
Lecture Notes in Computer Science 3928
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Josep Domingo-Ferrer Joachim Posegga
Daniel Schreckling (Eds.)

Smart Card
Research and
AdvancedApplications

7th IFIP WG 8.8/11.2 International Conference, CARDIS 2006
Tarragona, Spain, April 19-21, 2006
Proceedings

1 3

Volume Editors

Josep Domingo-Ferrer
Universitat Rovira i Virgili, Departament d’Enginyeria Informatica i Matematiques,
Av. Paisos Catalans 26, 43007 Tarragona, Catalonia, Spain
E-mail: josep.domingo@urv.net

Joachim Posegga
Daniel Schreckling
Universität Hamburg
Arbeitsbereich Sicherheit in Verteilten Systemen (SVS)
Fachbereich Informatik
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
E-mail: {posegga,schreckling}@informatik.uni-hamburg.de

Library of Congress Control Number: 2006922624

CR Subject Classification (1998): E.3, K.6.5, C.3, D.4.6, K.4.1, E.4, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-33311-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33311-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© 2006 IFIP International Federation for Information Processing, Hofstr. 3, A-2361 Laxenburg, Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11733447 06/3142 5 4 3 2 1 0

Preface

Smart cards are an established security research area with a very unique prop-
erty: it integrates numerous subfields of IT Security, which often appear scat-
tered and only loosely connected. Smart card research unites them by providing
a common goal: advancing the state of the art of designing and deploying small
tokens to increase the security in Information Technology.

CARDIS has a tradition of more than one decade, and has established itself
as the premier conference for research results in smart card technology. As smart
card research is unique, so is CARDIS; the conference successfully attracts aca-
demic and industrial researchers without compromising in either way. CARDIS
accommodates applied research results as well as theoretical contributions that
might or might not become practically relevant. The key to making such a mix-
ture attractive to both academia and industry is simple: quality of contributions
and relevance to the overall subject.

This year’s CARDIS made it easy to continue this tradition: we received
76 papers, nearly all of them relevant to the focus of CARDIS and presenting
high-quality research results. The Program Committee worked hard on selecting
the best 25 papers to be presented at the conference.

We are very grateful to the members of the Program Committee and the
additional referees for generously spending their time on the difficult task of
assessing the value of submitted papers. Daniel Schreckling provided invaluable
assistance in handling submissions, managing review reports and editing the
proceedings. The assistance of Jordi Castellà in handling practical aspects of
the conference preparation is also greatly appreciated.

Financial support by the following organizations is gratefully acknowledged:
IEEE Spain Section, Rovira i Virgili University (ETSE, DEIM) and Spain’s
Ministry of Science and Education.

Finally, we would also like to thank all those who have submitted papers to
IFIP CARDIS 2006, and encourage them to stay with CARDIS in subsequent
years. The authors of the accepted papers certainly deserve the highest respect,
since it is they who wrote this book.

January 2006 Josep Domingo-Ferrer
Joachim Posegga

Organization

CARDIS 2006 was organized by the Universitat Rovira i Virgili, Catalonia,
Spain.

Conference Organization

Conference General Chair Josep Domingo-Ferrer
(Universitat Rovira i Virgili,
Catalonia, Spain)

Program Committee Chair Joachim Posegga
(University of Hamburg, Germany)

Advisory Committee José A. Delgado-Peńın
(IEEE Spain Section Chair, Spain)

Program Committee

Boris Balacheff
(Hewlett-Packard Labs, UK)

Bertrand du Castel
(Axalto, USA)

Josep Domingo-Ferrer
(Universitat Rovira i Virgili,
Catalonia, Spain)

Dieter Gollmann
(TU Hamburg-Harburg, Germany)

Louis Guillou
(France Télécom, France)

Pieter Hartel
(University of Twente, Netherlands)

Peter Honeyman
(University of Michigan, USA)

Dirk Husemann
(IBM Research, Switzerland)

Eduardo de Jong
(Sun Microsystems, USA)

Jean-Louis Lanet
(Gemplus Labs, France)

Javier Lopez
(University of Malaga, Spain)

Bernd Meyer
(Siemens AG, Germany)

Mike Montgomery
(Axalto, USA)

Pierre Paradinas
(CNAM, France)

Jean-Jacques Quisquater
(Université Catholique de Louvain,
Belgium)

Francesc Sebé
(Universitat Rovira i Virgili,
Catalonia, Spain)

François-Xavier Standaert
(Université Catholique de Louvain,
Belgium)

Jean-Jacques Vandewalle
(Gemplus Labs, France)

VIII Organization

Additional Referees

A. Ali
V. Benjumea
D. Bolzoni
E. Brier
R. Brinkman
I. Buhan
M. Casassa-Mont
J. Castellà-Roca
J. Cederquist
L. Chen
M. Ciet
R. Corin
M. Czenko
M. Dekker
G.M. de Dormale

J.B. Fischer
C. Fontaine
P. Girard
B. Gonzalvo
D. Gross-Amblard
H. Handschuh
K. Harrisson
Z. HuanGuo
M. Johns
M. Joye
A. Kargl
K. Lu
F. Macé
A. Maña
W. Mao

A. Mart́ınez-Ballesté
A. Muñoz E. Peeters
H.C. Pöhls
E. Prouff
R. Roman
A. Saptawijaya
D. Schreckling
J. Seedorf
D. Simplot-Ryl
A. Solanas
A. Viejo-Galicia
L.Y. Wei
A. Zych

Table of Contents

Smart Card Applications

Design, Installation and Execution of a Security Agent for Mobile
Stations

William G. Sirett, John A. MacDonald, Keith Mayes,
Konstantinos Markantonakis . 1

Towards a Secure and Practical Multifunctional Smart Card
Idir Bakdi . 16

Implementing Cryptography on TFT Technology for Secure Display
Applications

Petros Oikonomakos, Jacques Fournier, Simon Moore 32

A Smart Card-Based Mental Poker System
Jordi Castellà-Roca, Josep Domingo-Ferrer, Francesc Sebé 48

A Smart Card Solution for Access Control and Trust Management for
Nomadic Users

Daniel Dı́az Sánchez, Andrés Maŕın Lopez,
Florina Almenárez Mendoza . 62

Smart Cards and Residential Gateways: Improving OSGi Services with
Java Cards

Juan Jesús Sánchez Sánchez, Daniel Dı́az Sánchez,
José Alberto Vigo Segura, Natividad Mart́ınez Madrid,
Ralf Seepold . 78

Zero Footprint Secure Internet Authentication Using Network Smart
Card

Asad M. Ali . 91

An Optimistic NBAC-Based Fair Exchange Method for Arbitrary Items
Masayuki Terada, Kensaku Mori, Sadayuki Hongo 105

Side Channel Attacks

Generic Cryptanalysis of Combined Countermeasures with Randomized
BSD Representations

Tae Hyun Kim, Dong-Guk Han, Katsuyuki Okeya, Jongin Lim 119

X Table of Contents

Amplifying Side-Channel Attacks with Techniques from Block Cipher
Cryptanalysis

Raphael C.-W. Phan, Sung-Ming Yen . 135

Power Analysis to ECC Using Differential Power Between Multiplication
and Squaring

Toru Akishita, Tsuyoshi Takagi . 151

Smart Card Networking

Designing Smartcards for Emerging Wireless Networks
Pascal Urien, Mesmin Dandjinou . 165

Smartcard Firewalls Revisited
Henrich C. Pöhls, Joachim Posegga . 179

Multi-stage Packet Filtering in Network Smart Cards
HongQian Karen Lu . 192

Cryptographic Protocols

Anonymous Authentication with Optional Shared Anonymity
Revocation and Linkability

Martin Schaffer, Peter Schartner . 206

SEA: A Scalable Encryption Algorithm for Small Embedded
Applications

François-Xavier Standaert, Gilles Piret, Neil Gershenfeld,
Jean-Jacques Quisquater . 222

Low-Cost Cryptography for Privacy in RFID Systems
Benôıt Calmels, Sébastien Canard, Marc Girault, Hervé Sibert 237

Optimal Use of Montgomery Multiplication on Smart Cards
Arnaud Boscher, Robert Naciri . 252

Off-Line Group Signatures with Smart Cards
Jean-Bernard Fischer, Emmanuel Prouff . 263

RFID Security

Analysis of Power Constraints for Cryptographic Algorithms in
Mid-Cost RFID Tags

Tobias Lohmann, Matthias Schneider, Christoph Ruland 278

Table of Contents XI

Noisy Tags: A Pretty Good Key Exchange Protocol for RFID Tags
Claude Castelluccia, Gildas Avoine . 289

MARP: Mobile Agent for RFID Privacy Protection
Soo-Cheol Kim, Sang-Soo Yeo, Sung Kwon Kim 300

Formal Methods

Certifying Native Java Card API by Formal Refinement
Quang-Huy Nguyen, Boutheina Chetali . 313

A Low-Footprint Java-to-Native Compilation Scheme Using Formal
Methods

Alexandre Courbot, Mariela Pavlova, Gilles Grimaud,
Jean-Jacques Vandewalle . 329

Automatic Test Generation on a (U)SIM Smart Card
Céline Bigot, Alain Faivre, Christophe Gaston, Julien Simon 345

Author Index . 359

Design, Installation and Execution of a Security
Agent for Mobile Stations

William G. Sirett�, John A. MacDonald��,
Keith Mayes, and Konstantinos Markantonakis

Smart Card Centre, Information Security Group,
Royal Holloway, University of London,

Egham, TW20 0EX, England
{w.g.sirett, k.markantonakis, keith.mayes}@rhul.ac.uk,

john@madgo.com

Abstract. In this paper we present a methodology and protocol for es-
tablishing a security context between a Mobile Operator’s application
server and a GSM/UMTS SIM card. The methodology assumes that the
already issued Mobile Station is capable but unprepared. The proposed
scheme creates a secure entity within the Mobile Station “Over The Air”
(OTA). This secure entity can then be used for subsequent SIM authen-
tications enabling m-Commerce, DRM or web service applications. To
validate our proposal we have developed a proof of concept model to in-
stall and execute the security context using readily available J2ME, Java
Card, J2SE and J2EE platforms, with the KToolBar MIDP2.0 emulator
tool from Sun, and a Gemplus Java Card.

Keywords: Mobile Station, Security Agent, Application Deployment,
Smart Card, GSM, Security Protocol, JSR177, MIDP2.0.

1 Introduction

The GSM network offers a wide scope of applications and benefits for mobile
operators. The merits of a Mobile Station capable of implementing a Security
Agent are well documented in the literature [17, 18]. In this paper we consider the
deployment of a Security Agent that is comprised of two components: a device
application executing resource-intensive tasks, and a secure entity application
responsible for secure functionality. The secure entity is a tamper resistant [5]
entity and in the case of this work is a GSM/UMTS SIM card. For some time
the GSM network has allowed for “Over The Air” (OTA) SIM application in-
stallation with limited bandwidth capacity. To install these applications utilising
a high bandwidth channel and a non-GSM specified protocol currently demands
trust/keys being provided to the Mobile Device. This work considers the Mo-
bile Device to be hostile. This raises a need for the same high bandwidth OTA
functionality to be available whilst protecting against malicious equipment.
� This work was supported by sponsorship funding from the Smart Card Centre

founded by Vodafone and G&D.
�� This work was supported by sponsorship funding from Telefonica Móviles, España.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 1–15, 2006.
c© IFIP International Federation for Information Processing 2006

2 W.G. Sirett et al.

This work establishes a security context between a Mobile Operator Applica-
tion and Mobile Station and proposes an authenticated key establishment pro-
tocol. By establishing session keys independent of the network security keys, we
can provide integrity, authentication and confidentially at the application layer.
In the GSM/3GPP mobile architecture [24], the user security context resides
in two locations, the network HLR and the Operator issued tamper resistant
SIM card. The Mobile Operator generally has much less control over the Mobile
device than the SIM. Consequently they are more reluctant to load sensitive
components or data into the device. This motivates the division of the Security
Agent between the device and the SIM, where the SIM is responsible for partic-
ularly sensitive components. We propose a scenario where the Mobile Operator
Application server communicates with the device resident component of the Se-
curity Agent. This subsequently uses the security services provided by the secure
entity to establish authenticated keys.

In section 2 we review the design requirements for a Security Agent de-
ployed on a GSM/3GPP Mobile Station. In section 3 we review our proposed
authenticated key establishment scheme. A protocol for wireless installation of
the Security Agent to a compatible but remote and unprepared Mobile Station
(colloquially termed “OTA” and “backward compatible field installation”) is
detailed in section 4, whilst the protocol used to establish session integrity and
confidentiality keys is presented in section 5. Finally, in section 6, we describe
the Proof of Concept model constructed using readily available components and
open source development tool kits and provide concluding remarks in section 7.

2 Design Requirements

A critical requirement is for a backward compatible field installable Security
Agent designed to provide an authentication service using SIM based credentials.
It is required to be executable on a significant proportion of globally standardised
and deployed Mobile Stations. The design of our proposed Security Agent uses
four widely adopted technologies and standards:

– ETSI TS03.48 Security Mechanism [1];
– SIM Application Toolkit (SAT) [12];
– MIDP2.0 J2ME Runtime Environment [15];
– UICC Java Card SIM cards [3].

2.1 ETSI TS03.48 Security Mechanism

ETSI TS03.48 [1] specifies a mechanism for providing end to end security for
any Short Message Service (SMS) going to or from the SIM card. SMS mes-
sages contain a maximum of 140 bytes. SMS messages are sent in accordance
with the SUBMIT SMS format, and received with the SMS DELIVER format.
Translation from one format to the other is performed by the Short Message Ser-
vice Centre (SMSC), an active component of the network. In an output SUB-
MIT SMS packet, the 40 bytes of User Data are complemented by a 13 byte
Mandatory Header and an optional variable length User Data Header.

Design, Installation and Execution of a Security Agent for Mobile Stations 3

– The Mandatory Header includes the Data Coding Scheme byte which speci-
fies how the data is encoded, and the Protocol Identifier byte which specifies
how the receiving mobile should process the message. One of these values,
0xF7, specifies that the device should pass the whole packet to the SIM
card.

– The User Data Header comprises a concatenation of tag, length and value
(TLV) fields which describe the optional features that should be applied to
the attached 140 bytes of user data. Of interest to our proposal are tag values
0x00 and 0x70, meaning Concatenated SMS and SAT Security respectively.

• The concatenated SMS tag allows up to 255 SMSs to be concatenated.
It is reported [13] that most operators limit this to approximately five,
because of uncertain and indeterminate device operation when receiv-
ing larger numbers of SMS messages to be concatenated. Five messages
represents a total payload of 5x140 = 700 bytes [18].

• The presence of the SAT Security tag (0x70) indicates that the message
contains an additional header, the Command Header, prior to the User
Data Header. This comprises of 9 fields which define how the User Data
is secured by:

∗ specifying the cryptographic functions,
∗ providing a replay protection counter,
∗ quoting the sender’s cryptographic integrity value for the secured

User Data Header.

Through the use of this SAT Security mechanism it is possible to provide
confidentiality and integrity services for up to 700 bytes of user data, when the
data is sent between the Mobile Operator application server and the SIM card.
Performance and payload are limited and applications are restricted.

2.2 SIM Application Toolkit

The SAT API allows an application on the SIM card to be informed of events
by, and to issue commands to, the host mobile device. When an information
flow is initiated to the SIM application, it is termed an event download, and
when an information flow is initiated from the SIM application it is termed
a proactive command. Using the proactive command SET UP EVENT LIST,
the SIM application can register to be informed of a number of events via the
ISO/IEC 7816-4 ENVELOPE APDU command [8]. Of relevance to this paper
is the SMS PP or CELL BROADCAST event, which downloads the contents of
the received SMS to the SIM application as a compound TLV in the data field of
an ENVELOPE APDU [13]. The SIM application’s response to the ENVELOPE
command is then returned to the sender in a response packet.

2.3 MIDP2.0 J2ME Runtime Environment

A Java application that runs on a Mobile Information Device Profile (MIDP)
2.0 device is known as a MIDlet and may be installed within a certain domain if

4 W.G. Sirett et al.

it complies with the domain-specific access control requirements [6]. There are
4 domains specified for GSM compliant devices:

– Untrusted,
– Trusted 3rd Party,
– Mobile Operator,
– Manufacturer.

A Domain Protection Root Certificate (DPRC) controls MIDlet access to
a domain. The DPRC must be made available at a specified location in the
SIM application [15]. The MExE [2] security framework, when making an access
control decision relies on signature verification of the signed MIDlet using the
public key contained within the DPRC. Successful verification of the digital
signature allows the MIDlet to be installed into the appropriate domain of the
device.

Any MIDlet within a domain enjoys a set of unique permissions provided
by that domain. The permission model allows these installed MIDlets access to
restricted and sensitive APIs. The Security and Trust Services API [16] specifies
that access to three of the four defined packages is limited to MIDlets located
within the operator domain. These packages are:

– SATSA–APDU
– SATSA–JCRMI
– SATSA–PKI

These provide the ability for MIDlets to access trusted elements (i.e. a SIM
card) using APDU communication, invoke a method of a remote Java Card
object and provide support for digital signatures and credential management. It
is worth nothing the value of being able to process cryptographic functions upon
the device, as well as the smart card, as the card is a constricted environment [19].

2.4 UICC Java Card SIM Cards

The Global Platform specification [10] is the industry standard interface for
downloading applications and is the most important international specifica-
tion for application management in multi-application smart cards [11, 21]. This
standard allows card issuers to securely manage third party applications inde-
pendently of the operating system provider. Mobile Operator are increasingly
deploying UICC [3] Java Cards, where the SIM application [4] is just one of
the possible java applications [9] that the card is capable of running. Java ap-
plications that run on smart cards are known as Applets. A Card Manager is
responsible for ensuring that new Applets are integrity checked and their source
authenticated prior to installation. This security service uses a secret key, KCI

that is embedded in the smart card prior to issue and termed the Card Issuer
Key. Although a UICC SIM card can execute multiple Applets from different
providers, the Card Manager application will be owned by the Mobile Operator
who actually owns and issued the physical card.

Design, Installation and Execution of a Security Agent for Mobile Stations 5

3 The Proposed Scheme

Consider the scenario of having the requirement to remotely deploy our Security
Agent to Mobile Stations in the field. The device is capable but unprepared;
this section introduces the proposed scheme to install the Security Agent. This is
again described as a protocol in section 4 and is represented in Fig. 1. The scheme
is preparation for the execution protocol, detailed in section 5 that establishes
session keys for future communication.

1. A small SAT application is securely installed OTA to the SIM using the
TS03.48 mechanism.

2. The SAT application uses the proactive command SET UP EVENT LIST to
register to be informed, via the ISO/IEC 7816-4 ENVELOPE APDU command
[8], when a SMS PP or CELL BROADCAST event occurs.

3. A corresponding SMS PP or CELL BROADCAST is sent to the device.
The DPRC is contained within the payload of a of the concatenated SMS
messages.

4. The device transfers the payload to the SAT application as a compound TLV
in the data field of an ENVELOPE APDU command. The DPRC is stored in
the appropriate location of the UICC SIM Card [15].

5. The SAT application retrieves the SIM’s unique identifier, and returns it to
the device as the response to the ENVELOPE command.

6. The unique identifier is then returned to the Mobile Operator application
server. This acts as a proof of delivery of the DPRC and enables the Mo-
bile Operator application server to reference the card’s secret key KCI and
commence the MIDlet preparation and download process.

7. Using the SIM’s unique identifier, the Mobile Operator constructs the appro-
priate Security Agent MIDlet containing the relevant install commands and

UICC
SIM Card

Mobile Device

Mobile
Operator

MIDP2.0
Execution Environment

3. SMS Containing Domain Cert.

2. Register for Event Download

4. ENVELOPE apdu (Domain Cert)

6. Response Packet (UID)

13. ENVELOPE apdu (Applet)

7. Security Agent MIDlet

14. Security Agent apdu coms

1. OTA Install SAT Application by TS03.48

SAT

Security Agent
MIDlet

Security
Agent
Applet

‘14. Security Agent Network Coms

5. Response to ENVELOPE (UID)

8. GET CHALLENGE apdu

9. Response to CHALLENGE (rc)10. CHALLENGE response (rc)

11. fCI (rc)
12. EXT.AUTHEN. apdu(fCI (rc))

Card
Manager

Fig. 1. Installation Scheme

6 W.G. Sirett et al.

byte code for the Security Agent Applet. The Applet byte code is encrypted
and digested with the card issuer key KCI and packaged within the MIDlet
JAR file.

The MIDlet must be prepared for the secure MIDlet installation proce-
dure defined by J2ME MIDP2.0 and implements a second security context
between server and device. The server generates a RSA X.509(v3) certificate
or requests one from a Certificate Authority (CA). The certificate is inserted
into the application descriptor of the MIDlet application. The path of the
descriptor holds all certificates necessary to validate the application except
the root certificate. The DPRC resides on the smart card and is called into
play during MIDlet installation. Finally, the signature of the JAR file (for-
mat used to distribute MIDlets) is generated with the private key of the RSA
certificate according to the EMSA-PKCS-v1 5 encoding method of PCKS#1
version 2.0 standard. This signature is then inserted into the application de-
scriptor, the MIDlet is considered prepared and delivered to the device.

The J2ME JRE must authenticate the MIDlet application for installation
into a secure domain. First the certificate is retrieved from the application de-
scriptor and validated against the DPRC held upon the smart card. The JRE
then verifies the MIDlet JAR file; by taking the public key from the verified
signer certificate along with a fresh SHA-1 digest of the JAR file and compar-
ing it to signature defined in the application descriptor. The JRE can install
the MIDlet into the Operator domain of the MIDP2.0 runtime environment.

8. The Security Agent MIDlet is installed in the Operator domain of the user
device with full access to JSR 177 APIs. This allows APDU commands to be
issued to SIM card. The Security Agent MIDlet executes its Applet instal-
lation routine. The MIDlet starts by using the SELECT command to initiate
communication with the SIM Card Manager. Once the Card Manager ap-
plication is selected the MIDlet then issues a GET CHALLENGE command.

9. Before the Card Manager will accept installation of an Applet onto the SIM
Card, it must first authenticate the source of the Applet. It does this by
responding to the GET CHALLENGE with a random number rC .

10. The MIDlet is not in possession of the secret KCI required to prove a trusted
source for a new Applet, so the challenge response rC must be sent back to
the Server.

11. The Server encrypts KCI and rC with KCI and returns the byte string to
the MIDlet.

12. The MIDlet authenticates the source of the applet using the EXTERNAL
AUTHENTICATE command providing the encrypted response to the random
challenge rC . The Card Manager, also in possession of KCI , authenticates the
source of the Applet and allows the applet installation process to continue.

13. The Security Agent MIDlet now transfers the encrypted and integrity pro-
tected byte code of the Security Agent Applet to the SIM card via the
ENVELOPE command. At no point does the MIDlet have any knowledge of
the key KCI as it acts as a delivery mechanism between SIM and Server for
predefined parcels of bytes. The integrity and confidentiality of the applet
code and the long term secret KCI is assured. Subsequent to the download-

Design, Installation and Execution of a Security Agent for Mobile Stations 7

ing of the byte code to the card, the same Card Manager using, the Global
Platform specified Data Authentication Pattern (DAP) verifies the integrity
of the received byte code. Verification allows the byte code to be decrypted.
A Security Agent applet instance is created and registered with the Java
Card runtime environment.

Contained within the Security Agent Applet byte code is a long term
Security Agent symmetric key KSC used for mutual authentication and es-
tablishment of secure session keys for subsequent execution of a Security
Agent controlled authenticated key establishment process (Section 5).

14. APDU communication between the MIDlet and Applet components of the
Security Agent can now proceed under J2ME application control. Communi-
cation between the Application Server and the J2ME environment may use
any of the supported network protocols such as http or https for security
services.

4 Installation Protocol

Our protocol uses both symmetric and asymmetric cryptographic techniques
[20] to provide the authentication and integrity services required. The specific
algorithms involved are either defined by the standards or rely on what the
individual smart card supports.

Throughout this discussion we will use the following notation:

S = Server
M = MIDlet
C = SIM card

where:

KCI = Shared secret between Server and SIM pre-issuance
KSC = Shared secret between Server and SIM post-installation

CertDPRC = Domain Protection Root Certification
PK = Public key of CertDPRC

εK(D) = Symmetric encryption of data D using key K

SK(D) = Signature computed on data D using key K

MACK(D) = MAC computed on data D using secret key K

rE = Random nonce generated by entity E (S, C or M)
iE = Identifier of entity E (S, C or M)

CK = Cipher Key
IK = Integrity Key

APDU() = APDU command from MIDlet to SIM card
SAT() = GSM SAT communication mechanism
SMS() = SMS communication mechanism

8 W.G. Sirett et al.

PHASE 1. Install the MIDlet into the Operator Domain.

S → C : SAT(MAC ID) (1)
S → C : SAT(SAT Applet Install code) (2)
S → M : SMS(CertDPRC) (3)
M → C : APDU(ENVELOPE: CertDPRC) (4)
C → M : APDU(ENVELOPE: UID) (5)
M → S : SMS(UID) (6)
S → M : SPK(MIDlet)‖(MIDlet) (7)

Our protocol has been designed on the assumption that the device and SIM
card are preissued and in the field, and although they are both capable, neither
are prepared nor contain preinstalled application code to create the desired se-
cure high bandwidth channel. The first step is to therefore prepare the SIM card
so that the MIDlet can be installed within the Operator domain of the J2ME
device. It is assumed, however, that the device is operational on the Operators
network (i.e. user authentication and sign on to the network has successfully
been performed by the AUTHENTICATE [4] and subsequent functions of the 3GPP
challenge response mechanism [24]). Although messages (1) through to (3) are
unidirectional from the Server to the SIM card or mobile, we have presented
them as 3 individual protocol messages. This is because they are transferred
using GSM standard 03.48 and are most likely sent as 3 independent SMS mes-
sages. Protocol messages (1) provides the SIM card with the identifier specifying
which GSM standard 03.48 MAC algorithm will be used to confirm integrity
and data origin throughout the protocol sequence. Message (2) provides the
SAT code be installed upon the card, whilst message (3) provides the root cer-
tificate of the device J2ME Operator domain. The payload of these messages are
stored in the SIM card. The role of the SAT code is to discover the card’s unique
identifier (UID). By the means of the same mechanism the UID of the SIM card
and rC is securely sent back to the Server. This information is used to find the
related KCI , this key is used to encrypt and sign the Security Agent Applet byte
code that is embedded and readied for delivery as part of the integral code that
comprises the MIDlet.

Upon receipt of protocol message (7), the MExE [2] J2ME implementation
on the client will verify the signature using the root certificate on CertDPRC pre-
viously stored into the SIM card via message (3). Valid verification provides data
origin authentication and integrity of the MIDlet JAD and JAR files received.
The Security Agent MIDlet is now installed OTA in the Operator domain of the
J2ME MIDP2.0 compliant implementation of the client device, with full permis-
sions to utilise SATSA-APDU and SATSA-PKI packages defined by JSR 177.

PHASE 2. Install the Applet into the SIM card

M → C : APDU(SELECT: AIDCM) (8)
M → C : APDU(GET CHALLENGE) (9)

Design, Installation and Execution of a Security Agent for Mobile Stations 9

C → M : APDU(rC) (10)
M → S : SMS(rC) (11)
S → M : SMS(εKCI (KCI‖rC)) (12)
M → C : APDU(EXTERNAL AUTHENTICATE: εKCI (KCI‖rC) (13)
M → C : APDU(MACKCI (Applet)‖εKCI (APPLET)) (14)
M → C : APDU(INSTALL(Install): AIDSA) (15)
M → C : APDU(INSTALL(Selectable): AIDSA) (16)

The MIDlet, now securely stored OTA in the device, carried an array of byte
codes (see appendix 2). These byte codes represent an encrypted and signed
CAP file from the Server using the shared secret between the SIM and Server,
KCI . The process of verifying the MIDlet during download and installation,
using CertDPRC , has already verified the integrity of these byte codes as well
as the MIDlet application. The steps (8) to (16) outline the process going on
between device and card but the untrusted device would have no knowledge of
what is being sent as it is protected by a secret that it is not privy to.

Step (8) sends the SELECT command to the card to communicate with the
Card Manager on the SIM operating system that will handle the authentication
of the card acceptance device. This authentication process is represented by steps
(9) to (13), it begin with collecting a challenge, random number, from the card
using the GET CHALLENGE commands. This challenge is packaged in an SMS,
step (11), and sent back to the Server. The Server using its shared secret KCI ,
encrypts the number along with the key itself and sends it back to the MIDlet
(12). The final authentication is performed by the Global Platform EXTERNAL
AUTHENTICATE command which holds the encrypted challenge response (13).
AIDSA refers to the unique application identifier of the Security Agent Applet.
Once authenticated, steps (14) through (16) show the encrypted and signed
download of Security Agent Applet to card, it’s subsequent installation and final
completion of the process allowing it to be selected by any Operator Domain
located MIDlets.

The MIDlet pseudo code to generate this secure authentication, download
and installation of Security Agent Applet to SIM from an untrusted device is
presented in appendix 1.

5 Execution Protocol

At some time later, i.e. after the http session of PHASE 2 has closed, the Op-
erator may choose to download bulk data securely from the Server to the SIM
card. Before this can begin both endpoints must verify the identity of the other
with a mutual entity authentication protocol. We take our authentication pro-
tocol from the ISO/IEC 9798 standard [14], deriving session keys for data origin
authentication, data integrity and data confidentiality as part of our authenti-
cated key establishment protocol. The choice of protocol is heavily influenced
by the parameters and characteristics of our mobile environment. For similar

10 W.G. Sirett et al.

reasons, as stated previously, authentication via symmetric cryptography is pre-
ferred, and a MAC based approach limits the amount of network traffic required
to a minimum. The choice is further restricted owing to the time-less nature of
the SIM card [21]. Only three possible sources of time are available; an internal
clock, a remote server or a neighbouring device [22] and there are no other al-
ternatives. To have an internal time keeper would require at least a portion of
the card chip to have a source of permanent power [7]. Although it is, of course,
possible for the SIM card to obtain a measure of time from the client device via
the TIMER MANAGEMENT proactive command and TIMER EXPIRATION
event download of the SAT API. The client device is, as stated previously, likely
to be untrusted by Operators for any function concerning the communication
of potentially network critical information, and cannot be used as a source of
time for confirming message freshness. In consequence message timeliness, to
protect against replay attacks, must be achieved with either logical time stamps
or nounces. In conclusion, therefore we have adopted the three-pass mutual au-
thentication protocol using MACs and nounces as specified in ISO/IEC 9798-4
clause 5.2.2.

PHASE 3. Perform mutual entity authentication

S → M : start MIDlet with push registry (17)
M → C : APDU(select Applet) (18)
C → M : APDU(rC) (19)
M → S : rC (20)
S → M : iS‖iC‖rC ||rS‖MACKSC (iS‖iC‖rC ||rS) (21)
M → C : APDU(iS‖iC‖rC ||rS‖MACKSC (iS‖iC‖rC ||rS)) (22)
C → M : APDU(iC‖rS‖MACKSC (iC‖rS)) (23)
M → S : iC‖rS‖MACKSC (rS‖rC) (24)

Once again this step starts with an invocation of the push registry via message
(17) and the device MIDlet Security Agent loaded in (7) selecting the SIM Applet
loaded following message (16). The SIM card Applet generates a random nounce
rC , stores it, and supplies it to the MIDlet (19) where it is passed on (without
storing) to the Server (20). Server generates nounce rS , stores it together with
received nounce rC and responds with (21). Again this is passed through the
MIDlet to the SIM card Applet via an APDU, message (22). Upon receipt the
SIM card Applet verifies that the received rC is the same as the one sent in
(19) and that the identifiers are correct (note the UID could be used for iC
and a parameter of certificate CertDPRC supplied to the SIM card via message
(3) used for iS). The SIM card Applet then recalculates the MAC and if correct
accepts the Server. Now that the Server is authenticated to the SIM card Applet,
then Applet responds with message (23) via the MIDlet, which again passes it
straight through to the Server in message (24). When Server receives message
(24) it checks that the received value rS is indeed the one sent in (21) and that
the SIM card identifier iB is correct. After confirming the MAC calculation the

Design, Installation and Execution of a Security Agent for Mobile Stations 11

Server can then accept the SIM card Applet as valid. Following the mutual entity
authentication of STEP 3, both Server and SIM card will establish Integrity
IK and Confidentiality CK keys to protect the subsequent bulk data exchange
between the Server and the SIM Card.

PHASE 4. Set up session keys to protect the content to be downloaded

CK = f1KSC (rS‖rC) (25)
IK = f2KSC (rS‖rC) (26)

Both Server and SIM card Applet will contain identical functions f1 and f2
to calculate the session cipher and integrity keys using the protocol nounces rS

and rC and the long term shared secret KSC . Now that session keys have been
established the bulk data may be transferred to the SIM card encrypted for
confidentiality with CK and concatenated with a MAC using IK for data origin
authentication and integrity as necessary for the data being transferred.

6 Proof of Concept Model

To validate our proposal we constructed a proof of concept model, based on
readily available open source tools; it comprised of:

– Server:
A J2EE Servlet web application performed the Mobile Operator function and
was packaged as a Web Application Archive (WAR) file for easy deployment
on a Tomcat Apache Web Server.

– Mobile Device:
The J2ME Client was emulated by the Wireless KToolbar [23] from Sun
Microsystems and run our Security Agent MIDP 2.0 MIDlet on the reference
J2ME implementation.

– SIM card:
The SIM card Security Agent function was provided by a Gemplus GemX-
presso smart card. This was a Java Card and adhered to a number of industry
standards such as Global Platform and had on-card cryptographic capabil-
ity. The equipment used to connect the card to the test-bed was a USB card
reader and Gemplus RAD3 development environment was used in early tests
to load Security Agent Applets. This could have been just as easily realised
using a variety of different platforms, notably G&D development hardware
and tools.

The demonstration environment for our model was implemented in J2SE.
J2SE provides the necessary Java Swing classes for monitoring the various use
case applications being tested. The model is designed so that each phase of a
specific use case is initiated manually and monitored by visual feedback through
the use of J2SE’s GUI LayoutManager class and ActionListener interface.

There are different technologies involved in this scenario and as such only
some aspects of the system could be placed within the scope of the practical

12 W.G. Sirett et al.

work undertaken. The SAT application download process is well document and
involves access to SMS generation so this was omitted. The MIDlet could be con-
structed and the communication between the server and MIDlet over a secure
channel was considered within the scope of this work and practically demon-
strated using a secure HTTP link between a web server and mobile device. Both
entities employed Java based technologies and demonstrated a secure channel
based upon mutual authentication with a shared secret. The cryptographic func-
tionality involved could not be performed by the MIDlet as the SATSA-PKI and
SATSA-CRYPTO packages are provided by the JSR-177 and at the time of in-
vestigation was unavailable. Our approach was to separate out this functionality
to a J2SE application that would communicate with the MIDlet and in turn
generate APDU commands to the smart card whilst perform any cryptographic
functions required. This allowed the JSR-177 to be effectively modelled with only
a moderate increase in complexity. The J2SE JSR-177 proxy used the Open Card
Framework (OCF) to create a connection to the smart card and build command
and response APDU for exchanges in data.

7 Conclusion

In this work we introduce a methodology, discuss the component technologies and
define a protocol for establishing a security context between a Mobile Operator
application and SIM card. A solution is proposed to establish a Security Agent on
an untrusted mobile device and trusted SIM card using “Over The Air” (OTA)
techniques. A proof of concept demonstration capability is implemented with
example java source code presented.

This work creates confidentiality and integrity session keys, CK and IK
respectively. These are independent off all network security keys and therefore
eligible to protect unrelated data, e.g. value added applications. The extension
of trust from inherent network related credentials, to independent credentials
used solely for providing security services to post-purchase applications, is an
important step towards fulfilling the true potential of the mobile station field
base by executing a new generation of secure applications.

Acknowledgements

We would like to extend appreciation to Chris Mitchell for early guidance and
participation. Additionally, thanks to Jennifer Squire for patience whilst proof
reading drafts.

References

1. 3GPP TS 03.48. Technical Specification Group Terminals; Security Mechanisms
for the SIM Application Toolkit; stage 2. http://www.3gpp.org, 2001.

2. 3GPP TS 23.057. Technical Specification Group Terminals; Mobile Execution En-
vironment (MExE); Functional description; Stage 2. http://www.3gpp.org, 2003.

Design, Installation and Execution of a Security Agent for Mobile Stations 13

3. 3GPP TS 31.101. Technical Specification Group Terminals; UICC-terminal inter-
face; Physical and logical characteristics. http://www.3gpp.org, 2003.

4. 3GPP TS 31.102. Technical Specification Group Terminals; Characteristics of the
USIM application. http://www.3gpp.org, 2003.

5. R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In The Sec-
ond USENIX Workshop on Electronic Commerce Proceedings, Oakland, Califor-
nia, pages 1–11. USENIX Association, November 1996. http://citeseer.ist.psu.edu/
400120.html.

6. C. Block and A. C. Wagner. MIDP 2.0 Style Guide. The Java Series. Addison-
Wesley, London, 2003.

7. V. Cordonnier, A. Watson, and S. Nemchenko. Time as an aid to improving
security in smart cards. In 7th Annual Working Conference on Information Security
Management and Small Systems Security, pages 131–144. Kluwer Academic Press,
London, 1999. Amsterdam, The Netherlands.

8. ETSI TS 100 977. Digital cellular telecommunications system(Phase 2+); Specifi-
cation of the Subscriber Identity Module - Mobile Equipment (SIM-ME) Interface.
ETSI, http://www.etsi.org, 2000.

9. ETSI TS 101 476. Digital cellular telecommunication system (Phase 2+); Sub-
scriber Identity Module Application Programming Interface (SIM API); SIM API
for Java Card; Stage 2 (GSM 03.19). ETSI, http://www.etsi.org, 2000.

10. Global Platform. Card Specification v2.1.1. http://www.globalplatform.org, 2003.
11. GSM 03.19, Version 8.2.0. Digital Cellular Telecommunications System (Phase

2+); Subscriber Identity Module Application Programming Interface (SIM API);
AIM API for Java Card; Stage 2. ETSI, http://www.etsi.org, 2001.

12. GSM 11.14. Digital cellular telecomunnications system (Phase2+); Specification of
the SIM Application Toolkit for the Subscriber Identity Module-Mobile Equipment
(SIM-ME) interface. ETSI, http://www.etsi.org, 2001.

13. S. B. Guthery and M. J. Cronin. Mobile Application Development with SMS & the
SIM Toolkit; Building Smart Phone Applications. McGraw-Hill, 2002.

14. ISO/IEC 9798-4. Information technology - Security Techniques - Entity Au-
thentication - Part 4: Mechanisms using a cryptographic check function 2nd ed.,
http://www.iso.org, 2nd edition, 1999.

15. JSR-118 JCP. Mobile Information Device Profile, v2.0 (JSR-118). Sun Microsys-
tems, http://java.sun.com, 2002.

16. JSR-177 JCP. Security & Trust Services API (SATSA) (JSR-177). Sun Microsys-
tems, http://java.sun.com, 2004.

17. J. A. MacDonald and C. J. Mitchell. Using the GSM/UMTS SIM to secure web
services. In 2nd IEEE International Workshop on Mobile Commerce & Services
(WMCS). IEEE, IEEE Computer Society Press, July 2005. Munich, Germany.

18. J. A. MacDonald, W. G. Sirett, and C. J. Mitchell. Overcoming channel band-
width constraints in secure SIM applications. In R. Sasaki, S. Qing, E. Okamoto,
and H. Yoshiura, editors, 20th IFIP International Information Security Conference
(SEC 2005) - Small Systems Security and Smart cards,, volume 181 of IFIP In-
ternational Federation for Information Processing. Springer Science and Business
Media, May 2005. Chiba, Japan.

19. K. Markantonakis. Is the performance of the cryptographic functions the real
bottleneck? In M. Dupuy and P. Paradinas, editors, Trusted Information: The
New Decade Challenge, IFIP TC11 16th International Conference on Information
Security (IFIP/SEC’01) June 11-13, pages 77–92. Kluwer Academic Publishers,
2001. Paris, France.

14 W.G. Sirett et al.

20. F. Piper and S. Murphy. Cryptography - A Very Short Introduction. Oxford
University Press, 2002.

21. W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, Ltd, 3rd
edition, 2003.

22. L. Rousseau. Secure time in a portable device. Proceedings of 3rd Gemplus Devel-
oper Conference, Paris, France, 2001. Gemplus.

23. Sun Wireless Toolkit. Wireless Toolkit, Version 2.1,. Sun Microsystems,
http://java.sun.com/products/j2mewtoolkit, 2004.

24. M. Walker and T. Wright. GSM and UMTS : The creation of global mobile com-
munications. John Wiley & Sons, Ltd., 2002.

A Appendix 1 – Psuedo Java Code

This pseudo code is intended to be a demonstration of the proposed method of
embedding encrypted Security Agent Applet code within the body of the Security
Agent MIDlet. The MIDlet can call the Install method of a packaged class called
Secure Applet and undertake the selection of the Card Manager, authentication
of shared secret, downloading of CAP file, its installation and finalisation without
actually exposing the underlying Operator secret to the MIDlet. The Security
Agent Applet is encrypted within the MIDlet and its integrity is checked on-card
during installation.

The following code is not intended to be a literal but uses Java based concepts
to express the intention of the proposal. The aim is to illustrate the declaration of
a two dimensional array; a primary array holding arrays of 255 bytes representing
APDU commands. The concept is that these APDUs can be declared by the
Server during preparation of the MIDlet and therefore the device would not
have the opportunity to alter or access the information. The only function the
device or MIDlet must perform is the act of sending the APDUs to the device.

Design, Installation and Execution of a Security Agent for Mobile Stations 15

g
1 public class Secure Applet {
2 //−− ISO7816 o f f s e t s
3 private bINS = ISO7816 .OFFSET INS ;
4 private bCLA = ISO7816 .OFFSET CLA;
5 private bP1 = ISO7816 .OFFSET P1 ;
6 private bP2 = ISO7816 .OFFSET P2
7 private bLC = ISO1716 .OFFSET LC;
8 private bData = IS07816 .OFFSET CDATA;
9

10 //−−array o f APDU by te codes
11 private byte [9] [2 5 5] baAC
12 //−− s e l e c t AID
13 = {00 A4 04 00 0 7 A0 00 00 0 0 1 8 4 3 4D} ,
14
15 //−− Externa l Authent i ca te
16 {84 82 03 00 10 40 2F 82 CE 30 2C F5 78 F7 F7 60 32 0B 5A 4F 0E} ,
17
18 //−− F i r s t APDU of CAP f i l e load
19 {84 E6 02 0 0 2 0 3 9 B0 DB 15 04 8D 75 BC 8D 71 46 8 3 5 2 A8 E2 D2
20 7D 48 32 2 5 AD DF DC 44 E2 28 55 2D 83 31 8B 34 00} ,
21
22 //−− f o l l ow i n g data packe t s
23 {84 E8 00 00 D8 B0 23 9E 36 52 BF 40 03 A1 F1 43 D8 3D 6A F8 93
24 //−−cons ider f u l l 255 by t e apdu data array
25 71 0C 6D B3 41 56 B8 09 84 71 7C} ,
26 { . . . } , { . . . } , { . . . } , { . . . } , { . . . } , { . . . } ;
27
28 public i n s t a l l S e cu r eApp l e t () {
29 try {
30 //−− c r ea t e card s e r v i c e and connect
31 //−− send a l l APDU commands conf i rming
32 //−− f o r l e n g t h o f parent array loop
33 for (int x=0; x<baAB. l ength ; x++){
34 //−− b u i l d APDU ob j e c t us ing array and o f f s e t s
35 cmdAPDU = new ISOCommandAPDU(
36 baAC[x] [bINS] , baAC[x] [bCLA] , baAC[x] [bP1] ,
37 baAC[x] [bP2] , baAC[x] [bData]) ;
38 //−− send APDU and catch response .
39 resAPDU = s e r v i c e . sendCommandAPDU(cmdAPDU) ;
40 i f (In t eg e r . toHexStr ing (resAPDU . sw ()) != ”90 00”){
41 break :}}}
42 //−−catch e r ro r s and c l o s e down a l l o b j e c t s }}

Listing 1.1. Psuedo MIDlet code

Towards a Secure and Practical
Multifunctional Smart Card

Idir Bakdi

Lehrstuhl für Wirtschaftsinformatik II,
Universität Regensburg, 93040 Regensburg, Germany

idir.bakdi@wiwi.uni-regensburg.de

Abstract. One of the most promising features of smart card techno-
logy is its potential to serve several applications using a single hardware
token. Existing multifunctional smart cards, however, are either simple
and suffer from serious limitations or they have a high complexity that
is not justified for most applications. This paper describes a new scheme
permitting different applications to flexibly share a hardware token. The
proposed solution supports off-line transactions as well as post-issuance
loading. Each application can load one or more “virtual tokens” (re-
motely) into a common smart card. Despite its simplicity, the scheme
guarantees the authenticity and integrity of virtual tokens and prevents
their duplication. Moreover, it protects the privacy of card holders by
providing a possibility to use pseudonymous identities that cannot be
linked to one another.

Keywords: Multifunctional smart card; secure hardware token; privacy.

1 Introduction

Nowadays, we all carry a lot of tokens in our pockets. These are keys, magnetic
stripe cards, smart cards, tickets, etc. Each application has to implement its own
infrastructure to issue and subsequently use these tokens. From an ergonomic as
well as from an economic point of view, it would be beneficial to virtualize all
those tokens, i.e. to convert them into digital files that can be loaded onto a single
medium. However, as most tokens are critical for the security of the applications
they serve, one cannot just load their virtual counterparts on a storage medium
such as a floppy disk. On the one hand, such a medium would not offer any
protection against misuse in case it gets lost or stolen. On the other hand, a
virtual token could be copied at will as it can be read by anyone holding the
medium. One possibility to overcome these difficulties is to use a microchip as
implemented on smart cards to hold the files representing tokens. This way, they
are protected both against misuse by someone else than the legitimate user and
against unauthorized duplication by the holder himself. This paper describes a
new scheme that uses such a chip to realize a secure and practical multifunctional
token.

The remainder of this paper is organized as follows. After a short review
of existing solutions and their most serious shortcomings in the next section,

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 16–31, 2006.
c© IFIP International Federation for Information Processing 2006

Towards a Secure and Practical Multifunctional Smart Card 17

the main security requirements of a multifunctional smart card are outlined in
section 3. Section 4 contains a description of the new approach. Finally, the last
section is devoted to some conclusions summarizing this work.

2 State of the Art

The idea of using a single token for multiple purposes is quite an old one. Its
simplest and most famous implementation is perhaps that of a master key able
to open several locks. Recently, many solutions appeared which aim at group-
ing many applications on a single smart card, or more generally, on a single
microchip. Most of them can be categorized into one of two classes. The first
class, denoted by single ID cards in this paper, is the simpler one. So called
multi-application smart cards constitute the second class. They are more com-
prehensive and consequently more complex than single ID cards. In the fol-
lowing, these two classes are described in more detail sketching their pros and
cons.

2.1 Single ID Cards

The simplest realization of a single ID card is to have a number (an ID) that
uniquely identifies a person across several back-end systems stored on a smart
card. Each system keeps its own set of data associated with a given user in its
central database. The smart card merely serves as a reference to that account.
As all systems share the same number for a given user, a single card suffices
to identify him in all of them. Put another way, single ID cards realize an au-
thentication by possession of a person already known to the different systems
through a common identification scheme. A more advanced version of this so-
lution uses smart cards capable of producing digital signatures. The idea is to
have the user’s private key stored on his card, whereas the corresponding public
key is shared by all participating back-end systems. The main advantages and
drawbacks of this class are presented in the following.

Advantages

Simplicity: Solutions built on single ID cards are very simple. A single ID card
merely identifies a person. Each application maps the ID to a data set associated
with the corresponding user. The management of relevant application data is thus
differed from the card to the more powerful back-end systems, which facilitates
implementation.

Generic Digital Signature: In case a digital signature card is used, the card
can additionally be used to digitally sign electronic documents. Thus, a large cat-
egory of applications requiring the authenticity and non-repudiation of electronic
documents can be covered. Many countries already have laws that guarantee to
certain kinds of digital signatures a legal status equivalent to that of a classical
(i.e. manual) signature.

18 I. Bakdi

Drawbacks

No Off-Line Functionality: As the card merely represents a pointer to a data
set stored in the back-end system, it can only be used given an online access to
the central database. This is especially difficult when the verifier does not belong
to the issuer’s organization. To verify a student card, an employee sitting at the
entrance of a cinema would have to access data from the student office of the
corresponding university.

Privacy Concerns: As all the back-end systems use the same ID, comprehen-
sive user profiles can be easily constructed by matching the different data sets
belonging to a person. This raises privacy concerns because of possible misuse.

Single Point of Failure: The different back-end systems all rely on a unique
ID per user which is tightly bound to a single card. If this hardware token is
lost, stolen, or compromised, all those systems are affected at once. That is, the
card holder has no possibility to mitigate the risk resulting from a loss or theft
by employing more than one smart card.

High Demands: In case a signature card is used, the requirements concerning
the card’s protection and the key management are very high. This makes sense
when the card is used to generate legally recoverable digital signatures. For most
use cases, however, such functionality is not needed. A train conductor only has
to be convinced that a passenger possesses a valid ticket. He does not need to get
the traveller’s legally recoverable signature. In such cases, high demands would
unnecessarily burden the solution.

2.2 Multi-application Smart Cards

This class employs so called multi-application card operating systems (MACOS)
[14, p. 308] which try, in analogy to computer operating systems, to abstract
the underlying hardware in order to make it possible for different applications
to run on it. They offer an application programmer interface (API) that can be
used to access the card’s services. The newer MACOS (e.g. MULTOS [9] or Java
Card [19] [8] [5]) do not only provide for the hosting of many applications on the
same microprocessor, but also make it possible for the same application to run on
different chips by employing a virtual machine. Using the Java Card platform for
instance, each system can load its applet (a small application written in Java) on
the card where it can be executed together with other applets. In the remainder
of this section, the main advantage of multi-application smart cards as well as
their drawbacks are discussed.

Advantage

Universality: The vision of multi-application smart cards is to have a univer-
sal chip able to execute arbitrary code. That is to say, the goal consists in the
miniaturization of multi-purpose devices such as personal computers or hand-
helds. This would enable everyone to write applications that do whatever he

Towards a Secure and Practical Multifunctional Smart Card 19

wants and load them to be executed on card. The employed smart card would
bear all the necessary functionality and would not need to rely on any back-end
system, thus providing a high level of flexibility and autonomy.

Drawbacks

Complexity: Due to their complexity these systems are far from being mature.
This results in the following limitations of current solutions.

• The capabilities of MACOS are restricted due to limitations in processing
performance and storage capacities of the underlying hardware. It will
take some time before they reach the universality of operating systems
running nowadays on personal computers, for instance.

• Many of the current solutions do not offer the possibility of post-issuance
loading. The applications are installed on the card before the latter is
issued. This is for instance the case when using MULTOS [12]. Java
applets can be loaded after the card is issued, but until version 2.2 of the
Java Card specification there was no possibility to remove already loaded
applets. This shows the kind of difficulties encountered in practice.

Security: The main advantage of multi-application smart cards, consisting in
their ability to host arbitrary applications and to execute their code, constitutes
at the same time a considerable security risk. Some applications running on the
card may not be trusted. They could access sensitive data of other applications
residing on the same chip. Currently, many efforts are made to secure smart card
applets against one another using e.g. so called firewalls [6] [18] or byte code
verification [13]. This is a cumbersome task. The cost of evaluating, for instance,
an application written for MULTOS according to ITSEC E6 [7] is estimated to
be 150% of the overall development cost [4]. Besides, their genericity does not
allow to hard-wire once and for ever protection mechanisms needed to ensure the
requirements of uniqueness and privacy described in the next section. Instead,
each application has to implement its own security framework, possibly leading
to new vulnerabilities.

3 Security Requirements

A multifunctional smart card as introduced in the first section should satisfy at
least the following security requirements.

Authenticity: Only a legitimate issuer should be able to produce authentic
virtual tokens for a given application. No one besides the student office should
be capable of issuing valid student cards.

Integrity: A solution has to make sure that, once issued, a virtual token can
not be modified, not even by its holder. The student must not be able to change
the validity period of his card himself.

20 I. Bakdi

Uniqueness: Virtual tokens have to be protected against duplication. This is
especially important when considering applications where the token is used as a
dongle or as a ticket. Imagine a railway ticket that can be duplicated at will.

Privacy: This requirement could also be entitled “separability”. Physical to-
kens, although perhaps belonging to the same user, are not a priori linked to
each other. Often they are not even associated with their holder. In no way can
a car key be linked to any of the other tokens a user has in his pocket, nor is
it related to his person. The same should hold when replacing physical tokens
by virtual ones. Else, profiles existing in the different systems could be easily
matched to get a comprehensive picture of the user. Also, when virtual tokens
need to be verified it should be possible to present them separated from each
other, though residing on the same chip. All a train conductor has to know is
that the traveller paid for his trip. This requires him to look at the passenger’s
ticket but not to learn his identity.

The requirements of authenticity and integrity are satisfied by letting the
issuer digitally sign each virtual token he issues. Verifying this signature ensures
that only authentic and untampered virtual tokens are accepted as valid. The
scheme described in the next section also guarantees uniqueness and privacy.

4 New Approach

The proposed solution is based on the concept of virtual tokens (VT) introduced
above. These are hosted by a microchip called digital pocket (DP) in this paper,
in analogy to a pocket that holds physical tokens. VTs can be loaded (e.g.
over the Internet) into a DP after the latter is issued (post-issuance loading).
They can even be moved by their holder from one DP to another without any
intervention by the issuer, which makes the scheme very flexible. In a certain way,
VTs resemble attribute certificates as described e.g. in [3]. The main difference
is that a VT can only be used in conjunction with a single hardware token (i.e.
a DP) at a given time, thus preventing its duplication.

Each DP is embedded into a container that provides it with power supply and
a communication interface. The most obvious realization of this idea is to use a
smart card in conjunction with a reader providing the required infrastructure.
However, it could be implemented as well in a mobile phone, in a wrist watch, or
in any other object the user bears with him. For the sake of simplicity a smart
card realization is assumed in this paper.

The main actors taking part in the scheme are identified in the next sub-
section. After sketching DP’s architecture and describing the involved key pairs,
the scheme is outlined in subsection 4.4. Finally, a short analysis of the trust
relationships that have to be assumed among the different roles and a discussion
comparing the new scheme to existing solutions are presented.

4.1 Roles

The following actors take part in the considered setting. Fig. 1 summarizes their
interactions.

Towards a Secure and Practical Multifunctional Smart Card 21

VTVerifier

DPProvider

VTRegistrar

VTIssuer

VTHolder

1. DP distribution

2. VT distribution

3. VT binding &
unbinding

4. VT verification

Fig. 1. The different roles and their interactions

– Digital Pocket Provider (DPProvider): is the issuer of DPs.
– Virtual Token Issuer (VTIssuer): issues VTs (e.g. the railway company).
– Virtual Token Holder (VTHolder): is a person holding one or more VTs (e.g.

a railway passenger).
– Virtual Token Verifier (VTVerifier): verifies VTs (e.g. a train conductor).
– Virtual Token Registrar (VTRegistrar): represents a trusted institution as-

suring that there is no more than one active copy of a given VT at any
time.

These roles may be assumed by distinct persons and/or institutions. How-
ever, a single organization may also assume several of them. DPProvider and
VTRegistrar could for example be embodied by the same infrastructure opera-
tor. Another option is to have VTIssuer ensure the uniqueness of VTs he issues,
thereby additionally playing VTRegistrar’s role.

4.2 Architecture

The proposed solution can be readily implemented using standard hardware
components as they can be found on modern smart cards. More precisely, DP’s
architecture consists of the following elements.

– Protected Memory (PM): represents the area of the chip where VTs and all
relevant public keys are stored. This area is accessible to VTHolder after

22 I. Bakdi

authorization, e.g. using a PIN or some kind of biometrics. The protection
is meant to prevent VTVerifier or someone else from randomly reading the
content of a DP without VTHolder’s consent.1

– Tamper-Resistant Memory (TRM)2: is an area that can not be read from
the outside, not even by VTHolder. It serves as a storage for private keys.

– Tamper-Resistant Processing Unit (TRPU): represents a processing unit for
the execution of computations involving secrets.

– Controller : coordinates the single actions of a DP and provides an inter-
face to the outside world. It handles the communication with VTHolder,
VTVerifier and VTRegistrar.

4.3 Involved Key Pairs

The presented solution relies on public key cryptography. In the remainder of this
paper, a private key used to create a digital signature is always denoted by Sx (for
some index x), whereas Px stands for the corresponding public key employed for
signature verification. More precisely, the following key pairs are used to generate
and verify digital signatures in the different phases of the scheme.

(SVTIssuer , PVTIssuer) : Every VT issued by a VTIssuer is signed with his private
key SVTIssuer and can be checked for validity using the corresponding public
key PVTIssuer.

(SVTRegistrar , PVTRegistrar) : VTRegistrar employs his private key SVTRegistrar
to generate binding confirmations that can be verified using PVTRegistrar.

(SVT , PVT) : Each VT is bound to a DP using a dedicated key pair (SVT , PVT).
(Sg , Pg) : Before their distribution, DPs are divided by DPProvider into groups.

All the DPs of a given group are assigned the same key pair (Sg , Pg).

DPs are grouped in order to protect the privacy of their holders. That is, all
DPs belonging to the same group g share a common key pair (Sg , Pg). Thus,
they cannot be distinguished from one another. If each DP had its own key
pair, the different identities connected to it could be linked together. This is
prevented by letting an individual DP hide in its group much in the same way
that a single Internet user hides in a group of surfers when using anonymizer
services built on crowds [15]. Although the fact that several chips carry the
same private key would appear to increase the security risk, such is not the case.
As will become clear from the following description of the scheme, the damage
caused by a compromised DP is independent of whether it was assigned a unique
key or whether it shares it with a number of other DPs.
1 To make such a protection effective a secure communication channel between

VTHolder and DP is needed. This involves an input device (e.g. a keypad) and
an output device (e.g. a small display) that are tamper-resistant. However, to keep
the system’s description simple this point will not be further elaborated in this paper.

2 As a perfect protection of hardware tokens averting every attack can hardly be
achieved [1], the term “tamper-resistant” is used instead of “tamper-proof” to make
clear that despite great efforts to protect the microchip, a risk of compromise still
exists. The assumption is of course, as with other schemes, that the token’s physical
protection is sufficient for its purpose.

Towards a Secure and Practical Multifunctional Smart Card 23

4.4 How It Works

The main phases of the scheme comprise:

a) Initialization: Before its delivery to a VTHolder, each DP is initialized
by DPProvider. To initialize a group of DPs, DPProvider generates a new key
pair (Sg , Pg). The private key Sg is stored in the tamper-resistant memory
(TRM) of each card in the group. Further, the corresponding public key Pg is
included into PubList, which is the list of the public keys of all DPs issued so
far.3

b) Distribution: Once the DPs have been initialized, they can be distributed
to VTHolders through any channel. At this stage, all the DPs are identical in the
sense that they are neither VTHolder specific nor VTIssuer specific. A VTHolder
could just buy an “empty” DP in the supermarket to load his VTs on it.

c) Virtual Token Generation: In order to issue a VT, VTIssuer has to write
the application dependent data into a file and to sign it with his private key
SVTIssuer. The format of this file may be freely chosen by VTIssuer (as long as
VTVerifier is able to make sense of it). The signed file constituting a VT can
be transferred to VTHolder via e-mail or any other means. If the VT contains
confidential data it must, of course, be protected on its way to VTHolder. After
receiving a VT, VTHolder has to bind it to a particular DP before it will be
accepted by VTVerifier.

d) Binding: Binding a VT to a DP ensures that it can not be duplicated (see
the requirement of uniqueness in section 3). VTRegistrar knows about every
VT he has bound to a DP and is responsible for the prevention of multiple
bindings. To do so, he stores the hash value of each VT that he binds in a
list called BoundList. Storing only a hash value and not the VT itself prevents
VTRegistrar from learning the token’s content, thus guaranteeing VTHolder’s
privacy as required in section 3. Moreover, the use of a hash value improves
the system’s efficiency, especially when a big number of VTs has to be man-
aged. The details of the binding process are depicted in protocol 1 (see also
Fig. 2).

Protocol 1 (Binding of a VT to a DP by VTRegistrar):

1. TRPU calculates a hash value of VT:

h := Hash(VT).4

2. A new key pair (SVT , PVT) is generated inside TRPU.
3. SVT is stored in TRM.
3 An update of PubList is regularly propagated to VTRegistrar (e.g. using a public

key infrastructure).
4 Hash(·) is assumed to be a cryptographically secure hash function, i.e. one that is

collision and preimage resistant (see e.g. [11, p. 323]).

24 I. Bakdi

TRPUTRM PubListVTRegistrarPM BoundList

h:= Hash(VT)

Generate
(SVT , PVT)

Store SVT

SVT

s1:=
SignSg (h|PVT) (Pg, PVT, h, s1)

Pg

Pg in
PubList ?

VerifyPg

(s1, h|PVT)

h

h not in
BoundList ?

s2:= SignSVTRegistrar

(Hash(h|PVT|r1))

Store h

h

(s2 ,r1)

Store
(IDVT, VT, PVT, s2,

r1, AuthMeth)

VTHolder VTRegistrar

01

02

03

04 05

06

07

08

11

09

12

13

Generate a
random

bit string r1
10

Fig. 2. Binding a VT to a DP by VTRegistrar (Protocol 1)

Towards a Secure and Practical Multifunctional Smart Card 25

4. TRPU signs the bit string h|PVT using Sg:

s1 := SignSg(h|PVT).5

5. The tuple (Pg, PVT, h, s1) is sent to VTRegistrar.
6. VTRegistrar verifies that Pg is contained in PubList.
7. VTRegistrar verifies that h is not yet contained in his list of bound VTs

(BoundList).
8. VTRegistrar checks the validity of s1 using Pg:

V erifyPg(s1, h|PVT).

9. VTRegistrar stores h in BoundList.
10. VTRegistrar generates a random bit string r1.
11. VTRegistrar signs Hash(h|PVT|r1) with his private key SVTRegistrar:

s2 := SignSVTRegistrar(Hash(h|PVT|r1)).

12. VTRegistrar sends the pair (s2, r1) back to VTHolder.
13. The tuple (IDVT, VT, PVT, s2, r1, AuthMeth) is stored in PM, where IDVT

stands for the ID of the application VT belongs to and AuthMeth for the
authentication method to enforce before granting access to this particular
VT.6

By signing Hash(h|PVT|r1) in step 11 VTRegistrar confirms that the VT
which hashes to h was bound to the DP that holds the corresponding private
key SVT in its TRM. Such a confirmation is only issued if three conditions are
met:

i. The binding was actually requested using a DP (step 8 of the previous
protocol),

ii. that DP is genuine, i.e. its public key Pg is contained in PubList (step 6),
and

iii. the VT in case is not yet bound to another DP (step 7).

Remark 1. If in step 11 VTRegistrar just signed h|PVT instead of
Hash(h|PVT|r1) then chosen-ciphertext attacks could be feasible. This is why
[16, p. 54] points out that “it is foolish to encrypt arbitrary strings”.

Remark 2. The key pair (SVT , PVT) has to be generated securely inside the
TRPU so that nobody learns its value. Some smart cards use pseudo random
number generators with a seed set by the manufacturer [14]. Such smart cards
are unsuitable for this scheme as everyone knowing the seed could deduct the
entire pseudo random number sequence. The keys rather have to stem from a
physical source of randomness (see e.g. [2] for a true random number generator
suitable for integration on smart cards).
5 b1|b2 stands for the concatenation of the bit strings b1 and b2.
6 Depending on the use case, AuthMeth is determined either by VTIssuer or by

VTHolder.

26 I. Bakdi

e) Verification: When a DP is asked to present a given VT to VTVerifier, it
first requests an authorization from VTHolder as mentioned in section 4.2. In
case VTHolder approves, DP sends VT together with the binding confirmation
to VTVerifier who checks their validity. Protocol 2 (depicted by Fig. 3) contains
the necessary steps.

VTVerifier TRPUController VTHolder

Generate a
random

challenge c

(IDVT, c)
(IDVT, AuthMeth)

Authenticate

VerifyPVTRegistrar

(s2, Hash(Hash(VT)|
PVT|r1))

(VT, PVT, s2, r1, s3, r2)

VTHolder

s3:=
SignSVT (Hash(c|r2))

VerifyPVT

(s3, Hash(c|r2))

VerifyPVTIssuer (VT)

VTVerifier

1

2

3

5

6

7

8

9

Generate a
random

bit string r24

Fig. 3. Verification of a VT by VTVerifier (Protocol 2)

Towards a Secure and Practical Multifunctional Smart Card 27

Protocol 2 (Verification of a VT by VTVerifier):

1. VTVerifier generates a random challenge c.
2. VTVerifier requests VT from DP’s Controller by sending it the pair (IDVT, c).
3. Controller uses the specified AuthMeth to ask VTHolder for permission to

show VTVerifier the VT in case.
4. TRPU generates a random bit string r2.
5. TRPU generates the following signature:

s3 := SignSVT(Hash(c|r2)).

6. Controller sends the tuple (VT, PVT, s2, r1, s3, r2) to VTVerifier.
7. VTVerifier checks the validity of s2 using PVTRegistrar:

V erifyPVTRegistrar(s2, Hash(Hash(VT)|PVT|r1)).

8. VTVerifier checks the validity of s3 using PVT:

V erifyPVT(s3, Hash(c|r2)).

9. VTVerifier checks the authenticity and integrity of VT using PVTIssuer.

In step 7 of this protocol, VTVerifier gets convinced that the VT he received
is uniquely bound to the DP that holds the private key SVT corresponding to
PVT. By looking at s3 in step 8, he verifies that he is actually communicating
with that DP. Finally, the authenticity and the integrity of the VT itself are
verified in the last step.

Remark 3. DP could use a suitable zero-knowledge protocol as described e.g. in
[11, pp. 405–417] to convince VTVerifier that it holds SVT without divulging it.
However, in this paper a digital signature was chosen for this purpose in order
to simplify matters.

f) Unbinding: VTHolder may want to use more than just one DP and to be
able to transfer VTs among them. He could use a DP for his private VTs and a
separate one for the VTs he needs at work. When going on a vacation trip he may
choose to only take certain VTs with him in order to reduce the damage caused
by a possible loss or theft. To satisfy this requirement, a mechanism is needed
which enables the unbinding of a VT from the DP it is bound to. Protocol 3
realizes this task.

Protocol 3 (Unbinding of a VT from a DP by VTRegistrar):

1. TRPU calculates
h := Hash(VT).

2. TRPU signs h with SVT:

s4 := SignSVT(h).

28 I. Bakdi

3. SVT is removed from TRM.
4. The tuple (h, PVT, s2, r1, s4) is sent to VTRegistrar.
5. VTRegistrar checks the validity of s2 using his own public key PVTRegistrar:

V erifyPVTRegistrar(s2, h|PVT|r1)).

6. VTRegistrar checks the validity of s4 using PVT

V erifyPVT(s4, h).

7. VTRegistrar removes h from BoundList.

Step 5 of the above protocol ensures that the VT which hashes to h was
actually bound to the key pair (SVT, PVT). In Step 6 VTRegistrar gets convinced
that the unbinding request comes from the DP to which VT is currently bound,
namely the one holding SVT.

Remark 4. So far, a single VTRegistrar was assumed in order to keep the de-
scription simple. Nevertheless, the scheme is able to accommodate any num-
ber of VTRegistrars. By letting each VTRegistrar manage his own BoundList,
a decentralized solution is obtained. The different VTRegistrars do not even
need to communicate with each other. In order to designate a VTRegistrar re-
sponsible for the uniqueness of a given VT, VTIssuer would include the public
key PVTRegistrar of that VTRegistrar into the VT before signing it. This way,
VTVerifier learns which public key he has to employ in order to verify s2 (step 7
of protocol 2). This flexibility is especially important to make a viable business
model possible, because it avoids dependency on a single institution. A VTIssuer
himself could for instance care about the binding of VTs issued by him. For the
sake of completeness, it should be mentioned that the drawback of having many
VTRegistrars is the bigger overhead when moving VTs from one DP to another.
For each VT being transferred the corresponding VTRegistrar has to be con-
tacted to unbind it from the first DP and to rebind it subsequently to the second
one. This could impair the flexibility of the scheme in case VTs are frequently
moved.

4.5 Who Trusts Whom?

To better understand the dependencies between the single roles their trust rela-
tionships are examined in the following.

VTRegistrar: The only thing VTRegistrar has to rely on is that the DPs be-
have correctly, i.e. that they do not divulge private keys and that they exe-
cute operations only according to the protocols presented above. In other words,
VTRegistrar has to trust DPProvider to only issue DPs that work as specified
and to provide him with the correct list of valid public keys (PubList). In all the
other actors VTRegistrar does not need to trust.

Towards a Secure and Practical Multifunctional Smart Card 29

VTHolder: Like VTRegistrar, VTHolder has to trust DPProvider. If his DP
functions correctly and keeps its secrets safe, VTHolder does not have to trust
VTRegistrar, because the latter does not learn any sensitive information in the
course of binding and unbinding VTs. Conversely, assuming the trustworthiness
of VTRegistrar, VTHolder cannot be fooled into using a manipulated DP, be-
cause he would notice it as soon as he tries to use the chip for the first binding.
This renders the distribution channel for DPs uncritical.

VTIssuer/VTVerifier: VTIssuer and VTVerifier have to trust VTRegistrar to
ensure the uniqueness of VTs, i.e. that binding confirmations are only issued for
VTs not already bound. In particular, they have not to rely on the genuineness of
a given DP, because VTHolder would not be able to get a binding confirmation
from VTRegistrar if his hardware token were not working properly.

Remark 5. Someone who learns Sg would be able to request bindings that he
may copy. This is because he could generate a key pair (SVT , PVT) outside a
DP, use Sg to get a binding confirmation from VTRegistrar, and thus know the
private key SVT that is necessary for duplication. However, he would not be able
to generate a second binding for a given VT using a different pair (SVT , PVT),
nor could he use any previously bound VT if he lacks the corresponding DP.
This is why the consequences of compromising a DP’s private key are the same
whether it is shared within a group of DPs or not.

Remark 6. The scheme described above assumes a running public key infrastruc-
ture (PKI). This PKI is, however, only needed in order to manage PubList and
the public keys of VTRegistrars and VTIssuers. While PubList has to be acces-
sible to VTRegistrars, the only actor interested in getting authentic public keys
of VTRegistrars and VTIssuers is VTVerifier. VTHolders and their DPs have
no public keys to be managed by this PKI. This makes the required PKI much
simpler than one needed by single ID cards able to generate digital signatures,
for instance.

4.6 Discussion

The solution proposed in this paper can be seen as a pragmatic compromise
between the inflexible single ID cards, on one hand, and the cumbersome multi-
application smart cards, on the other hand. While single ID cards represent the
simplest solution and have therefore many serious limitations, multi-application
smart cards provide the most flexible system, but still need a lot of work to
reach their vision. The main difference between the new approach and single ID
cards is that the former employs an independent virtual token for each back-
end system. The virtual tokens can be used without any online access to a
central database and they can be transferred from one hardware token to another
without being duplicable. In contrast to multi-application smart cards, a DP
merely stores data on the chip, but no application-specific code is executed
on it. This makes implementation easier and avoids many security problems.
[17] states that “. . . for many applications, using a smart card securely means

30 I. Bakdi

understanding it not as a ‘trusted’ computation platform, but as a data storage
device with limited computational abilities”.

Nevertheless, there are also applications not covered by the new scheme.
These are use cases requiring some application-specific code to be executed on
card (e.g. digital signature cards, digital cash cards with a purse-to-purse func-
tionality such as Mondex [10], etc.). Hence, the approach presented above is
not meant as a substitute for the other solutions but rather as a complement.
Note that it is for example possible to combine a digital signature card with
the scheme presented in this paper to cover an even larger set of applications.
Summarizing, one could say that the presented approach, although not covering
all use cases, is able to avoid undue complexity and still serve a big number of
applications adequately.

5 Conclusions

A new scheme for a multifunctional hardware token was described in this paper.
It is based on the observation that many applications (e.g. driving licenses, stu-
dent ID cards, credit cards, loyalty cards, pay TV cards, subway tickets, etc.) do
not necessarily need the execution of application-specific code on card nor the
ability to generate digital signatures. The role of each actor in the scheme, which
can be assumed by any person or organization, was clearly defined and the inter-
actions taking place between the different actors were specified. The architecture
of a microchip needed to host different virtual tokens was roughly sketched. Un-
like attribute certificates, virtual tokens are bound to a single hardware token,
which prevents them from being duplicated. Not only does the scheme enable
off-line use and post-issuance loading, but virtual tokens can also be transferred
among different hardware tokens making the solution very flexible. Moreover, the
scheme inherently provides for authenticity, integrity, and privacy. Comparing it
to other approaches it was shown that while certainly not providing a universal
solution, it may help considerably towards a secure and practical multifunctional
smart card.

References

1. Anderson, Ross and Kuhn, Markus: Tamper Resistance - a Cautionary Note. In:
Proceedings of the Second USENIX Workshop on Electronic Commerce, Oakland,
CA, USA (1996), 1–11.

2. Bucci, Marco; Germani, Lucia; Luzzi, Raimondo; Trifiletti, Alessandro and Vara-
nonuovo, Mario: A High Speed Oscillator-Based Truly Random Number Source
for Cryptographic Applications on a Smart Card IC . In: IEEE Transactions on
Computers, No. 4, Vol. 52 (2003), 403–409.

3. Chadwick, David W.: The X.509 Privilege Management Infrastructure. In: Pro-
ceedings of the NATO Advanced Networking Workshop on Advanced Security
Technologies in Networking, Bled, Slovenia, 2003.

4. Chan, Siu-cheung Charles: Infrastructure of Multi-Application Smart Card (in
the concerns of access control). http://home.hkstar.com/~alanchan/papers/
multiApplicationSmartCard/, download 2005-02-28 (1997).

Towards a Secure and Practical Multifunctional Smart Card 31

5. Chen, Zhiqun: Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide. Addison-Wesley Professional, Amsterdam (2000).

6. Éluard, Marc; Jensen, Thomas and Denney, Ewen: An Operational Semantics of
the Java Card Firewall. In: Proceeding of Smart Card Programming and Security
(ESMART), Lecture Notes in Computer Science, 2140, Springer-Verlag, Berlin
Heidelberg New York (2001), 95–110.

7. European Union (ed.): Information Technology Security Evaluation Criteria (IT-
SEC). http://www.bsi.de/zertifiz/itkrit/itsec-en.pdf, download 2005-02-
28 (1992).

8. Grimaud, Gilles and Vandewalle, Jean-Jacques: Introducing research issues for next
generation Java-based smart card platforms. In: Proceedings of the Smart Objects
Conference (SOC), Grenoble, France (2003), 138–141.

9. MAOSCO, Ltd: MULTOS. http://www.multos.com, download 2004-06-07 (2004).
10. MasterCard International: Mondex. http://www.mondex.com, download 2004-06-

07 (2004).
11. Menezes, Alfred J.; van Oorschot, Paul C. and Vanstone, Scott A.: Handbook of

Applied Cryptography. CRC Press, Boca Raton et al. (1997).
12. Niwano, Eikazu; Hatanaka, Masayuki; Hashimoto, Junko and Yamamoto,

Shuichiro: Early Experience of a Dynamic Application Downloading Platform for
Multi-Application Smart Cards. In: Proceedings of the Fifth Joint Conference on
Knowledge-Based Software Engineering (JCKBSE) Maribor, Slovenia (2002).

13. Posegga, Joachim and Vogt, Harald: Byte Code Verification for Java Smart Cards
Based on Model Checking. In: Proceedings of the Fifth European Symposium on
Research in Computer Security (ESORICS), Louvain-la-Neuve, Belgium, Lecture
Notes in Computer Science, 1485, Springer-Verlag, Berlin Heidelberg New York
(1998), 175–190.

14. Rankl, Wolfgang and Effing, Wolfgang: Handbuch der Chipkarten: Aufbau - Funk-
tionsweise - Einsatz von Smart Cards. Hanser Verlag, Munich et al. (2002).

15. Reiter, Michael K. and Rubin, Aviel D.: Crowds: Anonymity for Web Transactions.
ACM Transactions on Information and System Security, No. 1, Vol. 1 (1998), 66–92.

16. Schneier, Bruce: Applied cryptography: protocols, algorithms and source code in
C. John Wiley & Sons, Inc., New York et al. (1996).

17. Schneier, Bruce and Shostack, Adam: Breaking Up Is Hard To Do: Modeling
Security Threats for Smart Cards. In: Proceedings of the USENIX Workshop on
Smart Card Technology, USENIX Press (1999), 175–185.

18. Siveroni, Igor; Jensen, Thomas and Éluard, Marc: A Formal Specification of the
Java Card Firewall. Nordic Workshop on Secure IT-Systems (2001).

19. Sun Microsystems, Inc.: Java Card Technology. http://java.sun.com/products/
javacard/, download 2004-06-07 (2004).

Implementing Cryptography on TFT Technology
for Secure Display Applications

Petros Oikonomakos1, Jacques Fournier1,2, and Simon Moore1

1 University of Cambridge, Computer Laboratory, William Gates Building,
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

po230@cl.cam.ac.uk
2 GEMPLUS, La Vigie, Avenue des Jujubiers, ZI Athélia IV,

13705 La Ciotat Cedex, France

Abstract. Several recent studies have underlined the need for trusted
information displays in current and future personal devices. On the other
hand, the display market is more and more dominated by low-cost flat-
panel structures, driven by Thin-Film Transistor (TFT) circuits. Further,
the quality of TFT-based electronics is constantly improving, allowing
the fabrication of complicated electronic circuits on TFT technology. We
have embarked on a project to implement cryptographic algorithms on
polysilicon TFT technology. Our prototype designs will pave the way
for secure display realisations combining cryptographic circuits and con-
ventional pixel drivers on the same substrate. An experimental Data
Encryption Standard (DES) coprocessor on polysilicon TFT technology
is under development, while we are investigating a vector processor ar-
chitecture to implement Elliptic Curve Cryptography (ECC).

1 Introduction

Investigations related to secure and convenient, new or improved financial trans-
action models are frequently published nowadays. Some of them [1, 2, 3] have
identified the improvements in customer security that trusted displays have to
offer. In this context, a display is trusted (or secure) if the content source can
be sure that the distributed information will only be presented on the intended
display. Alternatively, a secure display may be regarded as a means to verify
that data is coming from a trusted source. When used in a customer’s personal
electronic device (PDA, mobile phone, “smart device” etc.), such a display would
form part of a secure communication path between a user and a business. An
obvious way to develop secure displays is to equip them with decryption electron-
ics, and have the source send encrypted information to them. An unauthorised
party not having the adequate key(s) would thus not be able to extract clear
display data or display any unauthorised content.

On the display technology front, Organic Light Emitting Diodes (OLEDs)
are emerging as a potential market substitute for Liquid Crystal Display (LCD)
technology [4]. In the preferred active matrix configuration, both OLED and
LCD pixel arrays are driven by Thin-Film Transistors (TFTs), fabricated on

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 32–47, 2006.
c© IFIP International Federation for Information Processing 2006

Implementing Cryptography on TFT Technology 33

an insulating substrate (typically glass). The TFT active area is formed either
traditionally by hydrogenated amorphous Silicon (a–Si:H) [5], more recently by
polycrystalline Silicon (polysilicon, poly–Si) [4], or by continuous grain Silicon
(CG–Si), described by Sharp as a next-generation variant of poly–Si [6]. The
last two technologies demonstrate higher carrier mobility than a–Si:H, thus pro-
ducing better quality transistors. It has therefore been possible to fabricate rel-
atively complicated electronic circuits using both poly–Si and CG–Si [7, 8]. Note
that the production and material costs of TFT technology are much lower
than that of conventional CMOS circuits. This can be understood even from the
fact that the former use very cheap materials for the substrate (glass or plastic),
while the latter require Silicon. Hence TFTs are economically preferable in large
area electronics applications with relatively low performance requirements.

A straightforward way to cryptographically secure an OLED display would
be to use a conventional CMOS cryptographic chip for the decryption of the
image information sent by the source. The decrypted information could then be
suitably directed to the pixel driver array. The non-secure channel between the
cryptographic chip and the driver array constitutes the weakest link in most of
today’s security systems. However, given the recently demonstrated improved
capabilities of modern TFT technologies (mentioned in subsection 3.1 of this
paper), it would be interesting to investigate whether cryptographic applications
can be successfully implemented in such technologies. The motivation behind
such an investigation is that consumer portable electronic devices usually occupy
relatively large areas. One could therefore use as much of the area as needed for
the actual display, while the rest can be occupied by TFT circuits controlling
access to the display, by performing cryptographic operations. Figure 1 depicts
an over-simplified configuration of a conceptual consumer smart device adhering
to the above ideas. The bottom layer of the device in the figure is occupied

pixel
drivers

cryptographic
circuits

display

election
authority

media
distributor

e-shop
or

vending terminal

Fig. 1. A smart consumer device with a secure TFT display

34 P. Oikonomakos, J. Fournier, and S. Moore

by TFT electronics, partly driving the pixels of an OLED display, and partly
performing cryptographic functions. Of course, several other components (not
shown in Fig. 1) would be needed in a consumer smart device, such as a keypad,
I/O functionality, a radio antenna etc. The key idea illustrated by the figure,
though, is the migration of cryptographic functionality from CMOS to TFT
technology, allowing for better area use, promising lower production cost, and
completing the end-to-end security chain. The figure also shows three examples
of parties that, depending on the application scenario, may communicate with
the smart device and would therefore require use of the display; a few such
applications will be explained in Section 2.

The rest of this paper is organised as follows. Section 2 establishes the need
for secure displays by reviewing a few relevant works. Section 3 provides a brief
up-to-date presentation of display technology and TFT drivers, as well as an
overview of recent developments in TFT circuits not directly related to displays.
In Section 4 we propose our idea for a cryptographic device on poly–Si TFT
technology. We report our progress in the direction of a first DES coprocessor
prototype, together with our investigations towards a vector processor archi-
tecture for Elliptic Curve Cryptography. Section 5 deals with low-level design
considerations, particularly by presenting a Programmable Logic Array (PLA)
configuration and detailing its operation. Finally, section 6 concludes the paper.

2 The Need for Secure Displays

In 1995, Yee and Tygar proposed the use of secure coprocessors in electronic
commerce [1]. When used in a point-of-sale terminal scenario, the coprocessor
(e.g. a smart-card) communicates with the terminal, the customer reviews the
transaction on the terminal display and authorises it using the terminal interface.
However, there can be no guarantee about the integrity of the terminal display.
It is possible that the customer may be reviewing a transaction of a certain
amount, and yet the terminal may be charging the card a different amount. This
can be either due to a violation of the terminal security by criminal activity, or
even due to merchant fraud. As the authors of [1] mention, the solution to that
would be a private visual communication path between the smartcard processor
and the end user. An information display on the user side is therefore needed,
that would only present data received from the card. Such a trusted display
would ensure that the user indeed authorises the same transaction that his or
her own card is about to implement.

In a recent patent application [3], a cashless payment method is advocated,
using a remote customer terminal (mobile phone, PDA or related apparatus
encompassing user interfaces) to communicate with a trader station (e.g. super-
market till) and a central station (e.g. bank). The desired amount of money is
first read into the trader station, in a conventional way (keyed-in or scanned),
and then transmitted to the central station through a data line. The customer
reviews the transaction on the trader station display. If the amount is correct,
he or she uses the mobile terminal to wirelessly send a unique identifier both

Implementing Cryptography on TFT Technology 35

to the trader station and to the central station. In response to that, the central
station again wirelessly transmits the transaction details to the customer, to be
confirmed on the mobile terminal display. Payment proceeds following user au-
thorisation from the mobile terminal to the central station. It can be argued that
this model is more secure than that of the previous paragraph, since the user
effectively authorises the transaction twice, reviewing payment details submitted
from two different sources. Again, however, it is important that the display on
the mobile terminal can be trusted to only present information received from the
central station. Otherwise the whole model would be vulnerable to “man-in-the-
middle” attacks [2], should an attacker interfere between the central station and
the customer. Therefore, the mobile terminal will need to be a “smart device”
with a secure display.

In 1998 a group of European companies formed the FINancial Transactional
IC Card READer (FINREAD) Consortium [9]. Their objective ever since has
been to reinforce the level of smartcard security through the specification of a
smartcard reader connectable to personal computers, to facilitate home-based
e-commerce. Interestingly, the first FINREAD technical specifications mandate,
among others, a secure display for the reader. Thus, the consortium of business
experts recognise the importance of the integrity of data presented to the user. In
a recently accepted paper, Hiltgen et al. [2] describe how such a reader could be
used for secure internet banking. In effect, all communication between the card
and the bank takes place through the reader and its secure interfaces. The PC
plays no active role in manipulating (displaying, encrypting) the card’s details.
Further, simple knowledge of the card number and details are no longer enough
for a malevolent party to access customer accounts, since the bank server only
authenticates users by exchanging encrypted card information with the card
through the reader.

In another application area, Hortmann published a short tutorial on long
distance e-voting [10]. He identifies the problem of potential communication
spoofing between a voter’s PC monitor and the election authority by online
attackers, which is very similar in nature to equivalent scenarios in e-banking.
Furthermore, in e-voting it is important not only that the voter sees the correct
information on his or her display, but also that nobody else can see the infor-
mation (for reasons of vote anonymity). Once again, the use of secure displays
for end-user voting components is advocated. The author of [10] envisions future
PDAs armed with trusted displays functioning as “Personal Security Devices”
(PSDs) to realise secure e-voting.

Since 2003, the Open Mobile Alliance (OMA), an industry forum dealing with
mobile services, has been working on Digital Rights Management (DRM) schemes
to securely distribute and protect data on mobile terminals [11]. Their DRM
specification details functional models for the distribution of purchased media
applications to mobile consumer devices. In order for such a business model to
operate profitably, it is imperative that the distributor be certain that the appli-
cation can only be enjoyed by the customer, and not widely distributed further. If

36 P. Oikonomakos, J. Fournier, and S. Moore

the application contains images, then encrypting them such that only the buyer’s
secure display can show them will provide a good solution to this problem.

Through the examples reviewed in the above, this section has demonstrated
how secure displays on smart devices can enable trusted communication of pri-
vate, sensitive data through public networks, in a variety of applications, includ-
ing e-commerce, e-voting, and wireless distribution of media applications.

3 Display Technology and TFTs

Liquid Crystal (LC) based components currently dominate the flat-panel display
market. LCDs operate by modulating light generated by a back-light source. In
recent years, an alternative emissive technology has been rapidly developing:
Organic Light Emitting Diode (OLED) displays. Compared to LCDs, OLEDs
demonstrate higher luminous efficiency, brightness, lower production costs and
lower operating voltage requirements, in addition to a larger viewing angle. An
OLED is a multi-layered electronic structure. One layer is fabricated from an
electron transporting material; another from a hole transporting material. In
between there exists another layer where the carriers recombine and the excess
energy is released as light. The whole structure is often sandwiched between
a hole injecting electrode and an electron injecting electrode. Current passing
through the OLED causes the emission of light [4].

The pixels of an LC or OLED display can be driven by either a passive
or an active matrix (PM or AM respectively), formed by a horizontal address
line and a vertical data line. In PM driving, the LCD elements or OLEDs are
directly connected to the lines, while AM displays employ actual driving circuits.
LCD pixels are voltage-driven; therefore PM driving is a valid low-cost option. In
contrast, OLEDs are current-driven. Further, all pixels require a uniform current
flow, in order for the OLEDs to provide uniform brightness. It is very difficult
to achieve uniform current unless some transistor-based driver circuit is used.
It is therefore in practice mandatory to apply active matrix driving of OLED
displays. Given the physical dimensions of displays, in most cases it would be
economically unwise to use CMOS driving circuits for the active matrix. This is
the application area where TFTs on insulating and cheap substrates are useful.

From the above description, it is evident that good quality current sources
to be used as AM pixel drivers are the most obviously needed TFT circuits. It
is desirable that the drivers not only provide constant current initially, but also
continue to do so throughout the expected display lifetime, regardless of any
TFT threshold voltage shift over time. A number of designs have been proposed
in the literature for this purpose. References [5, 12] deal with a–Si:H TFTs.
These TFTs do not demonstrate very good electronic properties. They suffer in
particular from low carrier mobility (lower than 1cm2/V-s), thus requiring very
wide channels to allow sufficient current flow (e.g. Nathan et al. [5] report TFTs
with channels as wide as 1000µm). Further, p-channel TFTs are not available in
a–Si:H technology [4]. Nevertheless a–Si:H TFT technology is mature and still
draws significant research attention. In this context, reference [12] proposes a

Implementing Cryptography on TFT Technology 37

constant current source composed of 4 TFTs and a storage capacitor. Reference
[5] shows an improved version, requiring no storage capacitor.

The driver designs mentioned in the previous paragraph can equally well be
used in poly–Si TFT based displays. Poly–Si TFTs demonstrate much greater
mobility values than their a–Si:H counterparts (typically by more than an order
of magnitude). This allows for much narrower transistors (W/L=2 is achievable).
Many poly–Si TFT processes are also able to produce p-channel devices. In [4],
Stewart et al. describe a number of refinements to conventional poly–Si TFT
fabrication processes that were shown to lead to more uniform TFT character-
istics. This way, brightness uniformity can be improved even for driver circuits
consisting of only 1 or 2 TFTs.

It is noteworthy that an interesting family of low-temperature poly–Si TFT
processes has recently been developed (termed LTPS–TFT) [6]. These processes
enable the relatively easy fabrication of TFT circuits on non-conventional sub-
strates, e.g. plastic or various flexible substrates.

3.1 Recent TFT Applications

TFT electronics unrelated to information displays are not widespread. However,
the availability of p-channel devices, the continuous improvement in electronic
properties and the reduced fabrication costs, in addition to unique characteristics
such as manufacturability on flexible substrates have recently triggered a certain
degree of research activity on other potential uses of poly–Si TFTs, LTPS–TFTs
and CG–Si TFTs. Some characteristic examples are presented in this section.

Hashido et al. [13] developed a capacitive fingerprint sensor using LTPS–TFT
technology. They initially observe that conventional optical fingerprint authen-
tication systems are very expensive and not portable. Direct-contact fingerprint
sensors are a portable alternative; implementing such sensors on TFT technology
additionally lowers the production cost. Their sensor is based on the assumption
that the capacitance between a given area of the human finger and a sensor plate
that the finger touches depends on the morphology of the area (i.e. whether it is
a “valley” or a “ridge”). A simple 1-TFT sensor cell is configured that, together
with a read-out TFT, converts this capacitance to voltage. The overall sensor
chip comprises a matrix of such sensor cells, as well as buffers and shift regis-
ters that control the continuous scanning of all rows and columns of the matrix.
Their experimental results undoubtedly support their sensing method.

Estrela et al. [14] experiment with poly–Si TFTs for biosensor applications.
They observe consistent and repeatable threshold voltage shifts in the current-
voltage (I-V) characteristics of TFTs when they come in contact with certain
biochemical agents. Based on this, they demonstrate the potential usefulness of
poly–Si TFTs as inexpensive disposable pH sensors, penicillin sensors, as well as
DNA hybridization sensors.

In a more conventional application, Lee et al. [8] present a full Z80 CPU
(8-bit) developed using CG–TFT technology on a glass substrate. CG–TFTs
typically demonstrate three times the carrier mobility of LTPS–TFTs [6]. The
presented chip comprises 13000 TFTs and runs at 3 MHz when powered at 5

38 P. Oikonomakos, J. Fournier, and S. Moore

Volts. The authors of [8] report it as the first publicly-announced successful
step in the direction of realising full-scale electronic systems on glass substrates
(“Systems on Panels”).

Finally, Karaki et al. [7] announced the fabrication of an 8-bit LTPS asyn-
chronous microprocessor, named ACT11. Operating asynchronously provides ro-
bustness against variations in TFT I-V characteristics as well as power savings.
The chip nominally operates at 5 Volts.

4 Developing Cryptography on Poly–Si TFTs

The discussion so far established that as TFT technologies mature, they can
accommodate more and more complicated digital electronics applications. The
integration of substantial functional circuits and display drivers on the same sub-
strate appears to be a matter of time. The state-of-the-art rapidly approaches a
stage where high-volume production will demand serious CAD tool support for
TFT chip production lines. Motivated by these observations, we have embarked
on a research project to implement cryptographic functionality on poly–Si TFT
technology. We expect this concept to be particularly useful for the develop-
ment of secure displays, to be used in financial and other future applications
such as these described in Section 2 of this paper. The current capabilities of
TFTs cannot cope with clock frequency values above a few MHz (or equivalent
asynchronous throughput). However, most of these applications could easily be
accommodated by static and slow displays without seriously impairing customer
satisfaction. In addition, TFT characteristics are improving rapidly. Therefore
it is expected that the commercial relevance of TFT electronics applications will
increase continuously in the future. In other words, cryptographic TFT chips
may in the future be used even in scenarios requiring fast displays.

To investigate about the implementation of cryptographic functions on poly–
Si TFTs, we chose to focus on the simple concept of displaying information

Input buffer

Input controller
DES coprocessor DcoP

ECC vector processor
VeMICry

Frame buffer

display

user input

Fig. 2. Cryptographic chip architecture

Implementing Cryptography on TFT Technology 39

encrypted using DES. In order to securely distribute and refresh the DES keys
we include ECC capabilities in our scheme as illustrated in Fig. 2. Our chip will
work in the following fashion.

– The data received in the input buffer is assumed to be encrypted according
to the Data Encryption Standard (DES) [15].

– The 56-bit DES keys are transmitted encrypted using an asymmetric
public-key scheme, in our case Elliptic Curve Cryptography. In the field of
public-key cryptography, Elliptic Curves (ECs) have performance and key-
size advantages over the RSA scheme [16]. We therefore choose them for our
design.

– The environment first provides a number of encrypted DES keys to the input
buffer.

– The input controller routes these keys to the ECC processor VeMICry shown
in the figure.

– Processor VeMICry is being designed to include special hardware to imple-
ment modular arithmetic needed for ECC. Its overall architecture accords
to the vector processor model [17]. More details are provided in subsection
4.2 of this paper.

– While VeMICry is decrypting the keys using its private key, the environment
provides the actual DES-encrypted data to the input buffer.

– The input controller then makes sure the data is routed to the DES coproces-
sor (DcoP in the figure).

– Coprocessor DcoP is a pure hardware module and makes heavy use of PLAs
as building blocks. More details on its architecture are given in subsection
4.1 of this paper.

– When VeMICry finishes decrypting the keys, it sends them to the DES co-
processor, to be used for data decryption.

– Coprocessor DcoP then performs DES decryption and writes the decrypted
data to the output buffer. In the figure the buffer is termed frame buffer,
since the chip is intended to feed display drivers.

– While DcoP performs decryption, the environment provides new keys to the
chip input. The keys are again sent to VeMICry and a new cycle of operation
begins.

56-bit DES keys are no longer considered to be completely secure [18]. How-
ever, one could envisage to refresh the keys frequently enough to discourage any
attack on the DES. In a real application, one could use 3-DES or AES; our chip
is simply a proof-of-concept of cryptography using TFTs. The security of the
overall scheme will also depend on the security of the ECC processor (and its
resistance to side-channel attacks) and how the device’s private key is stored.
If implemented and combined with pixel drivers, the architecture will provide
cryptographic protection to the display. With those cryptographic capabilities,
we could for example make sure that only “authenticated” users can access the
display or that distributed images are only visible on that particular display.

Of the blocks shown in Fig. 2, VeMICry and DcoP are currently under devel-
opment. The input controller is expected to be nothing more complicated than

40 P. Oikonomakos, J. Fournier, and S. Moore

a state machine, routing a fixed number of input packets to VeMICry, followed
by another fixed number of packets to DcoP. The following subsections 4.1 and
4.2 provide architectural details on the design of the two processors.

4.1 The DES Coprocessor

The DES coprocessor is being designed purely as a hardware module, comprising
three blocks, namely the key schedule, round block, and the controller. It is
a straightforward implementation, shown in the block diagram of Fig. 3. The
coprocessor receives a 64-bit encrypted data input, directed to the round block,
and a 56-bit key, directed to the key schedule block. The environment (ultimately
the input controller of Fig. 2) also raises two flags – I and K – as soon as valid
data and a valid key have been fed to DcoP. As soon as I and K are raised,
the controller state machine orders the key schedule to compute a subkey, again
by raising a suitable flag. The key schedule block computes the subkey and
feeds it to the round block, while informing the controller about computation
completion. The controller further signals to the round block that the subkey is
ready. Upon receiving the signal, the round block responds by using the subkey
to produce the partial result, and subsequently informs the controller. The same
process is repeated sixteen times for all DES rounds [15]. After all rounds, the
decrypted output is available at the round block output. The controller informs
the environment and waits for new input and key values. Throughout the process,
the controller asserts or deasserts suitable signals to make sure the key schedule
performs single or double shifts depending on the current round.

It is evident that this simple model can easily be adjusted to perform encryp-
tion instead of decryption, by performing left or right shifts in the key schedule
block. Further, it can also easily be amended to implement triple DES instead
of standard DES.

Behavioural Verilog [19] models for the DcoP blocks have been developed and
confirmed by simulation. The actual layout is currently under development. The
resulting chip will be the first, to our knowledge, cryptographic application on

DES coprocessor

controller

key schedule

round block

input

output

Fig. 3. DES coprocessor block diagram

Implementing Cryptography on TFT Technology 41

poly–Si TFT technology, and at the same time the first poly–Si TFT chip to
feature a 64-bit datapath. It will test the feasibility of cryptography on TFTs and
build up our confidence towards full integration of the architecture of Fig. 2. Note
that this design can be easily tweaked to execute stronger encryption algorithms
like DESX.

4.2 A Vector Processor for Elliptic Curve Cryptography

This section provides information about the architecture and functional model of
the vector processor with cryptographic support shown in Fig. 2. We have used
the acronym VeMICry, for Vectorial MIPS for Cryptography [20]. In essence,
VeMICry comprises a simple MIPS-I processor [21] implementing usual, “scalar”
instructions, together with a vector coprocessor for the vector instructions. The
simplified block diagram of Fig. 4 depicts this idea. The overall processor works
very much as a standard MIPS as regards conventional instructions; when vector
instructions are encountered in the program then the decoder directs them to the
vector coprocessor. As the name suggests, vector instructions operate on vectors
of registers rather than on individual registers. A total of 17 vector instructions
have been defined for VeMICry; a full list is provided in [20]. A few examples –
relevant to public key cryptography – are:

– Unsigned Vector Addition: adds the contents of respective elements (regis-
ters) of two vectors and writes the result to a third, while propagating carries
from the ith element to the i+1st.

– Vector-Scalar Unsigned Addition: adds a scalar value – stored in a single
register – to each vector element and writes the result to a target vector.

– Vector-Scalar Arithmetic Multiplication: multiplies a vector by a scalar value
while propagating carries. The result is written to a target vector.

– Vector-Scalar Polynomial Multiplication: multiplies a vector by a scalar value
without carry propagation. The result is written to a target vector.

Clearly, the last two instructions can be used to implement modular multi-
plication, based on Montgomery’s reduction algorithm [22], in prime or binary

program
memory

fetch
unit

decoder

MIPS
instruction
execution

vector
coprocessor

Fig. 4. ECC vector processor block diagram

42 P. Oikonomakos, J. Fournier, and S. Moore

Galois Fields. This multiplication is the most critical opearation of EC point
multiplication required for EC decryption.

The reason why we chose a vector architecture is that cryptographic algo-
rithms in general and ECC in particular operate on very wide datapaths and
long precision numbers. Decomposing the data into vectors of registers of smaller
widths and working on vectors and vector elements in parallel is expected to
increase performance. Further, a vector processor datapath is modular and scal-
able, thus can easily be deployed in a variety of applications. Finally, a vector
processor has a simpler control path and scheduling logic than other superscalar
processors, thus reducing power dissipation [17, 23]. Figure 5 shows the “heart”
of the vector coprocessor, that is the vector register file together with vector
processing units (VPUs) to implement the instructions. Naturally, the coproces-
sor also needs peripheral control logic not shown in the figure. In essence, this
logic will implement a vector instruction pipeline, separate from and communi-
cating with the scalar MIPS pipeline (Fig. 4). Parameters in the design of the
coprocessor include the number of vectors q, the number of elements per vector
p, and the number of processing units r (all three shown in Fig. 5), as well as
the register bit-width, currently fixed at 32. The choice of these parameters will
influence the processor performance, area, and degree of parallelism. In order to
explore the trade-offs between these characteristics, we have built a functional
model of the VeMICry using the ArchC simulation tool [24]. Details and simula-
tion results can be found in [20], showing significant performance improvements
when the Montgomery algorithm runs on the vector processor model, compared
to equivalent realisations on a purely scalar, conventional MIPS.

A Verilog model for the vector processor of Fig. 4 is under development. The
architecture will allow us to work on datapaths up to 256 bits wide.

Note that the VeMICry functional model is not restricted to modular mul-
tiplication, ECCs or public key cryptography; the AES algorithm [25] has also
been simulated on it and again improvements were demonstrated in [20]. While

:
:
:
:

:
:
:
:

:
:
:
:

:
:
:
:

:
:
:
:

..........

..........

:
:
:
:

..........

..........

:
:
:
:

:
:
:
:

:
:
:
:

..........

..........

VPUrVPU2VPU1

V0

V1

V2

Vq-2

Vq-1

[0] [1] [r-1][r][r+1] [2r-1] [p-r][p-r+1] [p-1]
V
E
C
T
O
R
S

E L E M E N T S

Fig. 5. Vector register file and connections to vector processing units

Implementing Cryptography on TFT Technology 43

in this particular project it is employed for ECC decryption, it should be re-
garded as a scalable, high performance processor architecture employable in a
variety of cryptographic applications.

5 Low-Level Design Considerations

Instead of randomly placed logic gate realisations, in our DES design we are
heavily relying on regular structures, in particular PLAs. Due to their geometri-
cally regular layout, PLAs demonstrate timing predictability and controllability.
Therefore they are often used in modern CMOS design flows to achieve quick
timing closure [26]. In these dynamic-logic structures, power is dissipated only
immediately after clock edges [27]. Therefore, the PLA outputs do not experi-
ence data-dependent power glitches; this can be regarded as a counter measure
against side-channel attacks. In line with the recommendations of [28], we thus
provide a degree of security “by design”. This may not be very relevant in the
case of the architecture in Fig. 2 as in practice an attacker would rather extract
the ECC private key than the DES secret keys which are refreshed frequently.
However, it is definitely a positive feature for our coprocessor as such, should it
be used to implement DES, DESX or triple DES alone.

After reviewing the PLA configurations proposed in the literature and con-
ducting a number of electrical simulations, we decided to use the circuit shown
in Fig. 6 as our basic PLA cell. The figure depicts one “AND” and one “OR”
plane term, together with an interplane buffer and control logic.

In more detail, the control logic comprises two Muller C-elements and a
few inverters constituting a delay line (four inverters are shown for the sake of
the illustration – more or less can be used as required). The asynchronous 4-
phase single-rail handshaking protocol [29] is thus realised. In the asynchronous

C1 C3

C4

C2

X4

"Clock"

D1......

X3X2X1

INV3

INV1

INV2NAND

MP3

MN4_m

MN4_1 MN4_2MN2_1 MN2_n

MN3

MN1

MP2
MP1

Req_internal

Output to
async latch

Vdd

......

Product terms from
the AND plane

(from inside the PLA)

"OR" plane"AND" plane

......

Inputs from
async latch

......

......

Vdd

Req_out

Ack_outAck_in

Req_in

CC

Fig. 6. Basic PLA architecture

44 P. Oikonomakos, J. Fournier, and S. Moore

operation context, the PLA is treated as combinational hardware handling
bundled-data coming from an asynchronous latch. The PLA output is also con-
sidered to feed the latch of the next logic stage. The PLA is for the most part an
asynchronous counterpart of the synchronous design presented by Wang et al.
[27]. Indeed, if a clock was applied as shown in the figure (“clock”) instead of the
asynchronous control signals, then we would have a perfectly working synchro-
nous PLA. For our project, we choose an asynchronous implementation. This is
firstly because it is difficult to route a clock distribution network throughout the
chip, given that TFT technologies rarely use more than two metal layers [13].
Further, in line with Karaki et al. [7], we acknowledge the importance of I-V
characteristic variation tolerance that asynchronous design offers.

The PLA is implemented using n- and p-channel TFTs (nTFTs and pTFTs
respectively) in dynamic logic configuration and as such works in two phases,
namely “precharge” and “evaluate”. When Req internal=0, the circuit is in the
precharge phase, and points X1 and X4 are driven to Vdd (the latter after two
inverters’ delay). In the subsequent evaluate phase (Req internal=1), the pull-
down network of nTFTs in the AND plane determines the logic value at X1.
After two inverter delays, this value is allowed to propagate to the OR plane
through the interplane buffer composed of the NAND gate and inverter INV2.
The OR plane pull-down network then determines the ultimate PLA output.
Capacitors C1 – C3 in the figure model parasitics, corresponding to long lines
in the actual layout [27], while C4 signifies the output load.

While the PLA operation described above is typical of dynamic logic, the
design of Fig. 6 also includes some non-standard elements. First of all, the first
inverting element of the interplane buffer is not a pure inverter but a NAND
gate. This ensures that the voltage at point X2 is the logic inverse of X1 only in
the evaluation phase. During precharge, the voltage at X2 is kept high, therefore
point X3 is kept low and the need for a ground switch in the OR plane is
eliminated. This mechanism both speeds up the OR plane, and saves power,
since it minimizes the switching activity in the interplane buffer. The second
non-standard technique is the charge sharing phenomenon exploited in the AND
plane. Notice the nTFT MN1. It is effectively the ground switch of the AND
plane, but it has been moved between the precharge pTFT and the nTFTs
implementing the function. As soon as Req internal goes high, capacitor C1
transfers some of its charge to C2 through MN1, regardless of the input pattern.
If any of the MN2 i nTFTs are on, then the rest of the charge in C1 will be
transfered to ground and X1 will be driven low. The charge sharing effect thus
speeds up the discharge process and the overall PLA evaluation phase. If all
MN2 i TFTs are off, then C1 loses some charge to C2; this charge is replenished
when transistor MP2 is turned on, since X2 is driven low. Thus, the design
continues to operate correctly. In the subsequent precharge phase, transistor
MN3 turns on and discharges C2. We owe both these ideas to [27].

The addition of two inverter delays between the activation of the AND and
the OR planes in the structure of Fig. 6 is our own modification to the orig-
inal structure of [27]. Indeed, in the design of [27] both planes were activated

Implementing Cryptography on TFT Technology 45

.i 3

.o 2

.p 7
001 10
010 10
100 10
111 10
11- 01
1-1 01
-11 01
.e

no of inputs
no of outputs
no of product terms

end

product terms
left-hand side:
1: variable contributes to the term
0: complement of variable contributes to the term
-: don’t care
right-hand side:
1: term contributes to the OR-plane sum term
0: term does not contribute to the OR-plane sum term

Fig. 7. An example of the standard PLA description format

simultaneously by the system clock (equivalent to our Req internal). Through
simulation we found that this created unnecessary and data-dependant glitches
on the interplane buffer, consuming power needlessly and potentially creating
security hazards.

We have laid out a library of AND- and OR-plane cells and interplane buffers
on poly–Si TFT technology using the Electric full-custom VLSI layout tool [30].
We subsequently wrote a relatively simple tool in the Perl language, which uses
this library to automatically create full PLA layouts on the paradigm of Fig. 6
when fed by a description of their equations, in the standard PLA format ex-
emplified and explained in the code of Fig. 7. Most logic functions of the DES
standard (notably, the S-boxes) will be laid out using this tool. Together with
other basic components (latches, multiplexers, barrel shifters, permutation oper-
ations – the latter manually designed simply as re-arrangements of wires), they
form the building blocks of DcoP, to be connected together manually again using
the layout editor of Electric.

6 Conclusion

Trusted displays are needed in modern and future applications. In the ‘Trusted
Computing’ model, they will enable content providers to identify the equipment
on which protected material is displayed. They may also be used to authenti-
cate any party wishing to present visual information on them. In this paper we
have advocated cryptographically secure displays and presented their on-going
implementation using polysilicon Thin-Film Transistor technology. To this end,
we have proposed a general cryptographic configuration combining public and
secret key cryptography. We have outlined the high-level architectures of its con-
stituent elements, namely a hardware DES coprocessor and a vector processor
tailored for cryptographic applications. Finally, we have reported on low-level
design considerations, namely by describing a PLA structure and associated au-
tomatic layout generator, intended to be used for the production of the main
building blocks of our chip layouts.

We are actively working towards a first cryptographic test chip featuring a
DES coprocessor on TFTs, and expect to have samples available for measure-
ments within 2006.

46 P. Oikonomakos, J. Fournier, and S. Moore

Acknowledgement

Thanks are due to EPSRC for funding this work under grant code
GR/S05496/01. The authors would also like to thank Simon Hollis for his use-
ful input during the planning phase of this work, and Ross Anderson for his
comments on the paper.

References

1. Yee, B., Tygar, J.D.: Secure Coprocessors in Electronic Commerce Applications.
Proceedings of the 1st USENIX Workshop on Electronic Commerce, July 1995,
155–170

2. Hiltgen, A., Kramp, T., Weigold T.: Secure Internet Banking Authentication.
Accepted for publication in IEEE Security & Privacy, available online at
http://www.ubs.com/1/ShowMedia/ubs ch/authentication?contentId=75819&
name=IEEE2.pdf

3. Offer, G.: Method and Apparatus for Performing a Cashless Payment Transaction.
United States Patent Application #20,020,161,708

4. Stewart, M., Howell, R.S., Pires, L., Hatalis, M.K.: Polysilicon TFT Technology
for Active Matrix OLED Displays. IEEE Transactions on Electron Devices, Vol.
48, No. 5, May 2001, 845–851

5. Nathan, A. et al.: Amorphous Silicon Thin Film Transistor Circuit Intergration
for Organic LED Displays on Glass and Plastic. IEEE Journal of Solid-State
Circuits, Vol. 39, No. 9, September 2004, 1477–1486

6. Sharp Microelectronics of the Americas website: http://www.sharpsma.com/lcd/
lcdguide/Technologies/CG-Silicon.php

7. Karaki, N. et al.: A Flexible 8b Asynchronous Microprocessor based on Low-
Temperature Poly-Silicon TFT Technology. Digest of Technical Papers of the
52nd IEEE International Solid-State Circuit Conference (ISSCC) 2005

8. Lee, B. et al.: A CPU on a Glass Substrate Using CG-Silicon TFTs. Digest of
Technical Papers of the 50th IEEE International Solid-State Circuit Conference
(ISSCC) 2003

9. FINREAD Specification, FINREAD Consortium. http://www.finread.com
10. Hortmann, M.: Tutorial on E-Voting. EURESCOM mess@ge, Issue 3, 2001,

page 22, available online at http://www.eurescom.de/∼pub/about-eurescom/
message03 2001/message03 2001.pdf

11. Open Mobile Alliance (OMA): DRM Specification V2.0 Candidate Version 2.0 -
26 April 2005, available online at http://www.openmobilealliance.org/ftp/
Public documents/BAC/DLDRM/

12. He, Y., Hattori, R., Kanicki, J.: Current-Source a-Si:H Thin-Film Transistor
Circuit for Active-Matrix Organic Light-Emitting Displays. IEEE Electron Device
Letters, Vol. 21, No. 12, December 2000, 590–592

13. Hashido, R. et al.: A Capacitive Fingerprint Sensor Chip Using Low-Temperature
Poly–Si TFTs on Glass Substrate and a Novel and Unique Sensing Method. IEEE
Journal of Solid-State Circuits, Vol. 38, No. 2, February 2003, 274–280

14. Estrela, P., Stewart, A.G., Yan, F., Migliorato, P.: Field Effect Detection of
Biomolecular Interactions. Electrochimica Acta, Vol. 50, 2005, 4995–5000

15. US Department of Commerce, National Institute of Standards and Technology:
Data Encryption Standard (DES). Federal Information Processing Standards
Publication 46-3, October 1999

Implementing Cryptography on TFT Technology 47

16. Batina, L., Berna Örs, S., Preneel, B., Vandewalle, J.: Hardware Architectures for
Public Key Cryptography. Integration, The VLSI Journal, Vol. 34, 2003, 1–64

17. Asanović, K.: Vector Microprocessors. PhD Thesis, University of California
Berkeley, 1998

18. Electronic Frontier Foundation: Cracking DES. Secrets of Encryption Research,
Wiretap Politics & Chip Design. July 1998

19. Lilja, D.J., Sapatnekar, S.S.: Designing Digital Computer Systems with Verilog.
Cambridge University Press, 2004

20. Fournier, J., Moore, S.: A Vectorial Approach to Cryptography Implementation.
Proceedings of the 1st International Conference on Digital Rights Management:
Technology, Issues, Challenges and Systems, November 2005

21. MIPS Technologies: MIPS Architecture for Programmers Volume II: The MIPS32
Instruction Set. Technical Report MD00086, Revision 0.95, March 2001

22. Montgomery, P.: Modular Multiplication without Trial Division. Mathematics of
Computation, Vol. 44, 1985, 519–521.

23. Folegnani, D., González, A.: Energy Effective Issue Logic. Proceedings of the 28th
Annual International Symposium on Computer Architecture, June-July 2001,
230–239

24. T.A. team: The ArchC Architecture Description Language – Reference Manual.
Technical Report v.1.2, University of Campinas, December 2004

25. US Department of Commerce, National Institute of Standards and Technology:
Advanced Encryption Standard (AES). Federal Information Processing Standards
Publication 197, November 2001

26. Posluszny, S. et al.: “Timing Closure by Design”, A High Frequency Microproces-
sor Design Methodology. Proceedings of the 37th ACM/IEEE Design Automation
Conference, June 2000, 712–717

27. Wang, J.S., Chang, C.R., Yeh, C.: Analysis and Design of High-Speed and
Low-Power CMOS PLAs. IEEE Journal of Solid-State Circuits, Vol. 36, No. 8,
August 2001, 1250–1262

28. Li, H., Markettos, A.T., Moore, S.: Security Evaluation Against Electromagnetic
Analysis at Design Time. Proceedings of the 7th International Workshop on Cryp-
tographic Hardware and Embedded Systems, August-September 2005, 280–292

29. Sparsø, J., Furber, S.: Principles of Asynchronous Circuit Design: A Systems
Perspective. Kluwer Academic Publishers, 2001

30. Static Free Software: Using the Electric VLSI Design System, available online at
http://www.staticfreesoft.com/manual/

A Smart Card-Based Mental Poker System

Jordi Castellà-Roca, Josep Domingo-Ferrer, and Francesc Sebé

Rovira i Virgili University of Tarragona,
Dept. of Computer Engineering and Maths,

Av. Päısos Catalans 26, Tarragona E-43007, Catalonia
{jordi.castella, josep.domingo, francesc.sebe}@urv.net

Abstract. On-line casinos have experienced a great expansion since the
generalized use of Internet started. There exist in the literature several
proposals of systems allowing secure remote gaming. Nevertheless, the
security requirements of some game families lead to the use of complex
and costly cryptographic protocols. A particularly challenging game fam-
ily is mental poker. In this paper we present a smart card-based e-gaming
system for mental poker with a low computational cost.

Keywords: Smart cards and applications in the Internet, Cryptographic
protocols for smart cards, E-gambling, Mental poker.

1 Introduction

Computer networks, and especially Internet, allow a lot of usual activities to
be carried out in a time- and space-independent way. Leisure is a sector that
has quickly grasped and exploited the possibilities of the network as a new
business outlet. On-line casinos are a particularly visible form of on-line leisure.
Increasing sales figures of on-line gambling companies are a clear indicator of the
positive evolution in this sector. According to Merryll Lynch the on-line gambling
business is expected to grow to $48 billion by 2010 and $177 billion by 2015.
This booming turnover must be accompanied by enough security guarantees for
on-line players; unfortunately, this is not always the case.

In an on-line casino, players usually go through the following steps:

Registration: Prior to accessing the on-line casino, players must register them-
selves. In the registration step, players give their personal information. This
information is used by the on-line casino to create an account for the player.
Players will access the on-line casino via their account.

Authentication: After registration, players possess the necessary information
(typically a username and a password) to authenticate themselves to the
casino and log in their accounts.

Increase credit: On-line casinos tend to use pre-payment methods. Thus, play-
ers must make a payment to the casino before starting to play. The amount
of cash that has been paid by a player receives the name of credit, and it
is transferred to the account created in the registration step. When a player

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 48–61, 2006.
c© IFIP International Federation for Information Processing 2006

A Smart Card-Based Mental Poker System 49

makes a bet, the on-line casino verifies that the player has got enough credit.
If the player loses/wins her bet, the on-line casino substracts/adds the bet
amount from/to the player’s credit.

Withdraw credit: The player transfers her game earnings from her casino ac-
count to her bank account.

Bet: At least one bet is made in every casino game. The game rules specify how
many bets are possible and when players can bet.

Game: The rules of each game drive its operation. Based on those rules, players
obtain one or several random events during the game. The game result, i.e.
who wins and who loses, is based to some extent on the obtained events.

We can assert that a gaming system is secure if each of the above steps can
be done in a secure manner.

1.1 Contribution and Plan of This Paper

We present in this paper a gambling system that allows poker to be played
remotely, while offering security for the different steps players need to go through.

In the proposed system, each player owns a smart card that runs the security-
critical parts of the aforementioned steps. We assume that smart cards are issued
by the public authority that regulates on-line gambling. This authority ensures
that: i) player registration is made properly; ii) the software inside the smart
card is fair.

This paper is organized as follows. A state of the art is given in Section 2.
Section 3 justifies the security requirements that will be considered. The archi-
tecture of the proposed systems is described in Section 4. The relevant protocols
of our system are specified in Section 5. Section 6 is a security analysis. Finally,
conclusions are summarized in Section 7.

2 State of the Art

Hall et al. propose a remote gambling system ([7]). Each player has a key pair of a
public-key cryptosystem. Players use their private key to authenticate themselves
to the on-line casino, and also to sign each message they send. The paper does not
describe how key pairs are generated and distributed; this is a relevant issue, e.g.
because any minor under the legal age for gambling should be unable to register
and get a key pair. The random events used in the game are computed jointly by
all players using a cryptographic protocol. The protocol ensures that no player
is in a privileged position to influence the outcome of the random event.

In [9] a remote gambling system is described. The system has the same se-
curity properties as [7]. Nevertheless, its implementation uses multicast, so the
proposed system is more efficient as far as communication is concerned.

Proposals [7] and [9] do not present any protocol to play poker without
a trusted third party (TTP). Their authors argue that fulfilling the security
properties enumerated in [3] without a TTP is too costly. As an example, they

50 J. Castellà-Roca, J. Domingo-Ferrer, and F. Sebé

quote the work by Edwards in [6], where an implementation of the protocol [4] on
three Sparc workstations is reported to have taken eight hours to shuffle a deck.

Recent proposals, like [2] and [10], improve on [4] from the efficiency point
of view. Nonetheless, they use zero-knowledge proofs to satisfy all security re-
quirements enumerated in [3]. Their computational and communication costs
preclude their commercial use.

Zhao et al. present in [11] a payment method for on-line casinos. The payment
protocol uses an optimistic TTP. Each bet includes the payment information in
encrypted form. The TTP verifies that payment information is correct. If a player
loses a bet and refuses to pay, the TTP reveals the payment information to the
winner. Again, zero-knowledge proofs are used, which degrade the performance
of the protocol.

Aiello et al. propose in [1] a gambling system, where players have an electronic
device. The device allows players to play off-line. It is based on a smart card
that manages the player’s credit and ensures game fairness. Our proposal below
is based on the same principle to design an efficient and secure mental poker
protocol. The difference is that players are on-line and the smart card does all
security-critical operations.

3 Security Requirements

In Section 1, we have enumerated the steps done by players in an on-line casino.
Now we define the security properties that must be guaranteed at each step:

Registration: Registration must collect accurate and truthful information
about people wishing to play. This is necessary to detect, e.g., minors under
the legal age for gambling, known dishonest players and people with mental
diseases related to gambling.

Authentication: The authentication method used by players must be a strong
one. It must be resistant against common attacks, for instance birthday and
replay attacks.

Credit: Players increase their credit when they make a payment to the on-line
casino and decrese ther credit when they make a withdrawal. Consequently,
the action to increase or decrease the player’s credit must satisfy the same
security requirements as an electronic payment:
– Confidentiality. the payment information is a private business between

the payment issuer (player) and the payment receiver (the on-line casino
or the bank).

– Integrity. Once the payment has been sent out, no party must be able
to modify the payment information.

– Authentication. Each message must include a non-malleable and verifi-
able proof of who is the message originator.

– Non-repudiation. Once the payer has sent her payment, she must be
unable to repudiate it. Moreover, the payer must obtain a receipt of the
payment so that the receiver cannot later deny having been paid.

A Smart Card-Based Mental Poker System 51

Bet: When a player places a bet, the following properties must be satisfied:
– Integrity. The bet cannot be modified once it has been sent to the on-line

casino, neither the player nor the casino can alter the bet.
– Authentication. All messages exchanged in a bet are public to all players

and the on-line casino. In this way, any game participant can verify the
origin of any message.

– Non-repudiation. A player cannot repudiate her bet and the on-line
casino cannot repudiate a previously accepted bet.

A bet must have at least the following information:
– Bet amount;
– An identifier of the game;
– The concept of the bet, e.g. what condition is being betted on.

Game: Poker over a network is one of the most complex games from the security
point of view. Crépeau [3] enumerated a list of requirements and properties
that must be met by a mental poker protocol:
– Uniqueness of cards. Traditional decks of cards can be verified before

the game starts, and players can be assured that there are not duplicate
cards. In a mental poker protocol players should be able to verify that
each card appears once and only once.

– Uniform random distribution of cards. In a traditional hand of poker,
one player shuffles the deck and the rest of players can see it. Cards
are uniform randomly distributed, because the shuffling player cannot
influence the result of shuffling. A way to guarantee uniform random
distribution in mental poker is for the hand of each player to depend on
decisions made by all players.

– Cheating detection with a very high probability. A mental poker protocol
must detect any attempt to cheat, e.g seeing a face-down card, changing
a face-up card, etc.

– Complete confidentiality of cards. If the deck is face-down then no partial
or total information about any card from the deck ought to be disclosed.
Also when a player draws a card, the rest of players should not be able
to get information on that card.

– Minimal effect of coalitions. A secret communication channel between
the players of a coalition is possible in mental poker, e.g. one player can
ring another player to tell her her cards. A mental poker protocol should
reduce the effect of coalitions, so that if a player is not cheating then
nobody can learn more about her hand, or about the cards in the deck,
than what they can infer from the cards in their coalition.

– Complete confidentiality of strategy. It is strategically very important in
the game of poker that the losing players may keep their cards secret at
the end of a hand. The whole concept of bluffing is based on this fact.

4 Architecture

TTP-based mental poker proposals share the common feature that the on-line
casino performs most of the above steps: the on-line casino registers players,

52 J. Castellà-Roca, J. Domingo-Ferrer, and F. Sebé

authenticates them, and manages bets, the credit of players and the entire game.
Note that it is the casino who generates the game events (card shuffling, etc.)
and controls the game rules.

Allowing the casino to act as a TTP places it in a privileged position: the
casino controls the game and at the same time takes part in it. Thus, security in
the TTP-based paradigm completely depends on the on-line casino. If the casino
security is compromised by an external or an internal attacker, then the result
of the game can be manipulated against honest players.

Thus, it is desirable to prevent the casino from being critical to security. To
that end, we propose a new gambling system where security is distributed among
the following parties: regulator, on-line casino and players.

Each player has a smart card. The regulator (public authority, government,
etc.) certifies the smart card and the software in it. The certification is a guar-
antee on the fairness of the gambling system. Thus, trust as far as the smart
card is concerned rests on the public regulator. This should give more guarantees
than relying on the on-line casino, which is often located off-shore or in some
tax paradise. We next describe each party in our architecture:

Regulator: In a vast majority of countries, on-line gambling is not regulated.
This legal void results in a lack of protection for players, and in some cases
for the on-line casinos too [5]. In our proposal the game regulator is the
government or a public authority. The regulator watches over the rights of
the players and on-line casinos. Moreover, the regulator facilitates to players
and on-line casinos the fulfillment of their duties when they must declare
their earnings. The game regulator issues the smart cards used by players.
Every smart card contains a player’s key-pair and a sofware application
to play on-line. The software allows the following actions: authenticate to
players, increase credit, place a bet and play.

On-line casino: The on-line casino authenticates players in a secure way and
puts them in touch so that they can start playing with each other. The on-line
casino manages the players’ accounts (increase credit, decrease credit, place
a bet, pay a bet). For each of the above actions, we propose a cryptographic
protocol in this paper where the TTP is “distributed” between the regulator
and the smart cards. To the extent that they use no centralized TTP, our
protocols are TTP-free, albeit in a weak form.

Players: We use the term “players” to denote the set of players plus the software
and hardware in the smart cards they use to play remotely.

Protocols: A protocol is described for each of the steps required in the game.

5 The Protocols

The following notation is used in order to describe the protocols and procedures
presented.

– Pentity , Sentity : Asymmetric key pair of entity, where Pentity is the public
key and Sentity is the private key.

A Smart Card-Based Mental Poker System 53

– Sentity [m]: Digital signature of message m by entity, where digital signature
means computing the hash value of message m using a collision-free one-way
hash function and encrypting this hash value under the private key of entity.

– Eentity(m): Encryption of message m under the public key of entity.
– H(m): Hash value of message m using a collision-free one-way hash function.
– m1||m2: Concatenation of messages m1 and m2.

5.1 Player Registration

A player Pi can play only if she is registered. In the registration process, the
player provides her information. This information must be strongly verified, in
order to ensure that registered players are legally allowed to gamble.

Carrying out such a verification over the network is a complex problem.
However, governments in several countries are promoting the distribution of
smart card-based electronic IDs. Basically, such IDs are smart cards containing
a key pair certified by the government. The private key never leaves the smart
card, so that a high standard of security is achieved. In addition, those smart
cards are able to run application software.

We propose to use these electronic IDs in our e-gambling system. The gov-
ernment issuing the IDs (or a governmental authority) is assumed to regulate
e-gambling in its territory. This is no extravagant assumption, since most gov-
ernments have traditionally been involved in gambling or at least gaming (lot-
teries, etc.). In this way, we can assume that the relevant application software
for e-gambling comes already installed in the electronic IDs. Note that including
application software in the IDs can be a way to involve the private sector in
co-funding electronic ID manufacturing and distribution.

At least, the smart card stores the following data on the player:

IPi : Player identifier. In our protocols, we will use as identifier the hash value
of the player’s public key certificate.

Certi: Digital certificate of Pi’s public key.
PPi , SPi: Public and private keys of player Pi.
CPi : Credit of Pi, initially set to 0.
B: Credit card data for Pi.

5.2 Increase/Decrease Credit

Player Pi wishes to deposit money in her casino account in order to be able to
play. Alternatively, she may be interested in withdrawing money. Let G denote
the on-line casino and V denote the amount to be deposited or withdrawn (de-
pending on whether it is a positive or negative value). Credit increase/decrease
is performed with Protocol 1.

Protocol 1

1. Pi runs Procedure 1 with parameters CertG and V in the smart card to
increase/decrease her credit and obtain EG(A) and SPi [EG(A)].

54 J. Castellà-Roca, J. Domingo-Ferrer, and F. Sebé

2. Pi sends EG(A) and SPi [EG(A)] to G.
3. G does:

(a) Verify the signature SPi [EG(A)].
(b) Decrypt EG(A) using the casino’s private key SG to get V and B.
(c) Verify the deposit/withdrawal data V and B.
(d) Update the credit of player Pi as C′

Pi
:= CPi + V .

(e) Compute a receipt RC for the new credit as RC = SG[IPi ||C′
Pi

].
(f) Encrypt RC and C′

Pi
with the public key of Pi to get EPi(C′

Pi
, RC).

(g) Send EPi(C′
Pi

, RC) to Pi.
4. Pi checks that her credit has been updated by running Procedure 2 in the

smart card.

Procedure 1 [CertG, V]

1. Randomly obtain a value r.
2. Fetch the player’s credit card data B (stored in the card).
3. Compute the identifier of the credit update operation A = r||V ||B.
4. Encrypt A using G’s public key (extracted from CertG) to get EG(A).
5. Sign EG(A) with the player’s private key SPi to get SPi [EG(A)].
6. Return EG(A) and SPi [EG(A)].

Procedure 2 [EPi(C
′
Pi

, RC)]

1. Decrypt EPi(C′
Pi

, RC) using the player’s private key SPi to obtain C′
Pi

and
RC .

2. Verify the digital signature in the receipt RC .
3. Check against the receipt that the credit amount C′

Pi
is correct.

5.3 Start a Game

Once a player is registered, he can start a game. To start playing, the on-line
casino G and players use Protocol 2.

Protocol 2

1. G computes a game identifier IP with Procedure 3.
2. G reveals IP and SG[IP] to all players.
3. If a player Pi wishes to enter game IP , she must go through the following

steps:
(a) Create a request to enter game IP using Procedure 4, which is run in the

smart card and yields as output ρi = SPi [SG[IP], IPi] and Certi.
(b) Send SPi [SG[IP], IPi] and Certi to G.

4. Let us assume that n players have requested their participation in the game.
G generates a certificate for participants in game IP by the following steps:
(a) Sign all requests to participate in the game, that is, SG[ρ1, . . . , ρn]
(b) Send SG[ρ1, . . . , ρn], {ρ1, . . . , ρn} and {Cert1, . . . , Certn} to players who

asked to participate.

A Smart Card-Based Mental Poker System 55

5. Each player who asked to participate verifies SG[ρ1, . . . , ρn], {ρ1, . . . , ρn} and
{Cert1, . . . , Certn} using Procedure 5 which is run in the smart card.

Procedure 3

1. Generate a random r.
2. Obtain the current time T .
3. Obtain the number of past games N .
4. Compute IP = r||T ||N + 1.
5. Increase N by one unit.
6. Sign IP using the casino’s private key to get SG[IP].
7. Return SG[IP] and Certi.

Procedure 4

1. Verify the signature SG[IP].
2. Create a request to participate in the game: SPi [SG[IP], IPi].
3. Return SPi [SG[IP], IPi].

Procedure 5 [SG[ρ1, . . . , ρn], {ρ1, . . . , ρn}, {Cert1, . . . , Certn}]

1. For i = 1 to n do:
(a) Verify whether Certi has been issued by the regulator’s CA.
(b) Verify ρi with Certi.

2. Verify SG[ρ1, . . . , ρn].
3. Store IP and certificates {Cert1, . . . , Certn} if all verifications are correct.
4. Return the verification result (OK or NOT OK).

5.4 Bet Placing

A player Pi places a bet in a game IP using the following protocol:

Protocol 3 [IP]

1. Pi requests to place a bet by running Procedure 6 in the smart card and gets
(IA, I∗A).

2. Pi sends (IA, I∗A) to G.
3. The on-line casino G performs the following steps:

(a) Verify the digital signature I∗A using the public key of Pi.
(b) Verify the bet data: game identifier IP , bet amount V , bet concept K

(what is being betted on).
(c) Verify that Pi has got enough credit, that is, check that CPi − V ≥ 0,

where CPi is the player credit.
(d) If the player has got enough credit:

i. Update the player’s credit as C′
Pi

= CPi − V .
ii. Compute the receipt RA for the bet IA as RA = SG[I∗A].
iii. Compute the receipt RC for the remaining credit as RC=SG[IPi ||C′

Pi
].

iv. Send C′
Pi

, RA and RC to Pi.
Otherwise (the player hasn’t got enough credit) the bet is not accepted.

56 J. Castellà-Roca, J. Domingo-Ferrer, and F. Sebé

4. Pi runs Procedure 7 in the smart card to verify that the on-line casino has
updated her credit.

Procedure 6 [IP , V, K]

1. Obtain a random value r.
2. Compute the bet identifier IA = {IP ||r||V ||K}, that is the concatenation of

the game identifier, r, the bet amount and the bet concept.
3. Sign IA with the player’s private key SPi to get I∗A = SPi [IA]
4. Return (IA, I∗A).

Procedure 7 [RA, RC , CPi]

1. Verify the digital signature in RA.
2. Verify the digital signature in RC .
3. Check that the credit C′

Pi
is correct.

At the end of a game, the casino pays her earnings to player Pi using the
following protocol:

Protocol 4 [IA, I∗A, RA]

1. G does:
(a) Verify the signatures on the bet receipt RA and the bet I∗A.
(b) Compute the earnings g of Pi in game IP with bet IA.
(c) Update the player’s credit as C′

Pi
= CPi + g.

(d) Compute the receipt of the available credit RC as RC = SG[IPi ||C′
Pi

].
(e) Send RC to Pi.

2. Pi verifies that she got paid by running Procedure 8 in the smart card.

Procedure 8 [RC , CPi]

1. Verify the signature on RC .
2. Verify that the new credit for C′

Pi
is correct.

5.5 Deck Shuffling

Once the game has started with Protocol 2, the smart card of each player contains
the certificates of the rest of players. Based on the key identifier field within the
players’ certificates, an order between players is established: the first player is
the one with the lowest identifier. The first player has a singular role. The smart
card of the first player (not the player herself) creates a permutation of 52 values,
that is, the smart card shuffles the deck; then, following the prescribed player
ordering, the smart card of the first player computes the cards for each player.
For each of the remaining players, the first player’s smart card computes a digital
envelope containing the cards of that player. This digital envelope can only be
opened by the corresponding player’s smart card (player’s cards are managed by
the player’s smart card).

The method for shuffling the deck is described in Protocol 5.

A Smart Card-Based Mental Poker System 57

Protocol 5

1. Let us assume that players {P1, . . . ,Pn} and the casino G start a game using
Protocol 2.

2. Based on her certificate, each Pi derives her order in the player ordering.
3. P1 does:

(a) Run Procedure 9 in the smart card and obtain a shuffled deck.
(b) For i = 2 to n do:

i. Run Procedure 10 in the smart card to obtain the cards for Pi en-
crypted under Pi’s public key and signed under P1’s private key.
Denote the output of the smart card by ξ and SP1 [ξi], where ξi are
the encrypted cards for Pi.

ii. Send ξ and SP1 [ξi] to player Pi;
4. Each player Pi for i ∈ {2, . . . , n} recovers her cleartext cards by running

Procedure 11 inside her smart card.

Procedure 9 is used by player P1 to generate a shuffled deck and compute
the cards corresponding to each player.

Procedure 9

1. Generate a permutation π of 52 elements;
2. For i = 2 to n do:

(a) Compute the cards for Pi as Di = {di,1, . . . , di,10}, where di,j = π(5 ∗
(j − 1) + i) and j ∈ {1, . . . , 10};

3. Initialize the counter k of requested cards and the counter l of discarded cards
to k = 0 and l = 0, respectively.

The following procedure encrypts player Pi’s cards under that player’s public
key and signs the result under player P1’s private key.

Procedure 10 [i]

1. Generate a random R.
2. Encrypt Di, IP and R under PPi ’s public key to get ξ = EPPi

(IP , Di, R).
3. Sign ξ to get SP1 [ξ].
4. Return ξ and SP1 [ξ].

Players decrypt their cards by running Procedure 11 in their smart cards.

Procedure 11 [ξ,SP1 [ξ]]

1. Verify the signature SP1 [ξ] on ξ using the certificate Cert1.
2. Decrypt ξ with the player’s private key SPi and obtain Di, IP and R.
3. Check IP is the current game identifier.
4. Store Di in the smart card.
5. Initialize the counter k of requested cards and the counter l of discarded cards

to k = 0 and l = 0, respectively.

58 J. Castellà-Roca, J. Domingo-Ferrer, and F. Sebé

5.6 Card Draw

A player’s smart card keeps track of how many cards it has given to the player,
the set τ of cards that are in the hand of the player and the set of cards that
have been discarded. When the player wants to draw a card, her smart card
checks that she is allowed to do so, i.e. that she has got less than five cards in
her hand. If yes, the next stored card is given to the player and added to the
set τ .

Procedure 12
If k − l < 5 then

1. Retrieve the next card τk+1 = dk+1, where dk+1 ∈ Di.
2. Let k := k + 1.
3. Add τk+1 to the set τ .
4. Return τk+1.

Otherwise return error (player not allowed to draw).

5.7 Card Discarding

In the following Procedure 13, if a user discards a card τj , the counter l is
incremented and τj is eliminated from τ .

Procedure 13 [τj]

1. If τj ∈ τ then do:
(a) Let l := l + 1.
(b) Eliminate τj from τ .

2. If τj �∈ τ then return error.

5.8 Card Opening

If a player wants to show the cards in her hand, she runs the following Proce-
dure 14 in her smart card.

Procedure 14

1. Sign τ to get SPi [IP ||τ].
2. Return SPi [IP ||τ] and τ .

6 Security Analysis

Security in our mental poker system depends on whether all steps performed by
players in the on-line casino are secure. We will examine whether each protocol
or procedure described above fulfills the properties enumerated in Section 3.

A Smart Card-Based Mental Poker System 59

Registration: In Section 5.1, we propose that registration be handled by the
public authority issuing electronic IDs. Thus, registration is performed in a
controlled environment and offers whatever security is provided to register
for an electronic ID.

Start a game: In Protocol 2 presented in Section 5.3, the on-line casino acts
as a central node that puts players in touch with each other. All actions
(game creation, request to participate) done by the parties are signed. Thus
message authentication and integrity can be verifies by any player or external
party. Also, message non-repudiation is guaranteed.

Credit increase: Protocol 1 described in Section 5.2 encrypts and signs all
messages between the player’s smart card and the on-line casino, so that
confidentiality, authentication, integrity and non-repudiation are ensured.

Bet placing: In Protocol 3 of Section 5.4 messages between the player and the
on-line casino are signed. The digital signature ensures message authentica-
tion, integrity and non-repudiation. Non-repudiation is especially important,
as it prevents the player from repudiating a lost bet and it also prevents the
on-line casino from repudiating an accepted bet.

Deck shuffling: The most complex shuffling operations are performed by the
smart card. Let us check that Protocol 5 of Section 5.5 meets the security
requirements enumerated in Section 3.
– Uniqueness of cards. The smart card of P1 follows Procedure 9 to create

a permutation of 52 elements that corresponds to the deck. The permu-
tation ensures that there are no duplicated cards. Cards are distributed
to each player so that each card belongs only to a player.

– Uniform random distribution of cards. The smart card uses its random
generator to obtain a shuffling permutation. We assume that the gener-
ator is good enough to ensure uniform random distribution of shuffled
cards.

– Cheating detection with a very high probability. Thanks to its exclu-
sive knowledge of the player’s private key (we assume the smart card
is tamper-resistant enough for its contents to be safely held), the smart
card cannot be bypassed by a cheating player. Thus, any cheater will be
unable to sign messages and will be detected.

– Complete confidentiality of cards. P1 creates the deck of cards by running
Procedure 9 within the smart card. Then cards are distributed using
Procedure 10: cards exit the smart card encrypted under the public key
of the player who requested them. In order to recover a cleartext card,
an intruder should be able to decrypt the digital envelope containing the
cards; but this cannot be done without the requesting player’s private
key, which is securely held by that player’s smart card.

– Minimal effect of coalitions. Cards are initially in the smart card of player
P1 and are subsequently sent to the rest of players in encrypted form.
There are two possible attacks for a coalition of players to obtain cards
which are not theirs: i) extract the cards from player P1’s smart card,
which is deemed infeasible because of the tamper-resistance of P1’s smart
card; ii) decrypt the cards which are sent in encrypted form, which is

60 J. Castellà-Roca, J. Domingo-Ferrer, and F. Sebé

deemed infeasible because the private keys needed for decryption are
safely held by the smart cards of players having legitimately requested
the cards.

– Complete confidentiality of the strategy. Revealing players’ strategies is
not needed to verify the game fairness at the end of the game. The control
exerted by the player’s and casino’s smart cards is deemed sufficient to
ensure game fairness and correctness.

Card discarding: Procedure 13 is run inside the smart card. If the discarded
card is in the player’s hand, the smart card removes it and allows the player
to request a new card. The information on the discarded card does not leave
the smart card.

Card opening: Pi can show her cards using Procedure 14. The digital signa-
ture on the game identifier IP and the player’s set of cards τ can only be
computed using the private key that is held by the smart card. This private
key never leaves the smart card, so that the latter cannot be bypassed.

7 Conclusions

We have presented a system whereby players can play poker over a network
with a high degree of security. The different parties (players and casino) must
use their tamper-resistant smart cards to take part in the game, which leads to
secure and simple protocols. The same approach can be extended to other games
over a network.

Note. A patent application covering the essentials of the proposed system is in
process.

Acknowledgments

The authors are partly supported by the Catalan government under grant 2002
SGR 00170, and by the Spanish Ministry of Science and Education through
project SEG2004-04352-C04-01 “PROPRIETAS”.

References

1. W. A. Aiello, A. D. Rubin, and M. J. Strauss. Using smartcards to secure a
personalized gambling device. In CCS ’99: Proceedings of the 6th ACM conference
on Computer and communications security, pages 128–137, New York, NY, USA,
1999. ACM Press.

2. A. Barnett and N. Smart. Mental poker revisited. In Proc. Cryptography and Cod-
ing, volume 2898 of Lecture Notes in Computer Science, pages 370–383. Springer-
Verlag, December 2003.

3. C. Crépeau. A secure poker protocol that minimizes the effect of player coalitions.
In Hugh C. Williams, editor, Advances in Cryptology - Crypto ’85, volume 218 of
Lecture Notes in Computer Science, pages 73–86, Berlin, 1985. Springer-Verlag.

A Smart Card-Based Mental Poker System 61

4. C. Crépeau. A zero-knowledge poker protocol that achieves confidentiality of the
players’ strategy or how to achieve an electronic poker face. In A. M. Odlyzko,
editor, Advances in Cryptology - Crypto ’86, volume 263, pages 239–250, Berlin,
1986. Springer-Verlag. Lecture Notes in Computer Science.

5. Department for Culture Media and Sport of Great Britain. Gambling review body.
http://www.culture.gov.uk/role/gambling review.html, July 17 2001. chapter 13,
page 167.

6. J. Edwards. Implementating electronic poker: A practical exercise in zero-
knowledge interactive proofs. Masters thesis, Department of Computer Science,
University of Kentucky, May 1994.

7. C. Hall and B. Schneier. Remote electronic gambling. In 13th Annual Computer
Security Applications Conference, pages 227–230. ACM, December 1997.

8. R. M. Needham and M. D. Schroeder. Authentication revisited. ACM Operating
Systems Review, 21(1), 1987.

9. R. Oppliger and J.L. Nottaris. Online casinos. In Kommunikation in verteilten
Systemen, pages 2–16, 1997.

10. W.H. Soo, A. Samsudin and A. Goh. Efficient mental card shuffling via
optimised arbitrary-sized benes permutation network. In Information Security
Conference, volume 2433 of Lecture Notes in Computer Science, pages 446–458.
Springer-Verlag, 2002.

11. W. Zhao, V. Varadharajan and Y. Mu. Fair on-line gambling. In 16th Annual Com-
puter Security Applications Conference (ACSAC’00), pages 394–400, New Orleans,
Louisiana, December 2000. IEEE.

A Smart Card Solution for Access Control and
Trust Management for Nomadic Users�

Daniel Dı́az Sánchez, Andrés Maŕın Lopez, and Florina Almenárez Mendoza

Telematic Engineering Department, Carlos III University of Madrid,
Avda. Universidad, 30, 28911 Leganés (Madrid), Spain

{dds, amarin, florina}@it.uc3m.es

Abstract. Increasing efforts are placed on security solutions for no-
madic users. Solutions based on smart cards offer physical and logical
portability, robustness, low cost, and high security. Nevertheless, such
solutions concentrate only on offering the cryptographical capabilities of
the smart card, together with key and user certificate storage. Advanced
trust management and access control are not addressed. In this article,
we propose a scheme to include trust management and attribute certifi-
cates for authorization in two widely used cryptographic APIs: Microsoft
CryptoAPI and RSA labs PKCS#11.

1 Introduction

Increasing efforts are placed on security solutions for nomadic users. VPN clients
and https support can be found in mobile devices such as phones and PDAs. The
popularity of applications using cryptographic APIs is growing fast, specially in
e-business, but also in e-government, e-learning, or e-health. Solutions based on
smart cards offer portability (size, weight), robustness (humidity, temperature),
wide support (standards, operating systems, readers), low cost, and high security
due to their tamper-proof nature.

Smart cards are convenient wallet solutions for average user needs. They are
used in a number of applications like e-purse applications, or as the basis of
cryptographic APIs to store keys, or user certificates([1], [2, 3]). Similar efforts
and solutions are needed for trust management, security cornerstone. Nomadic
users need solutions offering trust management based on smart cards.

The list of trusted entities (CAs, signers, etc.), the purposes under which
this trust is placed, or the level of trust of each entity, are data required to move
along with the user, just like secret keys and personal certificates.

Besides, applications also demand access control. ACs, short for Attribute
Certificates, are a standard solution [4], though popular applications don’t use
them yet. ACs lack of support in CryptoAPI and the support that gives
PKCS#11 to them is very limited.

� This work has been partially supported by UBISEC (IST STREP 506926) and Trust-
ES (MEDEA+).

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 62–77, 2006.
c© IFIP International Federation for Information Processing 2006

A Smart Card Solution for Access Control and Trust Management 63

This work is restricted to applications using Microsoft CryptoAPI [5] (CAPI)
and RSA Labs PKCS#11 [1] and PKCS#15 [6]. We are not addressing PGP [7]
and GnuPG [8] here, though they are mentioned in the related work section 5.
Giving support to CAPI, PKCS#11 and PKCS#15 a huge amount of platforms
are covered from desktop computers to mobile phones and PDAs.

2 Problem Domain

A brief definition about some topics may help the reader to understand better
what is addressed in this paper:

– Nomadicity is the ability of a user to change the network access point as he
moves, while the service is completely stopped and started again. Nomadicity
implies discrete changes of location.

– User mobility refers to the ability of a user to maintain the same identity
irrespective of the terminal used and its network point of attachment. Users
on the move may use different types of terminal and applications to access
services.

– Ad-hoc interaction. In many cases, a user may desire to interact directly
with other peers without being connected to a local network. This situation
may be common where there is no available service or just to save battery
(roaming and network discovery is expensive in terms of battery life).

Web browsers and mail clients are the most used user applications and those
applications typically use CAPI and PKCS#11. We have identified a number of
possible scenarios showing the trust management security concerns for a mobile
user.

– Alice moves among different terminals always using CAPI applications.
– Bob uses CAPI applications in some computer and PKCS#11 in others and

moves among them.
– Yi moves among different terminals using always PKCS#11 applications.

When Alice moves to another computer, she may carry a smart card with her
keys and personal certificates. On the other hand, she has to check manually the
Certificate Trust List (CTL) in the new computer and the assigned policies and
trust levels for that CTL. Everytime she decides to add or remove a new certificate
to the CTL or to change the trust level associated with the CTL or the privileges,
she must do this in all the computers she uses. She would benefit of carrying the
CTL and the trust information in the smart card to avoid this task.

Similarly, Yi may hold a smart card with personal keys and certificates. Since
PKCS#11 also allows to store in the token certificates (CKO CERTIFICATE) with a
boolean attribute (CKA TRUSTED), which is set only by the user OS, or an initial-
ization application. Unfortunately, few applications use this feature and do the
CTL management themselves. Yi is also forced to manually control the CTL.

Bob is more flexible and can use more computers and applications. On the
other hand, his life is harder: there is no communication among CAPI and

64 D. Dı́az Sánchez, A. Maŕın Lopez, and F. Almenárez Mendoza

PKCS#11, so he is forced to maintain his security decisions about the CTL
and trust levels for both types of applications as he moves to a new machine. He
will also benefit of carrying such data in his smart card. Besides, Bob will need
some means to ensure that the semantics of PKCS#11 and CAPI are somehow
maintained, so that the security information created by PKCS#11 applications
is stored in the smart card in some way that it can be accessed by CAPI.

PKCS#15 offers more explicit support for CTL. Any number of Certificate
Directory Files (CDFs) can be stored in the smart card, but in the normal
case there will only be one or two (one for trusted certificates and one which the
cardholder may update). The certificates themselves may reside anywhere on the
card (or even outside the card, using a url and a certHash field for verification).
Trusted certificates are used in PKCS#15 as trust chain origins (when signalled
by the implicitTrust attribute). PKCS#15 also allows certificates to indicate
the trustUsagewhich can be encrypt, decrypt, sign, signRecover, wrap, unwrap,
verify, verifyRecover, derive and nonRepudiation.

Unfortunately, these features are not being exploited by applications, though
mobile user benefit is clear. Trust management for mobile users implies that the
security information regarding the trusted certificates and their level of trust
moves along with the user. We claim that smart cards should be used for this
purpose, as they are now used for key and certificate storage.

The usage of policies in certificates was the first approach taken in the PKI
standard (ITU-T Rec. X.509[9], ISO/IEC 9594-8). Conceptually identity and
permissions have different life and life-cycle, and they arise from different sources.
This leads to scalability and management problems. A later version of the stan-
dard included PMI and attribute certificates (section 2.1), engineered as a more
suitable solution for privilege management. Attribute certificates are supported
in PKCS#11 and PKCS#15, but not in CAPI.

2.1 Attribute Certificates

An Attribute Certificate (AC) [4] is a structure similar to a Public Key Certificate
(PKC) but ACs bind identities to privileges and contain no public key (Fig. 1).
ACs are issued by Attribute Authorities (AAs). AAs store and manage them inde-
pendently from Certificate Authorities (CAs). AAs are the source of authorization
information, just like CAs are the source of authentication information.

Typically the AAs store the attribute certificates in a Lightweight Directory
Access Protocol (LDAP). In this case, both the entity and the service perform
authentication. Then the server requests or “pulls” the AC from a repository
or an AA. Pull mode allows the use of ACs without changing the clients. This
model is more appropriate for inter-domain access where privileges are assigned
in the domain of the server, see Fig. 2.

In other environments, as ad-hoc, is more suitable for an entity to “push”
ACs to the server. This model simplifies services, because no new connections
are needed to obtain authorization information. The push model improves per-
formance since servers have instantly access to the authorization data and fit
in ad-hoc environments where services can be located in peers and the access

A Smart Card Solution for Access Control and Trust Management 65

Fig. 1. AC structure

Fig. 2. AC exchanges

to Internet is not assured. Details about X509 identity certificate validation
(necessary for AC exchange) in ad-hoc environments is covered in section 4.1.

3 The Cryptographic APIs

In this section we start by describing briefly the main features of PKCS#11
and Microsoft CryptoAPI. After that, we present why a bridge between them is
needed, and the requirements for this bridge.

66 D. Dı́az Sánchez, A. Maŕın Lopez, and F. Almenárez Mendoza

3.1 PKCS#11: Cryptoki

PKCS#11 (Public Key Cryptographic Standard) specifies an API called Cryp-
toki, short for Cryptographic Token Interface Standard, to devices that hold
cryptographic information and performs cryptographic operations. The aim of
this standard is to provide a simple object-based approach that allows appli-
cations to be independent of the underlying cryptographic hardware. Crypto-
graphic devices are known, in Cryptoki words, as “Cryptographic tokens ” or
“tokens”. Cryptoki defines a logical model that makes any device logically equal
to any other regardless of the devices different technologies. Therefore, outside
the library, the hardware details are hidden and the application has only access
to the logical view of the token.

Cryptographic tokens are plugged in the system using “slots”, which can
correspond, for instance, to a smart card reader [10, 11] plugged in the system.
Tokens can be, as mentioned before, any removable or not removable device
plugged in a slot.

Cryptoki defines tree classes of objects: data, certificate and keys. Data ob-
jects hold application information, certificate objects store certificates and key
objects store cryptographic keys that may be public, private or secret. Objects
can be classified by visibility and lifetime in: Token Objects, that are accessible
to applications connected to the token that are logged in and have sufficient
permission. These objects remain on the token after all the sessions are closed
and the token is removed from the slot. Session Objects remain on the token
only within a session and are removed when the session finishes. Objects are
also classified by accessibility in public and private objects. Public objects can
be accessed by an application without login in the token, while private objects
can only be accessed by authenticated applications (using, for instance, a PIN).

An application should open one or more sessions with a token to gain access
to the objects contained in the token. A session is the logical connection between
the token and the application. Sessions can be read-only and read-write ones.
The read-only or read-write state refers only to the token objects so session
objects can be written in a read-only session.

Sessions are referenced outside Cryptoki by the use of handlers. A session
handler value is different from others. Object handler values can be equals for
two or more sessions regardless of the object that is referenced since any session
has it own handler space to reference objects.

3.2 PKCS#15 and JCCM

Cryptoki alone can not offer interoperability, since it is an API specification
aimed at offering applications a uniform interface to cryptographic tokens. Dif-
ferent tokens require different PKCS#11 drivers, and users need to install the
different drivers to use different tokens.

There are two workarounds for this problem. PKCS#15 [6] ensures interop-
erability by establishing a standard which ensures that users, in fact, will be able
to use cryptographic tokens to identify themselves to multiple, standards-aware

A Smart Card Solution for Access Control and Trust Management 67

applications; regardless of the application’s cryptoki (or other token interface)
provider. PKCS#15 does this by establishing a syntax for storing digital cre-
dentials (keys, certificates, etc) on the tokens, and how this information are to
be accessed. PKCS#15 only requires card compatibility with ISO/IEC 7816-4,
ISO/IEC 7816-5, ISO/IEC 7816-6 and ISO/IEC 7816-15 [12]. Extended features,
especially advanced PIN management functions and higher level security opera-
tions may require support for ISO/IEC 7816-8 or ISO/IEC 7816-9.

Another solution is the one proposed by Java Card Certificate Management
[13]. JCCM proposes to move part of Cryptoki semantics to the smart card, so
that the host library (cryptoki driver) is the same for all manufacturers. We have
used this approach in this work.

3.3 CryptoAPI

CryptoAPI [5] is the security API for Microsoft Windows platforms from desktop
computers to mobile smartphones and PDAs. It offers an API to: certificate
stores, simplified messages, low level messages (PKCS#7), and certificate encode
helped by extensible modules that interact each others see Fig. 3.

CAPI manages certificates providing a set of functions that allow searching,
retrieving, deleting, and classifying certificates.

The low level cryptographic functions that CAPI export are served by a set
of selectable modules or CSPs.

3.4 CSPs: Cryptographic Service Providers

A CSP is a software module that implements CryptoSPI API. This API provides
to the operating system the ability to manage keys for both symmetrical and
asymmetrical algorithms and to perform cryptographic operations as hashing,
encrypting and signing. CSPs may interact with hardware, for instance, a card,
usb-token or any tamper-proof device providing secure key management.

CryptoSPI is managed by the operating system, who blocks the software
module to avoid for instance a man-in-the-middle attack. CryptoSPI is ex-
ported outside the operating system to be used by applications as a set of CAPI
functions.

The Independent Software Vendor (ISV) model managed by the operating
system allows to select among the available CSPs according to user preferences
or domain policy enforcements. Using ISV model, developers can interact with
more than one CSP to increase security and strength of applications. This struc-
ture allows application to have available providers that implements different
public key algorithms, symmetric ciphers, and hash algorithms including com-
munication with cryptographic devices (Fig.3).

A CSP maintains a repository of keys organized by containers. Containers’
names are given by the applications and each container has a unique name
in the scope of a CSP. A CSP guards container structure and maintains the
public/private keys stored in those containers from session to session. However,
session keys are not preserved from one session to other.

68 D. Dı́az Sánchez, A. Maŕın Lopez, and F. Almenárez Mendoza

Fig. 3. CryptoAPI structure (from MSDN)

CAPI specifies that CSP containers should support at least two types of key
pair: “signature key pair”and “exchange key pair”. Moreover, any number of key
pairs can be stored besides the default ones, but it depends on the particular
CSP implementation. The communication between the application and the CSP
is materialized in a context. A context should be acquired before performing any
operation with a CSP.

3.5 Certificate Manager

CAPI exports functions to store, list, retrieve, delete, and verify X.509 certifi-
cates. The API offers two main categories of functions for managing certificates:
functions that manage certificate stores, and functions that work with the
certificates, certificate revocation lists (CRLs), and certificate trust lists (CTLs)
within those stores.

When a certificate is retrieved from a Store, it is represented by a Certifi-
cate Context read-only structure. A certificate context can be used for signing,
encryption or for authentication processes. CAPI do not attach trust informa-
tion to a certificate context but allows to develop custom trust providers by
third parties to manage this type of information, through the WinTrust service.
Trust providers perform trust verification on a specified object.

Certificate stores can be System Stores or Physical Stores. System stores
are composed by a set of Physical Stores. Physical Stores are organized in store
locations served by different Certificate Store Providers: system registry, disk
file, and memory. These stores classify certificates depending on the intended use.
Certificates for trusted certificate issuers are generally kept in the Root store,
which is currently stored under a registry subkey.

Besides, each user has a personal “My”store where user’s personal certificates
are stored; these certificates are used for signing, decrypting user’s messages,
and mail encryption. “My” store can be at many physical locations including
the registry on a local or remote computer, a disk file, a database, directory

A Smart Card Solution for Access Control and Trust Management 69

service, a smart card, or another location. Private keys are generated and stored
in key containers in CSPs. Furthermore, CSPs store the keys of the certificates
generated by third-party CAs that have been imported to the system.

3.6 Bridging Microsoft CryptoAPI to PKCS#11

It is common for nomadic users to use both CAPI applications (like Internet Ex-
plorer, Outlook, etc.) and Cryptoki (Mozilla, Firebird, etc.). These users require
some means to ensure that the semantics of PKCS#11 and CAPI is somehow
maintained, so that the security information created by PKCS#11 applications
is stored in the smart card in some way that can be accessed by CAPI.

A solution can be built upon PKCS#15, but this will still require some code
to ensure that the information present in Certificate Stores is stored in the smart
card.

Another solution is to provide a bridge from CAPI to Cryptoki, so that
Cryptoki data objects are used to store such information. Since we work with
JCCM, we ensure that the same host library is needed for different smart card
providers. The actual version of CAPI does not support attribute certificates,
and it needs to be extended for this purpose. Such extension is also considered
in the bridge we propose.

4 Prototype

User life is not focused on security. Handling different certificates, using different
personal devices may be hard unless a common certificate base, trust informa-
tion and user preferences are shared among applications. This should be done
regardless the Cryptographic API used. Our work covers four security corner-
stones, by providing a seamless integration of two APIs and sharing credentials
and cryptographic capabilities among them. It gives support for nomadic users
allowing them to use a card for multiple purposes: authentication, authorization
and trust management as well as tamper-proof capabilities.

The middleware developed to achieve this functionality can be divided in
four blocks:

– Trust Manager: This module handles the trust in PKI and PTM.
– Public Key Certificate Manager provides tools to delete, to store, to

search and to inspect certificates.
– Attribute Certificate Manager allows to handle, to store, to delete and

to search Attribute Certificates
– Key management and ciphersuite provides cryptographic support to

manage keys and to perform cryptographic operations

4.1 Trust Manager

Trust information is stored in the card for PKCS#11-aware applications and
for CAPI-aware applications through our middleware . Trust is fundamental to

70 D. Dı́az Sánchez, A. Maŕın Lopez, and F. Almenárez Mendoza

validate user’s certificates and their certification path. Such validation depends
on the list of certificates stored as trustworthy (CTL), therefore, this module
calls the CryptoAPI trust chain building functions, CertGetCertificateChain
and CertVerifyCertificateChainPolicy.

After checking the validity of the type of certificate, expiration period, and cer-
tificate integrity, is needed to validate the trust chain. CryptoAPI functions per-
form the traditional validation process, which checks a valid certification path. In
this process, the chain is built from the end certificate to a root CA; this latest must
be in the Trusted Root Certification Authorities (TRCA) store, or the issuing CA
must be in a trusted certification hierarchy or a CTL. During chain building, each
certificate in the path will be validated, therefore, communication with each CA
is required. When a problem occurs with one of the certificates, for instance, it is
revoked, or if it cannot find a certificate, the certification path is discarded as a
nontrusted certification path. Finally, the policy constrains are also validated.

Nevertheless, What happens if the root CA is not in the TRCA store or the
user is unknown? Would this validation process be suitable for devices with re-
stricted capabilities? or Is remote connectivity always guaranteed? In these cases,
we need to use a different trust provider from CryptoAPI functions. Certificates
would be validated taking the CTL into account, in this way, each certificate is
a trust source. Furthermore, in ad-hoc environments, we could additionally use
the cooperation between closed entities to trust in a specific user, instead of ver-
ifying long certification chains. In [14], we describe a trust management model
(PTM) for open and dynamic spaces, where the presence of ad-hoc networks and
peer-to-peer might be frequent. PTM would act as a trust provider according
to the context, which is possible due to Windows security architecture allows
several trust providers to verity trust in certificates [15].

4.2 Public Key Certificate Manager

This module acts as a bridge between CryptoAPI Certificate Manager and
PKCS#11. The goal is to provide access to certificates stored in PKCS#11
modules from CryptoAPI Certificate Manager.

We have chosen to access to PKCS#11 modules from CryptoAPI and not the
other way around. The reason is that most of the parameters that CryptoAPI
attaches to cryptographic information can be extracted from Cryptoki attributes.
Besides this “natural”mapping, Cryptoki supports application dependent data
management and this can be used to store the information that CAPI needs to
handle and the preferences without modifying PKCS#11 API.

It is necessary to describe CAPI internals to find out possible problems when
dealing with different repositories: one for certificates and other for private keys.
As mention in related work (section 5), other bridges among APIs do not cover
certificates but only key management and cryptographic capabilities.

When importing a certificate to a personal store, for instance the System
Store “My”, the certificate and its public/private key pair are stored separately.
Certificates themselves are stored in a Physical Store served by a Certificate
Store Provider, that belongs to a System Store, and the private keys in CSPs.

A Smart Card Solution for Access Control and Trust Management 71

There are some extended properties of a certificate help to solve the problem
of having separate repositories, for certificates and private keys, these properties
include data that:

– Pertains to the private key to be used with the certificate.
– Indicates the type of hashes to be performed on the certificate.
– Provides user-defined information associated to the certificate.

On Microsoft platforms, values for these properties are attached to a certifi-
cate context and move with it, but are not part of the certificate itself. Currently,
predefined properties tie a certificate to a particular CSP and, within that CSP,
to a particular private key. This properties set also the type of key: signature or
key-exchange. This is the way to couple certificates stored in Certificate Stores
and private keys guarded by the CSPs at API level. Moreover, these properties
describe user preferences so they should be stored in the card in order to support
nomadic users as explain the section 4.4.

CAPI Certificate Manager allows to be extended by developing custom cer-
tificate store providers, registering the appropriate callback functions in the op-
erating system and registering new Physical Stores within this provider. We have
developed a Certificate Store Provider called PKCS11Store. This provider is used
to register new sibling physical stores under the well known system stores:

– “MY” personal certificates.
– “Root” Trusted root CAs certificates can be loaded into the card from either

CryptoAPI or PKCS#11 aware applications and carried by nomadic users
– “TrustedPublisher” maintains a trusted list of software publishers
– “TrustedPeople” certificates from trusted people.

When applications use any of the prior certificate stores, PKCS11Store
communicates with any PKCS#11 token registered in the system. Then
PKCS11Store updates the system certificate repository with the information
of the card, as can be seen in Fig. 4.

Fig. 4. Certificate stores and providers

72 D. Dı́az Sánchez, A. Maŕın Lopez, and F. Almenárez Mendoza

4.3 Attribute Certificate Manager

This module behaves in the same manner as Public Key Certificate Manager
does, but it provides another kind of certificates, Attribute Certificates (ACs),
to the system.

When an application accesses to certificate stores, it provides, as a parameter,
the intended encoding type of the information requested. Currently, CryptoAPI
supports the value of the bitwise OR operation of flags X509 ASN ENCODING or
CRYPT ASN ENCODING and PKCS 7 ASN ENCODING.

To distinguish among different types of certificates, a new encoding type flag
for ACs has been defined (X509AC ASN ENCODING). This enables the use of the
same certificate store provider module, in our case PKCS11Store, to handle both
Public Key Certificates and Attribute Certificates.

PKCS11Store in its current state of development is able to extract ACs from
PKCS#11 modules and to accept requests from the system through a System
Store registered with the convenient encoding type.

At the end of this paragraph, it is shown the “C” declaration of the Public
Key Certificate context (defined in CAPI) and the Attribute Certificate context
(defined by us) returned by the provider to the O.S. and from the O.S. to the
application:

typedef struct _CERT_CONTEXT {
DWORD dwCertEncodingType;
BYTE *pbCertEncoded;
DWORD cbCertEncoded;
PCERT_INFO pCertInfo;
HCERTSTORE hCertStore;

} CERT_CONTEXT, *PCERT_CONTEXT;

typedef struct _ACERT_CONTEXT {
DWORD dwCertEncodingType;
BYTE* pbCertEncoded;
DWORD cbCertEncoded;
PACERT_INFO pACertInfo;
HCERTSTORE hCertStore;

} ACERT_CONTEXT, *PACERT_CONTEXT;

Where PCERT INFO and PACERT INFO contain the most relevant fields of those
certificates. The main difference is that attribute certificates do not contain
public key.

4.4 Key Management and Ciphersuite

As explained, extended properties of certificates are used to “tell” the operating
system where to find the private keys of that certificates (in which CSP and
container are stored) and to handle user preferences as certificates usages not
described in X.509 certificate extensions.

A Smart Card Solution for Access Control and Trust Management 73

We have built a CSP, PKCS11CSP, which is able to interact with PKCS#11
modules. When PKCS11Store reads a certificate from a PKCS#11 module and
publishes it in “MY” certificate system store, it sets the appropriate extended
properties. These properties points to PKCS11CSP so the operating system uses
PKCS11CSP to perform cryptographic operations with the certificate private
key.

Bridging CryptoAPI and Cryptoki makes necessary to map both crypto-
graphic APIs at logical level. This is the hardest design constrain, because the
logical structure can not be easily mapped from one to other. This section covers
the low level mapping from CAPI to PKCS#11: CSPs to PKCS#11.

Some approaches to designing the middleware are described in the following
lines. Fist approach may map CSPs to slots and containers to tokens. So slots can
have plugged more than one token as CSPs can manage more than one container.
The disadvantage is that the creation of a new container is associated to the
creation of a token, but: 1) tokens can be physical devices, and 2) Cryptoki does
not support token creation.

In a second approach, containers may be assigned to certificates stored in
the token [16] so container names are derived from the certificates or any of their
properties. The problem arises when using a read-write token and an application
creates a container. If no certificate is created according to the name of the
container, next time may be infeasible to derive the container name from the
certificate, so this approach is only applicable to read-only tokens.

As defined in CryptoAPI a container may hold an unlimited number of key
pairs but at least two are mandatory: a “signature key pair” and a “key
exchange key pair”. Thus, assigning a container to each certificate may not
behave properly.

PKCS11CSP uses a general purpose object, a Cryptoki data object, to store
user customization and preferences of CAPI that cannot be derived from the
Cryptoki object attributes. Storing this information in a data object enables the
user to reproduce his/her preferences everywhere. Data objects are covered by
PKCS#11 and Cryptoki does not attach to them any special meaning. The data
object (CKO DATA type) is a persistent object (attribute CKA TOKEN true), visible
without authentication (CKA PRIVATE false), but it cannot be modified unless
the user is authenticated. We store the information in the data object encoded
with DER.

The core of the Key Management and Ciphersuite module, PKCS11CSP,
can create a non limited number of containers and any container can guard
“signature key pair”, “key exchange key pair” and more. To distinguish
among different key types, this information is stored in the data object of the
PKCS#11 module and extracted when it is necessary. Furthermore, the con-
tainer structure is committed to the token data object. Fig. 5 may help the
reader to understand the middleware and how blocks interacts each other.

This design doesn’t use anything out of the scope of the PKCS#11 stan-
dard, so any commercial PKCS#11 [17, 18, 19] module, capable of storing data

74 D. Dı́az Sánchez, A. Maŕın Lopez, and F. Almenárez Mendoza

Fig. 5. Middleware structure

objects, can be used. Read only tokens can be used, but obviously no changes
are committed to the card.

Context Mapping: Depending on the type of context requested by the ap-
plication to the PKCS11CSP, the bridge should behave in a different fashion
[2]. PKCS11CSP provides a GUI to enter PIN when access to private objects of
PKCS#11 is requested. The following lines briefly describe most relevant types
of CSP context and the mapping to PKCS#11 sessions:

– Normal context (zero value): If operations requiring access to private
token objects are requested, the context maps to a R/W user function. If
not, just R/O access to public token objects and R/W access to session
objects will be requested to the PKCS#11 module.

– CRYPT VERIFYCONTEXT: This flag is intended for applications that do not use
public/private keys. When this flag is set, the context is mapped to a R/O
Public Session. Attempts to access to private objects should fail.

– CRYPT NEWKEYSET: To create a new container with the specified name. R/W
access to the token is needed: the data object stored in the token needs to
be updated with new information. (PIN is needed).

– CRYPT DELETEKEYSET: To delete a container. R/W access to token objects is
needed to update the data object and to delete the key pairs (PIN is needed).

– CRYPT SILENT: The PKCS11CSP should not display any user interface. It is
used for unattended applications (R/O Public Session).

Function Mapping: Key generation and exchange functions exchange, create,
configure, and destroy cryptographic keys. In general, functions that require

A Smart Card Solution for Access Control and Trust Management 75

to create a new object should be mapped through calls to Cryptoki function
C CreateObject. If any persistent element is created, the PKCS11CSP should
update the data object including the name of the involved container and addi-
tional data. The additional data will help to find the object faster in following
sessions, and ensures that the user will access to the same object structure as
the last session.

Data encryption functions support encryption and decryption. CAPI
CPDecrypt and CPEncrypt functions support both single-part operation and
multi-part operation (used in hashing and block ciphering). These functions
will be mapped with a first call to C EncryptInit to set up the algorithm.
Then, for single-part operations, a unique call to C Encrypt should be done.
In case of multi-part operations, it is necessary to perform a set of calls to
C EncryptUpdate and a last call to C EncryptFinal.

Hashing and digital signature functions compute hashes and create and verify
digital signatures. Cryptoki does not define hash objects. A hash exists as a value
during the active Cryptoki hash operation, but not as an object. CSPs define
hash objects so they can be destroyed and duplicated. Due to this, no mapping
is possible for CSP functions that allow creation, deletion and manipulation of
hash objects. These hash objects will be handled by the PKCS11CSP library
internally, without Cryptoki object manager intervention, and will disappear
once the library unloads from memory (session objects). In any case, the hash
value will be calculated in the token although the object is managed by the
CSP.

Digital signatures generated by CPSignHash (CryptoAPI) will be mapped
into calls to C SignInit, C Sign, C SignUpdate and C SignFinal. Verification
process will be handled by calls to C Verify and C Verify-Init-Update-Final.

5 Related Work

There have been a number of approaches to the interoperation of PKCS#11
and CSPs. The International Cryptography Experiment [20] aimed at a layered
cryptographic service architecture, allowing the separation among cryptographic
security and applications. ICE provided a bridge from CSP to PKCS#11 sim-
ilar to CSP11 [20], or ilex’s Generic CSP [16]. All them restrict themselves to
PKCS#11 basic trust management, and do not take into account CTLs in the
smart cards. These approaches lack of mobility support, since users have to set
up cryptographic low level details in their personal profiles. GnuPGP [8] deals
with CTLs in the smart cards, but the trust model is not compatible with PKI.
Our proposal deals with CTLs and builds up a trust model compatible with PKI.
We also approach the smart card as attribute certificate holder. Being the smart
card an extremely mobile device, it allows a push model more suited for discon-
nected situations and ad-hoc networks. Besides, the user can require privacy for
some of his/her privileges. There are also works for achieving privacy through
anonymity. [21] presents an approach to extend X.509 attribute certificates with

76 D. Dı́az Sánchez, A. Maŕın Lopez, and F. Almenárez Mendoza

anonymity, and a protocol based on fair blind signature to obtain certificates
preserving user anonymity.

6 Conclusions and Future Work

Smart cards offer portability and security at a reasonable price. Nomadic users
benefit from existing smart card based solutions, but they require extra man-
agement efforts when moving to different platforms. In this article we propose
a scheme to include trust management and attribute certificates for authoriza-
tion in two widely used cryptographic APIs: Microsoft CryptoAPI and RSA labs
PKCS#11. Our solution is truly mobile, since platform cryptographic details are
stored in the smart card, as a user profile, minimizing thus users’ management
effort when moving.

We are actually testing the implementation in PCs and Windows CE hand-
helds (not PDAs). Future work will include usability tests and porting the imple-
mentation to Windows Mobile devices (PDAs), which do not support yet PC/SC
smart card readers.

Microsoft CAPI will be held in Windows Vista but it will be deprecated
in some future version. The brand new API that supersedes CAPI in Windows
Vista is known as Cryptographic New Generation (CNG). The information made
available by Microsoft about this new API is not detailed enough to review the
design at the time this paper was written.

One of the changes that Microsoft provides for new Windows Vista affects
our design: the new Smart Card Infrastructure. Currently, a monolithic approach
has been used to develop the CSP. A CSP implements the CryptoSPI interface
and the communication with the card through PC/SC. CNG provides a Smart
Card KSP (Key Store Provider), that seems to be a common middleware, which
interacts with other modules that implements the details (i.e. RSA card module).
Our next efforts should be directed to implement one of those modules that cover
the specific smart card details. This module will be in charge of interacting with
PKCS#11. Other parts of our middleware will need to have access to a more
detailed documentation from us to be reviewed.

References

1. RSALabs: Pkcs#11 v2.11: Cryptographic token interface standard (2004)
2. Microsoft: The smart card cryptographic service provider cookbook (2002)

http://msdn.microsoft.com/library/en-us/dnscard/html/smartcardcspcook.asp.
3. Microsoft: Writing a csp (2004) http://msdn.microsoft.com/library/en-us/

dnscard/html/smartcardcspcook.asp.
4. Farrell, S., Housley, R.: An internet attribute certificate profile for authorization.

Technical Report RFC 3281, IETF PKIX Working Group (2002)
5. Microsoft: Cryptography reference (2004) http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/seccrypto/security/cryptography portal.asp.
6. RSALabs: Pkcs#15 v1.1: Cryptographic token information format standard (2000)

A Smart Card Solution for Access Control and Trust Management 77

7. Zimmermann, P.R.: The Official PGP User’s Guide. MIT Press, Cambridge, MA,
USA (95)

8. Team, T.G.: Gnupg (2005)
9. Union, I.T.: The directory: Public-key and attribute certificate frameworks. Tech-

nical Report X.509, International Telecommunication Union (2000)
10. ISO/IEC: 7816-4: Integrated circuit(s) cards with contacts. part 4: Interindustry

commands for interchange (1995)
11. ISO/IEC: 7816-3: Integrated circuit(s) cards with contacts. part 3: Electronic

signals and transmission protocols (1997)
12. ISO/IEC: 7816-15: Integrated circuit(s) cards with contacts. part 15: Crypto-

graphic information application (1997)
13. Campo, C., Marin, A., Garcia, A., Diaz, I., Breuer, P., Delgado, C., Garcia., C.:

JCCM: flexible certificates for smartcards with java card. In: Smart Card Pro-
gramming and Security. Proceedings of the international Conference on Research
in Smart Cards, E-Smart 2001, Springer-Verlag (2001)

14. Almenárez, F., Maŕın, A., Campo, C., Garćıa, C.: PTM: A Pervasive Trust Man-
agement Model for Dynamic Open Environments. In: First Workshop on Pervasive
Security, Privacy and Trust PSPT’04 in conjuntion with Mobiquitous 2004. (2004)

15. Almenarez, F., Diaz, D., Marin, A.: Secure ad-hoc mbusiness: Enhancing win-
dows ce security. In: Trust and Privacy in digital business. First International
Conference, (TrustBus 2004, Zaragoza, Spain). Number 3184 in Lecture Notes in
Computer Science, Heidelberg, Germany, Springer-Verlag (2004)

16. TEAM, I.S.: Pkcs csp (2003) http://www.ilex.fr.
17. Gemplus: Gemsafe products: Gemxpresso pkcs#11 documentation (2004) http://

www.gemplus.com/products/software/gemsafe xpresso/.
18. Cucinotta, T.: Smart sign pkcs#11 modules (2005) http://sourceforge.net/

projects/smartsign.
19. Axalto: Cyberflex access sdk: Pkcs#11 module for cyberflex (2004) http://www.

axalto.com/infosec/cyberflex access.asp.
20. Libre-entreprise, R.: Cryptographic service provider number 11: How it works

(2004) http://csp11.labs.libre-entreprise.org.
21. V.Benjumea, J.Lopez, J.A.Montenegro, J.M.Troya: A first approach to provide

anonymity in attribute certificates. In: PKC 2004 International Workshop on
Practice and Theory in Public Key Cryptography. LNCS 2947, Springer-Verlag
(2004)

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 78 – 90, 2006.
© IFIP International Federation for Information Processing 2006

Smart Cards and Residential Gateways: Improving OSGi
Services with Java Cards*

Juan Jesús Sánchez Sánchez1, Daniel Díaz Sánchez1, José Alberto Vigo Segura2,
Natividad Martínez Madrid1, and Ralf Seepold1

1 Universidad Carlos III de Madrid, Departamento de Ingeniería Telemática,
Av. Universidad 30, 28911 Leganés, Madrid, Spain

{jjsanchez, dds, ralf, nati}@it.uc3m.es
2 Sequel Business Solutions, Peninsular House, 30 Monument Street,

London EC3R 8LJ, United Kingdom
JVigo@sequel.com

Abstract. This article proposes an integration of Smart Cards into an environ-
ment controlled by a Residential Gateway. In a common scenario, the Residen-
tial Gateway offers services with different characteristics. Some services belong
to profiles of a user and thus these services have a mobile behavior. As a conse-
quence, these profile-related and thus user-specific services are configured via a
Smart Card. The Smart Card serves as a medium easy to transport but it added
more features to the scenario like the possibility of cryptographic services, se-
cure payments for example for pay-per-view or environment’s customization.
The core of this work has been carried out in order to achieve an integration be-
tween two existing technologies: OSGi (Open Service Gateway Initiative) and
Java Card.

1 Introduction

Nowadays, the application fields for residential gateways are increasing as network
operators are facing an increasing need for technology that offer customers end-to-end
services like triple-play [1]. These new services are ranging from telemedicine [2] to
video-on-demand, thus residential gateways will become a key element in the infor-
mation society.

Currently, a residential gateway is basically an embedded computer with two net-
work cards one that connects to devices on a home network and the other to connect
to the Internet. E-services as telemedicine imply that sensitive information is passed
via a residential gateway, and this needs specific protection. Since it is not the core of
this work to undertake risk studies, more information can be obtained at [3] and [4].

Smart Cards technologies have been proven to be a robust solution for security ser-
vices based on their cryptographic capabilities and in their almost tamper-proof nature
[5]. Furthermore, Smart Cards are suitable for storing users’ sensitive personal infor-
mation as medical records or private keys and furthermore, it is easy to carry them
with you.

* This work is partly supported by the Spanish Ministry of Industry via the MEDEA+ projects

TRUST-eS (A-306) and Planets (A-121).

 Smart Cards and Residential Gateways: Improving OSGi Services with Java Cards 79

This work proposes an integration of Smart Cards into a platform for residential
gateways. As an example for a highly flexible and open environment, the OSGi (Open
Service Gateway Initiative) technology has been chosen as the target system. Also the
fact that the Smart Card (Java Card) and the residential gateway support JAVA for
programming, the integration task can be performed without a huge effort during the
implementation of the interfaces. Once both technologies are integrated, several new
functionalities as cryptographic services, secure payments for pay-per-view [6] or
environment’s customization [7] can be offered via the platform and thus it can be
used independent from the service.

In the following section 2, an overview of relevant technologies and a brief study
of related work is presented. In section 3, the work performed is detailed. The design
phase and the different development strategies and test cases are documented. Once
the feasibility is proven, in section 4 several practical applications are described. Also
the implementation description is given here. Finally, section 5 presents the conclu-
sion and the future work.

2 State of the Art

This section reviews the main aspects of Smart Card and Java Card technologies. In
each case a brief description of principal features and applications is given. Also the
OSGi technology is briefly presented, since it has been chosen as the platform for
integration. At the end, relevant related work is referenced and summarized, while the
difference to this proposal is stated as well.

2.1 Smart Cards

Smart Cards (defined in ISO-7816 standards [8]) are credit card size devices that are
able to store and process information using an embedded integrated circuit. It is
transmitting information to an external application. These cards do not only store data
but they are able to protect them from unauthorized access or tampering. Typical
applications are implementing security modules for banking services, mobile teleph-
ony or access control.

The smart card's CPU typically has 8 bits and compares to embedded processors its
speed typically is slower, i.e. in the range of 10 MHz in case of the ST19XT34 MCU
based smart cards [9]. The Smart Card has a ROM (96KB) and a RAM (4KB) mem-
ory. The first one is for the operating system and the second for user applications
(EEPROM with 32KB or 64KB). Smart Cards have no interface to keyboards, moni-
tors and other peripherals but they provide an I/O interface to communicate with a PC
or a set-top box.

The communication between smart cards and external applications is realized via
a protocol stack. Here, direct communication between the application within the
card and an external application takes place. Control and data exchanges are appli-
cation specific. At the next (lower) level, the communication is based on the ex-
change of Application Protocol Data Units (APDUs) [10] these are used to convey
commands and data from and to the card based application. In general, the commu-
nication model follows a master-slave architecture. The card takes over the slave

80 J.J. Sánchez Sánchez et al.

role and waits for APDU commands from an external application. Once the card
executes the instruction conveyed in the command, it sends the result of an APDU
response.

2.2 Java Cards

The development of a smart card application is always tuned to a specific architecture
since each card has a different internal behavior depending on the manufacturer, i.e.
low-level communication protocols, memory management and hardware specific
details may be different. The aim of Java Card [11] technology is to offer an interop-
erable high-level interface that should be available for Java Card application (written
in Java and called applets) in any Java Card compatible smart card.

Java Card specifications include the Java Card Virtual Machine (JCVM) that de-
fines the Java virtual machine and language suitable for Smart Cards, the Java Card
Runtime Environment (JCRE) that describes the Java Card execution behavior (for
example the memory management and the application management), and finally, the
Java Card Application Programming Interface (JCAPI) that describes Java classes and
packets available.

In the implementation of the current version 2.2.1 of Java Card and the Java lan-
guage version several limitations apply, like: there is not dynamic class load neither a
garbage collection, threads are not implemented and the packet java.lang is re-
duced and does not include String, char, double, float or long classes.

For this work, the Cyberflex Access 32K cards from Axalto [12] (former Schlum-
berger) have been used. All on-card applications (applets or cardlets) are Java Card
2.1.1 complaint.

2.3 OSGi

The Open Services Gateway Initiative (OSGi) is an independent, non-profit corpora-
tion working to define and promote open specifications for the delivery of managed
services to networked environments, such as homes and automobiles. This initiative
created an Open Service Platform Specification that defines the OSGi Service Plat-
form, which consists of two parts: the OSGi framework and a set of standard service
definitions. The OSGi framework, which is located on top of a Java virtual machine,
represents the execution environment for services.

The central component of the OSGi architecture is the Service Platform that works
as the execution environment for services. It provides a platform that service provid-
ers can use as their own environment using the devices on a local network.

Initially, the targets for the OSGi specifications were digital and analogue set top
boxes, Service Platforms and cable/DSL modems. As the standard has developed, it
has first applications in consumer electronics, PC’s, industrial computers, cars and
other areas where the benefits of uniform operating environments, hardware abstrac-
tion and service lifecycle management are appreciated.

The OSGi Framework handles the life cycle management of applications and com-
ponents. It therefore provides the following functions:

 Smart Cards and Residential Gateways: Improving OSGi Services with Java Cards 81

− A packaging format for the applications: The OSGi specifications provide the
Bundle format. Bundles are applications packaged in a standard Java Archive
(JAR) file, which format is fully compatible with the ubiquitous supported ZIP
files.

− Install a bundle: The bundle must be prepared and the diverse components in-
stalled in the OSGi Framework, ready to be executed.

− Start/Stop a bundle: Installed bundles can be started and stopped in an OSGi
Framework. It is important to remark that in a Service Platform, all applica-
tions are started in the same JVM, thereby saving memory, resources, and CPU
cycles.

Security issues in this framework are addressed only at bundle level by specifying
three different security permissions for the bundles, AdminPermission, Pack-
agePermission, and ServicePermission. The purpose of each of these permissions is
to grant the authority to the bundle to carry out specific actions. OSGi tries to ex-
tend security issues beyond authorization policies and to add new functionalities to
the framework.

For a detailed study of the specifications, it is recommended to read the OSGi speci-
fications [13] and the global vision of the whole architecture that is completed in [14].

In this work Oscar [15] has been chosen as the implementation platform. Oscar is
an open source implementation of the OSGi framework specification. Currently,
Oscar is compliant to major components of the OSGi release 3 specifications. As a
remark, "Oscar" was also the name of a smart card OS developed by GIS in the UK in
1989 that can be seen as a precursor to Java Card technology.

2.4 Related Work

Before starting with a detailed description of the implementation, other initiatives and
proposals driven to take advantage of smart card potential in a residential gateway
have been evaluated. As a result, two articles had been classified to be relevant: the
first one is from the area of telemedicine and the second one focuses on authentication
issues in Residential Access Networks.

In [16] an electronic-prescription system for home-based telemedicine is described.
This article describes a health-prescription application running on a smart card that
communicates with a Personal Digital Assistant (PDA). It uses OSGi as a central
coordinating point among the devices. The OSGi environment is aimed to allow inter-
communication between the card reader, the patient’s PDA application and other
devices but there is no detailed description about how the system is implemented
neither on the specific security needs required for medical applications with respect to
OSGi platforms.

The second approach [4] presents a quite different scenario in which authentication
on network access is addressed. In this case, a smart card is used as a mere certificate
and key container inserted in the residential gateway. This article is focused on de-
scribing an authentication protocol in which smart card encryption and decryption
capabilities are used. In this approach, the portability of data and configuration is less
important for the application case.

82 J.J. Sánchez Sánchez et al.

3 Integration of OSGi and Smart Card

This section describes in detail the work carried out to create a bundle that adds new
capabilities to OSGi gateways. With this new capabilities it is possible to design a
Smart Card based application that takes advantage of all the functionalities offered by
these devices like secure storage of data or cryptographic operations and thus to port
configurations into different residential environments.

3.1 First Approach: MUSCLE Applet Loader Integration into an OSGi
Gateway

In order to check the feasibility of this proposal, several tests have been made; the
more complete was based in the MuscleCard Applet Loader [17] developed by
MUSCLE (Movement For The Use of Smart Cards in a Linux Environment) project
[18]. The original idea was to develop an OSGi bundle able to load the MuscleCard
Applet into a Java Card.

3.1.1 MuscleCard
MuscleCard can be conceptually divided into two parts: A cryptographic card edge
definition for Java Cards describing the behavior and the protocol of a MuscleCard
applet and an API for accessing Smart Card services. Together, they provide a pow-
erful key and object storage solution on smart cards with cryptographic functionality.
The range of applications of MuscleCard ranges from logon purposes to document
signatures.

The complete specification of the API is defined in [17]. The MuscleCard applet
protocol definition is presented in [19]. Additionally, a good overview of MuscleCard
technology can be found in [20].

3.1.2 MuscleCard Applet Loader
Inside the MUSCLE project, several applications and tools have been created in order
to support the application of MuscleCard. The Java based MuscleCard Applet loader
developed by Martin Buechler has been chosen to be become the test OSGi bundle.
With this loader it is possible to load the MuscleCard applet onto a smartcard. The
different components of this application and their functionalities will be described
with a higher level of detail in the subsection 3.2.

Since the Java application distribution includes all the necessary components and
native libraries to be execute both in Linux and Windows environments, it is a stand-
alone application suitable to be used as a stand-alone OSGi bundle.

3.1.3 MuscleCard Applet Loader OSGi Bundle Description
The created bundle’s structure is depicted in figure 1. It consists of the Applet Loader
components plus a BundleActivator that will execute the applet loader application.
These elements are packaged with a manifest file into a bundle file that can be loaded
by an OSGi gateway.

An example of the execution of this bundle is shown in figure 2. This figure is
based on a screen snapshot showing how an Oscar gateway loads and executes the
bundle and how it establishes a communication with the smart card and loads the
MuscleCard Applet.

 Smart Cards and Residential Gateways: Improving OSGi Services with Java Cards 83

Fig. 1. MuscleCard Applet Loader Bundle structure

Fig. 2. Execution of MuscleCard Loader OSGi bundle in an OSGi gateway

This test also shows the feasibility of the planned implementation and thus the fol-
lowing step is introduced: the design of a specific bundle that serves as a library to
others bundles.

3.2 OCFBundle Description

It is required to provide a bundle that serves as a communication bundle for on-card
applications. This bundle will provide a global interface between OSGi applications
and their respective Java Card applets.

84 J.J. Sánchez Sánchez et al.

Fig. 3. OpenCard bundle composition

Therefore, this new bundle allows the communication between applications run-
ning on a gateway (as OSGi bundles) and applications running in a Smart Card.

The bundle will be called OCFBundle (OpenCard Framework Bundle) and it is
based on the basic components of the Applet Loader Bundle. The following compo-
nents are part of the bundle:

1. OpenCard Framework block: The OpenCard Framework provides a common in-
terface for both the smart card reader and the card´s application. It was created as
a standardized framework for implementing Smart Card enabled solutions and
Smart Card based services. It provides an open architecture and a set of common
APIs (Application Program Interfaces). Also CardTerminal and CardService con-
cepts are defined. Both of them are specifically implemented for a particular
Smart Card based application. The former is an API to access to the card and
reader through standardized protocols such as ISO7816-3 (i.e., T=0 or T=1 pro-
tocols) and the latter is an application that uses such an API.

2. Any Client Bundle developed will use these functionalities for communication
with applications inside the smart card.

3. Cryptix JCE block: The Java Cryptography Extension (JCE) [21] is a set of
packages that provides a framework and implementations for encryption, key
generation, key agreement, and Message Authentication Code (MAC) algo-
rithms. Support for encryption includes symmetric, asymmetric, block, and
stream ciphers. The software also supports secure streams and sealed objects.
For this development, Cryptix JCE [22] has been chosen since it is a complete
open-source implementation of the official JCE API published by Sun.
Through this API a Client Bundle is able to fulfill the cryptographic operations
needed to establish a secure channel between the application and the applet in
the card.

4. PC/SC Wrapper block (PC/SC CardTerminal): This wrapper [23] was initially
developed by IBM and Gemplus in order to integrate PC/SC in OpenCard
Framework [24]. Through this wrapper, an OpenCard based application can be
used operating the system's PC/SC capabilities to establish communication with
an on-card application.

Finally, the new bundle has been tested on an Oscar 1.0.5 OSGi Gateway running
on a Java Runtime Environment 1.5.0_04. The tests were successful, but adjusting
and tuning processes are ongoing.

 Smart Cards and Residential Gateways: Improving OSGi Services with Java Cards 85

4 Applications

In this section, several applications of the proposed architecture are described. In all
cases, new functionalities are added to the OSGi Framework, and the majority of
these functionalities are related to security issues.

The communication with Smart Card devices is carried out through a further OSGi
bundle, the integration of smart based applications can be done seamlessly when de-
signed it as a Java architecture.

An example of how OSGi can improve its functionalities by adding a PC/SC wrap-
per bundle is depicted in Fig. 4. There are many possible applications fields but only
three functionalities are proposed for implementation:

− Environment customization. This has been the first practical application of the
proposed architecture; here, smart cards have act as a mean of storing and man-
aging user’s preferences in different environments. This application is detailed
in the following subsection.

− User’s authentication. Smart Cards are able to store users’ certificates and pri-
vate keys and thus they have been widely used as authentication means. With
this extension an OSGi bundle is able to check a user’s identity.

− Pay-per-view, Micro e-payments and DRM. These three applications fields are
currently under investigation by different research centres or companies’ alli-
ances. It is foreseen that this technology targets at a growing market.

Fig. 4. Architecture to integrate Java Card based applications into OSGi Framework

86 J.J. Sánchez Sánchez et al.

4.1 Environment’s Customization

This application is based on a previous work [25] in which an architecture for custom-
izing automation was proposed. A possible architecture for a customizable automation
environment was described, in such a way that environment’s configurations for each
user depend on the information stored in a Smart Card device.

Following this scheme, a user will be able to configure and control devices that are
connected to the network with the help of a smart card. Many different scenarios are
possible; with the help of a Smart Card, a user can control the power of the home
lights, the maximum and the minimum temperature of the room’s heating, the blind-
ers behavior, preferences in the TV program, etc.

Originally, the proposed solution is based on a specific type of control networks
from LonWorks ([26], [27]), which provides a distributed, powerful and open
architecture in order to control and manage any kind of sensors and actuators. In this
approach, the on-card application, the so-called CMA (Configuration Manager Appli-
cation) manages the different user’s configurations via applets.

Fig. 5. APDU exchange example for CMA application

 Smart Cards and Residential Gateways: Improving OSGi Services with Java Cards 87

When the card is inserted, the gateway has to select the right application to operate
with the card (one card can store different applications). Once the CMA application is
successfully selected, it is possible to establish a communication between the program
running in the gateway and the on-card application as it is shown Fig 4.

4.1.1 CMA Functionalities
In this example, the CMA is a Java Card applet which is responsible element to man-
age all possible configurations in different environments.

For each given environment, a configuration can be defined as a set of values for
different variables: each device can be represented via a group of variables. The val-
ues of these variables will define a device’s status and the configuration of an envi-
ronment is made up by the set of all devices' status.

In the implementation, the CMA stores and manages several configurations for the
same environment and these configurations may consist of different sets of variables.
That implies that when a new configuration is used to set up a specific environment,
non-updated variables keep their current values.

The CMA can manage configurations for different environments. This allows users
(a cardholder) to have their private configuration for different environments (home,
office, car,) stored in the same portable device.

In Figure 6, the different operations available for the current CMA version are
shown.

Fig. 6. Current CMA available operations

As shown below, current CMA implementation allows carrying out simple man-
agement operations with stored configurations but future efforts will be aimed to add
new functionalities.

4.1.2 Configuration Bundle
This OSGi bundle will be the one that uses the configurations stored inside the smart
card to set up the environment where it has been deployed. That implies of course that

88 J.J. Sánchez Sánchez et al.

any given environment must have an OSGi gateway as one of its core elements since
it is the “more intelligent device”.

A configuration bundle communicates with the CMA applet through OCFBundle,
whose API is used to compound the messages (APDUs) sent to the CMA and to receive
its responses. With these messages the bundle is able to obtain configurations stored in
the card and to make the required changes in the environment. Besides, it is possible to
create a new configuration from the current status of an environment and to store it.

The current version of this bundle is limited and thus it applies first configuration
found. It is planned to develop a more complex bundle that includes a Graphic User
Interface (GUI). Once the GUI is finished, can a user select among different configu-
rations that apply.

4.1.3 LONWORK Bundle
The LONWORK bundle’s purpose is to act as an interface between the Configuration
Bundle and the LONWORK network, in such a way, that the Configuration Bundle is
able to control these devices. Currently, this bundle is in a conceptual status but it is
expected to launch the development soon in order to test the whole system connect to
an industrial network. Then, other bundles for different automation networks can be
created, and this will enable to control more complex environments within different
automation networks.

Fig. 7. Current CMA available operations

5 Conclusion and Future Work

This article presented a proposal for an integration of smart cards into an OSGi
environment. Besides the description of the design and the implementation, several

 Smart Cards and Residential Gateways: Improving OSGi Services with Java Cards 89

applications have been described. Furthermore, the OCFBundle feasibility has been
successfully proven and additional applications have been proposed.

It is planned to offer this bundle to the Oscar Initiative for further discussion and
possibly to include it as a regular bundle in the distribution.

Currently, CMA functionalities and Configuration bundle improvements are al-
most finished. While the implementation of the LONWORK connection is still under
development. Since both projects (TRUST-eS and Planets) are running, it is planned
to perform the remaining tasks with the help of the regular work flow.

Finally, the convenience of abstracting the CMA application in the OSGi frame-
work as service will be considered. With this service a regular Java interface that
hides the implementation details will be provided, in such a way, that any other CMA
implementation could be used.

References

1. D. Ladson: Building a next-generation residential gateway means making tough 0design
choices. Texas Instruments, Wireless Net DesignLine July 2005, at www.embedded.com/
showArticle.jhtml?articleID=166402757

2. P. O. Bobbie, S. H. Ramisetty, A. Yussiff and S. Pujari: Designing an Embedded Elec-
tronic-Prescription Application for Home-Based Telemedicine Using OSGi Framework.
Embedded Systems and Applications, Proceedings of the International Conference on
Embedded Systems and Applications, ESA '03, June 23 - 26, 2003, Las Vegas, Nevada,
USA.

3. A. Herzog and N. Shahmehri: Towards Secure E-Services: Risk Analysis of a Home
Automation Service. Proceedings of the 6th Nordic Workshop on Secure IT Systems
(NordSec). Copenhagen, Denmark. Pages: 18-26. November, 2001.

4. J. Rossebo, J. Ronan and K. Walsh: Authentication Issues in Multi-Service Residential
Access Networks. 2003. Proceedings of 6th International Conference on Management of
Multimedia Networks and Services MMNS'2003, LNCS 2839, pages 381-395, Belfast,
UK.

5. D. Naccache and D. M’Raihi: Cryptographic Smart Cards. IEEE Micro, pp. 14-24, 1996.
6. J. Domingo-Ferrer, A. Martínez-Ballesté and F. Sebé, Francesc: MICROCAST, Smart

Card Based (Micro)Pay-per-View for Multicast Services. CARDIS 2002: 125-134
7. Vigo Segura, J.A., J.J. Sánchez Sánchez, N. Martínez Madrid and R. Seepold: Profile-

based configuration of residential networks. ISBN 8-489315-43-4. EUNICE 2005, Net-
worked Applications, 11th Open European Summer School, Colmenarejo, Madrid
(Spain).

8. International Organisation for Standardisation (ISO): ISO/IEC 7816. Identification cards -
Integrated circuit(s) cards with contacts. Available at www.cardwerk.com/smartcards/
smartcard_standard _ISO7816.aspx

9. STMicroelectronics: ST19XT34 Brief Data, Smartcard MCU with MAP, USB/ISO Inter-
face & 34 Kbytes High Density EEPROM. September 2003.

10. International Organisation for Standardisation (ISO): ISO 7816-4: Interindustry Com-
mands for Interchange. Available at www.cardwerk.com/smartcards/smartcard_standard
ISO7816-4_7_transmission_interindustry_commands.aspx

11. Sun Microsystems, Inc: Java CardTM Specifications Version 2.2.1. October, 2003. Avail-
able at http://java.sun.com/products/javacard/ RELEASENOTES_jcspecs.html

12. Axalto: Cyberflex Access Cards Programmer's Guide. Axalto 2004

90 J.J. Sánchez Sánchez et al.

13. The Open Services Gateway Initiative Alliance: OSGi Service Platform, Release 3. OSGi
2003. This specification can be downloaded from the OSGi web site: www.osgi.org

14. The Open Services Gateway Initiative Alliance: About the OSGi Service Platform Techni-
cal Whitepaper, Revision 3.0. 2004. Available at www.osgi.org/documents/osgi_technology/
osgi-sp-overview.pdf

15. Oscar, An OSGi framework implementation. Available at oscar.objectweb.org
16. P.O. Bobbie, A.L. Yussiff, S. Ramisetty and S. Pujari; Designing an Embedded Electronic-

Prescription Application for Home-based Telemedicine Using OSGi Framework. Proceed-
ings of the 2003 International Conference on Embedded Systems and Applications
(ESA’03), Eds. H. R. Arabnia and L. T. Yang, Las Vegas, June 23-26, 2003, pp. 16-21.

17. D. Corcoran and T. Cucinotta: MUSCLE Cryptographic Card Edge Definition for Java
Enable Smartcards. MUSCLE 2001. Available at www.linuxnet.com/musclecard/files/
mcardprot-1.2.1.pdf.

18. MUSCLE - Movement for the Use of Smart Cards in a Linux Environment Home-Page:
linuxnet.com

19. D. Corcoran and T. Cucinotta: Musclecard Framework Application Programming Inter-
face. version 1.3.0, MUSCLE 2002. Available at www.linuxnet.com/musclecard/
files/muscle-api-1.3.0.pdf

20. O. Karsten: MuscleCard. Available at www.inf.tu-dresden.de/ ~ko189283/MuscleCard/
MuscleCardArticle.html

21. Sun Microsystems, Inc.: JavaTM Cryptography Extension (JCE) Reference Guide for the
JavaTM 2 Platform Standard Edition Development Kit (JDK) 5.0. 2004. Available at
java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html

22. Cryptix JCE Home-Page: www.ntua.gr/cryptix/products/jce
23. PC/SC Wrapper CardTerminal Home-Page. www.gemplus.com/techno/opencard/card ter-

minals/pcsc/doc/README-PCSCWrapper.html
24. OpenCard Home-Page. www.opencard.org
25. J.A. Vigo Segura, J.J. Sánchez Sánchez, N. Martínez Madrid and R. Seepold: Integration

of Smart Cards into Automation Networks. IEEE Catalog Number 05EX1101, ISBN 3-
902463-03-1. WISES 2005. Hamburg (Germany).

26. Echelon Corporation. Introduction to the LonWorks System, 1999. Available at www.
echelon.com/ support/documentation/manuals/078-0183-01A.pdf

27. LonMark Association. LONMARK Application-Layer Interoperability Guidelines version
3.3, 2002. Available at http://www.lonmark.org/products/guides.htm

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 91 – 104, 2006.
© IFIP International Federation for Information Processing 2006

Zero Footprint Secure Internet Authentication Using
Network Smart Card

Asad M. Ali

Smart Card Research, Axalto,
8311 North FM 620 Road, Austin, TX 78726, USA

amali@axalto.com

Abstract. This paper describes the motivation and technological innovation of
Network Smart Card, a next generation smart card architecture that supports
standard Internet communication and security protocols. It outlines the role of
these next generation smart cards in addressing some of the weaknesses inher-
ent in current Internet authentication frameworks. The paper evaluates several
common methods of authenticating users as well as servers during online trans-
actions and shows how they can be improved by the use of Network Smart
Card. Traditional two-factor authentication techniques require modifications to
client machine, remote server, or both. This paper describes a method of achiev-
ing the same two-factor authentication for secure Internet access without requir-
ing any modification to host device or remote servers. Finally, the advantages
of Network Smart Card are evaluated against other forms of authentication,
such as conventional smart cards and OTP tokens.

1 Introduction

A fundamental assumption behind online transactions over the Internet is an implicit
trust in the identity of the other party, and the confidentiality of the data being trans-
ferred. This trust is not gained through personal interactions, but is instead based on a
combination of underlying technologies that provide authentication and data encryp-
tion. In today’s world of ubiquitous network access, where ability to conduct secure
online transactions is expected of most, if not all, merchants, there is an ever-
increasing need to strengthen these trust enabling authentication technologies without
degrading the user’s online experience. Since attackers continuously exploit weak-
nesses in existing modes of authentication, frameworks such as simple password
based login systems, which were once considered secure, are no longer adequate [1].
In this perpetually changing landscape of online security threats, next generation
smart cards could be extremely useful tools. Conventional smart cards [2] have long
been used as secure identity tokens for gaining access to local resources. By support-
ing standard Internet protocols for communication (TCP/IP) and security (SSL/TLS),
the next generation smart cards [3] can bring the same level of security to online
transactions. The challenge is to transfer these login credentials from the token to a
remote online server without requiring a host application, or modifying the remote
server. This paper describes one approach to meet this challenge.

92 A.M. Ali

2 Network Smart Card

To understand the Network Smart Card architecture we first need to look at the cur-
rent usage of smart cards. Smart card technology has been in use for more than two
decades. However, because of the ISO 7816 based standards [4] embraced by the
smart card industry, smart cards have evolved in their own niche markets using proto-
cols that are alien to the mainstream computing world. Although there have been key
pioneer attempts [5,6,7,8] to break away from smart card specific standards, the use of
smart cards as Internet access tokens is still on the fringes of mainstream computing.
Smart card advantages such as security, portability, wallet compatible form-factor,
and tamper resistance make them increasingly useful in a wide variety of environ-
ments such as GSM. However, in other environments such as desktop computing and
online access, wide scale adoption of smart cards is hindered by the mismatch
between smart card communication standards and the standards of the mainstream
computing and networking. When smart cards are connected to host computers, appli-
cations cannot communicate with them using standard mainstream network interfaces.
Instead, smart card specific hardware and software in the form of reader device driv-
ers and middleware are needed to access smart card services.

2.1 Motivation

Applications for conventional smart cards, using ISO 7816 based communication
standards, are difficult to develop, and even more cumbersome to deploy and main-
tain. These deployment hurdles have hindered the acceptance of smart cards as secure
devices for Internet commerce more than any other single factor [9].

Smart Cards are extremely useful hardware tokens that provide a secure repository
of confidential data. However, a conventional smart card cannot guarantee data
security beyond its physical boundary without trusting the host device to which it is
connected, or sharing a smart card specific encryption technique with the remote ap-
plication. These restrictions have limited the appeal of smart cards as secure Internet
access devices. Data could be manipulated on the host computer before being for-
warded to a remote trusted merchant. While merchants may have very high confi-
dence in data retrieved directly from a smart card, they cannot put the same level of
trust in the data forwarded by a host computer. Storing data securely is one thing; us-
ing it safely is another. While conventional smart cards provide very strong secure
storage, safe use is limited to trusted terminals; there is no mechanism to pass data se-
curely to a standard remote server through an untrusted host or terminal using main-
stream communication protocols. The Network Smart Card has been designed to
overcome this limitation, so that a remote server can trust data from the smart card.

2.2 Architecture

The Network Smart Card solves the communication mismatch by implementing stan-
dard Internet protocols on the card. What distinguishes the Network Smart Card tech-
nology from some earlier attempts [6,8] at making the smart card network aware, is
an architecture based on certain key design choices: implement the TCP/IP network
stack and SSL/TLS security layer inside the card; use standard interfaces and drivers

 Zero Footprint Secure Internet Authentication Using Network Smart Card 93

that are built into most operating systems, so that no additional middleware deploy-
ment is required [3]. This provides seamless connection to host computers and an
end-to-end secure data connection with other remote standard Internet nodes.

Figure 1 shows an overview of the Network Smart Card architecture. It contains a
USB or ISO 7816 physical layer, a complete network stack consisting of a data link
layer, TCP/IP, and SSL/TLS, and various network applications. The data link layer
can be either Ethernet/EEM or PPP [10]. If a USB interface is used, then a USB con-
nector is used to connect to the host computer. If an ISO 7816 interface is used, a spe-
cialized smart card reader is used to convert this to full duplex serial or USB, and is
connected to a serial or USB interface on the host computer. The host computer can
be any platform that is configured to permit network access from a serial or USB port.
This includes most workstation, desktop, and laptop platforms including Windows,
MacOS X, Linux and Unix platforms, as well as some mobile palmtop and handset
devices. The host is unaware that the computer being connected is a smart card; it
treats the smart card as any other computer requesting a direct connection. No mid-
dleware or other smart card specific software is required for any platform. This is an
enormous leap in the evolution of smart card design and deployment.

Applications
www, https,

telnet

SSL/TLS
Socket API

TCP/IP

Physical Layer

Network Smart Card

Physical Layer

Local Host PC

Connector

Remote server

Internet, LAN

Link Layer Link Layer
TCP/IP

Fig. 1. Protocol stack on Network Smart CardLink

The host computer functions simply as a router to connect the smart card to the
network. This enables the smart card to access network resources and provide its ser-
vices through the network without requiring any middleware on the host computer.
The remote computers that the smart card communicates with are also unmodified,
with no middleware or smart card specific software. As far as the remote computer
can tell, the smart card is just another standard computer on the Internet. The ability to
establish an end-to-end secure connection with a remote merchant server from any PC
can turn the smart card into a portable and secure token for Internet authentication.

3 Current Authentication Methods

The HTTP protocol [11] used on the Internet is a stateless, unencrypted and unauthen-
ticated protocol. What makes it secure for online commerce is the SSL [12, 13], or its

94 A.M. Ali

IETF flavor TLS [14], protocols. These protocols use public-key cryptography to ex-
change a secret key and then symmetric cryptography to encrypt the actual data ex-
changed between a web browser and a web server. However, even with the use of
TLS, the security of authenticating users is far from ideal [15,16]. The problem is not
with the protocol itself, but with the infrastructure in which it is used.

Figure 2 illustrates various methods of authenticating the identity of users during
an online transaction. B1 is a web browser through which a user connects to a mer-
chant server S1. These methods are discussed in the following sections.

 A1

Local PC

B1

S1

C1

 M1 Smart Card

S2 Attacker

Merchant
Server

T1

 OTP

Fig. 2. Common Internet authentication frameworks

3.1 Password

A username/password pair is perhaps the oldest method of identifying a user at a re-
mote server. This single-factor authentication is now universally considered weak for
transactions of high value. Although still widely used by most merchants and finan-
cial institutions due to lack of a low cost alternative, authentications based solely on
passwords have some inherent shortcomings. Good passwords are difficult to remem-
ber, while poor ones are easily compromised using various forms of software attacks.
Regardless of the password strength, a password typed manually into a browser is
vulnerable to a keystroke logger attack before it is encrypted using TLS. In addition,
phishing and spoofing attacks may trick the user into providing the password directly
to the attacker.

3.2 Automated Password

Automated password entry is achieved using various form-fill applications, A1
(figure 2), that automatically enter the required fields in a web form. This allows
use of much stronger passwords that do not have to be remembered by the user.
While this approach prevents the typical keystroke logger attack, the data is still
kept on the host computer and can potentially be stolen through browser exploits
and Trojan horses. It is also vulnerable to spoofing and phishing attacks [17]. Fur-
thermore, this approach is not portable. It can only be used from computers that
have application A1 installed and on which the user has previously saved all pass-
word data.

 Zero Footprint Secure Internet Authentication Using Network Smart Card 95

3.3 Conventional Smart Cards

A safer, and more portable option is to store the password data on a conventional
smart card, C1. Smart cards are extremely secure hardware tokens and are excellent
repositories for highly confidential information. They provide a two-factor authentica-
tion that is missing in simple password based options. However, due to the mismatch
between ISO 7816-based smart card communication standards [4] and the communi-
cation protocols [10, 18, 19] used by mainstream PC applications, smart cards require
special reader drivers as well as middleware application, M1. This overhead is a ma-
jor impediment to the widespread use of smart card based authentication solutions.

3.4 OTP Tokens

OTP tokens are small portable devices that generate a one-time-password code, which
can be combined with traditional username/password method to provide a two-factor
authentication. This alleviates some of the problems associated with password-only
methods. There are two broad categories of OTP generation algorithms: time based al-
gorithms such as the one used with RSA SecureID tokens; and event-based algorithms
such as that proposed by the Open Authentication (OATH) consortium. While the lat-
ter algorithm is an open standard, the former uses a proprietary technology. Regardless
of which option is chosen, the token and the authentication server have to be synchro-
nized. Unit cost of OTP tokens is generally higher than that of smart cards. In addition
the cost of token distribution and integration of OTP algorithms in the authentication
servers have to be evaluated by merchants when opting for this technology.

3.5 Server Authentication

Like user authentication, there are issues with the server authentication as well. For
example, the TLS protocol relies on digital certificates to ensure the identity of the
two parties. While client authentication is optional, TLS requires the server side to be
authenticated before TLS handshake can proceed. This design reflects the general
principle of business-to-consumer Internet commerce. It is more important for a user
(the client in a TLS handshake) to ensure that the server (typically an online mer-
chant) is who he says he is. After all, securing a connection with the wrong, presuma-
bly malicious, merchant can be disastrous. We may like to assume that TLS provides
a magic bullet to ensure that we communicate with the correct merchant, but it does
not. All it ensures is that we are communicating securely with somebody [20]. To ver-
ify that that somebody is actually the correct merchant is left at the discretion of the
user. Unfortunately most users do not know how to perform this validation, and of
those who know, the vast majority does not make the effort.

Web browsers do assist in this validation process. They compare the intended URL
with the corresponding value in the digital certificate received from the merchant.
This value is usually the Common Name part of the Subject field in the x.509 certifi-
cate that complies with the ITU-T X509 international standard [21]. In case of a mis-
match, the browser displays a warning dialog box. The dialog box is also displayed if
the certificate has expired, or if the browser does not recognize the Certificate Author-
ity that issued the certificate. These last two warnings are rather rare. Usually, it is the

96 A.M. Ali

first warning about mismatch of intended URL and actual certificate holder that users
overlook. As illustrated in figure 2, a user may think that he is communicating se-
curely with a genuine merchant S1, but in reality could have a secure TLS connection
with attacker S2, due to a redirection attack, or simply by mistyping the URL, thereby
connecting to a spoofed server.

4 Cardholder Verification

Before the Network Smart Card can transfer the user login credentials to remote serv-
ers, the user must first be authenticated to the smart card. To achieve this authentica-
tion, the user opens a web browser and connects to the web server running on the
Network Smart Card. The web server sends a login page into which the user types his
PIN. However, a conventional PIN based mechanism where the PIN is typed into a
text box opens the possibility of the PIN being compromised. This is particularly true
when using public computers that may have malware and keystroke loggers installed
on them. The challenge is to enter the PIN on such systems without compromising the
PIN.

We use a methodology whereby PIN or password based user authentication can be
achieved without compromising the PIN or password as they are entered by the user.
There are two mechanisms used, depending upon the balance of ease of use verses
security.

The simplest mechanism uses digitally scrambled numeric images at random loca-
tions, which are then clicked by the user to show knowledge of the PIN. When more
security is required, a second mechanism is added, through which the user applies a
mathematical transformation to the PIN, P, using a transformation PIN, T. This trans-
formation is keyed from a random number, R, which is displayed on the login page.
The result of this transformation is a virtual PIN, V, which is a one-time password. P
and T are secret numeric values known to the user. R is generated by the smart card
and is different for each login attempt. The combination of these three values and the
transformation logic can produce a virtual PIN, V that is different each time the user
logs in.

The transformation logic can vary in complexity depending upon the security re-
quirements or the comfort level of the user. The logic can also be designed in such a
way that the selection of a particular transformation PIN, T, can nullify the transfor-
mation effect. In this case the virtual PIN, V, is the same as the actual PIN, P.

5 Zero Footprint Authentication

Once the user has been authenticated to Network Smart Card, the smart card can act
on user’s behalf and securely send his login credentials to remote online servers. The
technique described in this paper is a zero-footprint technique; requiring no change to
either the host computer or the remote servers. It uses JavaScript and a standard web
browser on the host computer to transfer login information from Network Smart Card
to a remote unmodified server. No additional application software is required on the
host. Furthermore, since the Network Smart Card does not require any smart card

 Zero Footprint Secure Internet Authentication Using Network Smart Card 97

specific middleware or reader drivers, this approach provides an extremely portable
way of carrying the login credentials of multiple existing commercial servers on the
smart card and then logging into these servers.

Figure 3 shows a high-level overview of this approach. It is a simple design where
a browser B2 connects to the login page of the remote server S1. The user login data
is passed from the smart card N1 to the remote server S1 via browser B2. There is no
need to have the application A1 or the middleware M1 installed on the host computer.

Figure 4 provides a more detailed view of how the Network Smart Card can be
used to achieve this. All arrows indicate data flow over a secure HTTPS connection in
response to user clicks or automated script processing.

Local PC

B2 S1

 D1
 N1

Fig. 3. Auto login from smart card without A1 or M1

B2
JavaScript

B1

Network Smart Card
NSC

Remote Merchant
S1

Connect to S1
Login

1

2

3

4

5

6
7

8

9

Fig. 4. Steps for passing login data from smart card to remote server

The description of each step in Figure 4 is as follows:

1. The user opens a browser B1 and connects to the web server running on the
NSC [Network Smart Card]. One way to do this is to type the IP address of the
card in the URL bar of the browser. After entering the PIN the user is authenti-
cated to the card.

98 A.M. Ali

2. The NSC sends a page to browser B1. This page has the list of remote servers
for which the card has login credentials. Each server is represented by a pair of
HTML links; one connecting to the login URL of the remote server, and the
other back to the NSC.

3. The user clicks on one such server link, e.g. server S1. A connection is made to
the login URL of the server.

4. The login page is downloaded from server S1 into a new browser window B2.
This allows the server to write any cookies that are necessary during the login
process. The cookies are written to the host PC. In case these cookies are session
specific they are associated with the browser instance B2.

5. Instead of filling the login information in B2, the user now clicks on the corre-
sponding login link in B1. This link is the second half of the pair of server links
picked in step 3. The click sends a request back to the web server on the NSC.

6. The response from the NSC consists of an HTML form template that matches
the form used for login at server S1. Along with this form, a small JavaScript
code is sent. The form data as well as the JavaScript code are loaded in browser
instance B2. This is the same browser that previously contained the login page
from server S1. All the form elements are marked as “hidden” so they do not
show up in the browser window. Instead a message is displayed indicating that
user login information is being sent to server S1.

7. The JavaScript code is automatically launched. It uses data from the NSC to fill
the login form, and then calls the submit() action on the form.

8. The form containing user login information is sent to the URL on server S1 that
authenticates login requests.

9. Once server S1 validates the login credentials sent in step 8, the user is granted
access.

This allows the NSC to connect seamlessly to an unmodified remote server. The
two-step login procedure that requires the user to click twice (step 3 and 5), though
somewhat cumbersome, is designed to work across most common web browser and
operating system combinations. It is possible to achieve the same zero-footprint login
functionality with a single click if we restrict the browser and OS platform options.

6 Authentication Details

The procedure to authenticate a user to remote unmodified web servers uses a combi-
nation of HTML form data and JavaScript code to transfer user login credentials from
a Network Smart Card to the target server.

6.1 Simple Ideal Case

Theoretically, a user login name and password can be sent to a web server using a sim-
ple HTML form template. This form template has three elements that are of interest:

• The target URL at the authentication server to which the form data has to be
posted, e.g. https://www.serverS1.com/doLogin

• The name of the input tag corresponding to the username, e.g. userID
• The name of the input tag corresponding to the password, e.g. userPassword

 Zero Footprint Secure Internet Authentication Using Network Smart Card 99

Once these three elements are known, a form can be constructed as follows:

<form action="https://www.serverS1.com/doLogin">
<input name="userID" value="myUserID">
<input name="userPassword" value="myUserPassword">

</form>

Fig. 5. HTML Form template for sending user login data

The actual values for the userID and userPassword fields can be stored on a secure
hardware token like a Network Smart Card. These values are then read from the smart
card and placed in this form template. The form is then submitted to the URL indi-
cated in the action element. In theory this is all that is needed to login to the remote
server. In practice this approach seldom works.

6.2 The Real World

“In theory, there is no difference between theory and practice. But, in practice, there
is” [22]. The reason the simple theoretical case described in section 6.1 does not work
in the real world is the use of session cookies by merchant web servers. Servers store
cookies on the local client machines for two reasons. The first is to identify users and
keep track of their browser session at the server. The second reason is to prevent re-
peated automated login requests. Servers regard such requests as attempts by a poten-
tially malicious user to break into existing accounts on the server. Therefore, servers
reject login requests from browsers that fail to present an adequate set of cookies.

These cookies are written to user’s machine when the browser connects to the
login page of the server. The server can choose to put one or more cookies for each
login session. The cookies can also be time stamped so they cannot be used after their
predefined validity period has expired. All this is done to make sure that it is an actual
user who is trying to login, and not an automated script with malicious intentions. If
the login form is sent directly from the Network Smart Card the corresponding ses-
sion cookies will be stored on the card itself. The remote server will not recognize the
session with a web browser running on the host computer since this browser will not
have access to these cookies.

The challenge then is to make the simple ideal case scenario work in the real world
environment for transferring data from a smart card to the remote server.

6.3 The Solution

One solution is to perform the login process in two steps. This solves the disparity be-
tween the simple form submission scenario and the real world authentication envi-
ronment where commercial web servers use an extensive set of session cookie logic.
In the first step the login page from the remote server is downloaded in a browser B2.
The remote server is thus given the opportunity to write all authentication related
cookies to the local host machine. Once the cookies are written, the same browser in-
stance can be used to load and send the HTML form template of figure 5 to the server.
Now the remotes server accepts the login credentials passed by the form and the user
is granted access.

100 A.M. Ali

JavaScript can be used to automate part of this two-step login process so that the
end user can login to unmodified servers with just two clicks; one click to connect to
the login page of the server, and second click to pass the user data to the server.

6.4 A Complete Example

This section explains the details of HTML and JavaScript code that can be used to
pass login data from a smart card to a remote merchant server. Figure 4 is described
again, but with actual code examples.

Step 1: The user opens a browser B1 and connects to the IP address of the NSC [Net-
work Smart Card]. After entering the PIN the user is authenticated to the card.

Step 2: The NSC sends a services page to browser B1. This page has the list of remote
servers for which the card has login credentials. Each remote merchant server is rep-
resented by a pair of links. The HTML code for one such pair of links is shown in
Listing 1.

1 <HTML><BODY>
2 Connect to serverS1
3
4 Login
5 </BODY></HTML>

Listing 1. Pair of links to login to a merchant server S1

The key aspects of this code are:

• The link on line 2 connects to the login page of the remote merchant server S1.
• The link on line 4 connects to the corresponding page on the smart card that

has login data for the merchant server S1. Both the links have browser B2 as
their target.

Step 3: The user clicks on one such server link, e.g. server S1. A connection is made
to the login URL of the server, https://www.serverS1.com/login.

Step 4: The login page is downloaded from server S1 into a new browser window B2.
This allows the server to write any cookies that are necessary during the login proc-
ess. The cookies are written to the host PC. In case these cookies are session specific
cookies they are associated with the browser instance B2.

Step 5: Instead of filling the login information in B2, the user clicks on the login link
(line 4, Listing 1) in B1. This is the link corresponding to the server link picked in
step 3. This click sends a request (https://myNetworkSmartCard/serverS1.html) back
to the NSC web server.

Step 6: The response from the NSC is displayed in browser B2, over-writing the
login page from server S1. This response data consists of an HTML form template
that matches the form used for login at server S1. The HTML code is shown in
Listing 2.

 Zero Footprint Secure Internet Authentication Using Network Smart Card 101

1 <HTML><BODY>
2 Secured by Axalto Network Smart Card :

3 Your login credentials are being passed to server S1, please wait ...
4 <FORM method="post" name="loginForm" action="https://www.serverS1.com/doLogin">
5 <INPUT type="hidden" name="userID" value="">
6 <INPUT type="hidden" name="userPassword" value="">
7 </FORM>
8 <IFRAME SRC=serverS1Login.html name="autoLogin" ALIGN=bottom FRAMEBORDER=0>
9 </IFRAME>
10 </BODY></HTML>

Listing 2. serverS1.html file on Smart Card

The key aspects of code in Listing 2 are:

• Line 2 and 3 show a message that is displayed to the user while login data is being
sent to server S1. This is the only text visible to the user. All other data is hidden.

• Line 4 is the start of a hidden form. The action element of the form is set to the
URL at server S1 that processes login requests.

• Line 5 is the input element for userID at server S1. It is hidden.
• Line 6 is the input element for user’s password at server S1. It too is hidden.
• Line 8 creates an inline frame on the same page. The source of this page is an-

other HTML file, serverS1Login.html on the smart card. The code for this file
is shown in Listing 3. It contains the JavaScript code to fill the username and
password data and to automatically submit the form to server S1.

1 <SCRIPT LANGUAGE="JavaScript">
2 function setValue() {
3 parent.document.loginForm.userID.value = "myUserID";
4 parent.document.loginForm.userPassword.value = "myUserPassword";
5 parent.document.loginForm.submit();
6 }
7 </SCRIPT>
8 <BODY OnLoad="setValue()">
9 </BODY>

Listing 3. serverS1Login.html file on Smart Card

The key aspects of code in Listing 3 are:

• Line 3 and 4 set the values of username and password.
• Line 5 submits the form to server S1.
• Line 8 indicates that the function setValue() should be called as soon as this

frame is loaded. This allows the login data to be submitted automatically.

Step 7: The JavaScript code from serverS1Login.html is automatically launched (see
line 8 Listing 3). The confidential user data is kept on the smart card and placed in
serverS1Login.html file before it is sent to the browser B2.

Step 8: Browser B2 sends the form data containing user login information to the URL
(specified in line 4 of Listing 2) at server S1 that processes login requests.

Step 9: Once server S1 authenticates the user, user is granted access.

102 A.M. Ali

This example described the use of HTML and JavaScript code to pass user login data
to the merchant server. The key is to reuse the same browser instance B2 through
which session cookies were initially obtained. This browser reuse is possible through
the TARGET element of HREF tag. Another option is to use browser window handle.
The first link (that goes to the login page of server S1) creates a window. The handle
of this window is saved inside the JavaScript code. The second link (that goes to serv-
erS1.html on smart card) reuses this window handle.

7 Comparison

Table 1 compares the security, portability, and deployment cost of various authentica-
tion methods. The deployment cost is measured in terms of required changes on both
the client machine from which the user logs in, and the remote servers through which
the user is authenticated. As shown, the conventional smart cards require no change at
the server, but need installation of middleware application and smart card reader device
drives on the client machine. Conversely, the OTP based solutions require no change to
the client machine, but the OTP algorithm needs to be synchronized with authentica-
tion servers. In contrast, the Network Smart Card based solution proposed in this paper
requires no change at either the client or the server. It provides a two-factor authentica-
tion for passing user identity to existing commercial servers. These servers are not
necessarily aware that the identity credentials are coming from a smart card. The only
assumption implicit in this approach is that the authentication server does not change
its login URL and form template tags. If any one of these things is modified, a corre-
sponding change is required to the login scripts stored on the Network Smart Card.
Since the cost of server modification is often an impediment to achieving a stronger
authentication framework, this seamless integration with existing servers can be an at-
tractive alternative to conventional smart card or OTP token options.

Table 1. Comparison of various authentication methods

Requires Change at:
Authentication Methods Security Portability

Client Server

Manual Password Low High No No

Auto Form-fill Medium Low Yes No

OTP Token Medium High No Yes

Conventional Smart Card High Low Yes No

Network Smart Card High High No No

8 Progress

This technology was first prototyped and demonstrated as a server at Cartes 2003.
Client technology was added in 2004. A second-generation prototype that allows

 Zero Footprint Secure Internet Authentication Using Network Smart Card 103

smart card assisted login to unmodified remote online servers, was completed in
2005, and demonstrated at Cartes 2005.

9 Conclusion

This paper presented the Network Smart Card architecture and outlined its role in
breaking the restrictive mould of conventional smart cards. This new technology re-
casts smart cards as full-fledged network aware devices that can enhance the trust and
security of online authentication frameworks. Network Smart Card can be used for
passing user login credentials to remote web servers to gain access to existing site.
The user data is kept on the smart card and is sent to the remote server through a se-
cure SSL/TLS connection. This technique has advantages over other existing form-fill
software approaches. It provides a more portable way of passing login data from any
machine. The user is not restricted to the machine on which form-fill software is in-
stalled. The technique is also superior to general OTP-token based methods. It does
not require any change on the server side and can, therefore, be used seamlessly with
existing commercial servers. In addition, since URLs of legitimate merchant web sites
are also stored on the smart card, the user can be protected from potential phishing,
spoofing, and DNS poisoning attacks. Since Network Smart Card is a secure comput-
ing device supporting standard mainstream communication and security protocol
stacks, it is in a much better position to prevent such attacks than conventional smart
cards or OTP tokens.

References

[1] B. Schneier, “Secrets and Lies: Digital Security in a Networked World”, pp. 17-39,
ISBN 0-471-25311-1, Wiley Computer Publishing, 2000.

[2] Jurgensen, T.M. and Guthery, S.B., “Smart Cards”, Pearson Education, Inc., 2002.
[3] Montgomery, M., Ali, A., and Lu, K. "Implementation of a Standard Network Stack in a

Smart Card", CARDIS 2004, Toulouse, France, August 2004.
[4] ISO/IEC 7816-3:1997 “Information technology – Identification cards – Integrated cir-

cuit(s) cards with contacts – Part 3: Electronic signals and transmission protocols”.
Available from International Organization for Standards; http://www.iso.org.

[5] Rees, J., and Honeyman, P. "Webcard: a Java Card web server," Proc. IFIP CARDIS
2000, Bristol, UK, September 2000.

[6] Urien, P. “Internet Card, a smart card as a true Internet node,” Computer Communica-
tion, volume 23, issue 17, October 2000.

[7] Guthery, S., Kehr, R., and Posegga, J. “How to turn a GSM SIM into a web server,”
Proc. IFIP CARDIS 2000, Bristol, UK, September 2000.

[8] Muller, C. and Deschamps, E. “Smart cards as first-class network citizens,” 4th Gemplus
Developer Conference, Singapore, November 2002.

[9] J. Vijayan, “Low Draw for Smart Cards: Cost and interoperability problems are slowing
companies' adoption of smart card technology”. ComputerWorld, February 2004.
www.computerworld.com/printthis/2004/0,4814,89924,00.html

[10] Simpson, W. “The Point-to-Point Protocol (PPP),” RFC 1661, July 1994.

104 A.M. Ali

[11] Fielding, R., et al. “Hypertext Transfer Protocol -- HTTP/1.1” Network Working Group,
RFC 2616, June 1999. The RFC is available at: http://www.w3.org/Protocols/rfc2616/
rfc2616.html

[12] Freier, Alan O., et al. “The SSL Protocol, Version 3.0,” Internet Draft, November 18,
1996. Also see the following Netscape URL: http://wp.netscape.com/eng/ssl3/.

[13] Elgamal, et al. August 12, 1997, “Secure socket layer application program apparatus and
method.” United States Patent 5,657,390.

[14] Dierks, T., Allen, C., “The TLS Protocol, Version 1.0,” IETF Network Working Group.
RFC 2246. The RFC is available at, http://www.ietf.org/rfc/rfc2246.txt.

[15] Jesdanun, A., “Thief captures every keystroke to access accounts,” Seattle Post, July,
2003, http://seattlepi.nwsource.com/national/131961_snoop23.html.

[16] Poulsen, K., “Guilty Plea in Kinko's Keystroke Caper,” SecurityFocus, July 18, 2003.
http://www.securityfocus.com/printable/news/6447.

[17] Poulsen, K. “California reports massive data breach” SecurityFocus, October 19, 2004.
http://www.securityfocus.com/news/9758

[18] Postel, J. “Internet Protocol,” RFC 791, September 1981.
[19] Postel, J. “Transmission Control Protocol,” RFC 793, September 1981.
[20] B. Schneier, “Secrets and Lies: Digital Security in a Networked World”, pp. 167-168,

ISBN 0-471-25311-1, Wiley Computer Publishing, 2000.
[21] X.509 certificate standard from International Telecommunication Union (ITU-T). See

http://www.itu.int/ITU-T/index.html for a copy of the standard.
[22] Jan L. A. van de Snepscheut (1953-1994), Computer scientist and educator.

An Optimistic NBAC-Based Fair Exchange
Method for Arbitrary Items

Masayuki Terada, Kensaku Mori, and Sadayuki Hongo

NTT DoCoMo, Inc., 3–5 Hikari-no-oka,
Yokosuka, Kanagawa, Japan

Abstract. Fair exchange protocols are important in realizing safe elec-
tronic commerce. In particular, optimistic fair exchange protocols, which
involve a trusted third party only when mutual communication between
exchanging parties fails, are the most promising development because
of their efficiency. Unfortunately, however, existing optimistic protocols
place restrictions on the items that can be exchanged, i.e., at least one
item must be a “strongly generatable” item such as a digital signature.
Without this requirement, only weak fairness that requires (expensive)
external dispute resolution processes (e.g. trials in court) after exchange
failure can be assured. This paper proposes a novel fair exchange method
that enables parties to fairly exchange arbitrary items in an optimistic
manner. This is achieved by realizing an optimistic non-blocking atomic
commitment (NBAC) protocol between two smartcards and adapting the
known result that fair exchange can be reduced to NBAC among trusted
processes.

1 Introduction

To enable consumers and merchants to securely participate in electronic com-
merce without fear of fraud, it is essential to guarantee transaction fairness.
When buying digital content such as a movie or music, for example, the content
data must be exchanged fairly with the payment data; it must be guaranteed
that both data transfers are performed or no valuable data is transferred. Such
an exchange of data is called a “fair exchange”.

Fair exchange is not easy to achieve. To guarantee fairness, several fair
exchange protocols apply gradual data release and others involve a trusted
third-party (TTP)[1, 2, 3]. In particular, optimistic protocols[4, 5, 6] (often called
off-line TTP protocols), which involve a TTP in an exchange only when some-
thing goes wrong, appear the most promising approach of their efficiency — they
require many fewer messages than gradual protocols while greatly reducing TTP
overheads.

All existing optimistic protocols place strong restrictions on the data to be
exchanged[3]; optimistic protocols can fairly exchange items only when at least
one item is a strong generatable item, such as a digital signature (or an item
which essentially contains a digital signature, e.g. a payment) or both are elec-
tronic vouchers[7, 6]. The other exchanges, e.g. the mutual exchange of digital

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 105–118, 2006.
c© IFIP International Federation for Information Processing 2006

106 M. Terada, K. Mori, and S. Hongo

documents, cannot be performed fairly with existing optimistic protocols, and
so another (more inefficient) sort of fair exchange protocols such as online TTP
protocols must be used for these exchanges. Even if the restriction is satisfied,
an exchange may be unfair if the wrong initiator (who starts the exchange) is
selected. These limitations of optimistic protocols force users to carefully use
different protocols according to the items and situations, and thus make the
practical use of fair exchange difficult and inconvenient.

This paper proposes a novel optimistic fair exchange method that fairly ex-
changes arbitrary items in an optimistic manner with no restriction on items
being exchanged. This is achieved by realizing a smartcard-based optimistic1

non-blocking atomic commitment (NBAC) protocol that solves the NBAC prob-
lem in an optimistic manner, along with the application of the known reduction
of fair exchange to NBAC among trusted processes[8]. Since neither the protocol
nor the reduction algorithm assumes that the exchanged items have any special
property, arbitrary items can be fairly exchanged by this method.

The rest of the paper is organized as follows. Section 2 introduces the defin-
ition of fair exchange and discusses the characteristics of existing fair exchange
protocols, mainly focusing upon the restrictions placed on items by existing op-
timistic protocols. Section 3 describes the NBAC definition and the reduction
algorithm from fair exchange to NBAC, and discusses the practicality of fair
exchange based on previous NBAC protocols. Section 4 details the proposed op-
timistic NBAC protocol. Section 5 analyzes the NBAC properties of the proposed
protocol and the feasibility (and the limitations) of the fair exchange method
based on this protocol.

2 Fair Exchange

Assume that party A and B have items iA and iB, respectively, and A wants to
obtain iB from B while B wants iA. Each party has a description of the item to
be exchanged; e.g., A knows dB = desc(iB).

An exchange protocol that exchanges items iA and iB, between exchanging
parties A and B, respectively, is called a fair exchange protocol if it satisfies the
following properties when party A behaves correctly (and vice versa)[4]2.

Effectivity. If B also behaves correctly3, and both A and B do not want to
abandon the exchange, then when the protocol completed, A has iB such
that dB = desc(iB).

1 By optimistic we mean that a TTP is involved in an exchange only for exchange res-
olution. Note that this definition differs from that used in the transaction processing
literature, e.g., optimistic transactions, where the resources involved are not locked
(to improve concurrency) and any inconsistency is fixed (compensated) later.

2 In [4], another property called “non-repudiability” is also listed, but we do not
discuss this requirement in this paper since it’s not a mandatory requirement for
fair exchange protocols (as noted in [4]).

3 From A’s point of view. That is, failures in the communication channel between A
and B are subsumed in the notion of a misbehaving peer.

An Optimistic NBAC-Based Fair Exchange Method for Arbitrary Items 107

Termination. A can be sure that the protocol will be completed at a certain
point in time. At completion, the state of the exchange as of that point is
either final or any changes to the state will not degrade the level of fairness
achieved by A so far.

Fairness. When the protocol has completed, either A has iB such that dB =
desc(iB), or B has gained no additional information about iA.4

Fair exchange protocols can be classified into the following three categories:
gradual protocols, online TTP protocols, and optimistic protocols.[1, 2, 3]

In gradual protocols, each exchanging party gradually (i.e. in a “bit by bit”
manner) releases the item to be exchanged (or the “privilege” to obtain the
expected item). They can exchange items without involving any third-party,
however, there are drawbacks to practical use because the fairness achieved by
this approach is probabilistic and a lot of interactions are needed to achieve
fairness with adequate probability.

Online TTP protocols assure (deterministic) fairness by involving a TTP in
every exchange5. This approach does not require so many messages (usually less
than ten) and can assure fairness deterministically. However, involving a TTP
in every exchange incurs message congestion at the TTP when many exchanges
are concurrently performed, which degrades scalability and the availability of
systems implementing the protocol.

Optimistic protocols also utilize a TTP, but only when the mutual interaction
cannot be concluded because of a misbehaving partner or failure of the commu-
nication channel. This limited use of the TTP resolves the congestion problem
of the online TTP protocols while the number of the messages is comparable
to (mostly less than) that required by the online TTP protocols; an optimistic
protocol typically requires only four messages in errorless cases.[3, 6]

Existing optimistic protocols do, unfortunately, place restrictions on the
items to be exchanged and thus cannot fairly exchange arbitrary items; at least
one of the items (the item to be received by the initiator of a protocol, actually)
must be strongly generatable6[10, 3]. Strong generatability means that a TTP
can always generate the item (or its substitution) when the TTP is invoked to
conclude the protocol.

A digital signature is a strongly generatable item since a TTP can gener-
ate a substitutive signature that has the same effect as the original signature,
provided that the exchanging parties agree upon the substitution in advance
(namely “the replacement token” method[4]). Electronic vouchers (or electronic
rights)[7, 11] can also be assumed to be strongly generatable, but they require

4 This definition is often called strong fairness to distinguish from weak fairness which
is discussed later.

5 Protocols wherein the TTP mediates messages are often classified into another cat-
egory namely “inline TTP protocols”[1, 2].

6 An optimistic protocol that doesn’t require strong generatability but requires a prop-
erty called “strong revocability” has been proposed[9], but this property is also a
strong assumption and only limited items such as closed-loop electronic money are
supported.

108 M. Terada, K. Mori, and S. Hongo

an exclusive protocol[6] to be fairly exchanged mainly because of the need to
prevent duplication of vouchers.

Strong generatability, unfortunately, is not possessed by the many other
items, such as digital content and digital documents, exchanged in daily life.
Existing optimistic protocols can guarantee fairness when applied to implement
contract signing, the mutually exchange of two digital signatures, certified mail,
the exchange of a document and its (signed) receipt, and voucher trading, the
mutual exchange of two electronic vouchers, however, they guarantee only the
weaker notion of fairness called weak fairness7 in other exchanges such as mutual
exchange of messages.[3]

Weak fairness requires an external dispute resolution process (e.g. trial in
court) if one party wants to recover from some disadvantage. Considering the
effort and cost imposed by such a process, weak fairness should be avoided as
much as possible.

3 Reducing Fair Exchange to NBAC

Apart from developing dedicated protocols to solve the fair exchange problem,
several researchers are focusing on the similarity between the notion of fair ex-
change and the problems in distributed computing, e.g., consensus and (non-
blocking) atomic commitment, and have analyzed the relationship among these
problems[8, 12]. In particular, [8] showed that fair exchange is reducible to NBAC
among trusted processes; i.e., the fair exchange problem can be solved if the
NBAC problem among processes on smartcards is solved. Since there is no spe-
cial assumption (such as item generatability) on the items exchanged, a fair
exchange achieved by this approach can exchange arbitrary items.

This section introduces the definition of NBAC and the reduction algorithm
from fair exchange to NBAC proposed in [8], as well as discussing the practicality
of existing NBAC protocols when applied to fair exchange.

3.1 Definition of NBAC

Assume a set of independent processes, each of which has an initial proposed
value, yes or no, and try to reach a unanimous decision, commit or abort. A proto-
col between these processes solves NBAC if it satisfies the following properties8.

Termination. Every correct process eventually reaches a decision.
Agreement. No two processes decide differently.
Commit-Validity (C-Validity). If all processes propose yes and there is no

failure, then the decision value must be commit.
Abort-Validity (A-Validity). If at least one process proposes no, then the

decision value must be abort.
7 Weak fairness is defined as “if (strong) fairness is not satisfied, then A can prove to an

arbiter (a TTP) that B has received (or can still receive) iA such that desc(iA) = dA,
without any further intervention from A.”[4]

8 C-Validity and A-Validity are often called “non-triviality” and “uniform-validity”,
respectively.

An Optimistic NBAC-Based Fair Exchange Method for Arbitrary Items 109

3.2 Reducing Fair Exchange to NBAC Using Smartcards

The following briefly describes how the fair exchange problem can be solved by
NBAC (with help of smartcards).

Assume a system that consists of a set of processes interconnected by a com-
munication network with bidirectional synchronous9 channels. The processes are
divided into two classes, untrusted processes and trusted processes. The trusted
processes are assumed to behave correctly (the untrusted processes are not).
Each untrusted process is associated with a trusted process, and vice versa. The
paired untrusted and trusted processes are adjacent; they are directly connected
by a communication channel. Any two untrusted processes are adjacent, while
no two trusted processes can be adjacent. This system model can be considered
to represent the configuration in which hosts (e.g. PCs and mobile phones) are
connected to a network and smartcards are connected to hosts (e.g. a smartcard
connected to a PC by a card R/W and a SIM card on a mobile phone).

In this system setting, NBAC among the trusted processes solves fair ex-
change among the untrusted processes by the algorithm described below:

FairExchange(item i, description d) {
〈send i to exchange partners over secure channel〉
timed wait for 〈expected item ie from exchange partners〉

〈check d on ie〉
if (check succeeds and no timeout)

then vote := yes else vote := no endif
result := NBAC(vote)
if (result = commit)

then return ie else return 〈abort〉 endif
}

The proof that the above algorithm realizes fair exchange is described in [8]10.

3.3 Problems in NBAC-Based Approach

Although fair exchange can be (rather easily) resolved by applying NBAC as
described above, the NBAC problem itself is known as a hard problem[13]. Ex-
isting NBAC protocols mostly focus much on multi-party settings, and so fail to
match the efficiency of the optimistic protocols introduced in Sect. 2 when used
to solve the fair exchange problem.

The well-known two-phase commit (2PC) algorithm that solves the atomic
commitment problem (equivalent to NBAC without Termination) cannot solve

9 While synchronity of channels is assumed in this section as to [8], we will relax this
assumption in Sect. 4.

10 To be accurate, [8] uses a different approach to defining the fair exchange problem
(mostly same as the definition in [3]) from the definition described in Sect. 2 (follows
the definition in [4], which is more rigorous), but they are basically equivalent in the
two-party setting.

110 M. Terada, K. Mori, and S. Hongo

NBAC, since a crash of the coordinator process that gathers votes and distrib-
utes a decision may block termination. 2PC can avoid blocking (thus assuring
termination) given a resilient coordinator and synchronous channels between the
coordinator and other processes; these assumptions might not be infeasible since
most TTP-based fair exchange protocols also make similar assumptions (i.e.,
the TTP are assumed to be eventually reachable from every exchanging party),
however, since 2PC requires the coordinator to interact with all processes in
every protocol run, the congestion problem is raised as in the online TTP fair
exchange protocols.

The three-phase commit (3PC) algorithm, which introduces another phase to
elect a coordinator (pre-commit phase), is known to solve NBAC in synchronous
systems without assuming a reliable process[14]. However, 3PC is also known
as a complicated algorithm that is rarely implemented[15] and introducing an
additional phase to 2PC inevitably makes 3PC less efficient than 2PC.

The Monte-Carlo NBAC algorithm[8] solves a weaker variant of NBAC,
wherein the Agreement property is satisfied with some probability p (0 < p < 1).
This algorithm doesn’t involve a coordinator and thus avoids the congestion
problem, but probabilistic Agreement implies that achievable fairness is also
probabilistic; a large number of interactions are needed to achieve fairness with
adequate probability, alike the gradual fair exchange protocols.

4 Optimistic NBAC Protocol

As mentioned in Sect. 3, fair exchange based on NBAC among trusted processes
doesn’t require any special assumptions on the exchanged items. If NBAC can
be performed in an optimistic manner, it would be possible to realize optimistic
fair exchange that can exchange arbitrary items. This is the key point of our
approach.

In this section, we propose an optimistic NBAC protocol between two smart-
cards. Similar to optimistic fair exchange protocols, this protocol runs in an
optimistic manner, i.e., a TTP is involved only when something goes wrong,
but solves NBAC rather than fair exchange. This protocol requires only three
messages to be passed between the participating smartcards to solve NBAC in
errorless cases; this is comparable to existing optimistic protocols, most of which
require four messages.

4.1 System Model

The system model assumed by this protocol is similar to the system described
in Sect. 3.2, except for the following:

– the number of parties (the number of associated pairs) is two,
– a TTP process, which is a reliable trusted process adjacent to each untrusted

process is added to the system, and
– untrusted processes are connected by an asynchronous channel instead of a

synchronous channel.

An Optimistic NBAC-Based Fair Exchange Method for Arbitrary Items 111

The first and second differences are introduced as we consider optimistic
exchanges between two parties here. The last difference relaxes the network
assumption; because communication channels among hosts pass across a widely-
distributed network such as the Internet and mobile phone networks, it is difficult
to assume that all communication is synchronous11.

The channels between each associated pair, i.e., between an untrusted process
and a trusted process, stay synchronous as well as those between the TTP and
untrusted hosts.

The feasibility of these system assumptions are discussed in Sect. 5.2.

4.2 Protocol

Assume trusted processes A and B (on smartcards), which communicate with
each other through associated untrusted processes. Both A and B have their own
signing key, kept secret from any other party, and the corresponding public key
certificate. voteA is the input vote value of A and voteB is that of B. resultA
and resultB are similar. H() is a collision-resistant one-way hash function (such
as SHA1), SigX(m) is m and a digital signature by X ’s signing key, and CertX
is X ’s public key certificate corresponding to X ’s signing key.

The mutual communication part of this protocol (namely the main proto-
col) is performed as follows. The abort subprotocol and the resolve subprotocol
invoked from this protocol are described later.

1. A generates random number r and calculates s := H(r).
2. A → B: m1 := {SigA(s, voteA), CertA}. If voteA = no, A terminates the

protocol with the output resultA := abort after sending m1.
3. B verifies the signature of m1. If this fails, B waits m1 again. If the verification

succeeds and voteA = yes, B proceeds to the next step. If voteA = no or
the reception of (correct) m1 timeouts, B terminates the protocol with the
output resultB := abort.

4. B → A: m2 := {SigB(s, voteB), CertB}.
5. A verifies the signature of m2. If this fails, A waits m2 again. If the verifica-

tion succeeds and voteB = yes, A proceeds to the next step. If voteB = no,
A terminates the protocol with the output resultA := abort. When the re-
ception of m2 timeouts, A abandons this protocol (i.e. ignores m2 even if
received later) and invokes the abort subprotocol.

6. A → B: m3 := r. After sending m3, A terminates the protocol with the
output resultA := commit.

7. Using s in m1 and r in m3, B verifies if s = H(r). If this fails, B waits
m3 again. If the verification succeeds, B terminates the protocol with the
output resultB := commit. When the reception of m3 timeouts, B invokes
the resolve subprotocol.

11 This relaxation does not affect the reducibility from fair exchange to NBAC of the
algorithm described in Sect. 3.2, since (besides the NBAC execution) this algorithm
use the channels among untrusted processes only to receive item ie and timing out
the reception of ie.

112 M. Terada, K. Mori, and S. Hongo

Since the abort subprotocol and the resolve subprotocol are performed in the
almost same way, we describe them together. In the following description of the
subprotocol(s), P is either A or B that invoked the protocol and flag is a flag that
indicates which protocol is being performed; i.e., let P := A and flag := abort
when performing the abort subprotocol, while P := B and flag := commit with
the resolve subprotocol.

T is the TTP, which has its own signing key and corresponding certificate
CertT. T manages two sets Sabort and Scommit, whose initial states are Sabort =
Scommit = {φ}.

The abort and resolve subprotocols are performed as follows.

1. P → T: mt1 := {SigP (flag, s), CertP }.
2. T receives mt1 and executes the followings:

(a) verifies the signature of mt1, and waits mt1 again if the verification failed,
and

(b) arbitrates whether this protocol should be aborted or committed:
– if s ∈ Sabort, then let resultT := abort,
– if s ∈ Scommit, then let resultT := commit, or
– if neither, then let Sflag := Sflag∪s (i.e. add s to Sabort when aborting

(or Scommit when resolving)) and resultT := flag.
3. T → P : mt2 := {SigT(resultT, s), CertT}.
4. P verifies the signature of mt2. If this fails, then P waits mt2 again. If it

succeeds, P terminates the protocol with the output resultP := resultT.

5 Discussions

5.1 Analysis of NBAC Properties

We discuss below how the protocol proposed in Sect. 4.2 satisfies the NBAC
properties in Sect. 3.1. In the following analysis, we assume r has enough length
and randomness that the possibility of r being predicted before A reveals m3 is
negligible.

Termination Property. When there is no failure in the communication chan-
nels and either party is honest (the associated untrusted process that forward the
messages to the other behaves correctly), both A and B can obviously terminate
the protocol with a decision in the main protocol12.

We then discuss the situation in which either process, A or B, can terminate
if the execution of the protocol is interupted by failures in the communication
channels or a misbehaving partner.

The execution of process A may be interrupted only by the non-arrival of
correct m2. In this case, A timeouts and can determine resultA by invoking the
abort subprotocol.
12 Since the TTP is not involved in the main protocol, this also confirms that this

protocol is an optimistic protocol.

An Optimistic NBAC-Based Fair Exchange Method for Arbitrary Items 113

The execution of B may be interrupted by the non-arrival of correct m1 or
m3. When m1 doesn’t arrive, B can terminate the protocol with resultB := abort
in step 3 of the main protocol. In case m3 doesn’t arrive, B timeouts and can
determine resultB by invoking the resolve subprotocol.

Hence, either A or B can terminate the protocol and issue result, and the
Termination property is satisfied.

Agreement Property. First, we show that (resultA = commit) ⇒ (resultB =
commit).

Process A may terminate the protocol with resultA = commit iff it suc-
cessfully executes step 6 (and terminates) in the main protocol or the TTP
arbitrates that the protocol should conclude by commit (i.e. sends mt2 where
resultT = commit to A) in the abort subprotocol.

When assuming that A successfully executed step 6 in the main protocol, B
must terminate the protocol with resultB = commit by receiving m3, or invoke
the resolve subprotocol by timeout of m3, in step 7 of the main protocol. The
agreement is obviously reached in the former case. In the latter case, since A is
assumed to have successfully executed step 6 in the main protocol, A must not
have invoked the abort subprotocol; the resolve subprotocol inevitably concludes
with resultB = commit.

If A terminates the protocol by receiving resultT = commit in the abort
subprotocol, T must have received mt1 from B in the resolve subprotocol before
receiving it from A in the abort subprotocol. In this case, the resolve subprotocol
must have concluded (or will conclude) with resultB = commit.

Next, we show the converse, (resultB = commit) ⇒ (resultA = commit).
Process B may terminate the protocol with resultB = commit iff it success-

fully received m3 in step 7 of the main protocol, or it received resultT = commit
in the resolve subprotocol. In the former case, A must have successfully executed
step 6 in the main protocol and terminated with resultA = commit. In the latter
case, mt1 of the abort subprotocol by A must not have arrived at T yet; A has
terminated in step 6 in the main protocol, or mt1 from A will arrive at T later.
In either case, A terminates with resultA = commit.

As a corollary of the above results,

(resultA = commit) ⇔ (resultB = commit). (1)

Since each process decides either commit or abort, ¬(resultX = commit) ⇒
(resultX = abort), and therefore,

(resultA = abort) ⇔ (resultB = abort). (2)

Hence, A and B do not decide differently, and the Agreement property is
satisfied.

C-Validity Property. If (voteA = yes) ∩ (voteB = yes) and there is no failure,
then process A terminates with resultA = commit in step 6 in the main protocol
and B terminates with resultB = commit in step 7.

The C-Validity property is satisfied therefore.

114 M. Terada, K. Mori, and S. Hongo

A-Validity Property. If voteA = no, then process A terminates with
resultA := abort in step 2 in the main protocol. Similarly, B terminates with
resultB := abort in step 3 if voteB = no. In either case, resultA = resultB =
abort according to Eq. (2).

The A-Validity property is satisfied.

5.2 Feasibility

In the following, we show that this exchange method based on the optimistic
NBAC protocol proposed in Sect. 4.2 and the reduction algorithm introduced in
Sect. 3.2 can be feasibly implemented under the system assumptions described
in Sect. 4.1.

Implementation of the Processes. Besides communication channels, the
system consists of associated pairs of an untrusted process and a trusted process,
and a trusted third-party (TTP) process. Each exchange party is assumed to be
represented by an associated pair.

An untrusted process is easily implemented on a host connected to a network
(e.g. a personal computer and a mobile phone). It is not assumed to be reliable
and there are no difficulties to implementing it; what it has to do are to input the
item to be sent and a description of the item to be received into the associated
trusted process, and to forward the messages among trusted processes.

A trusted process (associated with an untrusted process) is required to be
implemented on a tamper-resistant user device such as a smartcard connected
to a host through a card reader/writer (card R/W) or embedded in a host (like
a SIM card in a mobile phone). If not, an exchange becomes completely un-
fair because a party can obtain the received item regardless of the result of
the NBAC run in the reduction algorithm; tamper-resistance is an essential re-
quirement in applying this method. Assuming such a trusted device might be
not so impractical nowadays considering the rapid penetration of smartcards;
e.g., most GSM phones and 3G mobile phones have (U)SIM cards. However, re-
garding implementation on a smartcard, the performance bottlenecks associated
with smartcards should be carefully considered. Performance estimation of the
smartcard implementation is discussed later.

The TTP process will be implemented as a server connected to a network.
This server should be managed by a trusted third-party. This server is involved
in an exchange when either of the exchanging parties invokes an abort or resolve
subprotocol. Since the protocol is optimistic, these invocations are performed
only when something goes wrong in mutual interactions between exchanging
parties; when many exchanges are conducted concurrently, the TTP server is
involved in a part of them. Under the assumption that failures that need arbi-
tration by the TTP are rare, this system will avoid congestion of messages on
the TTP and be scalable, like existing optimistic fair exchange protocols.

Implementation of the Channels. As described in Sect. 4.1, we assume
a system where the channels between untrusted processes are asynchronous

An Optimistic NBAC-Based Fair Exchange Method for Arbitrary Items 115

and the other channels (the channels between an associated pair and those
between the TTP and untrusted processes) are synchronous. When consider-
ing to apply the system to exchanges in electronic commerce, the system should
be able to be implemented in a widely-distributed and unreliable network such
as the Internet and mobile phone networks.

Asynchronous channels between untrusted processes obviously can be imple-
mented in such networks. Since both processes in an associated pair are managed
by an exchanging party, the synchronous communication channel between them
is mostly local and should be easily implemented; although a user can block
interactions between them, e.g., by removing the smartcard from the card R/W,
we can treat this as misbehavior of the untrusted process (on the host).

The channels between the TTP process and each untrusted process might
not be local; hosts are most likely to communicate with the TTP server through
a network. However, different from communicating with another host, which
may be unsure where it is and who manages it, the TTP can be expected to
be connected to the network continuously. Although the communication channel
can be (permanently) lost if the host is disconnected from the network by its user,
we can also treat this as misbehavior of an untrusted process. This assumption
is, accordingly, also feasible.

Performance. The possible bottlenecks of a smartcard implementation are the
I/O performance, the processing speed (especially cryptographic calculation)
and the number of write operations to non-volatile memory (write operations
to EEPROM are much slower than those to RAM). Since no persistent store of
data into a smartcard is needed in the proposed exchange, we focus on the I/O
interactions and the cryptographic processes.

The proposed NBAC protocol can terminate with unanimous decisions by
exchanging three messages between trusted processes in errorless cases (i.e. in
the main protocol). In this protocol, the required cryptographic calculations in
each trusted process, i.e. each smartcard, are a pair of signature generation and
verification (using the corresponding certificate) and a single hash calculation.
When something goes wrong in the mutual interaction, an additional round-
trip message exchange, which involves another pair of signature generation and
verification, with a TTP may be required. This load does not exceed that of
existing optimistic protocols, so this protocol can be considered to be practical
for implementation on current smartcards.

An optimistic fair exchange protocol for electronic vouchers, which is slightly
more complex than the proposed protocol (requires four messages and almost
the same cryptographic calculations), performs an exchange in less than two
seconds when implemented on mid-range smartcards.[16] This implies that the
proposed NBAC protocol can be performed in the same or less time.

On the other hand, the reduction algorithm seems to need some performance
improvement for applications that exchange huge data. This algorithm requires
trusted processes to send and receive the whole items to be exchanged. However,
since the I/O performance of the current smartcards is not so high (approxi-
mately 10kbps ∼ 400kbps), it might be infeasible to exchange a large amount of

116 M. Terada, K. Mori, and S. Hongo

data, such as digital content. Some measure, e.g., exchanging encrypted items
in advance and exchanging the description keys fairly, could be introduced to
exchange large items, but it may make the item verification (i.e. checking the
description of the expected item on the received item) difficult. This could be
an open problem.

5.3 Limitation

Although the proposed NBAC protocol and fair exchange method is more ef-
ficient than existing NBAC protocols and fair exchange protocols that can ex-
change arbitrary items (i.e., gradual and online TTP protocols), respectively, it
cannot replace either protocols in general; it lacks applicability to multi-party
settings and relies upon trusted devices and a TTP.

Since most exchanges are conducted by two parties, e.g., trades in commerce,
the support for two-party setting should be attractive enough to stimulate the
frequency of fair exchange. However, distributed transactions often need consis-
tency in three or more (independently managed) resources. This protocol cannot
be applied to guarantee atomic commit in such transactions. Secure multi-party
computation, which often requires fairness, is another example. These applica-
tions will need another protocol to assure consistency or fairness.

Relying upon trusted devices and a TTP should not spoil the feasibility as
discussed in Sect. 5.2, however, there may be environments where assuming them
is difficult. Our method cannot be adopted in such environments.

5.4 Comparison to Existing Smartcard-Based Exchange Protocols

Several protocols have been proposed for fair exchange via smartcards.
One of them is a reduction from fair exchange to a weaker variant of NBAC

(Monte-Carlo NBAC)[8], mentioned in Sect. 3. As described before, this has sim-
ilar characteristic to gradual exchange protocols and shares the same problems
(probabilistic fairness and high interaction costs).

A similar approach based on (a variant of) the consensus problem (named
Biased Consensus) among trusted processes is introduced in [12]. This achieves
deterministic fair exchange if a majority of the untrusted processes are honest
(behave correctly), but fairness becomes probabilistic if half or more processes
are dishonest; in two-party exchanges, which will be the most common setting,
a misbehaved partner is enough to lose the honest majority and thus only prob-
abilistic fairness can be assured.

In [17, 18], several protocols that use a smartcard to achieve optimistic fair
exchange between two parties are introduced. These protocols exchange items
between a party called vendor and another party customer, who uses a smartcard
(the vendor does not use a smartcard). One of the protocols, called the basic
protocol, can exchange arbitrary items13; it does not assume generatability or
revocability on either item. However, these protocols have a drawback in that
13 The other protocols require one of the items (from the customer to the vendor) to

be strongly revocable.

An Optimistic NBAC-Based Fair Exchange Method for Arbitrary Items 117

the Termination property (of fair exchange) is not assured to the vendor; the
vendor is not assured to be able to know if its item is sold or not.

Another smartcard-based optimistic fair exchange protocol is proposed in [6].
This protocol fairly exchanges electronic vouchers stored in smartcards as well as
preventing illegal acts on the vouchers (forgery, alteration, and duplication). This
protocol can be applied only to the exchange of particular items, i.e., vouchers
stored in smartcards, as it is14.

6 Conclusion

In this paper, we argued that existing optimistic protocols place an excessive
restriction on exchanged items, i.e., at least one of the item has to be a strongly
generatable item such as a digital signature. To circumvent this restriction, we fo-
cused on NBAC-based fair exchange using smartcards, which is based on NBAC
between trusted processes, and proposed a novel NBAC protocol that can be
performed between smartcards in an optimistic manner. The NBAC properties
and feasibility of the protocol were also discussed; the proposed protocol satis-
fies all of the NBAC requirements and can be efficiently implemented on current
smartcards.

NBAC does not only realize fair exchange but is also useful for diverse trans-
actions in electronic commerce. Considering the popularity of mobile phones
equipped with smartcards and the rapid improvement of smartcard process
technologies, this protocol may broadly contribute to realize safe and secure
electronic commerce.

References

1. Zhou, J., ed.: Non-repudiation in electronic commerce. Artech House, Norwood,
MA, USA (2001)

2. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation
protocols. Computer Communications 25 (2002) 1606–1621

3. Pagnia, H., Vogt, H., C.Gärtner, F.: Fair exchange. The Computer Journal 46
(2003) 55–75

4. Asokan, N.: Fairness in Electronic Commerce. PhD thesis, University of Waterloo
(1998)

5. Schunter, M.: Optimistic Fair Exchange. PhD thesis, Universität des Saarlandes
(2000)

14 However, interestingly, its use of a different notion of fairness to prevent duplication
of vouchers assures that if one party successfully terminates (i.e. commit) an ex-
change, then the other party never aborts the exchange; this implies the Agreement
property of NBAC, while the (original) fairness property doesn’t (a misbehaved party
can abort if the other party successfully commits). Actually, NBAC is reducible to
fair voucher exchange (cf. fair exchange is reducible to NBAC, but not vice versa)
and the proposed NBAC protocol can also be considered as a generalization of the
voucher exchange protocol.

118 M. Terada, K. Mori, and S. Hongo

6. Terada, M., Iguchi, M., Hanadate, M., Fujimura, K.: An optimistic fair exchange
protocol for trading electronic rights. In: Proc. 6th Working Conference on Smart
Card Research and Advanced Applications (CARDIS’04), IFIP (2004) 255–270

7. Fujimura, K., Eastlake, D.: RFC 3506: Requirements and Design for Voucher
Trading System (VTS). (2003)

8. Avoine, G., Gärtner, F., Guerraoui, R., Kursawe, K., Vaudenay, S., Vukolic, M.:
Reducing fair exchange to atomic commit. Technical Report 200411, Swiss Federal
Institute of Technology (EPFL), School of Computer and Communication Sciences,
Lausanne, Switzerland (2004)

9. Vogt, H.: Asynchronous optimistic fair exchange based on revocable items. In:
Proc. 7th International Financial Cryptography Conference, IFCA (2003) 208–222

10. Vogt, H., Pagnia, H., Gärtner, F.C.: Modular fair exchange protocols for electronic
commerce. In: Proc. 15th Annual Computer Security Applications Conference.
(1999) 3–11

11. Terada, M., Kuno, H., Hanadate, M., Fujimura, K.: Copy prevention scheme for
rights trading infrastructure. In: Proc. 4th Working Conference on Smart Card
Research and Advanced Applications (CARDIS’00), IFIP (2000) 51–70

12. Avoine, G., Gärtner, F., Guerraoui, R., Vukolic, M.: Gracefully degrading fair
exchange with security modules. In: Proc. 5th European Dependable Computing
Conference (EDCC). (2005) 55–71

13. Guerraoui, R.: Revisiting the relationship between non-blocking atomic commit-
ment and consensus. In: Proc. 9th International Workshop on Distributed Algo-
rithms (WDAG95). (1995) 87–100

14. Skeen, D.: Nonblocking commit protocols. In: Proc. 1981 ACM SIGMOD Inter-
national Conference on Management of Data. (1981) 133–142

15. Gray, J., Lamport, L.: Consensus on transaction commit. Technical Report MSR-
TR-2003-96, Microsoft Research (2004)

16. Terada, M., Mori, K., Ishii, K., Hongo, S., Usaka, T., Koshizuka, N., Sakamura,
K.: TENeT: A framework for distributed smartcards. In: Proc. 2nd International
Conference on Security in Pervasive computing (SPC2005). Volume 3450 of LNCS.,
Springer-Verlag (2005) 3–17

17. Vogt, H., Pagnia, H., Gärtner, F.C.: Using smart cards for fair exchange. In: Proc.
2nd International Workshop on Electronic Commerce (WELCOM 2001). (2001)
101–113

18. Vogt, H., Gärtner, F.C., Pagnia, H.: Supporting fair exchange in mobile environ-
ments. ACM/Kluwer Journal on Mobile Network and Applications (MONET) 8
(2003) 127–136

Generic Cryptanalysis of Combined
Countermeasures with Randomized BSD

Representations

Tae Hyun Kim1, Dong-Guk Han2, Katsuyuki Okeya3, and Jongin Lim1

1 Center for Information and Security Technologies(CIST),
Korea University, Seoul, Korea

{thkim, jilim}@cist.korea.ac.kr
2 Future University-Hakodate, 116-2 Kamedanakano-cho, Hakodate,

Hokkaido, 041-8655, Japan
christa@fun.ac.jp

3 Hitachi, Ltd., Systems Development Laboratory,
1099, Ohzenji, Asao-ku, Kawasaki 215-0013, Japan

ka-okeya@sdl.hitachi.co.jp

Abstract. In ICICS’04, Sim et al. proposed an attack against the full
version of Ha-Moon’s countermeasure which is one of enhanced counter-
measures. The analysis technique is based on the fact that the probability
for the appearance of an intermediate value is p = 1/2. By our simula-
tions, however, it is proven to be not true. Thus sometimes the output
of their attack might be wrong because there exists the case that the
probability p is so small that they can make a wrong decision.

In this paper we repair the above attack, and then propose a generic
analytical technique applicable to all BSD type countermeasures com-
bined with some simple power analysis countermeasures. In order to
show that the proposed attack is as practical as the usual differential
power analysis (DPA), we estimate the number of samples and compu-
tational cost. Furthermore, we enhance the proposed attack in two ways
such that it works against right-to-left algorithm in a simpler and more
efficient way, and also works against one combined with an extra DPA
countermeasure.

Keywords: Elliptic Curve Cryptosystems, Side Channel Attack, Dif-
ferential Power Analysis, Refined Power Analysis, Binary Signed Digit
(BSD) Representation.

1 Introduction

Mobile devices such as smart cards, mobile phones, and handheld computers
are penetrating in our daily life in order for us to be convenient. Since mobile
devices are equipped with scarce resources only, cryptographic algorithms on
them should be optimized. Above all, elliptic curve cryptosystems (ECC) [13, 17]
are suitable for implementing on such devices because of the reduced key size

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 119–134, 2006.
c© IFIP International Federation for Information Processing 2006

120 T.H. Kim et al.

required in comparison to other cryptosystems (e.g. a 160-bit ECC has almost
the same security as a 1024-bit RSA).

On the other hand, side channel attacks (SCA) have been recognized as
menaces to ECC. In SCA, an attacker observes side channel information such as
computation timing, power consumption, and electro-magnetic radiation while
a cryptographic device performs cryptographic operations, then analyzes the in-
formation for revealing the secret stored in the device [12]. Thus constructing an
efficient scalar multiplication method which is secure against SCA and analyzing
its security are important research topics [3, 10, 26].

For this purpose, many countermeasures against SCA have been proposed. In
particular, a popular type of countermeasures is based on inserting random deci-
sions when choosing one representation among several different representations
for the same secret scalar. For instance, it includes Oswald-Aigner countermea-
sure [20], Ha-Moon countermeasure [8], Ebeid-Hasan countermeasure [5], and the
countermeasure of Agagliate et al. [1], which are based on randomized Binary
Signed Digit (BSD) representations. Moreover, this type of countermeasures on
ECC provides us with good performance/efficiency. We call countermeasures
using BSD representations BSD type countermeasure1.

Whereas many BSD type countermeasures were proposed, most of them have
been broken by many sophisticated simple power analysis (SPA) if we use them
as a single countermeasure against SCA [23, 14, 21, 9, 25].

A possible approach to resist the sophisticated SPAs is to combine BSD type
countermeasures with an SPA countermeasure using a fixed procedure such as
Coron’s dummy method [4] or Montgomery ladder methods [19, 22]. An example
of BSD type combined with an SPA countermeasure is the full version of Ha-
Moon’s method [8] composed of a random recoding method and an SPA-immune
algorithm using dummy operations. Unfortunately, the full version of Ha-Moon’s
method has been analyzed by two different methods [6, 24]. The attacks utilize
a characteristic of BSD representations generated by a specific random recoding
method. Thus, the attacks are ad-hoc in the sense that it is tailored specifically
to Ha-Moon’s countermeasure. If the target countermeasure is changed from Ha-
Moon’s countermeasure then the characteristic is also changed. Thus, it is not
clear whether the attacks can be applicable to the other BSD type countermea-
sures or not.

1.1 Contributions of This Paper

The proposed attack can break the combined countermeasures without knowl-
edge for the appearance probability of an intermediate point in advance, i.e., it
is independent of a random recoding method. Therefore, the proposed attack is
applicable to not only Ha-Moon’s countermeasure but also all BSD type coun-
termeasures under reasonable assumptions. Moreover, to reduce the unwanted

1 The BSD representations use the set of digits {−1, 0, 1}. Thus, in this paper, we do
not deal with countermeasures based on window methods using randomized addition
chains.

Generic Cryptanalysis of Combined Countermeasures 121

noise in power signals, we use a model of the signal-to-noise ratio (SNR) for
“Zero Exponent Multiple Data” (ZEMD) [15]. In this model, the role of the
number of samples used in the ZEMD attack is very important. In this paper,
we show how many number of samples are required to obtain the same height
of peaks as the ordinary ZEMD attack on unprotected algorithms. From our
simulations, we deduce that the proposed attack is as practical as the ordinary
ZEMD attack.

In this paper, we propose analysis techniques against the following three
targets.

Target 1. The BSD type countermeasures combined with an SPA countermea-
sure using a fixed procedure such as Coron’s dummy method [4] or Mont-
gomery ladder methods [19, 22]. An example of SPA countermeasure is the
following Addition-Subtraction Always method.

Addition-Subtraction Always method
INPUT A point P , and k =

�n−1
j=0 kj2j , kj ∈ {0, 1}

d =
�n

j=0 dj2j , dj ∈ {−1, 0, 1}, where d is a recoded number of k

OUTPUT Q = dP

1. Q[0] ← O, R[0] ← P , R[1] ← P , R[2] ← −P
2. for j = n downto 0
2.1. Q[0] ←ECDBL(Q[0])
2.2. Q[1] ←ECADD(Q[0], R[1 − dj])
2.3. Q[0] ← Q[|dj |]

3. Return Q[0]

Target 2. The BSD type countermeasures combined with a DPA countermea-
sure using randomized point representation methods such as Coron’s third
method called randomized projective coordinates [4] and random isomor-
phism methods [11].

Target 3. The BSD type countermeasures using right-to-left computations.

This paper is organized as follows. In the next section, we introduce some
tools for power analysis. In Section 3 we propose a generic attack against Target
1 and show simulation results. In Section 4, we enhance the proposed attack in
two ways: against Target 2 and Target 3. In Section 5 we show a comparison of
attacks against BSD type countermeasures. Finally, we conclude in Section 6.

2 Tools for Power Analysis

To construct an attack against BSD type combined with an SPA countermeasure,
we introduce two concepts; discernment point and signal-to-noise ratio.

2.1 Discernment Point in ZEMD Attack

In this subsection, we introduce the concept of discernment point. A ZEMD
attack utilizes a correlation between power consumption and any specific key-
dependent bits. In view of ZEMD attack, the three following assumptions sup-
port the success of ZEMD attack.

122 T.H. Kim et al.

(i) A point that its appearance in the middle of computing provides the at-
tacker with information of (a portion of) the secret key exists. Such a point
is referred to as discernment point.

(ii) A coordinate of the discernment point is computable or predictable with
purposive probability for the attacker.

(iii) The attacker can discern whether the discernment point appears or not
using side channel information.

The attacker succeeds in ZEMD attack under the three assumptions.

(1) The attacker classifies input points into two classes depending on the coor-
dinate of the discernment point. ((i) provides the existence of a discernment
point, and (ii) provides the attacker’s capability of classifying.)

(2) The attacker collects side channel information, and discerns whether the
discernment point appears or not. ((iii) provides the attacker’s capability of
discerning.)

(3) The attacker reveals a portion of the secret key using the (dis)appearance of
the discernment point. ((i) provides the attacker’s capability of revealing.)

Now, we simply describe a ZEMD attack against SPA-protected Double-
Add Always method by using the above concept of the discernment point.

Double-Add Always method
INPUT A point P , and k =

∑n−1
j=0 kj2j , kj ∈ {0, 1}

OUTPUT Q = kP
1. Q[0] ← P
2. for j = n − 2 downto 0
2.1. Q[0] ←ECDBL(Q[0])
2.2. Q[1] ←ECADD(Q[0], P)
2.3. Q[0] ← Q[ki]

3. Return Q[0]

An intermediate point which is actually calculated at the step 2.1 after j = i
bit (ki) calculation in Double-Add Always method is as follows;

– (
n−1�

j=i+1
kj2j−i+1) · P if ki = 0, and (

n−1�

j=i+1
kj2j−i+1 + 2) · P, if ki = 1.

Thus the discernment point used in the ZEMD attack on Double-Add Always
method can be one of (

∑n−1
j=i+1 kj2j−i+1) · P and (

∑n−1
j=i+1 kj2j−i+1 + 2) · P .

2.2 Signal-to-Noise Ratio

We introduce the concept of signal-to-noise ratio (SNR) in order to estimate the
required number of samples. A successful ZEMD attack requires that an attacker
can detect the signal over the noise. To reduce the unwanted noise in the power
signal, Messerges et al. used filtering strategies [16]. They proposed a model for
the ZEMD signal-to-noise ratio.

Generic Cryptanalysis of Combined Countermeasures 123

Proposition 1 ([16]). A ZEMD attack using R samples on an M -bit processor
in Double-Add Always method, with signal size ε, average nonalgorithmic noise
variance σ2, and percentage of algorithmic noise α, has a voltage intrasignal
SNR that can be modeled by

SNR =
ε
√

R
√

8σ2 + ε2(αM + M − 1)
. (1)

3 Proposed Attack

In this section, we propose a novel ZEMD attack algorithm against Target 1 and
show the results of simulation. (The proofs of several propositions may be found
in appendix.)

3.1 Notations

Let k =
∑n−1

j=0 kj2j with kj ∈ {0, 1} be the n-bit binary secret key and d =
∑n

j=0 dj2j with dj ∈ {−1, 0, 1} be the (n + 1)-bit random recoded number
generated from k by a random recoding method. Note that k and d are ob-
viously the same number, even though their representations differ. Let k[s1,t1]
and d[s1,t1] denote partial bits from the s1-th bit to the t1-th bit of k and d, re-
spectively. Namely k[s1,t1] :=

∑t1
j=s1

kj2j−s1 and d[s2,t2] :=
∑t2

j=s2
dj2j−s2 . Here,

0 ≤ s1 ≤ t1 ≤ n − 1 and 0 ≤ s2 ≤ t2 ≤ n.

– R: The number of executions that an attacker observes, i.e., the number of
samples.

– RS : The smallest number of executions to detect the signal over the noise
in SNR formula (1) against Double Add Always method. If R is chosen as
R ≥ RS then an attacker can break Double Add Always method.

– RM: The maximum number of execution which an attacker can use in a
ZEMD attack. Note that RM depends on the computational power of an
attacker. By the definition, RM ≥ R.

– Pr: For 1 ≤ r ≤ R, the r-th input point into Addition-Subtraction Always
method.

– IP i
r : The intermediate point which is actually calculated at the step 2.1 after

j = i bit (ki) calculation for the r-th input point into Addition-Subtraction
Always method.

– p: The appearance probability of a discernment point after the calculation
for ki, i.e., p := Pr[DP i

r = IP i
r]1≤r≤R during R executions. Note that the

probability depends on the secret key and a random recoding method used
in BSD type countermeasures.

3.2 SNR for Probabilistic Appearance of Discernment Point

As Addition-Subtraction Always method uses randomized BSD representations,
the size of signals may decrease due to probabilistic appearance of discernment
points. Thus the SNR model for BSD type countermeasure should be modified
as follows:

124 T.H. Kim et al.

Proposition 2. Assume that the computational environment is the same as
Proposition 1. If the appearance probability of a discernment point is p, then the
signal-to-noise ratio is

SNR =
εp

√
R

√
8σ2 + ε2(αM + M − p)

. (2)

Thus the SNR is approximately p times larger than the original. In other words,
in order to obtain the same SNR as the original, the required samples are p−2

times larger than the original.

Remark 1. Since the required number of samples R is determined by the proba-
bility p, if p−2R is bigger than RM or less than RS , then he/she may not obtain
a useful signal over the noise even if the attacker’s guess was right.

3.3 Properties of All BSD Type Countermeasures

In all BSD type countermeasures we justify that the following property is sat-
isfied, i.e. the consequence of the following proposition does not depend on the
choice of a recoding technique.

Proposition 3. d[i,n] is either k[i,n−1] or k[i,n−1] + 1.

From Proposition 3, we can obtain a relation between the i-th bit ki of secret
key and intermediate point (IP i

r).

Observation 1.

IP i
r =

(
22 · k[i+1,n−1]

)
· Pr or

(
22 · k[i+1,n−1] + 2 · 1

)
· Pr, if ki = 0;

IP i
r =

(
22 · k[i+1,n−1] + 2 · 1

)
· Pr or

(
22 · k[i+1,n−1] + 2 · 2

)
· Pr, if ki = 1.

Thus we can see that there are three kinds of intermediate points. The inter-
mediate point IP i

r =
(
22 · k[i+1,n−1]

)
· Pr only appears in the case of ki = 0,

and IP i
r =

(
22 · k[i+1,n−1] + 2 · 2

)
· Pr only appears in the case of ki = 1. But

IP i
r =

(
22 · k[i+1,n−1] + 2 · 1

)
· Pr is related to both ki = 0 and ki = 1.

The above observation helps us to determine a discernment point DP i
r to

recover ki. We concretely describe how to determine discernment points in the
next section.

3.4 Proposed Attack

Before formally describing our analytical framework, we will make some assump-
tions more precisely. Our analysis depends on the following assumptions:

Assumption 1.

(1) We assume that the scalar multiplication in Target 1 utilizes a left-to-right
computation, i.e., the secret key is scanned from the most significant bit.

Generic Cryptanalysis of Combined Countermeasures 125

(2) We can repeatedly obtain the measurement of power consumption at the
device for the fixed secret key k.

(3) Suppose an attacker already knows the highest bits kn−1, . . . , ki+1 of the
secret key k. The attacker will try to recover the next bit ki with the ordinary
ZEMD attack. Assume the attacker first uses

(
22 · k[i+1,n−1]

)
· Pr as the

discernment point to check ki = 0.

The second assumption is reasonable. For some elliptic curve schemes, col-
lecting power signals for the fixed secret key may be impossible, like the signature
generation of ECDSA. However, some other schemes like ECDH are possible. We
can then obtain the following result under Assumption 1.

Proposition 4. If the appearance probability of the discernment point for the
target bit ki is p (�= 0), the use of p−2RS samples enables the attacker to recover
ki; ki = 0 if an appreciable peak occurs, or ki = 1 if not.

By Proposition 4, if the attacker uses R samples such that R ≥ p−2RS then
he/she can recover ki. But, there are two cases that the attacker can not find
any appreciable peak over noise in the ordinary ZEMD attack, even though
his/her guess is right.

Problem 1: The case of the probability p = 0. Namely, IP i
r =

(
22 ·k[i+1,n−1] +

2 · 1
)
· Pr always occurs during R executions. Thus the attacker may confuse

whether ki is 0 or not.
Problem 2: The case that the probability p is so small such that R = p−2RS >

RM. It implies the attacker can’t use R = p−2RS samples to determine ki.

Furthermore, there is one more problem that it is difficult for the attacker
to predict the probability p in advance because the probability depends on the
secret key and the used recoding method. Thus he/she can not determine the
exact number of sample R such that R ≥ p−2RS .

Remark 2. In [24], Sim et al. assumed that the appearance probability of an
intermediate point is always 1/2 (i.e., p = 1/2) because of a random bit. So,
they mentioned that the required number of samples should be doubled in order
to detect the same height of peaks as that of the ordinary ZEMD attack on
unprotected scalar multiplication algorithms. Unfortunately, the assumption is
not always true. Actually, the probability depends on both the used random
recoding method and the secret scalar. Thus, their attack is not practical in the
sense of the number of samples.

We now describe how to solve these problems. Let us assume that we always
use the maximum number of samples RM to recover ki, i.e. R = RM. Then

the smallest probability p that we can recognize appreciable peaks is
√

RS

RM

by Proposition 2. Let the smallest appearance probability p =
√

RS

RM that
an attacker can detect peaks be denoted as LB, i.e., it means a lower bound of the
appearance probability. In other words, p ≥ LB is equivalent to RM ≥ p−2RS ,

126 T.H. Kim et al.

that is, the number of used samples RM is enough to detect some useful peak in
the obtained power consumption signal. (Note that LB depends on the ability
of an attacker because the capability to obtain RM differs each.) From Obser-
vation 1, we can construct a new attack strategy as follows.

The Attack Method by One Bit Guess:

Assumption: We always use RM samples, i.e., R = RM.
Step 1: Use the discernment point DP i

r =
(
22 · k[i+1,n−1]

)
· Pr. If some useful

peaks appear over noise in SNR, i.e., p ≥ LB, then output ki = 0
Step 2: Else, use another DP i

r =
(
22 ·k[i+1,n−1] +2 ·2

)
·Pr. If some useful peaks

appear over noise in SNR, i.e., p ≥ LB, then output ki = 1.
Step 3: Otherwise, we can not determine whether ki is 0 or not because IP i

r =(
22 · k[i+1,n−1] + 2 · 1

)
· Pr is operated with high probability.

We now solve the case that ki is not determined in Step 3. Assume that we
guess more bits instead of one bit in the above attack. For simplicity, we explain
the case of two bits guess. For all (kiki−1)2, the intermediate point IP i−1

r is as
follows:

Observation 2.

IP i−1
r =(23 · k[i+1,n−1]) · Pr or (23 · k[i+1,n−1] + 2 · 1) · Pr, if (kiki−1)2 =(00)2;

IP i−1
r =(23 · k[i+1,n−1] + 2 · 1) · Pr or (23 · k[i+1,n−1] + 2 · 2) · Pr, if (kiki−1)2 =(01)2;

IP i−1
r =(23 · k[i+1,n−1] + 2 · 2) · Pr or (23 · k[i+1,n−1] + 2 · 3) · Pr, if (kiki−1)2 =(10)2;

IP i−1
r =(23 · k[i+1,n−1] + 2 · 3) · Pr or (23 · k[i+1,n−1] + 2 · 4) · Pr, if (kiki−1)2 =(11)2.

From the above observation, we can find some useful relations.

– IP i−1
r = (23 ·k[i+1,n−1]) ·Pr or (23 ·k[i+1,n−1] +2 · 4) ·Pr only appears in the

case of (kiki−1)2 = (00)2 or (11)2, respectively.
– If IP i−1

r = (23 · k[i+1,n−1] + 2 · 1) · Pr or (23 · k[i+1,n−1] + 2 · 3) · Pr appears,
then ki = 0 or 1, respectively.

There is one more good relation; for example, if the appearance probabilities
for both DP i−1

r = (23 · k[i+1,n−1] + 2 · 1) · Pr and (23 · k[i+1,n−1] + 2 · 2) · Pr

satisfy the condition i.e. p ≥ LB , then we can be convinced that (kiki−1)2 =
(01)2. More exactly, suppose an attacker uses RM = 9RS , i.e., LB = 1/3,
and p = 0.6 when DP i−1

r = (23 · k[i+1,n−1] + 2 · 1) · Pr and p = 0.4 when
DP i−1

r = (23 · k[i+1,n−1] + 2 · 2) · Pr. Then he/she can detect (kiki−1)2 = (01)2
because these two probabilities p, 0.6 and 0.4, are greater than LB = 1/3. By
recursively processing the above way, we can recover the remaining bits.

3.5 Simulations

In this subsection, we estimate the maximum number of consecutive guess bits
and the number of trial guess required in the proposed attack by computing the
appearance probability of intermediate points in software written in C-language.
We carried out simulations on the proposed attack applied to Ha-Moon’s method,
Ebeid-Hasan’s method, and that of Agagliate et al. as follows.

Generic Cryptanalysis of Combined Countermeasures 127

1. Implement Ha-Moon’s method, Ebeid-Hasan’s method, and that of Agagliate
et al. with Addition-Subtraction Always method on typical microprocessors:
Pentium IV/2GHz (32-bit µP; Windows XP, MSVC).

2. For i = 1 to 10, 000 do
– Choose a 160-bit scalar randomly.
– Obtain 10,000 random recoded numbers generated from the secret key

by random recoding methods.
– Compute the appearance probability of two intermediate points for all

bits using the given 10,000 random recoded numbers, that is, Pr
[
d[i,n] =

k[i,n−1]
]

and Pr
[
d[i,n] = k[i,n−1] + 1

]
.

– For each LB, we recover the secret key by the proposed attack.
– From the result of the above step, count the maximum number of con-

secutive guess bits and the number of trial guess.
3. Compute the average of the maximum number of consecutive guess bits and

the number of trial guess for each LB. (i.e. sum of the maximum number of
consecutive guess bits / 10,000 and sum of the number of trial guess /10,000)

Table 1 shows the number of trial guess in the proposed ZEMD attack against
BSD type countermeasures with Addition-Subtraction Always method depending
on the ability to obtain RM. The number of trial guess means the number of
discernment points used in ZEMD attack. Note that since the original ZEMD
attack requires one discernment point to recover one bit, the original ZEMD
attack requires n times trial guess for n-bit secret key.

Fig. 1 shows the required number of measurements to reveal the secret key
depending on the computational power of the attacker (i.e. LB). If an attacker
has the capability of guessing consecutive 10 bits then, to obtain the same SNR
as Proposition 1, the required samples are about 2RS in Ha-Moon’s counter-
measure, 1.4RS in Ebeid-Hasan’s countermeasures, and RS in Agagliate et al.’s
countermeasure. In the case of Agagliate et al.’s countermeasure, we can recover
the secret key with the same number of samples as the ordinary ZEMD attack.

From Fig. 1 and Table 1, we can derive the following conclusion. If we use
10RS samples then LB ≈ 0.32. Thus we can determine the whole 160-bits secret
key using 1987 trial guess before at most 10-bits consecutive guess in Ha-Moon’s
method, 596 trial guess before at most 7-bits consecutive guess in Ebeid-Hasan’s
method, and 2915 trial guess before at most 9-bits consecutive guess in Agagliate

Table 1. For a 160-bit secret key, the number of trial guess in the proposed ZEMD
attack against BSD type countermeasures with SPA countermeasure depending on the
ability to obtain RM

RM

Countermeasures 2RS 5RS 10RS 20RS 50RS 100RS

Ha-Moon [8] 16484 2716 1987 1480 1019 868
Ebeid-Hasan [5] 1515 711 596 543 508 478
Agagliate et al. [1] 4004 2917 2915 2898 2896 2893

128 T.H. Kim et al.

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
he

 M
ax

im
um

 n
um

be
r

of
 C

on
se

cu
tiv

e
G

ue
ss

 N
um

be
r

Lower Bound of Appearance Probability (LB)

Ha-Moon method
Ebeid-Hasan method

Agagliate et al. method

Fig. 1. Relationship between the number of samples RM and the maximum number
of consecutive guess bits for a 160-bits secret key

et al.’s method. From these observations, we can see that the proposed ZEMD
is as practical as the ordinary ZEMD attack.

4 Enhancing the Proposed Attack

The proposed attack can be enhanced in two ways: (1) against right-to-left
computation. (2) against BSD type countermeasure combined with a DPA
countermeasure.

4.1 Attack for Right-to-Left Algorithm

The proposed attack is also applicable to right-to-left computation. In order
to construct an attack against a right-to-left algorithm, we use the following
property:

Proposition 5. d[0,i] is either k[0,i] or k[0,i] − 2i+1.

Proposition 5 is easily derived from Proposition 3. We obtain the relation be-
tween ki and intermediate point IP i

r . Here, IP i
r denotes the intermediate point

which is actually calculated at ECADD after j = i bit (ki) calculation for
the r-th execution in a right-to-left version of Addition-Subtraction Always
method.

Observation 3.

IP i
r =

(
k[0,i−1] + 2i+1

)
· Pr or k[0,i−1] · Pr, if ki = 0;

IP i
r =

(
k[0,i−1] + 2i + 2i+1

)
· Pr or

(
k[0,i−1] + 2i

)
· Pr, if ki = 1.

By above observation, the intermediate points for ki = 0 are totally different
from those for ki = 1. Thus the proposed attack against right-to-left algorithms
can use both cases of intermediate points for ki as the discernment point, e.g.
the discernment point could be (k[0,i−1] + 2i+1) · Pr or k[0,i−1] · Pr to check
ki = 0.

Generic Cryptanalysis of Combined Countermeasures 129

Proposition 6. In Right-to-Left algorithm, the number of try to detect secret
key bit ki is at most two times. As there is no collision between intermediate
points for ki = 0 and intermediate points for ki = 1, first we use IP i

r = (k[0,i−1]+
2i+1) · Pr, if we detect useful peaks over noise with SNR then ki is 0. Otherwise,
we try again with IP i

r = k[0,i−1] ·Pr. If we find useful peaks over noise with SNR
then ki is 0, otherwise ki is 1.

Therefore, the proposed attack against right-to-left algorithms can recover the
secret key bit by bit as the similar to the ordinary ZEMD attack. Thus the
proposed attack against a right-to-left algorithm is more simple and efficient
than that against a left-to-right one.

Remark 3. Since Oswald-Aigner’s method [20] is a right-to-left algorithm, it is
very easily broken using the proposed attack against right-to-left algorithms.

4.2 RPA Attack

In this section, we discuss the security of BSD type countermeasures combined
with a DPA countermeasure using randomized point representation methods.

In order to strengthen the security of BSD type countermeasures, the BSD
type may further be combined with some DPA countermeasures using random-
ized point representation methods such as randomized projective coordinates [4]
or random isomorphisms method [11] before scalar multiplications.

However, Goubin proposed the refined power analysis (RPA) using “special
point” (x, 0) and (0, y) that cannot be randomized by randomized point rep-
resentation techniques [7]. Thus the proposed attack can also break BSD type
countermeasures combined with randomized point representation methods by
using the “special point” as a discernment point.

Note that other notations and assumptions are the same as those in the
previous sections with the exception of combining Addition-Subtraction Always
method with DPA countermeasure. We can then find two differences between
DPA and RPA as follows:

SNR of RPA in the Case Using BSD Type Countermeasures: Simi-
lar to DPA on Addition-Subtraction Always method described in Proposition 1
and 2, we propose a proposition which deals with SNR of RPA on Addition-
Subtraction Always method with the DPA countermeasure using randomized
point representation.

Proposition 7. Assume that the computational environment is the same as
Proposition 1. If the appearance probability of the “special” point P0 is p′, then
the signal-to-noise ratio is

SNR =
εp′M

√
R

√
8σ2 + ε2(αM + M − Mp′)

. (3)

Thus the SNR is approximately p′ times larger than the original RPA. In other
words, in order to obtain the same SNR as the original, the required samples are
p′−2 times larger than the original.

130 T.H. Kim et al.

Note that the proof of it is similar to that of Proposition 2 and refer to
the Theorem 3 in [16]. Actually, the appearance probability p of the discern-
ment point in the proposed ZEMD attack is exactly the same as the appearance
probability p′ of the “special” point P0.

Remark 4. Proposition 7 shows that an attacker requires approximately M−2R
samples to obtain the same SNR as Proposition 2 (for the proposed ZEMD
attack).

Adaptively Chosen Data Attack: RPA is an adaptively chosen data attack.
Since RPA requires the special point for detecting a specific bit of the scalar,
the observed samples cannot be reused. That is, for detecting each bit, the
attacker has to observe power consumptions for new data. So, in the proposed
RPA attack, the maximum number of samples that the attacker can use for
each trial guess is RM/the number of trial guess on average. Thus, the symbol
LB =

√
RS/RM used in the new attack strategy in section 3.4 is replaced with√

(RS × the number of trial guess)/RM. For a more successful attack we can
use more smaller samples if RM/the number of trial guess > RM/M2 and more
larger samples if not, but the total number of samples should be less than RM.

Remark 5. We can easily convert the RPA attack into the attack on a right-to-
left computation using Proposition 5.

5 Comparison

As described in the previous sections, the basic BSD type countermeasures are
vulnerable to various attacks. So, the BSD type countermeasures should be com-
bined with additional countermeasures to resist SPA and DPA. In the section,
when some countermeasures are added to BSD type countermeasures we com-
pare the proposed attack with previously known attacks introduced by Fouque
et al. and Sim et al. and the hidden Markov model (HMM) attack 2 [14] for the
left-to-right computation and the right-to-left computation, respectively.

Table 2 shows the possibilities of attacks against several combined counter-
measures and the direction of computation. We first consider BSD type coun-
termeasures combined with the SPA countermeasure. Fouque et al. and Sim et
al. analyzed the full version of Ha-Moon’s method. So, the possibility of their
attacks against the other BSD type countermeasures may be determined accord-
ing to the given random recoding method. However, the attack of Fouque et al.
is based on detection of internal data collisions, so their attack may be able to
apply without regard to the direction of computation algorithms at a glance.
On the other hand, the HMM attack is available under the assumption of dis-
tinguishability between ECADD and ECDBL. Thus, the HMM attack seems
unable to break the BSD type combined with SPA countermeasures.
2 The attack introduced by Karlof and Wagner utilizes the hidden Markov model

(HMM) to break BSD type countermeasure, which is a cryptanalytic framework for
countermeasures that utilizes a probabilistic finite state machine.

Generic Cryptanalysis of Combined Countermeasures 131

Table 2. Comparison of possibility for several combined BSD type countermeasures

Left-to-Right computation Right-to-Left computation Attack
Attacks with SPA C. with DPA C. with SPA C. with DPA C. Model

Fouque et al. Dependent Infeasible Dependent Infeasible MESD
Sim et al. Dependent Infeasible Infeasible Infeasible ZEMD
HMM Infeasible Infeasible Infeasible Infeasible HMM
Ours Feasible Feasible Feasible Feasible ZEMD

Note. SPA C. and DPA C. denote SPA countermeasure and DPA countermeasure, respectively.
Note. We consider the fixed procedure type such as Coron’s dummy method or Montgomery

ladder method as an SPA countermeasure, and the randomized point representation type such as
randomized projective coordinates or random isomorphisms as a DPA countermeasure.

Note. “Feasible” means that the attack can break all combined countermeasures, “Infeasible”
means that the attack can not break any combined countermeasure, and “Dependent” means that
the possibility of the attack depends on random recoding methods.

In the case of BSD type countermeasures combined with the DPA coun-
termeasure, the attack of Fouque et al., the attack of Sim et al., and the HMM
attack can not break the combined BSD type countermeasures. However, we have
shown that BSD type countermeasures combined with DPA countermeasures us-
ing randomized point representations such as randomized projective coordinates
[4] or random isomorphisms [11] are vulnerable to the proposed RPA attack.

Remark 6. In order to strengthen the security of BSD type countermeasures
there are other possible approaches, that is, if BSD type countermeasures are
combined with the indistinguishable operations type using the same addition
formulae [2] or random point blinding type such as Coron’s second method and
random initial point method [18], then BSD type countermeasures may be secure
against not only the proposed attacks but also the other attacks.

In addition, another difference between the proposed attack and the attack of
Fouque et al. is the analysis model. The model of Fouque et al. is based on
the collision detection, which is rather different from the usual SCA model. To
find collisions their attack utilizes “Multiple Exponent Single Data” (MESD)
technique. The MESD requires that an attacker has two identical devices with
the same algorithm: one with an unknown secret scalar and the other with
a chosen scalar by oneself. In order to recover the unknown secret scalar, we
compare the power consumptions of two devices. If the power consumptions are
similar then the scalars equal each other, otherwise, the scalars differ. However,
such a situation may be less practical than ZEMD technique, which only requires
a device with an unknown secret scalar.

6 Concluding Remarks

In this paper, we have enhanced the existing attacks against the full version of
Ha-Moon’s method, and then we have proposed a practical attack applicable
to all BSD type countermeasures combined with an SPA countermeasure. We

132 T.H. Kim et al.

showed that the proposed attack is as practical as the original ZEMD attack by
the simulations on the target countermeasures.

We have further enhanced the proposed attack in two ways. The proposed
attack is extended to a right-to-left computation and BSD type combined with
a DPA countermeasure. That is, in order to repair the security, if BSD type
countermeasures are combined with a right-to-left computation or DPA coun-
termeasures such as randomized projective coordinates or random isomorphisms,
then it may be vulnerable to the proposed attack.

Acknowledgments

Tae Hyun Kim and Jongin Lim were supported by the MIC(Ministry of Infor-
mation and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Infor-
mation Technology Assessment). Dong-Guk Han was supported by the Korea
Research Foundation Grant. (KRF-2005-214-C00016).

References

1. Agagliate, S., Guillot, P., Orcière, O., A Randomized Efficient Algorithm for DPA
Secure Implementation of elliptic curve Cryptosystems, in the proceedings of Work-
shop on Coding and Cryptography 2003 (WCC 2003), (2003), 11-19.

2. Brier, É., Joye, M., Weierstrass Elliptic Curves and Side-Channel Attacks, Public
Key Cryptography (PKC2002), LNCS2274, (2002), 335-345.

3. Chevallier-Mames, B., Ciet, M., Joye, M., Low-cost solutions for preventing sim-
ple side-channel analysis: side-channel atomicity, IEEE Trans. Computers, Vol.53,
No.6, (2004), 760-768.

4. Coron, J.S., Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems, Cryptographic Hardware and Embedded Systems (CHES’99),
LNCS1717, (1999), 292-302.

5. Ebeid, N., Hasan, A., Analysis of DPA Countermeasures Based on Random-
izing the Binary Algorithm, Technical Report of the University of Water-
loo, No. CORR 2003-14. http://www.cacr.math.uwaterloo.ca/techreports/
2003/corr2003-14.ps

6. Fouque, P.A., Muller, F., Poupard, G., and Valette, F., Defeating Countermea-
sures Based on Randomized BSD Representations, Cryptographic Hardware and
Embedded Systems 2004 (CHES 2004), LNCS3156, (2004), 312-327.

7. Goubin, L., A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems,
Public Key Cryptography, (PKC 2003), LNCS2567, (2003), 199-211.

8. Ha, J., and Moon, S., Randomized Signed-Scalar Multiplication of ECC to Re-
sist Power Attacks, Cryptographic Hardware and Embedded Systems 2002 (CHES
2002), LNCS2523, (2002), 551-563.

9. Han, D.-G., Okeya, K., Kim, T.H., Hwang, Y.S., Park, Y.-H., Jung, S., Crypt-
analysis of the Countermeasures Using Randomized Binary Signed Digits, Applied
Cryptography and Network Security (ACNS’04), LNCS3089, (2004), 398-413.

10. Joye, M., Paillier, P., Schoenmakers, B., On Second-Order Differential
Power Analysis, Cryptographic Hardware and Embedded Systems (CHES’05),
LNCS3659, (2005), 293-308.

Generic Cryptanalysis of Combined Countermeasures 133

11. Joye, M., Tymen, C., Protections against differential analysis for elliptic curve
cryptography: An algebraic approach, Cryptographic Hardware and Embedded Sys-
tems (CHES’01), LNCS2162, (2001), 377-390.

12. Kocher, C., Jaffe, J., Jun, B., Differential Power Analysis, Advances in Cryptology
- CRYPTO ’99, LNCS1666, (1999), 388-397.

13. Koblitz, N., Elliptic curve cryptosystems, Math. Comp. 48, (1987), 203-209.
14. Karlof, C., Wagner, D., Hidden Markov Model Cryptanalysis, Cryptographic Hard-

ware and Embedded Systems (CHES 2003), LNCS2779, (2003), 17-34.
15. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Power Analysis Attacks of Modular

Exponentiation in Smartcards, Cryptographic Hardware and Embedded System
(CHES 1999), LNCS1717, (1999), 144-157.

16. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Examining Smart-Card Security un-
der the Threat of Power Analysis Attacks, IEEE Trans. Computers, Vol.51, No.5,
(2002), 541-552.

17. Miller, V.S., Use of elliptic curves in cryptography, Advances in Cryptology -
CRYPTO ’85, LNCS218, (1986), 417-426.

18. Mamiya, H., Miyaji, A., and Morimoto, H., Efficient Countermeasures Against
RPA, DPA, and SPA, Hardware and Embedded System (CHES 2004), LNCS3156,
(2004), 343-356.

19. Montgomery, P. L., Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation, Vol.48, No.177, (1987), 243-264.

20. Oswald, E., Aigner, M., Randomized Addition-Subtraction Chains as a Counter-
measure against Power Attacks, Cryptographic Hardware and Embedded Systems
(CHES 2001), LNCS2162, (2001), 39-50.

21. Okeya, K., Han, D.-G., Side Channel Attack on Ha-Moon’s Countermeasure of
Randomized Signed Scalar Multiplication, INDOCRYPT 2003, LNCS2904, (2003),
334-348.

22. Okeya, K., Sakurai, K., Power Analysis Breaks Elliptic Curve Cryptosystems even
Secure against the Timing Attack, INDOCRYPT 2000, LNCS1977, (2000), 178-190.

23. Okeya, K., Sakurai, K., On Insecurity of the Side Channel Attack Countermeasure
using Addition-Subtraction Chains under Distinguishability between Addition and
Doubling, The 7th Australasian Conference in Information Security and Privacy,
(ACISP 2002), LNCS2384, (2002), 420-435.

24. Sim, S.G., Park, D.J., Lee, P.J., New power analyses on the Ha-Moon algorithm
and the MIST algorithm, Sixth International Conference on Information and Com-
munication Security (ICICS 2004), LNCS3269, (2004), 291-304.

25. Walter, C.D., Issues of Security with the Oswald-Aigner Exponentiation Algorithm,
The Cryptographers’ Track at the RSA Conference 2004 (CT-RSA’04), LNCS2964,
(2004), 208-221.

26. Walter, C.D., Simple Power Analysis of Unified Code for ECC Double and Add,
Cryptographic Hardware and Embedded Systems (CHES’04), LNCS3156 , (2004),
191-204.

A Several Proofs

Proposition 2. Assume that the computational environment is the same as
Proposition 1. If the appearance probability of a discernment point is p, then the
signal-to-noise ratio is

134 T.H. Kim et al.

SNR =
εp

√
R

√
8σ2 + ε2(αM + M − p)

. (4)

Thus the SNR is approximately p times larger than the original. In other words,
in order to obtain the same SNR, the required samples are p−2 times larger than
the original.

Proof. Recall that SNR is defined as the ratio of the average signal divided by
its standard deviation.

Since the discernment point appears with the probability p, the signal is p
times larger than the original; E[signal] = εp. If the discernment point does not
appear, we can consider such a case as noise; E[noise] = 0.

On the one hand, non-algorithmic noise does not depend on the input data.
On the other hand, algorithmic noise can be seen as (M − signal/ε) random
bits; (M − p) random bits. Thus, it is easy to see that the variance of the signal
is V [signal] = 4(σ2 +ε2(M −p)/4)/R. If the discernment point does not appear,
the variance of the noise is v[noise] = 4(σ2 + ε2αM/4)/R.

Hence, in the current case, the average is pε and the standard deviation is
√

8σ2 + ε2(αM + M − p)/
√

R.

In other words, SNR satisfies the equation (2). �	

Proposition 3. d[i,n] is either k[i,n−1] or k[i,n−1] + 1.

Proof. d = d[i,n] · 2i + d[0,i−1] and k = k[i,n−1] · 2i + k[0,i−1]. As d = k, (d[i,n] −
k[i,n−1]) · 2i = k[0,i−1] − d[0,i−1]. As −2i < k[0,i−1] − d[0,i−1] < 2i+1, −1 <
(k[0,i−1] − d[0,i−1])/2i < 2. Here, (k[0,i−1] − d[0,i−1])/2i must be an integer since
it is equal to d[i,n] − k[i,n−1]. Hence, d[i,n] is either k[i,n−1] or k[i,n−1] + 1. �	

Proposition 4. Assume that an attacker can recognize whether the peak occurs
or not using RS samples in the case of Double Add Always method. If the ap-
pearance probability of the discernment point for the target bit ki is p, the use of
p−2RS samples enables the attacker to recover ki; ki = 0 if an appreciable peak
occurs, or ki = 1 if not.

Proof. First we discuss the case of ki = 0. When Addition-Subtraction Always
method manipulates the i-th bit d

(r)
i , d

(r)
[i,n] is computed, which is equal to

2 · k[i+1,n−1] or 2 · k[i+1,n−1] + 1 because of Proposition 3, The next iteration of
the flow computes

(
4 ·k[i+1,n−1]

)
·P or

(
4 ·k[i+1,n−1]+2

)
·P . Note that the former

is the discernment point. From the assumption, the appearance probability of
the discernment point is p. Proposition 2 shows that the use of p−2RS samples
enables the attacker to recognize the peak because of the assumption for his/her
capability. Since the peak shows that the attacker’s guess is correct, he/she
reveals ki = 0. The discussion on the case for ki = 1 is similar. �	

Amplifying Side-Channel Attacks with
Techniques from Block Cipher Cryptanalysis

Raphael C.-W. Phan1 and Sung-Ming Yen2,�

1 Information Security Research (iSECURES) Lab,
Swinburne University of Technology (Sarawak Campus), 93576 Kuching, Malaysia

rphan@swinburne.edu.my
2 Laboratory of Cryptography and Information Security (LCIS),

Dept of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan 320, R.O.C.

yensm@csie.ncu.edu.tw
http://www.csie.ncu.edu.tw/~yensm/

Abstract. We introduce the notion of amplified side-channel attacks,
i.e. the application of block cipher cryptanalysis techniques to amplify
effects exploitable by side-channel attacks. Such an approach is advanta-
geous since it fully exploits the special characteristics of each technique
in situations where each thrives the most. As an example, we consider
the integration of block cipher cryptanalysis techniques into a particular
type of side-channel attack, the differential fault attack (DFA). In more
detail, we apply the DFA on the AES key schedule or on intermediate
states within the AES and then exploit distinguishers based on Square
attacks and impossible differential cryptanalysis to cover the remaining
rounds. The use of techniques from conventional differential cryptanaly-
sis in DFAs is not new; however, to the best of our knowledge, more
advanced differential-like attack techniques have so far not been applied
in collaboration with DFA. Further, while previous DFA attacks can only
be mounted if faults are induced in the last or first (but with more re-
strictions) few rounds, our attacks alternatively show that even when
faults are induced into some middle rounds, the DFA attacks still work,
complementing existing results in literature; and thus showing that DFA
attacks work regardless of where faults are induced. This is of impor-
tance because redundancy is a costly countermeasure against DFA and
thus it is vital to study which rounds have to be protected. We hope that
this completes the picture on the applicability of DFAs to block ciphers,
and motivates thoughts into applying other advanced block cipher crypt-
analysis techniques into other types of side-channel attacks.

Keywords: Attacks and countermeasures in hardware and software,
side-channel attacks, cryptanalysis, fault attacks, Advanced Encryption
Standard.

� S.-M. Yen’s research in this work was supported in part by the National Science
Council of the Republic of China under contract NSC 94-2213-E-008-009 and also
the University IT Research Center Project.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 135–150, 2006.
c© IFIP International Federation for Information Processing 2006

136 R.C.-W. Phan and S.-M. Yen

1 Introduction

Since the introduction of side-channel attacks [11, 27, 28], the importance of de-
signing block ciphers resistant to these attacks has been in the limelight, and
this resistance is now part of a cipher’s design criteria. Security against side-
channel attacks is especially significant in situations where ciphers are imple-
mented in hardware like smart cards or tamper-resistant devices, where secrets
are meant to be closely guarded and thus no room for compromise via leakage
of secrets.

The study of block cipher cryptanalysis has developed tremendously in re-
cent years. Attacks on block ciphers can typically be grouped into two major
types, namely block cipher cryptanalysis which attacks the block cipher’s de-
sign, and the side-channel attacks (also known as physical cryptanalysis [39])
which attack the block cipher’s implementation. Each of these two categories of
cryptanalysis has its own cryptanalytic assumption and theoretical foundation.
Block-cipher cryptanalysis has been considered extensively in literature, while
the physical cryptanalysis is still a somewhat new branch of research in applied
cryptography.

Block cipher cryptanalysis refers to attacks that exploit the intrinsic weak-
nesses of block cipher components, e.g. differential cryptanalysis (DC) [7], linear
cryptanalysis [30], slide attacks [9] and rectangle attacks [5]. Meanwhile, side-
channel attacks are those that exploit potential physical properties or signal
leakages, or bugs that occur when these block ciphers are implemented in par-
ticular situations and devices. Such attacks include timing analysis [27], power
analysis [28], electromagnetic (EM) analysis [1], and fault analysis [8, 11].

Different though they be, both block cipher cryptanalysis and side-channel
attacks have their own individual advantages over each other. More recently,
block cipher cryptanalysis has considered more realistic attack models by fully
exploiting advances of every kind of computing machine, e.g., developing specific
cryptanalysis hardware based on reconfigurable devices e.g. field programmable
gate arrays (FPGAs). Block cipher cryptanalysis has hence gone beyond pure
theoretical work and now also considers practical issues. On the other hand, side-
channel attacks in recent years have gone much further than merely exploiting
implementation bugs. They sometimes fully exploit fundamental characteristics
of the underlying cipher or related algorithms used to implement the cipher,
and at times these attacks might reveal a possible vulnerability of the cipher.
Side-channel attacks have hence moved towards theoretical design aspects. As
both types of attacks gradually progress towards each other, it seems feasible
therefore to consider bridging the gap by directly integrating attacks of both
types so that we could exploit and use either type to suit the situation in which
they thrive the most. This is the intent of this paper.

We discuss attempts to integrate side-channel attacks, including those in
[2, 33, 38]. We then proceed with the first main contribution of this paper, i.e.
to introduce the notion of amplified side-channel attacks which refers to the in-
tegration of one or more block cipher cryptanalysis techniques into side-channel
attacks. In particular, we show that in situations where the effects due to con-

Amplifying Side-Channel Attacks with Techniques 137

ventional side-channel attacks on their own may be lost after some rounds of
the cipher, we can apply techniques from block cipher cryptanalysis to amplify
these effects so that they cover more rounds and become more distinguishable.

To illustrate this, we consider the particular integration of the Square attack
and the impossible differential attack into the differential fault analysis (DFA)
[8], a type of side-channel attack. We apply this to the AES [13].

The second main contribution of this paper is that our approach of integrat-
ing block cipher cryptanalysis techniques into the DFA makes a much weaker
assumption on the fault location in that it does not restrict the fault location
to be within the last (or sometimes first1) few rounds only, as is the case with
previous DFAs [10, 12, 15, 19, 32]. This leads to a more reasonable attack from
the view point of fault attacks, and a less restricted attack model.

We therefore see that the advantages of our amplified approach is twofold.
One, it allows the individual power of block cipher cryptanalysis techniques to be
fully exploited by side-channel attacks. Side-channel attacks on their own would
not be able to cover as many rounds of a cipher. Two, it allows DFA attacks
to be mounted with a more flexible attack model, that faults could be induced
even in rounds where previous DFAs are inapplicable. This study is important
because redundancy is a costly countermeasure against DFA, thus one should
ascertain exactly which rounds need to be protected.

Our attacks do not improve on previous work in situations where previous
attacks are applicable, but our contribution is in showing that situations pre-
viously not susceptible to DFAs can now be attacked. Our work here therefore
complement previous work; and together they show the universality of DFAs
and how important it is to guard against them.

In the process, our discussions also provide an insight into the link between
side-channel attacks and techniques from block cipher cryptanalysis.

1.1 Attack Models: Block Cipher Cryptanalysis vs Side Channels

Block cipher cryptanalysis assumes an attacker has access to or control over
input plaintexts and corresponding output ciphertexts − and even secret key
relationships in the case of related-key (RK) attacks. He has no access to or
control over what happens within the cipher’s encryption process but knows the
internal structure of the block cipher and exploits this to his advantage.

In contrast, side-channel attacks assume an attacker has much more access
or control, not only over the inputs and outputs but also able to induce differ-
ences into intermediate rounds (via DFA) and/or predicting behaviour in these
intermediate rounds (via timing, power or EM traces). Similarly, he also exploits
his knowledge of the internal block cipher structure.

Therefore, the attack model used in side-channel attacks is much more pow-
erful compared to that used in block cipher cryptanalysis. In fact, the former
can be considered a superset of the latter.

1 But with a higher text complexity or stricter text requirements.

138 R.C.-W. Phan and S.-M. Yen

1.2 Outline of This Paper

We describe the AES in Section 2. We recall in Section 3 previous attempts to
integrate different side-channel attacks, and propose the notion of amplified side-
channel attacks. In Section 4, we review past work on the DFA of the AES. We
also comment on limitations of three DFA countermeasures proposed in [12] and
argue that they would still allow for DFA to work. This observation recalls the
importance of the DFA and its applicability to the proposed attacks considered in
this paper. We then show in Section 5 how we could exploit techniques from the
Square attack and impossible differential cryptanalysis to cause DFAs to work
in situations where they were previously inapplicable. We conclude in Section 6.

2 The AES

The AES is a 128-bit block cipher which uses a 128-, 192- or 256-bit secret
key, where the number of rounds are then 10, 12 and 14, respectively. For the
rest of this paper, we will use AES to refer to the much-analysed 128-bit secret
key version, unless otherwise stated. The 128-bit data block of the AES can be
represented as a matrix of 4 × 4 bytes.

The input 128-bit block is passed through a round function, ρ iterated R
times, hence R is the number of rounds. Simultaneously, the secret key, K is
input to a key schedule to produce round keys RKi (i ∈ {0 . . . R}) for use in
each round. Each round function consists of four components applied in sequence:

– SubBytes,SB: a non-linear byte substitution.
– ShiftRows,SR: a cyclic shift of each row by different byte amounts.
– MixColumns,MC: a linear combination of all 4 bytes in the same column.
– AddRoundKey,ARi: an exclusive-OR of data block with round key, RKi.

Each round is identical except that an additional AddRoundKey is added
before the first round and MixColumn is excluded from the last round.

3 Amplified Side-Channel Attacks

In this section, we first discuss previous attempts to integrate side-channel at-
tacks, and then introduce the notion of amplified side-channel attacks.

In side-channel attacks, the attacker derives the embedded secret key by col-
lecting and analyzing the obtained side-channel signals, or abnormal behavior
and response in the case of fault-based attacks. Integrating several side-channel
attacks means that the attacker collects multiple side-channel signals simul-
taneously and tries to obtain more information than what would be achieved
from each attack if only applied individually. This enables the attacker to de-
duce possible secrets from each side-channel, then either intersect the results
from individual side-channels to obtain the secret key, or deduce the secret key
from the union of all collected side-channel signals. Furthermore, the secret key

Amplifying Side-Channel Attacks with Techniques 139

can sometimes be deduced from some useful relationship between different side-
channel signals. To summarize, the purpose of integrating side-channel attacks
is to optimize the information retrieved from the limited amount of individual
side-channel information.

Agrawal et al. [2] proposed a formal multi-channel attack framework for inte-
grating multiple side-channel attacks, in particular by simultaneously collecting
the power and electromagnetic signals. They demonstrated that integrating such
multiple side-channel signals in the scenario considered in their work will lead
to a two- to three-fold reduction in the requirement of samples needed for a tra-
ditional differential power analysis (DPA) attack [28]. In [38], another combined
side-channel attack was developed by Walter and Thompson which employs pre-
vious techniques for timing attacks in order to exploit useful timing information
from power signals. Note that this combined side-channel attack is applicable
to a pure timing-attack-resistant and pure power-attack-resistant device. Later
on, the efficiency of this integrated attack was enhanced by a factor of five and
generalized considerably by Schindler [33].

3.1 Integrating Block Cipher Cryptanalysis with Side Channels

Though most side-channel attacks apply to full rounds of the cipher, they also
have restrictions. For example, the differential fault analysis (DFA) requires that
the attacker induce faults into some final rounds of a cipher. Faults induced ear-
lier cannot be exploited by conventional DFA attacks. It is therefore reasonable
to consider integrating block cipher cryptanalysis techniques into side-channel
attacks to cover more rounds of the attacked cipher.

Referring to our example of the DFA, its limitation of requiring faults to be
induced in the final rounds of the cipher can be overcome by allowing faults to be
induced much earlier, and then applying block cipher cryptanalysis techniques
to the rounds after where the fault was induced. Later in Section 5, we will show
two examples of such amplified side-channel attacks on the AES, namely the
Square-DFA and Impossible-DFA attacks.

Also in [34, 35], Schramm et al. proposed to overcome limitations of collision
attacks on cipher implementations by using techniques from either the power
analysis [28] or electromagnetic (EM) analysis [1], both of which are side-channel
attacks. In more detail, collision attacks had so far been applied successfully to
hash functions [14] and are essentially variants of the differential cryptanalysis
in that they study the propagation of a collision − which is a non-difference −
between a pair through some internal rounds. Nevertheless, collisions eventually
disappear as the rounds increase, due to the diffusing nature of round functions,
and hence cannot be directly observed at the output. Schramm et al. overcame
this limitation by measuring the power or EM traces of the cipher implementa-
tion in the second round in order to predict whether collisions had occurred in
the first round. To trigger such collisions, they collected sufficiently many chosen
plaintext pairs with certain differences for input to the cipher.

Therefore, the collision side-channel attack proposed by Schramm et al. can
in fact be viewed as the combination of differential cryptanalysis techniques

140 R.C.-W. Phan and S.-M. Yen

with the power or EM attack. We remark that this attack also falls into our
amplified side-channel attack framework, though in direct complement to our
Square/Impossible-DFA in Section 5. Whereas our Square/Impossible-DFA uses
block cipher cryptanalysis techniques to enhance the effects of side-channel at-
tacks, Schramm et al.’s collision side-channel uses side-channel techniques to
enhance the effects of block cipher cryptanalysis.

We consider the unique advantages of each of the relevant block cipher crypt-
analysis techniques or side-channel attacks:

– KP attack: allows attacker to obtain random plaintexts.
– CP attack: allows attacker to choose plaintexts with specific differences.
– RK attack: allows attacker to know or choose relationships (differences) be-

tween two or more unknown secret keys.
– DC attack: studies the propagation of differences between pairs through

rounds of a cipher, and checks for corresponding differences at cipher output.
– DFA: allows attacker to induce differences into an intermediate round of a

cipher.
– Timing/Power/EM attack: allows attacker to predict the behaviour (eg. dif-

ference or non-difference/collision) in some intermediate round of a cipher.

With this, we formalize the notion of the amplified side-channel attack:

Definition 1. The amplified side-channel attack integrates block cipher crypt-
analysis techniques with side-channel attacks, and consists of the following steps:

1. (a) Use KP attack to collect some random plaintexts and/or RK attack to
control relationship between two or more secret keys, OR

(b) Use CP attack to control input plaintexts and/or RK attack to control
relationship between two or more secret keys, OR

(c) Use FA (fault attack) to induce differences into intermediate rounds of
the cipher.

2. (a) Use DC attack to study propagation of differences through rounds and
further use observed output to guess secret key bits, OR

(b) Use timing, power or EM attack to predict difference or non-difference
behaviour in intermediate rounds to guess secret key bits.

We can now express block cipher cryptanalysis, side-channel attacks or their
combination under this amplified side-channel framework. e.g. differential crypt-
analysis is simply the sequence of steps <1(b),2(a)>, timing/power/EM attack
is <1(a),2(b)> or at times simply <2(b)>, DFA is <1(c),2(a)>, collision side-
channel is <1(b),2(b)> and Square/Impossible-DFA (Section 5) is <1(c),2(a)>.

4 Previous DFAs on the AES and Countermeasures

In this section, we review past work on the DFA of AES. We also comment on
the limitations of three DFA countermeasures proposed in [12] and argue that
they would still allow for the DFA to work. All this recalls the importance of the
DFA and the difficulty of guarding against it. This will motivate the choice of
integrating the block cipher cryptanalysis techniques into the DFA in Section 5.

Amplifying Side-Channel Attacks with Techniques 141

4.1 Previous DFAs on the AES

Blömer and Seifert [10] first considered the DFA on AES but worked with a re-
stricted fault model. Their first attack required that a certain chosen bit of the
intermediate state just after AR0 be forced to 0, and required 128 faulty cipher-
texts in order to determine the full key. Their second attack is implementation-
dependent, and requires 256 faulty ciphertexts to obtain the full key.

This was followed by two attacks on the AES by Giraud [19]. The first attack
also required to induce a bit fault at the beginning of the last round, R, and
required 50 faulty ciphertexts. The second attack required 250 faulty ciphertexts
and the faults had to be induced on a byte of the round keys, RKR−2, and
RKR−1, and on the intermediate state before the second to last round, R − 1.

Later, Dusart, Letourneux and Vivolo [15] presented another attack that
required a fault to be induced on a byte before MC in the second to last round,
R − 1 and required about 50 faulty ciphertexts.

Chen and Yen [12] improved on Giraud’s second attack to require about 30
faulty ciphertexts. Their attack similarly needed several byte faults to be induced
in the last few rounds, but all on the round keys and none on intermediate states.
In particular, faults had to be induced one at a time on one of four bytes of
RKR−1, followed by faults one at a time on each of 7 bytes of RKR−2. Their
attack model is efficient on AES key schedules that are generated on the fly.

Piret and Quisquater [32] presented two attacks on the AES. Their first
attack required 8 faulty ciphertexts and that a byte fault be induced on the
intermediate state between MC in round R − 2 and MC in round R − 1. Their
second attack requires 2 faulty ciphertexts and that a byte fault be induced on
the intermediate state between MC in round R − 3 and MC in round R − 2.

4.2 Comments on Countermeasures Against DFA

In [12], Chen and Yen presented a DFA on the AES key schedule based on three
stages. The first stage involves inducing a fault in a byte of the 9th round key,
RK9. The next stage involves inducing a fault in a byte of the 8th round key,
RK8. Finally, the last stage involves inducing another fault in a different byte
of the 8th round key, RK8. All in all, the attack requires less than 30 faulty
ciphertexts. Their attack depended on a fault being induced in the middle of the
key schedule, as the round keys are generated on the fly, and hence relies on an
induced fault in a round key inducing further faults on subsequent round keys
and propagating the faults all the way to the ciphertext output.

Therefore, such an attack would have to occur during key accesses, during
which faults are induced as the round keys are generated. Besides this limitation
of their fault model, Chen and Yen also suggested some countermeasures [12].

Their first countermeasure suggests that in order to prevent DFA on the
AES key schedule, round keys should not be generated on the fly, but should
be pre-generated and then stored in memory. This eliminates the need for a key
schedule, and also prevents the DFA attack described in [12].

We agree that such a countermeasure prevents the DFA attack on the AES
key schedule described in [12]. However, even though round keys have been

142 R.C.-W. Phan and S.-M. Yen

pre-generated and stored in memory, it is still possible to induce faults into
them. In fact, it is at times even more desirable since faults induced in a round
key would not cause any further faults in other subsequent round keys. This
allows the attacker to have more control over the position of the faults that will
be induced. Also, this removes the limitation that the attacker must induce the
faults during key accesses when the round keys are generated. Since now the
round keys are residing in memory all the time, the attacker could induce the
faults at any time convenient to him, and hence is able to attack under a less
restricted time duration. Therefore, it appears that this first countermeasure
does not entirely prevent DFA attacks on the key schedule. On the contrary,
it gives the attacker more control of the location and propagation of the faults
induced, and less restrictions on when to induce the faults. This suggests that
permanently storing the round key may not be sufficient to prevent DFA at-
tacks. In Section 5, we will describe DFA attacks that work especially with this
countermeasure.

The second countermeasure suggests to generate the round keys once when-
ever there is a need for an update. But again, for the round keys to be used, they
would need to be stored somewhere in memory. Therefore, though this prevents
the DFA attacks in [12], it falls to the same problem as the first countermeasure.

The third countermeasure suggests to apply a two-dimensional parity check
on the round keys that are generated. Nevertheless, we point out that such an
error check would inherit the limitations of conventional two-dimensional parity
checks, that 4-bit errors or in this case faults would be undetectable. Therefore,
this countermeasure will not prevent DFA attacks on the AES key schedule that
involve inducing faults into 4 specific bits of the round keys. Though it may be
argued that it is hard to induce 4 bits into exactly specified positions, this is not
at all impossible with the optical fault induction attack that requires just US$30
worth of equipment bought at a second-hand camera shop [36].

5 Amplified Differential Fault Attacks on the AES

We describe two special cases of amplified side-channel attacks by exploiting
techniques of block cipher cryptanalysis to enhance the DFA. These serve solely
to illustrate the idea behind the notion of amplified side-channel attacks. Sec-
tions 5.1 and 5.2 respectively discuss how to integrate the Square attack and
impossible differential cryptanalysis into the DFA.

5.1 Square-DFA on the AES

To mount a Square attack [13] on the AES requires us to use a Square distin-
guisher that works for three rounds of the AES. Suppose we have a group of
256 plaintexts that are totally identical to each other except for one byte in
which they would have entirely different values. Then the Square distinguisher
specifies that after encryption by 3 rounds of the AES, the 256 texts would have
the property that the XOR of all the 256 ciphertexts would result in a zero for

Amplifying Side-Channel Attacks with Techniques 143

all byte positions. This is a very interesting property and has been previously
exploited to attack the AES up to 7 rounds [16, 18, 29].

Consider if we use equipment similar to that described in [36] but replaced
with a suitable laser to increase precision, to induce a bit of fault in a byte of
the 6th round key, RK6, and repeating for 255 times, each time inducing one
or more bits of fault into that same byte of RK6 such that it would have all
256 (one correct and 255 faulty) values. These faults will not affect any of the
other round keys. However, they will affect the AES encryption starting from
the 6th round onwards. Therefore at the end of round 6, the 1 correct encryption
and 255 faulty encryptions under these RK6 values would be identical except
for that one byte in which they would all have different values. By the Square
distinguisher, this would propagate through the next three rounds until the end
of round 9 when the XOR of all these 256 texts would result in a zero in all byte
positions. What we have basically done is using the DFA to induce faults into
RK6 so that we can apply a 3-round Square distinguisher from rounds 7 to 9.

We can now guess all possible values of any byte of RK10 and partially
decrypt these 256 (one correct and 255 faulty) ciphertexts by one round up to
the output of round 9, and then check if their XOR gives a zero. The correct byte
value of RK10 will always satisfy this, while a wrong value would only satisfy
this with a very low probability, so it is almost guaranteed that only the right
byte value remains. In the same way, move on to guess all possible values of
another byte of RK10. Repeat this for all 16 bytes of RK10.

In summary, we need 1 correct ciphertext and 255 faulty ciphertexts, which
can be reused for guessing all 16 bytes of RK10. To guess each byte of RK10,
we make 256 guesses of the key byte and do 256 single-round AES encryptions,
so in total 256 × 256 × 16 = 220 single-round AES encryptions or 220/10 ≈ 216.5

AES encryptions for this DFA-induced Square attack.

Generalizations. Our attack considered inducing faults on one byte of RK6.
It equally applies when faults are induced on the intermediate state between
MCs in rounds 6 and 7, or more generally between the MCs in rounds R − 4 and
R−3. In order to generalize this further, we recall that our attack outlined above
induces the byte faults between the MCs in rounds R − 4 and R − 3, and applies
a 3-round Square distinguisher in the rounds R − 3 to R − 1. In fact, we could
also induce the byte faults a bit deeper into the middle of the AES, in particular
between the MCs in rounds R − 5 and R − 4, in either the intermediate state or
the corresponding round key, and again apply the 3-round Square distinguisher
to the rounds R − 4 and R − 2. Then, to attack the last two rounds, we guess
any column of RK9 and the corresponding 4 bytes of RK10, partially decrypt
our ciphertexts by those last two rounds up to just before round 9 and check
if the XOR is zero in any byte of the column corresponding to that column of
RK9. Repeating this four times, we obtain the entire RK9 and RK10 with the
same number of faulty ciphertexts.

Alternatively, we could also induce the byte faults between the MCs in rounds
R−3 and R−2, in either the intermediate state or the corresponding round key,
and hence apply the first 2 rounds of the 3-round Square distinguisher to the

144 R.C.-W. Phan and S.-M. Yen

rounds R − 2 and R − 1. In this case, we are guaranteed that after round R − 1
we would always have all 256 unique values in each byte of the correct and the
faulty encryptions. This allows one to consider each byte of the last round key,
RK10 at a time and performing an attack similar to the above with the same
number of faulty ciphertexts, except that instead of computing the resultant
XOR value, one would further have to check that all 256 unique values exist.

Finally, we can induce the faults between the MCs in rounds R − 2 and R − 1
and apply the first round of our 3-round Square distinguisher to the round R−1.
This states that after round R − 1 we would always have all 256 unique values
in the column in which the fault was induced. We guess at a time each of the
4 bytes of RK10 that correspond to that column, each time reusing the same
faulty ciphertexts. We repeat this four times to obtain all 4 columns of the key,
and hence requiring a total of 210 faulty ciphertexts.

Discussion. Our attacks are the only DFA-style attacks that can be applied
to the AES if faults can only be injected between the rounds R − 4 and R − 3,
and between the rounds R − 5 and R − 4, which would be the case for AES
implementations that incorporate countermeasures against standard previous
DFAs. Previous DFAs do not work for these rounds at all, even with the entire
code book! Our results therefore stress that one should guard against DFAs in
any round of the AES, and not just the outer (first or last) few rounds.

5.2 Impossible-DFA on the AES

Before we proceed with a description of the attack, we briefly introduce a 3-round
impossible differential of the AES, which is a variant of the 4-round impossible
differential discussed in [6]. Specifically, our 3-round impossible differential states
that given a pair of plaintexts equal in all bytes (called passive bytes) except one
(active) byte in which the pair differs, then the ciphertexts after 3 rounds cannot
be equal in any of the 16 bytes at the state just before MC in round 3. Note that
only the ShiftRows and MixColumns operations affect the number and positions
of the active bytes, and that MC and AR are invariant of each other [13].

We use this distinguisher for our attack. Consider that a fault is induced on
any byte of the 6th round key, RK6 that is stored in memory. This fault will not
affect any of the other round keys. However, it will affect the AES encryption
starting from the 6th round onwards. A correct and a faulty encryption would
then differ in a byte prior to the 7th round. This difference will propagate to
4 bytes after round 7, and if we consider our 3-round impossible differential
distinguisher previously discussed, this will suggest that after round 9 we would
never have any equal byte between the correct and the faulty encryptions at the
state just before MC in round 9. We will henceforth denote this state as X .

We have in essence used concepts from the DFA to induce a fault into any
byte of RK6, in order to cause a byte of difference between a correct and a
faulty encryption prior to the 7th round. We then apply the 3-round impossible
differential from rounds 7 to 9 up to X , and with this in place, we guess all 232

possible values of the four bytes of the last round key, RK10 that correspond

Amplifying Side-Channel Attacks with Techniques 145

to any column at X , say the first column, partially decrypt the correct and the
faulty ciphertexts by one round up to X and check if we get any equal bytes in
that column of X . If this is the case, then the guessed values of RK10 are wrong
since they caused the impossible differential to occur. These values are removed
from the list of 232 possible values of RK10. Doing this with one faulty encryption
causes about (1 − 2−6) × 232 possible key values to remain2 [6]. Repeating this
with a sufficient number of faulty encryptions, in this case about 211, will leave
232(1 − 2−6)2

11 ≈ 0 wrong key values, so only the correct key value remains [6].
With this, we obtain 4 bytes of RK10 that correspond to that column of X . We
can repeat the same steps for the bytes of RK10 that correspond to the other 3
columns of X , and hence obtain the entire RK10.

To obtain each column of RK10, the attack needs 1 correct ciphertext and
211 faulty ciphertexts which can be reused. Also, to obtain each column of RK10,
we do 232 single-round AES encryptions, so this makes it 234 single-round AES
encryptions or 232/10 ≈ 228.5 AES encryptions.

Generalizations. This can be generalized similarly to Section 5.1, hence the
flexibility of inducing the byte fault in the round key or in the intermediate state
between the MCs in rounds R − 4 and R − 3. However, in contrast to the case of
the DFA and Square attacks, it is not possible to further generalize and make
this attack work when the fault is induced at other locations simply because the
first few rounds of the 3-round impossible differential are in fact probability-one
differentials, so the propagation of the active and passive would always occur
irrespective of the guessed key values, hence cannot be used for filtering wrong
keys. For AES-192 (respectively AES-256), one could consider applying the 4-
round (respectively 5-round) impossible differentials reported by Kim et al. [24].

Discussion. As was the case with our attacks in Section 5.1, our attacks in this
section are the only DFA-style attacks that can be applied to the AES if faults
can only be injected between the rounds R − 4 and R − 3.

6 Concluding Remarks

We have introduced the notion of amplified side-channel attack, and illustrated
specifically with Square-DFA and impossible-DFA attacks on the AES. In
Table 1, we compare between previous DFAs and our amplified DFA attacks
on the AES. We have indicated in Table 1 the best DFAs based on the fault lo-
cation. Clearly, Dusart, Letourneux and Vivolo’s [15] attack is the best for faults
induced in round R−1 while Piret and Quisquater’s [32] attacks are the best for
faults induced between the rounds R − 3 and R − 1. Our amplified DFA attacks
are the best and only attacks that are applicable for faults induced between the
rounds R − 5 through to R − 3. Therefore, we can think of all these attacks as
complementing each other. Depending on where the faults can be induced, the
2 The probability of getting a passive byte is 2−8 so the probability of getting any

passive byte in a column is 2−6.

146 R.C.-W. Phan and S.-M. Yen

Table 1. Comparison of DFAs on AES

Attack Fault Fault location Faulty Source Best
type model (Which round) texts attack
DFA Bit faults 1 (after AR0) 128 [10]
DFA Impl-depend. - 256 [10]
DFA Bit faults R − 1 (after ARR−1) 50 [19]
DFA Byte faults R − 1 (after SR) 50 [15] �
DFA Byte faults R − 2 and R − 1 250 [19]

(RKR−2, and RKR−1)
DFA Byte faults R − 2 and R − 1 30 [12]

(RKR−2, and RKR−1)
DFA Byte faults Between MCs 8 [32] �

in R − 2 and R − 1
Square-DFA Byte faults Between MCs 210 This

in R − 2 and R − 1 paper
DFA Byte faults Between MCs 2 [32] �

in R − 3 and R − 2
Square-DFA Byte faults Between MCs 256 This

in R − 3 and R − 2 paper
Impossible-DFA Byte faults Between MCs 211 This

in R − 4 and R − 3 paper
Square-DFA Byte faults Between MCs 256 This �

in R − 4 and R − 3 paper
Square-DFA Byte faults Between MCs 256 This �

in R − 5 and R − 4 paper

Note: Best attack is indicated based on various different fault locations.

cryptanalyst has the option to choose the best that is currently available. Our
results also complete the picture of applying DFAs to the AES, and demonstrate
that it is sometimes useful to apply techniques from block cipher cryptanalysis
to amplify effects caused by side-channel attacks. The integration of two or more
cryptanalysis techniques often results in a more powerful attack. This is due to
the fact that since we are using more than one attack, we could selectively ex-
ploit the special features of each attack in situations or parts of the cipher where
it thrives the most. Thus, we ensure the most suitable attack is applied to block
cipher components most susceptible to it in order to get an optimum result.

References

1. D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi, “The EM Side-Channel(s),”
CHES ’02, LNCS 2523, pp. 29–45, Springer-Verlag, 2002.

2. D. Agrawal, J.R. Rao, P. Rohatgi, “Multi-Channel Attacks,” CHES ’03,
LNCS 2779, pp. 2–16, Springer-Verlag, 2003.

3. E. Biham, “New Types of Cryptanalytic Attacks using Related Keys,” Advances
in Cryptology – EUROCRYPT ’93, LNCS 765, pp. 398–409, Springer-Verlag, 1994.

Amplifying Side-Channel Attacks with Techniques 147

4. E. Biham, A. Biryukov, A. Shamir, “Miss in the Middle Attacks on IDEA, Khufu
and Khafre,” Advances in Cryptology – EUROCRYPT ’99, LNCS 1636, pp. 124–
138, Springer-Verlag, 1999.

5. E. Biham, O. Dunkelman, N. Keller, “The Rectangle Attack – Rectangling the
Serpent,” Advances in Cryptology – EUROCRYPT ’01, LNCS 2045, pp. 340–357,
Springer-Verlag, 2001.

6. E. Biham, N. Keller, “Cryptanalysis of Reduced Variants of Rijndael,” Submitted
to 3rd AES Conference, U.S., 2000.

7. E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard,” Springer-Verlag, 1993.

8. E. Biham, A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
Advances in Cryptology – CRYPTO ’97, LNCS 1294, pp. 513–525, Springer-Verlag,
1997.

9. A. Biryukov, D. Wagner, “Slide Attacks,” FSE ’99, LNCS 1636, pp. 245-259,
Springer-Verlag, 1999.

10. J. Blömer, J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced Encryption
Standard,” Financial Cryptography ’03, LNCS 2742, pp. 162–181, Springer-Verlag,
2003.

11. D. Boneh, R.A. Demillo, R.J. Lipton, “On the Importance of Checking Cryp-
tographic Protocols for Faults,” Advances in Cryptology – EUROCRYPT ’97,
LNCS 1233, pp. 37–51, Springer-Verlag, 1997.

12. C.-N. Chen, S.-M. Yen, “Differential Fault Analysis on AES Key Schedule,”
ACISP ’03, LNCS 2727, pp. 118–129, Springer-Verlag, 2003.

13. J. Daemen, V. Rijmen, “AES proposal: Rijndael (version 2),” Updated Documen-
tation and Complete Specification, 1999.

14. H. Dobbertin, “Cryptanalysis of MD4,” Journal of Cryptology, vol. 11, pp. 235–271,
Springer-Verlag, 1998.

15. P. Dusart, G. Letourneux, O. Vivolo, “Differential Fault Analysis on A.E.S.,” IACR
Cryptology ePrint Archive, No. 010, 2003.

16. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, D. Whiting,
“Improved Cryptanalysis of Rijndael,” 3rd AES Conference, 2000.

17. S. Furuya, “Slide Attacks with a Known-Plaintext Cryptanalysis,” ICISC ’01,
LNCS 2288, pp. 214–225, Springer-Verlag, 2002.

18. H. Gilbert, M. Minier, “A Collision Attack on 7 Rounds of Rijndael,” 3rd AES
Conference, 2000.

19. C. Giraud, “DFA on AES,” IACR Cryptology ePrint Archive, No. 008, 2003.
20. M. Hellman, S. Langford, “Differential-linear Cryptanalysis,” Advances in Cryp-

tology – CRYPTO ’94, LNCS 839, pp. 17–26, Springer-Verlag, 1994.
21. T. Jakobsen, L.R. Knudsen, “The Interpolation Attack on Block Ciphers,” FSE ’97,

LNCS 1267, pp. 28–40, Springer-Verlag, 1997.
22. G. Jakimoski, Y. Desmedt, “Related-Key Differential Cryptanalysis of 192-bit Key

AES Variants,” SAC ’03, LNCS 3006, pp. 208–221, Springer-Verlag, 2004.
23. J. Kelsey, T. Kohno, B. Schneier, “Amplified Boomerang Attacks against Reduced-

round MARS and Serpent,” FSE ’00, LNCS 1978, pp. 75–93, Springer-Verlag, 2001.
24. J. Kim, S. Hong, J. Sung, S. Lee, J. Lim, S. Sung, “Impossible Differential Crypt-

analysis for Block Cipher Structures,” Progress in Cryptology – INDOCRYPT ’03,
LNCS 2904, pp. 82–96, Springer-Verlag, 2003.

25. J. Kim, G. Kim, S. Hong, S. Lee, D. Hong, “The Related-Key Rectangle Attack −
An Application to SHACAL-1,” ACISP ’04, LNCS 3108, pp. 123–136, Springer-
Verlag, 2004.

148 R.C.-W. Phan and S.-M. Yen

26. L.R. Knudsen, D. Wagner, “Integral Cryptanalysis,” FSE ’02, LNCS 2365, pp. 112–
127, Springer-Verlag, 2002.

27. P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems,” Advances in Cryptology – CRYPTO ’96, LNCS 1109, pp. 104–113,
Springer-Verlag, 1997.

28. P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis,” Advances in Cryptology –
CRYPTO ’99, LNCS 1666, pp. 388–397, Springer-Verlag, 1999.

29. S. Lucks, “Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys,”
3rd AES Conference, 2000.

30. M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances in Cryptol-
ogy – EUROCRYPT ’93, LNCS 765, pp. 386–397, Springer-Verlag, 1994.

31. R.C.-W. Phan, S. Furuya, “Sliding Properties of the DES Key Schedule and Po-
tential Extensions to the Slide Attacks,” ICISC ’02, LNCS 2587, pp. 138–148,
Springer-Verlag, 2003.

32. G. Piret, J.-J. Quisquater, “A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD,” CHES ’03, LNCS 2779,
pp. 77–88, Springer-Verlag, 2003.

33. W. Schindler, “A Combined Timing and Power Attack,” PKC ’02, LNCS 2274,
pp. 263–279, Springer-Verlag, 2002.

34. K. Schramm, G. Leander, P. Felke, C. Paar, “A Collision-Attack on AES: Combin-
ing Side Channel- and Differential-Attack,” CHES ’04, LNCS 3156, pp. 163–175,
Springer-Verlag, 2004.

35. K. Schramm, T. Wollinger, C. Paar, “A New Class of Collision Attacks and its
Application to DES,” FSE ’03, LNCS 2887, pp. 206–222, Springer-Verlag, 2003.

36. S.P. Skorobogatov, R.J. Anderson, “Optical Fault Induction Attacks,” CHES ’02,
LNCS 2523, pp. 2–12, Springer-Verlag, 2003.

37. D. Wagner, “The Boomerang Attack,” FSE ’99, LNCS 1636, pp. 156–170, Springer-
Verlag, 1999.

38. C.D. Walter, S. Thompson, “Distinguishing Exponent Digits by Observing Modu-
lar Subtractions,” Topics in Cryptology – CT-RSA ’01, LNCS 2020, pp. 192–207,
Springer-Verlag, 2001.

39. S.-M. Yen, S. Kim, S. Lim, S.-J. Moon, “A Countermeasure Against One Physical
Cryptanalysis May Benefit Another Attack,” ICISC ’01, LNCS 2288, pp. 414–427,
Springer-Verlag, 2001.

A Integrated Block Cipher Cryptanalysis

In this appendix, we summarize previous attempts to integrate block cipher
cryptanalysis techniques. This is hoped to motivate more work in this direction.
The first was notably the differential-linear cryptanalysis [20] in 1994, which com-
bined differential cryptanalysis (DC) [7] with linear cryptanalysis [30]. Denote
the block cipher, E(P) = E2(E1(P)) as the composition of two halves3, where
E1 (respectively E2) denotes the earlier (respectively later) half of the cipher.
Then the differential-linear cryptanalysis applies differential cryptanalysis to E1
to enable linear cryptanalysis to be applied to E2. Differential cryptanalysis is
a chosen-plaintext (CP) attack where the attacker needs to obtain encryptions

3 Not necessarily consisting of the same number of rounds.

Amplifying Side-Channel Attacks with Techniques 149

of plaintexts with a certain chosen difference between them. Meanwhile, linear
cryptanalysis is a known-plaintext (KP) attack in that the attacker simply needs
to be able to obtain some known plaintext values and their corresponding ci-
phertexts. CP attacks that are of the differential cryptanalysis naturally can be
converted to KP attacks but with a considerably high increase in text complex-
ity. In particular, suppose that we need m pairs of CPs with a certain difference
between them. Then with 2n/2

√
2m random KPs, we can form 2n × m pairs of

KPs, of which the probability of getting a pair with a certain difference is 2−n,
and therefore we get m pairs of CPs with the desired difference [7].

In 2001, Furuya [17] considered combining the slide attacks [9] with KP at-
tacks such as linear cryptanalysis. We consider that such attacks should rightly
be called the slide-KP attacks. These apply the slide attacks to the entire cipher
E to enable KP attacks to be applicable to some outer rounds of E. Slide at-
tacks are generally KP attacks, but if chosen-plaintext queries are possible, the
attacker could mount the slide attacks with a much reduced text complexity.

In 2002, the integral-interpolation attacks [26] where presented, which applies
integral cryptanalysis [26] to E1 to enable the interpolation attacks [21] on E2.
Integral cryptanalysis is a CP attack while interpolation attacks are KP attacks.

Finally, in cases where it is possible for the attacker to obtain the encryptions
of plaintexts under two related keys, K and K ′, he could then mount related-
key versions of any of these block cipher cryptanalysis attacks. Examples of such
considerations include the related-key differential attacks [3], related-key slide
attacks [3], related-key square attacks [16], related-key impossible differential
cryptanalysis [22], and the related-key rectangle attack [25].

As an aside, we note that some attacks have been proposed that apply the
same kind of attacks to both E1 and E2. In this respect, we consider such at-
tacks as a special case of integrated block cipher cryptanalysis. For instance, the
boomerang attack [37] uses chosen plaintexts to mount differential cryptanalysis
to E1 and then enables differential cryptanalysis on E2 by making adaptively-
chosen ciphertext queries from the other end of the cipher. Note that adaptively-
chosen plaintext-ciphertext attacks are much harder to mount than CP or KP
attacks. The amplified boomerang attack [23] and rectangle attack [5] are enhance-
ments of the boomerang attack. They similarly apply differential cryptanalysis
to E1 but the number of chosen plaintext queries used is increased considerably
such that enough texts with the desired chosen difference appear probabilisti-
cally after E1 to allow differential cryptanalysis to be further mounted on E2.
The inside-out attack [37] obtains a high number of known plaintexts such that
enough texts with the desired chosen difference appear probabilistically in the
middle of the cipher so that the difference will propagate outwards in both direc-
tions through E1 and E2. The miss-in-the-middle attack [4] applies differential
cryptanalysis to both E1 and E2 in such a way that the differences between the
texts in the middle of the cipher contradict each other.

Our main observation is that one starts by first applying a CP attack or a
KP attack on E1, to enable a KP attack to be mountable on E2. In some cases

150 R.C.-W. Phan and S.-M. Yen

where it is possible to considerably increase the number of texts obtained, then
one could also apply CP attacks to E2.

Definition 2. Integrated block cipher cryptanalysis applies different types of
cryptanalysis attacks to the first and second halves of a cipher, E. In partic-
ular, CP or KP attacks are applied to E1 to enable KP attacks on E2.

Fact 1. CP attacks can be converted to KP by increasing the text complexity.

Corollary 1. In some cases one could also mount CP attacks on E2 when it is
possible to considerably increase the number of texts obtained.

Corollary 2. In cases where it is only possible to apply CP or KP attacks on
one sequence of rounds (one half instead of two) within E, then this can be
viewed as a special case of integrated block cipher cryptanalysis where the attack
is applied to either E1 or E2.

The notion of integrated block cipher cryptanalysis opens doors to numerous
possible attacks where previous attacks on their own failed. In general, any
integration of CP and KP attacks could be mounted on ciphers. Further, related-
key versions of the aforementioned integrated attacks are also possible.

In Table 2, we consider previous integration of CP and KP attacks, where
the rows and columns indicate attacks applied to E1 and E2, respectively:
differential-differential attacks e.g. the boomerang [37], inside-out [37], ampli-
fied boomerang [23], rectangle [5], and miss-in-the-middle [4]; we also have
differential-linear attacks [20] and integral-interpolation attacks [26]. The slide-
linear attack [17] is just one of the ways one could mount his proposed slide-KP
attacks, another variant he suggested being the slide-partitioning attacks [17].
On this note, we also remark that it would be possible to have slide-interpolation
attacks. The slide-slide (double slide) attack [31] has also been considered.

Table 2. Previous integration of block cipher cryptanalysis attacks

Differential Integral Linear Interpolation Partitioning Slide
Differential [37, 23, 5, 4] [20]

Integral [26]

Linear
Interpolation
Partitioning

Slide [17] New [17] [31]

Power Analysis to ECC Using Differential Power
Between Multiplication and Squaring

Toru Akishita1 and Tsuyoshi Takagi2

1 Sony Corporation, Information Technologies Laboratories, Tokyo, Japan
akishita@pal.arch.sony.co.jp

2 Future University - Hakodate, Japan
takagi@fun.ac.jp

Abstract. Power analysis is a serious attack to implementation of ellip-
tic curve cryptosystems (ECC) on smart cards. For ECC, many power
analysis attacks and countermeasures have been proposed. In this pa-
per, we propose a novel power analysis attack using differential power
between modular multiplication and modular squaring. We show how
this difference occurs in CMOS circuits by counting the expectation of
signal transition frequency, and present a simulation result on our ECC
co-processor. The proposed attack is applicable to two efficient power
analysis countermeasures based on unified addition formulae and elliptic
curves with Montgomery form.

Keywords: Smart cards, elliptic curve cryptosystems, power analysis,
DPA, modular multiplication.

1 Introduction

Elliptic Curve Cryptosystems (ECC) offer the same level security with much
shorter key length than RSA cryptosystems, so that they are suitable for imple-
menting on resource-constraint devices such as smart cards. In recent years, a
new class of attacks has been proposed to extract some secret information from a
cryptographic device using side channel information (execution time, power con-
sumption, etc.), that are called side channel attacks. Power analysis attacks, the
most typical side channel attacks, are real threats to smart cards since the power
consumption during cryptographic protocols is relatively dominant in such de-
vices. These attacks include Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) [11]. SPA utilizes a power consumption trace during a single ex-
ecution, whereas DPA requires many power consumption traces and analyzes
them with statistical tools.

For ECC, many SPA/DPA attacks and countermeasures have been investi-
gated since Coron generalized power analysis attacks to a scalar multiplication
dP [5], where d is a secret scalar and P is a point on an elliptic curve. In 2002,
Brier and Joye proposed unified addition formulae that make a point addition
and a point doubling indistinguishable on an elliptic curve with Weierstrass
form [4]. This indistinguishability guarantees SPA-resistance and enables the

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 151–164, 2006.
c© IFIP International Federation for Information Processing 2006

152 T. Akishita and T. Takagi

use of efficient addition chains such as Non-Adjacent Form (NAF) and so-called
window methods. In the meantime, Montgomery ladder always repeats a point
addition and doubling, thus an SPA attacker cannot know any bit information
of a secret scalar [16]. Montgomery ladder on an elliptic curve with Montgomery
form requires much less costs than that on an elliptic curve with Weierstrass
form [15, 16]. One can easily enhance these two SPA countermeasures to be DPA-
resistant by combining them to randomized projective representation [5, 17] or
randomized curve isomorphism [9].

In this paper, we propose a novel attack to these DPA countermeasures.
We firstly describe the difference of power consumption between modular mul-
tiplication and modular squaring. Messerges et al. experimented DPA attacks
to modular exponentiation using distinguishability between multiplication and
squaring [13], but there is no investigation about this bias in CMOS circuits. We
give detailed descriptions of the bias by estimating the transition probability for
each gate in carry-save adder tree, which is a main component of a multiplier,
during Montgomery modular multiplication algorithm. We performed a net-list
timing simulation of our ECC co-processor and confirmed sharp peaks in the dif-
ference between Montgomery modular multiplication and Montgomery modular
squaring.

Secondly, we apply this bias to the above mentioned two SPA/DPA coun-
termeasures. For unified addition formulae, an attacker can distinguish whether
the formulae work as a point addition or doubling, and detect a secret scalar.
For Montgomery ladder on a Montgomery-form curve, we utilize a “special”
point that equalizes both inputs of a certain modular multiplication in a point
doubling. The point satisfies x2 + (A − 4)x + 1 = 0, and the proposed attack is
effective to ECC on any curve that has this point.

The rest of this paper is organized as follows: in section 2 we briefly review
power analysis attacks and countermeasures to ECC. Section 3 provides detailed
description of the bias between Montgomery modular multiplication and Mont-
gomery modular squaring together with a simulation result. In section 4, we
apply the bias to two power analysis countermeasures. Finally, we conclude in
section 5.

2 Elliptic Curve Cryptosystems and Power Analysis

In this section, we introduce power analysis attacks and countermeasures against
elliptic curve cryptosystems, including unified addition formulae and elliptic
curves with Montgomery form. More details are described in [3, Chapter IV
and V].

2.1 Elliptic Curve Cryptosystems

The Weierstrass form of an elliptic curve EW over a prime field IFp (p > 3) is
represented by

EW : y2 = x3 + ax + b (a, b ∈ IFp, 4a3 + 27b2 �= 0).

Power Analysis to ECC Using Differential Power 153

Table 1. Binary method

Input: an n-bit scalar d, a point P
Output: scalar multiplication dP

1. Q ← P
2. For i = n − 2 downto 0 do:
2.1. Q ← ECDBL(Q)
2.2. if di = 1 then

Q ← ECADD(Q, P)
3. Return(Q)

Table 2. Double-and-add-always method

Input: an n-bit scalar d, a point P
Output: scalar multiplication dP

1. Q[0] ← P
2. For i = n − 2 downto 0 do:
2.1. Q[0] ← ECDBL(Q[0])
2.2. Q[1] ← ECADD(Q[0], P)
2.3. Q[0] ← Q[di]

3. Return(Q[0])

The set of all points on EW and a point of infinity O forms an additive group,
where O is a neutral element. Let P0 = (x0, y0), P1 = (x1, y1) be points on EW .
The addition P2 = (x2, y2) = P0 + P1 is defined in different formulae depending
on whether P0 = P1 or not as following: x2 = λ2 −x0 −x1, y2 = λ(x0 −x2)− y0,
where λ = (y1 − y0)/(x1 − x0) for P0 �= ±P1, and λ = (3x0

2 + a)/(2y0) for
P0 = P1. We call P0 + P1 (P0 �= ±P1) an elliptic curve addition (ECADD)
and P0 + P1 (P0 = P1), namely 2P0, an elliptic curve doubling (ECDBL). In
practice, both ECADD and ECDBL are implemented in Jacobian coordinates
by x = X/Z2, y = Y/Z3 because an inversion is much more expensive than any
other arithmetic (addition, subtraction, multiplication) over IFp. In this case,
both are also implemented with different formulae.

In order to construct Elliptic Curve Cryptosystems (ECC) we need to com-
pute a scalar multiplication: computing a point dP = P + · · · + P

︸ ︷︷ ︸

d

given a scalar

d and a point P . On the other hand, the security of ECC is based on the hardness
of Elliptic Curve Discrete Logarithm Problem (ECDLP): computing d given P
and dP . Therefore, in most ECC protocols, d is used as a secret key; P and dP
are made to be public. The basic method to compute a scalar multiplication is
called as the binary method. Let d = (dn−1 · · · d1d0)2 be a binary representation
of d. The binary method is shown in Table 1.

2.2 Power Analysis Attacks and Countermeasures

Power analysis attacks are serious on resource-constraint devices such as smart
cards. An attacker can successfully reveal some secret information by observ-
ing the power consumption on a device during cryptographic protocols. Simple
Power Analysis (SPA) and Differential Power Analysis (DPA) are typical ones;
SPA requires a power consumption trace during only a single execution, whereas
DPA utilizes many power consumption traces with statistical analysis [11]. These
attacks utilize a correlation between secret information and power consumption,
and are also applicable to ECC.

The binary method shown in Table 1 is vulnerable to SPA. It computes
ECADD only when di = 1, although ECDBL is always computed regardless of
di. ECADD and ECDBL are different operations as described above, and thus
an attacker can easily distinguish ECDBL and ECADD by observing a power

154 T. Akishita and T. Takagi

consumption trace and detect secret bit di. Many SPA countermeasures against
ECC have been proposed, and they are principally divided into two types as
follows.

(S1) repeating regular pattern
(S2) unifying ECADD and ECDBL

(S1) includes the double-and-add-always method in Table 2 [5], which repeats
ECDBL and ECADD by appending dummy ECADD to the binary method, and
Montgomery ladder [15], which is discussed in section 2.4. (S2) includes Hessian
curves [10], Jacobi curves [12], and unified addition formulae [4], which is shown
in section 2.3.

The resistance against SPA doesn’t always guarantee the resistance against
DPA because a power consumption trace depends on not only a type of opera-
tions, namely ECADD or ECDBL, but also intermediate values. A DPA attacker
collects many power consumption traces during the scalar multiplication and
guesses a bit of the secret scalar by analyzing correlation between these traces
and intermediate values [5]. In order to resist DPA, intermediate values must be
randomized. There are three standard randomization methods as follows.

(D1) blinding scalar [11, 5]
(D2) randomized projective representation [5, 17]
(D3) randomized curve isomorphism [9]

These three DPA countermeasures together with the SPA countermeasure (S1)
or (S2) enables SPA/DPA resistance. (D1), however, requires more additional
costs than (D2) and (D3), so that the combination of either (S1) or (S2) and
either (D2) or (D3) is thought to be an optimal SPA/DPA countermeasure.

In 2003, Goubin presented a new power analysis attack called Refined Power
Analysis (RPA) [6]. This attack utilizes a “special” point (x, 0) or (0, y) that can
be fully randomized by neither (D2) nor (D3). In the addition, an attacker can
pick up the point only in a few power consumption traces because a power trace
in processing this point is distinctive [2]. RPA with a point (x, 0) can be easily
discarded by multiplying co-factor on the underlying curve to an input point P
since the order of (x, 0) is 2 [18]. On the other side, RPA with a point (0, y)
cannot be discarded because (0, y) has large order. Therefore, RPA is effective
on a curve that has a point (0, y).

We extended RPA to Zero-value Point Attack (ZPA) using other “special”
points [2]. We pointed out that, even if a point has no zero coordinate, in-
termediate values in addition or doubling formulae might become zero. ZPA
using a point addition is actually difficult for a large scalar d, but ZPA using a
point doubling is as effective as RPA if the point that causes zero-value in a
point doubling exists on the underlying curve. Therefore, RPA and ZPA using
a point doubling may oblige not only (D2) or (D3) but also (D1), or another
countermeasure such as randomized initial point countermeasure [7, 14], which
leads to extra costs or memories.

Power Analysis to ECC Using Differential Power 155

2.3 Unified Addition Formulae

Brier and Joye proposed “unified addition formulae” for an elliptic curve addition
(ECADD) and an elliptic curve doubling (ECDBL) on a Weierstrass-form elliptic
curve as an SPA countermeasure [4]. In their formulae for affine coordinates, a
denominator becomes no longer zero in ECDBL as follows.

Unified Addition Formulae. P2 = P0 + P1

x2 =
(

x1
2 + x1x0 + x0

2 + a

y1 + y0

)2

− x0 − x1

y2 =
(

x1
2 + x1x0 + x0

2 + a

y1 + y0

)

(x0 − x2) − y0

Izu and Takagi proposed the exceptional procedure attack that forces a denom-
inator to become zero for ECADD by inputting two points (x0, y0) and (x1, y1),
which satisfy y0 + y1 = 0, but it seems difficult to find a couple of such points
for a large scalar [8].

An SPA attacker cannot distinguish whether the unified formulae work as
ECADD or ECDBL, thus she knows only a hamming weight of a secret scalar
d even if the binary method is used. Moreover, an efficient addition chain such
as Non-Adjacent Form (NAF) or window-based methods leads great efficiency.
The unified addition formulae for projective coordinates were also proposed. The
combination with a DPA countermeasure (D2) or (D3) enables the compatibility
of efficiency and SPA/DPA resistance.

Remark 1. In [21], Walter proposed an SPA attack to unified addition formulae
based on the existence of a final subtraction in Montgomery modular multiplica-
tion. This attack, however, is easily eliminated by computing a final subtraction
in any case.

2.4 Elliptic Curve with Montgomery-Form

The Montgomery form of an elliptic curve EM over IFp, (p > 3) was proposed
by Montgomery to speed up integer factorization [15], and represented by

EM : By2 = x3 + Ax2 + x (A, B ∈ IFp, (A2 − 4)B �= 0).

About 40% of elliptic curves with Weierstrass form are transformed into
Montgomery form, and the order of a Montgomery-form elliptic curve is always
divisible by 4 [16]. On a Montgomery-form elliptic curve EM , x-coordinate of the
addition of two points can be computed without y-coordinate if x-coordinate of
the difference of these points is known. Affine coordinate x is transformed into
projective coordinates (X : Z) by x = X/Z. Let P0 = (X0 : Z0) and P1 = (X1 :
Z1) be points on EM . In the following we describe Montgomery addition formu-
lae P2 = (X2 : Z2) = P0 + P1, where P0 �= ±P1 and P ′ = (X ′ : Z ′) = P0 − P1,
and Montgomery doubling formulae P2 = (X2 : Z2) = 2P0.

156 T. Akishita and T. Takagi

Table 3. Montgomery ladder

Input: an n-bit scalar d, a base point P
Output: scalar multiplication dP

1. Q[0] ← P, Q[1] ← 2P
2. For i = n − 2 downto 0 do:
2.1. Q[1 − di] ← mECADD([Q[0], Q[1])
2.2. Q[di] ← mECDBL([Q[di])

3. Return(Q[0])

Montgomery Addition Formulae (mECADD). P2 = P0 + P1 (P1 �= ±P0)

X2 = Z ′((X0 − Z0)(X1 + Z1) + (X0 + Z0)(X1 − Z1))2

Z2 = X ′((X0 − Z0)(X1 + Z1) − (X0 + Z0)(X1 − Z1))2

Montgomery Doubling Formulae (mECDBL). P2 = 2P0

4X0Z0 = (X0 + Z0)2 − (X0 − Z0)2

X2 = (X0 + Z0)2(X0 − Z0)2

Z2 = (4X0Z0)((X0 − Z0)2 + ((A + 2)/4)(4X0Z0))

A scalar multiplication dP can be computed by so-called Montgomery ladder
in Table 3. Montgomery ladder always repeats mECADD and mECDBL whether
di = 0 or 1. Therefore, an SPA attacker cannot guess any bit information of a
secret scalar d [16]. Montgomery ladder on an elliptic curve with Weierstrass
form was also proposed, but the costs of a point addition and a point doubling
on a Weierstrass-form curve are much larger than mECADD and mECDBL. One
can enhance Montgomery ladder to be DPA-resistant by applying randomized
projective representation [17]. In the addition, RPA and ZPA are easily elimi-
nated by checking whether 4P is a point at infinity or not for a input point P
because the order of a point (0, y) for RPA, (−1, y) and (1, y) for ZPA are 2, 4
and 4, respectively.

3 Differential Power Between Multiplication and
Squaring

Here we show that there exists the difference of power consumption between
modular multiplication and modular squaring in CMOS circuits. We estimate
the transition probability of each signal in some full adders, and present a result
of net-list timing simulation in order to confirm this difference.

3.1 Montgomery Modular Multiplication

We assume the following standard smart card environment. The embedded CPU
on a smart card, typically an 8 or 16 bit CPU, has only so poor computing

Power Analysis to ECC Using Differential Power 157

Table 4. 160-bit Montgomery modular multiplication using a 32-bit multiplier

Input: M = (M4 · · · M0)b, X = (X4 · · · X0)b, Y = (Y4 · · · Y0)b,
b = 232, R = b5, gcd(m, b) = 1, m′ = M−1

0 mod b
Output: XY R−1 mod M

1. A ← 0 ((A = (A5 · · · A0)b)
2. For i from 0 to 4 do:

2.1. temp ← 0
2.2. For j from 0 to 4 do:

{temp, Aj} ← XjYi + Aj + temp
2.3. A5 ← temp, temp ← 0, ui ← A0m

′ mod b
2.4. For j from 0 to 5 do:

{temp, Aj} ← Mjui + Aj + temp
2.5. A ← A/b

3. If A ≥ M then A ← A − M
4. Return(A)

power that we usually equip a co-processor for implementing ECC. An addition,
subtraction, multiplication and inversion over a base field IFp are implemented
in an ECC co-processor to compute elliptic curve operations such as a point
addition, point doubling and scalar multiplication. The modular multiplication
is the most frequently used among those modular operations.

Recall that Montgomery modular multiplication algorithm is a standard al-
gorithm for computing modular multiplication over general prime fields. In this
paper we analyze a 160-bit Montgomery modular multiplication with 32-bit word
size is shown in Table 4, which is a standard size in current implementation of
ECC. In this algorithm there are three 32-bit multiplications computed by a 32-
bit multiplier, namely XjYi in step 2.2, A0m

′ in step 2.3, and Mjui in step 2.4.
We will later show that signal transition probability in a 32-bit multiplier

during computing XjYi is biased if the inputs of Montgomery modular multipli-
cation, X and Y , satisfy X = Y .

3.2 Structure of a Multiplier

In this section we deal with a 6-bit multiplier instead of a 32-bit multiplier
because of space limitation. All observations, however, are applicable to a 32-bit
multiplier.

In general, a multiplier consists of three stages: Partial Product Generator
(PPG), Partial Product Accumulator (PPA) and Final Stage Adder (FSA). The
PPG stage generates partial products from multiplicand and multiplier in paral-
lel. The PPA stage then performs multi-operand addition for all partial products
and produces their sum in carry-save form. Finally, the carry-save form is con-
verted to the binary output at the FSA stage.

In Fig.1, we show the detailed structure of a 6-bit multiplier x ∗ y using
simple XORs as PPG and Wallace tree as PPA, where x = (x5x4x3x2x1x0)2
and y = (y5y4y3y2y1y0)2 are binary representations of x and y, respectively. All

158 T. Akishita and T. Takagi

FA2 FA1FA4

FA5 FA3

FA6

FA0

FA7

FA8

FA9FA12

FA11

FA10

FA14

FA13

FA15

HA3

HA2

HA1

HA0

HA

a51 a42 a33 a50a43 a34 a25 a41

a24 a15 a23 a14 a05 a22 a13 a04 a21 a12 a03 a20 a11 a02

a32

a10 a01

a30a40 a31

a53 a44 a35 a52

a54 a45

a55 a00

Carry Propagate Adder

Fig. 1. 6-bit multiplier with Wallace tree

A
B

Q

C Ci

B
A

Q

Co

n0

n1

n2

Fig. 2. Half Adder (HA) and Full Adder (FA)

partial products aij = xi&yj for 0 ≤ i, j ≤ 5 are summed in carry-save form at
Wallace tree that is composed of Half Adders (HA) and Full Adders (FA) shown
in Fig.2. In the final stage, a carry propagate adder generates a product from
11-bit sum and 9-bit carry.

3.3 Biased Signal Transition Probability in a Multiplier

Power consumption in CMOS circuits depends on the transition probability of
signals without power consumption caused by the leakage current, which is de-
termined by the characteristics of the CMOS process. Therefore, regarding to
power analysis, we have only to consider transition probability of signals [19, 20].
When the transition probability in two cases is biased, the difference of power
consumption occurs.

Here we estimate the signal transition probability of FA0, FA1, FA2, FA4,
FA5, FA7, FA10 and FA13, depth-1 full adders of Wallace tree, in Fig.1. The
all three inputs A, B, Ci of these full adders consist of partial products aij . We
consider the following two cases about the inputs (x, y) of the 6-bit multiplier:

(i) transition from (s, t) to (s′, t),
(ii) transition from (s, t) to (t, t),

where s, s′ and t are 6-bit random values, respectively. aij = 1 generally occurs
with probability 1/4 by aij = xi&yj.

Power Analysis to ECC Using Differential Power 159

Table 5. Signal transition probability of Full Adders (FAs)

signal transition TypeN TypeA1 TypeA2 TypeA3 TypeA4
A 0 → 1 1/8 1/8 1/8 1/4 1/8

1 → 0 1/8 1/8 1/8 0 1/8
B 0 → 1 1/8 1/8 1/8 1/8 1/4

1 → 0 1/8 1/8 1/8 1/8 0
Ci 0 → 1 1/8 1/8 1/4 1/8 1/8

1 → 0 1/8 1/8 0 1/8 1/8
n0 0 → 1 3/16 3/16 3/16 1/4 1/4

1 → 0 3/16 3/16 3/16 1/8 1/8
n1 0 → 1 9/128 9/64 9/64 3/32 3/32

1 → 0 9/128 3/64 3/64 1/32 1/16
n2 0 → 1 3/64 3/54 3/64 3/32 3/32

1 → 0 3/64 3/64 3/64 1/32 1/32
Q 0 → 1 7/32 1/8 1/4 1/4 1/4

1 → 0 7/32 5/16 3/16 3/16 3/16
Co 0 → 1 13/128 5/32 21/128 21/128 5/32

1 → 0 13/128 1/16 9/128 9/128 1/16
Total 2 33/16 133/64 133/64 33/16

In case (i), all the eight FAs have the same transition probability of inputs,
internal nodes and outputs as TypeN shown in Table 5. Meanwhile, in case (ii)
FA4 and FA5 also have the same probability as TypeN, but the other FAs are
divided into four types, which have different probability from TypeN in Table 5,
as follows.

TypeA1 A = Ci and B = aii (FA0, FA13)
TypeA2 B = Ci (FA1, FA10)
TypeA3 Ci = aii (FA2)
TypeA4 A = aii (FA7)

This biased transition probability results from the following biased state: aij =
aji and aii = 1 with probability 1/2 when (x, y) = (t, t). The expectation of
the total transition frequency for these FAs in case (ii) is larger by 13/32 than
that in case (i). Moreover, the biased transition probability of outputs Q, Co in
these FAs influences transition probability of depth-2/3 adders in Wallace tree
and the carry propagate adder. Therefore, the power consumption traces of the
6-bit multiplier in case (i) and (ii) differ, which will not depend on the bit-width
and structure of a multiplier — the difference will occur, for example, when
using a 32-bit multiplier with booth encoder as PPG and 4:2 compressor tree as
PPA.

We denote Montgomery modular multiplication with inputs X and Y satis-
fying X = Y , namely Montgomery modular squaring, by SQR and Montgomery
modular multiplication with general X and Y by MUL. Let CS and CM be
power consumption traces during SQR and MUL, respectively. During SQR,
the inputs of multiplier transit from (Xi−1, Xi) to (Xi, Xi) at j = i in step
2.2, which corresponds to case (ii). On the other hand, during MUL, the inputs
of multiplier then transit to from (Xi−1, Yi) to (Xi, Yi), which corresponds to
case (i). Therefore, the difference ∆C = CS − CM will present a peak at j = i

160 T. Akishita and T. Takagi

-30

-20

-10

0

10

20

30

200000 210000 220000 230000 240000 250000 260000 270000 280000 290000

D
iff

er
en

ce
 o

f a
ve

ra
ge

 s
w

itc
hi

ng
 ti

m
es

Time (ps)

(SQR)-(MUL)
(MUL)-(MUL)

Fig. 3. Simulation result of the differential power between SQR and MUL

in step 2.2. Similarly, ∆C also will show a peak at j = i + 1 because the bi-
ased transition from biased state to random state occurs in a multiplier during
SQR.

3.4 Simulation Result

We performed a net-list timing simulation of Montgomery modular multiplica-
tion circuits in our ECC co-processor, reported in [1]. We used a 90-nm CMOS
standard cell library and then made estimated power consumption traces by
counting the number of gate switching times in every 200ps. In Fig.3, the dotted
line shows the difference of average switching times between SQR and MUL for
random 10000 inputs at i = 2 in step 2.2; the solid line shows the difference
between both MUL for random 10000 inputs. The dotted line shows sharp peaks
at the 3rd and 4th cycles, namely at j = 2 and 3.

Remark 2. The power consumption is biased between modular multiplication
and modular squaring for any modular multiplication algorithm because the
multiplication of inputs X and Y is required.

4 Application to Elliptic Curve Cryptosystems

We apply the difference of power consumption between multiplication and squar-
ing to the above-mentioned two DPA countermeasures, namely unified addition
formulae and Montgomery ladder on a Montgomery-form curve.

Power Analysis to ECC Using Differential Power 161

4.1 Attack to Unified Addition Formulae

The distinguishability between modular multiplication and modular squaring is
applicable to an attack to a scalar multiplication dP for a secret scalar d and a
point P using unified addition formulae. We notice the modular multiplication
x1x0, denoted by MUL1, in the affine coordinate version of unified addition
formulae in section 2.3. The formulae work as ECADD when x1 �= x0 and as
ECDBL when x1 = x0. Hence, if an attacker can distinguish whether MUL1
is a modular multiplication or a modular squaring, she knows whether the cor-
responding operation is ECADD or ECDBL and detects bit information of the
secret scalar d.

Assume that randomized curve isomorphism is used as a DPA countermea-
sure. P0 = (x0, y0) and P1 = (x1, y1) is transformed to its isomorphic class like
P ′

0 = (λ2x0, λ
3y0) and P ′

1 = (λ2x1, λ
3y1) for a random value λ ∈ IF∗

p. In the case,
the modular multiplication (λ2x1)(λ2x0) is computed as MUL1. Thus MUL1
remains a modular multiplication when P ′

0 �= P ′
1 and a modular squaring when

P ′
0 = P ′

1.
In the following, we present the precise algorithm to search the bit of d for

a scalar multiplication dP using unified addition formulae. We assume that the
scalar multiplication is computed by the binary method. The unified addition
formulae is computed m = l(d) + h(d) − 1 times during a single scalar multipli-
cation, where l(d) is the bit length of d and h(d) is the hamming weight of d;
precisely h(d) − 1 times as “A” (ECADD) and l(d) times as “D” (ECDBL).

[Bit search algorithm for unified addition formulae]
1. Measure power consumption traces of dP L times and average them.
2. Extract the average traces Ci (1 ≤ i ≤ m) when computing MUL1 during

the i-th execution of the formulae.
3. Assume “A” if ∆Ci = Ci − C1 (2 ≤ i ≤ m) shows a peak and “D” if not.
4. Regard “DA” as a bit “1” and the remaining “D” as a bit “0”.

The first execution of MUL1 corresponds to a modular squaring because the
scalar multiplication always computes ECDBL in the beginning. Therefore, if
∆Ci shows a peak, x1x0 is a modular multiplication and the execution corre-
sponds to ECADD.

Remark 3. The proposed attack is also applicable to the projective coordinate
version of unified addition formulae [4].

4.2 Attack to Elliptic Curve with Montgomery-Form

As described in section 2.4, there is no “special” point of small order for RPA
and ZPA in Montgomery doubling formulae (mECDBL). Therefore, Montgomery
ladder on a Montgomery-form curve together with randomized projective repre-
sentation is secure against SPA/DPA/RPA/ZPA. P0 = (X0 : Z0) is transformed
to its random projective representation like P0 = (λX0 : λZ0) for a random
value λ ∈ IF∗

p. Here we propose another “special” point that equalizes both

162 T. Akishita and T. Takagi

inputs of a certain modular multiplication in mECDBL. We notice the modular
multiplication (4X0Z0)((X0 − Z0)2 + ((A + 2)/4)(4X0Z0)), denoted by MUL2,
in mECDBL.

Let E = 4X0Z0 and F = (X0−Z0)2+((A+2)/4)(4X0Z0). MUL2, of course,
becomes a modular squaring when E = F . The condition satisfying E = F is
that x-coordinate x0 = X0/Z0 of P0 satisfies x0

2 + (A − 4)x0 + 1 = 0 by

E − F = −(X0
2 + (A − 4)X0Z0 + Z0

2)
= −Z0

2(x0
2 + (A − 4)x0 + 1).

Even if projective representation of P0 is randomized as P0 = (λX0 : λZ0), the
condition of E = F still implies x0

2 + (A − 4)x0 + 1 = 0 by −λ2Z0
2(x0

2 + (A −
4)x0 + 1) = 0.

Let R = (xR, yR) of order #R be the point satisfying xR
2 + (A− 4)xR + 1 =

0 and exist on the underlying Montgomery-form curve. If the input point of
mECDBL is R, MUL2 becomes a modular squaring despite randomized projec-
tive representation. Suppose that a scalar multiplication dP for a secret scalar
d and a point P is computed by Montgomery ladder (Table 2) and randomized
projective representation, where P can be adaptively chosen by an attacker. Here
we assume that she knows (n − i − 1) most significant bits (dn−1 · · ·di+1) of d.
In Table 2, for any given input point P , the points Q[0] and Q[1] obtained at
the beginning of the i-th step of the loop are Q[0] = (

∑n−1
j=i+1 dj2j−i−1) · P and

Q[1] = (
∑n−1

j=i+1 dj2j−i−1 + 1) · P . We then have two cases:

– If di = 0, the input point of mECDBL is (
∑n−1

j=i+1 dj2j−i−1) · P .
– If di = 1, the input point of mECDBL is (

∑n−1
j=i+1 dj2j−i−1 + 1) · P .

Thus, MUL2 becomes a modular squaring at the i-the step of the loop in the
following two cases:

– di = 0 and P = [(
∑n−1

j=i+1 dj2j−i−1)−1 mod #R] · R,
– di = 1 and P = [(

∑n−1
j=i+1 dj2j−i−1 + 1)−1 mod #R] · R.

In these cases biased power consumption occurs in MUL2 compared to a mod-
ular multiplication.

We present the algorithm to search the bit of a secret scalar d from the most
significant bit.

[Bit search algorithm for Montgomery-form curve]
1. Measure power consumption traces for L random input points P and average

them by Ct.
2. i ← n − 2.
3. Compute P0 = [k−1 mod #R] · R and P1 = [(k + 1)−1 mod #R] · R for

k =
∑n−1

j=i+1 dj2j−i−1.
4. Measure power consumption traces L times for the input point P0 and av-

erage them by C0.

Power Analysis to ECC Using Differential Power 163

5. Measure power consumption traces L times for the input point P1 and av-
erage them by C1.

6. Compute ∆C0 = C0 − Ct and ∆C1 = C1 − Ct.
7. Assume that di = 0 if ∆C0 during MUL2 at the i-th step of the loop has

larger peaks than ∆C1 and di = 1 otherwise.
8. If i = 0, terminate; else i ← i − 1 and go to 3.

The average power trace Ct is used as a standard one where MUL2 is a modular
multiplication at every step of the loop.

5 Conclusion

We presented detailed descriptions of the biased power consumption between
Montgomery modular multiplication and Montgomery modular squaring. How-
ever, it must be emphasized that the bias occurs in any modular multiplication
algorithm. We applied this bias to unified addition formulae and Montgomery
ladder on a Montgomery-form elliptic curve. We should randomize not only a
base point but also a secret scalar for these power analysis countermeasures.

References

1. T. Akishita, K. Iizuka, and H. Sato, “Hardware Implementation of Elliptic
Curve Cryptosystems for Contactless IC Card”, Proceedings of SCIS 2002, 15B-1,
pp.1107-1112, 2002 (in Japanese).

2. T. Akishita and T. Takagi, “Zero-Value Point Attack on Elliptic Curve Cryptosys-
tems”, Information Security - ISC 2003, LNCS 2851, pp.218-233, Springer-Verlag,
2003.

3. I.F. Blake, G. Seroussi, and N.P. Smart, Advances in Elliptic Curve Cryptography,
Cambridge University Press, 2005.

4. E. Brier and M. Joye, “Weierstrass Elliptic Curve and Side-Channel Attacks”,
Public Key Cryptography - PKC 2002, LNCS 2274, pp.335-345, Springer-Verlag,
2002.

5. J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems”, Cryptographic Hardware and Embedded Systems - CHES ’99,
LNCS 1717, pp.292-302, Springer-Verlag, 1999.

6. L. Goubin, “A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems”,
Public Key Cryptography - PKC 2003, LNCS 2567, pp.199-211, Springer-Verlag,
2003.

7. K. Itoh, T. Izu, and T. Takenaka, “Efficient Countermeasures against Power Analy-
sis for Elliptic Curve Cryptosystems”, Sixth Smart Card Research an Advanced
Application IFIP Conference - CARDIS 2004, pp.99-114, Kluwer, 2004.

8. T. Izu and T. Takagi, “Exceptional Procedure Attack on Elliptic Curve Cryptosys-
tems”, Public Key Cryptography - PKC 2003, LNCS 2567, pp.224-239, Springer-
Verlag, 2003.

9. M. Joye and C. Tymen, “Protection against Differential Analysis for Elliptic Curve
Cryptography”, Cryptographic Hardware and Embedded Systems - CHES 2001,
LNCS 2162, pp.377-390, Springer-Verlag, 2001.

164 T. Akishita and T. Takagi

10. M. Joye and J.-J. Quisquater, “Hessian Elliptic Curves and Side-Channel Attacks”,
Cryptographic Hardware and Embedded Systems - CHES 2001, LNCS 2162, pp.402-
410, Springer-Verlag, 2001.

11. P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, Advances in Cryp-
tology - CRYPTO ’99, LNCS 1666, pp.388-397, Springer-Verlag, 1999.

12. P.-Y. Liardet and N.P. Smart, “Preventing SPA/DPA in ECC Systems Using
the Jacobi Form”, Cryptographic Hardware and Embedded Systems - CHES 2001,
LNCS 2162, pp.391-401, Springer-Verlag, 2001.

13. T.S. Messerges, E.A. Dabbish, and R.H. Sloan, “Power Analysis Attacks of Mod-
ular Exponentiation in Smartcards”, Cryptographic Hardware and Embedded Sys-
tems - CHES ’99, LNCS 1717, pp.144-157, Springer-Verlag, 1999.

14. H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient Countermeasure against RPA,
DPA, and SPA”, Cryptographic Hardware and Embedded Systems - CHES 2004,
LNCS 3156, pp.343-356, Springer-Verlag, 2004.

15. P.L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion”, Mathematics of Computation, vol.48, pp.243-264, 1987.

16. K. Okeya, H. Kurumatani, and K. Sakurai, “Elliptic Curves with the Montgomery-
Form and Their Cryptographic Applications”, Public Key Cryptography - PKC
2000, LNCS 1751, pp.238-257, Springer-Verlag, 2000.

17. K. Okeya, K. Miyazaki, and K. Sakurai, “A Fast Scalar Multiplication Method with
Randomized Projective Coordinate on a Montgomery-Form Elliptic Curve Secure
against Side Channel Attacks”, Information Security and Cryptology - ICISC 2001,
LNCS 2288, pp.428-439, Springer-Verlag, 2002.

18. N.P. Smart, “An Analysis of Goubin’s Refined Power Analysis Attack”, Crypto-
graphic Hardware and Embedded Systems - CHES 2003, LNCS 2779, pp.281-290,
Springer-Verlag, 2003.

19. D. Suzuki, M. Saeki, and T. Ichikawa, “Random Switching Logic: A Counter-
measure against DPA based on Transition Probability”, IACR Cryptology ePrint
Archive 2004/346, 2004. http://eprint.iacr.org/2004/346/

20. D. Suzuki, M. Saeki, and T. Ichikawa, “DPA Leakage Model for CMOS Logic
Circuits”, Cryptographic Hardware and Embedded Systems - CHES 2005, LNCS
3659, pp.366-382, Springer-Verlag, 2005.

21. C.D. Walter, “Simple Power Analysis of Unified Code for ECC Double and Add”,
Cryptographic Hardware and Embedded Systems - CHES 2004, LNCS 3156, pp.191-
204, Springer-Verlag, 2004.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 165 – 178, 2006.
© IFIP International Federation for Information Processing 2006

Designing Smartcards for Emerging Wireless Networks

Pascal Urien1 and Mesmin Dandjinou2

1 ENST 37/39 rue Dareau, Paris 75014, France
2 Université Polytechnique de Bobo-Dioulasso, Burkina Faso

Pascal.Urien@enst.fr
Mesmin.Dandjinou@voila.fr

Abstract. This paper presents our work relating to introduction of EAP smart-
cards in emerging wireless LAN like Wi-Fi or WiMax. We analyse basic charac-
teristics involved in authentication protocols from feasibility and performances
points of view. We shortly introduce our open Java architecture, and underline
some observed interoperability issues. We present and analyze results obtained
with five different smartcards, for two authentication scenarios: the first one
works with an asymmetric algorithm (EAP-TLS, a transparent transport of the
well known SSL standard), and the second method uses the EAP-AKA protocol,
which is an adaptation of the symmetric Milenage algorithm. We introduce a
new class of smartcard which acts as EAP server, and that has been successfully
tested in operational networks. Finally we suggest a new way to manage and use
smartcards, remotely and securely, by using Trusted EAP Modules.

1 Introduction

In 1999, the IEEE 802 committee ratified the 802.11 standard [3] which introduced
the first wireless Ethernet network, later enhanced with 802.11i standard [9]. Wi-Fi
technology became the foundation stone of cheap IP radio LAN. Two years after, an
“Air Interface for Fixed Broadband Wireless Access Systems” was proposed in [6]
that extends wireless IP connectivity at a campus scale. The emerging IEEE 802.16e
[14] standard, “Air Interface for Fixed and Mobile Broadband Wireless Access Sys-
tems”, provides enhancements to [6] in order to support subscriber stations moving at
vehicular speeds.

But unlike the GSM network, no security module was specified in the so called Wi-
Technologies. There is however a common denominator between [5] and [6], both of
them supports the Extensible Authentication Protocol [10]. EAP is a light protocol,
used prior to IP address allocation, that may transport multiple authentication scenari
like EAP-TLS [2] or EAP-AKA [13].

An EAP dialog occurs between an EAP client, that wants to gain access to network
resources, and an EAP authenticator which is the heart of an AAA (Authentication,
Authorization and Accounting) system. An EAP session is a set of (server) requests
and (client) responses; at the end of this exchange the server delivers either a success
or a failure message. Upon success both EAP entities compute a shared secret referred
as the AAA key. EAP messages are transported either by non IP protocols like EAPoL
[5] or PKM-EAP [14] on the wireless media (between the access point / base station
and the client), or by routable protocols such as RADIUS [8] or DIAMETER [17] over
the Internet network (between the access point / base station and the AAA server).

166 P. Urien and M. Dandjinou

In this paper we introduce smartcards associated to EAP clients and EAP servers.
Section 2 shortly reviews basic services that must be supported by EAP cards. Section
3 describes the software architecture of an open implementation for Java cards. Sec-
tion 4 presents experimental results with five kinds of Java cards. Section 5 defines
EAP servers for Java cards and gives early results. In the last section we introduce the
Trusted EAP Module (TEAPM), an innovative architecture that will improve usage
and remote management of smartcards.

2 EAP Java Cards Issues

They are two main issues concerning the use of smartcards for computing the EAP
protocol: the protocol complexity and the computing speed.

Protocol complexity must be compatible with Java cards computing resources. As an
illustration, byte code size is about 20 kB for EAP-TLS implementation, and 16 kB for
EAP-AKA implementation; that is well-suited with today Java cards characteristics.

The need for Java cards performance estimation is not new, for example a per-
formance comparison of Java cards for micro payment implementation was discussed
in [4]. More recently, an initiative for open benchmark for Java card technology has
been launched by [12], in order to setup a missing and useful tool for the smartcards
industry. A study of Java cards performances has been recently presented in [18].

In our approach we classify processing operations in three categories: data transfer,
cryptographic operations, and software overhead. So, the processing time of an appli-
cation can be written like:

TApplication = TTransfer + TCrypto + TSoftwareOverhead . (1)

Our applications embed test functions that are used to identify critical parameters.

2.1 Data Transfer

In protocols dealing with X.509 certificates like EAP-TLS, several kilobytes of data
are sent/received to/from the smartcard. Due to the lack of RAM memory, these
information are written or read in the non-volatile memory (E2PROM, flash
memory,…). Therefore we call data transfer, the time required for transporting EAP
packets between a terminal that controls the smartcard and the application running in
this device. From a practical point of view it is easy to measure this time, but we shall
not try to estimate the different elements that make up this value, like transfer delays
between terminal and reader, transfer duration between reader and smartcard, internal
software delays (introduced for example by java operations) and time consumed by
memories accesses (writing and reading). Named TTransfer, it is expressed like:

TTransfer = TTransferReader + TTransferSmartcard + TSoftwareOverhead + TMemoriesAccesses . (2)

Figure 1 presents transfer characteristics measured with four smartcards labeled A,
B, C and D; the reader is the same excepted for device A which integrates an USB
interface. Reading and writing operations (respectively from and to a smartcard) re-
quire similar times. The transfer law is quite linear (TTransfer = a + b x Length) with a
corresponding to a factor around 50 ms and b to a factor around 0.6 ms/byte for A and
D devices, and 1.7 ms/byte for B and C devices.

 Designing Smartcards for Emerging Wireless Networks 167

A

B

C

D

A

B C

D

Fig. 1. Measured times for reading and writing operations

2.2 Cryptographic Operations

In a Java card context, cryptographic functions are invoked via specific APIs. For the
authentication methods studied in this paper, the main cryptographic procedures are
MD5, SHA1, RSA and AES.

Figure 2 shows MD5 and SHA1 speed; the time required by a digest operation is
proportional to the number of computed blocs whose size is 512 bits. The time required
by bloc is respectively (by alphabetical device name order) 15.3 ms, 8.5 ms, 10.2 ms,
3.0 ms for MD5, and 33.2 ms, 14.8 ms, 17.3 ms, 4.4 ms for SHA1. Because smartcards
are usually optimized for RSA functions, these operations are rather “fast”. During the
TLS protocol, three RSA calculations are performed: firstly during server certificate
checking (public key decryption), secondly for pre-master key encryption (public key
encryption), and thirdly for client’s authentication (private key encryption). As demon-
strated by Table 1, these procedures consumed less than 500 ms.

In our experiments we only get one smartcard (device E) that supports the AES al-
gorithm. We observe for this device a computing time of about 11.3 ms per bloc of
128 bits.

A A

B

D

C C

D

B

Fig. 2. Computing times for MD5 and SHA1 digests

168 P. Urien and M. Dandjinou

Table 1. Estimation of RSA computing times

RSA
(1)+(2)+(3)

ms

Private Key
Encryption

(1)

Public Key
Decryption

(2)

Public Key
Encryption

(3)

Private Key
Decryption

(4)

A 320 230 50 40 220

B 320 160 110 50 230

C 322 191 61 70 200

D 150 110 20 20 120

2.3 Software Overhead

All resources that are not available through APIs are supplied by the embedded (Java)
application. This includes extra software needed for packets analysis, messages con-
struction, additional cryptographic services like keyed MAC (HMAC), pseudo ran-
dom functions (PRF), or some specific services like X.509 certificates parsing.

2.4 Performances Issues

The timing constraints induced by smartcards usage in wireless environments are
linked to EAP and DHCP [21] protocols requirements.

On the authenticator side, the EAP server sends requests and waits for responses
before a timeout; and this waiting time called txPeriod lasts [5] 30 s by default (with 3
retries). If the smartcard computing time exceeds this value a retransmission occurs.
On Windows platforms, DHCP is a parallel event, independent of EAP authentica-
tion, that starts once network interface comes up. If the IP client doesn’t receive a
DHCP acknowledgement within a reasonable period of time, usually 60 s, the termi-
nal OS resets the network interface, and therefore restarts both DHCP and EAP
processes.

In summary the two main timing requirements are:

− computing an EAP request in less than 30 s, and
− processing an authentication scenario in less than 60 s.

This last value also includes the time consumed by the user to enter, if necessary,
its PIN code.

3 OpenEapSmartcard

The basic idea behind an open platform [16] [20] is to define a simple Java frame-
work (whose APDUs interface is described in [15]) working with most of commercial
Java cards, and supporting as many EAP methods as possible.

The software architecture comprises four Java components:

1. The EapEngine that manages several methods and/or multiple instances of the
same one. It implements the EAP core, and acts as a router that sends and re-
ceives packets to/from authentication methods. At the end of authentication

 Designing Smartcards for Emerging Wireless Networks 169

process, each method computes a master cryptographic key (AAA Key) which is
read by the terminal operating system.

2. The Authentication interface that defines all mandatory services in EAP meth-
ods, in order to collaborate with the EapEngine. The two main functions are
Init() and Process-Eap(). First initializes method and returns an Authentication
interface; second processes incoming EAP packets. Methods may provide addi-
tional facilities dedicated to performances evaluations.

3. The Credential objects that, each one associated to a method, encapsulate all the
information required for processing the given authentication scenari.

4. The Methods that correspond to the specific authentication scenarios to process.
Once initialized, the selected method analyses each incoming EAP request and
delivers corresponding response.

2- Auth.class

3- Credential.class

1- EapEngine.class

draft-eap-smartcard

Cryptographic API
RNG - MD5-– SHA1 - RSA

Security
Management

Network
Interface

Identity
Management

Personalization

ISO 7816 Interface

Javacard
Framework JC.2x

Methods
Credentials

Init
Object

E2PROM

EAP-AKA

EAP-TLS

Init(Object
Credential)

ProcessEap()

Authentication
Interface

Java Virtual Machine

4- Method.class

Fig. 3. OpenEapSmartcard software architecture

Due to the Java language universality, we could hope that the same code works
with all smartcards; the reality is a little bit different because almost all devices pre-
sent minor differences or even bugs. Here is a brief description of some observed
interoperability issues:

− in TLS, the RSA algorithm is issued in conjunction with the PKCS#1 padding
rules. Sometimes this functionality is not available (only NO_PAD option is
working), and therefore an additional Java code is required;

− digests functions use Update() function for digest updating and DoFinal() pro-
cedure for digest closing. Sometimes Update() is not supported, and therefore
it is necessary to concatenate all data in the non-volatile memory, in order to
compute the output value;

− in some cases we observed erroneous values produced by the Update() method
invoked with a “long” (a few thousand bytes) input value;

170 P. Urien and M. Dandjinou

− with some components it is only possible to deal with one instance of MD5 or
SHA1 object. As a result an interoperable application can only use one instance
which implies multiple writings in non-volatile memory, so that the perform-
ances decrease (TLS produces three MD5 and SHA1 calculations).

Our EAP-TLS method takes into account these constraints. It works with RSA algo-
rithm with no padding byte; it is compatible with single digest instance, and manages
bugged or missing Update() methods.

4 Experimental Results

The same EAP-TLS application, including minor adaptations dealing with devices
particularities (detailed in section 3), was downloaded in our four different Java cards
A, B, C and D. EAP-AKA was tested with device E only.

4.1 With EAP-TLS

EAP-TLS [2] is a transparent transport of the TLS protocol [1] which has two work-
ing modes (see figure 4). The first one, referred as full mode, is asymmetric and uses a
mutual authentication based on RSA, and that requires certificates exchange for both
server and client. The second mode qualified session resume works according to a
symmetric scheme and deals with a shared secret, the master secret computed during
a previous full session identified by a session-id parameter. A detailed analysis of the
EAP-TLS application was described in [11].

Client hello

Server Hello

Certificate

CertificateRequest

ServerHelloDone

Certificate

CertificateVerify

ChangeCipherSpec

(Encrypted) Finished

ChangeCipherSpec

(Encrypted) Finished

Client Server

Client hello (Session-id)

Server Hello(Session-id)

ChangeCipherSpec

(Encrypted) Finished

Client Server

ChangeCipherSpec

(Encrypted) Finished

Fig. 4. TLS message exchange, full mode (left part) and session resume mode (right part)

 Designing Smartcards for Emerging Wireless Networks 171

With 1024 bits RSA keys, a full mode typically has the following characteristics:

− 2500 bytes of information are exchanged between the TLS client and the TLS
server, for the duration of TTransfer;

− three RSA calculations are performed (public key decryption, public key en-
cryption and private key encryption) and need a total time TRSA;

− approximately 266 blocs of 512 bits are processed by MD5 and SHA1 func-
tions. If we call TDigest the average time for computing a bloc (TMD5/2+ TSHA1/2),
these calculations cost 532 times TDigest.;

− other operations, like X.509 certificate parsing, EAP and TLS messages proc-
essing are handled by Java procedures and consume a time TSoftwareOverhead.

Because all cryptographic resources are seen from a practical point of view as APIs,
we called TCrypto the time consumed by these facilities and expressed it as:

TCrypto = TRSA + 532 x TDigest . (3)

As a consequence, the time spent in EAP-TLS computing named TEAP-TLS can be
split in three categories according to the following formula:

TEAP-TLS = TTransfer + TCrypto + TSoftwareOverhead . (4)

Total computing time (TEAP-TLS) and data transfer duration (TTransfer) are obtained by
direct measurements. TCrypto is deduced from basic parameters presented in
section 2.2. So, TSoftwareOverhead value can be deduced as:

TSoftwareOverhead = TEAP-TLS - TTransfer - TCrypto . (5)

Table 2 presents experimental results, and a detailed comparison of Java cards per-
formances is presented in Appendix 1; the reading of [11] may be useful for under-
standing these exhaustive comparisons.

The session resume mode typically presents the following characteristics:

− no RSA calculation is performed;
− 230 bytes of information are exchanged between TLS client and TLS server,

which require a time called TTransfer;
− approximately 158 blocs of 512 bits are processed by MD5 and SHA1 func-

tions. If we call TDigest the average time for computing a bloc (TMD5/2+ TSHA1/2),
these calculations cost 316 times TDigest;

− other operations, like EAP and TLS messages processing, are handled by Java
procedures and consume a time TSoftwareOverhead.

Because all cryptographic resources are seen from an applicative point of view as
APIs, we called TCrypto all the time consumed by these facilities and we expressed it as:

TCrypto = TRSA + 532 x TDigest . (6)

Table 2. EAP-TLS full mode performances

 A B C D
TTransfer (ms) 2492 5326 5219 1433
TCrypto (ms) 13221 6507 7648 2117

TSoftwareOverhead (ms) 62618 21914 14784 6827
TEAP-TLS (ms) 78331 33747 27651 10377

172 P. Urien and M. Dandjinou

As a result, the time spent in EAP-TLS computing named TEAP-TLS is shared in three
categories:

TEAP-TLS = TTransfer + TCrypto + TSoftwareOverhead . (7)

Table 3 shows experimental results, where TSoftwareOverhead is deduced as previously.

Table 3. EAP-TLS session resume mode performances

 A B C D
TTransfer (ms) 140 450 460 110
TCrypto (ms) 7663 3675 4352 1169

TSoftwareOverhead (ms) 41697 19675 8688 4221
TEAP-TLS (ms) 49500 23800 13500 5500

4.2 With EAP-AKA

EAP-AKA [13] is a quite transparent transport of the Milenage algorithm [7]. A full
authentication session is made of one request and one response. The request message
which is 68 bytes long includes three attributes: a random number RAND (16 bytes)

Fig. 5. EAP-AKA, Full authentication summary

 Designing Smartcards for Emerging Wireless Networks 173

an authentication value AUTH (16 bytes) and a HMAC-SHA1 trailer (20 bytes).
Upon success, the response message whose length is 40 bytes returns two attributes: a
signature RES (8 bytes) and a HMAC-SHA1 trailer (20 bytes). This exchange is
summarized in figure 5.

The if functions (1f , 2f , 3f , 4f , 5f) are invoked by the EAP-AKA application,

and imply 5 AES calculations. HMAC-SHA1 requires processing of 9 blocs of 512
bits, while the XKEY estimation costs 4 blocs. The pseudo random function (PRF)
works with a modified version of SHA1 using a null padding bytes algorithm; the
production of 100 bytes requires the calculation of 5 blocs of 512 bits each. Because
current versions of Java cards do not support this modified version of SHA1, the pro-
cedure is fully written in Java and generates an important software overhead.

In summary the EAP-AKA cost is given by the following expressions:

TEAP-AKA = TTransfer + TCrypto + TSoftwareOverhead . (8)

with TCrypto = 5 x TAES + 18 x TDigest . (9)

But according to our full software implementation of the PRF function (which com-
putes five modified SHA1 values), we get the formula:

T’Crypto = 5 x TAES + 13 x TDigest + TPRF . (10)

Table 4. Experimental EAP-AKA performances for device E, TDigest = 4.8 ms, TAES = 11.3 ms

TEAP-AKA

(ms)

TTransfer

108 bytes
(ms)

5 x TAES
f1…f5
(ms)

13 x TDigest
HMACs and XKEY

(ms)
TPRF

(ms)
TSoftwareOverhead

(ms)
5950 <190 56 64 5650 >0

As shown in table 4, most of computing time is consumed by the PRF function.
EAP-AKA should be very efficient, if this function was available via a cryptographic
API. Under this hypothesis, the authentication time should be less than 350 ms.

5 EAP Server

According to the EAP protocol, clients process requests which are issued by servers.
From a software point of view, the EAP server application is very close to the client
one. The cryptographic load is quite the same, but messages processing is signifi-
cantly different. As illustrated by figure 6, we designed [19] a first EAP-TLS server.
This server works with real network, but needs a specific RADIUS implementation,
that dispatches EAP messages encapsulated in RADIUS packets, to one or more
EAP-Server smartcards. In this architecture EAP data are transported by various
layers (802.11 frames, RADIUS), but the authentication dialog directly occurs
between two EAP smartcards, acting as SAM (Secure Authentication Modules)
components.

174 P. Urien and M. Dandjinou

Fig. 6. EAP-Server deployment in real networks

Table 5. Comparison between EAP client and server performances

 B D

TEAP-TLS Client (s) 33.8 10.4

TEAP-TLS Server (s) 45.2 13.0

Table 5 presents measured performances for B and D devices which are used alter-
natively as clients and servers. We observe that EAP-TLS servers require an addi-
tional time of about 30%. We attribute this difference to extra information transfers
from E2PROM to E2PROM, needed for messages construction or data concatenation,
induced by digest operations.

6 The Trusted EAP Module - TEAPM

Following the results obtained firstly about smartcards performances and secondly
concerning OpenEapSmartcard environment for security improvement, and according
the perspective of the future advances in smartcard technologies relatively to Moore's
law, we suggest a new protocol stack which transforms the usage of smartcards by
changing them to a kind of secure electronic pocket deposit box remotely manage-
able: the Trusted EAP Module.

As it appears in figure 7, EAP protocol and EAP-TLS or other EAP methods repre-
sent the heart of this protocol stack. Their presence make possible the mutual authen-
tication establishment which can be followed by a secure exchange and storage of
credentials like keys, certificates, account numbers, passwords, profiles, … in the
OpenEapSmartcard-based smartcard. In this way, we offer to the users an pocket
electronic component which functionally looks like the immutable TPM developed by
TCG for trusted computing platforms [22].

With the ISO 7816-4 presence on the one hand of the application layer, we main-
tain the opening platform aspect by keeping compatibility with existing smartcard
applications that use APDUs.

Finally, the choice of HTTP 1.1 and XML protocols on the other hand of the appli-
cation layer welcomes the development of Web services, on either client side or/and
server side.

 Designing Smartcards for Emerging Wireless Networks 175

EAP

EAP-TLS or other methods

ISO 7816-4 HTTP

WEB
Services

DATA
Management

APPLET
Management XML

TCP/IP
Stack

TLS

Fig. 7. The protocol stack of TEAPM

The implementation and test of this new platform on Java cards are going on. Our
wish is to try later the same implementation on a SIM card, and right now nothing
prevents from doing it. Surely, this will extend the capacities for secure remote man-
agement of services using smartcards, the "air" interface like in GSM network [23]
[24], and Web services.

7 Conclusion

In this paper we have described a software architecture for EAP smartcards and ex-
perimental performances obtained with five devices. These results clearly demon-
strate that today smartcards may be successfully introduced for enhancing security in
emerging wireless networks. However authentication delays are yet very important in
comparison with classical software solutions, probably because firstly some Java
cards APIs are missing, and secondly more powerful components are needed, spe-
cially for EAP server. The lack of RAM memory leads to a slowdown of data storage
in E2PROM, for protocols that exchange several kilobytes of information, like TLS.
But this architecture is working with standard Java cards, and it seems likely that
performances will follow the Moore’s law, and therefore that EAP smartcards will be
more and more a credible alternative to traditional software. It is the reason why we
propose the Trusted EAP Module, which will facilitate remote management and usage
of network security services.

References

1. RFC 2246, “The TLS Protocol Version 1.0”, January 1999.
2. RFC 2716, “PPP EAP TLS Authentication Protocol”, B. Aboba, D. Simon. October 1999.
3. Institute of Electrical and Electronics Engineers, “Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications”, IEEE Standard 802.11, 1999.
4. J. Castellà, J. Domingo-Ferrer, J. Herrera-Joancomartí, J. Planes, “A Performance Com-

parison of Java Cards for Micro payment Implementation”, Proceedings of the Fourth
Working Conference on Smart Card Research and Advanced Applications, CARDIS
2000, September 20-22, 2000, Bristol, UK.

176 P. Urien and M. Dandjinou

5. Institute of Electrical and Electronics Engineers, “Local and Metropolitan Area Networks:
Port-Based Network Access Control”, IEEE Standard 802.1X, September 2001.

6. Institute of Electrical and Electronics Engineers, “IEEE Standard for Local and Metropoli-
tan Area Networks, part 16, Air Interface for Fixed Broadband Wireless Access Sys-
tems,”, IEEE Standard 802.16, 2001.

7. 3GPP TS 35.206 V5.0.0, “3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; 3G Security; Specification of the MILENAGE Algo-
rithm Set: An example algorithm set for the 3GPP authentication and key generation func-
tions f1, f1*, f2, f3, f4, f5 and f5*; Document 2: Algorithm Specification”, 3GPP, June 2002.

8. RFC 3559, “RADIUS (Remote Authentication Dial In User Service) Support For Extensi-
ble Authentication Protocol (EAP)”, B. Aboba, P. Calhoun, September 2003.

9. Institute of Electrical and Electronics Engineers, “Supplement to Standard for Telecom-
munications and Information Exchange Between Systems - LAN/MAN Specific Re-
quirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification for Enhanced Security”, IEEE standard 802.11i, 2004.

10. RFC 3748, “Extensible Authentication Protocol, (EAP)”, B. Aboba, L. Blunk, J. Voll-
brecht, J. Carlson, H. Levkowetz, Ed. June 2004.

11. P. Urien, M. Badra, M. Dandjinou, “EAP-TLS Smartcards, from Dream to Reality”, 4th
Workshop on Applications and Services in Wireless Networks, ASWN’2004, Boston
University, Boston, Massachusetts, USA, August 8-11, 2004.

12. J.-M. Douin, P. Paradinas, C. Pradel, “Open Benchmark for Java Card Technology”, e-
Smart’2004, Sophia Antipolis, France, September 22-24, 2004.

13. Internet Draft, .“Extensible Authentication Protocol Method for 3rd Generation Authentica-
tion and Key Agreement (EAP-AKA)”, draft-arkko-pppext-eap-aka-15.txt, December 2004.

14. Institute of Electrical and Electronics Engineers, “Approved Draft IEEE Standard for Lo-
cal and metropolitan area networks part 16: Air Interface for Fixed and Mobile Broadband
Wireless Access Systems Amendment for Physical and Medium Access Control Layers
for Combined Fixed and Mobile Operation in Licensed Bands”, IEEE 802.16e, December
2005.

15. Internet Draft, “EAP-Support in Smartcard”, draft-eap-smartcard-09.txt, October 2005.
16. P. Urien, M. Dandjinou, “The OpenEapSmartcard project”, short paper, Applied Cryptog-

raphy and Network Security 2005, ANCS 2005, Columbia University, June 7-10, New
York, USA, 2005.

17. RFC 4072, “Diameter Extensible Authentication Protocol (EAP) Application”, P. Eronen,
T. Hiller, G. Zorn, August 2005.

18. V. Guyot, “Smartcard, a mobility vector”, Phd defense, September 30th 2005, University
of Paris 6, Paris, France.

19. P. Urien, M. Dandjinou, M. Badra, “Introducing micro-authentication servers in emerging
pervasive environments”, IADIS International Conference WWW/Internet 2005, Lisbon,
Portugal, October 19-22, 2005.

20. OpenEapSmartcard WEB site, http://www.enst.fr/~urien/openeapsmartcard
21. RFC 2131, “Dynamic Host Configuration Protocol, DHCP”, March 1997.
22. TCG, “TPM Main Part 1: Design Principles, Specification Version 1.2 Revision 85”, Feb-

ruary 2005.
23. 3GPP TS 11.14, “Digital cellular telecommunications system (Phase 2+); Specification of

the SIM Application Toolkit (SAT) for the Subscriber Identity Module - Mobile Equip-
ment (SIM-ME) interface”, 2003.

24. 3GPP TS 03.48, “Digital cellular telecommunications system (Phase 2+); Security mecha-
nisms for the SIM Application Toolkit; Stage 2”, 2001.

 Designing Smartcards for Emerging Wireless Networks 177

Appendix 1 – Details of EAP-TLS Operations

EAP-TLS Message Operation Class Smartcard

 A B C D

First Message

Request/Start Transfer 510 601 321 151

Response/ClientHello Transfer 30 120 20

Second Message

Request/ServerHello, 1st fragment Transfer 210 491 491 130

 Transfer 140 451 470 110

 Transfer 131 450 471 120

 Transfer 140 450 461 110

 Transfer 130 461 480 130

Response/ACK Transfer 220 410 411 100

Third Message

Request/ServerHello, 2nd fragment Transfer 20 50 10

Response/ClientFinished

Certificate Checking RSA.pub.decrypt+ Other 2524 1312 931 390

VERIFY RSA.pub.encrypt+ Other 8192 6400 1012 541

SHA1+MD5 (VERIFY) DualHash(Verify) 1863 1121 1212 381

RSA(VERIFY) RSA.priv.encrypt+ Other 530 361 460 261

PRF(MasterSecret) PRF(MasterSecret) 9825 3294 3005 1162

PRF(KeyBlock) PRF(KeyBloc) 12628 4166 3825 1472

MD5+SHA1+PRF(ClientFinished) DualHash+PRF(Finished) 6099 2503 2524 901

MD5+SHA (ServerFinished) DualHash(ServerFinished) 2002 1222 1322 410

HMAC-MD5 HMAC-MD5.compute 1011 451 450 251

RC4-INIT RC4.init 5818 691 802 371

RC4-ENCRYPT RC4.encrypt 1813 821 450 310

 Transfer 140 480 431 161

 Transfer 141 470 421 90

 Transfer 140 471 420 90

 Transfer 130 310 321 61

Fourth Message

Request/ServerFinished

RC4-INIT +RC4-DECRYPT RC4.init + RC4.decrypt 7110 1292 1031 441

CHECK HMAC-MD5 HMAC-MD5.check 741 311 381 160

PRF(ServerFinished) PRF(Finished) 4267 1332 1342 521

PRF(PMK) PRF(PMK) 11416 3144 3685 1372

Fig. 8. Detailed EAP-TLS application performances for various smartcards

178 P. Urien and M. Dandjinou

Response/ACK Transfer 290 140 160 80

 60 50 40

Fifth Message

GET PMK KEY Transfer 60 141 141 30

Total Time 78331 33747 27651 10377

Fig. 8. (continued)

Smartcard Firewalls Revisited

Henrich C. Pöhls and Joachim Posegga

Universität Hamburg, FB Informatik,
Sicherheit in Verteilten Systemen (SVS),
Vogt-Kölln-Str. 30, D-22527 Hamburg

svs-office@informatik.uni-hamburg.de

Abstract. Smartcards are being used as secure endpoints in computer
transactions. Recently, the connectivity of smartcards has increased and
future smartcards will be able to communicate over the TCP/IP proto-
col. In this work, we explore options for using a smartcard as an active
node in a communication network rather than as an endpoint.

We envision in particular a proxy firewall running on a smartcard and
combining the best of both worlds: the smartcard as a secure environ-
ment, and the proxy firewall for securing the network. Facilitating the
various security options smartcards offer, we show how to design a secure
network firewall on a smartcard. We illustrate the usefulness of such a
device in several scenarios.

Life was simple before World War II.
After that, we had systems.

Rear Admiral Grace Murray Hopper

1 Introduction

Smartcards of the latest generation are becoming “network citizens” [13], they
are able to participate natively in TCP/IP based networks and possess their own
implementation of a TCP/IP stack [12, 6, 5]. We will refer to these as networked
smartcards throughout the paper.

The core idea of this paper is to design a network firewall within a networked
smartcard and route TCP/IP traffic between a single host system and the In-
ternet through this card. Note that this differs from what is known as “applet
firewalls” in Javacard[1]: this is a software feature of the Java Card platform
to isolate Java objects within the card. Our approach instead suggests that the
whole card works as a network firewall for a single network host – a personalized
firewall on a smartcard.

We will illustrate the concept of a firewall on a smartcard and provide design
ideas on how the concept can be implemented on networked smartcards that
will emerge in the near future. An implementation of a firewall on a networked
smartcard itself is not documented at this stage, as the cards themselves are still
prototypes and hardly available outside the labs of card manufacturers.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 179–191, 2006.
c© IFIP International Federation for Information Processing 2006

180 H.C. Pöhls and J. Posegga

A firewall on a smartcard would be a small device that has a smartcard with
two Ethernet connectors; each one provides its own TCP/IP stack, natively
implemented on the smartcard. Today’s networked smartcard prototypes are
offering just one TCP/IP connection, usually connected over Universal Serial
Bus (USB); having two separate connections, however, is technically feasible.
We use an additional layer of routing on an intermediate system, to overcome
the current restriction of a single network interface.

Our usage model of a smartcard as a network firewall differs from the pre-
dominant usage model of smart cards: Instead of the card being an end-point of
a communication, we envision the networked smartcard as a transparent network
node that acts as a traffic filtering node. Let us consider this more closely.

Cheswick, Bellovin and Rubin define a firewall as “a collection of components
placed between two networks, that collectively have the following properties:

– All traffic from inside to outside, and vice-versa, must pass through the
firewall.

– Only authorized traffic, as defined by the local security policy, will be allowed
to pass.

– The firewall itself is immune to penetration.” [17, page 13]

Implementing such firewall functionality on a smart card allows us to take
advantage of the secure environment a card provides, thus firewall functions
executed in a smartcard environment are better protected than those running
on conventional platforms built upon complex operating systems.

The security environment offered by smartcards therefore allows us to come
closer to the third property in the above list.

Furthermore, Smartcards provide additional security features that can be
facilitated by a firewall running on a smartcard:

– Secure storage for firewall rule sets,
– storage for cryptographic credentials (e.g. certificates) used for network login,
– cryptographic functions to validate credentials or to cryptographically pro-

tect network communication (e.g. VPN connections).

We also physically separate the firewall from the host system: This has,
among others, the following advantages:

– It eliminates the need to handle security critical firewall functionality in a
potentially untrusted host system.

– The “mobility” of the smartcard allows to easily move a user’s “personalized”
firewall from one host PC to another.

– The “physical” form factor of a firewall in a smart card can make the use of
a firewall more comprehensible for the average user1.

1 It will show its presence/absence more clearly.

Smartcard Firewalls Revisited 181

1.1 Paper Outline

Our paper is organized as follows:

We first consider the network architecture needed for a network firewall
(Section 2) and show how this can be implemented on future smartcards even
though they will only feature a single network connection. Further, we suggest a
design for a simple firewall that would actually run on a smartcard (Section 3).
In Section 4, we condense all the security assumptions made and discuss the level
of security reached by a firewall on a smartcard. We sketch a few application
scenarios to illustrate scenarios for using a firewall on a smartcard in Section 5.
After reviewing related work (Section 6) we draw conclusions of our research in
Section 7.

2 Network Architecture

Our goal is to move all (or at least security-relevant) firewall operations from an
untrusted host system to a smartcard. To offer network firewall functionality, all
incoming (and outgoing) Internet packets need to pass through the card. The
firewall on the smartcard will then decide upon routing or discarding packets
according to the rule set stored locally in card.

2.1 Emerging “Networked” Smartcard

A networked smartcard natively supports TCP/IP connections by implementing
a card-internal TCP/IP stack and it provides a Universal Serial Bus (USB)
connector for outward connections [12, 6].

This means no additional hardware or software needs to be installed on the
PC: A Plug-and-Play (PnP) aware operating system (OS) will detect the card
once it is inserted into the systems USB port. The OS will then automatically
install the card as a network device. Depending on the implementation the OS
may also route TCP/IP messages from and to the Internet via the system’s
regular network connection.

According to smartcard vendors, networked smartcards provide a single net-
work connection to the host via USB (at least) through one of the following
options [12]:

1. USB → encapsulated Serial → PPP → RAS
2. USB → Remote NDIS2

3. USB → CDC3 Ethernet Emulation Model (EEM)[4] → Ethernet drivers

There might be other options to connect a host to the networked smartcard, but
these seem to be most common [12, 6].
2 Remote NDIS (RNDIS) is a Microsoft specification for network devices on dynamic

Plug and Play I/O buses such as USB [11].
3 Also known as Communications Device Class (short CDC), the USB standard also

defines an Ethernet Control Model (short CDC Ethernet)[3], but CDC EEM is newer
and seems to be favoured.

182 H.C. Pöhls and J. Posegga

Fig. 1. Secure Network Card Architecture [12]

Figure 1 depicts the general architecture of Schlumberger/Axalto’s version
of such a networked card: Their smartcard offers TCP/IP functionality and can
be connected via USB to a host computer, which can then be used to gain access
to a network.

A clear benefit of a network connection over USB is that it requires little or
no modifications to the host system as it relies on standards that are (or should
be) supported by most operating systems. This provides interoperability and
mobility.

Since networked smartcard are extensions of today’s non-networked smart-
cards, an off-the-shelf networked smartcard will likely provide:

– a “Java-based operating system” [6]
– a 32-bit chip [6]
– a minimum of 24k RAM [6]
– a 64 kByte EEPROM
– a USB 2.0 connection [6]

The throughput of the smartcard’s network connection is limited by the speed
of the underlying USB 2.0 connection: Theoretical performance of USB 2.0 in
HiSpeed mode is 480 Mbit/s, but measuring TCP/IP connections over a USB
2.0 port shows actual speeds between 7 Mbit/s and 80 Mbit/s4. This provides
an estimate of the maximum load the firewall, connected over the USB link, can
cope with.
4 Measured with NETIO[15] using a packet size of 32 kBytes and 4 kBytes on two Win-

dows XP computers connected by a USB ethernet adapter (D-LINK DUB-E100[2]).

Smartcard Firewalls Revisited 183

2.2 Towards a Firewall on a Networked Smartcard

In order to securely act as a network firewall, all TCP/IP packets must be
securely routed through the smartcard and subsequently through the firewall
application running on it.

To avoid circumvention the smartcard has to support two network commu-
nications: One connection to the untrusted network (“outside”) and one to the
host (“inside”), often called a “dual homed” system. Rigorously, this can only
be achieved if the smartcard provided two physical connections and two sepa-
rate TCP/IP stacks; off-the-shelf networked smartcards will likely not offer two
separate physical connections in the first instance.

To assess firewalls inside a smartcard, we can reduce the restrictions of having
two physically separate connections: In order to test a prototype implementation
we only need two logically separate network connections to the smartcard.

2.3 Routing Packets Through a Smartcard

To establish two at least logically separated connections to the firewall we use
an intermediate system; such a system has three physical interfaces:

– Two physical interfaces, one to the untrusted network (outside), one to the
computer that will be protected (inside), and

– one internal interface over the USB connection to the smartcard, which runs
the firewall application.

The intermediate system needs to take care that all packets will travel through
the smartcard. The networked smartcard uses its single physical connection
(TCP/IP-over-USB) and the resulting network adapter on the intermediate sys-
tem will be assigned two IP addresses to it. Logical separation will then be based
on two distinct IP addresses (either source or destination). Figure 2 shows the
concept.

This setting hides a “single homed” smartcard with a firewall from the client
and the untrusted network: they only have connections to the intermediate sys-
tem, and this appears “dual homed”.

For security reasons we must of course assume reliable and secure routing
of packets within the intermediate system. The security-relevant routing (fil-
tering) is, however, not done on the host. The security impact of this decision
is analysed in Section 4. For a prototype implementation, this is not the most
relevant aspect, since the goal is only to demonstrate that a network firewall
on a smartcard is possible and to assess implications thereof. Once an “ideal”
smartcard hardware with two physical network interfaces becomes available, the
routing can be moved back to the realm of the card with little impact on the
software design.

The intermediate system would also allow us to use a non-networked smart-
card as well, but we focus on networked smartcards (see Section 4).

184 H.C. Pöhls and J. Posegga

Fig. 2. Single connection over USB to smartcard is hidden by intermediate system

3 Firewall Design

In the previous section we discussed how to overcome the missing two physical
network interfaces. We will now present the design of the firewall software.

In order to provide firewall functionality on a per-packet basis (or packet-
filter mode) all IP packets arriving at the smartcard need to be inspected by
the firewall implementation: it will decide whether to discard or accept a packet
according to a local rule set. The firewall must be invoked for each and every
packet that is handled by the TCP/IP network stack to enforce this, which is
normally achieved by using hooks. Hooks allow for example the Linux firewall
“netfilter” (also known as “iptables”) to be invoked whenever a packet is re-
ceived: “Netfilter is a set of hooks inside the Linux kernel that allows kernel
modules to register callback functions with the network stack. A registered call-
back function is then called back for every packet that traverses the respective
hook within the network stack”[14].

Firewall code then depends on the possibility to register callback functions.
These need to be provided by the network stack’s code. In the case of off-the-
shelf networked smartcards we do not expect to have such hooks available, and
it will not be possible (for non-technical reasons) to modify the TCP/IP stack
implementation for the card holder/user. So there is no way to build firewall
functionality on a per packet basis.

Smartcard Firewalls Revisited 185

Without modification of the smartcard’s TCP/IP stack code, a firewall must
run as an application on the networked smartcard. This has the disadvantage
of not being able to catch malformed or unwanted packets on the lower levels
(i.e. TTL or IP-Flags). The firewall serves as a proxy (proxy-mode), so decisions
can be based on both IP addresses (source and destination), both ports and
potentially the contents of the network protocol data.

This functionality can be programmed using sockets, and we assume that
socket functionality is available on a networked smartcard. Assuming further a
Java-based OS, there will be functions like Socket, ServerSocket or Datagram-
Socket as in the Java package java.net [16]. Using sockets we are able to design
a firewall on a TCP/UDP proxy level.

The procedure for proxying HTTP is straightforward:

1. Opening a listening proxy on the service’s port that is to be controlled (e.g.
port 80 for HTTP)

2. Listening for an incoming connection and waiting for a HTTP request (HTTP
version 1.1)

3. On request: Analysing the request to find the server the client wishes to
connect to

4. Filtering of the request according to the firewall rule set
5. If the request is allowed: Opening of a new socket connecting to the server

and forwarding the HTTP request
6. Receiving the server’s answer
7. Filtering the answer according to the firewall rule set
8. If the answer is allowed: Forwarding the server’s answer to the client using

the existing connection to the client

The firewall will close/abort the connection to the client or to the server if the
request or the answer is denied.

For a fully operational HTTP proxy the above code outline needs to be ex-
tended with the following additional features (which can be omitted in a concept
prototyping5):

1. Resolving host names (found in requests) to IP addresses (used to send the
request to the server) by DNS lookups.

2. Handling of multiple concurrent connections.
3. Handling server responses (ICMP destination unreachable) elegantly for the

requesting client.

3.1 Smartcard Security Features

Following the “best of both worlds”-approach we want to build upon the security
functions offered by smartcards as often as possible (see also Section 4); for
example:
5 The first two features will be limited by the number of concurrent connections offered

by the smartcard’s TCP/IP stack. The additional features will also increase the
amount of memory needed.

186 H.C. Pöhls and J. Posegga

The rule set is stored in a file protected by the smartcard. Using command-
oriented access conditions “write” or “update” commands are only executed if
the administrative credential (or: PIN) is presented to the card. This enforces
authorization for rule set changes.

In the case of an HTTP proxy, SSL-secured connections provide an easy
starting ground for the use of the smartcard’s functionality. For example the
validation of the server credential (SSL certificate) can be left to the smartcard’s
cryptographic functions. As a next step, the secure storage of the smartcard could
hold the user’s key and certificate for mutual authentication. The smartcard
will only use the user’s key to authorise to the server after the user has been
authenticated/authorized.

3.2 Towards Running Proxy Code on a Networked Smartcard

The proxy code can be implemented for HTTP connections and extended to
HTTPS to make use of the aforementioned smartcard security functions. In a
first simple implementation the proxy can be written as a single thread, opening
a maximum of two concurrent connections. The actual code is lean and our
assumed technical specifications (see Section 2.1) make it feasible to implement
this design on a networked smartcard.

To provide security for the user’s network connections the firewall in a smart-
card needed to provide proxy functionality for all protocols used by the user’s
client. This ranges from simple variants like HTTP to more complex protocols
as FTP. The more complex protocols will require more connections, more logic,
and thus consume more memory (both for the code and during runtime). As a
next step we plan to implement a simple proxy firewall (for IP address-based
HTTP requests) on a networked smartcard prototype.

4 Security - Assumptions and Gains

In this section we will shortly summarize security decisions and assumptions we
made throughout the previous sections, to highlight the overall security reached
by a network firewall on a smartcard.

4.1 Security Assumptions

We showed that the lack of a second interface can be mitigated by an interme-
diate system. The following security properties of this intermediate system were
assumed:

– The OS of the intermediate system reliably routes all network packets thro-
ugh the smartcard. No packets can travel directly from the inside to the
outside interface or vice versa.

– The intermediate system provides at least tamper evidence, so that an edu-
cated user can detect that the intermediate device has been manipulated.

Smartcard Firewalls Revisited 187

– The intermediate system is small, so it is easy to carry the firewall system
(smartcard together with intermediate system). Small firewall appliances
are already available – not based on smartcards though (more details in
Section 5). This physical aspect also means that intermediate systems are
not shared: Instead smartcard and intermediate system are given to the user
from the same trusted authority.

Smartcards are secure and tamper-resistant computing environments. Addi-
tionally to the security properties usually credited to smartcards, we make some
assumptions on the smartcard’s network connection:

– An attacker is not able to attack the smartcard’s OS or a running application
in the card by sending maliciously formed packets to the network interface.
The TCP/IP stack is robust and secure.

– The firewall is the only application running on the card.
– The smartcard’s TCP/IP implementation allows the smartcard to receive

arbitrary, but standard-conform, network packets and will transfer them to
the firewall code.

– Forafirewall inproxy-mode:Thesmartcard’sOShandlespacketsnotaddressed
to a listening port on the smartcard in a secure fashion (i.e. drop/reject the
packet). This makes attacks or connections at lower IP levels impossible.

– For a firewall in packetfilter-mode: The smartcard’s OS provides “hooks”6

that allow the firewall to intercept network packets at IP level. Once an
application registered with such a hook all packets are handed over to the
application and further processing is delayed.

4.2 Security of Firewall on Smartcard

Under the above assumptions the firewall running on the networked smartcard
can offer increased security compared to firewalls embedded in traditional com-
puters and operating systems. The secure computing environment provided by
the smartcard increases the security of the firewall. It physically separates it
from the host system, and provides additional security functionality. Further-
more, a networked smartcard with an embedded TCP/IP stack means increased
security of the firewall’s TCP/IP handling, as it runs in a secure environment. In
the ideal case, all routing of packets through the firewall would be carried out by
the trusted smartcard itself using two physical interfaces. But the intermediate
system needs only very limited functionality, as it barely acts as a router. This
can be implemented more securely than on the general purpose computer that is
behind the firewall. However, the role of the intermediate system is solely for pro-
totyping, to show that an implementation of a network firewall on a smartcard
is feasible.

As assumed, malformed network traffic is correctly handled by the underly-
ing network stack. So, the firewall only needs to handle packets conforming to

6 A hook allows registering callback functions.

188 H.C. Pöhls and J. Posegga

standards. Especially the proxy firewall code will only receive TCP/UDP con-
nections on the ports it is listening to. The proxy firewall will check whether the
rule set allows or forbids such a connection from the TCP/IP information avail-
able. It will then additionally be able to inspect the data part if it is a correctly
formed request. All packets that are not addressed to the service’s port that the
proxy firewall listens to, are automatically and securely discarded. This allows
to restrict the services that are allowed, and it makes the code leaner and more
clearly, thus reducing software or configuration errors.

The rule set is needed to make the firewall’s decision. Storing this rule set
in a file protected by the smartcard using command-oriented access conditions
limits the access to this rule set. Only if the administrative credential (PIN) is
presented to the smartcard “write” or “update” commands are allowed. Thus,
authorization for rule set changes can be enforced. The smartcard’s access control
can also be used to restrict certain connections: Either restricting the service
as such, by providing access control on the opening of a socket for listening.
Or restricting connections to certain servers by controlling the access to less
restrictive rule sets.

We can also envision the use of the smartcard firewall for securing connec-
tions: As a secure network node, the smartcard can ensure that the traffic that
traverses it is additionally secured or validated. This involves the validation
and use of credentials (SSL certificates, encryption Keys), which can again be
stored in protected files in the smartcard. Finally, the smartcard’s cryptographic
functions can care for encryption, decryption, certificate verification, signing,
etc.. In the simplest case, the user’s connection is “proxied” via SSL to the
server.

5 Possible Applications

This section sketches a few possible applications of a firewall on a smartcard.
They are discussed separately, to highlight certain aspects, but could be com-
bined into one firewall on smartcard. The focus of this section is to motivate
the application of networked smartcards as a secure network node, it does not
present market-ready applications. Some of the presented scenarios likely require
more processing or memory power than today’s smartcards offer, but advances
in hardware will make them implementable in the future.

5.1 Portable Firewall Box

To overcome the problem of the lacking separate hardware connections, and to
further increase the security and portability of a firewall on a smartcard, an em-
bedded system can perform the operations of the intermediate system. Such an
embedded system would come with two Ethernet ports (RJ45 connectors) for the
network connections and a smartcard reader. It would care for routing network
packets and would provide a “dual homed” system, hiding the smartcard from
the host. This would prevent a malicious (manipulated) host from modifying the
routing of packets and circumventing the firewall. The device could be powered

Smartcard Firewalls Revisited 189

by batteries, an external power-supply (perhaps from a free USB-port), or it
would rely upon power-over-ethernet.

There are small, portable security devices on the market: Examples are the
mGuard smart from Innominate [10] and ZyXEL’s ZyWALL P1 [18]. The ap-
proach of using a smartcard as a platform for the firewall enhances the security
and could reduce the device’s size further.

5.2 Managed Firewall for Mobile Access or Personal Use

The firewall’s rule set can be stored on the smartcard and the smartcard’s access
control allows us to restrict access in such a way, that the rule set can be altered
solely by authorized principals. In this application scenario the firewall rule set
is centrally managed.

One option is central management using a policy server to deploy secure
mobile access to certain servers, e.g. for managing access of a mobile workforce
in a company. The network connection between the smartcard and the central
policy server can be protected with SSL and mutual authentication. Every time
the firewall is connected to the network, it first tries to connect to the policy
server to download, verify, and install the latest firewall rule set. In such a way
a company can enforce its security policy even for mobile clients.

For personal use, the customization of the firewall’s rule could be provided
as a service to “end”-users. This meant secure firewall configuration without
the need of local configuration. The need for customised configurations could
be indicated on a Web page presented by the smartcard. The smartcard would
then forward the request to the service provider, who exclusively maintains the
card-internal firewall’s rule set.

5.3 Secure Remote Network Access

The mobile client might already use Virtual Private Networks (VPN) and cer-
tificates to authenticate to the servers.

The smartcard’s firewall application could establish a secure tunnel for re-
motely accessing e.g. a corporate network. The user’s credentials can be securely
stored on the smartcard. The user would need to connect to the smartcard with a
Web browser and enter the password to unlock her credentials. The smartcard’s
firewall application would then mutually authenticate to the server and establish
session keys for an encrypted tunnel. All signing, encrypting, and certificate-
checking during this process can done by the firewall in the smartcard. Thus,
the networked smartcard acts as a secure VPN gateway. All this is carried out
outside the user’s computer, and the use of a VPN is transparent to the user,
the user’s operating system, and the user’s applications.

6 Related Work

Related work on network connected smartcards either concentrates on the im-
plementation of network capabilities in the smartcard, or on the implementation
of servers running inside smartcard.

190 H.C. Pöhls and J. Posegga

Honeyman and Rees showed in [9] that smartcards can indeed become part
of the network: “The Webcard is a TCP/IP stack and web server written in Java
that runs on a Schlumberger Cyberlfex card; the card is connected to the Internet
via an ISO 7816 T=0 serial link at 55.8 Kbps. The card terminal is connected
to an OpenBSD server running a simple daemon that forwards packets between
the card and the Internet via a tunnel device. All ip, tcp, and http processing is
handled by the card, and all web content is stored on the card.” [9]

Guthery, Kehr, and Posegga [7, 8] have presented a related approach where
a Web server in a GSM SIM smartcard provided services to he Internet.

Muller and Deschamps [13] showed that smartcards can be networked and
act as connection endpoint as either clients or servers.

Our usage of a network-capable smartcard is different in that we go beyond
the point of being a connection endpoint: we also consider cards as part of a net-
work infrastructure. Our firewall on a smartcard provides network functionality
as a network node, rather than being an endpoint.

7 Conclusion and Outlook

TCP/IP stacks will be an integral part of tomorrows smatcards, turning the
cards into network nodes; the consequences of this, both in terms of applications
using smartcards, as well as in terms of security implications for the usage of
cards are still to be explored7.

Whilst most approaches we have encountered so far consider networked
smartcards as communication end points, we took the concept further and con-
sidered smartcards as part of a network infrastructure. Consequently, we suggest
to implement security-critical applications on such cards, for instance a network
firewall, which is what we explored in this paper.

Our approach combines the security of a smartcard environment and the
network security offered by firewalls: The smartcard provides a high security
platform for the firewall to run on, and the firewall protects a network “behind”
the smartcard.

TCP/IP stacks are part of future smartcards and so the smartcard is facili-
tated to provide security for network connections. Furthermore, we envision that
the secure storage of credentials and the cryptographic functions of a smartcard
provide a strong basis for network security devices.

Our paper introduced the the design of a proxy firewall that run as an appli-
cation on a network smartcard without modification of the smartcard’s network
stack. Lower levels of a firewall would require modifications to the networked
smartcard’s TCP/IP stack implementation; still a proxy allows restricting net-
work traffic: As it is located at the highest layer in the protocol stack it even
allows filtering unwanted content and access control based on user authentica-
tion. Under the assumption that the underlying network stack is not vulnerable,
a highly secure implementation of a proxy firewall is possible.
7 As an example: The concept of proximity between a card and the card holder will

be gone, since traditional routing of TCP/IP packets does not care about it.

Smartcard Firewalls Revisited 191

There are obvious limitations of our approach, one is bandwidth to the
(USB-) smartcard, another is the lack of a second network interface in the up-
coming generation of networked smartcards. Both restrictions are likely to vanish
over time with advances in technology, but we believe that even the current re-
strictions allow for reasonable applications.

References

1. Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide. Addison-Wesley, 2000.

2. D-Link. Usb 2.0 fast ethernet adapter dub-e100. www.dlink.com/products/
?model=DUB-E100.

3. USB Implementers Forum. Universal serial bus class definitions for communication
devices. www.usb.org/developers/devclass_docs/usbcdc11.pdf, January 1999.

4. USB Implementers Forum. Universal serial bus communications class subclass
specification for ethernet emulation model devices rev. 1.0, February 2005.

5. Gemplus. Press release: Gemplus paves the way for future java card platform.
www.gemplus.com/press/archives/2005/rd/27-06-2005-javaone.html, June
2005.

6. Giesecke & Devrient GmbH. Internet smart card. www.gi-de.com/portal/
page? pageid=36,53930& dad=portal& schema=PORTAL.

7. Scott Guthery, Roger Kehr, and Joachim Posegga. How to turn a GSM SIM into a
web server. In Josep Domingo-Ferrer, David Chan, and Anthony Watson, editors,
Proc. IFIP Fourth Working Conference on Smart Card Research and Applications
(CARDIS 2000). Kluwer Academic Publishers, 2000.

8. Scott Guthery, Roger Kehr, Joachim Posegga, and Harald Vogt. GSM SIMs as
Web servers. In Seventh Intern. Conf. on Intelligence in Services and Networks,
Athens, Greece, Februar 2000. Short Paper.

9. Peter Honeyman and Jim Rees. Webcard: a java card web server. In Josep
Domingo-Ferrer, David Chan, and Anthony Watson, editors, Proc. IFIP Fourth
Working Conference on Smart Card Research and Applications (CARDIS 2000).
Kluwer Academic Publishers, 2000.

10. Innominate. Datasheet: mguard smart. www.innominate.com/images/stories/
documents/datasheets/db smart en.pdf, 2005.

11. Microsoft. Ndis - network driver interface specification. www.microsoft.com/whdc/
device/network/ndis/default.mspx .

12. Michael Montgomery, Asad Ali, and Karen Lu. Secure network card - implemen-
tation of a standard network stack in a smart card. In Proc. IFIP Fourth Working
Conference on Smart Card Research and Applications (CARDIS 2000). Kluwer
Academic Publishers, 2000.

13. Christophe Muller and Eric Deschamps. Smart cards as first-class network
citizens. 4th Gemplus Developer Conference, Singapore, November 2002.

14. netfilter. website. www.netfilter.org.
15. Kai Uwe Rommel. Netio - network throughput benchmark, version 1.14, 1997.
16. SUN. Package java.net description. java.sun.com/j2se/1.4.2/docs/api/java/

net/package-summary.html.
17. Aviel D. Rubin William R. Cheswick, Steven M. Bellovin. Firewalls and Internet

Security 2nd ed. Addison Wesley, 2003.
18. ZyXEL. Datasheet: Zywall p1. ftp://ftp.zyxel.com/ZyWALLP1/document/

ZyWALLP1 v2.0 Datasheet.pdf, March 2005.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 192 – 205, 2006.
© IFIP International Federation for Information Processing 2006

Multi-stage Packet Filtering in Network Smart Cards

HongQian Karen Lu

Smart Cards Research, Axalto, Inc., 8311 North FM 620 Road, Austin, TX 78726, USA
karenlu@axalto.com

Abstract. Network smart cards are smart cards with networking capabilities.
They have opened new opportunities for the use of smart cards in Internet
applications. At the same time, network smart cards are exposed to network se-
curity threats just as other computers on the Internet. Unfortunately, existing
designs of network security mechanisms, such as packet filtering, may not be
best suited for smart cards because the computing resources of the cards are too
limited. This paper presents a new packet filtering approach that overcomes this
difficulty. The packet filtering is performed in multiple stages. It drops un-
wanted packets as early as possible, starting at the I/O interrupt level. This
builds a network firewall inside smart cards and reduces resource usage for
packet processing. It can be used with different hardware and software configu-
rations and with various filter rules. Advantages of this approach include better
security, reduced memory usage, and enhanced performance.

1 Introduction

An exciting new phenomenon in the smart card industry is the emergence of network
smart cards, which are smart cards with networking capabilities [1]. The network
smart cards can provide services and access resources on the Internet, opening new
opportunities for the smart card industry. On one hand, because of their security,
portability and tamper-resistance, network smart cards provide security and conven-
ience over the Internet, which is better than other secure tokens [2]. However, on the
other hand, network smart cards are exposed to network security threats just as other
computers on the Internet. Therefore, they require security protections as well. Unfor-
tunately, existing designs and implementations of network security mechanisms, such
as packet filtering, may not be best suited to network smart cards because of the
cards’ computing resource limitations.

Packet filtering is a key component of the network firewall technique. In the Inter-
net world, a firewall is a network security mechanism. It is typically used to prevent
unauthorized Internet users from accessing private networks connected to the Internet.
Firewalls can be implemented in hardware, software, or a combination of both. Packet
filtering is typically done at protocol layers. However, allocating memory for a
packet, processing the packet through layers, and then filtering out the packet waste
CPU time and memory resources.

Smart cards have very limited memory resources compared to other network de-
vices or computers. For example, a network smart card may have only 6K bytes of
RAM, which seems to be plenty for a smart card. However, this memory is very little

 Multi-stage Packet Filtering in Network Smart Cards 193

for a network device because it must deal with a large amount of data in real-time.
The resource need is even higher when communicating over a secure channel. In
addition, once connected to the network, the network smart card may face a large
number of unwanted messages. If not managed properly, the card’s memory buffers
may be used up very quickly. Furthermore, network smart cards must protect them-
selves from network attacks. Therefore, new methods of packet filtering that are prac-
tical and efficient for network smart cards must be developed. This paper presents one
such method called the multi-stage packet filtering. It is a software method that is
adaptable to hardware configurations.

The new packet filtering method has two goals: security and resource management.
The goals are approached by performing packet filtering as early as possible before
more resources are consumed. The filtering has multiple stages starting from the I/O
interrupt service routine. The amount of filtering at each stage is configured according
to multiple factors, including filtering rules, the hardware configuration, hardware
capability, the nature of the data link layer, memory buffering scheme, and the net-
work stack process model.

The multi-stage packet filtering drops unwanted packets early to build a network
firewall inside the network smart card, to save memory resources, and to reduce CPU
usage for packet processing. It is a general framework of efficient packet filtering,
which can be used with a variety of hardware and software configurations and with
various filter rules. The method has several advantages over existing packet filtering
designs, including better security, reduced memory usage, and enhanced performance.
The approach is applicable to a variety of small resource-constrained embedded net-
work devices.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 provides an overview of the multi-stage packet filtering method. Sections 4
through 6 present the details of the packet filtering at each of the multiple stages. The
implementation is discussed in Section 7. Section 8 concludes the paper.

2 Related Work

A great deal of literature is available on network firewalls and packet filtering
[3][4][5] . Many commercial products are also available. The packet filtering is typi-
cally done at Ethernet, IP, and TCP/UDP layers, that is, at the protocol processing
stage. Extensive research on packet filtering in the past twenty years has produced
excellent results and made many applications possible, such as network monitoring,
traffic collection, performance measurement, packet classification in routers, firewall
filtering and intrusion detection. The references [6][7] offer examples of the packet
filtering research, which focus on flexible, extensible, and generalized filter abstrac-
tions and show how to compile the high-level abstractions to efficient implementa-
tions. These research were mostly based on modern operating systems and computing
systems, such as workstations (in the past) and personal computers (at present). The
packet filter is normally one module of the operating system, which executes at the
protocol processing stage or is parallel to the protocol-processing module [6].

In contrast, the work described herein focuses on the design and implementation of
packet filtering for small resource-constrained embedded network devices, such as

194 H.K. Lu

network smart cards. The main purposes of the filtering here are security and efficient
resource management. The packet filtering executes at more than one stage in order to
drop unwanted packets as early as possible and to best use limited computing re-
sources.

In a previous paper, we have proposed a front-end packet filtering at the AHDLC
layer for resource-constrained network devices [8]. This AHDLC packet filtering
method is applicable for devices using PPP as network connections. The multi-stage
packet filtering presented in this paper is a further elaboration of the front-end packet
filtering concept. This elaboration includes three main aspects: (1) the front is pushed
further to the I/O interrupt service routine; (2) the filtering is partitioned into stages;
and (3) the main focus is moved to USB/Ethernet smart cards. The following sections
describe the new method in details.

3 Method Overview

The multi-stage packet filtering method has two main purposes: network security and
resource management. Both are extremely important and necessary for network smart
cards. The key concept of the method is the front-end filtering, that is, to perform
packet filtering as early as possible before more resources, such as memory and CPU
time, are consumed. The filtering is done at multiple stages starting from the hardware
I/O interrupt service routine. This front-end filtering also makes the device more se-
cure because it blocks malicious packets upfront.

The amount and type of filtering at each of the multi-stages depend on multiple
factors, including filtering rules, the hardware configuration (e.g. USB, UART), data
link layers (e.g. CDC, EEM, Ethernet), hardware I/O interrupt mechanisms (e.g. byte,
frame, DMA), memory buffering schemes (e.g. straight buffer, chained buffer), hard-
ware capability, and the network stack process model. The implementation of this
method also depends on these factors.

3.1 Network Smart Cards

A network smart card is a smart card that is also an Internet node. The network smart
card implements standard Internet protocols and security protocols inside the card.
Figure 1 illustrates a network smart card that connects to the Internet through a host
computer. The smart card can provide services or access resources over the Internet.
The protocol stack on the network smart card is the same as those on other Internet
nodes.

A traditional smart card communicates with a host using the smart card standard
ISO 7816. The host has smart card specific middleware installed in order to commu-
nicate with the card. Through the host, the smart card provides security services to
the host or over the network that the host is connected to. In contrast, the network
smart card communicates with the host computer or a remote computer using Inter-
net protocols. The host does not have to be trusted [2][9]. No middleware is required
on the host computer or on the remote computer in order to talk with the network
smart card.

 Multi-stage Packet Filtering in Network Smart Cards 195

Host

Network
Smart card Internet

Fig. 1. A network smart card connects to the network via a host computer

Moving from proprietary computing environment to the mainstream networking
environment opens many opportunities for smart cards. For example, network smart
cards can establish direct secure connections with remote servers over the Internet [9].
This capability enables the cards to secure online transactions for Internet applica-
tions, such as online banking, online shopping, e-business, e-government, and
e-health care.

Network smart cards present numerous engineering challenges mainly due to their
computing resource limitations. For example, our first network smart card had only
6K bytes of RAM. The bandwidth was limited by the ISO 7816-3 interface and a
bridging protocol [10]. The card resource is scarce considering that it must deal with
real-time network traffic. The computation and communication demands for the card
are even higher for secure communications because of cryptographic computations
and increased network traffic. Many efforts have been made to provide network smart
card functionalities in such resource-constrained environment [1][8][10]. This paper
presents a continued effort to provide security and to manage limited resources for the
card.

Network smart cards connect to the Internet through a host computer using USB or
standard smart card interface ISO 7816. Smart cards with full speed USB interface
use standard USB networking interface [11]. For smart cards that have only ISO 7816
interface, a bridging protocol, called Peer I/O, is required, which sits above the ISO
7816 layer and below the network protocols layer [10]. A device driver or a reader
implements the Peer I/O on the host side to provide a full-duplex serial interface for
the ISO 7816 device. Even this case does not require additional middleware because
host computers know how to network through a serial interface.

The multi-stage packet filtering approach does not require a particular hardware in-
terface. It is applicable to a variety of hardware and software configurations. For the
convenience of discussion, we use USB smart cards as an example. In Section 7 we
discuss the case of network smart cards with standard ISO 7816 interface.

Figure 2 illustrates an example of the protocol stacks for a USB network smart card
and a host computer. The hardware connection between the smart card and the host
computer is the USB. On top of the USB driver is a USB EEM (Ethernet Emulation
Model) driver, which carries Ethernet frames using USB packages [11].

The network layer is the Internet Protocol (IP). Ethernet frames carry IP datagrams.
The transport layer is TCP or UDP. IP datagrams carry TCP or UDP segments.
Figure 3 illustrates the protocol encapsulations.

196 H.K. Lu

USB driver

TCP

IP

Ethernet driver

EEM driver

USB packets

USB Network
Smart Card

Network

USB hardware

USB driver

TCP

IP

Ethernet driver

EEM driver

USB hardware

Host system

Fig. 2. Network stacks in a USB network smart card and the host computer1

Header Ethernet frame payload CRC

IP data IP header

TCP data TCP header

Ethernet frame

IP datagram

TCP segment

Fig. 3. Protocol Encapsulations

The TCP/IP network is a packet-switched network. Messages are divided into
packets before they are transmitted. Each packet contains a source address and a des-
tination address. Packets can follow different routes to their destinations. Once all
packets forming a message arrive at the destination, they are recompiled into the mes-
sage. In short, the TCP/IP network transmits messages via packets. Packet filtering
filters packets to decide whether or not to let the packets pass, or to classify the pack-
ets. Packet filtering can be performed on in-bound packets as well as out-bound pack-
ets. This paper focuses on filtering of in-bound packets for security purposes.

3.2 Filter Rules

Packet filtering has been studied and used for over twenty years for network monitor-
ing, firewall, and other purposes. Filter rules specify how packet filtering should be

1 The full speed USB interface and network stack for smart cards are being proposed as an

ETSI smart card standard.

 Multi-stage Packet Filtering in Network Smart Cards 197

performed. For security purposes, the basic idea is to block all packets, except those
that the filter rules allow to pass [4].

In general, filter rules specify packet pass or drop conditions based on information
in protocol headers. Packet filters look at protocol headers of a packet and check
against filter rules to decide whether or not to let the packet pass. A network stack
normally does not look into the payload (or user data) of a packet.

Some of the filter rules are static; others are dynamic. For example, the network
device’s MAC address is normally fixed, and thus the filter rule associated with the
address is a static rule. In contrast, the permissible target IP address list is dynamic
and, hence, its corresponding filter rules are also dynamic.

Some of the filter rules are stateless while others are stateful. For example, the
TCP layer maintains a state machine for each connection. Rules for checking
addresses or protocol types are stateless, because they do not require any state infor-
mation. Rules that depend on the state of a connection are stateful rules. Figure 4
illustrates a classification of filter rules. The stateful rules may also be classified into
static and dynamic rules. For the purpose of the multi-state filtering, this further
classification is unnecessary.

There are different ways to model the packet filtering, including a Boolean expres-
sion tree and a directed acyclic control flow graph (CFG) [6][7]. The two models are
computationally equivalent. Figure 5 illustrates a filter example with these two repre-
sentations. Research has shown that CFG leads to more efficient implementations [7].

Packet filter rules are hierarchical, as shown in their representations. Once one fil-
ter rule decides to drop the packet, the remaining rules need not be checked; the
packet is dropped. After a packet passes one filter rule, it still needs to pass other rules
down the hierarchy in order to get to its destination.

The multi-stage packet filtering method is a general packet filtering framework. It
does not depend on a particular filter rule set. It can be used for various filter rule
configurations. The filter rules specification is out of the scope of this paper.

Filter rules

isAisA

isA isA

Dynamic rulesStatic rules

Stateless rules Stateful rules
SSl

F

f

DS

Fig. 4. A classification of filter rules

198 H.K. Lu

OR

Ether.type=IP Ether.type=ARP

Ether.type=ARP

Ether.type=IP

no

no

yes

yes

Tree Representation

TrueFalse

CFG Representation

Fig. 5. Filter Function Representations

3.3 Software Models

This section examines several stages of an embedded system in which the multi-stage
packet filtering may be performed. When a packet comes into a network smart card,
the I/O hardware of the chip generates an interrupt. The corresponding interrupt service

ISR
Packet filtering

Pre-memory allocation
Packet filtering

Protocol stack packet filtering

IP

TCP UDP

pass

pass

pass

packet

drop

drop

drop

Fig. 6. Multi-stage packet filtering

 Multi-stage Packet Filtering in Network Smart Cards 199

Applications

Protocol stack
processing

Hardware

Memory
allocation

ISR ISR
Packet filtering

OS

OS

Pre-memory-allocation
Packet filtering

Protocol stack
Packet filtering

Packet stream

ISR
Packet filtering

Protocol stack
Packet filtering

Fig. 7. Stages of the packet filtering depend on the software configuration

routine (ISR) handles the interrupt to get the incoming data. This is the first stage of
packet handling. We may start filtering inside the ISR. This is called the ISR packet
filtering. Then, a memory buffer, e.g. a byte array or a buffer chain, is allocated to store
the packet for processing. This is a second stage. The filtering may be done just before
the memory allocation, which is called the pre-memory allocation packet filtering. The
protocol stack processes the packet, making a third stage. We call the filtering at this
stage the protocol stack packet filtering. Depending on the interrupt handling, memory
buffer scheme, and protocol stack, these three stages may not be completely separated.
Figure 6 illustrates these three general stages. It should be noted that the protocol stack
packet filtering might be further distributed among protocol layers.

Figure 7 illustrates two examples of the multi-stage packet filtering. The solid arrow
path shows one example of a software configuration in which the memory allocation for
the in-coming packet is outside of the ISR. This example uses a three-stage packet filter-
ing. The dashed arrow path shows another example of a software configuration, with
which the memory allocation is inside the ISR. This example uses a two-stage packet
filtering method in which the ISR filtering is executed before the memory allocation.

Due to time limitation and other constraints of an interrupt service routine, a lim-
ited filtering is done at the interrupt service stage. If the memory allocation is outside
of the interrupt service routine, much of the stateless filtering is performed before the
memory buffer allocation so that unwanted packets do not use additional memory
buffers. The protocol stack filtering applies remaining filter rules, especially stateful

200 H.K. Lu

rules, to the packets. Other software models may have additional stages, which may
perform packet filtering. The key of this method is to drop unwanted packets as early
as possible. This blocks malicious packets up front, avoids allocating memory buffers
for these packets, and avoids or reduces processing time for the packets. The next few
sections describe each of the filtering stages in more detail.

4 ISR Packet Filtering

This section describes the packet filter in the input event interrupt service routine
(ISR). This is also called the front-end packet filtering. We first discuss the con-
straints of the ISR. We then describe what an ISR packet filter must do to live with
these constraints.

4.1 Constraints

An I/O interrupt service routine is a software routine that handles I/O events. How
an I/O event triggers an interrupt and how the microprocessor invokes the interrupt
service routine depend on the chip architecture, the I/O hardware, and the soft-
ware/hardware interface that the chip manufacture provides. Some chips let a soft-
ware programmer write hardware interrupt service routines. Other chips provide a
hardware/software interface layer to deal with hardware interrupts in which case a
software programmer writes interrupt service routines triggered by the interface
layer. The interrupt service routine may be called when a byte arrives, when a
packet arrives, or when a larger amount of data arrives. For example, with USB
devices, the interrupt service routine is typically invoked when a USB packet ar-
rives. With full speed USB bulk data transfer, this may mean that 64 bytes of data
have just arrived.

An interrupt service routine normally does some quick and simple things to handle
the interrupt. The program goes back to the routine that was interrupted as soon as
possible. Typically, the ISR has timing constraints. For example, the ISR must finish
before the next input event happens. For USB full speed bulk data transfer on an oth-
erwise idle bus, the maximum possible speed per pipe is nineteen 64-byte transactions
per frame, where one frame is 1 millisecond. This takes about 82% of the bus band-
width. Hence, the minimum time interval between the arrivals of two consecutive
USB data packets is 43 microseconds. The ISR must finish within this time.

Another constraint for an ISR is the availability of other resources. For example,
the input interrupt may happen when the CPU is doing a non-volatile memory write.
In this case, typically the ISR cannot do a non-volatile memory write. In general, the
ISR should avoid any non-volatile memory write.

A third constraint for an ISR is variable access. An I/O interrupt may happen when
the program is changing a variable. If the ISR tries to access this variable or, worse, to
change the variable, the result is unpredictable. This is known as the data-sharing
problem. Therefore, either the ISR should try to avoid accessing or changing a vari-
able or the variable must be protected, for example, using critical sections. To avoid
the data-sharing problem and to reduce the interrupt latency, the ISR packet filtering
must not access any variables, which means only checking static filter rules.

 Multi-stage Packet Filtering in Network Smart Cards 201

4.2 Packet Filtering

The input event ISR extracts Ethernet frames (called packets) from the underlying
link layer protocols. Performing packet filtering inside the ISR is feasible because
protocol headers, such as headers of EEM, Ethernet, and IP, are at fixed positions
within their outer protocol packets. For example, an EEM packet has a two-byte
header; the Ethernet packet header has fourteen bytes; and the IP header starts imme-
diately after the Ethernet header. With such fixed positions, the ISR can access header
elements directly.

The basic packet filtering rules are very simple and involve only constants. The
following is an example of a set of basic filter rules. These are static rules to be
applied first and can be done in the ISR.

Rule 1: If (Ethernet destination address == my Ethernet address)
Pass the packet.

Rule 2: If the packet passed Rule 1, and if
Type == IP
Pass the packet.

Rule 3: If (Ethernet destination address == ff:ff:ff:ff:ff:ff) and (Type == ARP)
Pass the packet.

Rule 4: If the packet passed Rule 3, and if
Target IP address == my IP address
Pass the packet.

Rule 5: If the packet passed Rule 2, and if
Destination IP address == my IP address
Pass the packet.

Rule 6: If the packet passed Rule 5, and if
(Protocol type == TCP) or (Protocol type == UDP)
or (Protocol type == ICMP)
Pass the packet.

The amount of packet filtering in an ISR depends on the CPU speed, the timing
constraints for the ISR, and the amount of necessary work that the ISR must do. For
the example mentioned earlier, the ISR has as little as 43 microseconds to do its job.
One of our implementations can check the above filter rules in 1.67 microseconds in
the worst-case scenario. That is a sufficiently short execution time to fit into the ISR.
Section 7 provides more details about our implementations.

During software development, one could measure the time needed for the normal
ISR work without the packet filtering. The difference between the allowable time for
the ISR and the time needed for the ISR function is the time interval that the packet
filter can use. Some chips may only have time for checking one filtering rule for an
Ethernet packet header; while other chips may have enough time for checking all
static filter rules inside the ISR.

The packet filtering at ISR is especially useful if the input event ISR allocates
memory buffers for incoming packets. The filtering should be done before the mem-
ory allocation. Regardless whether the allocated memory is a single contiguous mem-
ory or a chained memory buffer, once the ISR decides to drop the packet according to

202 H.K. Lu

filtering rules, it will require no memory allocation and no further processing to this
packet. This leads to a reduced memory usage and enhanced performance. For zero-
copy protocol stack implementations, being able to drop packets at ISR still prevents
further processing of the unwanted packets. This again enhances the performance of
the system.

In addition to reduced memory usage and enhanced performance, the unwanted
packet does not go further into the system. This makes the system less susceptible to
network attacks and, hence, results in a more secure system.

5 Pre-Memory-Allocation Packet Filtering

For some hardware and software configurations, the interrupt service routine or the
Direct Memory Access (DMA) puts the incoming packets into a fixed contiguous
memory location. Outside of the ISR, the network protocol stack processes and
queues the packet. Before or during this process, the packet is taken out from the
fixed memory location and put into a dynamically allocated memory buffer or a
buffer chain. The contiguous memory is ready for the ISR or DMA to put in the next
packet. This provides another opportunity for early packet filtering, which filters the
packets before the memory allocation.

This pre-memory-allocation packet filtering, if performed outside the ISR, can
check against all the remaining stateless filter rules, including static rules that were
not checked by the ISR packet filter and dynamic rules. Once one rule decides to drop
the packet, the remaining rules need not be checked; the packet is dropped. The
packet filtering at this stage, again, prevents allocation of memory buffer for un-
wanted packets.

One example of dynamic filter rules that can be performed at the pre-memory-
allocation stage checks the destination port number of an incoming packet. Each TCP
or UDP packet contains a destination port number Pd. For example, an http server has
a well-known port number 80; a secure http server has a well-known port number
443. The network smart card maintains a permissible destination port number list, Ld,
which contains port numbers that the card allows the incoming packets to target at a
given time. Then, we have the following rule:

Permissible destination port number rule:

 If Pd ∈ Ld, then pass the packet.

If an incoming packet’s destination port number Pd is not in the list Ld, the packet is
dropped. This list is static if the network smart card is a network server only. The list
is dynamic if the card can be a client as well as a server.

For example, a network smart card provides a secure web server. The permissible
destination port number list Ld initially has only one entry 443. The card is also an
Internet client or an agent. When the card initiates a connection to a remote server
using an ephemeral port number x, then x is added to Ld. When this connection fin-
ishes, the x is removed from Ld. Therefore, the list Ld changes; the associate filter rule
is dynamic.

If a smart card chip has DMA (Direct Memory Access), the incoming data stream
is transferred directly to a pre-specified contiguous memory location without passing

 Multi-stage Packet Filtering in Network Smart Cards 203

through the CPU. The packet filtering may be performed from the DMA memory
directly to decide whether or not to drop a packet. Note that the packet filtering in this
case may or may not be inside the ISR. If the filtering is inside the ISR, it should
leave the check of the dynamic filtering rules to the next filtering stage.

6 Protocol Stack Packet Filtering

The protocol stack includes a data link layer (e.g. Ethernet), a network layer (IP), and
a transport layer (e.g. TCP, UDP). Conventional packet filters work on the protocol
stack or side-by-side to the protocol stack [6]. With the multi-stage method, the
packet filtering at the protocol processing stage is reduced because of the filtering
already done at previous stages. The filtering at this stage checks remaining filter
rules. The stateful filtering is always done here because it requires state information.
The amount of filtering at this stage depends on how much has been performed in
previous stages. The following are three examples.

1. The protocol stack packet filter does the entire packet filtering work. (There has
been neither ISR nor pre-memory-allocation packet filtering.) This is the con-
ventional packet filtering.

2. The protocol stack packet filter does a part of the stateless static filtering, state-
less dynamic filtering, and stateful filtering. (There is an ISR packet filter, but
no pre-memory-allocation packet filter.)

3. The protocol stack packet filter does stateful filtering only. (There is an ISR and
a pre-memory-allocation packet filtering.)

7 Implementations

Several smart card companies, such as Axalto, Giesecke & Devrient, and Gemplus,
have demonstrated network smart cards, which have been called Internet smart cards
or web cards, at various conferences in the past few years. We have implemented a
network smart card on a smart card chip from Samsung, which was demonstrated at
Cartes in 2003 and other smart card conferences.

We are currently using a faster USB smart card chip that has a 33 MHz microproc-
essor, 16K of RAM, 128K of ROM and 64K of EEPROM. The network smart card
uses the new USB networking standard, EEM, for the lower link layer to carry
Ethernet frames [11]. For the multi-stage packet filtering, from the software imple-
mentation perspective, the most critical part is the filtering in the interrupt service
routine. For USB bulk data transfer with full speed USB, the ISR has a little less than
43 microseconds. Our implementation of an ISR packet filter using the sample rules,
listed in Section 0, executes in 55 machine cycles in worst-case scenarios. The ISR
packet filter was programmed using the C language. With the chip’s 33 MHz micro-
processor, this takes 1.67 microseconds. Even assuming a 20 MHz practical processor
speed, the ISR filtering, in the worst- case scenario, takes 2.75 microseconds. It could
take less time if coded in an assembly language. Therefore, the proposed packet filter-
ing approach is practical and effective.

204 H.K. Lu

In a previous work, we have proposed packet filtering at the AHDLC layer [8].
This is especially useful for smart cards that have ISO 7816 interface and do not have
USB. For example, our first network smart card prototype used Samsung’s S3FC9BJ
smart card chip, which had only ISO 7816 interface. In this case, the network smart
card uses PPP [12], instead of Ethernet, as the data link layer to carry TCP/IP Internet
protocol packets. The AHDLC layer does framing for the PPP layer [13]. The
multi-stage packet filtering method is also applicable in this situation. If the AHDLC
processing is performed during the interrupt service routine, the filtering that can be
performed in the AHDLC layer is under the constraints of the ISR filtering, which is
described in Section 4. Otherwise, if the AHDLC processing is outside of the interrupt
service routine, stateless packet filtering can be done during the AHDLC processing
as described in the reference [8]; stateful packet filtering is done at the upper layer
protocol processing stage. In both cases, there can be at least two stages of packet
filtering.

8 Conclusions

The multi-stage packet filtering method presented in this paper builds a network fire-
wall inside network smart cards. It drops unwanted packets as soon as possible to save
memory resources and to reduce CPU usage for packet processing. This is a general
framework of efficient packet filtering for network smart cards. It can be used with a
variety of hardware and software configurations and with various filter rules. The
method has several advantages over existing packet filtering designs, including better
security, reduced memory usage, and enhanced performance. The approach is appli-
cable to a variety of small resource-constrained embedded network devices to en-
hance their security and success on the Internet.

References

[1] Montgomery, M., Ali, A., and Lu, H.K., "SECURE NETWORK CARD - Implementa-
tion of a Standard Network Stack in a Smart Card," Sixth Smart Card Research and Ad-
vanced Application IFIP Conference (Cardis), Toulouse, France, August 23-26, 2004.

[2] Ali, A. and Montgomery, M., “Secure Internet Access and the Role of Network Smart
Card,” Proc. of the 4th IASTED Int. Conf. on Communications, Internet and Information
Technology. Cambridge, MA, USA. Oct 31 - Nov 02, 2005, page 259-265.

[3] Cheswick, W.R., Bellovin, S.M. and Rubin, A.D., Firewalls and Internet Security, Addi-
son-Wesley, 2003.

[4] Lockhart, A., Network Security Hacks, O’Reilly, 2004.
[5] Zwicky, E.D., Cooper, S. and Chapman D.B., Building Internet Firewalls, O’Reilly,

2000.
[6] McCanne, S. and Jacobson V., The BSD Packet Filter: A New Architecture for User-

level Packet Capture. In Proceedings of the Winter 1993 USENIX Conference, pages
259-290, January 1993.

[7] Mogul, J., Rashid, R. and Accetta. M., The Packet Filter: An Efficient Mechanism for
User-level Network Code. In Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 39-51, November 1987.

 Multi-stage Packet Filtering in Network Smart Cards 205

[8] Lu, H.K., "Firewall at AHDLC Layer," The 2005 International Conference on Embedded
Systems and Applications, June 27-30, 2005, Las Vegas, USA.

[9] Lu, H.K. and Ali, A., "Prevent Online Identity Theft - Using Network Smart Cards for
Secure Online Transactions," 7th Information Security Conference (ISC), Palo Alto, CA,
USA, September 27-29, 2004.

[10] Lu, H.K., "New Advances in Smart Card Communication," International Conference on
Computing, Communications and Control Technologies (CCCT), Austin, TX, USA, Au-
gust 14-17, 2004.

[11] Universal Serial Bus Communications Class Subclass Specification for Ethernet Emula-
tion Model Devices, http://www.usb.org/developers/devclass_docs/CDC_EEM10.pdf.

[12] PPP – RFC 1662.
[13] Calson, J., PPP Design, Implementation, and Debugging, Addison-Wesley, 2000.

Anonymous Authentication with Optional
Shared Anonymity Revocation and Linkability

Martin Schaffer and Peter Schartner

Computer Science, System Security,
University of Klagenfurt, Austria

{m.schaffer, p.schartner}@syssec.at

Abstract. In this paper we propose three smartcard-based variants of
anonymous authentication using unique one-time pseudonyms. The first
variant can be used to authenticate a user. However, his identity cannot
be revealed and linked to other pseudonyms unless solving the compu-
tational Diffie-Hellman problem. In the second variant a set R of re-
vocation centers is able to revoke the anonymity in collaboration with
a trust center T but they are not able to link the revealed identity to
other pseudonyms of the same user. Using the third variant additionally
provides linkability if R and T cooperate. Some selected applications for
the proposed protocols include physical access control, secure auctions,
eCoins and online gambling.

1 Introduction

Nowadays smartcards appear to be a building block in several applications. Once
mainly used for physical access control, their usage has been extended to more
general applications related to different areas like eCommerce in the recent years.
When using a smartcard, a user normally authenticates to the smartcard by en-
tering a personal identification number. Then the smartcard itself authenticates
to an instance (e.g. device (un)locking a door or service provider). Several stan-
dard methods exist, how to perform a unilateral authentication process, most
of which do not really provide the anonymity of the user. So a lot of research
has taken place to provide anonymous authentication based on zero-knowledge
proofs. Such protocols have two advantages. First, the anonymity can be pro-
vided and second, collected communication data of several protocol runs of the
same smartcard – depending on the particular solution – are not linkable by
an eavesdropper. However, several standard proofs of identity require the same
public input on the verifier’s side during every authentication process (e.g. proof
of knowledge of a private key, where the verifier must have access to the public
key). Thus, the usage of the smartcard is traceable.

Providing authentication processes with anonymity and unlinkability pro-
tects the user’s privacy. However, the verifier of the authentication process has
to be protected as well, namely against malicious behaviour of the smartcard-
holder in the protocols run thereafter. So we also need a mechanism to revoke

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 206–221, 2006.
c© IFIP International Federation for Information Processing 2006

Anonymous Authentication with Optional Shared Anonymity Revocation 207

the user’s anonymity and – if required – the ability to make user’s activities
traceable by disclosing linking information.

Over the last years several solutions have been proposed in this area. Many of
them are based on group signatures, which allow users to prove the membership
of a group without revealing their identity [1, 2, 5, 7]. Others are based on thresh-
old privacy where a user remains anonymous when accessing a service up to a
limited number of times [18, 26]. Revocation of anonymity and (un)linkability are
a main requirement in anonymous credential systems [4, 19] or electronic money
[13, 15, 17]. A solution optimized for power-limited devices has been proposed in
[14]. Our scheme is neither based on group signatures nor on threshold privacy
(as described in [23]). Compared to more general solutions such as traceable sig-
natures [16] our approach is more specific – namely – optimized for smartcards.
We designed the protocols in a simple way based on already known techniques
providing anonymous authentication and mechanisms to revoke the anonymity
and linkability of a user. A second reason for using smartcards is the fact that we
use a particular technique to generate globally unique pseudorandom numbers
which requires the use of smartcards [21, 22].

When considering authentication schemes based on – but not limited to –
smartcards, we come to the following requirements:

– Unforgeability. The user must not be able to forge the authentication process.
– Anonymity. The anonymity of the user (identifier) has to be provided during

every protocol run.
– Unlinkability. Any two authentication processes (protocol transcripts) must

not be linkable.
– Optional Anonymity Revocation and Linkability. Given the protocol tran-

script, the anonymity of the user should be revocable by some additional
information (trapdoor). Moreover, disclosure of linking information should
lead to the identification of all corresponding authentication processes.

In the upcoming sections we present several variants of a smartcard-based
anonymous authentication, based on unique one-time pseudonyms (OTPs). De-
pending on the used variant of the protocol, the anonymity is revocable by a set
R of revocation centers so that its owner can be identified by the trust center T .
If required, the protocol can be extended, so that the revealed identity can be
linked to all its corresponding OTPs. The paper provides three variants of the
anonymous authentication protocol AnonAuth:

1. AnonAuth1: No Anonymity Revocation / No Linkability.
2. AnonAuth2: Optional Anonymity Revocation / No Linkability.
3. AnonAuth3: Optional Anonymity Revocation / Optional Linkability.

The proposed authentication protocols are based on OTPs containing a user-
generated globally unique identifier id, blinded by a pseudorandomly chosen
value b. These one-time pseudonyms are generated and signed by T in a tamper
resistant device (TRD) so that there exists no linking information to the user
data accessible by T . The output of the TRD is an encrypted batch of authenti-
cation data containing the used blinding values and the signatures proving that

208 M. Schaffer and P. Schartner

the OTPs have been generated by T . The batch can only be decrypted by the
owner of the corresponding unique identifier.1

Knowing only a OTP and the corresponding signature, does not reveal any
information about the holder of the pseudonym. Additionally, OTPs of the same
holder are mutually unlinkable. Hence, only the owner of a pseudonym is able to
prove its ownership using a zero-knowledge proof which does not reveal private
information.

1.1 Three Authentication Protocols

The proposed protocols are generally done in three steps:

1. The user imports authentication data to his smartcard and decrypts it.
2. Then he sends the one-time pseudonym and the corresponding signature to

the verifier, who verifies the validity.
3. The user proves in zero-knowledge that he knows the pre-image(s) of the

one-time pseudonym: the unique identifier id and/or the blinding value b.

We provide the following three authentication protocols:

AnonAuth1 – No Anonymity Revocation / No Linkability. Here the user proves
in zero-knowledge that he knows id and b without revealing information. How-
ever, no one is able to revoke the anonymity or link OTPs to the user except
himself by publishing private information.

AnonAuth2 – Optional Anonymity Revocation / No Linkability. Here the user
attaches the blinding value b encrypted by the public key of R to the second step
of the authentication protocol. In the third step he proves in zero-knowledge that
the correct b is contained in the ciphertext. Thus, the user’s anonymity can only
be revoked by a set of revocation centers by using threshold decryption which
acts as a partial trapdoor to the OTP-generation process. However, the revoked
information can only be used to identify the owner of a specific pseudonym but
cannot be used to find other pseudonyms of this user.

AnonAuth3 – Optional Anonymity Revocation / Optional Linkability. Here
the user additionally attaches encrypted linking information. In the third step
he proves in zero-knowledge that the correct linking information is contained in
the ciphertext. Shared decryption of b and the linking information acts as full
trapdoor to the OTP-generation process. The disclosure of the pre-images of
the used one-time pseudonym enables the trust center to identify all one-time
pseudonyms that belong to the revealed unique identifier.

1.2 Core Components

User Ui. The user owns a smartcard containing the unique Integrated Chip-
Card Serial Number (ICCSNi). During the setup and registration phase his
1 The TRD might be replaced by a solution based on multi-party computation [12].

Anonymous Authentication with Optional Shared Anonymity Revocation 209

smartcard is provided with a unique user identifier and several keys. Encrypted
authentication data is stored on Ui’s local machine and can only be decrypted by
Ui’s smartcard. The user’s part of the authentication process is done exclusively
on his smartcard.

Trust Center T . The trust center owns the commitment of the user’s identifier
linked to the user’s passport data, user’s public key and signature. Moreover,
the trust center owns a TRD which has two tasks:

1. Signing the user’s data during the registration process.
2. Generating user’s encrypted authentication data.

Bulletin Board BB. Encrypted authentication data is posted here, so that the
user is able to download it if required.

Revocation Centers R1, . . . , Rn. In the second variant of the authentication pro-
tocol, a set of revocation centers is able to decrypt the blinding information,
which leads to the anonymity revocation at T . In the third variant, they are
able to decrypt linking information as well so that all OTPs of the revealed
unique identifier can be found.

. . .

......

R1R1 RnRn

Revocation CentersRevocation Centers Trust Center TTrust Center T

Verifier VVerifier V

revocationrevocation

linkinglinking

user
data
user
data

collected
already used
OTPs

collected
already used
OTPs

Bulletin BoardBulletin Board

encrypted
auth-data
encrypted
auth-data

encrypted
auth-data
encrypted
auth-data

encrypted
auth-data
encrypted
auth-data

registrationregistration registrationregistration

mutual authenticationsmutual authenticationsunilateral
authentications
unilateral

authentications

generation
of auth-data
generation
of auth-data

shared
decryption
of blinding
information

shared
decryption
of blinding
information

shared
decryption
of linking
information

shared
decryption
of linking
information

unlinkableunlinkable unlinkableunlinkable

can also act as verifier V (mutual authentications)can also act as verifier V (mutual authentications)

User UiUser Ui User UjUser Uj

Fig. 1. System Architecture

1.3 Selected Applications

eCoins. The proposed system can be used for “double spending detection” of
eCoins. Therefore, the authentication data may contain information about the
value of the eCoin and the user would have to pay for each authentication data

210 M. Schaffer and P. Schartner

according to its value. If he uses an eCoin he simply runs the proposed authen-
tication process. Later on, the receiver of the eCoin sends the corresponding
pseudonym to a double spending detection server which logs the used eCoins. If
an eCoin has been sent twice, it is obvious that it has been used twice. In this
case R and T can identify the cheating party.

Secure Auctions. Here, the participants can remain anonymous until one wins
the auction. In this case the winner may have an interest to reveal his identity.
If he refuses to pay, the auction chair can reveal his identity with the help of R
and T .

Patent Search. The proposed scheme can be used for research activities in patent
databases. Thus, a business rival is not able to link e.g. queries and hence is not
able to associate them to a common identifier.

Physical Access Control. The standard application according to smartcards is
physical access control. Using our scheme, the holder of a smartcard is not trace-
able anymore within buildings. If he (physically) misbehaves, his anonymity can
be revoked. Moreover, his path through a building can be traced then as well.

Authenticity of Casino-Chips. Assume that every chip is provided with a
contact-less smart device. For instance, when a player places a chip in a roulette
session, it automatically authenticates to the gambling-table. This makes the us-
age of forged chips detectable. Depending on the used authentication mechanism,
the chip can be made traceable or not.2

Traceability of Gamblers. Assume that every gambler is provided with a Personal
Digital Assistant that is used for online gambling in a casino. When playing (e.g.
roulette), a person authenticates himself using the proposed protocols. If he loses
a game he has to pay or his identity will be revealed for this particular game.
Additionally all the games in which he participated can be linked to him if
required. The advantage is that the behaviour of the player is untraceable as
long as the linking information has not been decrypted by R.

2 Preliminaries and Notation

2.1 The Discrete Logarithm Problem Family

The unlinkability and security of our system relies on the security of the discrete
logarithm problem (DLP), the computational Diffie-Hellman problem (CDP) as
well as the decisional Diffie-Hellman problem (DDP). Let g be the generator of
a cyclic group ZZ∗

q , then it is hard to compute x by only knowing gx (DLP).
Moreover, it is hard to compute gx·y by only knowing gx and gy (CDP). Given

2 Note: Unlike the system proposed in [6] our scheme aims at physical casino-chips
containing cryptographic hardware.

Anonymous Authentication with Optional Shared Anonymity Revocation 211

the values gx, gy and Z it his hard to decide whether Z = gx·y or Z has been
chosen at random (DDP). A triple (gx, gy, gx·y) is called Diffie-Hellman triple.
Several variations of the Diffie-Hellman problem can be found in [3].

2.2 ElGamal’s Cryptosystem and Signature Scheme

Let h be the generator of a cyclic group ZZ∗
q . Then the ElGamal key genera-

tion outputs the encryption key e = hd and the decryption key d. The encryp-
tion/decryption is done as follows [10]:

E(m, a, e) = (C1, C2), C1 = ha, C2 = m · ea, a ∈R ZZ∗
q

D((C1, C2), d) = m, m = C2 · (Cd
1)−1

We abstract the encryption of larger plaintext by E′(m, e) = C. The signature
generation/verification is performed over sign key s/verification key v:

S(m, s) = σ, V (m, σ, v) ∈ {true, false}

Note, that we defined S and V as blackbox-functions because they can be re-
placed by any other signature scheme.

2.3 ElGamal Threshold Decryption

If we consider a single party not to be trustworthy enough to perform a decryp-
tion only on request, then there is a need to share the decryption function over
a set of instances. In [9] Desmedt and Frankel proposed a shared variation of
ElGamal’s decryption function. Therefore, the private key d has to be generated
in a distributed way by using e.g. the protocol in [11] providing each decryptor
Pi with a share di. In the following we consider the shared decryption protocol
as a blackbox-function:

˜D((C1, C2), (d1, . . . , dn)) = m

2.4 Locally Generated Globally Unique Pseudorandom Numbers

In [22] a method to locally generate globally unique pseudorandom numbers
has been proposed. Therefore, a smartcard, a unique identifier and a symmetric
cryptosystem are needed. In the current paper we use this method to generate the
unique user identifier and the blinding values. A globally unique pseudorandom
number UN can be generated in the user’s smartcard as follows [22]:

UN = EDES(ICCSN ||Pad, τk)||τk

where Pad is a random padding up to the input-size. Here, τk is a randomly
chosen DES-key and EDES is the DES encryption function. Due to the fact
that UN is never accessible by unauthorized instances (we only use its discrete

212 M. Schaffer and P. Schartner

logarithm (DL) commitment gUN), it is computationally hard to reveal it. Thus,
the security of DES does not play a role, because the ciphertext is never available
to an attacker. A similar approach which is based on the RSA cryptosystem [20]
can be found in [21]. There UN can be uniquely generated as follows:

UN = ERSA(ICCSN ||Pad, τe)||τe||τn

where (τe, τn) is a randomly chosen RSA public key. We use the RSA-version
for the generation of unique ElGamal keys (UKG). For a proof of uniqueness we
refer to [21] and [22] respectively.

2.5 Unique One-Time Pseudonyms

In this paper we use OTPs of the form ηj = (gbj , gbj ·idi). We require each
pseudorandom value bj to be uniquely generated in the TRD. Moreover, we
require the unique user identifier to be locally generated by the user himself
(in his smartcard). For both values we use the unique pseudorandom number
generation (URNG) based on symmetric encryption as described in section 2.4.
To avoid local doublets when generating bj , the TRD has to include a counter
to the generation process. Due to the fact, that bj is unique gbj is unique as well.
The second part of ηj commits idi to the pseudonym, so that all pseudonyms of
the same holder can be linked to his unique identifier if required.

2.6 Used Zero-Knowledge Proofs

We use a very efficient abstract notation for proofs of knowledge (PK) introduced
in [5]. For detailed information on the following proofs we refer to [24] and [25].

Schnorr’s Proof of Knowledge. This proof is required by the first authenti-
cation protocol, where a one-time pseudonym can neither be opened nor linked
without the cooperation of the user. Let X = gx be a public value in ZZ∗

q with
secret pre-image x. Then the prover can convince the verifier in zero-knowledge
that he knows x using Schnorr’s proof of knowledge [24]. Using the abstract
notation Schnorr’s PK looks as follows:

PK{(α) : X = gα}

Mapping: α = x

Stadler’s Proof of Knowledge. Let X = gx and (C1, C2) = (ha, x−1 · ea) an
ElGamal ciphertext. In [25] Stadler proposed a PK where one can prove, that
(C1, C2) is a correct ElGamal ciphertext and contains the inverse of x. This can
only be done by the prover iff he knows a and x. In our scheme this proof can
be used to prove that the pre-images of a OTP are contained in an attached
ElGamal ciphertext. Using the abstract notation Stadler’s PK looks as follows:

PK{(α, β, γ) : X = gα ∧ (C1, C2) = E(γ, β, e)}.

Mapping: α = x β = a γ = x−1

Anonymous Authentication with Optional Shared Anonymity Revocation 213

Concurrent Executions. By using the techniques described by Damgard in
[8] the above protocols can be made concurrent zero-knowledge. This means,
that even if they are executed in parallel, they remain zero-knowledge. Such a
modification is of extreme importance for our scheme, because we use smartcards
on the user’s side. Hence, we have to keep the number of sent messages as minimal
as possible.

3 On the Linkability of the Used One-Time Pseudonyms

In the following we consider several variations of how to identify the holder of a
pseudonym. Moreover, we discuss the ability of T to link pseudonyms to a user
Ui. For our consideration we assume that all generated pseudonyms are available
to T without linkage to the corresponding unique identifier.

Table 1 shows the possible unique identifier with its linking-property based
on the amount of open information resulting in the following 6 variations:

1. For every ηj = (ηj1, ηj2) T verifies if ηidi

j1 = ηj2 holds. Each successful verifi-
cation links the pseudonym to Ui.

2. Opening ηj = (gbj , gbj ·idi) results in gidi . For each id′i T has to verify if
gid′

i = gidi holds. If one holds the owner of the pseudonym has been found.
The linkability does not depend on the anonymity revocation.

3. Opening ηj = (gbj , gbj ·idi) results in idi which speeds up the identification
of a user because T does not have to perform the verifications described in
2. Again, the linkability does not depend on the revocation.

4. For each ηj = (ηj1, ηj2) T would have to verify if ηidi

j1 = ηj2 holds. To perform
such verifications T has to solve the CDP because he only knows gidi .

5. Opening ηj = (gbj , gbj ·idi) results in gidi . Thus, the owner Ui can be identified
by T but no open information of his other pseudonyms is revealed.

6. Opening ηj = (gbj , gbj ·idi) results in idi. For each gid′
i T has to verify if

gid′
i = gidi holds. If one holds the owner of the pseudonym has been found.

Moreover, all pseudonyms of Ui can be revealed as described in 1.

Table 1. Linkability of User Ui to his OTPs

amount of open information
unique identifier nothing bj bj and idi

idi 1. linkable by T 2. linkable by T 3. linkable by T

gidi 4. unlinkable (CDP) 5. unlinkable (CDP) 6. linkable by T

anonymity not revocable anonymity revocable

4 The Authentication Scheme

4.1 Setup

First the system parameters have to be generated in a secure environment. A
suitable cyclic group ZZ∗

q , q ∈ IP and the according generators h (for ElGamal)

214 M. Schaffer and P. Schartner

and g (for OTPs) have to be chosen. The value n denotes the number of revoca-
tion centers and t the threshold of tolerated dishonest revocation centers. The
parameter l specifies the number of OTPs included in a batch of authentication
data generated in the TRD. The security parameter k specifies the number of
necessary rounds of the used zero-knowledge proof. We now assume that each
instance of the system is provided with all necessary system parameters.

The user Ui generates a globally unique identifier idi and an ElGamal key-
pair (ei, di) where di is the private key:

idi = EDES(ICCSNi||Pad, τki)||τki

di = ERSA(idi||Pad, τei)||τei ||τni , ei = hdi

such that idi, di ∈ ZZ∗
q . The TRD generates a globally unique sign key st:

st = ERSA(TRDID||Pad, τet)||τet ||τnt , vt = hst

such that st ∈ ZZ∗
q . The verification key vt is exported to T . The set of revocation

centers generate a decryption key dr in a shared way (e.g. with the solutions in
[11]) without reconstructing it, resulting in the private-key-shares dr1 , . . . , drn

and the corresponding (reconstructed) public key er.

eiei gidigidi

σ(idi)σ(idi)

eiei

eiei

σ(idi)σ(idi)

stst

gidigidi

idiidi

gidigidi

gg

idiidi

idiidi

gg

gg

σ(idi)σ(idi)

gidigidi

(ei, di)(ei, di)

ICCSNiICCSNi

ICCSNiICCSNi

ICCSNiICCSNi

URNGURNG EXPEXP

SS

User UiUser Ui

TRDTRD

UKGUKG

Fig. 2. User Registration – Computations on the Smartcard and the TRD respectively

4.2 User Registration

First of all Ui computes gidi and sends the pair (gidi , ei) to T – more precise
to the TRD – during a face-to-face authentication. The TRD signs (gidi , ei)
with the sign key st resulting in the signature σ(idi). Then T stores the data of
unique identification UIi = (passport data, gidi, ei, σ(idi)) of Ui to the database
and returns (vt, er) to Ui’s smartcard.

Anonymous Authentication with Optional Shared Anonymity Revocation 215

4.3 Establishing a Batch of Authentication Data

Prior to generating authentication data, the TRD has to verify if (gidi , ei) has
been signed with st during the registration process. Therefore, it verifies if σ(idi)
is the corresponding signature. Iff the verification succeeds, TRD’s task is to
perform the function GAD (Generate Authentication Data) for gidi without
revealing information about the internally chosen pseudorandom blinding values
b1, . . . , bl and the corresponding signatures σ1, . . . , σl:

GAD(gidi , ei, st, g, l) = (λ1, . . . , λl) := Λ(idi)
∀1≤j≤l : bj = EDES(TRDID||Cnt, τkt)||τkt , ηj =(gbj , (gidi)bj),

σj = S(ηj , st), λj = E′(bj ||σj , ei)

where TRDID is the unique identifier of the TRD and Cnt a counter to gain
uniqueness. The batch Λ(idi) is posted on BB indexed by gidi or ei. Now user
Ui is able to access Λ(idi) and store it to his local machine. Depending on the
capacity of the smartcard, Ui can import the whole batch or only a subset.

eieigidigidi

Λ(idi)Λ(idi) eiei

... ...

ηjηj

λjλj

λjλjλ1λ1

stst

gg
gidigidi

Λ(idi)Λ(idi)

σjσj

eieigidigidi

σ(idi)σ(idi) vtvt

σ(idi)σ(idi)

true/falsetrue/false

TRDIDTRDID

bjbj

gbjgbj gidi·bjgidi·bj

λlλl

system parameterssystem parameters

EXPEXP EXPEXP

URNGURNG

EE

SS

repeat l timesrepeat l times

TRDTRD

VV

Fig. 3. Establishment of Authentication Data – Computations in the TRD

4.4 Unilateral Anonymous Authentication

Assume that the user Ui wants to authenticate himself to a verifier V using λj

which corresponds to ηj = (gbj , gbj·idi).

No Anonymity Revocation / No Linkability

Protocol 1 (AnonAuth1). User Ui holds idi and vt in his smartcard and λj on
his local machine. The verifier V holds vt.

1. Ui imports λj to his smartcard and decrypts it resulting in bj ||σj .
2. (a) Ui computes ηj = (gbj , gbj·idi) and verifies its correspondence to σj .

216 M. Schaffer and P. Schartner

(b) The tuple (ηj , σj) is sent to V .
(c) V verifies if σj is the signature to ηj .

3. Ui proves in zero-knowledge (concurrent executions of Schnorr’s PK) that
he knows the pre-images of ηj :

PK{(α, β) : ηj1 = gα ∧ ηj2 = gβ}.

Mapping: α = bj β = bj · idi

Optional Anonymity Revocation / No Linkability

Protocol 2 (AnonAuth2). User Ui holds idi, er and vt in his smartcard and λj

on his local machine. The verifier V holds er and vt respectively.

1. Ui imports λj to his smartcard and decrypts it resulting in bj ||σj .
2. (a) Ui computes ηj = (gbj , gbj·idi) and verifies its correspondence to σj .

(b) Ui computes rj = E(b−1
j , a, er).

(c) The triple (ηj , σj , rj) is sent to V .
(d) V verifies if σj is the signature to ηj .

3. Ui proves in zero-knowledge (concurrent executions of Stadler’s PK) that rj

contains the inverse of the pre-image of ηj1:

PK{(α, β, γ) : ηj1 = gα ∧ rj = E(γ, β, er)}.

Mapping: α = bj β = a γ = b−1
j

Optional Anonymity Revocation / Optional Linkability

Protocol 3 (AnonAuth3). User Ui holds idi, er and vt in his smartcard and λj

on his local machine. The verifier V holds er and vt respectively.

1. Ui imports λj to his smartcard and decrypts it resulting in bj ||σj .
2. (a) Ui computes ηj = (gbj , gbj·idi) and verifies its correspondence to σj .

(b) Ui computes rj = E(b−1
j , a, er) and lj = E((bj · idi)−1, a′, er).

(c) The tuple (ηj , σj , rj , lj) is sent to S.
(d) V verifies if σj is the signature to ηj .

3. Ui proves in zero-knowledge (concurrent executions of Stadler’s PK) that rj

contains the inverse of the pre-image of ηj1 and lj contains the inverse of the
pre-image of ηj2:

PK{(α, β, γ, δ, ε, ζ) : ηj1 = gα ∧ rj = E(γ, β, er) ∧
ηj2 = gδ ∧ lj = E(ζ, ε, er)}.

Mapping: α = bj β = a γ = b−1
j

δ = bj · idi ε = a′ ζ = (bj · idi)−1

The proposed protocols can also be used for mutual authentication as well.
Therefore, the steps of the interactive proofs have to be teethed.

Anonymous Authentication with Optional Shared Anonymity Revocation 217

4.5 Shared Revocation

If the anonymity of an authentication process has to be revoked the verifier has
to convince at least t + 1 revocation centers and T to agree with the revocation
process. If only the user identifier gidi has to be revealed the revocation centers
need the used OTP ηj and the encrypted open information rj . Ui’s anonymity
can be revoked as follows:

η
�D(rj ,(dr1 ,...,drn))
j2 = η

b−1
j

j2 = gbj ·idi·b−1
j = gidi

If it is additionally required that all pseudonyms belonging to Ui need to be
found, the revocation centers need lj as well. Then they are able to compute idi

as follows:

˜D(lj , (dr1 , . . . , drn))−1 · ˜D(rj , (dr1 , . . . , drn)) = bj · idi · b−1
j = idi

Once the anonymity has been revoked including linkability information, each
used pseudonym of the user can be linked to gidi . If we do not require the user’s
future-used OTPs to be linkable, he has to locally generate a new user-id and
re-register at T .

5 Efficiency and Pre-computation

For efficiency reasons the used zero-knowledge proofs have to be run with the
modifications described in [8]. Thus, we achieve concurrent executions without
loosing the zero-knowledge property. Protocol AnonAuth1 uses Schnorr’s PK
which can be run in one round only computing one first-message. This is possible
because the challenge space is ZZ∗

q in the concurrent model. However, the other
two protocols use Stadler’s PK whose challenge space is {0,1}. Thus, concurrent
executions require the computation of k first messages. This means in our case,
that a smartcard has to perform O(k) exponentiations in ZZ∗

q which – depending
on the bit-length – can be time-consuming. If this appears to be a problem
(which depends on the used type of smartcard) the proposed scheme can be
extended so that the TRD pre-computes the k first-messages for each OTP
which will then be contained in the encrypted authentication data.3 Hence, the
smartcard only has to compute k third-messages which can be done by negligible
O(k) multiplications in ZZ∗

q . In any case we suggest using ElGamal based on the
elliptic curve discrete logarithm problem to speed up all protocols.

6 Security Analysis

In this section we analyze the security of the proposed scheme. Therefore, we
consider the security according to the requirements stated in section 1. First
3 Note: For efficiency reasons the authentication data should be encrypted using hybrid

encryption (e.g. AES + ElGamal).

218 M. Schaffer and P. Schartner

of all, we analyse the possible dishonest behaviour of the verifier and exter-
nal adversaries to gain any information about the user’s identity or the linking
(prover’s point of view). Then, we analyse how an external attacker would try
to impersonate a registered user (verifier’s point of view).

6.1 Prover’s Point of View

Anonymity

User Registration. The user Ui generates his unique identifier idi locally without
interaction. He only sends gidi to T . So T is not able to extract idi due to the
discrete logarithm problem. The uniqueness of idi has been proven in [22].

Establishment of Authentication Data. The batches of authentication data are
generated by the TRD. The input of GAD has to be authentic – otherwise the
TRD could be faked. Therefore, the user data (gidi , ei) must have been signed
by the TRD during the user registration. The output of the TRD is encrypted
with ei. An adversary would have to break the ElGamal cryptosystem to get
information about the blinding values which would reveal gidi . The security
mainly relies on the tamper resistant property of the used device and the CDP.

Protocol 1 (AnonAuth1). In every protocol run a OTP and the corresponding
signature is sent to the verifier. The verifier neither gains information about idi

out of the OTP (due to the CDP) nor out of Schnorr’s PK (which is proven to
be zero-knowledge if used correctly).

Protocol 2 (AnonAuth2). Here the verifier additionally receives an ElGamal
ciphertext containing the blinding value of the used OTP. To extract idi, the
verifier would have to break Stadler’s PK (which is proven to be zero-knowledge).
To receive gidi , he would have to break the ElGamal cryptosystem or compromise
at least t + 1 revocation centers.

Protocol 3 (AnonAuth3). Here the verifier additionally receives an ElGamal
ciphertext containing the linking information of the used OTP. To extract idi

the verifier would either have to break the ElGamal cryptosystem or Stadler’s
PK or compromise t + 1 revocation centers.

External Adversary. An external adversary would have to compromise Ui’s
smartcard, compromise trust center T and solve the DLP, break the ElGamal
cryptosystem to retrieve gidi (or idi) or compromise at least t + 1 revocation
centers.

Unlinkability

Adversary knows gidi . If the adversary knows gidi and has access to all OTPs of
the system, he would have to solve the DDP that is for any OTP ηj = (ηj1, ηj2)
to decide whether (gidi , ηj1, ηj2) forms a Diffie-Hellman triple or not. Due to the
fact that the used proofs of knowledge are zero-knowledge, the adversary does
not gain any information about idi.

Anonymous Authentication with Optional Shared Anonymity Revocation 219

Adversary knows idi. If the adversary knows idi and has access to all OTPs,
then he is able to find all pseudonyms linked to Ui (see section 3).

Optional Anonymity Revocation and Linkability

Protocol 1 (AnonAuth1). In this protocol the user does not give encrypted
open information to the verifier. Even if he behaves dishonest after a successful
authentication process the verifier is never able to reveal the user’s identity
except he compromises him or solves the CDP.

Protocol 2 (AnonAuth2). Here the user additionally sends encrypted open in-
formation to the verifier. In case of malicious behaviour the verifier has to con-
vince at least t + 1 revocation centers to decrypt the blinding value and reveal
gidi . Knowing gidi , the trust center is able to identify the user via the linked
passport data.

Protocol 3 (AnonAuth3). Here the user sends the encrypted open- and linking
information to the verifier. If required at least t + 1 revocation centers are able
to decrypt both. Knowing the resulting plaintext the revocation centers can
compute idi. So T can identify the user via the linked passport data. If all used
OTPs of the system are available, Ui’s pseudonyms can be found as well.

6.2 Verifier’s Point of View

Forging OTPs. If an adversary knows gidi he would be easily able to forge OTPs
of Ui, but then he would have to be able to forge the corresponding signature
as well. Therefore, he would have to compromise the TRD or the used signature
scheme.

Replay Attacks. If the communication process is not encrypted, an eavesdropper
can make a copy of the used OTP and the corresponding signature. If he tries to
use the stolen OTP in a different authentication process he would have to fake
the used zero-knowledge proof.

For security considerations of the used PK we refer to [24] and [25].

7 Conclusion and Future Research

In this paper we proposed three protocols providing anonymous authentication.
The first protocol allows a user to prove that he is registered. However, there is
no chance to revoke the user’s anonymity. Moreover, the authentication processes
are mutually unlinkable. This protocol is very useful if the user himself has a
strong interest in revealing his identity himself if required (e.g. secure auctions).
The second protocol gives the verifier the possibility to revoke the user’s identity
together with a set of revocation centers and the trust center. Such a protocol
can be used if the verifier has a strong interest in the user behaving honest in the

220 M. Schaffer and P. Schartner

protocols performed after the authentication process. The third protocol enables
the verifier in collaboration with the revocation centers and the trust center to
make a user traceable if he behaves dishonest.

We are currently optimizing the protocols with the following goals:

– Multi-party solution to replace the TRD by a set of standard PCs.
– A simple way to establish OTPs where the user only receives one root-OTP

and a root-signature based on which he is able to derive several globally
unique OTPs and the corresponding signatures.

– An improved version of Stadler’s PK, that is more efficient concerning the
number of messages for concurrent executions (larger challenge space).

– Some variations of the protocols optimized for selected applications.

Acknowledgements

The authors would like to thank Dieter Sommer for his useful comments.

References

1. G. Ateniese, et al. A practical and provably secure coalition-resistant group signa-
ture scheme. Adv. in Crypt.: CRYPTO 2000, LNCS 1880, pp. 255–270, Springer-
Verlag, 2000.

2. M. Bellare, H. Shi, C. Zhang. Foundations of Group Signatures: The Case of
Dynamic Groups. Cryptology ePrint Archive: Report 2004/077.

3. F. Bao, R.H. Deng, H. Zhu. Variations of Diffie-Hellman Problem. Proc. of
ICICS’03, LNCS 2836, Springer Verlag, 2003.

4. J. Camenisch, A. Lysyanskaya. An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. Adv. in Crypt.: EURO-
CRYPT’01, LNCS 2045, pages 93+, Springer Verlag, 2001.

5. J. Camenisch, A. Stadler. Efficient group signature schemes for large groups. Adv.
in Crypt.: CRYPTO’97, LNCS 1296, pp. 410–424, Springer Verlag, 1997.

6. J. Castella-Roca et al. Digital chips for an on-line casino. Proc. of ITCC’05, IEEE
Computer Society, vol. I, pp. 494–499, 2005.

7. D. Chaum, E. van Heyst. Group signatures. Adv. in Crypt.: EUROCRYPT’91,
LNCS 547, pp.257–265, Springer-Verlag, 1991.

8. I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
Adv. in Crypt.: EUROCRYPT’00, LNCS 1807, pp. 418–430, Springer Verlag, 2000.

9. Y. Desmedt, Y. Frankel. Threshold Cryptosystems. Adv. in Crypt.: CRYPTO’89,
LNCS 435, pp. 307–315, Springer-Verlag, 1990.

10. T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. Adv. in Crypt.: CRYPTO’84, LNCS 196, pp. 10–18, Springer-
Verlag, 1985.

11. R. Gennaro et al. Secure Distributed Key Generation for Discrete-Log Based Cryp-
tosystems. Adv. in Crypt.: EUROCRYPT’99, LNCS 1592, pp. 295–310, Springer-
Verlag, 1999.

12. O. Goldreich et al. How to play any mental game – a completeness theorem for
protocols with honest majority. Proc. 19th ACM STOC, pp. 218–229, 1987.

Anonymous Authentication with Optional Shared Anonymity Revocation 221

13. M. Jakobsson, M. Yung. Revokable and Versatile Electronic Money. In Proc. of
the 3rd CCCS, pages 76–87, ACM press, 1996.

14. J. Kim, et al. Anonymous Authentication Protocol for Dynamic Groups with
Power-Limited Devices. Proc. of SCIS2003, vol 1/2, pp 405–410, 2003.

15. H. Kim, et al. Design and Implementation of Revocable Electronic Cash System
based on Elliptic Curve Discrete Logarithm Problem. Proc. of WISA’02, pp. 85–
102, Korea, 2000.

16. A. Kiayias, Y. Tsiounis, M. Yung. Traceable signatures. Adv. in Crypt.: EURO-
CRYPT’04, LNCS 3027, pp. 571–589, Springer-Verlag, 2004.

17. T. Nakanishi, M. Shiota, Y. Sugiyama. An Unlinkable Divisible Electronic Cash
with User’s Less Computations Using Active Trustees. In Proc. ISITA2002, pp.
547–550, Xi’an, 2002.

18. L. Nguyen, R. Safavi-Naini. Dynamic k-Times Anonymous Authentication. Proc.
of ACNS’05, LNCS 3531, pp. 318–333, Springer-Verlag, 2005.

19. A. Pashalidis, C.J. Mitchell. A Security Model for Anonymous Credential Systems.
IFIP Conf. Proc. 148, pp. 183–189, Kluwer Academic Publishers, Boston, 2004.

20. R. Rivest, A. Shamir, L. Adelman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, 21 (1978), pp. 120–126.

21. P. Scharnter, M. Schaffer. Unique User-generated Digital Pseudonyms. Proc. of
MMM-ACNS’05, LNCS 3685, pp. 194–206, Springer-Verlag, 2005.

22. P. Schartner. Security Tokens – Basics, Applications, Management, and Infrastruc-
tures. IT-Verlag (2001).

23. K. Sako, S. Yonezawa, I. Teranishi. Anonymous Authentication: For Privacy and
Security. NEC Journal of Advanced Technology, Vol. 2, No. 1, p. 79–83, 2005.

24. C.P. Schnorr. Efficient Signature Generation for Smart Cards. Adv. in Crpyt.:
EUROCRYPT’88, LNCS 330, pp. 239–252, Springer Verlag, 1990.

25. A. Stadler. Publicly Verifiable Secret Sharing. Adv. in Crypt.: Eurocrypt’96, LNCS
1070, pp. 190–199, Springer-Verlag, 1996.

26. L. Teranisi, J. Furukawa, K. Sako. k-Times Anonymous Authentication. Adv. in
Crypt.: ASIACRYPT’04, LNCS 3329, pp. 308–322, Springer-Verlag, 2004.

SEA: A Scalable Encryption Algorithm for
Small Embedded Applications

François-Xavier Standaert1,3, Gilles Piret2,
Neil Gershenfeld3, and Jean-Jacques Quisquater1

1 UCL Crypto Group,
Laboratoire de Microélectronique, Université Catholique de Louvain,

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium
2 Ecole Normale Supérieure, Département d’Informatique,

45, Rue d’Ulm, 75230 Paris cedex 05, France
3 Center for Bits and Atoms, Massachusetts Institute of Technology,

20 Ames Street, Cambridge, MA 02139, USA
{standaert, quisquater}@dice.ucl.ac.be
Gilles.Piret@ens.fr, neilg@cba.mit.edu

Abstract. Most present symmetric encryption algorithms result from a
tradeoff between implementation cost and resulting performances. In ad-
dition, they generally aim to be implemented efficiently on a large variety
of platforms. In this paper, we take an opposite approach and consider a
context where we have very limited processing resources and throughput
requirements. For this purpose, we propose low-cost encryption routines
(i.e. with small code size and memory) targeted for processors with a
limited instruction set (i.e. AND, OR, XOR gates, word rotation and mod-
ular addition). The proposed design is parametric in the text, key and
processor size, allows efficient combination of encryption/decryption,
“on-the-fly” key derivation and its security against a number of recent
cryptanalytic techniques is discussed. Target applications for such rou-
tines include any context requiring low-cost encryption and/or
authentication.

1 Introduction

Resource constrained encryption does not have a long history in symmetric cryp-
tography. Noticeable examples of such ciphers are the Tiny Encryption Algo-
rithm TEA [32] or Yuval’s proposal [33]. Both of them are relatively old and
their security against attacks such as linear and differential cryptanalysis was
hardly evaluated. Present block ciphers, like the Advanced Encryption Standard
Rijndael [17, 18] rather focus on finding a good tradeoff between cost, security
and performances. While this approach is generally the most convenient, there
exist contexts where more specialized ciphers are useful. As a motivating exam-
ple, ICEBERG [30] is targeted for hardware implementations and shows significant
efficiency improvements on these platforms compared to other algorithms.

In this paper, we consequently consider a general context where we have very
limited processing resources (e.g. a small processor) and throughput

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 222–236, 2006.
c© IFIP International Federation for Information Processing 2006

SEA: A Scalable Encryption Algorithm for Small Embedded Applications 223

requirements. It yields design criteria such as: low memory requirements, small
code size, limited instruction set. In addition, we propose the flexibility as an-
other unusual design principle. SEAn,b is parametric in the text, key and proces-
sor size. Such an approach was motivated by the fact that many algorithms
behave differently on different platforms (e.g. 8-bit or 32-bit processors). In op-
position, SEAn,b allows to obtain a small encryption routine targeted to any
given processor, the security of the cipher being adapted in function of its key
size. Beyond these general guidelines, alternative features were wanted, including
the efficient combination of encryption and decryption or the ability to derive
keys “on the fly”. Those goals are particularly relevant in contexts where the
same constrained device has to perform encryption and decryption operations
(e.g. authentication). Finally, the simplicity of SEAn,b makes its implementation
straightforward.

Embedded applications such as building infrastructures present a signif-
icant opportunity and challenge for such new cryptosystems. For example,
introducing programmability into the configuration of lights and switches, ther-
mostats and air handlers, promises to improve the cost of construction, flexibil-
ity in occupancy, and energy efficiency of buildings. But meeting this demand
on a scale compatible with the economics of the construction industry is go-
ing to require secure lightweight implementations of peer-to-peer networks in
resource-constrained systems. The Internet-0 approach to end-to-end modula-
tion for interdevice internetworking is typically appropriate in this limit [20].
SEAn,b constitutes a suitable solution for low-cost encryption/authentication
within such networks. RFID’s or any power/space-limited applications are sim-
ilarly targeted.

The rest of the paper is structured as follows. Section 2 presents the algorithm
specifications. Section 3 discusses security concerns. Performances are evaluated
in Section 4 and Conclusions are in Section 5.

2 Specifications

2.1 Parameters and Definitions

SEAn,b operates on various text, key and word sizes. It is based on a Feistel
structure with a variable number of rounds, and is defined with respect to the
following parameters:

– n: plaintext size, key size.
– b: processor (or word) size.
– nb = n

2b : number of words per Feistel branch.
– nr: number of block cipher rounds.

As only constraint, it is required that n is a multiple of 6b. For example, using
an 8-bit processor, we can derive 48, 96, 144, . . . -bit block ciphers, respectively
denoted as SEA48,8, SEA96,8, SEA144,8, ...

224 F.-X. Standaert et al.

Let x be a n
2 -bit vector. In the following, we will consider two representations:

– Bit representation: xb = x(n
2 − 1) x(n

2 − 2) . . . , x(2) x(1) x(0).
– Word representation: xW = xnb−1 xnb−2 . . . x2 x1 x0.

2.2 Basic Operations

Due to its simplicity constraints, SEAn,b is based on a limited number of elemen-
tary operations (selected for their availability in any processing device) denoted
as follows: (1) bitwise XOR ⊕, (2) substitution box S, (3) word (left) rotation
R and inverse word rotation R−1, (4) bit rotation r, (5) addition mod 2b �.
These operations are formally defined as follows:

1. Bitwise XOR ⊕: The bitwise XOR is defined on n
2 -bit vectors:

⊕ : Z
n
2
2 × Z

n
2
2 → Z

n
2
2 : x, y → z = x ⊕ y ⇔ z(i) = x(i) ⊕ y(i), 0 ≤ i ≤ n

2
− 1

2. Substitution Box S: SEAn,b uses the following 3-bit substitution table:

ST := {0, 5, 6, 7, 4, 3, 1, 2},

in C-like notation. For efficiency purposes, it is applied bitwise to any set of three
words of data using the following recursive definition:

S : Z
nb

2b → Z
nb

2b : x → x = S(x) ⇔

x3i = (x3i+2 ∧ x3i+1) ⊕ x3i,
x3i+1 = (x3i+2 ∧ x3i) ⊕ x3i+1,
x3i+2 = (x3i ∨ x3i+1) ⊕ x3i+2, 0 ≤ i ≤ nb

3 − 1,

where ∧ and ∨ respectively represent the bitwise AND and OR.

3. Word Rotation R: The word rotation is defined on nb-word vectors:

R : Z
nb

2b → Z
nb

2b : x → y = R(x) ⇔ yi+1 = xi, 0 ≤ i ≤ nb − 2,
y0 = xnb−1

4. Bit Rotation r: The bit rotation is defined on nb-word vectors:

r : Z
nb

2b → Z
nb

2b : x → y = r(x) ⇔ y3i = x3i ≫ 1,
y3i+1 = x3i+1,
y3i+2 = x3i+2 ≪ 1, 0 ≤ i ≤ nb

3 − 1,

where ≫ and ≪ represent the cyclic right and left shifts inside a word.

5. Addition mod2b �: The mod 2b addition is defined on nb-word vectors:

� : Z
nb

2b × Z
nb

2b → Z
nb

2b : x, y → z = x � y ⇔ zi = xi � yi, 0 ≤ i ≤ nb − 1

SEA: A Scalable Encryption Algorithm for Small Embedded Applications 225

2.3 The Round and Key Round

Based on the previous definitions, the encrypt round FE , decrypt round FD

and key round FK are pictured in Figure 1 and defined as the functions F :
Z

2
2n/2 × Z2n/2 → Z

2
2n/2 such that:

Li Ri

Sr

R Ki

R

Li+1 Ri+1

-1

KLi KRi

r

Ci

KLi+1 KRi+1

SR

Fig. 1. Encrypt/decrypt round and key round

[Li+1, Ri+1] = FE(Li, Ri, Ki) ⇔ Ri+1 = R(Li) ⊕ r
(
S(Ri � Ki)

)

Li+1 = Ri

[Li+1, Ri+1] = FD(Li, Ri, Ki) ⇔ Ri+1 = R−1
(
Li ⊕ r

(
S(Ri � Ki)

))

Li+1 = Ri

[KLi+1,KRi+1] = FK(KLi,KRi, Ci) ⇔ KRi+1 =KLi ⊕ R
(
r
(
S(KRi � Ci)

))

KLi+1 = KRi

2.4 The Complete Cipher

The cipher iterates an odd number nr of rounds. The following pseudo-C code
encrypts a plaintext P under a key K and produces a ciphertext C. P, C and
K have a parametric bit size n. The operations within the cipher are performed
considering parametric b-bit words.

C=SEAn,b(P, K)
{

% initialization:
L0&R0 = P ;
KL0&KR0 = K;

% key scheduling:
for i in 1 to �nr

2 �
[KLi,KRi] = FK(KLi−1,KRi−1, C(i));

switch KL�nr
2 �, KR�nr

2 �;
for i in 	nr

2
 to nr − 1

226 F.-X. Standaert et al.

[KLi,KRi] = FK(KLi−1,KRi−1, C(r − i));
% encryption:

for i in 1 to 	nr

2

[Li,Ri] = FE(Li−1,Ri−1,KRi−1);

for i in 	nr

2
 + 1 to nr

[Li,Ri] = FE(Li−1,Ri−1,KLi−1);
% final:

C = Rnr&Lnr ;
switch KLnr−1, KRnr−1;

},

where & is the concatenation operator, KR�nr
2 � is taken before the switch and

C(i) is a nb-word vector of which all the words have value 0 excepted the LSW
that equals i. Decryption is exactly the same, using the decrypt round FD.

3 Security Analysis

3.1 Design Properties of the Components

Substitution Box S: The substitution box was searched exhaustively in order
to meet the following security and efficiency criteria:

– λ-parameter1: 1/2.
– δ-parameter2: 1/4.
– Maximum nonlinear order, namely 2.
– Recursive definition.
– Minimum number of instructions.

Remark that, if 3-operand instructions are available, the recursive definition
allows to perform the substitution box in 2 operations per word of data. As a
comparison, the 3 × 3 bitwise substitution box used in 3-WAY [15] requires 3.
The counterpart of this efficiency is the presence of two fixed points in the table.

Bit and Word Rotations r and R: The cyclic rotations were defined in order
to provide predictable low-cost diffusion within the cipher, when combined with
the bitslice substitution box. It is illustrated in Figure 2 for a single substitution
box scheme with parameters n = 48, b = 8, nb = 3.

Looking at the figure, it can be seen that SEAn,b divides its data in 2nb

3
blocks of 3 words. The substitution box is applied in parallel to these blocks.
Therefore, the diffusion process (starting with one single active bit in the left
branch) is divided into two steps3:
1 We define the bias of a linear approximation that holds with probability p as

ε = |p − 1/2|. The λ-parameter of a substitution box is equal to 2 times the bias of
its best linear approximation.

2 The δ-parameter equals the probability of the best differential approximation.
3 For simplicity purposes, we don’t consider the additional diffusion provided by the

carry propagation in the mod 2b key addition in this discussion.

SEA: A Scalable Encryption Algorithm for Small Embedded Applications 227

S

R

r

S

R

r

S

R

r

S

R

r

S

R

r

S

R

r

S

R

r

Fig. 2. Diffusion process: grey boxes represent active bits

– During an initialization step, the single active bit has to be propagated to
all the words of the cipher (e.g. to our six words in Figure 2).

– During the second step, the diffusion has to be completed within each block.

The first phase is obtained by the combination of the word rotation R (which
is the only transform to provide inter-word diffusion) with the substitution box.
It requires at most nb rounds to be completed (in our example, nb = 3 which
yields 3 rounds). Once every word has at least one active bit, the combination of
r and S yields six more active bits per block in each round. Therefore, finishing
the diffusion of all the blocks requires at most �b/2� rounds. Combining these
observations, the diffusion is complete after nb + �b/2� rounds.

Addition mod 2b �: Using a mod 2b key addition in place of a bitwise XOR
was motivated by different reasons: (1) improvement of the diffusion process, (2)
improvement of the non-linearity, (3) same cost/speed as the bitwise XOR in
most processors, (4) necessity to avoid structural attacks (see next section).

228 F.-X. Standaert et al.

Overall Structure: The overall structure of the cipher follows the Feistel strat-
egy. However, a few points are specific to SEAn,b, namely the key schedule and
the position of R, R−1 in the encrypt/decrypt rounds.

The key schedule is designed such that the master key is encrypted during half
the rounds and decrypted during the other half. It allows to obtain a particular
structure of the sequence of round keys such that the key expansion is exactly
the same in encryption and decryption. Namely, we have:

K0, K1, K2, . . . , K� r
2 �, K� r

2 �−1, . . . , K2, K1, K0

As a consequence of this structure, the encryption/decryption rounds cannot
keep the traditional Feistel structure: it would result in having identical encryp-
tion and decryption functions. This is the reason of moving the word rotation
to the left branch of the Feistel round.

3.2 Resistance Against Known Attacks

Linear and Differential Cryptanalysis. From the properties of the substi-
tution box, we can compute bounds for the best linear and differential charac-
teristics through the cipher. We first use the following lemma [29]:

Lemma 1. Let f be the bijective nonlinear function of a 3-round Feistel cipher.
Assuming that the linear parameter of f is smaller than λ and its differential pa-
rameter is smaller than δ, then the linear, differential parameters of the 3-round
cipher ∆, Λ are respectively smaller than λ2, δ2.

Since our nonlinear function S has parameter δ = 2−2 and parameter λ = 2−1,
it implies that 3 rounds of SEAn,b have their linear and differential parameters
respectively bounded by ∆ < 2−4 and Λ < 2−2.

However, for a n-bit block cipher, it is respectively required that ∆ � 2−n

and Λ � 2−
n
2 to resist against differential [4] and linear cryptanalysis [28]. In

order to approach these bounds, we require that:

δ2nr/3 =
(
2−2)2nr/3

< 2−n and λ2nr/3 =
(
2−1)2nr/3

< 2−
n
2 . (1)

In both cases, the required number of rounds is: nr ≥ 3n/4.
We note that we used a hybrid approach, between the provable security

against linear and differential attacks that consists in bounding the parameter
of the best differential/hull, like in lemma 1, and the usual heuristics to estimate
the best linear/differential characteristic through a cipher (as in the previous
estimation for nr). In fact, the strategy of Equation (1) is similar to the one of
e.g. the AES Rijndael [17], but we only assume one active s-box per round.

Extensions of Linear and Differential Cryptanalysis. Classical extensions
of linear and differential cryptanalysis are non-linear approximations of outer
rounds [26], bi-linear cryptanalysis [14], differential-linear cryptanalysis [27],
multiple linear cryptanalysis [22, 10], boomerang [31] and rectangle [8] attacks,...

SEA: A Scalable Encryption Algorithm for Small Embedded Applications 229

However these extensions usually imply only a small improvement compared to
the basic attacks. As a matter of fact, non-linear approximations of outer rounds
allow to improve the bias of one or two rounds only. Regarding bi-linear crypt-
analysis, we quote the author of [14]: For ciphers similar to DES, based on small
substitution boxes, we claim that bi-linear cryptanalysis is very closely related to
LC, and we do not expect to find a bi-linear attack much faster than by LC. It is
difficult to evaluate the efficiency of multiple linear cryptanalysis, but it seems
more promising for big substitution boxes (as mentioned in [22]). Moreover the
improvement on classical cryptanalysis obtained in [10] for the case of DES
(which shares with SEAn,b a Feistel structure and a poor diffusion) is limited.
Finally, the complexity of differential-linear cryptanalysis and of the boomerang
attack and its variants is inherently greater than the one of the basic attacks.
As an example, the boomerang (or rectangle) attack allows us to use two short
differentials instead of a long one, but using a long differential with probability
pq is in general highly preferable to applying a boomerang attack with two short
differentials of probability p and q. Therefore although these attacks can perform
slightly better in specific cases, the expected improvement is never outstanding.
The conclusion is that these extensions actually deserve to be considered in the
estimation of the number of rounds necessary to achieve security, but that a
reasonable multiplicative factor should be enough to take them into account.

A Dedicated Related-Key Attack Against a Modified Version. For
x ∈ Z

nb

2b , we denote by x ≪ a the left rotation by a bits of each of the nb words
of x. The non-linear and diffusion layers have the following properties:

– S(x ≪ a) = S(x) ≪ a
– r(x ≪ a) = r(x) ≪ a
– R(x ≪ a) = R(x) ≪ a

Consider a modified version of our cipher where key addition is performed using
⊕ rather than modular addition, and where all round constants Ci are such
that Ci ≪ a = Ci, e.g. all Ci’s equal 0. As a consequence of the previous
observations, the modified round F ′

E and the key round FK satisfy:

F ′
E(L ≪ a, R ≪ a, K ≪ a) = F ′

E(L, R, K) ≪ a

FK(KL ≪ a, KR ≪ a, 0) = FK(KL, KR, 0) ≪ a

These properties are iterative, in the sense that they also hold for the compo-
sition of several block cipher rounds. It is immediate to deduce from them a
distinguisher on the modified cipher, which requires 2 chosen encryption queries
under 2 related keys K and K ≪ a.

In the actual SEAn,b, the key addition is performed word-wise mod 2b. As
the property (X ≪ a) � (K ≪ a) = (X � K) ≪ a is prevented by certain
carry propagations, it only holds with a probability p, which depends on a and
the word size b. For a = 1, p rapidly converges to 3/8 as b grows. It is smaller for
1 < a < b − 1. Of course, this probability is averaged for all possible (X, K) and
certain keys (e.g. “all zeroes”) yield no carry propagation at all. However, the
design properties of the key schedule prevent SEAn,b from having such weak keys.

230 F.-X. Standaert et al.

Moreover the round constants Ci are generally not such that Ci ≪ a = Ci

(because they are generated from a counter). Combined with the diffusion in the
key schedule, it implies that the similarity between the round keys derived from
K and those derived from K ≪ a rapidly vanishes.

These properties avoid this structural distinguisher to be propagated through
more than a few rounds of SEAn,b.

Square Attacks. We explored square attacks [16] on SEA48,8. More precisely,
we considered all possible sets of inputs to one branch of the Feistel structure,
where the input to some of the substitution boxes is active (i.e. takes all possible
input values the same number of times), and the input to the other substitution
boxes is constant. The other branch is also constant. Therefore the number of
plaintexts considered goes from 23 (when the input to only one substitution
box is active) to 221 (when the input to 7 substitution boxes is active). Our
experiments showed that square attacks do not allow to pass through more
rounds than the diffusion pattern illustrated in Figure 2. It is expected that
it remains the same when different parameters n and b are considered, which
implies that nb + �b/2� rounds are enough to prevent square attacks. Note that
although our observations also hold for ⊕-SEAn,b, the use of addition mod 2b

provides better resistance against square attacks.

Truncated and Impossible Differentials. As for square attacks, the diffusion
analysis illustrated in Figure 2 provides an estimation of the number of rounds
required to prevent truncated differential attacks [25]. Impossible differentials
[7] are usually built by concatenating two incompatible truncated differentials.
As a consequence, we estimate the number of rounds necessary to prevent the
construction of an impossible differential distinguisher as 2 · (nb + �b/2�).

Interpolation Attacks. The interpolation attack [21] is possible when the
whole cipher can be written as a relatively simple algebraic expression. It requires
the substitution box to have a compact expression, and the diffusion layer to
permit the composition of these expressions. In the case of SEAn,b, there is a
priori no such expression, and the bitwise diffusion would make the combination
of algebraic expressions difficult anyway.

Slide Attacks. The sequence of round keys of SEAn,b is the same as the one
of ICEBERG. Therefore the analysis done in [30] is still valid. Namely, the non-
periodicity of the sequence should make slide attacks [11, 12] irrelevant. The
particular structure of this sequence also has some similarities with the one of
GOST, of which the vulnerability against slide attacks is examined in [12]. None
of the attacks presented in [12] seems to be applicable to our cipher.

Related-Key Attacks. The first related-key attack has been described in [5].
It is the related-key counterpart of the slide attack. Such an attack is applicable
when a round key Ki is computed from the previous round key Ki−1 using a
function f which is always the same: Ki = f(Ki−1). However in the case of

SEA: A Scalable Encryption Algorithm for Small Embedded Applications 231

SEAn,b, a round constant that changes for each key round is used, which pre-
vents this attack. Another type of related-key attack is the differential related-
key attack [23, 24]. The non-linearity of the SEAn,b key schedule should prevent
it. Moreover, note that the improvement of the differential related-key attack
over classical differential cryptanalysis usually results from the fact that choos-
ing a given round key difference allows to “counter” the effect of the diffusion
layer on the differential characteristic; a typical example is the attack on 3-
WAY [24]. As the security of SEAn,b against differential cryptanalysis results
from its large number of rounds rather than from its diffusion, this effect is not
relevant here.

Complementation Properties. The DES has the following complementation
property: if P

K→ C denotes the fact that encryption of P under key K gives

ciphertext C, then: P
K−→ C ⇐⇒ P

K−→ C. The non-linear key scheduling and
the presence of carry propagations in the actual SEAn,b algorithm prevents this
property. We are not aware of any other similar structural feature in the design.

Algebraic Attacks. Algebraic attacks intend to exploit the simple algebraic
structure of a block cipher. For example, certain block ciphers can be written
as an overdefined system of quadratic equations. Reference [13] argues that a
method called XSL might provide a way to effectively solve this type of equations
and recover the key from a few plaintext-ciphertext pairs. Clearly, SEAn,b has a
simple algebraic structure, as it is based on a 3-bit substitution box. Therefore,
if such an attack practically applies to a cipher like Serpent [1], it is likely
applicable to one of the versions of our routines. As the complexity of XSL is
supposedly polynomial in the plaintext size and number of rounds, it is specially
true when those values increase. However, as the criteria for these techniques
to be successful are still being discussed [9], we did consider this latter point as
a scope for further research. We note that resistance against algebraic attacks
would anyway exclude the use of small substitution boxes and therefore the
possibility to build very low cost encryption routines.

3.3 Suggested Number of Rounds

From the previous descriptions, the minimum required number of rounds to
provide security against known attacks would be 3n

4 + 2 · (nb + �b/2�). This
roughly corresponds to the number of rounds to resist linear/differential attacks
plus twice the number of rounds to obtain complete diffusion (to prevent both
structural attacks and outer rounds improvements of statistical attacks). A more
conservative approach (applied in most present block ciphers) would be to take
a large security margin, e.g. by doubling this number of rounds4. nr has to be
odd: we add one if it is even. We also assume a minimum word size b ≥ 8
bits.
4 Note that the additional non-linearity provided by the modular addition also pro-

vides a security margin, under-estimated in our predictions.

232 F.-X. Standaert et al.

4 Performance Analysis

SEAn,b is targeted for being implemented on low-cost processors, with little code
size and a small instruction set. However, SEAn,b’s simple structure makes it
easy to implement on any processor. In appendix, we propose a pseudo-assembly
code of an encryption/decryption design with “on the fly” key scheduling. The
implementation objectives were, in decreasing order of importance: (1) low RAM
and registers usage, (2) low code size and (3) speed. It is based on the following
(very) reduced instruction set (assuming 2-operand instructions only):

– Arithmetic and logic operators: ∨, ∧, ⊕, �, ≫, ≪.
– Branch instructions: goto, subroutine call and return.
– Comparison, load RAM in register, store register in RAM.

According to the code in appendix, the performances can be roughly estimated
as follows. First, the combined number of RAM words and registers equals
5nb + 3. Then, the code size and implementation time (both in expressed in
ops.) is evaluated by summing the values given in appendix. For the code size,
it directly yields 31nb +36 ops. For the implementation time, the round and key
round respectively require 12nb + 11 ops. and 10nb + 11 ops. It yields a total of
(nr − 1) × (12nb + 11 + 10nb + 11 + 7) + (12nb + 11) + 8nb + 7. These values
are summarized in Table 1. Remark that, due to the particular structure of the
key scheduling, we do not need to keep the master key in memory as, at the
end of an encryption/decryption, we have Knr−1 = K0. Remark also that this
implementation uses a low number of registers, namely nb +3. However, if more
registers are available, they can be traded for RAM words, which will result in
lower code size and faster implementation.

For illustration purposes, we implemented SEAn,b on Atmel AVR ATtiny
[3] and ARM [2] microprocessors. The Atmel ATtiny represents a typical target
for such a low-cost encryption routine. We chose the ARM platform in order to
provide rough comparisons between SEAn,b and the AES Rijndael.

While direct comparisons are made difficult by their high dependencies on
the target devices, the following general comments can be made:

– SEAn,b designs combine encryption and decryption more efficiently than
most other encryption algorithms. In particular, key agility in decryption is
usually not possible (e.g. for the AES Rijndael).

– The combined number of RAM words and registers of SEAn,b implementa-
tions (i.e. 5nb + 3) is generally lower than for other block ciphers.

– The code size of SEAn,b is generally lower than for other block ciphers im-
plemented on similar platforms.

Table 1. Performance evaluation of SEAn,b (encryption + decryption)

ram # regs. code size (ops.) implementation time (ops.)
SEAn,b 4nb nb + 3 31nb+36 (nr − 1) × (22nb + 29) + 20nb + 18

SEA: A Scalable Encryption Algorithm for Small Embedded Applications 233

Table 2. Comparisons: the code size is expressed in bytes. The results of SEA128,32

where obtained by multiplying the code size and number of cycles of SEA192,32 by 2/3,
since 128 is not a multiple of 6.

Algorithm E/D Device # ram # regs. code # clock # cycles ×
size cycles code size

SEA96,8 yes Atmel ATtiny 1 32 386 17 745 6849.103

SEA192,32 yes ARM (risc-32) 6 12 420 27 059 11 364.103

Rijndael [19] no ARM (risc-32) 16 12 1404 2889 4056.103

SEA128,32 yes ARM (risc-32) 6 12 280 18 039 5050.103

The flexibility of SEAn,b also makes it less sensitive to the choice of a proces-
sor than fixed-sized algorithms, although it is obvious that large buses improve
efficiency. The drawback of these limited resources is in the number of cycles
required for the encryption (i.e. SEAn,b trades space for time, which may be rel-
evant due to present processors speeds). Looking at the code size - cycles product,
the efficiency of SEAn,b remains similar to the one of Rijndael (encryption only)
that is well known for its efficient smart cards implementations.

5 Conclusion

SEAn,b is a scalable encryption algorithm targeted for small embedded applica-
tions. The plaintext size, key size and processor (or word) size are parameters
of the design. The structure of SEAn,b allows a fast evaluation of the cipher
efficiency on any RISC machine. Its typical performances (encryption + decryp-
tion) for present key sizes and processors (e.g. 128-bit key, 1 Mhz 8-bit RISC)
are in the range of an encryption/decryption in a few milliseconds, using a few
hundreds bytes of ROM. One additional advantage of the design is its extreme
simplicity. Based on the pseudo code provided in this paper, it is expected that
the implementation of the cipher in assembly can be done within a few hours.
We note finally that the design criteria of SEAn,b do not make it a conservative
algorithm by nature. Further cryptanalysis efforts are consequently required.

Acknowledgements. The authors would like to thank François Koeune for
his help and comments about ARM assembly tools and the NSF grant CCR-
0122419, Center for Bits and Atoms. François-Xavier Standaert is a post doc-
toral researcher funded by the FNRS (Funds for National Scientific Research,
Belgium).

References

1. R. Anderson, E. Biham, L. Knudsen, Serpent: A Flexible Block Cipher With Max-
imum Assurance, in the proceedings of The First Advanced Encryption Standard
Candidate Conference, Ventura, California, USA, August 1998.

2. ARM, 32-bit RISC microprocessors, http://www.arm.com/products/CPUs/

234 F.-X. Standaert et al.

3. Atmel, AVR 8-Bit RISC, http://www.atmel.com/products/AVR/
4. E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,

1993, Springer Verlag.
5. E. Biham, New types of cryptanalytic attacks using related keys, Journal of Cryp-

tology, vol 7, num 4, pp 229-246, Fall 1994, Springer Verlag.
6. E. Biham, A. Biryukov, A. Shamir, Miss-in-the-Middle Attacks on IDEA, Khufu,

and Khafre, in the proceedings of FSE 1999, Lecture Notes in Computer Sciences,
vol 1636, pp 124-138, Rome, Italy, March 1999, Springer-Verlag.

7. E. Biham, A. Biryukov, A. Shamir, Cryptanalysis of Skipjack Reduced to 31 Rounds
using Impossible Differentials, in the proceedings of Eurocrypt 1999, Lecture Notes
in Computer Sciences, vol 1592, pp 12-23, Prague, Czech Republic, May 1999,
Springer Verlag.

8. E. Biham, O. Dunkelman, N. Keller, The Rectangle Attack, Rectangling the Serpent,
in the proceedings of Eurocrypt 2001, Lecture Notes in Computer Science, vol 2045,
pp 340-357, Innsbruck, Austria, May, 2001 Springer-Verlag.

9. A. Biryukov, C. De Cannière, Block Ciphers and Systems of Quadratic Equations,
in the proceedings of FSE 2003, Lecture Notes in Computer Science, vol 2887, pp
274-289, Lund, Sweden, February 2003, Springer-Verlag.

10. A. Biryukov, C. De Cannière, M. Quisquater, On Multiple Linear Approximations,
in the proceedings of Crypto 2004, Lecture Notes in Computer Science, vol 3152,
pp 1-22, Santa Barbara, USA, August 2004, Springer-Verlag.

11. A. Biryukov, D. Wagner, Slide attacks, in the proceedings of FSE 1999, Lec-
ture Notes in Computer Sciences, vol 1636, pp 245-259, Rome, Italy, March 1999,
Springer-Verlag.

12. A. Biryukov, D. Wagner, Advanced Slide Attacks, in the proceedings of Eurocrypt
2000, Lecture Notes in Computer Science, vol 1807, pp 589-606, Bruges, Belgium,
May 2000, Springer-Verlag.

13. N. Courtois, J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations, in the proceedings of Asiacrypt 2002, Lecture Notes in Com-
puter Science, vol 2501 , pp 267-287, Queenstown, New Zealand, December 2002,
Springer-Verlag.

14. N. Courtois, Feistel Schemes and Bi-linear Cryptanalysis, in the proceedings of
Crypto 2004, Lecture Notes in Computer Science, vol 3152, pp 23-40, Santa Bar-
bara, USA, August 2004, Springer-Verlag.

15. J. Daemen, R. Govaerts, J. Vandewalle, A New Approach Towards Block Cipher
Design, in the proceedings of FSE 1993, Lecture Notes in Computer Science, vol
809, pp 18-32, Cambridge, UK, December 1993, Springer-Verlag.

16. J. Daemen, L. Knudsen, V. Rijmen, The Block Cipher SQUARE, in the proceedings
of FSE 1997, Lecture Notes in Computer Science, vol 1267, pp 149-165, Haifa,
Isreal, January 1997, Springer-Verlag.

17. J. Daemen, V. Rijmen, The Design of Rijndael, Springer-Verlag, 2001.
18. FIPS 197, “Advanced Encryption Standard,” Federal Information Processing Stan-

dard, NIST, U.S. Dept. of Commerce, November 26, 2001.
19. G. Hachez, F. Koeune, J.-J. Quisquater, cAESar Results: Implementation of Four

AES Candidates on Two Smart Cards, in the proceedings of the Second Advanced
Encryption Standard Candidate Conference, pp 95-108, Rome, Italy, March 1999.

20. N. Gershenfeld, R. Krikorian, D. Cohen, The Internet of Things, Scientific Amer-
ican, Octobre 2004, pp 76-81.

21. T. Jakobsen, L.R. Knudsen, The Interpolation Attack on Block Ciphers, in the
proceedings of FSE 1997, Lecture Notes in Computer Science, vol 1267, pp 28-40,
Haifa, Israel, January 1997, Springer-Verlag.

SEA: A Scalable Encryption Algorithm for Small Embedded Applications 235

22. B.S. Kaliski, M.J.B. Robshaw, Linear Cryptanalysis using Multiple Approxima-
tions, in the proceedings of Crypto 1994, Lecture Notes in Computer Science, vol
839, pp 26-39, Santa Barbara, California, USA, August 1994, Springer-Verlag.

23. J. Kelsey, B. Schneier, D. Wagner. Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES, in the proceedings of Crypto 1996, Lecture Notes
in Computer Science, vol 1109, pp 237-251, Santa Barbara, California, USA, Au-
gust 1996, Springer-Verlag.

24. J. Kelsey, B. Schneier, D. Wagner, Related-Key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA, in the proceedings of ICICS 1997,
Lecture Notes in Computer Sciences, vol 1334, pp 233-246, Bejing, China, Novem-
ber 1997, Springer-Verlag.

25. L.R. Knudsen, Truncated and Higher Order Differentials, in the proceedings of FSE
1995, Lecture Notes in Computer Sciences, vol 1008, pp 196-211, Leuven, Belgium,
1995, Springer-Verlag.

26. L.R. Knudsen and M.J.B. Robshaw, Non-Linear Approximations in Linear Crypt-
analysis, in the proceedings of Eurocrypt 1996, Lecture Notes in Computer Science,
vol 1070, pp 224-236, Saragossa, Spain, May 1996, Springer-Verlag.

27. S. Langford, M. Hellman, Differential-Linear Cryptanalysis, in the proceedings of
Crypto 1994, Lecture Notes in Computer Science, vol 839, pp 17-25, Santa Barbara,
California, USA, August 1994, Springer-Verlag.

28. M. Matsui, Linear Cryptanalysis Method for DES Cipher, in the proceedings of
Eurocrypt 1993, Lecture Notes in Computer Science, vol 765, pp 386-397, Lofthus,
Norway, May 1993, Springer-Verlag.

29. M. Matsui, Supporting Document of MISTY1, Submission to the NESSIE project,
available from http://www.cosic.esat.kuleuven.ac.be/nessie/

30. F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, J.-D. Legat, ICEBERG :
an Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware,
in the proceedings of FSE 2004, Lecture Notes in Computer Science, vol 3017, pp
279-299, New Delhi, India, February 2004, Springer-Verlag.

31. D. Wagner, The Boomerang Attack, in the proceedings of FSE 1999, Lecture Notes
in Computer Sciences, vol 1636, pp 156-170, Rome, Italy, March 1999, Springer-
Verlag.

32. D.J. Wheeler, R. Needham, TEA, a Tiny Encryption Algorithm, in the proceedings
of FSE 1994, Lecture Notes in Computer Science, vol 1008, pp 363-366, Leuven,
Belgium, December 1994, Springer-Verlag.

33. G. Yuval, Reinventing the Travois: Encryption/MAC in 30 ROM Bytes, in the
proceedings of FSE 1997, Lecture Notes in Computer Science, vol 1267, pp 205-
209, Haifa, Israel, January 1997, Springer-Verlag.

236 F.-X. Standaert et al.

Pseudo-assembly code: # ram # regs. # ops.

% Init
L0, R0, KL0, KR0 stored in RAM; 4nb

Set i = 1; 1
Set E/D; 1

% Subroutines (including return):
S: reg ← S(reg); nb + 1 3nb+1
r: reg ← r(reg); nb nb + 1

sw: switch KLi, KRi; 2 4nb + 1

Round:
reg ← Ri; nb nb

if i ≤ �nr/2� 1
goto a: 1

reg ← reg � KLi; nb + 1 2nb

goto b: 1
a: reg ← reg � KRi; nb + 1 2nb

b: call S; 1
call r; 1
if E/D=1; 1

goto c: 1
reg ← reg ⊕ Li; nb + 1 2nb

goto d: 1
c: reg ← reg ⊕ R(Li); nb + 1 2nb

d: Li+1 ← Ri; 1 2nb

if E/D=1; 1
goto e: 1

Ri+1 ← R−1(reg); nb nb

goto f: 1
e: Ri+1 ← reg; nb nb

f: return; 1

Key round:
reg ← KRi; nb nb

if i < �nr/2� 1
goto g: 1

temp ← nr − i; 1 2
reg ← reg � temp; nb + 1 1
goto h: 1

g: reg ← reg � i; nb 1
h: call S; 1

call r; 1
reg ← R(reg) ⊕ KLi; nb + 1 2nb + 1
KLi+1 ← KRi; 1 2nb

KRi+1 ← reg; nb nb

return; 1

% Total:
j: call round; 1

if i 	= �nr/2� 1
goto k: 1

call sw; 1
k: if i = nr 1

goto end: 1
call key round; 1
i = i + 1; 1
goto j: 1

end: call sw; 1
switch Li, Ri; 2 4nb

Low-Cost Cryptography for Privacy
in RFID Systems

Benoît Calmels, Sébastien Canard, Marc Girault, and Hervé Sibert

France Telecom R&D, 42, rue des Coutures, BP6243, 14066 Caen Cedex 4, France
{benoit.calmels, sebastien.canard, marc.girault,

herve.sibert}@francetelecom.com

Abstract. Massively deploying RFID systems while preserving people’s
privacy and data integrity is a major security challenge of the coming
years. Up to now, it was commonly believed that, due to the very lim-
ited computational resources of RFID tags, only ad hoc methods could
be used to address this problem. Unfortunately, not only those methods
generally provide a weak level of security and practicality, but they also
require to revise the synopsis of communications between the tag and
the reader. In this paper, we give evidence that highly secure solutions
can be used in the RFID environment, without substantially impacting
the current communication protocols, by adequately choosing and com-
bining low-cost cryptographic algorithms. The main ingredients of our
basic scheme are a probabilistic (symmetric or asymmetric) encryption
function, e.g. AES, and a coupon-based signature function, e.g. GPS.
We also propose a dedicated method allowing the tag to authenticate
the reader, which is of independent interest. On the whole, this leads to
a privacy-preserving protocol well suited for RFID tags, which is very
flexible in the sense that each reader can read and process all and only
all the data it is authorized to.

1 Introduction

RFID (Radio-Frequency IDentification) technology appeared quite a long time
ago. However, it only recently began to spread into a very wide range of ap-
plications, because of both technical improvements and dramatic cost decrease.
Indeed, the price of the simplest RFID tags is no more than 5 cents per tag.
Thus, RFID applications such as stocks management yield cuts in expenses that
represent more than the price of tagging every item in the stocks.

However, widely spread RFID tags usually broadcast a unique identifier over
the air whenever they are powered on. This is the case of Electronic Product Code
(EPC) tags with long range used in supply chains, but also that of most short
range (ISO 14443/15693) tags regardless of theoretically broader abilities. For
instance, the Navigo tags used by commuters in the Paris public transportation
system answer readers’ requests with a unique identifier. This behavior raises
many concerns on privacy, and slows down massive deployment of RFID tags. On
the other hand, it is commonly believed that strong cryptographic mechanisms

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 237–251, 2006.
c© IFIP International Federation for Information Processing 2006

238 B. Calmels et al.

cannot be embedded into RFID tags because they require too high computing
resources. As a consequence, literature essentially focuses on ad hoc techniques,
the security level of which (as well as the practicality) is often questionable.

The purpose of this paper is to reconcile privacy concerns with RFID tech-
nology, without restricting the range of applications the tags can be used for.
Whereas, in previous work, this was usually done by adding interactions between
the tag and the reader, our approach is to implement in the tag some low-cost
but secure cryptographic functions. This allows us to achieve a high level of
privacy, without requiring any substantial change in the synopsis of communi-
cation between the tag and the reader. This also means that the tag broadcasts
the same data to any reader which, depending on the authorizations it has been
given, will be able to read and process part or all of the said data.

Our paper is organized as follows: we first state the problem we address, i.e.
what the privacy issues are, how they are (or not) presently dealt with, and which
applications should be concerned. Then, we outline the solution we propose. In
section 4, we present our basic tools, namely low cost cryptographic primitives
and an authentication protocol of the reader by the tag which is of independent
interest. Then we describe our basic protocol, and show in the following section
how it can be used in various applications. Finally, we conclude.

2 Tags and Privacy

Privacy is a particularly big concern when millions and millions of small devices
are expected to be embedded into goods and to send various information over
the air about them and their holders. Many popular applications of the RFID
tags require these tags to be traced, but how to proceed without threatening the
privacy of the people who use or wear it ? Reconciling privacy with RFID tags is
therefore a very challenging task for the coming years. To achieve this goal, we
first have to define precisely the different uses of these devices and the different
needs they generate in terms of privacy.

2.1 Different Needs for Different Uses

By making remote identification possible without requiring any visual contact,
RFID tags are suitable in many environments where barcodes are not. For in-
stance, RFID technology enables the quick account of the tags surrounding a
tag reader, thus providing stores and warehouses with means to manage stocks
and inventories more effectively than ever.

However, depending on the context, an application needs or not uniquely
identify the tags it issued. While unique identification is useful for a shop that
wants not only to count, but also trace its stocks, only knowing the category
of the product is for other purposes often sufficient. E.g. in an airport, customs
only need to detect and/or count products submitted to restrictions, without
having to trace them further. Only the nature of the product, not its serial
number, is relevant here. On the other hand, checking authenticity of a product

Low-Cost Cryptography for Privacy in RFID Systems 239

can be of great importance, e.g. in order to thwart counterfeiting. As we can see,
needs related to RFID technology deeply depend on the applications they are
involved in.

Detection Needs. Detection consists, by using a tag reader, in first finding ob-
jects that emit signals with sufficient power to reach the reader, whereever they
may be hidden, and second getting some information about them. Thus, pro-
vided the level of information given by the tags is appropriate, every accounting
application can be fulfilled by this procedure (see above the customs example).

However, when the level of information which is publicly available from the
tags is too high, privacy concerns arise, as provided data could allow anyone to
uniquely (or almost uniquely) identify each tag. Therefore, it becomes necessary
to design a general scheme for RFID tags and readers, which allows tags to dis-
close the nature of the items they are included in, without identifying themselves
uniquely to any tag reader.

Authentication Needs. Another emerging application of RFID tags is control
of authenticity. Manufacturers of the luxury industry have already begun to
integrate RFID tags in their products, so that counterfeiting can be detected
more easily. Moreover, counterfeiting is becoming more and more usual, and
luxury goods are no longer the only products concerned. As a matter of fact,
every well-known brand is a potential victim of counterfeiting. Despite these
threats, basic RFID tags broadcasting EPC (Electronic Product Code) 64 or
96-bit numbers can be easily duplicated. As a consequence, they do not provide
at the time a satisfactory solution to authentication needs.

Identification Needs. Identification needs are closely related to traceability,
which consumers often consider as a threat to their privacy. This is a reason
why, if not the main one, spread of RFID technology is not as fast as expected.
However, traceability is required by many applications (shipments, after-sales
follow-up...). Thus, in order to protect consumers’ privacy, a first step is to
prevent tag readers with no special privilege from tracing items.

2.2 Previous Work on Privacy in RFID Tags

Tag Deactivation. Tag deactivation consists in preventing the tag from com-
municating once and for all. It can be, for instance, the physical destruction of
the link between the tag and its antenna, or some software deactivation function.
For long, tag deactivation has been the only means to deal with privacy concerns
raised by RFID tags. Deactivation is supposed to take place when the consumer
has bought the product containing the tag. However, this solution is not very
satisfactory, because it prevents any application that could take place later from
using the tag. In case of software deactivation, the tag could be reactivated later,
but this raises the problem of managing rights to (de)activate the tag.

The Blocker Tag. In [15], Juels, Rivest and Szydlo consider the most wide-
spread tags singulation protocol (i.e., a scheme designed to enable the

240 B. Calmels et al.

detection by a reader of all the surrounding tags in its environment, and one-
to-one communications between the reader and each tag). This scheme, based
on tree walking, is subject to a basic attack. Starting from this attack, the au-
thors yield the design of a privacy-enabling tag, the blockertag. This approach is
appealing, but it implies that RFID-based architectures are not self-sufficient in
order to ensure privacy. Moreover, the attack works when applied to the cheap-
est, first generation tags, whose "applicative" ID (that is, their serial number,
which is unique and constant) is used at the network level for the singulation
process. But for instance, among Philips RFID tags from the I-CODE 1 series,
several models of probabilistic singulation protocols are designed, for which the
blocker tag design loses its efficiency.

Applicative Privacy. With privacy in mind, many papers have proposed to
include cryptographic mechanisms into RFID tags. In [14], Juels and Pappu pro-
pose a re-encryption approach for tagged banknotes designed to protect privacy.
However, this approach requires external computation and is hardly adaptable
to tags embedded in consumer goods. In [13], Juels describes minimalist crypto-
graphic mechanisms designed to enhance privacy in RFID technologies at a very
low cost. Works of Feldhofer et al. promote low-cost implementations of standard
algorithms, such as AES [7], or challenge-response-type symmetric mechanisms
for authentication with extensions to mutual authentication [1].

Network Layer Privacy. In [3], Avoine and Oechslin show how important it
is to take the network layer exchanges into consideration. Indeed, this is where
the singulation protocol takes place, and, as we have seen in Section 2.2, privacy
greatly depends on the way singulation is carried out. There are advances at
this level, because at this layer the only requirement is that the tag reader gains
the ability to distinguish temporarily between all the tags it is surrounded by.
Thus, there is no requirement on the signification of the data transmitted at this
level, and using secure pseudo-random generators at this level is sufficient to en-
sure network layer privacy. However, one should note that singulation protocols
actually implemented in the tags do not take privacy into account.

3 Outline of the General Scheme

As described earlier, several needs (detection, authentication, identification) are
not fulfilled with the standard mechanisms. In addition, privacy issues must also
be addressed.

The main idea behind our solution is to integrate seamlessly privacy preser-
vation mechanisms into the usual framework of a single response from the RFID
tag to the reader. We use lightweight cryptographic tools in order to hide the
information necessary for the usual applications of RFID systems. Then, on a
single request from the reader, the tag’s response can be decoded to different
levels of information by different RFID readers, depending on their knowledge.

For detection purpose, a way to meet the privacy requirements is to draw
a separation line between public and private data in the unique identifier EPC

Low-Cost Cryptography for Privacy in RFID Systems 241

(which is a serial number) of an RFID tag. The public data would consist mainly
of digits that identify the product category, and the private data would, for
instance, consist of the remaining digits of the serial number. Only the public
data would be broadcast with no restriction.

One could be concerned by the public data being the same for two items
of the same category, possibly causing collision problems during detection. This
is not the case, because we are only dealing with the applicative level, and the
singulation protocol at the network layer ensures the distinction between two
items of the same category. Of course, in order to prevent tracking by every
tag reader at this network level, one has to make sure that the singulation
algorithms and responses from the tag are not flawed. This problem is considered,
for instance, in [3].

Contrary to public data, private data must be encrypted. It will nevertheless
fulfill the identification needs, since revealing the complete identifier only to
authorized equipments. The main question is whether it is necessary and/or even
possible to use an asymmetric or a symmetric encryption algorithm. While au-
thentication can be publicly available, identification must remain very restricted,
so here, depending on the applications that are aimed at, symmetric or asym-
metric encryption can be chosen. However, for costs concerns, one may prefer to
use symmetric encryption, especially if it is completed by some means to check
the authenticity of the tag.

A simple way to meet authentication needs is to provide the tag with
data authentication ability. This mechanism can be either symmetric (MACs)
or asymmetric (digital signatures). However, it is necessary to define precisely
the data that should be authenticated. In accordance with privacy protection,
the signed data should not include constant information sufficient to authenti-
cate uniquely the tag. Moreover, in order to prevent replay attacks, the signed
data should include time-variant parameters. For security and practical reasons,
asymmetric signatures should be preferred to MACs. Indeed, everyone (and con-
sequently every reader) should be able to check the authenticity of a product, so
means to check authenticity have to be publicly available. In case of a signature,
certificates can be supplied to the reader by the tag, or can already be stored in
the reader if they are available, for instance, in an online database.

4 Basic Tools

Before presenting our solution, we first introduce the cryptographic primitives
it relies on. Then we propose a new and practical way for a RFID tag to au-
thenticate the RFID reader before interacting with it, which is of independent
interest.

4.1 Cryptographic Primitives

Our solution, sketched in Section 3, involves several cryptographic primitives:
probabilistic encryption, signature and pseudo random number generation. Since
a RFID tag is limited in terms of processing power and memory, we need

242 B. Calmels et al.

to find out the cryptographic algorithms well suited for the RFID context.
In this section, we introduce some possible algorithms for each one of these
primitives.

Encryption. The result of encrypting a message M is denoted by EncKe(M),
where Enc can be a symmetric or an asymmetric algorithm that is used with the
encryption key Ke. The result of the decryption step is denoted by DecKd

(C)
where Kd is the decryption key1 and C is the ciphertext. Note that we will
need the encryption scheme be semantically secure, which (informally) means
that the ciphertext does not leak any partial information whatsoever about the
plaintext that can be computed in expected polynomial time. As a consequence,
the encryption scheme shall be probabilistic.

As a symmetric encryption scheme, we can for example think of the Federal
Standard AES (Advanced Encryption Standard [18]). Indeed Feldhofer et al.
[7] have presented at CHES’04 a hardware implementation, the gate count of
which is estimated to 3595. Furthermore, this implementation is expected to be
improved in a near future. In the mean-time, proprietary algorithms can be used
but their security is of course much less established.

As an asymmetric encryption scheme, we can think of NTRU [11], since the
company NTRU Cryptosystems Inc. claims that it is implemented with around
1000 gates in their product called Genuid.

Signature. The signature of a message M will be denoted by SignKs
(M) where

Ks is the private signature key. The corresponding verification algorithm of the
signature S on a message M is noted VerKv and the result VerKv(S, M) ("Yes"
or "No"), where Kv is the public verification key. In the sequel, the algorithm
considered is asymmetric (namely, we do not consider Message Authentication
Code).

At CHES’04, Girault and Lefranc [10] propose a variant of GPS [8, 19] that
requires the prover (or the signer) to compute only one on-line addition (in Z).
From this result, we can consequently consider that a signature can be processed
with less than 2000 gate equivalents using this algorithm.

Low-cost GPS necessitates that the RFID tag stores a set of coupons. A
coupon is an integer that is computed beforehand and stored in the RFID tag.
This computation is high-cost but can be computed by a powerful computer
and sent to the RFID tag. The latter will consequently only have to send a
new coupon at each new signature. As a (restrictive) consequence, the number
of signatures that a RFID tag can produce is limited by the number of stored
coupons, except if it is possible to refill to RFID tag with new ones. This pos-
sibility depends on the use of the RFID tag (see Section 6). Nevertheless, it is
possible to use hashed values for coupons, so that the hash function needs only
to be implemented by the verifier [9]. Within that framework, we can consider
that coupons are 32-bit long, so that several tens of coupons fit in the tag at a
reasonable memory cost.

1 Kd = Ke if the algorithm is symmetric.

Low-Cost Cryptography for Privacy in RFID Systems 243

The signature scheme can also be replaced by an authentication scheme. In
this case, the proof is not transferable, but this does not impact the applications
of our scheme described in Section 6, as we need only convince the reader of the
authenticity of the tag. Nevertheless, in the case of the authentication version of
GPS, it adds one pass to the general scheme described in Section 5.2.

PRNG. The Pseudo Random Number Generator (PRNG) will be denoted by
PRNG(l) where l is the size of the output (for example in bits). This PRNG
is used by the encryption scheme to ensure its probabilistic property. It can
also be used to (re-)generate, during the signature phase, the random data em-
bedded in the coupons that are used in the GPS signature scheme (see [9] for
details).

We can use any PRNG that is suitable for the RFID context, that is, with a
minimum of gate equivalents. It is also possible to use a block cipher algorithm
(see AES in the previous section) to design a PRNG, by using standard tech-
niques. Note that the anti-clone functions can also be turned into a PRNG. We
can consequently have a PRNG in either 3600 gate equivalents or in less than
1000 gate equivalents.

4.2 Authentication of the Reader

Most authentication schemes proposed for RFID tags are dedicated to the au-
thentication of a tag by a reader. Nevertheless, the lightweight GPS signature
introduced in Section 4.1 implies the use of coupons. Thus, we have to thwart
the possible denial of service attack that would consist in forcing the tag to
produce many signatures, so that it uses all its coupons. This is the reason why
we also propose an (optional) mechanism dedicated to the authentication of the
reader. This is not a usual cryptographic authentication scheme, but rather a
mechanism to distinguish between legitimate and rogue readers, based on the
fact that rogue readers are unlikely to be close to the tag. We want to stress that,
if it became possible to use a signature scheme that does not require coupons,
then this phase could be left out.

This authentication mechanism is a kind of challenge-response scheme, and
works as follows:

1. The RFID tag receives a request from a reader.
2. The RFID tag sends a challenge c to the reader (we describe below the way

c is generated).
3. The reader computes r = g(c) (where g is some function defined below), and

sends r to the tag,
4. On reception of a value r′, the RFID tag checks : d(r′, g(c)) ≤ m, where d is

a distance (e.g. the Hamming distance), and m is an acceptance level.
5. The RFID tag accepts the initial request of the reader only if the previous

inequality is verified.

The value m can be chosen to be equal to 0 (i.e. the RFID tag checks that
r′ = g(c)) in case data transmission already involves error-correcting codes.

244 B. Calmels et al.

The first, most interesting variant, is dedicated to tags with a short range.
This is the case for ISO 14443 (proximity) tags and some ISO 15693 (vicinity)
tags with a short range, this range being about a few centimeters. This is one
of the most important cases, as these norms are used for contactless payment
and ticketing. In this variant, c is either constant or pseudo-randomly generated
by using the memory contents of the tag. It can also be picked up from a list of
values, and this list can change in a deterministic way, using ideas from [13]. But
the main point of this variant is that g can be chosen to be the identity function.
In other words, the response is equal (or close) to the challenge ! This is made
possible by the asymmetry between the emission range of the tag and the one of
the reader. Indeed, an illegitimate reader is very unlikely to be in the emission
range of the tag, so that it will not receive the challenge, and will consequently
not be able to answer properly.

This should also work when the emission range is about one meter, because
it is quite likely that an attacker aiming at making a denial of service on tags
will be quite far from its potential victims. Moreover, considering that tags are
moving with the persons they are carried by, it is even more unlikely that an
attacker will succeed more than once to send a request that will be answered by
the tag, because of this mechanism.

However, we have to take into consideration the fact that, in some places (for
instance, places where luggage is gathered in an airport), this attack could be
effective even if this variant is implemented. In such a case, it is recommended to
use this challenge-response protocol in a classical way, i.e. by making g depend
on a shared secret key, known only by the tag and authorized readers.

5 General Scheme

In this section, we introduce the general scheme of our solution on the tag’s side.
As outlined in Section 3, it fits seamlessly into the usual synopsis of communica-
tion between a tag and a reader. Essentially, the scheme consists in encrypting
some data, and signing this ciphertext together with some public plaintext. Thus,
the transmitted data do not depend on the identity of the reader.

The scalability of this construction is the essence of our scheme, since it en-
ables privacy protection together with the applications introduced in Section 2.1.
Indeed, on a single request from the reader, the tag’s response can be decoded
to different levels of information depending on the knowledge of the reader, thus
enabling (or preventing) each application in a scalable way. We will introduce the
relations between the knowledge of the reader and the possible applications/use
cases in Section 6.

5.1 Data Elements in the RFID Tag

Our solution requires the RFID tag to store some values such as an identifier
and, since it also performs some cryptographic operations, to store cryptographic
keys. Let us introduce our notations of the data elements stored in the tag.

Low-Cost Cryptography for Privacy in RFID Systems 245

– Idp: this is the public part of the identifier of the RFID tag. It can be,
for example, a part of the EPC number. This public part contains general
characteristics of the RFID tag, not precise enough to uniquely identify the
item carrying this RFID tag. This part of the identifier has a size denoted
by lp.

– Ids: this is the secret part of the identifier of the RFID tag. It is typically the
remaining part of the EPC number (64 or 96 bits long). This data element
must be considered as sensitive because it is unique and, consequently, fully
identifies a particular RFID tag. If not secret, it could be used to trace the
user of this RFID tag or to know where it comes from. This identifier part
has a size denoted by ls (and consequently lp + ls will typically be the length
of the entire EPC number, that is 64 or 96 bits).

– Ks: this is the signature private key that permits the RFID tag to use the
algorithm Sign in order to sign a message. If we use the GPS algorithm,
this key can be of size 160 bits. The corresponding public key Kv that will
be used by the reader, is linked (in a way or another) to Idp. The pair (Kv,
Ks) can be either:

• certified2 by an authorized certification authority, or
• written in a secured database (locally saved or not) that is used by the

verifier.

Consequently, all RFID tags that belong to the same group of public iden-
tifier Idp have the same private signature key.

– Ke: this is the encryption key used by the RFID tag in the Enc algorithm to
encrypt messages. This key can be secret (if the algorithm is symmetric) or
public (if the algorithm is asymmetric). Using AES, the size of this key can
be equal to 128 bits. Using the anti-clones functions, we need to store 320
bits for this key. Finally, if one wants to use NTRU, the key size depends
on the security level : 1000 bits for NTRU-167, 2000 bits for NTRU-263 and
4000 bits for NTRU-5033. The corresponding decryption key Kd will be used
by the tag reader. Note that the pair (Ke, Kd) should be the same for a given
Idp.

5.2 The General Scheme Embedded in the RFID Tag

The general scheme presented in this section is to be embedded into the RFID
tag. This general scheme is called each time the RFID tag is requested by a
RFID reader, whatever the RFID reader may be. The request from a RFID
reader includes a challenge sent to the tag. This challenge can for example be
a random value generated by the RFID reader, the date of the request, or sim-
ply the request sent at the network layer (see Figure 1 for details). Note that

2 This solution requires the RFID tag to store the certificate, which may conflict with
memory limitations due to cost target.

3 In terms of security, NTRU-503 is claimed to be equivalent to RSA-4096. However,
the size of the key would be too high for storage in RFID tags.

246 B. Calmels et al.

RFID Tag RFID Reader
Req = Request(challenge)

Req←−−−−−−−−−−
Res = Response(challenge, m)

Res−−−−−−−−−−→
Process(Res)

Fig. 1. General Scheme: Interactions

this challenge-response protocol is consistent with the communication protocol
between a tag reader and an RFID tag4.

The generation of the response by a RFID tag is then computed as follows:

1. The RFID tag first encrypts its secret identifier Ids plus some optional extra
data ms with the probabilist encryption scheme.

C = EncKe(Ids‖ms)

where the symbol a‖b denotes the concatenation of a and b.
2. The RFID tag then signs a message which consists of the ciphertext C, the

public identifier Idp, the challenge and some optional extra public data mp.

S = SignKs
(C‖Idp‖challenge‖mp).

3. The RFID tag finally generates the response formed as Idp, the ciphertext C,
the signature S and some optional extra data p. The data p at least includes
the extra public data mp.

Res = Idp‖C‖S‖p.

After receiving the response of the RFID tag, the RFID reader has to process
it. The way a RFID reader proceeds depends on the cryptographic keys it holds:
this leads to various applications that are detailed in the next section.

5.3 Security Arguments

The lightness of this security part is due to the fact that our scheme fits into
the standard RFID model, in which a tag issues a single response to the request
of a reader. The response of the tag, except for the signature part, is the same
for every tag, be it legitimate or not. For the signature part, the tag includes in
the signed message the challenge sent by the reader, which is a classical tech-
nique used to turn signature into interactive proof of knowledge, thus providing
authentication. Thus, it turns out that our scheme does not require a particular
security model and proof, the security of the scheme being essentially that of
the cryptographic primitives used.
4 Since an RFID tag never sends a message without a request.

Low-Cost Cryptography for Privacy in RFID Systems 247

There may be some security concerns due to the fact that the private signa-
ture key should be shared between (possibly very) many tags. A way to improve
this is to use group signatures [6, 2] with revocability, since there is the same
problem in [5]. This would require a group signature scheme that is low-cost on
the side of the signer. Thus, we think that research in this direction is definitely
one of the biggest needs to concile security and privacy preservation with the
massive deployment of pervasive, low-cost devices.

6 Applications

In our paper, we consider that there are various types of RFID readers, depending
on the keys (secret or “public”) they hold. We will consequently consider three
types of RFID readers:

1. The RFID reader which holds no cryptographic key related to our scheme.
We call it a “Detection reader”.

2. The RFID reader which holds the verification public key that allows to verify
a signature produced by a RFID tag. We call it an “Authentication reader”.

3. The RFID reader which holds the decryption secret key that allows to de-
crypt the ciphertext generated by a RFID tag. We call it an “Identification
reader”.

Let us now study in details these three types of RFID readers.

6.1 Detection

An RFID reader that holds no cryptographic functionality related to the scheme
described in section 4 can only read the public data sent by the reader without
being able to verify them: it can consequently only detect the presence of an
RFID tag. This is why we call it a “Detection reader”.

Reader Side. The only data this kind of reader is able to manage are Idp and
p. In particular, the reader is not able to derive any benefit from the signature S.
The reader is also unable to decrypt the ciphered data C, ensuring the privacy
of the tag (and of its owner), and preventing traceability.

Use Case. Though enjoying no privileges, a “Detection reader” can be useful
in different situations:

– it is able to detect hidden items. For instance, it can be used in theft de-
tection. In such scenarii, the articles hidden by the robber are tagged. Any
reader is then able to detect tags that should not pass through a portal for
instance. No authentication of the tag is required for this, and “after pur-
chase” privacy issues are solved since unprivileged reader are not able to
trace the tag.

248 B. Calmels et al.

– it can be used to count and control purposes. In a trusted environment,
for instance in a warehouse where the access is controlled (and theft is not
considered an issue), a Detection reader is able to count tags for inventory
purpose even if it is not able to differentiate two objects5 with the same
public identifier Idp. In an untrusted environment it can be used to detect an
overtaking, for instance for customs purpose. If Idp reveals a type (alcohol)
or a brand, customs are able to easily count tags revealing a minimum of
the quantity really carried.

– It can be used to facilitate the search of lost objects, since the technology
does not require a visual contact and has a limited range.

6.2 Authentication

An RFID reader that holds the verification public key can check the validity of
what is sent by the RFID tag. By verifying the signature, this type of RFID
reader can authenticate the RFID tag. This is why we call it an “Authentication
reader”.

Reader Side. The reader is able to manage Idp and p, but is also able to
verify the signature S, certifying the public data. It is unable to understand the
ciphered data, ensuring privacy protection w.r.t. this kind of reader.

To check the signature S, the reader retrieves the public key Kv from the
public identifier Idp. The key can be stored locally in the reader or might be
extracted from a database, depending on the use case. The RFID tag can also
send the corresponding certificate linked to Idp, which contains the verification
public key.

Use Case. The cryptographic functionalities of the reader allow it to perform
operations requiring trust:

– It can be used for count and control purposes, with the guarantee that
the final count matches the reality (e.g. for inventory purpose)

– The signature can be used to prevent counterfeits: the tags can prove
their characteristics such as the brand (for luxury products), or their origin6

(passport, identification cards), etc.
– Other services such as traceability services for mail and delivery can use

the signature to ensure the authenticity of the product they are following
up7.

5 As discussed earlier, to do so, the discovering protocol at the network layer must
be designed with this requirement in mind. The classical “tree parsing protocol” for
instance would not allow the reader to properly count tags with the same Idp.

6 Such information can be considered as sensitive and private, so the signature could be
used to validate ciphered data, and the “Authentication reader” used in conjunction
with an “Identification reader”.

7 Again, to be able to identify precisely an item, such a reader should be used in
conjunction with an “Identification reader”.

Low-Cost Cryptography for Privacy in RFID Systems 249

6.3 Identification

An RFID reader that holds the decryption secret key can decrypt what is sent
by the RFID tag, and more particularly the secret identifier Ids of the RFID
tag. This is why we call it an “Identification reader”.

Reader Side. The reader is able to manage Idp and p, but is also able to
decrypt the data M in order to gain access to the secret identity Ids and ms.

The reader retrieves the secret key Kd thanks to the public identifier. To do
so, several methods can be chosen depending on the use case. This key can be
locally stored in the tag reader for instance. It can also be stored in a remote
database. Then, the reader needs to authenticate itself to the remote server, and
ask the required key to the server. The tag reader can also simply relay the
messages to the server which will find the right key and perform the decryption.

The problem of retrieving a symmetric key to decrypt the response of a tag
was adressed in [4, 17]. In our scheme, each tag having the same public identifier
should use the same encryption key, thus retrieving this key is straightforward
in this case. However, one may want to diversify encryption keys for security
concerns. Then, the tags having the same public identifier should be divided
into several subgroups sharing the same encryption key, in order to increase
security (and rely less on tamper-resistance of the tags) while keeping low table
lookup costs to retrieve the key, using for instance a hash-based approach.

Use Case. The encryption ensures the traceability w.r.t. the readers which do
not hold the decryption secret. Conversely, being able to decrypt the ciphered
data allows the reader to precisely identify a product. This property can then
be used to:

– identify the owner of a lost or stolen product. After the purchase of a
product, a database managed by the manufacturer (for instance) can link
the Ids to the identity of the customer. If a lost or stolen product is found,
police services can contact the manufacturer and ask him to reveal the secret
identity. To do so, the reader can relay the exchanges with the tags to the
manufacturer to perform an on-line decryption.

– easily identify a product serial number for after-sale services. The manu-
facturer can get access to the whole identification code in order to know if
a product is concerned by e.g. a specific problem. Then a manufacturer can
call back a faulty sub-series, after rapidly and cheaply identifying them.

7 Conclusion

We have presented a protocol which allows to reconcile privacy with RFID tech-
nology. By making an optimal choice of algorithms, the cost of our solution in
terms of gate equivalents is less than 5000. As stated by Juels and Weis [16],
the total number of gates in supply chain RFID tags is usually between 5000
and 10000. Among these, about 2000 can currently be dedicated to security

250 B. Calmels et al.

functions. Moreover, short range tags can include several times this number of
gates. As a consequence, our solution suits present (or available in a very near
future) hardware abilities, and we think the additional cost of such a solution is
justified both by continuously decreasing costs, due to production increases and
strengthening market competition, and by the functionalities it provides. In any
case, we wish to emphasize that tags need to be equipped with cryptographic
functions in order to enhance privacy protections in RFID systems. This should
encourage the research activity in (ultra-)low cost cryptography.

References

1. M. Aigner and M. Feldhofer. Secure symmetric authentication for rfid tags. In
Telecommunication and Mobile Computing – TCMC 2005, Graz, Austria, March
2005.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In T. Okamoto, editor, Advances
in Cryptology - Asiacrypt ’00, volume 1976 of Lecture Notes in Computer Science,
pages 255–270. Springer-Verlag, 2000.

3. G. Avoine and P. Oechslin. RFID Traceability: A Multilayer Problem. In Financial
Cryptography 2005, Lecture Notes in Computer Science. Springer-Verlag, 2005.

4. Gildas Avoine and Philippe Oechslin. A scalable and provably secure hash based
RFID protocol. In International Workshop on Pervasive Computing and Commu-
nication Security – PerSec 2005, pages 110–114, Kauai Island, Hawaii, USA, March
2005. IEEE, IEEE Computer Society Press.

5. S. Canard and M. Girault. Implementing group signatures schemes with smart
cards. In Smart Card Research and Advanced Applications V - Cardis 2002. Kluwer,
2002.

6. David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, pages
257–265, 1991.

7. M. Feldhofer, S. Dominikux, and J. Wolkerstorfer. Strong Authentication for RFID
Systems Using the AES Algorithm. In Joye and Quisquater [12], pages 357–370.

8. M. Girault. Self-Certified Public Keys. In D. W. Davies, editor, Advances in
Cryptology - Eurocrypt ’91, volume 547 of Lecture Notes in Computer Science,
pages 490–497. Springer-Verlag, 1991.

9. M. Girault. Low-Size Coupons for Low-Cost IC Cards. In J. Domingo-Ferrer,
D. Chan, and A. Watson, editors, Cardis 2000, volume 180 of IFIP Conference
Proceedings, pages 39–50. Kluwer Academic Publishers, 2000.

10. M. Girault and D. Lefranc. Public Key Authentication with one Single (on-line)
Addition. In Joye and Quisquater [12], pages 413–427.

11. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key
Cryptosystem. In The 3rd International Symposium ANTS-III, volume 1426 of
Lecture Notes in Computer Science, pages 267–288, 1998.

12. M. Joye and J. J. Quisquater, editors. CHES 2004, volume 3156 of Lecture Notes
in Computer Science. Springer-Verlag, 2004.

13. A. Juels. Minimalist Cryptography for Low-Cost RFID Tags, 2003.
14. A. Juels and R. Pappu. Squealing Euros: Privacy Protection in RFID-Enabled

Banknotes. In R. N. Wright, editor, Financial Cryptography 2003, volume 2742 of
Lecture Notes in Computer Science, pages 103–121. Springer-Verlag, 2003.

Low-Cost Cryptography for Privacy in RFID Systems 251

15. A. Juels, R. L. Rivest, and M. Szydlo. The blocker tag: selective blocking of RFID
tags for consumer privacy. In 10th ACM conference on Computer and communi-
cations security, pages 103–111. ACM Press, 2003.

16. Ari Juels and Stephen Weis. Authenticating pervasive devices with human proto-
cols. In V. Shoup, editor, Advances in Cryptology - Crypto 05, Lecture Notes in
Computer Science. Springer-Verlag, 2005.

17. David Molnar and David Wagner. Privacy and security in library RFID: Issues,
practices, and architectures. In Birgit Pfitzmann and Peng Liu, editors, Confer-
ence on Computer and Communications Security – ACM CCS, pages 210–219,
Washington, DC, USA, October 2004. ACM, ACM Press.

18. National Institute of Standards and Technology (NIST). FIPS-197: Advanced En-
cryption Standard. November 2001.

19. G. Poupard and J. Stern. Security Analysis of a Practical "on the fly" Authenti-
cation and Signature Generation. In K. Nyberg, editor, Advances in Cryptology -
Eurocrypt ’98, volume 1403 of Lecture Notes in Computer Science, pages 422–436.
Springer-Verlag, 1998.

Optimal Use of Montgomery Multiplication on
Smart Cards

Arnaud Boscher and Robert Naciri

Oberthur Card Systems SA, 71-73, rue des Hautes Pâtures,
92726 Nanterre Cedex, France

{a.boscher, r.naciri}@oberthurcs.com

Abstract. Montgomery multiplication is used to speed up modular
multiplications involved in public-key cryptosystems. However, it re-
quires conversion of parameters into N-residue representation. These
additional pre-computations can be costly for low resource devices like
smart cards. In this paper, we propose a new, more efficient method,
suitable for smart card implementations of most of public-key cryptosys-
tems. Our approach essentially consists in modifying the representation
of the key and the algorithm embedded in smart card in order to take
advantage of the Montgomery multiplication properties.

Keywords: Montgomery Multiplication, Smart Card, RSA, ECDSA,
GQ2.

1 Introduction

Almost all public-key cryptosystems embedded in low resource devices, such as
smart cards and PDAs, require an efficient implementation of modular
multiplication.

One of the best methods of modular multiplication is due to P.L. Montgomery
[1]. It consists in replacing division by an arbitrary number with division by a
fixed-number, which can be chosen to be a power of 2 for efficiency reasons.
Montgomery multiplication requires pre-computation of a constant to change the
representation of the operands. This pre-computation requires time and memory
space and must be performed each time the cryptosystem is computed. We will
see how most of the public-key cryptosystems can be implemented on a smart
card using Montgomery multiplication without this drawback.

The paper is organized as follows. In Section 2, we recall the basics about
Montgomery multiplication. In Sections 3 and 4 we propose a method for RSA
and CRT RSA implementations using Montgomery multiplication. In Section 5,
we adapt the method to GQ2 algorithm [6] which results in an improvement of
up to 50 % in execution time compared to the classical methods. Lastly, we look
at ECDSA signature [7] in Section 6.

2 Montgomery Multiplication

Throughout the rest of the paper, we use · to denote classical multiplication and
∗ to denote Montgomery multiplication.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 252–262, 2006.
c© IFIP International Federation for Information Processing 2006

Optimal Use of Montgomery Multiplication on Smart Cards 253

Let b be the length of the machine word (typically b = 2k with k = 8, 16
or 32). Let X, Y and N be three integers of length n : X = (xn−1...x0)b, Y =
(yn−1...y0)b. We denote by R the value bn.

For N odd, the Montgomery multiplication of X and Y modulo N is de-
fined by:

X ∗ Y mod N = X · Y · R−1 mod N .

It can be computed by applying the following algorithm shown in [3]:

Algorithm 2.1. Montgomery multiplication
Input: X, Y, N, R and N ′ = −N−1 mod b
Output: X · Y · R−1 mod N

1. A ← 0
2. For i from 0 to n − 1 do

(a) u ← (a0 + xi · y0)N ′ mod b
(b) A ← (A + xi · y + u · N)/b

3. If A ≥ N then A ← A − N
4. Return(A)

Let us denote by ∗ the Montgomery exponentiation defined by:

X∗e mod N = Xe · R1−e mod N . (1)

As it can be deduced from Relation (1), classical modular exponentiation can be
computed using Montgomery exponentiation. First, we have to change the rep-
resentation of the operand, then carry out the Montgomery exponentiation and
finally correct its output to obtain the expected result. This can be summarized
by:

Xe mod N = [(X ∗ R2)∗e] ∗ 1 mod N ,

or by the following algorithm taken from [3]:

Algorithm 2.2. Modular Exponentiation using Montgomery Multiplication
Input: X, e, N, R
Output: Xe mod N

1. X̃ ← X ∗ R2 mod N
2. A ← R mod N
3. For i from n − 1 to 1 do

(a) A ← A ∗ A mod N
(b) If ei = 1 then A ← A ∗ X̃ mod N

4. A ← A ∗ 1 mod N
5. Return(A)

254 A. Boscher and R. Naciri

The value X̃ = X · R mod N = X ∗ R2 mod N is called the Montgomery
representation of X . To obtain this representation, the value R2 mod N must be
computed. In order to do this, one can use Montgomery multiplication and the
following proposition:

Proposition 1. Let R and N be two integers with N odd, then we have:

R2 mod N = (2 · R)∗log2[R] mod N .

Proof.

(2 · R)∗log2[R] = 2log2[R] · Rlog2[R] · R1−log2[R] mod N

= 2log2[R] · R mod N

= R · R mod N

= R2 mod N . �

As a consequence of Proposition 1, the pre-computation of R2 mod N requires
log2[R] Montgomery multiplications. As R equals bn, for public-key cryptosys-
tems using large parameters n (like RSA), this can be a problem in terms of
time or memory on low cost devices.

On smart cards for instance, initialization of the parameters can take more
time than the Montgomery multiplication itself. One reason is that initialization
is made by software, whereas Montgomery multiplication is made by hardware.
Another reason is the clock frequency: dedicated hardware for Montgomery mul-
tiplication has higher clock frequency than classical CPU.

In the next section, we introduce a new method of computing RSA signatures
with Montgomery multiplications without the pre-computation of R2 mod N .

3 RSA

3.1 Classical Method for RSA

The RSA cryptosystem [4] uses a public modulus N , product of two large prime
numbers p and q, a public exponent e co-prime with φ(N) = (p− 1) · (q − 1) and
a private exponent d, inverse of e modulo φ(N).

To sign a message M using Montgomery multiplication, one can apply the
following algorithm:

Algorithm 3.1. RSA using Montgomery multiplication
Input: M, d, N, R
Output: Md mod N

1. X ← R2 mod N
2. M̃ ← M ∗ X mod N
3. S ← M̃∗d mod N
4. S ← S ∗ 1 mod N
5. Return(S)

Optimal Use of Montgomery Multiplication on Smart Cards 255

3.2 Our New Method for RSA

Let us assume that the public exponent e is known (as it is often the case). We
give in the following a new way of computing a RSA signature:

Algorithm 3.2. Optimized RSA using Montgomery multiplication
Input: M, d, e, N
Output: Md mod N

1. S ← 1∗(e−1) mod N

2. S ← M ∗ S mod N

3. S ← S∗d mod N

4. Return(S)

Before arguing the correctness of Algorithm 3.2., let us notice that:

1∗(e−1) mod N = 1e−1 · R1−e+1 mod N = R2−e mod N .

So, after the first step of Algorithm 3.2. we have:

S = R2−e mod N .

And from the second step, we obtain:

S = M ∗ S mod N = M ∗ R2−e mod N

= M · R2−e · R−1 mod N

= M · R1−e mod N .

Finally, using Fermat’s little theorem in the last step:

S = S∗d mod N = (M · R1−e)∗d mod N

= Md · R(1−e)d · R1−d mod N

= Md · R1−ed mod N

= Md mod N .

Algorithm 3.2. works for every e, but is especially interesting when e is small
(typically 216 + 1).

Even if the total of Montgomery multiplications in Algorithm 3.1. and in
Algorithm 3.2. is not very different, the execution time of the second one will be
faster in a smart card context. Indeed, the initialization step of operands takes
more time than the Montgomery multiplication itself. This is a consequence of
the smart card architecture, where Montgomery multiplication uses dedicated
hardware.

256 A. Boscher and R. Naciri

4 CRT RSA

4.1 Traditional Method for CRT RSA

When the values p and q are available, one usually applies the Chinese Remainder
Theorem and the Garner’s algorithm [5] to improve performance of RSA signa-
ture. In the so-called CRT mode, RSA involves the 5 parameters p, q, dp, dq, A,
where dp = d mod p − 1, dq = d mod q − 1 and A = p−1 mod q.

The CRT RSA signature of a message M using Montgomery multiplication
is given by:

Algorithm 4.1. CRT RSA using Montgomery multiplication
Input: M, p, q, dp, dq, A, R
Output: Md mod N

1. X ← R2 mod p
2. M̃ ← M ∗ X mod p
3. S̃p ← M̃∗dp mod p
4. Sp ← S̃p ∗ 1 mod p
5. X ← R2 mod q
6. M̃ ← M ∗ X mod q
7. S̃q ← M̃∗dq mod q
8. Sq ← S̃q ∗ 1 mod q
9. X ← R2 mod p

10. Ã ← A ∗ X mod p
11. S ← [(Sq − Sp) ∗ Ã mod p] · p + Sp

12. Return(S)

4.2 Our New Method for CRT RSA

We assume that the public exponent e is available. Moreover, we recall that
every message M can be written M1 · R + M0.

If we store in the smart card the value Ã, instead of A itself, we obtain an
optimized CRT RSA implementation using Montgomery multiplication:

Algorithm 4.2. Optimized CRT RSA using Montgomery multiplication
Input: M, p, q, dp, dq, Ã, e
Output: Md mod N

1. X ← 1∗(e−2) mod p
2. Sp ← (M1 + M0 ∗ 1) mod p
3. Sp ← Sp ∗ X mod p

4. Sp ← S
∗dp
p mod p

5. X ← 1∗(e−2) mod q
6. Sq ← ((M1 + M0 ∗ 1) mod q
7. Sq ← Sq ∗ X mod q

8. Sq ← S
∗dq
q mod q

9. S ← [(Sq − Sp) ∗ Ã mod p].p + Sp

10. Return S

Optimal Use of Montgomery Multiplication on Smart Cards 257

After the first step of the algorithm, we have:

X = 1∗(e−2) mod p = R3−e mod p .

Then, the second step gives:

Sp = M1 + M0 ∗ 1 mod p = M1 + M0 · R−1 mod p .

Hence, at the third step we have:

Sp ∗ X mod p = Sp ∗ R3−e mod p

= (M1 + M0 · R−1) · R3−e · R−1 mod p

= (M1 + M0 · R−1) · R2−e mod p

= (M1 · R + M0) · R1−e mod p

= M · R1−e mod p .

Thus, Montgomery exponentiation (step 4) gives:

S∗dp
p mod p = (M · R1−e)∗dp mod p

= (M · R1−e)dp · R1−dp mod p

= Mdp · R(1−e)dp · R1−dp mod p

= Mdp · R1−edp mod p

= Mdp mod p .

For the same reason, we have:

S∗dq
q mod q = ((M1 + M0 ∗ 1) ∗ 1(e−2))∗dq mod q.

By definition of Ã, we obtain a correct CRT RSA signature.

This CRT RSA implementation using Montgomery multiplication is opti-
mized for smart cards.

5 GQ2

5.1 Description

GQ2 [6] is a zero-knowledge algorithm whose security is equivalent to the fac-
torization problem. It can be converted to a signature scheme.

Like RSA, GQ2 uses a public modulus N , product of two large primes p and
q. The parameters of the public key are N and two small numbers, g1 = 3 and
g2 = 5. The parameters of the private key are two numbers Q1 and Q2 (lower
than N), verifying the formula: Q512

i · g2
i = 1 mod N .

258 A. Boscher and R. Naciri

Let us recall in the following the GQ2 authentication protocol.

Algorithm 5.1. GQ2 authentication of a prover by a verifier
Input: N, Q1, Q2
Output: Success or failure

1. The prover generates a random number r and sends the commitment W=r512 mod
N to the verifier.

2. The verifier sends a 2-byte challenge d = d1||d2.
3. The prover computes the response D = r · Qd1

1 · Qd2
2 mod N .

4. The verifier computes W ′ = D512 · g2d1
1 · g2d2

2 mod N .
5. The verifier returns ”Success” if W ′ = W , ”Failure” otherwise.

The GQ2 protocol is faster than RSA due to the small length (2×8 bits) of
the exponents involved in modular exponentiation. That is why, if Montgomery
multiplication is used, computation of the value R2 mod N is very inconvenient:
a big part of execution time of the algorithm will be employed for this.

5.2 Our New Method for GQ2

To optimize GQ2 algorithm, we propose to store the values Q̃1 and Q̃2 in the
non-volatile memory of the smart card. This can be performed once, during
personalization step of the card, in factory.

The modified GQ2 algorithm executed by the card is:

Algorithm 5.2. GQ2 authentication with Montgomery multiplication
Input: N, Q̃1, Q̃2
Output: Success or failure

1. The prover generates a random number r and sends the commitment W= r∗512∗
1 mod N to the verifier.

2. The verifier sends a 2-byte challenge d=d1||d2.
3. The prover computes the response D = r ∗ Q̃1

∗d1 ∗ Q̃2
∗d2 ∗ 1 mod N .

4. The verifier computes W ′ = D512 · g2d1
1 · g2d2

2 mod N .
5. The verifier returns ”Success” if W ′ = W , ”Failure” otherwise.

The computed commitment is equal to:

W = r∗512 ∗ 1 mod N

= r512 · R1−512 ∗ 1 mod N

= r512 · R1−512 · R−1 mod N

= r512 · R−512 mod N

= (r · R−1)512 mod N .

So the random used during the rest of the algorithm is r · R−1 mod N .

Optimal Use of Montgomery Multiplication on Smart Cards 259

The computed response is equal to:

D = r ∗ Q̃1
∗d1 ∗ Q̃2

∗d2 ∗ 1 mod N

= r · Q̃1
∗d1 · Q̃2

∗d2 · R−3 mod N

= r · Q̃1
d1 · Q̃2

d2 · R−3 · R1−d1+1−d2 mod N

= r · Q̃1
d1 · Q̃2

d2 · R−1−d1−d2 mod N

= r · (Q1.R)d1 · (Q2 · R)d2 · R−1−d1−d2 mod N

= r · Qd1
1 · Rd1 · Qd2

2 · Rd2 · R−1−d1−d2 mod N

= r · Qd1
1 · Qd2

2 · R−1 mod N

= r · R−1 · Qd1
1 · Qd2

2 mod N .

So the response is valid according to the random used by the card.
This method allows a big improvement compared to the classical method. For

example, if the bit-length of the modulus N is 1024, computation of the value
R2 mod N requires 10 Montgomery multiplications whereas the computation of
D involves between 16 and 32 Montgomery multiplications. So this method for
GQ2 algorithm decreases execution time of more than 50% compared to classsical
use of Montgomery multiplication.

6 ECDSA Signature

6.1 Description

Elliptic Curves Digital Signature Algorithm [7] produces short signatures and
so, are suitable for smart card. The precedent technique can still be applied in
order to improve the time of calculation.

In the following, we only consider the case of elliptic curves over prime fields.
Let (E) be the elliptic curve over a finite field of prime characteristic p defined
by:

y2 = x3 + ax + b with a, b ∈ GF (p) .

Let G = (xG, yG) be a point of (E) of order n prime. The ECDSA private key is
an integer d such that d ∈ [0, n − 1]. The corresponding public key is the point
Q = (xQ, yQ) = d × G.

The ECDSA signature algorithm is:

Algorithm 6.1. ECDSA signature
Input: M, (E), G, d, n
Output: r, s

1. Generate a random number k, such that k ∈ [1, n − 1].
2. Compute the elliptic curve point k × G = (xk, yk).
3. Set r = xk mod n.
4. Compute s = k−1(SHA-1(M) + d · r) mod n.
5. Return(r, s).

260 A. Boscher and R. Naciri

6.2 First Method

ECDSA involves modular computation over GF (p) for computation of the scalar
multiplication described in step 2 of algorithm, but computation over GF (n) for
the rest of the algorithm. For clarity reasons, when Montgomery multiplications
are executed modulo p (resp. n), we use notations ∗p (resp. ∗n) and Rp (resp.
Rn).

Let (Ẽ) be the image of (E) using Montgomery representation. It is defined
by:

ỹ2 = x̃3 + (a.Rp) ∗p x̃ + (b.Rp) .

To configure the smart card for ECDSA signature scheme, we need to replace
G = (xG, yG) by G̃ = (x̃G, ỹG) = (xG.Rp mod p, yG.Rp mod p) and d by d̃ =
d ·Rn mod N . This rewritten in Montgomery representation is performed once,
on a computer, and the modified parameters are stored in the smart card during
the personalization phase.

The new ECDSA signature scheme using Montgomery arithmetic is the fol-
lowing:

Algorithm 6.2. ECDSA signature using Montgomery multiplication
Input: M, (Ẽ), G̃, d̃, n
Output: r, s

1. Generate a random number k, such that k ∈ [1, n − 1].
2. Compute k1 = k ∗n 1.
3. Compute the elliptic curve point k × G̃=(x̃k, ỹk)=(xk · Rp mod p, yk · Rp mod p).
4. Compute r = x̃k ∗p 1.
5. Compute r = r mod n.
6. Compute s = k

∗(−1)
1 ∗n (SHA-1(M) + d̃ ∗n r) mod n.

7. Return(r, s).

This algorithm computes a correct ECDSA signature of message M using
only Montgomery multiplications. The correctness of the computation is due to:

s = k
∗(−1)
1 ∗n (SHA-1(M)+ d̃ ∗n r) mod n

= k−1
1 · R2

n ∗n (SHA-1(M)+ d̃ ∗n r) mod n

= k−1
1 · Rn · (SHA-1(M)+ d̃ ∗n r) mod n

= (k · Rn)−1 · Rn · (SHA-1(M)+ d̃ ∗n r) mod n

= k−1 · (SHA-1(M)+ d̃ ∗n r) mod n

= k−1 · (SHA-1(M)+ d̃ · r · R−1
n) mod n

= k−1 · (SHA-1(M)+ d · Rn · r · R−1
n) mod n

= k−1 · (SHA-1(M)+ d · r) mod n .

Optimal Use of Montgomery Multiplication on Smart Cards 261

The value r satisfies the following equalities:

r = x̃k ∗p 1 mod p

= x̃k · R−1
p mod p

= xk · Rp · R−1
p mod p

= xk .

6.3 Second Method

Algorithm 6.2. can also be computed by using the notion of Montgomery inverse
introduced by B. Kaliski. The Montgomery inverse of an element a is defined
by:

a → â−1 = a−1 · Rn mod n.

B. Kaliski proposed an efficient binary algorithm [8] to compute this inverse.
Using this algorithm and the parameters (Ẽ), G̃ and d̃, the ECDSA signature

scheme can be optimized for Montgomery multiplication in the following way:

Algorithm 6.3. ECDSA signature using Montgomery multiplication and Kaliski
inverse
Input: M, (Ẽ), G̃, d̃, n
Output: r, s

1. Generate a random number k, such that k ∈ [1, n − 1].
2. Compute the elliptic curve point k× G̃ = (x̃k, ỹk) = (xk ·Rp mod p, yk ·Rp mod p).
3. Compute r = x̃k ∗p 1.
4. Compute r = r mod n.
5. Compute s = �k−1 ∗n (SHA-1(M) + d̃ ∗n r) mod n.
6. Return(r, s).

This algorithm computes a correct ECDSA signature of a message M using
only Montgomery multiplications. The correctness of the computation is due to:

s = ̂k−1 ∗n (SHA-1(M)+ d̃ ∗n r) mod n

= k−1 · Rn ∗n (SHA-1(M)+ d̃ ∗n r) mod n

= k−1 · Rn.R−1
n (SHA-1(M)+ d̃ ∗n r) mod n

= k−1(SHA-1(M)+ d · Rn ∗n r) mod n

= k−1(SHA-1(M)+ d · Rn · r · R−1
n) mod n

= k−1(SHA-1(M)+ d · r) mod n .

7 Conclusion

We have proposed new ways of using Montgomery multiplication to improve the
performance of cryptographic algorithms when they have to be implemented on
smart cards.

262 A. Boscher and R. Naciri

Our approach comprises two interlocking parts. The first part uses a Mont-
gomery representation to store the private parameters in the smart card. This
representation can be computed externally, during the personalization phase of
the card, where resource limitations are not a problem. The second part modifies
the cryptographic algorithms in order to use a Montgomery representation of the
private parameters. This method improves the execution time of the underlying
algorithm. For example, a GQ2 authentication is twice as fast compared to the
traditional approach. The method is different from those proposed in [9] because
the result returned by the card is correct without modifying the protocols. The
verifier doesn’t need to know how the computation was made.

We have seen that this method can be applied to RSA, GQ2 and ECDSA
signature, but it can also be applied for others public-key crypto-systems like
ECDSA verification or Feige-Fiat-Shamir [10] for example.

Acknowledgements. We would like to thank Emmanuel Prouff for many fruit-
ful comments.

References

1. P.L. Montgomery. Modular multiplication without trial division. Mathematics of
computation 44, 1985.

2. D.E. Knuth. The Art of Computer Programming, vol.2 : Seminumerical Algo-
rithms. 3rd ed., Addison-Wesley, Reading MA, 1999.

3. A.J. Menezes and P.C. van Oorschot and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

4. R. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Comm. of the ACM 21: 120-126, 1978.

5. C. Couvreur, J-J. Quisquater. Fast decipherement algorithm for RSA public-key
cryptosystem. Electronic Letters 18(21): 905-907, 1982.

6. L.C. Guillou, M. Ugon, J-J. Quisquater. Cryptographic authentication protocols for
smart card. Computer Networks: 437-451, 2001.

7. ANSI X9.62. Public key cryptography for the financial services industry: The El-
liptic Curve Digital Signature Algorithm (ECDSA). 1999.

8. B. Kaliski. The Montgomery Inverse and its application. IEEE Transactions on
Computers, 44: 1064, 1995.

9. D. Naccache, D. M’Raihi. Montgomery-Suitable Cryptosystems. Algebraic Coding
781: 75-81, 1994.

10. U. Feige, A. Fiat, A. Shamir. Zero-knowledge proofs of identity. Journal of Cryp-
tology, 1: 77-94, 1988.

11. H. Handschuh, P. Paillier. Smart Card Crypto-Coprocessors for Public-Key Cryp-
tography. CryptoBytes 4(1): 6-11, 1998.

Off-Line Group Signatures with Smart Cards

Jean-Bernard Fischer and Emmanuel Prouff

Oberthur Card Systems,
71-73 rue des Hautes Pâtures 92 726 Nanterre Cedex France

{jb.fischer, e.prouff}@oberthurcs.com

Abstract. Group signatures allow a group member to sign messages
anonymously on behalf of the group and, if needed, a group authority is
able to identify the signer. In most applications, groups are dynamic and
the number of arrivals and departures is non-negligible. Group signature
schemes must take into account this situation and deal with member
revocation. Even if group signature schemes have been intensively inves-
tigated during the last decade, few are applicable in low resource context.
Among them, the simplest and most efficient has been proposed by Ca-
nard and Girault at Cardis 2002 and involves the smart card as security
proxy. This solution has many advantages; however, there is a need to be
connected to a group authority in order to sign or to verify the signature.
Clearly, this is a drawback in embedded security for mobile applications.
Based on a re-assessment of the notion of group signature, we propose an
improvement of the Canard-Girault scheme allowing to perform signa-
ture and verification both off-line. In particular, we introduce the notion
of risk-management for group signature schemes, which leads us to a
novel approach of the member revocation problem.

Keywords: Group signature, smart card, dynamic group, revocation,
risk management.

1 Introduction

In 1991, Chaum and Heijst [17] introduced the concept of group signatures.
Unlike ordinary signatures, group signatures provide anonymity to the signer.
Moreover, in exceptional cases, any group signature can be opened by a desig-
nated revocation manager to reveal indisputably the identity of the signer. In
other words, group signatures also provide traceability.

Group signature is a very interesting cryptographic functionality, as it allows
individuals to perform signatures on behalf of a group (typically a company).
Thanks to anonymity, the individual is protected in the group. This is of par-
ticular interest when the need is to link the signature with a function in the
company and not with a person in particular. In many applications, there is
also a strong need that the signer can be held accountable for his actions inside
the group, meaning that his anonymity can be uncovered if for example some
fraudulent transactions are discovered. As mentioned in [8], a number of projects

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 263–277, 2006.
c© IFIP International Federation for Information Processing 2006

264 J.-B. Fischer and E. Prouff

have emerged nowadays that require the properties of group signatures (see for
instance [1, 2, 11]).

In [17], Chaum and Heijst focus on static groups in which the number of group
members and their identities are fixed and frozen in the setup phase. In real life
applications, groups must be considered being dynamic as people join and leave
the group (e.g. the company) all the time. So, since the original paper [17],
most schemes have been designed to take into account the dynamicity of the
group structure [3, 4, 13, 14, 15, 18, 26]. Adding a member to an existing group is
usually quite simple: it consists in allowing him to access the secrets shared by
all the group members. The situation is more complex when a member leaves
the group. Indeed, he does so with all the knowledge to continue performing
signatures. Thus, the so-called LEAVE protocol provided by the group signature
scheme must remove the ability to sign for the leaving member in such a way
that the signing ability of all the remaining members is unaffected.

Usually, group signature schemes are derived from personal signature
schemes. In these cases, the computational cost of both signature and verifica-
tion is very high. Moreover, providing good coalition-resistance and easy member
revocation is difficult and adds further complexity. The fact that members have
access to a lot of information about the system explains the complexity of the
schemes. Indeed, various tricks, such as proofs of knowledge, must be used to
verify that signatures have been honestly performed.

If one were to remove all knowledge of the secret group parameters from
the members, yet still provide them with a means to perform the signatures,
the schemes could be vastly simplified. So, it seems natural to have a trusted
third party do the actual computation as a proxy for both the members (en-
suring anonymous signature) and the group (ensuring traceability). In Cardis
2002, Canard and Girault [16] investigated this approach by having a tamper-
resistant device (typically a smart card) carry out the group signature on behalf
of each member. In this setting, the smart card is considered as a honest entity
that performs correct signatures even if its possessor is dishonest. This allows
new schemes mimicking closely the classic personal signatures with a very low
computational cost. Moreover, using smart cards, several standing problems like
coalition-resistance become trivial to solve and simple procedures can be used
for the LEAVE protocol.

To check that a signature has been produced by a non-revoked member of
a group, Canard and Girault propose two solutions. They both have the same
drawback: the group membership has to be checked on-line, either by the signer
or by the verifier. Clearly, being on-line to perform a signature goes against the
fundamental idea that the smart card is a tool to perform security operations in
a non-connected situation.

Based on the ideas developed in [16], we propose a new scheme with the
following improvement: the group parameters remain constant throughout the
lifetime of the group, the smart cards can sign off-line and the verification of a
signature can be done off-line. This solution is made possible through a trade-off:

Off-Line Group Signatures with Smart Cards 265

the smart card is allowed to become de-synchronized, and we resolve the member-
ship issue by introducing the concept of risk management on the verifier’s side.

This paper is organized as follows. In Sect. 2, we provide background on group
signature schemes and we point out the remaining problems. In Sect. 3, we focus
on group signature schemes using smart cards and we discuss the proposal of
Canard and Girault. Based on this analysis, we present in Sect. 4 a new group
signature scheme allowing both the signer and the verifier to perform all the
operations off-line.

2 Group Signature Schemes in the Literature

2.1 Introduction to the Notion of Group Signature

Desmedt was the first to notice in [19] that conventional and public key sys-
tems (in the sense of Diffie and Hellman [20]) are not adapted when individuals
must act on behalf of a group. In particular, he introduced the notion of group
oriented cryptography and investigated the different kinds of groups and their
cryptographic needs. A few years later, group signatures were introduced by
Chaum and Heijst [17] to allow individual members to sign messages on behalf
of a group. The identity of the signer is secret (anonymity) except that a group
authority can identify the signer if needed (traceability). Since [17], more secu-
rity requirements were added to group signatures. Nowadays, such schemes must
satisfy the following security properties:

Correctness : signatures formed by a group member must be accepted by the
verifier.

Unforgeability : only group members are able to sign messages on behalf of
the group.

Anonymity [17]: given a valid signature of one or several message(s), identify-
ing the actual signer is computationally hard for everyone but the revocation
manager.

Unlinkability: deciding whether two valid signatures were computed by the
same group member is computationally hard.

Exculpability [5]: neither a group member nor the group authority can sign
on behalf of other group members.

Traceability [17]: the group authority is always able to open a valid signature
and identify the signer.

Coalition-resistance [5]: a colluding subset of group members (even if com-
prised of the entire group) cannot generate a valid signature that the group
authority cannot link to at least one of the colluding group members.

2.2 Group Signature for Static Groups

In the original paper of Chaum and Heijst [17], the structure of the group is
assumed to be static. In their setting, the number of group members and their
identities are fixed and frozen in the setup phase. A trusted entity chooses not

266 J.-B. Fischer and E. Prouff

only all the group parameters (including the keys) and an opening key for the
group authority, but also chooses the signing key of each group member.

Such a scheme requires an uncomfortably and unrealistically high degree of
trust in the party performing setup. Indeed, the latter can frame any group mem-
ber, since he knows the signing keys of all members. A second major drawback
concerns the group signature key. In Chaum and Heijst’s schemes, its length
is at least linear in the size of the group, and therefore the running time of
the verification algorithm depends on the number of group members. Moreover,
the length of the signature itself and the running time of the signing algorithm
depend on the group size.

Improvements or generalizations of the schemes of Chaum and Heijst were
later presented by Chen and Pedersen [18], Camenisch [12], Petersen [25] and
more recently by Boneh and Shacham [8], but they did not overcome all the
disadvantages of Chaum and Heijst’s schemes for practical implementations.

2.3 Group Signature for Dynamic Groups

Clearly, static groups limit the applicability of group signatures, since they do
not allow the addition of members to the group over time. The limitations of
the schemes derived from [17] were in fact recognized early in the development
of the area, and the practical literature has from the start focused on the case
where the group is dynamic. In this setting, neither the number nor the identity
of group members are fixed or known in the setup phase, which now consists of
the group authority choosing only a group public key and an opening key (for
traceability). An entity can join the group and obtain a private signing key at any
time by engaging in an appropriate joining protocol with the group authority.
Reciprocally, a group member can leave the group at any moment. In this case,
he loses his ability to sign on behalf of the group. The following definitions are
borrowed from Ateniese et al. [3]: a group signature scheme in a dynamic context
is a digital signature scheme comprised of the following procedures.

SETUP: an algorithm for generating the initial group public key pkG and the
corresponding private key skG.

JOIN: a protocol between the group authority (GA) and an user that results in
the user becoming a new group member.

G-SIGN: an algorithm whereby a group signature is computed by a group mem-
ber given a group private key and a message.

G-VERIFY: an algorithm for establishing the validity of a group signature given
a group public key and a signed message.

OPEN: an algorithm that, given a signed message and a group private key, allows
the revocation manager to determine the identity of the signer.

LEAVE : a protocol between the group authority (GA) and the members of the
group that results in the user who leaves the group being no more able to
sign as a group member.

Until 1997, dynamic signature schemes were designed as processes involv-
ing static group signature schemes together with dynamic group management.

Off-Line Group Signatures with Smart Cards 267

Indeed, in these schemes, the group is re-created each time a member joins or
leaves the group. The signature algorithm itself works as if it were intended for
a static group. From this point of view, we can consider that the signature is
not dedicated to a dynamic context.

Camenisch and Stadler [15] were the first to propose a signature scheme
where the lengthes of the public keys and of the signatures are independent of
the number of group members, and can therefore be used for large and dynamic
groups. Furthermore, Camenisch and Stadler propose a JOIN procedure allowing
the group authority to add new members without modification of the group
public key. As a result, the identification of the group by its signature public key
is now possible. Nowadays, the security of schemes derived from Camenisch and
Stadler’s solution has become well-established [6, 7], allowing them to be used
in various applications such as electronic cash [26] or voting [24]. Moreover, the
practical deployment of these schemes is investigated in [22] and different ways
of co-operatively forming signatures are proposed. But despite all these efforts,
problems still remain, among which the difficulty to achieve coalition-resistance
and to deal with member revocation. For these reasons, the properties of these
schemes do not match the properties of group signatures given by Ateniese et al.

2.4 The Problem of Member Revocation in Dynamic Groups

Bresson and Stern in [10] and Bresson in [9] proposed some ways of modifying
the schemes of Camenisch and Stadler [15], Camenisch and Michels [14] and
Ateniese et al. [3] to obtain a signature scheme with a LEAVE protocol. Nowa-
days, the proposal of Camenisch and Lysyanskaya [13] is preferred to transform
the signature schemes [15] and [3] into group signatures schemes (with LEAVE
protocols). However, the resulting solutions are still very complex and costly in
memory space and computation time. Indeed, each member of the group has
access to a part of the group-signature parameters and thus is able to use them
for cheating. Numerous asymmetric algorithms (involving costly arithmetic com-
putations) are used to counteract such internal attacks.

The use of a tamper proof device such as the smart card makes it easy to
prevent a member from cheating, by letting his trusted device both store secretly
the signature keys and control their legitimate usage.

3 Group Signature Schemes for Smart Cards

3.1 Smart Card Approach: A Step by Step Construction

General Idea. The basic idea is to use the smart card as a deputy for signing,
since the card is reputed honest. This means that the card will not perform
operations out of the context it has been designed for: it will not allow the
modification of the secrets, their disclosure or the performance of a computation
with wrong data or execution errors. If a computation has been performed by
a smart card, then the result can be considered as exactly what is expected:

268 J.-B. Fischer and E. Prouff

the honest behaviour of the signer (which is now the smart card) is not to be
doubted, and no other proof of correctness is needed. As recalled in this section,
this approach enables a simple and generic solution with very straightforward
protocols.

Anonymity. From the algorithmic point of view, we would start from an or-
dinary signature scheme (RSA or DSA for instance), with private key skG and
with public key pkG. The parameter skG is stored in a non-volatile memory in-
side the smart cards of the group members. In that way, any smart card can sign
for the group, and a message is signed by two different smart cards in exactly
the same way. This is a perfect anonymous signature. In order to ensure that
the group authority cannot sign for a group member (and thus to satisfy the
unforgeability property), we can distribute skG to the smart cards in such a way
that the group authority is not able to use it for signing. A very simple way is to
have a smart card play the role of the group authority; thus, secrets are perfectly
safe and the group authority cannot sign for others since such a functionality is
simply not implemented in this card.

Traceability. Being totally anonymous, the scheme above does not satisfy yet
all the properties of a group signature which have been recalled in Sect. 2.1.
To allow traceability, the identity of the signer must be added to the message
which is signed. Furthermore, this has to be done such that the anonymity of
the signer is still enforced for everyone but the group authority: said identity
should be enciphered in such a way that only the group authority can deci-
pher it. Since smart cards are trusted to protect the secrets, the ciphering al-
gorithm can be symmetric. In such a case, all the smart cards of the group
members share a symmetric key KG with the group authority’s smart card,
which is the only one having the ability to decipher a ciphered identity. To sat-
isfy the unlinkability property, the encryption of the signer identity must be
probabilistic (in our particular case, we can for instance design such an algo-
rithm by modifying a deterministic encryption algorithm as described in [23],
page 306).

The Scheme. If Alice wants to sign as a member of the group, she has to hold a
smart card containing her unique identifier, the group signature key skG and the
parameter KG to encipher her identity, along with the group signature algorithm.
These are provided during the JOIN procedure by the group authority, either as a
specific dedicated smart card, or as an application running on a multi-applicative
smart card.

Let ENC(x, KG) denote the probabilistic encryption of a message x with a key
KG and let DEC denote the corresponding decryption algorithm. Let SIGN(x, skG)
denote the signature (RSA or DSA for instance) of a digest of x with an asym-
metric private key skG and let VERIFY be the corresponding algorithm for estab-
lishing the validity of the signature given a group public key pkG, a message m
and its signature s. We resume in the following the G-SIGN procedure performed
by Alice’s smart card:

Off-Line Group Signatures with Smart Cards 269

Procedure 3.1. G-SIGN procedure for smart cards

Inputs: a message m, the signer identity IdA, the pair of keys (skG, KG)
Output: a group signature of m

1. c ←− Enc(IdA, KG)
2. s ←− SIGN(m||c, skG)
3. Output (m, c, s)

The G-VERIFY algorithm associated with Procedure 3.1. is simple. The ver-
ifier obtains the message m, the cipher c and the signature s. Then, he simply
verifies with the group public key pkG that the signature corresponds to the
concatenation of m and c. If needed, the group authority can apply the OPEN
procedure which consists in decrypting c to recover the identity IdA of the signer.

Security Analysis. The algorithm depicted in Procedure 3.1. is very efficient,
since a group signature is performed by computing only one encryption and one
ordinary signature. Furthermore, if the involved algorithms ENC and SIGN are
assumed to be secure, then the properties of a group signature are all provided
thanks to the tamper-resistance of the smart card:

– Unforgeability: only group members have skG in their smart card and skG

is never made public to anyone (including the smart card holder), so that
no one outside of the group can sign with this key.

– Anonymity: the signature key is the same for all the group members and the
identity is ciphered.

– Unlinkability: the cryptosystem is semantically secure.
– Exculpability: the identity of the signer is unique and is added by the smart

card, which prevents any fraud.
– Traceability: the card always encrypts the identity of the member in a way

that can be recovered by the group authority.
– Coalition-resistance: smart cards being tamper-resistant, group members

cannot access to any information about the group keys skG and KG (in
that setting, coalition-resistance is equivalent to unforgeability).

The group authority can add new members very easily by loading onto their
smart cards a unique identifier Id together with the pair (skG, KG). However,
it is not simple to tackle the issue of member revocation: if a member leaves the
group with his smart card still empowered with the group signature’s service,
how can the group authority prevent him from signing for the group?

3.2 Group Signature Schemes of Canard and Girault

In [16], Canard and Girault propose a group signature scheme along the lines
of what has been described in Sect. 3.1. To provide a revocation process, they
suggest two different approaches, either based on an additional group-shared
signature key, or based on a black listing scheme. We analyze in the following the

270 J.-B. Fischer and E. Prouff

two approaches and we show that they are impractical in a typical smart-card
setting, where transactions are performed off-line and where the participants
have no access to central servers.

First Approach. It simply consists in generating a second signature on the
concatenation of the message and the group signature.

Procedure 3.2. G-SIGN procedure for smart cards

Inputs: a message m, the signer identity IdA, a triplet of keys (skG, KG, dskG)
Output: a group signature of m

1. (m, c, s′) ←− Procedure 3.1.(m, IdA, skG, KG)
2. s ←− SIGN(m||s′, dskG)
3. Output (m, c, s, s′)

The signature computed with dskG at the second step of Procedure 3.2.
is dynamic: whenever a member leaves the group, all the smart cards of the
remaining members are provided with a new key dskG. Since the revoked member
does not know this new key, he cannot continue to sign as a group member. Let
us denote by dpkG the public key corresponding with dskG. We recall in the
following the verification procedure associated with Procedure 3.2.:

Procedure 3.3. G-VERIFY procedure for smart cards

Inputs: an uplet (m, c, s, s′), a group identity IdG

Output: ACCEPT or REJECT

1. (dpkG, pkG) ←− Ask for the pair of public keys associated with IdG

2. Check1 ←− VERIFY(m||c, s′, pkG)
3. Check2 ←− VERIFY(m||s, dpkG)
4. if Check1 = ACCEPT and Check2 = ACCEPT

Output ACCEPT
5. else output REJECT

A group signature scheme involving Procedures 3.2. and 3.3. has several
drawbacks.

Firstly, each time a verifier checks a signature, he has to access a list in order
to retrieve the corresponding key. This imposes on the verifier to be on-line in
order to access such a list. Furthermore, each key in the list has to be associated
with a validity period, from the time of distribution to the time of revocation, so
that the verifier can decide which key corresponds to the time of the signature.
This also implies that the verifier must have a way to know when the signature
has been performed.

Secondly, the distribution of the dynamic group keys to the smart cards
is problematic. The whole process is cumbersome, since the authors sketch a
scheme based on several group authorities sharing a discrete logarithm as a

Off-Line Group Signatures with Smart Cards 271

private key. Synchronizing all the smart cards is also going to be difficult: being
in essence a portable device, a smart card is more likely to be in the pocket of
the member than connected to the group authority. Thus, a member may issue
invalid signatures in good faith, simply because the group authority has issued
a new key and his smart card is de-synchronized.

Finally, this approach works only if all the smart cards are on-line perma-
nently, or at least have a way to synchronize the group key with the group au-
thority before actually performing the signature. It becomes quickly inefficient
when the number of group members is large (distribution) and when revocations
occur often (synchronization), as for a thousand employees strong company.

Second Approach. It consists in using the so-called revocation lists. It is the
most convenient of the two solutions proposed by Canard and Girault, since it
has the advantage of involving only a static pair of group keys (skG, pkG). The
group authority maintains a list of revoked members and, before every signature,
the smart card simply looks up the list in order to confirm its own belonging to
the group. If the member identity is not on the list, it signs with the fixed group
key as described in Procedure 3.1.. Otherwise, the member is revoked: its smart
card cancels its group belonging and will not sign for this group anymore.

The obvious drawback of this approach is that the smart card has to be
on-line in order to sign, since verification of the revocation list is a prerequisite
for signature. This goes against the fundamental idea of the smart card being a
mobile device that permits operations off-line.

4 Our Proposal

With a personal signature, time is mostly irrelevant. Indeed, a signature, either
handwritten or electronic, is proof of a commitment by a physical person; it
does not change over time and it is similarly binding whether the signature has
been performed yesterday or several years ago (ignoring issues of key ageing or
obsolescence). As we argue in the following section, time plays a central role in
group signatures, where the membership question must be resolved.

4.1 Group Signature: A Question of Timing

A group is an abstract notion, an intellectual construction which partitions en-
tities into two sets, those belonging to the group and those who do not. When
it comes to partitioning people, a straightforward and usual way is to give a
differentiator to the group members, setting them apart from the others. In the
case of group signatures, the group authority gives to the members the means
to sign on behalf of the group. In that sense the group can be defined as those
who can sign. Thus, the fact that someone can produce a valid signature is of-
ten considered in itself as a proof of membership. But, however appealing, this
approach precludes from performing the signature off-line. Indeed, the group
authority has to be involved to resolve the question of membership.

272 J.-B. Fischer and E. Prouff

Let us now re-discuss the membership notion. Clearly, in a dynamic group,
membership in essence is a question of time: the period of time during which
someone is a member of a group is clearly defined. Consequently, there are two
critical moments in the relationship between a physical person and an abstract
group: joining the group and leaving the group. So, if the verifier wants to link
the signature to the group, two things have to be verified: firstly that the sig-
nature is valid, and secondly that the signer was member of the group at the
time of signature. When designing a group signature scheme, the main difficulty
is to resolve the membership question, and the following two threats must be
considered:

Threat 1: a member can sign a document ante-dated to a time before him
joining the group.

Threat 2: a member can sign a document post-dated to a time after he will
have left the group. In particular, the revocation issue, when a member leaves
the group with the means to sign, can be considered thus.

In any case, the validity of the group signature is in jeopardy if the verifier
cannot determine whether the signature has been issued by a member at a time
when he was part of the group. Clearly, any group signature should provide
an easy way to check that the signer belonged to the group at the instant of
signature.

The classical approach to solve the revocation issue is to rebuild the group
after each departure, distributing new means to sign to the remaining members.
This restores the basic partition between those in the know and the others (in-
cluding now the leaving member). It amounts to rebuilding a static group each
time (as it is done by Canard and Girault in their first approach described in
3.2). This mandates an evidence included in the signature that is clearly visible
to the verifier and is not forgeable by a former member of the group. It is usu-
ally done by changing the public key of the group each time a member leaves
the group. Meaning that, in order for the verifier to know which key has been
used at the time of signature, he has to get it from the group authority in an
authenticated manner; and the deciding parameter is the time of the signature,
which solves postdating. Ante-dating is usually not considered, as it would imply
changing the group key also at each joining.

Our idea consists in incorporating in the signature all the relevant elements
of date, in such a way that the verifier can easily make an informed decision on
the fact that the member belongs to the group at the moment of signing. In that
way, we are able to prevent Threats 1 and 2. Implementing this idea in smart
cards, we show in the following that we are also able to perform operation with
the signer and the verifier being off-line.

4.2 Off-Line Group Signatures and Risk Management

Let us assume that, from time to time, Alice’s smart card verifies on-line with the
group authority that it belongs to the group. Let us denote by MdA the Mem-
bership date, which corresponds to the date of the last successful membership

Off-Line Group Signatures with Smart Cards 273

test with the group authority. We present our new group signature algorithm in
the following:

Procedure 4.1. New G-SIGN procedure for smart card

Inputs: a message m, the signer’s identity IdA, the pair of keys (skG, KG), the signing
date d and the membership date MdA

Output: a group signature of m

1. c −→ ENC(IdA, KG)
2. s −→ SIGN(m||d||MdA||c, skG)
3. Output (m||d||MdA||c, IdG, s)

When the verifier gets a message signed by Alice, he first checks the correct-
ness of the classical signature. Then, he follows what we called a risk management
procedure. It consists in comparing the two dates d and MdA, so that the verifier
can decide whether the time interval between the last connection of the card to
the group authority and the date of the actual signature is acceptable in view of
its security policy. If the verifier deems the dates d and MdA to be too far apart
for him to confidently accept the signature, then the off-line part of the veri-
fication procedure rejects the signature. When this occurs, the verifier has two
options: to stop the procedure and reject the signature, or to start the on-line
part of the verification procedure by connecting to the group authority.

We resume all these operations in the following G-VERIFY procedure, associ-
ated with Procedure 4.1.:

Procedure 4.2. New G-VERIFY procedure for smart card

Inputs: an uplet (m||d||MdA||c, s) and a group identifier IdG

Output: ACCEPT or REJECT

1. if VERIFY(m||d||MdA||c, s, pkG) = REJECT

Output REJECT
2. if RISK-MANAGEMENT(m, d, MdA, IdG) = REJECT

if ONLINE-CONFIRM (m||d||MdA||c, s, IdG) = REJECT

Output REJECT
3. Output ACCEPT

We give in the following an instance of RISK-MANAGEMENT procedure:

Procedure 4.3. RISK-MANAGEMENT procedure

Inputs: an uplet (m, d, MdA) and a group identifier IdG

Output: ACCEPT or REJECT

1. Compute time difference between d and MdA

2. Make decision according to security policy for the group IdG and/or ask human verifier
3. Output ACCEPT or REJECT

274 J.-B. Fischer and E. Prouff

In order to check on-line the belonging of the signer to the group, the verifier
has to send the signature information to the group authority. As an example,
we used the following protocol in our implementation:

Procedure 4.4. ONLINE-CONFIRM procedure

Inputs: a pair (m||d||MdA||c, s) and a group identifier IdG

Output: ACCEPT or REJECT

1. Connect in authenticated manner to group authority (GA) of group IdG

2. Send (m||d||MdA||c, s) to GA
3. GA verifies signature and computes IdA = DEC(c, KG)
4. if IdA belonged to the group IdG at the date d

Output ACCEPT
5. else output REJECT

Let us recapitulate the different procedures for our signature protocol.

Setup: the group authority is in possession of a GA smart card. He chooses the
group parameter IdG and provides it to the GA smart card. The smart card
generates the signature key set (skG, pkG) and the symmetric key KG and
outputs pkG. The group authority publishes pkG for all the verifiers to know.

Join: the new member A is issued a smart card personalised with a unique
identity IdA. The smart card contacts the group authority and is issued the
keys skG and KG in a secure and confidential manner from smart card to
smart card. Then, the member card makes a first connection to the group
authority to update (actually initialise) the membership date.

G-Sign: see Procedure 4.1.
G-Verify: see Procedure 4.2.
Open: the group authority deciphers c and returns the signer identity.
Leave: if the card connects to the group authority after the user has left the

group, it will be issued a command to stop signing on behalf of that group.
From there on, the former member will not be able to sign anymore with his
card. Otherwise, if the card does never connect again to the group authority,
then the value MdG shall never be updated and the signature will quickly
loose any credibility.

Remark 1. Whatever the signature scheme, a former member can always sign
a document ante-dated to a time when he was part of the group, there is no
way to prevent this. However, in our protocol, the window of time in which he
can ante-date a signature is restricted to the time between his last membership
update and the time of his revocation.

4.3 Discussion About the New Proposal

The protocol described in the previous section allows both the signer and the
verifier to interact off-line. This is a crucial advantage for the smart card, as

Off-Line Group Signatures with Smart Cards 275

it is in essence mobile. Without this feature, the communication between the
verifier and the group authority is a major obstacle which completely prevents
the completion of the signature process.

This paper does not aim to discuss the details of the risk management pro-
cedure. It is up to the verifier to define it in compliance with its security policy.
It can for example take into account the security importance of the document,
the level of confidence in the signer, the endorsement leeway of the verifier,
etc.

In the on-line mode, our protocol is similar to the second approach of Canard
and Girault (depicted in Sect. 3.2). The two solutions essentially differ with
respect to the entity (signer or verifier) which checks the membership on-line
with the group authority. As for hand-written signatures, our protocol has been
defined such that the group-membership test is the verifier’s responsibility. By
involving a risk management process, we give him the means to decide wether
or not such an on-line test is necessary.

5 Conclusion

In this paper, we recalled why the use of a smart card is natural when we
want to design an efficient signature scheme for dynamic groups. After having
pointed out the difficulty of dealing with member revocation, we designed a new
group signature improving the proposals of Canard and Girault. Our scheme
allows to perform signature and verification both off-line, which was not possible
with the previous solutions. We succeeded in resolving the membership issue by
introducing the concept of risk management on the verifier’s side. In this manner,
the group signature we propose is very close to a hand-written signature: it is
always possible to sign on behalf of the group if one has the means for doing it,
and the verifier checks both the signature and some additional information on
the signer in order to quantify the risk of a falsified signature.

References

1. IEEE P1556 working group, VSC project. Dedicated short range communications
(DSRC), 2003.

2. Trusted computing group. Trusted Computing Platform Alliance (TCPA) Main
Specification, 2003.

3. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In M. Bellare, editor, Advances
in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 255–270. Springer-Verlag, 2000.

4. G. Ateniese, D. X. Song, and G. Tsudik. Quasi-efficient revocation in group signa-
tures. In M. Blaze, editor, Financial Cryptography 2002, volume 2357 of Lecture
Notes in Computer Science, pages 183–197. Springer, 2002.

5. G. Ateniese and G. Tsudik. Some open issues and new directions in group signa-
tures. In Kalisky Jr. [21], pages 196–211.

276 J.-B. Fischer and E. Prouff

6. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
formal definition, simplified requirements and a construction based on trapdoor
permutations. In E. Biham, editor, Advances in cryptology - EUROCRYPT 2003,
proceedings of the internarional conference on the theory and application of cryp-
tographic techniques, volume 2656 of Lecture Notes in Computer Science, pages
614–629, Warsaw, Poland, May 2003. Springer-Verlag.

7. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The
case of dynamic groups. Cryptology ePrint Archive, Report 2004/077, 2004.
http://eprint.iacr.org/.

8. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. Man-
uscrit, 2004.

9. E. Bresson. Protocoles cryptographiques pour l’authentification et l’anonymat dans
les groupes. PhD thesis, École polytechnique, Oct. 2002.

10. E. Bresson and J. Stern. Efficient revocation in group signatures. In K. Kim,
editor, Public Key Cryptography – PKC 2001, volume 1992 of Lecture Notes in
Computer Science, pages 190–206. Springer-Verlag, 2001.

11. E. Brickell. An efficient protocol for anonymousy providing assurance of the con-
tainer of a private key. Submitted to the Trusted Computing Group, april 2003.

12. J. Camenisch. Efficient and generalized group signatures. In W. Fumy, editor,
Advances in Cryptology – EUROCRYPT ’97, volume 1233 of Lecture Notes in
Computer Science, pages 465–479. Springer-Verlag, 1997.

13. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In M. Yung, editor, CRYPTO, volume
2442 of Lecture Notes in Computer Science, pages 61–76. Springer-Verlag, 2002.

14. J. Camenisch and M. Michels. A group signature scheme with improved efficiency.
In K. Ohta and D. Pei, editors, ASIACRYPT, volume 1514 of Lecture Notes in
Computer Science, pages 160–174. Springer, 1998.

15. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Kalisky Jr. [21], pages 410–424.

16. S. Canard and M. Girault. Implementing group signature schemes with smart
cards. In CARDIS 2002, pages 1–10. USENIX, 2002.

17. D. Chaum and E. van Heyst. Group signatures. In J. Feigenbaum, editor, Advances
in Cryptology – EUROCRYPT ’91, volume 547 of Lecture Notes in Computer
Science, pages 257–265. Springer-Verlag, 1991.

18. L. Chen and T. Pedersen. New group signatures schemes. In A. D. Santis, edi-
tor, Advances in Cryptology – EUROCRYPT ’94, volume 950 of Lecture Notes in
Computer Science, pages 171–181. Springer-Verlag, 1994.

19. Y. Desmedt. Society and group oriented cryptography: A new concept. In
C. Pomerance, editor, CRYPTO’87, volume 293 of Lecture Notes in Computer
Science, pages 120–127. Springer, 1987.

20. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transaction
on Information Theory, 22(6):644–654, november 1976.

21. B. Kalisky Jr., editor. Advances in Cryptology – CRYPTO ’97, volume 1294 of
Lecture Notes in Computer Science. Springer-Verlag, 1997.

22. G. Maitland and C. Boyd. Co-operatively formed group signatures. In B. Preneel,
editor, CT-RSA, volume 2271 of Lecture Notes in Computer Science, pages 218–
235. Springer-Verlag, 2002.

23. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press, 1997. Electronic version available at
http://www.cacr.math.uwaterloo.ca/hac/.

Off-Line Group Signatures with Smart Cards 277

24. K. Q. Nguyen and J. Traoré. An online public auction protocol protecting bidder
privacy. In E. Dawson, A. Clark, and C. Boyd, editors, ACISP, volume 1841 of
Lecture Notes in Computer Science, pages 427–442. Springer, 2000.

25. H. Petersen. How to convert any digital signature scheme into a group signature.
In Security Protocols Workshop, 1997.

26. J. Traoré. Group signatures and their relevance to privacy-protecting off-line elec-
tronic cash systems. In J. Pieprzyk, R. Safavi-Naini, and J. Seberry, editors,
ACISP’99, volume 1587 of Lecture Notes in Computer Science, pages 228–243.
Springer, 1999.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 278 – 288, 2006.
© IFIP International Federation for Information Processing 2006

Analysis of Power Constraints for Cryptographic
Algorithms in Mid-Cost RFID Tags

Tobias Lohmann, Matthias Schneider, and Christoph Ruland

Institute for Data Communication Systems,
University of Siegen, Hoelderlinstraße 3; D- 57076 Siegen, Germany

{tobias.lohmann, matthias.schneider,
christoph.ruland}@uni-siegen.de

Abstract. Radio Frequency Identification (RFID) systems can be found in wide
spread applications – from simple theft prevention over multi bit transponders
up to complex applications involving contactless smartcards. This paper shows
that the security gap between low-cost RFID Tags that only provide simple se-
curity features and contactless smartcards can be filled. It is examined how
much energy a passive tag can gain from a magnetic field and which amount is
needed by basic logic functions. The gate-equivalents of several cryptographic
operations are then compared with the available energy and a conclusion is
drawn if they are feasible for RFID tags.

1 Introduction

Modern automatic identification (Auto-ID) systems have a long technological history
and multiple roots. The most widely recognized Auto-ID system is the bar code sys-
tem developed during the early 1970’s [1] but the technology which is more related to
the actual one is even older. During the 2nd World War, allied planes were equipped
with devices that allowed a friend or foe recognition [2]. A civil variant is able to de-
tect friends and foes inside a shop: the well known electronic article surveillance
(EAS) system. More sophisticated systems also found their way in public life and
people are using ID technology for entering their ski-lift or to disable the immobilizer
of their car. In the last couple of years there has been done lot of work to map all
those ″root-technologies″ to one inheritor: Radio Frequency Identification (RFID).
Some of them just had to be renamed to the term RFID, others had to be reinvented
like the EPC tag (Electronic Product Code) to replace EAN bar codes (Electronic Ar-
ticle Number) [3]. The major task in this sector is to downsize the costs of a tag, so
that it is lower than the monetary benefit that the RFID-System is able to gain. This
still seems to be hard because the ink which is needed for bar codes is nearly free.

Another fact is that there are rising concerns about the technology that provides in-
formation and can be read wirelessly and without notice of its owner. People are
afraid (or aware) of the probability that they can loose their privacy [4]. A lot of sug-
gestions have been made to maintain privacy by adding extra functionality to the
RFID tags but they all add more circuitry and higher costs. One basic method is to in-
troduce a kill-command that disables a tag [5] – but the question is: who will be au-
thorized to issue such a command? It is clear that this function has to be protected by
a key or password. It must be secured. Applying even simple means against unauthor-
ised tag access introduce the problem of key management. It is necessary to find a

 Analysis of Power Constraints for Cryptographic Algorithms in Mid-Cost RFID Tags 279

trade-off between the relative gain in security and the costs that come with them.
When we talk about costs in this paper we do not only mean increasing chip sizes and
increasing monetary costs, in the scope of this paper we especially address the in-
creasing power consumption. 90% to 95% of the RFID devices are passive [7] which
implies that they have to be powered by inductive coupling. Chapter 2 will show that
increasing power consumption leads to a lowered maximum read range.

Developers of smartcards already had to face and solve most of the questions and
problems that occur when adding security functions in embedded systems in the last
decade. Smartcards have become very powerful and are able to process various cryp-
tographic protocols such as 3DES and strong asymmetric computations with RSA and
on Elliptic Curves (ECC) [6]. They are designed to fulfil high demanding security re-
quirements and are evaluated up to Common Criteria EAL5. Most RFID tags also
need electronic circuitry inside. Therefore a tag can be seen as an embedded system
with wireless interface. It was just a logic step to add the wireless RF interface to ex-
isting smartcard controllers. The result is a very secure RFID tag with state of the art
cryptography. The resulting device is also only able to operate close to a reader and
the monetary cost for a smartcard is 20 times higher than for a simple tag.

This research was driven by the fact that the authors could not find products that
offer good asymmetric cryptography and the full functionality according to ISO15693
″Identification cards – Contactless integrated circuit(s) cards - Vicinity cards″ that op-
erate at distances up to a meter.

2 Estimation of the Available Energy

Passive RFID tags gain their energy form the alternating magnetic field that is radi-
ated by the antenna of the reader. Formula (1) shows the equation of the magnetic
field, given in spherical coordinates [9][10].

() () () () θ
ββ

βββ
θβ

πββ
θβ

π
ee

rjrjrj

Idl
ee

rjrj

Idl
H rj

r
rj −−

⎥
⎦

⎤
⎢
⎣

⎡
++−⎥

⎦

⎤
⎢
⎣

⎡
+−= 32

2
32

2 111
sin

4

11
cos2

4
 (1)

with λ
πβ 2=

.
Inductive coupling is only possible in the so called ″near field″, which dimension is

mainly conditioned by the used frequency. The maximum distance is determined by
the simplified equation (2).

π
λ

2
=d (2)

If βr is set << 1 (or r << λ/2π) the exponential term of equation (1) will be close to 1
and the magnetic field decreases with 1/r3. The complete derivation of those coher-
ences cannot be covered by this paper and can be found in [2].

RFID Systems according to ISO14443 or ISO15693 operate at a frequency of
13.56MHz [8]. The upper bound of the operational radius is therefore 3.5 m.

This chapter provides an estimation of the available energy that can be induced in
the coil of the tags antenna. Therefore, a closer look at the supplying magnetic field of
the reader has to be taken. The highest strength of the magnetic field can always be

280 T. Lohmann, M. Schneider, and C. Ruland

found in orthogonal direction to the plane of the coil. We can therefore simplify equa-
tion (1) and obtain equation (3) which has been used during our simulations.

z

R

R e
zr

IrN
zH 2/322

2
1

)(2
)(

+
= (3)

The curve is dependent on the current I, the number of windings N1 and the square of the
antenna radius rR. Figure 1 shows the MATLAB [16] simulations of the emitted fields
that are radiated by antennas with same currents and windings but different diameters.

Fig. 1. The distribution of the magnetic flux by distance

Figure 1 shows that a smaller diameter of the antenna coil results in a higher initial
strength of the magnetic field but an earlier and sharper decline as they occur with
bigger loops.

It is not allowed to increase the strength of the magnetic field arbitrarily to achieve
the needed distance because the usage of the electromagnetic spectrum is regulated by
local authorities. They defined absolute maximum ratings of the power that an an-
tenna may emit. In the European ISO14443 standard the maximum strength of the
magnetic field is defined to be 7.5 H/m [8].

RFID Systems can basically be seen as a transformer with a big gap between primary-
and secondary side. This implies that the well known electronic equations can be used.

The voltage Vtag that is available for the logic of the tag is [7]

2
22

22
22

1,2

)/1()/(
22

CLRRCRRL

V
V

LLLL

tag
ωωω −+++

= . (4)

 Analysis of Power Constraints for Cryptographic Algorithms in Mid-Cost RFID Tags 281

The load RL has a major effect on the available voltage as it can be seen in equation
(4). This formula is converted to formula (5) to show the possible value of the load re-
sistor for a given and needed voltage.

() ()

()() () ()

() ()
2

1;22

22
2

22
22

2

2

1;22

22
2

22
22

2
2

2
22

2

22
2

22
22

2

2

1;2

21

21

21

2

222

2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−++−

±

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

tag
L

tag
LLL

L
tag

L

L

V

V
CLCLCR

V

V
CLCLCRLRR

CLCLCR
V

V

R
R

ωωω

ωωωω

ωωω

(5)

In the last step, we obtain the available power by applying formula (6).

LR

U
P

2

= . (6)

Fig. 2. Available tag power in dependence of the range

282 T. Lohmann, M. Schneider, and C. Ruland

A more handy representation is obtained in Figure 2 where the absolute power in de-
pendence of the distance is shown. It gives the maximum range of a tag whose power
consumption is known. Or in the other direction: the curve defines the upper bound of
the power which could be consumed if the tag has to operate at a given distance.

The proof of these results is obtained by comparing the calculated curve with data
sheets of several tags. For example, if the average power consumption is given by 2
mW, they should not have a read range greater than 70 cm.

3 Estimation of a Tags Power Consumption

The circuitry of most RFID tags is based on CMOS (complementary metal oxide
semiconductor) technology. CMOS technology has the great advantage that it is pos-
sible to design electronic circuits with only relevant power consumption when the
transistors change their operational state.

This chapter investigates the average power consumption needed by basic logic
functions. The integrated circuits are simulated with WinSpice [17] which allows a
good reproduction of the real hardware behavior. The transistors were designed to
provide the needed functionality with the smallest possible geometry. A lot of process
dependent parameters were obtained by the databases of the MOSIS service [11]. This
allowed comparing the influence of different manufacturing sizes and technologies.

This paper presents an analysis of three basic building blocks often needed by
cryptographic operations. These are shift-registers, XOR operations and NAND gates.

Shift-Register Cell

A shift-register like shown in Figure 3 is built by serialization of two inverters that are

clocked by orthogonal signals clk and clk .

Fig. 3. CMOS shift-register [14]

 Analysis of Power Constraints for Cryptographic Algorithms in Mid-Cost RFID Tags 283

The power of the register cell is supplied by VCC and only has to deliver current
when the level of the input signal is changing. This correlation is shown in the follow-
ing plot where the output curve v(5) is delayed by the clock rate.

Fig. 4. Input and output voltages of a shift register

Fig. 5. Current consumption of a register cell when changing its state

Static and other currents can be omitted because their amplitudes are negligible.
They can be seen in the upper simulation plot as small dips in the current curve
vop#branch. Results of the simulation runs are given in table 1. The resulting energy
is obtained by multiplying the average of the current with the voltage VCC and the
time interval where the current occurred. It is estimated that the transitions between
logic ″1″ and logic ″0″ are equally distributed and the mean energy will be used for
further calculations.

284 T. Lohmann, M. Schneider, and C. Ruland

Table 1. Energy overview of a shift-register

Process VCC
[V]

Interval
t(0-1)
[ns]

Current
Imittel (0-1)
[µA]

Energy
W0-1
[fWs]

Interval
t(1-0)
[ns]

Current
Imean(1-0)
[µA]

Energy
W1-0

[fWs]

Energy
Wmean [fWs]

4.5 7.2716 1.1 11.8731 0.35 µm
TSMC

3.3
1.1 8.86937

140.18
5 8.11171

176.94 158.56

4.5 8.84425 1.1 12.8971 0.25µm
TSMC

2.5
1.1 10.6490

128.78
5.6 7.60818

142.23 135.51

5 3.70572 1.4 7.66053 0.18µm
TSMC

1.8
0.8 6.15294

42.21
6 4.04206

62.96 52.59

XOR

XOR Gates can be implemented in various ways. We examined realisations based on
transmission gates, CVSL (Cascode Voltage Switch Logic) and in AOI (And Or In-
verter) realisation. Since the CVSL solution had a high dynamic loss and the current
peaks of the transmission gate implementation were too short for WinSpice, only the
results of our AOI-based XOR simulations are presented.

Fig. 6. XOR-Gate in AOI realization [14]

Although the other realisations might be more effective, it is estimated that the
lower performance should not affect the decision if one cryptographic scheme is prac-
ticable or not, because the presented results of chapter 2 are absolute maximum rat-
ings and there should always be a margin to ensure reliable functionality. An XOR
gate with two inputs has four different states, each with three possible transitions. The

 Analysis of Power Constraints for Cryptographic Algorithms in Mid-Cost RFID Tags 285

results of those single simulations are shown in the following tables. For presentation
purposes we change the notation and write A1 if input ″in1″ is logic high or B0 for
″in2″ at low level. A0 and B1 are built respectively.

Table 2. CMOS AOI XOR energy consumption

Technology
A0,B0 →
A0,B1
[fWs]

A0,B1 →
A0,B0
[fWs]

A0,B0 →
A1,B0
[fWs]

A1,B0 →
A0,B0
[fWs]

A0,B0 →
A1,B1
[fWs]

A1,B1 →
A0,B0
[fWs]

0.35 µm 158.7 160.92 73.46 70.76 52.26 32.50

0.25 µm 128.82 129.06 60.56 54.28 39.48 22.12

0.18 µm 38,34 61.02 18.5 13.8 10.1 4.78

Technology
A0,B1 →
A1,B0
[fWs]

A1,B0 →
A0,B1
[fWs]

A0,B1 →
A1,B1
[fWs]

A1,B1 →
A0,B1
[fWs]

A1,B0 →
A1,B1
[fWs]

A1,B1 →
A1,B0
[fWs]

Mittel
[fWs]

0.35 µm 37.74 31.44 73.66 70.76 157.94 160.18 90.03

0.25 µm 26.92 21.02 61.10 54.86 128.72 129.06 71.34

0.18 µm 7.02 9.08 18.32 13.54 37.84 35.94 22.52

Fig. 7. CMOS NAND [14]

286 T. Lohmann, M. Schneider, and C. Ruland

NAND

In order to find an approximation for the power consumption of a certain algorithm,
the NAND gate has a special relevance. In the development of highly integrated cir-
cuits, there are often used ″ready made″ VHDL cores. The complexity of these logic
components are mainly given by a certain number of gates. A gate in this context is
equivalent to one NAND.

An ideal NAND-gate only needs power if its output changes the logic level. Al-
though we do not deal with ideal transistors, other static losses can be neglected.

Table 3. CMOS NAND energy consumption

Technology
A0,B0 →
A1,B1
[fWs]

A1,B0 →
A1,B1
[fWs]

A0,B1 →
A1,B1
[fWs]

A1,B1 →
A0,B0
[fWs]

A1,B1 →
A1,B0
[fWs]

A1,B1 →
A0,B1
[fWs]

Mittel
[fWs]

0.35 µm 15.28 20.78 22.11 65.98 78.03 53.21 42.57

0.25 µm 5.71 8.96 9.87 49.85 57.95 40.9 28.87

0.18 µm 0.02 1.48 1.64 15.54 16.89 12.85 8.07

4 Cryptographic Implementations

Since we have not implemented cryptographic algorithms so far, we present some
commercial implementations of arithmetic operations and cryptographic schemes.
This allows us to obtain the margins of the needed resources. Those implementations
are available in IP (Intellectual Property) –cores which are ready made models,

Table 4. Cost of basic arithmetic and cryptographic operations

Arithmetic Operation Number of gates
32 bit Add/Subtract Unit 4488
32 bit Multiply Unit 12155
32 bit Divide Unit 30294
32 bit Compare Unit 514
64 bit Add/Subtract Unit 9069
64 bit Multiply Unit 38568
64 bit Compare Unit 1028

Cryptographic scheme Number of gates
DES 3000
3DES 5500
AES encryption 38000
AES decryption 50000
RSA 1024 bit 34000
ECC 163 bit 3260

 Analysis of Power Constraints for Cryptographic Algorithms in Mid-Cost RFID Tags 287

written in VHDL (Very High Speed Integrated Circuit Hardware Description Lan-
guage). The modules can be integrated in most development environments for design-
ing ASICs (Application Specific Integrated Circuit), FPGAs (Field Programmable
Gate Arrays) or other hardware [12][13].

5 Analysis of RFID Cryptography

In order to determine if and which type of cryptographic algorithm can be imple-
mented in RFID tags, this paper takes an approach which implies that the only limit-
ing factor is the straitened power transfer between an RFID reader and the tag. Since
the specific implementations were not analysed in detail, the resulting assumptions
had to be done from a more “global” point of view. As an indication for the complex-
ity of the desired algorithm, the parameters given in chapter 4 were used. The com-
plexities are given as a certain number of gates because they are basic building blocks
in an FPGA design.

The knowledge about available power at a certain distance was obtained in chapter
two. Together with the amount of energy needed for switching one NAND gate and the
desired clock rate, it is possible to estimate if selected cryptography is possible or not.

For example, if the target application has to operate at a distance of 1 meter, the
available power P(d) is 1.2651 mW. If the logic is clocked with 6.78 MHz (half rate
of the reader’s frequency)

clock
clock f

dP
E

)(= (7)

the available energy per clock cycle is 186.59 pWs like derived from formula 7. This
energy is divided by the consumption of a singe 0.35µm NAND gate.

NAND

clock
gates E

E
N = (8)

It is therefore enough energy for operating 4383 gates in 0.35µm CMOS technology
and should be sufficient for implementing elliptic curve cryptography.

In this calculation, we assume that the whole circuitry is operating the whole time.
This might be imprecise but will at least compensate some of the best case assump-
tions made in chapter 2.

6 Conclusion

The amount of power which is available for a tag at a certain distance was given in
chapter two. Together with the results of chapter three it was therefore possible to es-
timate the maximum number of NAND gates that can be driven at a certain clock rate.
This value was compared with the complexity of a cryptographic algorithm.

The authors are aware of the fact that tags cannot be designed under the assumption
that the position of tag and reader are in such optimum positions like it is done in chapter
2 but it was shown that strong asymmetric should even be possible with a relative coarse
semiconductor process of 0.35µm. Furthermore, an RFID specific implementation will

288 T. Lohmann, M. Schneider, and C. Ruland

probably not only use NAND based circuits when it is possible to perform the specific
operation with a custom made design. We therefore also simulated basic building blocks
like a shift-register and XOR gates like they are uses in praxis. The actual algorithms
should be deeply analysed in further studies in order to obtain better knowledge about
their actual hardware utilisation. Unfortunately, we had no further information on the al-
gorithms i.e. how many clock cycles they need for execution or if they already contain
the amount of RAM they need. Another fact is that the available power cannot be exclu-
sively used by the cryptographic engine. RFID Tags have to contain other circuitries
which handle radio access (anti-collision) and other functions. There are two other im-
portant facts that should also be mentioned. It is theoretically possible to obtain as much
energy as needed, as long as the tag stays in the supplying magnetic field of the reader.
The problem is that it is not possible or payable to store noteworthy amounts of energy in
the tag. The second factor is the speed in which the algorithm has to run. If it is possible
for the application and the user to wait longer for the tag’s response, the clock rate can be
reduced and the number of possible gates increases by the same factor.

Anyway, the semiconductor technology is still under rapid development. The au-
thors predict that the capabilities of RFID tags will increase in the same way. If the
market for RFID providing public key cryptography is big enough it should be possi-
ble to fill the mentioned security gap between AutoID tags and Smartcards.

References

[1] S. E. Sarma, S. A. Weis, D. W. Engels. RFID Systems and Security and Privacy Implica-
tions. Cryptographic Hardware and Embedded Systems - CHES, August 2002.

[2] K. Fong. RFID Security, http://www.cs.siu.edu/~kfong/research/RFID.ppt
[3] MIT Auto-ID Center. http://www.autoidcenter.org
[4] CASPIAN. http://www.nocards.org
[5] Auto-id Center. Draft protocol specification for a 900 MHz class 0 Radio Frequency

Identification Tag, 23 Feb 2003.
[6] Infineon technologies. SLE 66CLX641P Short Product Information, April 2004.
[7] K. Finkenzeller. RFID-Handbuch, Hanser Verlag 2002.
[8] ISO/IEC 14443. Identification cards – Contactless integrated circuit(s) cards – Prox-

imity cards – Part 2: Radio frequency power and signal interface, July 2001.
[9] G. Lehner, G. Elektomagnetische Feldtheorie für Ingenieure und Physiker, Springer

Verlag, 1990
[10] W.R. Smythe. Static and Dynamic Electricity, McGraw-Hill Book Company, 1968
[11] MOSIS, www.mosis.org
[12] ASICSws, www.asics.ws
[13] J. Krasner. Using Elliptic Curve Cryptography (ECC) for Enhanced Embedded Security,

November 2004.
[14] R. J. Baker, H. W. Li, D. E. Boyce. CMOS Circuit Design, Layout, And Simulation.

IEEE Press 1998.
[15] MATLAB. http://www.mathworks.com
[16] WinSpice. http://www.winspice.com

Noisy Tags: A Pretty Good Key Exchange
Protocol for RFID Tags

Claude Castelluccia1 and Gildas Avoine2

1 INRIA, France
Claude.Castelluccia@inria.fr

2 EPFL, Switzerland
Gildas.Avoine@a3.epfl.ch

Abstract. We propose a protocol that can be used between an RFID
tag and a reader to exchange a secret without performing any expensive
computation. Similarly to the famous blocker tag suggested by Juels,
Rivest, and Szydlo, our scheme makes use of special tags that we call
noisy tags. Noisy tags are owned by the reader’s manager and set out
within the reader’s field. They are regular RFID tags that generate noise
on the public channel between the reader and the queried tag, such that
an eavesdropper cannot differentiate the messages sent by the queried
tag from the ones sent by the noisy tag. Consequently, she is unable to
identify the secret bits that are sent to the reader. Afterwards, the secret
shared by the reader and the tag can be used to launch a secure channel
in order to protect communications against eavesdroppers. It can also
be used to securely refresh a tag’s identifier by, for example, xoring the
new identifier with the exchanged secret key. Refreshing tags’ identifiers
improves privacy since it prevents tracking tags.

1 Motivations

An RFID (Radio-Frequency IDentification) tag is small circuit attached to a
small antenna, capable of transmitting data to a distance of several meters to
a reader device (reader) in response to a query. Most RFID tags are passive,
meaning that they are battery-less, and obtain their power from the query signal.
They are already attached to almost anything: clothing, foods, access cards and
so on.

Unfortunately, the ubiquity of RFID tags poses many security threats: denial
of service, tag impersonation, malicious traceability, and information leakage. We
focus in this paper on this latter point that arises when tags send sensitive in-
formation, which could be eavesdropped by an adversary. In the framework of a
library, for example, the information openly communicated by the tagged book
could be its title or author, which may not please some readers. More worry-
ingly, marked pharmaceutical products, as advocated by the US Food and Drug
Administration, could reveal a person’s pathology. For example, an employer or
an insurer could find out which medicines a person is taking and thus work out
his state of health. Large scale applications like the next generation of passports

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 289–299, 2006.
c© IFIP International Federation for Information Processing 2006

290 C. Castelluccia and G. Avoine

are also subject to such an issue. The e-passports [8] will be equipped with an
RFID chip that will store some kind of biometric information about the bearer
(fingerprint and digital picture).

Avoiding eavesdropping can be done by establishing a secure channel between
the tag and the reader. This requires the establishment of a session secret key,
which is not always an easy task considering the very limited devices’ capacities.
This difficulty is reinforced by the fact that tags and reader do not share a master
key in most of the applications. In the future, implementing a key establishment
protocol may become a mandatory feature. For example Californian Bill 682
requires such a technical measure to be implemented in ID-cards deployed in
California. Furthermore, as explained in Section 4.2 for the library application,
a secret key can be used to improve privacy and prevent tracking by securely
refreshing a tag identifier.

This paper describes a novel way of establishing a key through a public
channel between an RFID tag and a reader. The paper is structured as follows:
Section 1 motivates our work. Section 2 presents the related work. Section 3 de-
scribes our 3 proposed key-exchange protocols. Section 4 presents some possible
applications of our schemes. Section 5 discusses the relevance of our proposals
and their security.

2 Related Work

The problem of secure pairing of wireless devices has been tackled by several
researchers. The proposed solutions can be classified into the following categories:

Public-Key Cryptography Based Solutions: These solutions rely on public-key
based key exchange protocols such as Diffie-Hellman or RSA [5, 6, 7]. In Diffie-
Hellman based schemes, devices exchange their Diffie-Hellman components and
derive a key from them. In RSA-based schemes, one of the devices selects a secret
key and encrypts it under the other device’s public key. The main problem of
these solutions is performance. They require that devices perform CPU-intensive
operations such as exponentiation, which are prohibitive for CPU-constrained
devices such as RFID tags.

PIN-Based Schemes: In Bluetooth, two wireless devices derive a shared key from
a public random value, the addresses of each device and a secret PIN. The PIN
is provided to each device by the user via an out-of-band channel, such as a
keyboard. While this solution is computationally efficient, it requires that both
devices be equipped with some kind of physical user interface. As a result, this
solution cannot be used to pair devices lacking physical interfaces, such as RFID
tags.

Physical Contact or Imprinting: In [11], Stajano and Anderson propose a so-
lution, called imprinting, based on physical contact. Two devices get paired by
linking them together with an electrical contact that transfers the bits of a shared
secret. No cryptography is involved, since the secret is transmitted in plain-
text. Furthermore, the key validation phase is not necessary since there is no

Noisy Tags: A Pretty Good Key Exchange Protocol for RFID Tags 291

ambiguity about the devices that are involved in the binding (i.e., man-in-the-
middle attacks are impossible). While this solution is interesting, it requires each
device to have some additional hardware to perform the electrical contact.

Physical Protection: The simplest solution is to shield the RFID and the reader
by a Faraday cage – a container made of metal mesh or foil impenetrable by
radio signals – and have the two devices exchange their secret in cleartext. While
very simple, this solution is not practical for RFID tags that are embedded in
larger objects, such as humans, cars, clothing, that can not easily be placed in
containers.

Shake Them Up!: Another solution is proposed in [3]. This paper presents a
new pairing protocol that allows two CPU-constrained wireless devices A and
B to establish a shared secret at a very low cost over an anonymous channel.
On an anonymous channel, an eavesdropper can actually read the content of the
exchanged packets but cannot identify their source. [3] proposes to implement
such a channel by bringing the devices close to each other and shaking them
during the key exchange 1. With the proposed protocol, A can send the secret
bit 1 to B by broadcasting an (empty) packet with the source field set to A.
Similarly, A can send the secret bit 0 to B by broadcasting an (empty) packet
with the source field set to B. Only B can identify the real source of the packet
(since it did not send it, the source is A), and can recover the secret bit (1 if the
source is set to A or 0 otherwise). An eavesdropper cannot retrieve the secret
bit since it cannot figure out whether the packet was actually sent by A or B.
By randomly generating n such packets A and B can agree on an n-bit secret
key.

This solution is interesting but requires to shake the tag and the reader,
which is not always practical. Also, the security is based on the assumption that
it is difficult to identify the packets sent by the two parties. This assumption
does not hold in an RFID environment because distinguishing packets sent by a
reader from packets sent by a tag is straightforward.

3 Noisy Tag Protocol (NTP)

3.1 Background

Our protocol is inspired by the tag blocker proposal [9] and a key-exchange
scheme developed by some unknown researcher at Bell Telephone Labs during
World War II.

The idea of using special device in RFID environment was already proposed
by [9] and [12]. [12] proposes to use a special device to simulate RFID tags as a
way of spoofing such systems into believing that stolen items are still present in a
retail environment. [9] defines the concept of blocker tags that simulate the set of

1 This is to guarantee that an eavesdropper cannot identify the packets sent by A
from those sent by B using data from the RSSI (Received Signal Strength Indicator)
registers available in commercial wireless cards.

292 C. Castelluccia and G. Avoine

all possible tag identifiers for privacy protection i.e., to prevent a malicious user
to trace some tags. Our application is quite different: we use a special RFID tag
– the noisy tag – to establish secret key on-the-fly between a reader and RFID
tags. While the blocker tag is owned and borne by the consumer, the noisy tag
is owned by the system.

The crux of the key-exchange scheme proposed by the Bell Telephone Labs
is that a receiver can effectively drown out any signal by injecting noise onto
a communication channel. An eavesdropper would only hear the noise, but the
receiver could subtract the noise and recover the signal.

This idea can easily be extended to establish a key between two parties A and
B over a public channel as follows: B starts by generating a sequence of random
bits, noise N(i), on the channel. Simultaneously A sends the secret key bits k(i)
over the channel. An eavesdropper will see the sequence of bits s(i) = k(i)+N(i)
and won’t be able to recover the secret bits k(i) while B can subtract the noise
N(i) and recover k(i). A and B did then exchange a secret key.

We propose to apply this idea to allow an RFID tag to exchange a secret
key with a reader without performing any expensive computation. For that, a
noisy tag must be installed in the reader’s field. A noisy tag is a regular RFID
tag that shares a secret key K with the reader (this key can be pre-configured).
It is used to generate the noise bits N(i) as defined previously. The noise bits
are generated from a pseudo-random function, the secret shared with the reader
and some public nonce. As a result, they can be reconstructed (and subtracted)
by the reader. However they look random to an adversary.

To illustrate this approach, we supply three examples of RFID key-exchange
protocols based on noisy tags. In the rest of this paper, R denotes the reader,
T the tag and NT the noisy tag. We also assume that T wants to exchange a
n-bit long secret, s, with R.

3.2 Bit-Based Protocol, Version 1

This protocol assumes that collisions are allowed and therefore several tags can
reply simultaneously to a reader. When several tags replies simultaneously, it is
assumed that the amplitude (i.e. voltage) of the different bits get added. Assum-
ing this property, a tag T can send a sequence of secret bits b to the reader R
using the protocol described in this section. This protocol is composed of two
phases:

Exchange Phase:

(1) R broadcasts a random nonce N .
(2) Both NT and T reply simultaneously with one bit (one bit per time slot)

until the reader halts the protocol. The ith bit sent by NT is the ith bit of
h(K, N), where h(.) is a pseudo-random function such as a hash function.
The ith bit sent by T is random.

(3) Since the reader can predict the sequence of bits sent by the noisy tag, it
can easily filtered them out, and recover the bits sent by T .

Noisy Tags: A Pretty Good Key Exchange Protocol for RFID Tags 293

If, for example, T sends the bit 1, implemented by a pulse of xmV, and NT
the bit 0, implemented by a pulse of 0mV, R will receive the bit 1. Since it can
compute that the bit sent by NT was 0, it can retrieve the bit sent by T , i.e.
1. Note however that this protocol does not work if both T and NT reply with
the same bit. In fact, if both T and NT send simultaneously the bit 1, a pulse
of 2.xmV will be generated on the channel. In that case, an adversary knows
that both T and NT sent the bit 1. Similarly if both T and NT send the bit
0, a pulse of 0mV will be generated on the channel and the adversary knows
that both T and NT sent the bit 0. This is what we refer to as the “same-
bit” problem. When T and NT send the same bit in a given time slot, this bit
should not be used to generate the secret key. Hence, the reader halts the ex-
change phase when at least n time slots contain different bits. On average, the
reader halts the protocol after 2n time slots. The reconciliation phase consists for
the reader to inform the tag which bits should be used to generate the secret key.

Reconciliation Phase:

(4) R sends to T the relevant time slots’ numbers. T uses this information to
recover the secret bits that should be used to compute the shared secret.

The security relies on the fact that an adversary is not able to separate T ’s
signal from NT ’s signal. This implies that T and NT are close enough otherwise
an adversary may be able to determine which bit comes from T and which one
comes from NT using specific material, e.g., directed antennas. This also implies
that T and NT use the same standard, i.e. frequency and transmission power.
Because one may think that an adversary would be able to separate a few bits,
it may be preferable to generate a secret longer than the expected secret key,
and then hash it.

3.3 Bit-Based Protocol, Version 2

In the previous protocol, T and NT must reply simultaneously and their bits
get added. This requires that the tag T and the noisy tag NT be perfectly syn-
chronized. This might not always be practical or even possible. In this section,
we present a solution that removes this assumption. Like in the previous version,
this protocol assumes that collisions are allowed.

Exchange Phase:

The exchange phase contains several rounds. Each round is composed of 2 con-
secutive time slots: slot0 and slot1. In a given round, T sends the bit 1 by setting
slot1 to 1. It sends the bit 0 by setting slot0 to 1.

The protocol operates as follows:

(1) R broadcasts a random nonce N .
(2) NT computes a sequence of pseudo-random bits, c, from the nonce N , the se-

cret K it shares with R and a pseudo-random function h(.), i.e. c = h(K, N).

294 C. Castelluccia and G. Avoine

(3) At round i, T picks a random bit bi and sets the slot number bi to 1. Similarly
NT sets the slot number ci to 1. When R receives the 2 slots, it can identify
the slot set by the NT and retrieve the secret bit send by T .

Note however that this protocol suffers also from the “same-bit” problem:
if T and NT select the same slot, the secret bit can be retrieved by an adver-
sary. In fact, if both T and NT select the slot 1 (resp. 0), an eavesdropper can
conclude that the secret bit sent by T was 1 (resp. 0). As a result, such rounds
must be ignored and the reader halts the exchange phase when at least n rounds
have both slots set to 1. On average, the reader halts the protocol after 2n time
slots. The reconciliation phase consists for the reader to inform the tag which
bits should be used to generate the secret key.

Reconciliation Phase:

(4) R sends to T the relevant round numbers. T uses this information to identify
the secret bits to be used in the shared secret.

3.4 Code-Based Protocol

The two previous protocols suffer from the “same-bit” problem. As a result, on
average, 2 × n rounds are required to agree on a n-bit long key, s.

A solution to this problem consists of having the tag and noisy tag send
codes (as in the CDMA protocol) instead of individual bits. If the code is large
enough (we use n-bit long codes), the probability of code collision is very small
and the number of rounds can be reduced to n. As we will see it later in this
section, using codes instead of bits has several other important benefits.

As in the previous schemes, we assume that the reader shares a secret key,
K, with the noisy tag. This key is used by the noisy tag together with a pseudo-
random function to generate its codes.

The code-based protocol is composed of n rounds. Round i is described as
follows:

– step1: The reader broadcasts a random nonce, Ni.
– step2.1: The noisy tag, NT , replies with a noisy code, ncodei, which is gen-

erated from a pseudo-random function, the nonce Ni and the secret key, K.
For example, ncodei = h(K||Ni). This code looks random to an eavesdrop-
per, but can easily be recomputed by the reader.

– step2.2: The tag replies with a random code, codei. Note that the order of
step2.1 and step2.2 must be random at each round otherwise an eavesdropper
could easily identify the code coming from the noisy tag from the code coming
from the tag. This could be implemented as in the CSMA (Carrier Sense
Multiple Access) protocol: upon reception of Ni, the tag and the noisy tag
set a timer with a random value ∈ [0; t], where t is the duration of a round.
The tag whose timer expires first, sends its reply first.

– step3: Upon reception of ncodei and codei, the reader filters out ncodei

(by computing h(K||Ni) and retrieve the code sent by the tag codei. For an

Noisy Tags: A Pretty Good Key Exchange Protocol for RFID Tags 295

eavesdropper, both codei and ncodei look random and she, therefore, cannot
retrieve the code sent by the tag.

At the end of the n rounds, the reader and the tag share n codes. They can
then generate a secret key, s, as follows: s = code1 ⊕ code2 ⊕ · · · coden.

This protocol has several benefits compared to the previous scheme:

1. It prevents the “same bit” problem, since the probability of the tag and the
noisy tag selecting the same code is very small, and therefore reduces the
number of rounds to n.

2. The tag and the noisy tag can potentially send several codes per rounds
(unlike the previous solution which requires the tag and noisy tag to send
one bit per slot). This makes the adversary’s analysis more difficult.

3. The noisy tag functionality can be distributed over several tags, i.e. several
noisy tags can be used. In this case, the reader shares a different secret
key, Ki, with each of the noisy tag. When the reader broadcasts a random
nonce N , all the noisy tags (or a random subset of the noisy tags- this is
only possible because the reader can identify the participating noisy tags
from the ncodes) compute their corresponding ncodes, ncodei = h(Ki, N),
and send them back to the reader. As in the basic scheme, the tag replies
with a random code. The reader can then filter out the codes sent by the
noisy tags and recover the one sent by the legitimate tag. Using several noisy
tags increases the noisy codes diversity (power, frequency,...). It is therefore
more difficult for the adversary to identify the codes from the ncodes using,
for example, power or energy measures. Also, as described in the following
section, using several noisy tags, can reduce the number of necessary rounds
for the same level of security.

Since the adversary does not know the secret key, K, shared by the noisy tag
and the reader, she cannot differentiate the codes sent by the tag from the codes
sent by the noisy tag. As a result, at each round, the probability of selecting the
correct code is 1

2 . After n rounds, the probability for the adversary of selecting
the n correct codes, and therefore computing the secret key k, is 1

2n . Therefore
80 rounds are required in order to obtain a level of security of 280.

If several noisy tags are used, the probability of selecting the correct code,
at each round, becomes 1

Q+1 , where Q is the number of noisy tags replying per
round. After n rounds, the probability for the adversary of computing the secret
key k, is then 1

2n.log2(Q+1) . Therefore if Q = 15, only 20 rounds are needed to
obtain a level of security of 280.

4 Applications

4.1 E-Passports

NTP can be used in many applications to establish a secret channel between a
reader and an RFID tag. The key is established opportunistically, i.e., it does

296 C. Castelluccia and G. Avoine

not authenticate the end-points of the secure channel. This authentication has
to be provided by another mean.

For example, NTP can be used to establish a key between an e-passport and
a reader. The next-generation passport, called e-passport, will contain an RFID
chip, capable of storing and transmitting over the air biometric data together
with standard information such as the name, date of birth, nationality of the
bearer. This technology creates many security and privacy problems [8]. If no
encryption and access control mechanisms are provided, it becomes trivial for
anyone to skim e-passports and retrieve their information. In order to mitigate
this problem, it is expected that the covers of the e-passports will contain RF
blocking material. As a result, once closed it becomes impossible to skim an
e-passport. A user can then authorize the reading of his e-passport (for example
at a custom) by physically opening it. This simple solution improves the security
considerably but does not prevent an eavesdropper from snooping on a legitimate
reading. Encryption, and therefore a key-exchange protocol, is required to solve
this problem. One proposed solution takes advantage of the fact that passports
carry optically readable information. The idea is then to have the reader scan
the e-passport and use the scanned information to generate an encryption key.
This solution has at least two limitations. Firstly, it requires optical contact,
which somehow alleviates the benefits of using RFID. Secondly, since the opti-
cally readable information is constant, the same key will be used by all readers.
Consequently, it can leak.

NTP can be used to establish a temporary and fresh key between an e-
passport and its reader as follows: the user opens its e-passport in front of the
legitimate reader. The NTP is then executed between the reader and the e-
passport to exchange a key. We assume that the reader has deployed one or
several noisy tags. The e-passport can then send its encryption data to the
reader.

The use of NTP is not limited to e-passports. It can be used in any applica-
tions where the link between a tag and reader need to be secret.

4.2 Libraries

In the e-passport application, the threat was the leakage of sensitive information
on the backward channel, i.e., the channel from tags to readers. The problem is
even worse when considering the forward channel, i.e., the channel from readers
to tags, because the data sent can be eavesdropped at a much longer distance,
e.g., one hundred meters.

In the famous paper [10], Molnar and Wagner suggested a protocol that
mitigates the privacy problem in libraries. Their protocol roughly consists in
refreshing the book’s random identifier each time it is borrowed. Although the
adversary can still track the book borrowed by Mister X, she cannot determine
that this book is the same than the one previously borrowed by Mister Y.

More precisely, in [10], on each check-out the reader reads the data D con-
tained in the tag (e.g., title, author, etc.), picks a random identifier N , stores
the pair (N , D) in the system’s database, erases D from the tag, and finally

Noisy Tags: A Pretty Good Key Exchange Protocol for RFID Tags 297

writes N in the tag. On check-in, the reader obtains the identifier N from the
tag, looks for (N , D) in the system’s database, erases N from the tag, and writes
D instead.

However, eavesdropping the forward channel smashes the purpose of the pro-
tocol. Consequently, reducing the risk of malicious traceability by avoiding the
adversary to eavesdrop the forward channel is important. This can be done
by using a secure channel, which requires a key agreement protocol. Note that
preventing passive attacks does not required authentication. Ensuring both au-
thentication and privacy using only symmetric cryptography is actually a hard
problem in practice because this involves in large scale applications a heavy key
management, as explained in [1, 10].

When dealing with very low-cost tags, using a hash function or a symmetric
cipher is still unrealistic today, even if a few lightweight implementations of
symmetric cryptographic functions have been proposed [4, 13]. However, NTP is
suited to such tags because NTP can be used to refresh the identifier of the tagged
book without involving symmetric cryptographic functions on the tag’s side (a
symmetric cryptographic function must be implemented in the noisy tags but
not in the books’ tags). Indeed, since the identifier of the tag is random, reader
and tag can agree on a common identifier instead of a secret key used to secure
the channel. Thus, no symmetric cipher is required because we no longer use a
secure channel, and moreover the privacy amplification phase, which requires a
hash function, is not mandatory. Note that this is possible because the identifier
is random, but NTP cannot be used to exchange a chosen information without
establishing a secure channel, since reader and tag does not know, a priori, which
bits will be withdrawn during the information reconciliation phase.

5 Discussion and Security Analysis

5.1 NTP Purpose

The primal purpose of this work is to provide a key agreement protocol between a
reader and a tag that is resistant in presence of passive adversaries. NTP focuses
only on passive adversaries because it does not ensure authentication. Clearly,
dealing with passive adversaries instead of active ones is sometimes irrelevant.
However, NTP is relevant in many environments, as explained below.

Active attacks require the adversary being able to stay close to the tag or
reader in order to carry out her attack. Certain environments do not allow an
adversary to be close enough to the tag or reader, e.g., in private areas (house,
building, etc.). Furthermore, it is much easier to perform a passive attack, in
particular on the forward channel, which can be eavesdropped from long distance.

Very low-cost tags are not able to use symmetric cryptography. That is the
case for example with the tags used in libraries as described by Molnar and
Wagner in [10]. In their protocol (and in most of the protocols used in libraries
today – probably all of them), no security features are implemented, neither
on the forward channel, nor on the backward channel. In that case, NTP is an
interesting security measure, because it can be implemented cheaply.

298 C. Castelluccia and G. Avoine

In some cases, the authentication that could protect the tag against active
adversaries, could be provided through another channel. For example, with the
electronic passports, the officer swipes the data page through an optical reader
and thus obtains information (name, date of birth, etc.), which can be used to
authenticate the radio frequency channel. As explained above, the great interest
of the noisy tag is to generate a fresh random session key, while the ICAO (In-
ternational Civil Aviation Organization) recommends to generate a key directly
from static data available on the passport.

5.2 NTP Security

Assuming that (1) the bits sent by the tag are uniformly distributed; (2) the
bits sent by the noisy tag are uniformly distributed as well; (3) the adver-
sary is not able to determine (with a probability better than 1/2) which signal
comes from the tag and which one comes from the noisy tag; then NTP is per-
fectly secure, meaning that the adversary learns nothing about the shared secret
key.

Assuming that tags are able to generate random bits is a common assumption
in RFID. For example, [2] shows that privacy cannot be ensured if tags do not
possess a cryptographically secure pseudo-random number generator. Indeed,
such a generator is mandatory in the communication layer to avoid an adversary
tracking tags because of the collision-avoidance protocol.

The assumption on the noisy tag’s side is stronger. The generated bits should
be indistinguishable from random bits, but the reader must be capable of gener-
ating itself the same series. This can be achieved using a pseudo-random function.
In practice, a hash function can be used. Note that synchronization is not re-
quired between the reader and the noisy tag because bits are generated from the
secret key (shared by the reader and the noisy tag) and a nonce broadcast by
the reader.

The third assumptions relies on the difficulty for an eavesdropper to dif-
ferentiate the information sent by the noisy tags from the information sent by
the legitimate tag. Note that the popular tag blocker scheme relies on a rather
similar assumption. As admitted in [9], it is conceivable that a well-equipped
attacker might actually be able to use the signals’ characteristics (fingerprints)
to identify the source of each message and filter out the tag blockers or noisy
tags. However, such an attack is hard to be put into practice and requires very
specialized material. Moreover, if we assume that an attacker is able to recog-
nize tags’ fingerprints then protecting privacy, in particular avoiding malicious
traceability of the tags, is unsolvable. Last but not least, the adversary should
not be able to distinguish the legitimate tag’s signal from the noisy tag’s sig-
nal according to the geographical position. This implies that the legitimate tag
should be close to the noisy tag. Possibly, several noisy tags can be used si-
multaneously to render more difficult the adversary’s job. Furthermore, shaking
the tag during the key exchange protocol, as suggested in [3], might randomize
the power of its transmitted bits and might also be another way to increases
security.

Noisy Tags: A Pretty Good Key Exchange Protocol for RFID Tags 299

References

1. Gildas Avoine, Etienne Dysli, and Philippe Oechslin. Reducing time complexity
in RFID systems. In Bart Preneel and Stafford Tavares, editors, Selected Areas in
Cryptography – SAC 2005, Lecture Notes in Computer Science, Kingston, Canada,
August 2005. Springer-Verlag.

2. Gildas Avoine and Philippe Oechslin. RFID traceability: A multilayer problem. In
Andrew Patrick and Moti Yung, editors, Financial Cryptography – FC’05, volume
3570 of Lecture Notes in Computer Science, pages 125–140, Roseau, The Common-
wealth Of Dominica, February–March 2005. IFCA, Springer-Verlag.

3. Claude Castelluccia and Pars Mutaf. Shake Them Up! In ACM/Usenix Mobisys,
June 2005.

4. Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authen-
tication for RFID systems using the AES algorithm. In Marc Joye and Jean-
Jacques Quisquater, editors, Workshop on Cryptographic Hardware and Embedded
Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages
357–370, Boston, Massachusetts, USA, August 2004. IACR, Springer-Verlag.

5. Christian Gehrmann and Kaisa Nyberg. Enhancements to bluetooth baseband
security. In Nordsec’01, Copenhagen, Denmark, November 2001.

6. Jaap-Henk Hoepman. Ephemeral pairing in anonymous networks. Available at:
http://www.cs.kun.nl/∼jhh/publications/anon-pairing.pdf.

7. Jaap-Henk Hoepman. The ephemeral pairing problem. In Financial Cryptography
– FC’04, LNCS, pages 212–226, Key West, Florida, February 2004. IFCA, Springer-
Verlag.

8. Ari Juels, David Molnar, and David Wagner. Security and privacy issues in e-
passports. In Conference on Security and Privacy for Emerging Areas in Commu-
nication Networks – SecureComm 2005, Athens, Greece, September 2005. IEEE.

9. Ari Juels, Ronald Rivest, and Michael Szydlo. The blocker tag: Selective blocking of
RFID tags for consumer privacy. In Vijay Atluri, editor, Conference on Computer
and Communications Security – CCS’03, pages 103–111, Washington, DC, USA,
October 2003. ACM, ACM Press.

10. David Molnar and David Wagner. Privacy and security in library RFID: Issues,
practices, and architectures. In Birgit Pfitzmann and Peng Liu, editors, Conference
on Computer and Communications Security – CCS’04, pages 210–219, Washington,
DC, USA, October 2004. ACM, ACM Press.

11. Frank Stajano and Ross Anderson. The resurrecting duckling: Security issues for
ad-hoc wireless networks. In International Workshop on Security Protocols, pages
172–194, 1999.

12. Stephen Weis. Security and privacy in radio-frequency identification devices. Mas-
ter thesis, Massachusetts Institute of Technology (MIT), Massachusetts, USA, May
2003.

13. Kaan Yüksel. Universal hashing for ultra-low-power cryptographic hardware appli-
cations. Master thesis, Worcester Polytechnic Institute, Worcester, Massachusetts,
USA, April 2004.

MARP: Mobile Agent for RFID Privacy
Protection

Soo-Cheol Kim, Sang-Soo Yeo, and Sung Kwon Kim

Chung-Ang University,
221 Huk-Suk-dong, Dong-Jak-gu, Seoul, Korea

{sckim, ssyeo}@alg.cse.cau.ac.kr
skkim@cau.ac.kr

Abstract. Recently many researchers in various fields has noticed RFID
system. RFID system has many advantages more than other automatic
identification system. However, it has some consumer privacy problems,
such as location tracking and disclosure of personal information. Most of
related works have focused on the cryptographic scheme for the RFID tag
and the reader. In this paper, a proxy agent scheme using personal mobile
device for the privacy protection. Our MARP, mobile agent for RFID
privacy protection, has strong cryptographic modules with a powerful
CPU and battery system and guarantees more high-level security than
other protection schemes. MARP acquires a tag’s secrete information
partially and becomes the proxy agent of the tag which is in its sleep
mode. All readers can communicate with MARP instead of the tag and
can attempt authentication with MARP. Since the tag should have only
one hash module in the environment of MARP, we can use the existing
tag hardware with slight modification for protection consumer’s privacy
in RFID system.

1 Introduction

RFID(Radio Frequency Identification) system, which uses radio frequency for
contactless communications, is considered as an extended one of smart card
system. RFID system differs form smart card system in manufacturing cost,
application field and transmission distance. Generally a smart card has security
key, biometrics, financial account information or traffic ticket values and its cost
may be several dollars [1]. On the other hand, an RFID tag is embedded in
every good in a market and it costs a few dimes. Moreover, an RFID tag can be
recognized omnidirectionally by interrogators in a few meters.

In this paper, we address RFID system and its privacy problems. As we
mentioned above, RFID is a technology that automatically identifies an object
by reading the information stored in an RFID tag in a contactless method using
radio frequency. The information is stored in an RFID tag, composed of an
antenna and an IC chip, which is then attached to the object to be identified.
The information is recognized through an RFID reader. It is expected that RFID
system will replace the barcode system in the near future and help in drastic
innovation of logistics and distribution industries [1, 2, 3, 4].

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 300–312, 2006.
c© IFIP International Federation for Information Processing 2006

MARP: Mobile Agent for RFID Privacy Protection 301

However, the fact that the RFID system allows the wireless data commu-
nication without physical contact raises a new issue. Currently, an RFID tag
responds to any reader. That means anyone with a reader can read the infor-
mation in the tag, potentially violating the privacy of the owner of the object
with the RFID tag [5]. The privacy violation problem can be viewed in terms of
information leak and location tracking.

First, information leakage deals with the fact that the direct identification in-
formation of the unique ID of the tag can be transmitted to anyone and everyone
with the reader. Since a personal object can reflect the owner’s life style, income
level, consumption inclination and physical condition, violation of privacy due
to tag information leakage should be considered significant [6].

Second, the location tracking is the problem caused by the tags always send-
ing the same information. That can be used by the adversary with illicit purpose
to track the location of the specific tag owner. It is like embedding a cheap po-
sitioning system to a tag. Of course, tracking the location or moving path of the
tag owner without the approval would be serious privacy violation [7].

There have been many studies of the schemes to protect the privacy. The most
simple and definite method is the Kill command [8]. Other methods include
reader authentication using hash functions and protection of the user privacy
using the blocker tag [9, 10]. RFID Guardian method using a specific device is
similar to MARP in concept [11, 12]. However, all of the above mentioned method
cannot completely protect the privacy [13].

We propose a new method that ensures high level privacy protection using a
special mobile agent device. The concept of MARP is for a special mobile device
to manage the tags and gather some of the information embedded in the tag to
substitute its role. MARP can provide the high level cryptographic services that
are unable in the low price tags.

The rest of the paper is organized as follows. Section 2 describes a few well-
known RFID privacy protection methods. Section 3 describes the brief introduc-
tion of the RFID system and the required assumptions for the proposed scheme.
Section 4 describes MARP in details, separated into the initial setup phase, the
privacy protection phase and the authentication phase. And the main scheme
using MARP is also explained. Section 5 describes the analysis for the proposed
scheme. Section 6 presents the conclusions.

2 Related Work

The most extreme way to protect the privacy in RFID system is to destroy
the RFID tag attached to an object or disable its functionality using the Kill
command. The Kill command is a basic function included in all EPC tags [4, 7, 8].
The tag function is removed by entering a special secret code value (PIN) to
prevent tag information leakage and tracking. Although it is the simplest and
surest way to protect the privacy, it is not a recommended approach since it also
loses all the potential advantages for using the RFID system.

Weis proposed the hash based metaID method [7]. Tag can be either in locked
or unlocked mode, and only the authenticated reader can unlock a tag. When

302 S.-C. Kim, S.-S. Yeo, and S.K. Kim

a tag is in the locked mode, all functions except transmission of the metaID
of the tag are disabled. The metaID based method allows identification of a
unique ID only by the authenticated reader. However, it does not solve the
problem of location tracking since a tag in locked mode always transmits the
same metaID value. Weis proposed another scheme, “Randomize hash-lock” in
[7]. In this scheme, the tag has a hash function and a PRNG(pseudo-random
number generator). This scheme satisfies indistinguishability, but has some se-
curity holes in reader-tag communication and very heavy load in the back-end
server [13, 14].

Juels proposed the “blocker tag” method [9, 10]. The blocker tag method
uses a type of defense shield to protect the tag. The blocker tag always responds
in both 0 and 1 to the reader inquiry. Therefore it hides its existence and forces
the reader to give up trying to recognize the tag. The privacy is protected by
preventing the reader to recognize the tag ID through a type of interference.
However, the blocker tag presents the risk of being misused, and selective block-
ing is not possible.

Golle proposed a scheme using re-encryption [15]. In this scheme, the Reader
and the tag have to compute ElGamal public key cipher. And the tag must
be re-encrypted very Frequently. However, this scheme can be attacked through
various security vulnerability.

There are other methods of arbitrating the communication between the
reader and tag using the mobile device [11, 12, 16, 17]. This device protects the
privacy with high capacity memory and calculation capability. The device mainly
has four functions: 1) monitoring of the new tag or reader, 2) managing the key
on behalf of the tag, 3) controlling the access by the tag or reader, and 4) au-
thenticating if the reader is legitimate on behalf of the tag.

3 The RFID System for MARP

An RFID system generally consists of RFID tag, RFID reader and back-end
server. For the proposed system in this paper, there is additional personal privacy
protection agent (MARP) that arbitrates the communication between the reader
and tag, and the trusted public key management center. Fig.1 shows that the
RFID system for MARP.

• RFID Tag Transponder — A tag is attached to a certain object with its
unique identification. In general, it consists of the IC chip and antenna. When
the reader sends an inquiry, the tag responds with its own internal data or
the result of calculation using the data. An RFID tag can be either an active
tag or passive tag. The passive tag, which has not own battery for reducing
the manufacturing cost, receivers reader’s query through radio signal and
sends its answer to reader using harvested energy from the electromagnetic
field of the reader’s radio signal. The system proposed in this study assumes
a hash enabled passive tag.

• RFID Reader Transceiver— A reader is the device that transmits RF signal
to the tag and receive the response from the tag. Its role is to send an inquiry

MARP: Mobile Agent for RFID Privacy Protection 303

Public-key Center Public-key Center

Back-end ServerBack-end Server ReaderReader MARPMARP

TagTag

TagTag

TagTag

secure channel

insecure channel

Fig. 1. The RFID system for MARP

to the tag, receive the data from the tag and then identifies it using its
own subsystem or external back-end system. For this study, the readers are
assumed to be in a certain group [18] and contain the group ID as well as
the group individual key and public key. In the proposed scheme, the access
authority to the tags is classified by the group ID.

• Reader Subsystem — The data processing subsystem is attached to the
reader and retrieves appropriate information from its own database or exter-
nal database server according to the data obtained by the reader. Generally,
the data processing subsystem is considered as a pard of reader.

• Back-end Server — The back-end server is a server system that processes
the tag related data sent by the reader. The back-end server has the tag
related information in a database. The answer of the tag is transmitted
securely to the back-end server through authenticated reader and it is used
to identify the tag. The back-end server must be trusted and must have the
capability to process every query from a lot of readers concurrently.

• MARP (Mobile Agent for RFID Privacy Protection) — This is the key part
of the proposed scheme. MARP is a compact battery-powered mobile device,
such as Personal Digital Assistants (PDA) or cellular phones. It has the role
of gathering the secret information of tag and functioning on behalf of the
tag. In this study, each MARP has the individual key and public key. It is
also assumed that the reader can easily differentiate tag from MARP.

• Trusted Public-key Center — MARP scheme utilizes authentication using
the public key. Since each reader group and MARP has the public key pair,
a trusted third party public key distribution center is needed to manage
them.

304 S.-C. Kim, S.-S. Yeo, and S.K. Kim

4 Mobile Agent for RFID Privacy Protection

This section describes MARP scheme proposed in this study. MARP is a mobile
device with high performance capability, memory and high calculation capability.
An RFID user will carry around MARP to register the tags to MARP and then
use it to represent the tags.

The key to MARP is to secure some of the tag’s secret information and use
it to authenticate the tag. MARP registers all user tags, record them in the
database and perform the mutual authentication to provide the tag information
appropriate for the reader class.

4.1 Term Definition

– h() : the one-way hash function algorithm.

– Uidt : the unique identifier of the tag t.

– Keyt : the secrete value of the tag t.

– PINt : mode change key of the tag t.

– Ridg : identifier of reader group g.

– Kg
d : private key of reader group g.

– Kg
e : public key of reader group g .

– Km
d : private key of MARP m.

– Km
e : public key of MARP m.

– ‖ : concatenation.

– ⊕ : exclusive-OR.

4.2 Initial Setup Phase

Before performing MARP scheme, there is certain preparation needed. Each
tag must contain the PINt. Only those MARP having the key can register the
tag and toggles it between sleep and wake modes. If a store has the tagged
items for sale, the store DB will contain PINt of each tagged item. After the
item is sold, PINt will be transferred to MARP of the buyer who registers the
item.

A reader is assigned with a specific group ID. It has the authority to read
the tag only with the group ID. It is a type of classification. For an example,
when scanning the tags for the purpose of advertising similar to spam mail, the

MARP: Mobile Agent for RFID Privacy Protection 305

Table 1. Data states in the RFID system for MARP

Back-end Server Reader MARP Tag
Uidt Ridg Km

d Uidt

Keyt Kg
d Km

e Keyt

Ridg Kg
e Ridg PINt

Kg
d Kg

e

Km
e Uidt

h(Keyt)
PINt

Store DB MARP

tt UidPIN ⊕

)(tPINh

Tag

secure channel insecure channel

tPIN

)(tt KeyhPIN ⊕

Fig. 2. Initial setup phase

legal regulation may force the reader to have the group ID such as SPAM. Then
the users who do not want the spam scan will prevent access by the SPAM
group readers. With the group ID and the group public key, readers can also be
authenticated for their legitimacy.

For secure communication, MARP also has the individual ID and public
key. Therefore, a trusted public key distribution center is needed to manage
the public keys. Each MARP contains the reader group ID’s it manages and
can attain the reader group public key through the public key distribution
center.

In terms of the data for each RFID system component, the server contains the
tag related information (tag ID, secret data, and PINt) and reader group related
information (reader group ID and reader group public key). It can also attain
MARP public key through the trusted public key authentication center. The
reader must contain its own group ID, public key and individual key. MARP
contains its own information (public key and individual key) as well as the
information of the reader group (ID and public key) with the access authority.
It must also contain the information (ID, hashed secret data and PINt) of the

306 S.-C. Kim, S.-S. Yeo, and S.K. Kim

tags it controls. The tag contains its own ID, secret data and PINt. Table 1
shows that the data states in proposed RFID system MARP fist needs to gather
tag’s secret data before it represents a tag. When a tagged item is purchased at
a store, the PINt of the tag will be transferred to MARP which gathers the tag
data and puts the tag in sleep mode using the PINt. Collecting the secret data
of the tag is simple. The hashed PINt is sent to the tag in a short distance.
(It is assumed that the tag can be registered only within a short distance for
security purpose.) The tag confirms validity of the information and then sends
its secret data (ID and hashed secret key) by first XORing with PINt. The data
transmission is secure since wiretapping the data alone cannot decode the secret
tag information. Fig.2 shows that the tag registration protocol in the proposed
system.

Detailed Protocol.

1. Store DB send PINt to MARP.
• Store DB −→ MARP : PINt.

2. The hashed PINt is sent to the tag in as short distance.
• MARP −→ Tag : h(PINt).

3. The tag confirms validity of the information and then sends its secret data
(ID and hashed secret key) by first XORing with PINt.

• Tag : computes PINt from received h(PINt).
• Tag : authenticates MARP.
• Tag −→ MARP: PINt ⊕ Uidt , PINt ⊕ h(Keyt).

4.3 Privacy Protect Phase(Tag Sleep Mode)

Once the secret information of the tag is stored in MARP, the tag is put into
sleep mode. This mode allows MARP to act on behalf of the tag and is the
most typical mode of the proposed scheme. In this mode, data communication
occurs only between MARP and the reader. The mutual authentication process
consists of 5 steps, and the procedure and communication protocol of each step
is as follows(Fig.3):

Detailed Protocol.

1. The reader sends an inquiry along with the group ID and a random number
which are signed by the reader group individual key to MARP.

• Reader −→ MARP : Query ‖ EKg
d
(Ridg ‖ Rr).

2. MARP checks the signature to identify the reader group ID before generating
another random number. Both random numbers are signed with its own
individual key and encrypted with the reader group public key then securely
sent to the reader.

• MARP : checks the signature to identify the reader group ID.
• MARP : generate random number. Rm.
• MARP −→ Reader : a1 = EKm

e
(EKg

d
(Rr ‖ Rm).

MARP: Mobile Agent for RFID Privacy Protection 307

Back-end Server Reader MARP

))||((1 mrKK RREEa m
d

g
e

=

))((mKKr REEa g
d

m
e

=

))(||(()(2 tkeyhtKK UidEUidEEa
tm

d
g
e

=

tt dataUid &

)||(|| rgK RRidEQuery g
d

1a

ra

2a

secure channel insecure channel

Fig. 3. Privacy protection phase

3. The reader transmits the received information to the server. The server
checks the signature to attain MARP ID. After that, the server signs the
random number sent by MARP with its own individual key, encrypts it with
MARP public key and re-sends it.

• Reader −→ Server : a1.
• Server : checks the signature to attain MARP ID and Rm.
• Server → Reader → MARP : ar = EKm

e
(EKg

d
(Rm)).

4. Once MARP receives the information from the reader and confirms it, the
mutual authentication is completed. After that, MARP only transfers the
approved tag data using the keys on the device.

• MARP : confirms information, the mutual authentication is completed.
• MARP → Reader → Server : a2 = EKg

e
(EKm

d
(Uidt ‖ Eh(keyt)(Uidt)).

5. The server decrypts the received information and transfers the concerned
information to the reader.

• Server : decrypts the received information.
• Server −→ Reader: Uidt & datat.

4.4 Authentication Phase(Tag Wake Mode)

This mode is used for the certain cases which require inspection of the illicitly
altered tag by MARP. If the tag is to transfer the raw secret data to MARP, its
counterfeiting or alteration can be done very easily. A canceled tag may act as if
it has the secret information or sends the information of another tag. Therefore,
the data is hashed with a simple scheme. To verify the tag, the tag authentication
using the tag’s secret data all it’s needed. The tag validation protocol consists
of three steps as follows(Fig.4):

308 S.-C. Kim, S.-S. Yeo, and S.K. Kim

Back-end Server Reader MARP Tag

)'(: KeyRhacompare t ⊕=

)(RE

)(taE
ta

)(tt KeyRha ⊕=

R

R

Encryption Section

Fig. 4. Authentication phase

Detailed Protocol.

1. The server generates a random number and sends it to MARP which puts
the tag in wake mode and sends the random number to it using PINt.

• Server : generates a random number.
• Server → Reader → MARP: EKg

d
(R).

• MARP : puts the tag in wake mode to it using PINt.
• Tag −→ MARP : R.

2. Awaken tag XOR’s the received random number with its own secret data,
hashes it and sends it to MARP. MARP transfers the received data to the
server.

• Tag → MARP → Reader → Server : at = h(R ⊕ Keyt).
3. The server compares the information from the tag with its own and authen-

ticates the tag if they are in agreement.
• Server : compares at = h(R ⊕ Key′).
• Server : authenticates Tag.

4.5 Main Scheme

Authentication between the tag and MARP, between MARP and reader, and
between the server and tag are separately described above. It is now needed to
consider each step collectively. The main scheme is not MARP acting on behalf
of the tag using the sleep or wake mode. It is carried out in the shape of the
tags being depended upon MARP. If the sleep mode of the tag is used, MARP
can alter the tag at any time. Therefore, authentication step is needed time to
time. However, what if the authentication step is carried out in each operation?

First of all, the tag should not react to any scan by the readers once it
is affiliated with MARP. It may only communicate with MARP that know its

MARP: Mobile Agent for RFID Privacy Protection 309

Back-end Server Reader MARP Tag

sttmm RPINhPINhRhR ⊕⊕)(||))((||

)(3 st RKeyha ⊕=

)'(: 3 KeyRhacompare ⊕=

))||((1 drKK RREEa m
d

g
e

=

))((dKKr REEa g
d

m
e

=

))(||(()(2 tkeyhtKK UidEUidEEa
tm

d
g
e

=

)||(|| rgK RRidEQuery g
d

st RKeyh ⊕)(
sttt RKeyhdataUid ⊕)(||||

1a

ra

2a

3a
3a

Fig. 5. Main scheme using MARP

PINt. It’s a type of master-slave relation. Since the tag will not respond to an
inquiry unless an accurate PINt is provided, it will not be recognized by any
readers with the PINt. Employing that, authentication using the secret data
can be requested to the tag for each communication.

There is some change as the authentication protocol is added at the later
part of the above mentioned scheme. The server can calculate the tag ID and
the related data by analyzing the data sent by MARP and send the information
to the reader. Fig.5 shows the main scheme using MARP.

Detailed Protocol.

1. At the same time, the hashed secret data is XOR’ed with the random number
Rs and sent.

• Server −→ Reader : Uidt ‖ datat ‖ (Keyt) ⊕ Rs.
• Reader −→ MARP : h(Keyt) ⊕ Rs.

2. MARP calculates Rs received from the server. It then XOR’s the hashed
PINt with Rs and sends it to the tag. It also sends the key that verifies
that it is the tag master. For example, the tag’s secret data can be hashed,
XOR’ed and sent.

• MARP : calculates Rs and generate new Rm.
• MARP −→ Tag: Rm ‖ h(Rm ⊕ h(PINt)) ‖ h(PINt) ⊕ Rs.

3. The tag analyzes the information sent by MARP. It responds only after
confirming that MARP is its master. If it is, the secret data is added to R

310 S.-C. Kim, S.-S. Yeo, and S.K. Kim

and hashed before being sent to MARP. The server calculates the received
response and authenticates the tag.

• Tag : authenticates MARP.
• Tag → MARP → Reader → Server: h(Keyt ⊕ Rs).
• Server : authenticates Tag.

4.6 Overall Scenario Using MARP

This scenario presents how MARP can be used in real situation.

• When a good with an RFID tag arrives at a shop, the master of the shop
stores the PIN of the RFID tag in the shop’s DB.

• When a consumer purchases the good, the PIN of the RFID tag of the good
transmitted to the consumer’s MARP. There are some feasible methods that
sends the PIN information to MARP. One method is that the DB system
of the shop prints the PIN on receipt and gives it to the consumer. Another
method is that the DB system of the shop communicates the PIN to the
consumer’s MARP using a secure channel, such like bluetooth or direct cable.

• The consumer register the tag and its PIN in his MARP. The MARP acquires
some of the tag’s secret information through authentication using the tag’s
PIN. After the consumer register the tag, he can change the PIN for keeping
security. These steps constitutes the initial setup phase.

• After the initial setup phase, the tag is subordinate to the MARP, and
ignores any unauthenticated requests. This is master/slave state and only
the MARP can read the tag.

• A reader have to communicate with the MARP instead of the tag. In the
communication between the reader and the MARP, public key cryptosystem
would be used for high level security. Each of them can acquire the other’s
public key form the public key distribution center. These steps constitutes
the main scheme. And in the main scheme, the reader or the back-end server
can be assured of the tag’s reality through verifying the tag’s secret informa-
tion using the tag involved protocol. This scheme should prevent the MARP
from forging the tag.

• During the consumer has the good with the tag at home, he can make the
tag normal state and/or can communicate with the MARP.

• If the consumer transfer the good to another user, he have to sends the PIN
information of the good to another user. After the new user registers the tag,
he must change the PIN of the tag. This prevent the old user from accessing
the tag illegally.

5 Analysis

We analyze the proposed scheme in this section. Our scheme is designed for a
secure RFID system with low-cost tags. A tag uses its PIN or its hashed PIN
as an encryption key in every session for secure communication with a MARP.
Since we use hash functions and random numbers in the communication between
a back-end server and a MARP, an attacker cannot know the secret information
of the tag. And since only authenticated readers and tags can joined to our

MARP: Mobile Agent for RFID Privacy Protection 311

communication protocols, our scheme is secure. It is impossible for the attacker
to trace the location of the specific tag which sends indistinguishable answers in
every query by him.

In MARP scheme, a tag has two phase protocols that are the initial setup
phase and main scheme phase. In the initial setup phase, the tag sends only some
of its secret information to the MARP. If the tag has already hashed PIN and
hashed Key in its memory, it computes only exclusive-OR operation twice. In the
main scheme phase, the tag computes two hash operations and two exclusive-
OR operations. Eventually, in our MARP scheme, a tag needs to have one hash
module and one exclusive-OR module.

In REP scheme of Juels[17], which is a mobile agent scheme using a re-
encryption method, a tag must send all of its secret information to the agent.
This causes an important security problem that the mobile agent can counterfeit
or masquerade after returning or transferring of the item with the tag. On the
contrary, in our scheme, MARP obtain only some of secret information of the tag
and we have authentication protocol that confirm the reality of the tag. These
features should reduce the possibility of forging the tag.

6 Conclusions

This study deals with protection of the privacy for the RFID system. Since the
low cost RFID tags have only hundreds bits of memory and thousands of logical
gates, the existing privacy protection method typically used in the mobile com-
munication system cannot be used in RFID system. Therefore, many proposals
have been made to protect the privacy under the limited resources. We have men-
tioned those RFID privacy protection schemes and pointed out their weakness.

We proposed MARP as a concept using the external proxy agent device
for the privacy protection. MARP attains a part of the secret information of
the tags to act on behalf of them. Once the secret information is attained, it
communicates with the authenticated reader groups with high level security.
The proposed scheme is a unique one that overcomes the built-in limitation of
the tags.

Since MARP is an external device, it can be applied without much change
to the currently existing RFID system. Furthermore, it has the added benefit of
requiring minimum hardware capability in the tag since the privacy protection
protocol is processed by the external device. We think that it is feasible to im-
plement MARP on the current mobile devices, since an ordinary cellular phone
has some cryptographic modules and a common PDA has almost perfect cryp-
tographic modules except RF communication ability. Now we are implementing
MARP on a PDA with Java platform for simulating the our scheme.

Acknowledgement

This work was supported by grant No. R01-2005-000-10568-0 from the Basic
Research Program of the Korea Science & Engineering Foundation.

312 S.-C. Kim, S.-S. Yeo, and S.K. Kim

References

1. K. Finkenzeller, RFID handbook, John Wiley & Sons, 1999.
2. D. Brock, “The Electronic Product Code - A Naming Scheme for physical Objects”,

Auto-ID White Paper, http://www.autoidlabs.com/whitepapers/MIT-AUTOID-
WH-002.pdf , January 2001.

3. H. Knospe and H. Pobl, “RFID Security”, Infomation Security Technical Report,
vol. 9, no. 4, pp. 39-50, Elsevier, 2004.

4. S. Sarma, S. Weis, and D. Engels, “Radio-Frequency Identification: Security Risks
and Challenges”, Cryptobytes, vol. 6 no. 1, pp. 2-9, RSA Laboratories, Spring 2003.

5. G. Avoine and P. Oechslin, “RFID Traceability: A Multilayer Problem”, Financial
Cryptography - FC’05, vol. 3570 of LNCS, pp. 125-140, February 2005.

6. R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices”,
International Workshop on Security Protocols - IWSP, vol. 1361 of LNCS, pp.
125-135, April 1997.

7. S. Weis, S. Sarma, R. Rivest, and D. Engels, “Security and Privacy Aspects of Low-
cost Radio Frequency Identification Systems”, Security in Pervasive Computing -
SPC 2003, vol. 2802 of LNCS, pp. 454-469, March 2003.

8. S. Sarma, S. Weis, and D. Engels, “RFID Systems and Security and Privacy Impli-
cations”, Cryptographic Hardware and Embedded Systems - CHES 2002, vol. 2523
of LNCS, pp. 454-469, August 2002.

9. A. Juels, R. Rivest, and M. Szydlo, “The Blocker Tag : Selective Blocking of RFID
Tags for Consumer Privacy”, Computer and Communications Security - ACM CCS
2003, pp. 27-30, October 2003.

10. A. Juels, J. Brainard, “Soft Blocking : Flexible Blocker Tags on the Cheap”, Work-
shop on Privacy in the Electronic Society - WPES 2004, pp. 1-7, October 2004

11. M. Rieback, B. Crispo, and A. Tanenbaum, “RFID Guardian: A Battery-powered
Mobile Device for RFID Privacy Management”, Australasian Conference on infor-
maiton Security and Privacy - ACISP 2005, vol. 3574 of LNCS, pp. 184-194, July
2005.

12. A. Tanenbaum, G. Gaydadjiev, B. Crispo, M. Rieback, D. Stafylarakis, and
C. Zhang, “The RFID Guardian Project.”, http://www.cs.vu.nl/∼melanie/
rfid guardian/people.html

13. G. Avoine, “Adversarial Model for Radio Frequency Identification”, Cryptology
ePrint Archive, Report 2005/049, http://eprint.iacr.org, 2005.

14. J. Saito, J.C. Ryou and K. Sakurai, “Engancing Privacy of Universal Re-Encryption
Scheme for RFID Tags”, Embedded and Ubiquitous Computing - EUC ’04, vol. 3207
of LNCS, pp. 879-890, August 2004.

15. P. Golle, M. Jakobsson, A. Juels, and P. Syverson,“Universal Re-Encryption for
Mixnets”, Track on the RSA Conference – CT-RSA ’04, vol. 2964 of LNCS, pp.
163-178, February 2004.

16. S. Konomi, “Personal Privacy Assistants for RFID Users”, International Workshop
Series on RFID 2004, November 2004.

17. A. Juels, P. Syverson, and D. Bailey, “High-Power Proxies for Enhancing RFID
Privacy and Utility”, Center for High Assurance Computer Systems - CHACS
2005, August 2005.

18. X. Gao , Z. Xiang , G. Wang , J. Shen , J. Huang , and S. Song, “An Approach to Se-
curity and Privacy of RFID System for Supply Chain”, Conference on E-Commerce
Technology for Dynamic E-Business – CEC-East’04, pp. 164-168, September 2005.

Certifying Native Java Card API by Formal
Refinement

Quang-Huy Nguyen and Boutheina Chetali

Axalto, Smart Cards Research,
34-36 rue de la Princesse, 78431 Louveciennes Cedex, France

{qnguyen, bchetali}@axalto.com

Abstract. This paper describes a refinement-based approach to show
that a native Java Card API function fulfills its specification. We refine a
native function from its informal specification (by Sun) through several
intermediate models into a low-level model which is very close to its C
implementations. We formally prove the correctness of the refinement
steps between two adjacent levels. The low-level model is sufficiently
detailed such that its correspondence to the C implementation can be
informally checked. This work provides a framework to enforce the se-
curity of the native code by formal analysis and can be generalized to
verify a complete implementation of the Java Card platform.

1 Introduction

Native API methods are usually written in C and are considered as part of the
Java Card platform. On the contrary, non-native methods are written in Java
Card and can be seen as applications running on the Java Card platform. Formal
analysis of Java Card API methods has been done in several previous works
(i.e., [1, 2, 3]) using languages and tools dedicated to Java such as JML [4] (and
its associated tools) and JACK [5]. On the contrary, in our knowledge, native
methods have never been addressed. The main obstacle is related to their C
implementation which is yet to be well handled by formal analysis.

Refinement is one of the cornerstones of formal approaches for software engi-
neering: the process of developing a more detailed design or implementation from
an abstract specification through a sequence of mathematically-based steps that
maintain correctness w.r.t. the original specification. In the formal tools like B-
Method or Esterel, the informal specification can be modelled, refined and then
automatically translated into C code. However, in both of these systems, the
generated code is not sufficiently efficient (in terms of performance and resource
consuming) to fit into smart cards. Some attempts (e.g., [6]) have been done to
optimize the generated code but these optimizations are usually complex and
may jeopardize the rigour provided by formal tools. Furthermore, in the indus-
try, we often need to directly deal with an already developed product rather
than starting from its informal specification.

In this work, we aim at certifying an existing implementation of the native
methods that are already embedded on smart cards. To this end, we build a

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 313–328, 2006.
c© IFIP International Federation for Information Processing 2006

314 Q.-H. Nguyen and B. Chetali

low-level model of the JCVM (Java Card Virtual Machine) which is sufficiently
close to its C implementation such that the correspondence between them can
be informally checked. We also build two intermediate models in order to refine
the informal specification of the native methods to the low-level model. Both of
the models are built using the Coq proof assistant [7] which allows us to formally
prove the correctness of each refinement step.

The rest of this paper is organized as follows. Section 2 describes several re-
fining models of the native API methods. In Section 3, we provide their low-level
model basing on a concrete JCVM implementation. Section 4 presents the cor-
rectness of refinement steps and its proof. Section 5 shows the relation between
the low-level model and the concrete implementation. We discuss the related
work in Section 6 and give some concluding remarks in Section 7.

2 Refining Informal Specification

The model of a native method must be built upon a model of the whole JCVM.
In this paper, the JCVM is always modelled as a state machine. A state is a
snapshot of all components of the JCVM: installed CAP files, heap, frame stack,
static fields image, JCRE elements, etc. A primitive operation is a basic access
service to one of these component (e.g., popping and pushing a frame onto the
frame stack, getting and setting an object in the heap). A primitive operation
takes a state and its parameters and yields a new state and (possibly) a value.
Any JCVM function (e.g., a bytecode or a native function) can be seen as a
sequence of primitive operations. The execution of a JCVM function transforms
an (initial) state into a (final) state and (possibly) returns a value. If an exception
is raised during this execution, then the returned value is the address of this
exception which allows the JCVM to lookup for the exception handler.

The informal specification of a native method is refined by the following
intermediate models (see a resume in Figure 1):

FSP is the Functional SPecification of the native function and is built upon
the FIVM (Formal Internal Virtual Machine) state machine. In this model,
a native function is specified by its expected input and output which are
respectively defined by a pre-condition and a post-condition following Hoare
logic [8]. These input and output are described in the informal specifica-
tion and hence, the FSP model is completely independent of any concrete
implementation.

Model State Data Primitive Implementation Specification of
Machine structures operations dependency ? native methods

FSP FIVM abstract Coq relations no expected input and output
HLD FIVM abstract Coq functions no abstract algorithm
LLD CVM refined Coq functions yes refined algorithm

Fig. 1. Resume of intermediate models

Certifying Native Java Card API by Formal Refinement 315

HLD is the High-Level Description of the native function which is also built
upon the FIVM state machine. However, in this model, the native function
is specified by its algorithm i.e., a function taking its input and returning
its output. This function is written by a sequence of primitive operations.
Because the data structures and the primitive operations are kept abstract in
FIVM, the HLD model is also independent of any concrete implementation.

LLD is the Low-Level Description of the native function built upon the CVM
(Concrete Virtual Machine) state machine. Like the HLD model, the LLD
model of a native function specifies its algorithm as a sequence of primitive
operations. However, all CVM data structures and primitive operations are
fully defined basing on a concrete JCVM implementation (by Axalto). There-
fore, the LLD model is also strongly related to this concrete implementation.

2.1 Functional Specification Model

FIVM States. In FIVM, the card memory is seen as a set of memory cells.
Each cell is associated to an address which will be used to access to this cell. The
addr null address represents to the null pointer. A FIVM state (fivm state)
is a snapshot of the card memory and is composed of the following components:

1. Installed packages stores the list of already installed packages (CAP files).
2. Heap stores the heap elements which are either an object or an array. An ob-

ject is represented by a header structure as follows: Record fivm object header

: Set := {
fivm object status : object context ;
fivm object transient mode : transience;
fivm object remote mode : bool ;
fivm object class : address

}.

This structure contains the security context of the applet that owns the
object, a flag indicating its memory mode (persistent, CLEAR ON RESET or
CLEAR ON DESELECT transient), a boolean flag indicating its remote mode,
and the address of its class info structure (which defines its class) in the
installed packages. Similarly, an array is represented by its header structure
which contains the type of its elements, its length, its security context and
its memory mode.

3. Frame stack stores the stack of frames and is the core data structure needed
for method interpretation [9]. In FIVM, the execution of a method is done
inside a frame which is defined as follows:

Record fivm frame info : Set := {
ifrm pc : address ;
ifrm context : frame context ;
ifrm max locals : nat ;
ifrm max stack : nat }.

316 Q.-H. Nguyen and B. Chetali

where ifrm pc is the program counter and points to the next bytecode to be
executed; ifrm context is the currently active context in which the method
is being executed; ifrm max locals is the number of local variables of the
method including its parameters; ifrm max stack is the number of FIVM
words allocated to the operand stack where the intermediate results are
pushed in and popped out during the execution of the method.

4. Static fields image stores the static fields of the installed packages.
5. JCRE stores the information used by the JCRE (Java Card Runtime Envi-

ronment).

Primitive Operations. The FSP primitive operations are defined as Coq pred-
icates i.e., relations between the input and the output of the operations in order
to ease the modelling of the pre- and post-conditions. The FSP primitive opera-
tions are abstract i.e., only their signature is given as Coq parameters. We briefly
draw the primitive operations on different FIVM components in the following:

1. Installed packages: FIVM provides primitive operations to check if a given
package has been correctly installed on the card, and to access to all com-
ponents of the installed packages.

2. Heap: FIVM provides primitive operations to access to all heap elements
i.e., object and array headers, object instance fields and array elements. For
example, the access to an object header pointed by an address is done via
the predicate heap object header:
Parameter heap object header : fivm state → address → fivm object header
→ Prop.

3. Frame stack elements: FIVM provides primitive operations to pop the top
frame, and to push a new frame onto the frame stack.

4. Static fields: FIVM provides read and write services for static fields.
5. JCRE: FIVM provides primitive operations to access to all JCRE informa-

tion. For example, the currently active applet is accessed by fivm selected
applet:

Parameter fivm selected applet : fivm state → applet ident → Prop.

Firewall Control. The firewall mechanism (Chapter 6 of [10]) ensures that
the access to a JCVM element (e.g., objects, arrays, static fields) is allowed
if and only if the currently active context (i.e., the context of the currently
active applet) is the security context of the element. Exceptionally, the JCRE
has a global privileged context and can access to all JCVM elements. All firewall
conditions can be modelled using the primitive operations described above.

Native Methods. The pre-condition defines the constraints on the input which
is composed of the initial FIVM state and the list of parameters encoded as FIVM
words (iword). The post-condition defines the constraints on the output which
is composed of the final FIVM state and a (possibly) returned value encoded as a
FIVM word. This optional returned value is encoded in Coq by the type (option
iword) which covers two cases: (Some v) means that a value v of type iword is
returned and (None iword) means that no value is returned (void return).

Certifying Native Java Card API by Formal Refinement 317

Example 1. This example describes the model of the native method export of
the class javacard.framework.service.CardRemoteObject. This method al-
lows an on-card (remote) object to be (remotely) accessed by the card reader.
The method export has only one parameter which is the address of the object
to be exported. This constraint is modelled by the following pre-condition:

Definition export pre (ctxt :frame context)(args : list iword)
: Prop := ∃ theObj :address, args = (address2iword theObj)::nil.

where address2iword transforms the parameter theObj (which is an address)
into a FIVM word. The output of export depends on its parameter, on the
initial FIVM state (fin) and on the firewall condition1:

– if the parameter points to an allocated object in the heap2 and the firewall
condition is satisfied, then the remote mode of the object is set to true
and export returns void. By changing the remote mode of the object, a new
machine state (fout) is created from fin.

– else, export throws a security exception and the FIVM state is not modified.

Definition export post (args : list iword)
(fin fout : fivm state) (result : option iword): Prop :=
∃ theObj : address, args = (address2iword theObj)::nil ∧
∃ hdr : fivm object header, heap object header fin theObj hdr ∧
∃ selapp: applet ident, fivm selected applet fin selapp ∧

IF (obj jcre or same owner (selected applet context selapp)
(fivm object status hdr))

THEN
let newhdr := Fivm Object Header obj status

(fivm object transient mode hdr) true
(fivm object class hdr)

in (heap object header fout theObj newhdr) ∧ result=(None iword)
ELSE fin=fout ∧ result=(Some (address2iword SecurityException)).

where the predicate (obj jcre or same owner . . .) checks if the security context
of the currently active applet (selapp) is either the (global) JCRE context or
the security context of the object (to be exported) whose the header structure
is hdr.

2.2 High-Level Model

The HLD model is also built upon the FIVM state machine. The JCVM functions
are specified in the HLD model by their algorithm i.e., by a function taking their
input and returning their output. In this context, the HLD primitive operations
must also be specified by Coq (abstract) functions instead of Coq predicates as
in the FSP model.
1 For export, the currently active context must be either the JCRE context or the

security context of the object to be exported (cf. Section 6.1.4 of [10]).
2 Actually, this condition is ensured by the Java compiler and if it does not hold, then

there is an inconsistency in the card memory.

318 Q.-H. Nguyen and B. Chetali

Primitive Operations. In the FSP model, the primitive operations are ex-
pressed as partial functions and defined as relations. A function f having para-
meters of type A1, . . . , An and yielding a value of type B is generally represented
as a relation Rf on S ×A1 × . . .×An ×B, where S represents some FIVM state.
For functions that modify the content of the memory, their return also includes
a new FIVM state. On the other hand, the HLD functions must be defined as
total computable functions in Coq to ensure the termination of its computations.

In order to transform partial FSP functions into HLD total functions, a new
constant (FivmaFatalError) is introduced to lift their co-domain. That is, a
partial function is set to return FivmaFatalErrorwhen its output is not defined:
Inductive fivma fatal error : Set := FivmaFatalError : fivma fatal error.
Inductive exc (V E : Set) : Set :=
| Value : V → exc V E
| Error : E → exc V E.

Definition fivma val (A : Set) := exc A fivma fatal error.

Notice that FivmaFatalError represents a model-level error and is not re-
lated to any Java Card runtime error or exception. All HLD functions will now
return a value of type (fivma val A) where A is its return type in the normal
case. For example, the function fivma set remote object header updates
the (boolean) remote mode flag of an object pointed by an address is specified
as follows:

Parameter fivma set remote object header : fivm state → address → bool →
(fivma val fivm state).

This function returns a new FIVM state (because the memory content has
been modified) and is abstract (like all other HLD primitive operations), that
is, its specification consists only of its signature.

Error Handling. The error case makes the usage of functions more complex
because there is now one more case to consider in each function call. For smoothly
handling this case, a new construct is defined:
Definition try with (C : Set) (e : exc V1 E1) (f : V1 → C) (g : E1 → C):

C := match e with
| Value x ⇒ f x
| Error y ⇒ g y
end.

Actually, try with allows one to handle both cases of a total function. In
the error case, the error (y) is handled by the function g. In the normal case,
the returned value of the function (x) is used in the rest of the model (f). A new
syntactic sugar try1 is also defined such that (try1 w=(F e) in H with err
=> G) compiles to (G err) if (F e) returns the error err, and to (H val) if it
returns the value val. In particular, if err and G are omitted, then any error
will be handled by a default procedure which consists in transferring the error
to the higher level (e.g., the invoking function).

Certifying Native Java Card API by Formal Refinement 319

Native Methods. The algorithm of a native method is defined as a sequence of
the HLD primitive operations. The input of a native method is composed of the
initial FIVM state and the list of parameters encoded as FIVM words. A native
method may return a value or throws an exception by returning its address. In
any case, the output of the method is composed of the final FIVM state and the
(possibly) returned value encoded by the type (option iword).

Example 2. The algorithm of export (see Example 1) is described as follows:

1. if the list of arguments is empty, then a fatal error is raised, else,
2. convert the first argument into an object address using iword2address;
3. extract the object header pointed by this address using fivma get object

header;
4. check if the currently active context is either the global JCRE context (using

fivma test jcre context), or the security context of the object (using
fivma test obj same owner) (the firewall condition);

5. if the firewall condition is satisfied, then return void and the final state
(which has been updated by fivma set remote object header), else re-
turn the address of the security exception and the initial state.

Definition fivma export (args : list iword) (fin : fivm state)
: (option iword) × fivm state :=

match args with
| fst :: ⇒ let obj := iword2address fst in

try1 hdr := fivma get object header fin obj in
try1 selapp := fivma selected applet fin in
IF (fivma test jcre context (selected applet context selapp))||

(fivma test obj same owner (selected applet context selapp)
(fivm object status hdr))

THEN
try1 fout := fivma set remote object header fin obj true in

((None iword), fout)
ELSE ((Some (address2iword SecurityException)), fin)

| ⇒ raise FivmaFatalError
end.

3 Low-Level Model of a JCVM Implementation

The LLD model specifies a real JCVM implementation on a new state machine
called CVM (Concrete Virtual Machine). All the components of this state ma-
chine are defined as concrete data structures. Therefore, all CVM primitive op-
erations can now be defined as concrete algorithms. The algorithm of a native
method are then refined to be close to its C implementation. In this section, for
space reason, we only concentrate on the frame stack as well as on the invoking
and the returning process of a (Java Card or native) method.

320 Q.-H. Nguyen and B. Chetali

3.1 Frame Stack

A CVM frame is composed of the following elements:

– an operand stack is a stack of 16-bits words (cvm word).
– a table of local variables, each of them being a 16-bits word.
– a security information representing the currently active context.
– a program counter pointing to the next bytecode to be executed.

As in FIVM state machine, the frame stack is part of the CVM state and is
defined as follows:

current frame

local variables header operand stack

local variables header

current frame

operand stack

ctxt jspold old old

parameters

locals

previous frame

additional variables

locals ctxt jspctxt−>localsOffset

other frames

Fig. 2. The storage of the CVM frame stack

Record cvm state : Set := {
cvm frame stack : c memory segment ;
jsp : c address ;
locals : c address ;
ctxt : c address ; ... }.

– The contiguous memory segment cvm_frame_stack stores successively the
frame stack itself. For each frame, firstly appears the local variable table,
then its header, and finally its operand stack (see Figure 2).

– jsp is a pointer to the top of the operand stack of the current frame (i.e.,
the top frame).

– locals points to the beginning of the local variable table of the current
frame.

– ctxt points to the header of the current frame. This header is composed of:
• localsOffset: a byte representing the offset from the header of the

current frame (current ctxt) to the first item of the local variable table
of the previous frame. This information is needed to recover the previous
frame upon return from the current method i.e., to recover the old value
of locals.

• contextInfo: a byte containing the currently active context.

Certifying Native Java Card API by Formal Refinement 321

• nextpc: a program counter pointing to the location where the virtual
machine resumes upon return from the current method.

• prev: a pointer to the header of the previous frame (old ctxt).

3.2 Java Card Methods

Invocation. When a Java Card method is invoked, a new frame is pushed onto
the frame stack. The local variable table (locals) of the new frame is set to the
first parameter of the invoked method which have been pushed onto the operand
stack of the previous frame by the invoking method (see Figure 2). This is an
optimization in the JCVM implementation to avoid copying these parameters and
to reduce memory consumption. The header of the invoked method is stored after
the new local variable table whose the length is determined by its method info
structure stored in its CAP file. Then the global variables are updates according
to the new current frame:

– jsp points to the operand stack of the new frame i.e., just after its header.
– locals points to the first item of the new local variable table.
– ctxt points to the header of the new frame.

Return. The returning process consists in popping the top frame by restoring
the values of the global variables as follows:

1. jsp is assigned to the value of locals, that is all parameters must have been
popped from the operand stack during executing the invoked method.

2. locals is assigned to the current value of ctxt minus the value of the
localsOffset field of the header of the current frame. This indeed points
to the local variable table of the previous frame.

3. ctxt is assigned to the value of the prev field of the header of the current
frame.

3.3 Native Methods

When a native method is invoked, its parameters are also pushed into the
operand stack (of the current frame) as it is done when invoking a Java Card
method. However, the native function is executed in the same frame of the invok-
ing method and no new frame is created on the frame stack. After the execution
of the native function, a returned type, which is of type short, is pushed on the
top of the operand stack. If this type is 1 or 2, then there is a returned value
which has been pushed onto the operand stack just under the returned type.
Otherwise, the method returns void. The CVM retrieves the returned value if
there is any, pops out the parameters and moves the program counter to the
next bytecode to be executed.

In the LLD model, a native method is defined as a total function using the
CVM primitive operations. These primitive operations, which are abstract in the
HLD model, are fully defined as Coq functions in the LLD model. The input of
a native method is composed of the initial CVM state and the list of parameters

322 Q.-H. Nguyen and B. Chetali

encoded as CVM words (cvm word). The output of the method is only composed
of the final CVM state because the (possibly) returned value and its type are
already pushed onto the operand stack of the current frame.

Example 3. The following LLD model of export is very similar to the HLD
model presented in Example 2 except for the returning process: in the LLD
model, the (possibly) returned value and its type are explicitly pushed onto the
operand stack (by cvm frame push).

Definition cvm export (args : list cvm word) (cin: cvm state): cvm state :=
match args with

| fst :: ⇒ let obj := cvm word2address fst in
try1 hdr := cvm get object header cin obj in
try1 selapp := cvm selected applet cin in
IF (fivma test jcre context (selected applet context selapp))||

(fivma test obj same owner (selected applet context selapp)
(cvm object status hdr))

THEN
cvm frame push (cvm set remote object header cin obj true) szero

ELSE
cvm frame push
(cvm frame push cin (address2cvm word SecurityException)) stwo

| ⇒ raise CvmFatalError
end.

4 Correctness of Refinement

Informally, the refinement from a model to another model is correct if there is a
correspondence between the executions of a native method in these two model.

Theorem 1 (Correctness of refinement). Let M1 be a model of a native
function and M2 be a refined model of M1. Let R1 be a relation between the
states of M1, M2 and R2 be a relation between the data of M1, M2. Suppose
that the two initial states of the native method are related by R1, and their
corresponding parameters are related by R2. The refinement from M1 to M2 is
said to be correct if:
1. the two final machine states are related by R1, and
2. the two returned values of the method, if there is any, are related by R2.

4.1 FSP to HLD Refinement

This refinement step is correct if the algorithm defined in the HLD model fulfills
its specification defined in the FSP model. In Hoare logic, a function f fulfills
its pre-condition Pref and post-condition Postf if:

∀xy : y = f(x) → Pref (x) → Postf (y)

where x, y respectively represent the input and the output of f . This statement
is translated in Coq for the method export as follows:

Certifying Native Java Card API by Formal Refinement 323

Theorem fivma export proof :
∀ (args : list iword)(fin fout : fivm state)(result : option iword),
(fivma export args fin) = (result, fout) →
(export pre args fin) → (export post args fin fout result).

It is not difficult to see that this theorem is a special case of Theorem 1 where
both R1 and R2 are the identity relation because both FSP and HLD models
are built upon the state machine FIVM.

4.2 HLD to LLD Refinement

For any native method, this refinement step is correct if the returning process
from the method produce a similar effect in the FIVM and CVM state machines.
In the HLD model, because the frame stack is abstract, the (possibly) returned
value is pushed onto the operand stack and then, be popped by the invoking
method in an opaque way. In the LLD model (see Section 3.3), the frame stack
is detailed and all pop and push operations are explicitly performed on the
operand stack. We need to chow that the two returning process produce the
corresponding final states and returned values, providing that the initial states
and the method parameters are respectively related by cvm fivm link state
(which abstractly relates CVM states to FIVM states) and cvm word2iword
(which abstractly converts CVM words into FIVM words).

Therefore, the correctness of the refinement must be stated for all two exe-
cution scenarios of a native method: (1) it returns a value or the address of an
exception, and (2) it returns void. For example, the two theorems to be proved
for export are described as follows:

1. export returns a value or the address of an exception:

Theorem cvm export value proof : ∀ cst1 cst2 fst1 args cst’ cst” typ val,
(cvm fivm link state cst1 fst1) →
(cvm export args cst1) = cst’ →
(cvm frame pop cst’) = (typ,cst”) →
(andb (Zle bool typ stwo) (Zge bool typ sone)) = true →
(cvm frame pop cst”) = (val,cst2) →
∃ fst2 : fivm state, (cvm fivm link state cst2 fst2) ∧
(fivma export (map cvm word2iword args) fst1) = ((cvm word2iword

val), fst2).

where the primitive operation cvm frame pop pops a short value from the
operand stack of the current frame and returns a new machine state;
Zle bool represents the less-or-equal operator on short values; andb rep-
resents the conjunctive operator on boolean values.

This theorem states that in the LLD model, after executing export
on the initial state cst1 and on the list of parameters args, if we pop a
short value (typ) from the top of the operand stack and this value is 1 or
2, then popping the next short value from the stack yields the returned
value (val) of export and the final CVM state cst2. Now if we execute

324 Q.-H. Nguyen and B. Chetali

export in the HLD model on the corresponding FIVM state fst1 (because
(cvm fivm link state cst1 fst1) holds), and on the corresponding pa-
rameters (map cvm word2iword args), then we obtain the final FIVM state
fst2 which corresponds to cst2. Moreover the LLD-returned value val also
corresponds to the HLD-returned value (cvm word2iword val).

2. export returns void:

Theorem cvm export void proof : ∀ cst1 cst2 fst1 args cst’ typ,
(cvm fivm link state cst1 fst1) →
(cvm export args cst1) = cst’ →
(cvm frame pop cst’) = (typ,cst2) →
(andb (Zle bool typ stwo) (Zge bool typ sone)) = false →
∃ fst2 : fivm state, (cvm fivm link state cst2 fst2) ∧
(fivma export (map cvm word2iword args) fst1)=((None iword), fst2).

In the LLD model, the short value at the top of stack is neither 1 nor 2
and there is no returned value. In this case, the HLD model of export must
return void. Furthermore, the two final states (fst2 and cst2) must also be
related by cvm fivm link state.

These two theorems are a special case of Theorem 1 where R1 is the relation
cvm fivm link state and R2 is the function cvm word2iword.

4.3 General Proof Scheme

The general structure of a native function can be seen as a tree whose leaves are
primitive operations. The internal nodes of this tree are Coq constructs used for
defining the native function. The general proof scheme for the refinement on the
native function between two adjacent models is described as follows:

1. Decompose the native function into more simple operations in both models
until the primitive operations are reached.

2. Prove the correctness for each decomposition step: because the definitions
of the native function in both models follow the same structure, this proof
is feasible.

3. Apply the appropriate refinement hypotheses (see Section 4.4) to conclude
the correctness for the primitive operations.

This proof scheme is closely related to the structure of the native function.
For example, if it is a recursive function, then for proving the correctness of
the decomposition steps over it, an proof by induction is needed. Furthermore,
because a native function needs to cover all possible error cases, the proof must
be done on all of its execution paths. In many cases, this leads to huge and
unreadable proof. In order to ease the proof readability and maintenance, we
have modularized and factorized the proofs by defining numerous common tactics
and lemmas.

Certifying Native Java Card API by Formal Refinement 325

4.4 Refinement Hypotheses

Because the HLD primitive operations are abstract, the correctness of their
refinement from the FSP model must be supposed as hypotheses of the FSP-to-
HLD refinement proof. Actually, those hypotheses express the internal consis-
tency of the FIVM state machine.

On the other hand, the LLD primitive operations are fully defined and the
correctness of their refinement from the HLD model must also be supposed as
hypotheses of the HLD-to-LLD refinement proof. Actually, those hypotheses are
part of the abstract relation between the FIVM and CVM state machines. This
relation is also expressed by the abstract relations between FIVM states and
CVM states (cvm fivma link state), and between FIVM data and CVM data
(e.g., cvm word2iword).

Example 4. Let us consider the primitive operation that yields the header struc-
ture of an object. In the FSP model, this operation is modelled by the predi-
cate head object header and in the HLD and LLD models by the functions
fivma get object header and cvm get object header. The refinements from
the FSP model to HLD model and from the HLD model to LLD model are respec-
tively supposed in Coq by the hypotheses fivma get object header proof and
fivma get object header refinement:

Hypothesis fivma get object header refinement :
∀ (fst : fivm state) (addr : address) (hdr : fivm object header),

(fivma get object header fst addr)=hdr → (heap object header fst addr hdr).

Hypothesis fivma get object header refinement :
∀ (cst : cvm state) (fst : fivm state) (addr : address),
(cvm fivma link state cst fst) →
(cvm get object header cst addr) = (fivma get object header fst addr).

5 C Implementation vs. Coq Low-Level Model

The conformance of the Axalto implementation w.r.t. the LLD model is infor-
mally checked by a hypertext document which relates the C code to the Coq
model. This is the only informal step in the refinement chain from the informal
specification to the implementation of a native function. However, the fact that
the LLD model has been refined basing on the C implementation makes the their
conformance much more evident.

Example 5. The C implementation of export is quoted as follows.

void CARDREMOTEOBJECT_export()
{

PEOBJECTHANDLE pHandle;
u1 isExport;
pHandle = soft_check_ref(pass_byteword_0());

326 Q.-H. Nguyen and B. Chetali

if(!isHandleRemote(pHandle)) {
_VM_WriteU2((GEN_ADDRESS)(&pHandle->datalength),
(u2)(pHandle->datalength | HANDLE_REMOTE)); }

}

In the heap, an object header is represented by a bit vector that contains
the remote mode flag. Accessing to different fields of the object header is done
via macros like isHandleRemote, which check the value of the corresponding
bits. In the C code of a native function, the macro pass byteword n is used to
pop its nth parameter from the operand stack of the current frame. For export,
pass byteword 0 pops the address of the remote object. The soft check ref
function checks the firewall condition on this object and raises a security excep-
tion if it is violated. Otherwise, the function checks if the object has been already
exported before setting the remote flag of the object header (pHandle) using the
HANDLE REMOTE mask. This check is an optimization of the implementation be-
cause writing on E2PROM is costly. In the LLD model, the flag is updated
without this check (by cvm set remote object header) because the model is
not executable and hence, we are not really concerned by the performance.

6 Related Work

Numerous researchers have worked on the formal analysis of the Java Card plat-
form. However, most of them concentrate on ensuring some high-level security
properties of the Java Card applets such as well-typedness [11, 12], confidential-
ity, noninterference, information-flow security [13, 14, 15].

While Java Card API can be formally analyzed as for Java Card applets
[1, 2, 3, 16], verifying native functions requires us to work on the C code. Cur-
rently, the application of formal methods to the verification of the C code is still
at its very early stage. Indeed, the semantics of C is not strictly defined and
varies between different compilers3. C is however largely used in the embedded
software industry thanks to its efficiency. There are currently two approaches for
formally handling C code: in the bottom-up approach, the formal model is built
using the C code while in the top-down approach, the informal specification is
formalized and refined to an C implementation.

The top-down approach is used in several works [6] using B-Method to auto-
matically generate C code from a formal model. The bottom-up approach is used,
for example, in [17] to generate Coq model of C code using tools like Caduceus
and Why. The method presented in this paper can be seen as a mixed approach
because the low-level model is designed by refining the higher-level models and
by abstracting the C code to be certified.

While formal verification of C code is still not straightforward, many re-
searchers have focused on the static analysis of information flow [18] (and/or
abstract interpretation) as a feasible means to improve the security of C code.

3 Actually, part of the C memory management is not built in the language but is
intentionally left to programmers for efficiency reason.

Certifying Native Java Card API by Formal Refinement 327

In this direction, the research has given rise to several industrial tools such as
CAVEAT [19] or PolySpace.

7 Concluding Remarks

We described a refinement-based approach to verify the conformance of a Java
Card native function w.r.t. their specification. The main idea is to use three
intermediate models: the FSP model describes the expected input and output of
the function (basing on the informal specification), the HLD model defines the
algorithm of the function on an abstract JCVM, and the LLD model refines this
algorithm on a concrete JCVM implementation. The refinement steps between
two adjacent models are formally proved in Coq. This approach can be applied
as well to the bytecode interpretation because a native function is actually a
programmer-customized extension to the Java Card instruction set.

The two state machines (FIVM and CVM) used in this work were built
during the French-funded FORMAVIE research project to fulfill the Common
Criteria requirements [20] on the JCVM development. Using these models, we
showed the conformance of the Java Card interpreter and linker developed in
Axalto w.r.t. the JCVM specification (by Sun). The verification of the native API
methods is an extension of this project and is an ongoing work. Actually, the
set of native API methods varies between different implementations (this set
is not precisely defined in the API specification) but for many methods, only
a native implementation can be satisfactory in terms of performance and/or
security (e.g., the update operation on arrays or the PIN operations). We based
on the Axalto implementation to built the LLD model. On the contrary, the
higher-level FSP and HLD models are abstract and can be used for checking
other implementations. Furthermore, both of these models can be used to reason
on the high-level security properties of the native functions and of the JCVM
platform.

References

1. J. van der Berg, B. Jacobs, and E. Poll. Specification of the JavaCard API in JML.
In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, Proc. of CARDIS’00, pages
135–154. Kluwer Academic Publishers, 2000.

2. H. Meijer and E. Poll. Towards a Full Specification of the Java Card API. In I. At-
tali and T. Jensen, editors, Smart Card Programming and Security, volume 2140
of Lecture Notes in Computer Science, pages 165–178. Springer-Verlag, September
2001.

3. L. Burdy, J-L. Lanet, and A. Requet. Java Applet Correctness: A Developer-
Oriented Approach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Proc.
of FME’03, volume 2805 of Lecture Notes in Computer Science, pages 422–439.
Springer-Verlag, September 2003.

4. The Java Modeling Language (JML) homepage. http://www.cs.iastate.edu/
~leavens/JML/

5. L. Burdy and A. Requet. Jack : Java Applet Correctness Kit, 2002. Available at
http://www.gemplus.com/smart/rd/publications/pdf/BR02jack.pdf.

328 Q.-H. Nguyen and B. Chetali

6. D. Bert, S. Boulm, M-L. Potet, A. Requet, and L. Voisin. Adaptable Translator of B
Specifications to Embedded C Programs. In K. Araki, S. Gnesi, and D. Mandrioli,
editors, Proc. of FME 2003, volume 2805 of Lecture Notes in Computer Science,
pages 94–113. Springer-Verlag, 2003.

7. The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr/.
8. C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–580, 1969.
9. B. Venners. Inside the Java Virtual Machine, 1st edition. McGraw-Hill Profes-

sional, 1999.
10. Sun Microsystems. Java Card 2.2 Runtime Environment Specification, 2002.

http://www.javasoft.com/products/javacard.
11. G. Barthe, P. Courtieu, G. Dufay, and S. M. de Sousa. Tool-Assisted Specification

and Verification of the JavaCard Platform. In H. Kirchner and C. Ringeissen,
editors, Proc. of AMAST’2002, volume 2422 of Lecture Notes in Computer Science,
pages 41–59. Springer-Verlag, 2002.

12. G. Barthe and G. Dufay. A Tool-Assisted Framework for Certified Bytecode
Verification. In M. Wermelinger and T. Margaria-Steffen, editors, Proceedings
of FASE’04, volume 2984 of Lecture Notes in Computer Science, pages 99–113.
Springer-Verlag, 2004.

13. J. Andronick, B. Chetali, and O. Ly. Using Coq to Verify Java Card Applet
Isolation Properties. In David A. Basin and Burkhart Wolff, editors, Proc. of
TPHOLs’03, volume 2758 of Lecture Notes in Computer Science, pages 335–351.
Springer-Verlag, September 2003.

14. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In Manuel
Fähndrich, editor, Proceedings of TLDI’05, pages 103–112. ACM Press, 2005.

15. M. Eluard and T. Jensen. Secure object flow analysis for java card. In P. Honeyman,
editor, Proc. of CARDIS’02. IFIP/USENIX, 2002.

16. M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high-
level security properties for applets. In P. Paradinas and J.-J. Quisquater, editors,
Proceedings of CARDIS’04. Kluwer Academic Publishers, August 2004.

17. J. Andronick, B. Chetali, and C. Paulin-Mohring. Formal verification of security
properties of smart card embedded source code. In J. Fitzgerald, I. J. Hayes, and
A. Tarlecki, editors, Proc. of FM’05, volume 3582 of Lecture Notes in Computer
Science, pages 302–317. Springer-Verlag, 2005.

18. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.
Selected Areas in Communications, 21(1):5–19, January 2003.

19. The Caveat Project. http://www-drt.cea.fr/Pages/List/lse/LSL/Caveat/
index.html/

20. Common Criteria. http://www.commoncriteria.org/ .

A Low-Footprint Java-to-Native Compilation
Scheme Using Formal Methods

Alexandre Courbot1, Mariela Pavlova2, Gilles Grimaud1,
and Jean-Jacques Vandewalle3

1 IRCICA/LIFL, Univ. Lille 1, INRIA futurs, POPS Research Group, France
{Alexandre.Courbot, Gilles.Grimaud}@lifl.fr

2 INRIA Sophia-Antipolis, Everest Research Group, France
Mariela.Pavlova@sophia.inria.fr

3 Gemplus Systems Research Labs, La Ciotat, France
Jean-Jacques.Vandewalle@research.gemplus.com

Abstract. Ahead-of-Time and Just-in-Time compilation are common
ways to improve runtime performances of restrained systems like Java
Card by turning critical Java methods into native code. However, native
code is much bigger than Java bytecode, which severely limits or even
forbids these practices for devices with memory constraints.

In this paper, we describe and evaluate a method for reducing
natively-compiled code by suppressing runtime exception check sites,
which are emitted when compiling bytecodes that may potentially throw
runtime exceptions. This is made possible by completing the Java pro-
gram with JML annotations, and using a theorem prover in order to
formally prove that the compiled methods never throw runtime excep-
tions. Runtime exception check sites can then safely be removed from
the generated native code, as it is proved they will never be entered.

We have experimented our approach on several card-range and embed-
ded Java applications, and were able to remove almost all the exception
check sites. Results show memory footprints for native code that are up
to 70% smaller than the non-optimized version, and sometimes as low
than 115% the size of the Java bytecode when compiled for ARM thumb.

1 Introduction

Enabling Java on embedded and restrained systems is an important challenge
for today’s industry and research groups [1]. Java brings features like execution
safety and low-footprint program code that make this technology appealing for
embedded devices which have obvious memory restrictions, as the success of Java
Card witnesses. However, the memory footprint and safety features of Java come
at the price of a slower program execution, which can be a problem when the host
device already has a limited processing power. As of today, the interest of Java
for smart cards is still growing, with next generation operating systems for smart
cards that are closer to standard Java systems [2, 3], but runtime performance in
still an issue. To improve the runtime performance of Java systems, a common
practice is to translate some parts of the program bytecode into native code.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 329–344, 2006.
c© IFIP International Federation for Information Processing 2006

330 A. Courbot et al.

Doing so removes the interpretation layer and improves the execution speed,
but also greatly increases the memory footprint of the program: it is expected
that native code is about three to four times the size of its Java counterpart,
depending on the target architecture. This is explained by the less-compact form
of native instructions, but also by the fact that many safety-checks that are
implemented by the virtual machine must be reproduced in the native code. For
instance, before dereferencing a pointer, the virtual machine checks whether it is
null and, if it is, throws a NullPointerException. Every time a bytecode that
implements such safety behaviors is compiled into native code, these behaviors
must be reproduced as well, leading to an explosion of the code size. Indeed, a
large part of the Java bytecode implement these safety mechanisms.

Although the runtime checks are necessary to the safety of the Java virtual
machine, they are most of the time used as a protection mechanism against pro-
gramming errors or malicious code: A runtime exception should be the result of
an exceptional, unexpected program behavior and is rarely thrown when exe-
cuting sane code - doing so is considered poor programming practice. The safety
checks are therefore without effect most of the time, and, in the case of native
code, uselessly bloat the code.

Several studies proposed to factorize these checks or in some case to elim-
inate them, but none proposed a complete elimination without hazarding the
system security. In this paper, we use formal proofs to ensure that run-time
checks can never be true into a program, which allows us to completely and
safely eliminate them from the generated native code. The programs to optimize
are JML-annotated against runtime exceptions and verified by the Java Applet
Correctness Kit (JACK [4]). We have been able to remove almost all of the run-
time checks on tested programs, and obtained native ARM thumb code which
size was comparable to the original bytecode.

The remainder of this paper is organized as follows. In section 2, we overview
the methods used for compiling Java bytecode into native code, and evaluate the
previous work aiming at optimizing runtime exceptions in the native code. Then,
section 3 describes our method for removing runtime exceptions on the basis of
formal proofs. We experimentally evaluate this method in section 4, discuss its
limitations in 5 and conclude in 6.

2 Java and Ahead-of-Time Compilation

Compiling Java into native code is a common practice in the embedded domain.
This section gives an overview of the different compilation techniques of Java
programs, and points out the issue of runtime exceptions. We are then looking
at how existing solutions address this issue.

2.1 Ahead-of-Time and Just-in-Time Compilation

Ahead-of-Time (AOT) compilation is a common way to improve the efficiency
of Java programs. It is related to Just-in-Time (JIT) compilation by the fact

A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods 331

that both processes take Java bytecode as input and produce native code that
the architecture running the virtual machine can directly execute. AOT and JIT
compilation differ by the time at which the compilation occurs. JIT compila-
tion is done, as its name states, just-in-time by the virtual machine, and must
therefore be performed within a short period of time which leaves little room
for optimizations. The output of JIT compilation is machine-language. On the
contrary, AOT compilation compiles the Java bytecode way before the program
is run, and links the native code with the virtual machine. In other words, it
translates non-native methods into native methods (usually C code) prior to
the whole system execution. AOT compilers either compile the Java program
entirely, resulting in a 100% native program without a Java interpreter, or can
just compile a few important methods. In the latter case, the native code is
usually linked with the virtual machine. AOT compilation has no or few time
constraints, and can generate optimized code. Moreover, the generated code can
take advantage of the C compiler’s own optimizations.

JIT compilation in interesting by several points. For instance, there is no
prior choice about which methods must be compiled: the virtual machine com-
piles a method when it appears that doing so is beneficial, e.g. because the
method is called often. However, JIT compilation requires embedding a com-
piler within the virtual machine, which needs resources to work and writable
memory to store the compiled methods. Moreover, the compiled methods are
present twice in memory: once in bytecode form, and another time in compiled
form. While this scheme is efficient for decently-powerful embedded devices such
as PDAs, it is inapplicable to very restrained devices like smartcards or sensors.
For them, ahead-of-time compilation is usually preferred because it does not
require a particular support from the embedded virtual machine outside of the
ability to run native methods, and avoids method duplication. AOT compilation
has some constraints, too: the compiled methods must be known in advance, and
dynamically-loading new native methods is forbidden, or at least very unsafe.

Both JIT and AOT compilers must produce code that exactly mimics the
behavior of the Java virtual machine. In particular, the safety checks performed
on some bytecodes must also be performed in the generated code.

2.2 Java Runtime Exceptions

The JVM (Java Virtual Machine) [5] specifies a safe execution environment for
Java programs. Contrary to native execution, which does not automatically con-
trol the safety of the program’s operations, the Java virtual machine ensures that
every instruction operates safely. The Java environment may throw predefined
runtime exceptions at runtime, like the following ones:

NullPointerException This exception is thrown when the program tries to
dereference a null pointer. Among the instructions that may throw this
exceptions are: getfield, putfield, invokevirtual, invokespecial, and
the set of typeastore instructions1.

1 The JVM instructions are parametrized, thus we denote by type astore the set of
array store instructions, which includes iastore, sastore, lastore, ...

332 A. Courbot et al.

ArrayIndexOutOfBoundsException If an array is accessed out of its bounds,
this exception is thrown to prevent the program from accessing an illegal
memory location. According to the Java Virtual Machine specification, the
instructions of the family type astore and type aload may throw such an
exception.

ArithmeticException This exception is thrown when exceptional arithmetic
conditions are met. Actually, there is only one such case that may occur
during runtime, namely the division of an integer by zero, which may be
done by idiv, irem, ldiv and lrem.

NegativeArraySizeException Thrown when trying to allocate an array of neg-
ative size. newarray, anewarray and multianewarray may throw this ex-
ception.

ArrayStoreException Thrown when an object is attempted to be stored into
an array of incompatible type. This exception may be thrown by the aastore
instruction.

ClassCastException Thrown when attempting to cast an object to an incom-
patible type. The checkcast instruction may throw this exception.

IllegalMonitorStateException Thrown when the current thread is not the
owner of a released monitor, typically by monitorexit.

If the JVM detects that executing the next instruction would result in an in-
consistency or an illegal memory access, it throws a runtime exception, that may
be caught by the current method or by other methods on the current stack. If
the exception is not caught, the virtual machine exits. This safe execution mode
implies that many checks are made during runtime to detect potential incon-
sistencies. For instance, the aastore bytecode, which stores an object reference
into an array, may throw three different exceptions: NullPointerException,
ArrayIndexOutOfBoundsException, and ArrayStoreException.

Of the 202 bytecodes defined by the Java virtual machine specification, we
noticed that 43 require at least one runtime exception check before being exe-
cuted. While these checks are implicitly performed by the bytecode interpreter
in the case of interpreted code, they must explicitly be issued every time such
a bytecode is compiled into native code, which leads to a code size explosion.
Ishizaki et al. measured that bytecodes requiring runtime checks are frequent in
Java programs: for instance, the natively-compiled version of the SPECjvm98
compress benchmark has 2964 exception check sites for a size of 23598 bytes. As
for the mpegaudio benchmark, it weights 38204 bytes and includes 6838 excep-
tion sites [6]. The exception check sites therefore make a non-neglectable part of
the compiled code.

Figure 1 shows an example of Java bytecode that requires a runtime check
to be issued when being compiled into native code.

It is, however, possible to eliminate these checks from the native code if the
execution context of the bytecode shows that the exceptional case never happens.
In the program of figure 1, the lines 2 and 3 could have been omitted if we were
sure that for all possible program paths, j can never be equal to zero at this
point. This allows to generate less code and thus to save memory. Removing

A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods 333

Java version:

iload i
iload j
idiv
ireturn

C version:

1 int i, j;
2 if (j == 0)
3 THROW(ArithmeticException);
4 RETURN_INT(i / j);

Fig. 1. A Java bytecode program and its (simplified) C-compiled version. The behavior
of the division operator in Java must be entirely reproduced by the C program, which
leads to the generation of a runtime exception check site.

exception check sites is a topic that has largely been studied in the domain of
JIT and AOT compilation.

2.3 Related Work

Toba [7] is a Java-to-C compiler that transforms a whole Java program into a na-
tive one. Harissa [8] is a Java environment that includes a Java-to-C compiler as
well as a virtual machine, and therefore supports mixed execution. While both
environments implement some optimizations, they are not able to detect and
remove unused runtime checks during ahead-of-time compilation. The “Java?
C!” (JC2) Virtual Machine [9] is a Java virtual machine implementation that
converts class files into C code using the Soot [10] framework, and runs their
compiled version. It supports redundant exceptions checks removal, and is tuned
for runtime performance, by using operating system signals in order to detect ex-
ceptional conditions like null pointer dereferencing. This allows to automatically
remove most of the NullPointerException-related checks.

In [11] and [12], Hummel et al. use a Java compiler that annotates bytecodes
with higher-level information known during compile-time in order to improve
the efficiency of generated native code. [6] proposes methods for optimizing ex-
ceptions handling in the case of JIT compiled native code. These works rely on
knowledge that can be statically inferred either by the Java compiler or by the
JIT compiler. In doing so, they manage to efficiently factorize runtime checks,
or in some cases to remove them. However, they are still limited to the context
of the compiled method, and do not take the whole program into account. In-
deed, knowing properties about a the parameters of a method can help removing
further checks.

We propose to go further than these approaches, by giving more precise
directives as to how the program behaves in the form of JML annotations.
These annotations are then used to get formal behavioral proofs of the program,
which guarantee that runtime checks can safely be eliminated for ahead-of-time
compilation.

2 In the remainder of this paper, the JC abbreviation is always used to refer to the
“Java? C!” virtual machine, and never to JavaCard.

334 A. Courbot et al.

3 Optimizing Ahead-of-Time Compiled Java Code

For verifying the bytecode that will be compiled into native code, we use the
JACK verification framework (short for Java Applet Correctness Kit). JACK
is designed as a plugin for the Eclipse interface development environment. It
supports both the Java Modeling Language (JML [13]) and the ByteCode Spec-
ification Language (BCSL [14]), respectively at source and bytecode level, and
also supplies a compiler from JML to BCSL. The tool supports only the sequen-
tial subset of the Java and Java bytecode languages, but this is sufficient for the
purpose of the present paper. Thus, from a Java program annotated with JML or
a bytecode program annotated with BCSL, JACK generates proof obligations at
the source or bytecode level respectively. JACK can then translate the resulting
verification conditions for several theorem provers: Coq, Simplify, Atelier B.

Verifying that a bytecode program does not throw Runtime exceptions using
JACK involves several stages:

1. Writing the JML specification at the source level of the application, which
expresses that no runtime exceptions are thrown.

2. Compiling the Java sources and their JML specification3.
3. Generating the verification conditions over the bytecode and its BCSL spec-

ification, and proving the verification conditions. During the calculation
process of the verification conditions, they are indexed with the index of
the instruction in the bytecode array they refer to and the type of speci-
fication they prove (e.g. that the proof obligation refers to the exceptional
postcondition in case an exception of type Exc is thrown when executing
the instruction at index i in the array of bytecode instructions of a given
method). Once the verifications are proved, information about which instruc-
tions can be compiled without runtime checks is inserted in user defined
attributes of the class file.

4. Using these class file attributes in order to optimize the generated native
code. When a bytecode that has one or more runtime checks in its semantics
is being compiled, the bytecode attribute is queried in order to make sure
that the checks are necessary. If it indicates that the exceptional condition
has been proved to never happen, then the runtime check is not generated.

Our approach benefits from the accurateness of the JML specification and
from the bytecode verification condition generator. Performing the verification
over the bytecode allows to easily establish a relationship between the proof
obligations generated over the bytecode and the bytecode instructions to
optimize.

In the rest of this section, we explain in detail all the stages of the optimiza-
tion procedure.

3 The BCSL specification is inserted in user defined attributes in the class file and so
does not violate the class file format.

A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods 335

3.1 JML Annotations

JML is a rich behavioral interface specification language, similar to Java and
designed for it, that follows the design by contract paradigm [15]. Among the
features that JML supports and which we use in this study are:

Method preconditions. The method precondition states what must hold
when the method is called, i.e. the precondition must hold at every method
call site.

Method postconditions. JML allows to specify both the exceptional and nor-
mal terminations of a method. One can express which property should hold
if a method terminates normally and which property should hold if a method
terminates by throwing an exception. The exceptional and normal postcon-
ditions state what the method guarantees after its execution and are verified
when establishing the correctness of the method implementation.

Class invariants. These properties must be established at every visible pro-
gram state. In particular, the property must hold before and after every
method call. The class invariant is not required to hold before calling the
class constructor, but must hold once the constructor returns.

Loop invariants and loop frame conditions. A loop invariant is a predi-
cate that must hold every time the corresponding loop entry is reached. The
loop frame condition states which locations are modified by the loop.

3.2 Methodology for Writing a Specification Against Runtime
Exceptions

We now illustrate with an example which annotations must be generated in
order to check if a method may throw an exception. Figure 24 shows a Java
method annotated with a JML specification. The method clear declared in class
Code_Table receives an integer parameter size and assigns 0 to all the elements
in the array field tab whose indexes are smaller than the value of the parameter
size. The specification of the method guarantees that if every caller respects
the method precondition and if every execution of the method guarantees its
postcondition then the method clear never throws an exception of type or
subtype java.lang.Exception5. This is expressed by the class and method
specification contracts. First, a class invariant is declared which states that once
an instance of type Code_Table is created, its array field tab is not null. The
class invariant guarantees that no method will throw a NullPointerException
when dereferencing (directly or indirectly) tab.

The method precondition requires the size parameter to be smaller than the
length of tab. The normal postcondition, introduced by the keyword ensures,
basically says that the method will always terminate normally, by declaring
that the set of final states in case of normal termination includes all the pos-
sible final states, i.e. that the predicate true holds after the method’s normal
4 Although the analysis that we describe is on bytecode level, for the sake of readability,

the examples are also given on source level.
5 Note that every Java runtime exception is a subclass of java.lang.Exception.

336 A. Courbot et al.

final class Code_Table {
private/*@spec_public */short tab[];

//@invariant tab != null;

...

//@requires size <= tab.length;
//@ensures true;
//@exsures (Exception) false;
public void clear(int size) {
1 int code;
2 //@loop_modifies code, tab[*];
3 //@loop_invariant code <= size && code >= 0;
4 for (code = 0; code < size; code++) {
5 tab[code] = 0;

}
}

}

Fig. 2. A JML-annotated method

execution6. On the other hand, the exceptional postcondition for the excep-
tion java.lang.Exception says that the method will not throw any exception
of type java.lang.Exception (which includes all runtime exceptions). This is
done by declaring that the set of final states in the exceptional termination case
is empty, i.e. the predicate false holds if an exception caused the termination of
the method. The loop invariant says that the array accesses are between index
0 and index size - 1 of the array tab, which guarantees that no loop iter-
ation will cause an ArrayIndexOutOfBoundsException since the precondition
requires that size <= tab.length.

3.3 Compiling JML Annotations into BCSL Specifications

Once the source code is completed by the JML specification, the Java source
is compiled using a normal non-optimizing Java compiler that generates debug
information like LineNumberTable and LocalVariableTable, needed for compiling
the JML annotations. From the resulting class file and the specified source file,
the JML annotations are compiled into BCSL and inserted into user-defined
attributes of the class file. Figure 3 gives the bytecode version of the clear
method shown earlier and its BSCL specification. In the example, lv[0] stands
for the this instance and lv[1] stands for the first parameter that the method
receives. A detailed description of the JML compiler can be found in [14].

6 Actually, after terminating execution the method guarantees that the first size
elements of the array tab will be equal to 0, but as this information is not relevant
to proving that the method will not throw runtime exceptions we omit it.

A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods 337

//@invariant tab(lv[0]) != null;

...

//@requires lv[1] <= length(tab(lv[0]));
//@ensures true;
//@exsures (Exception) false;

method clear

0 iconst_0
1 istore_2
2 goto 15
5 aload_0
6 getfield tab
9 iload_2
10 iconst_0
11 sastore
12 iinc 2 by 1
15 iload_2
16 iload_1
17 if_icmplt 5
20 return

Fig. 3. The specified bytecode of method clear

3.4 Generation of the Verification Conditions

In order to generate the verification conditions, we use a bytecode verification
condition generator (vcGen) based on a bytecode weakest precondition calcu-
lus [14]. The weakest precondition function wp returns, for every instruction
ins, normal postcondition ψ, and exceptional function ψexc the weakest pred-
icate wp(ins, ψ, ψexc) such that if it holds in the pre-state of the instruction
ins and if the instruction terminates normally, then the normal postcondition
ψ holds in the poststate and if ins terminates on an exception Exc, then the
predicate ψexc(Exc) holds. From the annotated bytecode the vcGen calculates
a set of verification conditions for every method of the application. The verifi-
cation conditions for a method are generated by tracing all the execution paths
in it starting at every return, athrow and loop end instruction up to reach-
ing the method entry point. During the process of generation of the verification
conditions, for every instruction that may throw a runtime exception a new
verification condition is generated.

In figure 4, we show the weakest precondition rule for the getfield in-
struction. As the virtual machine is stack-based, the rule mentions the stack
stack and the stack counter cntr, thus the stack top element is referred as
stack(cntr). If the top stack element stack(cntr) is not null, getfield pops
stack(cntr) which is an object reference and pushes the value of the referenced
field onto the operand stack in stack(cntr). If the stack top element is null, the

338 A. Courbot et al.

wp(ind : getfield Cl.f, ψ, ψexc) =

�
stack(cntr) �= null ⇒

ψ [stack(cntr) ← Cl.f(stack(cntr))]
∧
ind : stack(cntr) = null ⇒

ψexc(NullPointerException)
[cntr ← 0]
[stack(0) ← refNullPointer]

�

Fig. 4. The weakest precondition rule for the putfield instruction

Java Virtual Machine specification says that the getfield instruction throws a
NullPointerException.

When the verification condition generator works over a method, it labels
the formula related to the exceptional termination of every instruction with
the index of the instruction in the bytecode array of the method. For example,
if a getField instruction is met in the bytecode of a method, a conjunction
is generated and the conjunct related to the exception is labeled as shown by
figure 4. Finally, indexing the verification conditions allows to identify later in
the proof phase which instructions can be optimized.

Another important point is that the underlying vcGen is proved to be correct
[14], thus our methodology also correctly performs optimizations.

3.5 From Program Proofs to Program Optimizations

In this phase, the bytecode instructions that can safely be executed without
runtime checks are identified. Depending on the complexity of the verification
conditions, Jack can discharge them to the fully automatic prover Simplify, or
to the Coq and AtelierB interactive theorem prover assistants.

There are several conditions to be met for a bytecode instruction to be op-
timized safely – the precondition of the method the instruction belongs to must
hold every time the method is invoked, and the verification condition related
to the exceptional termination must also hold. In order to give a flavor of the

. . .
length(tab(lv[0]) ≤ lv[2]15 ∨ lv[2]15 < 0
∧
lv[2]15 ≥ 0
∧
lv[2]15 < lv[1]
∧
lv[1] ≤ length(tab(lv[0]))

⇒ false

Fig. 5. The verification condition for the ArrayIndexOutOfBoundException check re-
lated to the sastore instruction of figure 3

A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods 339

verification conditions we deal with, figure 5 shows part of the verification con-
dition related to the possible ArrayIndexOutOfBounds exceptional termination
of instruction 11 sastore in figure 3, which is actually provable.

Once identified, proved instructions can be marked in user-defined attributes
of the class file so that the compiler can find them.

3.6 More Precise Optimizations

As we discussed earlier, in order to optimize an instruction in a method body,
the method precondition must be established at every call site and the method
implementation must be proved not to throw an exception under the assumption
that the method precondition holds. This means that if there is one call site where
the method precondition is broken then no instruction in the method body will
be optimized.

Actually, the analysis may be less conservative and therefore more precise.
We illustrate with an example how one can achieve more precise results.

Consider the example of figure 6. On the left side of the figure, we show source
code for method setTo0which sets the buff array element at index k to 0. On the
right side, we show the bytecode of the same method. The iastore instruction
at index 3 may throw two different runtime exceptions: NullPointerException,
or ArrayIndexOutOfBoundException. For the method execution to be safe (i.e.
no runtime exception is thrown), the method requires some conditions to be
fulfilled by its callers. Thus, the method’s precondition states that the buff ar-
ray parameter must not be null and that the k parameter must be inside the
bounds of buff. If at all call sites we can establish that the buff parameter is
always different from null, but there are sites at which an unsafe parameter k
is passed, the optimization for NullPointerException is still safe although the
optimization for ArrayIndexOutOfBoundException is not possible. In order to
obtain this kind of preciseness, a solution is to classify the preconditions of a
method with respect to what kind of runtime exception they protect the code
from. For our example, this classification consists of two groups of preconditions.
The first is related to NullPointerException, i.e. buff != null and the sec-
ond consists of preconditions related to ArrayIndexOutOfBoundException, i.e.

...

//@requires buff != null;
//@requires k >= 0 ;
//@requires k <= buff.length;
//@ensures true;
//@exsures (Exception) false;
public void setTo0(int k,int[] buff)
{
buff[k] = 0;

}

0 aload_2
1 iload_1
2 iconst_0
3 iastore
4 return

Fig. 6. The source code and bytecode of a method that may throw several exceptions

340 A. Courbot et al.

k >= 0 && k <= buff.length. Thus, if the preconditions of one group are es-
tablished at all call sites, the optimizations concerning the respective exception
can be performed even if the preconditions concerning other exceptions are not
satisfied.

4 Experimental Results

This section presents an application and evaluation of our method on various
Java programs.

4.1 Methodology

We have measured the efficiency of our method on two kinds of programs, that
implement features commonly met in restrained and embedded devices. crypt
and banking are two smartcard-range applications. crypt is a cryptography
benchmark from the Java Grande benchmarks suite, and banking is a little bank-
ing application with full JML annotations used in [4]. scheduler and tcpip are
two embeddable system components written in Java, which are actually used in
the JITS [16] platform. scheduler implements a threads scheduling mechanism,
where scheduling policies are Java classes. tcpip is a TCP/IP stack entirely
written in Java, that implements the TCP, UDP, IP, SLIP and ICMP protocols.
These two components are written with low-footprint in mind ; however, the
overall system performance would greatly benefit from having them available in
native form, provided the memory footprint cost is not too important.

For every program, we have followed the methodology described in section
3 in order to prove that runtime exceptions are not thrown in these programs.
We look at both the number of runtime exception check sites that we are able
to remove from the native code, and the impact on the memory footprint of the
natively-compiled methods with respect to the unoptimized native version and
the original bytecode. The memory footprint measurements were obtained by
compiling the C source file generated by the JITS ahead-of-time (AOT) compiler
using GCC 4.0.0 with optimization option -Os, for the ARM platform in thumb
mode. The native methods sizes are obtained by inspecting the .o file with nm,
and getting the size for the symbol corresponding to the native method.

Regarding the number of eliminated exception check sites, we also compare
our results with the ones obtained using the JCk virtual machine mentioned
in 2.3, version 1.4.6. The results were obtained by running the jcgen program on
the benchmark classes, and counting the number of explicit exception check sites
in the generated C code. We are not comparing the memory footprints obtained
with the JITS and JC AOT compilers, for this result would not be relevant.
Indeed, JC and JITS have very different ways to generate native code. JITS
targets low memory footprint, and JC runtime performance. As a consequence,
a runtime exception check site in JC is heavier than one in JITS, which would
falsify the experiments. Suffices to say that our approach could be applied on
any AOT compiler, and that the most relevant measurement is the number of

A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods 341

runtime exception check sites that remains in the final binary - our measurements
on the native code memory footprint are just here to evaluate the size impact of
exception check sites.

4.2 Results

Table 1 shows the results obtained on the four tested programs. The three first
columns indicate the number of check sites present in the bytecode, the number
of explicit check sites emitted by JC, and the number of check sites that we were
unable to prove useless and that must be present in our optimized AOT code.
The last columns give the memory footprints of the bytecode, unoptimized native
code, and native code from which all proved exception check sites are removed.

Table 1. Number of exception check sites and memory footprints when compiled for
ARM thumb

Program
of exception check sites Memory footprint (bytes)

Bytecode JC Proven AOT Bytecode Naive AOT Proven AOT
crypt 190 79 1 1256 5330 1592
banking 170 12 0 2320 5634 3582
scheduler 215 25 0 2208 5416 2504
tcpip 1893 288 0 15497 41540 18064

On all the tested programs, we were able to prove that all but one exception
check site could be removed. The only site that we were unable to prove from
crypt is linked to a division, which divisor is a computed value that we were
unable to prove not equal to zero. JC has to retain 16% of all the exception
check sites, with a particular mention for crypt, which is mainly made of array
accessed and has more remaining check sites.

The memory footprints obtained clearly show the heavy overhead induced by
exception check sites. Despite of the fact that the exception throwing convention
has deliberately been simplified for our experiments, optimized native code is less
than half the size of the non-optimized native code. The native code of crypt,
which heavily uses arrays, is actually made of exception checking code at 70%.

Comparing the size of the optimized native versions with the bytecode reveals
that proved native code is just slightly bigger than bytecode. The native code of
crypt is 27% bigger than its bytecode version. Native scheduler only weights
13.5% more that its bytecode, tcpip 16.5%, while banking is 54% heavier. This
last result is explained by the fact that, being an application and not a system
componant, banking includes many native-to-java method invocations for calling
system services. The native-to-java calling convention is costly in JITS, which
artificially increases the result.

Finally, table 2 details the human work required to obtain the proofs on the
benchmark programs, by comparing the amount of JML code with respect to

342 A. Courbot et al.

Table 2. Human work on the tested programs

Program
Source code size (bytes) Proved lemmas

Code JML Automatically Manually
crypt 4113 1882 227 77
banking 11845 15775 379 159
scheduler 12539 3399 226 49
tcpip 83017 15379 2233 2191

the comments-free source code of the programs. It also details how many lemmas
had to be manually proved.

On the three programs that are annotated for the unique purpose of our
study, the JML overhead is about 30% of the code size. The banking program
was annotated in order to prove other properties, and because of this is made of
more JML annotations than actual code. Most of the lemmas could be proved
by Simplify, but a non-neglectable part needed human-assistance with Coq. The
most demanding application was the TCP/IP stack. Because of its complexity,
nearly half of the lemmas could not be proved automatically.

The gain in terms of memory footprint obtained using our approach is there-
fore real. One may also wonder whether the runtime performance of such opti-
mized methods would be increased. We did the measurements, and only noticed
a very slight, almost undetectable, improvement of the execution speed of the
programs. This is explained by the fact that the exception check sites conditions
are always false when evaluated, and therefore the amount of supplementary
code executed is very low. The bodies of the proved runtime exception check
sites are, actually, dead code that is never executed.

5 Limitations

Our approach suffers from some limitations and usage restrictions, regarding its
application on multi-threaded programs and in combination with dynamic code
loading.

5.1 Multi-threaded Programs

As we said in section 3, JACK only supports the sequential subset of Java.
Because of this, we are unable to prove check sites related to monitor state
checking, that typically throws an IllegalMonitorStateException. However,
they can be simplified if it is known that the system will never run more than
one thread simultaneously. It should be noted, that Java Card does not make
use of multi-threading and thus doesn’t suffer from this limitation.

5.2 Dynamic Code Loading

Our removal of runtime exception check sites is based on the assumption that
a method’s preconditions are always respected at all its call sites. For closed

A Low-Footprint Java-to-Native Compilation Scheme Using Formal Methods 343

systems, it is easy to verify this property, but in the case of open systems which
may load and execute any kind of code, the property could not always be ensured.
In the case where the set of applications that will run on the system is not stat-
ically known, our approach could not be safely applied on public methods since
dynamically-loaded code may call them without respecting their preconditions.

5.3 Implications Regarding Security

In addition to the two limitations mentioned above, one should also be aware
that our method doesn’t protect the system from errors injections in the code
through hardware attacks. Suppressing dynamic checking on systems that are
subject to such attacks would potentially open a security breach.

6 Conclusion

The main contribution of the present article is a new Java-to-native code opti-
mization technique based on static program verification using formal methods.
The methodology gives more precise and therefore better results than other ex-
isting solutions in the field and allows us to remove almost all the exception
check sites in the native code, as we show in section 4. The memory footprints of
natively-compiled methods thus become comparable with the ones of the original
bytecode when compiled in ARM thumb.

Although we applied this work to the ahead-of-time compilation of Java
methods, the bytecode annotations could also be interpreted by JIT compilers,
which would then also be able to completely get rid of a considerable part of
runtime exceptions.

Acknowledgments

The authors would like to thank Jean-Louis Lanet for kindly providing us with
the JML-annotated sources of the banking, scheduler and tcpip programs
evaluated in this paper.

References

1. D. Mulchandani, “Java for embedded systems,” Internet Computing, IEEE, vol. 2,
no. 3, pp. 30 – 39, 1998.

2. L. Lagosanto, “Next-generation embedded java operating system for smart cards,”
in 4th Gemplus Developer Conference, 2002.

3. G. Grimaud and J.-J. Vandewalle, “Introducing research issues for next generation
Java-based smart card platforms,” in Proc. Smart Objects Conference (sOc’2003),
(Grenoble, France), 2003.

4. L. Burdy, A. Requet, and J.-L. Lanet, “Java applet correctness: A developer-
oriented approach,” in FME 2003: Formal Methods: International Symposium of
Formal Methods Europe (K. Araki, S. Gnesi, and D. Mandrioli, eds.), vol. 2805,
pp. 422–439, 2003.

344 A. Courbot et al.

5. T. Lindholm and F. Yellin, Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., 1999.

6. K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma,
T. Onodera, H. Komatsu, and T. Nakatani, “Design, implementation, and evalua-
tion of optimizations in a just-in-time compiler,” in JAVA ’99: Proceedings of the
ACM 1999 conference on Java Grande, (New York, NY, USA), pp. 119–128, ACM
Press, 1999.

7. T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham, and S. A.
Watterson, “Toba: Java for applications: A way ahead of time (wat) compiler,” in
Third USENIX Conference on Object-Oriented Technologies (COOTS), (Portland,
Oregon), University of Arizona, June 1997.

8. G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa: a flexible and efficient
java environment mixing bytecode and compiled code,” in Third USENIX Con-
ference on Object-Oriented Technologies (COOTS), Portland, Oregon: USENIX,
June 1997.

9. “JC Virtual Machine.” http://jcvm.sourceforge.net/.
10. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co, “Soot

- a java optimization framework,” in Proceedings of CASCON 1999, pp. 125–135,
1999.

11. J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau, “Annotating the Java byte-
codes in support of optimization,” Concurrency: Practice and Experience, vol. 9,
no. 11, pp. 1003–1016, 1997.

12. A. Azevedo, A. Nicolau, and J. Hummel, “Java annotation-aware just-in-time (ajit)
complilation system,” in JAVA ’99: Proceedings of the ACM 1999 conference on
Java Grande, (New York, NY, USA), pp. 142–151, ACM Press, 1999.

13. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Mller, and
J. Kiniry, JML Reference Manual, July 2005.

14. M. Pavlova, “Java bytecode logic and specification,” tech. rep., INRIA, Sophia-
Antipolis, 2005. Draft version.

15. B.Meyer, Object-Oriented Software Construction. Prentice Hall, 2 revised ed., 1997.
16. “Java In The Small.” http://www.lifl.fr/RD2P/JITS/.

J. Domingo-Ferrer, J. Posegga, and D. Schreckling (Eds.): CARDIS 2006, LNCS 3928, pp. 345 – 358, 2006.
© IFIP International Federation for Information Processing 2006

Automatic Test Generation on a (U)SIM Smart Card

Céline Bigot1, Alain Faivre2, Christophe Gaston2, and Julien Simon1

1 Oberthur Card Systems, R&D – EMC, 71-73 rue des Hautes-Pâtures,
92726 Nanterre Cedex, France

{c.bigot, j.simon}@oberthurcs.com
2 CEA/LIST, Saclay, F-91191 Gif sur Yvette Cedex, France

{alain.faivre, christophe.gaston}@cea.fr

Abstract. Usually, testing smart card software is carried-out by specialized en-
gineers in a proprietary language. Testing represents generally half of smart
card development effort. With the increasing use of semi-formal and formal
modeling languages, such as UML, and the emergence of automatic test genera-
tors in the industry, we have studied a way to adapt these techniques for smart
card. In this article, we present an automatic test generator, named AGATHA,
and its architecture, which can handle UML specifications. Then, we suggest a
way to model (U)SIM smart card functionalities in UML. We use the test gen-
erator on our (U)SIM smart card UML models and automatically produce our
first test cases.

1 Introduction

It’s not necessary to remind that in any industry, the later a bug is discovered in a
development process, the more it costs to correct it. Today, in the smart card industry,
half of the effort of the development activity is devoted to testing. Testing includes:

− unit testing, carried out during the programming activity by programmers,
which ensures that each elementary item has a correct behaviour and rules out
basic programming errors,

− α-testing, carried out after the programming activity by α-testers, which ensures
that smart cards have a correct behaviour compared with the functionalities
described in the specifications,

− β-testing, carried out after α-tests by β-testers, which ensures that smart cards in
mobile phones, in payment machines or in any other devices also comply with
the specifications.

In the context of this long and complex process, handwritten by programmers and
testers, we would like to study the possible automatic generation of a part of these
tests. Our first idea, described in this article, consists in taking into account the α-test
activity. By automatic test generation, we expect to increase the coverage and the
quality of the tests in order to ensure a complete validation of the specification.

Moreover, with the increase of system complexity, it’s difficult between two ver-
sions of a project to know which tests evolve, which ones are obsolete, etc. It’s also
difficult for a non-tester to understand produced tests. Thus, our idea is to combine
automatic test generation with a simple formalism to represent test specifications and
their evolution.

346 C. Bigot et al.

Methods and tools required for validation are not recent, and a lot of researches has
been done to try to fill the deficiency. For test generation, we can take as examples
[11], [19], [2] and [32]. Semi-formal and formal methods, such as UML [30], B [1] or
SDL [20], allow an abstract design for a behavioural specification of the system under
test. Thanks to simple, expressive and abstract notations, textual or graphical, we can
easily use these types of formalisms to design smart cards. Moreover, these formal-
isms allow the use of existing validation tools.

The last few years, several studies were conducted on design and validation of
smart card software. For example, [8] represents results on the CEPS standard, [3]
shows validation results on the GSM 11.11 standard [12], [31] used automated test
generation on the WAP Identity Module, [5] describes techniques which can be apply
at different levels of smart card software, [6] represents an automatic test generation
with the LEIRIOS tool [26] from B specifications, [29] presents a method to auto-
matically generate test for Java card applets and [7] offers a semi formal model of
Java Card applications in UML.

In our context, we would like to use a more simple and graphical formalism, which
can be used by any engineer. With the emergence of UML in industry and the multi-
ple types of diagrams offered, this formalism represents a good alternative. In the
panel of automatic test generators (see [33] for examples of automatic test genera-
tors), we were interested by the symbolic approach of the AGATHA1 tool [17], [25],
[34], [4], [28] and [14], developed at the CEA2-List.

Therefore, the article is organized as follows. First, we present the AGATHA tool
and the automatic test generation. Second, after presenting how we can model a part
of smart card in UML, we describe the use of AGATHA on our semi-formal models
and present our first results on a PIN command. We finally conclude and explain our
future actions.

2 AGATHA, an Automatic Test Generator

There exists several ways to validate system specifications. A first one consists in
theorem proving and model checking [9]. These kinds of techniques have successfully
proved their use for the validation of critical systems. But two major drawbacks of
these techniques remain: for model checking, the combinatorial explosion due to
variable domains, and, for theorem proving, the need of high-level skills from the
developer, who must be aware of formal method foundations.

Automatic test generation is another way to tackle the problem of system valida-
tion. Compliance testing is the most well known part of this domain, which consists in
verifying that a system matches its specification. Our first purpose is to validate a
system specification, and generate tests in order to execute them on the specification
and possibly on the system itself.

Most validation tools use enumerative techniques and are therefore limited by the
combinatorial explosion problem when trying to exhaustively identify the numerical

1 AGATHA : “Atelier de Génération Automatique de Test Holistiques à partir d’Automates” –

Automatic holistic tests generation framework for automates.
2 CEA: “Commissariat à l’Energie Atomique” – French atomic energy reseach center.

 Automatic Test Generation on a (U)SIM Smart Card 347

behaviours of a system. Several validation tools focus on verification on particular
aspects: test purpose [15], temporal properties [36], etc.

The solution proposed by AGATHA is exhaustive symbolic path coverage. Test
generation allows detecting specification deadlocks, unreachable transitions, losses of
messages, etc. Moreover, the AGATHA toolset is designed to be as transparent as
possible in order to reduce the effort of detection and comprehension of errors. In that
context, it is not necessary to be an expert in formal methods, as for model checkers
or theorem provers, to interpret AGATHA results and to correct specifications or
implementations.

The following subsections present the AGATHA architecture and an overview of
the different academic techniques used in order to reach minimal exhaustive path
coverage.

2.1 General Principles

The AGATHA approach intends to help conception and validation of formal specifi-
cations modelled with communicant automata systems. Thus, with symbolic execu-
tion techniques, AGATHA computes the exhaustive symbolic behaviour graph of the
specification. Then, from this graph, it generates test cases used to debug the specifi-
cation or to validate the implementation, along with an incremental conception
process.

Figure 1 details the AGATHA general architecture.

 Parsers

Initial automata
specification

Parsers STGAs

Symbolic
execution

STGA

Execution Parsers

Reduction
techniques

Parsers
Symbolic or

numeric test cases

Fig. 1. AGATHA general architecture

The tool treats automata specifications and translates it into its internal language,
called STGA (Symbolic Transition Graph with Assignment) [27]. This translation
allows the symbolic execution of the specification as defined in [18]. Thus, it allows
obtaining an exhaustive behaviour graph of the specification. Thanks to reduction
techniques defined in [25] and in [34], with the help of the rewriting tool Brute [21],
the graph is reduced in a particular STGA. On this particular STGA, AGATHA uses a
constraint solver Omega [23] providing for each path of the graph corresponding to a
symbolic behaviour, one or more numerical test cases.

2.2 Main Principle: Symbolic Execution

At the beginning, symbolic execution has been proposed in [24] and in [10] to con-
struct structural tests for sequential programs. The main idea of symbolic execution

348 C. Bigot et al.

consists to use symbols as entry data of the program, denoting any entry data, instead
of numerical values and to interpret the entry language in a way that allows manipu-
lating symbolic expressions instead of numerical ones. AGATHA uses an adaptation
of symbolic execution to generate tests from specifications based on automata.

The input language of AGATHA is based on the STGA formalism [27], which is a
symbolic transition graph. Like graph formalisms, a STGA includes states and transi-
tions. This type of graph allows representing in an abstract manner all behaviours of a
specification. Transitions represent events that allow the evolution of the system:
events can be received or emitted. Triggering a transition can be conditioned by a
logical expression and system variables can evolve.

STGA Example. Figure 2 presents a STGA example of an elevator system. It contains
four states and seven transitions. The initial state is Q0.

as≠cs,
cs:=cs+d

Q0

Q1

Q2

Q3

ask?(as)

as=cs,d:=0

arrived!

cs<as,d:=1 as>cs,d:=-1

as=cs;d:=0

Fig. 2. STGA sample of an elevator system

To trigger the output transition of Q0, the elevator system awaits the reception of
the message ask, denoted ask?(as), which represents a call to a stage by the user in the
cabin which is stored in the as variable. After the triggering of the transition, the sys-
tem is in the state Q1. Q1 has three output transitions towards Q2. The left one is con-
ditioned by the logical expression: cs<as meaning the asked stage as is over (< sign)
the current stage represented by the cs variable. The right one is conditioned by:
cs>as meaning the asked stage is under the current stage. The middle one is condi-
tioned by: cs=as meaning the asked stage is equal to the current one. In the first case,
the elevator moves up the cabin, which is materialized by the operation d:=1 (d repre-
sents the direction), while in the second case, the elevator moves down the cabin,
which is materialized by d:=-1. In the third one, the elevator leaves the cabin at its
current stage, which is materialized by d:=0. Q2 has two outgoing transitions: one
with Q2 for target and one with Q3. The transition with Q2 for target is conditioned by
the logical expression: as≠cs and increases the current stage cs with the direction d,
materialized by the operation cs:=cs+d. This transition means that as long as the
current stage is different from the asked stage, the cabin has to continue to move up or
down. The second transition is conditioned by: as=cs and initializes the direction d to
0. This transition means that if the current stage is equal to the asked stage, the cabin

 Automatic Test Generation on a (U)SIM Smart Card 349

is stopped. The Q3 outgoing transition allows to come back to Q0 and tells the user in
the cabin that the elevator has reached the asked stage, which is represented by the
emission of the message arrived, denoted arrived!. ◊

In the AGATHA context, [25] redefines symbolic execution for STGA using the
approach defined in [19]. Thus, symbolic execution simulates the behaviour of a
STGA specification in assigning symbolic values to variables instead of numerical
ones. Then, the specification is executed according to the semantics of each instruc-
tion and communication.

The general principle of symbolic execution consists in computing symbolic states
of a system, each of them being denoted by a couple (guard, symbolic memory),
where:

− guard is the condition needed to reach this symbolic state,
− symbolic memory is a function which associates to each variable of the system

an expression based on symbolic input values.

The expression associated to a variable in a symbolic state corresponding to an
execution path, from the initial state of the system, is computed by interpreting one by
one instructions met all along this execution path. The associated guard is composed
of the conjunction of all the execution conditions (denoted by constraints on symbolic
input values) met all along the considered execution path. This guard is called a path
condition or PC. To simplify this type of expression, AGATHA uses the simplifier
Brute [21] extracted from CafeOBJ tool of JAIST3. This is a rewriting tool, which
transforms terms in normal forms with the help of a set of rewriting rules and evalua-
tion strategies defined by the AGATHA user.

The result of a symbolic execution is a symbolic execution tree where each path
represents the symbolic evolution of all variables according to initial symbolic values.
Each path is a particular behaviour of the STGA specification.

Symbolic Execution Example. In our example of the elevator system presented in
Figure 2, an extract of the symbolic execution tree computed by the AGATHA sym-
bolic execution is presented in Figure 3.

At the initialization, the STGA specification obtained by symbolic execution is in a
state corresponding to the initial state Q0 of the elevator system. The elevator specifi-
cation manipulates the variables: as, cs and d on which there are no initial constraints.
A symbolic constant is assigned to each variable: a0, b0 and c0 (resp.) on which there
are no initial constraints, denoted by the condition true. The elevator system can
evolve if it receives the ask message with a value. This value is stored in the variable
as and is supposed to have the symbolic value a1. a1 is assigned to the as variable. As
the trigger of the transition is not conditioned, the condition to reach this second sym-
bolic state is always true (true ∧ true = true).

To leave the state Q1, there are three transitions. So to leave the symbolic state Q1,
there are also three transitions.

As the first transition is conditioned by the expression: cs<as, and, as cs = b0 and
as = a1 in this state, the condition to reach the symbolic state Q2 corresponds to b0<a1.
On this transition, 1 is also assigned to d, which is reflected in the symbolic state.

3 JAIST: Japan Advanced Institute Technology.

350 C. Bigot et al.

ed≠ec,ec:=ec+d

Q0,true,{as=a0,cs=b0,d=c0}

Q1,true,{as=a1,cs=b0,d=c0}

ask?(as)

Q2,b0>a1,{cs=a1,as=b0,d=-1}

cs>as,d:=-1

Q2,b0>a1∧b0≠a1,{cs=a1,as=b0-1,d=-1}

Q2,b0=a1,{as=a1,cs=b0,d=0}

cs=as,d:=0

Q2,b0>a1∧b0≠a1∧b0-1≠a1,
{as=a1,cs=b0-2,d=-1}

cs=as,d:=0cs≠as,cs:=cs+d

Q3,b0>a1∧b0≠a1∧b0-1=a1,
{as=a1,cs=b0-1,d=0}

arrived!

Q0,b0>a1∧b0≠a1∧b0-1=a1,
{as=a1,cs=b0-1,d=0}

Q2,b0<a1,{as=a1,cs=b0,d=1}

cs<as,d:=1

Fig. 3. Extract of the symbolic execution of the elevator system

As the second transition is conditioned by the expression: cs>as, the condition to
reach the symbolic state Q2 corresponds to b0>a1 and –1 is assigned to d.

As the third transition is conditioned by the expression: cs=as, the condition to
reach the symbolic state Q2 corresponds to b0=a1 and 0 is assigned to d.

To leave the symbolic state Q2 where d=-1, two transitions have to be considered.
The first one is conditioned by: as=cs and the second one by: as≠cs. However, as
b0>a1, predictably as≠cs and only the second transition can be triggered. The output
transition of the symbolic state Q2 where d=-1 leads to another symbolic state Q2
reached if the condition: b0>a1 and as≠cs is verified and such as as=a1, cs=b0-1 and
d=-1. In this state, we can also trigger the two same transitions. As the symbolic value
of cs evolves, the two transitions can be triggered. The first one leads to the symbolic
state Q3 and the second one to another symbolic state Q2. The trigger of the first tran-
sition implies that the condition to verify to reach the symbolic state Q3 is: b0>a1 and
as≠cs and a1=b0-1 and as=a1, cs=b0-1 and d=0. To leave this state the only transition
is conditioned by the emission of the message arrived and allows the system to come
back to state Q1.

The other steps of the computation are based on the same principle. ◊

2.3 Further Techniques

As the symbolic execution tree represents all behaviours of a specification, its con-
struction is subordinated to reduction procedures in order to eliminate as many redun-
dant paths as possible. There exists different tactics such as:

− use a classical graph coverage, as for example a transition coverage (the sym-
bolic execution stops when all the transitions are triggered once if possible), a
state coverage, a path coverage, etc,

− cut “empty” path conditions when detected both from a Boolean criteria or
polyhedral criteria. AGATHA uses the Omega constraint solver, based on
Presburger theory [23] to achieve that,

 Automatic Test Generation on a (U)SIM Smart Card 351

− avoid computation of a path deductible from another modulo an interleaving
detection less sophisticated than in [35]: an internal transition without any
temporal constraint with other transitions,

− compute comparison procedures between symbolic nodes and, if necessary for
the current calculated nodes, refer to an already existing symbolic node.

These procedures are necessary to avoid the state explosion problem.
AGATHA uses several heuristics to compute comparison procedures for each sym-

bolic node:

− an equality procedure: two symbolic nodes are considered as equivalent if the
corresponding control nodes are the same and the symbolic guards are syntac-
tically equal,

− an inclusion procedure: two symbolic nodes are considered as equivalent if the
corresponding control nodes are the same and if the polyhedron induced by
variable domains defined by the guard of one is included in the other
polyhedron,

− an equivalence procedure: two symbolic nodes are considered as equivalent if
the corresponding control nodes are the same and if polyhedrons induced by
variable domains defined by guards are equal.

As symbolic expressions of variables may also quickly grow, a last simplification
procedure must be applied “on-the-fly” in order to shorten expression and to detect
useless paths [16]. We use the simplifier Brute, based on rewriting techniques. These
rewriting rules actually composed of more than three hundred rules, allow both to
maintain symbolic expressions within a reasonable size range and to obtain normal
forms of expressions, easing the comparison between expressions needed by algo-
rithms such as comparison procedures.

Other tactics and reduction techniques have been introduced in [34] and in [33].
Generally, a mix of the different tactics is used to obtain the minimal result required
to guarantee the entire coverage of the specification.

2.4 Test Extraction

Symbolic test cases are extracted from the symbolic execution tree. As each path of
the tree represents a symbolic behaviour of the specification, a test case is extracted
from each leaf of this symbolic tree. From each symbolic test case, one or more nu-
merical test cases may be produced with the help of constraint resolution techniques
used on the path condition associated to the tree leaves. The constraint solver is used
to extract the symbolic value of each variable with the associated path condition and
to generate numerical values, which respect the path condition. The choice of the
constraint solver connected to AGATHA depends on the applicative context. For
example, we can use the Omega tool [23].

Test Extraction Example. With the symbolic execution of the elevator system, Figure
3, we identify the path: Q0Q1Q2Q2Q3Q0, which represents the symbolic test case such
as the asked stage, is under the current stage of one stage. To generate a numerical
test case corresponding to this symbolic test case, we have to find numerical values
for: a0, a1, b0 and c0 which verify the path condition: b0>a1 ∧ b0≠a1 ∧ b0-1=a1.

352 C. Bigot et al.

For example, we can choose: a0 = 2, a1 = 3, b0 = 2 and c0 = 0.
Any other series of numerical values verifying the path condition is valid and

forms a possible numerical test case. Techniques used by AGATHA allow consider-
ing that every numerical test case contained in a symbolic one are equivalent. So, only
one numerical test case by each symbolic one is required to cover all the specification.

Moreover, note that the size of our elevator, which is not defined, doesn’t step in
the symbolic computation. Thus, our specification allows representing an elevator
with two, three or more stages. ◊

These test cases can be simulated either on industrial tools that allow generating specifi-
cations or on implementations. It often requires an adjustment to the adequate formats.

3 Application to (U)SIM Smart Card

The aim of this article is to study the utility of the AGATHA tool in the smart card
environment. To begin our experience, we shall limit our domain to (U)SIM smart
cards. For (U)SIM smart cards, there are different standards, which describe a lot of
card features. Function specifications are described in the 3GPP 11.11 standard [12]
and tests on these functions are described in the 3GPP 11.17 standard [13]. For Ober-
thur Card Systems, a test case is a sequence of instructions in a proprietary language,
using hexadecimal codes.

In this section, we propose a UML representation for test cases of (U)SIM smart
card behaviours. Then, we present results obtained by the application of AGATHA on
these UML models.

3.1 A UML Representation for (U)SIM Smart Card Tests

As smart card tests consist in sequences of instructions and as we would like to repre-
sent smart card tests and smart card behaviours, we propose to use UML state dia-
grams. For the moment, we only use this type of diagram. It is very intuitive and can
be learned very quickly even by a UML uninitiated: it’s a sort of automata language,
with states and transitions. The trigger of a transition can be conditioned by a message
reception, a message emission, a logical expression, etc. For our work, we only use a
sub-part and not the entire power of state diagram notations.

Suppose that we would like to represent a test case from the 3GPP 11.17 standard.
As for a function, the test is a sequence of instructions. Our corresponding UML state
diagram reflects this sequence. In some instances, we can identify sub-parts in a test
case and represent these sub-parts in the UML state diagram, as described in the
following example.

The CHANGE CHV4 Function Example: UML representation for test cases. Above
all, we recall the CHANGE CHV specification extracted of the 3GPP 11.11 standard
([12] p.34):

4 chv: Card holder verification information; access condition used by the SIM for the verifica-

tion of the identity of the user.

 Automatic Test Generation on a (U)SIM Smart Card 353

The CHANGE CHV function assigns a new value to the relevant CHV sub-
ject to the following conditions being fulfilled: CHV is not disabled; CHV is
not blocked.
The old and new CHV will be presented.
1) If the old CHV presented is correct, the number of remaining CHV at-
tempts for that CHV will be reset to its initial value 3 and the new value for
the CHV becomes valid.
2) If the old CHV presented is false, the number of remaining CHV attempts
for that CHV will be decremented and the value of the CHV remains un-
changed. After 3 consecutive false CHV presentations, not necessarily in the
same card session, the respective CHV is blocked and the access condition
can never be fulfilled until the UNBLOCK CHV function has been per-
formed successfully on the respective CHV.
Input: indication CHV1, old CHV1, new CHV1.
Output: none.

The test case of the CHANGE CHV function, extracted from the 3GPP 11.17 stan-
dard (see [13] pp.65-67), is composed of:

1) An incorrect CHANGE CHV, steady of a status verification: how much
attempts remained, a correct CHANGE CHV and a status verification,
2) Two incorrect CHANGE CHV, steady of a reset, an incorrect CHANGE
CHV, a reset, an incorrect CHANGE CHV and a correct UNBLOCK CHV,
3) A correct DISABLE CHV, an incorrect CHANGE CHV and a correct
ENABLE CHV.

A correct function is characterized by a returned status 90 00 and an incorrect one
is characterized by a returned status 98 04 or 98 40, this one meaning that the smart
card is blocked. Status verification is done by comparison of expected data and
effective data.

The corresponding state diagram is presented in Figure 4. The initial state is •.
We suppose that the output transition from the initial state to state A contains data
for initializing smart card such as the personalization. A holds two output
transitions.

The right one to C is conditioned by the reception of the message
disable_chv(chv1_ref, used_chv1) which represents the DISABLE CHV function.
This transition is also conditioned by the logical expression used_chv1 = chv1, which
represents the fact that the chv used by DISABLE CHV, is equal to the chv of the
card. The expected status for this reception is 90 00. Next transitions represent the
sub-case 3 of the CHANGE CHV test.

The left one to B is conditioned by the reception of the message
change_chv(chv1_ref, used_chv1, new_chv1), which represents the CHANVE CHV
function. This transition is also conditioned by the logical expression
used_chv1 != chv1 which represents the fact that the chv used by CHANGE CHV is
not equal to the chv of the card. The expected status for this reception is 98 04. C

354 C. Bigot et al.

A

 [used_chv1=chv1]/STATUS:=90 00

B C

 disable_chv(chv1_ref,used_chv1)
[used_chv1!=chv1]/STATUS:=98 04

 change_chv(chv1_ref,used_chv1,new_chv1)

STATUS:=90 00

D E

status(22)

[used_chv1!=chv1]/STATUS:=98 04
 change_chv(chv1_ref,used_chv1,new_chv1)

<<compare>>

 change_chv(chv1_ref,used_chv1,new_chv1)
 [used_chv1!=chv1]/STATUS:=98 04

HG

powerOn()

 change_chv(chv1_ref,used_chv1,new_chv1)
 [used_chv1!=chv1]/STATUS:=98 40

J K

 status(22)/STATUS:=90 00
<<compare>>

L

powerOn()

 change_chv(chv1_ref,used_chv1,new_chv1)
 [used_chv1!=chv1]/STATUS:=98 40

M
 unblock_chv(chv1_ref,used_unbl_chv1,new_chv1)

 [used_unbl_chv1!=unbl_chv1]/STATUS:=90 00

N

 [used_chv1=chv1]/STATUS:=90 00
 disable_chv(chv1_ref,used_chv1)

F

 [used_chv1=chv1]/STATUS:=90 00
 enable_chv(chv1_ref,used_chv1)

I

Fig. 4. The 3GPP 11.17 test of the CHANGE CHV function

holds two output transitions. The right path represents the sub-case 1 of the CHANGE
CHV test and the left one the sub-case 2.

A status verification is represented by a transition conditioned by the reception of
message status(n) where n represents the size of the data to verify, in byte, 22 for
our example. The expected status for this reception is 90 00. The data to compare
are given in the <<compare>> stereotype. For example, on the transition from B to
E, the <<compare>> stereotype contains: xxxx xxxx xxxx xx xxxxxx xx xx xx xx xx
xx xx xx 83 xxxxxx which means the 19th byte is 83 and other bytes are any value,
denoted x. ◊

3.2 A UML Representation for Smart Card Specification

With a UML state diagram, we can also represent a function specification. This dia-
gram contains all the behaviours of a function in the same way as for a test. This ab-
stract vision allows representing a function specification exhaustively. For example,
on the CHANGE CHV function, this diagram has to represent a case with a direct
correct CHANGE CHV, which is not considered in Figure 4.

The CHANGE CHV Function Example: UML Representation for Specification. To
represent the CHANGE CHV specification exhaustively, we consider the 3GPP
11.11 standard given before. The corresponding state diagram is presented in
Figure 5.

 Automatic Test Generation on a (U)SIM Smart Card 355

A

B

C

 /try:=3

 status(22)/STATUS:=90 00
 <<compare>>

powerOn()

change_chv(chv1_ref,used_chv1,new_chv1) disable_chv(chv1_ref,used_chv1)

change_chv(chv1_ref,used_chv1_new_chv1)
/STATUS:=98 08

 enable_chv(chv1_ref,used_chv1)
[used_chv1=chv1]/STATUS:=90 00;try:=3

 [used_chv1=chv1]/STATUS:=90 00

 [used_chv1 != chv1 and try =1]
 /STATUS:=98 40;try:=0

[used_chv1 != chv1 and try >1]
/STATUS:=98 04;try:=try-1

[used_chv1 = chv1]
/STATUS:=90 00;try:=3

 status(22)/STATUS:=90 00
 <<compare>>

 change_chv(chv1_ref,used_chv1,new_chv1)
 /STATUS:=98 40

unblock_chv(chv1_ref,used_unbl_chv1,new_chv1)
[used_unbl_chv1=unbl_chv1]/STATUS:=90 00;try:=3

Fig. 5. Example of an abstract state-transition diagram for the CHANGE CHV functionalities

As we abstract the behaviour of the function, we introduce a counter try, which
represents the number of attempts to change a chv. The initial state is •. The output
transition of the initial state is improved with the initialization of the try variable to 3
as mentioned in the specification.

The sub-case 1 of the specification is represented with bold lines: a
change_chv(chv1_ref, used_chv1, new_chv1) message is received. The used_chv1 is
equal to chv1 so the expected status is 90 00, the chv1 is changed to new_chv1 and we
can verify the status by the transition form A to A with the status message. As this
diagram is an abstraction of the specification, the <<compare>> stereotype contains:
xxxx xxxx xxxx xx xxxxxx xx xx xx xx xx xx xx xx (80+try) xxxxxx.

The sub-case 2 of the specification is represented with normal lines: a change_chv
is received. The used_chv1 is not equal to chv1 so the expected status is 94 04 if try is
different from 1 and is 98 40 if try is equal to 1. If status is 94 04, the transition goes
in A and we can verify the status or reset the session card, which has no impact on the
variable try and so on the remaining number of attempts to change. If the status is 98
40, the card is blocked and the transition goes in C where we can verify the status and
receive change_chv messages. As the card is blocked, nothing appends. Except if an
unblock_chv(chv1_ref, used_unblock_chv1, new_chv1) message is received with
used_unblock_chv1 equal to unblock_chv1.

We improved the specification with a behaviour described in the 3GPP 11.17 test
but missing in the 3GPP 11.11 specification: the use of a correct DISABLE CHV
before a CHANGE CHV. This behaviour is designed with dashed lines. ◊

3.3 Automatic Test Generation for UML Smart Card Model

In part 2.2, we present how the AGATHA tool can generate automatically test cases.
We applied this tool to our UML diagrams.

Firstly, as our representation of smart card test is very sequential, we use a cover-
age of transitions to compute a set of symbolic test cases. In that case in our example,
AGATHA computes three paths. AGATHA extracts three numerical test cases. For a
card that validates the 3GPP 11.17 tests, it also validates these automatically gener-
ated tests.

356 C. Bigot et al.

Secondly, for our representation of smart card specification, we use a more com-
plicated criterion, the inclusion one to cover all the symbolic behaviours. In that case
in our example, AGATHA computes more than two hundred paths, each of them
corresponding to a symbolic behaviour. On a card that validates the 3GPP 11.17 tests,
it has also to validate these automatically generated tests. It could be impressive to
pass two hundred tests for a simple function but we test all possible behaviours of the
CHANGE CHV function. Current works on AGATHA will certainly permit to reduce
this number of tests with some optimization associated to the inclusion criteria. But in
our case this reduction will not be very important due to the fact that the number of
distinct symbolic behaviours associated to our example remains very close to the
present one calculated by AGATHA: this is the price of exhaustiveness.

4 Related Work and Conclusion

In this article, we have summarized a solution to automatically generate tests for
smart card functions. Assuming the validity of our approach, we have presented an
automatic test generator, AGATHA based on symbolic execution techniques. We
have also presented a way to design smart card functions with UML state diagram.
We have used AGATHA on our UML diagrams and exposed obtained results. This
first experience shows that it is possible to generate tests for smart card functions in
an automatic way. Surely, and this is our first objective, our approach has to be used
in a real context and in a complete development cycle of a smart card to completely
improve its efficiency. We could reasonably hope an increase of the coverage and
quality of test for each function taken separately.

Our approach is closed to the one developed in STG [22]. However, in STG, the
test purposes must be defined by an expert. In that case, we may obtain « clever » test
purposes but we have no way to measure the specification coverage. On the contrary,
AGATHA suggests a limited number of predefined test purposes linked to structural
or semantical coverage criteria. In that case, the set of generated tests allows to con-
trol with a great confidence the level of specification coverage.

LTG, the LEIRIOS test generator [26], uses classical structural coverage criteria
which limit the combinatory of generated test cases. AGATHA also proposes criteria
based on the analysis of the specification behaviours. Such criteria may be more accu-
rate when generating test cases but can also be more subject to combinatory explo-
sion. To avoid this problem, we are currently introducing some heuristics which al-
lows to reasonably limit the number of generated test cases.

The use of UML state diagrams to design smart card behaviours allows us to con-
sider more global behaviours that mix different smart card functions. Then we test the
card rigorously and monitor the results. We also could consider atypical (or negative)
tests that allow verifying smart card reactions outside of the admissible input domain
defined by the specification. In this context, we could ensure a complete validation of
a smart card.

Last point, as AGATHA is not only a test generator, we consider validating smart
card properties corresponding to a security policy as defined for example in common
criteria. In this context, we could ensure security properties of smart cards.

 Automatic Test Generation on a (U)SIM Smart Card 357

Acknowledgements

The authors would like to thanks Clément Simon for his precious help during the
development of this project. They also would like to thanks the CARDIS’06 review-
ers and David Montouroy for their proofreading and their constructive remarks.

References

[1] J.R. Abrial, The B-Book, Assigning programs to meanings, Cambridge University Press,
1996

[2] S. Behnia, H. Waeselynck, Test criteria definition for B models, in procs. of the World
Congress on Formal Methods (FM’99), vol.1708 of LNCS, pp.509-529, Toulouse
(France), 1999

[3] E. Bernard, B. Legeard, X. Luck, F. Peureux, Generation of test sequences from formal
specifications: GSM 11.11 standard case-study, The Journal of Software Practice and
Experience, vol.34.10 pp.915-948, 2004

[4] C. Bigot, A. Faivre, J.P. Gallois, A. Lapitre, D. Lugato, J.Y. Pierron, N. Rapin, Auto-
matic test generation with AGATHA, TACAS, 7-11 April 2003

[5] F. Bouquet, F. Peureux, Generation of functional test sequences from B formal specifica-
tions – Presentation and industrial case-study, in procs. of the 16th International Confer-
ence on Automated Software Engineering (ASE’01), pp.377-381, San Diego (USA),
November 2003

[6] F. Bouquet, B. Legeard, F. Peureux, E. Torreborre, Mastering Test Generation from
Smartcard Software Formal Models, in Procs of the International Workshop on Con-
struction and Analysis of Safe, secure and Interoperable Smart devices (CASSIS’04),
vol.3362 of LNCS, pp.70-85, Marseille (France), March 2004

[7] O. Carre, H. Martin, J.J. Vandewalle, A semi formal model of Java Card 2.1 in UML, in
1st Gemplus Developer Conference, Paris, France, June 21-22, 1999

[8] D. Clarke, T. Jéron, V. Rusu, E. Zinovieva, Automated test and oracle generation for
smart-card applications, in procs. of the International Conference on Research in Smart-
cards (e-Smart’01), vol.2140 of LNCS, pp.58-70, Cannes (France), September 2001

[9] E.M. Clarke, O. Grumberg, D.A. Peled, Model Cheking, The MIT press, 1999
[10] L.A. Clarke, A System to Generate Test Data and Symbolically Execute Programs, IEEE

Transactions on Software Engineering, vol.SE-4 n.3, PP.178-187, September 1976
[11] J. Dick, A. Faivre, Automating the generation and sequencing of test cases from model-

based specifications, in procs. of the International Conference on Formal Methods
Europe (FME’93), vol.670 of LNCS, pp.268-284, April 1993

[12] European Telecommunications Standards Institute, F-06921 Sophia Antipolis (France),
GSM 11.11 v7.2.0 Technical Specification, 1999

[13] European Telecommunications Standards Institute, F-06921 Sophia Antipolis (France),
GSM 11.17 v8.1.0 Technical Specification, 1999

[14] A. Faivre, C. Gaston, Test generation methodology based on symbolic execution for the
Common Criteria higher levels, in MoDeVa workshop, Montego Bay (Jamaica), October
2005

[15] J.C. Fernandez, C. Jard, T. Jéron, C. Viho, Using on the fly verification techniques for the
generation of test suites, Proceedings of CAV’96, LNCS 1102, Springer, New Bruns-
wick, n.46, pp.145-150, 1997

[16] J.P. Gallois, A. Lanusse, Le test structurel pour la vérification de spécifications de sys-
tèmes industriels, Génie logiciel n.46 pp.145-150, 1997

358 C. Bigot et al.

[17] J.P. Gallois, A. Lapitre, P. Lé, Analyse de spécifications industrielles et génération auto-
matique de tests, ICSSEA'99, CNAM-Paris, France, 8-10 décembre, 1999

[18] M. Hennessy, H. Lin, Symbolic bisimulations, Theorical Computer Science, Vol.138
pp.353-389, Elsevier, 1995

[19] R. Hierons, Testing from Z specification, The journal of Software Testing, Verification
and Reliability, vol.7 pp.19-33, 1997

[20] International Union of Telecommunications, Langage de programmation – Langage de
Description et de Spécification du CCITT – Norme 34, Recommandation UIT T Z.100,
March 1993

[21] M. Ishisone, T. Sawada, Brute: brute force rewriting engine, GAIST, http://www.theta.
theta.ro/ cafeobj, January 2001

[22] B. Jeannet, T. Jéron, V. Rusu, E. Zinovieva, Symbolic Test Selection Based on Approxi-
mate Analysis, pp. 349-364, TACAS’05, Edinburgh (UK), April 2005

[23] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, D. Wonnacott, The Omega Li-
brary version 1.1.0, University of Maryland, http://www.cs.umd.edu/projects/omega,
November 1996

[24] J.C .King, Symbolic Execution and Program Testing, communications de l’ACM, vol.19
n.7, pp.385-394, July 1976

[25] A. Lapitre, Procédure de réduction pour les systèmes à base d'automates communicants :
formalisation et mise en oeuvre, Phd Thesis, University of Paris XI, in collaboration with
the CEA, December 2002

[26] LEIRIOS tool, http://www.leirios.com/index.php
[27] H. Lin, Symbolic Transition Graph with Assignment, CONCUR’96, Springer-Verlag,

LNCS, Pise (Italie), August 1996
[28] D. Lugato, C. Bigot, Y. Valot, Validation and automatic test generation on UML models:

the AGATHA approach, STTT (Software Tools for Technology Transfer), vol.5 n.2
pp.124-139, March 2004, Springer

[29] H. Martin, L. du Bousquet, Automatic test generation for Java-Card applets, in Java card
Workshop, Cannes (France), September 2000

[30] OMG, Unified Modelling Language 2.0, OMG, Rapport formel/2003-04-01, January
2003

[31] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglestorfer, S. Kriebel, K.Scholl, Model-
based test case generation for smartcards, in procs. of the 8th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS’03), vol.80 of ENTCS, Trond-
heim (Norway), June 2003

[32] J.Y. Pierron, J.-P. Gallois, E. Fievet, A. Lapitre, D. Lugato, Validation de systèmes in-
dustriels par le test symbolique sur spécification STATEMATE, ICSSEA'00, CNAM-
Paris, France, December 5-8, 2000

[33] J.Y. Pierron, Définition de critères de sélection de tests fonctionnels pour la validation
des systèmes électroniques embarqués, Phd Thesis, University of Evry, France, in colla-
boration with the CEA and PSA, April 2003

[34] N. Rapin, Validation de spécification à base d’automates par des techniques de déplia-
ges et d’exécution symbolique, Phd Thesis, University of Evry (France), in collaboration
with the CEA and Ligeron S.A., July 2004

[35] P. Wolper, P.Godefroid, Partial-Order Methods for Temporal Verification, procs. of
CONCNUR’93, pp.233-246, Hildesheim (Belgium), August 1993

[36] S. Yovine, Kronos: A verification tool for real time systems, Springer International Jour-
nal of Software Tools for Technology Transfer, vol. 1 n.1/2, October 1997

Author Index

Akishita, Toru 151
Ali, Asad M. 91
Almenárez Mendoza, Florina 62
Avoine, Gildas 289

Bakdi, Idir 16
Bigot, Céline 345
Boscher, Arnaud 252

Calmels, Benôıt 237
Canard, Sébastien 237
Castellà-Roca, Jordi 48
Castelluccia, Claude 289
Chetali, Boutheina 313
Courbot, Alexandre 329

Dandjinou, Mesmin 165
Dı́az Sánchez, Daniel 62, 78
Domingo-Ferrer, Josep 48

Faivre, Alain 345
Fischer, Jean-Bernard 263
Fournier, Jacques 32

Gaston, Christophe 345
Gershenfeld, Neil 222
Girault, Marc 237
Grimaud, Gilles 329

Han, Dong-Guk 119
Hongo, Sadayuki 105

Kim, Soo-Cheol 300
Kim, Sung Kwon 300
Kim, Tae Hyun 119

Lim, Jongin 119
Lohmann, Tobias 278
Lu, HongQian Karen 192

MacDonald, John A. 1
Maŕın Lopez, Andrés 62
Markantonakis, Konstantinos 1

Mart́ınez Madrid, Natividad 78
Mayes, Keith 1
Moore, Simon 32
Mori, Kensaku 105

Naciri, Robert 252
Nguyen, Quang-Huy 313

Oikonomakos, Petros 32
Okeya, Katsuyuki 119

Pavlova, Mariela 329
Phan, Raphael C.-W. 135
Piret, Gilles 222
Pöhls, Henrich C. 179
Posegga, Joachim 179
Prouff, Emmanuel 263

Quisquater, Jean-Jacques 222

Ruland, Christoph 278

Sánchez Sánchez, Juan Jesús 78
Schaffer, Martin 206
Schartner, Peter 206
Schneider, Matthias 278
Sebé, Francesc 48
Seepold, Ralf 78
Sibert, Hervé 237
Simon, Julien 345
Sirett, William G. 1
Standaert, François-Xavier 222

Takagi, Tsuyoshi 151
Terada, Masayuki 105

Urien, Pascal 165

Vandewalle, Jean-Jacques 329
Vigo Segura, José Alberto 78

Yen, Sung-Ming 135
Yeo, Sang-Soo 300

	Front matter
	Chapter 1
	Introduction
	Design Requirements
	ETSI TS03.48 Security Mechanism
	SIM Application Toolkit
	MIDP2.0 J2ME Runtime Environment
	UICC Java Card SIM Cards

	The Proposed Scheme
	Installation Protocol
	Execution Protocol
	Proof of Concept Model
	Conclusion
	Appendix 1 -- Psuedo Java Code

	Chapter 2
	Introduction
	State of the Art
	Single ID Cards
	Multi-application Smart Cards

	Security Requirements
	New Approach
	Roles
	Architecture
	Involved Key Pairs
	How It Works
	Who Trusts Whom?
	Discussion

	Conclusions

	Chapter 3
	Introduction
	The Need for Secure Displays
	Display Technology and TFTs
	Recent TFT Applications

	Developing Cryptography on Poly--Si TFTs
	The DES Coprocessor
	A Vector Processor for Elliptic Curve Cryptography

	Low-Level Design Considerations
	Conclusion

	Chapter 4
	Introduction
	Contribution and Plan of This Paper

	State of the Art
	Security Requirements
	Architecture
	The Protocols
	Player Registration
	Increase/Decrease Credit
	Start a Game
	Bet Placing
	Deck Shuffling
	Card Draw
	Card Discarding
	Card Opening

	Security Analysis
	Conclusions

	Chapter 5
	Introduction
	Problem Domain
	Attribute Certificates

	The Cryptographic APIs
	PKCS#11: Cryptoki
	PKCS#15 and JCCM
	CryptoAPI
	CSPs: Cryptographic Service Providers
	Certificate Manager
	Bridging Microsoft CryptoAPI to PKCS#11

	Prototype
	Trust Manager
	Public Key Certificate Manager
	Attribute Certificate Manager
	Key Management and Ciphersuite

	Related Work
	Conclusions and Future Work

	Chapter 6
	Introduction
	State of the Art
	Smart Cards
	Java Cards
	OSGi
	Related Work

	Integration of OSGi and Smart Card
	First Approach: MUSCLE Applet Loader Integration into an OSGi Gateway
	OCFBundle Description

	Applications
	Environment’s Customization

	Conclusion and Future Work
	References

	Chapter 7
	Introduction
	Network Smart Card
	Motivation
	Architecture

	Current Authentication Methods
	Password
	Automated Password
	Conventional Smart Cards
	OTP Tokens
	Server Authentication

	Cardholder Verification
	Zero Footprint Authentication
	Authentication Details
	Simple Ideal Case
	The Real World
	The Solution
	A Complete Example

	Comparison
	Progress
	Conclusion
	References

	Chapter 8
	Introduction
	Fair Exchange
	Reducing Fair Exchange to NBAC
	Definition of NBAC
	Reducing Fair Exchange to NBAC Using Smartcards
	Problems in NBAC-Based Approach

	Optimistic NBAC Protocol
	System Model
	Protocol

	Discussions
	Analysis of NBAC Properties
	Feasibility
	Limitation
	Comparison to Existing Smartcard-Based Exchange Protocols

	Conclusion

	Chapter 9
	Introduction
	Contributions of This Paper

	Tools for Power Analysis
	Discernment Point in ZEMD Attack
	Signal-to-Noise Ratio

	Proposed Attack
	Notations
	SNR for Probabilistic Appearance of Discernment Point
	Properties of All BSD Type Countermeasures
	Proposed Attack
	Simulations

	Enhancing the Proposed Attack
	Attack for Right-to-Left Algorithm
	RPA Attack

	Comparison
	Concluding Remarks
	Several Proofs

	Chapter 10
	Introduction
	Attack Models: Block Cipher Cryptanalysis vs Side Channels
	Outline of This Paper

	The AES
	Amplified Side-Channel Attacks
	Integrating Block Cipher Cryptanalysis with Side Channels

	Previous DFAs on the AES and Countermeasures
	Previous DFAs on the AES
	Comments on Countermeasures Against DFA

	Amplified Differential Fault Attacks on the AES
	Square-DFA on the AES
	Impossible-DFA on the AES

	Concluding Remarks
	Integrated Block Cipher Cryptanalysis

	Chapter 11
	Introduction
	Elliptic Curve Cryptosystems and Power Analysis
	Elliptic Curve Cryptosystems
	Power Analysis Attacks and Countermeasures
	Unified Addition Formulae
	Elliptic Curve with Montgomery-Form

	Differential Power Between Multiplication and Squaring
	Montgomery Modular Multiplication
	Structure of a Multiplier
	Biased Signal Transition Probability in a Multiplier
	Simulation Result

	Application to Elliptic Curve Cryptosystems
	Attack to Unified Addition Formulae
	Attack to Elliptic Curve with Montgomery-Form

	Conclusion

	Chapter 12
	Introduction
	EAP Java Cards Issues
	Data Transfer
	Cryptographic Operations
	Software Overhead
	Performances Issues

	OpenEapSmartcard
	Experimental Results
	With EAP-TLS
	With EAP-AKA

	EAP Server
	The Trusted EAP Module - TEAPM
	Conclusion
	References

	Chapter 13
	Introduction
	Paper Outline

	Network Architecture
	Emerging ``Networked'' Smartcard
	Towards a Firewall on a Networked Smartcard
	Routing Packets Through a Smartcard

	Firewall Design
	Smartcard Security Features
	Towards Running Proxy Code on a Networked Smartcard

	Security - Assumptions and Gains
	Security Assumptions
	Security of Firewall on Smartcard

	Possible Applications
	Portable Firewall Box
	Managed Firewall for Mobile Access or Personal Use
	Secure Remote Network Access

	Related Work
	Conclusion and Outlook

	Chapter 14
	Introduction
	Related Work
	Method Overview
	Network Smart Cards
	Filter Rules
	Software Models

	ISR Packet Filtering
	Constraints
	Packet Filtering

	Pre-Memory-Allocation Packet Filtering
	Protocol Stack Packet Filtering
	Implementations
	Conclusions
	References

	Chapter 15
	Introduction
	Three Authentication Protocols
	Core Components
	Selected Applications

	Preliminaries and Notation
	The Discrete Logarithm Problem Family
	ElGamal's Cryptosystem and Signature Scheme
	ElGamal Threshold Decryption
	Locally Generated Globally Unique Pseudorandom Numbers
	Unique One-Time Pseudonyms
	Used Zero-Knowledge Proofs

	On the Linkability of the Used One-Time Pseudonyms
	The Authentication Scheme
	Setup
	User Registration
	Establishing a Batch of Authentication Data
	Unilateral Anonymous Authentication
	Shared Revocation

	Efficiency and Pre-computation
	Security Analysis
	Prover's Point of View
	Verifier's Point of View

	Conclusion and Future Research

	Chapter 16
	Introduction
	Specifications
	Parameters and Definitions
	Basic Operations
	The Round and Key Round
	The Complete Cipher

	Security Analysis
	Design Properties of the Components
	Resistance Against Known Attacks
	Suggested Number of Rounds

	Performance Analysis
	Conclusion

	Chapter 17
	Introduction
	Tags and Privacy
	Different Needs for Different Uses
	Previous Work on Privacy in RFID Tags

	Outline of the General Scheme
	Basic Tools
	Cryptographic Primitives
	Authentication of the Reader

	General Scheme
	Data Elements in the RFID Tag
	The General Scheme Embedded in the RFID Tag
	Security Arguments

	Applications
	Detection
	Authentication
	Identification

	Conclusion

	Chapter 18
	Introduction
	Montgomery Multiplication
	RSA
	Classical Method for RSA
	Our New Method for RSA

	CRT RSA
	Traditional Method for CRT RSA
	Our New Method for CRT RSA

	GQ2
	Description
	Our New Method for GQ2

	ECDSA Signature
	Description
	First Method
	Second Method

	Conclusion

	Chapter 19
	Introduction
	Group Signature Schemes in the Literature
	Introduction to the Notion of Group Signature
	Group Signature for Static Groups
	Group Signature for Dynamic Groups
	The Problem of Member Revocation in Dynamic Groups

	Group Signature Schemes for Smart Cards
	Smart Card Approach: A Step by Step Construction
	Group Signature Schemes of Canard and Girault

	Our Proposal
	Group Signature: A Question of Timing
	Off-Line Group Signatures and Risk Management
	Discussion About the New Proposal

	Conclusion

	Chapter 20
	Introduction
	Estimation of the Available Energy
	Estimation of a Tags Power Consumption
	Cryptographic Implementations
	Analysis of RFID Cryptography
	Conclusion
	References

	Chapter 21
	Motivations
	Related Work
	Noisy Tag Protocol (NTP)
	Background
	Bit-Based Protocol, Version 1
	Bit-Based Protocol, Version 2
	Code-Based Protocol

	Applications
	E-Passports
	Libraries

	Discussion and Security Analysis
	NTP Purpose
	NTP Security

	Chapter 22
	Introduction
	Related Work
	The RFID System for MARP
	Mobile Agent for RFID Privacy Protection
	Term Definition
	Initial Setup Phase
	Privacy Protect Phase(Tag Sleep Mode)
	Authentication Phase(Tag Wake Mode)
	Main Scheme
	Overall Scenario Using MARP

	Analysis
	Conclusions

	Chapter 23
	Introduction
	Refining Informal Specification
	Functional Specification Model
	High-Level Model

	Low-Level Model of a JCVM Implementation
	Frame Stack
	Java Card Methods
	Native Methods

	Correctness of Refinement
	FSP to HLD Refinement
	HLD to LLD Refinement
	General Proof Scheme
	Refinement Hypotheses

	C Implementation vs. Coq Low-Level Model
	Related Work
	Concluding Remarks

	Chapter 24
	Introduction
	Java and Ahead-of-Time Compilation
	Ahead-of-Time and Just-in-Time Compilation
	Java Runtime Exceptions
	Related Work

	Optimizing Ahead-of-Time Compiled Java Code
	JML Annotations
	Methodology for Writing a Specification Against Runtime Exceptions
	Compiling JML Annotations into BCSL Specifications
	Generation of the Verification Conditions
	From Program Proofs to Program Optimizations
	More Precise Optimizations

	Experimental Results
	Methodology
	Results

	Limitations
	Multi-threaded Programs
	Dynamic Code Loading
	Implications Regarding Security

	Conclusion

	Chapter 25
	Introduction
	AGATHA, an Automatic Test Generator
	General Principles
	Main Principle: Symbolic Execution
	Further Techniques
	Test Extraction

	Application to (U)SIM Smart Card
	A UML Representation for (U)SIM Smart Card Tests
	A UML Representation for Smart Card Specification
	Automatic Test Generation for UML Smart Card Model

	Related Work and Conclusion
	References

	Back matter

