis.

We use L-CARE [3], a tool developed in ATX Software, to design the rules.
This tool uses XPath [4] to query the AST and allows us to automatically anno-
tate the source code using comments. L-CARE has been used over the last years
in multiple large projects, which ensures the scalability of this step. In Figure 2
we show an example of a rule for Java that categorizes all attributes of type
JLabel as belonging to the User Interface concern, since we know that JLabel is
of this concern.

The source code annotation allows us to abstract to graph model level only
the relevant information. This is extremely important to reduce the size of the
source graph model and consequently making the transformation process much
more efficient.

4 Redesign

The source graph model of Figure 1 is an abstraction of the code achieved
through the categorization process. It keeps traceability to the code in order
to facilitate the transformation / generation process and it is an instantiation of
the metamodel that holds information about the source and target models.

Graph transformation rules are then applied to the source graph model in a
fully automated way, transforming it into the intended target architecture.

4.1 Type Graph

To take advantage of graph transformation rules in the transformation process,
we developed a type graph which is part of the metamodel present in Figure 1.

The model that we are using has the goal of being flexible enough so it can be
instantiated by any OO application regardless of the specific technology. This
way there is a better chance that it can be reused for different instantiations of
our methodology. The high level view of the model can be seen in Figure 3. The
CodeFragment package is used to represent code elements and is an extension of
the type graph presented by Mens et al in [5]. This extension was necessary in

Architecture Migration Driven by Code Categorization 119

Architecture

CodeFragment CodeCategory

«call»

«call»«derived»

Fig. 3. High level view of the type graph

order to introduce classification attributes and the notion of code blocks, needed
because the code categorization requires finer granularity than that of methods.
Package Architecture includes the concepts of Component and Connector that
allow us to represent the mapping between the programming language elements
and the architecture level. The code categories information is represented in
package CodeCategory.

Since it is necessary to keep traceability to the code in order to facilitate the
transformation/ generationprocess, a method to associate it to the type graphhad
to be considered. Given that we want to be as language-independent as possible we
did not link the type graph directly to the source code but used instead an attribute
(ASTNodeID) to associate its elements to the AST of the program.

4.2 Transformation Specification

Our use of graph transformation rules to describe model transformations is sim-
ilar to what is being used in refactoring research [6]. However, refactoring rules
are not enough for all reengineering purposes because sometimes it is necessary
to perform transformations that are not completely behavior-preserving. An ex-
ample of this is when we want to transform a legacy client-server system into
a web-based application. The UI has to be changed because of the differences
in the user communication paradigm between these different architectures. An-
other major difference is that our transformations are code category oriented,
thus allowing architectural modifications.

An example of transformation rule specification is the Move Method UI rule.
This rule searches for occurrences of methods classified as UI that are contained
in classes that are classified as non UI (for example: having multiple concerns).
The result is that those methods are moved to the appropriate UI classes. A
small example of this rule application is presented in section 4.3. To specify the
rules we are using the Tiger EMF Transformation tool [7], an Eclipse plugin.

4.3 Transformation Execution

For our instantiation of the reengineering methodology we are using code gen-
erated by the transformation specification in Tiger.

120 R. Correia et al.

Class
name = DepositMoney
concern = *

Method
name = txtClear
concern = UI

Class
name = DepositMoneyUI
concern = UI

Class
name = DepositMoney
concern = *

Method
name = txtClear
concern = UI

Class
name = DepositMoneyUI
concern = UI

Move Method UI

Fig. 4. Graph models before (left) and after (right) the application of rule Move
Method UI. The graphs were simplified for readability. (The architectural elements
are not shown and, in reality, the attribute ”concern” does not exist directly in the
code elements but is used as an association to code category elements.)

The transformation execution applies the rules defined in the transformation
specification to the source graph model to obtain the target one.

Part of an example of the source graph model can be seen in the left side of
Figure 4. The value “*” for the attribute “concern” means that the element con-
tains more than one concern. For example, class “DepositMoney”, even though
it is not visible in the simplified figure, contains methods that belong to different
concerns. This occurrence constitutes a potential candidate for the application of
the transformation rule Move Method UI previously described. When we apply
it, the method “txtClear” is moved from the class “DepositMoney” to “Deposit-
MoneyUI”, a class belonging to the UI concern as shown in the right side of
Figure 4. This transformation is an example of a rule that contributes to the
layering of the application.

4.4 Constraints

The global constraints, in our approach, are imposed by the type graph. This
way we ensure that source, intermediate and target models are compliant to the
general requirements.

In order to assure that the target model complies to the desired architecture,
we define target constraints over the metamodel that correctly reflect the archi-
tectural paradigm. For instance, in 3-tier applications, there should be no UI
and Logic layer methods in the same class and no direct links from UI to Data
These constraints can be defined as graph transformation rules.

5 Related Work

Program transformation can occur in different levels of abstraction. The source-
to-source level of transformation is the most established one, both in research and
in industrial implementations. There are several research ideas that led to suc-
cessful industrial tools. Examples from research include TXL [8] and ASF+SDF
[9]. DMS from Semantic Designs [10] and Forms2Net from ATX Software [11] are

Architecture Migration Driven by Code Categorization 121

program transformation tools being successfully applied in the industry. Trans-
formations at the detailed design level, due to its applications as maintenance
techniques, have an increasing interest that is following the same path. Practices
such as Refactoring [12] are driving the implementation of functionalities that
automate detailed design level transformations. These are mainly integrated in
development environments as is the case of Eclipse [13] and IntelliJ [14]. How-
ever, there is still a lot of ongoing research in this area, for instance, the work
of Mens et al in the determination of dependencies between refactorings [5]. At
the architectural level of program transformation there is some important re-
search, e.g. the work in the Software Engineering Institute of CMU [1], but the
industrial cases have been limited to specific source and target architectures and
programming languages.

6 Conclusion and Future Work

Most of the ongoing research in the context of automated software transforma-
tion, as well as existing industrial tools, focus on textual and structural transfor-
mation techniques that intend to solve very specific problems within well defined
domains (e.g. program restructuring, program renovation, language-platform mi-
gration). Our experience indicates that such techniques fall short of addressing
in a systematic way the complexity of the architecture-based transformation
problem. In practice, when such a problem arises, these approaches have to be
combined in a trial and error fashion, the success of which often depends on
the experience of the reengineering team and on the specific problem at hand.
On the other hand, there exist techniques and tools that work well at an ar-
chitectural level, but with the main goal of documenting and visualizing the
architecture of applications rather than supporting increased levels of automa-
tion in architecture-based transformations. Although such tools can provide a
very good starting point and facilitate the subsequent effort, in industry projects
a reengineering approach that starts with redocumenting architectures is often
too limited given the time and budget constraints.

In this work we have presented a systematic approach in order to explic-
itly address this issue. This paper focused on the code annotation and model
transformation techniques to obtain the target architecture. The use of code
category-driven graph transformation rules provides us several benefits, includ-
ing: abstraction from programming language specifics (languages of the same
paradigm share most of the same implementation), description of the transfor-
mations in a more intuitive way than that of code level transformations, and
possibility of using existing tools for the tranformation execution and for analy-
sis over the models (e. g. constraint checking).

Presently we are in the process of completing the tools in order to apply
them to a large real-world scenario. This way, it will be possible to test a
good set of categorization and transformation rules and see if more need to be
developed.

122 R. Correia et al.

Acknowledgments

R. Correia and C. Matos are Marie-Curie Fellows seconded to the University of
Leicester as part of the Transfer of Knowledge, Industry Academia Partnership
Leg2Net (MTK1-CT-2004-003169). This work has also been supported by the
IST-FET IP SENSORIA (IST-2005-16004).

We would also like to thank L. Andrade and G. Koutsoukos (ATX Software)
for their contribution in the development of the overall methodology. M. El-
Ramly contributed to this work while lecturer at the University of Leicester.

References

1. Kazman, R., Woods, S., Carrière, J.: Requirements for integrating software archi-
tecture and reengineering models: CORUM II. In: WCRE ’98. Proceedings of the
Fifth Working Conference on Reverse Engineering, pp. 154–163. IEEE Computer
Society Press, Washington, DC, USA (1998)

2. Mens, T., Demeyer, S., Janssens, D.: Formalizing behaviour preserving program
transformations. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002)

3. ATX Software: L-CARE, http://www.atxsoftware.com/?sec=products\&it=818
4. W3C: XPath, http://www.w3.org/TR/xpath
5. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph

transformation. Software and Systems Modeling (to appear, 2007)
6. Mens, T., Eetvelde, N.V., Demeyer, S., Janssens, D.: Formalizing refactorings with

graph transformations. Journal of Software Maintenance and Evolution: Research
and Practice 17(4), 247–276 (2005)

7. Tiger EMF Transformation Project: Tiger EMF Transformation,
http://tfs.cs.tu-berlin.de/emftrans

8. Cordy, J., Dean, T., Malton, A., Schneider, K.: Source transformation in software
engineering using the TXL transformation system. Journal of Information and
Software Technology 44(13), 827–837 (2002)

9. van den Brand, M., Heering, J., Klint, P., Olivier, P.: Compiling language defi-
nitions: the ASF+SDF compiler. ACM Transactions on Programming Languages
and Systems 24(4), 334–368 (2002)

10. Baxter, I., Pidgeon, C., Mehlich, M.: DMS R©: Program transformations for prac-
tical scalable software evolution. In: ICSE ’04. Proceedings of the Twenty Sixth
International Conference on Software Engineering, pp. 625–634. IEEE Computer
Society, Washington, DC, USA (2004)

11. Andrade, L., Gouveia, J., Antunes, M., El-Ramly, M., Koutsoukos, G.: Forms2Net
- Migrating Oracle Forms to Microsoft.NET. In: Lämmel, R., Saraiva, J., Visser,
J. (eds.) GTTSE 2005. LNCS, vol. 4143, Springer, Heidelberg (2006)

12. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Boston, MA, USA (1999)

13. The Eclipse Foundation: Eclipse, http://www.eclipse.org/
14. Jetbrains: IntelliJ IDEA, http://www.jetbrains.com/idea/

http://www.atxsoftware.com/?sec=products&it=818
http://www.w3.org/TR/xpath
http://tfs.cs.tu-berlin.de/emftrans
http://www.eclipse.org/
http://www.jetbrains.com/idea/

Effective Tool Support for
Architectural Knowledge Sharing

Rik Farenhorst, Patricia Lago, and Hans van Vliet

Department of Computer Science
VU University Amsterdam

The Netherlands
{rik,patricia,hans}@cs.vu.nl

Abstract. Knowledge management plays an important role in the software ar-
chitecting process. Recently, this role has become more apparent by a paradigm
shift that views a software architecture as the set of architectural design decisions
it embodies. This shift has sparked the discussion in both research and practice on
how to best facilitate sharing of so-called architectural knowledge, and how tools
can best be employed. In order to design successful tool support for architectural
knowledge sharing it is important to take into account what software architecting
really entails. To this end, in this paper we define the main characteristics of ar-
chitecting, based on observations in a large software development organization,
and state-of-the-art literature in software architecture. Based on the defined char-
acteristics, we determine how best practices known from knowledge management
could be used to improve architectural knowledge sharing. This results in the de-
finition of a set of desired properties of architectural knowledge sharing tools. To
improve the status quo of architectural knowledge sharing tools, we present the
design of an architectural knowledge sharing platform.

1 Introduction

Software architecting is a recognized discipline in software engineering, albeit one that
is still emerging [1]. In the last decade, research and industry have primarily considered
a software architecture as a high level design captured in sets of components and con-
nectors [2] that can be represented using various viewpoints [3]. In recent years, there
has been an increasing awareness that not only the architecture design itself is impor-
tant to capture, but also the knowledge pertaining to it. Often, this so-called architec-
tural knowledge is defined as the set of design decisions [4,5], including the rationale
for these decisions [6], together with the resulting architectural design [7]. Establishing
ways to manage and organize such architectural knowledge is one of the key challenges
the field of software architecture faces [8].

As illustrated by a survey about the duties, skills, and knowledge of architects,
software architecting is a highly knowledge-intensive process [9]. Many different stake-
holders are involved in this process. Due to the increase in size and complexity of soft-
ware systems, architecting means collaborating. Hence, it is often the case that there
is no one single all-knowing architect; instead the architect role is fulfilled by more
than one person [10]. In order to make well-founded decisions, all involved stakehold-
ers need to obtain relevant architectural knowledge at the right place, at the right time.

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 123–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 R. Farenhorst, P. Lago, and H. van Vliet

Consequently, sharing such knowledge is crucial, in particular for reusing best practices,
obtaining a more transparent decision making process, providing traceability between
design artifacts, and recalling past decisions and their rationale.

The need for sharing architectural knowledge was also observed in a study we con-
ducted at a large software development organization [11]. We found that architects rely
heavily on communication to work adequately and to produce high-quality results, and
that many formal and informal discussions take place in the coffee room, at the hall-
way, or during other social events or meetings. However, despite the need for sharing
architectural knowledge, software architects in practice often stick to familiar technol-
ogy such as office suites for their daily tasks. Since such tools are rather ineffective to
manage and share architectural knowledge, most of this knowledge remains implicit.

In this paper we propose foundations for effective tool support for architectural
knowledge sharing. To this end, we define a set of properties architectural knowledge
sharing tools should have. These properties are derived by defining typical character-
istics of the architecting process, and by determining what there is to learn from the
knowledge management domain. For the former, we combine our observations of soft-
ware architecture practice with a review of software architecture literature. For the lat-
ter, since architecting is a knowledge-intensive process, we look at best practices known
from knowledge sharing literature.

Based on the set of desired properties, we asses the conformance of a number of ar-
chitectural knowledge sharing tools to these properties. The results indicate that not all
of these properties are adequately supported. Consequently, in an attempt to improve the
status quo, we propose an architectural knowledge sharing platform that incorporates
all desired properties.

The remainder of this paper is organized as follows. In Section 2 we describe our
observations of architectural knowledge sharing in a large software development orga-
nization. In Section 3 we combine these observations with a review on state-of-the-art
software architecture literature in order to define the main characteristics of software ar-
chitecting. In Section 4 we elaborate on best practices known from knowledge sharing
literature to indicate what there is to learn from the knowledge management domain.
Based on these best practices, in Section 5 we define a set of desired properties of
architectural knowledge sharing tools. In Section 6 we examine existing software ar-
chitecture tools by investigating how well these tools adhere to the defined properties.
In Section 7 the design of our architectural knowledge sharing platform is presented.
Finally, Section 8 presents our conclusions and outlines our ongoing and future work.

2 From the Trenches

One can only understand what architects really need, by asking them. This principle
motivated us to closely investigate the software architecture practice in our research on
architectural knowledge sharing tool support. This investigation helps to explain why
only few of the software architecture tools proposed by academics seem to really make
it to software architecture industry.

In this section some observations of knowledge sharing in the software architecting
process of PGR, a large Dutch software development organization, are elaborated. For

Effective Tool Support for Architectural Knowledge Sharing 125

about one year we have closely monitored the architecture department of PGRfrom a
architectural knowledge sharing perspective. This monitoring included the architecting
activities undertaken, the various roles architects have, the information needs and the
tools they use for their daily tasks. The research methodology that we followed for the
investigation of the architecting process of PGR can best be described as an instan-
tiation of action research. Action research is an iterative research approach in which
the researcher actively participates in the studies he performs. The researcher wants ‘to
try out a theory with practitioners in real situations, gain feedback from this experi-
ence, modify the theory as a result of this feedback, and try again’ [12]. In our case,
the theory involved which architectural knowledge sharing tool support is helpful for
architects in their daily work. To come up with improvements, we have diagnosed the
current situation, the results of which are described in the remainder of this section.

In PGR architecting plays an important role. The architectural description is used as
basis for development, and architectural guidelines need to be adhered to during system
development and maintenance. In most software development projects architects work
together in teams. One of the reasons for working in a team is that very few architects
are skilled in both business and technology related aspects, while in most projects both
these aspects play an important role. Consequently, there is a need to communicate and
share information – both among architects and other stakeholders.

Architects in PGR have acknowledged that it is often hard to share information in a
structured way. As a result, information sometimes gets lost when work is transferred
from one department to the other, leading to redundant work and a lower overall qual-
ity of the architecture. Sharing relevant information is further constrained by deadline
pressures posed by most projects the architects work on. There is usually insufficient
time to explore all possibilities or alternatives, or to validate the results gained from
brainstorm sessions with colleagues or the customers.

Below we elaborate upon our observations with respect to the three prominent ar-
chitectural knowledge sharing tools available in PGR: an expertise site, a knowledge
repository, and a knowledge maps system.

– Expertise site. For the architecture department of PGR an architecture expertise
website has been created. This site uses Microsoft Sharepoint as underlying tech-
nology and offers functionality such as discussion forums, and news updates. How-
ever, during our investigation we found that in its current form the expertise site
does not appeal to architects. There is very little content and only a small amount
of people are registered users. Furthermore, editing or adding information to the
site is non-intuitive and relatively old information is difficult to retrieve. The ex-
pertise site is merely used as a document repository where presentations and white
papers are stored. Architects indicated that they visit the expertise site only occa-
sionally, and this is partly due to its limited content, but also because they lack a
real community feeling in the architecting department in the first place.

– Knowledge repository. PGR has developed a knowledge repository that harbors a
set of guidelines used to guide architects in creating an architecture. After the ar-
chitect answers a number of predefined questions, the repository uses its guidelines
to advise the architect about the architectural solution. Unfortunately, in practice
this repository is hardly used by architects. During interviews the reasons for this

126 R. Farenhorst, P. Lago, and H. van Vliet

problem became apparent: the tool is highly prescriptive and the architects’ per-
ception is that this limits the freedom they have in devising a solution. Moreover,
the guidelines stored in the repository are rather outdated and the list of questions
is rather large, and therefore time consuming. For these reasons, instead of using
the repository architects prefer to edit existing architectural descriptions, since that
yields results of similar quality, while saving time. Many architects mentioned that
they have tried out the repository once or twice, after which they concluded the
added value of using it was limited.

– Knowledge maps. PGR has also started an organization-wide initiative that aims
to connect knowledge and knowledge workers throughout the organization. This
intranet system is an information place where various information sources within
the organization are combined and presented to the user. Users are able to fill in
so-called knowledge maps that contain their areas of interest or expertise. Knowl-
edge maps should make it easy to find colleagues based on their expertise. Unfor-
tunately, the knowledge maps system is not that successful. The user interface is
non-intuitive and slow, and on certain areas of interest, such as software architec-
ture, no knowledge maps can be defined. For these reasons, the knowledge maps
system is rather useless for software architects.

An often heard complaint during interviews held with architects in PGR, was that
there are too many systems that contain useful information. As a result, people often
decide to just ask a colleague directly, or stop looking at all, since they don’t know
which system harbors what knowledge, and thus what is the right place to look. Ar-
chitects mentioned that a more central location that acts as glue between existing tools
and that could be used as starting point for various knowledge-related tasks, would be
a much welcomed alternative for the current state of practice.

3 Characteristics of Architecting

Software architecting is a knowledge-intensive process in which many design decisions
are taken. These decisions are taken by carefully considering the available solutions,
after which the best alternative is chosen. Architects often apply proven solutions, such
as tactics or patterns to guarantee a high-quality architectural design. To make the best
decisions, architects need a lot of information. Therefore, available architectural knowl-
edge has to be shared effectively among the stakeholders involved to ensure that all
relevant information can be taken into account.

As described in Section 2, PGR is struggling with how to effectively use tools to
share architectural knowledge. The architectural knowledge sharing tools in place do
not match the needs of the architects. To accommodate architects and other stakehold-
ers in their knowledge needs, effective architectural knowledge sharing tool support is
needed. Effective here means that the tools align to what architects in practice do, and
that the time and effort required for using the tools is limited.

In order to properly define properties of effective architectural knowledge sharing
tools, we investigate what a typical architecting process entails from a knowledge man-
agement perspective. In this section we use software architecture literature to define five
characteristics of the architecting process. By studying the architecting process, we are

Effective Tool Support for Architectural Knowledge Sharing 127

able to find out how architectural knowledge sharing tool support could be employed
to support architects in their knowledge intensive tasks. We do not claim that our set of
characteristics is complete, but we believe that by focusing on a broad set of literature
we have covered the essential properties of architecting. Please note that not all these
properties are unique to architecting; some of them could easily apply to other software
engineering disciplines as well, such as (detailed design), testing, etc.

Architecting is consensus decision making. Architecting can be viewed as a deci-
sion making process that not only seeks the agreement of most stakeholders, but also
resolves or mitigates the objections of the minority to achieve the most agreeable so-
lution [13]. Often various stakeholders with different needs and concerns are involved
in the architecting process. This is acknowledged by Bass et al. who present the Archi-
tecture Business Cycle to define architecting as a feedback loop between architects, the
stakeholders and the architectural solution itself [2]. Although the architects take the
final design decisions, they often do so in accordance with the important stakeholders.
This decision making process lends itself for knowledge sharing initiatives that allow
stakeholders to actively participate in this process. Architectural knowledge sharing
tools should enable architects to efficiently work together in a team. Due to the size
and complexity of most software systems, it is often infeasible for one architect to be
responsible for everything alone. This focus on teamwork is especially true in global
software engineering environments. Consequently, the ‘architect role’ is often fulfilled
by multiple collaborating architects.

Architecting is iterative in nature. Due to the consensus-driven decision making char-
acteristic, architectures are not designed overnight, but rather in an iterative way.
Hofmeister et al. illustrate this iterative nature of architecting by the concept of a back-
log that is implicitly or explicitly maintained by architects [14]. This backlog contains
smaller needs, issues, problems they need to tackle and ideas they might want to use.
Such a backlog drives the workflow, helping the architect determine what to do or decide
next. Conceptually the architecture is finished when this backlog is empty. However, as
long as the backlog has open issues it is worth relating these issues to the current state
of the architecture design. Architects can then judge how these issues could best be ad-
dressed while maintaining the important qualities of the architectural design. Architec-
tural knowledge sharing tools therefore should support traceability between knowledge
entities, such as architectural decisions and identified problems.

Architecting is an art. Architects are responsible for reflecting the design decisions
taken in comprehensive architectural models, by selecting the most suitable views and
viewpoints or architecture description language. During these activities the creativity of
the architect plays a crucial role [1]. This is particularly true when dealing with novel
and unprecedented systems. In such cases, there may be no codified experience to draw
upon. Knowledge sharing tools need to take this characteristic of architecting into ac-
count and should support the architect’s creativity instead of constraining it. This means
that methods and tools probably work better if they are more descriptive in nature.

Architecting impacts the complete life-cycle. Many architects would agree on the
statement that an architecture is never finished, but rather stays alive throughout the
life of the software system. During maintenance and system evolution an architecture

128 R. Farenhorst, P. Lago, and H. van Vliet

plays an important role in safeguarding architectural qualities. If relevant architectural
knowledge is not stored correctly knowledge vaporization may be the result, turning an
architecture into a black box [4]. It pays off to make available important architectural
knowledge to various stakeholders such as developers and maintainers, instead of only
targeting the architects.

Architecting is constrained by time. The previous characteristics of architecting show
that architecting is a creative consensus-driven and iterative decision making process.
In practice however, a heavy constraint on these characteristics is the available time
that architects have. Often, ‘time to market’ forces architects to choose for suboptimal
solutions. This phenomenon is pointed out in [15] where it is stated that ”in practice,
architects find only one solution and not multiple alternatives to choose from. This is
due to the hard constraints in industrial practice (e.g. time to market or budget) that
forces architects to intuitively come up with a single solution based on their existing
application-generic knowledge. In effect, this results in the architects not exploring the
solution space and potentially missing alternative solutions.”

4 What to Learn from Knowledge Management?

The characteristics of architecting described in the previous section show that archi-
tecting is a creative, iterative decision making process often done in collaboration with
colleagues and other stakeholders in the lifecycle. The fact that architects only have a
limited amount of time to complete this decision making process further shows the need
for effective architectural knowledge sharing tools. In this section we elaborate on best
practices for knowledge sharing from the KM domain to find out how the architecture
domain could learn from this established field. Please note that we restrict ourselves to
knowledge sharing factors related to tool support. Various social [16], organizational
and cultural [17], or personal factors [18] also heavily influence the success of knowl-
edge sharing, but this is beyond the scope of this paper. More information about in-
centives for knowledge sharing can be found in [19], or in [11] where incentives for
architectural knowledge sharing are identified.

Knowledge in software engineering is diverse and its proportion immense and stea-
dily growing. Improved use of this knowledge is the basic motivation and driver for
knowledge sharing in software engineering [20]. Only since the early nineties have
the knowledge management and software engineering communities begun to grow to-
gether [21]. Since then, various knowledge sharing tools have been proposed in the
software engineering domain, leading to concepts such as the Experience Factory [22],
experience management systems [23], learning software organizations [24] and Soft-
ware Engineering Decision Support [25]. In addition, considerable attention has been
put to the concept of design rationale [26].

Literature presents warnings for the fact that not all knowledge sharing implementa-
tions are automatically successful. In [19] several factors that make knowledge sharing
difficult are listed, such as the fact that knowledge sharing is time consuming, and that
people might not trust the knowledge management system. Another warning is that
striving for completeness is infeasible. In addition, we should be aware of the fact that
a lot of the available knowledge cannot be made explicit at all, but instead remains

Effective Tool Support for Architectural Knowledge Sharing 129

tacit in the minds of people [18]. Sharing such tacit knowledge is very hard [27]. The
potential limitations of knowledge sharing notwithstanding, we believe it is crucial to
assist architects in practice with their daily work. Tools should assist architects in their
knowledge-intensive tasks, by enabling them to discover, share, and manage architec-
tural knowledge.

In order to design successful tools for knowledge sharing, a strategy needs to be
chosen. Hansen et al. distinguish two main knowledge management strategies: codifi-
cation and personalization [28]. Whereas codification is aimed at systematically storing
knowledge so that it becomes available to people in the company, the personalization
strategy focuses on storing information about knowledge sources, so that people know
who knows what. In the architecting process, some architectural knowledge might bene-
fit from a codification strategy, whereas other types of knowledge could be better shared
using personalization approaches. A hybrid approach, first coined in [29], is therefore
worth considering. Such a hybrid approach could provide a balance between formal-
ized and unstructured knowledge. According to [30], such a balance is an important
prerequisite to stimulate the usage of tools.

To define in more detail how a hybrid architectural knowledge sharing approach
should look like we can draw on a study about knowledge sharing by Brink [31]. Brink
describes that four steps need to be executed in order to create “an interconnected en-
vironment supporting communication, collaboration, and information sharing within
and among office and non-office work activities; with office systems, groupware, and
intranets providing the bonding glue”. Firstly, information and explicit knowledge com-
ponents must be stored online, indexed and mapped, so people can see what is available
and can find it (e.g. using digitally stored documents or yellow pages). Secondly, com-
munication among people needs to be supported, by assisting in the use of best practices
to guide future behavior and enable sharing of ideas (e.g. emails, bulletin boards, or
discussion databases). Thirdly, tacit knowledge needs to be captured using for instance
communities of practice, interest groups, or competency centers (e.g. groupware and
electronic whiteboards). Lastly, methods are required that offer a virtual space in which
a team can collaborate interactively, irrespective of geographic distribution of the team
members or time. To enable the four steps described above, Brink defines three cate-
gories that form technological enablers for knowledge sharing [31]: knowledge repos-
itory (for sharing explicit knowledge); knowledge routemap (for sharing explicit and
tacit knowledge), and collaborative platforms (for sharing tacit knowledge).

The need for a combined approach that stimulates the collaboration of architects and
that supports sharing both tacit and explicit knowledge, is also acknowledged in [32].
The authors describe seven knowledge work processes that range from finding codified
information to establishing social networks and collaborating in communities. The au-
thor states that these knowledge processes can not be seen independently, but often are
interrelated. For example, an architect searching for information on security might a)
initiate a search on this specific topic, b) negotiate with colleagues about the meaning of
what was just found, c) create new ideas based on the discussions and by using common
sense, and d) try to maintain a social bond with these colleagues at the same time.

Based on the discussed knowledge management literature, we argue that architec-
tural knowledge sharing tools can best follow a hybrid approach that combines

130 R. Farenhorst, P. Lago, and H. van Vliet

codification and personalization methods, and that also stimulates collaboration be-
tween the stakeholders of the architecting process. More stable knowledge – such as
best practices and architectural tactics – could be codified in a repository, less for-
malized knowledge could be spread in the organization more effectively using knowl-
edge routemaps, and a collaborative platform allows architects and other stakeholders
to work together on an iterative decision making process.

5 Desired Properties of Architectural Knowledge Sharing Tools

Based on the five characteristics of software architecting (Section 3) and best practices
from knowledge management literature (Section 4) we define seven desired properties
of architectural knowledge sharing tool support.

1. Stakeholder-specific content. Because Architecting impacts the complete life-
cycle various stakeholders are involved in the decision making process, and all
these stakeholders need specialized views on the available content, such as open is-
sues, approved decisions, or scheduled meetings. Architectural knowledge sharing
tools should make it possible to distinguish between certain types of knowledge.
Users of the tool can then choose what architectural knowledge they want to re-
trieve. The search functions should therefore match with the profiles of different
users, such as developers, maintainers, architects, or project managers.

2. Easy manipulation of content. Since Architecting is iterative in nature, architects
follow a continuous iterative decision making process. Easy manipulation of con-
tent will keep the decision making process up to speed, whereas more rigid tool
support that does not allow easy manipulation could instead slow it down.

3. Descriptive in nature. Because Architecting is an art, architects should not be con-
strained too much in their tasks. Architectural knowledge sharing tools should not
prescribe how architects should manage architectural knowledge, for example by
offering an abundance of predefined models, guidelines, or templates. Instead the
tools should allow a descriptive perspective on the available architectural knowl-
edge that does not limit the architects’ creativity.

4. Support for architectural knowledge codification. Since Architecting is con-
strained by time, architects could be helped by quickly finding relevant architectural
knowledge. For certain types of knowledge that is not subject to frequent changes,
a codification strategy probably works best. Architects can then easily retrieve solu-
tions that have proven themselves in the past, and reuse these solutions accordingly.
This property also relates to the knowledge repository category mentioned by [31],
and the statement from [30] that there should be a proper balance between formal-
ized (i.e. codified) and less structured (i.e. personalized) knowledge.

5. Support for architectural knowledge personalization. Because Architecting is
consensus decision making, architectural knowledge is not always immediately
‘stable’ enough to codify, because until consensus has been reached, decisions
could change. For such knowledge, a personalization strategy could prove useful
to enable architects to find who knows what, in a similar way as the knowledge
routemaps proposed by [31]. Personalization techniques are also valuable to sup-
port the discussions and negotiations between stakeholders [32].

Effective Tool Support for Architectural Knowledge Sharing 131

6. Support for collaboration. Because Architecting is consensus decision-making
architectural knowledge tool support should explicitly support collaboration be-
tween different users. This property relates to the groupware criterion of [31] as
well as to the collaboration requirement of [32]. This property enables architects to
actively involve all important stakeholders in the decision making process. Since
most architects are specialized in certain areas, tool support that supports collab-
oration also allows architects to use a ‘divide and conquer’ approach whenever
possible.

7. Sticky in nature. This property could be seen as orthogonal to the others in the
sense that it is an essential property to motivate people to start using an architectural
knowledge sharing tool in the first place. With this we mean that people should
be motivated to start using the tool, as elaborated upon by [33] in which several
motivational factors are described. To prevent users from neglecting the tool after
having played with it once, special features should be incorporated in the tool to
let it obtain a certain level of stickiness [34]. Tools that are sticky motivate users to
keep coming back to it, increasing the chance of widespread adoption in practice.

6 The Status Quo of Architectural Knowledge Sharing Tools

Based on the seven identified desired properties of architectural knowledge sharing
tools, in this section we are assessing the status quo of tool support in the software
architecture domain. We have selected a set of tools that represent the current state-of-
the-art in architectural knowledge management tools, since all these tools have recently
been introduced in software architecture literature and they all explicitly target archi-
tectural knowledge management as well.

The academic tools that are assessed include Archium [5], ADDSS [35], DGA DDR
[36] and PAKME [37]. Archium is a tool environment proposed by Jansen et al. that
is aimed at establishing and maintaining traceability between design decision models
and the software architecture design [5]. Capilla et al. have proposed a web-based tool
called ADDSS for recording and managing architectural design decisions [35]. Falessi
et al. have devised a specific design decision rationale documentation technique, which
is driven by the decision goals and design alternatives available [36]. Hence, it is called
the Decision Goal and Alternatives (DGA) DDR technique. Ali Babar et al. have pro-
posed a Process-based Architecture Knowledge Management Environment (PAKME)
that allows storing generic architectural knowledge (such as general scenarios, patterns,
and quality attributes), and project specific architecture knowledge (such as concrete
scenarios, contextualized patterns, and quality factors) [37]. To form a balanced set of
tools from academia and practice, we add to our assessment PGR’s three architectural
knowledge sharing tools: the knowledge repository, expertise site and knowledge maps
system. More details on these three tools are described in Section 2.

The results of the assessment are reflected in Table 1. For the assessment of the
tools of PGR we were able to draw on our observations in this organization. For the
assessment of the academic tools we used published literature about the tools as primary
source of information. We have based the scores on our interpretation of the tools, but
acknowledge that it is possible that the tools have evolved recently. Please note that

132 R. Farenhorst, P. Lago, and H. van Vliet

Table 1. Status Quo of Architectural Knowledge Sharing Tools

SA KM

D
es

ir
ed

 p
ro

pe
rt

y
Software arch. tool St

ak
eh

ol
de

r-
sp

ec
ifi

c
co

nt
en

t

Ea
sy

 m
an

ip
ul

at
io

n
of

 c
on

te
nt

D
es

cr
ip

tiv
e

in
 n

at
ur

e

Su
pp

or
t f

or
 A

K
 c

od
ifi

ca
tio

n

Su
pp

or
t f

or
 A

K
 p

er
so

na
liz

at
io

n

Su
pp

or
t f

or
 c

ol
la

bo
ra

tio
n

St
ic

ky
 in

 n
at

ur
e

Archium - + + + - - ?
ADDSS - - + + - - ?
DGA DDR - - + + - - ?
PAKME - + + + - + ?
PGR knowledge repository - - - + - - -
PGR expertise site - + + + - - -
PGR knowledge maps - - + - + - -

we do not intend to give a strict judgment on the tools, but rather indicate whether they
conform to the defined properties. If they do, this is reflected in Table 1 with a ‘+’ score;
if they do not, this has resulted in a ‘-’ score.

Stakeholder-specific content is a property that we haven’t found explicit support for
in any of the studied tools. Archium is designed for a single user who could use the tool
to establish and maintain traceability between design decision models and the software
architecture design. The authors of ADDSS mention multi-perspective support as one
of the envisioned features of ADDSS, but in the current prototype this is not yet imple-
mented. DGA DDR and PAKME also do not mention stakeholder-specific content as a
feature, but rather focus on the codification of the architectural knowledge in general.
The same goes for PGR’s knowledge repository, and the expertise site, although the
latter allows users to find a lot of different types of information, but this information is
not tailored to users. PGR’s knowledge maps system is suffering from the same limita-
tion since users can find experts on certain topics based on the knowledge maps, but the
view they are able to obtain on this information is not customizable.

Easy manipulation of content is incorporated in three of the tools we studied. The
language used in Archium offers explicit support for addition and modification of ar-
chitectural design decisions. In PAKME, a maintenance component provides various
features to modify, delete and instantiate different artifacts. This component also in-
cludes repository administration functions. PGR’s expertise site in theory allows vari-
ous stakeholders to change or update knowledge at a regular basis, although architects
mentioned that such changes are not always “easy” to make. In PGR’s repository and
knowledge maps system modifying content is non-intuitive and time-consuming, result-
ing in a negative score for this property. With both DGA DDR and ADDSS we believe
the underlying model used in these tools is rather formal and limited in scope. As a
result, chances are that practitioners feel too constrained by having to comply to these
models. An issue specific to ADDSS is that architecting is not assumed to be iterative.

Effective Tool Support for Architectural Knowledge Sharing 133

This focus becomes apparent in ADDSS because the user can add the design decisions
taken and then add a view to these decisions to gain traceability. However, changing
the design decisions is only possible by starting a new iteration, and if this is done a
new view also has to be included to prevent loss of traceability. Between iterations no
connections are possible, so manipulating existing architectural knowledge is hard.

Descriptive in nature is something most tools in our investigation are, except PGR’s
repository that strongly prescribes the solution based on the questions that need to be
filled in. This is related to the fact that most of the tools also score well on the support
for AK codification property. Most tools follow a typical codification strategy. Users are
able to add information to the tool that is then stored for future retrieval. The one ex-
ception to this approach is PGR’s knowledge maps systems, which offers a mechanism
for people in the organization to find each other. This support for AK personalization is
unfortunately not well covered by all other tools. A related critique on the tools studied
is that they also score low on explicit collaboration aspects, since they are built around
the assumption that architects mainly codify information for reuse purposes. Although
PGR’s knowledge maps system allows experts to find each other, it does not offer struc-
tured means to let these experts collaborate. As a result most of the investigated tools
get a ‘-’ score on the support for collaboration property. The single exception here
is PAKME. PAKME is built on top of an open source groupware platform to provide
collaboration using content management, project management and the like.

To conclude our assessment, we have investigated whether the various tools are sticky
in nature. To properly determine this for ADDSS, DGA DDR, Archium and PAKME,
hands on experience is required, hence the question marks in Table 1. For the other
three tools, we can assess the stickiness based on interviews with architects from PGR.
The results of these interviews indicate that none of the three architectural knowledge
sharing tools in PGR is sticky, since users are not motivated to keep using the tools: the
knowledge repository is outdated and offers little added value; the expertise site is not
flexible in adding, manipulating or retrieving architectural knowledge; the knowledge
maps are very rigid and do not offer specific topics on software architecture, rendering
this system useless for the architects.

In summary, we conclude that most of the architectural knowledge sharing tools
we studied are descriptive in nature and focus primarily on codification. To improve
the status quo, more emphasis should be put on stakeholder-specific content, support
for personalization, explicit support for collaboration, and general characteristics that
make tools appealing and sticky in the long run.

7 Effective Tool Support for Architectural Knowledge Sharing

We are currently working on an architectural knowledge sharing platform. In this sec-
tion, the basic architecture and main vision of this platform are elaborated upon. Our
platform is designed to incorporate all desired properties introduced in Section 5.

The platform is designed using a blackboard architecture. In this architecture all rel-
evant architectural knowledge is stored centrally, and functionality is defined to operate
on this knowledge. Stakeholders have various entry points that allow operations on
the architectural knowledge. The central vision is to create an environment that allows

134 R. Farenhorst, P. Lago, and H. van Vliet

store

Text mining

Blog

RSS feed
analyze

refine
push

Lead architect

1) Discuss how to implement public
key infrastructure in project X

2) Analyze discussion and recognize that
decisions on security have been taken

3) Notify lead architect since he is
responsible for security in project X

Architectural
Knowledge

Developer

Architect

Fig. 1. A Scenario for the Architectural Knowledge Sharing Platform

architectural knowledge sharing in an effective manner, meaning that the platform as-
sists architects in their daily work, without requiring them to spend much time or effort
on it. This could be achieved by allowing intelligent management of the architectural
knowledge stored in the platform, for example by structuring unstructured information.

To illustrate part of the functionality of our architectural knowledge sharing plat-
form, consider the following scenario that is also depicted in Figure 1. A developer and
architect who both work on project X have a discussion about how to best implement
a public key infrastructure and they discuss various alternative solutions. Since they
reside at different locations, they use a blog for their discussion. The blog, being part
of the architectural knowledge sharing platform, integrally stores the discussion. This
unstructured information is not very meaningful to stakeholders who are not directly
involved in the discussion, but a structured summary is valuable to the lead architect
of the project, since in our example he is ultimately responsible for the architecture de-
sign in Project X, including security. To this end, a text mining service, also part of the
platform, opportunistically analyzes the blog discussion and determines that a decision
on security has been made. Consequently, a summary of this architectural knowledge
is sent to the lead architect using a RSS feed. Although the lead architect is unaware of
the blog discussion that has taken place, he is able to determine whether the decision
made by the architect and developer is the correct one. If this is not the case, he could
intervene in time, preventing possible security problems later on in the project.

In the above example, the interplay between the blog, text mining and RSS feeds
is apparent and it indicates how to enrich unstructured information and subsequently
share it. We believe many similar kind of scenarios could be valuable to accommodate
architectural knowledge sharing. The following central features are incorporated in the
platform in order to allow codification and personalization of architectural knowledge,
and to enable collaboration between stakeholders:

Blogs and wikis. Blogs and wikis are employed to allow designers and architects to
easily communicate and collaborate. As a result, other stakeholders can quickly acquire
information about the current status of the project, such as the design decisions that
have been made, alternatives that have been considered, etc. One important motivation

Effective Tool Support for Architectural Knowledge Sharing 135

for people to blog is the ability to create a community feeling [38]. To foster com-
munication between architects, and to motivate them to share architectural knowledge,
such a community feeling is essential. Wikis offer support for collaboration. Using the
Wiki, architects can work on the same project by concurrently editing (parts of) the
architectural descriptions or meeting minutes.

Text mining. Blogs and Wikis are typical personalization approaches in which a lot of
unstructured information is stored. However, potentially relevant architectural knowl-
edge is much more valuable if it is codified as a reusable asset. Text mining techniques,
see e.g. [39], are employed to enrich unstructured architectural knowledge present in
the platform.

Best practices database. To store best practices or other reusable assets, the platform
contains a best practices database. Architectural knowledge is codified in predefined
formats, and could be retrieved for various purposes, such as reusing past design deci-
sions, or to find out what guidelines exist on a certain topic. Architects can search this
database via a standard web interface.

RSS feeds. RSS feeds are employed to push relevant architectural knowledge to cer-
tain stakeholders, or to notify subscribed stakeholders if new architectural knowledge
emerges. RSS feeds are complementary to the more traditional pull mechanism of us-
ing the best practices database. Users can subscribe to certain topics of interest and
get updated without having to search the platform themselves, which is a lightweight
approach to share architectural knowledge among relevant stakeholders.

Expert finding. Similar to the ‘yellow pages’ concept, the expert finding facility al-
lows users to easily find colleagues based on experience, interests or projects on which
they work. By connecting people in the architecting process, we increase ‘team build-
ing’ within the organization, and foster discussions that can result in higher quality
solutions. This approach also conforms to the sticky in nature property, because people
like to share thoughts more easily if they have a ’group feeling’, and creating such an
environment ensures a certain degree of stickiness.

Our platform conforms to all seven desired properties of architectural knowledge
sharing tools. First of all, it has support for architectural knowledge codification (best
practices database, text mining), and support for architectural knowledge personaliza-
tion (blogs and expert finding), making it a hybrid architectural knowledge sharing en-
vironment. In addition, the platform explicitly focuses on collaboration between archi-
tects (Wiki). Moreover, the various services allow easy manipulation of architectural
knowledge that is stored. In addition to supporting codification, personalization, and
collaboration, we envision additional features to make the platform more appealing, for
example by supporting flexible and personalized access for all stakeholders through a
personal start page. Such a start page allows for stakeholder-specific content so that
users can indicate which information, projects, or people they are interested in. In this
sense, the platform becomes the preferred starting point for architectural knowledge
sharing in the organization, without posing too much restrictions on its use. We envi-
sion the platform to act as glue between various knowledge sources in the organization.
As described in Section 2 architects of PGR would greatly appreciate such an integrated

136 R. Farenhorst, P. Lago, and H. van Vliet

platform. If we ensure that users perceive a certain degree of freedom in using the plat-
form, the platform is inherently descriptive in nature as well. Lastly, to ensure that the
platform is sticky in nature, it incorporates motivating factors, such as authority ranking
and equality matching [33] In addition, the platform harbors facilities to support per-
sistent and visible reputation tracking. People that help others using the architectural
knowledge platform in any way, for example by sharing information, or by publishing
content, are rewarded by gaining a certain reputation. According to Bush [34], support
for reputation tracking appeals to users and motivates them to keep using the platform,
hence increasing its stickiness.

8 Conclusions and Future Work

Software architecting is a knowledge intensive process. Consequently, tool support for
architectural knowledge sharing has various benefits, such as reusing best practices,
teaching staff, and support efficient collaboration between stakeholders. However, our
observations in software architecture practice show that practitioners often stick to tra-
ditional tools, such as office suites, for their daily work, thereby missing the opportunity
to effectively share architectural knowledge.

In this paper we have defined seven properties that architectural knowledge sharing
tools should have to be effective. These properties have been defined by drawing on
experience and literature in both the software architecture and knowledge management
domain. By viewing software architecture from a knowledge management perspective
we were able to determine which best practices from this field apply to the architecting
process. Although we believe the identified properties are essential from an architectural
knowledge management perspective, it should be noted that some of these properties
might to a certain extent apply to other Software Engineering disciplines as well.

Based on the properties, we have assessed a number of existing software architec-
ture tools. The results of this assessment indicate that the status quo of architectural
knowledge sharing tool support lacks full conformance to the seven desired properties.

To improve the status quo, we have presented the design of an architectural knowl-
edge sharing platform. This platform offers a hybrid architectural knowledge man-
agement approach and supports collaboration between stakeholders in the architecting
process. To this end, it incorporates lightweight features using state-of-the-art tech-
niques, such as Wikis, blogs, RSS feeds and text mining. We have shown that our plat-
form conforms to all identified properties, thereby increasing the chance for successful
widespread adoption in software architecture practice.

Our ongoing and future work focuses on the realization of our platform. We will
populate the platform with several features and evaluate their success in industrial set-
tings. In addition, we plan to extend our assessment of existing architectural knowledge
sharing tools using hands on experience. Results of these assessments serve as valuable
input in our effort to arrive at effective tool support for architectural knowledge sharing.

Acknowledgements

This research has been partially sponsored by the Dutch Joint Academic and Commer-
cial Quality Research & Development (Jacquard) program on Software Engineering

Effective Tool Support for Architectural Knowledge Sharing 137

Research via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN about architec-
tural knowledge.

References

1. Eeles, P.: The Process of Software Architecting. Technical Report (2006), available online:
http://www-128.ibm.com/developerworks/rational/library/apr06/
eeles/index.html

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. SEI Series
in Software Engineering. Addison-Wesley Pearson Education, Boston (2003)

3. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison-Wesley, Reading (2002)

4. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morrison,
R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

5. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
WICSA. 5th Working IEEE/IFIP Conference on Software Architecture, Pittsburgh, USA, pp.
109–120. IEEE Computer Society Press, Los Alamitos (2005)

6. van der Ven, J.S., Jansen, A., Nijhuis, J., Bosch, J.: Design decisions: The Bridge between
Rationale and Architecture. In: Dutoit, A. (ed.) Rationale Management in Software Engi-
neering, pp. 329–346. Springer, Heidelberg (2006)

7. Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning about Architectural Knowl-
edge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp.
39–47. Springer, Heidelberg (2006)

8. Shaw, M., Clements, P.: The Golden Age of Software Architecture. IEEE Software 23(2),
31–39 (2006)

9. Clements, P., Kazman, R., Klein, M., Devesh, D., Reddy, S., Verma, P.: The Duties, Skills,
and Knowledge of Software Architects. In: WICSA. 6th Working IEEE/IFIP Conference on
Software Architecture (2007)

10. Eeles, P.: Characteristics of a Software Architect. Technical Report (2006), available online:
http://www-128.ibm.com/developerworks/rational/library/mar06/
eeles/index.html

11. Farenhorst, R., Lago, P., van Vliet, H.: Prerequisites for Successful Architectural Knowl-
edge Sharing. In: ASWEC. 18th Australian Software Engineering Conference, Melbourne,
Australia, pp. 27–36 (2007)

12. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action Research. Communications of the
ACM 42(1), 94–97 (1999)

13. Eeles, P.: The Benefits of Software Architecting. Technical Report (2006), available online:
http://www-128.ibm.com/developerworks/rational/library/may06/
eeles/index.html

14. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: Generalizing a
Model of Software Architecture Design from Five Industrial Approaches. In: WICSA. 5th
Working IEEE/IFIP Conference on Software Architecture, Pittsburgh, USA, pp. 77–86 (2005)

15. Lago, P., Avgeriou, P.: 1st Workshop on SHaring and Reusing ARchitectural Knowledge
(Final Workshop Report). ACM SIGSOFT Software Engineering Notes 31(5), 32–36 (2006)

16. Kankanhalli, A., Tan, B.C.Y., Wei, K.K.: Contributing Knowledge to Electronic Knowledge
Repositories: An Empirical Investigation. MIS Quarterly 29(1), 113–143 (2005)

17. Cummings, J.: Knowledge Sharing: A Review of the Literature. Technical report, The World
Bank Operations Evaluation Department (2003)

http://www-128.ibm.com/developerworks/rational/library/apr06/eeles/index.html
http://www-128.ibm.com/developerworks/rational/library/apr06/eeles/index.html
http://www-128.ibm.com/developerworks/rational/library/mar06/eeles/index.html
http://www-128.ibm.com/developerworks/rational/library/mar06/eeles/index.html
http://www-128.ibm.com/developerworks/rational/library/may06/eeles/index.html
http://www-128.ibm.com/developerworks/rational/library/may06/eeles/index.html

138 R. Farenhorst, P. Lago, and H. van Vliet

18. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company. Oxford University Press, Ox-
ford (1995)

19. Ghosh, T.: Creating Incentives for Knowledge Sharing. Technical report, MIT Open Course-
ware, Sloan school of management, Cambridge, Massachusetts, USA (2004)

20. Rus, I., Lindvall, M.: Knowledge Management in Software Engineering. IEEE Soft-
ware 19(3), 26–38 (2002)

21. Aurum, A., Jeffery, R., Wohlin, C., Handzic, M.: Managing Software Engineering Knowl-
edge. Springer, Heidelberg (2003)

22. Basili, V.R., Caldiera, G., Rombach, D.H.: The Experience Factory. In: Encyclopedia of Soft-
ware Engineering, vol. 2, pp. 469–476. John Wiley & Sons Inc., Chichester (1994)

23. Seaman, C.B., Mendonca̧, M.G., Basili, V.R., Kim, Y.M.: User Interface Evaluation and
Empirically-Based Evolution of a Prototype Experience Management Tool. IEEE Transac-
tions on Software Engineering 29(9), 838–850 (2003)

24. Althoff, K.D., Bomarius, F., Tautz, C.: Knowledge Management for Building Learning Soft-
ware Organizations. Information Systems Frontiers 2(3/4), 349–367 (2000)

25. Ruhe, G.: Software Engineering Decision Support - A new Paradigm for Learning Software
Organizations. In: LSO. 4th Workshop on Learning Software Organizations, Chicago, USA,
pp. 104–113 (2002)

26. Dutoit, A.H., McCall, R., Mistrik, I., Paech, B.: Rationale Management in Software Engi-
neering. Springer, Heidelberg (2006)

27. Haldin-Herrgard, T.: Difficulties in Diffusion of Tacit Knowledge in Organizations. Journal
of Intellectual Capital 1(4), 357–365 (2000)

28. Hansen, M.T., Nohria, N., Tierney, T.: What’s Your Strategy for Managing Knowledge? Har-
vard Business Review 77(2), 106–116 (1999)

29. Desouza, K.C., Awazu, Y., Baloh, P.: Managing Knowledge in Global Software Development
Efforts: Issues and Practices. IEEE Software 23(5), 30–37 (2006)

30. Hall, H.: Input-Friendliness: Motivating Knowledge Sharing Across Intranets. Journal of
Information Science 27(3), 139–146 (2001)

31. van den Brink, P.: Social, Organization, and Technological Conditions that Enable Knowl-
edge Sharing. PhD thesis, Technische Universiteit Delft (2003)

32. Röll, M.: Distributed KM - Improving Knowledge Workers’ Productivity and Organisational
Knowledge Sharing with Weblog-based Personal Publishing. In: Blogtalk 2.0. European
Conference on Weblogs, Vienna (2004)

33. Boer, N.I., van Baalen, P.J., Kumar, K.: The Importance of Sociality for Understanding
Knowledge Sharing Processes in Organizational Contexts. Technical Report ERS-2002-05-
LIS, Erasmus Research Institute of Management (ERIM), Rotterdam (2002)

34. Bush, A.A., Tiwana, A.: Designing Sticky Knowledge Networks. Communications of the
ACM 48(5), 66–71 (2005)

35. Capilla, R., Nava, F., Pérez, S., Dueñnas, J.C.: A Web-based Tool for Managing Architectural
Design Decisions. In: SHARK. 1st ACM Workshop on SHaring ARchitectural Knowledge,
Torino, Italy, ACM Press, New York (2006)

36. Falessi, D., Becker, M., Cantone, G.: Design Decision Rationale: Experiences and Steps
Ahead Towards Systematic Use. In: SHARK. 1st ACM Workshop on SHaring ARchitectural
Knowledge, Torino, Italy, ACM Press, New York (2006)

37. Ali Babar, M., Gorton, I., Jeffery, R.: Toward a Framework for Capturing and Using Archi-
tecture Design Knowledge. Technical Report UNSW-CSE-TR-0513, The University of New
South Wales (2005)

38. Nardi, B.A., Schiano, D.J., Gumbrecht, M., Swartz, L.: Why We Blog. Communications of
the ACM 47(12), 41–46 (2004)

39. Fan, W., Wallace, L., Rich, S., Zhang, Z.: Tapping the Power of Text Mining. Communica-
tions of the ACM 49(9), 77–82 (2006)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 139–155, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Goal-Oriented Approach for the Generation and
Evaluation of Alternative Architectures

Gemma Grau and Xavier Franch

Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona 1-3, Barcelona E-08034, Spain

{ggrau,franch}@lsi.upc.edu

Abstract. There is a recognized gap between requirements and architectures.
There is also evidence that architecture evaluation, when done at the early
phases of the development lifecycle, is an effective way to ensure the quality
attributes of the final system. As quality attributes may be satisfied at a different
extent by different alternative architectural solutions, an exploration and
evaluation of alternatives is often needed. In order to address this issue at the
requirements level, we propose to model architectures using the i* framework, a
goal-oriented modelling language that allows to represent the functional and
non-functional requirements of an architecture using actors and dependencies
instead of components and connectors. Once the architectures are modelled, we
propose guidelines for the generation of alternative architectures based upon
existing architectural patterns, and for the definition of structural metrics for the
evaluation of the resulting alternative models. The applicability of the approach
is shown with the Home Service Robot case study.

1 Introduction

There is a gap between requirements and architectures which is mainly due to the fact
they use different terms and concepts to capture the model elements relevant to each
one [20]. However, there is a connection between architectural design decisions and
the quality attributes of the final system and, so, it is possible to analyse and to
evaluate an architecture in the context of the goals and requirements that are levied to
the systems that will be build from it [8]. On the other hand, quality attributes may be
satisfied by different alternative architectural solutions (i.e., architectural patterns)
and, so, there is often the need of exploring and evaluating several alternatives.

In this paper we propose to address the generation and evaluation of architectures
at the requirements level by using a goal-oriented approach. Goal-oriented models
allow expressing the intentional concepts using the same constructs for the
requirements and for the architectures. We consider that they are an adequate
formalism for representing software architectures because they allow expressing usual
architecture-related concepts such as component, node, file, resource, dependency and
so on. Additionally, goal-oriented models are becoming intensively used in fields
such as requirements engineering and organizational process modelling, which has
two main implications. In the one hand, transition from organizational and system

140 G. Grau and X. Franch

models to architecture models can be smoother due to the use of the same formalism,
and even traceability benefits from this. On the other hand, contributions and findings
made in these other fields can be assessed and eventually incorporated into software
architecture modelling and analysis.

Because of that, goal-oriented models [25], [28] have already been used for
representing software architectures addressing the gap between requirements and
architectures [25]. Among the different existing goal-oriented proposals, we remark
the i* framework [27], a goal-oriented modelling language that allows representing
the functional and non-functional requirements of an architecture using actors and
dependencies instead of components and connectors. For more details on the
adequacy of using i* models for representing and analyzing software architectures,
we refer to [17].

In this paper we use the i* framework in order to support the generation and
evaluation of alternative architectures. We are interested in doing this process in a
reliable way and, thus, we propose a set of guidelines for performing both activities in
a systematic manner. Therefore, the generation of alternatives is based on the use of
architectural patterns [6] and the evaluation of alternatives is done by applying
structural metrics [14] over the produced models. In order to show the applicability of
our approach, we apply the proposed steps and guidelines to the Home Service Robot
case study as presented in [22], [23].

The remainder of this paper is organized as follows. The problem statement for the
Home Service Robot case study is presented in section 2. In section 3 we present a
brief introduction to the i* framework. In our approach we do not consider the
generation and evaluation of alternative architectures as an isolated process and, so,
the context of applicability and tool support are presented in section 4. In section 5 we
propose a set of guidelines for the generation of alternative architectures based on
existing architectural patterns. Our proposal of metrics for evaluating the resulting
models and a set of guidelines for defining the metrics are presented in section 6.
Finally, section 7 presents the conclusions and future work.

2 The Home Service Robot Case Study

This case study is based on the problem statement of the prototype of a Home Service
Robot (HSR) for daily services provided in [22], [23]. The case study has been chosen
because the details about the problem statement are very clear, it is simple enough to
be analysed and understood in the context of a paper, and also because mobile robots
are commonly used in software architecture examples [26].

According to [22], [23], the HSR is a prototype that supports the following daily
home services:

• Call and Come (CC). This service analyzes the audio data sampled in order to
detect predefined sound patterns. If a “come” command is recognized, the robot
tries to detect the direction of the sound source, rotates to the direction of the sound
source and tries to recognize a human. If the caller’s face is detected, the robot
moves forward until it reaches within 1 meter from the caller. If a “Stop” command
is recognized while the robot is moving, the robot stops.

 A Goal-Oriented Approach for the Generation and Evaluation 141

• User Following (UF). The robot locates a user and constantly checks vision data
and sensor data for keep following the user. The robot follows the user within 1
meter range. If the robot misses the user, it notifies him by saying “I lost you” and
the action terminates.

• Security Monitoring (SM). The robot patrols around a house for surveillance
using a map. Intrusion or accidents are defined as patterns recognizable from
vision and sound data. If such an event is detected, the robot notifies the user
directly via an alarm or indirectly through a home server.

• Tele-presence (TP). A remote user can control the robot using a PDA. The robot
sends the remote user a map of the house and the user can command the robot to
move to a specific position. In addition, the robot can send captured images to the
remote PDA for surveillance.

In order to provide those services, the HSR has the following hardware components: a
Single Board Computer that controls the peripherals; a Front Camera to allow face
recognition, user tracking, security monitoring and tele-presence; a Ceiling Camera to do
map building and self-positioning; 8 SL Microphones to interpret speaker commands and
locate its specific position; a Structured Light Sensor to detect obstacles and recognize
footsteps; an Actuator to allow the HSR movement; an LCD display to show
information; a Wireless Lan to communicate to the Home Server; and, finally, a Speaker
to generate sound.

For more details about the HSR problem statement we refer to [22], [23].

3 The i* Framework

The i* framework proposes the use of two types of models for modelling systems,
each one corresponding to a different level of abstraction: the Strategic Dependency
(SD) model represents the intentionality of the process and the Strategic Rationale
(SR) model represents the rationale behind it. SD models focus on the relationships
among different actors that cooperate for satisfying some goals and, so, they are more
interesting from the architecture point of view. Consequently, in this paper we focus
on SD models.

A SD model consists of a set of nodes that represent actors and a set of
dependencies that represent the relationships among them. Dependencies express that
an actor (depender) depends on some other (dependee) in order to obtain some
objective (dependum). Thus, the depender depends on the dependee to bring about a
certain state in the world (goal dependency), to attain a goal in a particular way (task
dependency), for the availability of a physical or informational entity (resource
dependency) or to meet some non-functional requirement (softgoal dependency).
These four types of dependum allow two different types of relationships: intentional,
representing what behaviour a component expects from other parts of the system; and
operational, representing how one component communicates with other parts of the
system. Therefore, intentional relationships are represented by:

− Goal dependencies stating functional requirements, e.g. the User depends on
the HSR for the goals Come when called and Accidents are avoided.

142 G. Grau and X. Franch

− Softgoal dependencies stating high-level non-functional requirements, e.g. the
User depends on the HSR depends for the softgoals User position location is
accurate and Robot movement is efficient.

− Resource dependencies stating flow of concepts, and remarkable some type of
knowledge, or a concept, relevant for the domain that does not physically exist,
e.g. the concept Voice Command in the context of the HSR.

On the other hand, i* may be also used to represent architectural concerns by means
of the following operational relationships:

− Task dependencies stating service invocation, e.g. the HSR depends on the
User for the tasks Introduce position in map and Introduce Sound patterns.

− Resource dependencies stating information interchange, e.g. the HSR depends
on the user for the resource Tele-surveillance images.

− Goal dependencies stating fit criteria for non-functional requirements, e.g. the
HSR Ensures security by avoiding obstacles. Note thus that non-functional
requirements change from being represented as soft goals to goals.

For more details about i*, we refer to [21], [27]. The graphical notation is shown in
Fig. 1. using, as an example, the SD dependencies between the HSR and the User.

Fig. 1. Excerpt of an i* model for the HSR case study

4 Context of Applicability and Tool Support

In our approach we do not consider the generation and evaluation of alternative
architectures as an isolated process but as a part of a reengineering framework, that
we have named ReeF [16]. The reasons for such a claim are twofold. On the one

 A Goal-Oriented Approach for the Generation and Evaluation 143

hand, most of the reengineering approaches consider the generation and evaluation of
alternative solutions. On the other hand, in most of the cases, it is possible to state the
premise that there is always a current process undertaken by humans or by a legacy
system that can be used as a departing point for reengineering. Several proposals in
the field of software architectures also follow a reengineering approach, among them
we remark [3], [22], [23].

We have refined the ReeF generic framework into SARiM [16], a Software
Architecture Reengineering i* Method, which is composed of the following phases:
1) Analysis of the source software architecture; 2) Conceptualization of the analysed
software architecture into an i* model; 3) Elicitation of new requirements for the
software architecture; 4) Exploration of candidate software architecture solutions; 5)
Assessment of the generated solutions using evaluation techniques; and 6) Creation of
the specification for the new software architecture. In this paper we focus on phases 4
and 5. However, we assume that other existing techniques have been used for the first
three phases and, so, before the generation and evaluation of architectures, there is an
existing source i* architecture model and a set of quality attributes to be used as the
starting point. These artefacts can be generated with many existing techniques, among
which, we have chosen the PRiM method [19] for generating the source i*
architecture model, and KAOS [9] for obtaining the requirements and quality
attributes.

In Fig. 2 we provide an overview of the proposed process. We can observe that the
generation of alternatives begins with the definition of the generic i* architectural
patterns. These patterns are constructed using already existing architectural solutions,
which are selected according to the quality attributes to be achieved. Once the generic
i* architectural patterns are defined, the alternative architectures are generated by
applying a dependency analysis and matching process over the source i* architecture
model and each selected generic i* architectural pattern, resulting to set of alternative
i* architecture models. We remark that the generic i* architectural patterns can be
stored and reused when reapplying the process. Finally, once the alternative i*
architecture model are generated, they can be evaluated by defining or reusing
structural metrics, providing the evaluation results that would assess the selection of
the most suitable architecture.

In order to perform the generation and evaluation of alternatives in a reliable way,
tool support is needed. We propose to use J-PRiM [18], a tool that supports the first

Fig. 2. Overview of the process for the generation and evaluation of alternative architectures

144 G. Grau and X. Franch

five phases of ReeF using the techniques proposed in PRiM [19] and, thus, it has been
adapted to the generation and evaluation of alternatives that we propose.

5 Generation of the Alternative Architectures

There are several existing proposals on the generation of architectures, for instance
[3], [4], [20], among others. These methods have in common that they all use an
existing architecture specification as a departing point; they all propose the use of
well-known architectural solutions for the generation of alternatives; and, they all
choose the solutions according to previously obtained quality attributes.

On the other hand, existing work on the generation of alternative architectures
using the i* framework as a modelling language adopt a similar approach. This work
is mainly represented by [24], [2], and it is oriented towards agent-oriented software
architectures. In their context, patterns are used for generating organizational
architectures which are represented in i*. Based on these patterns, the i* models are
build by matching the concepts represented in the i* organizational patterns with the
functional and non-functional requirements for the new software architecture.

Based on this existing work, our approach for the generation of the alternative
software architectures proposes four guidelines that transform existing architectural
solutions into generic i* architectural patterns and, then, use a matching process
between the dependencies expressed in the source i* architecture model and the ones
defined in the generic i* architectural patterns. These guidelines can be intertwined
and iterated as needed. We remark that guidelines 1.1 and 1.2 are only applied once
for each architectural pattern, allowing reusability when reapplying the method.

• Preliminaries: Pattern Selection. There are many architectural patterns that can

be used for generating software architectures. So, in order to generate alternative
architectures in a controlled way, we will only explore those patterns that help the
achievement of the quality attributes we want for the final software system. The
way these quality attributes are elicited from the stakeholders remains out of the
scope of this paper, however, we mention that most of the quality attributes will be
represented as softgoals in the i* model. A way to select the patterns is to use the
NFR [7] approach for modelling the contributions of each softgoal to the
architectural patterns and, then, select those with a positive contribution. It is also
possible to check the properties of each pattern in a pattern catalogue [6], a feature-
solution graph [4], or a Property to Style Mapping Table [20], among others.

For instance, if the quality attribute to achieve is Maintainability we may select a
Blackboard pattern, and if Exchangeability is needed, we may select a layered
architecture. None of these architectural solutions have to be selected if efficiency is a
crucial point for the architecture.

• Guideline 1.1: Actor Identification. Once the pattern is selected, we analyse it in

order to identify the architectural components suggested by the pattern. Each
component will be modelled as an actor in the i* model of the new alternative
architecture.

 A Goal-Oriented Approach for the Generation and Evaluation 145

For instance, in the Blackboard architectural pattern as defined in [6], three actors are
identified: the Blackboard, the Knowledge Source and the Control. We remark that,
according to the pattern documentation, several Knowledge Sources can be used.
Moreover, in some cases, the specific number and name of the components remains
undefined in the pattern. For instance, that’s the case of the Layers architectural
pattern as defined in [6]. In this situation, in order to discover all the actors we have
first to determine the number of layers and the abstraction level that they represent.
This can be done by applying our own criteria or by adapting the criteria used to
define other layer architectures, such as the OSI 7-Layer Model or the TCP/IP
protocol [6].

• Guideline 1.2: Definition of the generic i* architectural pattern. Once the
actors are defined, the architectural solution is deeper analysed in order to abstract
the general responsibilities of each actor and the generic dependencies with the
other actors. As a result we obtain a generic i* architectural pattern. The
information needed for such an analysis is the one documented in the architectural
solution. In order to enforce the link between requirements and architectures when
deciding the kind of a certain dependency, we propose to adapt the six CBSP
architectural dimensions proposed in [20] into the i* framework:

− Task dependencies model those elements that describe or involve processing
components.

− Resource dependencies model those elements that describe or involve data
components.

− Goal dependencies model those elements that that describe system-wide
features or features pertinent to a large subset of the system’s components or
connectors.

− Softgoal dependencies model those elements that describe or imply data or
processing component properties, bus properties or system properties.

In order to allow further reuse of the documented generic i* architectural pattern
the source of the pattern and the decisions taken during its definition have to be
documented.

In Fig. 3. we show how we have defined the generic i* architectural pattern for the
Blackboard architectural pattern. At the left of the figure we can see the classes and
their responsibilities as they are documented in [6]. We can also observe that we have
added an i* actor for each of the classes of the pattern. The dependencies have been
established as follows:

− The Blackboard manages central data, which is a system feature and so, it is
modelled as the goal dependency Central data is managed. As central data is a
data component, a resource dependency Central data is also stated. As both the
Knowledge Source and the Control depend on the Blackboard for the central
data management, each dependency appears twice.

− The Control monitors the Blackboard and schedules the Knowledge Sources
activations. Both are system features and so they are represented as goal
dependencies. Thus, the Blackboard depends on the Control for Blackboard is
monitored whilst the Knowledge Source depends on the Control for the goal
Knowledge source activations are scheduled. We remark that the Control

146 G. Grau and X. Franch

monitors the Blackboard by analysing the Central data (which is an already
existing dependency). On the other hand, as the Control involves a process for
scheduling the Knowledge Sources, we need a task dependency stating that the
Control depends on the Blackboard for Activate knowledge sources.

− The Knowledge Source evaluates its own applicability by using the central data.
Thus, the Blackboard depends on the Knowledge Source for the goal
Knowledge source applicability is evaluated. The Knowledge Source has the
responsibility to compute a result (which involves a data component) and to
update the Blackboard (which involves a processing component). Thus, the
Blackboard depends on the Knowledge Source for the resource Computed
result, and the Knowledge Source depends on the Blackboard for the task
Update blackboard.

• Guideline 1.3: Actors analysis and matching. Using the source i* architecture

model and the generic i* architectural pattern of the solution to be applied, we
analyse the dependencies in both models in order to match the related elements and
establish the equivalence between the source i* architecture model actors and the
generic i* architectural pattern actors. As it is proposed in [17], in both groups we
distinguish four kinds of actors:

− Human actors. i.e., the final users of the software system.
− Organizational actors. i.e. the organizations that provide or require services from

the software system and its final users.
− Software actors. i.e., the software system that is in charge to satisfy the human

actor requirements. The software system can be represented by a unique
software actor or by a set of actors that represents components and interact one
with each other.

− Hardware actors. i.e., the hardware devices in those software systems where we
need to obtain certain information from the environment.

Class
 Knowledge Source

Responsibilitiy
- Evaluates its own

applicability
- Computes a Result
- Updates blackboard

Collaborator
- Blackboard

Class
 Blackboard

Responsibilitiy
- Manages central data

Collaborator
-

Black-
board

Know-
ledge

Source

Control

Knowledge source
applicability is evaluated

Computed
result

Update
blackboard

Central data
is managed

Central
data

Blackboard is
monitored

Central
data

Knowledge
source activations

are scheduled

Goal

Task Softgoal

Resource

Actor Dependency
Link

Class
 Control

Responsibilitiy
- Monitors blackboard
- Schedules knowledge

sources activations

Collaborator
- Blackboard
- Knowledge

Source

Central data
is managed

Activate
knowledge

sources

Fig. 3. Abstraction of the generic i* pattern for the Blackboard architectural pattern

 A Goal-Oriented Approach for the Generation and Evaluation 147

We remark that there are some actors on the source i* architecture model that may
not have an equivalence in the generic i* architectural pattern and viceversa, for
instance the actors that represent humans, organizational or hardware components
in the source i* architecture model are not typically actors of the generic i*
architectural patterns. This aspect is solved in the next guideline with the
reallocation of responsibilities.

If we match the concepts of the Home Service Robot (HSR) and the Blackboard
architectural pattern we can observe that the HSR involves a human actor (the User),
a software actor (the Single Board Computer that is the component that controls the
HSR), and several hardware actors that interact with the user (i.e., Front Camera,
Microphones, Actuator, etc., see section 2 for more details). However, we can also
observe that, although the actors on the generic i* architectural pattern and the ones
on the source i* architecture model conform two disjoint groups, the HSR software
actor that controls the HSR can be refined into the set of actors proposed by
Blackboard i* architectural pattern.

The Blackboard architectural pattern contemplates the possibility of having
several Knowledge Sources. The strategy we follow to decide the number of
Knowledge Sources and their specific responsibilities is to analyse other existing
blackboard configurations specific for robots. Among them we have chosen the one
proposed in [26], which suggest the following Knowledge Sources, that we model as
actors in the alternative i* architecture model: the Lookout, which monitors the
environment for landmarks; the Pilot, which is in charge that planning the current
path and control the robot actuators; and, finally, the Map Navigator, which plans the
high-level path. The actor Control of the Blackboard i* architectural pattern
corresponds to the Captain component in [26] and the hardware actors can be
considered as the perception subsystem in [26].

• Guideline 1.4: Reallocation of responsibilities. Once the actors of the source i*

architecture model and the generic i* architectural pattern have been analysed, we
create the new alternative i* architecture model with the following actors:

− The software actors of the generic i* architectural pattern.
− The human, organizational, and hardware actors of the source i* architecture

model.

As the actors of the source i* architecture model may not be considered on the
generic i* architectural pattern, the dependencies related with these actors have to
be reallocated on the actors suggested by the pattern. This reallocation is done by
matching the different elements in both models until having the entire source i*
architecture model dependencies represented following the structure of the generic
i* architectural pattern.

As a result of the matching activities we create a new alternative i* architecture model
with the human and hardware actors of the Home Mobile Robot source i* architecture
model and the software actors of the Blackboard i* architectural pattern as it has been
customized applying the previous guideline. Once this is done, the reallocation of
responsibilities is carried out as follows: the processes for locating the user, analysing
the distance with objects and detecting predefined intrusions patterns fall into the

148 G. Grau and X. Franch

Lookout actor; the current path planning, including the control of the movement
actuators (rotation and advance functions) fall into the Pilot actor; the analysis of the
current position and the planning of the tele-surveillance path, remain inside the Map
Navigator; and, finally, the interpretation of user commands and the monitoring of all
his/her actions is done by the Control actor. Dependencies steaming from or going to
the hardware actors remains unchanged on the hardware actors’ side and are
reallocated into the Blackboard actor in the Software side, the rest are reallocated in
the software actors as mentioned.

6 Evaluation of the Alternative Architectures

There are many proposals that address the evaluation of alternatives, and there is also
already existing work to compare the different evaluation techniques [10]. According
to [8], there are several categories of evaluation techniques:

− Questioning techniques allow investigating any area of the project at any state of
readiness and include scenario-based methods [3], [4];

− Measuring techniques require the existence of some artefact to measure and
include the definition of metrics for an static analysis of the structure, being
common to use an Architecture Description Language for that purpose; and,

− Hybrid techniques that combine elements from questioning and measuring
techniques, such as the ATAM method [8].

In a deeper analysis of the techniques used in each category, we can observe that
most of the methods that evaluate architectures at their early stages use scenario-
based techniques, and that Architecture Description Languages represent a much
lower level of detail and focus on the evaluation of the behaviour and performance.

There is also work that addresses the evaluation of alternatives modelled within the
i* framework. Despite that most of this proposals use reasoning-based techniques
[27], structural metrics are also being used [5], [12], [13], [14].

Based on the structure of the i* SD models, it is possible to analyse the degree of
fulfilment of the quality attributes for each alternative architecture, which allows
evaluating the generated alternatives and informing their selection. The quality
attributes can be evaluated with metrics in the form proposed in [14]. Metrics are
defined in terms of the actors (actor-based metrics) and the dependencies
(dependency-based metrics) of the model. It is also possible to distinguish between
global and local metrics, where global metrics give an overall value of the quality-
attribute under consideration and local metrics uses maximum and minimum values to
locate specific elements. As we want to evaluate generated architectures, we will only
work with global metrics, for the definition and use of local metrics see [14].

• Global actor-based metrics. Given an architectural property P and an i* SD

model that represents a system model M = (A, D), where A are the actors and D
the dependencies among them, an actor-based architectural metric for P over M is
of the form:

Σa: a∈A: filterM(a) × correctionFactorM(a)
P(M) =

|| A ||

 A Goal-Oriented Approach for the Generation and Evaluation 149

being filterM: A [0,1] a function that assigns a weight to the every actor (e.g., if
the actor is human, software or from a specific kind), and correctionFactorM:
A [0,1] a function that corrects the weight of an actor considering the
dependencies stemming from or going to it.

• Global dependency-based metrics: Given an architectural property P and an i*
SD model that represents a system model M = (A, D), where A are the actors and
D the dependencies among them, a dependency-based architectural metric for P
over M is of the form:

Σd: d(a,b,x) ∈D: filterM(d)×correctionFactorM,dee(a)×correctionFactorM,der(b)
P(M) =

|| D ||

being filterM: D [0,1] a function that assigns a weight to the every dependum
(e.g., if the dependum is goal, resource, task, softgoal if it is from a specific kind),
and correctionFactorM,der: A [0,1] and correctionFactorM,dee: A [0,1] two
functions that correct the weight accordingly to the kind of actor that the depender
and the dependee are, respectively.

In order to guide the definition of the filters and correction factors proposed by the
metrics and perform the evaluation of the generated architectures, we propose the
following guidelines.

• Preliminaries: Quality Attributes Selection. Quality attributes tend to be non-

functional requirements or constraints that have already arisen in the previous
phases of the method and, as such, they are modelled as softgoals in the source i*
architecture model. However, not all the quality-attributes are equally important
and, thus, we have to choose the most relevant to the new architecture. This can be
done using different techniques being one of them prioritising the requirements
(e.g., by considering individual stakeholder ranking of properties).

• Guideline 2.1: Defining the Evaluation Goal. The Goal Question Metric (GQM)

paradigm [1] is commonly used for defining metrics. For instance, in [11] the
GQM is used to analyse what has to be measured. In our case, the scope of
measurement is restricted, as we already know that we want to measure the degree
on what the software architecture ensures a quality attribute. Thus, the general
form of the evaluation goal will be:
− To evaluate the <quality attribute> of the modelled software architecture in

order to assess it.
For instance, the evaluation goal for assessing the quality attribute maintainability
is:
− To evaluate the maintainability of the modelled software architecture in order

to assess it.

• Guideline 2.2: Defining the Goal Questions. Once the goal is defined, questions
for evaluating the goal have to be defined, in the same way as it is proposed in [1]
and applied in [11].

150 G. Grau and X. Franch

For instance, for assessing the goal defined for maintainability, the question is:
− What elements do affect maintainability?
In the literature, there is evidence that maintainability is better achieved it in those
architectures that present a low level of coupling and a high level of cohesion [6].

• Guideline 2.3: Defining the Goal Questions Metrics. Metrics are used to assess
the questions and, as we have explained at the beginning of this section, they can
be actor-based or dependency-based according to [14]. For deciding the kind of
metric we propose to define the following questions:

− What are the architectural elements that are more relevant for the quality
attribute?

If the components are more relevant, we define an actor-based metrics. If the
connections are more relevant we will define a dependency-based metric. Once the
kind of metrics is defined, we have to choose the values to be assigned to filterM(a)
and correctionFactorM(a) in actor-based metrics, and the ones for filterM(d),
correctionFactorM,der(a) and correctionFactorM,dee(a) in dependency-based metrics.

For guiding the selection of the most suitable structural element, we propose the set
of questions shown in Table 1. The contents of the table was defined after a deep
analysis of the structural elements on the i* framework. This kind of analysis is
similar to the one performed when applying metrics over UML Class Diagrams [15].

As a result, in Table 1 we present the set of questions for actor-based metrics. We
observe that a certain actor can be filtered according to its kind and the specific

Table 1. Questions, answers and examples for stating the filters and correction factors of actor-
based metrics

Metric element Question Answer Example Value
1.1. Actor-based: filterM(a)

Does the kind of the actor or the actor itself affects the quality attribute?
No FilterM(a) = 1

w, if a ∈ Human
x, if a ∈ Software
y, if a ∈ Hardware

Yes, the kind of component
affects the quality attribute.

FilterM(a) =

z, otherwise
m, if a = ActorA
n, if a = ActorB

Yes, the specific component
affects the quality attribute FilterM(a) =

...
1.2. Actor-based: correctionFactorM(a)

Does the actor dependencies or the actors related with the dependecies affects the
quality attribute?

No CorrectionFactorM(a) = 1
1 Yes, the number of

dependencies affects it. CorrectionFactorM(a) = #Dep(a)
1 Yes, the number of

dependencies ER affects it. CorrectionFactorM(a) = #Deper(a)
1 Yes, the number of

dependencies EE affects it. CorrectionFactorM(a) = #Depee(a)
1

Yes, the number of actors
related with a affects it. CorrectionFactorM(a) = #Actor(a)

 A Goal-Oriented Approach for the Generation and Evaluation 151

component it represents. A correction factor can be applied if the number of depend-
encies related with the actor (#dep(a)) negatively affects the quality attribute; if only
the dependencies where the actor is a depender (#Deper(a)) negatively affects the
quality attribute; if only the dependencies where the actor is a depender (#Depee(a))
negatively affects the quality attribute; or, if it is the total amount of actors related
with the actor (#actor(a)) that negatively affects the quality attribute.

We remark that both the filters and the correction factors can be further refined as
needed until getting the desired level of detail. For instance, we may only be
interested in the number of actors related with the actor that are of a certain kind or
that represent and specific component. Also other arithmetical combinations are
possible, if they allow providing more accuracy in the results. Dependency-based
metrics would be defined following a similar approach.

As we have mentioned before, maintainability is better achieved in those
architectures that present a low level of coupling and a high level of cohesion. In the
structure of the i* models a low level of coupling can be measured by stating an actor-
based metric, where the number of actors related with the current actor negatively
affects the property:

1
Actor-based coupling metric: filterM(a) = 1 and correctionFactorM(a) = #Actor(a

)

In a similar manner, cohesion is related with the number of dependencies that
steam from or goes through each actor. If the same dependency appears more than
once, cohesion is damaged. In this case we can define a dependency-based metric as
follows:

1 correctionFactorM,der(d) = 1 Dependency-based
cohesion metric:

filterM(d) =
#Duplicated(d)

 and
correctionFactorM,dee(d) = 1

• Guideline 2.4: Evaluating the Metrics. The evaluation of the metrics is done by
applying the corresponding actor-based or dependency-based formula with the
values stated in the previous guideline. As alternative i* architecture models can be
large and complex, tool support is essential. As we have mentioned in section 4,
we use J-PRiM [18] to support the evaluation of the alternatives according to the
defined metrics.

In order to show the application of the metrics, we have generated and evaluated 4
different alternatives architectures for the HSR in J-PRiM [18]. In Fig. 4. we show an
schema of how the dependencies are distributed according to the patterns: A)
Blackboard; B) 8-Layers defining the 8 levels as proposed in [26]; C) 3-Layers
defining the 3 levels as proposed in [6], and D) a Control-loop as defined in [26].

The results of the evaluation are presented in Table 2. According to the coupling
metric, we observe that those alternative i* architecture models where there are more
components and these components have dependencies with few other ones, score
better for coupling (e.g., Layered architectures, being 8 levels better than 3). On the
other hand, those alternative i* architecture models where there are less dependencies
for data interchange between different components, score better for cohesion (e.g., the
Control loop architecture is more cohesive than the Layered architectures). Therefore,
the solution that provides a better trade-off of this aspects is the Blackboard pattern.

152 G. Grau and X. Franch

D D D D

D

DD

D

D D D D

D

D

D

D

D D D D

D

D D D D

D

Fig. 4. Schema of the generated alternative i* architecture models

Table 2. Evaluation results for the metrics indicating cohesion and coupling over 4 different
architectural styles

Property Blackboard
pattern

8-Levels layered
architecture

3-Levels layered
architecture

Control-loop
architecture

Coupling 0.6250 0.5814 0.6065 0.8125
Cohesion 0.5217 0.1611 0.4000 0.95

7 Conclusions and Future Work

In this paper we present a set of guidelines for the generation and evaluation of
alternative architectures. Our proposal uses the i* framework, a goal-oriented
modelling language that represents the software architecture functional and non-
functional requirements using actors and dependencies between them. The guidelines
assume that an initial source i* architecture model and a set of relevant quality
attributes have been obtained previously to the execution of the guidelines. From this
point of view, we address the generation and evaluation of alternatives by adapting
existing architecture solutions to the i* framework by generating generic i*
architectural patterns. The elements on those patterns are analysed and matched
against the ones on the source i* architecture model in order to obtain the alternative
i* architecture models. Finally, these models are evaluated by applying structural
metrics, which are defined by following a set of guidelines that follows the Goal
Question Metric paradigm [1]. This process is supported by J-PRiM [18].

Among the benefits of the proposed approach we remark the following three. First,
architectures are modelled at the early stages of the requirements process using a goal-
oriented language, which we believe reduces the gap that is usually found between
requirements and architectures. Second, it allows applying structural metrics directly on
the requirements model, allowing the evaluation of alternative architectures without
having to build any other artefact. Finally, as we are representing architecture-related

 A Goal-Oriented Approach for the Generation and Evaluation 153

concepts at the requirements level, we can benefit from the contributions and experience
on both the use of the i* framework and the research on the generation and evaluation of
alternatives.

Regarding the capabilities to deal with the modelling, generation and evaluation of
software architectures, our process satisfies the desiderata proposed in [26] as
follows:

• Composition. The i* framework allows describing a system as a composition of
independent components and connections, where the components are represented
by actors and the connections are represented by means of dependencies between
these actors.

• Abstraction. The i* framework allows describing the components and their
interaction at different abstraction levels. Thus, the system can be represented as a
unique software actor or as a set of software actors representing the components of
the software architecture.

• Reusability. Reusability is achieved at two levels. On the one hand, generic i*
architectural patterns are created only once for each architectural solution and can
be used in other applications of the process. On the other hand, generated i*
architectures can be used as the source i* architecture model in further iterations of
the process.

• Configuration. The generated i* architectures are based on existing architectural
solutions, which clearly states that the system structure is independent from the
elements being structured.

• Heterogeneity. It is possible to combine several architectural descriptions
modelled within the i* framework, and also to switch the level of detail they
represent (for instance, from the whole system to the representation of architectural
patterns or architectural styles).

• Analysis. We propose to analyse the resulting i* models using structural metrics as
proposed in [14], however other analysis techniques within the i* framework can
be used. They can be based on the structural properties of the i* framework [2],
[12], [13], or based on the reasoning capabilities it provides [27], [28].

As future work, we aim at creating a catalogue of generic i* architectural patterns and
a catalogue of reusable structural metrics. We are interested in stating which types of
architectural attributes can be evaluated with structural metrics, and how to define
them and use them in a simple way in order to make the evaluation of alternatives
more systematic. Although the use of J-PRiM has been adequate for supporting the
development of the Home Service Robot case study, more experimentation will be
done in order to provide accurate data on the effort and benefits of using this approach
in industrial case studies.

Acknowledgements. This work has been partially supported by the CICYT
programme project TIN2004-07461-C02-01. Gemma Grau work is supported by an
UPC research scholarship.

154 G. Grau and X. Franch

References

1. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach.
Encyclopedia of Software Engineering. Wiley, Chichester (1994)

2. Bastos, L.R.D., Castro, J.F.B.: Enhancing Requirements to derive Multi-Agent
Architectures. In: Proceedings of WER 2004, pp. 127–139 (2004)

3. Bengtsson, P., Bosch, J.: Scenario-based Software Architecture Reengineering. In:
Proceedings of the 5th International Conference on Software Reuse, pp. 308–317 (1998)

4. de Bruin, H., van Vliet, H.: Scenario-based Generation and Evaluation of Software
Architectures. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 128–139. Springer,
Heidelberg (2001)

5. Bryl, V., Massacci, Mylopoulos, J., Zannone, N.: Designing Security Requirements
Models Through Planning. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001,
pp. 33–47. Springer, Heidelberg (2006)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture. A System of Patterns, vol. 1. John’s Wiley & Sons Ltd, Chichester
(2001)

7. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (2000)

8. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures. Methods and
Case Studies. Addison-Wesley, Reading (2002)

9. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

10. Dobrica, L., Niemelä, E.: A survey on software architecture analysis methods. IEEE
Transactions on Software Engineering 28(7), 638–653 (2002)

11. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.
International Thomson Computer Press (1996)

12. Franch, X., Maiden, N.: Modeling Component Dependencies to Inform their Selection. In:
Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580, Springer, Heidelberg
(2003)

13. Franch, X.: On the Quantitative Analysis of Agent-Oriented Models. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 495–509. Springer, Heidelberg (2006)

14. Franch, X., Grau, G., Quer, C.: A Framework for the Definition of Metrics for Actor-
Dependency Models. In: Proceedings of RE 2004, pp. 348–349 (2004)

15. Genero, M., Piattini, M., Calero, C.: A Survey of Metrics for UML Class Diagrams.
Journal of Object Technology 4(9), 59–92 (2005)

16. Grau, G., Franch, X.: ReeF: Defining a Customizable Reengineering Framework. In:
CAiSE 2007. LNCS, vol. 4495, pp. 485–500. Springer, Heidelberg (2007)

17. Grau, G., Franch, X.: On the Adequacy of i* Models for Representing and Analysing
Software Architectures. In: RIGiM 2007 (at ER 2007). Proceedings of the First
International Workshop on Requirements, Intentions and Goals in Conceptual Modelling
(to appear, 2007)

18. Grau, G., Franch, X., Ávila, S.: J-PRiM: A Java Tool for a Process Reengineering i*
Methodology. In: Proceedings of RE 2006, pp. 352–353 (2006)

19. Grau, G., Franch, X., Maiden, N.A.M.: A Goal Based Round-Trip Method for System
Development. In: Proceedings of REFSQ 2005, pp. 71–86 (2005)

20. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements and
architectures with intermediate models. Software and Systems Modeling 3(3), 235–253
(2004)

 A Goal-Oriented Approach for the Generation and Evaluation 155

21. The i* wiki (last accessed, May 2007), http://istar.rwth-aachen.de/
22. Kang, K.C., Kim, M., Lee, J., Kim, B.: Feature-Oriented Re-engineering of Legacy

Systems into Product Line Assets - a case study. In: Obbink, H., Pohl, K. (eds.) SPLC
2005. LNCS, vol. 3714, pp. 45–56. Springer, Heidelberg (2005)

23. Kim, M., Lee, J., Kang, K.C., Hong, Y., Bang, S.: Re-engineering Software Architecture
of Home Service Robots: A Case Study. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005.
LNCS, vol. 4309, pp. 505–513. Springer, Heidelberg (2006)

24. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 617–632.
Springer, Heidelberg (2003)

25. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proceedings of ISRE 2001, pp. 249–263 (2001)

26. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

27. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD. thesis,
University of Toronto (1995)

28. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering. In: ISRE 1997. 3rd IEEE Intl. Symposium on Requirements Engineering
(1997)

Hierarchical Verification in Maude of Lf P

Software Architectures

Chadlia Jerad1, Kamel Barkaoui2, and Amel Grissa Touzi1

1 LSTS - ENIT, BP 37, le Belvedere 1002 Tunis, Tunisia
jerad.chadlia@gawab.com, amel.touzi@enit.rnu.tn

2 CEDRIC - CNAM, 292, Rue Saint-Martin Paris 75003, France
barkaoui@cnam.fr

Abstract. Software architecture description languages allow software
designers to focus on high level aspects of an application by abstracting
from details. In general, a system’s architecture is specified in a hierar-
chical way. In fact, hierarchical components hide, at each level, the com-
plexity of the sub-entities composing the system. As rewriting logic is
a natural semantic framework for representing concurrency, parallelism,
communication and interaction, it can be used for systems specification
and verification. In this paper, we show how we can take advantage of
hierarchical modeling of software systems specified with Lf P, to proto-
type model checking process using Maude system. This approach allows
us to hide and show, freely and easily, encapsulated details by moving
between hierarchical levels. Thus, state explosion problem is mastered
and reduced. In addition, system’s maintainability and error detection
become easier and faster.

1 Introduction

During the past decade, architectural design has emerged as an important sub-
field of software engineering. In fact, a good architecture can help ensure that
a system will satisfy key requirements. Consequently, a new discipline emerged,
which concerns formal notations for representing and analyzing architectural
designs: Architecture Description Languages (ADL) [1]. ADL allow to model
hierarchical components systems. These systems make visible the hierarchy and
hide, at each level the complexity of the sub-entities. The compositional aspect
together with the separation between functional (behavior hierarchical model-
ing) and non functional aspects help the implementation and maintenance of
complex software systems. After modeling step, designers want then to make
sure that the built application is safe. Rewriting Logic (RL) formalism has been
used in the verification of systems models [2]. Maude is an executable specifica-
tion language based on rewriting logic, that includes a Linear Temporal Logic
(LTL) model checker as a module [3].

Hierarchical modeling of functional aspects can be seen as behavior refine-
ment, since there are visible and hidden behaviors. Many works dealt with the
notion of refinement. Particularly, we mention the work of Malcolm and Goguen

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 156–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hierarchical Verification in Maude of Lf P Software Architectures 157

in [4] that concerns refinement and rewriting logic. Their work combines order
sorted and hidden sorted equational logics. However, our work is about behavior
refinement in rewriting logic rules.

In this paper, we show how we can take advantage of hierarchical modeling of
distributed software systems specified in Lf P, Language for Prototyping [5], to
prototype model checking process using Maude system. Lf P is a formal approach
dedicated to the description of distributed software architectures. We chose Lf P
because, in this language, functional aspects are hierarchically defined. In [6] and
[7], we have shown, respectively, how we can translate Lf P semantics into RL by
a systematic mapping and how we use Maude’s model checker in order to verify
properties expressed in LTL. Unfortunately, this mapping does not preserve Lf P
description hierarchical aspects. The following work fills this lack and allows to
perform, what we call ”hierarchical model checking”. Using this technique, we
can hide or show encapsulated details in a free and easy way when performing
the verification process, by moving between hierarchical levels. Moreover, state
explosion problem is mastered and reduced and error detection become easier
and faster.

This paper is organized as follows: in section 2, we recall basic concepts related
to ADL and RL. Section 3 introduces hierarchical modeling of distributed sys-
tems using Lf P language. In section 4, we present the rules of the new mapping
of Lf P semantics into rewriting logic. Hierarchical model checking principles, ad-
vantages and concretization using Maude are detailed in section 5. In section 6,
we conclude the paper and give some perspectives about further work.

2 Basic Concepts

In this section, we introduce basic concepts of architecture description languages
and rewriting logic.

2.1 Architecture Description Languages

Software architecture plays typically a key role as a bridge between requirements
and code. By providing an abstract description (or model) of a system, the archi-
tecture exposes certain properties, while hiding others. Initially, the architectural
design was largely an ad hoc affair [1]. One development has been the creation
of formal notations for representing and analyzing architectural designs. ADL
usually provide both a conceptual framework and a concrete syntax for charac-
terizing software architectures [1,8]. The use of ADL offers several advantages.
Indeed, ADL allow: the reuse of architectural design specifications, rapid proto-
typing, supports use for evolution and re-engineering and better understanding
of architectural designs through early errors detection, and quality of service
analysis [1,8].

In hierarchical component frameworks, different components can be assembled
together creating a new self contained component which can be itself assembled
to other components in upper level of hierarchy. Hierarchical components make
visible the hierarchy of the system and hide, at each level the complexity of

158 C. Jerad, K. Barkaoui, and A. Grissa Touzi

the sub-entities. The compositional aspect together with the separation between
functional and non functional aspects help the implementation and maintenance
of complex software systems.

A number of ADL have been proposed for modeling architectures, both within
a particular domain and as general-purpose architecture modeling languages.
As example of ADL, we note Rapide [9], Wright [10], and Lf P [11]. We find
Lf P particularly interesting. In fact, its methodology is relevant, it allows the
hierarchical modeling of functional features and a code generator have been
developed.

2.2 Rewriting Logic

The theory of rewriting logic has proved to be very useful to find a unifying
framework for concurrency formalisms [12]. In [13], Meseguer showed in a num-
ber of examples that it is suitable as a common framework for concurrency. For
rewriting logic, the entities in question are concurrent systems having states and
evolving by means of transitions. Rewrite rules in the theory describe which ele-
mentary local transitions are possible in the distributed state by concurrent local
transformations [14]. In object-oriented rewriting logic, object-oriented message-
passing style and functional styles can be freely mixed. Messages are then ex-
changed between objects, and cause communication events by application of
rewrite rules. Concurrent rewriting modulo structural axioms of associativity,
commutativity and identity capture abstractly the essential aspects of commu-
nication in a distributed object oriented configuration made up of concurrent
objects and messages [14].

In recent years, several executable specification languages based on RL have
been designed and implemented. Maude system is an efficient tool for systems’
specification and analysis based on rewrite logic. Typically, Maude specifications
are executable [3]. Maude system provides a syntax for representing object ori-
ented concepts. Maude’s object oriented syntax models the concurrent state of
the system (or configuration) as a multi-set of objects and messages. Objects
and messages are singletons of type configuration. Complex structures are, thus,
represented as union of configuration singletons. The concurrent interactions
between the objects are controlled by rewriting rules. We assume readers to be
familiar with Maude system. For details about Maude’s syntax, readers may
refer to [3]. In Maude system, we can use properties specifications, expressed
in LTL and implemented model checking procedures, to check properties in a
given module starting from an initial state [3]. Indeed, the LTL model checker
is described and specified as a Maude’s module.

3 Hierarchical Modeling of Distributed Systems with
Lf P

When dealing with distributed architectures, we have to tackle with structure
control problem. Lf P [11,5,15], which was developed within the MORSE project
[16], is a formal approach to distributed software architectures. Lf P is inspired

Hierarchical Verification in Maude of Lf P Software Architectures 159

from RM-ODP reference model [17]. This language models the composition
of the system (non functional aspects) through a set of interacting compo-
nents, while functional aspects are hierarchically defined. In this section, we
present Lf P language and its hierarchical structuring elements through an ex-
ample.

3.1 Lf P Methodology

Lf P methodology [5] is a model-based development. This approach aims at im-
plementing evolutionary prototyping capabilities. Lf P model can be partially
generated from UML standard diagrams. However, it contains enriched informa-
tion compared to other UML diagrams. Once the Lf P model is produced, system
synthesis can be performed. When all properties stated in the Lf P model are
verified, the code generator produces pieces of programs to be compiled and
deployed in the target execution environment [5]. Lf P specifications are a set
of hierarchical diagrams representing the behavior of models’ components. Each
Lf P model uses two complementary diagrams: Lf P-Architecture Diagram (Lf P-
AD) and Lf P-Behavior Diagrams (Lf P-BD) [15].

We consider the example of a distributed task manager system. Let us first
introduce our example with the UML class diagram of figure 1 that shows the
main model components. This system is composed of a task scheduler machine,
and three units: Unit1, Unit2 and Unit3. Each Unit performs a specific job on
a worksheet given by the task scheduler machine. When done, the unit returns
the worksheet back to the machine with an evaluation mark, which is an integer
describing the result. The task scheduler schedules the workflow between the
different units. After receiving the worksheet from a unit, it sends it to the next
unit (in a circular way) if the evaluation mark is positive, while it returns it to
the sending unit if the evaluation mark is negative.

The TaskScheduler class declares two methods. The receive method al-
lows to get from a unit the worksheet and the evaluation mark. The schedule
method determines to which unit the machine should send the worksheet. Unit
is an abstract class that declares four methods. The receive method gets the
worksheet from the task scheduler machine. The send method allows to send the
worksheet and the evaluation mark to the machine. The performJob method
performs the job on the given worksheet and the computeEvalMark computes

Fig. 1. UML class Diagram of the task manager system

160 C. Jerad, K. Barkaoui, and A. Grissa Touzi

and returns the evaluation mark of the process. Unit1, Unit2 and Unit3 classes
inherit from the class Unit. Each one implements its own methods performJob
and computeEvalMark.

3.2 Lf P Architecture Diagram

The Lf P-AD [5,15] presents the different components constituting the system
and the relations among them. It is composed of three main elements: classes,
medias and binders. Classes and medias are the Lf P components. Lf P classes
represent the applicative model components. They correspond to an UML imple-
mentation class and express some functional aspects of the system. Lf P medias
connect instances of Lf P classes and correspond to UML associations, aggre-
gations or compositions. They specify binding constraints and communication
protocol semantics. The execution contract of Lf P components is then specified
by the means of Lf P-BD. Lf P binders are buffer messages allowing the connec-
tion between classes end medias. Binding constraints specify: (i) a reference to
the connected binding point, (ii) communication mode (synchronous or asyn-
chronous), (iii) ordering policy (fifo or bag) and (iv) binding multiplicity. Lf P
ports are the physical connection points of binders.

We recall here the example of the task manager system. We now reformu-
late the UML specification in order to obtain the backbone of the Lf P speci-
fication. Figure 2 shows the obtained Lf P-AD. This diagram contains Unit1,
Unit2, Unit3 and TaskScheduler classes, in addition to two new components
FifoMedia, which correspond to association relations. These medias encapsu-
late the communication protocol. We notice that similar binders link classes to
medias (synchronous, multiplicity 1, fifo, 5). The Lf P-AD also contains a decla-
ration part in which we specify classes instances.

Fig. 2. Lf P-AD of the task manager system

Hierarchical Verification in Maude of Lf P Software Architectures 161

3.3 Lf P Behavior Diagrams and Hierarchical Structuring Elements

Lf P-BD [5,15] specifies, in a hierarchical way, the execution contract of each com-
ponent. The global structure of the Lf P-BD corresponds to a state/transition
automaton. Lf P-BD contains: (i) a declarative part and (ii) the diagram itself.
It contains basic elements (nodes) wired together. The basic elements of Lf P-
BD are: states, transitions, instantiation transitions and communication transi-
tions. There are two kinds of transitions: simple and hierarchical. Hierarchical
transitions model calls to Lf P-triggers and Lf P-methods. The Lf P-trigger is
someway like a private method of a class, but should not be considered as one.
In one hand, it collects a set of transitions that can be called in different points
of a behavior diagram. In the other hand, it does not declare parameters or a
returning value, and can not be used to model recursion. The Lf P-method is
someway like a public method of a class. It is activated after the reception of the
needed message. Consequently, Lf P-methods are used for modeling remote pro-
cedure calls or message communication. However, Lf P-method can not contain
calls to other Lf P-methods. Communication transitions express communication
events as messages sending and/or reading. Table 1 summarizes the graphical
representation of Lf P-BD nodes.

Systems hierarchical modeling with Lf P concerns functional aspects, while
non functional aspects are not specified in a hierarchical way. These functional
aspects are specified through Lf P-BD.

Definition 1. A sub-LfP-Behavior Diagram is an LfP-BD that defines the con-
tents of a hierarchical transition [5].

Hierarchical structuring elements of Lf P-BDs are sub-Lf P-BDs decomposing
hierarchical transitions. In sub-Lf P-BD, designers can define local variables, as
well as instructions. This automata is itself likely to contain sub-diagrams. Thus,
we obtain several hierarchy levels.

We illustrate the use of Lf P-BD for components behavior specification
through the task manager system. However, for simplicity reasons, we will focus
only on TaskScheduler component. The behavior contract of this class is speci-
fied using Lf P-BD (figure 3). The Lf P-BD contains a declarative part specifying
ports, variables and a list of methods and triggers, in addition to the diagram it-
self. In a hierarchical way, we specify the behavior of each of the methods/triggers

Table 1. Lf P-BD nodes representation

Symbol node Graphical representation

State

Transition

Instantiation

Communication

162 C. Jerad, K. Barkaoui, and A. Grissa Touzi

Fig. 3. Lf P-BD of TaskScheduler class

(a) receive method (b) schedule trigger

Fig. 4. Lf P-BD of receive method and schedule trigger

declared in TaskScheduler class. Figure 4-a and figure 4-b show the execution
contracts of, respectively, receive method and schedule trigger.

4 Mapping of Lf P Semantics into RL

In this section, we present the mapping of Lf P semantics into rewriting logic
semantics with Maude language. A previous work concerning the mapping has
been presented in [6], but without handling behavior diagrams hierarchical struc-
ture. We resolve this lack in this paper.

4.1 Mapping of Lf P Basic Concepts

In order to express the mapping operation with respect to Lf P language con-
cepts, we created module LfP that contains the declaration of basic concepts.
This module will be included in all the other modules. Figure 5 shows the LfP
module.

In LfPmodule, we declare the sort Port, for Lf P ports, the sub-sorts ClassCid
and MediaCid for Lf P components class identifiers and the sub-sorts ClassOid
and MediaOid for Lf P components object identifiers. We also declare the
messages LfPMsg and RetMsg. However, messages declarations are specific to
the considered application. Thus, it may change from a system to another.
Three operations are declared in this module. BDState operation is a subsort of
Configuration and indicates in which state (indicated by an integer) is the given
object. BinderCM is a binder connecting a class to a media, while BinderMC is
a binder connecting a media to a class. The parameters of these two operations

Hierarchical Verification in Maude of Lf P Software Architectures 163

mod LfP is
pr INT . pr STRING . inc CONFIGURATION .
sorts Port ClassCid MediaCid ClassOid MediaOid .
subsorts ClassOid MediaOid < Oid .
subsorts ClassCid MediaCid < Cid .
op LfPMsg RetMsg : ClassOid Port String Int -> Msg .
op BDState : Oid Int -> Configuration .
op BinderCM : ClassOid Port MediaOid Int Int -> Configuration .
op BinderMC : MediaOid ClassOid Port Int Int -> Configuration .
...

endm

Fig. 5. LfP module

include the media, the class and its communication port, the capacity of the
binder and the number of messages ”actually” in it.

4.2 Mapping of Lf P-Architecture Diagram

Since rewriting logic allows modeling concurrent objects, Lf P-AD is mapped
into object-oriented rewrite theories in rewriting logic. Table 2 summarizes this
mapping. We notice that this mapping preserves the original modularity of the
Lf P-AD.

Binders are responsible for message passing from classes to medias and vice-
versa. Therefore, we mapped the ordering policy of binders into rewrite rules
and conditional rewrite rules. Indeed, a message goes through four transfers:
class-binder, binder-media, media-binder and binder-class. These transfers are
modeled by rewrite rules that describe messages’ state changes. For this purpose,
we define the state of a message by the specification of its location (class, media
or binder) and its function (sent or read). Possible states are: ”S” (the message
is in the sender class), ”SB” (the message is in the sender binder), ”SMIn” (the
message entered the media), ”RMOut” (the message is ready to be transferred to
the binder), ”RB” (the message is in the reader binder) and ”R” (the message is
in the reader class).

Table 2. Mapping of Lf P-AD into RL

Lf P-AD RL

Lf P-AD Object-oriented theories
Lf P class Object module
Lf P media Object module
Lf P binder Terms having the operations BinderCM or BinderMC on

top
Ordering policy Rewrite rules on Messages
Component instance Object

164 C. Jerad, K. Barkaoui, and A. Grissa Touzi

4.3 Mapping of Lf P-Behavior Diagram

Lf P-BD specifies the transition of the system from one state to another, in
response to certain events. Thus, we give an identification number to each Lf P-
state . The identification number of the Lf P-state ”Begin” (respectively ”End”)
belonging to a sub-Lf P-BD must be equal to the identification number of the
Lf P state source (respectively target) of the corresponding hierarchical transi-
tion. Lf P states are mapped into terms having the operation BDState on top.
Since Lf P transitions firings cause state changes in the system, they are mapped
into conditional and/or non-conditional rewriting rules. These rules describe the
creation, modification and destruction of messages and objects. The mapping of
Lf P-BD nodes is done according to the rules appearing in table 3.

Table 3. Mapping of Lf P-BD into RL

Lf P-BD RL

Lf P-BD of an Lf P component Set of rewrite rules (conditional or/and uncon-
ditional)

Lf P-BD state Term having the operation BDState on top
Lf P-BD transition Rewrite rule
Lf P-BD transition with a guard Conditional rewrite rule
Lf P-BD read transition LfPMsg message at the state ”R”
Lf P-BD send transition LfPMsg message creation at the state ”S”
Lf P-BD send/read transition RetMsg messages at the states ”S” and ”R”
Lf P-BD class instantiation Creation of an instance in the rule

All the obtained rules are then grouped in a single module importing all
the other modules obtained from the mapping of the Lf P-AD. Accordingly, this
module will be the specification of the whole system in rewriting logic semantics.

4.4 Rules for Mapping Lf P Transitions

In Maude system, rewriting rules can have labels. In our mapping process, we
will use these labels in order to store some information about corresponding
transitions. These information are needed for performing hierarchical verifica-
tion. We adopt the syntax in figure 6 for writing rules’ labels. The rule label
parameters are: (i) HLevel, which is an integer indicating the hierarchical level
of the corresponding transition (in the next section, we give the definition of
the hierarchical level of a given transition (definition 4)), (ii) TType, which is a
character indicating the type of the corresponding transition and (iii) AddLabel,
which is an additional label that users may want to add. TType takes either the
value ’S’, if the transition is simple, or ’H’ if the transition is hierarchical. We
note that the string AddLabel must not contain the sub-strings ”-S-” or ”-H-”
to avoid confusion with TType value. In the same way we find out the label
parameters of a conditional rule corresponding to an Lf P guarded transition.

It is important to notice that the final module will contain the description of
all the system hierarchy levels. In addition, the transfer from the initial state to

Hierarchical Verification in Maude of Lf P Software Architectures 165

rl [HLevel-TType-AddLabel] :
M1 ... Mn < O1 : F1 | at1 > ... < Om : Fm | atm >

=> M’1 ... M’q < Oi1 : Fi1’ | ati1’ > ... < Oik : Fik’ | atik’>
< Q1 : D1 | at"1 > ... < Qp : Dp | at"p > .

Fig. 6. Rule syntax

the final state in each sub-Lf P-BD will be described twice. Indeed, we have a
direct transfer resulting from mapping the corresponding hierarchical transition
and a detailed transfer resulting from the mapping of the sub-Lf P-BD.

4.5 Example

In this section, we recall the example of the task manager system introduced in
section 3. After applying our mapping, we obtain seven rewriting rules for the
TaskScheduler class. We note that before writing the rules, we gave to Lf P-BD
states the identification numbers 1, 2 and 3, from left to right. Figure 7 shows
the rules corresponding to the mapping of its Lf P-BDs (rules [0-H-receive],
[0-H-schedule] and [0-S-]) and the Lf P-BD of the schedule trigger (rules
[1-S-] and [1-S]). We note that we do not present the whole rules’ syntax for
clarity reasons.

We notice that we can easily regenerate the Lf P-BD from this set of rewriting
rules described with Maude.

5 Hierarchical Model Checking in Lf P Using Maude

In our work, we take advantage of Lf P-BD hierarchical structuring to set our ap-
proach of prototyping verificationprocess by applying hierarchicalmodel checking.

*** TaskScheduler LfP-BD rules
rl [0-H-receive] : < TS : TaskScheduler | > BDState(TS, 1)

=> < TS : TaskScheduler | > BDState(TS, 2) .
rl [0-H-schedule] : < TS : TaskScheduler | > BDState(TS, 2)

=> < TS : TaskScheduler | > BDState(TS, 3) .
rl [0-S-] : BDState(TS, 3)

< TS : TaskScheduler | output : out , un : u , workSheet : wsh >
=> < TS : TaskScheduler | output : out , un : u , workSheet : wsh >
BDState(TS, 1) LfPMsg(TS, out, "S", 0, u, wsh) .

*** schedule LfP-BD rules
crl [1-S-] : < TS : TaskScheduler | un : u , evalMark : N > BDState(TS, 2)

=> < TS : TaskScheduler | un : s(u) , evalMark : N > BDState(TS, 3)
if N < 0 .

crl [1-S-] : < TS : TaskScheduler | un : u , evalMark : N > BDState(TS, 2)
=> < TS : TaskScheduler | un : u , evalMark : N > BDState(TS, 3)
if N > 0 .

Fig. 7. Mapping of TaskScheduler Lf P-BD and schedule Lf P-BD

166 C. Jerad, K. Barkaoui, and A. Grissa Touzi

5.1 Hierarchical Verification Principles

In order to introduce hierarchical verification principles, we first present defini-
tions that we settled for hierarchical systems modeling using Lf P.

Definition 2. A given LfP-BD is of hierarchical level 0 if it is the LfP-BD of
an LfP component.

In recursive way, we define Lf P-BD of hierarchical level N , N ∈ N+ \ {0}.

Definition 3. A given LfP-BD is of hierarchical level N , N ∈ N+ \ {0} if it is
a sub-LfP-BD of hierarchical transition belonging to an LfP-BD of hierarchical
level (N − 1).

In Lf P-BD, we have two types of transitions: simple, and hierarchical. In our
work, we add another criterion for characterizing transitions, which is the hier-
archical level. Using the two last definitions (2 and 3), we give the definition of
an Lf P-BD transition of hierarchical level I.

Definition 4. A given LfP-BD transition is of hierarchical level I if it belongs
to an LfP-BD of hierarchical level I.

Now we give the definition of hierarchical verification.

Definition 5. The hierarchical verification at level N of a given system’s model
DS specified in LfP, is the verification of the sub-system containing only the
mapping of LfP-BD of hierarchical level M , 0 ≤ M ≤ N , after removing hi-
erarchical aspects (this means that we perform verification in the flattened sub-
system).

From the definition 5, we deduce that hierarchical verification at level N means
that we make abstraction of all the Lf P-BD which hierarchical levels are strictly
upper than N . Thus, details of the hierarchical level N + 1 and upper are not
visible. We can express this as details encapsulation at verification time. At the
same time, we keep only the details of the hierarchical levels 0 to N and without
redundancy.

Let DS be the Lf P specification of a distributed system S. Let N be a level
of DS’s hierarchy. By abstraction, we derive the following properties:

Property 1. If DS satisfies a given property ϕ at level N , then at each level M ,
0 ≤ M ≤ N where ϕ can be expressed, DS satisfies the property ϕ at that level
M .

Property 2. If DS satisfies a given property ϕ at level N and does not satisfy ϕ
at level N ′, N ′ > N , then the error related to ϕ is located between the levels
N + 1 and N ′.

Hierarchical Verification in Maude of Lf P Software Architectures 167

5.2 Hierarchical Verification Advantages

Our new approach of hierarchical verification makes abstraction of the encap-
sulated details in upper levels. Thus, the obtained model to check contains less
rules than the initial model. Consequently, the state explosion problem is mas-
tered and reduced. In addition, errors detection can be performed at earlier
stages of specification, even before building the whole model. In addition, er-
rors localization is much easier since we have a reduced number of suspicious
rules. Moreover, hierarchical verification has the advantage of maintainability
and the re-factoring. Indeed, if a given system satisfies a property ϕ at level N
and we make a modification at a level M , M > N , the system is still satisfying
ϕ at level N . In this way, the verification of the new system will be faster and
easier.

5.3 Hierarchical Modules Extraction in Maude

In order to implement hierarchical model checking in Maude, we need to build
a new module M ′ of hierarchical level N , starting from the initial module M
containing all the rules describing the system. We first give the definition of a
module of hierarchical level N (definition 6).

Definition 6. A module M ′ of hierarchical level N is a submodule of M flat-
tened down to level N .

We establish the following relations between the rules of the starting module
M and the rules of the built module M ′. Let R be a rule in the module M
corresponding to an Lf P-transition T of hierarchical level T l.

– If T l > N , the rule R will not belong to M ′.
– If T l = N , the rule R will belong to M ′.
– If T l < N , we have two cases :

• If T is hierarchical or method, the rule R will not belong to M ′.
• And if T is simple, the rule R will belong to M ′.

In Maude, we can make use of META-LEVEL functions to create new strate-
gies [3]. In our case, we need an operation to remove certain rewrite laws ac-
cording to the given level. The functional module HIERARCHY (figure 8) allows us
to create modules at a given hierarchical level. This module imports the mod-
ules META-LEVEL and CONVERSION and declares the operations name, getHLevel
and rmvSH. The operation name gives the label of a given rule, while getHLevel
gives its hierarchical level. rmvSH operation gives a set of rules, according to
the relations we just detailed. Another operation is declared in this module,
which is metaHRed. This operation expresses the strategy that creates a hier-
archical module at the given level (of sort Qid), and calls upon the default
strategy (in metaReduce) to reduce the given term according to the new module
rules.

168 C. Jerad, K. Barkaoui, and A. Grissa Touzi

fmod HIERARCHY is
pr META-LEVEL . inc CONVERSION .
op name : Rule -> String .
op getHLevel : Rule -> Float .
op rmvRH : RuleSet Qid -> RuleSet .
op metaHRed : Module Term Qid -> ResultPair .
***Variables declaration...
eq name(rl T1 => T2 [label(Q) A] .) = string(Q) .
eq name(crl T1 => T2 if C [label(Q) A] .) = string(Q) .
eq getHLevel(R) = float(substr(name(R),0, find(name(R),"-",0)) + ".0") .
eq rmvRH(R RS, Q) = if getHLevel(R) > float(string(Q) + ".0")

then rmvRH(RS, Q)
else if getHLevel(R) == float(string(Q) + ".0") then R rmvRH(RS, Q)

else if find(name(R),"-S-",0) == notFound then rmvRH(RS, Q)
else R rmvRH(RS, Q)

fi fi fi .
eq rmvRH(none, Q) = none .
eq metaHRed(mod N is I sorts S . SS O MS ES RS endm, T1, Q)

= metaReduce(mod N is I sorts S . SS O MS ES rmvRH(RS,Q) endm, T1) .
endfm

Fig. 8. The functional module HIERARCHY

5.4 Hierarchical Model Checking Application with Maude

In this section, we assume readers to be familiar with Maude’s LTL model checker
[3]. In order to check our Lf P specification, we create a new module. This module
imports the module describing the whole system, MODEL-CHECKER module and
LTL-SIMPLIFIERmodule. The sort Configuration should be declared as subsort
of Prop and State. We then declare the operation propertyToCheck of kind
ModelCheckResult, that calls the modelCheck operation on given State and
Formula.

Let’s take the example of our task manager system. We need to check if for
a certain TSch TaskScheduler constant object, the third state is reachable or
not. For thispurpose, we declare the initial state and the property to check:
op position : Oid Int -> Prop .
eq BDState(O, N) C:Configuration |= position(O, N) = true .
eq initial = < TSch: TaskScheduler | ..., evalMark: 0 > BDState(TSch, 1) .
eq final = position(TSch, 3) .
op propertyToCheck : -> ModelCheckResult .
eq propertyToCheck = modelCheck(initial, [] ~ final) .

Hierarchical verification of this property at level 0 and at level 1 gives the
following results.

Maude> red in HIERARCHY : metaHRed([’TASK-MANAGER-CHECK],
’propertyToCheck.ModelCheckResult, ’0) .

rewrites: 16
result ResultPair:’counterexample[’...]

Hierarchical Verification in Maude of Lf P Software Architectures 169

Maude> red in HIERARCHY : metaHRed([’TASK-MANAGER-CHECK],
’propertyToCheck.ModelCheckResult, ’1) .

rewrites: 15
result ResultPair:’true.Bool,’Bool

The execution shows that the property (the third state is not reachable from
the first one) is satisfied at level 0 since we obtain a counter example. However,
the property is not satisfied at level 1. The error is then localized at level 1 (error
localization). If we recall the rewrite rules of that level in figure 7 and the state
initial, we will find that the case where the attribute evalMark is equal to
zero is not undertaken. Consequently, we have to go back to the Lf P-BD of
the method schedule to correct our Lf P specification (faster error detection).
If the made corrections concern only this diagram, then we do not need to check
the property at level 0. We directly move to level 1 checking (maintainability).

6 Conclusion

The abstraction in architecture description notations makes them suitable for
model checking. In our work, we took advantage of meta-programming power
with Maude to set our approach for hierarchical model checking of distributed
software systems specified in Lf P. This approach aims at prototype the verifica-
tion process. It has the advantages of mastering and reducing the state explosion
problem by freely hiding and showing encapsulated details while moving between
hierarchical levels. In addition, the system’s maintainability and error detection
become easier and faster. Moreover, our work demonstrates the expressive power
of rewriting logic. In the future, we will study hierarchical model checking by
modules composition.

References

1. Garlan, D.: Software architecture. Encyclopedia of Software Engineering, School
of computer science, Carnegie Mellon University (2001)

2. Leucker, M.: Rewriting logic as a framework for building generic tools
for verifying concurrent systems. RWTH Aachen, Germany (1998), URL:
citeseer.ist.psu.edu/leucker98rewriting.html

3. Clavel, M., et al.: Maude manuel (version 2.1) (March 2004)
4. Malcolm, G., Goguen, J.: Proving correctness of refinement and implementation.

Technical report, Oxford University (January 1996)
5. Gilliers, F.: Développement par prototypage et Généation de Code à partir de LfP,

un langage de modélisation de haut niveau. PhD thesis, Pierre et Marie Curie
University, Paris VI, France (2005)

6. Jerad, C., Barkaoui, K.: On the use of rewriting logic for verification of distributed
software architecture description based lf p. In: Proceedings the 16th IEEE Inter-
national Workshop on Rapid System Prototyping, Montreal, Canada, June 2005,
pp. 202–208. IEEE Computer Society Press, Los Alamitos (2005)

7. Jerad, C., Barkaoui, K., Grissa Touzi, A.: Vérification des architectures de systmes
distribués par utilisation du ltl model checker de maude. In: 8th African Conference
on Research in Computer Science, Cotonou, Benin, pp. 99–106 (November 2006)

citeseer.ist.psu.edu/leucker98rewriting.html

170 C. Jerad, K. Barkaoui, and A. Grissa Touzi

8. Richard, N., Medvidovic, N., Taylor: A classification and comparison framework
for software architecture description languages. IEEE Transactions on Software
Engineering 26(1) (January 2000)

9. Kenney, J.J.: Executable Formal Models of Distributed Transaction Systems Based
on Event Processing. PhD thesis, Department of Electrical Engineering, Stanford
University, USA (June 1996)

10. Allen, R.J.: A Formal Approach to Software Architecture. PhD thesis, School of
Computer Science, Carnegie Mellon University, USA (May 1997)

11. Regep, D., Kordon, F.: Lf P: A specification language for rapid prototyping of con-
current systems. In: 12th International Workshop on Rapid System Prototyping,
Monterey, California, pp. 90–96 (2001)

12. Meseguer, J.: Rewriting as a unified model of concurrency. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 384–400. Springer, Heidel-
berg (1990)

13. Meseguer, J.: Rewriting logic as a semantic framework for concurrency. In: Sassone,
V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, Springer, Heidelberg
(1996)

14. Marti-Oliet, N., Meseguer, J.: Rewriting logic: Roadmap and bibliography. Theo-
retical Computer Science (June 2001)

15. Gilliers, F.: Description de la sémantique du langage LfP. Work document, RNTL
MOSE Project MORSE-SRS-031114-V0.15-FGI, Pierre et Marie Curie University,
LIP6, France (June 2003)

16. MORSE project web site, http://www.lip6.fr/morse/
17. Wegmann, A., Naumenko, A.: Conceptual modelling of complex systems using

an rm-odp based ontology. In: 5th International Enterprise Distributed Object
Computing Conference, Seattle, USA, pp. 27–34 (September 2001)

http://www.lip6.fr/morse/

First Class Connectors for Prototyping Service

Oriented Architectures

Kristian Ellebæk Kjær

Department of Computer Science, University of Aarhus
Åbogade 34, 8200 Århus N., Denmark

argo@daimi.au.dk

Abstract. Prototyping Service Oriented Architectures based on web
services is a complex and time consuming process. Several steps, some of
them complicated, are required for even the simplest application. There-
fore, it is desirable to be able to create prototypes using more familiar
constructs, entirely within a single programming language, and then de-
fine some of the components as web services, and others as clients.

We present a framework which enables programmers to create web
services and clients in ArchJava, an extension to Java which supports
components and connectors as first class entities, by defining interfaces
to services as ports on components. This supports rapid creation of pro-
totypes by defining a component and connector structure of a web service
based system in ArchJava, and then later, with only minor modifications,
change the prototype to use web services. The services and client compo-
nents will not be aware of this. From their point of view they are talking
through connectors. Client components can also be connected to existing
web services.

1 Introduction

Web services have become a popular way to integrate existing systems in Service
Oriented Architectures [1], since they allow services to be created as an additional
layer between the system and the internet and allow for connecting services
provided by different administrative domains. Furthermore, they are based on
common standards, allowing integration of versatile systems in a convenient
manner. However, large systems based on web services are inherently complex,
and design time decisions, such as what to service enable and defining interfaces
must be decided early in the design process, and later changes can only be carried
out at significant cost.

When designing complex systems, prototyping has proven to be an effective
method for determining the viability of architectures and functionality. Floyd
defines software prototypes as executable systems which demonstrate relevant
parts of the software [2], Bardram et. al defines an architectural prototype as a
set of executables which are created to investigate relevant architectural qualities
[3], and have described the kind of qualities which are suitable for exploration
in such prototypes [4]. They describe the concept of architectural prototypes as
follows:

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 171–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 K. Ellebæk Kjær

An architectural prototype consists of a set of executables created to
investigate architectural qualities related to concerns raised by stake-
holders of a system under development. Architectural prototyping is the
process of designing, building, and evaluating architectural prototypes.

Architectural prototypes are not concerned with functionality, which is non-
architectural as observed by Bass. et al [5]. Bardram et al also observes, that this
is the characteristic which makes architectural prototypes cost-efficient. Equally
important, they note that even though architectural prototypes can be build by
hand, tool support might be available for a given domain. In our case, we build
a framework for constructing such prototypes in an efficient manner.

In a related article by Bardram et al [4], the authors explore what kind of
qualities, as defined by Bass et al, are suitable for exploration with architectural
prototypes. Among these, the central architectural quality attributes are concep-
tual integrity and buildability. The first is related to the architecture being clear,
and not eroded. The second is whether the architecture can actually be build in a
timely manner. E.g. the prototype may be created to explore new technologies or
architectures. Among the system quality attributes, we are especially interested
in are modifiability, testability, and performance. Software architecture does not
determine these qualities, but have an impact. Architectural prototypes are es-
pecially well suited for modifiability analysis, since all design time artifacts are
available as executables. Performance can not be completely determined by ar-
chitectural prototypes, but may establish more or less precise bounds on latency
of invocations, depending on how time consuming business logic is.

Building web services for prototyping is complex and expensive, since even
non-functional prototypes involves several steps:

1. Setting up at least one application server,
2. defining interfaces as wsdl,
3. generating stubs, skeletons, and types based on the wsdl file,
4. creating an, possibly empty, service implementation,
5. creating a client,
6. creating a service file, and
7. deploying the service file on the application server.

Furthermore, steps 2 through 7 must be repeated for each change in the structure
or interfaces. Although parts of this can be automated, it is a cumbersome task.

Is should be clear from the above, that building prototypes is desirable and
often necessary to determine key qualities of the system. Rapid prototyping
allows several different architectures to be explored.

To enable rapid prototyping, it is desirable to only be concerned with the
structure of the system. ArchJava is an extension to Java which supports build-
ing programs using first class components and connectors [6]. Communication
integrity is enforced in the sense that a component can only communicate with
its parent, i.e. the component which created it, and with components to which
it is explicitly connected through a connection. These features can be utilised
for creating prototypes by concentrating on a component and connector view of

First Class Connectors for Prototyping Service Oriented Architectures 173

the prototype as described by Bass et. al [5], and then later perform tests and
measurements on the system using web services.

There exists a number of other projects, which support rapid prototyping of
software systems, such as SoftArch/MTE [7]. However, most of these are not
especially suited for service oriented architectures. However, some prototyping
tools for web services do exist. Easy SOA is a tool for rapid prototyping tool
for web services, that run inside a web browser [8], and the Rapid Prototyp-
ing framework for SOAs provides a message oriented system for interactively
handling messages between services, also inside a web browser [9]. However,
while both allow for creating the structure of a system, they do not use familiar
programming concepts, and assume the existence of descriptions of the service
interfaces.

In the rest of this paper, we first describe connectors from a conceptual view
in Sec. 2, describe the framework in Sec. 3, an example of how the framework is
used in Sec. 4, performance of the current prototype in Sec. 5, and summarise
and discuss future work in Sec. 6.

2 Connectors

It has been argued by many that connectors play an important role in software
architecture and even that they should have a first class representation in pro-
gramming languages. Aldrich et al have implemented first class connectors in the
ArchJava language [10], Dashofy et. al. argues that connectors should be present
in architecture description languages [11], something which has also been argued
by Medvidovic and Taylor [12], and Shaw et al argues that connectors deserve
first-class status [13,14].

For our purpose, a connector is a first-class entity, which embodies commu-
nication. This naturally follows from the view offered by ArchJava. However,
when a connector is bound to an ArchJava component and a web service, the
ArchJava connector conceptually only embodies one role in a two role connector,
since the conceptual connector is the entire communication channel. The other
role is embodied in code running inside the application server. As described later,
in Sec. 3, this code is also part of the framework.

3 The Framework

Central to the framework is a custom ArchJava connector, WSConnector,
which has two primary uses: Connecting two ArchJava components where one
is instantiated as a web service, and connecting an ArchJava component to an
existing Web Service. When connecting two ArchJava components, one of the
components will actually be run as a web service, while the other will connect
to it. The framework assists in this, be supplying the necessary building blocks.
This implies, that the client component can only have required methods in the
port that connects to the service, while the service component can only have
provided methods in its service port. However, it is possible for a service to

174 K. Ellebæk Kjær

Fig. 1. Connecting a client and a service through an Archjava connector using Axis2.
Axis2 instantiates the ServerRole object, when a message for the service is received.
ServerRole then instantiates the actual component.

Fig. 2. services.xml defining the Echo operation implemented by the class EchoSer-
vice with ServerRole as message receiver

utilise other services by calling them through other ports during invocation of
the service. The framework uses the Axis2 application server to run the web
service [15], and the service object is only instantiated upon the reception of a
message.

As mentioned earlier, the ArchJava connector is a single role in the conceptual
connector. The other role is represented by the ServerRole class, which acts
as a message receiver in an Axis2 service. The architecture of a system with
one client connected to a single service is illustrated in Fig. 1. WSConnector
uses Axis2 to call the remote web service, while the service is instantiated by
Axis2, with ServerRole receiving the message and delegating it to the service
component.

WSConnector uses external classes for marshaling and demarshaling, which
allows for changing the encoding of messages.

Invocation through the connector in Axis2 is accomplished by creating a
services.xml file which specifies ServerRole as the message receiver for the
service, as illustrated in Fig. 2. When Axis2 receives a request for the Echo
service, it will instantiate ServerRole, which can in turn instantiate the service
object, the class of which is provided by the Axis2 framework.

First Class Connectors for Prototyping Service Oriented Architectures 175

3.1 Marshalling

To avoid reliance on wsdl-files, the ArchJava connector uses reflection overmethod
signatures to implement marshaling and demarshaling. This is an important part,
since it iswhatallowsservicestobeusedwithoutthetimeconsumingwork.ArchJava
provides its own reflection implementation in the archjava.reflect package while
Javauses java.lang.reflect.SinceArchJavaassumesthefirst interface,whileAxis2
expects typestobelongtothesecondinterface, theconnectorusesarchjava.reflect
on the client side, and java.lang.reflect on the server side, in ServerRole. This
gives rise to some limitations, since they have slightly different expressiveness.

The marshaling attempts to follow the same conversions as Axis2 and JAX-
RPC but since documentation for those two packages are incomplete, some vari-
ations may occur. For example, the only type of array supported is arrays of
java.lang.String and arrays of complex types. This is due to a limitation in
ArchJava’s support for reflection over arrays, since arrays of simple types are
not supported.

3.2 Complex Types

Since the framework is intended for prototyping, using simple types is usually
sufficient. However, when connecting to existing services, it might be necessary
to use complex types. Luckily, wsdl files will be available for existing services, and
classes implementing complex types can be generated from these files, although
most generators have limitations in which types can be generated. Another pos-
sibility is to create such types by hand.

Fig. 3. Using WSConnector to connect an EchoClient component and an EchoSer-
vice component. The code defines a connect pattern, and will be called to instantiate
a new WSConnector when EchoClient creates a new EchoPort. The Echo port of
EchoClient. connect matches the constructor of the connector used, while the rest
of the methods defines which methods the port require from the port is should be
connected to.

176 K. Ellebæk Kjær

4 Example Systems

To use custom connectors, connect patterns for the connector must be defined. As
an example, a pattern for connecting the Echo port of an EchoClient component
with the Echo port of an EchoService component is shown in Fig. 3. The
signature of the pattern correspond to the required connect method of the
Echo port, also shown in Fig. 3. The method corresponds to the constructor
of components, and connections can be instantiated dynamically by using the
keyword new on an EchoPort.

5 Performance

Although it is possible to use the framework for evaluating many different ar-
chitecture qualities, one interesting property is its usefulness for measuring per-
formance. This is only possible if the performance of the framework is similar to
the performance of real systems.

A simple measure of performance is the total invocation time of operations.
We have used a simple echo service, which just returns its string argument, and
as a baseline, we use implementations for Axis1 and Axis2. The average of 1000
invocations are shown in Tab. 1.

Table 1. Average, minimal, and maximal invocation time of a call to an operation for
Axis, Axis2, and WSConnector between a client and a remote web service

System Average Minimal Maximal
Axis 57 41 438

Axis2 66 36 3157

WSConnector 112 42 1835

As can be seen from the table, there is a significant difference between min-
imal, maximal, and average invocation time. This is most likely partly due to
limitations of the machines running the tests.

WSConnector is considerable slower than both Axis and Axis2. This is
most likely due to the cost of reflection. To offset this, we plan to create a future
version where each connector is especially tailored for connecting to a specific
services by generating it from interfaces. This should yield a performance similar
to Axis2.

6 Conclusion and Future Work

We have created a framework for building prototypes of web service based sys-
tems, where designers can concentrate on a component and connector view of the
system, and then change the prototype to use web services. The main motivation
is to be enable cheap and easy development of prototypes, which is paramount
for enabling prototypes to be build at all. The use of reflection over interfaces

First Class Connectors for Prototyping Service Oriented Architectures 177

Fig. 4. Comparison of Axis1, Axis2, and WSConnector. WSConnector is somewhat
slower, mostly due to two layers of reflection in each call, whereas both versions of
Axis use auto generated, specialised code for marshaling.

for marshaling allows the programmer to ignore web services entirely, and then
later add them to the system. We expect the framework will prove itself useful
for creating elaborate prototypes of future web service based systems.

The framework will be used in a current project at the University of Aarhus, to
implement initial architectural prototypes of scenarios, before we build vertical
prototypes. Before building actual prototypes, the performance of the Connector
should be improved to better match the performance of existing web service
technologies, such as Axis2. This will most likely be done by generating the
appropriate code, instead of relying on reflection at runtime. This should yield a
substantial increase in performance. Also, the support for complex types in Axis2
is limited, and we are still investigating which method of generating complex
types gives the best result.

Acknowledgements. The research presented in this paper has been partly
funded by the ISIS Katrinebjerg project KILO and the EU project “Hydra”
(IST-034891; http://www.hydra.eu.com).

References

1. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web services architecture. Technical report, W3C Working Group (Feb-
ruary 2004)

2. Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K., Math-
iassn, L., Züllighoven, H. (eds.) Approaches to Prototyping, pp. 1–18. Springer,
Heidelberg (1984)

http://www.hydra.eu.com

178 K. Ellebæk Kjær

3. Bardram, J.E., Christensen, H.B., Hansen, K.M.: Achitectural prototyping: An ap-
proach for grounding architectural design and learning. In: WICSA’04. Proceedings
of the Fourth Working IEEE/IFIP Conference on Software Architecture (2004)

4. Bardram, J.E., Christensen, H.B., Corry, A.V., Hansen, K.M., Ingstrup, M.: Ex-
ploring quality attribues using architectural prototyping. In: Reussner, R., Mayer,
J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J. (eds.) QoSA 2005 and
SOQUA 2005. LNCS, vol. 3712, Springer, Heidelberg (2005)

5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Professional, Reading (2003)

6. Aldrich, J., Chambers, C., Notkin, D.: Archjava: connecting software architecture
to implementation. In: ICSE ’02. Proceedings of the 24th International Conference
on Software Engineering, pp. 187–197. ACM Press, New York (2002)

7. Grundy, J., Cai, Y., Liu, A.: Softarch/mte: Generating distributed system test-
beds from high-level software architecture descriptions. Automated Software
Engg. 12(1), 5–39 (2005)

8. Yamaizumi, T., Sakairi, T., Wakao, M., Shinomi, H., Adams, S.: Easy soa: Rapid
prototyping environment withweb services for end users. In: ICWS ’06. Proceed-
ings of the IEEE International Conference on Web Services, pp. 931–932. IEEE
Computer Society, Washington, DC, USA (2006)

9. Zinnikus, I., Elguezabal, G.B., Elvesæter, B., Fischer, K., Vayssière, J.: A model
driven approach to agent-based service-oriented architectures. In: Fischer, K.,
Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196,
pp. 110–122. Springer, Heidelberg (2006)

10. Aldrich, J., Sazawal, V., Chambers, C., Notkin, D.: Language Support for Connec-
tor Abstractions. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer,
Heidelberg (2003)

11. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A Comprehensive Approach for
the Development of Modular Software Architecture Description Languages. ACM
Transactions on Software Engeneering Methodology 14(2), 199–245 (2005)

12. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
geneering 26(1), 70–93 (2000)

13. Shaw, M.: Procedure Calls Are the Assembly Language of Software Interconnec-
tion: Connectors Deserve First-Class Status. In: Proceeding of Workshop on Studies
of Software Design (January 1994)

14. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Abstrac-
tions for Software Architecture and Tools to Support Them. IEEE Transactions
on Software Engineering 21(4), 314–335 (1995)

15. Apache Software Foundation: Axis2/Java - Apache Axis2/Java - Next Generation
Web Services (accessed, June 2007), http://ws.apache.org/axis2/

http://ws.apache.org/axis2/

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 179 – 194, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Wireless Sensor Network Application Development:
An Architecture-Centric MDE Approach*

Fernando Losilla, Cristina Vicente-Chicote, Bárbara Álvarez, Andrés Iborra,
and Pedro Sánchez

División de Sistemas e Ingeniería Electrónica (DSIE)
Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

{Fernando.Losilla,Cristina.Vicente,balvarez,Andres.Iborra,
Pedro.Sanchez}@upct.es

Abstract. Nowadays, Wireless Sensor Networks (WSN) are a very promising
research field since they find application in many different areas. Current
proposals for WSN system development are mainly focused on implementation
issues and they rarely rely on a Software Engineering methodology which
supports their entire development life-cycle. The Model-Driven Engineering
(MDE) approach can contribute to solve this problem by allowing designers to
model their systems at different abstraction levels, providing them with
automatic model transformations to incrementally refine abstract models into
more concrete ones. In this vein, this paper presents a MDE approach to WSN
application development. Three levels of abstraction have been defined which
allow designers to build: (1) domain-specific models, (2) component-based
architecture descriptions, and (3) platform-specific models. Automatic model
transformations between these three abstraction levels have been designed and,
in order to demonstrate the viability of the proposal, a real WSN application has
been developed using the implemented tools.

Keywords: Model-driven engineering, component-based software architecture,
domain specific languages, wireless sensor networks, Eclipse platform.

1 Introduction

Recent technological advances have led to the emergence of Wireless Sensor
Networks (WSN). These systems are able to observe the physical world and to obtain
useful information from it. They can process the retrieved data, make decisions on it,
and carry out concrete operations on the environment [1]. Nowadays, Wireless Sensor
Networks find application in many different domains, such as: environmental
monitoring, tele-medicine, or precision agriculture, among others [2]. In 2003 the
MIT's Technology Review [3] published a study where WSN applications were cited
as “one of the top ten technologies that will change the world”. However, current

* This research has been funded by the Spanish CICYT project MEDWSA (TIN2006-15175-

C05-02) and the Regional Government of Murcia Seneca Program (02998-PI-05).

180 F. Losilla et al.

techniques for implementing this kind of systems seem to be not powerful enough to
deal with their growing complexity.

Current proposals for WSN application development are mainly focused on
implementation issues. Actually, most of these systems are built from scratch
following an experience-based method, which advocates for selecting the most
appropriate target platform first, and then the WSN domain-specific operating system
(e.g. TinyOS [4]) and programming language (e.g. NesC [5]). The lack of a Software
Engineering methodology which supports the entire development life-cycle of these
applications, commonly results in highly platform-dependent designs, difficult to
maintain, scale and reuse.

The Model-Driven Engineering (MDE) approach can help reducing this
dependence of the software development process on the final execution platforms [6].
MDE revolves around models (defined at different levels of abstraction), and
automatic model transformations, aimed at incrementally refining models into final
application code. Models are defined in terms of formal meta-models (or modelling
languages). These include the concepts needed to describe a system (or a set of
systems) at a certain level of abstraction, and the relationships existing between them.
In order to describe the model transformations, that is, how abstract models are
refined into more concrete ones, a mapping between their corresponding meta-models
must be defined. Thus, applying a MDE approach requires defining both, the
appropriate meta-models and the corresponding model transformations.

This paper presents a MDE approach to WSN application development aimed at
improving the flexibility and reusability of their designs. Three meta-models have
been defined at different levels of abstraction together with the corresponding model
transformations. Designers model their systems using only the WSN domain concepts
included in the highest level meta-model. These initial models are then successively
refined through model transformations until the final application code is automatically
generated.

Before entering into details, the following section presents a motivation example
based on a real WSN application for precision agriculture, which highlights the lack
of flexibility and reusability of current WSN application designs. This is followed by
an outline of the research goals and process. Then, the rest of the paper is organized
as follows. First, Section 2 briefly presents the platform selected to implement the
tools developed as part of this work. Then, the different meta-models and model
transformations implemented as part of the proposal are presented in sections 3 to 6.
Section 7 reviews some related works and, finally, Section 8 presents the conclusions
and some future research lines.

1.1 A Motivation Example

The MITRA WSN application consists of thirty TinyOS-based nodes deployed in an
almond orchard located in the semiarid region of Murcia, in the southeast of Spain.
Given the of shortage water in this region, the prime objective of the system is to
regulate tree irrigation according to water stress, that is, to water the trees only when
it is needed. Water stress is measured using the heat pulse compensation method. This
method consists in generating a heat pulse through the axial line of the tree trunk and

 Wireless Sensor Network Application Development 181

measuring the sap temperature at two different points along this line. Similar
temperatures indicate a fast sap flow and this suggests that some watering is needed.

The MITRA application was initially developed using a traditional approach. A
new small electronic sap flow sensor was designed and the software to control both,
local data processing and wireless communications was implemented in NesC, a
component-based programming language for TinyOS-based WSN applications.

The resulting system was highly dependent on the TinyOS-NesC platform and on
the custom sap sensor. The lack of flexibility of the design required several changes,
both in hardware and in software, to cope with every small change in the application.
This led us to search for a more flexible design solution, as described in the following
subsection.

1.2 Research Goals and Progress

As stated before, the main goal of this research is to define a new model-driven
methodology for WSN application development which allows developers to build
more flexible and reusable designs. This goal was initially address considering the
following sub-goals:

SG1. Define a WSN Domain-Specific Language (DSL) which enables the
description of this kind of applications at a very high level of abstraction.
Models built using this WSN DSL should pick up all functional and non-
functional system requirements, but they should not include any design or
implementation decisions. For this DSL to be really useful, a model editor
(preferably a graphical one) must be implemented to support new Domain
Model (DM) creation and validation.

SG2. Define the NesC [5] meta-model from the current language specification. A
graphical modelling tool for creating new NesC component-based models
would be desirable, but not required since NesC models will be automatically
generated from WSN DSL ones.

SG3. Define a model-to-model (M2M) transformation which maps the concepts
included in the WSN DSL to those included in the NesC meta-model.

SG4. Define a model-to-text (M2T) transformation which automatically generates
NesC code from NesC models.

SG1 and SG2 were addressed in parallel by different teams. When these targets
were completed (fully implemented and tested), part of the team working on the NesC
meta-model started working on the M2T transformation (SG4), while the rest of the
people involved in the research started working on the M2M transformation (SG3).

While the M2T transformation was successfully completed quite fast, the
transformation between the WSN DSL and the NesC meta-model seemed a really
hard problem to solve. This was mainly due to the huge semantic distance existing
between the concepts included in both meta-models. At this point, two options were
considered: (1) to introduce some lower abstraction concepts regarding system design
into the DSL, or (2) to define an additional abstraction level between the two meta-
models.

182 F. Losilla et al.

Option (1) meant reducing the abstraction level of the DSL and forcing developers
to include design decision within their models. In contrast, option (2) offered evident
advantages and just a few drawbacks. On the one hand, the use of an intermediate
meta-model could help bridging the gap between WSN domain concepts and NesC
primitives. As a consequence, and despite the need of defining two M2M
transformations instead of one, the complexity of these transformations would be
significantly lower. On the other hand, this intermediate meta-model could serve as an
appropriate architecture description language for defining the system in terms of its
components and the relationships existing between them.

With this aim in mind, a subset of the UML 2.0 [7] meta-model, including
components (for describing the system structure) and state-machine and activity
diagrams (for describing component behaviour), was defined to mediate between the
WSN DSL and the NesC meta-model.

Fig. 1 (left) outlines the elements of the proposal, that is, the set of meta-models
and model-transformations defined to obtain NesC code from WSN Domain Models
(DM). The intermediate architecture description language has been highlighted in
order to emphasize its key role in the process.

Domain-specific Models (DM)

built using a DSL with an
associated custom notation

Platform-Independent Models (PIM)
Describe the system architecture

in terms of components

Platform-Specific Models (PSM)
(one for each target platform)

Code automatically
generated for each platform

PSM-To-Code transformations

PIM-To-PSM transformations

DM-To-PIM transformations

WSAN DSL

NesC
Meta-Model

NesC code

Reduced set
of UML 2.0

M2T
transformation

M2M
transformation

M2M
transformation

X

DM1 DM2 DMN…

Component-Based PIM

PSM1 PSM2 PSMm…

C1 C2 Cm…

S2C1 S2C2 S2Cm

D2I1 D2I2 D2IN

I2S1 I2S2 I2Sm

Domain-specific Models (DM)
built using a DSL with an

associated custom notation

Platform-Independent Models (PIM)
Describe the system architecture

in terms of components

Platform-Specific Models (PSM)
(one for each target platform)

Code automatically
generated for each platform

PSM-To-Code transformations

PIM-To-PSM transformations

DM-To-PIM transformations

Domain-specific Models (DM)
built using a DSL with an

associated custom notation

Platform-Independent Models (PIM)
Describe the system architecture

in terms of components

Platform-Specific Models (PSM)
(one for each target platform)

Code automatically
generated for each platform

PSM-To-Code transformations

PIM-To-PSM transformations

DM-To-PIM transformations

WSAN DSL

NesC
Meta-Model

NesC code

Reduced set
of UML 2.0

M2T
transformation

M2M
transformation

M2M
transformation

X

WSAN DSL

NesC
Meta-Model

NesC code

Reduced set
of UML 2.0

M2T
transformation

M2M
transformation

M2M
transformation

X

DM1 DM2 DMN…

Component-Based PIM

PSM1 PSM2 PSMm…

C1 C2 Cm…

S2C1 S2C2 S2Cm

D2I1 D2I2 D2IN

I2S1 I2S2 I2Sm

DM1 DM2 DMN…

Component-Based PIM

PSM1 PSM2 PSMm…

C1 C2 Cm…

S2C1 S2C2 S2Cm

D2I1 D2I2 D2IN

I2S1 I2S2 I2Sm

Fig. 1. (Left) Meta-models and model transformations included in the proposed MDE approach
to WSN development. (Right) Models defined using the intermediate meta-model and the meta-
model itself can be fully reused if new PSMs/DSLs were addressed in the future.

In addition to the already mentioned benefits of including an intermediate
abstraction level, it is worth noting that models defined at this level can be fully
reused if new target platforms were considered in the future. Furthermore, if new
domains were addressed, the meta-model itself could be reused since it has been
designed to be not only platform-independent but also domain-independent. This idea
is illustrated in Fig. 1 (right).

 Wireless Sensor Network Application Development 183

2 The Eclipse Platform: The Selected MDE Environment

All the tools implemented as part of this work, including all the meta-models and
model transformations outlined in the previous section, have been developed using
the MDE facilities provided by the Eclipse platform. This free open-source
environment offers one of the most widely used implementation of the OMG standard
Meta-Object Facility (MOF) [8], called Eclipse Modelling Framework (EMF) [9].

Although EMF currently supports only a subset of MOF, called EMOF
(Essential MOF), it allows designers to create, manipulate and store both models
and meta-models. This is the reason why many MDE-related initiatives are
currently being developed around Eclipse and EMF. Among them, and directly
related to the tools implemented as part of this research, it is worth mentioning the
following ones:

• The Graphical Modelling Framework (GMF) [10], which enables the implement-
tation of graphical modelling tools from any EMF meta-model.

• The Eclipse Modelling Framework Technologies (EMFT) [11] which enables,
among other things, the definition and evaluation of OCL queries and constraints
on EMF models.

• The Atlas Transformation Language (ATL) [12], which provides the standard
Eclipse solution for model-to-model transformations.

• MOFScript [13], which supports text (and more specifically code) generation from
MOF-based models.

All these Eclipse plug-ins will be briefly detailed in the sections where the tools
implemented as part of this work are presented.

3 Defining a WSN Domain-Specific Modelling Language

The definition of a WSN domain-specific modelling language (meta-model) is aimed
at helping domain experts to describe their systems using only the WSN concepts they
are familiar with. At this initial stage, no design decisions or concerns about the final
target platform must be taken into account. Conversely, models at this level must
provide a clear picture of system defined at a high level of abstraction. For instance, a
WSN domain-specific model should supply information about the overall system
functionality, how this functionality is partitioned into the different nodes, how this
nodes are grouped and physically distributed, which information do they get from the
environment, how do they communicate with each other and how frequently, where is
the data processed/stored (locally or remotely), how it is presented to the user, etc.

The WSN Domain-Specific Language (DSL) presented in this paper has been
designed to help domain experts to include all this information in their models. Thus,
it provides the concepts most commonly used by the WSN community, together with
the relationships that may appear between these concepts (see Fig. 2).

184 F. Losilla et al.

Fig. 2. WSN Domain Specific Language (WSN DSL)

Both structural and behavioural elements have been included in the meta-model.
The structure of a WSN application is defined in terms of Regions connected by
means of WirelessLinks. All the nodes performing similar tasks are grouped into
a logical NodeGroup, while all the NodeGroups physically deployed together are
considered to belong to the same Region.

The common Behaviour of the nodes belonging to the same NodeGroup is
defined in terms of FunctionalUnits. The meta-model includes an enumerated
set of predefined functional units (FunctionalUnitType) which contains, among
others, data management (read/write from/to sensors/ports/memory), expressions
calculation, timers, etc. FunctionalUnits can be linked together by means of
UnitLinks and with external Resources (i.e. Ports and Sensors) by means
of ResourceLinks. All these links together define the data-flow behaviour of the
NodeGroup. Timers model explicitly internal node control-flow behaviour, while
the external synchronization mechanisms regarding inter-node message passing is
only implicitly represented in the models.

All the concepts and relationships included in this meta-model are quite useless if
no tool is provided to support the creation and validation of new models from it. The
following section presents the graphical notation and the modelling facility
implemented on top of the WSN DSL previously described.

 Wireless Sensor Network Application Development 185

3.1 The WSN Graphical Modelling Tool

As previously stated, all the tools implemented as part of this work have been
developed using the MDE facilities provided by the Eclipse Platform. In particular,
the WSN DSL has been defined as an EMF [9] meta-model, and the graphical
modelling tool, implemented to help domain experts to create new WSN models, has
been developed using the GMF [10] Eclipse plug-in.

GMF allows designers: (1) to create a graphical representation for each domain
concept appearing in a EMF meta-model, (2) to define a tool palette for creating and
adding these graphical concepts to their models, and (3) to define a mapping between
all the previous artefacts, i.e. meta-model concepts, their graphical representations,
and the corresponding creation tools.

In addition, GMF can be used in conjunction with the EMFT [11] Eclipse plug-in
to define new restrictions which can not be included in the meta-model (given the
limitations of using class diagrams). These restrictions are defined as OCL constraints
and they are validated at modelling time using the EMFT plug-in facilities.

The MITRA system, previously described in the introduction, has been depicted
using the implemented WSN graphical modelling tool. As shown in Fig. 3, the model
includes two regions. The first one contains two NodeGroups, one representing the
MITRA nodes deployed in the almond orchard (SAP Monitoring NodeGroup) and
another representing the Irrigation Control NodeGroup (containing only one node).
The second region contains only one Sink NodeGroup with a single node. The
behaviour of each of these NodeGroups has been defined following this three-step
process:

1. Select the sensors to be read from those available in the selected NodeDefinition.
2. Select the activities performed by the NodeGroup from the enumerated set

included in the WSN DSL, and
3. Link all these elements together to fulfil the system requirements, respecting the

syntactic rules defined by the meta-model and the additional OCL rules included in
the GMF application.

The following section describes how these WSN graphical models are automati-
cally transformed into UML-based Platform-Independent Models (PIMs). Both the
reduced set of the UML 2.0 meta-model, selected as the intermediate architecture
description language, and the model-to-model transformation used to refine domain-
specific models to the PIM level, are presented.

4 From Domain-Specific Models to UML-Based PIMs

As previously discussed in the introduction, we have chosen a simplified version of
the standard UML 2.0 [7] meta-model as the intermediate specification language. This
intermediate abstraction level is aimed at bridging the semantic gap existing between
the domain and the platform meta-models, reducing the complexity of the required
model transformations.

186 F. Losilla et al.

Functional Unit

Functional Unit | type = {

STORE_DATA,
RETRIEVE_DATA,

STORE_DATA_RAM,
RETRIEVE_DATA_RAM }

TimerUnit (externally fired) TimerUnit (cyclic)

SAP_SENSOR

Wireless Link

UnitLink (data store/retrieve)

ResourceLink

UnitLinkSERIAL_PORT

PIN CommUnit

Region: R1

Nodes: 30-30 NodeDef: SAPMonitoringNode

NodeGroup: SAP_Monitoring_NodeGroup

SendHeatPulse

45 min

GetSAP1

15 min
StoreRAM1

15 min

GetSAP2

StoreRAM2

SendRadio_SAP
Flooding RetrieveRAM2RetrieveRAM1

3 hours

NodeGroup: Irrigation_NodeGroup

Nodes: 1 NodeDef: IrrigationNode

ReceiveRadio_Irrigation SendIrrigationOrder

NodeGroup: Sink_NodeGroup

Nodes: 1 NodeDef: SinkNode

Irrigation?ReceiveRadio_SAP

Region: R2

SendRadio_Irrigation
P2P

StoreRAM1

StoreRAM2

RetrieveRAM2

RetrieveRAM1

DisplayData

12hours

FunctionalUnit | type = START

Nodes: 30 NodeDef: SAPMonitoringNode

Functional UnitFunctional Unit

Functional Unit | type = {

STORE_DATA,
RETRIEVE_DATA,

STORE_DATA_RAM,
RETRIEVE_DATA_RAM }

Functional Unit | type = {

STORE_DATA,
RETRIEVE_DATA,

STORE_DATA_RAM,
RETRIEVE_DATA_RAM }

TimerUnit (externally fired)TimerUnit (externally fired) TimerUnit (cyclic)TimerUnit (cyclic)

SAP_SENSORSAP_SENSOR

Wireless LinkWireless Link

UnitLink (data store/retrieve)UnitLink (data store/retrieve)

ResourceLinkResourceLink

UnitLinkUnitLinkSERIAL_PORTSERIAL_PORT

PINPIN CommUnitCommUnit

Region: R1

Nodes: 30-30 NodeDef: SAPMonitoringNode

NodeGroup: SAP_Monitoring_NodeGroup

SendHeatPulse

45 min

GetSAP1

15 min15 min
StoreRAM1

15 min15 min

GetSAP2

StoreRAM2

SendRadio_SAP
Flooding RetrieveRAM2RetrieveRAM1

3 hours3 hours3 hours

NodeGroup: Irrigation_NodeGroup

Nodes: 1 NodeDef: IrrigationNode

ReceiveRadio_Irrigation SendIrrigationOrder

NodeGroup: Sink_NodeGroup

Nodes: 1 NodeDef: SinkNode

Irrigation?ReceiveRadio_SAP

Region: R2

SendRadio_Irrigation
P2P

StoreRAM1

StoreRAM2

RetrieveRAM2

RetrieveRAM1

DisplayData

12hours

NodeGroup: Sink_NodeGroup

Nodes: 1 NodeDef: SinkNode

Irrigation?ReceiveRadio_SAP

Region: R2

SendRadio_Irrigation
P2P

StoreRAM1

StoreRAM2

RetrieveRAM2

RetrieveRAM1

DisplayData

12hours12hours12hours

FunctionalUnit | type = STARTFunctionalUnit | type = START

Nodes: 30 NodeDef: SAPMonitoringNode

Fig. 3. MITRA system model depicted using the WSN DSL graphical modelling tool

The intermediate meta-model has been defined taking some of the elements
included in the UML 2.0 meta-model and, more specifically, some of the concepts
defined within the component, state-machine, and activity diagrams. Components are
used to specify the system structure, while state-machines and activity diagrams are
used to define component control-flow and data-flow behaviour, respectively.

The part of meta-model related to component specification includes simple and
complex components, ports, port links, interfaces and services. The state-machine part
includes states, pseudo-states (initial, join, and fork), orthogonal regions, transitions
and events, and the activity diagram part, includes simple and complex activities
(including conditionals and loops), timers, and activity links.

This meta-model has also been developed using EMF although, in this case,
implementing a graphical modelling tool was unnecessary since (1) models at this
level are not defined by the user but automatically obtained from DSL models and, (2)
EMF provides a basic reflexive model editor which is sufficient to check the
correctness of these intermediate models and which allows designers to manually
introduce slight variations into them to test different architectural configurations.

Regarding the Model-to-Model (M2M) transformation required to refine DSL
models into component-based PIMs, it has been implemented using the Eclipse Atlas
Transformation Language (ATL) [12]. This hybrid declarative and imperative
language enables to define mappings between the concepts included in different meta-
models, that is, how each concept (or set of related concepts) in the source meta-
model can be transformed into a concept (or set of related concepts) in the target

 Wireless Sensor Network Application Development 187

meta-model. One-to-one transformations are desirable but commonly they are only
possible when the concepts included in the two meta-models are semantically close.

In this case, the transformation from the WSN DSL and the intermediate UML-
based meta-model requires some relatively complex mappings, although some of
them are also quite direct. Some of the rules, included in this ATL model
transformation, are outlined next:

• Each NodeGroups is mapped to a Component.
• Given the data-flow oriented behaviour of WSN NodeGroups, a very simple
StateMachine is associated to each Component including only an Initial
PseudoState, and two States: Working and Final.

• Uncoupled sets of ActivityUnits are placed into different
OrthogonalRegions in the Working State, since these activities are
executed in parallel. This is the most complex transformation rule since it requires
detecting unconnected graphs of activities.

• Each Timer FunctionalUnit is mapped to a UML TimerActivity.
• All the messages sent via wireless from a NodeGroup to another are modelled as

UML SendSignalActions.
• Signals send by each NodeGroup to an output resource (Ports) are converted into

UML SendSignalActions and, conversely, signals received from input
resources (Sensors) are transformed into UML AcceptEventActions.

• Each AcceptEventAction requires adding a new Event to the
StateMachine and an InternalTransition in the Working State fired
by this event.

The result of applying the ATL transformation on the initial MITRA DSL model is
a UML-like platform-independent component model, which describes the system
structure and behaviour in terms of its components and the relationships existing
between them. Although, as stated before, we have not implemented a graphical
model editor for this intermediate level, the following figure (created using a basic

After 15 ‘

Initialize cycle

After 180’

<<Store>>
data2

SAP_Monitoring_NodeGroup:Working State

Sensor Get SAP2 Sensor Received (data1)

Send Heat Pulse

Sensor Receive(data2) Comm Send Radio

<<Store>>
data1

<<Store>>
data1

<<Store>>
data2

Sensor Get SAP1

After 15 ‘

After 45 ‘

SensorEvent /
SensorReadyTransition

After 15 ‘

Initialize cycle

After 180’

<<Store>>
data2

<<Store>>
data2

SAP_Monitoring_NodeGroup:Working State

Sensor Get SAP2 Sensor Received (data1)

Send Heat Pulse

Sensor Receive(data2) Comm Send Radio

<<Store>>
data1

<<Store>>
data1

<<Store>>
data1

<<Store>>
data1

<<Store>>
data2

<<Store>>
data2

Sensor Get SAP1

After 15 ‘

After 45 ‘

SensorEvent /
SensorReadyTransition

Fig. 4. Behaviour of the SAP monitoring Component

188 F. Losilla et al.

drawing tool) has been depicted using the UML graphical notation in order to provide
an easier to understand representation of part of the resulting model, and more
precisely, the behaviour of the SAP Monitoring Component (NodeGroup).

As it can be readily appreciated in Fig. 4, the transformation has divided the Working
State of the SAP Monitoring Component into two OrthogonalRegions. These
regions contain the two uncoupled sets of activities identified in the NodeGroup
(see Fig. 3), one describing the sensing loop and another describing how the collected data
is sent to the Sink NodeGroup via wireless. Similarly, the Working State of the Sink
Component is also divided into two OrthogonalRegions, one including the
activities related to data collection (from SAP monitoring nodes), irrigation need
estimation, and control message delivery (to the Irrigation Control NodeGroup), and
another including data retrieval and display activities.

The following section describes how these intermediate models are automatically
transformed into TinyOS-NesC Platform-Specific Models (PSMs), applying a new
ATL model-to-model transformation.

5 From PIMs to NesC Component Models

Nowadays, TinyOS [4] is the most widely used operating system for WSN application
development and, accordingly, a wide variety of tools supporting it can be currently
found in the marketplace. Among them, the solution developed by the TinyOS team is
the NesC [5] component-based programming language, also extensively used.

A NesC meta-model has been implemented, according to the NesC 1.1
specification, to support the last stage of the proposed MDE approach. This meta-
model comprises the following concepts: Modules (which define component
implementation), Configurations (which define component groups and
Wirings between them), and Interfaces (which include a list of
CommandPrototypes and EventPrototypes). Modules must implement all
the Commands included in the interfaces they provide and all the Events in the
interfaces they use.

NesC applications are designed following a quite regular component pattern and
thus, the rules needed to define the ATL transformation between PIMs and NesC
models are not very complex. Some of these rules are outlined next:

• A different NesC model is created for each Component in the PIM.
• All TimerActivities defined in the PIM are implemented by a unique

predefined NesC module, called TimerC. This module provides a parameterized
Timer interface which includes a fired event.

• Conversely, all SendSignalActions are implemented by a unique predefined
GenericComm module which provides different interfaces for each type of
message. All these interfaces include a SendMsg event.

• A Main module must be necessarily included in the design since it is invoked when
the application starts. This module is in charge of initializing the rest of modules.

• A top level Configuration module must be defined to wire all the previously
defined components.

 Wireless Sensor Network Application Development 189

Fig. 5 presents the NesC model associated to the sap monitoring component
defined in the PIM. Like in the previous case, this graphical representation has been
manually depicted using a conventional drawing tool, since a graphical NesC model
editor has not been implemented yet. However, the depicted model faithfully
represents the model obtained as the result of applying the implemented ATL
transformation.

MitraM

Main

TimerC
ExternalSensorC

as Sensor

StdControl

Timer1

Timer4

……

TimerControl
StdControl

ADC

ADCControlStdControl

GenericComm
as Comm

CommControl

StdControl

Send

SendMsg

NesC predefined modules

Self predefined modules

Generated modules

MitraM

Main

TimerC
ExternalSensorC

as Sensor

StdControl

Timer1

Timer4

……

TimerControl
StdControl

ADC

ADCControlStdControl

GenericComm
as Comm

CommControl

StdControl

Send

SendMsg

NesC predefined modules

Self predefined modules

Generated modules

Fig. 5. NesC component model for the sap monitoring nodes

NesC models, described according to the implemented NesC meta-model, only
enable the description of components and their interconnections, and do not include
any of the behavioural information described in the more abstract models. As
explained in the following section, this requires using NesC models and PIMs in order
to generate the final application code. Some improvements in the NesC meta-model
and in the ATL transformation from PIMs to NesC models are currently being
developed to address this limitation, as later commented in the conclusions.

6 Code Generation

The final step of the proposed MDE methodology for WSN system development is to
obtain the final application code from the previous models. In this case, the
transformation is not Model-to-Model (M2M) but Model-to-Text (M2T). M2T
transformations define how model elements are converted into text patterns (in this
particular case, into code), while M2M transformations define meta-model mappings,
that is, how the elements (concepts and relationships between them) included in one
of the meta-models are transformed into elements included in the other.

The final NesC M2T transformation has been implemented using the Eclipse
MOFScript [13] plug-in. This tool enables the definition of M2T transformations for
MOF-based models. It provides, among others, the following facilities: model
checking, parsing and querying, output file management, code completion, etc.

In order to obtain the final application code, the NesC models obtained in the
previous step are not sufficient, since they do not contain complete information about
component behaviour. Thus, the MOFScript transformation has been designed to use

190 F. Losilla et al.

both, NesC models and intermediate PIM models (containing component behaviour
specifications obtained from the initial DSL models). This limitation is currently
being addressed as described in the conclusions and future research section.

Some of the rules included in the MOFScript transformation, are outlined next:

• The NesC component model enables the generation of a list of provided and
required interfaces (provides and uses clauses, respectively) included at the
beginning of the NesC file.

• The module implementation starts with a variable declaration section. One variable
is defined for each <<Store>> Activity defined in the PIM with a different
name, and also for each message the Component sends (receives) to (from) other
components via wireless.

• For each provided Interface in the NesC model, all its Commands must be
implemented. Conversely, for each required Interface, all its Events must be
handled. The sequence of NesC primitives associated to these Commands and
Events is extracted from the Activities defined in the PIM.

An excerpt of the implemented MOFScript transformation can be found in
Appendix A, and a piece of the generated NesC code in Appendix B, both of them
included at the end of the paper. The generated solution, obtained from the
corresponding PIM intermediate model (see Fig. 4) and the NesC component model
(see Fig. 5), has been successfully compiled and deployed on the MITRA WSN
system, demonstrating satisfactory results.

7 Related Work

Different approaches to WSN application development can be found in the literature.
Some of them offer a set of predefined components, built on top of a certain operative
system, and allow designers to build new ones by configuring and combining them.
This is the case of TinyDB [14], which defines a database of TinyOS [4] components
that can be distributed and run in different nodes of a WSN. The information obtained
by each node can be accessed from an external PC by means of SQL-like queries.
Also in this line, TinyCubus [15] offers a framework which enables to dynamically
select and interconnect predefined TinyOS components. These two proposals, as most
others, are totally focused on the implementation of platform-specific WSN
applications. These approaches require a deep knowledge of the target platform and,
in most cases, the resulting designs are too platform-dependent to be reused.

Trying to address this problem, and in the line of this paper, some proposals have
focused their attention on the model-driven approach. GRATIS II [16] offers a
graphical modelling tool for designing component-based NesC applications. The
underlying NesC meta-model has been defined using the Generic Modelling
Environment (GME) [17], a toolkit for defining domain-specific modelling and
programming languages. GRATIS II offers a solution similar to the one offered by the
final step of our proposal, that is, the one including our NesC meta-model and NesC
model-to-code transformation. Currently we do not offer a graphical modelling tool
for depicting NesC component models since these are automatically generated from
the higher level meta-model, and not depicted by the user like in GRATIS II. Our

 Wireless Sensor Network Application Development 191

NesC meta-model is also simpler than the one offered by GRATIS II, which covers a
wider range of TinyOS-based target platforms and configuration modes. However,
our proposal is not TinyOS (or any other platform) dependent, enabling higher level
WSN application designs. Currently we support TinyOS-NesC code generation like
GRATIS II, although the proposal could be easily extended to different target
platforms, as stated in the introduction (see Fig. 1).

The Abstract Task Graph (ATaG) [18] offers a DSL for graphically describing
WSN applications in terms of the tasks they must perform and the data their nodes
must collect. The data-driven diagrams depicted using this DSL provide a platform-
independent model of the system under development (nodes, tasks, data types, etc. are
abstract to keep this platform independence). These models are similar to the activity
diagrams included in our intermediate component-based architectural models.
However, ATaG is architecture-independent and thus, no design information can be
included within its models. Furthermore, the ATaG code generation requires the user
to provide the code of each abstract task included in the model for the current target
platform, offering only a semi-automated solution.

Finally, CADENA [19] offers a very complete and sophisticated environment for
general purpose application development. CADENA provides designers with an end-
to-end model-driven environment which supports the entire application development
life cycle. This tool offers, among others, a NesC plug-in which provides a graphical
modelling tool (similar to the one offered by GRATIS II), and automatic NesC code
generation facilities. WSN applications can also be modelled at a higher level of
abstraction using CADENA general-purpose artefacts “adapted” to the WSN domain.
However, adapting a general-purpose language or tool to a specific domain can be a
hard work and the result could be never as good (in terms of precision, efficiency,
etc.) as the one obtained by defining a DSL.

8 Conclusions and Future Research

The work presented in this paper offers a new model-driven approach to WSN
application development. The proposal presents a high level of abstraction domain-
specific language, which allows designers to model their systems in a platform-
independent way, obtaining more flexible and reusable designs. Two additional
abstraction levels have been defined which deal with the system architecture from a
platform-independent and platform-specific point of view. Automatic model
transformations from the initial domain-specific models to the final application code
have been implemented using the Model-Driven Engineering facilities provided by
the free open-source Eclipse platform. Both the proposed approach and the tools
implemented to support it have been tested on a real WSN system related to precision
agriculture with successful results. The re-engineered application is fully functional
and, although it is not code-optimized, the effort and the time-to-market to produce
the new solution have been sensibly reduced. Actually, different solutions have been
effortlessly generated thanks to the implemented infrastructure, allowing us to test
new sensors and different network topologies and communication protocols.

Currently, we are working on improving the NesC meta-model and the ATL
transformation from PIMs to NesC models in order to keep all the behavioural

192 F. Losilla et al.

information during the whole development process. This will allow us to simplify the
final code generation step using only NesC models as input. We are also working on
the integration of requirements from the very early stages of the proposed MDE
approach. Actually, we have developed a Requirements Engineering Meta-Model
(REMM) and a graphical requirements modelling tool aimed at defining reusable
requirements catalogues [20]. Currently we are building a catalogue of functional and
non-functional WSN requirements together with a tracing tool. We are also very
interested in proving the benefits of our intermediate meta-model for different target
platforms and domain applications. Thus, we plan to define new DSLs for other
domains in which our research team has also some experience, such as computer
vision and robotics. The wide variety of platforms currently available for this kind of
systems, and the fact that some applications incorporate concepts from both domains
(i.e. industrial inspection), make this future research both challenging and promising.

References

1. Akyildiz, I.F., Kasimoglu, I.H.: Wireless Sensor and Actor Networks: research challenges.
Ad Hoc Networks 2, 351–367 (2004)

2. Römer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless
Communications 11, 54–61 (2004)

3. Huang, G.T.: Casting the Wireless Sensor Net. MIT’s Magazine of Innovation, 51–56
(2003)

4. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Architecture
Directions for Networked Sensors, vol. 34. ACM Press, New York (2000)

5. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
Language: A Holistic Approach to Network Embedded Systems. In: ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, San Diego,
California, USA, pp. 1–11 (2003)

6. Kent, S.: Model Driven Engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, Springer, Heidelberg (2002)

7. Unified Modeling Language: Superstructure v 2.0. The Object Management Group (2005)
8. Meta-Object Facility Specification v2.0: The Object Management Group (2004)
9. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modelling

Framework. Addison-Wesley Professional, Reading (2003)
10. The Eclipse Graphical Modelling Framework, available at: http://www.eclipse.org/gmf
11. The Eclipse Modedelling Framework Technologies (EMFT) Projects, available at:

http://www.eclipse.org/emft/projects/
12. The Atlas Transformation Language (ATL) Project, available at: http://www.eclipse.

org/m2m/atl/
13. The Eclipse MOFScript subproject, available at: http://www.eclipse.org/gmt/mofscript/
14. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An Acqusitional

Query Processing System for Sensor Networks. ACM Transactions on Database
Systems 30, 122–173 (2005)

15. Marrón, P.J., Minder, D., Lachenmann, A., Rothermel, K.: TinyCubus: An Adaptive
Cross-Layer Framework for Sensor Networks. Information Technology 47, 87–97 (2005)

16. GRATIS II: Institute for Software Integrated Systems. Vanderbilt University, Tennessee,
USA, available at: http://www.isis.vanderbilt.edu/projects/nest/gratis

 Wireless Sensor Network Application Development 193

17. Lédeczi, Á., Maróti, M., Völgyesi, P.: The Generic Modeling Environment (GME).
Institute for Software Integrated Systems, Vanderbilt University, Tennessee, USA,
available at: http://www.isis.vanderbilt.edu/Projects/gme

18. Bakshi, A., Prasanna, V.K., Reich, J., Larner, D.: The Abstract Task Graph: A
Methodology for Architecture-Independent Programming of Networked Sensor Systems.
In: EESR’05. Proc. Workshop on End-to-End, Sense-and-Respond systems, applications
and services, Seattle, Washington, pp. 19–24 (2005)

19. The Cadena 2.0 Project: Kansas State University, USA, available at: http://cadena.projects.
cis.ksu.edu/

20. Vicente-Chicote, C., Moros, B., Toval, A.: REMM-Studio: an Integrated Model-Driven
Environment for Requirements Specification, Validation and Formatting. Journal of
Object Technology, Special Issue TOOLS EUROPE 2007 (2007)

Appendix A: Excerpt of the MOFScript M2T Transformation

This excerpt of the implemented MOFScript transformation is the module in charge
of generating the code for all the NesC interfaces defined in NesC models.

texttransformation NesCM2T (in mm:"NesC") {
...
module::createInterfaces(){
 self.objectsOfType(mm.Interface)->forEach(i:mm.Interface){
 file f (i.name + ".nc")
 f.println ("interface " + i.name + "{")
 var count:integer
 // Adds the interface command prototypes
 i.prototypes->forEach(p:mm.CommandPrototype){
 if (p.isAsynchronous==true) f.print ("async command ")
 else f.print ("command ")
 f.print (p.returnType + " " + p.name + "(")
 count = p.arguments.size()
 p.arguments->forEach (v:mm.Variable) {
 f.print (v.type + " " + v.name)
 if (count > 1) {f.print (", ") count=count-1}
 } f.println (");")
 } // Event prototypes are similarly added …
}}

Appendix B: Excerpt of the Generated NesC Code

This excerpt of the generated NesC code corresponds to the MitraM module defined
in the NesC component model (see Fig. 5).

includes MitraMsg;
module MitraM {
 uses {
 interface StdControl as CommControl;
 interface StdControl as TimerControl;
 interface StdControl as ADCControl;

194 F. Losilla et al.

 interface SendMsg as Send;
 interface ADC;
 interface Timer as Timer1;
 interface Timer as Timer2;
 interface Timer as Timer3;
 interface Timer as Timer4; }
 provides {
 interface StdControl; }
}
implementation {
 TOS_Msg msg_global;
 uint8_t counter=1;
 uint16_t reading1, reading2;
 command result_t StdControl.start() {
 call ADCControl.start();
 call TimerControl.start();
 call CommControl.start();
 call Timer4.start(TIMER_REPEAT, 1024*60*60*3);
 initialize_cycle();
 return SUCCESS; }
 …
 event result_t Timer1.fired() {
 SENSOR_SEND_PULSE();
 call Timer2.start(TIMER_ONE_SHOT, 1024*60*15);
 return SUCCESS;}
 …
 event result_t Timer4.fired(){

// Builds a message containing sap measures and sends it to the sink node via wireless.
 struct MitraMsg *message =
 (struct MitraMsg *)msg_global.data;

message->RAM1 = reading1;
message->RAM2 = reading2;

 call Send.send(TOS_BCAST_ADDR,
 sizeof(struct MitraMsg),&msg_global));
 return SUCCESS;}

}

A Distributed Staged Architecture for

Multimodal Applications�

Alessandro Costa Pereira1,2, Falk Hartmann1,2, and Kay Kadner1,2

1 Department of Computer Science
Technische Universität Dresden

Dresden, Germany
{alessandro.pereira,falk.hartmann,kay.kadner}@tu-dresden.de

2 SAP Research CEC Dresden
SAP AG

Dresden, Germany
{alessandro.costa.pereira,falk.hartmann,kay.kadner}@sap.com

Abstract. Most of the research in the area of multimodality discusses
either the usability aspect of multimodality or the multimodality sup-
port given by or missing in certain markup languages. The overall ar-
chitectural side of large multimodal systems is unfortunately not ade-
quately represented in today’s literature. This report shows some results
obtained during the implementation of such a system, e.g., the use of the
multimodal interaction framework and how a staged architecture can be
combined with this framework to achieve domain independence.

1 Introduction

The Services for Nomadic Workers project (SNOW, [2]) aims at enabling the
widespread use of multimodal documentation for mobile operations in an in-
dustrial environment. One of the use cases covered by the project is that of a
service worker in the aircraft maintenance domain. In order to get rid of the
currently used paper-based maintenance documentation, the worker should get
electronic access to this information. The documentation consists of so-called
procedures. Because of the requirements (hands-free operation) and character-
istics (noisy, changing light conditions, restricted) of the working environment,
access to procedures must be multimodal, e.g., by allowing the use of speech for
navigation.

In Section 2, the requirements within the SNOW project and the overall ar-
chitecture are explained. As there are (from the archictural point of view) two
major requirements, i.e., support for multimodal access and the demand for do-
main independence, the article has two main parts. These requirements and their
consequences for the architecture are explained in more detail in Section 3 and 4.
Lastly, related work is discussed in Section 5 and conclusions together with an
outlook are given in Section 6.
� An extended abstract of this paper has been published at the SE 2007 Conference

on Software Engineering [1].

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 195–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 A. Costa Pereira, F. Hartmann, and K. Kadner

2 Architectural Requirements

As already mentioned, the first major requirement of the SNOW project was
that the resulting software had to be accessible in a multimodal fashion. In
the standard use case this includes speech input and output as well as gesture
recognition as input, but beyond that, the architecture should not restrict the
number or type of usable modalities.

The second major requirement was to design an architecture that is as domain-
neutral as possible, i.e., the number of parts to be exchanged when switching to
another domain had to be minimized. A second domain that has been considered
during the design of the SNOW architecture was the area of healthcare, where
hands-free operation also plays an important role.

In addition to these major requirements, some minor issues had to be con-
sidered. First, the number of available devices that are usable in a harsh envi-
ronment and capable of delivering input for gesture recognition (via built-in or
extra camera) were limited. Moreover, the processing power of available devices
is restricted, forcing gesture and voice recognition components to be located on
a server with extensive processing capabilities.

Lastly, it was required that the documentation is always at least as good as
paper, which means that even with interruptions of the network connection,
the application’s user must have access to (prefetched) procedures. The miss-
ing network connection might thereby affect accessibility of the application by
restricting the use of modalities due to their server-based processing.

The SNOW project was finished in September 2006. The architecture shown
in Figure 1 has proven to be quite stable and mature. Some details, such as
components dealing with prefetching of procedures have been omitted for better
comprehensibility. The notation used for Figure 1 is a block diagram as defined by
the F-M-C (Fundamental Modeling Concepts, see [6], [7]). This kind of diagram
gives a concise and easy to understand overview of architectural structures.

Nigay et al. defined the CARE properties for assessing capabilities of multi-
modal systems with regard to the multimodal interaction [8], which are comple-
mentarity, assignment, redundancy and equivalence. An extended version aligns
the CARE properties to devices, users and languages [9]. The extended version is
only partially applicable to the SNOW architecture, since we do not have explicit
interaction languages. Because modalities are tightly bound to devices and our
approach was system-centric, applying the CARE properties only makes sense
on a modality level as it was proposed in [8].

The multimodal interaction in SNOW was designed to be robust and easy
to use. Therefore, relations between modalities were omitted, which means that
the modalitites cannot be used complementary. In most situations, the user can
arbitrary choose between the available modalities, therefore the modalities are
equivalent. Our system does not support redundant modalities, because multi-
modal input immediately leads to the new dialog state. Multiple inputs in parallel
leading to the same new state is not possible. Modalities can be enforced by the
system (e.g., for not using voice for password entry), which fulfills the assignment
property.

A Distributed Staged Architecture for Multimodal Applications 197

Fig. 1. Overall SNOW Architecture (as an F-M-C block diagram)

3 Enabling Multimodal Access

The demand for enabling multimodal access to procedures influenced the archi-
tecture within the SNOW project. Its consequences are explained in the following
together with an analysis of the nature of the underlying, preexisting framework.

3.1 The Multimodal Interaction Framework

As a base for the development of the multimodal application, the SNOW con-
sortium decided to use the MultiModal Interaction Framework (MMI-F, [10]),
a specification under development by the W3C in its Multimodal Interaction
Activity. This specification defines basic building blocks of a multimodal appli-
cation, their responsibilities and collaboration partners.

The MMI-F specification defines six types of basic components. The relation-
ships between the components described below are shown in Figure 2. The input
components are responsible for handling of input modalities like audio, hand-
writing etc. The output components are used for handling of output channels
like text, speech etc. The interaction manager is a component that coordinates
the data and execution flow from and to the input and output components.

The application functions component is the “blackbox”, which implements
the application functionality to be exposed in a multimodal fashion. The ses-
sion component provides an interface used by the interaction manager to support

198 A. Costa Pereira, F. Hartmann, and K. Kadner

Fig. 2. The W3C Multimodal Interaction Framework (as shown in [10])

(transient or persistent) session management. The system and environment com-
ponent is used by the interaction manager to detect changes of available devices,
device capabilities or user preferences.

Input components are supposed to be built out of three smaller components:
a recognition component that captures the input from the user, an interpreta-
tion component that tries to identify the semantics of the recognized input, and
an integration component that combines the results of multiple interpretation
components. This integration component is the part of the architecture that
performs the modality fusion process [11] in which the logic for composite multi-
modal input [12] is located (e.g., to implement features like the well known “Put
that there!” example [13]).

Likewise, output components are recommended to consist of a generation com-
ponent for generating an intermediate output format, a styling component for
adding layout information and a rendering component that finally outputs the
information to the user. Typically, the generation component is performing the
modality fission process [11].

However, the MMI-F is only influencing architectures with respect to multi-
modality. The specification explicitly states: “The multimodal interaction frame-
work is not an architecture.” During the execution of the SNOW project, it
became clear that the MMI-F is a role model that could be used to introduce
the multimodality aspect to existing architectures.

In [14], a role model is defined as “the description of a (possibly infinite) set
of object collaborations using role types”. A role type describes one objects view
of another, while the role is the runtime property of an object conforming to a

Fig. 3. The MMI-F as a role model

A Distributed Staged Architecture for Multimodal Applications 199

role type. Therefore, it can be stated that an object plays a role defined by a
role type. Role models can also be used to describe and compose design patterns
[15] as the participating classes are role types. In the following, the terms role
and role type are applied to components instead of objects, a view that is more
appropriate when considering architectures.

Understanding the MMI-F as a role model makes it easier to incorporate it into
a concrete architecture as the one developed for the SNOW project. The same
effect makes a design pattern as an abstraction more usable: by documenting the
pattern, it becomes applicable to a variety of scenarios by more users. Figure 3
shows an interpretation of the MMI-F as a role model, where the input and
output component have been refined into their subcomponents (cf. Figure 2).

3.2 Applying the Role Model

The role model extracted from the MMI-F has been mapped onto the SNOW
architecture by applying the role assignments described below. The result of this
mapping is illustrated in Figure 4.

The recognition role is played by the three input control components: key-
board, camera and microphone control. The interpretation role is fulfilled by the
speech and gesture recognition servers and by the keyboard control component.
Thus, the keyboard control component plays two roles, as the introduction of a
special component for the interpretation of the keyboard input is unnecessary.

The interaction manager role is played by the dialog manager, which also
fulfills the generation role. Two components, the annotation accessor and the
documentation application play the application functions role.

The styling role is fulfilled by both the adaptation manager and the text-to-
speech server. An interesting point to note here is that the direct association be-
tween the generation and the styling role fulfilled by the text-to-speech server is
actually routed via the adaptation manager, browser and speaker control compo-
nents. Lastly, the rendering role is played by the speaker control and the browser
component.

The session component and system and environment roles are fulfilled by the
application server’s infrastructure.

Generally it is important to note that role associations do not always map di-
rectly to physical connections in the architecture, as it has been mentioned above
for the association between generation and styling role. This kind of denormal-
ization that happens to the role model might have several reasons: performance
improvements, special requirements and/or deficiencies in the role model.

Probably, the MMI-F role model has such an deficiency because it does not
consider a client/server split as it appears in the SNOW architecture. For such an
architecture, it would be more appropriate to have an additional fission role [11],
which represents a subset of the current generation role: in this case, only one
output document would be created (on the server) which is then divided into
multiple documents (on the client). In addition, this role could be responsible
for synchronizing the output modalities, as it is necessary in advanced cases [16].

200 A. Costa Pereira, F. Hartmann, and K. Kadner

Fig. 4. The MMI-F Role Model mapped onto the SNOW Architecture

4 Achieving Domain Independence

The goal of keeping the SNOW architecture as domain-neutral as possible had
consequences for both the architecture and the implementation, which are shown
in this section. First, it is shown how a staged architecture could help keeping
most of the components domain independent. Second, it is shown how a template
engine was used to efficiently implement the described staged architecture.

4.1 Staged Architectures

Extensive domain independence has been reached within the SNOW project
using a staged architecture. The term staged architecture has been borrowed
from [17], where it is defined as a sequence of n subarchitectures, in which each
stage produces the (data for the) next stage.

A staged architecture can be used very well to implement separation of con-
cerns in an architectural sense: in SNOW, the stages separate the implementation
of domain-specific from domain-neutral components as well as the implemen-
tation of device-specific from device-independent components. In some way, a
staged architecture can be seen as an implementation of a “multi-level” separa-
tion of concerns (as opposed to the multi-dimensional separation, e.g., in [18]).

Figure 5 shows the subset of the components from Figure 1 which form a
staged architecture leading to the creation of a document that is passed to a
client, containing the stages represented by the following components:

The Documentation Application represents the domain-specific, device-
independent stage, where the procedures are loaded from a special database,

A Distributed Staged Architecture for Multimodal Applications 201

Fig. 5. Achieving Separation of Concerns with a Staged Architecture

which stores the procedures in a special topic map format called XTM-P (XML
Topic Maps for Procedures, see [19]). These procedures are transformed into
XML documents in a language called D3ML (Device Independent Multimodal
Markup Language, see [20]).

In the next stage, the Dialog Manager implements a domain-neutral, device-
independent dialog model. It interprets requests for documents (which might
be maintenance procedures), fetches the documents from the Documentation
Application and transforms them together with dialog model specific content
(e.g., navigation bars) into a new D3ML document.

Afterwards, the Adaptation Manager transforms the D3ML document retrieved
from the Dialog Manager into a device-specific document (e.g., an XHTML page,
[21]) . As a component, the Adaptation Manager is still device-independent, but
the documents produced by it are suitable only for particular device and hence
device-specific.

For adapting the architecture to a different domain, only a limited number of
components need to be exchanged. If the target domain is document-oriented like
the maintenance domain, the only component that needs to be exchanged is the
Documentation Application. The described architecture has also been used to
implement a sample use case from the WearIT@Work project [22], this validation
has shown that the architecture is indeed adaptable to different domains, in this
case to a healthcare scenario.

In addition to this flexibility given by the staged architecture, the architecture
allows to introduce components at the least specific level possible. E.g., the
Annotation Accessor shown in Figure 1 has been developed in a way that is

202 A. Costa Pereira, F. Hartmann, and K. Kadner

independent of a specific domain. It is a generic component that can be used to
annotate all documents that expose identifiable anchors for the annotations.

SNOW’s staged architecture resembles the invasive software composition ap-
proach from [23], as it allows documents to be created invasively by interweaving
information obtained from one or multiple sources.

4.2 Implementation Using a Template Engine

An effect that might be seen as a drawback of staged architectures is that they
might become arbitrary complex and thus inefficient and hard to maintain. This
is only partially true for the following reasons.

First,astagedarchitecturemightbecomeinefficientifthestagesare implemented
asstandaloneapplications,whichareconnectedviastandardnetworks.IntheSNOW
project, the stages havebeen implemented thisway—thedrawbackof thenecessary
networkcommunicationiscompensatedbythepossibilitytodeploythearchitecture
in a variety of combinations to multiple machines. If this deployment option is not
necessary, it is also possible to collocate components in larger applications to
remove the communication overhead. The variable deployment of the components
also made the testing of the application easier as the responsibilities for the
components has been distributed among the SNOW partners.

Second, the implementation of the various stages might be quite similar: in
the SNOW project, the Documentation Application and the Dialog Manager are
built on top of a template engine that has been developed as part of the project.
This way, the implementation effort of the components is quite small.

The so-called XTL (XML Template Language, [24]) template engine used in
the SNOW project has some features that make it especially suitable for use in a
staged architecture. The XTL engine is capable of fetching the instantiation data
from multiple data sources. This is achieved by a plug-in architecture that allows
the template engine to use data source specific languages within the template.
E.g., in the SNOW project, plug-ins for the access to the XTM-P data layer,
to XML data sources and to the Annotation Accessor component have been
implemented. A single template might even use different data sources.

The XTL engine currently supports tags for the creation of attributes and
text, the conditional and repeated inclusion of document fragments, for the in-
clusion as well as the definition and use of macros (for the prevention of duplicate
fragments within the templates). The evaluation of these tags replaces them with
data fetched from the instantiation data sources using the plug-ins, thereby in-
vasively transforming the template into an instantiated document.

In addition to the plug-in concept, the XTL engine has a feature that al-
lows templates to defer the instantiation of designated template parts. As there
are multiple XTL engines embedded in the staged architecture, sometimes it is
necessary to insert XTL language elements that are not intended to be evalu-
ated when the template passes the first engine invocation, but rather are to be
processed by the second (or third a.s.o.) engine invocation – as it is the case
when necessary instantiation data is not yet available. It is even possible that
the arguments for the XTL language elements are created by the evaluation of

A Distributed Staged Architecture for Multimodal Applications 203

other XTL commands. This feature is called generational bypassing, as it allows
to bypass the next n engines.

The template engine is used in two components. The Documentation Applica-
tion uses the template engine just once to instantiate a domain-specific template
with data from the procedures stored as XTM-P files. The utilization of the tem-
plate engine by the Dialog Manager is more interesting as it is used two times:
first, a presentation template is transformed, augmenting the output from the
Documentation Application with presentational content (like links for naviga-
tion); second, the obtained intermediate document still has some evaluateable
XTL tags (which bypassed the first transformation) for evaluation with data
from the Annotation Accessor.

5 Related Work

Existing multimodal architectures are often based on the paradigm of software
agents. One example is the QuickSet system [25], which is a distributed multi-
agent architecture (namely the Open Agent ArchitectureTM) to integrate various
user interface components as well as a collection of distributed applications.
Major design goal of QuickSet was to provide the same user input capabilities
for handheld, desktop and wallsized terminal hardware, which were believed to
be voice and gesture-based interaction, whereas gesture refers to 2D drawings
on a screen. The QuickSet architecture groups all components around a central
facilitator, which is responsible for routing, dispatching and triggering of all
agent messages. Most of the QuickSet agents can be mapped to roles of the
MMI-F, e.g., the agents for TTS or User interface act as rendering components,
the Multimodal integration agent plays the role of the integration component
and the Application bridge agent is responsible for application functions. As
the QuickSet system was developed for a particular application domain (mili-
tary simulation) using pre-defined devices (handheld PDA), component reuse by
maximizing domain and device independence was no design criteria and thus not
regarded during development.

The focus of Embassi [26] is on providing natural interfaces to people unex-
perienced with computers and the control of consumer electronics. The Embassi
system supports the dynamic change of available modality analyzer or renderer
components. The architecture is based on a considerable set of agents grouped
into several layers. It implements an agent for merging input (Polymodal Input
Module) and one for generating output (Polymodal Output Module), which can
be associated to the integration and generation roles of the MMI-F. Moreover, the
component sets named I (recognition), F (interpretation), O (rendering), R (gen-
eration), and D (interaction manager) are related to the MMI-F. The remaining
MMI-F roles are distributed among the A, X, G, and C components. Embassi
was developed for easing the interaction with consumer electronics, therefore
including other applications involves considerable changes to the architecture.

Nightingale [27] is a ubiquitous system architecture, which supports multi-
modal and context aware applications spanning multiple devices. The context

204 A. Costa Pereira, F. Hartmann, and K. Kadner

management includes an inference approach based on ontologies. The goal of
Nightingale was to decouple multimodal applications from particular devices.
Therefore, the architecture allows users to approach any device in her surround-
ings and immediately use those devices for the multimodal dialog. The mul-
timodal architecture is based on a multi-agent system with agents for input
recognition, application processing and output generation. Information sent from
input to application agents is encoded in EMMA [3], which might be due to the
overall orientation on the MMI-F. The Nightingale system is extendable by ap-
plication writers, which only have to supply application/modality specific gram-
mar and interpreter to input agents as well as application-specific style sheets
to output agents. Therefore, the system can be considered as domain and de-
vice independent. Since the Nightingale system relies on the agent programming
paradigm, new applications must also adhere to that, which restricts extension
possibilities. Moreover, the application writer has do define input grammars and
output style sheets. Together with the application itself, this causes a consider-
able development effort for writing new Nightingale applications.

The ICARE approach is a component-based system for supporting multimodal
applications [28]. ICARE focusses on input processing, which results in different
types of components for elementary and composite input processing. Applica-
tion authors are supported in creating new ICARE applications by a graphical
environment, called the ICARE platform. As the system focusses on multimodal
input processing, it does not make any assumptions about domain or devices at
this abstract level. However, the system seems to be quite immature, since its
output capabilities were not tested as the authors admitted.

The work described in [29] describes a system, which allows the creation of
applications independent of concrete user interfaces. Applications are described
using GIML (Generalized Interface Markup Language). The interface toolkit is
called GITK (Generalized Interface ToolKit), which allows new renderers to be
plugged in later on (especially after creating a particular application). These ren-
derers generate the user interface at runtime, resulting in different user interfaces
according to different renderers. The system focusses on output of information,
whereas input is at least of equal importance. Mechanisms for input integration
were not considered. It is likely that automatically generated user interfaces are
less user-friendly than hand-crafted user interfaces.

6 Conclusion

We have shown that the MMI-F is in fact a role model. In our opinion, imple-
mentors of the MMI-F specification can benefit from this knowledge, hence the
specification should state this explicitly. A precise role model in the notation
from [14] should be included to make the specification easier to understand. In
addition to this, we recognized that a staged architecture is a powerful archi-
tectural style to implement multi-level separation of concerns. The predicted
disadvantages could be circumvented by the means shown above.

A Distributed Staged Architecture for Multimodal Applications 205

A best architectural style for a multimodal application does not seem to exist.
It is more likely that future multimodal applications will be built by using the
architectural style best suitable for the application domain. In this case, overlay-
ing the MMI-F role model will become a standard way of enabling multimodality
in an architecture.

Acknowledgements

This work has been partially supported by the European Union within the FP6
IST STREP SNOW (FP6-511587). We would like to thank Henrik Lochmann
and the anonymous reviewers for their very valuable comments on previous ver-
sions of this paper.

References

1. Pereira, A.C., Hartmann, F., Kadner, K.: A Distributed Staged Architecture for
Multimodal Applications (Extended Abstract). In: SE 2007. Software Engineering
2007. Lecture Notes in Informatics (LNI), vol. 105, Köllen Verlag, Bonn (2007)

2. The SNOW Consortium: SNOW Project Homepage (2005) (visited May 10, 2006),
http://www.snow-project.org

3. The World Wide Web Consortium: EMMA: Extensible MultiModal Annotation
markup language (2005) (visited June 2, 2006), http://www.w3.org/TR/emma/

4. The Internet Engineering Task Force: A Media Resource Control Protocol (MRCP)
(2006) (visited October 4, 2006), http://www.apps.ietf.org/rfc/rfc4463.html

5. The World Wide Web Consortium: Speech Synthesis Markup Language
(SSML) Version 1.0 (2004) (visited October 4, 2006), http://www.w3.org/TR/
speech-synthesis/

6. The Fundamental Modeling Concepts Consortium: Fundamental Modeling Con-
cepts (2003) (visited May 29, 2006), http://www.f-m-c.org/

7. Knöpfel, A.: FMC quick introduction. FMC Publication (2003), http://www.
f-m-c.org/

8. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four Easy
Pieces for Assessing the Usability of Multimodal Interaction: The CARE Proper-
ties. In: Proceedings of INTERACT’95, pp. 115–120 (1995)

9. Nigay, L., Coutaz, J.: Multifeature Systems: The CARE Properties and Their Im-
pact on Software Design. AAAI Press, Stanford, California, USA (1997)

10. The World Wide Web Consortium: Multimodal Interaction Framework (2003) (vis-
ited May 29, 2006),
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/

11. Wahlster, W. (ed.): SmartKom: Foundations of Multimodal Dialogue Systems.
Cognitive Technologies. Springer, Heidelberg (2006)

12. The World Wide Web Consortium: Multimodal Interaction Requirements (2003)
(visited May 31, 2006), http://www.w3.org/TR/mmi-reqs/

13. Bolt, R.A.: Voice and gesture at the graphics interface. In: SIGGRAPH ’80. Pro-
ceedings of the 7th annual conference on Computer graphics and interactive tech-
niques, pp. 262–270. ACM Press, New York (1980)

14. Riehle, D., Gross, T.: Role model based framework design and integration, pp.
117–133. ACM Press, New York (1998)

http://www.snow-project.org
http://www.w3.org/TR/emma/
http://www.apps.ietf.org/rfc/rfc4463.html
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/speech-synthesis/
http://www.f-m-c.org/
http://www.f-m-c.org/
http://www.f-m-c.org/
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
http://www.w3.org/TR/mmi-reqs/

206 A. Costa Pereira, F. Hartmann, and K. Kadner

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts
(1995)

16. Kadner, K.: A flexible architecture for multimodal applications using federated
devices. Visual Languages and Human-Centric Computing, 236–237 (2006)

17. Aßmann, U.: Architectural styles for active documents. Science of Computer Pro-
gramming 56, 79–98 (2005)

18. Ossher, H., Tarr, P.: Multi-dimensional separation of concerns and the hyperspace
approach. In: Proceedings of the Symposium on Software Architectures and Com-
ponent Technology: The State of the Art in Software Development, Kluwer, Dor-
drecht (2000)

19. Kadner, K., Roussel, D.: Documentation for aircraft maintenance based on topic
maps. In: Maicher, L., Sigel, A., Garshol, L.M. (eds.) TMRA 2006. LNCS (LNAI),
vol. 4438, pp. 56–61. Springer, Heidelberg (2007)

20. Göbel, S., Hartmann, F., Kadner, K., Pohl, C.: A device-independent multimodal
mark-up language. In: INFORMATIK 2006: Informatik für Menschen, Band 2, pp.
170–177 (2006)

21. World Wide Web Consortium: XHTMLTM1.0 The Extensible HyperText Markup
Language, 2nd edn. (2000) (visited May14, 2006), http://www.w3.org/TR/xhtml1/

22. Carlsson, V., Klug, T., Ziegert, T., Zinnen, A.: Wearable computers in clinical ward
rounds. In: IFAWC 2006. Proceedings of the third International Forum on Applied
Wearable Computing, pp. 45–53 (2006)

23. Aßmann, U.: Invasive Software Composition. Springer, Heidelberg (2003)
24. Hartmann, F.: An architecture for an xml-template engine enabling safe authoring.

In: DEXA 2006, Proceedings of the 17th International Conference on Database and
Expert Systems Applications. pp. 502–507. IEEE Computer Society, Washington,
DC, USA (2006)

25. Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen,
L., Clow, J.: Quickset: Multimodal interaction for distributed applications. In: Pro-
ceedings of ACM Multimedia 1997, pp. 31–40. ACM Press, New York (1997)

26. Elting, C., Rapp, S., Möhler, G., Strube, M.: Architecture and implementation
of multimodal plug and play. In: ICMI ’03. Proceedings of the 5th international
conference on Multimodal interfaces, pp. 93–100. ACM Press, New York (2003)

27. West, D., Apted, T., Quigley, A.: A context inference and multi-modal approach
to mobile information access. In: Artificial Intelligence in Mobile Systems, Notting-
ham, England, pp. 28–35 (2004)

28. Bouchet, J., Nigay, L., Ganille, T.: Icare software components for rapidly developing
multimodal interfaces. In: ICMI ’04. Proceedings of the 6th international conference
on Multimodal interfaces, pp. 251–258. ACM Press, New York (2004)

29. Kost, S.: Dynamically generated multi-modal application interfaces. PhD thesis,
TU Dresden (2006)

http://www.w3.org/TR/xhtml1/

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 207– 224, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Modularity of Software Architectures:
A Concern-Driven Measurement Framework

Cláudio Sant’Anna1,2, Eduardo Figueiredo2, Alessandro Garcia2,
and Carlos J.P. Lucena1

1 Computer Science Department, PUC-Rio, Brazil

2 Computing Department, Lancaster University, UK
{claudios,lucena}@inf.puc-rio.br,

 {a.garcia,e.figueiredo}@lancaster.ac.uk

Abstract. Much of the complexity of software architecture design is derived
from the inadequate modularization of key broadly-scoped concerns, such as
exception handling, distribution, and persistence. However, conventional
architecture metrics are not sensitive to the driving architectural concerns,
thereby leading a number of false positives and false negatives in the design
assessment process. Therefore, there is a need for assessment techniques that
support a more effective identification of early design modularity anomalies
relative to crosscutting concerns. In this context, this paper proposes a concern-
driven measurement framework for assessing architecture modularity. It
encompasses a mechanism for documenting architectural concerns, and a suite
of concern-oriented architecture metrics. We evaluated the usefulness of the
proposed framework while comparing the modularity of architecture design
alternatives in three different case studies.

1 Introduction

Modularity has been playing a pervasive role in early design stages even before the
emergence of the software architecture discipline [13]. Software engineers consider
modularity as a key principle when comparing architecture alternatives and analysing
architecture degeneration [9]. In fact, software engineers are fostered to design good
architectures by relying on a plethora of modularity mechanisms available in: (i)
architecture description languages (ADLs), such as ACME [8], (ii) catalogues of
architectural styles [2, 13], and (iii) well-know high-level design principles, such as
narrow component interfaces, reduced architectural coupling, and the like.

However, strict reliance on these architecture mechanisms is not enough to achieve
truly modular architecture designs [1, 3, 10]. Moreover, assessment and improvement of
early design modularity is even more challenging. Quantitative assessment techniques are
needed for evaluating and controlling architecture alternatives. Software metrics are a
powerful means to provide modularity indicators of architecture design [3]. The software
metrics community has consistently used notions as module coupling and cohesion to
derive measures of software architecture quality [1, 10, 16].

208 C. Sant’Anna et al.

In fact, the conception of the right architecture decomposition is still a deep bottleneck to
the software design process. A number of widely-scoped architectural concerns that emerge
in early development phases need to be simultaneously modularized. An archi- tectural
concern is some important part of the problem that we want to treat in a modular way at the
architecture specification [4, 5]. Much of the complexity of software archi- tecture design is
derived from the inadequate modularization of architectural concerns, such as graphical user
interface (GUI), exception handling, and persistence. Architects tend to naturally give
priority or focus on the modularization of certain concerns, while choosing a certain
combination of existing architecture styles or relying on a particular way for architecture
decomposition. As a result, a number of concerns end up having a crosscutting impact on the
system architectural decomposition, and systematically affecting the boundaries of several
architectural elements, such as components and their interfaces [5, 14].

Although typical architecture modularity problems are related to the inadequate
modularization of concerns, most of the current quantitative assessment approaches do not
explicitly consider concern as a measurement abstraction. A number of architecture
quantitative assessment methods are targeted at guiding decisions related to modularity,
without calibrating the measurement outcomes to the driving architectural concerns. It
imposes certain shortcomings, such as the ineffective identification of desirable and
undesirable couplings. Also, this necessity becomes more apparent in an age that a number
of different forms of architecture decompositions are emerging. For example, aspect-
oriented software architectures and feature-oriented product-line architectures [15] support
different composition mechanisms for enhancing the separation of certain concerns. A
number of case studies have pointed out that detection of certain design flaws can be
observed in early design stages [14, 17, 23].

Software architects need, therefore, quantitative assessment approaches that support
them to identify modularity anomalies related to inadequate modularization of
architectural concerns. We believe that concern-driven quantitative assessment improves
the architecture modularity analysis, because it makes more evident the overall influence
of the (in)adequate modularization of widely-scoped design concerns. In this context, the
contributions of this paper are threefold: (i) a list of shortcomings associated with
conventional architecture modularity measurement, (ii) a concern-driven framework for
assessing architecture modularity, and (iii) a systematic evaluation of the proposed
framework. In addition to a concern-sensitive metrics suite, the framework includes a
mechanism for documenting concerns in architecture descriptions. We evaluated the
usefulness of the measurement framework while comparing the modularity of architecture
design alternatives in the context of three case studies.

The remainder of this paper is organised as follow. Section 2 motivates the proposed
measurement framework while discussing the limitations of conventional architecture
metrics. Section 3 defines the framework terminology and metrics. Section 4 discusses the
evaluation of the framework in the case studies. Finally, Section 5 presents the concluding
remarks comparing our work to related research.

2 Why Concern-Driven Architecture Assessment?

Current quantitative architecture assessment approaches [1, 10, 16] usually rely on
traditional abstractions such as component (or module) and its interfaces in order to

 On the Modularity of Software Architectures 209

undertake the measurements. Based on these abstractions, they define and use metrics
for quantifying attributes such as coupling between components, component cohesion,
interface complexity, and so forth. Figure 1 depicts an architecture that will serve as a
running example throughout this paper, and as an illustration for the limitations of
conventional architecture metrics. It shows a partial, simplified graphical
representation of the architecture description of a real Web-based information system,
called Health Watcher [4, 17]. The design is structured mainly following the layer
architectural style [2].

In an architecture specification, a concern is addressed (or realized) by a number of
architecture elements, such as components, interfaces and operations. The gray boxes
in Figure 1 represent the concerns addressed by the Health Watcher architecture
elements. For instance, the business concern is addressed by the Business_Manager
component and its interfaces, except the useTransaction interface, which addresses
the persistence concern; persistence is also an architectural concern which is realized
by the Data_Manager and Transaction_Manager components, by the useTransaction
interface of the Business_Manager component and by the transactionExceptionEvent
and repositoryExceptionEvent events raised or captured in a number of interfaces,
such as savingService. The exception handling concern is reified by the transaction-
ExceptionEvent, repositoryExceptionEvent and communicationExceptionEvent events.
Besides, in the example shown in Figure 1, the Business_Manager component, for
instance, is connected to three other components. The distributedSavingService
interface has four operations and events. In the light of this example, the next
subsections discuss the limitations of current architecture metrics.

TRANSACTION
MANAGER

GUI_MANAGER

DISTRIBUTION_MANAGER

BUSINESS_MANAGER

DATA_MANAGER

requestFacade

factoryFacade

saveEntity

distributedSaving
Service

requestDistributed
Facade

getFacade

saveDistributed
Entity

saving
Service

use
Transaction

transService

initPersistence

initPersistence
Service

saveInfo

savingInfoService

distributeSavingService
{

save(info);
transactionExceptionalEvent();
repositoryExceptionalEvent();
communicationExceptionalEvent();

}

savingService
{
save(info);
transactionExceptionEvent();
repositoryExceptionEvent();

}

Legend:

component

provided interface

required interface

Distribution

GUI

Business

Persistence

G

D

B

P

Exception HandlingE

C
O

N
C

E
R

N
S Distribution

GUI

Business

Persistence

G

D

B

P

Exception HandlingE

C
O

N
C

E
R

N
S

G

D

E
E

E
P

P
D

B
E

E P
P

B

P P

P

D

Fig. 1. Architecture of the Health Watcher system

210 C. Sant’Anna et al.

2.1 Inaccuracy on Modularity Analysis

When choosing certain architecture abstractions, styles and mechanisms for
decomposition, architects may leave some concerns non-modularized. In other words,
these concerns are not satisfactorily captured in separate modular units in the
architecture description, i.e. only localized within one or a few components with well
defined interfaces. In the architecture shown in Figure 1, the exception handling
concern is partially addressed by abnormal events, such as transactionExceptional-
Event and repositoryExceptionalEvent, exposed in several interfaces of the compo-
nents. In this system, it is important to well modularize the global exception detection
strategies because they are similarly applied over several key services defined by the
system architecture.

Current architecture metrics are not able to highlight that this concern has a wide
impact on several interfaces. The main problem is that they do not rely on the
identification of the architectural elements related to each concern, thereby causing a
number of false negatives in the architecture assessment process. The reason is that
typical architecture metrics are not able to explicitly capture this kind of modularity-
related impairment as, for instance, exception handling is an architectural property
typically diffused all over the architecture elements. Hence, this implies that existing
metrics are often inaccurate to support the identification of non-modularized
architectural concerns.

2.2 Impairments on Change Management

The dependence between system concerns is a pivotal information for software
architects in order to support design change management. Changes on a concern may
impact concerns that depend on it. However, current coupling metrics are inaccurate
to identify architectural inter-concern dependencies. Coupling architecture metrics
quantify the dependence between components, assessing, in this way, the dependence
between only the primary concerns modularized within components.

In Figure 1, the Business_Manager component depends on two other components,
namely Transaction_Manager and Data_Manager, and one component (Distribution_
Manager) depends on it. However, concerns which are not entirely modularized by the
architecture abstractions do not have modular boundaries, in the sense that their
boundaries are not well defined by component interfaces. Hence the dependence between
such non-modularized concerns or even between non-modularized and modularized
concerns cannot be measured by traditional measures. Therefore, these metrics cannot
support the assessment of the impact of non-modularized concerns on other architectural
concerns. In Figure 1, the distribution concern depends on the persistence concern because
the Distribution_Manager component includes persist- ence-related exception events,
which are not modularized by any component. Moreover, the exception handling concern
interacts with the persistence concern because the transactionExceptionEvent and
repositoryExceptionEvent events are related to both concerns.

2.3 Inaccuracy on Identifying Instabilities

Conventional metrics are also inaccurate to identify potential unstable architecture
elements. Architecture stability is usually measured by the dependence between

 On the Modularity of Software Architectures 211

components [16]. A component that depends upon nothing at all is considered to be
very stable, since a change in any other component is unlikely to ripple up to them
and cause them to change. Therefore, current architecture metrics evaluate the
stability of a component by measuring its coupling with other components [16].

In Figure 1, the Distribution_Manager component depends upon the Business_
Manager component, so that changes in the latter can be propagated to the former.
However, since some concerns are not totally modularized within components and cut
across several components, the stability of a component has also to do with the
number of concerns that affect it. The more concerns affect a component the more
unstable that component is, because it can be changed due to changes related to those
concerns. In Figure 1, the Distribution_Manager component is affected by the excep-
tion handling and persistence concerns, once its interface encompasses exception
events related to persistence – transactionExceptionEvent and repository-
ExceptionEvent. This same reasoning is also valid for interface stability. That is, the
more concerns affect a interface the more unstable that interface is, because it can be
modified due to changes related to those concerns. Since the current metrics do not
take into account the number of concerns that affect the architecture elements, they
are not able to capture this dimension of architecture stability.

2.4 The Tyranny of Dominant Modularity Attributes

Software architecture measurement also suffers from what we call the tyranny of the
dominant architectural modularity principles. The fact that the assessment of certain
principles, such as low coupling and narrow interfaces, are overemphasized, other
equally important design principles, such as separation of concerns, have been
neglected in architecture measurement processes. It might hamper trade-off analysis
in scenarios where priorities need to be given, for instance, either to the separation of
a specific concern or to the degree of coupling of architectural components involved.
More importantly, it is not possible to understand how the separation of certain
architectural concerns influence other modularity attributes, such as coupling.

As shown in Figure 1, the exception handling concern affects the distributed-
SavingService and savingService interfaces, since they have to expose exceptional
events. These events contribute to increase the complexity of those interfaces. Even
though the traditional metrics can provide information about the interface complexity,
they do not support the architects to reason about the fact that the exception handling
concern is the main contributor for that complexity. Hence, the identification of the
impact of architectural concerns on traditional attributes is hindered.

3 A Concern-Driven Measurement Framework

This section is targeted at defining a concern-sensitive measurement framework for
assessing architecture modularity. It complements existing architecture metrics by
explicitly promoting concern as a measurement abstraction. The framework aims at
supporting the software engineers to: (i) anticipate modularity problems caused by
architecturally-relevant concerns, and (ii) compare alternatives of architecture design
solutions with respect to their ability to modularize distinct sets of prioritized
concerns.

212 C. Sant’Anna et al.

Our framework mainly relies on evaluating the modularization of architectural
concerns. Therefore it includes metrics for quantifying separation of concerns and
their interactions. For instance, it quantifies the diffusion of a concern realization
within architecture specification elements, such as components and interfaces. The
metrics suite also evaluates how a particular concern realization affects traditional
attributes such as coupling, cohesion and interface complexity. Hence it includes
metrics for assessing these attributes.

Our concern-oriented metrics focus on the evaluation of software architecture
representations, such as UML-based or ADL specifications. Also, in order to consider
concern as an abstraction in the measurement process, there is a need to explicitly
document the concerns in the architecture. Therefore, our approach also includes a
notation to support the architect with the documentation of the driving architectural
concerns (Section 3.6). Using this notation, the architect can assign every architecture
element (components, interfaces, and operations) to one or more concerns.

Table 1 presents a summary of the architecture metrics suite with a brief definition
for each of the metrics and their association with distinct modularity attributes they
measure. The metrics definition is agnostic to specific ADLs. Therefore, in order to
apply the metrics, it is necessary to adapt their definition to the specific abstractions
of the architecture description approach in use. The following subsections present the
terminology considered in the definition of the metrics (Section 3.1), and the detailed
definition of each metric of the framework (Section 3.2 – 3.5).

Table 1. Suite of Concern-Driven Architectural Metrics

Attribute Metric Definition

Concern Diffusion over
Architectural Components (CDAC)

It counts the number of architectural components
which contributes to the realization of a certain
concern.

Concern Diffusion over
Architectural Interfaces (CDAI)

It counts the number of interfaces which contributes to
the realization of a certain concern.

Concern
Diffusion

Concern Diffusion over
Architectural Operations (CDAO)

It counts the number of operations which contributes to
the realization of a certain concern.

Component-level Interlacing
Between Concerns (CIBC)

It counts the number of other concerns with which the
assessed concerns share at least a component.

Interface-level Interlacing Between
Concerns (IIBC)

It counts the number of other concerns with which the
assessed concerns share at least an interface.

Coupling
Between

Architectural
Concerns Operation-level Overlapping

Between Concerns (OOBC)
It counts the number of other concerns with which the
assessed concerns share at least an operation.

Afferent Coupling Between
Components (AC)

It counts the number of components which require
service from the assessed component.

Coupling
Between

Components Efferent Coupling Between
Components (EC)

It counts the number of components from which the
assessed component requires service.

Component
Cohesion

Lack of Concern-based Cohesion
(LCC)

It counts the number of concerns addressed by the
assessed component.

Number of Interfaces It counts the number of interfaces of each component. Interface
Complexity

Number of Operations
It counts the number of operations in the interfaces of
each component.

Looking again to the architecture in Figure 1, using the proposed metrics (Table 1)
we can now quantify the effects of the exception handling concern in the architecture.

 On the Modularity of Software Architectures 213

After documenting that the exception events are related to the exception handling
concern, we can compute the concern-driven metrics. The results will show that the
exception handling concern is spread over several components and interfaces.
Moreover, the results of the Lack of Concern-based Cohesion metric for the
GUI_Manager, Distribution_Manager and Business_Manager components will show
that there is more than one concern present in each of those components. In this way,
the architect will be warned that in the Business_Manager component, for instance,
besides the business concern, there are other concerns contributing for the complexity
of the component.

3.1 Terminology

In order to define the concern-oriented architectural metrics, we present here the
fundamental terminology for architecture elements we have used.

3.1.1 System Architecture
The measurement framework is basically rooted at the component-and-connector
models [21] of the system architecture, as they subsume the core abstractions in
architecting processes, such as components, interfaces, and their relationships. They
are also the models supported by a plethora of ADLs and, more notably, by UML.
The examples based on the component-and-connector views are described in this
paper using UML 2.0.

Definition 1: Component-and-Connector View. A component-and-connector view of
the system architecture consists of a set of components. Each component has provided
and required interfaces. Each interface encompasses one or more operations and/or
events (herein referred only as operations). A required interface can be linked to a
provided interface by means of a connector. The architecture in Figure 1 consists of
five components – GUI_Manager, Distribution_Manager, Business_Manager,
Transaction_Manager, and Data_Manager. The Distribution_Manager component has
a provided interface called distributed SavingService, which is connected to a
required interface of the GUI_Manager component, called saveEntity. The
distributedSavingService interface has four operations.

3.1.2 Interaction Between Components
Components interact with each other by means of their interfaces. These interactions
are used to define metrics capturing the coupling between components.

Definition 2: Afferent Relationship. A component A has an afferent relationship with a
component B if a required interface of B is linked to a provided interface of A, which
means that B requires services from A and, therefore, depends upon A. In Figure 1, the
Distribution_Manager component has an afferent relationship with the GUI_Manager
component.

Definition 3: Efferent Relationship. A component A has an efferent relationship with a
component B if a provided interface of B is linked to a required interface of A, which
means that B provides services to A and, therefore, is depended upon by A. In
Figure 1, the Distribution_Manager component has an efferent relationship with the
Business_Manager component.

214 C. Sant’Anna et al.

3.1.3 Architectural Concern
The architecture description of a system encompasses several concerns which come
directly from the system requirements or emerge during the architecting process. In
the example of the Health Watcher architecture (Figure 1), there are several concerns
such as GUI, Business, Distribution, Persistence and Exception Handling. As
mentioned before (Section 2), in an architecture specifi- cation, a concern is realized
by a set of architecture elements, such as components, interfaces and operations. Our
measurement framework focuses on architectural concerns that eventually evolve into
concrete pieces of code and contribute directly to the functionality of the system, such
as the aforementioned ones. Our metrics do not rely on concerns that: (i) influence
how the system is built but do not trace to any specific piece of code, such as
performance, or (ii) influence the software process and are not observable when the
system executes, such as maintainability.

Definition 4: Architectural Concern. A concern C1 consists of a list of architecture
elements assigned to it which can be components, interfaces and operations. If a
component A is assigned to C1, all the interfaces of A are considered also assigned to
C1, except those which are explicitly assigned to other concern. The same reasoning
is applied to interfaces, that is, if a interface I is assigned to C1, all the operations in I
are considered also assigned to C1, except those which are explicitly assigned to other
concern.

The architect has the role of assigning every architecture element to one or more
system concerns. We provide a mechanism for supporting the architect on
documenting the mapping of concerns to architecture elements (Section 3.6). It is out
of the scope of this paper providing an approach to support the architect on deciding
which elements are related to a concern. However, we are aware that different
selections of concerns and their assignment to architecture elements may imply
different results in the measurement process. Therefore, in the future, we plan to
specify guidelines for systematically identifying concerns in the architecture. For
now, in our case studies, in order to make the identification of the architectural
elements related to the concerns simpler and more systematic, we follow a specific
guideline: assign a concern to an architectural element (component, interface or
operation) if the complete removal of the concern requires with certainty the removal
of the element. This guideline is inspired on the guidelines proposed by Eaddy et al
[24]. There are some works (e.g. [18]) that aim at supporting the identification of
concerns in software artefacts. Hence, these approaches and their tools can be used for
identifying concerns in the architecture. Also, we have consistently observed in our
case studies that, as expected, the mapping to architecture elements is easier and less
time-consuming than the mapping to elements of source code due to the much more
coarse-grained level of abstraction in architecture descriptions.

3.1.4 Concern Interactions
As stated in the previous section, the business concern is concretized by the
Business_Manager component in the architecture shown in Figure 1. Nevertheless,
note that even though the main purpose of Business_Manager component is to
address the business concern, it also includes elements related to other concerns such
as the useTransaction interface (persistence concern) and exception handling events.
Note also that some elements, such as the repositoryExceptionEvent event, are related

 On the Modularity of Software Architectures 215

to more than one concern (exception handling and persistence). This occurs because
some concerns are not well modularized and, as a consequence, are not totally
localized in components whose only purpose is to address them. As a result, concerns
interact to each other not only by means of the relationship between components, but
also because sometimes more than one concern is present in the same architecture
element. Some of the metrics in our framework target at assessing the interaction
between concerns. In order to define them, we first define here three forms of concern
interaction which they take into account.

Definition 5: Component-level Interlacing. A concern C1 is interlaced at the
component level with another concern C2 if C1 and C2 have one or more components
in common, but distinct parts of that component are assign to each concern. We
consider it in two ways: (i) a component is assigned to C1, and one or more interfaces
of the same component are assigned to C2, or (ii) one or more interfaces of a
component are assigned to C1, and one or more distinct interfaces of the same
component are assigned to C2. In Figure 1, the business concern is interlaced at the
component level with the persistence concern, once the Business_Manager
component is assigned to it, but also has one interface (useTransaction) assigned to
the persistence concern.

Definition 6: Interface-level Interlacing. A concern C1 is interlaced at the interface
level with another concern C2 if C1 and C2 have one or more interface in common. It
can happen in two ways: (i) an interface is assigned to C1, and one or more operations
of the same interface are assigned to C2, or (ii) one or more operations of an interface
are assigned to C1, and one or more distinct operations of the same interface are
assigned to C2. In the example of Figure 1, the business concern is interlace with the
exception handling concern at the interface level since the business-related interface
savingService includes two operations assign to the exception handling concern.

Definition 7: Operation-level Overlapping. A concern C1 is overlapped at the
operation level with a concern C2 if one or more operations are assigned to both C1
and C2. This interaction is different from the previous one because here at least one
same operation is entirely assigned to both concerns. In the architecture shown on
Figure 1, the persistence concern is overlapped with the exception handling because
the repositoryExceptionalEvent and the transactionExceptionalEvent operations are
assigned to both concerns.

3.2 Metrics for Concern Diffusion

We next define our measures for concern diffusion based on the terminology
presented in Section 3.1. These metrics are defined on counting, for each architectural
concern, the number of architecture elements assigned to it. They are devoted to
calculate the degree to which a single concern in the system maps to distinct
architectural elements.

Definition 8: Concern Diffusion over Architectural Components (CDAC). CDAC for
a concern C1 counts the number of components in the system architecture entirely
assigned to C1. The counting also includes the number of components where there is
at least one interface assigned to C1, and the number of components where there is at
least one operation assigned to C1. According Figure 1, the value of CDAC for the

216 C. Sant’Anna et al.

persistence concern is 4 since it is present in: (i) the Transaction_Manager and
Data_Manager components, (ii) the useTransaction interface of the Business_
Manager component, and (iii) the two operations of the distributed Saving Service
interface of the Distribution_Manager component. Therefore, the persistence compon-
ent is spread over four components.

Definition 9: Concern Diffusion over Architectural Interfaces (CDAI). CDAI for a
concern C1 counts the number of interfaces in the system architecture entirely
assigned to C1 (which includes the interfaces of components entirely assigned to C1),
plus the number of interfaces where there is at least one operation assigned to C1.
According Figure 1, the CDAI value for the persistence concern is 6 since four
interfaces are entirely assigned to it – transService, initPersistenceService, savingInfo-
Service and useTransaction, and there are also operations assigned to it in the
saveDistributedEntity and distributedSavingService interfaces.

Definition 10: Concern Diffusion over Architectural Operations (CDAO). CDAO for
a concern C1 counts the number of operations in the system architecture assigned to
C1 (which includes the operations of interfaces entirely assigned to C1). In Figure 1,
CDAO for the persistence concern counts all the operations in the interfaces of the
Data_Manager and Transaction_Manager components, plus all the operations in the
useTransaction operation, and plus the repositoryExceptionalEvent and the transaction
ExceptionalEvent in the savingService and distributedSavingService interfaces.

3.3 Metrics for Coupling Between Concerns

The measures for coupling between concerns are defined based on the kinds of
concern interactions defined in Section 3.1.4. These metrics are targeting at assessing
concern dependences caused by concerns that are not well modularized. In other
words, they deal with coupling between concerns which are not introduced by the
dependence between components.

Definition 11: Component-level Interlacing Between Concerns (CIBC). CIBC for a
concern C1 counts the number of other concerns with which C1 is interlaced at the
component level (Component-level Interlacing – see Definition 5). In Figure 1, the
CIBC value for the business concern is 1 because it is interlaced with the persistence
concern at the component level, since the Business_Manager component include an
interface entirely dedicated to persistence (useTransaction interface).

Definition 12: Interface-level Interlacing Between Concerns (IIBC). IIBC for a
concern C1 counts the number of other concerns with which C1 is interlaced at the
interface level (Interface-level Interlacing – see Definition 6). In Figure 1, the IIBC
value for the business concern is 2, since there are operations assigned to the
persistence and exception handling concerns in the saveDistributedEntity interface of
the Business_Manager component.

Definition 13: Operation-level Overlapping Between Concerns (OOBC). OOBC for a
concern C1 counts the number of other concerns with which C1 is overlapped at the
operation level (Operation-level Overlapping – see Definition 7). In Figure 1, the
OOBC value for the exception handling concern is 2 because there are operations
that, besides being assigned to the persistence concerns, are also assigned to the

 On the Modularity of Software Architectures 217

distribution (communicationExceptionalEvent) and persistence (transactionExceptional
Event and repositoryExceptionalEvent) concerns.

3.4 Component Cohesion Metric

Here we define one concern-sensitive metric for cohesion. This metric also rests on
the mapping of the system concerns to the architecture elements. However, differently
from the metrics presented in Sections 3.2 and 3.3, it is measured from the component
point of view. In other words, the results of this metric is obtained per component,
and not per concern as in the metrics defined in the previous sections. Our cohesion
metric are defined on counting, for each component, the number of concerns it
addresses.

Definition 14: Lack of Concern-based Cohesion (LCC). LCC for a component A
counts the number of concerns which A is assigned to, plus the number of distinct
concerns which the interfaces of A are assigned to, plus the number of distinct
concerns which the operations in the interfaces of A are assigned to. In the
architecture in Figure 1, the LCC value for the Business_Manager component is 3
because it is assigned to three concerns: (i) the entire component is assigned to the
business concern, (ii) its useTransaction interface is assigned to the persistence
concern, and (iii) two operations in one of its interfaces are assigned to the exception
handling concern.

3.5 Metrics for Coupling and Interface Complexity

Our measurement framework also includes metrics for quantifying coupling between
components and interface complexity. These metrics are based on traditional metrics
already defined [10, 16]. We just adapted them to comply with our terminology. The
coupling metrics (Definitions 15 and 16) are based on the definitions presented in
Section 3.1.2.

Definition 15: Afferent Coupling Between Components (AC). AC for a component A
is the number of distinct components with which A has afferent relationship
(Definition 2 – see Section 3.1.2).

Definition 16: Efferent Coupling Between Components (EC). EC for a component A is
the number of distinct components with which A has efferent relationship (Definition
3 – see Section 3.1.2).

Definition 17: Number of Interfaces (NI). NI for a component A counts the number of
interfaces of A.

Definition 18: Number of Operations (NO). NO for a component A counts the number
of operations in all interfaces of A.

3.6 Concern Templates

In order to support the application of the concern-driven metrics, we defined what we
call as concern template. A concern template captures the architecture elements
associated with key concerns, letting the architects to represent all the architectural
implications related to a concern in a single place. The template includes the

218 C. Sant’Anna et al.

following information: (i) name of the concern; (ii) architecture elements, such as
components, interfaces, relationships, operations, events and so forth, related to the
concern; and (iii) composition rules to describe how the elements with respect to a
concern affect architectural elements related to other concerns.

Concern: Exception Handling

Architecture Elements:
 transactionExceptionalEvent() ;
 repositoryExceptionalEvent() ;
 communicationExceptionalEvent() ;

Composition Rules :
Add event communicationExceptionalEvent() to
 interface distributedSavingService;
SavingSet = distributedSavingService, savingService;
Forall I in SavingSet
 Add event transactionExceptionalEvent() to I;
 Add event repositoryExceptionalEvent() to I;

Fig. 2. Concern Template

Figure 2 shows how to use the template to support the description of architectural
designs relative to the exception handling concern in the Health Watcher system
architecture (Figure 1). The template shows the three operations assigned to the
persistence concern and how they are composed with the other elements in the
architecture, that is, in which interfaces they are present. Based on this information is
it possible to compute all the concern-driven metrics we defined.

4 Evaluation and Discussion

We undertook three case studies in order to carry out an evaluation of our measurement
framework. We have used the framework to perform modularity comparisons of two
different architecture alternatives for each of three systems. The first alternative is always
an aspect-oriented (AO) architecture. The second version is based on one or more specific
architectural styles [2, 13], herein referred as non-aspectual (non-AO) architecture. We
have chosen to compare the modularity of AO and non-AO architectures because aspect-
oriented abstractions [4, 15] are claimed to modularize certain concerns in a superior
manner in contrast with conventional architectural decompositions. Nevertheless, since
our metrics are paradigm independent, they can be used to assess and compare
architectures which follow any style. They can also be useful to compare different
architectures alternatives in the same paradigm, for instance, two aspect-oriented
alternatives or two object-oriented alternatives.

Aspect-oriented software development has initially emerged as a programming
technique [15], however some work on aspect-oriented architecture specification have
been developed recently [4]. Based on these works, we consider here that, in addition
to components, interfaces, connectors and operations, the component-and-connector

 On the Modularity of Software Architectures 219

view of an aspect-oriented architecture is depicted using two new abstractions:
aspectual component and aspectual connector [4]. An aspectual component represents
a component which will be concretized by at least one aspect at the implementation
level [4]. An aspectual connector [4] represents a relationship between an aspect and
other components. For further information about the definitions of these abstractions
refer to [4].

The first of our series of case studies was a multi-agent system framework, called
AspectT [5]. The evaluation included an architecture mainly based on the Mediator
pattern [19], in addition to an AO architecture. The second study encompassed
publisher-subscriber [2] and aspect-oriented versions of the MobiGrid architecture
[20], a framework used to develop mobile agents in Grid environments. The third case
study involved the AO and non-AO layered architecture of the Heath Watcher system,
presented in Section 2. The systems were ideal for our evaluation study because the
chosen systems have stringent modularity requirements due to the demand for
producing reusable, adaptable and evolvable architectures. Moreover, they are
realistic systems that involve emphasis on different concerns and their distinct
compositions. In addition, previous studies [14, 17] have interestingly figured out that
architecture degeneration would be avoided whether the use of aspects was planned
since the design outset in certain parts of the Health Watcher architecture.

GUI_MANAGER

BUSINESS_MANAGER

DATA_MANAGER

requestFacade saveEntity

getFacade
saving
Service

transService

initPersistence

initPersistence
Service

saveInfo

savingInfoService

Legend:

component

provided interface

required interface

DISTRIBUTION
MANAGER

TRANSACTION
MANAGER

ExceptionService

aspectual component

aspectual connector

distributionService

Fig. 3. AO Architecture of Health Watcher System

Figure 3 shows a partial view of the AO architecture of the Health Watcher system.
In the following we partially present the data gathered with the application of our
metrics in the architectures of the three systems and discuss how they support
overcoming the limitations of conventional metrics (Section 2). Due to space
limitation, we will give more attention to the results for the Health Watcher

220 C. Sant’Anna et al.

architecture, since it is our running example in this paper. The complete description of
the gathered data is reported elsewhere [7].

Identification of non-modularized concerns. Table 2 presents the measures for
concern diffusion (Section 3.2) and coupling between concerns (Section 3.3). The
presented data is relative to the AO and non-AO versions of the Health Watcher
architectures. The results for the concern diffusion metrics (CDAC, CDAI and
CDAO) show that the persistence and exception handling concerns are spread over
more architecture elements in the non-AO solution. For instance, in the non-AO
architecture, the persistence affects more components (CDAC metric) – 5 vs. 2, more
interfaces (CDAI metric) – 22 vs. 9 – and more operations (CDAO metric) – 154 vs.
45. This occurs mainly because in the AO solution the persistence-specific
exceptional events are modularized within the Transaction_Manager aspectual
component and, as a consequence, do not need to be addressed by the interfaces of
Business_Manager, Distribution_Manager and GUI_Manager components as in the
non-AO solution.

Our framework was also useful to analyse the differences on the concern diffusion
between the AO and the mediator-based architectures of the AspectT (first case
study). The results on Table 3 show that the AspectT concerns are spread over more
components, interfaces and operations in the non-AO architecture (mediator-based). It
happens because the component which plays the mediator role needs to inevitably
embody functionalities from the different concerns; therefore it includes interfaces
and operations related to them.

Table 2. Health Watcher: Concern Diffusion and Coupling between Concerns measures

Concern
Diffusion

over
Architectural
Components

(CDAC)

Concern
Diffusion

over
Architectural

Interfaces
(CDAI)

Concern
Diffusion

over
Architectural
Operations

(CDAO)

Component-
level

Interlacing
Between
Concerns

(CIBC)

Interface-
level

Interlacing
Between
Concerns

(IIBC)

Operation-
level

Overlapping
Between
Concerns
(OOBC)

Concerns

non-AO AO non-AO AO non-AO AO non-AO AO non-AO AO non-AO AO
GUI 1 1 2 2 14 14 0 0 3 0 0 0
Distribution 2 1 5 1 51 16 0 0 3 1 1 1

Business 1 1 8 9 57 57 2 0 2 0 0 0
Persistence 5 2 22 9 154 45 2 0 4 1 1 1

Concurrency 2 1 2 2 4 4 2 0 0 0 0 0
Exception Handling 5 2 24 8 156 52 0 0 3 2 2 2

Identification of dependence between architectural concerns. Table 2 also presents
the outcomes for coupling between concerns (CIBC, IIBC and OOBC metrics). The
results show that modularizing some concerns with aspectual components eliminates
the interlacing between concerns at the component level in the AO architecture. Note,
for instance, that, in the non-AO architecture, the business concern is interlaced with
two concerns at the component level (CIBC metric). Checking the architecture
description and its concern templates, we can see that one of these two concerns is the
persistence concern. This interlacing is caused by the useTransaction required
interface (Fig. 1), which is related to the persistence concern, in the
Business_Manager component. This interface is not necessary in the AO architecture,
because the Transaction_Manager aspectual component provides the transaction

 On the Modularity of Software Architectures 221

control service by capturing the requisitions to the saving services directly in the
savingService provided interface (Fig. 3).

The coupling related to interface-level interlacing is also lower in the AO solution.
For instance, the persistence concern is interlaced with 4 other concerns at the
interface level in the non-AO architecture, against only one concern in the AO
solution (IIBC metric). This is due the fact that persistence-specific exceptional
events, such as transactionExceptionEvent and repositoryExceptionEvent, are spread
over interfaces of the Business_Manager, Distribution_Manager and GUI_Manager
components in the non-AO architecture. On the other hand, in the AO solution, these
events are handled by the Transaction_Manager aspectual component which capture
them directly in the provided interfaces of the Data_Manager component, represented
in Figure 3 by the saveInfoService interface (in fact, in the real architecture of the
Health Watcher, the Data_Manager component has seven interfaces).

Table 3. AspectT: Concern Diffusion Measures

Concern Diffusion over
Architectural Components

(CDAC)

Concern Diffusion over
Architectural Interfaces

(CDAI)

Concern Diffusion over
Architectural Operations

(CDAO) Concerns

Non-AO AO Non-AO AO Non-AO AO
Interaction 2 1 9 3 22 10
Adaptation 2 1 6 2 34 5
Autonomy 2 1 7 3 80 31
Collaboration 2 1 6 4 87 37
Mobility 2 1 3 3 35 20
Learning 2 1 4 2 16 6

Finally, the results regarding the metric for operation-level overlappings show that

the AO solution for the Health Watcher architecture was not able to improve this kind
of coupling. In both AO and non-AO architectures the Exception Handling concern
are overlapped with the Persistence and Distribution concerns due to the exceptional
events specific to these two concerns. Even though these two concerns are
modularized within aspectual components, the interfaces of these components still
have to include the exceptional events.

Breaking the tyranny of the dominant architectural modularity attributes. Table 4
presents the results for three metrics: Lack of Concern-based Cohesion (LCC),
Number of Interfaces (NI) and Number of Operations (NO). Note that unlike the
results for the metrics on Tables 2 and 3, the results for the metrics on Table 4 are
gathered per component. Analysing the results of the Number of Interfaces (NI) and
Number of Operations (NO) metrics, which are conventional metrics, we can see that
three components, namely GUI_Manager, Distribution_Manager and Business_
Manager have more complex interfaces in the non-AO architecture. For instance, the
Business_Manager component has more interfaces (11 vs. 9) and more operations
(64 vs. 57) in the non-AO architecture.

Although this information is important, it does not give any clue about the reasons
for that. In this way, the results for the Lack of Concern-based Cohesion complement
this information in the sense that it shows that those components which have more
complex interfaces also has more concerns affecting them in the non-AO solution.
Therefore, these concerns can be one of the causes for the higher interface complexity.

222 C. Sant’Anna et al.

Table 4. Health Watcher: Component Cohesion and Interface Complexity Measures

Lack of Concern-based
Cohesion (LCC)

Number of Interface
(NI)

Number of Operations
(NO) Components

non-AO AO non-AO AO non-AO AO
GUI_Manager 4 1 2 2 17 14
Distribution_Manager 3 2 3 1 34 16
Concurrency_Manager 1 1 1 2 2 4
Business_Manager 4 1 11 9 64 57
Transaction_Manager 2 2 2 2 5 5
Data_Manager 2 2 7 7 40 40

In our second case study which was about the MobiGrid architecture, the Afferent
Coupling Between Components (AC) and Efferent Coupling Between Components
(EC) metrics showed values 50% higher for the non-AO architecture. This difference
was due to the bidirectional coupling between several components. The concern-
driven metrics highlighted that this bidirectional coupling was caused by the
propagation of events related to the Mobility concern over several components. In the
AO architecture the Mobility concern was totally modularized within an aspectual
component, eliminating, as a consequence, the bidirectional coupling between the
other components.

5 Concluding Remarks

Up to date, to the best of our knowledge no concern-oriented metrics have been
developed to evaluate software architecture modularity. There are only initial works
on concern-based metrics [11, 24]. Di Stefano et al [11] propose a metric for coupling
between concerns based on the coupling between the classes that implement the
concern. Eaddy et al [24] propose two metrics: degree of scattering which measures
the distribution of a concern’s implementation; and degree of focus which measures
the degree to which a class’s implementation relates to multiple concerns.
Nevertheless both works are concerned with assessing the separation of concerns only
at the implementation level. The works concerning quantitative architecture
assessment are all about the definition of metrics based on conventional abstractions
and, therefore, suffer from the limitations previously discussed in this paper. For
instance, Briand et at [1] define architecture metrics for coupling, cohesion and
visibility based on the module abstraction. Martin [16] defines coupling metrics
resting on the object-oriented package abstraction.

Modularity occupies a pivotal position in the design of good system architectures.
Yet the task of considering the multi-dimensional facets of modularity remains a deep
challenge to architects. Building modular architectures is a challenging task mainly
because the architects need to reason and make decisions with respect to a number of
crosscutting architectural concerns. In this way, the main contribution of our work is
to promote concern as an explicit architecture measurement abstraction.

This paper proposed a measurement framework consisting the following: (i) a suite
of concern-oriented metrics for evaluating architecture modularity, and (ii) a
technique for documenting the concerns in the architecture. This paper also
systematically discussed limitations of the conventional architecture metrics. In the

 On the Modularity of Software Architectures 223

future, we plan to develop a tool for automating both the architectural concerns
documentation and the metrics application. We intend to extend our tool [22], which
supports the application of some similar concern-driven metrics at the detailed design
and implementation level. We also plan to develop guidelines for the systematic
identification of concerns in the architecture and a catalogue of concerns which are
candidate to be considered in the architecture evaluation. Moreover, we plan to
undertake new case studies to: (i) investigate how our framework can support the
detection of unstable architecture elements while making changes in the systems
(Section 2.3), (ii) analyse how the use of our framework to control the modularization
of concerns at the architecture-level impacts in the implementation artefacts, since
they simply represent projections of the architecture design, and (iii) validate the
metrics in terms of their impact on external quality attributes, such as maintainability
and reusability.

Acknowledgements. This work is partially supported by European Commission
Grant IST-2-004349: European Network of Excellence on AOSD (AOSD-Europe).
Claudio is supported by CAPES-Brazil under Grant No. 3651/05-3.

References

[1] Briand, L., Morasca, S., Basili, V.: Measuring and Assessing Maintainability at the End
of High Level Design. In: Proc. IEEE Conf. Software Maintenance (1993)

[2] Buschmann, F., et al.: Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley, Chichester (1996)

[3] Dobrica, L., Niemela, E.: A Survey on Software Architecture Analysis Methods. IEEE
Trans. on Soft. Eng. 28(7), 638–653 (2002)

[4] Garcia, A., et al.: On the Modular Representation of Architectural Aspects. In: Gruhn,
V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, Springer, Heidelberg (2006)

[5] Garcia, A., Lucena, C.: Taming Heterogeneous Agent Architectures with Aspects.
Comm. of the ACM, July 2006 (accepted to appear)

[6] Garcia, A., et al.: Modularizing Design Patterns with Aspects: A Quantitative Study. In:
AOSD’05, pp. 3–14 (2005)

[7] Concern-Driven Measurement Framework for Assessing Architecture Modularity. URL:
http://www.lancs.ac.uk/postgrad/figueire/co_metrics

[8] Garlan, D., et al.: ACME: An Architecture Description Interchange Language. In: Proc.
CASCON’97 (November 1997)

[9] Lindvall, M., et al.: Avoiding Architectural Degeneration: An Evaluation Process for
Software Architecture. In: Proc. of the Intl. Symposium on Software Metrics, USA, p. 77
(2002)

[10] Lung, C., Kalaichelvan, K.: An Approach to Quantitative Software Architecture
Sensitivity Analysis. In: Proc. of the Int’l Conf. on SW Eng & Knowledge Eng., pp.
185–192 (1998)

[11] Di Stefano, A., et al.: Metrics for Evaluating Concern Separation and Composition. In:
SAC 2005, pp. 1381–1382. ACM Press, New York (2005)

[12] Sant’Anna, C., et al.: On the Quantitative Assessment of Modular Multi-Agent System
Architectures. NetObjectDays (MASSA) (2006)

224 C. Sant’Anna et al.

[13] Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, Englewood Cliffs (1996)

[14] Kulesza, U., et al.: Quantifying the Effects of Aspect-Oriented Programming: A
Maintenance Study. In: Proc. of ICSM’06, Philadelphia, USA (September 2006)

[15] Filman, R., et al. (eds.): Aspect-Oriented Software Development. Addison-Wesley,
Reading (2005)

[16] Martin, R.: Stability, C++ Report (February 1997)
[17] Soares, S., et al.: Implementing Distribution and Persistence Aspects with AspectJ. In:

Proc. of OOPSLA’02, pp. 174–190 (2002)
[18] Robillard, M., Murphy, G.: Concern Graphs: Finding and describing concerns using

structural program dependencies. In: Proc. of the ICSE’2002, pp. 406–416 (May 2002)
[19] Gamma, E., et al.: Design Patterns - Elements of Reusable Object-Oriented Software.

Addison-Wesley, Reading (1996)
[20] Barbosa, R., Goldman, A.: MobiGrid. In: Karmouch, A., Korba, L., Madeira, E.R.M.

(eds.) MATA 2004. LNCS, vol. 3284, pp. 147–157. Springer, Heidelberg (2004)
[21] Bass, L., et al.: Software Architecture in Practice, 2nd edn. Addison-Wesley, Reading

(2003)
[22] Figueiredo, E., Garcia, A., Lucena, C.: AJATO: an AspectJ Assessment Tool. In:

Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, Springer, Heidelberg (2006)
[23] Filho, F., et al.: Exceptions and Aspects: The Devil is in the Details. In: Robshaw, M.

(ed.) FSE 2006. LNCS, vol. 4047, Springer, Heidelberg (2006)
[24] Eaddy, M., et al.: Identifying, Assigning, and Quantifying Crosscutting Concerns. In:

ACoM.07 at ICSE’07. 1st Workshop on Assessment of Contemporary Modularization
Techniques (2007)

Lightweight Web Services for High Performace

Computing�

Adrián Santos, Francisco Almeida, and Vicente Blanco

Dpto. Estad́ıstica, .I.O. y Computación Universidad de La Laguna, Spain
asmarre@ull.es

Abstract. Web Services-based technologies have emerged as a techno-
logical alternative for computational web portals. Facilitating access to
distributed resources through web interfaces while simultaneously ensur-
ing security is one of the main goals in most of the currently existing
manifold tools and frameworks. OpenCF, the Open Source Computa-
tional Framework that we have developed, shares these objectives and
adds others, like enforced portability, genericity, modularity and com-
patibility with a wide range of High Performance Computing Systems.
OpenCF has been implemented using lightweight technologies (Apache
+ PHP), resulting in a robust framework ready to run out of the box
that is compatible with standard security requirements.

1 Introduction

A widespread drawback among many scientists who wish to use the potential
computational power provided by High Performance Computer Systems (HPCS)
is the significant barrier (technological and learning) these users face when trying
to access such services.

Parallel machines usually run UNIX-based Operating Systems which users
access through terminal-based connections. Once the code is compiled by the
user, it is run as a batch code through the queue system. Typical researchers,
who at one time may have been familiar with the code or library used to run
experiments in their field of expertise, are having to confront their inexperi-
ence when using terminals and UNIX/Linux commands. An additional source
of complexity is introduced by queue systems that vary from system to system
and which use their own commands and manipulation rules. The type of user we
are dealing with is not particularly interested in learning new tools or knowing
the details of parallel computing, and yet the effort required in these cases from
researchers who are only interested in faster processing times is still high.

Solution strategies founded on Client/Server-based applications have emerged
as alternatives to overcome this barrier. A friendly graphical interface enables
access to non-local resources where parallel codes can be executed remotely
in geographically distributed parallel machines, or where heterogeneous devices
� This work has been partially supported by the EC (FEDER) and the Spanish MEC

(Plan Nacional de I+D+I, TIN2005-09037-C02).

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 225–236, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

226 A. Santos, F. Almeida, and V. Blanco

can interact with each other to solve a problem in parallel. The approach allows
the use of the system by a larger number of users, including those without
any knowledge of sequential or parallel programming. Details of the parallel
architecture are transparent to the user and parallel codes can be efficiently
executed in the parallel system. A paradigmatic example of this approach is
found in [1] or in many other Client/Server applications that even use web
interfaces in the clients [2,3,4,5].

As Web Services (WS) progress toward an industry standard, they have at-
tracted the attention of the parallel computing community and proven to be a
technological alternative for implementing this kind of system. WS technology
eases the implementation of a web-accessed computing system. It also makes for
better interoperability between the different systems and tools that comprise a
High Performance Computing environment.

The Open Computational Framework (OpenCF) presented here uses WS tech-
nologies to achieve these objectives with a lightweight and portable implemen-
tation that is compatible with the security requirements of many HPCS sites.
OpenCF is freely downloadable from[6], licensed under GPL, and has been suc-
cessfully used by the Pelican project [7], from where some snapshots have been
extracted for illustrative purposes in this paper.

This paper is structured as follows. In section 2 we introduce the background
on Web Services for computing environments and the main motivation for this
work. Section 3 describes the software architecture and technology used in the
modular design of the OpenCF system. Several security-related issues involving
WS and HPCS are discussed in section 4 where a description of our implemen-
tation in OpenCF can be found. Finally in section 5 we present some concluding
remarks and future lines of work.

2 Motivation and Related Work

Web Service (WS) technology facilitates the development of remote access tools
which have the ability to communicate through any common firewall security
measure without requiring changes to the firewall filtering rules. The solutions
presented vary from static ad-hoc WS for specific applications on specific parallel
machines [8], to more general and complete solutions.

For example, Gateway [9,10,11] implements a WS portal based on Java and
CORBA technologies. In the GridSam [12] project we can find a WS infrastruc-
ture that is also implemented using Java, and includes JSDL descriptions for job
submissions and a command-line interpreter for access to the GridSAM system.
OpenDSP [13] (DRMAA Service Provider) is an open architecture implemen-
tation of SOAP Web Service for multi-user access and policy-based job control
routines by various Distributed Resource Management (DRM) systems. This
API follows the DRMAA [14] specification for the submission and control of jobs
to one or more DRM systems. The scope of this specification is the high-level
functionality necessary for an application to consign a job to a DRM system,
including common operations for jobs like termination or suspension.

Lightweight Web Services for High Performace Computing 227

In these environments the user is provided with web interfaces or other soft-
ware infrastructures that supply easy and secure access to several resources,
including different architectures and applications. However, the use of frame-
works based on Java (JavaBeans, JavaServlets, . . .) and CORBA is sometimes
criticized for delivering weighted solutions.

The Open Computational Framework (OpenCF) that we present here may
be enclosed in this group of projects that provide generic solutions using Web
Services-based technologies. While ideas, concepts and goals are shared by these
projects, in practice, the differences between them are highlighted by their spe-
cific implementations. In our case, the OpenCF is based on PHP technology,
providing a lightweight and portable implementation.

Although in many of the cases the development effort has been technologically
impressive and the demand for this kind of tool is still high, none of the generic
frameworks based on computational web services has achieved enough popularity
in the wider parallel programming community to be accepted as a standard
framework enjoying widespread use. In many cases they have not been used
beyond the institutions where they were developed. Some of the reasons for this
are as follows:

– The technology used by itself can be a handicap when the effort demanded
from the system managers is high.

– The compatibility with the security policies and resource managers of the
HPCS sites.

– Many of the solutions provided are non-standard, non-generic (based on
specific technologies), non-portable and non-open source.

WithOpenCFweintendtobuildagenericOpenSourceComputationalFramework
based on WS technologies implemented according to the W3C (World Wide Web
Consortium) recommendations for WS development [15]:

– OpenCF is compact and highly efficient since it is based on a modular design
that has been implemented using the HTTP Apache server, a set of PHP
libraries and a Perl script. This combination results in a lightweight package
with low resource requirements.

– The system is easy to install, requiring from the system manager no more
knowledge than that needed to install a web mail application.

– The genericity is enforced through the use of portable technologies that are
compatible with the resource management systems running on most parallel
systems, and the security requirements have been implemented in such a
way that they are independent and compatible with the security measures
of HPCS sites. That means that OpenCF, out of the box and without any
modifications, meets the security requirements of HPCS sites.

– The flexibility to enlarge the service with new computational proposals was
an important issue considered in our design strategy.

Although we are not using new concepts, our main design effort has been to
bring all these ideas together and make them work as a successful tool that we
hope will be of great use to the scientific community.

228 A. Santos, F. Almeida, and V. Blanco

Fig. 1. The OpenCF architecture

3 The OpenCF Architecture

For OpenCF, we identified the following core services to be implemented in the
portal: secure identification and authorization for users and inter-communication
services, information services for accessing descriptions of available host comput-
ers, applications and users, job submission and monitoring through the queue
system, file transfer, and facilities for user and resource management.

The above services are typically implemented in many computational web
portals; however, we also list some of the design features that are not always
included in this kind of tool and which, in our opinion, are required to successfully
implement a web computing framework:

– Modular design, whereby modules can be easily added, replaced, updated or
independently used with minimum development and management effort.

Lightweight Web Services for High Performace Computing 229

– Genericity so that the requirements of as many users, applications and HPCS
as possible can be met.

– Portability.
– The use of standard technology so as to reach a widespread community.
– Independence from hardware requirements.
– Lightweight.
– Open Source as a requirement to allow the project to be enhanced in the

future with new ideas and developments.
– Ease of use and installation both for end users and system managers.
– Ready to use.
– No modifications required in the original source code by the end user.

Figure 1 depicts the OpenCF software architecture. In keeping with a modular
design, two modules make up the OpenCF package, namely, the server (side)
module and the client (side) module. Modules can be independently extended
or even replaced to provide new functions without altering the other system
components. The client and the server implement the three lower-level layers of
a WS stack: Service Description, XML Messaging, and Service Transport. The
fourth level, Service Discovery, has not been implemented for security reasons.
Thus, system managers still control the client services accessing the clusters via
traditional authentication techniques.

The client provides an interface for the end user and translates the requests
into queries for the servers. The server receives queries from authenticated clients
and transforms them into jobs for the queue manager. These modules, in turn,
are also modularized. Access Control, Query Processors and Collector com-
ponents can be found on both the server and client sides. The client also holds a
database to better manage the information generated by the system. The server
includes elements for the scripting and launching of jobs under the queue system.

The following subsections describe the functionalities and technology used
in each of the aforementioned modules, except for access control modules and
security issues, which will be detailed in a separate section.

3.1 The Client

The client is the interface between the end user and the system. Users are regis-
tered in the system through a form. Some of the information requested is used
for security purposes, while the rest is needed for job management. This infor-
mation is stored in the client’s database. Next is a listing of the client module
submodules.

– The client DataBase stores information on users, servers, jobs, input/output
files, etc. It has been implemented as a relational MySQL database and it is
accessed through PHP scripts.

– The client Query Processor consists of a web interface through which the
user can access lists of available applications. Each entry in the lists shows a
brief description of the routine. Tasks are grouped according to the servers

230 A. Santos, F. Almeida, and V. Blanco

Fig. 2. Job status under the Pelican project

supporting them. When execution of a routine is requested, the target plat-
form is implicitly selected. An XHTML form for inputting parameters is
dynamically generated according to the job description.

– The client Collectormanages the job’s server-generated output. The service
notifies the user via e-mail when the job is finished. The state of the jobs
submitted for execution can also be checked through a web interface (see
Fig. 2), and the results stored into disk files. These files are periodically
downloaded by the Collector according to the list of pending jobs and can
be accessed via the web. Once the end user collects the output files, they
can be removed from the client module and, optionally, a copy of the files
can be left so any other user can freely access them in the future.

Different input/output interfaces can be added in the future to provide
the system with new functionalities. Automatic server allocation in terms of
the resources available at the servers is also left for future development.

3.2 The Server

The server manages all job-related issues, making them available at the service
and controlling their state and execution. When Apache catches a new query
from the client, it allocates a new independent execution thread to create a new
instance of the server module.

– The Query Processormodule consists of a set of PHP scripts that is respon-
sible for distributing the job among the different components. Queries ad-
dressed for the computational system are dispatched to the Queue Manager
Interface, and the rest of the queries are served by the Query Processor.
The web service is also generated and served by this module. The service
description document (WSDL) is automatically updated by the NuSOAP
PHP class. This class also handles the SOAP messaging encapsulation of
the packets.

– The Queue Manager Interface handles the interaction with the HPCS
Queue System. The server needs to know how a job will be executed and how
to query the status of a job being executed on the server supporting it. To
do so, two PHP class methods, the class OpenCFJob, have to be overwritten.
These methods enable the job to be executed (under the queue system) and

Lightweight Web Services for High Performace Computing 231

Listing 1.1. The main routine for the Hello World job

void hello (int greetings_num , char ∗ name) ;

int main (int argc , char ∗ argv []) {
int num ; /∗ Greetings ∗/
char ∗ name ; /∗ Name ∗/

if (argc != 3) {
printf (”Usage:\n”) ;
printf (”\ t h e l l o <GREETINGS NUM> <NAME>\n”) ;
return 1 ;

}
num = atoi (argv [1]) ;
name = argv [2] ;
hello (num , name) ;
return 0 ;

}

the job status to be checked. In addition, an XML description of each avail-
able routine is needed to specify the job. As an example, listing 1.2 shows
the XML description for a simple “Hello World” code. The tag <name>
holds a representative identifier for the routine and the tag <binary> is the
path to the executable file. Then, the problem description and the routine
arguments, along with their data types, are introduced. Once the user sub-
mits a job request, the server executes the associated binary code with the
arguments supplied by the user. The binary is a pre-compiled file of the code
in listing 1.1. Thus, new services can be easily incorporated into the service
just by adding the XML description file with the pre-compiled code to the
server.

– The Scripts Generator produces the scripts needed for the job execution
under the various queue systems. The Script Generator is composed of a
set of templates plus a processing engine to create the script. A different
template is needed for each of the queue managers supported. The template
is instantiated into a functional script by the processing engine by the sub-
stitution of a fixed set of fields. These fields are obtained from the input
data arguments for the job, from the XML job description document, and
from the user data stored by the client DataBase. Currently the Scripts
Generator uses the template library Smarty[16], a lightweight PHP library
found in any UNIX/Linux system. Research is ongoing into making this
module compatible with the Job Submission Description Language (JSDL)
GridForum proposal as an alternative to the XML document currently used
to describe a job.

– The Launcher is the interface between OpenCF and the operating system;
it forks the process to be executed, returns its identification and unlocks
the thread handling the client query. The implementation is Perl-based to
be independent from the architecture. In future versions of the OpenCF ac-
counting system, this module will be responsible for collecting and reporting
on individual and group use of system resources.

232 A. Santos, F. Almeida, and V. Blanco

Listing 1.2. Describing a Problem

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>
<?xml−s t y l e s h e e t type=” tex t/ x s l ” h r e f=” job . x s l ”?>

<job xm ln s : x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xsi:noNameSpaceSchemaLocation=” job . xsd”>

<name>Hello World</name>
<se rv i ce name>hello</ se rv i ce name>
<binary>bin/ hello</ binary>
<d e s c r i p t i o n>Simple Hello World application</ de s c r i p t i o n>
<argument type=” in t e g e r ”>

<name>greetings_num</name>
<sdesc>Number of greetings</ sdesc>
< l d e s c>The number of greetings to output .</ l d e s c>

</argument>
<argument type=” s t r i n g ”>

<name>name</name>
<sdesc>Person to greeting</ sdesc>
< l d e s c>The name of the person to greet .</ l d e s c>

</argument>
</ job>

– The Collector is the client interface which delivers the output data pro-
duced by an executed job. Once a job has finished, the queue system auto-
matically sends an e-mail to the user, and moves the output data files to a
temporary directory until they are downloaded from the client Collector.
The server Collector, implemented as a PHP script, cleans up files from the
temporary directories on the server once they have been safely downloaded
from the client.

4 Security in OpenCF

Typically, in web services technologies, two levels of security are required: client-
server and server-backend transactions must be authenticated, authorized, and
encrypted.

In our approach, since the architecture in OpenCF has two independent mod-
ules, a WS consumer, the client module, and a WS provider, the server module,
a third level of security must be introduced, user-client security, for the transac-
tions between the end users and the client module.

Furthermore, in our particular case, the WS security requirements must be
compatible with those of the computational resource. HPCS services are usually
restricted-access resources due to their high complexity and capacity, especially
considering many of these systems are used in the data centers of government
institutions and companies with strong security controls.

The common requirements are:

– User authentication to access the system through the (username, password)
pair.

– The authorization to control access to the resources, usually based on services
provided by the operating system and the queue managers.

Lightweight Web Services for High Performace Computing 233

Fig. 3. The OpenCF security implementation

– The privacy typically provided through secure connections like SSH for re-
mote transactions of the end users.

Higher levels of security can be found in computational sites where more
specific access controls are needed, for example using Kerberos.

The WSS[17] document provides a standard mechanism for authenticating
and authorizing the sender of a SOAP message, and also for encrypting the
message. Some of the supported technologies are: Kerberos (both for the au-
thentication and the encryption), X.509 certificate, SAML (Security Assertion
Markup Language, developed by OASIS for the interchange of data for authen-
tication and authorization between security domains using XML documents),
SSL, etc.

The OpenCF approach to security (fig. 3) is based on implementations of
the standard technologies present in time-tested scientific and commercial ap-
plications. We adopt simple solutions to comply with the above-stated security
requirements. The end users register at the client web page by using a form.
The information required consists of an e-mail address where results and sys-
tem notifications are sent, the username and password to be authenticated at
the client and some information relative to the user’s organization to help the
system manager decide whether the registration was successful or not. Once this
information has been submitted, the account will not be activated until the or-
ganization, through a privileged user (the system manager), decides whether the
request is accepted or not. At that time the user is notified of the resolution. The
client database module stores information about the users registered. The pass-
word is encrypted for security reasons and a PHP module is used to authenticate
end users when logging into the system. Users with management privileges can
be added. These users may access the management options at the client (fig. 4)
and are responsible for adding and removing users and servers.

Clients are also authenticated at the server using a username and password
provided by the system manager of the HPCS where the server is installed.
Apache enforces authentication between client and server through the mod auth
module that controls the access to resources through the (username, password)

234 A. Santos, F. Almeida, and V. Blanco

Fig. 4. Servers management option

pair. This pair is generated by the server manager using Apache tools when
installing the system. The authentication between the server and the cluster is
enforced through a cluster access account. This approach is compatible with
the recommendation of the WSS committee.

To make OpenCF compatible with the security requirements on the cluster
where the server will be running, OpenCF security measures are implemented
using the security technologies of the cluster system. For instance, in most cases,
the cluster access account is an unprivileged user created for that purpose.

Once the end user has been authenticated she may access all the services
provided by the client. The authenticated client is also authorized to launch all
the services provided by the server.

The system manager at the HPCS where the server is installed authorizes
the cluster access account to submit the jobs, launched by the WS, to the
queue manager according to her access control policy.

In keeping with the OASIS recommendation, privacy between end user-client
and client-server is enforced through the use of HTTPS to encrypt messages.
Privacy between the server and the cluster is delegated to the cluster’s privacy
facilities so as to comply with compatibility requirements inside the cluster.

Finally, we validate the input data provided by the end user in the form.
Appropriate treatment must be performed to avoid special characters that could
be used to trick the parser and execute malicious code.

5 Conclusion and Future Work

We have presented an open source computational framework based on web ser-
vices technologies. An important design consideration was the ability to provide
the community with a modular, lightweight, standard tool ready to run out of
the box. Security in OpenCF was implemented according to established stan-
dards which are compatible with the security policies of many HPCS sites. A
valuable feature is the simplicity of the approach.

Lightweight Web Services for High Performace Computing 235

The robustness of the OpenCF was successfully tested and validated in the
Pelican[7] project. This project is a comprehensive collection of parallel routines
based in the GNU Scientific Library (GSL, [18]) tailored to parallel architectures.
OpenCF performed very well in that scenario. Some shortcomings have been
detected during the production phase of the project. For example, the limits in
the size of the attached files, these limits have to be raised for the successful use
of OpenCF when required. One source of difficulties was the addition to the WS
of all these routines from Pelican. Currently, writing the description of a service
is made by hand, that is not a problem for few routines but typically hundred
of service routines will be demanded. Currently, we are developing automatic
mechanisms to fulfill this objective.

For the near future, we also intend to extend OpenCF with more functional-
ities. We are planning to add the discovery layer of the Web Service stack, that
will certainly provide new functionalities in terms of interoperability, as well as
it will present new challenges in terms of security.

References

1. NetSolve project web site, http://icl.cs.utk.edu/netsolve
2. Klotz, G.A., Harvey, N., Stacey, D.A.: Connecting researchers to hpcs through web

services. In: HPCS, p. 14. IEEE Computer Society, Los Alamitos (2006)

3. Thomas, M., Mock, S., Boisseau, J.: Development of web toolkits for computational
science portals: The npaci hotpage. hpdc 00, 308 (2000)

4. Petcu, D.: Between web and grid-based mathematical services. iccgi 0, 41
(2006)

5. Yang, X., Hayes, M., Usher, A., Spivack, M.: Developing web services in a compu-
tational grid environment. scc 00, 600–603 (2004)

6. OpenCF project webpage, http://opencf.pcg.ull.es
7. Pelican project webpage, http://pelican.pcg.ull.es
8. e-HTPX E–Science Resource for High Throughput Protein Crystallography,

http://clyde.dl.ac.uk/e-htpx/index.htm
9. Pierce, M.E., Youn, C.H., Fox, G.: The gateway computational web portal.

Concurrency and Computation: Practice and Experience 14(13-15), 1411–1426
(2002)

10. Pierce, M.E., Youn, C.H., Fox, G.: The gateway computational web portal: Devel-
oping web services for high performance computing. In: Sloot, P.M.A., Tan, C.J.K.,
Dongarra, J.J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002. LNCS,
vol. 2329, pp. 503–512. Springer, Heidelberg (2002)

11. Youn, C.: Web Service Based Architecture in Computational Web Portals. PhD
thesis, Graduate School of Syracuse University (2003)

12. GridSAM project web site, http://gridsam.sourceforge.net/
13. OpenDSP: DRMAA Service Provider open implementation,

http://sourceforge.net/projects/opendsp
14. DRMAA: Distributed Resource Management Application API,

http://www.drmaa.org/
15. World wide web consortium, http://www.w3.org/
16. Smarty template engine, http://smarty.php.net/

http://icl.cs.utk.edu/netsolve
http://opencf.pcg.ull.es
http://pelican.pcg.ull.es
http://clyde.dl.ac.uk/e-htpx/index.htm
http://gridsam.sourceforge.net/
http://sourceforge.net/projects/opendsp
http://www.drmaa.org/
http://www.w3.org/
http://smarty.php.net/

236 A. Santos, F. Almeida, and V. Blanco

17. OASIS Web Services Security (WSS) TC,
http://www.oasis-open.org/committees/wss/

18. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.:
GNU scientific library reference manual. Ed. 1.2, for GSL Version 1.2 (2002)

http://www.oasis-open.org/committees/wss/

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 237 – 256, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Art and Science of Software Architecture

Alan W. Brown1 and John A. McDermid2

1 IBM Software Group
Raleigh, NC, USA

awbrown@us.ibm.com
2 University of York

Heslington, York, UK
John.McDermid@cs.york.ac.uk

Abstract. The past 20 years has seen significant investments in the theory and
practice of software architecture. However, architectural deficiencies are
frequently cited as a key factor in the shortcomings and failures that lead to
unpredictable delivery of complex operational systems. Here, we consider the
art and science of software architecture: we explore the current state of software
architecture, identify key architectural trends and directions in academia and
industry, and highlight some of the architectural research challenges which need
to be addressed. The paper proposes an agenda of research activities to be
carried out by a partnership between academia and industry. While challenges
exist in many domains, for this paper we draw examples from one area of
particular concern: safety-critical systems.

Keywords: Software architecture, Software engineering, Systems engineering.

1 Introduction

Experience developing software-intensive solutions in many domains leads one to
conclude that a very significant shift is taking place in delivery of complex software
systems1. This shift is being driven by several convergent factors, including [1, 2]:

• End user expectations – End users want information to be available everywhere,
on demand, with no downtime.

• Cost to create solutions – To be competitive it is essential that IT organizations
take advantage of lower labor rates around the world, integrate components from
a variety of suppliers, and reuse across product lines and solution families.

• Auditing and Compliance – Increased regulations and oversight are placing
additional requirements of adoption of well-documented best practices with
mandated control points and delivered artifacts to aid auditing.

• Speed of change – The fast pace of business change demands that IT systems can
be reconfigured quickly as those needs change.

1 We refer to “complex software systems” as a shorthand for “large-scale development and

support of software-intensive solutions in domains such as defense, aerospace, telecomm-
unications, banking, insurance, healthcare, retail, etc.”.

238 A.W. Brown and J.A. McDermid

• Adaptable business platforms – Today’s distributed solutions platforms must
allow optimization around current business needs, and support reconfiguration as
those needs change.

As IT organizations reexamine their IT systems and rethink their practices and
tools, the subject of systems and software architecture is frequently at the core. In
fact, we observe more categorically that architecture is pivotal in the development of
complex software systems; the Royal Academy of Engineering and British Computer
Society (RAE/BCS) report on Complex IT Systems [3], states that:

 “Systems architecture is one of the most significant technical factors in ensuring project
success.”

Unfortunately, as a central element in a project’s success, the problems too often
associated with delivery of high quality systems on-time and to budget can also be
frequently traced to issues of systems and software architecture. As the RAE/BCS
report identifies:

“At present, definition of architecture is relatively ad hoc and, whilst there is good practice,
much more needs to be done to codify, validate and communicate the experience and skills
of the best systems architects.”

Such concerns raise a number of deep questions concerning the art of software
architecture as practiced and supported in industry, and the science of software
architecture as studied and taught in academia. This provides the motivation for our
paper; to see how to gain benefit by combining industrial experience with academic
work on software architecture.

We start by considering the role of software architecture in the software develop-
ment process then outline what we see as the “state-of-the-practice” in industry/
commerce and the “state-of-the-art” in academia. To focus this analysis – we believe
without loss of generality – we consider the challenges of UK Defence systems,
including safety-critical systems. We use this analysis to identify a research agenda – to
strengthen industrial/commercial practice, and to focus academic research.

2 State-of-the-Practice in Software Engineering

There is not a “hard” distinction between academic and industrial/commercial
research in software architecture – in fact, we shall argue that there is a need for
greater links between academic and commercial endeavors – but there is a discernible
difference in emphasis. Our aim below is to outline some of the main thrusts in these
areas –space does not permit a full exposition of ongoing work, and we focus more on
research relevant to safety critical and embedded systems, as this enables us to
illustrate some successful industrial-academic collaboration.

2.1 Academic

Taken broadly, the academic view has been to try to bring rigor to architectural
definition – either building new approaches or seeking to “strengthen” techniques
used in industry. We distinguish here the formal and analytical approaches from those
more pragmatic approaches which seek more to underpin the development process.

 The Art and Science of Software Architecture 239

2.1.1 Analytical Approaches
Widely used software architecture description notations such as UML are often
viewed by academic researchers as having weak semantics; some early work on
“precise UML” (pUML2), sought to provide a sound semantic basis for the notation.
In some research programs, the aim was to support analysis of models but in many
cases it was just an attempt to remove ambiguity. Arguably such work is bound to be
of limited value as the tools effectively define semantics, and the tools evolve faster
than the modeling research.

More recently, the focus has been on defining new notations with better defined
semantics (see below) or on adapting popular notations to make them analyzable. A
common approach has been to identify parts, or aspects of notations, which can be
subjected to formal analysis. Perhaps one of the most common has been to use model
checking on the state machines in UML see, for example [7], or in StateMate. This
sub-problem has been chosen as it is amenable to automated analysis, but it still does
not solve the basic problem of semantic ambiguity3. Further, there is an issue of
scalability; although model checking is becoming more powerful, there are as yet few
examples of the being used on (large-scale) real-world problems ([8] is one of the few
published examples). Perhaps more critically, such approaches do not address the full
expressive power of notations such as UML.

In safety critical systems, where there is a strong motivation to verify programs,
the SPARK notation and toolset [9] has become successful [10]. The tools incorporate
the long-established principles of program verification by extending a subset of Ada
with annotations which allow the expression of pre- and post- conditions. The
SPARK Examiner tool is capable of discharging some “routine” proof obligations,
e.g. freedom from run-time exceptions, largely automatically, as well as showing
correctness against the pre- and post- conditions.

Some work has “lifted” this idea to the architectural level, by defining a state
machine subset and adding annotations, e.g. on assumptions of rate of change of
external variables when moving between states [11] (this was done on Stateflow, the
state machine element of Matlab-Simulink-Stateflow (MSS), which is widely used for
modeling control systems). Related work also addressed the rest of the MSS notation,
viz control law diagrams, proposing a variant of WP-calculus which deals with
differentials (and integrals) as found in control systems [12]. This work has some
technical merit, but there are problems of scaling it to complex systems – especially in
the interaction of the state machine and control law elements (there is a “state
explosion” which hinders automated analysis).

The above discussion only considers the functional properties of programs. Most
safety-critical systems are also real-time systems, and it is necessary to be able to
demonstrate that they meet (specified) timing properties. This involves both
determining the worst case execution time (WCET) of code fragments, and the overall
timing properties of the program, which involves analysis of scheduling. There have
been mature theories for scheduling for some time, and these have been applied to
real-world systems, e.g. [13].

2 There is still a webpage at www.cs.york.ac.uk/puml/ but the site is now moribund.
3 Work by Mikk in the late 1990s identified over 100 semantic models of StateMate statecharts.

240 A.W. Brown and J.A. McDermid

Some time ago, it was possible to determine WECT analytically (formally), by a
combination of program static analysis and instruction counting. Again this work
reached a level of maturity which allowed it to be applied on real systems, e.g. [14].
Since the mid 1990s, timing analysis has become harder as processors have been
optimized for the best average case performance, and worst case program timing is
influenced by the interaction of cache and pipeline with the program data. More
recently, therefore, research has moved away from pure analytical techniques and is
using a combination of static and dynamic (testing) techniques. Work at Rapita4 shows
that it is still possible, however, to produce techniques which are applicable to industrial
scale problems and which can estimate timing properties at the architectural level.

In summary, a major thrust of much academic research which can be viewed as being
at the “architectural level” has been focused on the use of formal, analytical, techniques.
There have been some successes, both intellectual and practical, but there are also
significant limitations on the techniques. The formal analysis of functional properties
has not proven to scale effectively. Model checking techniques are advancing in power
faster than Moore’s law (i.e. algorithms are improving as well as the processing
hardware), but dealing with all aspects of large-scale complex control systems remains
problematic. Approaches to timing properties have been more successful, in impacting
real-world systems, but to cope with modern processors it has been necessary to move
away from a purely analytical approach to using a mixture of static and dynamic
techniques. This must be considered a success, not a failure, but it highlights the
difficulties of taking analytical approaches to large-scale problems.

2.1.2 Pragmatic Research
There is less of a clear-cut distinction between what is industrial research and
academic research in the more pragmatic areas – indeed there is effective
collaboration between Universities and industry – and we focus here on those
developments which are clearly influenced by both an academic and an industrial
perspective. We consider two aspects of work: that which expands on notations to
make them more relevant to their application domains, and that which focuses on
making development processes more rigorous and repeatable.

Languages such as UML, despite being multi-faceted, do not address all the
properties of interest for real-time safety critical systems; for example they do not
express timing properties within the core language. There have been approaches to
dealing with these limitations for some time, e.g. real-time extension of UML [15],
but these have not been widely taken up. The reason seems to be mainly that the
extensions are not sufficiently rich – and thus do not do enough to enable the
techniques to solve all the problems encountered in practice.

Some academic work has tried to address this problem by developing wide-
spectrum specification languages, and supporting contracts which enable aspects of
systems to be specified and built independently, e.g. AIM [16]. Whilst mainly
pragmatic, this work has also embraced formal analysis of failure properties, a key
aspect of safety-critical software designs, with a technique known as FPTC [17].
Associated work has also considered the use of automated techniques for model
transformation (we defer such issues to section 3.2 below).

4 See http://www.rapitasystems.com/

 The Art and Science of Software Architecture 241

Perhaps the most significant aspect of this work has been to influence domain-
specific languages such as the Architecture Analysis and Description Language
(AADL) which started out as a research program funded by the US Army Avionics
Command, and which is now an SAE standard5. AADL incorporates contracts and
notions of fault propagation which are influenced by AIM and FPTC. Whilst AADL
was originally an “independent” notation it is now available as a UML profile.

There are many approaches to improving development processes which build on
architectural representations; we consider two: product line research and test
automation.

Many systems, e.g. airplane engines, evolve as product lines, i.e. the features and
properties of one product bear a strong relationship to those of others in the family –
and the relationships can be utilized to simplify the design process. Specifically the
common parts can be represented in the architecture – which also has explicit
representation of variations (alternatives) and options in the system. These concepts
have been studied in academia [18], but are also used in industry [19] and are
supported commercially6. Further work has considered the process for deriving
requirements for product lines and architectural flexibility [20] in the context of
embedded control systems (aircraft engine controllers). Generally work in this area is
quite mature. It is not as widely adopted as might be expected, but that is largely a
socio-technical issue, which is outside the scope of this paper.

Perhaps one of the reasons for limited take-up of such ideas is that the real cost of
producing critical systems arises from the verification activities, not the development
activities. If code generation costs, say, 10% of the development cost and verification
is 50% of the cost, then halving code production time is of little benefit if the
verification cost is not also reduced. Some tools, e.g. Reactis7, have been developed to
automate some of the verification tasks when using model-based development, but
generally these do not consider issues such as product lines. Some research work, e.g.
[21], has addressed product lines but there remains much more to be done.

Interestingly, because of the cost of testing, there have been a number of attempts
to substitute formal analysis for testing. One of the most interesting developments is
ClawZ which verifies Ada against MSS models [22]. This approach has been used on
practical applications, e.g. the Eurofighter Typhoon flying control system.

For these approaches – test automation and formal analysis – there are many
challenges, including ensuring that the certification authorities accept their validity.
Again, space does not permit a full treatment of these issues, but [23] indicates one
way of overcoming these difficulties, by providing a logical argument why the
techniques proposed are an effective substitute for those mandated by the standards.

2.1.3 Observations
The work outlined in the two previous sections can (perhaps simplistically) be
characterized as “science driven” and “problem driven” (or an engineering approach)
respectively.

5 See http://www.aadl.info/
6 See, for example http://www.biglever.com/index.html
7 See http://www.reactive-systems.com

242 A.W. Brown and J.A. McDermid

The “science driven” approaches have potential, but often fall a long way short of
solving industrial problems. It is likely that this is where radical changes to processes
will come but the success rate is likely to be low, as the problems of scaling the
“science” to industrial scale problems are very great, and perhaps need more
investment than can be found in academic projects.

The “problem driven” approaches have often involved interaction between
academia and industry – focusing academic research on issues which cause difficulty
in practice. Whilst this work may not always produce full solutions it often
ameliorates the problems, and produces useful incremental improvements to
processes.

Both forms of research are needed – see the later discussions for our views on the
balance.

2.2 Industrial/Commercial

Architectural concerns are important to all industrial systems. In any development
project there is significant focus on the architecture as a central artifact. However,
practical considerations require efficient techniques and tools that provide clear value
to the project. All too frequently this leads to shortcuts being taken that have
consequences on the long term maintenance and evolution of the system.

Here, we explore several areas of industrial software architecture as practiced
today, discuss current practices in use, and highlight several key gaps and challenges.

2.2.1 Architectural Design
Today, a majority of software developers still take a code-focused approach to
development, and do not use separately defined abstract (architectural) models at all.
They rely almost entirely on the code they write, and they express their model of the
system they are building directly in a third-generation programming language (3GL)
such as Java, C++, or C# within an Integrated Development Environment (IDE), e.g.
the IBM Rational Application Developer, Eclipse, or Microsoft VisualStudio. Any
separate modeling of architectural designs is informal and intuitive, and lives on
whiteboards, in Microsoft PowerPoint slides, or in the developers’ heads. While this
may be adequate for individuals and very small teams, this approach makes it difficult
to understand key characteristics of the system among the details of the
implementation of the business logic. Furthermore, it becomes much more difficult to
manage the evolution of these solutions as their scale and complexity increases, as the
system evolves over time, or when the original members of the design team are not
directly accessible to the team maintaining the system.

The UML is the most frequently used language for visualizing static and dynamic
aspects of software-intensive systems [5]. Users of UML for architectural design are
supported by well-established methods that offer a set of best practices for creating,
evolving, and refining models described in UML. One of the most well-known is the
IBM Rational Unified Process (RUP). The RUP describes a development process that
helps organizations successfully apply a Model-driven Development (MDD)
approach [24].

The UML is one element of a broader initiative aimed at encouraging a model-
driven approach. This is most clearly seen in OMG’s Model Driven Architecture

 The Art and Science of Software Architecture 243

(MDA) approach, a set of technologies intended to provide an open, vendor-neutral
approach to the challenge of business and technology change [26]. Based upon
OMG’s established standards such as the Meta-Object Facility (MOF), UML, and
XMI, the MDA separates business and application logic from underlying platform
technology. The goal of MDA is to offer a conceptual framework for using models
and applying transformations between models as part of controlled, efficient software
development process [27]. Several commercial and open source software products
claim support for part or all of an MDA approach, and are used in many architectural
domains most notably in real-time and embedded systems.8

In spite of these improvements in model-driven development support, many
developers use the UML notation informally as a way to “sketch” the design of new
and existing systems [28]. Architectural design can then occur through use of domain-
specific languages (DSLs) that embed many architectural patterns and assumptions
into the notation and its transformation into a solution specific to the domain. Many
such DSLs are available focusing on business domains such as banking, automotive,
and telecommunications systems.

The approach to creating and applying DSLs has received additional attention
recently as it is one of the cornerstones of Microsoft’s Software Factories approach
[29]. A Software Factory is a collection of technologies that introduces product line
thinking around an application architecture that is defined and refined through domain
specific languages. Tooling for this approach is part of Microsoft’s latest releases of
its VisualStudio product line.

2.2.2 Architectural Analysis
State-of-the-art transformation techniques used in MDA generally cannot be “steered”
by dependability issues, and have not been widely applied to architectural models
with dependability attributes. Integrating MDA with mechanisms for building
dependable systems requires deep and applied knowledge of dependability as well as
MDA standards, tools, and techniques.

Models of enterprise architecture (EA) are rarely used to develop assets used
downstream. There are several reasons for this. Downstream assets (such as code,
documentation for review, and deployment models) are difficult to derive from
models using the current state-of-the-art transformation tools, which are typically
targeted at single diagrams. An EA model typically provides information spanning
several meta-models, and most transformation tools are applicable to a single source
meta-model. Deriving downstream assets from EA models may be more feasible –
and demonstrably more useful – with mechanisms for integrating different views
(from different meta-models) – the results of which could then be applied to
transformation. Another difficulty encountered is dealing with non-functional
attributes, such as quality-of-service constraints. While mechanisms like the UML
Quality-of-Service (QoS) profile can help to enrich EA models with QoS and
dependability characteristics, current generation transformation and integration tools
must be made aware of these characteristics during the generation and integration
process.

8 See www.omg.org/mda for more details and examples.

244 A.W. Brown and J.A. McDermid

Automated architectural analysis techniques often have to be tailored specifically
to modeling languages and tool infrastructure; moreover, adapting existing analysis
implementations (e.g., fault and failure analysis, timing analysis) to specific
architectural modeling languages and tools often requires much repeated work. As a
result, much of the currently practiced architectural analysis remains informal and
based on inspection techniques supported by architectural heuristics gathered from
experiences across several domains.

2.2.3 Architectural Frameworks
Support for a consistent approach to software architecture requires a set of guidelines that
identify the key artifacts to be delivered, and constrains the method by which those
artifacts are produced. For many organizations, a primary objective is to produce a
standardized blueprint describing a complex systems architecture so that decision-makers
can then use this report to compare the architecture of alternative system designs and
manage the evolution of existing systems. The blueprint must describe a system’s
architecture well enough to enable detailed analysis, justify procurement to the project’s
sponsors, and support ongoing management of the in-flight project.

To assist in this, several organizations have formalized such guidelines in the form
of a so-called “architectural framework”. These guidelines typically are specialized to
a specific technology or business domain (e.g., defense systems, or
telecommunications systems), or else promote specific architectural views of the
system to highlight particular forms of communication and analysis (e.g., business/IT
communication, or operational systems management). In the first category we have
efforts such as the US Department of Defense Architectural Framework (DODAF)
and the UK Ministry of Defence Architectural Framework (MODAF). In the second
category we have efforts such as the Zachmann Framework and The Open Group
Architectural Framework (TOGAF).

For illustrative purposes, we shall consider MODAF9. The MODAF V1.0 set of
baseline documentation was published in 2005 [30]. Many of the MOD stakeholders
have started to adopt MODAF. There have been a number of notable areas of
successful adoption and several MOD organizations have successfully modeled
aspects of their architecture using MODAF (e.g., The Director of Equipment
Capability (DEC) Command, Control and Information Infrastructure (CC&II), The
DEC Intelligence Surveillance Target Acquisition and Reconnaissance (ISTAR), and
The Logistics Coherence Information Architecture (LCIA) within the Defence
Logistics Organisation (DLO10)). In addition, many MoD Invitation to Tender (ITT)
documents have required MODAF views to be produced as part of the technical
proposal response. Consequently, a number of the tool vendors have developed
MODAF specific configurations of their modeling tools, including Salamander,
Telelogic, Troux Technologies, Artisan Software and IBM.

However, in spite of this success, the use of architectural frameworks such as
MODAF is inconsistent and sporadic. For example, MODAF as a standard is not

 9 We believe that to a large degree our experience with other architectural frameworks mirrors

the status of MODAF.
10 The MoD has recently been reorganised, and the DLO is now part of Defence Engineering

and Support (DE&S).

 The Art and Science of Software Architecture 245

completely mature. The MODAF M3 Meta Model is in advance and inconsistent with
the MODAF Technical Handbook [31]. Further, initial use and adoption of MODAF
has identified a number of areas that need simplification or clarification. In particular,
the MODAF Tool Certification Plan [32] needs to be both extended and implemented.
Most importantly, despite the fact that different MOD stakeholders have started to
model using MODAF, very little architectural analysis is being performed using these
models; it is used simply as a documentation approach for architectural designs.

2.2.4 Architectural Styles
Much practical work has taken place over the past few years to understand how various
repeating patterns of development can be understood, categorized, and used as the basis
for future systems development. As a result, a set of architectural styles has emerged
that are used by many organizations as the basis for design decisions, and supported by
vendors in their commercial tools, methods and infrastructure offerings [33, 34].

In particular, the need to respond to changing business demands with flexible IT
solutions has led many businesses to employ Service Oriented Architectures (SOAs).
SOA is an architectural style aimed at more directly representing business processes
through choreographed sequences of services realized through reusable components
[35, 36, 37]. The service design layer (or “service architecture”) is explicitly
independent of applications and the computing platforms on which they run.
Solutions are designed as assemblies of services in which the description of the
assembly is a managed, first-class aspect of the system, and hence amenable to
analysis, change, and evolution.

SOAs provide the flexibility to treat elements of business processes and the
underlying IT infrastructure as secure, standardized components – typically Web
services – that can be reused and combined to address changing business priorities.
They enable businesses to address key challenges and pursue significant opportunities
quickly and efficiently.

However, as with many such initiatives, the interest in SOA as an architectural
style has its challenges. While the application of SOA in commercial business
domains is well advanced, issues around performance, reliability, and predictability of
such a loosely coupled architectural style remain. Most notably, this is a result of a
lack of practical architectural design approaches and verification techniques that
address key system properties such as availability, performance, resource usage,
timing properties, and so on. Similarly, much of the available commercial
infrastructure supporting SOA is largely untested in the kinds of demanding contexts
typical of military systems. Some interesting research has been carried out, leading to
proof-of-concept demonstrations and prototypes. However, much work remains to see
this applied more extensively in commercial practice.

3 A Software Architecture Research Agenda

The breadth of areas of concern to software architecture is daunting. Hence, to be
successful, the work in software architecture must focus on key issues which are
essential to make progress, and directly bridge the academic-to-commercial gap.

246 A.W. Brown and J.A. McDermid

We propose research in software architecture is organized into three areas:

• Management.
• Dependability and Properties.
• Assembly and Integration.

We briefly discuss each area. To be effective, and to enable technology transition,
collaborative research between industry and academia needs to produce guidance,
such as process guides, and handbooks of best practice, which we generically refer to
as Statements of Best Practice.

3.1 Management

Within the area of management, we have identified three research strands. We see
these strands as ongoing throughout the life of any software architecture program:

• Acquisition processes.
• Measurement.
• Software development processes.

The acquisition strand is intended to address current acquisition practice to
ascertain where it might be changed to better address the challenges of acquiring
complex software-intensive equipment, systems and systems-of-systems. This strand
provides the greatest potential for early impact. Key research issues include:

• Management of risks and uncertainties associated with the requirements and
the technical solution.

• The management of changes to the requirements and / or the technical
solution.

• Incremental and evolutionary procurement (closely related to the previous
items).

• Through Life Capability Management.
• Estimation of cost and timescale in relation to earned value and other ROI

measures.

In order to take effect, any improved acquisition processes will need to be adopted
by industry. It is our experience that adoption is difficult to achieve. Accordingly, the
research effort should be constructed so as to maximize the chances of successful
adoption. In particular,

• The research will be focused on areas where the stakeholders agree that there
is a need for change and is willing to change.

• Any changes must be matured, through research and pilot studies, before
being rolled out generally.

A corollary is that researchers must seek to engage with the stakeholders to discuss
the changes that it is prepared to make; and the research program must be sufficiently
flexible to absorb the results of that negotiation, which may alter during the life of the
program.

 The Art and Science of Software Architecture 247

The second priority is measurement: this reflects the importance that we attach to
taking an evidence-based approach generally. The measurement strand consists of
several activities involving data gathering from projects n industry. This must:

• Provide an improved picture of industry practice, as the basis for additional
research activities.

• Assist in the identification and assessment of potential improvements to the
processes used within industry.

• Assist in monitoring the effect of any such changes in a well-defined
feedback loop.

In addition, the measurement activities must include research into techniques for

monitoring project health. This aspect of the research effort will concentrate on
metrics that are useful to all stakeholders but which are currently under-researched,
such as metrics related to safety or security.

The final strand deals with the processes that are used for software development.
Here, we note

• The existing literature is very large. It includes: the CMMI, ISO9001:2000
and TickIT, several methodologies such as RUP, and proprietary processes
developed within industry.

• Despite this mountain of advice, many problems on projects arise because of
the non-application of known good practice. From the RAE/BCS report on
the challenges of complex IT systems [3]:

"A significant percentage of IT project failures, perhaps most, could have been
avoided using techniques we already know how to apply. For shame, we can do
better than this."

Accordingly, we see the adoption of good practice itself as the central issue and
this must be the focus of research. Previous research consists of several studies in the
business IT sector, in which researchers have studied software teams in action. This
research must be expanded into other domains, determining which practices are
readily followed “at the coalface”. The outputs from this strand will consist of
improved advice regarding the construction of software development procedures
within industry.

3.2 Dependability and Properties

Dependability and properties, especially so-called non-functional requirements
(NFRs), are cognate issues which need to be treated together in software architecture,
especially in trade-studies and practical architectural analysis.

Currently, individual high-integrity systems (HIS) achieve acceptable levels of
safety, albeit at high cost. In TLCM, the crucial issues for HIS are reducing the
timescales and costs of procurement and extending capabilities to a full range of
properties, including other aspects of dependability, e.g. security. In particular, rapid,
low-overhead, assurance techniques are required to demonstrate that a given HIS
achieves a specific safety or security level, without the current substantial delays in
carrying out labor-intensive evaluation processes. The emphasis of new research

248 A.W. Brown and J.A. McDermid

should focus on automation of assessment – although any such research will need to
draw on other work to address this issue fully.

Particular attention of research in this area should be on Systems-of-systems (SoS)
issues, where the problems are much more open-ended. Approaches to safety and
security which have been used for HIS don’t scale (or don’t apply) to SoS. For
example, safety and security assessment normally starts by defining the boundary of
the system of interest – for SoS the boundary is not known in advance, and may
change dynamically, especially in open systems. Conditions of use may vary
dynamically (e.g. the changing topology of ad hoc networks of users communicating
over different categories of secured links, and changing access rights of those users),
and the SoS must remain demonstrably safe/secure. This requires new approaches to
dealing with safety and security, with more emphasis on the dynamic management of
safety and security issues, i.e. sensing and responding to them at run-time. Further,
safety and security are not disjoint – for example compromise of a communications
link to a UAV could lead to an unsafe weapon release; new approaches to integrated
safety and security analysis are needed. Also, there is a view that all elements in a
SoS will require some level of assurance – say SIL 2 in safety terminology; emphasis
is needed on developing effective assurance techniques for such levels of integrity.

The scope of the work will be different for the two areas. In HIS, the focus of
research should be mainly on improving software engineering economics, for
example by developing and justifying “agile high integrity” processes. For SoS, the
emphasis of research must be more on identifying means by which dependability can
be “engineered in” to products, and dependability can be preserved through dynamic
changes in the membership of the SoS. The boundaries are the genuine systems
engineering issues, e.g. evaluating the dependability of different system concepts.

3.3 Assembly and Integration

To be effective, architectures need to be multi-faceted and concerned with data flow,
control flow, module decomposition, and properties such as throughput, resilience and
recovery, and so on. Current architectural design methods are inadequate as they do
not deal with the range of properties of interest, allow for the prediction of
implementation properties, and so on. For HIS, the Architecture Analysis and Design
Language (AADL) and work in the Defense and Aerospace Research Partnership
(DARP) form starting points, but much needs to be done e.g. on analysis and
prediction of properties, effective interface definition to allow ease of integration, and
so on. Issues which research needs to address include:

• Architecture evolution.
• Assigning values (figures of merit) to architectures to enable trade-offs.
• Migration of application architectures between computing platforms.
• Scalability in terms of numbers of nodes, and data volumes.
• Open and modular systems (especially SoS), including interface definition.
• Robustness (resilience), recovery and reconfiguration.
• Definition and control of emergent properties.

In practice, however, existing systems often have a brittle, complex structure that
does not easily enable a move to the kinds of flexibility required. The IT drivers

 The Art and Science of Software Architecture 249

found by customers for undertaking such a migration include the need for operational
and systems agility, interoperability, reuse, streamlining architectures and technology
solutions and leveraging legacy systems and existing capability.

The emergence of techniques and technologies for service-oriented architectures
(SOA) are directly aimed at providing a design framework to support this kind of
flexibility and agility. There remain many research challenges to their widespread use
in embedded systems. Most notably, this is a result of a lack of practical architectural
design approaches and verification techniques that address key system properties such
as availability, performance, resource usage, timing properties, and so on. Similarly,
much of the available commercial infrastructure supporting SOA is largely untested in
the kinds of demanding contexts typical of military systems. Some interesting
research has been carried out, leading to proof-of-concept demonstrations and
prototypes. However, much additional research work remains.

Transformation of IT systems of itself will reduce application maintenance and
operational cost. However, the bottom-up only approach carries the risk that the new
services will embed old ways of doing business, providing flexible systems, but
inflexible enterprises. In order for enterprises to become flexible, parallel
organizational transformation needs to take place and the complementary supporting
governance embedded. Only in this way can the benefits to Operations can be realized
(e.g., efficient global footprints, economies of scale, agility - rapid change, regulatory
compliance and process optimization).

Integration is concerned with construction of systems from components – whilst
minimizing risk and surprises. Several research activities would be valuable. The
concerns are, in many ways, the same as for architecture, but from the viewpoint of
validating the properties and behavior of the composed system. Issues include:

• Planning and management of integration, including risk management.
• Architectural evaluation (determining figures of merit).
• Testing strategies, especially for SoS which may be configured in an ad hoc

and dynamic fashion, maximising what can be predicted from the minimum
of testing.

• Configuration control, and evaluation and assessment of differing system
configurations.

4 Discussion

We discuss the role of academia and industry in addressing the art and science of
software architecture. Simply stated, we believe software architecture holds the
pivotal position in helping:

• Academia to educate the next generation of architects in software engin-
eering.

• Industry to produce more robust, scaleable methods and tools that meet users’
needs.

• Academia and industry to form a closer partnership to advance the state-of-
the-art in software engineering.

250 A.W. Brown and J.A. McDermid

4.1 What Can Academia Do?

Software engineers need to understand key aspects of computer science (CS)
fundamentals – the analogy is with the need for understanding of physics in the
“physical” engineering disciplines, such as mechanical engineering and electronics.
Beyond this, they need knowledge and skills in five areas – albeit in different amounts
depending on their role in a project.11 These are:

• Architecture
• Good practice
• Domain knowledge
• Management
• Soft skills

Architecture: Software is an intellectual artifact – producing software is essentially a
“pure design” activity. Thus the core of what software engineers need to know is how
to architect software systems, and how to tell good architecture from bad. Often this
involves understanding the non-functional properties of the architecture – e.g. will it
perform fast enough to process all the data, will it be secure (against anticipated
attacks), will it manage hardware failures to preserve system safety, and will it be
useable by the general public?

Good Practice: All engineers should use good practice, but this is sadly all too rare in
software engineering – according to Fred Brooks “in no other discipline is the gulf
between typical practice and best practice so large” [40]. Further, good practice is not
static, indeed technology moves apace. However, not all the new technology is useful,
or stands the test of time. Thus, software engineers need to understand principles so
they can assimilate new practices and, to some degree, sort out the genuine advances
from the “mere fads”.

Domain Knowledge: Software engineers need domain knowledge. Programs have a
role in the world – either as the control and monitoring element in some embedded
system, e.g. in an aircraft engine controller, or as a key enabler in a business or
organization, e.g. providing electronic access to patient health records. Most
requirements for software systems are incorrect – at least initially. The users or
procurers do not fully understand what they want, and also don’t write down what is
“obvious” – at least to them. To defend against this, and to produce something useful
and useable, software engineers need to understand the application domain to be able
to validate and complete requirements. It is not normally possible for software
engineers to gain domain knowledge in many, disparate, areas – there is simply too
much to understand to be expert in say, car braking system design, and on-line
reselling. Software may be ubiquitous, but the domain knowledge is not.

Software engineers must obtain domain knowledge to work effectively – computer
science knowledge is necessary, but not sufficient, to work in a given domain. An
automotive software engineer of our acquaintance informs us that he has 20 books on
his shelf which he uses regularly – 8 of these are sources of domain knowledge, e.g.
the Diesel Engine Handbook.

11These ideas are inspired by the work of David Parnas [38], and explored in more detail by one

of the authors [39].

 The Art and Science of Software Architecture 251

Management: Modern software systems are amongst the most complex artifacts
produced by man. Developing them requires teams, which need management. The
RAE/BCS study found that management was a key success factor, but also a major
problem area, for software projects. Managers need to understand what they are
managing – otherwise how can they make informed decisions? However they also
need to understand management skills and techniques. Traditional engineering
distinguishes repeat design – making something very similar to what was produced
before – from novel design, i.e. producing something which is largely unprecedented.
Most software projects involve novel, not repeat, design – thus they undertake work
for which there is no precedent. Management strategies for dealing with uncertainty,
such as incremental development, and approaches to software (project) risk
management are therefore keys to success. Software architecture is a control point for
managing risk, and a cornerstone of the measures and metrics appropriate for every
successful software-based management technique.

Soft Skills: Software engineers may spend much of their day working with computers
– but they need to talk to customers, other engineers designing the embedding system,
e.g. an aircraft engine, nurses who might use the medical records system, and so on.
They need to write manuals, or on-line help, from the users’ perspective not an
internal (design) perspective. They have to work in teams with other software
engineers, to ensure that they produce an effective whole. Thus soft skills are crucial
to project success. Success of a project is frequently predicated on how well an
architect communicates key qualities and properties of the architecture to the rest of
the team, and to the broader project stakeholders.

4.2 What Can Industry Do?

Industry needs to produce collections of tools and methods that are more readily
consumable by practicing software engineers. While many valuable technologies are
available, they need to be more tightly integrated, open to customization, and focused
on specific domains and architectural styles.

A collection of tools, practices, guidance, heuristics, and specialized content
(patterns, frameworks, domain models, etc.) must be assembled to support an
organization as it designs, develops, deploys, manages, and evolves its solutions.
Informally we can refer to this as an “architecture-centric workbench”. In practice, we
can distill certain characteristics in the approaches and capabilities of these
workbenches.

As illustrated in Figure 1, such a workbench typically consists of elements in
several categories. Here, for illustration purposes we focus on a workbench optimized
for SOA architectural styles of solution in business domains such as insurance and
banking. The underlying platform for the workbench is a collection of commercial
tools acquired from one or more vendors, and integrated through standard techniques
such as shared meta-data, import/export across Application Portability Interfaces
(APIs), or use of a common plug-in framework such as the Eclipse technology[41]. In
the case of many IBM customers it is the IBM Rational Software Development
Platform that provides the core set of technologies [42].

252 A.W. Brown and J.A. McDermid

Software Development
Platform

Platform for many styles of development
•Role-based tools integrated via Eclipse, etc.
•Includes design, development, testing, deployment, etc.

Solution-Specific Content

Value-added Solution content & assets
•Industry-specific domain models and processes
•Delivery-specific service design content and techniques
•Industry-specific patterns and transforms

SOA-Specific Technologies

Enhancements to support SOA style of development
•Profiles for Software Services
•Method Guidance for SOA
•SOA patterns and assets

Organization-Specific Tools

Custom tools for organizational standards&practices
•Domain-specific tool editors
•Design patterns and tooling support
•UML profile updates
•Recipes, patterns, cheat sheets, transforms, etc

Fig. 1. A Workbench for Service-Oriented Solutions

The core technologies support a wide collection of practices and architectural
styles. Extension and customization allows this core to be adapted. In particular,
SOA-specific technologies are applied as encoded in patterns and templates, method
guides, and profiles for service design that extend the core tooling base.

Then, solution delivery teams within an organization, or external systems
integrators and partners, further customize the platform with their own techniques,
technologies, patterns, transforms, and so on. These are specific to an organization’s
ways of working, and relevant to their particular business practices and domain. For
example, IBM Global Business Services has defined a set of proprietary practices to
provide consistency in the way it delivers services to its clients. It has a collection of
SOA-based design techniques, such as the Service-Oriented Modeling and
Architecture (SOMA) method [43], that have been distilled from experiences of
practitioners on a wide variety of projects. Customized tooling for SOMA has been
created as an extension to the IBM Rational Software Development Platform
specifically to support those practitioners by automating many of the SOMA
techniques.

Finally, domain content is provided to populate the workbench to improve
efficiency of delivering solutions, and offer some measure of consistency across
solutions in the same domain. Typically, the tools are augmented with domain models
and libraries of common patterns in areas such as retail banking, insurance healthcare,
and so on. An example of such a domain model is the Insurance Application
Architecture (IAA), a detailed set of content models for several aspects of insurance
[44].

So this set of technologies, this layering of capabilities, contains tooling, methods,
and content. It provides organizations with a domain-specific platform that can be
used to deliver service-oriented solutions specific to their business. With some
variation, this approach is being used in many organizations to assemble a technology
platform appropriate for developing, delivering, and evolving service-oriented
solutions.

 The Art and Science of Software Architecture 253

4.3 What Can Academia/Industry Do Together?

In practice, by working, together academia and industry can add a significant focus on
transition into practice, leading to important improvements and up-scaling in the
skills, processes, and practices in use. This will be supported in appropriate industry
standards and technologies, and a recognized transition path for promising software
systems engineering research into relevant programs.

These objectives will be achieved through a focus on 4 key areas; Advancing key
technologies, leveraging the community, transitioning into practice, and learning from
experience.

Transition into
Practice

Advance Key
Technologies

Leverage the
Community

Research

Proof of Concepts
Standards

Education
&

Training

Data Gathering

Market
Analysis

Community
Building

Learn from
Experience

Best Practices

Fig. 2. Academic/Industrial Collaboration

Advance Key Technologies: Identify and advance emerging technologies to address
significant and pervasive software systems engineering problems, and develop these
technologies to improve software engineering practices in industry. Work with the
research community to help create and identify new and improved practices by
creating cooperative research and development agreements with industry and
academia prove out new and emerging technologies.

Leverage the Community: Work closely with the broad software systems enginee-
ring community to seek out best practice and to raise the quality of acquired and
delivered software-intensive systems. Work through the global community of
software systems engineers to amplify the impact of the new and improved practices
by encouraging and supporting their widespread adoption, with the aim of raising the
“average” practices much closer to best practices. In addition, this will be supported
through the packaging and deliver of a variety of education and training courses and
technology practices based on matured, validated, and documented solutions.

Transition into Practice: Work with leading-edge software developers and acquirers
to apply and validate new and improved practices. Assist the stakeholders to address
specific software systems engineering and acquisition challenges, e.g. clearance of
critical aircraft systems, by applying these practices. Transition activities will be

254 A.W. Brown and J.A. McDermid

primarily funded through contracted additional services with a range of different
stakeholders.

Learn from Experience: Build a base of empirical data by undertaking studies,
analysis and surveys aimed at establishing a realistic understanding of the current
state-of-the-practice for software systems engineering within the systems and
software supplier community. In addition to the value of this base data to the wider
software systems engineering community, it will also be used to establish appropriate
measures for assessing impact of technologies as they transition into practice, and for
adjusting the research activities undertaken by in response to that feedback. Where
practical this data will also be used to help compare practices with those in other
sectors, and to identify opportunities to learn from experience in these other sectors.

5 Summary and Conclusions

It is tempting to believe that software development is easy. You gain an understand-
ding of the problem that needs to be addressed by talking with people familiar with
that domain, and then design a solution to meet those needs and deploy it in the
customer’s environment. Unfortunately, complexity and scale get in the way to make
the task of software development a lot more challenging.

Software engineers turn to software architecture as a cornerstone for managing
complexity and scale in software development. An architecture is an abstraction of a
physical system that allow engineers to reason about that system by ignoring
extraneous details while focusing on the relevant ones. All forms of engineering rely
on architectures as essential to understanding complex real world systems.
Architectures are used in many ways: predicting system qualities, reasoning about
specific properties when aspects of the system are changed, and communicating key
system characteristics to its various stakeholders.

Here, we have considered the current state of software architecture, identified key
architectural trends and directions in academia and industry, and highlighted some of
the architectural research challenges which need to be addressed. The paper has
proposed a detailed agenda of research activities to be carried out by a partnership
between academia and industry. It is our firm belief that this combination of strengths
from the two communities will be the basis for future progress in the art and science
of software architecture.

References

1. Friedman, R.: The World is Flat: A Brief History of the 21st Century, Farrar, Straus and
Giroux (2005)

2. Bhagwati, J.: In Defence of Globalization. Oxford University Press, Oxford (2004)
3. The Challenges of Complex IT Projects: The Royal Academy of Engineering, and British

Computer Society (April 2004)
4. Computer Weekly Article (2004)
5. Rumbaugh, J., Booch, G., Jacobsen, I.: The UML Reference Manual. Addison-Wesley,

Reading (2004)

 The Art and Science of Software Architecture 255

6. Ministry of Defense: Defense Technology Strategy for the Demands of the 21st Century,
UK MoD (2006), www.science.mod.uk

7. Automatic verification of a behavioural subset of UML statechart diagrams using the SPIN
model-checker. Formal Aspects of Computing 11(6), 637–664 (1999)

8. Damm, W., et al.: Formal Verification of an Avionics Application using Abstraction and
Model Checking. In: Redmill, F., Anderson, T. (eds.) Towards System Safety, Springer,
Heidelberg (1999)

9. Barnes, J.G.P.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison Wesley, Reading (2003)

10. King, S., Hammond, J., Chapman, R., Pryor, A.: Is Proof more Cost-Effective than
Testing? IEEE Transactions on Software Engineering 26(8) (2000)

11. Iwu, F., Galloway, A., McDermid, J.A., Toyn, I.: Integrating Safety and Formal Analysis
using UML and PFS, RE&SS (2007)

12. Blow, J.R.: Use of Formal Methods in the Development of Safety-critical Control
Software. DPhil thesis, Dept of Computer Science, University of York. YCST-2003-08
(2003)

13. Bate, I.J., Burns, A., Audsley, N.C.: Putting Fixed Priority Scheduling Theory into
Engineering Practice for Safety Critical Applications. In: Proceedings of 2nd Real-Time
Applications Symposium (1996)

14. Eccles, M.A.: STAMP Tool Assessment. BAe-WSC-RP-R&D-0031, BAe Warton (July
1995)

15. Douglass, B.P.: Real-Time UML: Developing Embedded Objects for Embedded Systems.
Addison-Wesley, Reading (1998)

16. Radjenovic, A., Paige, R.F.: Architecture Description Languages for High Integrity Real-
Time Systems. IEEE Software 23(2), 71–79 (2006)

17. Wallace, M.: Modular Architectural Representation and Analysis of Fault Propagation and
Transformation. In: FESCA’05. Formal Foundations of Embedded Systems and
Component-Based Software Architectures (2005)

18. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, Reading (2000)
19. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor, J.:

Configuration in Industrial Product Families: The ConIPF Methodology (2006), see
http://www.conipf.org

20. Stephenson, Z., McDermid, J.A.: Deriving Architectural Flexibility Requirements in
Safety-Critical Systems. IEE Proceedings on Software 154(4) (August 2005)

21. Stephenson, Z., Zhan, Y., Clark, J., McDermid, J.: Test Data Generation for Product Lines
- A Mutation Testing Approach. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
Springer, Heidelberg (2004)

22. Arthan, R., Caseley, P., O’Halloran, C., Smith, A.: ClawZ: Control Laws in Z. In: Liu, S.,
McDermid, J.A., Hinchey, M.G. (eds.) Proceedings of ICFEM 2000, IEEE Computer
Society, Los Alamitos (2000)

23. Galloway, A., Paige, R.F., Tudor, N.J., Weaver, R.A., Toyn, I., McDermid, J.A.: Proof
versus testing in the context of Safety Standards. In: 24th Digital Avionics Systems
Conference (2005)

24. Kruchten, P.: Rational Unified Process. Addison Wesley, Reading (2002)
25. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20 (September

2003)
26. OMG: MDA Guide, Version 1.0.1 (2003), www.omg.org
27. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley

Press, Chichester (2003)

256 A.W. Brown and J.A. McDermid

28. Fowler, M.: Comments on UML sketching (2005), www.fowler.com
29. Greenfield, J., Short, S., Cook, S., Kent, S.: Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and Tools. Wiley, Chichester (2004)
30. MODAF Tools Policy Statement of Position: MoD (2006)
31. MODAF M3 Meta Model V1.0: MoD (April 2006)
32. MODAF Tool Certification Plan: V1.0, MoD (April 2006)
33. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.

Addison-Wesley, Reading (1998)
34. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-

Wesley, Reading (2001)
35. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. Prentice-Hall, Englewood Cliffs

(2005)
36. Bieberstein, N., et al.: Service-Oriented Architecture (SOA) Compass: Business Value,

Planning, and Enterprise Roadmap. IBM Press (2005)
37. Herzum, P., Sims, O.: Business Component Factory: A Comprehensive Overview of

Component-Based Development for the Enterprise. Prentice-Hall, Englewood Cliffs
(2002)

38. Parnas, D.L.: Software Engineering Programmes are not Computer Science Programmes.
IEEE Software (November/December 1999)

39. McDermid, J.A.: Tailoring Software Engineering Education: One Size Does Not Fit All.
Ingenia, RAEng, pp. 50–54 (2004)

40. Brooks, F.: The Mythical Man-Month: 20th Anniversary edn. Addison-Wesley, Reading
(2004)

41. Carlson, D.: Eclipse Distilled. Addison-Wesley, Reading (2005)
42. Brown, A.W., Delbaere, M., Eeles, P., Johnston, S., Weaver, R.: Realizing Service

oriented Solutions with the IBM Software Development Platform. IBM Systems
Journal 44(4), 727–752 (2005)

43. Johnston, S.K., Brown, A.W.: A Model-driven Development Approach to Creating
Service-oriented Solutions. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 624–636. Springer, Heidelberg (2006)

44. IBM Insurance Application Architecture. http://www.ibm.com/industries/financialservices/
doc/content/solution/278918103.html

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 257 – 262, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Issues in Applying Empirical Software Engineering
to Software Architecture

Davide Falessi1, Philippe Kruchten2, and Giovanni Cantone1

1 University of Rome "Tor Vergata", DISP, Rome, Italy
falessi@ing.uniroma2.it, cantone@uniroma2.it

2 University of British Columbia, ECE, Vancouver, Canada
pbk@ece.ubc.ca

Abstract. Empirical software engineering focuses on the evaluation of software
engineering technologies, such as processes and tools, by comparing related sets
of data. It has contributed a valuable body of knowledge in several areas such as
Software Economics and Software Quality, which in turn drove important
advances in related tools and techniques. Unfortunately this is not (yet) the case
for software architecture, where empirical studies are still few. Such a condition
demands for further empirical research efforts on the topic of software
architecture and suggests specific areas of improvement. In this paper we
discuss several essential, innovative, and maybe provocative, questions such as:
Why do we have so few applications of empirical software engineering on
software architecture? Which are the main difficulties? What can we do?

Keywords: Software architecture, empirical software engineering.

1 Introduction

One of the objectives of Empirical Software Engineering (ESE) is to develop and
utilize evidence to advance software engineering methods, processes, techniques, and
tools. ESE is now an advancing discipline; this is demonstrated by the growing
consensus from the software community [21], and a number of specialized
conferences [8], journal [2], and books [10] [20]. ESE has achieved considerable
results in building valuable bodies of knowledge, which in turn drove important
advances in different areas; for instance, the effective application of empiricism in
software engineering gave excellent results in the area of Software Economics [5] and
value-based Software Engineering [4], and improved the techniques for inspecting
software artifacts for defects detection [17]. Sharing architectural knowledge seems to
be one of the most promising next steps for advancing research and improving
knowledge about Software Architecture. This is attested by a number of workshops
[14] and publications in software architecture conferences [13]. Although ESE would
seem to be a valid means to improve software architecture maturity and the sharing of
knowledge, the literature exhibits very few empirical studies on software architecture
and we wonder why? Is it so difficult? Too difficult? What can we do? We will
discuss these questions in the remaining of this brief paper: Section 2 describes some
of the challenges in applying ESE on SA. Section 3 concludes in describing what we
could do.

258 D. Falessi, P. Kruchten, and G. Cantone

2 Challenges in Applying ESE to Software Architecture

2.1 How to Define Software Architecture “Goodness”?

According to Bass et al. [3] analyzing an architecture without knowing the exact
criteria for goodness is like beginning a trip without a destination in mind.” On the
same vein, Booch writes “one architectural style might be deemed better than another
for that domain because it better resolves those forces. In that sense, there’s a
goodness of fit—not necessarily a perfect fit, but good enough.” [6] The concept of
“good enough” may vary according to some aspects, including:

• Bounded rationality: the level of goodness heavily depends on the amount of
available knowledge at the time of the evaluation [18]. Software architecture is an
artifact that software development lifecycle delivers very early; this implies that
software architecture decisions are often made based on unstable and quite vague
system requirements. Hence software architecture goodness depends on the
existent level of risk, which is difficult to describe.

• Other decisions: Design decisions are made based on the characteristics of the
relationships that they have with the other decisions outside of the reach of the
architect, called “pericrises” in [12]. The few available tools for handling software
architecture design decisions are still in infancy [7].

• ROI: In general, in every system development, the optimal set of decisions is the
one which maximizes the return of investment (ROI). For example, an existing
architecture is more valuable than the best one achievable by some modifications
because the latter would impose some delay and typically delay implies financial
losses. Therefore, the ROI should be considered as the main driver to define the
goodness of software architecture while in empirical software engineering, correct
is quite always defined as the most frequent output. The difficulties in describing
the ROI are a fundamental barrier to the definition of the empirical measures.

• Social factors: Social issues such as business strategy, culture, size of the
development team, etc. crucially influence every kind of design decisions. The
difficulties in describing social issues that influence design decisions constitute a
barrier when trying to measure and/or control at constant level related empirical
variables (i.e. “you cannot control what you cannot measure,” as DeMarco said).

2.2 How to Describe the Software Architecture Evaluation Technique?

In the absence of enough evidence, we should assume that different evaluation
techniques might lead to different results. Based on the work by Ali Babar et al. [1],
we propose the following set of attributes to characterize an software architecture
evaluation technique and hence its results: level of maturity of the evaluation
technique, definition of SA, objective (risk identification, change impact analysis,
trade-off analysis), techniques employed for evaluation (e.g., questionnaire, checklist,
scenarios, metrics, simulation, mathematical modeling, experience-based reasoning),
quality attributes taken into account (see below “SA evaluation result description”),
stage of the software process lifecycle (initial, mid-course, post-deployment), type of
architectural description (formal, informal, specific ADL, …), type of evaluation

 Issues in Applying Empirical Software Engineering to Software Architecture 259

(quantitative, qualitative), non technical issues (e.g., organizational structure),
required effort, size of the evaluation team, kind of involved stakeholders, and
number of scenarios, if any. This set of attributes represents only a basic frame of
reference for starting a discussion on how to arrive at an agreement for the description
of a software architecture evaluation technique. The difficulty in describing this
evaluation step is a barrier for a valid empirical data analysis.

2.3 How to Select the Software Architecture Evaluation Input?

Similarly, we assume that different types of input to evaluate the software architecture
may lead to different results. Following Obbink et al. [15] we propose the following
set of input which influences the result of a software architecture evaluation:
objectives (e.g., certifying conformance to some standard, assessing the quality of the
architecture, identifying opportunities for improvement, improving communication
between stakeholders), scope (i.e. what exactly will be reviewed), architectural
artifacts, supporting evidence (e.g. feasibility studies, prototypes, minutes, notes,
white papers, measurements), architectural significant requirements, product strategy
and planning, standards and constraints, quality assurance policies, risk assessments.
As in Section 2.2, this is only a starting point to achieve a consensus on what
constitutes a reasonable set of input for a software architecture evaluation process,
and this represents another key barrier for ESE to overcome in the field of SA.

2.4 How to Describe the Software Architecture Evaluation Scenarios?

“There are also some attribute model-based methods and quantitative models for
software architecture evaluation but, these methods are still being validated and are
considered complementary techniques to scenario-based methods.” [1] In fact,
different scenarios lead to different conclusions, therefore the researchers should
focus on two main issues when doing empirical studies of scenarios: i) apply all the
treatments on each scenario ii) describe each scenario in the report, otherwise the
readers would not be able to understand to what extent the empirical results are
applicable to their own context. While we have quasi standard rules for describing our
experimental apparatus (e.g., type of subjects, their incentives [9]), there are no
standards for describing the scenarios used for evaluating an architecture. Lacking
these, researchers describe them in an ad hoc manner, which eventually decreases the
effectiveness of the evaluation and hence its validity. The difficulty in completely
describing the evaluation scenarios is a barrier for a valid empirical data analysis.

2.5 How to Describe the Software Architecture Evaluation Results?

According to [3], software architecture quality can be defined in terms of ease of
creation, conformance, manufacturability, environment impact, suitability,
interoperability, security, and a long list of other “-ilities”. The contribution of such a
list is threefold: (i) to provide a basic frame of reference for defining the goodness of
an architecture (by including, refining, or omitting the proposed attributes), (ii) to
stress that most of the attributes can be measured, so that we can describe software

260 D. Falessi, P. Kruchten, and G. Cantone

architecture “goodness” in an objective way, (iii) to highlight that some of the "ilities"
to evaluate a software architecture can only be analyzed once the system has been
developed.

2.6 How to Sustain the Cost of Professional Review?

According to [3], a professional architecture review costs around 50 staff-days, and
this cost alone is a barrier for empirical studies.

2.7 How to Adopt Sophisticated System?

A main feature of software architecture is to provide “intellectual control over a
sophisticated system enormous complexity” [11]. Hence software architecture is
really useful only for large software system whose complexity would not be
manageable otherwise. The use of software architecture artifacts for small or simple
systems, as empirical objects adopted in a typical academic study with students,
would be not representative of the state of the practice and moreover the study would
neglect phenomena characterizing complex systems. This is a barrier to the
construction of valid artificial empirical objects; note that this does not imply only a
low generality of the results, but also that something is wrong with the results.

2.8 How to Define the Boundaries of Software Architecture?

There is no clear agreement on the definition of SA [19] [15]. Software architecture
comprehends the set of decisions that have an impact on the system behavior and not
just parts of it. Hence, an element is architecturally relevant based on the locality of
its impacts rather than on where or when it was developed. The difficulty in
specifying the boundaries between software architecture and the rest of the design is a
barrier to the selection of empirical objects to study.

2.9 How to Adopt Subjects with Experience?

In the absence of systematic methods, making the right software architectural
decisions requires a high level of experience. Hence the use of empirical subjects with
little experience, usually students, is not representative of the state of the practice.
Again, this challenge is a barrier to the selection of valid empirical subjects.

The challenges we’ve identified can be categorized in two types: theoretic and
practical as described in Table 1. Table 2 shows which types of challenges negatively
affect which ESE issues. In particular, practical challenges affect the construct
validity, the experimental strategy and both quantitative and qualitative types of
analysis. Theoretic challenges affect the internal and conclusion validity, all the
available empirical strategy, and the quantitative analysis.

Table 1. Practical and theoretic challenges in applying ESE on SA

Practical Cost of professional review Size of the system Hazy boundaries Level of experience
Theoretic SA goodness SA evaluation technique SA evaluation scenario SA evaluation result description

 Issues in Applying Empirical Software Engineering to Software Architecture 261

Table 2. ESE issues negatively affected by different types of challenges

Validity Empirical strategy Data analysis
Practical Construct Experiment Both
Theoretic Internal and Conclusion All Mainly quantitative

Spoiled IssuesType of
challenges

3 Conclusion

Mulla Nasruddin was a 13th century Sufi visionary who wrote the parable known as
“searching the keys under the lamppost.” He describes a man who lost his keys in a
dark place and who then tried to recover them not were he lost them but far away,
under a lamp, because this was the only place with enough light for searching. In this
context the dark areas are the aforementioned challenges. Most software architecture
research seems to occur under the lamppost. There are many dark areas and it is the
main reason of the current mismatch between ESE and SA. If we focus on these dark
areas we could: 1) search in the most enlightened part as possible (i.e., we already
have standard metrics hence we should avoid to use other subjective dependent
variables), 2) consider studies that searched in the dark as valid instead of invalid if
there were no light available in the surroundings, but also 3) we may install new
lamps in key dark areas (i.e., face the challenges we described above).

Future works include an a characterization of the available empirical methods,
based on the level of impact of the above mentioned challenges.

References

1. Babar, M.A., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software
Architecture Evaluation Methods. In: Australian Software Engineering Conference (2004)

2. Basili, V., Briand, L.C.: Empirical Software Engineering: An International Journal, ISSN:
1382-3256

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Massachusetts (2003)

4. Biffl, S., Aurum, A., Bohem, B., Erdogmus, H., Grünbacher, P.: Value-Based Software
Engineering. Springer, Heidelberg (2005)

5. Boehm, B.W.: Software Engineering Economics. Prentice Hall PTR, NJ (1981)
6. Booch, G.: Goodness of Fit. IEEE Software 23(6), 14–15 (2006)
7. Capilla, R., Nava, F., Perez, S., Dueñas, J.C.: A web-based tool for managing architectural

design decisions. SIGSOFT Softw. Eng. Notes 31(4) (November 2006)
8. ESEM: International Symposium on Empirical Software Engineering and Measurement

(2007), http://www.esem-conferences.org/
9. Host, M., Wohlin, C., Thelin, T.: Experimental context classification: incentives and

experience of subjects. In: Proceedings of the 27th international Conference on Software
Engineering, St. Louis, MO, USA, pp. 470–478 (2005)

10. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Springer,
Heidelberg (2001)

11. Kruchten, P., Obbink, H., Stafford, J.: The Past, Present, and Future for Software
Architecture. IEEE Software 23(2), 22–30 (2006)

262 D. Falessi, P. Kruchten, and G. Cantone

12. Kruchten, P.: A Taxonomy of Architecture Design Decisions in Software-Intensive
Systems. In: 2nd Groningen Workshop on Software Variability Management, Groningen,
NL (2004)

13. Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning about Architectural
Knowledge. In: 2nd International Conference on the Quality of Software Architectures,
Vaesteras, Sweden (June 2006)

14. Lago, P., Avgeriou, P.: First ACM Workshop on SHAring and Reusing architectural
Knowledge (SHARK). SIGSOFT Software Engineering Notes 31(5), 32–36 (2006)

15. Obbink, H., et al.: Report on Software Architecture Review and Assessment (SARA).
Version 1.0 (2002), available from: http://philippe.kruchten.com/architecture/SARAv1.pdf

16. SEI: Published Software Architecture Definitions (2007), http://www.sei.cmu.
edu/architecture/published_definitions.html

17. Shull, F., Seaman, C., Zelkowitz, M.: Victor R. Basili’s Contributions to Software Quality.
IEEE Software 23(1), 16–18 (2006)

18. Simon, H.A.: The Sciences of the Artificial, 3rd edn. The MIT Press, Cambridge (1996)
19. Smolander, K.: Four metaphors of architecture in software organizations: finding out the

meaning of architecture in practice. In: International Symposium on Empirical Software
Engineering, Nara, Japan (October 3-4, 2002)

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:
Experimentation in Software Engineering: an Introduction, Massachusetts (2000)

21. Zelkowitz, M.V., Wallace, D.R.: Experimental models for validating technology. IEEE
Computer 31(5), 23–31 (1998)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 263–270, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Leveraging Architecture Patterns to Satisfy Quality
Attributes

Neil B. Harrison and Paris Avgeriou

Department of Mathematics and Computing Science, University of Groningen,
Groningen, The Netherlands

harrisne@uvsc.edu, paris@cs.rug.nl

Abstract. Architectural design has been characterized as making a series of
decisions that have system-wide impact. These decisions have side effects
which can have significant impact on the system. However, the impact may be
first understood much later; when the system architecture is difficult to change.
Architecture patterns can help architects understand the impact of the
architectural decisions at the time these decisions are made, because patterns
contain information about consequences and context of the pattern usage.
However, this information has been of limited use because it is not presented
consistently or systematically. We discuss the current limitations of patterns on
evaluating their impact on quality attributes, and propose integrating the
information of patterns’ impact on quality attributes in order to increase the
usefulness of architecture patterns.

Keywords: Software Architecture, Architecture Patterns, Quality Attributes.

1 Introduction

One of the most challenging aspects of software design is creating a system that
provides the quality attributes needed by the users. Quality attributes are
characteristics of the system that are non-functional in nature. Typical quality
attributes include reliability, usability, and security.

Because quality attributes are system-wide, their implementation must also be
system-wide: satisfaction of a quality attribute requirement cannot be partitioned into
a single module or subsystem. Thus, a system-level vision of the system is required in
order to ensure that the system can satisfy its quality attributes. One of the primary
purposes of the architecture of a system is to create a system design to satisfy the
quality attributes. Wrong architectural choices can cost significant time and effort in
later development, or may cause the system to fail to meet its quality attribute goals.

Designing an architecture so that it achieves its quality attribute requirements is
one of the most demanding tasks an architect faces [3]. One reason is that the
architect needs a great deal of knowledge about the quality attributes and about
approaches to implementing systems that satisfy them. Yet there are many quality
attributes; the ISO 9126 standard lists six primary and 21 secondary quality attributes
[14]. In addition, quality attributes often interact – changes to the system often have

264 N.B. Harrison and P. Avgeriou

repercussions on quality attributes elsewhere. Broad knowledge about how to manage
tradeoffs among arbitrary quality attributes does not yet exist [2]. Requirements may
not be sufficiently specific and are often a moving target. Finally, the consequences of
decisions made are often overlooked [4]. As a result, architectural rework is common.

Architecture patterns are a viable approach for architectural partitioning, and have
a well-understood impact on quality attributes [20]. However their application has
been rather limited due to a number of factors [11]. We propose the systematic use of
architecture patterns to help the architect satisfy quality attributes, and thus reduce the
risk of later rework. We demonstrate that patterns can help the architect understand
the impact architectural decisions that might be overlooked. We explore why patterns
have been limited in large-scale industrial application. As an initial step to overcome
this limitation we have analyzed several architecture patterns with respect to their
impact to key quality attributes, as a means to leverage the knowledge in the patterns.

2 Architectural Decisions

The process of architectural design has been characterized as making a series of
decisions that have system-wide impact. Most architectural decisions have multiple
consequences, or as Jansen and Bosch put it, result in additional requirements to be
satisfied by the architecture, which need to be addressed by additional decisions [15].
Some are intended, while others are side effects of the decision.

Some of the most significant consequences of decisions are those that impact the
quality attributes of the system. Garlan calls them key requirements [10]. This impact
may be the intent of the decision; for example, one may choose to use a role-based
access control model in order to satisfy a security quality attribute. Other impacts may
be side effects of different decisions. For example, the architect may adopt a layered
architecture approach, which decomposes the system into a hierarchy of partitions,
each providing services to and consuming from its adjacent partitions. A side effect of
a layered architecture is that security measures can be easily implemented.

2.1 Unforseen Consequences

One of the key challenges in dealing with consequences is the vast amount of
knowledge required to understand their impact on all the quality attributes. Bachmann
et al note that the list of quality attributes in the ISO 9126 standard is incomplete, and
that one must understand the impact on even the undocumented quality attributes [2].
Tyree et al note that traditional architecture methods do not focus on the rationale for
an architectural decision and the options considered [21]. Kruchten notes that the
reasoning behind a decision is tacit knowledge, essential for the solution, but not
documented [19]. The result is that consequences of decisions may be overlooked.

Overlooking issues is a significant problem in architecture. In a study of
architecture evaluations, Bass et al [4] report that most risks discovered during an
evaluation arise from the lack of an activity, not from incorrect performance of an
activity. Categories of risks are dominated by oversight, including overlooking
consequences of decisions. Many of the overlooked consequences are associated with

 Leveraging Architecture Patterns to Satisfy Quality Attributes 265

quality attributes. Their top risk themes included availability, performance, security,
and modifiability.

 Missing the impact on quality attributes at architecture time has an additional
liability. Because quality attributes are system-wide capabilities, they generally
cannot be fully tested until system testing [7]. Consequences that are overlooked are
often not found until this time, and are expensive to fix.

3 Architecture Patterns

Patterns are solutions to recurring problems. A software pattern describes a problem
and the context of the problem, and an associated generic solution to the problem. The
best known software patterns describe solutions to object-oriented design problems
[9], but patterns have been used in many aspects of software design, coding, and
development. Patterns have been written for software architecture, and can be used in
numerous software architecture methods [3] [5] [8] [15] [20].

Patterns have been shown to be a useful and potentially important vehicle for
capturing some of the most significant architectural decisions [11]. One of the biggest
difficulties of documenting architectural decisions is the capturing of rationale and
expected consequences of a decision. This is where patterns are particularly strong,
because the consequences of using the architecture pattern are part of the pattern.

The result of applying a pattern is usually documented as “consequences” or
“resulting context” and is generally labeled as positive (“benefits”) or negative
(“liabilities”). Each benefit and liability is described in some detail.

The payoff of using patterns can be great. When an architect uses a pattern, he or
she can read the pattern documentation to learn about the side effects of the pattern.
This reduces the chance of the architect failing to consider important consequences.
This relieves the architect of the burden of being expert in all the quality attributes.

An important advantage of pattern-based architecting is that it is an integral part of
most current architecture methods. It fits into the step of ADD that selects
architectural patterns and tactics to satisfy the drivers (see [3] for further details.) The
Siemens’ Views method [13] and the Rational Unified Process 4+1 Views [17] [18],
use various strategies, such as patterns, to resolve issues identified in the views.

3.1 Limitations of Patterns in Identifying Consequences

The use of patterns in identifying and dealing with consequences is, however,
currently significantly limited. The chief limitation is that patterns’ information on
consequences is incomplete, not searchable or cross-referenced, and in general not as
easy to use as it should be. Furthermore, it is difficult to learn about pattern
interactions: how patterns may jointly impact quality attributes. These are the
difficulties we focus on in this work.

Another difficulty is that pattern consequences are most often qualitative, not
quantitative. Some quantification of architecture patterns’ impact on quality attributes
has been done using a graded scale [20]. This is insufficient, since an architect needs
to have rigorous analysis results of quality attributes to make informed decisions.

266 N.B. Harrison and P. Avgeriou

Even qualitative information is problematic: consequences are of different strengths
but no such comparative information is given. We begin to address this in this work.

Another issue is that patterns contain proven, but general solutions. Architecture is
concerned with specific, but tentative decisions. As such, the pattern use must be
tailored to the specific system – the architect must evaluate the consequences of a
pattern in the context of its proposed use. Several architecture patterns, particularly
those in Buschmann et al [8], include common variants of the patterns that provide
more specific solutions. However, the variants have not been extensively documented,
and have little information on consequences. So the user is left to determine whether
the consequences of a pattern still apply to a pattern variant under consideration.

An important source of unforeseen consequences is the interaction of multiple
decisions. Multiple patterns may have overlapping consequences, or patterns and
decisions not based on patterns may have overlapping consequences.

4 Analysis of the Impact of Patterns on QAs

In order for patterns to become a truly powerful architecture tool, it must be possible
to find which patterns impact certain quality attributes, compare and contrast their
impacts, and discover their interactions. To this end, we are analyzing the impact of
patterns on quality attributes, and organizing this analysis in a way that is accessible
and informative. This work is a companion to quantifying the impact of patterns on
quality attributes: it adds a qualitative dimension by examining the nature of how a
pattern impacts a particular quality attribute; not just how much.

We began by selecting a standard definition of quality attributes to be used in the
study. We used the ISO quality model [14], which contains functionality, reliability,
usability, efficiency, maintainability, and portability. We initially confined ourselves
to the primary attributes, with the exception of functionality, where we selected the
security sub-attribute. We added a property, implementability, as a measure of the
difficulty of implementing the pattern.

 We then selected the best-known architecture patterns, those from Buschmann et
al [8]. We used the consequences in the book for our analysis of consequences. While
the book gives several variants of the patterns, we limited this analysis to the “pure”
form of each pattern – the variants will be investigated in our future work.

In the analysis of the consequences, we designated strengths as “strength” or “key
strength,” and liabilities as either “liability” or “key liability,” based on the
importance of the impact. If the impact on the quality attribute might be sufficient
reason by itself to use or avoid the pattern, it was designated as “key.” This
differentiation supports architectural reasoning: used in the context of a project’s
architectural drivers, a key strength tends to enable fulfillment of an architectural
driver, while key liability will severely hinder or perhaps prevent its fulfillment. We
differentiated normal versus key impacts based on the severity described in the
documentation. Where it was unclear, consequences were weighed against each other,
and judgment was applied. Not every pattern had both key strengths and liabilities.

At least two to three sentences are needed to express each impact fully. Because of
space limitations, we abbreviated the impacts to just a short sentence.

 Leveraging Architecture Patterns to Satisfy Quality Attributes 267

Table 1. Patterns’ Impact on Usability, Security, Maintainability and Efficiency

Usability Security Maintainability Efficiency

Layers Neutral Key Strength:
Supports
layers of
access.

Key Strength:
Separate
modification and
testing of layers, and
supports reusability

Liability:
Propagation of
calls through
layers can be
inefficient

Pipes and
Filters

Liability:
Generally not
interactive

Liability:
Each filter
needs its own
security

Strength: Can modify
or add filters
separately

Strength: If one
can exploit parallel
processing
Liability: Time and
space to copy data

Blackboard Neutral Liability:
Independent
agents may be
vulnerable

Key Strength:
extendable
Key Liability:
Difficult to test

Liability: Hard to
support parallelism

Model View
Controller

Key Strength:
Synchronized
views

Neutral Liability: Coupling of
views and controllers
to model

Liability:
Inefficiency of
data access in view

Presentation
Abstraction
Control

Strength:
Semantic
separationo

Neutral Key Strength:
Separation of
concerns

Key Liability: High
overhead among
agents

Microkernel Neutral Neutral Key Strength: Very
flexible, extensible

Key Liability: High
overhead

Reflection Neutral Neutral Key Strength: No
explicit modification
of source code

Liability: Meta-
object protocols
often inefficient

Broker Strength:
Location
Transparency

Strength:
Supports
access control

Strength:
Components easily
changed

Neutral: Some
communication
overhead

4.1 Implications of Analysis

A few patterns have conflicting impacts on a quality attribute. The Blackboard pattern
has both a positive and negative impact on maintainability, and efficiency is both a
strength and a liability in the Pipes and Filters pattern. This shows the complex nature
of quality attributes: the categories above should be broken down in more detail (see
future work.) However, they also indicate that a pattern can have complex
consequences. In these cases, the designer must consider multiple different impacts.

The context of the application affects the importance of the consequences. For
example, the efficiency strength of Pipes and Filters to exploit parallel processing
may not be achievable in some single thread systems. This also highlights how best to
use the information: one uses the information as a starting point for more in-depth
analysis and design. This is particularly true for the liabilities, as illustrated below.

268 N.B. Harrison and P. Avgeriou

Table 2. Patterns’ Impact on Reliability, Portability, and Implementability

Reliability Portability Implementability

Layers Strength: Supports
fault tolerance and
graceful undo

Strength: Can
confine platform
specifics in layers

Liability: Can be difficult to
get the layers right

Pipes and
Filters

Key Liability: Error
handling is a problem

Key Strength: Filters
can be combined in
custom ways

Liability: Implementation of
parallel processing can be
very difficult

Blackboard Neutral: Single point
of failure, but can
duplicate it

Neutral Key Liability: Difficult to
design effectively, high
development effort

Model View
Controller

Neutral Liability: Coupling
of components

Liability: Complex structure

Presentation
Abstraction
Control

Neutral Strength: Easy
distribution and
porting

Key Liability: Complexity;
difficult to get atomic
semantic concepts right

Microkernel Strength: Supports
duplication and fault
tolerance

Key Strength: Very
easy to port to new
hardware, OS, etc

Key Liability: Very complex
design and implementation

Reflection Key Liability:
Protocol robustness
is key to safety

Strength: If you can
port the meta-object
protocol

Liability: Not well supported
in some languages

Broker Neutral: Single point
of failure mitigated
by duplication

Key Strength:
Hardware and OS
details well hidden

Strength: Can often base
functionality on existing
services.

We have used this information in evaluating the architecture patterns in a few
industrial systems. While this work is early, our studies indicate that such evaluations
can be very useful. The process consists of identification of the patterns in the
architecture, and examining their impact on the important quality attributes of the
system. In one case, we reviewed an architecture which used the Pipes and Filters
pattern. A key liability of this pattern is reliability; it is difficult to implement error
handling. This became a drill-down point in the review, and we investigated error
handling in more depth. In another case, we observed the Layers pattern in a time-
critical system. In order to deal with the fact that the Layers pattern has a performance
liability, the designers allowed certain functions at the lowest layers to be called from
the highest layer. Such “breakages” of a pattern should be designated as areas for
careful testing, because they are intentional deviations from a proven design.

Early experience suggests that it supports lightweight architecture. It adds some
rigor to architecture without extensive documentation and reviews. It strikes a
“middle ground” between the extremes of no architecture and highly formalized
architecture.

 Leveraging Architecture Patterns to Satisfy Quality Attributes 269

5 Related Work

Several quality attribute centered software architecture methods take an intuitive
approach, including the QASAR method [5] and the attribute driven design (ADD)
method [3]. Use of architecture patterns is also intuitive, and fits well in these models.
In addition, the architecture pattern quality attribute information formalizes
architecture patterns and their consequences, relieving the architect of some of the
burden of ferreting out the consequences of architectural decisions.

Bachmann et al describe a knowledge framework designed to help architects
make specific decisions about tradeoffs that impact individual quality attributes
[2]. It focuses on individual quality attributes independently, while the pattern
approach focuses more on interactions among patterns and quality attributes. It
might be said that the knowledge framework favors depth, while the pattern-driven
approach favors breadth. In this sense, it is likely that these two research efforts
are complementary.

In the general model of architecture [12], the information is useful in the
Architectural Synthesis activity, but is most valuable in the Architectural
Evaluation activity. Architecture evaluators can use it to help them detect risks of
omission [4].

6 Future Work

We have shown an initial analysis of a few architecture patterns identified to date,
namely those found in Buschmann et al [8]. We are beginning to analyze others; most
are described in Avgeriou and Zdun [1]. We have also begun analyzing the
subcategories of quality attributes given in the ISO quality standard [14].

A process for using this data in pattern-based architecture reviews is being
developed and used to collect data.

The interaction of the consequences of patterns has not been explored in detail.
We intend to study which patterns are often used together. This helps identify
potentially conflicting decisions, and help them make tradeoffs about which
patterns to use.

The consequences in patterns are qualitative, but some quantification is useful. It
would be useful to make the rudimentary quantification of the consequences: Key
Strength, Strength, Neutral, Liability, and Key Liability more detailed. Such
quantification is of necessity limited, and must be carefully crafted so as not to give
the false impression that a numerical score of a pattern can replace analysis.

Pattern variants have rich potential. Variants of patterns should be investigated to
understand in more detail how individual variants affect the impact of generic
architecture patterns on the quality attributes. Different pattern variants have
somewhat different strengths and liabilities. This information can be used to help the
architect choose among different variants of patterns.

A table such as the ones above can show only very abbreviated information; more
detailed information is needed. This information might be incorporated into a tool that
functions as an architectural decision support system such as knowledge frameworks
for quality attribute requirements as proposed by Bachmann et al [2].

270 N.B. Harrison and P. Avgeriou

References

1. Avgeriou, P., Zdun, U.: Architectural Patterns Revisited - a Pattern Language. In: 10th
European Conference on Pattern Languages of Programs, Irsee, Germany (July 2005)

2. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures to
achieve quality attribute requirements. In: IEE Proceedings, vol. 152 (2005)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading, MA (2003)

4. Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes Discovered Through
Architecture Evaluations. SEI Report CMU/SEI-2006-TR-012 (2006)

5. Bosch, J.: The Design and use of Software Architectures. Addison-Wesley, London (2000)
6. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C.,

Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg
(2004)

7. Burnstein, I.: Practical Software Testing. Springer, Heidelberg (2003)
8. Buschmann, F., Meunier, R., Rhonert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture: A System of Patterns. Wiley, West Sussex, England (1996)
9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, MA (1995)
10. Garlan, D.: Software Architecture: a Roadmap. In: Proceedings of Future of Software

Engineering, Limerick Ireland (2000)
11. Harrison, N., Avgeriou, P., Zdun, U.: Architecture Patterns as Mechanisms for Capturing

Architectural Decisions. IEEE Software (September/October 2007)
12. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: Generalizing a

Model of Software Architecture Design from Five Industrial Approaches. Journal of
Systems and Software 30(1), 106–126 (2007)

13. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture, pp. 7–8. Addison-
Wesley, Reading, MA (2000)

14. International Standards Organization: Information Technology - Software Product Quality
- Part 1: Quality Model, ISO/IEC FDIS 9126-1

15. Jansen, A.G., Bosch, J.: Software Architecture as a set of Architectural Design Decisions.
In: Proceedings of WICSA 5, pp. 109–119 (November 2005)

16. Klein, M., Kazman, R.: Attribute-Based Architectural Styles. Technical Report CMU/SEI-
99-T2-022 (October 1999)

17. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software 12(6) (1995)
18. Kruchten: The Rational Unified Process: an Introduction, 3rd edn. Addison-Wesley,

Reading (2004)
19. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural

knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, Springer, Heidelberg (2006)

20. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Addison-Wesley, Reading, MA (1996)

21. Tyree, J., Ackerman, A.: Architecture Decisions: demystifying Architecture. IEEE
Software, 19–27 (March/April 2005)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 271–274, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architecture for Developing Adaptive and Adaptable
Collaborative Applications*

Mario Anzures-García1,2, Miguel J. Hornos2, and Patricia Paderewski-Rodríguez2

1 Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, 14
sur y avenida San Claudio. Ciudad Universitaria, San Manuel, 72570 Puebla, México

manzures@siu.buap.mx
2 Departamento de Lenguajes y Sistemas Informáticos, E.T.S.I. Informática y de
Telecomunicación, Universidad de Granada, C/ Periodista Saucedo Aranda, s/n,

18071 Granada, Spain
anzures@correo.ugr.es, {mhornos,patricia}@ugr.es

Abstract. Many organizations have to carry out their work by groups of people
who are geographically distributed. The groups can experiment changes, which
demand the development of applications supporting groupwork and allowing
the adaptation to different groupwork organization styles and to both individual
and collective needs. This paper proposes a SOA-based architecture that
provides the suitable structure for the development of collaborative applications
that are both adaptive and adaptable. We also present an adaptation process that
allows the applications based on the architecture to be adapted to the changes in
the groupwork organization and to the necessity of new functionalities.

1 Introduction

The collaborative applications must provide the appropriate infrastructures to support
groupwork and to do it effectively. Moreover, it is advisable that these applications
can be adapted to the group dynamic nature and to the different groupwork styles.

Software adaptation is based on the need of adjusting or transforming the system
functionality in accordance with the new requirements that will appear in the future
(changes in the environment, new users’ needs, different devices, etc.), in such a way
that the system can continue working correctly. There are two forms of adaptation [4],
namely: 1) Adaptive, when the system adaptation is automatically performed and is
based on certain mechanisms previously defined by the designer and/or the developer.
2) Adaptable, when the system adaptation is carried out by the user’s direct
intervention in accordance with a set of constrains that avoid inconsistencies in the
system. This paper presents a SOA-based architecture that provides a suited
infrastructure to develop collaborative applications that can be adapted to the changes
and needs of the group in runtime. The next section shows our architectural proposal
and the final section outlines our conclusions.

* This work is financed by the Spanish project CICYT with code TIN2004-08000-C03-02.

272 M. Anzures-García, M.J. Hornos, and P. Paderewski-Rodríguez

2 Adaptive and Adaptable Architecture

The SOA-based architecture to develop adaptive and adaptable collaborative
applications that we propose is made up of three layers: Group Layer, Application
Layer, and Control Layer, which are connected by the communication mechanisms
(i.e. HTTP, SOAP, WSDL and UDDI). In next subsections, we will briefly explain
the first two layers (an extended description of them can be found in [1]), while we
will focus on the Control Layer, and mainly on the adaptation processes.

Fig. 1. Architecture to Develop Adaptive and Adaptable Collaborative Applications

2.1 Group Layer

It supplies the appropriate infrastructure to support groupwork. This layer contains the
following components:

 Registration Service, which allows registering sessions and users. To do it, it uses
an authentication mechanism.

 Session Management Module, which provides a mechanism that allows users to
carry out the groupwork using shared resources. In addition, this module defines
how the groupwork will be organized by means of the session management policy,
which we have modelled using an ontology [2].

 Shared Access Control Module, which determines how participants to a session
cooperate, by providing temporary access to resources for collaborating users in
order to mutually guarantee exclusive resource usage.

 Group Awareness Service, which helps participants to establish a common context
and coordinate activities, avoiding surprises and reducing conflicts in the group.

2.2 Application Layer

It contains the specific collaborative applications that users want to employ to carry
out the groupwork (e.g. a shared whiteboard). When needed, this layer allows the
extending of the architecture functionality to new web services without having to
modify existing services. Since the architecture has been designed using a service-
oriented architectural style, third-party applications, components or tools (which are
wrapped as web services) may be added to provide new functionalities.

2.3 Control Layer

It is made up of two modules: the Service Control Module, which controls the
description, discovering, binding and/or publication of web services in order to

 Architecture for Developing Adaptive and Adaptable Collaborative Applications 273

facilitate the building or extension of applications using the existing services; and the
Adaptation Control Module (see Figure 2), which controls how the components of our
architecture will be adapted when a change (or event) requiring the modification of
the collaborative application takes place, so that the application functionality can be
preserved. The adaptation process, which is based in the model proposed in [3],
includes the following phases:

 Event Detection, which monitors events in the execution environment and
determines whether the adaptation process has to be carried out, using the
Detection Mechanism. Once an event has been detected, this phase checks whether
it is stored in the Adaptation Event repository. This determines whether it is
necessary to carry out an adaptation process and which components (stored in the
Adaptation Component repository) will be affected by the adaptation.

 Agreement, which is performed only in an adaptable process, where all users have
to reach a consensus on whether an adaptation process should be performed or not.
This consensus process is carried out by the Agreement Mechanism. Several kinds
of agreement (such as the one based on either a majority vote, or a maximum or a
minimum value, etc.; each of them is applied to a specific situation) can be reached
using the Voting tool. All components of the Adaptation Component repository
relating to the corresponding adaptation process must meet the necessary
conditions (which are stored in the Requirement repository) in order to avoid
possible inconsistencies in the collaborative application.

 Action, which carries out the corresponding changes by means of the Action
Mechanism, in such a way that the application is continuously running its correct
functionality. To do that, it executes a set of operations (stored in the Operation
repository) that determine which actions must be carried out in each
component/service to be adapted.

Fig 2. General Schema of the Adaptation Control Module

2.4 Applying the Adaptation Process

We present two examples: an adaptive (when a user leaves a session) and an
adaptable (when the group changes the session management policy to be applied)
process. In the former, the actions carried out are: a) Event Detection. The Detection
Mechanism detects the leave_session() event (which is stored in the Adaptation Event
repository), so it determines (by querying the Adaptation Component repository) that
the Registration and Shared Access Control services and the Session Management
module have to be adapted. b) Agreement. This phase is not carried out. c) Action.
Once the leave_session() event has been triggered, the following operations have to

274 M. Anzures-García, M.J. Hornos, and P. Paderewski-Rodríguez

be performed: 1) to delete the user name from the Registration repository, 2) to close
the connection with the user’s site; 3) to check whether the role the user was playing
is necessary; in such a case, this role is assigned to another user in accordance with
the session management policy; 4) to assign the tasks carried out and the shared
resources used by the user to another user (if necessary); 5) to remove the user name
of the waiting list of certain shared resources (if necessary); 6) to notify all the session
users of the user’s leaving; and 7) to update the user interface of all session users. In
the latter, the adaptation process carried out consists on: a) Event Detection. The
detection mechanism detects the change_policy() event, which is triggered when the
group decides to change the groupwork organization style. Since this event is stored
in the Adaptation Event repository, this phase determines (by consulting the
Adaptation Component repository) that the Session Management module have to be
adapted. b) Agreement. In this case, users determine whether the session management
policy must be changed using a voting tool or by decision of the user with the highest
status. In order to carry out this change, the users must momentarily stop their
collaborative tasks so that they liberate the resources they are using. c) Action. If the
corresponding conditions are fulfilled, the following operations are carried out: 1) to
change the session management policy, 2) to assign a role to each user with its status
and access rights; 3) to assign tasks to each user (and this depend on the role he/she is
playing); and 4) to notify all session users of their role change.

3 Conclusions

In this paper, we have presented a SOA-based architectural proposal to build
collaborative applications that are adaptive and adaptable. The adaptation process is
focused on supporting different organization styles and covering the possible new
needs of the group. In order to do that, we have modelled the session management
policy, which defines and manages the necessary dynamic changes to carry out the
groupwork adequately, and we have proposed an adaptation process, which is carried
out in three phases.

References

1. Anzures-García, M., Hornos, M.J., Paderewski, P.: Development of extensible and flexible
collaborative applications using a web service-based architecture. LNCS, vol. 4401, pp. 66–
80. Springer, Heidelberg (2007)

2. Anzures-García, M., Sánchez-Gálvez, L.A., Hornos, M.J., Paderewski, P.: Ontology-Based
Modelling of Session Management Policies for Groupware Applications. LNCS. Springer,
Heidelberg (in press, 2007)

3. Hiltunen, M.A., Schlichting, R.D.: Adaptive Distributed and Fault-Tolerant Systems. Int.
Journal of Computer Systems and Engineering 11(5), 125–133 (1995)

4. Medina, N., García, L., Torres, J.J., Parets, J.: Evolution in Adaptive Hypermedia Systems.
In: Proc. of Conference on Principles of Software Evolution, pp. 34–38 (2002)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 275 – 278, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Analyzing Styles of the Modular Software Architecture
View

Rogelio Limon Cordero and Isidro Ramos Salavert

 Department of Information Systems and Computation, Technical University of Valencia,
Camino de Vera s/n E-46022 Valencia
{rlimon,iramos}@dsic.upv.es

Abstract. Software architecture views represent the basic structures of a com-
plex software system. By means of these views, it is possible to shape the dif-
ferent concerns that appear in the requirements and design phases. A modular
view specifies the elements that must be built in the detailed design, and the re-
lationships that must be established among them. This paper makes an analysis
of the styles present in the modular view. This work establishes how these
styles can be shaped and analyzed by means of their relations.

1 Introduction

Software architecture is a key element in software development because it is the
bridge between the requirements and design phases. The design of this architecture
allows the user to determine the structures that will shape the software system and the
way in which its elements communicate before proceeding with the detailed design.
Each structure is really an architectural view, which contains architectural element
relationships with each other.

The aim of this paper is to study this area by considering the architectural style as a
relationship instead of a type of view. In addition, a proposal is presented to model the
relationships in order to make the styles operative in the analysis phase of the modular
architectural view.

2 The Modular Architectural View and Its Styles

From the definition presented in [1], the architectural view is considered as a specific
perspective of each structure of the architecture.

There are several approaches about what the architectural view should be; among
the more relevant, we can enumerate the following: SEI[1], Kruchten [2], and
SIEMS[3]. Even though there are some differences among them about how they in-
terpret a view, there are coincidences in the type of elements and relations that are
considered in each one. The modular view is included in these approaches. The focus
of this work is to analyze and deal with the relationships of elements of the modular
view-type[1].

276 R. Limon Cordero and I. Ramos Salavert

The relationships among the elements of a view-type adopt either some of the pre-
established shapes known as architectural styles (or simply styles) or similar shapes.
Styles define a set of features and constraints that typify the relationship among the
architectural elements.

The basic styles in a modular view type are: decomposition, uses, generalization
and layered. The links established among the architectural elements are relationships
of dependence.

3 Establishing the Architectural Relationships

Considering that an architectural style is a specific type of a relationship that is estab-
lished between at least two architectural elements, a mechanism must be established
to identify, represent, and analyze such relationships in order to improve the architec-
tural design process and to achieve a quantitative analysis.

Our approach is based on the design rules of [4], where a dependency matrix for
analyzing relations among elements is proposed. In this paper, a basic binary relation-
ship is used to represent the relationships in each one of the styles of the modular
view-type.

Let’s consider that a relationship between two elements (modules) named A and B
can be represented by a relationship matrix as shown in Figure 1(a).

In the relationship matrix, Vx, and Vy (in a cell) represent values that indicate the
relation between their corresponding row and column elements. Each value has a
different interpretation to indicate the type of relationship. Using a representation of
binary relational algebra, A Vx B means that A and B have a type of relationship that
is represented by the value of Vx, where Vx and Vy are associated with a type of rela-
tionship (A_Relationship and B_Relationship) by means of a correspondence, i.e.,
types of relationships = {(0, null), (Vx, A_Relationship), (Vy, B_Relationship)}.

The range of values for Vx and Vy varies from 0 to R-1, where R is the number as-
sociated to the relationship types, and the ´-1` is due to the fact that the null relation-
ship (0) must be excluded.

In this case, the dependence and decomposition relationships are used because the
modular view only represents a static relationship; therefore, the value of R for the
matrix is 2.

The decomposition and uses architectural styles are represented by means of matri-
ces and their corresponding UML 2.0 representation, as shown in Figure 1(b).

0
A

B C

A
B 0 1

C 0 0
(a) (b)

<<ContainerModule>>
A

<<Module>>
B

+ Services

<<Module>>
C

+ Services

<<uses>>

↓→ A B

A 0 Vx
B Vy 0

Fig. 1. (a) Relationship matrix between two elements, (b) Matrix for basic architectural styles
of a modular view, and its corresponding representation in UML 2.0

 Analyzing Styles of the Modular Software Architecture View 277

4 Analysis of Architectural Styles

There are several methods for analyzing software architectures. The main goal of
these methods is assess the quality attributes of the system. In a survey that was done
on eight methods [5], it was shown how most of these techniques use qualitative crite-
ria to assess the quality attributes of the system; for example ATAM [1][5], which is
currently widely used.

The goal in this work is improve the current methods through the inclusion of indi-
cators that evaluate the relationship types used in the software architecture views.
These indicators use the relationship matrices as objects of analysis.

The indicators quantify the architectural styles used in each architectural view,
taking into account the relationship types that their styles have.

In a modular view type, the styles link the modules through the <<uses>>, <<lay-
ered >>, and <<decomposition>> relationships. The interest in these relationships is
focused on how the modules are distributed, i.e., if a module is overused by others, or
if a Container-Module includes too many elements. The following indicators are
identified to assess this: UMi,m means that the module m is used by the module i; LDm

indicates the level of dependence in a module m, i.e., LD is the number of modules
that uses to the module m; DX indicates the maximum level of dependence in the
view, i.e., MAX(LDm); IMm indicates the number of modules included in the module
m; TM indicates the total of container modules in the view; AM is the average num-
ber of modules included in the modular view; MDm is the modular density of module
m, where m is a module of the <<container>> class.

The valuations in some indicators are:

LDm = Σi=1 UMi,m where i ≠ m
MDm = NMm / AM ; where AM = Σi=1 NMi / TM

These can be evaluated using the relationship matrix of the view to be analyzed.
For example, UMi,m is obtained in a straightforward way accessing row i and column
m from the matrix. LDm for the element m is calculated by summing all the values of
each row of the column where element m is located, and so on for the other indicators.

These indicators are useful for making comparisons between two or more views
generated in the design process, or for restructuring a module when its MD > 1 or
when it has a high value of LD.

5 Applying the Analysis

An analysis is applied to the software architecture for a purchase and reservation
ticket system for any kind of passenger transport (bus, air plane, train, etc). This ex-
ample was presented in [6].

In order to focus on the use of the architecture styles proposed here, let’s suppose
that the architectural modules derived from the requirements are: Query formation
(QuerForm); Generating itinerary alternatives and routes (GeneItin); Making the res-
ervation(Reservation), and Purchasing a ticket(Purchase). This architecture is shown
in matrix and UML 2.0 notation in Figure 2.

278 R. Limon Cordero and I. Ramos Salavert

For the modules shown in Figure 2(a), the dependence level (DL) for Reservation,
Make-Itin and Purchase is: 1, 2 and 0, respectively. The average of modules (AM)
included in this modular view is 2. The modular density (MD) for Make-Itin (the only
container modular) is 1. This example case only indicates how to evaluate some indi-
cators through the relationship matrices. However, an exhaustive quantitative analysis
of a software architecture can be carried out with these matrices in order to evaluate
its complexity.

(a)
0 Reservation

Make-Itin
Purchase

QuerForm GeneItin

Reservation 0 1 1 0

Make-
Itin

QuerForm 0 0 1 0

GeneItin 0 0 0 0

Purchase 1 1 1 0

<<ContainerModule>>
Make-Itin

<<Module>>
QuerForm

+ Services

<<Module>>
 GeneItin

+ Services

<<uses>>

<<Module>>
Purchase

+ Services

<<Module>>
 Reservation

+ Services
<<uses>>

Fig. 2. The architectural modular view for a ticket purchase-reservation system, in relationship
matrix and UML 2.0 representations

6 Conclusions

By modeling the architectural style as a type of relationship, we have proposed a
novel way to analyze an architectural view. The identification and analysis of the
basic relationships proposed here can be used in other view types.

The use of the relationship matrices allows us to: a) adapt some view types where
there is dynamism among the element relationships; b) represent structural relation-
ships as a composition of architectural views; c) make a quantitative analysis using
relationship matrices.

Finally, it is shown that the application of the architectural styles improves the
method of design of the software architectural views by making the analysis of rela-
tions in the architectural design process operational.

References

1. Bass, L., Clements, P., Kazman, R.: Software architecture in practice, 2a edn. Addison-
Wesley, Reading (2003)

2. Philippe, K.: The 4+1 View Model of Architecture. Paper published in IEEE Soft-
ware 12(6), 42–50 (1995)

3. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison Wesley, Bos-
ton, MA (2000)

4. Baldwin, C., Clark, K.: Design Rules: The Power of Modularity, vol. 1. The MIT Press,
Cambridge, MA (2000)

5. Dobrica, L., Niemelä, E.: A survey on software architecture analysis methods. IEEE Trans-
actions On Software Engineering 28(7), 638–653 (2002)

6. Limon, C.R., Ramos, S.I., Torres, J.J.: Designing Aspectual Architecture Views in Aspect-
Oriented Software Development. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K.,
Taniar, D., Laganà, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3983, pp. 726–
735. Springer, Heidelberg (2006)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 279 – 283, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Reconfiguration of
Software Architectures Through Aspects

Cristóbal Costa1, Nour Ali1, Jennifer Pérez2, José Ángel Carsí1 , and Isidro Ramos1

1 Department of Information Systems and Computation,
Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain

ccosta@dsic.upv.es, nourali@dsic.upv.es,
pcarsi@dsic.upv.es, iramos@dsic.upv.es

2Technical University of Madrid (UPM)
E.U. Informática, Ctra. Valencia km 7, 28051 Madrid, Spain

jeperez@eui.upm.es

Abstract. Currently, most software systems have a dynamic nature and evolve
at run-time. The dynamic reconfiguration of software architectures has to be
supported in order to enable their architectural element instances and their links
to be created and destroyed at run-time. Complex components also need
reconfiguration capabilities to evolve their internal compositions. This paper
introduces an approach to support the dynamic reconfiguration of software
architectures taking advantage of aspect-oriented techniques. It enables complex
components to autonomously reconfigure themselves: they are capable of both
having knowledge of their current configuration and reconfiguring themselves
at run-time. This approach has been developed for the PRISMA aspect-oriented
architectural model. A new kind of aspect has been created in PRISMA in order
to provide dynamic reconfiguration services to each complex component; it is
called the Configuration Aspect.

Keywords: Dynamic reconfiguration, software architectures, AOSD.

1 Introduction

Currently, most software systems have a dynamic nature that requires them to evolve
and adapt to changes at runtime. The development of this kind of systems is a
complex task since they are large and may consist of heterogeneous entities. As a
result, a great effort has to be done in order to provide system reconfiguration at
runtime. Software architectures [8] provide techniques for describing the structure of
complex software systems in terms of architectural elements (components and
connectors) and interactions among them. Software architectures have a hierarchical
structure where components can be composed into complex components and these, in
turn, can be composed into more complex components.

Dynamic reconfiguration [3] has to be supported in order to enable architectural
element instances and links to be created and/or destroyed at run-time. In the last
years, a lot of research efforts have been done to address dynamic reconfiguration of
software architectures [1,2]. However, most of these approaches address dynamic

280 C. Costa et al.

reconfiguration from a centralized point of view: a global entity is responsible of
providing dynamic reconfiguration capabilities to all the architecture. However,
architectures are often made up of heterogeneous components and each one has
different reconfiguration needs. For this reason, complex components usually need to
reconfigure their internal composition by themselves in an autonomous way.

Aspect-Oriented Software Development (AOSD) [4] proposes the separation of the
crosscutting concerns of software systems into separate entities called aspects,
avoiding the tangled concerns of software and allowing the reuse of the same aspect
in different entities of the software system as well as its maintenance. Dynamic
reconfiguration is a concern that crosscuts the architecture of those software systems
that have a dynamic nature. In order to prevent the dynamic reconfiguration concern
from being tangled with the rest of the architecture, a new kind of aspect called
Configuration has been defined. Thereby, a Configuration aspect encapsulates the
properties and the behaviour of this concern. Only few proposals have addressed
dynamic reconfiguration through aspects [9], and their work is focused at the
implementation level instead of dealing reconfiguration at the architectural level.

This paper presents an approach for supporting dynamic reconfiguration in
software architectures by means of aspects. The approach enables PRISMA complex
components to autonomously reconfigure themselves at runtime, through a
Configuration aspect, whereas other systems or components of the software
architecture are unaware of these dynamic changes.

2 PRISMA

PRISMA [5] is a model that integrates AOSD and software architectures in order to
describe the architectural models of complex software systems. In PRISMA,
architectural elements are specified by importing a set of aspects. Aspects are first-
order citizens of software architectures and encapsulate the properties and the
behaviour of concerns (safety, coordination, etc) that crosscut the software
architecture. A PRISMA architectural element can be seen from two different views:
the internal and the external. In the external view, architectural elements encapsulate
their functionality as black boxes and publish a set of services through their ports. The
internal view shows an architectural element as a prism (white box view). Each side
of the prism is an aspect that the architectural element imports. The aspects of
architectural elements are synchronized among them through weavings relationships.

Fig. 1. PRISMA Systems

 Dynamic Reconfiguration of Software Architectures Through Aspects 281

«aspect»
Configuration

- ArchElements: string list[1..*]
- Attachments: string list[1..*]
- Bindings: string l ist[1..*]

+ newInstance(ae) : string
+ destroyInstance(archID) : void
+ getArchElements() : string list[1..*]
+ getArchElement(aeID) : ArchitecturalElement
+ addAttachment(att) : string
+ removeAttachment(attID) : void
+ getAttachments() : string list[1..*]
+ getAttachment(attID) : Attachment
+ addBinding(bind) : string
+ removeBinding(bindID) : void
+ getBindings() : string l ist[1..*]
+ getBinding(bindID) : Binding

Fig. 2. Configuration Aspect

PRISMA has three kinds of architectural elements: components, connectors, and
systems. Components and connectors are simple; systems are complex components. A
component captures the functionality of software systems whereas a connector acts as
a coordinator among other architectural elements. A PRISMA system is a complex
component that includes a set of architectural elements (connectors, components and
other systems), the connections among them, and its own aspects and weavings (see
Figure1).

3 Dynamic Reconfiguration Through an Aspect

A PRISMA system is an
architectural pattern that defines
the type of architectural elements a
system is composed of and the
kind of valid connections among
them. This architectural pattern is
instantiated to a specific
configuration in order to start the
architecture execution. However,
dynamic systems need to change
their initial configuration several
times as a result of its normal
behaviour (always satisfying their
architectural patterns). For this
reason, the system configuration at
run-time must be considered as a
part of the system state. Thus, a
system must have services to query
its current configuration, and to
change it at run-time. In this way,
a system is aware of its current configuration and can decide whether to change it or
not. A new concern has been created using the PRISMA Aspect-Oriented
Architecture Description Language (AOADL) [6] to encapsulate these services into
aspects. This is the Configuration concern. A Configuration aspect encapsulates every
property and behaviour related to dynamic reconfiguration. Any system that needs
reconfiguration capabilities to evolve its internal composition imports the
Configuration aspect.

This aspect has a set of attributes that contain the current configuration of the
system and a set of services that maintain and evolve this configuration. The attributes
the Configuration aspect provides are dynamic lists which store references to: (i) the
architectural element instances of the system at run-time (component, connector, and
system instances), and (ii) connection instances of the system at run-time. The
services that the Configuration aspect provides (see Figure 2) allow systems to know
and modify the data that these attributes store (the system configuration): (i) create or
destroy instances of system architectural elements, (ii) establish connections between
system architectural elements, and (iii) provide query services in order to make the

282 C. Costa et al.

system aware of its current configuration. In this way, reconfiguration characteristics
are specified without extending the PRISMA AOADL with new primitives, and the
reconfiguration concern is not tangled with other concerns.

The infrastructure where the software architecture is running is responsible for
providing to each system instance the mechanisms of dynamic reconfiguration.
PRISMA software architectures are executed by the PRISMANET middleware [7],
which provides the mechanisms required for knowing and modifying the running
configuration of each system instance at run-time. PRISMANET guarantees that the
configuration dependencies among the different elements are preserved.

4 Conclusions and Further Work

This paper has presented an approach to dynamically reconfigure software
architectures taking advantage of aspect-oriented techniques. This approach consists
of providing each complex component with an aspect called Configuration, that
provides dynamic reconfiguration services at run-time. As a result, this approach has
the advantage of keeping dynamic reconfiguration properties and behaviour from
being tangled with the rest of the architecture. This has been done without increasing
the complexity of the PRISMA AOADL, only by using its original primitives.

Autonomous system instance reconfigurations must satisfy the constraints of the
system architectural pattern. We are currently working on specifying how the
reflection mechanisms ensure that the requested changes do not violate the restrictions
described in the architectural pattern of the system.

Acknowledgements. This work is funded by the Dept. of Science and Technology
(Spain) under the National Program I+D+I, META project TIN2006-15175-C05-01.
This work is also supported by a fellowship from Conselleria d'Educació i Ciència (G.
Valenciana) to C. Costa.

References

1. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self-Management in
Dynamic Software Architecture Specifications. In: WOSS’04. Proc. of 1st ACM SIGSOFT
Workshop on Self-Managed Systems, Newport Beach, California, pp. 28–33. ACM Press,
New York (2004)

2. Cuesta, C.E.: Dynamic Software Architecture Based on Reflection (in Spanish). PhD
Thesis, Department of Computer Science, University of Valladolid, Spain (2002)

3. Cuesta, C.E., Fuente, P.d.l., Barrio-Solárzano, M.: Dynamic Coordination Architecture
through the use of Reflection. In: SAC 2001. Proc. of 2001 ACM Symposium on Applied
Computing, pp. 134–140 (2001)

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

5. Pérez, J.: PRISMA: Aspect-Oriented Software Architectures. PhD Thesis, Department of
Information Systems and Computation, Polytechnic University of Valencia, Spain (2006)

 Dynamic Reconfiguration of Software Architectures Through Aspects 283

6. Pérez, J., Ali, N., Carsí, J.Á., Ramos, I.: Designing Software Architectures with an Aspect-
Oriented Architecture Description Language. In: Gorton, I., Heineman, G.T., Crnkovic, I.,
Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS,
vol. 4063, pp. 123–138. Springer, Heidelberg (2006)

7. Pérez, J., Ali, N., Costa, C., Carsí, J.Á., Ramos, I.: Executing Aspect-Oriented Component-
Based Software Architectures on .NET Technology. In: Proc. of 3rd International
Conference on .NET Technologies, Pilsen, Czech Republic, pp. 97–108 (June 2005)

8. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

9. Rasche, A., Polze, A.: Configuration and Dynamic Reconfiguration of Component-Based
Applications with Microsoft.NET. In: ISORC’03. Proc. 6th IEEE Int. Symposium on
Object-Oriented Real-Time Distributed Computing, Hakodate, Japan, pp. 164–171 (2003)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 284 – 287, 2007.
© Springer-Verlag Berlin Heidelberg 2007

 Model-Driven Approach for Designing Industrial
Control Systems

Elisabet Estevez and Marga Marcos

Automatic Control and Systems Engineering Department, University of the Basque Country,
Alda Urquijo S/N, 48013, Bilbao, Spain

{elisabet.estevez,marga.marcos}@ehu.es

Abstract. Industrial Control Systems are used in most of the industrial sectors
to achieve production improvement, process optimization and time and cost
reduction. Integration, reuse, flexibility and optimization are demanded to adapt
to a rapidly changing and competitive market. There is also a growing
requirement that all software tools that support the different phases of the
development process (design, configuration, management) can be integrated as
well. Thus, a consolidation of modeling methodologies for achieving this goal is
needed. This paper proposes a Model-driven approach based on different views
of the application for designing industrial control systems. XML schema and
schematron technologies are selected for defining the domain languages and for
checking their coherency and consistency.

Keywords: Industrial Control Systems, component – based modeling, XML
schema, XPath, consistency analysis.

1 Introduction

Industrial control systems are specific computer systems not only because of the
special characteristics of the environment they control (industrial processes) but also
because they use specific equipment, such as Programmable Logic Controllers
(PLCs), industrial communication systems (fieldbus), and dedicated I/O devices. On
the other hand, as a computer system, its design deals with the definition of the
software architecture. Traditionally, each control equipment vendor offered a
development system based on proprietary software architectures and programming
languages. In the last years, a great effort is being done by international organisations
that have led to the definition of standards for this application field. PLCOpen [1] was
founded in 1992 and it is a vendor- and product-independent worldwide association
whose mission is to be the leading association resolving topics related to control
programming to support the use of international standards in this field. The
International Electrotechnical Commission (IEC) promotes open systems to be used
in the industrial control field. To achieve that, the IEC 61131-3 standard [2], [3]
proposes a software model and programming languages for Industrial Process
Measurement and Control Systems (IPMCS). Most of the PLC manufacturers are
doing a great effort in order to become IEC 61131-3 standard compliant.

 Model-Driven Approach for Designing Industrial Control Systems 285

Furthermore, as fast as industry reaches a greater maturity level and applications
become more and more complex, a consolidation of methodologies, which allow
system description and definition before its construction, becomes more and more
necessary.

This paper presents XML based Model Driven Approach for defining an industrial
control system.

2 Industrial Control System Description Languages

The design of distributed industrial control applications involves different domain
fields. The Control engineering domain defines the functional design that contains the
control strategies. The Electronic- electrical engineering domain deals with the
selection of the equipment needed to start-up the control system. The Software
engineering domain deals with the software architecture which implements the
functional design. Furthermore, as the three 3 views represent the same application,
they are not independent and they are related to each others. In [4] the main elements
involved for describing these views are identified. The work defines them in terms of
domain specific components and connectors.

The definition of a language for each domain view is necessary in order to express
application models based in these three views. The selected technology for describing
each view characteristics is XML. There are different XML standards that can be used
not only for describing Industrial Control Systems, but also for performing model
coherency and consistency checks e.g. XML schema [5] and schematron rules [6].

2.1 ctrlEng-ML: Control Engineering Markup Language

A general overview of the Control Engineering Markup Language is illustrated in
Fig. 1. The ctrlEng-ML XML schema represents the architectural style of the control
engineering view, defining the relationships among the elements that constitute the
language.

Fig. 1. General view of ctrlEng-ML.xsd

This schema is defined by as many XML schema elements as elements for
describing the functionality of industrial control applications. A functional component
is characterized by its name, level at the hierarchy, optionally by a set of functional
requirements and at least by two Ports. Besides, it could contain a set of lower level
components. 13 composition rules have been developed as schematron rules.

286 E. Estevez and M. Marcos

For instance, in order to characterize a component with the hierarchical level it
belongs to, a new XML data type (level) is defined. But this new data type does not
assure that the levels within the hierarchy are sequential. To check this, the following
schematron rule has been developed.

<rule context="ctrl:ctrlEng/ctrl:Component">
<assert test="current()/@level=0" priority="high">
application functionality must start by a component with 0 level in the hierarchy
</assert>

<rule context="ctrl:Component[@level>0]">
<assert test="current()/@level=parent::*[name()='ctrl:Component']/@level+1" priority="high">
value of level in the Component is not correct
</assert>

</rule>

Fig. 2. Checking rule for assuring sequential levels within the hierarchy

2.2 swEng-ML: Software Engineering Markup Language

A general overview of the Software Engineering Markup Language (swEng-ML XML
schema) is illustrated in Fig. 3.

) g

Fig. 3. General overview of swEng.xsd

The description of the software architecture has two main parts [7]: one contains
the data types and the POUs defined by the programmer (sw:Types), and the other
contains the automation project itself (sw:Instances). Each type of component
identified for describing the software architecture is defined as a XML schema
element. Additionally, a set of composition rules implemented as schematron rules
have been developed. The software architecture connectors, the variables, are
characterized by their visibility (as illustrated in Fig. 3), type and initial value. In this
sense, and in order to check the correctness of initial values, the data types that the
standard considers elementary have been defined in XML. They are characterized by
their range of values as well as by their representation patterns.

 Model-Driven Approach for Designing Industrial Control Systems 287

2.3 eeEng-ML: Electronic – Electric Engineering Markup Language

A general overview of the Electronic-Electric Engineering Markup Language (eeEng-
ML XML schema) is illustrated in Fig. 4.

Fig. 4. General view of eeEng-ML.xsd

3 Conclusions

Three different views have been identified as the domains involved in the design of
such type of systems. An implementation using XML technologies for the three
description languages have been proposed. These XML-based descriptions are going
to be used for supporting the development cycle of the application. More detail about
the description markup languages can be found in http:// www.disa.bi.ehu.es/gcis/
projects/merconidi/icsML.

The XML stylesheet technology jointly with DOM can be used to integrate the set
of COTS tools involved in the application design. In fact, these tools will
generate/consume the different domain models. In summary, the use of open software
technologies has been proven to be directly applicable in other application fields.

Acknowledgements. This work has been supported by MCYT&FEDER under pro-
ject DPI 2006-4003.

References

1. PLCopen. Available at: http://plcopen.org/
2. Lewis, R.W.: Programming Industrial Control Systems using IEC 1131-3. IEE Control

Engineering Series (1998)
3. John, K.-H., Tiegelkamp, M.: IEC1131-3: Programming Industrial Automation Systems.

Springer, Heidelberg (2001)
4. Estévez, E., Marcos, M., Sarachaga, I., Orive, D.: A Methodology for Multidisciplinary

Modeling of Industrial Control Systems using UML. In: Proc of the 5th International
Conference on Industrial Informatics, Austria, Viena (July 2007)

5. Van der Vlist, E.: XML schema, ed. O’REILLY (2002)
6. Rick Jelliffe schematron rules. Available at http://www.ascc.net/xml/schematron/
7. PLCopen TC6. Available at: http://plcopen.org/TC6/XML_Intro.htm

Informed Evolution

Katrina Falkner1, Dharini Balasubramaniam2, Henry Detmold1,
and David S. Munro1

1 School of Computer Science, University of Adelaide, Adelaide, S.A. 5005, Australia
{katrina,henry,dave}@cs.adelaide.edu.au

2 Department of Computer Science, University of St Andrews, St Andrews, Fife
KY16 9SX, UK

dharini@dcs.st-and.ac.uk

Abstract. Ageless Software evolves, to meet new requirements, without
reducing its efficiency or understandability. Here we introduce a method-
ology called Informed Evolution for supporting the construction and
evolution of ageless software. This methodology integrates the software
architecture (structure and constraints) and the system implementation
(behaviour) within system execution. Evolution is effected by evolution
patterns which are in turn guided by constraints specified in the soft-
ware architecture. The availability of the software architecture and im-
plementation at run-time ensures that changes are informed by design
and implementation decisions, thus preserving efficiency and understand-
ability. In this paper, we outline Informed Evolution, and describe how
evolution patterns may be expressed for systems developed using this
methodology.

1 Introduction

When software evolves, the set of design considerations of the original system is
generally unknown to the software team performing the required modifications.
These design considerations include not only the current state of the system but,
also, how it should be evolved. Changes that are made without this knowledge
can age the software system and introduce complexity in future understand-
ing and modification [1]. Ageless Software is inherently designed to evolve to
new requirements or environmental changes. An ideal in software development,
ageless software requires that changes are made to a software system without
reducing its efficiency or understandability. For efficiency, evolution should not
produce performance degradation due to unidentified interactions and dependen-
cies within the software system. For understandability, the design of the software
system must be at least as clear as when it was first produced.

Our approach is based on integrating the software architecture (for structure
and constraints) and the software implementation (for behaviour) within the
system execution. The advantages of such integration are that design and im-
plementation decisions are available at run-time to guide the software evolution
process, and that the architecture can evolve in step with the system.

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 288–291, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Informed Evolution 289

In this paper, we introduce a methodology called Informed Evolution for
constructing and evolving ageless software systems. It makes use of evolution
patterns to effect coordinated changes to the system. Evolution patterns define
a sequence of software changes that can be applied (and reapplied) to adapt
the software system in a fashion that preserves evolvability, and are guided by
the constraints in the software architecture. Informed Evolution provides a sys-
tematic means for describing changes to be made to a software system, and a
systematic means for linking these changes to the software architecture.

2 Informed Evolution: A Methodology

Informed Evolution supports the integrated specification of software architecture
and software implementation. Evolution patterns, defined as part of the software
architecture, can access both at run-time in order to co-ordinate changes to both
behaviour and structure of a software system.

Structural and behavioural constraints specified in the software architecture
are employed by evolution patterns in understanding the executable software
system. Specification of software architecture and software implementation is an
iterative process, operating over an integrated representation. When this repre-
sentation is compiled into an executable form, behavioural constraints are com-
piled into the running program. Structural constraints form annotations made
to the executable system.

Violation of a constraint identifies the need for change, resulting in the in-
vocation of an evolution pattern to coordinate the required change. Prior to
evolution, the component to be changed must be decomposed, in order to sus-
pend its execution and provide access to internal components, and connections
between those components [2]. In its decomposed form, reified representations of
the software architecture and software implementation are accessible to evolu-
tion patterns. Evolution patterns reflectively alter the structure and behaviour
of the component, evolving both software architecture and behaviour at run-
time. Subsequent to evolution, the system is recomposed to form an executable
system. During evolution, constraints are used to validate any changes made by
the evolution pattern. If violated, these constraints may also invoke further evo-
lution patterns to coordinate any required change either in the implementation,
or in the software architecture itself.

For example, the specification of a condition setting a bound upon hardware
resource utilisation (a behavioural constraint) may be associated with an evolu-
tion pattern to redistribute the component system so as to enable access to an
increased number of resources. In this example, a condition specifies co-location
constraints upon some of the components (a structural constraint). Both con-
straints and an evolution pattern associated with the behavioural constraint are
defined as part of the software architecture of the component system. The be-
havioural constraint is compiled into the behaviour of the component system so
that, when breached, an evolution pattern to rebalance the allocation of compo-
nents across the system is invoked. Software architecture constraints also evolve

290 K. Falkner et al.

upon the application of the evolution pattern, in that the constraint bounding
resource utilisation is changed to reflect the change in available resources.

The overall system model is similar to that expressed in ArchWARE [2]. Soft-
ware systems are modeled as multiple interacting software components, where
each component has a controller that effects change, via evolution patterns.

3 Describing Evolution Patterns

The Informed Evolution methodology is based on defining appropriate support
for the specification of evolution patterns, using an evolution control API. The
API defines operations to traverse a reified representation of the software system
(both software architecture and implementation), apply changes to this repre-
sentation, and compose operations to create evolution patterns. The process of
applying an evolution pattern consists of four phases: identification, decompo-
sition, evolution and composition. Each of the four phases models its activity
in terms of operation over a component graph model of the software system.
The evolution control API provides operations to extract this component graph,
obtaining a reified representation of the software system, and to traverse the
component graph, inspecting the representation (see Table 1). These operations
are invoked by the component coordinating the application of the pattern.

Table 1. Operations provided by the Evolution Control API

locate locates a component(s) that matches the provided component graph.
decompose suspend component execution, and make internals accessible.
extract extract the reified software architecture as a component graph.
evolve apply evolution pattern if possible.
compose composes provided components, applying structural constraints.

The evolve operation applies an evolution pattern to a component graph
model; it is parameterised by an evolution pattern that defines a sequence of
changes to be made to the component graph. Change is applied at the granu-
larity of components, their interactions (connections) and properties associated
with each. Evolution patterns apply changes to a component graph model, based
on matching properties of components (or connections), or expressions that in-
dicate paths through the component graph. Accordingly, evolution patterns are
parameterised by a component graph, a set of properties, and a path specifica-
tion. The evolution operation is also parameterised by the information needed
by the evolution pattern.

The requirements for supporting our methodology in a target language are:

– Representation of the software system as a component graph
– Integration of a reified representation of the software architecture and system

source as part of the component graph.
– Implementation of the given API for traversing, modifying and defining evo-

lution patterns over this representation.

Informed Evolution 291

We have developed a prototype of this work using the ACME ADL [3] to
specify software architecture. At this stage, we are defining the reflective and
generative programming rules required to support evolution using our API.

4 Related Work

Software architecture is typically represented as a set of software artifacts which
are separate from the software implementation, meaning that constraints upon
composition or execution of the software system have no direct affect upon exe-
cution of the software system. Integrated environments, such as Plastik [4] and
ArchWARE [2], support coordinated evolution of the software architecture with
the software implementation. Limited work has been done within ArchWare in
defining a proof of concept evolution pattern [5]. Building upon this work, In-
formed Evolution provides a framework for the systematic description of change.

5 Conclusions

Informed Evolution supports the integrated specification of software architec-
ture and software implementation to address the challenge of constructing age-
less software. We define evolution patterns as systematic descriptions of change,
specifying how to change a software system with access to both the software
architecture and software implementation at run-time. In this paper, we have
described our approach to defining evolution patterns, and the general system
requirements our approach places upon the executing software system.

Acknowledgements

This work was partially supported by an EPSRC Visiting Research Fellowship
EP/E009212/1 for Drs. Falkner and Munro whilst at St Andrews. We would like
to thank Ron Morrison for his comments and assistance with this project.

References

1. Parnas, D.L.: Software aging. In: Proceedings of the 16th International Conference
on Software Engineering, pp. 279–287 (1994)

2. Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R., Gallo, F., Garavel, H.,
Occhipinti, C.: ARCHWARE: architecting evolvable software. In: Proceedings of
the First European Workshop on Software Architecture, pp. 257–271 (2004)

3. Garlan,D.,Monroe,R.T.,Wile,D.:ACME:ArchitecturalDescriptionofComponent-Based
Systems, pp. 47–68. Cambridge University Press, Cambridge (2000)

4. Joolia, A., Batista, T., Coulson, G., Gomes, A.T.: Mapping adl specifications to an
efficient and reconfigurable runtime component platform. In: Working IEEE/IFIP
Conference on Software Architecture (WICSA) (2005)

5. Mickan, K., Morrison, R., Kirby, G.: Using generative programming to visualise
hypercode in complex and dynamic systems. In: Australian Computer Science Con-
ference, pp. 377–386 (2004)

Using Connectors to Model Crosscutting

Influences in Software Architectures�

Lidia Fuentes, Nadia Gámez, Mónica Pinto, and Juan A. Valenzuela

Dpto. Lenguajes y Ciencias de la Computación, University of Málaga, Spain
{lff,nadia,pinto,valenzuela}@lcc.uma.es

http://caosd.lcc.uma.es/

Abstract. AO-ADL is an aspect-oriented architecture description lan-
guage where ’crosscutting’ becomes a new kind of relationship between
components. The semantic of connectors is extended in order to repre-
sent such crosscutting relationships. In this paper we focus on an impor-
tant contribution of AO-ADL, its mechanism for defining aspect-oriented
connector templates, which capture generic and reusable crosscutting in-
fluences, providing an aspect-oriented architectural pattern.

1 Introduction

During the last years, several aspect-oriented (AO) architecture description lan-
guages (ADLs) have been defined [1,2,3,4,5,6]. Two of the most relevant issues to
be considered by these ADLs are: (1) the decomposition model used to separate
and represent crosscutting and non-crosscutting concerns, and (2) the composi-
tion model used to specify the composition between them.

Our approach, the AO-ADL language [6], considers a symmetric decomposition
model in which both non-crosscutting and crosscutting concerns are modeled
by components. This symmetry clearly affects how the composition model is
defined, since apart from composing base components, AO-ADL must define a
new relationship for weaving aspectual components. Likewise coordination and
communication are usually modeled by connectors in ADLs [7], connectors seems
to be the natural place to specify such crosscutting relationships [6].

In this paper we focus on that the relationships between crosscutting concerns
and the rest of architectural components are sometimes recurrent in different ap-
plications. Thus, it may be useful to have an ADL that provides mechanisms to
capture generic and reusable crosscutting influences. AO-ADL allows the speci-
fication of recurrent crosscutting relationship by means of connector templates.
These connector templates are then instantiated in particular software architec-
tures. After this introduction, section 2 describes the main features of AO-ADL,
of the connector templates and of their development using Eclipse and JET. Our
conclusions and future work are presented in section 3.

� Work supported by European Projects IST-2-004349 (AOSD-Europe) and IST-
033710 (AMPLE), and Spanish Project TIN2005-09405-C02-01.

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 292–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Connectors to Model Crosscutting Influences 293

2 AO-ADL Connector Templates

For certain concerns, the same pattern of interaction is recurrent independently
of the domain application (this may occur for either crosscutting or non-cross-
cutting concerns, though in this paper we focus on crosscutting concerns).

Thus, connector templates have to be seen as AO architectural patterns that
allow modeling generic and reusable crosscutting influences. In their definition
we combine the vision in [7], of defining certain concerns within the specifica-
tion of connectors, with the special mechanisms offered by AOSD to represent
and compose crosscutting and non-crosscutting concerns. Concretely, we define
connector templates as a contribution of the AO-ADL language [6].

In the rest of this section, we begin briefly describing the main features of
AO-ADL. Then, we illustrate our approach by defining a connector template for
modeling concurrency. Finally, we describe how to automate the definition and
instantiation of connector templates.

2.1 The AO-ADL Language

The main elements of AO-ADL are components and connectors. The specifica-
tion of AO-ADL components is similar to other ADLs [8]. Connectors, in com-
parison with other ADLs, have been extended with: (1) a new kind of role named
aspectual role – components attached to this kind of role behave as ’aspectual’
components, and (2) a new kind of bindings specification named aspectual bindings
– specification of the connections between ’aspectual’ and ’base’ components. A
detailed specification of AO-ADL can be found in [6].

2.2 The Concurrency Concern

A recurrent crosscutting concern identified in many different case studies is con-
currency. Concretely, by analyzing the requirements specifications of these case
studies, we would obtain the following information: (1) in an auction system,
concurrency influences ’users’, ’auctions’ and ’credits’; in an ATM case study,
concurrency influences ’users’, ’banks’ and ’accounts’; (2) the critical resources
being accessed concurrently are the ’credits’ and the ’accounts’, respectively, and
(3) in all the case studies there is going to be several components reading in-
formation associated to the critical resource, and several components updating
that information. This can clearly be identified as a reader/writer synchroniza-
tion problem, since in spite of the different vocabulary used in the case studies
they all have to cope with the same problem.

In this context, the software architect can use the connector templates pro-
vided by AO-ADL to model the reader/write synchronization problem (see
fig. 1). Notice that the connector roles are parameters of the template (|reader,
|writer, |criticalResource and |RWSynchronization). Additionally, these parameterized
roles specify a list of parameterized operations that will also have to be instan-
tiated. The details of how to instantiate these parameters are provided below.
Notice that these parameters allow the specification of reusable pointcuts, which

294 L. Fuentes et al.

Reader / Writer
Connector
Template

|reader

|criticalResource

|writer
|RWsynchronization

|… read ()
|write (...)

|… read ()

|write (...)

|… beforeRead (...)
|… afterRead (…)
|… beforeWrite (...)
|… afterWrite (…)

//Combination of COOL and SR
condition active _ readers = 0, active _ writers = 0
before Read : <await (active _ writers = 0)
 - > active _ readers ++ >
after Read : < active _ readers -- >
before Write : <await (active _ readers = 0 && active _ writers = 0)
 - > active _ writers ++ >
after Write : < active _ writers -- >

Legend
| … m (...): Method with any number of
 parameter of any type that
 returns a value of any type

Fig. 1. AO-ADL Architectural Synchronization Pattern

 11 < wait >
 12 < read > afterCons ult </read >
 13 < write > afterUpdate < /write >
 14 < /wait >
 ...
 19 < /synchro - role >
 ...

 29 < /instance >

 1 <instance name =" AuctionSystemConnector ">
 2 < reader - role >
 3 < role > User - GUI </role >
 4 < role > AuctionInterface </role >
 5 < /reader - role >
 9 < buffer - role > CreditInterface < /buffer - role >
 10 < synchro - role name =" AuctionBaseSynchronization " >

Instantiation
Process

 1 <connector name =" AuctionSystemConnector ">
 2 < provided - role name =" ReaderRole " >
 3 < role - specification >
 4 / interface [@name =" User - GUI "]
 5 or
 6 / interface [@name =" AuctionInterface "]
 7 < /role - specification >
 8 < /provided - role >
 ...
 33 < aspectBindings >
 34 < aspectual - binding name =" afterReadBinding " >
 35 < pointcut - specification >

 36 / connector [@name =" AuctionSystemConnector "]/provided -
role [@name =" ReaderRole "] and
 37 / operation [@name =" consultCredit "]
 38 < /pointcut - specification >
 39 < binding operator =" after" order =" first">
 40 < aspectual - component
 41 aspectual - role - name =
 "/ connector [@ name ="AuctionSystemConnector "]
 / aspectual - role [@name =" SynchronizationRole "]"
 42 advice - label ="/ operation [@name =" afterCons ult "]"/ >
 43 < /binding >

 44 < /aspectual - binding >

 6 < connector name =" <c:get s elect =" / instance / @ name " / > ">
 7 < provided - role name =" <c:get s elect =" $ readerRole " / > ">
 8 < role - specification >
 9 <c:s etVariable s elect =" 0" var =" i" / >
 10 <c:iterate s elect =" / instance / reader - role / role "
 var =" role " >
 ...
 17 / interface [@name =" <c:get s elect =" $ role " / >"]
 18 < c :s etVariable s elect =" $ i + 1 " var =" i " / >
 19 </ c :iterate >
 20 < /role - specification >
 21 < /provided - role >
 ...
 56 < aspectBindings >
 57 < aspectual - binding name =" afterReadBinding " >

 58 < pointcut - specification >
 59 / connector [@name =" < c :get s elect =" / instance / @ name " / > "]
 / provided - role [@name =" < c :get s elect =" $ readerRole " / > "] and
 60 / operation [@name =" <c:get s elect =" / instance / buffer / interface / read "/ > "]
 61 < /pointcut - specification >
 62 < binding operator =" after " order =" first">
 63 < aspectual - component
 64 aspectual - role - name =
 "/ connector [@name =" <c:get s elect =" / instance / @ name " / > "]
 / aspectual - role [@name =" <c:get s elect =" $ synchroR ole " / > "]"
 65 advice - label = "/ operation [@name =
 "<c:get s elect =" / instance / s ynchro -role / wait / read " / > "]"/ >
 66 < /binding >

 67 < /aspectual - binding >

Input

Template

Output

Fig. 2. Readers-Writers Instantiation

determine the join points to which the Synchronization component is attached, as
well as the advices to be injected. Finally, we have specified the semantic of the
reader/writer synchronization mechanism. During the instantiation process, this
information is automatically propagated to the connector instance.

2.3 Tool Support

Among the several approaches available to implement templates, we have de-
cided to use the Java Emitter Templates (JET)1. In fig. 2 we partially show the
example of the reader/writter synchronization template developed in JET. In
the upper part of the figure, part of the template for the readers/writers syn-
chronization problem is shown. We have written in bold letters the JET code.
This code represents the data that can be modified for adapting the generic
template to our particular application domain.
1 Web Site: www.eclipse.org/emft/projects/jet/

Using Connectors to Model Crosscutting Influences 295

For showing the instantiation process we focus on an auction system. We have
identified the components that would play the role of the readers/writers, the
component that would play the role of buffer, and so on. For example, we have
identified two components playing the reader role: the User-GUI and the Auction
components. This information is provided in the input file (input, lines 3 and
4). The template iterates over all the readers (template, lines 10-19), adding the
corresponding information to the output (output, lines 4-6). Notice that the only
information provided by the software architect is the one in the grey box.

3 Conclusions and Future Work

This paper have presented the concept of connector template and its usability
in the modeling of generic and reusable crosscutting influences. We have shown
the viability of this approach by describing connector templates for the concur-
rency crosscutting concern. Additionally, we have shown how the definition and
instantiation of connector templates can be automated using Eclipse and the
JET module, available within the Eclipse Modeling Framework. As part of our
ongoing work we need to define a catalogue of templates, analyzing as much
crosscutting concerns as possible in order to verify that our approach is generic
enough to cope with different and heterogeneous representation of concerns.

References

1. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A model for developing
component-based and aspect-oriented systems. In: Löwe, W., Südholt, M. (eds.) SC
2006. LNCS, vol. 4089, pp. 259–274. Springer, Heidelberg (2006)

2. Pinto, M., Fuentes, L., Troya, J.M.: DAOP-ADL: An Architecture Description Lan-
guage for Dynamic Component and Aspect-Based Development. In: Pfenning, F.,
Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 118–137. Springer, Hei-
delberg (2003)

3. Garcia, A., et al.: On the modular representation of architectural aspects. In: Gruhn,
V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, Springer, Heidelberg (2006)

4. Pérez, J., et al.: PRISMA: towards quality, aspect-oriented and dynamic software
architectures. In: 3rd IEEE Intl Conf. on Quality Software (2003)

5. Navasa, A., Pérez, M.A., Murillo, J.: Aspect modelling at architecture design. In:
Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 41–58. Springer,
Heidelberg (2005)

6. Pinto, M., Fuentes, L.: AO-ADL: An ADL for describing aspect-oriented architec-
tures. In: Early Aspect Workshop at AOSD 2007 (2007)

7. Mehta, N., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connectors.
In: 22nd ICSE’00, Ireland, pp. 178–187. ACM Press, New York (2000)

8. Medvidovic, N., Taylor, R.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transaction on Software Engineer-
ing 26(1), 70–93 (2000)

From Mobile Business Processes to Mobile

Information Systems�

Volker Gruhn and Clemens Schäfer

Chair for Applied Telematics / e-Business��

University of Leipzig, Germany
{gruhn,schaefer}@ebus.informatik.uni-leipzig.de

Abstract. We suppose a methodology and a middleware to build infor-
mation systems that support mobile business processes. Our approach
allows applications to make use of a self-mobilizing code paradigm, i.e.
the ability of components to be distributed to devices depending on in-
ternal and external changes.

The methodology is aimed at deriving architectural decisions from the
business processes to be supported. We assess processes and their impli-
cations for mobility concerns and make use of architecture simulation to
check feasibility and quality of service of such applications at design time
and runtime.

1 Motivation

Analyst forecasts show that there is a growing market for mobile information
systems in the next years: The market for mobile applications is expected to
grow due to higher number of 3G subscribers and new pricing models. Van
Veen [5] predicts an approximately 100% growth from 2006 until 2010 for 3G
subscribers. 87% of investments in mobile applications will focus on business to
employee (B2E) systems. In Central and Eastern Europe mobile intranet and
extranet business will increase from 0 in 2006 to 10 billion Euro in 2012 according
to [1]. All these forecasts can be taken as an indicator for an increasing demand
for mobile applications in the B2E area.

In the past, business cases for mobile systems often failed due to several rea-
sons. Rapid innovation cycles for mobile devices and growing user expectations
make it necessary to use a mobile application with mobile devices which have not
been existing at design time. This requires proactive management of uncertainty
during mobile system development–and makes the development an intrinsically
complex and conflictive task.

Furthermore, mobile business processes are more likely to change over time
than non-mobile business processes. This requires flexible support by mobile
systems and the anticipation of process changes. Todays design approaches do
not sufficiently focus on such mobile business processes.
� This project is funded by Deutsche Telekom Laboratories.

�� The chair for Applied Telematics / e-Business is endowed by Deutsche Telekom AG.

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 296–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

From Mobile Business Processes to Mobile Information Systems 297

Development of mobile communication networks in future, especially area
coverage with broadband access, is uncertain, requiring adaptive solutions which
are efficient to be developed and maintained.

All these challenges can be subsumed in the demand for flexible deployment
of code and data during runtime, avoiding “wrong” distributions which nega-
tively affect a system’s usability. Consequently, the major goal of our work is to
allow dynamic re-arrangement of code and data during runtime, opposed to the
“traditional” design-time-only deployment determination approach.

2 The MobCo Approach

Our approach called MobCo (for mobile code) consists of several building blocks,
which are all subject to ongoing and further research.

2.1 Mobile Middleware

There are many middlewares for mobile code, both academic and commercial
ones. For our purpose, a middleware should be widely deployable and has to
fulfill a set of core requirements: As MobCo aims to mobilize code even across
platforms, support for a great number of platforms is necessary. Also, discon-
nected operation as well as replication and conflict solving strategies for data
are needed. Furthermore the support of installation, deployment, and updates
of mobile components are required. These key criteria are supplemented by pos-
sible self management strategies, as well as the awareness of location and other
contextual information. Evaluation of market surveys like [3] showed that such a
middleware is not available (neither commercial nor academic) at the moment.

2.2 Reconfiguration Triggers

It is up to the MobCo middleware to provide an infrastructure such that the
software system can support the business process as good as possible. For this
purpose, the middleware has to react to the occurrence of several events (called
reconfiguration triggers) that can result in a change of context for the soft-
ware system as a whole. Occurrence of these triggers can–according to rules and
policies– force the MobCo middleware to reconfigure the architecture of the dis-
tributed software system at runtime. This can be done by migrating code and
data or by reconfiguring some of the software components.

There might be reconfiguration triggers, which change the system in response
to changes in location and proximity of mobile devices, available network connec-
tivity, other devices available at a location and dependencies between business
processes and location. Triggers for system reconfiguration may also depend on
business processes or software. When flexible business processes are supported,
system reconfiguration can be changes by the new business process. Addition-
ally, system reconfiguration triggers can be used to propagate (regular) software
updated through the system. Availability of resources can also influence the
reconfiguration of systems. Besides network resources, computing and storage

298 V. Gruhn and C. Schäfer

resources and assignments between users and devices can be evaluated to deter-
mine software deployment. Another means to determine software distribution
can be user profiles, user rights and user preferences, which all can be evaluated
to determine appropriate software development, and their changes can trigger
reconfiguration of the system. Time dependencies between business processes,
actions and requirements for data freshness can also guard the reconfiguration
of the system.

2.3 Runtime Evaluation and Self-management

A system making use of reconfiguration triggers has to collect all related status
information. This information will be evaluated by the triggers. However, to
avoid local optimizations of the system, we foresee a central instance supporting
the actual reconfiguration of the system. Validating that mobilization of code
detected by the triggers contributes to overall system performance and user
satisfaction can be provided by simulating the system. Thus, determining which
changes to the system indicated by mobilization triggers are suitable is possible
(see Figure 1).

Business
Processes

Process
Assessment

Initial System
Architecture

Architecture
Simulation and

Refinement

Components
and

Architecture
to be

Deployed

(Re-)Deployment
of Components

Running
System

Changes in
System,

Introduced by
Trigers

Suggested
Architecture

Changes

Architecture
Simulation and

Acceptance
Decision

QoS
Requirements

User
Interaction
Processes

Proven
System

Architecture

Implementation
of Components

Using
Middleware

Runtime

Design Time

Fig. 1. MobCo design time and runtime

From Mobile Business Processes to Mobile Information Systems 299

2.4 Methodical Approach

For the development of mobile applications we plan to close the gap between
business process and architecture modeling. We suppose to create a process
assessment scheme to derive an initial architecture from business processes. First
steps into this direction have been presented in [2]. The idea is that from a
business process model a first model of the information system can be derived
together with the interaction of the users with the system and the necessary QoS
requirements. This information can be used as input parameters of a simulation
of the mobile systems architecture as presented in [4].

After a first architecture has been determined, the system can be implemented
using the middleware. During runtime triggers will stimulate changes in system
architecture which undergo simulation to check their validity. Outcome of this
runtime simulation is whether changes in the system’s architecture are to be
applied or discarded.

3 Expected Results

There will be two main contributions to the state of the art from the project
MobCo. The platform-independent mobile middleware allows self-mobilizing
code by means of reconfiguration triggers, whereby the influence of the trig-
gers is evaluated by system simulation during runtime. Additionally, methods
for the design process will allow developers to detect mobile parts of business
processes and transform them methodically in a mobile architecture.

There are many open research questions like how to build such a middleware
with feasible effort, the appropriate selection reconfiguration triggers and the
practical implementation of a runtime simulation evaluation of mobile system.

By these results we believe in allowing developers to build mobile systems
which are in future more successful than systems have been in the past.

References

1. Dicks, D.: The Evolution of High-Speed Mobile Data Services and Applications in
CEE. Analysys (2006)

2. Gruhn, V., Köhler, A.: Aligning System Architectures on Requirements of Mobile
Business Processes. In: Proceedings of the IASTED International Conference on
Software Engineering (2007)

3. Mascalo, C., Capra, L., Emmerich, W.: Mobile Computing Middleware. In: Net-
working 2002 Tutorials, Springer, Heidelberg (2002)

4. Schäfer, C.: Modeling and Analyzing Mobile Software Architectures. In: Gruhn, V.,
Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, Springer, Heidelberg (2006)

5. van Veen, N.: European Mobile Forecast: 2005 To 2010. Forrester Research (2005)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 300 – 303, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Architectural Model
for Small-Scale Component-Oriented Frameworks

Sérgio Lopes, Adriano Tavares, João Monteiro, and Carlos Silva

Department of Industrial Electronics of University of Minho
Campus de Azurém, 4800-058 Guimarães, Portugal

{sergio.lopes,adriano.tavares,joao.monteiro,
carlos.silva}@dei.uminho.pt

Abstract. Frameworks are an important form of reuse. However, they are often
complex and hard to understand, what limits their success as a reuse option. To
answer this problem, it has been widely recognized the need to effectively
communicate frameworks and provide appropriate tool support, but difficulties
still endure.

We argue that the properties of frameworks are another aspect that is deci-
sive for reuse problems and has not been sufficiently explored. We discuss these
issues and we propose a framework architectural model that can be used to de-
sign frameworks that are easier to reuse.

Keywords: Component-oriented design, frameworks, object-oriented design
and programming, role modelling, software architecture, software reusability.

1 Introduction

Frameworks are one of the dominant industry practice technologies. A framework is
an incomplete design that factors commonalities and variabilities of a specific domain
of application. It provides implementation for the ready-to-use common elements
(also called frozen spots) and localizes variability at predefined abstract variation-
points (or hotspots). Framework design is more complex and abstract than usual pro-
grams. Consequently, frameworks are often hard to understand and difficult to reuse.

In order to handle this problem, it has been widely recognized that it is necessary to
effectively communicate them and provide appropriate tool support for instantiation
activities. In spite of advances in these directions (e.g. [1], [2]), difficulties still en-
dure [3]. Previous works do not consider an aspect that we find vital: the impact of
framework properties on the difficulties of describing, understanding and instantiating
frameworks. Moreover, the framework properties are decisive, because both the
documentation format and the level of tool support depend on them.

Programming and design paradigms determine framework characteristics that are
decisive to the problems and complexities that can arise when reusing frameworks.
For example, whitebox frameworks need to be described in more detail than blackbox,
and therefore, they are likely more difficult to understand. Since the former expose
more details and are adapted by inheritance, they are more susceptible of design

 An Architectural Model for Small-Scale Component-Oriented Frameworks 301

breaking than the latter. Another example is that smaller pieces of software are more
reusable than large size ones [5], and they are also less prone to functionality overlap.

Traditional whitebox versus blackbox designs fall short in providing both reuse
ease and flexibility. More elaborated models are necessary to combine positive as-
pects of different techniques. A framework model is described in [8], but it is more of
a design and development model for in-house reuse, than a framework architectural
model for third party reuse. It includes a whitebox adaptation perspective using in-
heritance, and leaves aside how application specific components relate to the kinds of
variation-points and whether these are predefined or not. We propose a different
framework model that combines a set of properties that help to facilitate framework
reuse.

2 The Framework Model

2.1 Framework and Component(s)

The proposed framework concept is inspired by the idea of framelets [1]. We also
consider frameworks to be small and not assuming exclusive control of applications’
execution flow. However, contrary to framelets, we do not define an explicit size limit
for frameworks (it is very dependent on the addressed problem or application domain)
and they can be used independently (not necessarily integrated in a family).

Frameworks that do not assume full control must provide means for its operation to
be controlled externally. This is crucial for the problem of software composition. We
consider frameworks that, just like components, provide services and mechanisms to
control them (e.g., initiating a task or an operation cycle). As illustrated in figure 1,
framework inherits from both package and component, which means that it is inde-
pendently deployed as a package to be reused by third parties as a component.

We consider the framework to be constituted by internal components (see fig.1. In
the context of object-oriented languages, internal components are object-oriented
components. They are not full-fledged components [5], because they are not inde-
pendently deployable, but they are reused as-is in the context for which they were
developed (i.e. the framework). An internal component is a class or a few classes, rep-
resented by a concrete class, as depicted in fig.1. The component is instantiated by
instantiating its representative class, which creates and hides other objects that consti-
tute the internal component.

2.2 Variation-Points and Service-Points

Frameworks that communicate with application specific components solely through
inversion of control (calling) do not provide services to control its execution. On the
other hand, frameworks that offer only services to clients (called, or class libraries),
cannot be tailored to application specific needs in a disciplined way. Therefore, to
provide effectively both composability and adaptability, two key features for reuse, a
mixed architecture is required.

To support this perspective, we introduce the concept of service-points – parts of
the framework interface that are designed to be called by clients. The service-points
are anticipated by framework developers and identify services offered to enable

302 S. Lopes et al.

external control of its operation. As illustrated in fig.1, the proposed framework
model combines variation-points for adaptability, and service-points supporting com-
position. A variation-point contains a variation interface, i.e. a required interface that
expresses the obligations of the adaptations. A service-point comprises a provided
service interface and a corresponding required client interface. The client interface is
optional, because service-points do not always need to impose constraints on clients.

Fig. 1. Framework architectural model

2.3 Object Composition and Blackbox Reuse

Both class inheritance and object composition have advantages and disadvantages.
Our framework is based on object composition with message forwarding via inter-
faces because it offers the necessary variability for anticipated reuse and facilitates
reuse. For unanticipated reuse, application developers can provide their own imple-
mentations of internal components. The relationships between internal components
are object relationships (association and aggregation). Inheritance remains as a useful
mechanism to reuse implementation inside internal components. Moreover, our con-
cept of blackbox ignores whether framework designers or application developers are
the ones that provide the implementations of required variation interfaces.

2.4 Exploiting Role Modelling

The role-modelling technique [6] is based on object relationships, making a perfect
match with our internal components. Comparatively to class modelling, it brings two
very important advantages for framework reuse: extra flexibility in implementing
object collaborations (see [8]), and a more natural way of defining restrictions upon
clients of a class (see [7]). A combination of role and class modelling has been for-
malized at design level for whitebox framework reuse with adaptation through inheri-
tance[7]. Our model defines the application of role modelling at implementation level
to blackbox frameworks adapted through object composition.

Internal components provide separate computation and composition interfaces, as
illustrated in fig.1. All computation interfaces are role-interfaces, i.e. type a role,
including variation interfaces, service interfaces and client interfaces. An internal
component Ca has one role interface for each role Ra it plays to another internal

 An Architectural Model for Small-Scale Component-Oriented Frameworks 303

component Cb. If the object relationship from Cb to Ca is navigable, Cb has a role
composition interface corresponding to role Ra.

3 Conclusion

Our model proposes a novel integration of different techniques (components, frame-
lets and role modelling), adapting and/or extending them. It also includes a different
perspective on the blackbox framework concept.

The proposed framework model enables a blackbox approach for anticipated reuse
that offers adaptability and composability, exclusively based on calling provided in-
terfaces and implementing required interfaces. It defines component-oriented frame-
works, constituted by internal components that are the building blocks of applications.
This way it is possible to divide the framework instantiation in two smaller and more
systematic activities: provide implementations for required interfaces – framework
adaptation – and compose internal components – application instantiation. We intro-
duce the concept of service-points, to support use relationships with restrictions on
clients. The use of role interfaces allows a more flexible and fine-grained control-flow
composition, critical for interconnecting components and integrating several frame-
works. All these features help to improve reusability and reduce difficulties.

References

1. Oliveira, T., Alencar, P., Cowan, D.: Towards a declarative approach to framework instan-
tiation. In: Proc. of the Workshop DMP of the 17th IEEE ASE (2002)

2. Lopes, S., Tavares, A., Monteiro, J., Silva, C.: Describing Framework Static Structure: pro-
moting interfaces with UML annotations. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 54–61. Springer, Heidelberg (2006)

3. Kirk, D., Roper, M., Wood, M.: Identifying and Addressing Problems in Framework Reuse.
In: Proc. of the 13th International Workshop on Program Comprehension (2005)

4. Pree, W., Koskimies, K.: Framelets - small and loosely coupled frameworks. ACM Com-
puting Surveys 32(1) (2000)

5. Szyperski, C.: Beyond Object-Oriented Programming, 2nd edn. Addison-Wesley/ACM
Press (2002)

6. Reenskaug, T., Wold, P., Lehne, O.: Working with objects: The OOram Software Engineer-
ing Method. Manning/Prentice-Hall (1996)

7. Riehle, D., Gross, T.: Role model based framework design and integration. In: Proc. of the
13th ACM OOPSLA’98, pp. 117–133 (1998)

8. Gurp, J., Bosch, J.: Design, implementation and evolution of object oriented frameworks:
concepts and guidelines. Software Practice & Experience 31(3), 277–300 (2001)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 304 – 307, 2007.
© Springer-Verlag Berlin Heidelberg 2007

UML Profile for the Platform Independent Modelling of
Service-Oriented Architectures

Marcos López-Sanz, César J. Acuña, Carlos E. Cuesta, and Esperanza Marcos

Computer Languages and Systems II Department
Rey Juan Carlos University - Mostoles (Spain)

marcos.lopez@urjc.es, cesar.acuna@urjc.es,
carlos.cuesta@urjc.es, esperanza.marcos@urjc.es

Abstract. The vast diversity of implementation and support platforms for
service-oriented architectures (such as Web, Grid or even CORBA) increases
the complexity of the development process of service-based systems. To reduce
it, both the architectural properties of the SOC paradigm and a development
approach based on the MDA proposal can be studied. This work describes a
UML profile for the PIM-level service-oriented architectural modelling, as well
as the correspondent metamodel. PIM (Platform Independent Model) level is
chosen because it does not reflect constraints about any specific platform or
implementation technology. The proposal sketched in this article is part of our
research of a service-oriented development method (SOD-M) called MIDAS.

Keywords: Service-Oriented Architecture, Model-Driven Architecture, PIM-
level modelling, UML Profiles.

1 Introduction

In the last years the development of systems based on services has grown in import-
ance. However, several problems have come up along with this evolution. Issues like
the migration of execution platform, the increase in the complexity of the
development process and the lack of a precise definition of the concepts involved in
SOSA (Service Oriented Software Architecture) solutions are among them.

To tackle these problems we aim at the definition of a service-oriented
development method (SOD-M) based on the MDA principles and architecture-centric.
To achieve this goal we follow two different action lines:

1. To accomplish the study of the architectural principles governing the service-
oriented (SO onwards) designs as the architecture of a system reflects the structure
and behaviour of a system and how it evolves as time elapses.

2. To follow a methodological approach to reduce the complexity of the SO
development process. The ideas behind the MDA (Model-Driven Architecture) [1]
proposal can facilitate and improve the development of SO solutions.

Following the conclusions of previous research works [2]; in this article we focus on
the definition of the main elements of service architectures at the PIM level of the
MDA proposal. To do so, we present a UML profile for the PIM-level service-
oriented architectural modelling, together with the correspondent metamodel.

 UML Profile for the Platform Independent Modelling 305

2 Service Architecture Within a MDA Framework

The research work presented in this article is part of MIDAS [2], a methodological
framework for the development of information systems based on MDA. This
framework is defined by three orthogonal dimensions reflecting, respectively, the
MDA abstraction levels, modelling the separation of concerns in information system
development and defining cross-cutting aspects to the previous dimensions, such as
the architectural aspect.

The architecture is considered to be the driving aspect of the development process.
It allows to specify which aspects and models in each level are needed according to
the software architecture design.

The architectural models are divided into two levels which correspond to the
PIM and PSM levels. The reason to make this division is that with an architectural
view of the system at PIM-level we ensure that there are no technology or
implementation constraints in the model, besides facilitating the possibility of
establishing different PSM-level models. Moreover, and applying this conception
to a system following the Service-Oriented Computing (SOC)[6] paradigm, the
services that appear at the PIM-level architecture model will be understood as
conceptual services, classified depending on the role or functionality given and the
entities that group those services.

3 Proposal of PIM-Level UML Profile for SOSA

The set of concepts that appear in the proposed UML profile are enumerated next.
Table 1 lists the most relevant stereotypes defined as well as the base UML metaclass
from which they derive and the tag used to represent each stereotype.

3.1 Service Providers

A Service-Oriented Architecture is built upon independent entities which provide and
manage services. Because SOSA is widely used as a way to integrate enterprise
applications, the existence of these providers is justified by the necessity to project the
business organizations involved in those processes into the architecture model. These
providers act as service containers in charge of presenting the services contained to
the world and also in charge of managing user interaction.

3.2 Active Components

In a SO solution, the main elements are services; however, as user responses are
needed in many cases, a first-class element which retrieves the user interaction must
be represented in the architecture model, namely SystemFront-End.

− System front-end:

By definition, services lack of the ability to interact or, in particular, to modify
its behaviour according to user interaction. This reason justifies the necessity to
include a component in the architecture model able to represent those capabilities.
SystemFront-End components will be, therefore, identified as system boundaries.

306 M. López-Sanz et al.

− Service:

The main role of services inside SOSA is to support the functionalities offered by
the system. Our vision of service (at PIM level) is aligned with that of the OASIS
reference model for services –A service is a mechanism to enable access to a set of
one or more capabilities, where the access is provided using a prescribed interface
and is exercised consistent with constraints and policies as specified by the service
description [4]–.

Since both service providers and composite services are means of grouping
services, composite services are distinguished for having a property indicating the
coordination policy used. It can be set to: Orchestration or Choreography. In the
former case, a service tagged with <<OrchServ>> will be needed.

3.3 Service Interactions and Messages

Services relate, communicate and interact with each other through contracts. The
contracts in a service oriented architecture model act as connectors between the
different architecture components. These contracts will have different features
depending on the components connected. So, we refer to ServiceContract when
talking about service-to-service connections and InteractionContract when talking
about the communication between a SystemFront-End and a service. The
communication item exchanged between services is represented by Messages
identified as separated entities related to service contracts.

Table 1. Some relevant stereotypes used in the proposed UML profile for SOSA

NOTATION
ASSOCIATED

CONCEPT

BASE UML
META-CLASS

MEANING

<<outerProvider>> Outer provider Package External provider of services
<<businessContract>> Business contract Dependency Contract established between

providers
<<FrontEnd>> System Front-End Classifier Component that interact with

user
<<CompServ>> Composite service Classifier Service compound of services
<<BasicServ>> Basic service Classifier Represents a basic funcionality
<<OrchServ>> Orchestrator service Classifier Acts as orchestrator in a

coreography
<<ServContract>> Service contract Association Class Acts as connector of services

<<contractClause>> Restriction clause Classifier pre-/post- conditions to be
fulfilled

<<servOp>> Service operation Property Service atomic functionality

4 Conclusions and Future Works

In this article we have presented a UML profile for the design of PIM-level SOA-
based architecture models in the context of a SOD-M and methodology for the
development of information systems.

 UML Profile for the Platform Independent Modelling 307

The application of the MDA principles to the SOA paradigm favours the
development of solutions based on services. In addition, the design of the architecture
is a critical aspect in SO-based developments as one of its main goals is to achieve
flexible implementations of interacting software entities.

Although there are some other works related with the topic of this article which
also deal with the definition of the SOA principles ([5], [6]) or with UML profiles for
service-based developments ([7], [8], [9]), many of them consider Web Service
principles as basis (leading to a misconception of the SOA term). The ones which are
enough generic to avoid fixing to a specific technology usually can not be applied to
MDA or do not use a high-level standard notation to help the development process.

At this moment we are working on the specification of PSM-level SOA
architectural models for different service execution platforms (Web Service, Grid,
agents, etc) as well as the validation of the proposed architecture model.

Acknowledgments

This research is partially granted by project GOLD (TIN2005-00010) financed by the
Ministry of Science and Technology of Spain.

References

[1] Miller, J., Mukerji, J. (eds.): OMG. OMG Model Driven Architecture. Document Nro.
ormsc/2001-07-01 (2001), Available at: http://www.omg.com/mda

[2] Marcos, E., Acuña, C.J., Cuesta, C.E.: Integrating Software Architecture into a MDA
Framework. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 127–
143. Springer, Heidelberg (2006)

[3] Cáceres, P., Marcos, E., Vela, B.: A MDA-Based Approach for Web Information System
Development. In: Workshop in Software Model Engineering (2003), http://www.
metamodel.com/wisme-2003/

[4] OASIS: Reference Model for Service Oriented Architecture. Committee draft 1.0 (2006),
Available at: http://www.oasis-open.org/committees/download.php/16587/wd-soa-rm-
cd1ED.pdf

[5] Lublinsky, B.: Defining SOA as an architectural style: Align your business model with
technology. IBM DeveloperWorks site (January 09, 2007), http://www-128.ibm.
com/developerworks/webservices/library/ar-soastyle/ index.html

[6] Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and
Directions. In: WISE 2003, pp. 3–12.

[7] Wada, H., Suzuki, J., Oba, K.: Modeling Non-Functional Aspects in Service Oriented
Architecture. In: Proc. of the 2006 IEEE International Conference on Service Computing,
Chicago, IL (September 2006)

[8] Zdun, U., Dustdar, S.: Model-Driven Integration of Process-Driven SOA Models.
International Journal of Business Process Integration and Management, Inderscience,
Pendiente de publicación (2007)

[9] Zhang, T., Ying, S., Cao, S., Jia, X.: A Modeling Framework for Service-Oriented
Architecture. In: QSIC 2006. Proceedings of the Sixth International Conference on
Quality Software, pp. 219–226 (2006)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 308 – 312, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Managing Separation of Concerns in Grid Applications
Through Architectural Model Transformations

David Manset1,2,3 , Hervé Verjus1, and Richard McClatchey2

1 University of Savoie – Polytech’ Savoie – LISTIC/LS
{david.manset,herve.verjus}@univ-savoie.fr

2 CCCS, University West of England, Bristol, UK
richard.mcclatchey@uwe.ac.uk

3 Maat Gknowledge, Toledo, Spain
dmanset@maat-g.com

Keywords: Grid, MDE, Software Architecture, Model Transformation.

1 Introduction

Grids enable the aggregation, virtualization and sharing of massive heterogeneous and
geographically dispersed resources, using files, applications and storage devices, to
solve computation and data intensive problems, across institutions and countries via
temporary collaborations called virtual organizations (VO) as described in [1]. Most
implementations result in complex superposition of software layers, often delivering
low quality of service and quality of applications. As a consequence, Grid-based
applications design and development is increasingly complex, and the use of most
classical engineering practices is unsuccessful. Not only is the development of such
applications a time-consuming, error prone and expensive task, but also the resulting
applications are often hard-coded for specific Grid configurations, platforms and
infrastructures. Having neither guidelines nor rules in the design of a Grid-based ap-
plication is a paradox since there are many existing architectural approaches for dis-
tributed computing, which could ease and promote rigorous engineering methods
based on the re-use of software components. It is our belief that ad-hoc and semi-
formal engineering approaches, in current use, are insufficient to tackle tomorrow’s
Grid developments requirements. Because Grid-based applications address multi-
disciplinary and complex domains (health, military, scientific computation), their
engineering requires rigor and control. This paper therefore advocates a formal
model-driven engineering process and corresponding design framework and tools for
building the next generation of Grids. To achieve these objectives, two approaches are
combined: (1) a formal semantic is used to model and check Grid applications; (2) a
model-driven approach is adopted to promote model re-use, through separation of
concerns, to model transformations, to hide the platform complexity and to refine ab-
stract software descriptions into concrete usable ones.

Section 2 of this paper introduces our proposal so-called gMDE, as well as its
foundations in sections 3 and 4. Finally, section 4 and 5 illustrate the presented para-
digms with an example.

 Managing Separation of Concerns in Grid Applications 309

2 A Formal Architecture-Centric MDE Approach

The presented approach, of so-called “grid Model-Driven Engineering” (gMDE), aims
at enacting the model-driven paradigm based on formally defined architectural mod-
els dedicated to grid-based application development. While most existing MDE im-
plementations provide only model to source code transformations where the PIMs are
translated to PSMs, the problem of Grids engineering requires more elaborated mod-
els transformations – i.e. model to model - to fill the conceptual gap between the ab-
stract model and its concrete (more detailed) representation. Moreover, interesting
modelling aspects such as model optimization require the generation of intermediate
models to compute and synchronize different views of the system. Thus, the proposed
approach is based on the combination of the MDE vision [2] with the architecture-
centric approach [3]..In Grid engineering, design is largely affected by constraints,
which are introduced either by the targeted Quality of Services (QoS) or by the tar-
geted execution platform. As presented in [4], our gMDE approach exhibits several
models (see the right part of the Figure 1). Each model represents an accurate aspect
of the system, useful for conceptual understanding (separation of concerns), analysis
and refinement. Unlike the software engineering process, where the system architec-
ture is iteratively refined by the architect, most of the transformations in gMDE are
semi-automated. Thus, Grid applications architects only concentrate on applications
functional building blocks and their interactions, and let the system address non-
functional issues such as QoS. Figure 1 below, introduces the cascade of architectural
models in the gMDE engineering process. In the presented process, a distinction is
made between two major levels:

- Transformations of architectural models, which take place at the same level of ab-
straction (i.e. architectural structure, behaviour and properties) shown above the bro-
ken line in figure 1 and
- Transformations of abstract models to more concrete ones (including deployment in
an infrastructure) shown below the broken line in Figure 1.

Horizontal Refinement

V
er

ti
ca

l R
ef

in
em

en
t abstract

concrete

coarse-grain fine-grain

Decomposition

refDefinition::=on a : architecture action actionName
is refinement (actionParameter0 , actionParametern)

{
[pre is { condition }]
[post is { condition }]
[transformation is { refExpression }]

} [assuming { property }]

Refinement Specification in ARL

T
ransform

ation

Fig. 1. The gMDE Design Process as a Cascade of Refined Models

310 D. Manset, H. Verjus, and R. McClatchey

3 gMDE as a Grid-Based Application Development Framework

ArchWare [3] is an architecture-centric engineering environment supporting the de-
velopment of complex systems. It enables the support of critical correctness require-
ments and provides languages for expressing architecture structure, behaviour and
properties. ArchWare provides a set of formal languages amongst which the Architec-
ture Refinement Language (ARL [5]). This latter is used to describe software archi-
tectures (based on the Component and Connector paradigm) and to refine them
according to transformation rules. This language is based on the π-calculus [6] and μ-
calculus [7] allowing the specification of architectures structure, behaviour and prop-
erties. Our gMDE approach uses ARL as the basis language (a refinement calculus)
for expressing architectural models and transformation rules.

The gMDE approach focuses on both directions of refinement i.e. “vertical” and
“horizontal”. The intention is not only to refine an architecture to a concrete and
“close to final” code form, but also to adapt it according to constraints. gMDE pro-
poses two ways of using the model-driven process. The first consists of optimizing a
given Grid-based application abstract architecture according to expressed developers’
QoS. The second consists of adapting an architecture according to the target Grid
middleware Respectively:

- QoS. Each QoS is represented by an architectural model (considered as an archi-
tectural pattern, which can be re-used in other Grid-based application architectures).
This QoS representation is then incorporated into the current Grid-based application
architecture through a set of refinement actions.

- Target Grid platform. Each Grid platform is represented by another architectural
pattern. The Grid-based application abstract architecture is adapted to the platform
representation through a set of refinement actions too.

To address the specificities of Grids, the ARL expressiveness has to be extended:
the gMDE approach features a Domain Specific Language (DSL) allowing the de-
scription of proper Grid services and their associated constraints. This language is
based on a Grid SOA paradigm promoting simplicity and facilitating the model com-
prehension, architectures being naturally expressed in terms of services and their
properties.

4 gMDE Architectural Models Transformation Principles

Using gMDE, an architect formalizes on one hand the architecture of the grid-based
application (model A) and on another hand, a QoS attribute (model B). The first
model is expressed by using our DSL built on top of ARL.

To engage in the weaving process, the constraint definition model (model B) is
transformed into refinement actions, as illustrated in the left part of Figure 2. During
the weaving process, the Grid-based application architectural model (model A) is
translated in ARL and the model B is interpreted and decomposed into a series of re-
finement actions in ARL too. The refinement actions are applied one by one on the
model A until completion, resulting in a model C satisfying the specified QoS (right
part of Figure 2).

 Managing Separation of Concerns in Grid Applications 311

PKI is qualityOfServiceProperty {

 on FRS:architecture actions {

 include Encryptor is connector {

 … component architectural

description …}
 include Decryptor is connector {

 … component architectural

description …}
 on Client :architecturalElement

actions{

 separate

Client::ComsP0::data_received from

 Server::ComsP0::data_sent

…

Model A Model B

Model C

Fig. 2. gMDE architectural models transformation

5 Conclusion

The gMDE approach and environment are currently in use to evaluate potential ad-
vantages in the development process of various Grid applications. There are clearly
identified challenges in the development of systems such as MammoGrid [8], which
can be addressed by using gMDE. From these case studies, preliminary conclusions
are encouraging and highlight the approach relevance.

References

[1] Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid – Enabling Scalable Vir-
tual Organisations. International Journal of Supercomputer Applications (2001)

[2] Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2),
25–31 (2006)

[3] Archware: The EU funded ArchWare IST 2001-32360 – Architecting Evolvable Software
- project. http://www.arch-ware.org

[4] Manset, D., Verjus, H., McClatchey, R., Oquendo, F.: A Formal Architecture-Centric Mo-
del-Driven Approach For The Automatic Generation Of Grid Applications. In: ICEIS’06.
Actes de 8th International Conference on Enterprise Information Systems, Paphos, Chy-
prus (2006)

[5] Oquendo, F.: π-ARL: an Architecture Refinement Language for Formally Modelling the
Stepwise Refinement of Software Architectures. ACM SIGSOFT Software Engineering
Notes archive 29(5) (September 2004)

[6] Milner, R.: Communicating and Mobile Systems: the pi-calculus. Cambridge University
Press, Cambridge (1999)

312 D. Manset, H. Verjus, and R. McClatchey

[7] Kozen, D.: Results on the Propositional Mu-Calculus. Theoretical Computer Science 27,
333–354 (1983)

[8] Amendolia, S.R., et al.: Deployment of a Grid-based Medical Imaging Application. In:
Proceedings of the 2005 HealthGrid Conference, UK (2005)

Aqueducts: A Layered Pipeline-Based Architecture
for XML Processing�

Miguel A. Martínez-Prieto1, Carlos E. Cuesta2, and Pablo de la Fuente1

1 GRINBD, Depto. de Informática, E.T.S. de Ingeniería Informática
Universidad de Valladolid, 47011 Valladolid (Spain)
{migumar2, pfuente}@infor.uva.es

2 Kybele, Depto. Lenguajes y Sistemas Informáticos II, E.T.S. de Ingeniería Informática
Universidad Rey Juan Carlos, 28933 Móstoles, Madrid (Spain)

carlos.cuesta@urjc.es

Abstract. Aqueducts define a variant of the pipe-filter style designed to han-
dle and manage semi-structured data streams, including those describing system
structures themselves, such as XML-based architecture descriptions. This style
is based on the concept of aqueduct, a higher-order filter which comprises a se-
quence of filters able to define a process logic using flow control constructs. Those
filters can be expanded, then defining an inner layer in the Aqueducts hierarchy.

1 Introduction

Metalanguages define a mechanism to generate specific markup grammars which are
used to describe the structure of different types of documents; nowadays, XML [2] is the
reference metalanguage and then its documents can be considered as semi-structured
data streams. Taking into account that many applications describe processes operating
on these XML documents, our approach is designed to manage how these applications
might interact since this need raise many issues related to interoperability [5].

Currently, the W3C is working on this issue through the XProc [8] definition. This
initiative defines a language for describing operations to be performed on XML docu-
ments with an underlying model (based on pipelines) which implements basic process-
ing requisites through different classes of component with a technological orientation.

In this paper, we present Aqueducts as an architectural vision of outlined above is-
sues. For this purpose, we design a specific processing model partially inspired on the
underlying model of XProc, in which communications are restricted to XML streams.

2 Aqueducts

An architectural style characterizes a family of systems by means of a small set of
mappings from the syntactic to the semantic domain. The use of architectural styles has
a number of significant benefits [4], hence we design Aqueducts model as a specific
extension of the well-known pipe-filter [1] style for XML processing.

� This work has been partially funded by Projects TIN2006-15071-C03-02, TIN2006-15175-
C05-01 (META) and TIN2005-25826-E from the Spanish Ministry of Education and Science.

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 313–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

314 M.A. Martínez-Prieto, C.E. Cuesta, and P. de la Fuente

Fig. 1. Hierarchy of Components Structural Model

Aqueducts uses XML as data type for all component input and output, therefore
our approach gets more flexibility than a classic pipe-filter thanks to its rich features for
data representation. Considering this property, we design a specific processing model by
means of a hierarchy of components (Figure 1) which allows managing XML streams.

This hierarchy is built from an abstract component (filter) that we understand as
a composition unit of software applications, which has a set of interfaces and a set
of requirements [7]. This concept abstracts syntactic and semantic features which are
inherited by all components considered in the Aqueduct’s hierarchy.

2.1 Filter

We define a filter as a processor element which performs a specialized program that
transforms, in a specific way, the XML input data in a XML output result.

Conceptually, this element is designed from the original definition of filter [6] and
so, it is considered as an independent entity that performs its program in a context in
which interacts with other filters. Therefore, a filter defines two concerns: the program
and the interface in its context of execution in which is identified by a unique name.

The program concern defines the logic of process that the filter executes. We con-
sider the program as finite state machine [1] which can be internally built (structural
steps) or can be represented by an inner filters configuration (compound steps). This last
case is based on hierarchical features of pipe-filter style that allows viewing a system,
recursively, as a filter in another system [1]. From this property, we define the context
of execution (for a fixed filter) as the top level filter which contains the filter.

The interface concern is responsible to allow the filter’s communication within its
context of execution. This process allows the filter to interact with other filters con-
tained in its context of execution by means of a two disjoint set of ports: “input” and
“output”. Input ports are used to introduce contents in the filter. We consider two types:
on one hand, a single data reception in which the filter receives the main content that it
processes. On the other hand, multiple input configuration ports used for receiving com-
plementary content required in the filter’s computation. Output ports are used to deliver
contents generated in the filter’s execution. We consider two types: a single result de-
liver used for delivering filter’s main result and multiple output configuration ports that
the filter can use to deliver complementary content generated in its computation results.

Aqueducts: A Layered Pipeline-Based Architecture for XML Processing 315

Fig. 2. Interface for the Communication Structural Model

Fig. 3. A working aqueduct in a real environment

Moreover, all filters define an implicit error port which reports to its context possible
errors produced in their execution.

Furthermore, the interface of communication allows to customizing the filter’s pro-
gram with literal values which are added by means of different parameters. Figure 2
shows a global vision of the structural model that represents all interface concepts .

2.2 Hierarchy of Components

The basic difference between the components of this hierarchy is the way that use for
implementing their program; furthermore, all components are characterized by a spe-
cific computational semantics. Figure 1 shows a global vision of this hierarchy.

Structural Steps are defined as atomic filters with an indivisible logic of process
within its context of execution. So, this type of components is responsible to perform
basic operations required in Aqueducts, in order to reuse them in different contexts.
Considering the pipe-filter pattern [3], we define three classes of structural steps: gen-
erator (as the aqueduct data source), transformer (as generic filters in the aqueduct)
and serializer (as the aqueduct data sink).

Compound Steps are complex filters that define its program through an internal
configuration of pipes and filters; this way, a compound step plays a context of execution
role for all contained filters which share its interface of communication according to
several restrictions. There are two classes: constructs and aqueducts.

We define a construct as a compound step responsible to control and manage the
data flow inside an aqueduct. We consider the three basic control structures (sequence,

316 M.A. Martínez-Prieto, C.E. Cuesta, and P. de la Fuente

condition and iteration), an error handling and a parallelizer construct designed in
accordance with the concurrence features of the pipe-filter style.

An aqueduct is defined as the higher-level filter in the hierarchy. It is a service
provider which design tasks as sequences of processing stages based on precedence
among operations. This precedence establishes a generator and a serializer as, respec-
tively, the first and the last steps executed in an aqueduct; between them, we consider
transformers distributed according to a data flow designed by means of constructs. Fig-
ure 3 shows an aqueduct with a specific configuration of structural steps and constructs.

3 Conclusions and Future Work

Aqueducts define an innovative vision of the pipe-filter style adapted for specific process-
ing of XML. This model allows building several types of systems, since Aqueducts is
able to process XML streams of any kind independently of their semantic.

These systems build their specific functionality through aqueduct structures that
are understood as specialized service providers defined in accordance with a semantic
model based on precedence among basic XML processing operations. Therefore, these
services are highly extensible and adaptable, due to the model of specialized compo-
nents that defines the aqueduct structure.

Currently, we are employing Aqueducts as technological basis in web applications.
Our main development project is centred on a digital library which publishes electronic
contents in heterogeneous environments through several services developed with Aque-
ducts technology. Plans of future are centred on the evolution of Aqueducts towards a
SOA representation that allows us to build B2B systems with this processing model.

References

1. Allen, R., Garlan, D.: Towards Formalized Software Architectures. Technical Report CMU-
CS-92-163, Carnegie Mellon University, School of Computer Science (July 1992)

2. Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.: Extensible Markup
Language (XML) 1.0, 4th edn. W3C Recommendation (August 2006), available at
http://www.w3.org/TR/REC-xml/

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented software
architecture: a system of patterns. John Wiley & Sons, Inc., New York, USA (1996)

4. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting Style in Architectural Design Environments.
In: Proceedings of the ACM SIGSOFT ’94 Symposium on the Foundations of Software Engi-
neering, pp. 175–188. ACM Press, New York (1994)

5. Milowski, A.: XML Processing Model Requirements and Use Cases. W3C Working Draft
(April 2006), available at http://www.w3.org/TR/xproc-requirements/

6. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline. Pren-
tice Hall, New Jersey (1996)

7. Szyperski, C.: Component software: beyond object-oriented programming. ACM
Press/Addison-Wesley Publishing Co., New York, USA (1998)

8. Walsh, N., Milowski, A.: XProc: An XML Pipeline Language. W3C Working Draft (April
2007), available at http://www.w3.org/TR/xproc/

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xproc-requirements/
http://www.w3.org/TR/xproc/

On the Interplay of Crosscutting and

MAS-Specific Styles

Ambra Molesini1, Alessandro Garcia2, Christina Chavez3, and Thais Batista4

1
Alma Mater Studiorum—Università di Bologna, Italy

ambra.molesini@unibo.it
2

Lancaster University, UK
a.garcia@lancaster.ac.uk

3
UFBA—Universidade Federal de Bahia, Brazil

flach@dcc.ufba.br
4

UFRN—Universidade Federal do Rio Grande do Norte, Brazil
thais@ufrnet.br

Abstract. This paper presents a systematic case study that analyzes
the influence exerted by different styles over the nature of architectural
crosscutting concerns in an evolving multi-agent system. The analysis
encompassed the systematic comparison of alternative architecture de-
compositions for the same application that changed over time to address
different stakeholders’ concerns.

1 Introduction

Architectural aspects are expected to “modularize widely scoped concerns that
naturally crosscut the boundaries of system components at the software architec-
ture level” [1]. However, the current knowledge on architecturally-relevant cross-
cuttings tends to neglect other well established architecture design abstractions
such as architectural styles. In fact, different architectural styles applied to the
same problem can lead to designs with significantly different modularity prop-
erties [2]. Hence, with the wide recognition of the software lifecycle impairments
caused by crosscutting concerns, architects need to improve their knowledge on
the relationship of such concerns and pointcuts stylistic design choices to date.
Unfortunately, there is little knowledge and reflection about the influence ex-
erted by specific architectural styles on the nature of crosscutting concerns in
early design stages.

In this context, the motivation for studying the role played by domain-specific
styles in the manifestation of crosscuttings seems appealing. Our research pro-
vides a first, significant stepping stone on addressing this gap. We describe a
case study where we have observed the influence of distinct stylistic choices on
the nature of crosscutting concerns in a multi-agent system (MAS) architecture,
such as error handling and coordination. We have used an evolving conference
management system (CMS) as case study (Section 2.1). Different architectural
designs for this system have been produced (Section 2.2), and a number of cross-
cutting concerns emerged from these different decomposition (Section 2.3). We

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 317–320, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

318 A. Molesini et al.

have made an analysis upon the variability of the crosscutting concerns as dif-
ferent styles have been applied. Section 3 provides an overview of our findings.

2 Architectural Crosscutting and MAS-Specific Styles

In a case study, we have observed phenomena related to crosscutting concerns
when different architectural designs have been defined over time for the same ap-
plication [3,4], name Conference Management System (CMS) (Section 2.1). This
section discusses two alternative designs subsequently generated for the CMS
system, with each of them based on a distinct architectural style (Section 2.2)
and argues about the nature of the heterogeneity of the crosscutting concerns
that manifested in such designs (Section 2.3).

2.1 The Conference Management System

The CMS application supports the management of paper submissions to scientific
conferences [5]. Setting up and running a conference program is a multi-phase
process, involving several individuals and groups. The agents enrolled in this
system represent a number of people involved, such as chairs and reviewers.
In the review phase, the program committee has to handle the review of the
papers, i.e. contacting potential referees and asking them to review a number of
the papers. In the final phase authors are notified of these decisions. There is
a number of architectural concerns in the CMS design, like exception handling
and coordination. Coordination protocols are essential in such an architecture
in order to regulate the interaction-intensive activities involving the system’s
agents. Error handling is also a concern in the CMS in order to enhance system
robustness.

2.2 MAS-Specific Styles

The following text summarizes the instances of the two employed styles to ad-
dress coordination issues, namely: (i) Reflective Blackboard, (ii) and Stigmergic
Coordination. Figure 1 provides a partial description of both styles’ instances in
CMS; it illustrates the key elements in each style used.

Reflective Blackboard. The Reflective Blackboard style [4] is built from the
composition of two well-known architectural styles [6]: the Blackboard and the
Reflection patterns. The basic idea of this pattern is that since communication
is centralized on the blackboard, systematic control properties are modularly
introduced to it in a finer-grained fashion. Control is transparently inserted in
the desired points of inter-agent communications by using reflective features
(1a). The components of the Reflection pattern are used to refine the overall
structure of the Blackboard: elements of the blackboard are associated via meta-
object protocol (MOP) with meta-objects defined in the control components.
The instantiation of this style to the CMS architecture is sketched in 1a.

On the Interplay of Crosscutting and MAS-Specific Styles 319

PC-Chair Reviewer

MOP
out

in

a) b)

PC-Chair

Reviewer

TS_Assigment
out

in

Tuple
store

execute

Meta Object

activatesBlackboard

intercept

Control

link

Error Handling

Error Handling

Communication
failure
Coordination
failure

Fig. 1. a) Reflective Blackboard; b) Stigmergic Coordination

Stigmergic Coordination. The Stigmergic Coordination style is another evo-
lution of the Blackboard style and it is particularly suited for self-organizing
systems. Stigmergy [3] refers to all those kinds of indirect interactions occurring
among situated agents that reciprocally affect each others’ behavior. So far, the
most widely used stigmergic mechanism in MAS include pheromone-based be-
haviors, relying on agents depositing markers that the environment can diffuse
and evaporate. This pattern presents a pheromone-based approach: tuples can
be seen as pheromones. The tuple space acts only as a shared data-space where
the tuples are stored and executed. The instance of this style is shown in 1b
where the assignment process of CMS is sketched.

2.3 Crosscuttings in MAS-Specific CMS Architectures

This section reviews MAS-specific concerns in both CMS architectures.

Error handling. Exception handling was a crosscutting concern in all the MAS-
specific styles (Figure 1). Figure 1 presents the widely-scoped effect of handlers
associated with two different kind of exceptions: communication error and co-
ordination error. Communication failures are caused by network errors. Coordi-
nation failures are caused by error manifestation either in the tuple space for
the Stigmergic Coordination patterns or in the control for Reflective Blackboard
pattern. In the Stigmergic Coordination architecture, the agents need to collab-
orate for addressing error handling. Hence, behaviors for managing errors end
up being spread all over several agents and tuples. In the Reflective Blackboard
pattern, both agents and control are also involved in error treatments.

Coordination is a crosscutting concern in the Stigmergic Coordination pattern
only. In fact, this pattern adopts tuples as places to put in the coordination code,
but the complex coordination protocol is also realized by agents that generate
the tuples. As a result tasks associated with the coordination protocol is scat-
tered over agents involved in the protocol. In the Reflective Blackboard pattern,
coordination is not a crosscutting concern because coordination is modularized
in specific meta-objects defined inside the control component.

320 A. Molesini et al.

3 Conclusions

The main outcomes of our analysis indicated that some system concerns are well
modularized while others are not, depending on the choice of domain-specific
architectural style(s). We have also observed that styles have directly interfered
with the nature of the crosscutting concerns at the architectural description of
the CMS system (Section 2.3). Specific styles also typically determine the level
of tangling or scattering of a particular concern. In addition, there are some
concerns that are recurrently crosscutting independently of the dominant archi-
tecture stylistic choice or specific style compositions. For instance error handling
is a typical example of architectural concern that tends to be crosscutting in
all the architectural styles. We have also observed that default error handling
policies, such as exception propagation or error-specific information logging [7],
are consistently present in almost all types of architectural decomposition. In
fact, error handling is widely recognized as a global design issue and has been
extensively referred in the literature as a classical crosscutting concern in sys-
tems following different kinds of architecture decompositions. Furthermore, it
may affect almost all the system modules and their interfaces representing an
anti-modularity factor in several architectural styles [6] as well. Our investiga-
tion confirms some findings we have detected in the analysis of a web-based
information system [8,9].

References

1. Garcia, A., et al.: On the modular representation of architectural aspects. In: Gruhn,
V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 82–97. Springer, Heidel-
berg (2006)

2. Shaw, M.: Comparing architectural design styles. IEEE Software 12, 27–41 (1995)
3. Mamei, M., et al.: Programming stigmergic coordination with the tota middleware.

In: Dignum, F., et al. (eds.) Proc. of AAMAS’05, pp. 415–422. ACM Press, New
York (2005)

4. Silva, O., et al.: The reflective blackboard pattern: Architecting large multi-agent
systems. In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Castro, J.
(eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS, vol. 2603,
pp. 73–93. Springer, Heidelberg (2003)

5. Ciancarini, P., et al.: A case study in coordination: Conference management on
internet (1996), ftp://ftp.cs.unibo.it/pub/cianca/coordina.ps.gz

6. Buschmann, F., et al.: Pattern-Oriented Software Architecture: A System of Pat-
terns, vol. 1. Wiley, Chichester (1996)

7. Filho, F.C., et al.: Exceptions and aspects: the devil is in the details. In: SIGSOFT
FSE 2005, pp. 152–162. ACM Press, New York (2006)

8. Greenwood, P., et al.: On the impact of aspectual decompositions on design stability:
An empirical study. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 176–200.
Springer, Heidelberg (2007)

9. Chavez, C., et al.: Are architectural aspects style dependent? In: 1st Workshop on
Aspects in Architectural Description (2007)

ftp://ftp.cs.unibo.it/pub/cianca/coordina.ps.gz

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 321 – 324, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Processes for Creating and Exploiting Architectural
Design Decisions with Tool Support

Francisco Nava1, Rafael Capilla1, and Juan C. Dueñas2

1 Department of Computer Science, Universidad Rey Juan Carlos,
c/ Tulipán s/n, 28933, Madrid, Spain

{francisco.nava,rafael.capilla}@urjc.es
2 Department of Engineering of Telematic Systems, ETSI Telecomunicación

Ciudad Universitaria s/n, 28040, Madrid, Spain
jcduenas@dit.upm.es

Abstract. Software architectures suffer of a serious lack of documented design
decisions, but also an explicit definition of the processes needed to create and
exploit such architectural knowledge. To address these issues, we focus on the
specification of those activities that we believe should be implemented to sup-
port the creation and use of design rationale with tool support.

1 Design Decisions in Software Architecture

Software architectures have been widely used to describe the main parts of a software
system. Recently, this traditional perspective is changing to include design rationale,
which understands the architecture as the result of a set of architectural design deci-
sions [2]. The “decision view” was proposed in [6] as a “new” architectural view
which crosscuts the information of other architecture views as it documents explicitly
the design decisions made. Also, as the system evolves, these decisions have to be
maintained accordingly to the changes made. The importance of recording design
decisions has been recognized as a way to bridge the gap between requirements and
architectural products and for traceability issues as well [14]. Perry and Wolf [11]
mentioned the rationale and principles that guide the design and evolution of software
architectures to justify the final shape of the architecture. This idea is reflected in [4],
which discuss the importance of documenting such rationale, but the processes to
create and use such knowledge are not described. In 2005, Tyree and Akerman [13]
proposed a list of attributes for charactering design decisions, while in [12] the au-
thors discuss that recording architectural descriptions, mainly based on diagrams
describing the relationships between components and connectors, is not enough. The
need to reduce the maintenance effort and avoid architecture erosion because deci-
sions were never recorded motivates the need to replay them. Hence, the processes to
achieve this goal should be clearly described.

2 Processes for Architecting with Design Rationale

Previous efforts tried to characterize design decisions in architecture, but also impor-
tant are the processes that use such knowledge under typical software engineering

322 F. Nava, R. Capilla, and J.C. Dueñas

activities. A recent report [10] distinguishes between architecture as a product from
architecture as a process. The former considers design decisions “as a product” while
the latter deals with the processes used in the decision-making activity. The classifica-
tion proposed in [10] distinguishes four main types of activities: architecting and
sharing knowledge in the producer side and assessment and learning knowledge in the
consumer side. Our goal in this work is to detail the sub-activities that happen under
these four main categories as a refinement outcome. Those activities labelled with an
asterisk (*) have been defined in [10].

Architecting*: It concerns with those process that create and store architectural
knowledge. The sub-tasks we define for this activity are discussed below.

• Make decisions: Software architects make decisions motivated by a set of goals.
Decisions are stored and characterized by a set of attributes that describe the ra-
tionale that motivated each decision. As knowledge producers, decisions are
stored and documented for future (re)use, but before a decision is selected as
valid, we have to evaluate the impact of other alternatives and store these as well.
Because decisions can be made at different times and before the final choices are
made, it seems useful to label the status of the decisions. Often, decisions are
made based on previous knowledge such as design patterns, architectural styles,
or previous decisions. Hence, knowledge searching activities can be carried out.

o Knowledge search / discovery / reuse: Knowledge search processes
and discovery methods are particularly welcome [5] to extract stored
knowledge. Different forms of search like, navigation, browsing, que-
ries, keyword search, etc, can be employed to reuse codified knowledge.

• Evaluate decisions: The reasoning activity is usually based on the consideration
of analysis of the implications for a set of similar decisions. Therefore, an evalua-
tion process based on simulation, scenario analysis, or impact analysis should be
carried out to decide the best alternative among several ones. The expertise of the
architect plays a key role in the evaluation activity.

• Validate decisions: Before decisions are stored we should check the integrity of
such knowledge (e.g.: removing a dependency between two design decisions may
cause a loss of information or the existence of incompatible decisions).

Sharing*: Knowledge sharing makes architectural knowledge (AK) available to oth-
ers [10]. Several ways can be used for transferring AK [7], but there is a need to de-
termine which AK is worthy to be shared. We define the following sub-activities.

• Passive sharing: The architect retrieves and reviews existing and structured AK
(e.g.: documentation, books, web pages, codified knowledge) stored by others.

• Active sharing: Meetings with other stakeholders promote an active way of
knowledge sharing, which can be improved using publisher-subscriber strategies
(e.g.: RSS, contents for distributed teams) under a collaborative environment.

Assessing*: Assessment is used to make recommendations about viable an unviable
decisions and two types of assessment can be defined.
• (Pre) Assessment for architecting: The results of evaluation and simulation

tasks are used to assess the architect for future decisions. Impact analysis pro-
vides recommendations about the viability of a decision before it is made.

 Processes for Creating and Exploiting Architectural Design Decisions 323

• (Post) Assessment for learning: This task performs assessment during post-
architecting activities (e.g.: maintaining) as it learns from past decisions and
documented experiences.

Learning*: Past experiences are valuable knowledge assets for architects as consum-
ers of such knowledge. E-learning and personal training can be used.

3 Tool Support with ADDSS

Prior work describes ADDSS 1.0, a web-based tool for recording, managing and
documenting architectural design decisions [3] and this section outlines the processes
discussed in section 2 and supported by the new version ADDDS 2.0.

Architecting: ADDSS 2.0 supports the decision making process and stores design
decisions which can be associated to requirements and design objects. The rationale
of the decisions is described as a free text description. ADDSS 2.0 stores the date of
the decision, the responsible, and a status indicating if the decision is pending, re-
jected, approved, etc. ADDSS users can navigate and browse through the decisions
following the iterations of the architecting process. A query mechanism retrieves
information about the trace links between decisions to requirements and to architec-
tures. The user can browse stored design patterns and apply them in new decisions,
but no mechanism is defined to reuse past decisions. The evaluation of design deci-
sions is partially supported by adding alternative decisions that can be evaluated ex-
ternally, but no specific fields have been defined to store the pros and the cons of the
decisions being considered. ADDSS 1.0 doesn’t provide by the moment validation
mechanisms.

Sharing: Sharing mechanisms are limited to passive sharing were the user can exam-
ine the documentation generated automatically by the tool.

Assessing: Assessment is a human task difficult to automate. ADDSS facilitates as-
sessment for architecting because alternative decisions can be stored and labelled
adequately. Assessment for learning in ADDSS 2.0 has at this stage no direct support
as a guidance based on experience.

Learning: ADDSS only provides PDF documents from the decisions made but no
further recommendations as a learning guide.

4 Conclusions

This paper extends the activities described in [10] and details those implemented in
ADDSS 2.0. Similar efforts with tool supports can be found in [1] [8]. From a process
perspective, we have analyzed the sub-activities that would help architects to create
and exploit the rationale that guides the reasoning activity [9], but it is difficult to
illustrate in 4 pages how these activities should carried out. A preliminary evaluation
was done in 2006-2007 with ADDSS 1.0 (22 students of a master course organized in
11 teams participated in creating the architecture of a real system). Most of the teams
spent their time in architecting and evaluation, but they had some difficulties to make

324 F. Nava, R. Capilla, and J.C. Dueñas

explicit the decisions made. Most of the teams perceived useful to record design deci-
sions because the architecture was developed in several iterations in different days, so
they could remember the decisions made. Because not much interaction happened
between the teams, sharing was limited, and we didn’t spend time in learning as it was
an isolated project. For next months we expect to have additional results with the new
capabilities implemented in ADDSS 2.0.

References

1. Babar, M.A., Gorton, I.: A Tool for Managing Software Architecture Knowledge. In: Pro-
ceedings of the 2nd Workshop on Sharing and Reusing Architectural Knowledge, ICSE
Workshops (2007)

2. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

3. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A Web-based Tool for Managing Architec-
tural Design Decisions. In: Proceedings of the Workshop on Sharing and Reusing Archi-
tectural Knowledge. ACM Digital Library, Software Engineering Notes, vol. 31(5)

4. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures. Views and Beyond. Addison-Wesley, Reading
(2003)

5. de Boer, R.C.: Architectural Knowledge Discovery, Why and How? In: Proceedings of the
Workshop on Sharing and Reusing Architectural Knowledge, ACM Digital Library, Soft-
ware Engineering Notes, vol. 31(5)

6. Dueñas, J.C., Capilla, R.: The Decision View of Software Architecture. In: Morrison, R.,
Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 222–230. Springer, Heidelberg
(2005)

7. Farenhorst, R.: Tailoring Knowledge Sharing to the Architecting Process. In: Proceedings
of the Workshop on Sharing and Reusing Architectural Knowledge, ACM Digital Library,
Software Engineering Notes, vol. 31(5)

8. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
5th IEEE/IFIP Working Conference on Software Architecture, pp. 109–118 (2005)

9. Kruchten, P., Lago, P., van Vliet, H., Wolf, T.: Building up and Exploiting Architectural
Knowledge. In: 5th IEEE/IFIP Working Conference on Software Architecture (2005)

10. Lago, P., Avgeriou, P.: First Workshop on Sharing and Reusing Architectural Knowledge.
ACM SIGSOFT Software Engineering Notes 3(5), 32–36

11. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. Software
Engineering Notes, ACM SIGSOFT, 40–52 (October 1992)

12. Tang, A., Babar, M.A., Gorton, I., Han, J.A.: A Survey of the Use and Documentation of
Architecture Design Rationale. In: 5th IEEE/IFIP Working Conference on Software Archi-
tecture (2005)

13. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

14. Wang, A., Sherdil, K., Madhavji, N.H.: ACCA: An Architecture-centric Concern Analysis
Method. In: 5th IEEE/IFIP Working Conference on Software Architecture (2005)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 325–329, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Supporting the Automatic Generation of Proto-
Architectures

Elena Navarro1, Patricio Letelier2, Javier Jaén2, and Isidro Ramos2

1 Computing Systems Department, UCLM, Albacete, Spain
enavarro@dsi.uclm.es

2 Department of Information Systems and Computation, UPV, Valencia, Spain
{letelier,fjaen,iramos}@dsic.upv.es

Many issues must be taken into account in order to provide a right specification
of the system-to-be to meet properly the established requirements. In this sense,
the introduction of proper supporting techniques able to automate as much as
possible the process means a clear advantage. In this work, we introduce a tool
called MORPHEUS that gives support to our proposal by providing traceability
throughout the process of generation of proto-architecture from requirements.

1 Introduction

The specification of the Software Architecture of the system-to-be meeting the
established requirements is always a challenging activity. Many decisions at the
architectural level must be made to meet both the functional and non-functional
requirements. However, it must be taken into account the impact of these decisions and
the relations they have with other decisions and requirements before realizing them in
the system-to-be. ATRIUM [6] is a methodology that proposes a support in this context
(see Fig.1). It is an Aspect-Oriented Software Development (AOSD) proposal that
provides support to the specification, analysis and traceability from early-aspects in the
Requirements stage to their realization in the architecture by using an Aspect-Oriented
Architecture Description Language (AO-ADL).

Fig. 1. A sketched view of ATRIUM

During the description of ATRIUM, several tasks, which could be cumbersome and
error-prone for the analysts, have been automated in order to speed up the process and
improve the results. One of these tasks is the automatic generation of the proto-
architecture from the set of aspectual scenarios. In order to provide a proper solution to

326 E. Navarro et al.

carry out these tasks, we have developed a tool called MORPHEUS whose main
features are described in the following.

2 MORPHEUS: A Supporting Tool Support to ATRIUM

ATRIUM is defined by means of three different models: requirements model, scenario
model and architectural model. For this reason, MORPHEUS has been developed
providing the user with three different environments:

−Requirements Environment [4] provides analysts with a requirements metamodelling
tool for describing Requirement Metamodels customized according to the project’s
semantic needs. This environment automatically provides a tool for modelling
according to the active Metamodel along functionality for its analysis. This analysis
can be customized to the specific needs as well. This environment is used to describe
and exploit the ATRIUM Goal Model [5] that is in charge of describing the
system-to-be requirements and analysing architectural alternatives.

−Scenarios Environment has been expressly developed to describe architectural
scenarios by means of a UML 2.0 profile defined as an extension of the Sequence
Diagrams. It facilitates the description of architectural and environmental elements
along with specific expressiveness to support the aspectual approach. It also
provides facilities to synthesize the proto-architecture from the set of scenarios.
More details about this environment are provided in section 2.1.

−Software Architecture Environment [7] makes available a whole graphical
environment for the PRISMA AO-ADL. This means that if PRISMA was the
selected target architectural model to be generated by the Scenarios Environment,
the proto-architecture obtained from the Scenarios Model could be refined. Once the
software architecture has been completed, the analyst can proceed to generate code
for its execution in the PRISMANET Middleware.

It is worthy of note that traceability is implicitly maintained among the different
environments thanks to the automatic links established connecting elements belonging
to the different models.

2.1 Scenarios Environment

In ATRIUM, the Scenario Model is exploited to carry out the generation of the PRISMA
proto-architecture. This Model provides us with partial views of the architecture, where
only shallow-components, shallow-connectors and shallow-systems have been identified
along with their behavior expressed through their interaction. They are called shallow
because we do not need their complete definition but an initial one that can be refined in
later stages of development if it is necessary. In order to describe these Scenarios, a UML
2.0 profile has been defined that extends the Sequence Diagrams to provide the necessary
expressiveness for modeling concepts such as Systems, Aspectual Messages, etc (more
details in [3]). Fig. 2 shows an example of an ATRIUM Scenario where several
architectural and environmental elements are collaborating by means of a sequence of
messages. It can be observed that different colors and shapes are used to facilitate its
comprehension.

 Supporting the Automatic Generation of Proto-Architectures 327

Fig. 2. What MORPHEUS looks like when the Scenarios Editor is loaded

Fig. 2 shows that the Scenarios Editor provides the user with different functionalities to
facilitate the modeling. The Model Explorer facilitates the navigation through the Scenario
Model being defined in an easy an intuitive way and manage (creation, modification and
deletion) the defined scenarios. It is pre-loaded with part of the information of the Goal
Model being defined. For this reason, the selected operationalizations, catalogued by their
dimensions, are displayed. It facilitates to maintain the traceability between the Goal
Model and the Scenarios Model. Associated to each operationalizations one or several
scenarios can be specified to describe how the shallow architectural elements collaborate
to realize that operationalization (see scenario “OpenTool” in Fig.2). In the middle of the
environment is situated the Graphical View where the elements of the scenarios can be
graphically specified.

On the right side it can be seen the Stencil that makes available the different shapes
to describe graphically the ATRIUM scenarios. The user only has to drag and drop on
the Graphical View the necessary shapes. In addition, below the stencil a control allows
the user to introduce the properties necessary for each element being defined.

The second context is the Synthesis processor. It is in charged of the generation of
proto-architecture. For its development, the alternative selected was the integration of one
of the existing model transformations engines considering that it has to provide support to
the transformations described in [2]. They have been defined to synthesize the
proto-architecture from the set of architectural scenarios. Specifically, ModelMorf [1] was
selected because it supports the QVT-Relations language. It should be mention that this

328 E. Navarro et al.

engine supports multi-directional transformation specification and incremental
transformations. It is worthy of note that it also provides support to traceability by means
of the generation of trace class associated to each relation. This means that it can be
exploited to maintain the traceability both bottom-up and top-down. This engine accepts
as inputs the Metamodels and their corresponding models in XMI format to perform the
transformation. For this reason, the Synthesis processor proceeds in several steps. First, it
stores the Scenario Model being defined in XMI. Second, it provides the user with a
graphical control to select the destination target architectural model, the QVT rules for its
transformation and the name of the protoarchitecture to be generated. By default,
PRISMA is the selected target architectural model because the QVT rules for its
generation have been defined. However, the user can defined its own rules and
architectural Metamodel to synthesize the Scenario Model according to his/her specific
needs. Finally, the Synthesis processor performs the transformation by invoking
ModelMorf. The result is an XMI file describing the proto-architecture. The Software
Architecture environment can load this XMI file for its refinement if PRISMA was the
selected target architectural model.

3 Conclusions

In this work a brief introduction to MORPHEUS, the supporting tool of ATRIUM, has
been presented. Special emphasis has been put on the Scenarios Environment. It has
been described how it facilitates the description of the ATRIUM Scenario Model and
how it is synthesized to generate the target proto-architecture. It must be highlighted
that as far as we know this is the only tool that performs this synthesize using QVT and
considering the aspectual approach from early stages of development.

Acknowledgements. This work is funded by the Dept. of Science and Technology
(Spain) under the National Program I+D+I, META project TIN2006-15175-C05-01.

References

[1] ModelMorf (2007), http://www.tcs-trddc.com/ModelMorf/index.htm
[2] Navarro, E.: Architecture Traced from RequIrements by applying a Unified Methodology.

PhD thesis, Computing Systems Department, UCLM (May 30, 2007)
[3] Navarro, E., Letelier, P., Ramos, I.: Requirements and Scenarios: playing Aspect Oriented

Software Architectures. In: WICSA 2007. Sixth Working IEEE/IFIP Conference on
Software Architecture, Mumbai, India (short paper, January 6-9 2007)

[4] Navarro, E., Letelier, P., Reolid, D., Ramos, I.: Configurable Satisfiability Propagation for
Goal Models using Dynamic Compilation Techniques. In: 15th Int. Conference on
Information System Development, Budapest, Hungary (August 31-September 2, 2006)

[5] Navarro, E., Letelier, P., Mocholí, J.A., Ramos, I.: A Metamodeling Approach for
Requirements Specification. Journal of Computer Information Systems 47(5), 67–77 (2006)

[6] Navarro, E., Ramos, I., Pérez, J.: Software Requirements for Architectured Systems. In: RE’03.
Proceedings of 11th IEEE International Requirements Engineering Conference (short paper),
Monterey, California, USA, September 8-12, 2003, pp. 365–366. IEEE Computer Society
Press, Los Alamitos (2003)

 Supporting the Automatic Generation of Proto-Architectures 329

[7] Pérez, J., Navarro, E., Letelier, P., Ramos, I.: A Modelling Proposal for Aspect-Oriented
Software Architectures. In: ECBS. 13th IEEE Int. Conference and Workshop on the
Engineering of Computer Based Systems, Potsdam, Germany, March 27th-30th, 2006,
IEEE Computer Society Press, Los Alamitos (2006)

[8] QVT: MOF Query/Views/Transformations final adopted specification. OMG document
ptc/05-11-01, 2005 (November 5, 2005)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 330 – 334, 2007.
© Springer-Verlag Berlin Heidelberg 2007

AspectLEDA: Extending an ADL with Aspectual
Concepts*

Amparo Navasa, Miguel A. Pérez, and Juan M. Murillo

Quercus Software Engineering Group
Department of Computer Science, University of Extremadura. Spain

{amparonm,toledano,juanmamu}@unex.es

Abstract. When increasing the complexity of software systems new techniques
allowing for their adequate manipulation are required. In the last ten years,
AOSD has been proposed to manage the systems complexity by considering
concepts of AO programming extended along the software life cycle. The
suitability of the existence of an AO architectural design appears when AO
concepts are extended to the whole life cycle. In order to adequately specify the
AO design, Aspect-Oriented ADLs are needed. In this paper AspectLEDA, an
ADL to support architectural descriptions treating aspects, is presented.

Keywords: Software Architecture, AOSD, ADL, AO-ADL.

1 Introduction and Motivations

Software Architecture combined with Aspect-Orientation (AO) is concerned with
representing concerns that cut across regular architectural components. Suitable
ADLs to describe architectures including aspects (AO-ADLs) are needed to endow
with linguistic support for architecture descriptions that integrate aspects. They should
also provide a formal basis to analyze the architecture properties and to detect errors.

Several proposals for the integration of Software Architecture and Aspect Oriented
Software Development (AOSD) have been developed in order to join the advantages
of both approaches. In this scenario, not many AO-ADLs have been proposed. They
face the introduction of aspects into ADLs in different ways: some of them are
extensions of regular ADL, but others are new languages; most of them introduce the
aspects as components but others as connectors or as architectural views. Besides,
each AO-ADL follows the symmetric or asymmetric (most of them) approach to deal
with aspects. Some of them provide a strong formal basis to check system properties.
In addition, several of the ADL allow for code generation and thus obtaining an
architectural prototype. Finally, most of them provide the designer with a tool to
define the architecture. References can be found in [2].

In this paper AspectLEDA, an AO-ADL, is proposed which is aligned with those
criteria in the following way. It is based on a regular ADL, LEDA[1], which has been
extended. AspectLEDA follows the asymmetric model which provides the advantage

* This research work is partially supported by project number TIN 2005-09405-C02-02 and

2PR04B011.*

 AspectLEDA: Extending an ADL with Aspectual Concepts 331

C1 C2

Asp1

Aspect-Level
A new kind of
connector
extending UML

Fig. 1. Intuitive Graphical Description

of supporting system evolution. Besides, it incorporates dynamic reconfiguration by
means the reflective architecture model. Aspects in AspectLEDA are turned into
components which remain separated (not weaved) during the whole process. As
additional property it is supported by a tool that assist the architect during the design
providing him with the possibility of generating an executable Java code to obtain the
simulation of the architecture.

Thus, the reasons why AspectLEDA is proposed are twofold: first to provide
support for an architectural description in which aspects are considered; and secondly,
to provide a base to check whether the architecture will support the behaviour
expected in the system.

In section 2 how to describe AO architectures with AspectLEDA is shown.

2 AspectLEDA

AspectLEDA is an extension of LEDA with primitives for describing AO concepts.
LEDA is an ADL for the description and verification of structural and behavioural
properties of software systems which has its semantics specified in Pi-calculus. In
addition, LEDA language is structured in two levels: components and roles.

The first step when describing an AspectLEDA architecture is generating an
intuitive description. Fig. 1 (partially) represents the system components (C1 and C2),
and the aspects to be added (as
components). In addition, a new kind
of connector extending UML is defin-
ed allowing us to represent interacti-
ons between components and aspects.
It will intercept the interact tions prev-
iously defined between the system
components. Such connector represent
complex artefacts including the point,
in which the aspect must act, the cond-
itions under which the aspect must be
activated and the moment in which it
must be done.

Detailed Architecture Description. After the first intuitive approach of the system
the new connector must be described. To do it, the scenarios of the use case affected
by the aspect are studied and the sequence diagrams representing them are extended: a
new architectural component, which contains the aspectual component and manages
its interactions, has been included. It will intercept the methods call defining the Join
Points. The objective is to produce the Common Items (CI) structure for the aspect
which contains the required details of the interactions between aspects and
components; it will be used later. For each scenario in which the aspect is involved a
CI is produced. Table 1 shows its contents.

AspectLEDA Language Description. At this point, the required information to
proceed with the detailed description of the system is available. The first step is
describing the base system. Since the obliviousness principle must be observed [3],

332 A. Navasa, M.A. Pérez, and J.M. Murillo

the base system includes neither reference to aspects nor special primitives supporting
aspects. Thus, the base system is described in LEDA. Fig. 2 shows the architecture,
which is described as a composed component including generic components Client
and Server, which are defined by their interfaces. The roles description specifies the
interaction protocols. The connection between components is specified in the
attachments section.

Table 1. Common Items structure

Element Description
Aspect Name It specifies the name for the aspect to which this CI structure is associated

Insertion Point - IP Each cutting point identified in the Sequence Diagram. JP in AOP

Extension Point Identified point in the use case

Aspect Operation Name of the aspect component to be applied

Component Name of the component affected by the IP

 Event Event type triggering the aspect application

Application Condition Conditions that must be satisfied allowing the aspect to be executed

When Clause When the aspect can/must be applied

Fig. 3. Aspect Definition in LEDA

Fig. 2. Basic System Architecture in LEDA Fig. 4. AspectLEDA architecture, one aspect

Next, aspects must be described. They are expressed in LEDA as regular
components (Fig. 3). Now the extended system can be described in AspectLEDA. Its
description is simple (Fig. 4): A system in AspectLEDA is defined as a composed
component -composition section-, constituted by two kinds of elements: system and
aspects. They are defined as architectural components. The interaction between the
system element and the aspects is described in the attachments section. Some

Component Basesystem {
interface none;
composition
 ccli: Client;
 cserv: Server;
attachments
ccli.requireM(serverop,param)<>cserv.provideM
(serverop,param);
}
component Client {
interface
 requireM:RequireM;
}
component Server {
interface
 provideM:ProvideM;
}
role ProvideM(serverop,param){
 spec is
 serverop?(answer).(value)answer!(value).
 ProvideM(serverop,param);
 }
role RequireM(serverop,param){
 spec is
 (answer)serverop!(answer).answer?(value).
 RequireM(serverop,param);
 }

instance basesys:Basesystem;

component Aspect {
interface
 asprole:AspectRole;
}
role AspectRole(aspectop,param){
 spec is
 aspectop?(ans).(val)answer!(val).
 AspectRole(aspectop,param);
 }

Component Extendedsystem {
composition
 basesystem: System;
 asp: Aspect;
attachements
 basesystem.cserv.serverop()<<RMA,
 condvalue,when_cond>>asp.aspectop();
}
component System {
interface
 none;
}
component Aspect {
interface
 asprole: AspectRole;
}
instance extsys: Extendedsystem;

 AspectLEDA: Extending an ADL with Aspectual Concepts 333

Fig. 5. AO-Architecture Graphical Representation

AspectSupercoordinator

Coordinator

CClient CServer

Base system

Intercept

ProvideM

AspectRoleReplytoCo

parameters describing the new system architecture have been included between the
attached elements representing the needed information (from the CI structure). Finally
components and their interfaces are included in the AspectLEDA description.

Architecture Execution. AspectLEDA is supported by the Aspect Oriented Software
Architecture Tool for LEDA (AOSATool/LEDA) which assists the software architect
during the design process. He specifies the aspects and the CI structure to be included
in the architecture; then, the tool generates AspectLEDA code. The tool also translates
the AspectLEDA architecture into an equivalent LEDA one. Then it is possible to
generate and run a Java program executing this architecture and thus to check if the
obtained behaviour is the expected one. A formal Pi-calculus specification of the
system can be obtained as well.

AspectLEDA Semantic. The
obtained AO-architecture is based
on the use of the AO System Ar-
chitecture Model (AOSA Model)
[4], which allows aspects remain
separated in the LEDA descrip-
tion. This approach is based on
the principle which state that the
separation of cross- cutting con-
cerns can be reduced to a co-
ordination prob lem. Thus, a
coordination component can be
used to coordinate the execution
of the base and aspect codes sort-
ing out all the actions performed
by the system.

Fig. 5 shows a representation of the obtained LEDA architect- ure in which are
represented the elements of the base system, the aspectual components and the
elements proposed by the model:

1 A Coordinator component, which is generated for each Insertion Point (IP) on
the base components, that is, for each operation of the base components that will
be affected for an aspect. The Coordinator, on the one hand, detects when the
operation designed by its IP is wanted to be executed and, on the other, orders to
the associated aspect the execution of the corresponding operation1. The
Coordinator manages the interactions considering the satisfied condition.

2 The SuperCoordinator is coordinating the coordinator, determining whether the
conditions under which aspect can be executed are true or not. Before proceeding
with the aspect execution, each coordinator asks the SuperCoordinator.

Acknowledgements

We would like to thank to the anonymous referees for the useful comments on this
paper and the suggestions given by them.

1 When several aspects affect the same IP, the coordinator manages the aspect priority.

334 A. Navasa, M.A. Pérez, and J.M. Murillo

References

1. Canal, C., et al.: Compatibility and Inheritance in Software Architecture. Science of
Computing Programming 41(2), 105–130 (2001)

2. Chitchyan, R., et al.: Survey of Aspect-Oriented Analisis and Design Approaches.
Document ID AOSD-Europe-ULANC-9 (May 2005)

3. Filman, R., et al.: Aspect-Oriented Software Development. Addison-Wesley, Reading
(2005)

4. Navasa, A., et al.: Aspect Modelling at Architecture Design. In: Morrison, R., Oquendo, F.
(eds.) EWSA 2005. LNCS, vol. 3527, pp. 41–48. Springer, Heidelberg (2005)

F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 335 – 338, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Experiences Using a Component-Oriented
Architectural Framework for Robots and Its

Improvement with a MDE Approach*

Francisco J. Ortiz, Juan A. Pastor, Diego Alonso, Bárbara Álvarez,
and Pedro Sánchez

Division of Electronics Engineering and Systems (DSIE)
Universidad Politécnica de Cartagena, Campus Muralla del Mar s/n

30202 Cartagena, Murcia Spain
francisco.ortiz@upct.es

Abstract. This paper describes the experience of the DSIE research group in
the developing of the EFTCoR family of robots using an abstract architectural
framework ACRoSeT, following the component-based paradigm. Using
abstract components allow us to define very different architectures in a platform
independent way. The translation of the abstract components to platform
specific code is a hard and difficult task that can be partially automated with the
help of the model transformation tools provided by the MDE approach.

Keywords: MDE, component-based software architecture, teleoperated robot.

1 Introduction

This paper describes the authors’ experiences using software architectures in the
development of teleoperated cranes and vehicles for ship hull cleaning in the context
of the EFTCoR project. This development was specially challenging due to:

• The use of different execution platforms and different programming languages.
• Different functional requirements makes impossible to use a single architecture.

We needed a way to define different architectures sharing common components. With
these ideas in mind, we defined ACRoSeT [1], an abstract architectural framework for
the domain of teleoperated robots.

Teleoperated robotic systems cover a broad range of mechanisms that usually
perform a small number of highly specialized tasks. Such specialization implies high
variability that makes very difficult to design a single architecture flexible enough to
deal with such heterogeneity. For this reason it is required a flexible and extensible
architectural framework that (1) does not impose a concrete architecture, but allow
defining different architectures, (2) allows reusing components in systems with

* This work was partially supported by the Spanish CICYT project MEDWSA, ref. TIC2006-

15175-C05-02 and the Regional Government of Murcia Seneca Program, ref. 02998-PI-05.

336 F.J. Ortiz et al.

different architectures, (3) allows the integration of components may be software or
hardware, and (4) makes possible to integrate “intelligence,” or to interoperate with
“intelligent systems”.

There have been numerous efforts to provide developers of software for robots
with component frameworks to ease the development of robotic systems. Among
these frameworks it is possible to highlight the following: OROCOS [3], CLARAty
[9], MCA [6], ORCA [2], CARMEN [4] and PLAYER [8]. All of them make very
valuable contributions that simplify the systems development.

2 Software Architecture for the Teleoperated Devices of the
ETFCoR Family

The EFTCoR system comprises a family of teleoperated systems which mission is to
retrieve and confine paint, oxide and marine adherences from ship hulls. The working
environments are not fixed, there is a great variety of ship types, hull areas and
shipyards characteristics, the systems consider different degrees of autonomy and
different systems may have to work cooperatively at the same time.

ACRoSeT provides a common framework of abstract components to design
software for teleoperated robots with very diverse behaviours. The subsystems
defined by ACRoSeT are the following (see Fig. 1):

• Coordination, Control and Abstraction Subsystem (CCAS): abstracts and
encapsulates the functionality of the system physical devices.

• Intelligence Subsystem (IS): comprises the subsystems that provide intelligence to
the global system. These systems are considered users of the CCAS functionality.

• User Interaction Subsystem (UIS): interprets, combines and arbitrates between
orders that may come simultaneously from different users of the CCAS.

• Safety, Management and Configuration Subsystem (SMCS): Initializes, configures
and manages the application.

Fig. 1. An overview of the subsystems of ACRoSeT

 Experiences Using a Component-Oriented Architectural Framework 337

The CCAS comprises components that are defined in four levels of granularity: (1)
atomic components: abstract the characteristics of sensors and actuators, (2), Simple
Controllers, (3) Mechanisms Controllers, and (3) Robot Controllers.

3 Instantiations of ACROSET for the EFTCoR Family

In response to the special industrial requirements of the EFTCoR project, the cranes
(see Fig. 2) has been implemented using a PLC SIMATIC S7-300 and a Field-Bus
(PROFIBUS-DP). The second instantiation is a caterpillar vehicle capable of scaling a
hull thanks to permanent magnets (Fig. 3), carrying a manipulator that holds a
cleaning tool. The execution platform is an on-board embedded PC with RTLinux
Operating System.

Fig. 2. XYZ table mounted on a crane. Tests in NAVANTIA shipyards.

Fig. 3. Lazaro climbing vehicle

4 MDE

Model-Driven Engineering (MDE) [5] is an approach to software development in
which models are first-class entities that guide each and every step of the design
process. The other key concept in which rests MDE is model transformation [7].

338 F.J. Ortiz et al.

We have adopted a MDE approach to develop the software architecture of robotic
systems based on the abstract components proposed by ACRoSeT, using the Eclipse
development environment and plug-ins. Different transformations make possible to
map the ACRoSeT components to different platforms.

5 Conclusions

It is not possible to define a software architecture generic enough to be adapted to the
entire domain, but usually there is no need to develop such architecture. The aim is to
reuse components in different architectures and this is just what CBD and component
frameworks propose.

Current component frameworks for robotic applications generally impose a
concrete programming language and execution platform. As it is desirable to be able
to define components that are independent of both system architecture and execution
platform, ACROSET defines abstract components. However, the translation of the
ACROSET abstract components into concrete, platform specific components is a
difficult and error prone task. So, the ACROSET approach will only show its full
potential if we are able to find a way to automatically translate abstract components
into concrete components. The adoption of the MDE approach is a key step to achieve
this goal.

References

1. Álvarez, B., Sánchez, P., Pastor, J.A., Ortiz, F.: An Architectural Framework for Modeling
Teleoperated Service Robots. ROBOTICA 24(04), 411–418, Cambridge University Press,
ISSN 0263-5747

2. Brooks, A., Kaupp, T., Makarenko, A., Williams, S., Oreback, A.: Towards component-
based robotics. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, August 2-6, 2005, pp. 163–168 (2005)

3. Bruyninckx, H., Konincks, B., Soetens, P.: A Software Framework for Advanced Motion
Control. Dpt. of Mechanical Engineering, K.U. Leuven. OROCOS project inside EURON.
Belgium (2002)

4. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot
programming: The Carnegie Mellon Navigation (CARMEN) Toolkit. In: IEEE/RSJ Intl.
Workshop on Intelligent Robots and Systems (2003)

5. Schmidt, D.: Model-Driven Engineering. IEEE Computer 39(2) (2006), doi:10.1109/MC.
2006.58, ISSN 0018-9162

6. Scholl, K.U., Albiez, J., Gassmann, B.: MCA: An Expandable Modular Controller
Architecture, Karlsruhe University. 3rd Real-Time Linux Workshop, Milano, Italy (2001)

7. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-Driven
Software Development. IEEE Software 20(5), 42–45 (2003), doi: 10.1109/MS.
2003.1231150

8. Vaughan, R., Gerkey, B., Howard, A.: On device abstractions for portable, reusable robot code.
In: Proc. of the IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems (IROS) (2003)

9. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty architecture
for robotic autonomy. In: IEEE Proceedings. Aerospace Conference, Montana, USA, vol. 1,
pp. 121–132 (2001)

Author Index

Acuña, César J. 304
Ali, Nour 279
Almeida, Francisco 225
Alonso, Diego 335
Álvarez, Bárbara 179, 335
Anzures-Garćıa, Mario 271
Avgeriou, Paris 263

Balasubramaniam, Dharini 2, 288
Barkaoui, Kamel 156
Batista, Thais 317
Blanco, Vicente 225
Brown, Alan W. 237

Cámara, Javier 106
Canal, Carlos 106
Cantone, Giovanni 257
Capilla, Rafael 321
Carśı, José Ángel 279
Chavez, Christina 317
Correia, Rui 115
Costa, Cristóbal 279
Costa Pereira, Alessandro 195
Côté, Isabelle 29
Cubo, Javier 106
Cuesta, Carlos E. 304, 313

de la Fuente, Pablo 313
Detmold, Henry 288
Drira, Khalil 44
Duchien, Laurence 76
Dueñas, Juan C. 321

El-Ramly, Mohammad 115
Ellebæk Kjær, Kristian 171
Estevez, Elisabet 284

Falessi, Davide 257
Falkner, Katrina 288
Farenhorst, Rik 123
Figueiredo, Eduardo 207
Franch, Xavier 139
Fuentes, Lidia 292

Gámez, Nadia 292
Garcia, Alessandro 207, 317

Garlan, David 1
Giesecke, Simon 60
Grau, Gemma 139
Greenwood, R. Mark 2
Grissa Touzi, Amel 156
Gruhn, Volker 296

Hadj Kacem, Ahmed 44
Harrison, Neil B. 263
Hartmann, Falk 195
Hasselbring, Wilhelm 60
Heckel, Reiko 115
Heisel, Maritta 29
Hornos, Miguel J. 271

Iborra, Andrés 179

Jaén, Javier 325
Jerad, Chadlia 156
Jmaiel, Mohamed 44

Kadner, Kay 195
Kruchten, Philippe 257

Lago, Patricia 123
Le Meur, Anne-Françoise 76
Letelier, Patricio 325
Limon Cordero, Rogelio 275
Lopes, Sérgio 300
López-Sanz, Marcos 304
Losilla, Fernando 179
Loulou, Imen 44
Lucena, Carlos J.P. 207

Manset, David 308
Marcos, Esperanza 304
Marcos, Marga 284
Mart́ınez-Prieto, Miguel A. 313
Matos, Carlos M.P. 115
McClatchey, Richard 308
McDermid, John A. 237
Molesini, Ambra 317
Monteiro, João 300
Morrison, Ron 2
Munro, David S. 288
Murillo, Juan Manuel 106, 330

340 Author Index

Nava, Francisco 321
Navarro, Elena 325
Navasa, Amparo 330

Oquendo, Flavio 2
Ortiz, Francisco J. 335

Paderewski-Rodŕıguez, Patricia 271
Pahl, Claus 60
Papazoglou, Michael P. 11
Pastor, Juan A. 335
Pérez, Jennifer 279
Pérez, Miguel A. 330
Pinto, Mónica 292

Ramos Salavert, Isidro 275,
279, 325

Sánchez, Pedro 179, 335
Sant’Anna, Cláudio 207
Santos, Adrián 225
Schäfer, Clemens 296
Silva, Carlos 300

Tavares, Adriano 300

Valenzuela, Juan A. 292
van Vliet, Hans 123
Verjus, Hervé 308
Vicente-Chicote, Cristina 179

Waignier, Guillaume 76
Warboys, Brian 2
Wentzlaff, Ina 29

Zalewski, Andrzej 92

	Front Matter
	An Active Architecture Approach to Dynamic Systems Co-evolution
	What’s in a Service?
	Pattern-Based Evolution of Software Architectures
	Formal Design of Structural and Dynamic Features of Publish/Subscribe Architectural Styles
	An Ontology-Based Approach for Modelling Architectural Styles
	FIESTA: A Generic Framework for Integrating New Functionalities into Software Architectures
	Beyond ATAM: Architecture Analysis in the Development of Large Scale Software Systems
	Enabling Adaptivity in User Interfaces
	Architecture Migration Driven by Code Categorization
	Effective Tool Support for Architectural Knowledge Sharing
	A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures
	Hierarchical Verification in Maude of L f P Software Architectures
	First Class Connectors for Prototyping Service Oriented Architectures
	Wireless Sensor Network Application Development: An Architecture-Centric MDE Approach
	A Distributed Staged Architecture for Multimodal Applications
	On the Modularity of Software Architectures: A Concern-Driven Measurement Framework
	Lightweight Web Services for High Performace Computing
	The Art and Science of Software Architecture
	Issues in Applying Empirical Software Engineering to Software Architecture
	Leveraging Architecture Patterns to Satisfy Quality Attributes
	Architecture for Developing Adaptive and Adaptable Collaborative Applications
	Analyzing Styles of the Modular Software Architecture View
	Dynamic Reconfiguration of Software Architectures Through Aspects
	Model-Driven Approach for Designing Industrial Control Systems
	Informed Evolution
	Using Connectors to Model Crosscutting Influences in Software Architectures
	From Mobile Business Processes to Mobile Information Systems
	An Architectural Model for Small-Scale Component-Oriented Frameworks
	UML Profile for the Platform Independent Modelling of Service-Oriented Architectures
	Managing Separation of Concerns in Grid Applications Through Architectural Model Transformations
	Aqueducts : A Layered Pipeline-Based Architecture for XML Processing
	On the Interplay of Crosscutting and MAS-Specific Styles
	Processes for Creating and Exploiting Architectural Design Decisions with Tool Support
	Supporting the Automatic Generation of Proto-Architectures
	AspectLEDA: Extending an ADL with Aspectual Concepts
	Experiences Using a Component-Oriented Architectural Framework for Robots and Its Improvement with a MDE Approach
	Back Matter

