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Designing Economic Mechanisms

A mechanism is a mathematical structure that models institutions through
which economic activity is guided and coordinated. There are many such insti-
tutions; markets are the most familiar ones. Lawmakers, administrators, and
officers of private companies create institutions in order to achieve desired goals.
They seek to do so in ways that economize on the resources needed to operate the
institutions and that provide incentives to induce the required behavior. This
book presents systematic procedures for designing mechanisms that achieve
specified performance and economize on the resources required to operate the
mechanism, i.e., informationally efficient mechanisms. Our systematic design
procedures can be viewed as algorithms for designing informationally efficient
mechanisms. Most of the book deals with these procedures of design. Beyond
this, given a mechanism that implements a goal function in Nash equilibrium,
our algorithm constructs a decentralized, informationally efficient mechanism
that implements that goal function in correlated equilibrium.
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Introduction

This book presents an approach to the design of decentralized, informa-

tionally efficient economic mechanisms. We provide a systematic process by

which a designer of mechanisms, who is presented with a class of possible

situations by a client (perhaps a private agent, or a government) and with

the client’s aims and objectives, can produce informationally efficient decen-

tralized mechanisms that achieve the client’s aims in that class of situations.

H I S T O R Y

Formal treatment of economic mechanisms and mechanism design began

with Hurwicz’s paper (1960). The background against which that paper was

set included a debate on the comparative merits of alternative economic

systems. The main participants in that debate included Lange (1938) and

Lerner (1937, 1944) on one side, and von Mises (1920, 1935) and Hayek

(1935, 1945) on the other. Hurwicz’s paper provided for the first time a for-

mal framework in which significant issues in that debate could be addressed.

In a subsequent paper, Hurwicz (1972) treated the formal theory of mecha-

nisms again. The problem is to select a mechanism from a set of alternative

possible mechanisms. A mechanism is viewed as a value of a variable whose

domain of variation is a set of possible mechanisms. Informational tasks

entailed by the mechanism imply costs in real resources used to operate the

mechanism (as distinct from the resources used in economic production

and other real economic activities). Desiderata by which the performance

of a mechanism is evaluated also come into play. Hurwicz recognized the

fact, emphasized in the earlier debate, that information about the economic

environment, the facts that enable or constrain economic possibilities, such

as resource endowments and stocks of goods inherited from the past, and

individuals’ preferences for goods, is distributed among economic agents.

1
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2 Introduction

It is obvious, but nevertheless worth saying, that those who do not directly

observe some aspect of the prevailing environment do not have that infor-

mation to guide their actions unless it is communicated to them by someone

who does directly observe it.

Hurwicz introduced a formal model of a process of communication that

incorporated this constraint – a dynamic message exchange process modeled

after the Walrasian tatonnement. He used the term privacy (suggested by the

inability of one to observe the private information of another) to refer to this

restriction. His 1960 model includes as a formal element a language used for

communication. The elements (words) used in that language are resource

flow matrices which model production and exchange of commodities among

the agents. He imposed restrictions on the language and on the functions

used to model the communication process in order to generalize properties

of the competitive mechanism that are deemed desirable.1

Hurwicz (1972) also recognized that dispersion of private information

among economic agents can create incentive problems. He formalized this

class of problems by introducing game forms as mechanisms, and also the

concept and analysis of incentive compatibility of mechanisms.

Although the original formulation includes a tatonnement-like exchange

of messages, attention soon focused on statics, that is, on the task of recog-

nizing the equilibria of message exchange processes, rather than on the task

of finding equilibria. In this literature, the verification scenario isolates the

problem of recognizing equilibrium, or solution, from the process of finding

equilibrium. In a verification scenario each agent reacts to an announced

message by saying yes or no. The responses verify a proposed equilibrium

when all agents say yes. (In the language of computer science a verification

scenario is a nondeterministic algorithm.)

Mount and Reiter (1974) considered mechanisms that realize a given goal

function. (Realize is the term used to refer to a situation in which the out-

comes of the mechanism are precisely those specified by the goal function

when agents do not attempt to use their private information strategically.

The term implement is used when agents behave strategically.) Defining

informational decentralization in terms of the structure of the language,

and of related restrictions on permissible messages, as is done in Hurwicz

(1960) creates two classes of mechanism: decentralized and not decentral-

ized. Instead, Mount and Reiter provided a mathematical characterization

1 Marschak and Radner (1971) and Radner (1972a, 1972b, 1972c) took a different approach
to mechanism design, called theory of teams. This approach incorporates uncertainty about
environments, and about an agent’s knowledge about the knowledge of other agents.
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of privacy-preserving message correspondences, and a concept of the infor-

mational size of a space. This formalization requires all mechanisms to be

privacy preserving. It allows privacy-preserving mechanisms to be compared

according to the informational sizes of their message spaces, and thereby cre-

ates an ordering of mechanisms by the informational size of their message

spaces.2

The Mount–Reiter concept of the informational size of spaces (and

other related concepts) applies to finite spaces, and to continua, includ-

ing Euclidean spaces and more general topological spaces. They applied it

in the 1974 paper to the competitive market mechanism in a class of pure

exchange environments, a class in which the message space is Euclidean.

Thus, an agent in a message exchange process could send signals based

on his private information to another agent, at a cost that is increasing in

the size of the messages. In some cases, that communication might require

unfeasibly large messages. (This observation also applies to verification sce-

narios, with suitable adjustments.) This formulation produces an ordering

of mechanisms, instead of classifying them as decentralized and not decen-

tralized. Since then, the term informationally decentralized has come to be

used for mechanisms whose communications respect privacy, and the size

of the message space is used to indicate the real costs of communication.

Mount and Reiter assumed, as in Hurwicz, that the initial distribution of

information about the prevailing environment is given, and, as in Hurwicz,

required that privacy be respected.

The mathematical characterization of privacy-preserving mechanisms

(now called decentralized mechanisms) defines a structure of product sets in

the space of environments (the parameter space). The relationship between

product structures in the parameter space and privacy-preserving (hence-

forth decentralized) mechanisms is central to the design of mechanisms.

As already noted, the set of mechanisms from which a mechanism can

be chosen is a formal element in the Hurwicz approach. One way to think

of the problem is to construe the choice of economic organization as a

problem of constrained optimization. In this view, there is a set of alterna-

tive mechanisms, each required to satisfy certain structural constraints (for

instance, privacy preservation), a set of environments, an objective func-

tion (the goal function), and, for each candidate mechanism, the real costs

(in resources) of operating that mechanism. The problem is to find one

or more mechanisms in the set of available mechanisms whose outcomes

2 For finite spaces, Euclidean spaces and topological spaces that have dimension this ordering
is complete.
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in each environment match those specified by the goal function for that

environment, and also minimize, in a vectorial sense, the real costs of oper-

ating the mechanism. But generally the set of mechanisms is not known.

Some elements in this set might be known mechanisms, for instance, the

competitive market mechanism, or one or another version of central plan-

ning mechanisms; but this short list surely does not exhaust the universe of

conceivable mechanisms. Therefore we must seek a method, or methods,

of discovering, or constructing, the elements of that set that are capable of

realizing the given goal function.

This task requires that, among other things, we identify the determinants

of the real costs of operating each mechanism. Resource costs have been

identified as generated by:

� The need for agents to observe the part of the environment to which they

have direct access. The precision with which agents must perform this

observation determines part of the real cost of operating the mechanism.
� The amount of communication required by the mechanism. The infor-

mational size of the message space required has been taken as an indicator

of this cost.
� The information processing, including computation, required for each

agent to decide whether to say yes or no to an announced message. This

dimension of cost is studied in Mount and Reiter (2002) and is not treated

formally in this book, although it is commented on in places.
� The losses that arise because of deviation from full realization of the

specified goals when agents behave strategically.
� Enforcement of rules of the game, when agents behave in ways that

violate those rules.

A second formal element is the set of environments under consideration,

and the goal function defined on that set of environments. More generally,

goals can be formalized by a correspondence. Analysis in which goals are

represented by a correspondence usually reduces to analysis of selections

(functions) from that correspondence. In this book we restrict attention to

goal functions. Goals can arise in a wide variety of contexts. Some familiar

ones arise in the context of neoclassical economic theory. Some arise in the

context of organizations that are themselves part of a larger economic sys-

tem, for example, firms, government agencies, nonprofit entities, and other

institutions. Legislation can define socio-economic or political-economic

goals. These considerations give emphasis to the need for systematic meth-

ods of discovering or designing new mechanisms, in a variety of formal

(mathematical) settings.
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Reiter realized in 1977 that the mathematical condition (given in Mount

and Reiter 1974) that characterizes privacy-preserving message correspon-

dences can be used to design decentralized mechanisms. He showed the

relationship between a product structure, or an indexed production structure,

and decentralized mechanisms in examples with two different goal func-

tions. This discovery has led to an approach to systematic design of decen-

tralized mechanisms, specifically, to the discovery of an algorithm (with

variants) that accepts a finite set of agents, a factored environment space,

and a goal function, and puts out one or more informationally decentralized

mechanisms that realize the goal function. That is, the algorithm’s output

is a mechanism whose output in each environment recognizes the outcome

specified by the goal function for that environment.

A decentralized mechanism that realizes a given goal function (it is

implicit that the set of agents and the factorization of the space of environ-

ment are given) is itself an algorithm. It can be visualized as a machine that

accepts as input an environment, and a possible value of the goal function at

that environment, and produces as its output either yes or no. Yes, if the can-

didate value of the goal function is the one prescribed by the goal function,

and no otherwise. This machine is presented graphically in Figure 1.

Figure 1. Machine 1: Nondeterministic algorithm.

An algorithm for designing such mechanisms can also be represented

graphically as a machine that accepts as input a set of agents, a (factored)

set of environments, and a goal function and produces as output a machine

of the kind shown in Figure 1– a decentralized mechanism that realizes the

given goal function. This second machine is shown in Figure 2.
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Figure 2.3 Machine II: Algorithm for producing type I Mechanisms.

Reiter presented these ideas to Don Saari, who then suggested using meth-

ods of calculus on manifolds, including methods from differential geometry,

and the theory of foliations, specifically the Frobenius theorem on integrable

distributions (see Warner 1971), to develop an approach to mechanism the-

ory based on parameter-indexed product structures. Reiter also discussed

these ideas with K. Mount, who helped him clarify certain mathematical ele-

ments. The research program opened by these ideas led first to joint work by

Hurwicz, Reiter and Saari (1980). Steven Williams, at that time a student of

Saari, provided a proof of a conjectured extension of the Frobenius theorem

to products of distributions and the corresponding product integrable dis-

tributions. Subsequently, Saari (1984) published a paper using a somewhat

different mathematical apparatus. These approaches to mechanism design

in one way or another entail solving systems of partial differential equations.

Steven Williams followed the calculus on manifolds approach. His work is

presented in a forthcoming book (Communication in Mechanism Design: A

Differential Approach. Cambridge University Press) that extends and applies

that approach.

We (Hurwicz and Reiter) undertook to develop systematic methods of

designing decentralized mechanisms that do not rely on the heavy machin-

ery of calculus on manifolds, or the theory of foliations, and that do not

3 Machine II is shown with a dial indicating that there are several settings of the machine.
It is shown in Chapters 2 and 3 that the order in which we carry out certain steps of the
algorithm for designing mechanisms can result in different machines of Type I.
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require solving partial differential equations. The results of that program are

reported in this book. This book presents two basic algorithms called rect-

angles method and condensation method, respectively. This book presents

several versions of the rectangles method algorithm in different mathemati-

cal settings. The methods presented here use more elementary mathematics

to construct indexed product structures and from them construct informa-

tionally efficient decentralized mechanisms. Here informational efficiency

includes observational efficiency and communication efficiency, with limited

attention to a form of computational complexity called equation efficiency

when environmental parameters are real numbers, and relations are given

by equations.

Going beyond this, we consider mechanisms that are incentive compati-

ble, specifically mechanisms that implement a given goal function in domi-

nant strategies, and also mechanisms that implement a goal function in Nash

equilibrium. We apply our algorithms to modify a given mechanism that

implements a given goal function (in dominant strategies or in Nash equi-

librium) so that the modified mechanism is both informationally efficient

and implements that goal function.

We present, for the case of finite environment spaces, an algorithm that

modifies Nash-implementing mechanisms to make them informationally

efficient, while preserving their incentive properties. It seems clear that the

methods used in the finite case generalize to the case of Euclidean environ-

ment spaces; we present an example, but we have not carried out a general

analysis.

A G U I D E T O T H E C H A P T E R S

Chapter 1 introduces the basic ideas of our process for constructing a decen-

tralized, informationally efficient mechanism whose outcomes match those

specified by a given goal function defined on a specified class of factored

environments. In this chapter these ideas are presented mainly with the

help of two examples. In the first, we use a pure exchange environment –

two goods, two agents with quasi-linear utility functions – to present the

ideas of our approach in a familiar and concrete setting in which relations

are modeled by equations. The discussion is relatively informal. It demon-

strates how a known mechanism, the competitive market mechanism, can

be obtained as the output of our design procedure, and also shows how that

procedure can be used to construct other mechanisms, not the customary

one. The analysis of this example is developed in Chapter 2. The second

example is one in which logging in a National Forest is under the control
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of an agency of the government and so is subject to political pressures. This

situation is modeled set-theoretically. This example introduces the analysis

in Chapter 3.

Chapter 1 contains an informal discussion of ideas about resource costs of

operating a mechanism that arise from information processing requirements

associated with that mechanism. This chapter also contains a brief discussion

of game forms and strategic behavior.

In Chapter 2, the primary focus is on the case in which economic envi-

ronments and goal functions are modeled by systems of equations. The goal

function is typically assumed to be smooth, and to have a nonzero Jacobian.

The Walrasian goal function is used several times in simple examples to

illustrate the ideas and methods presented in this book, and to provide a

continuing connection with received economic theory. Finite examples are

also used to illustrate some ideas. The methods of analysis and the con-

structions presented in this chapter use mathematics that should be familiar

to an economics graduate student. Our aim here is to make the ideas and

the analyses accessible to a broad range of economists, including those who

work in applied fields, and to do this without oversimplifying the ideas or the

processes of construction. The pace and formality of our presentation reflect

these objectives. Examples are used freely to illustrate our techniques. For

most of this chapter the examples discussed stay close to familiar economic

models, and to mathematical techniques familiar to economists. However,

toward the end of the chapter, where the condensation method is presented,

the exposition unavoidably becomes somewhat more technical.

The condensation method is based on a mathematical structure presented

in Chapter 4, specifically on Theorem 4.4.6, which is stated and proved in that

chapter. The mathematics there is a bit more complex, although the methods

are still those of multivariable calculus, and so are not very different from

the mathematics used elsewhere in Chapter 2.

We include the entire paper (Mount and Reiter 1996) in Chapter 4 rather

than just Theorem 4.4.6, because that paper addresses subjects fundamental

to mechanism design and informational efficiency that arise in the mathe-

matical setting of Chapter 2, but are not treated in full formality elsewhere

in this book. In Chapter 2 an agent evaluates a function that depends on

the goal function to be realized. The arguments of the goal function are

parameters that specify the environment. An agent’s function has as its

arguments some environmental parameters and some additional message

variables. The function to be evaluated may be given by one equation, or

several. The more the variables that appear in ask agent’s equation system,

the more difficult is his task. The number of environmental parameters
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in ask agent’s equation system depends on the number of environmental

parameters related to that agent that are arguments of the goal function.

But reality does not present us with a set of environmental parameters, and

a goal function the way a rose bush presents us with a rose. The parameter

space and goal function are the result of modeling choices. Two differ-

ent modelers might produce two different mathematical expressions that

model the same situation, but do not necessarily do so equally efficiently

from the standpoint of the costs implied by the modeling choice. The num-

ber of variables that are arguments of the functions that form the model

determine with other elements the resource costs required to operate the

mechanism.

The introduction to Chapter 4 contains a simple example in which one

modeling choice results in a function of two variables whose partial deriva-

tives with respect to those variables in not zero, but in which there is another

way to set up the space and function so that the same relation between the

dependent and independent elements, the same abstract function, can be

written as a function of one variable. The number of variables in the model

affects the observation of the environment that is required, the amount

of communication that is required, the number of equations that must be

dealt with, and more generally the complexity of the computations that are

entailed; it is desirable to know how many variables, and which ones, the

underlying abstract function really depends on, as distinct from the number

it appears to depend on.

There is a body of literature in computer science that analyzes the question

“How many variables does a function written as a function of N Boolean

variables really depend on?” That is: “Can a function of N Boolean variables

be written as a function of fewer than N such variables?” (References are

cited in Chapter 4.) This literature presents a procedure that yields the fewest

variables possible for a given function to be evaluated. Reducing the number

of variables reduces the computational complexity of evaluating that func-

tion. It also has an effect on other dimensions of informational efficiency,

for instance, the number of equations that are required to represent the

function.

To answer the same question is a much more subtle and complex task in the

case of smooth functions defined on Euclidean spaces, and the methods that

work in the discrete case do not work in the continuous case, the case dealt

with in Chapter 2. Mount and Reiter (1996) reprinted here as Chapter 4

presents new and different methods to answer the question: “How many

variables does a smooth function of N variables really depend on?” The

results and methods presented in Chapter 4 are basic to the analysis of
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several kinds of complexity. This topic is discussed further in the section of

this introduction that deals with Chapter 4.

In Chapter 3 our basic approach to mechanism design is developed using

the language of sets and functions, that is, without requiring that sets and

functions be represented by equations in real variables, and without regu-

larity conditions such as continuity or differentiability. Consequently, this

development is in a sense more general than that in Chapter 2. It covers

cases in which the set of environments is finite, or infinite but discrete, as

well as cases in which sets are continua. This added generality brings with it

a significant benefit. A problem of mechanism design can present itself in a

setting where it is difficult to model environments and goals using equations

that are sufficiently regular to permit the methods presented in Chapter 2 or

4 to be used. For instance, in some situations the relevant environments and

goals are designated in legislation written in legal language. In such a case,

set-theoretic language might be a better tool for modeling the situation,

whereas it might be quite difficult to capture its essential elements in a for-

malization of the kind needed to apply the methods presented in Chapter 2

or 4. Furthermore, an analysis using set-theoretic language sometimes leads

to a clearer view of the essentials.

With these considerations in mind, Chapter 3 begins with a brief discus-

sion of two examples intended to illustrate the range of possible situations

that might be presented for analysis. These examples are drawn from Amer-

ican economic history. After presenting the set-theoretic methods of mech-

anism design in Sections 3.1 through 3.7, Section 3.8 returns to the National

Forest example presented in Chapter 1, Section 1.9. This example is used

first to illustrate the informational aspects of our approach to mechanism

design, and then in Section 3.9.1; to exemplify the conversion of a decentral-

ized informationally efficient mechanism into one that implements the goal

function in dominant strategies, and is decentralized and informationally

efficient.

In Section 3.9.2 we consider strategic behavior modeled by game forms

that implement a given goal function F in Nash equilibrium. For a given a

goal function F that satisfies “Maskin monotonicity” and “no veto power,”

we present a two-stage procedure – an algorithm – for constructing a game

form that Nash implements F and whose equilibrium message correspon-

dence generates an informationally efficient covering of the underlying space

of environments – the parameter space. That is, we construct an informa-

tionally efficient decentralized mechanism that Nash implements the goal

function.

Section 3.9.2 is written by Reiter and Adam Galambos.
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The mathematics used in Chapter 3 is not esoteric. The theory of infor-

mational efficiency is presented more formally than in earlier chapters, and

the theorems that relate message space size and coarseness of the covering

of the parameter space are presented in detail. The methods and techniques

presented in Chapter 3 will, we hope, provide guidance to modeling in appli-

cations that, on their face, seem not to lend themselves to formalization.

Chapters 2 and 3 can be read in either order.

Chapter 4 is a slightly reedited version of Mount and Reiter (1996). We

reprint it here for two reasons. First, it contains the theorem, and the mathe-

matical structure needed to state and prove it, that is the basis for the conden-

sation method of constructing decentralized mechanisms that is presented

in Chapter 2.

Second, it sheds light on an aspect of the theory of decentralized mecha-

nisms that is interesting in itself. It has been intuitively clear that the com-

munication complexity and the computational complexity of a function

each depend in different ways on the number of variables on which that

function depends. The number of variables on which a function depends is

an elusive concept, as the beginning sections of Chapter 4 make clear. Arbib

and Spira have given a lower bound on the complexity of a function when

the domain of that function is a finite set (Arbib 1960, Spira 1969, Spira and

Arbib 1967.) The concept of complexity they use is the one commonly used

for computations performed by a finite state automaton. In obtaining their

lower bound they use a concept that corresponds to the number of Boolean

variables on which the function being computed actually depends, as dis-

tinct from the variables that appear in the mathematical expression used to

define the function – the variables on which it might appear to depend. In

the finite case the number of variables is easily counted. But their methods

do not extend to functions between infinite sets, or continua. In our cases,

where a goal function can have a more general space as its domain or range,

the counting procedure is replaced by construction of a universal object in

a category. The category is the category of encoded revelation mechanisms

that realize the function whose complexity is being analyzed. The universal

object is a minimal encoded revelation mechanism called an essential reve-

lation mechanism. The dimension (when it exists) of the message space of

the universal object is the number of variables on which the function being

analyzed really depends. The concepts mentioned in this paragraph are all

defined and discussed in Chapter 4.

The analysis in Chapter 4 makes extensive use of the concept of a prod-

uct structure. As noted above, a product structure, for a given set of eco-

nomic environments and a goal function, captures formally the concept of
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informational decentralization, or privacy preservation. The universal ele-

ment in the category of encoded revelation mechanism extends a familiar

property of functions that do not satisfy privacy preservation to the case

where privacy preservation is required. Briefly, this is as follows. Consider

a space � of functions from some space, U, to the space of contour maps

of the functions in �. For instance, F and G are elements of �, where

F : X → Y and G : W → Z. Let the mapping � associate to each element

of � its contour map; thus, for any element F in �, � (F ) = X/F . The

assertion is that the mapping � determines a diagram for each function F

in �, in which

� F : X → Y is represented by a horizontal line at the top of the diagram,
� there is a function g : X → �(F ) = X /F , and
� there is a function ρF : �(F ) → Y, such that F (x) = ρF ◦ g (x).

Economists are familiar with this structure; when F is a utility function

then � (F ) = X/F is its indifference map. Furthermore, a function can be

defined that attaches to each level set in the indifference map, X/F , the

utility that F assigns to that level set. That is, each utility function F can be

expressed as the composition of the map � with a map ρF that depends on

the function F – the map � is universal in the sense that it is defined for all

functions in �, and does not depend functionally on F.

In the case of interest in this book, decentralization or privacy preservation

is involved. In that case the domain X is a Cartesian product of sets, and, in

that case, the decomposition of F sketched above does not respect privacy.

To obtain an analogous decomposition of F, that does respect privacy one

must use a product structure in the domain of F.

There are in general many product structures for a given function F.

In this more complicated case, the mathematical entity that corresponds

to the universal mapping ϕ is, as explained in Chapter 4, a universal ele-

ment in the category of essential revelation mechanisms that realize F.4 The

result obtained from this analysis is that the set of decentralized mechanisms

that are in principle available for a given goal function is essentially deter-

mined by the set of possible product structures on the domain of that goal

function.

4 A universal element (or object) is an object in a category that represents a functor from
that category to the category of sets. A functor that has such a representing object is a
representable functor. The essential revelation mechanism is such a universal object. For
the complete definition of the concept of representable functor and several other examples
of representable functors and representing objects; see MacLane (1971, p. 55–62).
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The analysis in Chapter 4 uses several bordered Hessian matrices associ-

ated with a twice continuously differentiable (goal) function to characterize

the variables on which that function actually depends. Theorem 4.4.6 that

establishes this result is used in Chapter 2 as the basis for an algorithm,

the condensation method, for constructing decentralized mechanisms that

realize a goal function that satisfies the differentiability and rank hypotheses

of that theorem.
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Mechanisms and Mechanism Design

1.0 Introduction

Our aim in this book is to present systematic methods for designing decen-

tralized economic mechanisms whose performance attains specified goals.

We begin with an informal discussion of the general problem, and of our

approach to it. A (decentralized) mechanism is a formal entity intended to

represent a system for organizing and coordinating economic activity. The

need for such mechanisms can arise at different levels of economic enti-

ties, ranging from households, or firms, to government agencies, to entire

economies. We discuss examples at several levels.

Economic activity has been classified as production, consumption, and

exchange. These activities are constrained by restrictions on resource avail-

abilities, and on knowledge of technological possibilities. Resource availabil-

ities and technological possibilities form part of the economic environment,

that is, at any one time they are exogenously given, either from nature, or

inherited from the past. Knowledge of resource constraints and of techno-

logical possibilities is generally distributed among economic agents. Con-

sequently no economic agent, or other entity, can know the totality of what

is feasible and what is not. The preferences of economic agents are also dis-

tributed among agents; they are typically interpreted as private information

and are usually taken as exogenously given. They play a dual role: they under-

lie the motivations of agents, and in that role form part of the economic

environment, and they also play a role in determining the criteria of eco-

nomic efficiency and hence in defining the goals of economic activity. In neo-

classical economic theory, notably general equilibrium theory the concept

of economic efficiency is usually taken to be Pareto optimality. But Pareto

optimality is a relatively weak requirement, and in many situations the goals

of economic activity embody stronger, or at least different, requirements.

14
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Economic activity takes place in a setting of institutions and arrange-

ments, a framework of laws, customs, formal organizations, and less for-

mal structures. These range from relatively simple, informal, often subtle,

arrangements, to highly complex and formalized structures. We refer to

structures of this kind formally as mechanisms. In a modern developed

economy, such as the one we see in the United States, economic activ-

ity encompasses activities that are neither production, consumption nor

exchange. Instead, a very substantial amount of what is generally recog-

nized as economic activity, for instance, activities from which people earn

incomes, includes involvement in creating or operating a mechanism. These

activities include acquiring information, processing information, and com-

municating information to or from others. Resources used in these activities

are not available for use in production or consumption. Thus, the evalua-

tion of mechanisms should not avoid considering the real costs of creating,

operating, and maintaining the institutions required for the existence and

functioning of those mechanisms.

New goals, and mechanisms intended to achieve them, are created from

time to time, in the United States often by acts of Congress or other leg-

islative bodies. Often, perhaps even typically, they arise because of some

unsatisfactory aspect of the performance of an existing economic system or

institution, or from the efforts of agents to establish systems that they expect

to give them advantage. For instance, the milk supply to a city typically comes

from a number of individual farmers who together made up what is called

the milk-shed of the city. In the case of Chicago, the milk-shed is made up

mainly of dairy farms in Illinois, Iowa, and Wisconsin. In an earlier time

milk delivered to the city was likely to be infected with tuberculosis. There

was a public–policy conflict that went on for many years over whether to

require farmers to test their herds for tuberculosis, and to cull infected cows.

Requiring pasteurization was also a policy issue. There were modern clean

dairies that produced unadulterated milk, but they co-existed with a large

number of small milk producers who sold filthy adulterated milk and were

not driven to clean up their product until forced by law and inspection to

do so. Elimination of tubercular cows would, and eventually did, improve

the health and well-being of those who drank milk, but testing cows and

culling herds lowers the wealth of some farmers. Testing and culling could

not be justified on grounds of Pareto optimality, nor could pasteurization.1

1 See Pegram, T. R. (1991) Public health and progressive dairying in Illinois. Agricultural
History, 65, 36–50, for an account of the attempt to regulate the quality of the milk supplied
to Chicago in the late 19th and early 20th century.
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In more recent times issues of public health and quality of life have led

Congress to create new official goals, such as “clean air” and “clean water,”

and to create agencies intended to attain them. But the legislation that estab-

lishes an agency is typically stated in general terms that may restrict, but not

completely specify, the means by which the agency is to attain its assigned

objectives.

Knowledge of economic theory and experience with economic analysis

are useful to anyone faced with a problem of this kind, but until quite

recently economic theory did not offer much specific guidance for the design

of mechanisms in this sort of situation. In the past few decades economic

theory has addressed the implications of the fact that information about

the environment is distributed. Relevant information that is known to one

person, but not observable by anyone else, creates incentives to use that

information for private advantage.

There is now a considerable body of theory that focuses on strategic

issues arising from distributed information (asymmetric information). In

this theory a mechanism is modeled as a game form. The desired outcomes

are given by a goal function (sometimes called a social choice function in

this literature), a function that specifies the outcome desired in each possible

environment. A game form that has the property that its equilibria (Nash or

otherwise) coincide (on a given class of environments) with the outcomes

specified by a given goal function is said to implement that goal function in

the type of game theoretic solution specified. Thus, an agency entrusted with

the task of administering a goal function specified by a Congressional act

faces the task of designing a game form that implements the goal function.

But agreement between equilibriums and the outcome specified by the goal

function is alone not sufficient. The game form must be feasible, in the

sense that the informational tasks required by the mechanism can actually

be carried out by all of the agents involved, including those who make

up the agency. For instance, if the operation of the mechanism were to

require infinite amounts of information to be observed, or communicated

or otherwise processed by agents, or by the agency, then the mechanism

would clearly be infeasible. Indeed, if the costs of operating a particular

mechanism were to exceed the available budget, the mechanism would be

infeasible. To put this slightly differently, if the budget provided for the

mechanism were too small, it would make it impossible for the prescribed

goal function to be implemented.2

2 The Renegotiation Act in World War II provides an interesting example. The situation
called for rapid conversion of production from civilian products to military products. The
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The implementation literature contains many examples of mechanisms

in which astronomical amounts of information must be transmitted, and

astronomically complicated strategies are used. The relevance of results of

that kind to the design of mechanisms that are intended to guide actual

application is, to say the least, unclear.3 Without knowledge of the informa-

tional requirements of game forms that implement a given goal function,

the applicability of implementation theory in that instance is in question.

It is intuitive, and has been demonstrated formally, that for a given goal

function the informational costs associated with a mechanism when infor-

mation about the environment is distributed, but when the agents do not

attempt to take strategic advantage of their private information, provide a

lower bound on the informational requirements of implementing that goal

function. The extent of the additional costs required for implementation

would be a measure of the informational cost of attaining incentive com-

patibility. There may well be cases in which it is in some sense better to use

a mechanism that is not fully incentive compatible, but is informationally

feasible. In such cases we are weighing information costs against incentive

costs – a kind of calculation not unknown to economics.

government sought to induce rapid conversion by offering cost-plus contracts to producers.
But, with the experience of wartime government contracting in earlier periods still fresh
in mind, the administration wanted to prevent “profiteering” and the appearance of profi-
teering, in order to create the public perception of equal sacrifices for the war effort. To this
end the Renegotiation Act provided that “excess profits” on government contracts could
be recovered later, after examination of each contracting firm’s experience. Evidently with
the intent to avoid creating perverse incentives, the law provided that, for example, profits
that resulted from superior efficiency, or especially valuable qualities of the items produced,
would justify retention of more of the profit. There were five such factors provided in the
Renegotiation Act, known as the statutory factors. But the agency created to administer the
Act, was quite small. To the eye of an outside observer, the resources provided were not
sufficient to allow the statutory factors to be taken into account effectively. It must perforce
be administered by rules-of-thumb. There are indications that this was in fact the case. It
is also likely that the lawmakers were aware of this, and preferred this performance to the
one in which there were intrusive investigations into the internal workings of the private
contractors. Because the contracting firms were allowed to keep their total profits for years
before being renegotiated by the agency, thereby getting the use of the money without
interest, the recovery of so-called excess profits by gross rules-of-thumb appeared to be
acceptable. Indeed, the Act applied to defense contracts for decades after the end of World
War II.

Recovery of excess profits by renegotiation was first authorized in the Sixth Supple-
mental National Defense Appropriation Act of 1942 (PL 77-528). It was elaborated in the
Renegotiation Act of 1944, and extended through 1945, when it was allowed to expire. It was
revived in 1948 (PL80-547) and extended in a sequence of Acts through 1968. See Congress
and the Nation, vol. 1 for the period 1945–64, and vol. 2 for 1965–68.

3 On the other hand, theorems that tell us that the information required to implement a goal
function is astronomical are impossibility theorems and so are useful.
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Going beyond these considerations, the process of inventing mechanisms

to accomplish a given purpose has been somewhat ad hoc. It seems desir-

able to have systematic procedures for designing decentralized mechanisms

that implement a given goal function. In keeping with the spirit of the pre-

ceding paragraph, a systematic process for designing decentralized mech-

anisms on the assumption that agents do not act strategically is a good

place to start. If under this assumption it were shown that any mech-

anism that could achieve the goal would require infinite resources, then

it would be known decisively that the specified objective could not be met

when agents behave strategically. As we said to begin with, our aim is to

provide systematic procedures for designing mechanisms whose outcomes

agree with those specified by a given goal function, when information about

the environment is distributed among the agents. In addition we require

that the mechanisms be informationally efficient. To put it a bit differently,

we present an “algorithmic process” or “machine” that accepts as inputs

a set of agents, a set of possible environments, a distribution of informa-

tion about the environments among the agents, and a goal function that

expresses the desired outcomes of action. The output of this machine is

an informationally efficient decentralized mechanism whose result for any

environment in the given class is the one specified by the goal function

for that environment. In this chapter we seek to motivate and explain the

steps of the design procedure and the concepts used in an informal and

intuitive way. Therefore, to the extent possible, we carry on the discus-

sion in this chapter in simple settings, and with a minimum of technical

apparatus. We begin in the setting of classical welfare economics, and in

Section 1.8 take up an example of the kind mentioned in the discussion of

mechanism design problems that arise in political–economic settings. The

example is one of government regulation of a National Forest. Analysis in

that example is set theoretic. It uses the methods developed in Chapter 3.

The discussion of that example in this introductory chapter is informal

and intuitive; in Chapter 3 it is revisited in Section 3.8 to show the formal

analysis.

1.1 Mechanisms and Design

The question “How should economic activity be organized?” arises at differ-

ent levels, from organizing an entire economy to organizing a small sector

of economic activity, including even a single firm or household. Whatever

the scope or domain of economic activity, as long as more than one agent

is involved, the fact that essential information about the environment is
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distributed among the agents is at the root of the problem of designing

economic mechanisms.

If there is only one way of organizing, then there is nothing to choose. But

we see that institutions, laws, and less formal arrangements that govern and

mediate economic activity vary across space, time, and types of economic

activity. This makes it plausible that there is more than one possibility in

the set of systems that could conceivably organize economic activity. To

choose rationally from this variety of possible arrangements requires an

analytic structure that permits us to describe the performance and operating

characteristics of different systems. It also requires that there be criteria for

comparing different systems.

The system, or mechanism, we are most familiar with is the market

mechanism. For markets, the prototype of an explicit description of an

adjustment process is the Walrasian tatonnement. It has served as a basic

expository device for explaining how prices tend to reach their equilib-

rium levels under perfect competition.4 Its stability properties have been

studied extensively. But even in the neoclassical framework there are many

reasons economics cannot confine itself to the tatonnement model. To

begin with, there are questions about its behavioral justification. Sec-

ond, there is a large class of economic environments in which competi-

tive equilibria exist, but price adjustment processes along the lines of the

Walrasian tatonnement do not converge to an equilibrium, even locally.

Third, there are environments in which competitive equilibrium may not

exist (as when there are significant indivisibilities) or cannot exist (as when

there are increasing returns). There are environments in which compet-

itive equilibria can be inefficient (as in the presence of indivisibilities,

externalities, or public goods). The Walrasian tatonnement is not satis-

factory in these cases. Finally, even if the tatonnement process does con-

verge to an efficient competitive (“Walrasian”) equilibrium, the resulting

resource allocation may fail to satisfy other desiderata, such as fairness or

providing a minimum standard of living for a significant segment of the

population.

The inadequacies of the Walrasian mechanism have long been recognized.

Almost universally, there are “remedies” in the form of policies, such as

social insurance or transfer payments supported by taxation. Remedies for

failures of the competitive mechanism in nonclassical environments have

4 The textbook story of excess demand dynamics adjustment does not extend to the full class
of general equilibrium models with three or more commodities and three or more agents.
So far, there is no theorem that guarantees convergence of general markets to equilibrium.
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also been proposed. These include marginal cost pricing under increasing

returns, Lindahl pricing in economies with public goods, and a variety

of schemes, including Pigouvian taxes and marketable pollution rights for

harmful externalities. And models have been formulated whose stability

properties are superior to those of tatonnement.

In many cases proposed solutions to the design problem were found to

have serious deficiencies or disadvantages. This fact often leads in practice to

a process of modifications intended to improve performance, though often

those modifications result in increasing bureaucratization and to central-

ization of decision making. Institutions based on such proposed solutions

often turn out to entail heavy costs for information processing and enforce-

ment of rules. Experience of this kind suggests that we should distinguish

two kinds of desiderata:

� those that apply to the (intended) outcomes of the mechanism (as we

shall see, these are expressed by a goal function), and
� those that are associated with the operation of a mechanism, for example,

the costs of information processing and communication (these are not

expressed by a goal function; the same outcome can in general be attained

in different ways, with different costs).

Another significant matter arises from the problem of incentive com-

patibility and the cost of enforcing behavior rules, as well as the costs of

enforcing the rules of the game.

Certain game-theoretic models designed to “implement” given social

objectives sometimes use – in existence proofs at least – very large strat-

egy spaces. These imply high communication costs. When, as is often the

case, the strategy spaces are infinite-dimensional, the required calculations

cannot be carried out in finite time. Going further, in some cases proposed

solutions, not necessarily game theoretic, postulate individual behavior pat-

terns that are inconsistent with what is believed about natural incentives.

Those disadvantages may sometimes be unavoidable, but in other cases

superior alternatives may exist. Thus we are led to ask two questions: how

can we determine which deficiencies are unavoidable (as has been shown,

for instance, for economies with increasing returns), and how can we go

about discovering superior alternatives if they are not known?

With brilliant inspiration or luck, the second question can be answered by

the ad hoc invention of a superior alternative. But even then, we might not

know whether one could do still better, either in terms of social desiderata

or costs. To know whether one can do better than the existing solutions, or

whether acceptable solutions are possible, even in principle, several things
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are needed. One must be able to consider a complete class of processes

or mechanisms that satisfy the given desiderata, and be able to determine

whether these desiderata are at all achievable. That is, we must be able to

determine whether that class of mechanisms is nonempty, and, if it is not

empty, to be able to compare its various members in terms of criteria such

as efficiency and cost requirements. A first prerequisite for this analysis is

to have a well-defined concept of a mechanism or an adjustment process.

Once the concept of mechanism is defined, one can formalize a concept

of decentralization, in particular, of informational decentralization. Being

decentralized may be viewed as a requirement of feasibility that applies to a

mechanism when information (about preferences, resources, or technolo-

gies) is initially dispersed among the individual agents, as is typically the

case in most economies. Decentralization may also be considered to have

a social value in itself. In any case, the focus of our investigation in this

book is on adjustment processes and mechanisms that are informationally

decentralized. Hence, for analytical purposes, it is essential to have a clearly

defined concept of informational decentralization. There is, of course, some

freedom in choosing such a definition. The one we use in this book, called

the “privacy preserving” property, is in a sense minimal. It requires that no

agent can condition his or her messages on environmental parameters that

he does not observe directly. This requirement is less demanding than, for

instance, that used by Hurwicz (1960). The concept of an adjustment process

corresponds to the one used there as well as to the one used in Mount and

Reiter (1987). In this book we study the equilibria of mechanisms, whether

in the form of adjustment processes or in their equilibrium forms.

Our basic point of view is to treat the mechanism as the value of a variable,

to be solved for as the “unknown” of a problem. The problem we address

is not just to analyze how a given mechanism works, but rather to find

decentralized mechanisms that have performance properties specified by

goal functions in a given class of environments and that also have minimal

information processing costs.

In much standard microeconomic analysis, the criterion of social desir-

ability is taken to be the Pareto optimality of outcomes (although, more

recently, equity or fairness considerations have also entered the picture),

but our model is intended for a broader class of performance criteria. The

search for, and comparison of, alternative mechanisms that satisfy a spec-

ified performance criterion also takes place in settings much smaller than

the economic organization of a national economy, for example, in the inter-

nal organization of a firm, or in the context of regulation of a branch of

industry, or of some area of economic activity. The example in Section 1.8
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of this chapter is of this kind. Criteria other than Pareto optimality may

well come into play in those cases. Even if Pareto optimality remains the

criterion, the agents whose preferences count might be a relatively limited

group. As for information processing costs, many come under the headings

of observation, communication, or complexity. In this book we concentrate

mainly on the costs of observation and communication. We take the cost

of observation to be an increasing function of the precision with which the

environment must be observed, and we take the cost of communication to

be an increasing function of the size of messages that must be processed by

the participants. Cost of observation and communication is interpreted here

in several related ways; these are discussed in this chapter under the rubric

of informational efficiency. In particular, when the messages transmitted

among agents consist of sets of numbers, one meaning of informational

efficiency is that the mechanism uses messages that consist of as few num-

bers as possible, that is, the message space of the mechanism is Euclidean

and that it has as small a dimension as possible.

It is known from previous research that, for any given criterion of desir-

ability, there is a (tight) lower bound on the dimension of the message

space of a mechanism whose outcomes satisfy that criterion.5 It has been

shown that in classical (convex) economies, when the criterion is Pareto

optimality, the lower bound is the size of the message space used by the

Walrasian tatonnement. Significantly, the bound depends only on the num-

ber of agents and commodities – and not on such factors as the number

of parameters in the utility or production functions. On the other hand, in

nonconvex economies the message space is usually larger. In environments

with increasing returns to scale, there is usually no finite lower bound; that

is, an infinite-dimensional message space (entailing infinite costs) might be

required. Informational costs, including communication costs, seem to be

particularly important in the organization of firms. The recent wave of cor-

porate downsizing suggests that the use of computers, computer networks,

the world-wide-web, and related communication devices has led to a radical

reorganization of firms; layers of middle management, formerly occupied

mainly with information processing and communication functions, were

eliminated.

5 Although it is important to attain the lower bound, we recognize that there may be a tradeoff
between the dimension of the message space and the complexity of the mechanism. Thus,
one might choose a mechanism whose message space dimension is above the minimum in
order to lower the level of complexity. It would generally be necessary to make this tradeoff
in order to minimize information processing costs. This tradeoff in a Walrasian example is
analyzed in Mount and Reiter (2002).
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Lower bounds on the sizes of message spaces are relevant to evaluating

the merits of game-theoretic models that use infinite-dimensional strategy

spaces to prove that a wide class of criteria of desirability can be implemented

in wide classes of environments. Where, as in nonconvex environments,

infinite-dimensional strategy spaces must be used to achieve exact imple-

mentation, we may have to be satisfied with approximate or second-best

solutions. It is important to have a theory that tells us where such situa-

tions arise. Furthermore, one cannot be satisfied with mechanisms that use

an infinite-dimensional space where a finite-dimensional one would work.

Hence, again, we need a theory that tells us when a finite-dimensional space

would be adequate, and how low a dimension it could possibly have.6

As is well known, much contemporary economic analysis, including that

using game-theoretic models, has the limitation of being focused on equi-

librium, that is, statics. The analysis in this book shares this limitation.

It is important to understand the operational meaning of the distinction

between statics and dynamics in the context of mechanism design. To design

a dynamic mechanism for a given criterion of desirability means to define

a decentralized iterative procedure whose successive steps converge to a

desirable outcome, and which stops, or otherwise signals, when a desirable

outcome is attained. (Here we do not intend to exclude processes that oper-

ate in continuous time.) On the other hand, a static mechanism design is not

required to converge, only to recognize equilibrium. More precisely, it can

be viewed as a “verification scenario,” in which a given proposed outcome

is tested for desirability. This involves asking each participant whether the

proposed outcome is acceptable to her.7 The proposed outcome is judged

acceptable if and only if all the participants’ responses are affirmative. We

do not undertake the dynamic design task in this book. Our aim here is

to develop the techniques of static design, that is, to formulate systematic

procedures for designing a verification scenario, given only the class of envi-

ronments over which the scenario is to be effective (including the initial

distribution of information among the participants and the criterion of

desirability).8 The aim of this chapter is to present a minimally technical

6 Here, too, the possibility of a tradeoff with other determinants of information processing
costs, including complexity, should be taken into account.

7 In the light of private information available to that participant.
8 There do exist results in the literature (Jordan 1987, Mount and Reiter 1987, Reiter 1979,

and Saari and Simon 1978) showing how message space size requirements increase when
dynamic stability requirements are imposed. We hope that further research on design of
stable mechanisms will build on this work. But it seems that a necessary first step in the
development of systematic design procedures is the static aspect and the present work does
not go beyond this.
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introduction to the concepts used in the design process. These include:

� the concept of an adjustment process (specifically, a message exchange

process),
� the concept of informational decentralization (in particular, privacy pre-

serving), and
� what it means when we say that a given process “realizes” a given desir-

ability criterion.

The process of design includes two steps. The first is called the rectangles

method (abreviated RM). This is followed by a second step, which can

be one of the two possibilities, called respectively, the transversals method

(abbreviated TM) and the condensation method (CM).

To make the concepts easier to absorb, we initially illustrate them with

two examples. The first example, the class of environments, consists of

two-person pure exchange (Edgeworth box) environments. In this example

the criterion of desirability requires a Walrasian outcome. This may seem

somewhat paradoxical, considering that our basic objective is to go beyond

Walrasian theory, but it is helpful as an expository device. The example is

presented in Section 1.6. Our second example in this chapter has a more

political flavor. It is representative of a class of situations in which there is an

authority, perhaps an agency of a government, that regulates the actions of

agents, in our example, whose interests conflict. It is presented in Section 1.8.

This example illustrates many of the ideas that underly our approach to

mechanism design. In addition, there are also nonWalrasian illustrations9

in other chapters. These two examples are presented here in some detail.

However, the analyses presented in subsequent chapters do not rely on the

details of these examples.

The reader should also be aware of two limitations on the class of prob-

lems that we analyze in this book. First, in Chapter 2, an environment is

specified by a finite number of real parameters. This specification is typ-

ical of models used in applications, but not of those in economic theory.

Second, the criteria of desirability that we use are (single-valued) functions.

We have used correspondences (for example, the Pareto correspondence) in

a more general theory presented elsewhere. Furthermore, in our Walrasian

examples we limit ourselves to cases in which there is a unique Walrasian

equilibrium.

The rest of this chapter following the examples consists of two parts: the

exposition of basic concepts, primarily illustrated by the two examples, and

9 In particular, the inner product goal criterion.
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a sample of first step design procedures using the rectangles method. The

exposition begins with a review of some basic concepts of mechanism theory.

Environments, outcomes, and goal functions are introduced; the initial dis-

persion of information is discussed; and the elements of message exchange

processes and game forms are reviewed briefly and with little formality. The

concepts of realizing a goal function by a decentralized mechanism, and

of implementing a goal function by a game form, are reviewed. Following

that, ideas underlying the rectangles method are presented in the context of

examples.

1.2 Environments and Goal Functions

The performance of a mechanism, and therefore the choice of mechanism

to realize a given goal function, depends on elements that constrain the

situation, such as technological possibilities, or that define preferences, but

are not subject to the control or influence of the designer of the economic

organization – that is, on the relevant “givens” of the problem. The totality

of such elements is called the set of (economic) environments or the envi-

ronment space. In economic theory the environment space is usually taken

to be infinite dimensional; for example, all convex preference relations may

be admitted. Here in Chapters 2 and 4 we assume that the agents are char-

acterized by a finite number of parameters, and that an environment is

represented by the parameters characterizing the agents. This is the usual

assumption in models used in empirical applications.

It is typically the case that no one, including the mechanism designer,

knows the prevailing environment. We usually assume that an agent knows

only her own parameters, but not those of other agents, and that the designer

knows only the environment space, �, and the goal function, F , that is, the

class of environments for which a mechanism is to be designed and the

criterion of desirability.10

We suppose that mechanisms are designed for a client, who may be

“society,” a firm, or a political authority. The goal function, F , reflects

the client’s criteria for evaluating outcomes (often resource allocations).

The client’s concerns can be with efficiency, fairness, or other attributes of

the outcome. The goal function has the environment as its argument,

because the desirability of an allocation depends on the prevailing point

10 Other assumptions can be made about the initial distribution of information among the
agents, perhaps limiting what an agent knows to what can be unambiguously inferred from
signals that the agent can observe. Generally, this would mean that an agent would know
less about the prevailing environment than knowing his own parameters.
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θ in the environment space �. The goal function does not capture or reflect

the things that might vary when different mechanisms are used to realize that

goal function. Factors that determine informational costs generally are not

related to outcomes alone, but depend on the means of arriving at outcomes.

Because the goal function represents criteria for judging the outcomes, but

not the means of achieving them, it is important to distinguish the goal

function from the mechanism, which is a means of achieving the goal. In

formal notation we write F : � → Z, where Z is the outcome space. In

many economic models, the outcome space is a vector space, for instance,

the space of allocations. But frequently, especially in examples, we take the

space of outcomes to be the real numbers, that is, Z = R.

In a more general treatment of mechanism design, the goal F is a corre-

spondence rather than a function. In that case, the correspondence F goes

from the joint parameter space to the outcome space, and the value F (θ)

then describes the set of outcomes that are desirable, or at least acceptable,

according to the criterion embodied in F when the prevailing environ-

ment is θ . The Pareto correspondence, say P , is an example. In that case

P (θ) is the set of outcomes that are Pareto optimal when the prevailing

environment is θ .

1.3 Mechanisms: Message Exchange Processes and Game Forms

A message exchange process, or mechanism, in equilibrium form consists of

three elements, a message space, denoted M, a (group) equilibrium message

correspondence, denoted μ, where μ : � ⇒ M, and an outcome function,

denoted h, h : M → Z. Let π = (M, μ, h). Such a mechanism is perhaps

most naturally understood as representing the stationary or equilibrium

states of a dynamic message exchange process. The message space M consists

of the messages available for communication. Here we take it to be a (finite-

dimensional) Euclidean space.

Messages may include, for instance, formal written communications

within a firm, such as sales, production, or accounting reports. These typ-

ically have conventional formats. They usually consist of an array of blank

spaces in which numerical (sometimes alphanumeric) entries are made

according to given instructions. Therefore, such a report is an ordered array

of variables, whose possible values form a (vector) space.

Less formal communications, such as business letters or memos, can be

represented in the same way, if we abstract from personal chit-chat. It does

not require a great stretch of imagination to see how the relevant substance

of conversations might be treated in the same way.
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The group equilibrium message correspondence μ associates with each

environment, θ , the set of messages, μ(θ), that are equilibrium or stationary

messages for all the agents. We interprete these as messages that each agent

individually finds acceptable. If the messages were proposed actions, then

those in μ(θ) would consist of all the proposals to which each agent would

agree when the environment is θ .

The outcome function h translates messages into outcomes.

Thus, the mechanism π = (M, μ, h) when operated in an environment

θ leads to the outcomes h(μ(θ)) in Z.

If it is the case that for all environments in the given space, �, the mecha-

nism π leads to an outcome desired by the client in that environment, then

we say that π realizes11 F on �, or, that π realizes F .

Briefly, π realizes F if for all θ in �, h(μ(θ)) = F (θ).

This concept can be represented in a commuting diagram, shown in

Figure 1.3.1.

hμ

Θ F

M

Z

Figure 1.3.1

The equilibrium message correspondence μ represents the behavior of

the agents. We consider two different cases. First, ignoring incentives, we

may suppose that the behavior of the agents is known or prescribed; this is

customarily assumed in the case of the competitive mechanism, for instance,

in general equilibrium theory.12 Second, we may suppose that the behavior

of the agents is chosen by them strategically in a game.

A game is defined by the individual strategy domains, S1, . . . , S N of the

players and their payoff functions �1, . . . , �N . The N-tuples S1, . . . , S N

of individual strategies constitute the joint strategy space S.13 The i th

11 The term “realizes” is used to distinguish this concept from implementation by a game
form.

12 There it is assumed that agents’ actions maximize utility taking prices as given.
13 Thus, S is the Cartesian product of the individual strategy domains: S = S1 × · · · × S N .
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player’s payoff function represents his/her utility when the joint strategy

s = (s 1, . . . , s N) is used by the players. On the other hand, the value, h(s ),

of the outcome function h of a game represents the (physical) outcome pre-

scribed by the rules of the game when the joint strategy, s , is used. The value

of the i th player’s payoff function when s is used is the value of the compo-

sition ψ i (s ) = ϕi (h(s )), where ϕi (s ) represents his utility as a function of

the (physical) outcomes.

The game form, G = G(S, h), consists of the joint strategy space S and the

outcome function h; it determines a game as follows. When the environment

is θ , each agent’s preferences (represented by a utility function) allow him

to evaluate the payoff resulting from any joint strategy, when the outcome

function is h.

In a one-shot game with a specified message space (the actions available

to the players), the move of a player is to select a message. A solution concept

such as Nash equilibrium determines a set of messages, to be called solution

messages.

In a multimove game with a specified message space, at each opportunity

to move, each player selects a message depending on his information at that

point in the game. A strategy is a function whose arguments are the player’s

type,14 and his information at each point of the game at which he has the

move. A solution concept, such as Nash equilibrium, determines a set of

N-tuples of such functions. With finitely many stages, each equilibrium N-

tuple determines the final message array. The set of all Nash equilibria of the

game therefore determines a set of Nash equilibrium final message arrays,

called solution messages.

Whether one-shot or multimove, the game form with a specified message

space, and a solution concept, induces both individual and privacy preserv-

ing15 group correspondences from the set of types (to be identified with

the parameter space) into the message space. These correspondences can be

identified with the correspondences μi and μ in Figure 1.3.1. Therefore, the

game form generates a privacy-preserving mechanism in which the indi-

vidual message correspondences specify the behavior determined by a game

solution concept, rather than prescribed directly by a designer. The strate-

gic behavior of each player is represented by a correspondence μi from the

information that agent i has about θ (which we assume is θ i ) to the message

space M. Thus, a game is defined, with N-tuples (μ1, . . . , μN) as elements

of the joint strategy space of the N players.

14 A player’s type is characterized by his private information.
15 They are privacy preserving because the behavior of an individual player cannot depend

directly on the type of another player.
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If such an N-tuple (μ1, . . . , μN) is an equilibrium (Nash or other) of

the game, then the resulting messages in each environment θ define a cor-

respondence from � to M, which we denote by μ. It is the equilibrium

message correspondence seen above. To distinguish it from the individual

correspondence μi we shall sometimes refer to the correspondence μ as the

group correspondence.

If the equilibrium correspondence μ determined by a game form makes

the diagram in Figure 1.3.1 commute, that is, if, roughly speaking, the out-

comes determined by equilibria of the game form G agree with those speci-

fied by the goal function F for every environment in �, then the game form

G is said to implement the goal function F (in whatever type of equilibrium

is used as the game theoretic solution concept).

It is immediately clear that if a game form G implements a goal func-

tion F , then there is a corresponding mechanism π that realizes F . This

mechanism is the one defined by taking the message correspondence deter-

mined by the equilibrium of the game to be the group message correspon-

dence of the mechanism, and the outcome function of G to be the outcome

function of the mechanism. Therefore, the informational requirements of

realizing a given goal function provide a lower bound for the informa-

tional requirements of implementing that goal function; see Reichelstein and

Reiter (1988).

1.4 Initial Dispersion of Information and Privacy Preservation

As we have said, we assume that each agent knows only his own characteristic.

When the environment is θ , agent i knows only θ i . (In the game theoretic

setting this is agent i ’s private information, and his type.) Agent i ’s behavior,

whether strategic or not, can depend only on the information he has. That

is, agent i ’s behavior can depend on the environment θ only through θ i .16

The effect of this requirement is that once the mechanism is specified, there

must exist individual equilibrium message correspondences for each agent,

denoted μi , where μi : �i → M such that μ(θ) = ⋂N
i=1 μi (θ i ).

Suppose, as is often the case in applications, that each of these cor-

respondences, μi , is defined by an equilibrium equation of the form

16 For future reference, we note that an agent is not assumed to know the set of possible
environments, including in particular the set of other agents, and the possible environ-
ments of other agents. Nor do we assume that any agent knows the goal function, and
the rule that governs his behavior in the mechanism in which he participates. The rule
is either in the form of the individual message correspondence, μi , or the equilibrium
equation, g i .
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g i (m, θ i ) = 0.17 Then the value of the group message correspondence μ

is given by

μi (θ i ) = {m ∈ M : g i (m, θ i ) = 0}, i = 1, . . . , N.

We see that the group equilibrium message set μ(θ) contains only messages

that can be individually verified by each agent, that is, messages that satisfy

that agent’s individual equilibrium equation(s), and furthermore, that the

equations of agent i have only the component θ i of θ as an argument. The

group message correspondence μ is given by the system of equations

g (m, θ) = 0,

which is shorthand for the equation system

g i (m, θ i ) = 0, for i = 1, . . . , N.

Because the verification carried out by an agent only requires the knowl-

edge of his own characteristic θ i , the mechanism π is said to preserve privacy;

as we have seen, a corresponding property holds in the game theoretic for-

mulation, where strategies of an agent can depend only on that agent’s

private information.

Note that the mechanism π can be written either as (M, μ, h) or in

equation form as (M, g , h).18

1.5 Mechanism Design

The problem of mechanism design is: given a class � of environments,

an outcome space Z, and a goal function F , find a privacy preserving

mechanism (or a class of mechanisms) π = (M, μ, h) (in equation form,

π = (M, g , h)) that realizes F on �.

We want to find mechanisms that realize the goal function, and do it with

as low a burden of processing information as possible. (We might also want

to take account of other costly aspects, such as the burden of policing the

behavior of agents.)

Thus, in a design problem, the goal function is the main “given,” while the

mechanism is the unknown. Therefore, the design problem is the “inverse”

of traditional economic theory, which is typically devoted to the analysis of

the performance of a given mechanism.

17 g i might consist of several equations.
18 As we have indicated, the equilibrium form of a mechanism can be derived from a more

intuitive dynamic message exchange process. This is done explicitly in Hurwicz (1960)
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The chief emphasis of this book is, as we have said, on developing sys-

tematic methods of solving the design problem using only the information

about the function F (including its domain �) and without prior pre-

conceptions as to the precise nature of the mechanism that might realize

it.19 By following this approach, we have sometimes discovered mechanisms

that realize a given function that were previously unknown, and sometimes

discovered them in cases where it was not known whether a mechanism

with the required properties was possible. On the other hand, it is also

interesting that our procedures have constructed mechanisms that were

already known, such as the competitive mechanism, or parameter transfer

processes.

1.6 Mechanism Design Illustrated in a Walrasian Example

1.6.1 An Edgeworth Box Economy

Consider a two-agent two-commodity economy in which each agent has

a quasi-linear quadratic utility function characterized by two parameters,

denoted (αi , βi ) for agent i . In what follows Xi denotes the total holdings of

(or consumption by) agent i of the first commodity, Yi denotes i ’s holdings

of the second commodity, and wi and vi are respectively i’s initial endow-

ments of the two commodities. The parameter vector (αi , βi , wi , vi ) is the

characteristic of agent i .20 The characteristics of both agents together deter-

mine both the set of feasible allocations – the Edgeworth box – the set of

feasible trades, and the set of Pareto-optimal trades as well.

In terms of the total consumption vector (Xi , Yi ) the utility function U i

of agent i is

U i (Xi , Yi ) = αi Xi + (1/2)βi X2
i + Yi , i = 1, 2.

We assume that both βi are negative (hence U i is strictly concave on Xi ),

and both αi > 0. We also assume that the whole Edgeworth box is in the

range where U i increases with Xi .

The i th agent’s net trades are

xi = Xi − wi

19 Although the search might be limited to a class of mechanisms that is of particular interest,
especially because of informational efficiency considerations.

20 More generally, the agent’s characteristic would include the functional form of the utility
function, here specified as quadratic (or other attributes of his/her preferences) as well as
the admissible consumption set.
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and

yi = Yi − vi .

The no-disposal feasibility (balance) conditions then imply

x1 + x2 = 0,

and

y1 + y2 = 0.

Substituting xi + wi = Xi and yi + vi = Yi into U i gives the utility func-

tion ui of agent i for net trades. That utility function is

ui (xi , yi ) = αi (xi + wi ) + (1/2)βi (xi + wi )
2 + yi + vi i = 1, 2.

1.6.2 The Walrasian Goal Function

In this example we assume that the goal is to achieve the (unique) Walrasian

trade in each environment specified by the parameter vectors.

To simplify the exposition, we suppose that the initial endowments

are constant, and transform the notation somewhat. Each agent i has

two variable parameters, αi and βi . To make the algebra simpler we use

γi = αi + βiwi in place of αi for each agent i . We introduce the follow-

ing notation, which is also used subsequently. We denote the parameters of

agent 1 by a ’s, and the parameters of agent 2 by b’s. Let θ i be the parameter

vector characterizing agent i .

Thus, θ1 = (a1, a2) stands for (β1, γ1), and θ2 = (b1, b2) stands for

(β2, γ2). The parameter point characterizing the environment is θ =
(θ1, θ2). The corresponding parameter spaces are denoted by capital let-

ters, so that θ is in � = �1 × �2.

We take outcomes to be net trades, and so focus our attention on the net

trade x1.21 Then we can take the outcome space Z to be the real number

space R.

The function FW associates to each environment θ its unique Walrasian

trade x1. The subscript W stands for “Walrasian.” Thus, we are assuming

that the goal function is

FW : �1 × �2 → Z.

21 Knowing x1 is sufficient to determine the complete resource allocation: x2 = −x1 and
yi = −pxi , i = 1, 2. (The value of p, the price of good X , can be determined from the
equilibrium messages of the mechanism to be used below.)
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In the notation just introduced, its value is

FW(θ) = (b2 − a2)

(b1 + a1)
. (+)

This goal function is derived as follows:

U i (Xi , Yi ) = αi Xi − (1/2)βi X2
i + Yi , αi > 0, βi > 0,

where Xi and Yi denote the respective total consumptions of the two goods

by trader i . However, we deal with net trades in good X denoted by xi .

Let ω denote the initial endowment of good X held by trader i ; use

the relation Xi = ωi + xi , and drop the constant terms. Then the utility

function of the i th trader can be written as

ui (xi , Yi ) = (αi − βiωi )xi − (1/2)βi x2
i + Yi .

Define a1, a2, b1 and b2 by

α1 − β1ω1 = a2, β1 = a1

α2 − β2ω2 = b2, β2 = b1.

Then we get

u1(x1, Y1) = a2xi − (1/2)a1x2
i + Y1

and

u2(x2, Y2) = b2x2 − (1/2)b1x2
2 + Y2.

Since βi < 0, for i = 1, 2, it follows that a1 and b1 are both strictly positive.

Furthermore, in order to guarantee that the equilibrium solutions will stay

on the increasing side of the (vertex upward) parabolas, we also assume

that a2 and b2 are positive. (This amounts to assuming that, for each i , the

endowment is small enough to satisfy the inequality ωi < αi/βi .)

Next, we consider the Walrasian equilibrium conditions for interior solu-

tions for the net trades in good X . Because of quasi-linearity for each i = 1,

2, this implies equating the marginal utility of X with the relative price p of

X in terms of Y . The resulting equations are

−a1x1 + a2 = p

−b1x2 + b2 = p.

Furthermore, we have the market clearing condition

x1 + x2 = 0.



P1: JZZ

CUNY425-01 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:33

34 Mechanisms and Mechanism Design

Hence the equilibrium conditions can be rewritten in terms of x = x2 as

a1x + a2 − p = 0

−b1x + b2 − p = 0.

Because a1 and b1 are positive by hypothesis, the system is uniquely solvable,

and the equilibrium values of x and p are

x = (b2 − a2)/(b1 + a1)

p = (a1b2 + a2b1)/(b1 + a1).

Note that the price p is always positive, because we assumed that the four

parameters (a ’s and b’s) are positive.

We define the goal function F (θ) at θ to be the quantity of the second

trader’s net trade x2 = x ; i.e.,

FW(θ) = (b2 − a2)/(b1 − a1), (2)

where

θ = (a , b), a = (a1, a2), b = (b1, b2).

In deriving the Walrasian goal function FW we began with a two-person,

two-good pure exchange environment in which the utility functions of the

agents and their initial endowments are given. The natural parameters that

specify the environment are the parameters of the two utility functions of the

agents, and their initial endowments. The efficient (Pareto optimal) trades

are naturally described in terms of those parameters. In doing so, the expres-

sions that characterize efficient or desired trades involve both parameters of

the utility functions and endowments, and variables that specify quantities

of the traded commodities. But instead of using those parameters, we have

carried out certain transformations of them, being careful to preserve the

identification of parameters of individual agents, with the result that effi-

cient, or desired, trades are characterized by the goal function, FW , in terms

of the new transformed parameters alone. It is these parameters that we

take as specifying an environment. In this example they are the parameters

denoted (ai , bi ), i = 1, 2. In our approach to mechanism design theory, we

generally assume that an environment is characterized by a vector of param-

eters, and that a goal function has those parameters as its arguments. As the

Walrasian example (Example 1.2) illustrates, to arrive at those parameters

may involve some analysis. It is important to keep in mind that choosing the

Walrasian function FW as our goal function does not commit us to using

the Walrasian (that is, the competitive) mechanism to realize it! In fact, we



P1: JZZ

CUNY425-01 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:33

1.6 Mechanism Design Illustrated in a Walrasian Example 35

consider a variety of mechanisms, some of them not at all in the spirit of

Walras, that realize this function. The only requirement at this point is that

each such mechanism should yield the net trade in good X for agent 1 that

is equal to the value specified by the Walrasian goal function, formula (+),

as its equilibrium outcome in any admissible environment. The mechanism

used to attain this outcome need not (but can) be the competitive mecha-

nism. We consider several mechanisms that give the outcome specified by

formula (+) as their equilibrium outcomes in Section 1.6.8 in this chapter,

and also in Chapter 2. However, we start here by considering the customary

competitive mechanism well known from standard textbooks.

1.6.3 Mechanisms: The Competitive Mechanism

Although our aim is to show a systematic process for solving the design

problem, we begin by going in the other direction. Starting from a mecha-

nism, we show that it determines the instruments that will be used to solve

the design problem more generally. Because the competitive mechanism is

familiar to economists, and realizes the goal function FW , we use the com-

petitive mechanism to illustrate two important concepts. The first is the

representation of the goal function by a rectangular covering of the param-

eter space � (a partition in this example) and the second is the labeling of

the sets of that covering in a useful way.

1.6.4 Competitive Equilibrium Conditions

We apply the interior first-order conditions for utility maximization sub-

ject to the budget constraint, and from them we derive the competitive

equilibrium conditions in terms of net trades. These are

αi + βi (wi + xi ) = p, i = 1, 2,

where p is the price of X in terms of Y .

Using the fact that

x2 = −x1

and the variables γ1 and γ2, as defined above, the equilibrium conditions

become

γ1 − b1x = p

γ2 − b2x = p.

Hence, x = γ2−γ1

b1+b2
.
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In the notation we have defined, the equilibrium conditions become

a2 + a1x = p

b2 − b1x = p,
(∗)

which yield

x = b2 − a2

b1 + a1

. (∗∗)

The denominator in (∗∗) does not vanish because of the assumption that

the βi ’s are both negative.22

The equations (∗) are the equilibrium equations of the competitive mech-

anism. The resulting equilibrium is, of course, the Walrasian equilibrium,

and the allocation it produces is the Walrasian allocation. For that reason

we have chosen its outcome for x , as given in (∗∗), as the Walrasian goal

function FW(θ), making the right-hand sides of (+) and (∗∗) identical.

Our derivation of (∗) shows that the competitive equilibrium realizes the

Walrasian goal function FW . But it remains to be shown that the competitive

process qualifies as a mechanism in the sense of our definition.

1.6.5 The Competitive Mechanism Is a Mechanism

In the formalism of mechanisms, a message of the competitive mechanism

has the form

m = (m1, m2) = (x , p).

Here X is the quantity, p is the price, and therefore m is in the competitive

message space Mc = R2. (The subscript c stands for “competitive.”)

The individual message correspondences of the competitive mechanism,

obtained from (∗) above, are

μ1
c (a1, a2) = {(m1, m2) ∈ Mc | a2 + a1m1 − m2 = 0}

(∧)
μ2

c (b1, b2) = {(m1, m2) ∈ Mc | b2 − b1m1 − m2 = 0}.
The (group23) equilibrium message correspondence μc then turns out to be

singleton-valued, because we are assuming that a1 + b1 < 0, and hence the

two equations (∗) that define the individual message correspondences have

a unique solution for m = (m1, m2) in terms of the a ’s and b’s.

22 The case b2 − a2 = 0 characterizes allocations on the contract curve.
23 As distinct from the individual.
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The (group) equilibrium message correspondence is

μc (a1, a2, b1, b2) = {(m1, m2) ∈ Mc | m1 = (b2 − a2)/(b1 + a1),

and m2 = (a1b2 + a2b1)/(b1 + a1)} ,

and the outcome function is the projection of the vector (m1, m2) onto its

first component. Thus,

hc (m1, m2) = m1 = (b2 − a2)/(b1 + a1).

Thus the competitive mechanism πc = (Mc , μc , hc ) does qualify formally

as a mechanism in our sense. We see that the competitive mechanism does

realize FW on � in the sense of our definition, because the formula for m1

is the same as that for FW .

Next, we make use of this formulation to illustrate concepts basic to

mechanism design.

1.6.6 The Competitive Mechanism Illustrates Some Concepts Used
in Mechanism Design

The commuting diagram in Figure 1.3.1 shows that, when the mechanism

(M, μ, h) realizes the goal function F , the composition of μ and h is

the same function as F . To help interpret this representation, we decom-

pose the message correspondence μ into the composition of two functions,

the first from the parameter space � into the set of subsets of that space �

the second is a function that labels those sets by elements of M. The logic of

this decomposition of μ can be illustrated by an analogy with the theory of

consumer choice. If � were a commodity space, and F the utility function

of an agent, we would be looking at the familiar decomposition of the utility

function into its indifference map (that is, a function from � to the indiffer-

ence classes of F in �) and then a labeling of those indifference sets (that is,

a function from the indifference classes to the values of F , making M equal

to the range of F ). The first function (to the set of level sets of F ) is uniquely

determined by F . Having decomposed μ this way, the outcome function

needed in order to make the diagram in Figure 1.3.1 commute is the identity

function on the range of F , now the same as M. (In this decomposition of

μ we might have labeled the level curves of F in some other way. In that

case, to make the diagram commute, the outcome function h would be the

one-to-one function that converts the label of each level set into the value

of F on that set.)
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1.6.7 Privacy Preservation in the Competitive Mechanism

If there were only one agent, then the requirement that μ preserve privacy

would, of course, be satisfied automatically. In that case we could choose

μ to be the composition of the function that maps each point of � to the

level set of F that contains it, and label those level sets with the appropriate

F values.

However, when there are two or more agents the privacy requirement

excludes the possibility that μ maps � to the labels of level sets of F , except

for a few very special functions F . (The reason for this is made clear in

Chapters 2 and 3.)

We use the example with the Walrasian goal function FW and the com-

petitive mechanism πc to see what happens in the presence of the privacy

requirement when there are two agents.

Consider some trade, specified by a value of x in our example, say, x = c .

The level set F −1
W (c) is given by

F −1
W (c) =

{
(θ1, θ2) ∈ �1 × �2 : c = b2 − a2

b1 + a1

}
.

The equation defining the level set can be written as

b2 − cb1 = a2 + ca1, (#)

thus separating the parameters of agent 1 from those of agent 2. To take

advantage of this separation, we introduce the auxiliary variable d , and

express the equation (#) in the equivalent form

a2 + ca1 = d

b2 − cb1 = d .
(##)

Notice that these are the equations (∗), that is, the individual equilibrium

equations of πc , with c in place of x and d in place of p.

There are two things to be noted about the subset of the parameter space

� defined by the equations (##) in a1, a2, b1, b2, when c and d are fixed.

First, because c is fixed, the set given by the preceding two equations is a

subset of the level set of the goal function F determined by c ; we say that the

subset is F-contour contained, abbreviated F -cc. Second, using our jargon,

it is a rectangle.24

24 In this and other chapters, by a rectangle we mean a Cartesian product of any two sets one
of which lies in the parameter space of agent 1 and the other in the parameter space of
agent 2. In this case, the rectangle is a product of slanted straight lines, but the product
would qualify as a rectangle even if its components had been curved.
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Furthermore, any point in this level set belongs to some rectangle obtained

by choosing a suitable value of d , keeping c fixed.

Thus, for fixed c , the level set F −1
W (c) is expressed as a union of rectangles,

one side of which is in the parameter space of agent 1 and the other in

the parameter space of agent 2, each rectangle labeled by the value of d .

Formally, the level set defined by c can therefore be written as

F −1
W (c) =

⋃
d∈R

{(a1, a2, b1, b2) ∈ � | a2 + ca1 = d and b2 − cb1 = d}

=
⋃
d∈R

{{(a1, a2) ∈ �1 : a2 + ca1 − d = 0}

∩ {(b1, b2) ∈ �2 | b2 − cb1 − d = 0}}.
This decomposition of the level sets of FW into rectangles is fully deter-

mined by the equilibrium equations (∗) of the mechanism. A similar, not

necessarily identical, covering of the level sets of FW by rectangles is deter-

mined by the equilibrium equations of any (privacy-preserving) mechanism

that realizes FW .

It follows that the message correspondence μc is the composition of a

function that maps the parameter space into rectangles in � that fit inside

of level sets of the goal function FW (for this reason we call this an FW-

contour contained (abbreviated FW-cc) covering) and a function that labels

each rectangle with the two numbers, c and d . These are values of two real

variables. Because these numbers are sufficient to identify the rectangle, we

can use them as the means by which the agents communicate, that is, as

messages.

Thus,

m1 = x = c

m2 = p = d.

In the static case, an agent verifies a given joint message if given her

parameters the message satisfies her equilibrium equations.

As we have seen, these rectangles cover all of �. It is worth noting that this

covering is in fact a partition of �. Furthermore, this labeled, F -cc covering

has the following informational properties:

(i) Each agent can verify the joint message (m1, m2) = (x , p) = (c , d)

knowing only his own parameters, that is, without knowing the other

agent’s parameters; that is, agent i looks only at the component mi and

accepts or agrees to the entire message if and only if mi is acceptable
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given his parameters. (This is the privacy-preserving property of the

covering, and of the mechanism.)

(ii) Given their parameters (a1, a2) and (b1, b2) respectively, both

agents independently and simultaneously verify a particular mes-

sage (m1, m2) = (x , p) = (c , d) if and only if m1 = x = c =
F (a1, a2, b1, b2), and m2 = p = d .

(iii) The messages consist of two real numbers (two is the dimension of

the message space), although the number of parameters of agents is

four.

Further, it is the case that messages and equations like (∗) that have the

properties (i) and (ii) do not exist for messages consisting of fewer than two

real numbers. (To see this, note that if there were a mechanism that realizes

FW and uses only a one-dimensional message, that mechanism would have to

distinguish different values of FW . Therefore the one-dimensional message

would have to label the level sets of FW in �. But the level sets of FW are

not rectangles. Therefore there do not exist functions F i
W : �i → M such

that

FW(θ) = F 1
W(θ1) ∩ · · · ∩ F N

W (θ N).

Further, for the same number of agents and goods, even if the agents’ util-

ities depended on more than two parameters each, say fifty each, the same

two-dimensional messages would have the properties, (i), (ii), and (iii).

What we have noticed so far is that if we know the mechanism, that is,

the equilibrium equations, we can construct an F -cc covering (in this case

a partition) of the level sets of FW by rectangles. But, it is also the case that if

we somehow managed to find an FW-cc covering of the level sets of FW by

rectangles, and a way to label the rectangles by variables, m1, . . . , mr , then

we could obtain a system of equilibrium message equations of a mechanism

with properties (i) and (ii) from that covering. (The messages would, of

course, be r -dimensional instead of two-dimensional.)

1.6.8 Deriving a Mechanism (Not the Competitive Mechanism)
from a Covering for the Walrasian Goal Function

Suppose we are given the FW-cc covering that consists of the rectangles

A(d1, d2) × B(c), where

A(d1, d2) = {(a1, a2) ∈ R2 | a1 = d1, a2 = d2} = {d1, d2},
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which is a singleton in �1, and

B(c) =
{

(b1, b2) ∈ R2

∣∣∣∣ (b2 − d2)

(b1 − d1)
= c

}
,

which is a straight line in �2. Given two different vectors (d1, d2, c) and

(d ′
1, d ′

2, c ′), the rectangles determined by them are disjoint. That is, this

covering is a partition of �.

Then, for each value of the real variable c , the corresponding contour

set is

F −1
W (c) =

⋃
d1,d2

{
(a1, a2) ∈ R2 | a1 = d1, a2 = d2

}

×
{

(b1, b2) ∈ R2

∣∣∣∣ (b2 − d2)

(b1 + d1)
= c

}
.

In this partition of the level sets of FW , each rectangle is labeled by its values

of d1, d2, and c . In a way analogous to what was done with the competitive

mechanism, these labels can be used as messages by a mechanism whose

message space is R3. That mechanism realizes FW , but it is not the compet-

itive mechanism. This is done as follows. Let

m1
1 = d1, m1

2 = d2, m2 = c .

And, let the individual equilibrium equations of the mechanism be

g 1
1(m, a) = m1

1 − a1 = 0,

g 1
1(m, a) = m1

2 − a2 = 0,

for agent 1, and

g 2(m, a) =
((

b2 − m1
2

)
(
b1 + m1

1

)
)

− m2 = 0,

for agent 2.

Let the outcome function be

h∗(m1
1, m1

2, m2) = m2.

We see that the mechanism π∗ = (R3, g 1
1 , g 1

2 , g 2, h∗) (in equation form)

realizes FW . That is, for all admissible parameter values (a1, a2, b1, b2) the

solution of the equilibrium equations gives a value of m2 such that

FW (a1, a2, b1, b2) = m2

(We call this a parameter transfer mechanism from 1 to 2, abbreviated PT1→2

or PTa→b , because agent 1 tells agent 2 the value of his parameters (that is, he
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“transfers” his parameters, a , to agent 2), and agent 2 uses that information

to calculate the value of FW .)25

By constructing a parameter transfer mechanism, we have exhibited a

privacy preserving mechanism that realizes the Walrasian goal function (that

is, results in the same resource allocation as the Walrasian mechanism), but

that is quite different from the “customary” competitive mechanism.

We see in these examples that the message space in each case labels, or

indexes a rectangular covering of the joint parameter space �, with the prop-

erty that each level set of the goal function can be represented as a union

of some of those rectangles. In both cases the covering turns out to be a

partition. Observe, however, that each partition of the full parameter space

� defines a covering, not necessarily a partition, of the individual parameter

spaces �i of the agents.26

Each of these two privacy-preserving mechanisms (competitive and

parameter transfer) constitutes a solution of the design problem for FW .

However, they have different informational properties.

1.6.9 Informational Properties of the Two Mechanisms

First, the competitive mechanism uses two-dimensional messages, whereas

the parameter transfer mechanism uses three-dimensional messages.

25 The general form of PTa→b for a given F and � = �1 × �2, with θ1 = a and θ2 = b, is

g 1(m, a) = m1 − a = 0, g 2(m2, b) = m2 − F (m1, b) = 0

dim m1 = dim �1, dim m2 = 1; dim M = 1 + dim �1. Parameter transfer mechanisms,
as well as other mechanisms that realize FW are discussed in the context of the Walrasian
example and in more general settings in Chapter 2.

26 The covering of �i defined by the partition of � is obtained by projection. A set A belongs
to the covering of?�i if and only if there is a rectangle R in the partition of? � that has A
as its �i -side.

Rectangular coverings are discussed more formally in Chapters 2 and 3. A labeled (or
indexed) rectangular F -contour contained covering is called a product structure for F . The
label or index of each rectangle in a covering can be a point of the rectangle. In that case, the
product structure is called a parameter indexed product structure (PPS). It can alternatively
be indexed in some other way, i.e., by a message. In that case the product structure is called
a message indexed product structure (MPS). These concepts are defined more precisely in
Chapters 2 and 3.

The interpretation of a partition of the parameter space in terms of information is
that less information about the parameter value is conveyed by identifying the set (not a
singleton) it belongs to than would be conveyed by identifying the point itself. When the
collection of sets forms a covering rather than a partition, it is still the case that identifying
a set that contains the parameter point conveys less information than identifying the point,
but, because there may be several sets that contain a given parameter point, a covering opens
the possibility of choosing a particular set to represent the parameter point conditional
on the set (i.e., the message) transmitted by the other agent. This possibility is sometimes
useful.
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Second, we have already pointed out that the size of messages of the

competitive mechanism is the same no matter how many parameters char-

acterize the agents, whereas the dimension of the messages used by the

parameter transfer mechanism π∗ depends on the number of parameters

that characterize agent 1.

Third, the rectangular FW-cc covering of � induced by the competi-

tive mechanism consists of two-dimensional rectangles in R4; the rectan-

gles induced by the parameter transfer mechanism are one-dimensional

rectangles in R4. This corresponds to the fact that the competitive mecha-

nism uses two-dimensional message and the parameter transfer uses three-

dimensional ones; in these cases 2 + 2 = 4 = 3 + 1, the dimension of R4.

Neither partition is a refinement of the other, so it cannot be claimed that

one is more (or less) informative than the other. However, in the parameter

transfer π∗, agent 1 must identify his parameters exactly, whereas this is not

the case for agent 1 in the competitive mechanism.

Fourth, in the competitive mechanism each agent must verify one equa-

tion; in the parameter transfer agent 1 verifies two equations, whereas agent 2

verifies one equation.

From the standpoint of computational complexity, in the case of the com-

petitive mechanism both agents have equally complex equations to verify,

whereas in the parameter transfer agent 2 has a more complex equation

to verify and agent 1 has two trivial ones. In the case of the competitive

mechanism, the parameter point θ i of agent i is contained in several (in

this case infinitely many) sets of the covering. But the sets labeled by a

particular message consists of many parameter points. This means that

the agents can coordinate by each transmitting a message that signals a

set of parameter values rather than having to signal the precise parameter

values.

Comparisons of the informational properties illustrated in this example

are important elements of the design problem. The method we propose for

designing privacy-preserving mechanisms that realize a given goal function

produces mechanisms that have properties of informational efficiency in

one or another of the senses illustrated in the Walrasian example.27

As we have said, the preceding examples illustrate the connection between

mechanisms that realize a given goal function, on the one hand, and rect-

angular coverings of the level sets of the goal function, on the other. They

suggest a general way of solving a problem of mechanism design posed in

a goal function, including its domain. That is, given only the goal function

27 Several concepts of informational efficiency are introduced in Section 1.7 of this chapter,
in section 2.6 of Chapter 2, and are also discussed more formally in Chapter 3, Section 3.7.
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(including its domain, and its range) and the initial dispersion of informa-

tion among the agents, expressed in terms of parameters that characterize

the agents, first construct a rectangular covering of the level sets of the goal

function, and then a labeling of the rectangles in that covering, thus produc-

ing a product structure for the goal function. Next, use the labeled rectangular

covering to construct the message space and the equilibrium equations, or

message correspondences, of the agents, and the outcome function; these

together define the mechanism.

It would be desirable to carry out these steps by a routine or algorithmic

procedure, rather than to have to rely on inspiration or brilliant insights.

We present next an outline of such a procedure. The procedure has two

main steps. The first, called the rectangles method (RM), constructs a rect-

angular, F -cc, covering of the level sets of F . The second step can be one

of three alternatives, called the flagpole method, the transversals method,

and the condensation method, respectively. Each second step method labels

the rectangles, constructs a message space, the equilibrium equations, or

the message correspondence and the outcome function of a mechanism. A

mechanism so constructed realizes the goal function, and is informationally

efficient.

A more complete and formal treatment is given in subsequent chapters.

Here we continue in the setting of the Walrasian example.

1.6.10 The Rectangles Method Applied to the Walrasian Goal
Function – Informal

We are given a goal function

F : �1 × �2 → Z.

In our Walrasian example,

F (θ1, θ2) = FW (a1, a2, b1, b2) = (b2 − a2)/(b1 + a1),

whose level sets, F −1
W (c), are given by the equation

(b2 − a2)/(b1 + a1) = c .

To construct a rectangular covering of a given level set, we must construct

a collection of rectangles each of which is completely contained in that level

set, and whose union is the level set. A rectangle is the product of two sets,

one of which is in the parameter space of the first agent and the other in

the parameter space of the second agent. We refer to these as sides of the
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rectangle. Our procedure is to construct these sides. We outline the principles

underlying the rectangles method in the case of two agents.

In general, when there are two agents, the method of rectangles involves

constructing a “generic” rectangle by following these three steps:

1. select a base point, θ̄ in the parameter space;

2. select a starting agent,28 say agent 1 and correspondingly select a θ1

side for the rectangle, to be denoted by A(θ̄), in such a way that the

rectangle A(θ̄) × {θ̄} does not go outside the level set F −1(θ̄); and

3. construct the θ2 side of the rectangle, denoted by B∗(A(θ̄), θ̄), so that

the set B∗(A(θ̄), θ̄) is the largest possible without making the rectangle

A(θ̄) × B∗(A(θ̄), θ̄) go outside the level set of θ̄ .

It is intuitively clear that several properties of a rectangular covering of the

level sets of F is related to, and perhaps determines, informational costs. For

instance, the coarser the covering, the less precisely the agents have to observe

their parameters. Furthermore, when the level sets of the goal function are

finite, the coarser the covering, the “smaller” is the set needed to index its sets,

and hence, the “smaller” the messages that must be communicated in order

to transmit the information needed to realize the goal function. However, in

general, the coarseness of the covering and the size of the message space are

different (not equivalent) concepts. Informational properties of rectangular

coverings, and of message spaces, are discussed subsequently in this chapter,

and more formally in Chapters 2 and 3. Here we content ourselves with only

a hint of their existence.

Having constructed a rectangular covering, the next step is to construct a

labeling, or indexing, of its sets. Finding a good way of indexing a covering

of the parameter space is a major part of the problem. One approach that

is helpful is by the construction of a transversal. The basic idea of indexing

a family of sets by a transversal can be illustrated easily by using the level

sets of the function F , a case that corresponds to the one agent situation.

A systematic discussion of the theory of transversals is given in Chapters 2

and 3 and illustrated there.

Suppose, for example, that F : Rk → R is a smooth function. We assume

that the level sets of F are (k − 1)-dimensional, as they would be when the

Jacobian of F has rank (k − 1). Viewed geometrically, the level sets can be

identified by taking a curve � (one-dimensional) transversal to the level sets,

28 The procedure starting with making 2 the starting agent is analogous. We speak of left
rectangles method when 1 is the starting agent, and right rectangles method when 2 is the
starting agent.
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that is, a curve � such that each level set intersects � exactly in one point. We

arbitrarily chose a point A on the curve, and for each level set a = F −1 (c),

measure the arc length from A to the (unique) point Ba at which the level

set a intersects the curve (see Figure 1.6.1.). This construction amounts to

indexing the level sets of F , using the measured arc length as the index. (An

alternative indexing using the same curve � is given by the point Ba itself.

We will sometimes use the latter indexing in what follows.) An indexing

system that does not distinguish the level sets of F cannot serve as a message

system of a mechanism that realizes F ; that is, no message correspondence

that induces a partitioning or covering of � coarser than the contour map

of F can realize F .

Figure 1.6.1

1.7 Introductory Discussion of Informational Efficiency Concepts

If no informational efficiency requirements are imposed, the task of design-

ing a privacy-preserving mechanism that realizes a given goal function is

trivial, because it can easily be accomplished by direct revelation or param-

eter transfer. But a direct revelation mechanism uses a message space whose

dimension is equal to the number of parameters of all participants. A param-

eter transfer process uses a smaller message space; when there are two agents,

we can get by with a message space of dimension equal to one plus the smaller

of the two numbers of parameters characterizing the agents. Because, other

things being equal, information processing costs rise with the size of mes-

sages agents must handle, it is desirable to lessen this burden.
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Our earlier examples show that this may be possible. In Section 1.8 (log-

ging in a National Forest) there are privacy preserving mechanisms with

four-, three-, or two-dimensional message spaces that realize the goal func-

tion. Similarly, we have shown that to realize the Walrasian goal function

FW , direct revelation uses four messages (i.e., a four-dimensional message

space), parameter transfer uses three, but the competitive process uses only

two. If one goes beyond our highly simplified Walrasian example, the con-

trast is even greater: in an economy with two goods and two agents, if the two

agents had utility functions in the form of polynomials of degree p, direct

revelation would require 2p messages, and parameter transfer p + 1; hence

the number of messages required could become arbitrarily high. But the

competitive mechanism needs only two messages, regardless of the degree

of the polynomials!

But the situation is not always so pleasant. There are goal functions that

cannot be realized by any mechanism with fewer messages than are used by

the parameter transfer process. One example of such a goal function is the

inner product,29 defined by

F (a , b) =
p∑

r=1

ar br ,

with p an arbitrary positive integer. It is known (see, e.g., Hurwicz (1986))

that this goal function cannot be realized with a message space of dimension

less than p + 1, the same as that for the parameter transfer process.

These considerations lead to one kind of informational efficiency con-

cept for mechanisms; the dimension of the message space, abbreviated as

m-efficiency. But there are others. For instance, whereas parameter transfer

is more m-efficient than direct revelation, it places the burden of calculating

the value of the goal function on one of the agents. Thus, in the case of two

agents, if the transfer is from 1 to 2, the equilibrium equation to be verified

by agent 2 is

m2 − F (m1, b) = 0, (1)

where m2 is a real number but the dimension of m1is equal to that of agent 1’s

parameter vector.30 On the other hand, in the direct revelation mechanism,

29 The inner product is the prototype of goal functions that express strong complementarities
between the parameters of the two agents. There are many such functions. See Williams
(1984) for the genericity of such functions in the smooth case.

30 Since agent 1’s equation is m1 − a = 0, the outcome function for PT1→2 is h(m) = m2.

Hence no additional calculation is required. On the other hand, for direct revelation the
outcome function is h(m) = F (m1, m2), and does require additional calculation by the
coordinating computer.
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agent 2’s equilibrium equation is

m̃2 − b = 0. (2)

The task of agent 1 is the same in both cases: to verify the equilibrium

equation

m1 − a = 0. (3)

We see that whereas the parameter transfer process is more m-efficient

than direct revelation, it might raise the cost of computations, because agent

2’s computation might be more complex. Whether the tradeoff between

lowering the number of messages and raising the complexity is advantageous

depends on the technologies of information processing and their relative

prices.31

Another aspect of the informational efficiency issue is brought out by

comparing the two parameter transfers: from agent 1 to agent 2, and vice

versa. Suppose at first that the individual parameter vectors a and b have the

same dimension. Then either parameter transfer uses the same number of

messages, namely, one plus the dimension of the parameter vector a (or b).

Hence the two transfers have the same m-efficiency. However, the person

bearing the burden of more complex computations might be different in

the two cases. Because their skills or costs may differ, we cannot claim that

it does not matter who does the computations. Thus, the complexity of

computations, roughly indicated by the number of equations to be verified

by each agent, constitutes another aspect of informational efficiency.

In cases that satisfy certain mathematical regularity conditions, namely,

smoothness of the functions and the nonsingularity of the system’s Jacobian

matrix, the total number of equations to be solved by the two agents in the

two parameter transfers will be the same – equal to the dimension of the

message spaces, i.e., one plus the number of components in the vector a (or

b). But because which agent bears the burden makes a difference, we can

use as an efficiency measure the vector q = (q1, q2) where qi is the number

of equations to be solved by agent i . The vector q is called the equation

efficiency vector (sometimes abbreviated as eq-vector) For parameter transfer

from 1 to 2, these numbers are (q1 = dim a , q2 = 1), so the eq-vector is

(dim(a), 1). For transfer from 2 to 1, the eq-vector is (1, dim(a)). (If the

dimensions of a and b are different, the eq-vector for transfer from 2 to 1

is (1, dim(b).) Other things being equal, the lower these numbers are, the

31 From here on, we shall with a few exceptions ignore complexity issues. Complexity in
economic settings is treated extensively in Mount and Reiter (2002).
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better. We therefore refer to this (vectorial) measure as equation efficiency,

abbreviated as eq-efficiency. Thus a privacy-preserving mechanism whose

eq-vector is q = (q1, q2) is said to be eq-efficient for F if it realizes F , and

if there does not exist another privacy-preserving mechanism, say p′, that

also realizes F , whose eq-vector (q ′
1, q ′

2) is vectorially lower, that is, is such

that q ′
i ≤ qi for i = 1, 2, and at least one inequality is strict.

It is important to note that the eq-efficiency measure generates a partial

ordering, not a complete one.

It is not difficult to see that, in regular cases, m-efficiency implies eq-

efficiency. But the reverse is not true; there are examples of mechanisms that

are eq-efficient but not m-efficient.

We have already noted briefly that the coverings induced by equilibrium

message correspondences can differ in their coarseness, and suggested that

it seems plausible to suppose that the finer a covering, the more effort is

required to determine the set of the covering that one is in. Hence, a less

coarse covering would entail higher information processing costs. Thus,

other things being equal, the coarser the better. This leads us to a third infor-

mational efficiency concept called covering efficiency. A privacy-preserving

mechanism that realizes a goal function F is called covering-efficient (or

maximally coarse, or minimally fine) if there does not exist another mech-

anism that realizes F whose covering is coarser. It is shown in later chap-

ters that the rectangles method (RM) has the attractive property of being

covering-efficient. However, it is shown by examples that it is not always

eq-efficient, hence not always m-efficient.32

We turn next to Section 1.8.

Section 1.8 is representative of a class of situations in which there is an

authority, usually an agency of a government, that is created to regulate

actions of economic agents in situations in which markets do not assure

satisfactory outcomes. Sometimes agencies are created to intervene when

the balance of economic power of private agents becomes systematically

one-sided, and there is sufficient political pressure for intervention. The

Interstate Commerce Commission of the Federal Government is a classic

example; there are many others. The law(s) that establish an agency of this

kind usually specify a mission or objective, but rarely specify the means

by which the agency is to achieve that objective. Therefore, the agency has

32 In terms of the concepts of informational size referred to in footnote 32, chapter 2 and
coarseness of the associated covering, it is shown in Chapter 3 that minimal informational
size of the message of a mechanism implies maximal coarseness of the covering, but, as the
example of the parameter transfer mechanism shows, maximum coarseness of the covering
does not imply minimal informational size of the message space.
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a design problem, sometimes in a setting that is not among the familiar

formulations of economic theory. The following example is a highly stylized

formulation intended to capture certain key features of the situations just

alluded to, and to show how they relate to the formal model of mechanisms

and mechanism design presented in this book. Our example is not offered

as a realistic representation of a real case. We present it to begin with in

the form of a narrative, in which named agents interact in a situation that

can be seen as a stylized account of a real situation. But real situations are

usually much richer, much more complicated, and more nuanced than is

our stylized story. We do not intend that our story should be read as an

account of any real case.

1.8 A National Forest

In our example there is a National Forest. The forest can produce two prod-

ucts, forest products, briefly “wood”, and the experience of a natural envi-

ronment, briefly “nature.” Forest products are produced by logging. But

logging changes the natural environment. Thus, wood and nature are joint

products of logging in this forest. The commodity space is R2
+, the nonneg-

ative quadrant of the two-dimensional Euclidean space. The intensity, or

amount, of logging in this forest determines the amount of wood produced,

and also the degree of degradation of the original natural environment,

measured as the amount of unspoiled nature that remains.

The National Forest is run by a Federal agency, which is responsible for

deciding how much logging can be done there. Therefore we want a repre-

sentation of the technology of logging in terms of the variable controlled

by the regulating agency. Let that variable be λ ∈ [0, 1]. This is the amount

of logging, normalized for this particular forest so that λ = 0 represents

no logging, and λ = 1 represents cutting the entire forest. The following

diagram represents the technology.

The piecewise linear curve shown in Figure 1.8.1 is the production set.

It is not necessarily the efficient frontier of a larger set, as it would appear

to be in a conventional representation of production, although the example

could be reformulated to fit that interpretation. Note that the point in the

commodity space that represents the result of no logging in this forest is the

point (0, N), where N denotes the amount of nature provided by the uncut

forest. The curve shown in Figure 1.8.1 is the image of the unit interval by

the function φ : [0, 1] → R2
+, where φ (λ) = (φ1 (λ) , φ2 (λ)). Here φ1 (λ)

is the amount of wood produced when the intensity (amount) of logging is

λ, and φ2 (λ) is the amount of nature so produced.
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Nature

(0)φ

φ (λ) = (φ1 (λ), φ2 (λ) )

1( )P λ= φ

(Q λ2)= φ

φ(1)
Wood

Figure 1.8.1

We assume that the curve φ([0, 1]) is piecewise linear in order to simplify

the example without making it trivial.33

The points P and Q in Figure 1.8.1 are points of (jump) discontinuity

of the derivative of the curve φ([0, 1]). These points occur at the values

corresponding to λ = λ1 and λ = λ2.

The community of those who benefit from logging includes sellers of

forest products, producers for whom forest products are inputs, and con-

sumers of goods made from forest products. These people prefer to have

more logging.

On the other hand, those who use the forest for recreation, and those

who value it as their descendents’ heritage prefer less logging, even though

they may also be consumers of some forest products. We suppose that the

preferences of people in the two different groups are diametrically opposed.

33 This assumption is modified in Section 3.8, where this example is revisited.
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For simplicity we assume that there are two lobbyists – political–economic

agents – agent 1 and agent 2. Agent 1 represents the group of loggers; agent 2

represents the preservationists. Agent 1 knows that the loggers are willing to

support political action that advocates more logging. Agent 1 also knows that

the amount of support forthcoming from the logging community depends

on the amount of logging that would be allowed, that is, on the value of

λ. If λ = 0 is the proposed or prevailing amount of logging, then loggers

are willing to support more intense, or extensive political action than they

would if λ = 1, in which case they might be unwilling to pay much. Thus,

agent 1 knows the function P1 : [0, 1] → R whose value, p1 = P1 (λ), is the

intensity of political pressure that agent 1 expects to be generated from the

support of the community of loggers when the amount of logging allowed

is λ.

Similarly, agent 2 knows the function P2 : [0, 1] → R, whose value is the

amount of political pressure agent 2 generates at the logging amount λ. We

call the functions Pi political action functions, or p-functions, for short. For

simplicity, we treat the p-functions as primitives.34 We make two assump-

tions directly about them. First, we assume that the function Pi takes values

in the interval [τ i
min, τ i

max], i = 1, 2. The end points of the interval are

the minimum and maximum levels of political pressure Agent i can bring

to bear. We assume that the function P1 takes its maximum at 0, and is

strictly decreasing on the interval [0, 1], and that P2 takes its minimum at

0, and is strictly increasing on [0, 1]. Furthermore, we assume that each p-

function is piecewise linear; it consists of three line segments corresponding

to the three line segments in the graph of ϕ. It follows that a possible p-

function P1 for agent 1 is completely specified by its value at each of four

points,

λ = 0, λ = λ1, λ = λ2, λ = 1.

Let

τ 1
max = P1(0), a1 = P1(λ1), a2 = P1(λ2), and τ 1

min = P1(1).

Similarly for P2, we write

τ 2
min = P2(0), b1 = P2(λ1), b2 = P2(λ2), and τ 2

max = P2(1).

In this notation, the graph of P1 consists of three line segments, one

with the endpoints ((0, τ 1
max), (λ1, a1)), the second with the endpoints

34 In a more detailed model, the group political actions would be derived from the underlying
technology and utility or profit functions.
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(λ1, a1), (λ2, a2), and the third with endpoints (λ2, a2), (1, τ 1
min). The

assumption that P1 takes its maximum at 0 and its minimum at 1, and

is strictly monotone is expressed by the requirement that τ 1
max > a1 > a2 >

τ 1
min. The two endpoints of the middle segment correspond to the points at

which the graph of ϕ has kinks. Similarly, P2 consists of three line segments

with endpoints (0, τ 2
min), (λ1, b1), (λ1, b1), (λ2, b2), and (λ2, b2), (1, τ 2

max),

respectively, where τ 2
min < b1 < b2 < τ 2

max. These graphs are shown in Fig-

ure 1.8.2.

We are assuming that the function ϕ is fixed, and known to everyone.

Hence, the values λ1 and λ2 are constants known to everyone. To simplify

matters further, we assume that the minimum and maximum values are the

same for all functions P1 under consideration, and the same for all functions

P2. That is, τ 1
max, τ 2

max, τ 1
min, τ 2

min are constants that are known to everyone.

Therefore, a p-function P1 is uniquely specified by two numbers, a1, a2.

Similarly, P2 is characterized by two numbers, b1 and b2 . Thus, an envi-

ronment consists of a possible pair of functions (P1, P2). It is specified by

four numbers, θ = (a1, a2, b1, b2) .35 The set, � = �1 × �2 of environ-

ments is the set of all θ = (θ1, θ2) that satisfy the conditions

τ 1
max > a1 > a2 > τ 1

min,

and

τ 2
min < b1 < b2 < τ 2

max.

Thus,

�1 = {
(a1, a2) : τ 1

max > a1 > a2 > τ 1
min

}
,

and

�2 = {
(b1, b2) : τ 2

min < b1 < b2 < τ 2
max

}
.

We let a = (a1, a2) and b = (b1, b2), and, where needed, we identify the p-

function corresponding to the parameters a and b as P1 (•, a), and P2 (•, b).

The government agency that controls the National Forest assigns respon-

sibility for that forest to a bureaucrat, who is represented here by an agent,

called the Forester. The role of the Forester is to decide how much logging to

permit, that is, to choose the value of λ. The Forester knows the function φ,

35 It is not an essential feature of our general framework that an environment be represented
by finitely many parameters. As can be seen subsequently, indivisibilities and nonlinearity
do not present special difficulties.
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but does not know the functions Pi , i = 1, 2; that is, the Forester does not

know the prevailing environment, namely,

θ = (a1, a2, b1, b2) = (a , b).

The Forester is supervised by superiors, by one or more Congressional

committees, and ultimately by the President. Therefore, the Forester must

be able to justify his decision on the basis of some coherent principle. Such a

principle, or set of principles, can be represented formally by a goal function

that associates the desired level of logging, λ = F (θ), with each possible

environment θ .

What might the goal function express in this problem? The Forester can be

motivated by several factors. First, he is responsible for the state of the forest.

Second, he is a bureaucrat in an administration that might have political

obligations to one or the other of the parties, and thus wish to favor one

of the parties. Third, he may want to minimize, or limit the intensity of

political conflict. The Forester might decide how much logging to permit

without considering the political pressure that might be brought to bear

by the agents. But suppose the Forester wants to, or must, allow political

pressures to bear on the decision, then the goal function should reflect this

factor. Although the set of possible goal functions is fairly large, to keep the

example simple we assume here that the objective of the Forester is to balance

the political pressures.36 Specifically, we assume that the Forester would like

to choose that logging level at which the political pressure brought to bear

by agent 1 equals that of agent 2. This situation is illustrated in Figure 1.8.2,

where the point (λ∗, τ ∗) is the one at which political pressures are equal in

the environment represented there.

To put this into practice, the Forester must, in one way or another, get

information about the environment, and be able to explain or rationalize his

decision. Someone, perhaps the Forester, or his superiors, or a Congressional

committee, must design a systematic process – a mechanism – that will allow

him to take the desired decisions in each possible environment. We express

this by saying that the mechanism must “realize the goal function.”37

A natural way of thinking about a mechanism is to think of the private

agents, agents 1 and 2, sending information – messages – to the Forester,

36 This example is revisited in Section 3.8 where it is used to illustrate graphically the formal
methods if constructing mechanisms that are presented in Sections 3.2 to 3.5. Other goal
functions are also considered there.

37 This corresponds to “implementing a social choice or goal function” in the game-theoretic
approach. We consider incentives in Section 3.9. The term “mechanism” has a slightly
different meaning there.
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Figure 1.8.2

perhaps in an ongoing dialogue. This suggests some sort of dynamic process,

for instance, a discrete time message exchange or adjustment process as

follows.

At time t the Forester announces a provisional logging rate λ(t) ∈ [0, 1].

Agent i responds with the message pi (t) = Pi (λ(t), θ i ), i = 1, 2. At time

t + 1 the Forester calculates

�(λ(t)) = P1(λ(t), a) − P2(λ(t), b)

and adjusts the value of λ (t) according to the rule

λ(t + 1) = λ(t) + η(�(λ(t))),
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where η is a sign preserving function of � such that η(0) = 0. Thus, accord-

ing to this process the Forester proposes a logging rate, each agent responds

with a message that informs the Forester of the amount of political pressure

that the agent can bring to bear. If the pressure from the loggers exceeds the

pressure from the preservationists, the Forester proposes a higher logging

rate, if the pressure from the loggers is smaller than that from the preser-

vationists, the Forester proposes a lower logging rate. If the pressures are

equal, the Forester announces that rate as his decision.

The assumptions we have made about the functions Pi , i = 1, 2, ensure

that there is a unique logging rate λ∗ at which � (λ∗) = 0, and that the

adjutment process we have defined converges to it. However, there are other

environments, in which the functions Pi , i = 1, 2, do not satisfy all our

assumptions, in which the Forester’s response to political pressure could

lead to more complex adjustments and different outcomes.38

Now we restrict attention to equilibrium. Then we can use the verification

scenario, to achieve the same result as we would get by looking only at the

stationary points – the equilibria – of the dynamic process. According to

rules of a verification scenario, the Forester “posts” a message (sends it to

each agent); both agents 1 and 2 see the message, and each responds either

“yes” or “no.” Here we are assuming that both agents answer truthfully.

(We drop this assumption subsequently.) If both agents answer “yes,” then

the Forester translates the posted message into a logging rate according to

a fixed rule called the outcome function – a function known by all three

agents. What messages can the Forester post? In a more realistic case, it

seems clear that communication between the Federal agency, the industry

and the environmentalists is likely to be complicated and voluminous. This

leads to the idea that it is desirable to have a mechanism that realizes the goal

function while using messages that are as “small” as possible. We consider

the mechanisms that are available in our example.

A revelation mechanism is an obvious possibility. If the Forester posts a

four-dimensional vector (a1, a2, b1, b2), and both agents 1 and 2 respond

“yes,” then as far as equilibrium is concerned, it is just as if each agent told

the Forester their parameters. Thus, the message is m = (a1, a2, b1, b2; x),

where x ∈ {yes, no} × {yes, no} is the reply of the two agents.

Note that the set of possible replies of the agents is the same in the ver-

ification scenario no matter what the nature of the message the Forester

posts. Therefore, when trying to minimize message size, we can ignore the

reply part of the message – the x – and concentrate attention on the message

38 We consider one such example in Section 3.8.
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that the Forester posts. When the Forester sees that all replies are “yes,” he

can then calculate the value of the outcome function at the agreed upon

message, and choose that value to be the logging rate. If the designer chose

the (obviously) correct outcome function, the mechanism would realize the

goal function. The obviously correct outcome function is

h(m) = h(a1, a2, b1, b2) = F (a1, a2, b1, b2).

The mechanism just described is privacy preserving, because each agent

can decide whether or not to say “yes,” knowing only her own parameters,

but not those of the other agent, and the Forester can translate the responses

into an outcome, because he knows the message he posted, and he knows the

goal function. The message space of this mechanism is four dimensional,

and the mechanism realizes the goal function. This mechanism is, of course,

the complete revelation mechanism.

Is it possible in this example to do better than complete revelation? Note

that the goal function is initially known by the Forester, and by the designer

of the mechanism, and may or may not be known by the private agents. We

assume here that it is announced by the Forester, perhaps published in the

Federal Register.

Assuming that either agent 1 or agent 2 knows the goal function, there is

a privacy-preserving mechanism that realizes the goal function and whose

message space is three dimensional, namely, a parameter transfer mechanism.

Suppose agent 1 knows the goal function.

The Forester posts a message that consists of three numbers, (u, v, w). In

the environment (a1, a2, b1, b2) agent 2 says “yes” to this message if and only

if v = b1, w = b2, and agent 1 says “yes” if and only if u = F (a1, a2, v, w).

Let the outcome function be

h(m) = h(u, v, w) = u.

It is clear that this mechanism is privacy preserving, and does realize

the goal function. It has a message space smaller than that of the complete

revelation mechanism. If neither agent 1 nor agent 2 knows the goal function,

then this mechanism is not available.

Is there a privacy-preserving mechanism that realizes the goal function

F and does so with a one-dimensional message space? The answer is “no.”

The obvious candidate for a mechanism with a one-dimensional message

space is one in which the Forester posts a proposed amount of logging, say,

λ∗. Agent 1 replies “yes” if and only if there is a real number τ such that the

point (λ∗, τ ) lies in the graph of his p-function. But this is evidently the case



P1: JZZ

CUNY425-01 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:33

58 Mechanisms and Mechanism Design

for any value of τ in [τ 1
max, τ 1

min]. Therefore agent 1 always answers “yes,” if

τ is in [τ 1
max, τ 1

min], or always answers “no,” if not. Similarly for agent 2. No

matter what parameter point is the true one, the Forester cannot identify it by

this mechanism, except by chance. A more complete mathematical analysis

shows that no alternative one-dimensional message would work either.39

A message space whose dimension is two is the only remaining pos-

sibility. We next describe a privacy-preserving mechanism that uses two-

dimensional messages, and that realizes the goal function.

The Forester posts a two-dimensional message (λ, τ ), where the logging

rate, λ, is in [0, 1], and τ is a real number. Agent 1 says “yes” if and only if

(λ, τ ) is a point in the graph of P1; agent 2 says “yes” if and only if (λ, τ )

is a point in the graph of P2. When both the logger and the nature lover

each say “yes,” the point (λ, τ ) is a point of intersection of the graphs of

their p-functions. Thus, when both agents say “yes,” to the announced point

(λ, τ ), that point uniquely satisfies the equation

P1((λ, τ ); a) − P2((λ, τ ); b) = 0.

In that case the political pressures are equal – exactly balanced.

Let the outcome function be the projection onto [0, 1]. It follows that the

logging rate λ is the value of the goal function at that environment. This

mechanism realizes the goal function, and as we have seen, has a message

space whose dimension is two.

The increase in informational efficiency, as measured by the difference

in dimensions of the message spaces, can be illustrated by comparing the

revelation mechanism, whose message space is four dimensional, with the

mechanism whose message space is two dimensional. This comparison can

be made in an intuitive way by comparing Figure 1.8.2 with Figures 1.8.3a

and 1.8.3b. In Figure 1.8.2 we see that a message identifies exactly one

parameter vector, which identifies exactly one pair of p-functions, that is,

one environment. Figure 1.8.2 shows a case in which the Forester has posted

(λ∗, τ ∗), where λ1 ≤ λ∗ ≤ λ2, and P1(λ∗; a) = P2(λ∗; b).

The Forester can then solve the corresponding system of two linear equa-

tions for the value of λ, which we see is the one specified by the goal function.

But Figures 1.8.3a and 1.8.3b make it clear that there are many pairs of p-

functions that intersect at a given point (λ, τ ). Thus, the mechanism, and

the Forester, can verify the logging rate specified by the goal function with-

out identifying the particular environment that prevails. Figures 1.8.3a and

39 That analysis originates in Mount and Reiter (1974) and Hurwicz (1986).
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1.8.3b together exhibit that class of environments for a particular value of

(λ, τ ).

More formally, let gr ( f ) denote the graph of the function, (or correspon-

dence) f . Sometimes we abuse the notation and write f for gr ( f ), when the

intention is clear from the context. It is evident that for any parameter point

(a , b) = (a1, a2, b1, b2), gr (P1 (•; a)) and gr (P2 (•; b)) intersect at exactly

one point. Figure 1.8.2 shows the graphs of two p-functions such that the

point of intersection of their graphs lies between λ1 and λ2. The situation is

essentially the same, but simpler, when the point of intersection lies in one

of the other two possible intervals. Therefore, we focus on the case shown

in Figure 1.8.2.

Given a point (λ, τ ) in P1 (•; a), where λ1 ≤ λ ≤ λ2, and the value of

agent 1’s first parameter a1, we can uniquely identify the function P1 (•; a)

by the pair (a1; (λ, τ )). To see this notice that (λ, τ ) is a convex combination

of (λ1, a1) and (λ2, a2). Thus

(λ, τ ) = μ
(
λ1, a1

2

) + (1 − μ)
(
λ2, a2

2

)
,

where μ ∈ [0, 1].

It follows that

a2 = τ − μa1

1 − μ
, where μ = λ − λ1

λ1 − λ2

. (+)

We write

a2 = ξ1(a1, (λ, τ )),

where the function ξ1 is defined for a1 > τ ∗, and also satisfies the condition

that ξ1(a1, (λ, τ )) ≥ τ̄2.

Similarly for agent 2, if we are given b = (b1, b2) and a point (λ, τ ) in the

gr (P (•; b)), with λ1 ≤ λ ≤ λ2, we can write

b2 = ξ2(b1, (λ, τ )),

where τ̄2 < b2 and satisfies ξ2(b1, (λ, τ )) < τ̂2.

Suppose we begin with the environment (a , b) shown in Figure 1.8.2,

and suppose we hold the parameters b of agent 2 fixed. Then the function

P2 (•; b) is determined, and hence its graph is fixed. For which parameter

points, a of agent 1 does P1 (•; a) contain the point (λ∗, τ ∗)?
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Let D1(λ∗, τ ∗) denote the domain of the function ξ1(•, (λ∗, τ ∗)). In

Figure 1.8.3a it is the open interval (τ ∗, τ ′
1), where τ ′

1 is the largest value

of a1 such that ξ1(a1, (λ∗, τ ∗)) > τ 1
min.40

(λ2 , b2)

E1(λ∗, τ∗)

PP

10

b2

a2

τ

τ∗

2
max

τ1
min

a1

b1

τ

τ∗

1
max

τ 2
min

λ2λ1 λ∗

Figure 1.8.3a

Thus, for any environment a of agent 1 such that a1 ∈ (τ ∗, τ ′
1) the pair

(a1, ξ1 (a1, (λ∗, τ ∗))) is a point in �1 such that the p-function of agent

1 contains the point (λ∗, τ ∗). This means that the information about the

environment of agent 1 conveyed when agent 1 says “yes” to the Forester’s

posted message (λ∗, τ ∗) is that agent 1’s p-function is in the set

E 1(λ∗, τ ∗) = {a ∈ �1 | a = (a1, a2) = ( a1, ξ1(a1, (λ∗, τ ∗)),

a1 ∈ D1(λ∗, τ ∗)}

40 Here we really mean the supremum of the set of values of a1 such that the corresponding
value of a2 is not less than τ 1

min.
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Similarly, the domain D2(λ∗, τ ∗) of ξ2(•, (λ∗, τ ∗)) is the open interval

(τ ′
2, τ ∗). Thus, the set

E 2(λ∗, τ ∗) = {b ∈ �2 | b = (b1, b2) = ( b1, ξ2(b1, (λ∗, τ ∗)),

b1 ∈ D2(λ∗, τ ∗)}.

(λ2, b2)(λ1, a1)

PP

10

b2

a2

τ

τ∗

2
max

τ1
min

a1

b1

τ

τ∗

1
max

τ2
min

λ2λ1 λ∗

E2(λ∗, τ∗)

Figure 1.8.3b

Notice that the product E 1(λ∗, τ ∗) × E 2(λ∗, τ ∗) ⊆ �

1. is a rectangular subset of the parameter space,

2. is contained in the contour set F −1(λ∗), and

3. there is no subset of � that has the properties 1 and 2, and also includes

E 1(λ∗, τ ∗) × E 2(λ∗, τ ∗)as a proper subset.
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Property 3 indicates a kind of informational efficiency. This claim is justi-

fied, because we have shown that when the message is one dimensional the

Forester cannot be sure of taking the desired decision.

Furthermore, as τ varies, the sets E 1(λ∗, τ ) × E 2(λ∗, τ ) make up a cov-

ering of F −1(λ∗). Denote this covering by C (F −1(λ∗)), or C (λ∗). Note

that the covering C(λ∗) is a partition. This is evident from the fact that

if a ′ ∈ E 1(λ, τ ) and b′ ∈ E 2(λ, τ ), then gr (P1(a ′)) ∩ gr (P2(b′)) = (λ, τ ).

But the intersection gr (P1(a ′)) ∩ gr (P2(b′)) consists of a unique point. It

follows that the parameter point (a ′, b′) cannot belong to any other set in

C(λ∗), nor can it belong to any other set in the covering C = ⋃
λ∈[0,1] C (λ).

The covering C is indexed by the messages posted by the Forester, namely,

by (λ, τ ). This kind of structure is called a “message indexed product

structure.”

The designer of a mechanism for this example would have to do his

job knowing only the set of possible parameter points (environments) and

the goal function. In this chapter and also in Chapters 2 and 4 we present

different systematic procedures that enable a designer who knows only the

set of possible environments and the goal function to construct a mechanism

that:

(i) does not require that any agent take actions that depend on information

the agent would not know given the initial distribution of information

about the environment and

(ii) does not require the designer to know the prevailing environment or

the message space before he constructs the mechanism.

So far we have assumed that the agents do not take strategic advantage

of their private information. This is because our objective is present an

algorithm (algorithms) for designing informationally efficient decentralized

mechanisms. However, in Chapter 3, Section 3.9, we study combining our

algorithms with methods of designing incentive compatible mechanisms to

produce decentralized mechanisms that are both incentive compatible and

informationally efficient.
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From Goals to Means: Constructing Mechanisms

Introduction

Our objective in this chapter is to provide a somewhat informal1 description

of systematic procedures for constructing informationally efficient decen-

tralized mechanisms that realize a given goal function.

A goal function represents outcomes or actions deemed desirable in each

possible environment under consideration. An environment is specified by

the values of finitely many parameters that together form the parameter

space. Their values define feasibility of allocations and preferences of the

agents. A goal function has as its domain a factored 2 parameter space (in

this chapter usually Euclidean or finite), and a Euclidean or finite outcome

space3 as its range.

A mechanism is a triple consisting of (i) a message space, (ii) a system of

decentralized equilibrium relations (correspondences, equations), and (iii)

the outcome function that translates equilibrium messages into outcome

choices. A mechanism models communication through messages, their ver-

ification by agents, and the outcomes associated with equilibrium messages.

definition. We say that a mechanism realizes4 the goal function if

(i) (existence) for every parameter point θ , there exists a corresponding

equilibrium point m in the message space.

1 A more formal exposition is found in Chapter 3.
2 The factorization of the parameter space represents the initial dispersion of information

among agents, i.e., it specifies which parameters are known to which agents.
3 We often use the real numbers as the outcome space, but an extension of results to multi-

dimensional Euclidean spaces is straightforward.
4 Using this term (as distinct from “implements”) reminds us that there is no claim of

incentive-compatibility.

63
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(ii) (optimality) if m is an equilibrium message for θ , then the outcome z

specified for m by the outcome function is desirable according to the

goal function – F-optimal.

Our procedures for designing mechanisms that realize a given goal func-

tion are intended to be systematic (or “algorithmic”) in the sense that, given

the initial data (the goal function and the factorized parameter space), a

decentralized informationally efficient mechanism that realizes the given

goal function is obtained as the end stage of a well defined sequence of

prescribed steps5, 6 when the parameter space is Euclidean or finite. In the

Euclidean case the goal function is required to satisfy regularity conditions,

and so is the mechanism. In this chapter we focus on two methods of mech-

anism design. In one of them – the method of rectangles – one of the

steps is to construct a transversal. In some cases this step uses the axiom of

choice.

The mechanisms obtained are (informationally) decentralized in the fol-

lowing sense. In the communication stage (often called the verification sce-

nario) an individual agent, say agent i , is asked only to verify whether a

message m is compatible at equilibrium with that agent’s characteristic –

the vector θ i of parameters known to agent i . Equilibrium prevails if and

only if each agent replies in the affirmative. Informational decentralization7

means that no agent needs to know other agents’ parameters. The mech-

anisms we construct are informationally efficient.8 Informational efficiency

includes two components: the coarseness of coverings of the parameter

spaces and the informational size of the message space.

The coarseness property of informational efficiency is meaningful for

finite as well as Euclidean spaces, and it has some intuitive appeal. However,

maximal coarseness does not necessarily yield minimal size or dimension of

the message space, though it sometimes does. The theorem in Section 2.6.5.2

states that among the maximally coarse mechanisms for a given goal func-

tion there is at least one whose message space has minimum informational

size.

The rectangles method of mechanism design consists of two phases. In

phase one we construct a correspondence V(·), with the parameter space �

5 Since more than one informationally efficient decentralized mechanism is usually available,
some steps may give the designer choice among a number of alternatives.

6 A step may involve the solution of a finite system of nonlinear equations.
7 Also called the privacy-preserving property.
8 For finite spaces, size is measured by cardinality; for Euclidean spaces, by vectorial dimen-

sion.
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as its domain, and whose range consists of Cartesian products9(inaccurately

called “rectangles”) in the parameter space. The correspondence is self-

belonging – for each θ in �, θ belongs to V(�). The products (rectangles)

represent decentralization in that they correspond to a given factorization

of the parameter space, which reflects the initial dispersion of information

among the agents. Also, the “rectangles” are compatible with the goal func-

tion F in that all elements of a “rectangle” are in the same F -contour set.

This property is called F-contour compatibility (abbreviated F-cc). Finally, in

virtue of the self-belonging property of the correspondence, each point of

the parameter space belongs to at least one of the rectangles – the corre-

spondence generates a covering of the parameter space. This correspondence

is sometimes referred to as a parameter-indexed product structure (PPS).

In order to achieve the maximal coarseness component of informational

efficiency, we construct the correspondence V by means of a procedure

called the method of rectangles, abbreviated RM, but more specifically reflex-

ive RM (rRM). To produce reflexivity requires a (finite) number of iterative

steps.10 These concepts are defined formally later in this chapter.

Phase one constructs an rRM maximally coarse covering of the domain

� of the parameter-indexed correspondence V(·). The sets that compose

the covering can be labeled – indexed. The set of indexing elements can be

viewed as a first approximation to a message space. But that set is, in general,

excessively large. We therefore need a procedure (phase two) for “shrinking”

the indexing set. To state it more precisely, we want to find a correspondence,

say W(·), whose domain is a set M, as “small” in cardinality or dimension

as we can make it, that identifies the same sets that V does – satisfying the

condition W(M) = V(�). Thus, the set of rectangles generated by W is

exactly the same as the set of rectangles generated by V , but the indexing

set – the message space to be used in the mechanism we are designing –

is “smaller.” A factored correspondence indexed by the message space is,

naturally, referred to as the message-indexed product structure (MPS).

When the parameter space is Euclidean, and the V-generated coverings

are partitions, and if certain regularity (rank, smoothness) conditions are

satisfied, we have two special procedures, respectively called the condensation

and flagpole methods, for shrinking the space of rectangles, and thus gaining

the informational advantage afforded by a smaller message space.

9 Corresponding to the factoring of the parameter space. The term “rectangle” refers to the
geometric appearance when there are just two agents, each with one-dimensional parameter
space �i .

10 As many steps as there are agents.
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In more general situations11 the construction of the message space

involves a theorem that guarantees the existence of a transversal for coverings

generated by self-belonging correspondences. This more general approach

is called the method of transversals (TM). As noted above, when the param-

eter space is Euclidean our general existence results involve the use of the

axiom of choice. The condensation and flagpole methods, although of more

limited applicability, do not use the axiom of choice, and hence are more

“constructive.”

Note again that we are dealing with two distinct components of informa-

tional efficiency: maximal coarseness of the covering and minimal size of the

message space. We have examples of maximal coarseness without minimal

message space size, but for a given goal function there always exists a mech-

anism that is both maximally coarse and has a message space of minimal

size.

Organization of Chapter 2

To a considerable extent Chapter 2 is a simplified exposition of results and

proofs reported in Chapter 3, but it contains a number of illustrative exam-

ples worked out in some detail: the “L-dot” example, a finite example, and

Euclidean examples – the augmented two-dimensional inner product, and

the Walrasian example. In these examples, elements of the mechanisms are

given by equations. Consequently, an additional component of informa-

tional efficiency applies. The sections that deal with informational efficiency

comparisons contain results not present in other chapters.

All of Section 2.1 deals with phase one, that is, with procedures involved

in constructing product structures that define decentralized coverings of

the parameter space by rectangles V(θ̄) indexed by θ̄ , and represented by

equations written as G(θ̄ , θ) = 0. The main such procedure is called the

method of rectangles (RM) described in Section 2.1.3, and more specifi-

cally the reflexive RM, abbreviated as rRM. Illustrative examples follow in

Sections 2.1.3.1 to 2.1.3.3 (L-dot, augmented inner product, Walrasian) and

2.1.3.4 (the “hyperbolic” example).

Sections 2.2–2.6 deal mainly with phase two, the transition from param-

eter indexed equation system G(θ̄ , θ) = 0 to message-indexed equation

systems g (m, θ) = 0 using the transversals method (TM). Two specialized

techniques are introduced for coverings free of intersections – partitions:

“flagpoles” (Section 2.3) and “condensation” (Section 2.4). Coverings with

11 See Chapter 3.
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overlaps are discussed in Section 2.1.3 (the “hyperbolic” example) and 2.5.

Section 2.6 is devoted to informational efficiency, a particular result is that

rRM does not always lead to a message space of minimal dimension (2.6.7),

but that a minimal dimension message space mechanism can always be

achieved with rRM (2.6.5).

Basic Concepts and Notation

We begin with the goal. This is formalized as follows. We first introduce the

outcome space Z. For example, the elements of Z might be resource alloca-

tions.12 The elements of Z are divided into those that are and those that are

not “optimal”. Whether an element of Z is or is not optimal depends on two

factors. First, it depends on the criterion (“goal”) in terms of which the opti-

mality judgment is made, such as, for instance, Pareto optimality or the max-

imization of a social welfare function. Second, it depends on the prevailing

characteristics of the agents, such as (in economic environments) their pref-

erences, endowments, or production capabilities. In the jargon of microeco-

nomics the totality of such characteristics is often called the economy ; in the

mechanism design literature it is called the (economic)environment, not to be

confused with the natural environment, although the natural environment

is a component of the economic environment.

definition. Let there be N agents, and denote by ei – the i th agent’s indi-

vidual characteristic; for instance, ei might describe this agent’s preferences,

endowment, or production possibility set. In turn the environment (the

economy) is defined as the N-tuple e =: (e1, . . . , e N) describing the total-

ity of all the agents’ characteristics.13

The range of admissible variation of the ith agent’s individual character-

istic – the ith characteristic space, is denoted by E i , so that ei is an element

of E i .

The range of admissible variation of the environment – of the N-tuples

e – is denoted by E and is called the environment space. Throughout,

we make the important assumption of independence of the admissi-

ble range of variation of the individual characteristics: an environment

12 Although our illustrations are mostly taken from economics, the framework we use has a
broader domain of applicability.

13 This formulation does not imply absence of externalities. For instance, if agent 1 is a firm
whose productivity depends on the output of agent 2, e1defines 1’s production possibility
as a correspondence with 2’s output as the domain and the space of 1’s input–output vectors
as the range. (See Camacho (1982).)
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e = (e1, . . . , e N) is admissible, e ∈ E , if and only if all its components are

individually admissible – if and only if ei ∈ E i for i = 1, . . . , N. Formally,

E = E 1 × · · · × E N .14

Returning to the concept of optimality, we introduce the second factor on

which the optimality of a given outcome depends: the prevailing environ-

ment. This dependence is in part due to the fact that any reasonable opti-

mality criterion presupposes feasibility, and feasibility in turn is determined

by (or constitutes part of the specification of) the prevailing environment

(e.g., endowments or production capabilities). But the optimality of a fea-

sible outcome also depends on the agents’ preferences, and these, too, are

determined by and constitute a part of the specification of the prevailing

environment. Thus, in a typical microeconomic pure exchange model, the

i th agent’s characteristic is specified as ei = (ωi , C i , Ri ) where ωi is the i th

agent’s endowment, C i the i th agent’s admissible consumption set, and Ri

the ith agent’s preference relation (possibly represented by a utility function

ui (·)). When the optimality criterion is Pareto-optimality, the optimality of

an allocation depends on all the components of the characteristic, includ-

ing the preference component Ri (or ui (·)). If the symbol F represents the

optimality criterion (e.g., Pareto-optimality), we denote by F (e) the set of

outcomes that are optimal with respect to the criterion F when the prevailing

environment is e. Thus, F (e) is a subset of the outcome space Z. It is natural

to use the symbol F also to represent the correspondence from E onto Z;

we write F : e ⇒ F (e),

F (e) ⊆ Z,

or

F : E ⇒ Z.

We call F the goal correspondence,15 although “optimality correspondence”

or “evaluation correspondence” might have been better terms.

Thus, for z in Z and e in E , the outcome is F -optimal16 at e if and only if

z = F (e).17

14 Note that this notation does not rule out the presence of externalities. (See footnote 13.)
15 Maskin (1977, 1999) and others call it the social choice rule (SCR) or social choice corre-

spondence (SCC). Reiter (1974) has called it the performance standard.
16 When F is set-valued, “F -acceptable” might be more appropriate.
17 We now write z = F (θ) rather than z ∈ F (θ) because F (θ) is a singleton for every

θ in � and F (·), a (single-valued) function.



P1: KVU
CUNY425-02 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:41

Introduction 69

In this book we simplify the model by specializing the goal correspondence

in two respects. First, we make F (·) a function – by definition single-valued –

rather than a correspondence. So, for instance, rather than dealing with a

set-valued criterion such as Pareto optimality, we choose a specific function

that associates a particular (possibly Pareto-optimal) outcome. F is then

called a goal function.

Second, we parametrize the domain of F – the spaces of characteristics

and environments. For instance, instead of dealing with the class of con-

vex preferences, we assume that an agent’s preferences are represented by a

utility function of a given form with a finite number of parameters, such

as a polynomial of a specified (finite) degree. When components of the char-

acteristic other than the parameter of the utility function remain constant,

the ith agent’s characteristic can then be represented by a point in the finite-

dimensional (parameter) space �i of the coefficients of the polynomial.

When the environment is parametrized, we consider the i th agent’s char-

acteristic space E i to be represented by �i ; in turn, the environment space

E is represented by the factored parameter space � = �1 × · · · × �N .

(The Cartesian product form is due to the independence assumption,

E = E 1 × · · · × E N , mentioned above.)

Thus when the outcome z is F -optimal at a given parametrized environ-

ment θ , where θ = (θ1, . . . , θN), we write

z = F (θ);

here θ is a point in the parameter space � and z is, as before, an element of

the outcome space Z.

The goal correspondences or functions tell us the outcomes that are

desired (F-optimal) in a given environment. Processes or mechanisms are the

instruments used to achieve these goals. More specifically, the parametrized

optimization problem is to determine the outcome that is optimal in a given

environment. If all the relevant information resided in one center, it would

be just a matter of using this centralized information to determine the pre-

vailing parameter value θ , and then to calculate (at the center) the corre-

sponding outcome z = F (θ). But our interest is focused on situations where

information about the prevailing parameters is initially dispersed. For exam-

ple, say agent 1 knows θ1, agent 2 knows θ2, etc., but no agent knows the

parameters of other agents. Hence the collective parameter point (N-tuple)

θ = (θ1, . . . , θ N) is not known to any single agent, nor is there any center,

or coordinator, who knows θ .

Obviously, some exchange of information is necessary to determine the

outcome to be associated with N-tuple θ . For instance, the Walrasian
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tâtonnement process may be viewed as such an exchange; under favorable

conditions tâtonnement would asymptotically yield the optimal values.

In this book we do not attempt to design dynamic (iterative) processes

that would lead to optimal answers. Instead, we undertake a more modest

task, that of verifying whether a proposed outcome, however generated, is

optimal. We refer to this procedure as a verification scenario.18 And, as we

shall see, this procedure is somewhat roundabout.

The reason for roundaboutness is that the seemingly obvious approach,

that in which every agent i communicates her parameter value θ i to some

central coordinator, or computer (the direct revelation process) might be very

costly (hence informationally inefficient) as compared with alternatives, for

example, with the following alternative procedure.

First, each agent i is provided with what we call the i th individual equilib-

rium function g i . Second, a fixed set (message space) M of symbols denoted

by m, and called messages, is chosen.

The i th equilibrium function g i is a function of two (vectorial) variables,

m and θ i , taking values in a Euclidean vector space.19

The i th agent is in equilibrium if and only if

g i (m, θ i ) = 0,

where 0 denotes the null vector of the range of g i .

Now suppose a message m is announced simultaneously to all agents.

Since agent i is assumed to know his own parameter θ i and his equilibrium

function g i (·,·), and to have received the message m, the agent can now (cor-

rectly) calculate the value g i (m, θ i ), and determine whether g i (m, θ i ) = 0.

If all agents are in equilibrium – if g i (m, θ i ) = 0, i = 1, . . . , N, abbre-

viated as g (m, θ) = 0 – we say that m is an equilibrium message for θ .20

(Here N denotes the number of agents.)

Then the equilibrium message m is communicated to, say, an external

computer which in turn uses an outcome function h : M → Z to obtain the

desirable outcome as

z = h(m).

18 This scenario is an operational interpretation of (general equilibrium) statics.
19 Suppose g i : M × �i → Rq

i . Then g i is a qi -tuple of real-valued functions. Hence,
g i (m, θ i ) =0

˜
, where 0

˜
= (0, . . . , 0) with qi components, is equivalent to qi equations

g i
1(m, θ i ) = 0, . . . , g i qi (m, θ i ) = 0, where the RHS symbol 0 is the real number zero.

20 If even one agent, j , is not in equilibrium at θ , i.e., if there is a j ∈ {1, . . . , N} such that
g j (m, θ j ) �= 0, then some other message m′ where m′ �= m, must be tried in order to attain
equilibrium.



P1: KVU
CUNY425-02 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:41

Introduction 71

This external computer needs to know the outcome function and the equi-

librium message, but not the individual parameter values. The tools used to

carry out this verification procedure constitute what we call a mechanism,

denoted by π .

definition. The mechanism π in equation form consists of (is defined

by) the message space M, the individual equilibrium functions g 1, . . . , g N ,

and the outcome function h, where h : M → Z, and g i : M × �i → Rq
i ,

i = 1, . . . , N. We write this as

π = (M; g 1, . . . , g N ; h) or π = (M, g , h),

where it is understood that

g (m, θ) = (g 1(m, θ1), . . . , g N(m, θ N)), θ = (θ1, . . . , θ N);

i.e., the ith component g i of g (m, θ) depends only on θ i , and not on any

component � j , j �= i .

Because the ith equilibrium function does not contain any θ j , j �= i, as

an argument, the mechanism is said to be informationally decentralized or

privacy preserving.21

The idea of informational efficiency behind this procedure is that, in cer-

tain situations at least, one can use a message space that is in some sense

“smaller” than the parameter space.22 When that is the case the (round-

about) verification scenario may be less costly than direct revelation.23 In

the verification scenario described above, only the message m is transmitted

from the center to the agents. Their characteristic parameters are not known

to the center; they are “plugged into” the equilibrium functions by the agents

themselves.24 So if the message space is smaller than the parameter space,

there may be a saving in transmission costs.

How should the verification scenario work?

21 It is worth noting that a mechanism that produced a Nash equilibrium outcome qualifies
as an example of a decentralized mechanism. Hence some results for decentralized mech-
anisms apply to Nash implementation procedures; this is especially the case for certain
impossibility theorems.

22 For instance, if M and � are vector spaces, their dimensionalities may be taken as measures
of “size.” When � and M are finite, cardinality is a natural measure of size.

23 Direct revelation is a verification scenario in which the message space is a “copy” of the
parameter space, so that the two are of equal size.

24 This process of verification may be interpreted either as behavioral or computational, or a
combination of both. In a microeconomics framework, it corresponds to statics (as opposed
to dynamics).
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To begin with, for every parameter point θ in � there should be at least

one equilibrium message m in M.

First,

(i) for every θ in �,

there exists m in M such that

g 1(m, θ1) = 0, . . . , g N(m, θ N)) = 0, i.e., g (m, θ) = 0.

Because (i) requires that there be an equilibrium message for every param-

eter point in the parameter space, we say that a mechanism satisfying (i)

covers the parameter space �.25

Secondly, we do not want the mechanism to yield non-optimal equilib-

rium values. That is,26

(i i)
⎧⎨
⎩

if m is an equilibrium message for θ

and h(m) = z, then z = F (θ), so that

h(m) = F (θ).

⎫⎬
⎭

Thus the process, as defined, results in an F-optimal outcome.27

definition. A mechanism π = (M; g 1, . . . , g N ; h) is said to realize the goal

function F over the parameter space � iff:

(i) (Existence) ∀θ ∈ �, ∃m ∈ M such that

g i(m, θ i ) = 0, i = 1, . . . , N,

and

(i i) (F -optimality) ∀θ ∈ � and m ∈ M,

if g i (m, θ i ) = 0, i = 1, . . . , N,

then h(m) = F (θ).

[Here θ = (θ1, . . . , θ1) ∈ � = �1 × · · · × �N , F : � → Z,

h : M → Z, g i : M × �i → Rq
i , i = 1, . . . , N.]

The preceding section introduced the concept of a mechanism in equation

form, so called because the verification scenario involves checking whether

the equations g i (m,θ
i ) = 0 are satisfied. But an alternative, set-theoretic,

25 This covering property corresponds to the class of economies in general equilibrium analysis
for which constructive equilibria exist, i.e., it is an existence requirement.

26 Recall that m is an equilibrium message θ = (�1, . . . , �N ) if and only if g i (m, θ i ) =
0, i = 1, . . . , N.

27 Note that (ii) is an analog of the conclusion of the first fundamental theorem of welfare
economics, while (i) is reminiscent of the conclusion of an existence theorem for compet-
itive equilibrium. In (ii), the goal function (or, more generally, correspondence) F is the
counterpart of the Pareto criterion. Hence we refer to (ii) as the F-optimality requirement.
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way of defining mechanisms is important for later analysis that is explored

in Chapter 3. To begin with, for any parameter point θ in �, we consider

the set of messages

μ(θ) = {m ∈ M : g (m, θ) = 0},
where g (m, θ) = 0 is short for g i (m, θ i ) = 0, i = 1, . . . , N, and θ =
(θ1, . . . , θ N) ∈ �1 × · · · × �N . Because the equation system g (m, θ) = 0

may have more than one solution for m given θ , the set μ(θ) need not be a

singleton.

definition

1. Let μ : � ⇒ M be a correspondence from the parameter space onto

the message space, that associates with each point θ of the parameter

space all those messages that are equilibrium messages for that point

θ . μ(·) is called the (collective or group) equilibrium correspondence.

2. Define an analogous correspondence μi : �i ⇒ M for each agent i

by defining the set of messages μi (θ i ) = {m ∈ M : g i (m, θ i ) = 0}, for

each value of that agent’s parameter point θ i . μi (·) is the i th individual

equilibrium correspondence.

Since g (m, θ) = 0 in the definition of μ(θ) is equivalent to g i (m, θ i ) = 0

for all i, and hence to m ∈ μi (θ i ) for all i , it follows that, for all

θ = (θ1, . . . , θ N) ∈ �1 × · · · × �N=�,

we have

μ(θ) = μ1(θ1) ∩ · · · ∩ μN(θ N). (∗)

This relation expresses the informational decentralization – privacy-

preserving property – of the mechanism in terms of the equilibrium corre-

spondences

μ, μ1, . . . , μN ,

rather than in terms of properties of the equilibrium functions. The

intersection operation in equation (∗) formalizes the requirement that m

is an equilibrium message if and only if every agent i approves m as an

equilibrium message given his individual parameter vector θ i .

We often find it convenient to think of the mechanism as defined in terms

of these correspondences, thus writing

π = : (M; μ1, . . . , μN ; h) or π = (M, μ, h),
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where it is understood that the domains of the correspondences are � for μ

and �i for the μi respectively, and that the intersection equality (∗) above

holds between μ and the μi ’s.28

2.1 Phase One: Mechanism Construction

The question is: How to design a decentralized mechanism that realizes a

given (factored) goal function F , with a factorization that is known to the

designer?

2.1.1 Two Examples

The task of design could be accomplished very easily if we were willing

to ignore requirements of informational efficiency. The simplest and well-

known way is by using the direct revelation mechanism which we describe

next. To simplify exposition we consider the case in which there are only

two agents (N = 2).

2.1.1.1 Direct Revelation

To specify the direct revelation mechanism for two agents we first choose a

message space M that is a copy of the parameter space – M = M1 × M2,

with M1 = �1, M2 = �2, so that M = �.

As before, the individual equilibrium functions are defined by

g i (m, θ i ) ≡ mi − θ i , i = 1, 2

and the outcome function by

h(m) ≡ F (m).

At equilibrium g i (m, θ i ) = 0, i.e., mi = θ i , i = 1, 2. So equilibrium

requires that each agent’s message vector be equal to that agent’s parameter

vector – hence the name “direct revelation.” In turn, the outcome function

(perhaps operated by a computer or an administrative center) plugs the

message vector into the outcome function. Since at equilibrium m = θ , it

follows that h(m) = F (m) = F (θ), hence the specified optimal outcome is

28 In the preceding presentation the correspondences μ and μi were defined in terms of
the equilibrium function g i . But it is possible to proceed in reverse order, considering the
correspondences as primitives and defining the i th equilibrium function g i by g i (m, θ i ) =
0 if m ∈ μ(θ), and g i (m, θ i ) = s i where s i is any non-zero point in Rq

i , if m /∈ μ(θ).
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obtained. Thus the direct revelation mechanism is informationally decen-

tralized, and does realize the given goal function F .

However, this mechanism might be very costly to operate if the param-

eter space � is “large,” – if it is a vector space of high dimension. In that

case the number of equations to be verified is large and the message space

is also “large.” Specifically, suppose that the individual parameter spaces

respectively have dimensions and that

dim �i = ki , i = 1, 2, dim � = k, k = k1 + k2,

then the vector equation g i (m, θ i ) ≡ mi − θ i = 0 consists of ki scalar (real-

valued) equations and the message space has dimension k, dim M = k,

which might be a large number.

2.1.1.2 Parameter Transfer

One alternative to the direct revelation mechanism is the parameter transfer

mechanism. Here each agent but one reveals his parameter values as in direct

revelation. But the remaining agent’s role, instead of revealing her parameter

value, is to calculate the F -optimal value of the outcome using the messages

of the other agents. To minimize the dimension of the message space, and

to lower communication costs, the nonrevealing agent must be the one with

the smallest parameter space. If k1 ≤ k j for j ∈ {2, . . . , N}we use parameter

transfer from agent j to agent 1. To simplify exposition suppose N = 2.

Thus, suppose dim�1 = k1 ≤ k2 = dim �2. Then we choose M̃ = M̃1 ×
M̃2

, where M̃1 = �1, while M̃2 is a copy of the outcome space (i.e., M̃2 =
Z).29 We write m̃1 ∈ M̃1, m̃2 ∈ M̃2, and m̃ ∈ M̃. Then

g 1(m̃, θ2) ≡ m̃ − θ1,

as in direct revelation, but the second equilibrium function is different:

g 2(m̃, θ2) ≡ m̃2 − F (m̃1, θ2).30

(So agent 1 may be viewed as transmitting his parameter, to agent 2.)

Thus, at equilibrium, m̃1 = θ1, and

m̃2 = F (m̃1, θ2) = F (θ1, θ2) = F (θ),

29 To achieve gain in informational efficiency or compared with direct revelation, it must be
the case that dim Z < dim �2.

30 We assume here that agent 2 is informed about the goal function F . This does not violate
the privacy-preserving requirement.
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which is the F -optimal outcome. So for the outcome function we take

h(m̃) = h(m̃1, m̃2) ≡ m̃2.

Consequently, if m̃ is an equilibrium message when θ prevails, we have

h(m̃) = F (θ), as required by F -optimality. Requirement (i) – existence –

is also satisfied, since the two equilibrium equations can be solved for m̃1

and m̃2 given any θ1 and θ2. Hence the parameter transfer mechanism does

realize the given goal function.

Here agent 1 checks k1 equations and dim M̃1 = k1, while agent 2

verifies equations whose number equals the dimension of the outcome

space Z (i.e., dim M̃2 = dim Z), and so dim M̃ = k1 + dim Z. This is lower

than dim M of the direct revelation mechanism whenever dim Z < k2 =
dim �2.

It should be noted that, while parameter transfer from agent 1 to agent 2

lowers the dimension of the message space (when dim Z < k2), at the same

time it imposes a more complex computational task on agent 2 – that of

calculating the value of the outcome z = F (m̃1, θ2), even though it involves

fewer equations whenever k1 < k2.

By contrast, in the direct revelation mechanism, agent 2 needs only

to verify that m2 = θ2, which requires no calculation. (The calculation

z = F (m1, m2), here with m2 = θ2, must still be carried out in the direct

revelation mechanism, but that can be done by an external computer or a

coordinator rather than by one of the agents.)

The tradeoff between the size of the message space and the number of

equations to be verified by the agents, as well as the complexity of the com-

putational task imposed on the agents, is important but it is not examined

further in this chapter. Certain aspects of it are analyzed in Chapter 4 of

this volume and more completely in Mount and Reiter (2002). Instead we

concentrate on the problem of minimizing the size of the message space and

the number of equations (q = q1 + q2) to be verified by the agents, and on

maximizing the coarseness of the relevant covering.

2.1.1.3 Mechanisms and Indexed Product Structures

the search for smaller message spaces. We approach this task in a

somewhat indirect manner, namely, by studying coverings of the parameter

space that are induced by the mechanisms designed to realize the goal func-

tion. It turns out that, with the help of such coverings, one can construct

mechanisms with certain features of informational efficiency. Since we also

have a technique for constructing the coverings from a given goal function,
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the combination of the two procedures (the construction of a covering and

the construction of the mechanism from the covering) may be viewed as an

algorithm for constructing decentralized mechanisms that realize the goal

functions and have desirable informational efficiency properties, when the

goal function is given.

In this chapter our approach is partly set-theoretic and mostly algebraic.

We call our procedure for constructing the coverings the method of rect-

angles (abbreviated RM), and a general procedure for making the transi-

tion from coverings to mechanisms the method of transversals (abbreviated

TM).31 There are also two specialized procedures for constructing transver-

sals called flagpoles and condensation.

As a point of departure we observe that a mechanism (in equation form)

π =: (M, g , h) that realize the goal function F induces a covering of the

parameter spaces � called a message-indexed product structure (MPS).

Since π realizes F , there exists for any θ in � an equilibrium message

m in M, such that g (m, θ) = 0. In general, there may be more than one

point m of M that satisfy the equation g (m, θ) = 0. The set of equilibrium

messages m for a given parameter point θ , namely {m ∈ M : g (m, θ) = 0},
introduced above, is denoted by μ(θ), where μ(·) is a correspondence from

the parameter space � into the message space M. Formally, μ : � ⇒ M.

μ is called the (collective or group) equilibrium correspondence.

It may happen that for certain messages m in M, the message m is not an

equilibrium for any parameter point – g (m, θ) �= 0 for all θ in �. Denote

by M′ a subset of M that consists of those points that are equilibrium for

some θ in �. So M′ is the image of � by μ, written as M′ = μ(�), or M′=
image μ.

For m ∈ M′ we denote by U (m), or sometimes Um, the set of all such

parameter points θ such that Um =: {θ ∈ � : g (m, θ) = 0} or, equivalently,

Um =: {θ ∈ � : m ∈ μ(θ)}.
This set has two important properties. First, it is contained in one of the

contour (level) sets of the goal function F – if F (θ ′) = z and θ ′ ∈ Um, then

for any other element θ of Um, we have F (θ) = z.

More concisely, this can be expressed by saying that for every m in M′ there

is a z in the image of � by F – a point z in F(�), such that

Um ⊆ F −1(z). (∗)

31 An early insight leading to TM owes much to Professor Leonard Shapiro, Portland State
University, and his notion of “flagpoles.”
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Here is the reason. For θ ′ ∈ Um, we have g (m, θ ′) = 0. Hence m is an

equilibrium message for θ ′. The outcome function yields the outcome

h(m) = z. Since π realizes F , it follows that z = F (θ ′). Now if also θ ′′ ∈ Um,

we have g (m, θ ′′) = 0 with the same equilibrium message m; hence for θ ′′

the outcome is again h(m) = z, and because π realizes F , it follows that

h(m) = z = F (θ ′′), thus z = F (θ ′) and z = F (θ ′′), hence F (θ ′) = F (θ ′′).

Hence all points of Um have the same value of the goal function, and that is

equivalent to the inclusion in formula (∗) above.

definition 2.1.1.3. We say that, for every m in M′, Um is F-cc.

A second important property of the set Um is related to informational

decentralization – the privacy-preserving property of the mechanism π .

Suppose that two points θ ′ and θ ′′ of the parameter space belong to the

same set Um – θ ′ = (θ ′
1, θ ′

2) and θ ′′ = (θ ′′
1 , θ ′′

2 ), θ ′
i , θ ′′

i ∈ �i , i = 1, 2, and

also θ ′ ∈ Um and θ ′′ ∈ Um.

Since the mechanism is decentralized, this means that32{
g 1(m, θ ′

1) = 0

g 2(m, θ ′
2) = 0

and {
g 1(m, θ ′′

1 ) = 0

g 2(m, θ ′′
2 ) = 0

.

θ1

θ2

′′θ2

′θ2 . ′θ

. ′′θ

. * *θ

. *θ

′θ1 ′′θ1

Figure 2.1.1.3

32 On the right-hand sides of equations below, the symbol 0 is a vector with q1 or q2 compo-
nents (each component being the real number 0).
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U m
2

U m
1

U m

θ1

θ2

↑

Figure 2.1.1.4

But then it follows that the point θ∗ =: (θ ′
1, θ ′′

2 ) also belongs to Um because

the first and last of the above equations hold respectively for θ ′
1 and θ ′′

2 .

Similarly θ∗∗ =: (θ ′′
1 , θ ′

2) belongs to Um.

Thus, Um is the Cartesian product of two sets U 1
m ⊆ �1 and U 2

m ⊆ �2

where U i
m is the projection of Um into �i , written U i

m = pri Um, i = 1, 2.

Formally, for all m ∈ M,

Um = U 1
m × U 2

m, U i
m ⊆ �i , i = 1, 2, (+)

where

U i
m = pri Um, i = 1, 2, (++)

In simple cases dim �i = 1, i = 1, 2 the picture looks like Figure 2.1.1.4.

For this reason, we refer to sets such as the Um in this figure as rectangles

or rectangular. But this terminology is somewhat misleading, because if �1

is, say, two-dimensional, the set U 1
m can have any shape whatsoever. The

term “rectangle” is used as a synonym for the Cartesian product relations33

expressed by (+) and (++) above. Thus every set Um is F-cc and rectangular.

Since a set Um is defined for every message in M′, this defines a corre-

spondence denoted by U (or U(·) or U (·)) such that U : m ⇒ Um, so that

U : M′ ⇒ �, where M′ = μ(�), and μ(�) = IMμ.

(Recall that μ is a correspondence from � onto M, such that m ∈ μ(θ)

is, by definition, equivalent to g (m, θ) = 0.) In what follows we continue

33 Corresponding to the factoring of the parameter space, � = �1 × · · · × �N .
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to write Um rather than U (m), and often represent the correspondence as

an indexed family of sets, written as {Um : m ∈ M′}.
Consider the image of this correspondence – the collection C of sets

K ⊆ � such that

K = Um

for some m in M. The collection C is a collection of subsets of the parameter

space � that constitute the image of U (·) denoted by IM U (·).

Formally, we define

C = IM U (·) = {K : K ⊆ �, K = Um for some m ∈ Um}.
It is important to distinguish between the correspondence U (·) and its image

C ; if it happens that two distinct messages, say m′ and m′′, produce the same

rectangle K = U ′
m = U ′′

m, the set C contains K only once!

Assuming that the given mechanism π = (M, g , h) realizes F , its cov-

ering property (i) above guarantees that, for every θ in �, there is m ∈ M

such that g (m, θ) = 0 – such that θ ∈ Um. By definition this means that C

is a covering of the parameter space �, because it is a collection of subsets

of � such that each point θ of � belongs to at least one of those sets; more

succinctly, the union of the sets belonging to the collection equals the space

�. An important subclass of coverings consists of partitions – these are cov-

erings whose constituent sets are disjoint. Formally a covering, B of � is a

partition if for any two constituent sets β ′ ∈ B , β ′′ ∈ B , β ′ ∩ β ′′ = ∅ (the

two sets are disjoint), or β ′ = β ′′ (they are identical).

These observations are summarized as Theorem 2.1.1. A more formal

statement and proof is found in the Appendix to this chapter.

theorem 2.1.1. If π = (M, μ, h) is an informationally decentralized mecha-

nism that realizes F over �, then it defines a correspondence U (·) : M′ ⇒ �

that is F-cc and rectangular, with the domain M′ = μ(�).

It is then natural to ask the “converse” question: suppose we have an arbi-

trary set A and a correspondence σ : A ⇒ � from A into the parameter

space. When does such a correspondence define an informationally decen-

tralized mechanism realizingF ? An answer is provided by Theorem 2.1.2.

theorem 2.1.2 (for proof, see the Appendix). Suppose that � = �1 × �2 is

the (factored) parameter space, S an arbitrary set (the “index set”), and D

is a correspondence from S into � such that, for every s in S, the set D(s) is

F-cc and rectangular, and such that the image D(S) is a covering of � – D:

S ⇒ � is “onto.”
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Then there exist correspondences σ i : �i ⇒ S, i = 1, 2, and a function

h : S → Z such that the mechanism in correspondence form, defined by

π = (S, σ, h), where σ (θ1, θ2) = σ 1(θ1) ∩ σ 2(θ2),

is privacy-preserving, and realizes F .

Furthermore, a corresponding mechanism in equation form is con-

structed by defining, for each i = 1, 2, the i th individual equilibrium func-

tion by the requirement

g i (s , θ i ) = 0 if and only if s ∈ σ i (θ i ).

remark. For instance, one may set

g i (s , θ i ) = 0 if s ∈ σ (θ i )

and

g i (s , θ i ) = 1 if s /∈ σ i (θ i ).

Thus Theorem 2.1.2 provides a recipe for designing a decentralized mech-

anism that realizes the given goal function F : namely, construct a correspon-

dence, such as D in the theorem, that generates a rectangular F-cc covering

of �.

If no informational efficiency desiderata are required of the mechanism,

we already know two mechanisms that would accomplish this: direct reve-

lation and parameter transfer.

In direct revelation the conditions of Theorem 2.1.2 are satisfied when we

set S = �, S = S1 × S2, Si = �i , i = 1, 2, and D(s ) = D(θ) = {θ}. Here

the covering C of � generated by the correspondence D is the finest possible

partition of �, with the partition sets being singletons consisting of the

individual points of �. Hence, in equation form we obtain the decentralized

mechanism with S = � as the message space and g i (s , θ i ) ≡ s i − θ i , i =
1, 2, where s = (s1, s2) ∈ S1 × S2 = S, and the outcome function defined

by h(s ) ≡ F (s ).

In parameter transfer, say, from agent 1 to agent 2, again we have S = S1 ×
S2, S1 = �1, S2 = F (�) and, for each s in S, the set D(s ) is a rectangle,

D(s ) = A(s ) × B(s ), with, for s = (s1, s2),

A(s ) = {θ1} where θ1 = s 1,

B(s ) = {θ2 ∈ �2 : s 2 = F (s 1, θ2)}.
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Here the decentralized mechanism in equation form, again with S as

the message space, is S = S1 × S2, S1 = �1, S2 = F (�); the individual

equilibrium functions are

g 1(s , θ1) ≡ s 1 − θ1

g 2(s , θ2) ≡ s 2 − F (s 1, θ2),

and the outcome function is defined by

h(s ) ≡ s 2,

where

s = (s 1, s 2).

If informational efficiency is measured by dim M, there are cases in which

one cannot do better than to use direct revelation:

example: � = R2
++ = �1 × �2 ≡ R++ × R++, F (θ1, θ2) = θ1θ2 (a

“Cobb–Douglas” goal function). Direct revelation is the only possible

mechanism, since only a point qualifies as an F -cc rectangle.

There are also situations where one can do better than direct revelation

but, subject to certain regularity conditions on the mechanism, no better

than parameter transfer (Hurwicz 1986).

example (inner product of dimension P ≥ 2):

� = �1 × �2, �i = RP
++, P � 2,

F (θ) = θ1 × θ2 =
P∑

j=1

θ1
j θ2

j .

Additionally, there are other cases where one can do better than param-

eter transfer. An important example is the Walrasian goal function F in an

Edgeworth box environment (two agents, two goods) discussed in Chap-

ter 1. There dim �i = 2, i = 1, 2, hence dim � = 4, but a decentralized

mechanism that realizes F (corresponding to the price mechanism) uses a

message space M whose dimension is only 2. By contrast, parameter transfer

requires dim M = 3, while direct revelation requires dim M = 4.
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2.1.2 Constructing a “Universal” Method of Designing
Informationally Efficient Mechanisms Realizing a Given

Goal Function

2.1.2.0

The facts set out in the preceding section lead to a search for a general

systematic procedure that would, for any given goal function, design an

informationally efficient mechanism that realizes that goal function.

2.1.2.1 Informational Efficiency

In much of the existing literature informational efficiency is identified with

minimum size34 of the message space. Our analysis of the problem has led to

additional informational concepts; one of them is called F-maximal coarse-

ness of the covering generated by the mechanism.35, 36 These two concepts –

informational size of the message space and F-maximal coarseness – cap-

ture different, but related aspects of informational efficiency. To make the

concept of F-maximal coarseness precise, we introduce some terminology.

By definition, the covering Cπ induced (or generated) by a mechanism

π = (M, g , h) is the collection of subsets of the parameter space

{Um ⊆ � : g (m, θ) = 0, m ∈ M}.

definition 2.1.2.2. A covering C ′ of a space is said to be a coarsening of the

covering C of that space if every set of C is contained in some set of C ′. It is

a proper coarsening if it is a coarsening and one of the inclusions is strict.

A covering C ′ of a space is an F-maximal covering of that space if it is F-cc,

rectangular, and there is no F-cc, rectangular covering of that space that is a

proper coarsening of C ′.
With these concepts we can state our informational efficiency objectives.

First, we want the mechanism π = (M, g , h) we are designing to generate

a collection of sets Cπ that is an F -maximal covering. Second, given such a

34 For example, the dimension of the message space when the parameter space is Euclidean
(implicit in the preceding examples), and a message space of minimum cardinality when
the parameter space is finite.

35 A related notion was proposed in Hurwicz (1960), Section 9, pp. 44–6.
36 The intuition behind the use of coarseness as an indicator of informational efficiency is

discussed in Section 3.7.
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covering, we want to choose a message space M (i.e., the domain of U (.))

of the minimal size compatible with that covering.37

We could define a mechanism � = (�, G , H) that uses the space of

environments, �, as its message space, and whose outcome function H is

chosen so that � realizes F . But a mechanism with � as the message space

would in general not minimize the size – dimension or cardinality – of the

message space, and hence would have no regard for informational efficiency.

Thus, in phase 1 of the design process we use the method of rectangles –

rRM – to construct a covering correspondence V : � → � that generates

an F -cc, rectangular covering

CV = {K ⊆ � : K = V(θ), θ ∈ �}
that is maximally coarse. The equation form of V(·) is defined by

V(θ̄) = {θ ∈ � : G(θ̄ , θ) = 0}.
In phase 2 we use the method of transversals – TM – to construct a message

space and an outcome function.

We accomplish the goal of maximal coarseness of covering by the rRM

procedure. The rRM procedure is followed by constructing a transversal. This

involves finding a system of distinct representatives (SDR) – a point from each

rectangle in the covering CV that identifies that rectangle uniquely. When

� is infinite and no regularity conditions are imposed on F , the proof of

existence of an SDR uses the axiom of choice. However, under conditions of

smoothness and solvability of the equation system G(θ̄ , θ) = 0 for θ , and

when with the covering CV is a partition, and the relevant Jacobians are non-

singular, we have two special constructive methods (flagpole, condensation)

for finding transversals, and hence constructing the appropriate message

spaces M, the equilibrium functions g (m, θ), and the outcome functions

h. In many Euclidean examples, the functions G(θ̄ , θ) are linear38 in θ , but

there are cases in which we must solve non-linear systems.

Examples show that F maximality does not imply minimal size of the

message space (see example Z below, and in Chapter 3, Section 3.7.4). In

37 The desired size-minimality can only be required relative to the covering because – as seen
in various examples – there may exist different F -maximal mechanisms that realize a given
goal function F , with different minimum-size message spaces. However, it is shown in
Chapter 3, Section 3.7.4, Theorem 3.7.4.1, that a decentralized mechanism that realizes
F and has a message space of minimal information size, also has a maximal covering of
the parameter space, if the covering induced by the mechanism is an rRM covering. The
converse is not true.

38 Sometimes after algebraic simplifications that do not change the covering.
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fact, in example Z, an rRM covering can exhibit redundancy. This is discussed

below. Nevertheless, there is some consolation in the following result (see

Section 2.5): among decentralized mechanisms that realize F and have a

message space of minimal size, one is guaranteed to be obtainable by the

rRM recipe. An efficient method of constructing a minimal covering when

� is finite is presented in Section 3.4.1 of Chapter 3.

remark 1. Since rRM coverings have the maximum coarseness property, it

is useful to know a simple way of deriving an rRM correspondence V . It inv-

olves using in the initial step the maximal correspondence A(θ̄) : � ⇒ �1

(resp. B(θ̄) : � ⇒ �2), followed by the L-RM (resp. R-RM procedure).

In equation form, the equilibrium relation G 1(θ̄ , a) = 0 is defined by the

equation

F (a , b̄) − F (ā , b̄) = 0; (∗)

alternatively, G 2(θ̄ , b) = 0 is defined by the equation

F (ā , b) − F (ā , b̄) = 0. (∗∗)

If (∗) is chosen, the B-side of the L-RM rectangle is, as usual, B∗(A(θ̄), θ̄).

But then A∗(B∗(A(θ̄), θ̄)) = A(θ̄), because expanding the A-side any fur-

ther would make the rectangle extend into a different F -contour set. Thus,

we achieve reflexivity. If (∗∗) is initially chosen, the situation is analogous.

This simple method of guaranteeing reflexivity is used in many examples.

remark 2. In order to use the special techniques – flagpole or condensation –

for constructing a transversal, the covering CV must be a partition. To make

sure that this is the case when V(·) is specified by the equation system

G(θ̄ , θ) = 0, and V(·) is an rRM correspondence, we use a result – Theorem

3.6.1 – proved in Chapter 3: when V(·) is rRM, CV is a partition if and only

if V(·) is symmetric, that is, if for all θ , θ ′ ∈ �, θ ∈ V(θ ′) if and only if

θ ′ ∈ V(θ). In equation form, the symmetry condition is that G(θ̄ , θ) = 0 is

equivalent to G(θ , θ̄) = 0 for all θ and θ̄ in �. Thus we need only to check

whether the equation remains valid when the arguments are interchanged.

We illustrate this verification process in Section 2.1.3.2 for the augmented

inner product example – F (a , b) ≡ a1b1 + a2b2 + b3 – after first deriving

the parameter-indexed system G(θ̄ , θ) = 0. We use L-RM, with maximal

A(θ̄) to guarantee reflexivity, thus obtaining an rRM system G(θ̄ , θ) = 0.
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In the following section we present the method of rectangles (RM and

especially rRM) which carries out phase one – constructing a self-belonging

rectangular correspondence V : � ⇒ � that yields F -coarseness maximal

coverings. This is followed by phase two where, taking as given a self-

belonging correspondence V : � ⇒ � that generates an F -maximal cov-

ering, we construct a corresponding decentralized mechanism that realizes

F with a message space whose size is in general smaller than that of the

parameter space, and in special cases whose size is minimal for the covering

generated by V .

In phase two we also present the (general) method of transversals (TM)

of constructing mechanisms as well as the special cases of TM – of conden-

sation and flagpoles for regular smooth partitions generated by the corre-

spondence V .

2.1.3 The Method of Rectangles (RM)

The method of rectangles (RM) is a way of creating a particular kind of cov-

ering correspondence that satisfies the assumptions made in Theorem 2.1.2,

and possesses an important informational efficiency property – “maximal

coarseness” – defined formally below. In describing it, we again specialize

to N = 2.

definition 2.1.3.1. The domain (“index set”) of the correspondence V :

� ⇒ � is the parameter space � itself – � = �1 × �2. We sometimes refer

to this correspondence as a parameter-indexed product structure (abbreviated

PPS).

definition 2.1.3.2. The correspondence V : � ⇒ � has the property that

for every θ ∈ �, the set V(θ) contains θ as one of its elements, i.e.,

∀ θ ∈ �, θ ∈ V(θ).

We say that V is a self-belonging correspondence.

This property has an important consequence: since the domain of the

correspondence V(·) is the parameter space �, it follows that, for every

θ ∈ �, there is a θ ′ such that θ ∈ V(θ ′) – we can take θ ′ = θ . Hence the

image of the correspondence V(·), denoted by CV = V(�), is a covering of

�. It remains to define the “rectangular” sets

V(θ) = V 1(θ) × V 2(θ), V i (θ) ⊆ �i , i = 1, 2
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so that they are F-cc “rectangles” and the covering is maximally coarse. This

can be accomplished as follows.

The Rectangles Method

First, for each θ̄ in �, θ̄ = (θ̄1, θ̄2), θ i ∈ �i , i = 1, 2, let A be an arbitrarily

chosen correspondence39 A : � ⇒ �1 that satisfies the conditions:

(1) for every θ in �,

A(θ̄) × {θ̄2} ⊆ F −1(F (θ̄)).

We form a “rectangle” by choosing a set B ⊆ �2 so that, for θ̄ = (θ̄1, θ̄2),

(2) θ̄2 ∈ B

and

(3) A(θ̄) × B ⊆ F −1(F (θ̄)).

Clearly, any set K = A(θ̄) × B where A and B satisfy conditions (1)–(3)

is an F-cc rectangle.

For the sake of informational efficiency, we add one more condition –

we make B as “tall” as possible without going outside the contour set

F −1(F (θ̄)). This maximal set B is written as B∗(A(θ̄), θ̄).

Formally, for any θ and A(θ), we define

(4) B∗(A(θ̄), θ̄) =: ∪{B ⊆ �2 : θ̄2 ∈ B and A(θ̄) × B ⊆ F −1(F (θ̄))}.
In a two-dimensional diagram the rectangle A(θ̄) × B∗(A(θ̄), θ̄) is max-

imally tall among F -cc rectangles with A(θ̄) as base. The correspondence

L : � ⇒ � so obtained, written as L (θ) =: A(θ) × B∗(A(θ), θ), is called

the left-RM correspondence. It is self-belonging, F-cc, and rectangular. (“Self-

belonging” means that for every θ in �, θ is in L (θ).)

Alternatively, we can start by first defining an arbitrarily chosen40 cor-

respondence B : � ⇒ �2 such that, for θ̄ = (θ̄1, θ̄2), (1′) θ̄2 ∈ B(θ),

and (2′){θ̄1} ×B(θ̄) ⊆ F −1(F (θ̄)).

In turn, define A∗(B(θ̄), θ̄) by

A∗(B(θ̄), θ̄) = : ∪ {A ⊆ �1 : θ̄1 ∈ A andA × B(θ̄) ⊆ F −1(θ̄)}, 41

and write R(θ) =: A∗(B(θ), θ) × B(θ). This defines a correspondence R :

� ⇒ �, again self-belonging, F -cc, and rectangular. It is called the right-

RM correspondence.

39 In terms of a two-dimensional diagram of the parameter space dim Z < dim �2, the set
�1 is on the horizontal axis, and the set �2 on the vertical. Hence the set A(θ̄) is a subset
on the horizontal axis. It is not necessarily an interval.

40 B(θ̄) is a subset of the vertical axis in a two-dimensional diagram.
41 Thus making the rectangle A∗(B(θ̄ , θ̄)) maximally wide among F -cc rectangles with B(θ̄)

as base.
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In general, the two RM correspondences can be different. But maximal

coarseness is achieved precisely when, for a given F , the left and right RM’s

yield the same V-generated covering CV when

A∗(B∗(A(θ̄), θ̄) = A(θ̄) for all θ̄ ∈ �.

Fortunately, it is shown in Chapter 3 that there is a simple iteration procedure

that requires N steps when there are N agents, therefore only two steps

when there are two agents, that constructs a covering that qualifies as both

left- and right-RMs – is reflexive. The first step is to form for each θ̄ a

left-RM correspondence that consists of rectangles A(θ̄) × B∗(A(θ̄), θ̄). In

the second step, using the correspondence B̃(θ̄) =: B∗(A(θ̄), θ̄) as a point

of departure for each point θ̄ , we form the right-RM correspondence by

constructing, for each B̄(θ̄), the “maximally wide” set

A∗(B̃(θ̄), θ̄)

while staying within the contour set F −1(F (θ̄)). Rather remarkably, it turns

out that the set A∗(B̃(θ̄), θ̄) created at the end of the second step equals the

set A(θ̄) used at the beginning of the first step.

In this way we obtain a correspondence that is not only right-RM, but

also left-RM (since A(θ̄) =: A∗(B̃(θ̄), θ̄)). Thus, we obtain a rectangular

F -cc correspondence, say V(θ̄) = Ã(θ̄) × B̃(θ̄) such that

B̃(θ̄) = B∗( Ã(θ̄), θ̄)

and, at the same time,

Ã(θ) = A∗(B̃(θ), θ).

We call such a correspondence reflexive-RM (written as rRM). Reflexive-

RM coverings have important informational efficiency features that are dis-

cussed below.

A reflexive RM correspondence V(·) need not generate a partition. The

following example shows that a covering C defined by an rRM, V .

2.1.3.1 Example 1 (L-dot)

Let

� = {α, β, γ , δ},
F (α) = F (β) = F (γ ) �= F (δ)
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As seen in the graph in Figure 2.1.3.1,

α = (a1, b2), β = (a1, b1), γ = (a2, b1), δ = (a2, b2).

To obtain a reflexive correspondence V(·), we apply the left-RM procedure

using the maximal A(·) correspondence. Thus

A(β) = (a1, a2), A(γ ) = (a1, a2),

A(α) = a1, A(δ) = a2.

Then

B∗(A(β), β) = (b1, b2)

is a column vector,

B∗(A(γ ), γ ) = b1, B∗(A(γ ), γ ) = (b1, b2)

is a column vector, and

B∗(A(δ), δ) = b2.

This yields the reflexive correspondence V(·), where

V(α) = V(β) = {α, β}
is a column vector, and

V(γ ) = {β, γ }, V(δ) = δ.

Analogous procedure with the maximal B(·) set as the first step followed by

right-RM procedure yields the correspondence Ṽ(·). The correspondence

differs from V(·) only in that Ṽ(β) = {β, γ }. The two correspondences

yield the same unique reflexive covering C :

Ṽ(α) = {α, β}, Ṽ(β) = {β, γ }, Ṽ(γ ) = {β, γ }, Ṽ(δ) = {δ}.

The covering C consists of rectangles K ′, K ′′, and K ′′′, where K ′ = α
β ,

K ′′ = β γ , and K ′′′ = δ is the unique F -maximal covering, and it is

obtained from the rRM correspondence V(·) defined by

V(α) = V(β) = {α, β}, V(γ ) = {β, γ }, V(δ) = {δ},
and from Ṽ(·) defined above.

In what follows we choose the reflexive correspondence V(·):

V(α) = {α, β}, V(B) = {β, γ }, V(γ ) = {β, γ }, V(δ) = {δ}.
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Figure 2.1.3.1

That it must be obtainable via rRM follows, by Theorem 2.1.2 (“neces-

sity”), from the fact that it is F -maximal, maximally coarse. Conversely,

Theorem 2.1 (“sufficiency”) implies that any rRM leads to an F -maximal

covering. In particular, since V(·) is rRM, it constructs a covering that is

F -maximal.

2.1.3.2 Example 2: The Augmented Two-Dimensional Inner Product

We now proceed with the phase one analytics of another instructive example,

that of the augmented inner product on the restricted domain

F : R5\{(a , b) : b1 �= 0},
where

F = a1b1 + a2b2 + b3.

First, we choose the A(·) correspondence defined by

a1b̄1 + a2b̄2 + b̄3 = F (θ̄) = ā1b̄1 + ā2b̄2 + b̄3.

Since this A is maximal, a reflexive L-RM will result.

Thus G 1(θ̄ , a) ≡ a1b̄1 + a2b̄2 + b̄3 + b̄3 − F̄ , where F̄ = ā1b̄1+ ā2b̄2 +
b̄3.

After cancellation of b̄3 terms and division by b̄1 �= 0, we obtain

a1 + a2

b̄2

b̄1

= ā1 + ā2

b̄2

b̄1

. (1)

Solving equation (1) for a1, we get

a1 =
(

ā1 + ā2

b̄2

b̄1

)
−

(
a2

b̄2

b̄1

)
.
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Substituting this value of a1 into F (a , b) = F̄ , we obtain

b1

[(
ā1 + ā2

b̄2

b̄1

)
−

(
a2

b̄2

b̄1

)]
+ a2b2 + b3 = F̄ , ∀a2,

which must be an identity in a2.

Thus the coefficient of a2 yields

−b1

b̄2

b̄1

+ b2 = 0,

while the constant term yields

b1

(
ā1 + ā2

b̄2

b̄1

)
+ b3 = F̄ .

These two equations define the set B(θ̄).

Thus the G-functions for agent 2 are

G 21(θ̄ , b) ≡ −b1

b̄2

b̄1

+ b2,

and

G 22(θ̄ , b) ≡ b1

(
ā1 + ā2

b̄2

b̄1

)
+ b3 − F̄ .

The equation system

G 1(θ̄ , a) = 0, G 2(θ̄ , b) − G(θ̄ , θ) = 0

is equivalent to the relation θ ∈ V(θ̄), θ = (a , b).

This completes phase one for the augmented inner product example.

Phase two is analyzed in Section 2.1.3.3.

Next, preparatory to phase two, we show that the covering CV is a parti-

tion. Using the symmetry theorem, Chapter 3, Theorem 3.6.1, this is accom-

plished by proving that G(θ̄ , θ) is symmetric, that is

G(θ̄ , θ) = 0 ⇔ G(θ , θ̄) = 0 for all θ , θ̄ in θ , (+)

which amounts to showing that after interchanging θ̄ and θ , the (+) equa-

tions are still satisfied.

Proof: The interchanged equations are

ā1b1 + ā2b2 + b3 = a1b1 + a2b2 + b3 (1′)

−b̄1

b2

b1

+ b̄2 = 0 (2.1′)
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−b̄1

(
a1 + a2

b2

b1

)
+ b̄3 = a1b1 + a2b2 + b3. (2.2′)

Note first that (2.1′) is identical with (2.2′). Hence we have proved that (2.1′)
holds.

Rewrite (1) as

a1 + a2

b̄2

b̄1

= ā1 + ā2

b̄2

b̄1

. (1̃)

Consider the equivalent of (1′), viz (1̃′) : ā1 + ā2
b2

b1
= a1 + a2

b2

b1
.

In virtue of (2.1) or (2.1′) we may replace b2/b1 by b2/b1. Then (1̃′)
becomes

a1 + a2

b̄2

b̄1

= a1 + a2

b̄2

b̄1

(
= a1 + a2

b2

b1

)
(˜̃1

′
)

which is the same as (1̃), hence equivalent to (1).

It remains to prove (2.2′). In virtue of (˜̃1
′
) and (2.1), Equation (2.2′) can

be replaced by

b1

(
ā1 + ā2

b̄2

b̄1

)
+ b̄3 = a1b1 + a2b2 + b3,

that is,

b̄1ā1 + ā2b̄2 + b̄3 = a1b + a2b2 + b3,

that is,

ā1b̄1 + ā2b̄2 + b̄3 = F .

or

b1

(
a1 + a2

b2

b1

)
+ b3 = F̄

that is,

b1

(
a1 + a2

b̄2

b̄1

)
+ b3 = F̄ .

But, by (1̃), this is equivalent to

b1

(
ā1 + ā2

b̄2

b̄1

)
+ b3 = F ,

which is (2.2). So G(θ̄ , θ) = 0 implies G(θ , θ̄) = 0, as was to be shown.
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Thus the rRM covering for F = a1b1 + a2b2 + b3, � = {θ ∈ R5,b ,

b1 �= 0}, generated by the (“maximal”) specification of the A-set by A(θ̄) =
{(a , b) ∈ R5 : b̄1 �= 0, a1b̄1 + a2b̄2 + b̄3 = F (ā , b̄)}, is symmetric. Hence

the rRM correspondence V(θ̄), represented by G 1(θ̄ , a) = 0, G 2(θ̄ , b) = 0

is symmetric. Hence, the rRM covering CV is a partition.

2.1.3.3 The Walrasian Example

The next illustrative example is labeled Walrasian. Recall that the goal func-

tion in the Walrasian example in Chapter 1 is

F (a , b) = (b2 − a2)

(b1 + a1)
.

In Chapter 1 we promised to derive the Walrasian goal function from utility

functions and endowments for a two agent economy. This derivation is

meant to justify calling this goal function Walrasian – it is not a part of the

mechanism design procedure. A designer would be given F and � and need

not know anything about where they come from.

Recall from Chapter 1, Section 1.6.2 that we are dealing with a two-

good two-trader pure exchange economy (the Edgeworth box) with no free

disposal. The goods are X and Y , and preferences are represented by quasi-

linear (additively separable and linear in Y ) utility functions, quadratic in

X . The i th trader’s utility function is

ui = αi Xi − 1

2
βi (Xi )

2 + Yi , with βi > 0.

Capitalized Xi , Yi are the respective totals consumed. Net trades are denoted

by lower case letters, and initial endowments of good X held by agent i by ωi ,

so that Xi = xi + ωi . In terms of net trades, interior first-order conditions

for utility maximization are

(αi − βiωi ) − βi xi = p, i = 1, 2, Xi > 0, Yi > 0, i = 1, 2,

where p is the price of good X in terms of the numéraire Y . (We are assuming

an interior equilibrium, Xi > 0, Yi > 0, i = 1, 2, with all marginal utilities

positive.)

At competitive equilibrium, x1 + x2 = 0. Using this equality and defining

γi = αi − βiωi

x = x1,
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we obtain equilibrium conditions in the form

γ1 − β1 x = p

γ2 + β2 x = p.

Solving these equations leads to

x = (γ2 − γ1)/(β1 + β2)

p = (γ1β2 + γ2β1)/(β1 + β2).

Our goal function F (θ) will be the value x of the net trade of trader 2 in

terms of the four parameters. (Of course, this also yields the net trade x1 of

trader 1, since x1 = −x .)

In this section we confine ourselves to phase one of the Walrasian example.

Phase two is dealt with in a later section. Since the approach is analytic,

we derive the functions G(θ̄ , θ) that define the covering correspondence

V : � ⇒ �. The functions constituting the mapping G : � × � → Rd is,

in decentralized form, G i : � × �i → Rdi , i = 1, 2.

Before proceeding further, for the sake of uniformity with other sections,

we change the notation so that 1’s parameters are denoted by a ’s, and 2’s by

b’s. Thus we write

a1 = β1, a2 = γ1, b1 = β2, b2 = γ2,

and hence, the goal function given to the designer is

F (θ) = F (a , b) = b2 − a2

b1 + a1

, with b1 > 0, a1 > 0,

where

θ = (a , b), a = (a1, a2), b = (b1, b2).

This completes the derivation of the goal function F for the Walrasian

example.

The designer is given this function, but not the derivation. What follows

is the start of phase one for the Walrasian example. Phase two follows in

Section 2.2.

Next, we obtain the G-equations for L-RM42 representing a V-corres-

pondence.

42 The same equations would be obtained if the b-equations obtained from L-RM were used
as the starting point – the system is reflexive (rRM) since A(.) is maximal.
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The A-equation is defined by43

F (a , b̄) = F (ā , b̄), (1)

therefore

b̄2 − a2

b̄1 + a1

= b̄2 − ā2

b̄1 + ā1

(1′)

This is equivalent to

a1

b̄2 − ā2

b̄1 + ā1

+ a2 = ā1b̄2 + ā2b̄1

b̄1 + ā1

, (2)

which is

G 1(θ̄ , a) = 0, (2′)

where

G 1(θ̄ , a) ≡ a1 F̄ + a2 − p̄, (2′′)

using the abbreviations

F̄ = b̄2 − ā2

b̄1 + ā1

and p̄ = ā1b̄2 + ā2b̄1

b̄1 + ā1

.

Solving Equation (2) for a2 and substituting this solution into

F (a , b) = F (ā , b̄),

we obtain the equation

b2 +
(

a1

b̄2 − ā2

b̄1 + ā1

− ā1b̄2 + ā2b̄1

b̄1 + ā1

)
= (b1 + a1)

b̄2 − ā2

b̄1 + ā1

, (3)

which must be an identity in a1. The a1-terms cancel out, and we are left

with the b-equation guaranteeing that Equation (3) is an identity in a1 for

all θ̄ , namely

b1

b̄2 − ā2

b̄1 + ā1

− b2 = − ā1b̄2 + ā2b̄1

b̄1 + ā1

. (4)

Equation (4) can be written as

G 2(θ̄ , b) = 0, (4′)

43 The A-set thus chosen is maximal: any proper superset would violate the F -cc property of
the resulting covering.
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where

G 2(θ̄ , b) ≡ b1 F̄ − b2 + p̄. (4′′)

Thus the equation form of the covering correspondence for the Walrasian

example consists of Equations (2′) and (4′), with their left-hand sides defined

by (2′′) and (4′′), respectively.

Step 2. In order to apply the flagpole technique, it is essential to know

that the covering CV generated by the correspondence V is a partition of

the parameter space – that its rectangles do not overlap.

To prove this we use Theorem 3.6. It states that an rRM covering is a

partition if and only if it is symmetric.44 Because our correspondence is

rRM, it is sufficient to show that G(θ̄ , θ) = 0 if and only if G(θ , θ̄) = 0.

We show that if Equations (3) hold, then Equations (4) below are satisfied

if the overbars are switched from F̄ where the variables are ā , b̄ to the

coefficients a and b. The equations that result are

G 1(θ , ā) ≡ ā1 F + ā2 − p = 0

G 2(θ , b̄) ≡ −b̄1 F + b̄2 − p = 0
(4.1)

(F = g 2(m, b) − g 1(m, a) and p = (a1b2 + a2b1)/(b1 + a1).)

We first establish that

F̄ = F (5.1)

and

p̄ = p. (5.2)

Subtracting (3.1) from (3.2), we obtain

−(b1 + a1)F̄ + (b2 − a2) = 0,

which is equivalent to (5.1).

Thus we are entitled to replace F̄ by F in (3.1), which yields

p̄ = a1 F + a2 = a1[(b2 − a2)/(b1 + a1)] + a2 = p.

This proves (5.2).

Next, we establish the identity

ā1 F̄ + ā2 = p̄. (6.1)

44 The covering CV is said to be symmetric if θ ∈ V(θ̄) if and only if θ̄ ∈ V(θ) for all θ̄ , θ .
In equation form this is equivalent to the condition G = (θ̄ , θ) = 0 if and only if G =
(θ , θ̄) = 0.
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After substituting for F̄ and p̄ their values in terms of the four parameters

with overbars, we obtain an identity in these parameters. Hence (6.1) follows.

In turn, relations (5.1), (5.2), and (6.1) yield (4.1).

Next, analogously to (6.1), we prove the identity

−b̄1 F̄ + b̄2 = p̄, (6.2)

and use it with (5.1) and (5.2) to prove (4.2).

The reverse argument – showing that Equations (4) imply Equations (3) –

is carried out in an analogous fashion. Hence CV is a partition.45

2.1.3.4 Phase 1. Coverings with Overlaps in the Euclidean Continuum:

The Hyperbolic Example

An instructive and extremely simple example of a goal function defined over

the two-dimensional factored parameter space � = R × R is

F (a , b) = a b, (a , b) ∈ R2,

with both a and b ranging over all reals.

A contour set defined by the equation a b = γ , with the constant γ �= 0,

is a rectangular hyperbola, located in the first or third quadrants when γ > 0

and in the other two quadrants when γ < 0. But when γ = 0, the contour

set defined by a b = 0 is the union of the two numerical axes.

Consider a rectangular F -cc covering for the contour map of this function.

To fill a hyperbolic contour set, say a b = 1 in the first quadrant, the only

“rectangles” we can use are singletons, one-point sets each consisting of

an ordered pair (a , b) >> 0, with b = 1/a . Every point in the interior

of the first quadrant is such a “rectangle” for some γ > 0. The situation

is analogous in the interiors of the other three quadrants, with γ > 0 or

γ < 0. But things change when γ = 0. In fact, the contour set defined by

a b = 0 consists of the union of the two numerical axes (it has the shape of a

plus sign), and cannot be covered by a single “rectangle,” but it can be filled

by two “rectangles,” each consisting of one of the axes. Of course, each axis

can be split into rectangular F -cc subsets, but only the two axes provide an

rRM, hence “informationally efficient” (in the sense of maximally coarse46)

covering. It then turns out that this covering is not a partition since the

45 For an alternative approach to proving that CV is a partition, see the remark in
Section 2.3.4.

46 In another context we define “informationally efficient” mechanism to include the require-
ment that its message space has minimal informational size.
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origin belongs to both axes. The two “rectangles,” consisting of the two axes,

constitute the unique maximally coarse covering; it has an overlap at the

origin.47 Note that the “rectangles” covering the γ = 0 contour set have a

different dimension from those covering the contour sets with γ �= 0.

We now proceed to apply the analytical RM techniques (as opposed to geo-

metric) to finding an rRM covering for the goal function F (a , b) = ab, a ∈
R, b ∈ R. It is natural to divide the problem into two parts, depending on

whether (i) we are dealing with the hyperbolic contour sets for γ �= 0, or

(ii) when γ = 0, where the only contour set is the union of the two axes,

{(a , b) ∈ R2 : a b = 0, a ∈ R, b ∈ R}.
(i) The case ā �= 0, b̄ �= 0. Without loss of generality we start with L-RM

and use the maximal A-correspondence, defined by the equation

F (a , b̄) = F (ā , b̄).

Here the equation becomes

a b̄ = ā b̄,

with ā �= 0, b̄ �= 0. Since b̄ �= 0 permits cancellation, we are left with

a = ā ,

and the A(·) correspondence is defined by

A(θ̄) ≡ {a ∈ R; a = ā , a �= 0} = {ā}.48

Following the L-RM recipe we now seek the B-set corresponding to this

A(θ̄) set, the set written formally as B∗(A(θ̄), θ̄). This set is defined by the

requirement that it consist of those elements b ∈ �2, �2 = R, that satisfy

the equation

F (a , b) = F (θ̄) (+)

for all a in A(θ̄) and all θ̄ ∈ �. In this case (i), with F (θ̄) = ā b̄ �= 0, and

a ∈ A(θ̄) equivalent to a = ā , equation (+) becomes

ā b = ā b̄, (++)

47 The origin of R2 is in this example the only overlap point. The situation is analogous to
the (finite �) L-dot example where the unique maximally coarse covering has an overlap
at the “elbow” point we usually label β.

48 Thus, in this case, the maximal A-set is a singleton, hence, somewhat paradoxically, also
minimal.
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or, after cancellation of ā �= 0,

b = b̄. (+++)

Thus B∗(A(θ̄), θ̄) = {b̄}. Therefore, the generic “rectangle” V(θ̄) of the

rRM covering is of the form {ā} × {b̄}, ā b̄ �= 0, hence a singleton V(θ̄) ≡
{(ā , b̄)}, in agreement with the geometric insight.49 In equation form, the

covering correspondence V(·) for the region of case (i) is written as

G 1(θ̄ , a) ≡ a − ā = 0, G 2(θ̄ , b) ≡ b − b̄ = 0.

We now proceed to Case (ii), ā b̄ = 0.

This case will be divided into three sub-cases: first with ā = 0, b̄ �= 0,

second with ā �= 0, b̄ = 0, and the third with ā = 0, b̄ = 0, i.e., θ̄ = the

origin.

In the first sub-case if

(ii.1), ā = 0, b̄ �= 0, the maximal A-set again satisfies the equation

a b̄ = 0, b̄ �= 0, (◦)

hence b̄ can be canceled, and so

a = 0 = ā.

Therefore,

A(θ̄) = {0} = {ā}. (◦◦)

In turn we seek the B-set. As always in L-RM, this set is defined by the

equation

F (a , b) = F (θ̄) for all a ∈ A(θ̄) and all θ̄ ∈ �,

which translates into

ā b = 0 for ā = 0, or 0 · b = 0.

Thus, the B-set consists of all b ∈ R that satisfies the requirement 0 · b =
0 which does not exclude any real value b. Thus in this sub-case the B-set is

the whole b-(vertical) axis, or formally,

B∗(A(θ̄), θ̄) = R for all θ̄ = (ā , b̄), ā = 0, b̄ �= 0.

The resulting “rectangle” of the covering correspondence V(·) is of the form

V(θ) = {0} × R, again in accord with the geometric insight.

49 That this covering will turn out to be rRM is clear. Its reflexivity can be verified directly by
using rRM starting with the B-set using B(θ̄) = {b̄} as the initial correspondence.
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In equation form, when ā = 0, b̄ �= 0, with L-RM and maximal A-set,

we can write

G 1(θ̄ , a) ≡ a ≡ 0

G 2(θ̄ , b) ≡ 0 · b ≡ 0.

Note that this yields

F (a , b) = 0.

(ii.2) We now take up the second sub-case of case (ii), where ā �= 0,

b̄ = 0. Here the equation F (a , b̄) = F (ā , b̄) defining the maximal A-set

becomes

a · 0 = 0,

so that

A(θ̄) = R (all of the reals).

Hence the B-defining equation F (a , b) = F (ā , b̄) for all a in A(θ̄) and all

θ̄ in � translates into

a b = 0 for all a in R.

Clearly, the only value of b that satisfies this requirement is b = 0, so that

B∗(A(θ̄), θ̄) = {0} = {b̄}.
The resulting “rectangle” is V(θ̄) = R × {0}, i.e., the whole a-axis, again in

agreement with the geometry.

In equation form, when θ̄ �= 0, b̄ = 0, we have for L-RM with maximal

A(θ̄), we have

G 1(θ̄ , a) ≡ 0 · a ≡ 0,

G 2(θ̄ , b) ≡ b ≡ 0,

and again, F (θ) = 0.

(ii.3) There remains the third sub-case of (ii) where θ̄ = (ā , b̄) = (0, 0).

Here again A(θ̄) is defined by

a · 0 = 0.

Hence, when θ̄ = (0, 0), we can use as the corresponding B-“rectangle” the

set R × {0}, i.e., the a-axis. But, unlike in the previous two sub-cases, we have

an alternative: we can choose to use R-RM. This would lead to Ṽ((0, 0)) =
{0} × R, i.e., the b-axis. Of course, we must choose between the two possi-

bilities, since – by the RM rules – one, but only one, rectangle is associated
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with each point θ ∈ �. In equation form,50 for L-RM with θ̄ = (0, 0), we

have G 1(θ̄ , a) = a · 0 = 0, G 2(θ̄ , b) = b = 0, and again, F (θ) = 0.

Perhaps it is not quite obvious that such alternatives do not exist in the

previous two sub-cases of case (ii). Here are the reasons.

Consider, for example, the sub-case ā = 0, b̄ �= 0. Suppose there were an

alternative to V(θ̄) = {0} × R, to the b-axis. Such an alternative cannot be a

proper subset of {0} × R because then the resulting covering would fail to be

maximally coarse, hence would not qualify as rRM. So an alternative would

have to contain a point (a , b) with a �= 0. If also b �= 0, then F (a , b) �= 0,

hence the alternative rectangle fails to be F -contour contained and so does

not qualify as RM.

So suppose the alternative contains a point θ ′ = (a ′, b′) with a ′ �= 0, b′ =
0, a point on the a-axis other than the origin. Since RM produces a self-

belonging correspondence, the resulting rectangle must also contain the

point θ̄ . But since the covering correspondence is rectangular, the rect-

angle containing both θ ′ = (a ′, b′) and θ̄ = (ā , b̄) must also contain the

point θ ′′ = (a ′′, b′′) = (a ′, b̄), with both components nonzero. However,

since (a ′′, b′′) has both components nonzero, we find that the “rectangle”

in question contains both θ̄ with F (θ̄) = 0 and θ ′′ with F (θ ′′) �= 0, hence

it violates the F -cc requirement for an RM “rectangle.” Hence, in the first

subcase of case (ii) there is no alternative to V(θ̄) = {0} × R. The argument

for the second subcase is analogous.

2.2 Phase 2: Constructing Decentralized Mechanisms,
from Parameter Indexed Product Structures: Transition

to Message-Indexed Product Structures

2.2.0 Introduction

The transition from parameter-indexed structures to message-indexed

structures is motivated by our desire for increased informational efficiency.

Gain in informational efficiency is exemplified by the price mechanism, with

prices and quantities as component messages, as compared with the direct

revelation mechanism with parameters as messages.

In the direct revelation scenario, the coordinator tries out points in what

may be a huge parameter space (e.g., when preferences are represented by

polynomials of high degree). By contrast, in the price mechanism, the coor-

dinator, the Walrasian auctioneer, asks each agent i whether a point in the

50 When the choice V((0, 0, 0)) = R × {0} is made.
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(p, q i ) – price-quantity space – is acceptable, a space whose dimensionality

depends only on the number of goods and persons in the economy, and

does not increase with the complexity of individual preferences.

This section is devoted to phase two of the procedure for constructing a

mechanism that realizes a given goal function F . This phase takes as given

a parameter-indexed product structure (correspondence) that is F -cc, and

shows how to construct a message-indexed product structure (correspon-

dence) that can be informationally more in a sense51 maximally efficient.

2.2.1 Basic Concepts

Suppose that for a specified goal function F : � → Z a parameter-indexed

product structure is given. By this we mean a correspondence V : � ⇒ �,

where � = �1 × · · · × �N . We assume that V is defined on all of �, V is

F -cc self-belonging, and “rectangular”. (To simplify exposition we usually

take N = 2.)

Thus with each point θ̄ in the parameter space �, the (covering) corre-

spondence V(·) associates a subset V(θ̄) of the parameter space that has

these properties:

(i) F-cc: given any two points θ ′, θ ′′ in V(θ̄), the values of the goal func-

tion are the same – F (θ ′) = F (θ ′′);

(ii) self-belonging: the set V(θ̄) contains its “generator” θ̄ – for any θ̄ ∈ �,

we have θ̄ ∈ V(θ̄);

(iii) rectangularity :52 given any θ̄ = (θ̄1, θ̄2) ∈ �1 × �2,

(stated for N = 2)

V(θ̄) = V 1(θ̄) × V 2(θ̄) whereV i (θ̄) ⊆ �i , i = 1, 2.

We sometimes impose additional requirements, such as that V be rRM

(reflexive method of rectangles).

It typically happens that a set K in � is “generated” by different points –

there may be two distinct points θ̄ ′, θ̄ ′′ ∈ �, θ̄ ′ �= θ̄ ′′ such that

V(θ̄ ′) = V(θ̄ ′′) = K .

The correspondence V generates a covering CV of �, where

CV = {K ⊆ � : K ⊆ �, K = V(θ̄) for some θ̄ ∈ �}.
(We sometimes omit the subscript V).

51 Minimal fineness – maximal coarseness of the covering.
52 Rectangularity corresponds to privacy-preserving and informational decentralization.
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It turns out that a covering generated by self-belonging correspondences

has a property that is crucial for our procedure. It is shown in Chapter

3, Section 3.5, Theorems 3.5.1 and 3.5.2, that when V is self-belonging, it

is possible to choose in each set K of the covering C an element, say θK ,

called its representative, so that (i) each representative belongs to the set it

represents; and (ii) distinct sets have distinct representatives; formally

(i) θK ∈ K

(ii) K ′ �= K ′′ ⇒ θ ′
K �= θ ′′

K .

Conversely, if a covering C admits a system of distinct representatives, then

there exists a self-belonging correspondence V : � ⇒ � that generates C .

To see this, suppose the covering C has an SDR. Then for every k ∈ C , there

is θk ∈ K , where θk is the representative of the set K . Define Vθk to be K .

Then θk ∈ K = V(θk) – V is self-belonging.

The system of distinct representatives (SDR) is a (single-valued) function

� : C → �. So �(K ) corresponds to what we denoted above by θK .

To see that an SDR is always possible for a self-belonging correspondence,

consider the following construction.53

Given a set K of a covering CV generated by the self-belonging correspon-

dence V : � ⇒ �, let �K denote a generator of K − V(θK ) = K , and let

�K be the set of all “generators” of K . Thus, �K = {θ̄ ∈ � : V(θ̄) = K }.
Choose54 an arbitrary element, say θ ′, of the set �K and declare θ ′ to be

the representative of the set K , i.e., θ ′ = θK , or

θ ′ = �(K ).

Since θ ′ was chosen from �K , it follows that

V(θ ′) = K .

But V is self-belonging, so θ ′ ∈ V(θ ′). Hence SDR (i) is satisfied. Note also

that �′
K is disjoint from �′′

K if K ′ �= K ′′. If it were not so, there would exist

some θ̄ such that K ′ = V(θ̄) and K ′′ = V(θ̄), which is impossible since θ̄

uniquely defines the set V(θ̄).

It follows that, when K ′ �= K ′′, their representatives θ ′
K and θ ′

K , respec-

tively, chosen from distinct sets, must be different. That is,

K ′ �= K ′′ ⇒ �(K ′) �= �(K ′′),

and so SDR (ii) is also satisfied.

53 Not the only possible one!
54 Justified by the axiom of choice.
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So the existence of the system of distinct representatives is implied by the

self-belonging property of the correspondence V .

The theorem that guarantees the existence of an SDR applies not only to

correspondences that generate partitions of the parameter space, but also to

those that produce coverings with overlapping K -sets.

As we shall see below, these coverings are much simpler to deal with;

since any element of a set K can serve as its representative θK . (When CV is

a partition, K = �K for all K .)

Clearly, such a choice satisfies SDR(i). SDR(ii) is also satisfied because if

θ ′ represents K ′, θ ′ was chosen from K ′, and K ′ ∩ K ′′ = ∅, then θ ′ cannot

be chosen from K ′′.

2.2.2 The L-dot Example

The overlap situations are less obvious. It is helpful to look again at the L-dot

example.

example 1.

β γ

δα

Figure 2.2.2.1

There are two F -contour sets: {α, β, γ } and {δ}. Clearly, V(δ) = {δ}. It can

be shown that the only rRM covering consists of the three sets K ′ = α
β ,

K ′′ = β γ , and δ . Hence there is an overlap at β. There are two possible

rRM correspondences generating the above rRM coverings.

We must have V(α) = {α, β}, V(γ ) = {β, γ }. The two alternatives are

V(β) = {α, β}, or V(β) = {β, γ }.
The analysis is the same for the two specifications of V . The choices

available for the SDR are

�(K ′) = α, �(K ′′) = γ ,

�(K ′) = α, �(K ′′) = β,

or

�(K ′) = β, �(K ′′) = γ.

Since � is finite, there is no need to appeal to the axiom of choice. But

there are interesting examples with overlaps where � is infinite (e.g., a
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Euclidean space), and yet an SDR is easy to construct, even with an overlap-

ping parameter-indexed rRM covering.

2.2.3 More Examples

example 2: augmented two-dimensional inner product. When

F = a1b1 + a2b2 + b3, F : R5 → R,

with the domain unrestricted, then there are overlaps.

But if we restrict the domain so that, b1 �= 0, F : R5\{θ ∈ R5 : b1 �= 0} →
R, then there are no overlaps.

example 3: the ‘‘hyperbolic” goal function

F = ab (a ∈ R, b ∈ R)

a

Figure 2.2.3.1

Here, if θ = (a , b), the rRM yields V(θ) = {θ} whenever a �= 0, b �= 0.

If a = 0, b �= 0, we find V((a , b)) = {(a , b) ∈ R2 : a = 0} = the b-axis = :

Rb .

Similarly, if a �= 0, b = 0, we have V((a , b)) = {(a , b) ∈ R2 : b = 0}, =
the a-axis =: Ra . Only for (a , b) = (0, 0) do we have a choice of two

rectangles: V((0, 0)) = Ra or V((0, 0)) = Rb . (Not both!) In either case,

the resulting rRM covering CV consists of all singletons {(a , b)} with

a �= 0, b �= 0, and the two axes Ra and Rb .
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What about an SDR? Clearly, if a �= 0, b �= 0, K = {(a , b)}, then (a , b) =
�(K ) – the single element must be its own representative. But for K = Ra

we have an infinity of choices: any point on the a-axis can serve as the

representative of Ra .

If the chosen representative of Ra is any non-zero point, then any point

of Rb (including the origin) can be chosen as representative of Rb . But, of

course, if 0 = �(Ra ), then �(Rb) must be chosen from among points on

Rb that are not the origin.

example 4. Another interesting Euclidean case with overlap is that of a

“Leontief” goal function F = min (a , b), a ∈ R+, b ∈ R+(� = R2
+),

R+ = nonnegative real numbers, R2
+ = R+ × R+.)

b

a

F(a,b)=11

 1

Figure 2.2.3.2

Here the rRM covering of a “typical” contour set, say F (a , b) = 1, consists

of two (closed) half-lines that overlap at the “elbow” where a = b = 1.

So:

For θ = (a , 1), with a => 1,

V(θ) = {(a , b) ∈ R2
+ : 1 =< a , b = 1}

For θ = (1, b), with b > 1,

V(θ) = {(a , b) ∈ R2
+ : a = 1, b => 1}
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and the (overlapping) rRM rectangles of the covering for the contour set

F (a , b) = 1 are the two rectangles

K ′ = {(a , b) : 1 � a , b = 1}
and

K ′′ = {(a , b) : a = 1, b � 1}.
For an SDR, we can choose any point of K ′ and any point of K ′′, provided

we do not choose the same “elbow point” for both.

example 5: ‘‘a parabolic” goal function

F = (a − b)2 − (a + b), (a , b) ∈ R2
+

The interesting phenomenon is that every rRM rectangle consists of two

isolated points even though F is “smooth.” For instance, the contour set

F (a , b) = 0 contains the rRM rectangles {(1, 0), (1, 3)}︸ ︷︷ ︸
K ′

and {(0, 1), (3, 1)}︸ ︷︷ ︸
K ′′

.

There are overlaps; for instance, the two rectangles {(0, 0), (1, 0)} and

{(0, 0), (0, 1)} both in the contour set F (a , b) = 0 have in common the

point (0, 0). Moreover, the graph of F (a , b) contains an L-dot configuration,

consisting of the three points {(0, 1), (0, 0), (1, 0)} in the set F (a , b) = 0,

together with the point (1, 1) belonging to the contour F (a , b) = −2 �= 0.

2.2.3.1 Transversals and Other Message Spaces

The message space M can be taken to be the image of the covering CV by

the SDR function �, the set �(CV ) of distinct representatives, known as the

transversal (T)55 of the covering.

In the L-dot example (Example 1), with the choice

�(K ′) = α, �(K ′′) = γ ,

we have

T = {α, γ , δ}.
With the two alternative choices of SDR the transversal is {α, β, δ} or

{β, γ , δ}.

55 We use the term “transversal,” because when the space is Euclidean, and F is smooth, the
set defined by � is typically a geometric transversal.
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Here the reduction in size from � to M′ = T is not very impressive four

points in � down to three in T .

In the Leontief example (Example 3) the reduction from � to T is more

significant: each half-line is replaced by a single point.

The objective of reducing the size of the message space is sometimes

accomplished by choosing as the message space M (a superset of M′) that

is not T, but some set that has a subset that is in 1-1 correspondence with

T. This is illustrated in the Leontief example – Example 3.

The rectangles of the covering are written as K ′
b′ = {(a , b) ∈ R2

+ : a => b′,
b = b′ => 0}, a horizontal closed half line starting at (and including) the point

(a , b) = (a ′, b′), and K ′′
a ′ = {(a , b) ∈ R2

+ : a = a ′, b => a ′ => 0}, a vertical

closed half-line starting at (and including) the point (a , b) = (a ′, b′). The

values of a ′ and b′ are fixed for each rectangle, but range over all nonnegative

values for the covering correspondence V . Each contour set is L-shaped and

equals the union K ′
b′ ∪ K ′′

a ′ , with a ′ = b′.
Define the SDR function � : CV → � as follows: �(K ′

b′) = (2b′, b′)
for all b′ => 0, �(K ′′

a ′) = (a ′, 2a ′) for all a ′ > 0;56 but for the vertical half-

line starting at the origin, K ′′
0 , we must avoid the origin. So we must choose

some point (0, c) ∈ K ′′
0 , c > 0, say�(K ′′

0 ) = (0, 1). We obtain the transver-

sal T = T1 ∪ T2 ∪ {(0, 1)}, with T1 = {(a , b) ∈ R2
+ : a = 2b, b => 0}, T1 =

{(a , b) ∈ R2
+ : b = 2a , a > 0}. Clearly, T is a two-dimensional set. How-

ever, we can project it into a negative 45◦ straight line such as M =
{(a , b) ∈ R2 : b = −a} so that M′ = ν(T), so that ν(a , b) ∈ {(ã , b̃) : b̃ =
−ã , |ã| < a} for (a , b) ∈ T1 ∪ T2, while ν(0, 1) = (−1, +1). Clearly, M is

of dimension 1, but the choice �(K ′′
0 ) = (0, 1) results in a discontinuity,

apparently due to the overlap at the origin.

However, it is clear that the equilibrium message set M′ is one-

dimensional whereas � = R2
+ is two-dimensional. So there is a significant

informational benefit.

2.2.3.2 Example 6: A Goal Function That Depends On One Agent’s

Parameter Only

Suppose � = R2, F (θ) = b, (θ = a , b).

Here each contour set is a horizontal line and each such line is covered by

a single rRM rectangle.

V(a , b′) = {(a , b) ∈ R2 : b = b′}.
56 But not for a ′ = 0 since this would result in two different rectangles (those starting at the

origin) having the same representative.
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A transversal T is obtained, e.g., as

T = {(a , b) ∈ R2 : a = a∗}
with �(K ) = a∗, bk for K = {(a , b) ∈ R2 : b = bK }.

We can use the projection ν into the b-axis, so that ν = T → b-axis,

ν(a∗, b) = (0, b), b ∈ R. Here again � = R2 while T, M, and M′(= M)

are equivalent to R. Both �(·) and ν(·) are smooth.

2.2.4 General Issues in Mechanism Construction

As these examples indicate, it is sometimes easy to find an SDR function �

and the corresponding transversal; indeed there may be many possibilities.

But two questions arise. First, what about more complex examples where the

choice of SDR function � for the given V is not self-evident? And, secondly,

supposing we have found an SDR function � for the given V , how do we

go about constructing a mechanism that realizes the given goal function F ?

Consider the second question first. So suppose we have a self-belonging

F-cc rectangular correspondence V that generates a covering CV of the

parameter space �, and we also have an SDR function �, hence also its

transversal T . How do we construct a mechanism?

To simplify matters, suppose we use the transversal T as the message space

M, so that M = M′ = T . (In the examples above, this corresponds to using

the identity transformation on T as ν.)

A mechanism (in set-theoretic form) is defined as a triple (M, μ, h) where

M is the message space, μ : � ⇒ M is the equilibrium message correspon-

dence, and h : M → Z is the outcome function.

We want such a mechanism to realize the goal function F : � → Z on

the parameter space �, to satisfy the two requirements: existence and F -

optimality:

(i) existence ∀ θ ∈ �, there is m ∈ M such that

m ∈ μ(θ);

(ii) F-optimality ∀ (θ , m) ∈ � × M, if m ∈ μ(θ), then h(m) = F (θ).

By the simplifying assumptions made above we have M = M′ = T , but

we must still construct the equilibrium correspondence μ, and the outcome

function h.

In the simplified case, the outcome function (in general defined on M)

has T ⊆ � as its domain. Hence it is legitimate to use m ∈ M as an argument
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for h(·) and to define h(·) on M by

h(m) = F (θ)|θ=m

i.e.,

h(m) = F (m).

This will be our construction of h(·).57

It remains to construct the equilibrium correspondence μ, and that turns

out to be more complicated, primarily because we want our mechanism to

be informationally decentralized – privacy-preserving.

To make the strategy of our construction more transparent, we first show

how the construction works when the requirements of decentralization are

ignored – how one verifies that the mechanism does realize the goal function.

If the requirements of decentralization are ignored, it is as if the two agents

were able to pool their information instead of acting only on the basis of

their own characteristics (parameter vectors).

Given this framework we define the equilibrium message correspondence

as follows.

We say that m ∈ M is an equilibrium message for the parameter point

θ ∈ � if and only if m = �(K ) for some set K of the covering C of � such

that θ is a point of K .

Hence the equilibrium message μ(θ) = {m ∈ M : m = �(K ) for some

K ∈ C such that θ ∈ K }.
Equivalently, m ∈ μ(θ) if and only if m = �(K ) for some K ∈ C and

θ ∈ K . (Here C = CV ).

To see that the mechanism (M, μ, h) we have constructed does realize

the goal function F , note first that the existence requirement (i) is satisfied –

μ(θ) is nonempty for every θ ∈ �. This is so since C is a covering of � such

that θ ∈ K , and so its representative �(K ) is an element of μ(θ).

It remains to prove F -optimality of the mechanism – that if m ∈ μ(θ)

then h(m) = F (θ). By property SDR (i), �(K ) is in the set K , and, by the

definition of μ(θ), θ is also in the set K . But, by the F-cc property of the

covering C , all points in K are in the same F −contour set. Hence

F (�(K )) = F (θ).

Since �(K ) = m, this becomes

F (m) = F (θ). (+)

57 Note that this construction of the outcome function remains valid and unchanged when
informational decentralization is introduced into our procedure.
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turn, by the definition of the outcome function h,

h(m) = F (m). (++)

Equations (+) and (++) yield

h(m) = F (θ),

and F -optimality follows.

We drop the assumption M = M′ = T .

As noted in connection with the examples, it is often desirable to choose

as message space a set M different from the transversal T , but “rich” enough

so that it contains a subset M′ that is in 1–1 correspondence with T . When

M is such a set, there exists a (single-valued) function ν : T → M, and a

subset M′ ⊆ M, such that M′ = ν(T), and ν is 1–1 between T and M′ ν is

a bijection from T into M′. Hence ν has a single-valued inverse ν−1 from M′

onto T . Thus, if m = ν(t), m ∈ M′, t ∈ T , t ′ ∈ T, t ′ �= t, then ν(t ′) �= m.

Note that the simplified case where M = M′ = T is a special case, in

which ν is the identity mapping between T and M.

In the more general situation where ν might, but need not be, the identity,

we generalize the construction of the outcome function in a natural way.

That is we define the outcome function h : M → Z

h(m) = F (ν−1(m)) for all m ∈ M.

We now say that m ∈ M is an equilibrium message at θ ∈ � if and only if

m = ν(�(k))

for some set K of the covering CV of � such that θ is a point of K . Hence

the equilibrium correspondence μ is defined by

μ(θ) = {m ∈ M : m = ν(�(K )) for some K ∈ CV such that θ ∈ K }.
The proof that this more general mechanism58 (M, μ, h) realizes F fol-

lows the previous pattern. Existence follows from the fact that CV covers �.

As for F-optimality, if m ∈ μ(θ), then

m = ν(�(K )) for some K satisfying θ ∈ K . (0)

By the F-cc property of C, again

F (�(K )) = F (θ), (†)

58 More explicitly, one might have written the mechanism as (M, μ, h; �, ν).
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since both �(K ) and θ are in K . Now h(m) = F (ν−1(m)) by the definition

of

h = F (ν−1(ν(�(K ))) – by (0)

= F (�(K )) – by ν−1 ◦ ν = identity

= F (θ) – by (†),

as was to be shown.

The preceding exercise, ignoring as it did the problem of informational

decentralization, is useful in displaying the strategies we use both in defining

the elements used in the construction of the mechanism, and also in proving

the crucial property of the mechanism – that it realizes the goal function.

But now we must come to grips with the issue of informational decen-

tralization.

Assuming, for the sake of simplicity, that there are only two agents (N =
2), we now deal with a factored parameter space � = �1 × �2, so that if

θ ∈ �, then θ = (θ1, θ2), with θ1 ∈ �1 and θ2 ∈ �2.

Requiring decentralization does not affect the construction of an SDR

function � or of the outcome function; we still define h(m) = F (ν−1(m))

and M ⊇ M′ = ν(�(CV )). It is the construction of the equilibrium function

μ that becomes more complicated.

As before, we start by considering the special case where the transversal

is the message space – M = M′ = T = �(CV ). The (collective) equilib-

rium correspondence μ : � ⇒ M is by definition the intersection of two

individual equilibrium correspondences μ1, μ2, where each μi : �i ⇒ M,

i = 1, 2, and, for θ = (θ1, θ2),

μ(θ) = μ(θ1, θ2) = μ1(θ1) ∩ μ2(θ2).

In particular, the individual correspondence μ1 is so constructed that

agent 1 is able to determine whether m ∈ μ1(θ1) without knowing θ2, and

vice versa for agent 2.

To help our intuition, let us think in terms of the verification scenario. First,

assume that the covering CV , the spaces �1, �2, and the SDR function �

are public knowledge – known to both agents.

The coordinator displays to both agents an element m of the message

space M; m is a candidate for an equilibrium message for the parameter

point θ = (θ1, θ2), whose components are respectively known to agent 1

and agent 2.

The important new aspect of the situation, ignored in the preceding expo-

sition, is the assumption of “rectangularity” of the covering CV – the fact
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that each set K in CV is a Cartesian product, a “rectangle” K = K1 × K2,

where K1 ⊆ �1 and K2 ⊆ �2. “Rectangularity” formalizes the idea that

each agent be able to make a decision based only on her own private informa-

tion – her parameters – and thus enable the mechanism to be informationally

decentralized.

The question asked of agent 1 with parameter θ1 is: given the informa-

tion available to you, does there exist a “rectangle” K ∗ ∈ C such that, for

some θ̃2 ∈ �2, the parameter point (θ1, θ̃2) ∈ K ∗ and m = �(K ∗), i.e.,

that θ1 ∈ pr�1 K ∗ and θ̃2 ∈ pr�2 K ∗ and m = �(K ∗)? We say that m ∈
μ1(θ) if and only if the answer is “yes.”

Formally, the first agent’s individual equilibrium message correspondence is

defined by

μ1(θ1) =
{

m ∈ M : m = �(K ∗) for some K ∗ = K ∗
1 × K ∗

2 ∈ C ,

K ∗
i ∈ �i , i = 1, 2 such that θ1 ∈ K ∗

1

}

analogously,

μ2(θ2) =
{

m ∈ M : m = �(K ∗∗) for some K ∗ ∈ C ,

K ∗∗ = K ∗∗
1 × K ∗∗

2 , K ∗∗
i ∈ �i , i = 1, 2, and θ2 ∈ K ∗∗

2

}
.

Clearly, each agent i is able to answer her question without knowledge of

the other agent’s parameter θ j , j �= i .

Now for θ = (θ1, θ2), let m ∈ μ(θ) where μ(θ) = μ1(θ1) ∩ μ2(θ2) by

definition.

This means by definition of μi (·) that

m = �(K ∗), K ∗ ∈ CV , θ1 ∈ K ∗
1 ,

and

m = �(K ∗∗), K ∗∗ ∈ C , θ2 ∈ K ∗∗
2

hence

�(K ∗) = �(K ∗∗).

But by SDR (ii) it follows that K ∗ = K ∗∗. Thus m ∈ μ(θ) means that there

exists K̄ such that

m = �(K̄ ), K̄ ∈ C , K̄ = K̄1 × K̄2, θ1 ∈ K̄1, θ2 ∈ K̄2,
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hence (by the rectangularity of CV ) θ = (θ1, θ2) ∈ K̄ . That is,

μ(θ) =
{

m ∈ M : m ∈ �(K̄ ) for some K̄ ∈ CV

such that θ ∈ K̄

}
.

The mechanism (M, μ, h) thus constructed is informationally decen-

tralized because μ((θ1, θ2)) = μ1(θ1) ∩ μ2(θ2), and each μi (θ i ), i = 1, 2,

is privacy preserving, i.e., each agent can answer her verification question

without knowing the other agent’s parameter value.

2.2.5 Mechanism Construction for L-dot

Before generalizing, we first illustrate the preceding “recipes” for mechanism

construction by a simple, though nontrivial example, that of the L-Dot

configuration (Example 1 above). The goal function is

F (α) = F (β) = F (γ ) = p, F (δ) = q �= p.

As seen above, there is only one rRM covering; it consists of three rect-

angles: the column vector K ′ = {α, β}, the row vector K ′′ = {β, γ }, and

K ′′′ = {δ}. However, there are three different correspondences that gener-

ate that covering.

We must use V(α) = K ′, V(γ ) = K ′′, and V(δ) = K ′′′. Where we have

alternatives, we choose V(β) = K ′.
The individual parameter spaces are

�1 = {a1, a2}, �2 = {b1, b2}, a1 < a2, b1 < b2,

with

α = (a1, b2), β = (a1, b1), γ = (a2, b1), δ = (a2, b2).

(a1, a2, b1, b2 are real numbers ).

We make the following choices for the SDR function:

�(K ′) = α, �(K ′′) = γ , �(K ′′′) = δ.

Hence our transversal is

T = {α, γ , δ}.
Since we are still in the simplified case where M = M′ = T , the message

space consists of α, γ , and δ. However, when we treat these elements as

messages, we denote them respectively as m′ = α, m′′ = γ , m′′′ = δ.
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To construct a mechanism, we must define the equilibrium correspon-

dences and the outcome function.

The outcome function construction is simple. The recipe prescribes

h(m) = F (θ)|θ=m.

Thus,

h(m′) = F (α) = p, h(m′′) = F (δ) = p, h(m′′′) = q (q �= p).

The construction of the two equilibrium correspondences μ1 and μ2 is more

complicated. To find correspondenceμ1, we must find two sets:μ1(a1) ⊆ M

and μ1(a2) ⊆ M. We start with μ1(a1). Since M = {m′, m′′, m′′′} is finite,

we can find μ1(a1) by answering three questions: Does m′ belong to μ1(a1)?

Does m′′ belong to μ1(a1)? Does m′′′ belong to μ1(a1)?

Is m′ ∈ μ1(a1) true? By definition of μ′(θ), the question means: Is there

a rectangle K in the covering CV such that m′ = �(K ) and a1 ∈ K1? (Here

R = R1 × R2, K1 ⊆ �1, K2 ⊆ �2.)

Now m′ = α, so m′ = �(K ) only if K = K ′, K ′ = {α}, so K ′ = {a1} ×
{b1, b2}+ · K ′

1 = {a1}. Since a1 ∈ {a1}, it follows that m′ ∈ μ1(a1).

To complete the construction of μ1(a1), we must still find out whether

m′′ ∈ μ1(a1), and whether m′′′ ∈ μ1(a1). Consider the first question.

The question whether m′′ ∈ μ1(a1) means: Is there a rectangle K ∈ CV

such that m′′ ≡ γ = �(K ) and a1 ∈ K1? The only rectangle satisfying the

first requirement is K ′′, and so K ′′
1 = {a1, a2}, so a1 ∈ K ′′

1 , and hence m′′ ∈
μ1(a1).

In turn, whether m′′′ ∈ μ1(a1) means: Is there a rectangle K such that

K ∈ CV , M′′′ = δ = �(K ), and a1 ∈ K1. The only qualifying rectangle is

K ′′, since only K ′′′ is represented by δ. Now K ′′′ = {(a2, b2)} so K ′′′
1 = {a2}.

But a1 /∈ {a2}. Therefore m′′′ /∈ μ1(a1). It follows that μ1(a1) = {m′, m′′} =
{α, γ }.

To find μ1(a2), we have to answer the corresponding three questions:

whether m′, m′′, m′′′ belong to μ1(a2). To know the correspondence μ1 :

�1 ⇒ M means in this case knowing the sets μ1(a1) and μ1(a2).

The correspondence μ2 : �2 ⇒ M of the second agent is found by the

analogous procedure.

Finally, to obtain the full (“collective”) equilibrium correspondence �1 ×
�2 ⇒ M, we calculate μ1, μ2, and then their intersection – for every θ =
(θ1, θ2), θ i ∈ �i , i = 1, 2, we find the subset μ(θ) of M the equation

μ(θ) = μ(θ1, θ2) = μ1(θ1) ∩ μ2(θ2).
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The three components of the decentralized mechanism still satisfy the

definitions:

M = �(C ),

h(m) = F (m),

and

μ(θ) =
{

m ∈ M : m = �(K ) for someK ∈ C

such that θ ∈ K

}
.

But these were the only properties used in the proof that the mechanism

(M, μ, h) realizes F on �. Hence that earlier proof remains valid, line by

line!

Moreover, the same is true if we generalize by using a set M other than

�(CV ), provided this M has a subset rich enough to be in one-to-one cor-

respondence with the transversal T = �(CV ). We have thus constructed a

mechanism that is informationally decentralized, and realizes the given goal

function on the parameter space, from a given F-cc, rectangular covering of

the parameter space that has an SDR.

In fact, we have constructed a whole family of such mechanisms, because

there is leeway in choosing the SDR function �, and in choosing the

message space M, as well as the mapping function ν : T → M′ where

M′ = ν(�(C )). Since the set �(C ) is the transversal of the covering, we

speak of the “method of transversals” abbreviated TM.

The mechanisms so constructed take as given a covering CV of the param-

eter space that is F-cc, rectangular, and has an SDR. The latter property is

(by Theorem 3.A.1) equivalent to the covering being generated by a self-

belonging correspondence, say V : � ⇒ �. The reflexive RM correspon-

dence is self-belonging, as well as F-cc and rectangular. Hence our result (the

construction of an informationally decentralized mechanism that realizes

F ) applies in particular to coverings generated by rRM (reflexive method

of rectangles) correspondences. But its scope is broader, since rRM has an

additional property, viz., that of maximal coarseness, a type of informational

efficiency.

As we have seen, coverings generated by rRM can have overlaps, or they

can be partitions of the parameter space. The mechanism construction pro-

cedure we have just defined is applicable in either case, but is much easier

for partitions.
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2.3 Smooth Transversal Construction for Partitions
by the “Flagpole” Method59

2.3.1 Flagpoles: General Principles

This section describes a method of constructing a transversal (by the

“flagpole approach”) for a mechanism that realizes a given goal func-

tion F : � → Z, when the covering correspondence V : � ⇒ � for F is

known and is represented by an equation system. This approach makes pos-

sible the discovery of mechanisms that realize a given goal function without

requiring any prior knowledge or conjecture about the form of the mecha-

nism. (Such a procedure is illustrated by the example below.)

The system representing V is written in vector form as G(θ̄ , θ) = 0,

G : � × � → Rd , where d is a positive integer. (The parameter space �

is a subset of the Euclidean space of dimension k ≥ d >1). That G = 0

represents V means that

G(θ̄ , θ) = 0 if and only if θ ∈ V(θ̄), (1)

As in most of our work, the correspondence V is assumed to be self-

belonging and F -cc, that is G(θ̄ , θ̄) = 0 for all θ̄ in �, and if G(θ̄ , θ) = 0,

then F (θ) = F (θ̄).

When the parameter space� factors into two individual spaces (of dimen-

sions k1 and k2, with k1 + k2 = k = dim �), � = �1 × �2, the correspon-

dence V is rectangular: if θ = (a , b) ∈ �1 × �2, then V(θ) = V 1(θ) ×
V 2(θ) ⊆ �1 × �2. In equation form this means that the system G(θ̄ , θ) = 0

of d equations is equivalent to two subsystems of equations, written as

G 1(θ̄ , a) = 0, G 2(θ̄ , b) = 0 where again θ = (a , b) ∈ �1 × �2, G i : � ×
�i → Rdi and d1 + d2 = d. (It is assumed that di ≤ ki , i = 1, 2; d ≤ k.)

The preceding assumptions are standard in much of this chapter. We

make additional specializing assumptions that enable us to carry through

the flagpole approach, although at the cost of limiting its applicability.

The chief such assumption is that the covering CV of � generated by V ,

is assumed to be a partition. Hence, by the symmetry property of coverings

that are partitions,

G(θ̄ , θ) = 0 ⇔ G(θ , θ̄) = 0.

See Theorem 3.6.1.

59 The “flagpole” approach, due to Professor Leonard Shapiro, Portland State University, was
the earliest technique of constructing a mechanism given the equation system G(θ̄ , θ) = 0.
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The flagpole approach also relies on differentiability of the function G , and

on properties of its derivatives that justify the use of the implicit function

(or, with additional conditions, univalence) theorems. Therefore, we assume

that G is continuously differentiable, with the parameter space � an open

Euclidean set.

Furthermore, we assume that the d × k Jacobian matrix of G(θ̄ , θ)

denoted ∂G/∂θ with respect to its second argument, θ = (a , b), is of rank

d , with the following structure. Let a = (a∗, a∗∗) ∈ �1, dim (a∗) = d1, and

similarly b = (b∗, b∗∗) ∈ �2, dim (b∗) = d2. Where convenient, we refer to

the sub-vectors a∗∗, and b∗∗ as the residual sub-vectors. We assume that the

two Jacobians J 1 = ∂G 1/∂a∗ and J 2 = ∂G 2/∂b∗ are nonsingular. (Except

in trivial cases, at least one of the two sub-vectors a∗∗, b∗∗ will be nonempty.

In most of our examples both are nonempty.)

Let G be defined and smooth – C 1 – in a neighborhood of a parameter

point θ◦. A “flagpole” is a subset P of the parameter space �, defined by spec-

ifying fixed values, say α∗∗ and β∗∗ respectively, for the two residual subvec-

tors a∗∗ and b∗∗. Write H(a , b) = 0, to stand for the equation system a∗∗ =
α∗∗ and b∗∗ = β∗∗(H1 = 0 and H2 = 0). Then P = {θ ∈ � : H(θ) = 0}.60

We sometimes write θ = (θ∗, θ∗∗), where θ∗ = (a∗, b∗), θ∗∗ = (a∗∗, b∗∗).

Consider the k by k system consisting of G 1(θ̄ , a)) = 0, G 2(θ̄ , b) = 0,

H(a , b) = 0. By hypothesis, there is a point θ◦ in the neighborhood where

these equations are all satisfied, and all functions are continuously differ-

entiable. Furthermore, the Jacobian J of this system is nonsingular, since it

can be written as the following triangular block matrix:

J =

/∂a∗ /∂b∗ /∂a∗∗ /∂b∗∗

∂G 1/

∂G 2/

∂ H1/

∂ H2/

⎛
⎜⎜⎝

J 1 0 0 x

0 J 2 0 x

0 0 Ia∗∗ 0

0 0 0 Ib∗∗

⎞
⎟⎟⎠ ,

(2)

where Ia∗∗ and Ib∗∗ are identity matrices, respectively, with the dimensions

of a∗∗ and b∗∗, and the submatrices J 1 and J 2 are assumed nonsingular.

(As usual, 0’s stand for null matrices and the x ’s for matrices whose values

do not affect the argument.)

60 Typically, there are alternative choices of vector partitions resulting in the selection of
a flagpole. However, some choices are unacceptable because they would lead to failure
of “coverage,” others because the resulting J matrix would be singular. In any case, the
number of candidates for such choice within the present framework is finite, hence this
phase of mechanism construction does not negate its “algorithmic” nature.
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The equation G(θ̄ , θ) = 0 represents a point θ in the rectangle K = V(θ̄)

of the covering CV associated with the “source” θ̄ (in K ), and H(θ) =
0 locates this point on the flagpole P . Hence the solution of the system

(whose local existence and uniqueness is guaranteed by the implicit function

(or univalence) theorems61), written as θ̂ = τ (θ̄). θ̂ is the point on the

flagpole P = {θ : H(θ) = 0} “representing” the “source” θ̄ in the rectangle

G(θ̄ , θ) = 0. Hence, indirectly it represents the rectangle K . (Because CV

is a partition, different “source” points in the same rectangle would yield

the same θ̂ .) In fact, because CV is a partition, θ̂ is a representative of the

rectangle K in the sense of an SDR, i.e., θ̂ = τ (θ̄) = �(K ) in our usual

notation for an SDR. It follows that τ (�) is a transversal for Cv .62 Hence

the flagpole P contains (or is) the transversal T . From here on we construct

the functions that define equililibrium, and the outcome functions.

To clarify the mechanism construction procedure used in the example

below, and to make this subsection more nearly self-contained, we outline

the construction used.

Write M′ = τ (�), and choose a set containing M′ to be the message space

M. Next define the equilibrium function g : M × � → Rd for any m in M

and θ in � by

g (m, θ) =
{

G((m, α∗∗, β∗∗), θ) if m ∈ M′

3 otherwise

}
.

61 Additional assumptions (à la Gale/Nikaido) would be required to apply the univalence
theorems. The simplest case of global validity is that in which G(θ̄ , θ) is affine in its second
argument, θ , i.e., when the system is of the form A(θ̄)θ − B(θ̄) = 0, and all entries in
both matrices, A(θ̄) and B(θ̄), are continuously differentiable with respect to θ̄ at all
points θ̄ ∈ �, and where the matrix A(θ̄) is nonsingular at all points θ̄ ∈ �. (That is the
situation in the example below, as well as in many of our other examples, including the
Walrasian.)

62 To justify the equality θ̂ = τ (θ̄) = �(K ), where K = V(θ̄), we first show that θ̂ = τ (θ)
for every θ ∈ K and (ii) for no θ /∈ K .

To prove (i), let θ ′ ∈ K , i.e., θ ′ ∈ V(θ̄) and let θ# = τ (θ ′). Now by the definition of
τ (.), θ# ∈ V(θ ′). But V(θ ′) = V(θ̄). (If not, V(�) would not be a partition, because θ ′

would belong to two distinct sets; θ ′ belongs to V(θ ′) by self-belonging, and also belongs
to V(θ̄) by hypothesis.) But then G(θ̄ , θ#) = 0 and also G(θ̄ , θ̂) = 0. But the system
G(θ̄ , θ) = 0, H(θ) = 0 has a unique solution for θ (at least locally by the IFT, or, with
additional assumptions, globally). Hence θ# = θ̂ . This completes the proof of (i).

As for (ii), it follows from the fact that if θ̂ = τ (θ) for some θ ∈ V(θ), θ /∈ K , then
θ would belong to two distinct rectangles, thus violating the assumption that CV is a
partition.

Given (i) and (ii), if we define � by �(K ) = τ (θ) for some θ such that K = V(θ), the
two properties defining an SDR are satisfied, and we see that τ (�) = �(�), hence τ (�)
qualifies as a transversal in the SDR sense.
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Finally, we define the outcome function h() at m in M′ by

h(m) = F ((m, α∗∗β∗∗)).

Then the mechanism (M, g , h) is decentralized (privacy preserving), and

realizes F .

That it realizes F is seen as follows.

(Existence: for every θ in �, there exists m in M such that g (m, θ) = 0).

Given θ , let m = τ ∗(θ) where τ ∗(θ) is defined by

τ (θ) = (τ ∗(θ), (α∗∗, β∗∗)).

Then, by definition,

g (m, θ) = G((τ ∗(θ), (α∗∗, β∗∗)), θ) = G(τ (θ), θ).

Now G(θ , τ (θ)) = 0 by the definition of τ (θ). Hence G(τ (θ), θ) = 0

by the assumed symmetry of G (because V generates a partition). Hence

g (m, θ) = 0.

(F-optimality: if g (m, θ) = 0, then h(m) = F (θ).)

By construction, if g (m, θ) = 0 then (m, α∗∗β∗∗) = τ (θ). Hence, by def-

inition, h(m) = F (τ (θ)). But, by the F -cc property of V (and hence of

G), it follows that F (τ (θ)) = F (θ) because G(θ , τ (θ)) = 0 and hence

τ (θ) ∈ V(θ). Thus h(m) = F (θ) and so the mechanism realizes F .

That g (m, θ) is decentralized follows from the definition of g . This is so

because according to this definition, each equation of g = 0 is inherited from

the corresponding equation of G . Therefore, because G is decentralized, so

is g .

Admittedly, the flagpole approach requires specializing assumptions. It

has, however, two advantages: it is in a sense, algorithmic, and the solutions

it produces have desirable smoothness properties.

We provide two illustrations: Example 2 (augmented two-dimensional

inner product) and the Walrasian example.

2.3.2 Flagpoles: Example 2 (Augmented Inner Product)

Our example is the two-dimensional augmented inner product where the

goal function is F ≡ a1b1 + a2b2 + b3 and every one of the five parameters

ranges over all real values, except that zero is not a possible value of b1; thus,

� = {θ ∈ R5 : b1 �= 0}.
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We first construct an rRM correspondence V for F by constructing its

G = 0 equation system. The A-set for any θ̄ = (ā , b̄) in �, defined by the

equation G 1(θ̄ , a) = 0, is chosen so as to be maximal in �. It follows that

the resulting left-RM covering is guaranteed to be reflexive. Thus, in the

present example, this A-set is defined by

G 1(θ̄ , a) ≡ b̄1a1 + b̄2a2 + b̄3 − (b̄1ā1 + b̄2ā2 + b̄3) = 0 (1#)

or, equivalently,2

G 1(θ̄ , a) ≡ a1 + (b̄2/b̄1)a2 − (ā1 + (b̄2/b̄1)ā2) = 0. (i)

To obtain equations of the B-set, we solve (1) for a1 as a function of

a2 and substitute this expression into the equation F (a , b) − F (ā , b̄) = 0,

thus obtaining an equation in a2 and b. According to the L-RM construction

rules, the latter equation must be an identity in a2, hence the coefficients

of a2 must vanish. This yields the two equations in b and θ̄ that define the

B-set. They are

G 21(θ̄ , b) ≡ −(b̄2/b̄1)b1 + b2 = 0, (2.1)

and

G 22(θ̄ , b) ≡ [ā1 + (b̄2/b̄1)ā2]b1 + b3 − F (θ̄) = 0. (2.2)

Next, we show that the system G = 0, consisting of equations (1), (2.1), and

(2.2), has the property of symmetry, so that the covering is a partition. This is

accomplished by interchanging parameters with overbars with those with-

out, and verifying that the system so obtained, G(θ , θ̄) = 0, is equivalent to

G(θ̄ , θ) = 0.

First, the equation obtained by interchange in (2.1), viz.

−(b2/b1)b̄1 + b̄2 = 0, (2.1′)

is identical, except in appearance, to (2.1). In turn, performing the inter-

change in (1) we get

ā1 + (b2/b1)ā2 − (a1 + (b2/b1)a2) = 0. (1′)

By (2.1′), Equation (1′) is equivalent to

ā1 + (b̄2/b̄1)ā2 − (a1 + (b̄2/b̄1)a2) = 0, (1′′)(1′)

which is the same as (1).

Finally, the result of interchange in (2.2) is

[a1 + (b2/b1)a2]b̄1 + b̄3 − F (θ) = 0. (2.2′)
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By (2.1′) and (1′′) this is equivalent to

F (θ̄) − F (θ) = 0. (2.2′′)

But G(θ̄ , θ) = 0 implies that θ is in the same rectangle as θ̄ , and, by

the F -cc property of RM, (2.2′′) holds. Conversely, Equations (1′), (2.1′),

and 2.2′), which constitute the system G(θ , θ̄) = 0, imply G(θ̄ , θ) = 0.

This completes the proof of symmetry. It follows that the covering is a

partition.

Next, we choose the set called a flagpole. It is defined by the equations

a2 = 0 and b1 = 1. Hence H(θ) = (H1, H2) = (a2, b1) − (0, 1); H1 =
a2 − 0, H2 = b1 − 1; in our earlier notation we have α∗∗ = 0, β∗∗ = 1.4

The parameter vectors are split as follows: a = (a∗, a∗∗), where a∗ = a1

and a∗∗ = a2. b = (b∗, b∗∗) where b∗ = (b2, b3) and b∗∗ = b1. Hence the

Jacobian J can be written (using the A-equation in form (1)) as

J =

/∂a∗ /∂b∗ /∂a∗∗ /∂b∗∗

∂G 1/

∂G 21/

∂G 22/

∂ H1/

∂ H2/

⎛
⎜⎜⎜⎜⎝

1 (0, 0) b̄2/b̄1 0

0 (1, 0) 0 −(b̄2/b̄1)

0 (0, 1) 0 ā1 + (b̄2/b̄1)ā2

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ ,

(2∗)

Solving the system G(θ̄ , θ) = 0, H(θ) = 0 for the components of θ (i.e.,

for the five parameters without the overbars), we write the solution as

θ̂ = τ (θ̄) = (â1, â2, b̂1, b̂2, b̂3)

where

â1 = −
(

b̄2

b̄1

)
· 0 + ā1 +

(
b̄2

b̄1

)
ā2 = ā1 +

(
b̄2

b̄1

)
ā2

â2 = 0

b̂1 = 1

b̂2 =
(

b̄2

b̄1

)
· 1 =

(
b̄2

b̄1

)

b̂3 = F (θ̄) −
[

ā1 +
(

b̄2

b̄1

)
ā2

]
· b1.

(3)

Define g (m, θ) as indicated by the formula, with θ̂ = (θ̂∗, θ̂∗∗), θ̂ = τ (θ̂)

g (m, θ) = G(θ̂ , θ)
∣∣θ̂∗=m

θ̂∗∗=(α∗∗,β∗∗)=(0,1).
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For instance, to find g 1(m, a), we start with the formula

G 1(θ̂ , θ) = a1 + (b̂2/b̂1)a2 − (â1 + (b̂2/b̂1)â2), (∇)

which is obtained from the formula for G 1(θ̄ , θ) in Equation (1), p. 6, by

replacing in the RHS of (∇)ā j by â j and b̄k by b̂k . In turn, we replace â2 and

b̂1 by their flagpole values, 0 and 1 respectively. Also, in the RHS of (∇), we

replace b̂2, â1, b̂3 by m1, m2, and m3 respectively.

As a result of these substitutions, with m = (m1, m2, m3), the LHS of (∇)

becomes g 1(m, θ) and Equation (∇) becomes

g 1(m, θ) = a1 + (m1/1)a2 −
(

m2 + m1

1
· 0

)
(∇∇)= a1 + m1a2 − m2.

Hence, the first equilibrium message equation is

g 1(m, a) ≡ a1 + m1a2 − m2 = 0. (4.1)

Analogous substitutions yield the two other equilibrium message equations:

g 21(m, b) ≡ −m1b1 + b2 = 0. (4.21)

and

g 22(m, b) ≡ m2b1 − m2 + b3 − m3 = 0. (4.22)

Similarly, the outcome function h, defined by

h(m) =: F (θ̂)
∣∣θ̂∗ = m

θ̂∗∗ = (0, 1)
(5)

is found to be

h(m) = â1b̂1 + a2b̂2 + b̂3 = m2 · 1 + 0 · m1 + m3 = m2 + m3.

We can now directly verify that, for an equilibrium message m, it is the case

that h(m) = F (θ) – that the mechanism is F -optimal.

Let m be an equilibrium message for θ .

Then

h(m) = m2 + m3

= m2 + (m2b1 − m2 + b3) by (4.2.2)

= m2b1 + b3

= (a1 + m1a2)b1 + b3 by (4.1)
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=
(

a1 + b2

b1

a2

)
b1 + b3 by (4.2)

= a1b1 + a2b2 + b3

= F (θ). Q.E.D.

The existence requirement is also satisfied, since – given (a , b) – the three

linear equation system (4) is solvable (uniquely) for m1, m2, and m3. Hence

our mechanism does realize the goal function F .

It remains to observe that System (4) is privacy preserving: Equation

(4.1) involves a ’s but no b’s, while Equations (4.2) involve b’s but no a ’s.

This completes the example.

remark 1. Let us assume that, for a given θ̄ , all Jacobian matrices of G(θ̄ , θ)

have a constant rank over the parameter space as θ varies. If, as above, we also

assume that the Jacobian J in [2] is nonsingular at a point, or on a subset, of

the parameter space, it follows that there exists a partitioning of the vectors

a and b into a = (a∗, a∗∗) and b = (b∗, b∗∗) such that the Jacobians J 1 and

J 2 are (square and) nonsingular at the same points of the parameter space.

Hence, if we assume the nonsingularity of J (together with the smooth-

ness of G and that G(θ , θ) = 0), we can conclude that the covering generated

by G is a partition and that a (smooth) flagpole exists, at least locally. In

this sense, the nonsingularity of the smaller matrices is not an additional

assumption.

Conversely, if we assume the nonsingularity of the two smaller matrices

(at the same subset of the parameter space) then a nonsingular J can be

constructed as above. So the two assumptions are equivalent.

remark 2. We have seen that when the Jacobian ∂G/∂θ has maximal rank

(equal to the dimension d of its range), then G represents a partition and has

a smooth transversal obtained by fixing certain components of θ – choosing

a flagpole parallel to coordinate planes.

It is natural to ask whether these conclusions are necessarily false when

the Jacobian is of rank lower than maximal. The following example shows

that this is not the case. In this example, G represents a partition and there

is a transversal with properties mentioned above, even though the rank of

the Jacobian is less than maximal.

Our example is the two-dimensional augmented inner product where the

goal function is F ≡ a1b1 + a2b2 + b3 and every one of the five parameters

ranges over all real values except that b1 �= 0.
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As shown in the above example, an rRM covering is represented by the

following three equation system, where the first equation, which defines the

(maximal) A-side of the rectangle is

G 1(θ̄ , a) ≡ b̄1a1 + b̄∗
2a2 + b̄∗

3 − F (θ̄) = 0. (1)

The B-equations are

G 21(θ̄ , b) ≡ (b̄2/b̄1)b1 + b2 = 0, (2.1)

and

G 22(θ̄ , b) ≡ [ā1 + (b̄2/b̄1)ā2]b1 + b3 − F (θ̄) = 0. (2.2)

Next, consider a modification of our equation system in which equations

(2.1)–(2.2) are left unchanged, but Equation (1) is replaced by

G 1∼(θ̄ , a) ≡ (G 1(θ̄ , a))3 = 0. (1′)

It is seen that, because of the sign-preserving properties of the cubic, the

modified system defines the same covering (hence a partition) and the same

transversal as the original system. However, at a point θ = (a , b) belonging

to V(θ̄), we have G 1(θ̄ , a) = 0, and hence the first row of the Jacobian of

the modified system consists of zeros, so the rank of the Jacobian ∂G/∂θ

equals 2 < 3 = d . This illustrates the point made at the beginning of this

remark.

2.3.3 Flagpoles: A Walrasian Example

2.3.3.1 Preliminaries (Model, Assumptions, Notation)

The Walrasian example is interesting for two reasons: as an illustration

of the flagpole technique of construction, and for its importance in eco-

nomic theory. It is interesting that systematic application of the method of

rectangles followed by the method of flagpoles “discovers” the Walrasian

mechanism.

The example, whose phase one was studied in Chapter 1, Section 1.6, is

extremely simple: pure exchange, two goods (X, Y ), and two traders (1, 2).

Their preferences are represented by quasi-linear utility functions, linear in

Y and quadratic in X .
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In the notation used in Section 2.1.3.3, the equilibrium conditions are

x = (b2 − a2)

b1 + a1

p = (a1b2) + a2b1

b1 + a1

.

The price p is always positive, because we assumed that the four parameters

(a ’s and b’s) are J positive.

We take the goal function Fw(θ) at θ to be the quantity of the second

trader’s net trade x2 = x ; i.e.,

Fw(θ) = (b2 − a2)/(b1 + a1), (2)

where

θ = (a , b), a = (a1, a2), b = (b1, b2).

2.3.3.2 Constructing the Walrasian Mechanism

The first step is to derive an rRM correspondence in equation form. This is

done in Section 2.1.3.3.

We use the abbreviations

F̄ = (b̄2 − ā2)/(b̄1 + ā1)

p̄ = (ā1b̄2 + ā2b̄1)/(b̄1 + ā1).

As shown in 2.1.3.3, the equations that define the generic A × B rectangle,

in the G-equation form, are

G 1(θ̄ , a) ≡ a1 F̄ + a2 − p̄ = 0 (3.1)

G 2(θ̄ , b) ≡ −b1 F̄ + b2 − p̄ = 0. (3.2)

The preceding derivation is valid both for the case F̄ = 0 and F̄ �= 0.63 The

first case is interesting, because it corresponds to situations in which the

initial endowment allocation is Pareto optimal.

It is shown in Section 2.1.3.3 that the covering CV is a partition. The next

step is to select – construct – a flag pole.

According to the general recipe, we select one of the a ’s and one of the

b’s and define a flagpole by assigning admissible fixed values to those two

63 However, the rectangles generated by points with F̄ = 0 are somewhat special because then
the a1, b1 coordinates are unlimited.
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parameters. We must do it in such a way that the resulting Jacobian is non-

singular for all values of θ̄ . Hence we cannot fix either a2 or b2, because then

the resulting Jacobian would become singular whenever F = 0. Therefore,

the flagpole must be defined by fixing the values of a1 and b1.

By hypothesis, the fixed values must be positive. Any positive numbers

are admissible; we choose a1 = b1 = 1/2. The set of points in the (four-

dimensional) parameter space (a1, b1, a2, b2) satisfying these two conditions

is the flagpole, denoted by P .

We thus obtain a system of four equations that determine (uniquely) the

point on the flagpole P that represents the point θ̄ . These are

G 1 = 0, G 2 = 0, H1 = 0, H2 = 0. (∗)

The first two equations of (∗) are (3.1) and (3.2), and the second two have

H1 ≡ a1 − 1/2, and H2 ≡ b1 − 1/2.

The 4 × 4 Jacobian of this system is the matrix J given by

J =

/∂a2 /∂b2 /∂a1 /∂b1

∂G 1/

∂G 2/

∂ H1/

∂ H2/

⎛
⎜⎜⎝

1 0 F̄ 0

0 1 0 −F

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ ,

where the rows correspond to the four equations in the order that they

appear in (∗), and the order of the columns is a2, b2, a1, b1.

Because the solution is unique, we write it as θ∗ = τ (θ̄) where θ∗ is a

representative of the “source” θ̄ , and τ is the “index” function. To solve

the four-equation system (∗) for (a1, b1, a2, b2), we substitute the values

a∗
1 = b∗

1 = 1/2 into Equations (3), and so obtain

a∗
2 = p̄ − F̄ /2 (7.1)

b∗
2 = p̄ + F̄ /2. (7.2)

Conversely,

F̄ = b∗
2 − a∗

2 (8.1)

p̄ = (b∗
2 + a∗

2 )/2. (8.2)

The next step is to construct the mechanism, and verify that it realizes the

goal function.

Following the mechanism construction procedure outlined in Section

2.3.1, we define the message space M as a set that contains a set M′ that
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is in one-to-one correspondence with τ (�); this is the set of points on the

flagpole P that represent points θ̄ in �

In the Walrasian example it is natural to use the Euclidean 2-space as M.

The generic element of M is m = (m1, m2) where

m1 = b∗
2 = p̄ + F̄ /2 (9.1)

m2 = a∗
2 = p̄ − F̄ /2. (9.2)

And, conversely,

F̄ = m1 − m2 (10.1)

p̄ = (m1 + m2)/2. (10.2)

We obtain the equilibrium equations g 1 = 0, g 2 = 0 by substituting into

Equations (3) the values of F̄ and p̄ in terms of the messages mi , as given

in Equations (10). We then get

g 1(m, a) ≡ a .
1(m1 − m2) + a2 − (m1 + m2)/2 = 0 (11.1)

g 2(m, b) = −b.
1(m1 − m2) + b2 − (m1 + m2)/2 = 0. (11.2)

Equations (11) show that the mechanism is informationally decentralized

(privacy preserving) because (11.1) contains no b’s and (11.2) contains no

a ’s.

It remains to construct the outcome function h(m). The recipe for this

step is

h(m) = F (a∗
1 , a∗

2 , b∗
1 , b∗

2),

where the values of the asterisked parameters are as defined in equation

system (∗) – equations (7) and (10) – with a∗
1 = b∗

1 = 1/2, and the other

two parameters are expressed as functions of m.

h(m) = (b∗
2 − a∗

2 )/(b∗
1 + a∗

1 )

= [( p̄ + F̄ /2) − ( p̄ − F̄ /2)]/(1/2 + 1/2)
(12)= F̄

= m1 − m2.

We next show that the mechanism (M, g 1, g 2, h) we have constructed is

F -optimal; this means that if g 1(m, a) = 0 and g 2(m, b) = 0, then h(m) =
F (a , b).
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Now, clearly if g 1(m, a) = 0 and g 2(m, b) = 0, then

g 2(m, b) − g 1(m, a) = 0.

But, by Equations (3) and (12),

0 = g 2(m, b) − g 1(m, a) = −(b1 + a1)h(m) + (b2 − a2),

which yields

h(m) = (b2 − a2)/(b1 + a1) = F (a , b).

Existence of equilibrium message for each θ ∈ � is obvious.

It follows that the mechanism realizes F . It is, in fact, equivalent to, but

not identical with the customary Walrasian mechanism. (The latter uses x

and p as messages, and in that mechanism h( p) = x.)

2.3.4 Unique Solvability Implies Partition

Notation:

G : �̄ × � → Rd

g : P × � → Rd

ψ : �̄ → P

(dim P ≤ d ≤ dim � = dim �̄).

definition 2.3.4.1. (g , ψ) is a condensation of G if, for all θ and θ̄ in �,

g (ψ(θ̄), θ) = G(θ̄ · θ). (1)

G represents V if, for all θ̄ in �,

V(θ̄) = {θ in � : G(θ̄ , θ) = 0}. (2)

The equation g (p, θ) = 0 is said to be uniquely solvable for p if, for every θ

in �,

there exists a p′ in P such that g ( p′, θ) = 0, (3.1)

and, for every θ in � and for all p′, p′′ in P ,

if g (p′, θ) = 0 and g ( p′′, θ) = 0, then p′ = p′′. (3.2)

theorem 2.3.4.1. If (g , ψ) is a condensation of G , and the equation g ( p, θ) =
0 is uniquely solvable for p, for every θ in �, then the covering CV of �

generated by V is a partition.
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Proof: Suppose the point θ̂ D belongs to V(θ ′) and to V(θ ′′). We show that

[4] is satisfied.

Because V(θ ′) and V(θ ′′) have the point θ̂ in common, and because G

represents V , we may conclude that

G(θ ′, θ̂) = 0 and G(θ ′′, θ̂) = 0. (5)

Because (g , ψ) is a condensation of G , it follows that if p′ = ψ(θ ′), and

p′′ = ψ(θ ′′), then we may conclude that

g (p′, θ̂) = 0 and g ( p′′, θ̂) = 0.

But then, by unique solvability,

p′ = p′′

ψ(θ ′) = ψ(θ ′′). (6)

The assumption, that (g , ψ) is a condensation of G , directly yields (7.1) and

(7.2) for all θ ;

g (ψ(θ ′), θ)) = G(θ ′, θ), (7.1)

g (ψ(θ ′′), θ)) = G(θ ′′, θ). (7.2)

But (6) makes the left-hand sides of (7.1) and (7.2) identical. Hence

G(θ ′, θ) = G(θ ′′, θ) for all θ.

It follows from Equation (2), because G represents V , that

V(θ ′) = V(θ ′′). (4)

This completes the proof.

2.4 Analytic Aspects

When the correspondence V is self-belonging, G(θ ′, θ ′) = 0 for all θ ′ –

the Equation G(θ ′, θ) = 0 has a solution for θ = θ ′ – therefore so has

g (p′, θ ′) = 0, where p′ = ψ(θ ′).

Therefore, when g andψ are smooth (at least of class C 1), and the Jacobian

∂g/∂p is square and nonsingular, the implicit function theorem applies and

it follows that g (p, θ) = 0 for (p, θ) in a neighborhood of θ ’ follows is

locally uniquely solvable.

For global unique solvability – “univalence” – we need additional con-

ditions, for example, those on the minors of the Jacobian, as well as on

the domain of g , as specified in the various theorems by Gale and Nikaido
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(1965) A simple additional condition is that the function G be linear in its

second argument, θ . The condition is the case in several of our examples.

2.4.1 Phase Two via Condensation. General Principles

Since we are in phase two, we take as given the covering correspondence

V : � ⇒ � and its equation equivalent, written64 in equation form most

succinctly as

G(θ̄ , θ) = 0, (∗)

where G : � × � → Rd , the equation form is equivalent to the set-

theoretic form

G(θ̄ , θ) = 0 if and only if θ ∈ V(θ̄).

We assume that 2 =< d =< k where k = dim �. Since V is assumed to be

rectangular, “decentralized”, the equilibrium equation system for two agents

(∗) can be written as65

G i (θ̄ , θ i ) = 0, i = 1, 2, (∗∗)

where

G i : � × �i → Rdi , 1 =< di =< ki , d1 + d2 = d.66

It is often convenient to write (∗) in the equivalent form

G s (θ̄ , θ) = 0, s = 1, . . . , d , (∗∗∗)

where 0 is the real number zero and G s : � × � → R is a real-valued func-

tion.

In the decentralized form we sometimes write (∗∗) as

G 1,s ′(θ̄ , θ1) = 0, G 2,s ′′(θ̄ , θ2) = 0,

s ′ = 1, . . . , d1, s ′′ = 1, . . . , d2, θ i ∈ �i , i = 1, 2,
(∗∗∗∗)

with G 1,s ′ and G 2,s ′′ each real-valued.

In this section we go from an equation system (such as (∗) or its equiv-

alents) indexed by the parameter vector θ̄ to an equilibrium equation sys-

tem, g (m, θ) = 0 or g i (m, θ i ) = 0, i = 1, 2, indexed by the message vector

64 In Equation (∗), 0
˜

is the null element of Rd .
65 In (∗∗), the symbol 0

˜
denotes the null element of Rdi .

66 � = �1 × �2, ki = dim �i , i = 1, 2; k1 + k2 = k.
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m, where m is an element of a message space M. Except for trivial cases,

dim M < dim �. The two equation systems are equivalent in the sense that

g (m, θ) = 0 if an only if G(θ̄ , θ) = 0.

As shown in Chapter 3 (Section 3.5.1) and also in Chapter 2 (Section

2.2.3.1) above, there is a general procedure for making such a transition; it

involves the construction of a transversal T to the covering CV of the param-

eter space � generated by the correspondence V when that correspondence

is self-belonging – when θ̄ ∈ V(θ̄) for all θ̄ in �.

One technique of constructing a transversal, that of “flagpoles,” is

described in Section 2.3.1 of this chapter.

In this section, we present another technique for making the transition

to a message-indexed system, called the method of condensation, abbreviated

CM. It is based on the 1996 result due to Mount and Reiter (abbreviated

in references as M/R) and reproduced as Theorem 4.4.6 in Chapter 4. The

next few pages provide a brief outline of the notation and procedures of

condensation.

Let x = (x1, . . . , xm) ∈ X and y = (y1, . . . , yn) ∈ Y be points in

Euclidean spaces of dimensions m and n, respectively. The components

of the vector x are called primary variables, those of y secondary. Also,

let w ∈ W be a point in the Euclidean space W of dimension r =< m.67

We say that the “smooth”68 function �σ (w, y), σ ∈ {1, . . . , N} is an r-

condensation of the function �σ (x , y) if there exist r “smooth” functions

Ai : X → Rr , i = 1, . . . , r , such that

�σ (x , y) = �σ (A1(x), . . . , Ar (x), y) (+)

for all (x , y) ∈ U × V ⊂ X × Y , where U and V are respectively neighbor-

hoods of the points p ∈ X and q ∈ Y .69, 70

We refer to the functions �σ as candidates for condensation, and to A(·) =
(A1(·), . . . , Ar (·)) as the condensing mapping. �σ is the condensed form of

�σ . It is assumed that each candidate function �σ , σ = 1, . . . , N, belongs

to the continuous differentiability class Cα+1 with α ≥ 2 – a “smoothness”

assumption).

67 We speak of trivial condensation when dim W = dim X , i.e., when r = m.
68 See condition in Theorem 4.4.6 of Chapter 4.
69 �σ : W ′ × U → R, W ′ ⊆ W, W ′ a neighborhood of a point p′ ∈ W, p′ = A(p) where

A( p) = (A, ( p), . . . , Aτ (p)), �σ : U × V → R. The symbols U and V are unrelated to
the U and V symbols for the covering correspondence in earlier sections.

70 Our local concept of condensation can be made global under stronger assumptions such
as those used by Gale and Nikaido (1965, 1968, 1999).
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In applications of condensation techniques in mechanism theory, to make

the transition from a given parameter-indexed system G s (θ̄ , θ) = 0, s =
1, . . . , d to a message-indexed system gs (m, θ) = 0, s = 1, . . . , d , we nat-

urally make the equilibrium functions G s into candidates for condensa-

tion. But to design a mechanism that realizes the given goal function71

F : � → Z, we must also construct an outcome function h : M → Z. This

is accomplished by also making F into a candidate. Thus, in the case of

mechanisms, the complete list of candidates is (G 1, . . . , G d , F ). (In the

general condensation theory notation the list of candidates is (�1, . . . , �N).

Hence G s , s = 1, . . . , d , correspond to �1, . . . , �N−1, and F corresponds

to �N .) As for the arguments of G , the vector θ̄ will play the role of x̄ the

“primary” variable, while θ will constitute a component of the “secondary”

vector variable y.72

Theorem 4.4.6 states conditions for the existence of an r -condensing map-

ping A(·) = (A1(·), . . . , Ar (·)). These involve “smoothness” of the candi-

date functions (see above), and the ranks of their Hessians (defined below).

A necessary condition for r-condensibility is that the rank of the bordered

Hessian, denoted BH, not exceed r – that is

rank (BH ) =< r. (I)

A set of sufficient conditions for r-condensibility consists of the above Con-

dition (I) on the rank of the bordered Hessian BH, together with the require-

ment that the (nonbordered) Hessian H∗ be of rank exactly r – that is

rank (H∗) = r. (II)

Suppose that our list of candidates (G 1, . . . , G d , F ) satisfies the smoothness

conditions as well as the two sufficient conditions for some (non-trivial) r <

d + 1. How do we then construct the r-condensing functions A1, . . . , Ar

and the r-condensed functions �1, . . . , �d+1?

The constructive proof of Theorem 4.4.6 answers these questions. In what

follows we provide a simplified and less than rigorous exposition of these

procedures.

The condensing functions, Ai (·), are defined by the relations

Ai (x) = ∂�αi
(x)

∂yβi

∣∣∣∣
y = q

, i = 1, . . . , r,

71 Z is the outcome space.
72 In the next section, we introduce certain auxiliary variables ŷ, so that the role of y will be

played by (θ , ŷ), rather than just by θ . Hence θ becomes a component of y.



P1: KVU
CUNY425-02 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:41

134 From Goals to Means: Constructing Mechanisms

where the indices αi and βi are so chosen, and the x j
′s so numbered that

the Jacobian matrix

H̃ =
(

∂ Ai (x)

∂xi

)
i =1, ...,r
t =1, ...,r

is nonsingular. The existence of such indexation is guaranteed by Condition

(II) of the theorem.

Write x∗ = (x1, . . . , xr ), x∗∗ = (xr+1, . . . , xm) and x = (x∗, x∗∗), so

that H̃ = ∂ H
∂x∗ |x=p . Consider now the equation system

wi = Ai (x∗, x∗∗), i = 1, . . . , r. (++)

Its local73 solvability for x∗ in a neighborhood of the point ( p, q) is

guaranteed by the smoothness of the candidate functions and rank condition

(II). Write the solution of the preceding equation system (++) as

x∗
i = φi (w, x∗∗) i = 1, . . . , r,

so that, for all x ,

φi (A(x), x∗∗) = xi , i = 1, . . . , r. (◦)

It remains to define the r-condensed functions �σ , σ = 1, . . . , N. This is

accomplished in two steps. We first define a “precursor” function �′σ of �σ

for each σ . Its definition is

�′σ (w, x∗∗, y) = �σ (φ1(w, x∗∗), . . . , φr (w, x∗∗), x∗∗, y),

σ = 1, . . . , N, (+++)

where w = (w1, . . . , wr ), w ∈ Rr .

Next, in equation system (+++), we set

w = A(x∗, x∗∗), i.e., wi = Ai (x), i = 1, . . . , r.

We then obtain from (+++) the following sequence of equalities for each

σ ∈ {1, . . . , N):

�′σ (w, x∗∗, y) = �σ (φ1(A(x), x∗∗), . . . , φr (A(x), x∗∗), x∗∗, y)

= �σ (x1, . . . , xr , x∗∗, y) by Equation (◦)

= �σ (x∗, x∗∗, y) by definition of x∗

= �σ (x , y) by definition of x , x∗, x∗∗ .

73 Global solvability would follow from linearity, or by imposing Gale–Nikaido type condi-
tions. (In some of our examples we luckily have linearity.)
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Thus

�σ (A(x), x∗∗, y) = �σ (x , y) for all σ = 1, . . . , N, (�)

and all (x , y) in appropriate neighborhoods. But this is not yet the desired

condensation formula. To satisfy the definition of condensation we must

have

�σ (A(x), y) = �(x , y) free of x∗∗ for all σ and all (x , y), (��)

rather than the precursor formula (�). Can we get rid of the argument x∗∗

appearing in (�)? Miraculously, the answer is in the affirmative.

Since, as shown in Theorem 4.4.6,

∂�′σ

∂x∗∗ ≡ 0, 74

the precursor �′σ is independent of x∗∗, so that we can define the condensed

function �σ by

�σ (w, y) = �′σ (w, ξ ∗∗, y),

where ξ ∗∗ is any admissible value of x∗∗. With this substitution in (�), we

obtain (��), so that A(·) and the �σ functions satisfy the definition of

condensation.

The preceding exposition provides a constructive method of finding a

condensation for the equation system G(θ̄ , θ) = 0
˜

and the goal function75

F (θ̄), when the smoothness conditions are satisfied by the functions G and

F , and rank Conditions (I) and (II) by their Hessians. (In this context we

view the use of the implicit function theorem (IFT) as a constructive step.

In our main examples constructivity is due to their linearity.)

In the following subsections we illustrate the construction procedures by

two familiar examples: the Walrasian, and the augmented two-dimensional

inner product. In both cases it turns out that the equation systems to be

solved are linear (more precisely, affine), so the results hold globally, and

there is no need to involve the IFT, or the more complex Gale–Nikaido

conditions.

It turns out, however, that we require a slight extension of Theorem 4.4.6

to obtain R-minimizing76 condensation. The extension is dealt with in Sec-

tion 2.4.2.1 on “amplification.”

74 Note that, in (�), x∗∗ is also “hiding” in the argument x = (x∗, x∗∗) of the mapping
function A(x) = A(x∗, x∗∗).

75 The argument of F (·) is taken as θ̄ , rather than θ , since condensation applies to the primary
variables, hence here the components of θ̄ .

76 Hence minimizing the dimension of the message space for a given covering correspondence
V(·). This follows from the collary in Section 4.4.7 of Chapter 4.
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Preceding that discussion is a subsection that provide the definitions of

the Hessian matrices used in Section 4.4.6 and in sections below.

2.4.2 The Mount–Reiter Condensation Theorem (Sufficiency)

Smoothness assumptions. We are given N functions
(+)

. �σ : U × V →
R, i = 1, . . . , N, U a neighborhood of p, and V a neighborhood of q .

(The �σ ’s are called the candidates for condensation.) Each �σ belongs to

continuous differentiability class Cα+1 with α ≥ 2.(+) N ≥ 1.

To state sufficient conditions of condensibility M/R introduces certain

matrices of derivatives of the functions �σ .

To start with, define the matrices (Hessians)

Hσ (x , y) = Hσ =
(

∂2�σ

∂xi∂y j

)
i = 1, ...,m; J =1, ...,n

, σ = 1, . . . , N.

Each Hσ is an m × n matrix (m rows, n columns); written out fully, it is

Hσ =
⎛
⎝ ∂2�σ/∂x1∂y1. . . ∂

2�σ/∂x1∂yn
.............................................

∂2�σ/∂xm∂y1 . . . ∂2�σ/∂xm∂yn

⎞
⎠ .

Now define H(x , y) = H = (H1 ... H2 ... · · · ... Hn), an m by N · n matrix (m

rows, N · n columns).

Next, define the column vectors

�σ
x (x , y) =

⎛
⎝ ∂�σ/∂x1

...
∂�σ/∂xm

⎞
⎠ , σ = 1, . . . , N.

In turn define the “bordered” Hessian BH = BH(x , y) by

BH(x , y) = BH = (
�1

x
... �

2
x

... · · · ... �
N
x

... H1 ... H2 ... · · · ... H N
)

= (
�1

x
... �

2
x

... · · · ... �
N
x

... H
)

an m by N + N · n matrix (m rows, N + N · n columns).

When the matrices or Hσ or H are evaluated at the point y = q , so that

they become functions of x alone, this is indicated by an asterisk. Thus, in

particular,

H∗(x) = H∗ = H(x , q) and Hσ∗(x) = Hσ (x , q), σ = 1, . . . , N.

(+)

In M/R, the �σ functions are written as Fi , and α is written as k. Some of the notation is
changed to avoid confusion with our mechanism design notation.
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The Condensation Theorem. Theorem 4.4.6 (ii) states sufficient conditions

for condensing the functions�1(x , y), . . . , �N(x , y) respectively into func-

tions

�1(A1(x), . . . , Ar (x), y), �2(A1(x), . . . , Ar (x), y), . . . ,

�N(A1(x), . . . , Ar (x), y) so that there is a neighborhood W′ × V of a

point (p′, q), p′ ∈ Rr , W′ ⊂ Rr , 1 ≤ r < N, and �σ : W′ × V → R such

that for every (x , y) ∈ U × V , and every σ ∈ {1, . . . , N},
�σ (x , y) = �σ (A1, (x), . . . , Ar (x), y). (+)

Note that only the primary variables x are being condensed.

The sufficient conditions are

(I)For all (x , y) ∈ U × V

rank (BH(x , y)) =< r

and

(II)rank (H∗)) = r for every x ∈ U .

When (I) and (II) are satisfied, there exist r functions A1(x), . . . , Ar (x),

where the functions Aμ(·), μ = 1, . . . , r are of class Cα , a neighborhood

W′ of p′ ∈ ((A1(p), . . . , Ar ( p)) in Rr , and N functions �σ of class Cα such

that (+) holds for all (x , y) ∈ U ′ × V ′ ⊂ X × Y .

2.4.2.1 Amplification

This subsection is devoted to an extension of the M/R Theorem A.3.(ii),

essential for applications to mechanism design problems. The extension will

be referred to as amplification.

First, we present a simple example that shows the need for an extension.

In this example N = 1, m > 2, n = 1, and the real-valued function to be

condensed is

�(x , y) = y1ϕ1(x) + ϕ2(x);

e.g., more specifically, with n = 3,

�(x , y) = y1(x1 + x2 + x3) + x1x2x3,

where xi > 0, i = 1, 2, 3 and x1 �= x2 �= x3 �= x1. (y1 is a real number and

so is every xi , i = 1, 2, 3). Here

H(x , y) =
(

1

1

)
= H(x , q) = H∗,
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and

BH(x , y) =

⎛
⎜⎜⎝

y1 + x2x3
... 1

y1 + x1x3
... 1

y1 + x1x2
... 1

⎞
⎟⎟⎠ .

Now by direct inspection we observe that ϕ1(x) = x1 + x2 + x3 and

ϕ2(x) = x1x2x3 can be used as the “condensing” functions A1(·), A2(·) of

Theorem 4.4.6, with r = 2, and78 � : R2
++ × R, with

�(x , y) ≡ �(A1(x), A2(x), y),

where

�(w1, w2, y) = y1w1 + w2 and y = y1

and

A1(x) = x1 + x2 + x3, A2(x) = x1x2x3.

However, condition (II) of the theorem is not satisfied for r = 2 since rank

H2 = 1.79 Hence the need for an extension (“amplification”) of Theorem

4.4.6.

The amplification remedy can be illustrated on the preceding example

as follows. We introduce an auxiliary(∗) secondary variable ŷ2, with the

requirement that the value of ŷ2 at the point q be q2 = 1, and define the

amplified function – to be condensed – as

�̂(x , y) = y1ϕ1(x) + ŷ2ϕ2(x), y = (y1, ŷ2).80

The amplified Hessians are as follows:

Ĥ(x , y) =

⎛
⎜⎜⎝

1
... x2 x3

1
... x1 x3

1
... x1 x2

⎞
⎟⎟⎠ = Ĥ∗,

with rank (Ĥ∗) = 2

78 More precisely, the domain of � is a subset of R2
++ because of the inequalities x1 �= x2 �=

x3 �= x1.
79 For r = 1, Condition (I) is violated, since rank (BH) = 2 when x :> 0 and x1 �= x2 �= x3 �=

x1.
(∗) Here y1 is called an original secondary variable.
80 Note the change in the meaning of the symbol y!
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For the bordered Hessian, we have

BĤ(x , y) =

⎛
⎜⎜⎝

y1 + ŷ2x2x3
... 1 x2x3

y1 + ŷ2x1x3
... 1 x1x3

y1 + ŷ2x1x2
... 1 x1x2

⎞
⎟⎟⎠ .

Hence rank (BĤ(x , y)) =< 2, since the first column is a linear combination

of the other two columns. In fact, rank (BĤ(x , y)) = 2 under the inequal-

ities assumed for the xi ’s. So Theorem 4.4.6 works for the amplified fun-

ction �̂.

When N > 1, more than one auxiliary-secondary variable may be present.

(In what follows, we may sometimes omit the circumflex symbol (∧) when

the situation is clear from the context.)

2.4.2.2 Mechanism Design

Returning to the mechanism design model, the functions G s (θ̄ , θ) corre-

spond to the functions �̂σ – they are among the “candidates” – the functions

to be condensed. θ̄ corresponds to x , the vector of primary variables to be

condensed, while θ (without the overbar) corresponds to the “original” (not

auxiliary) secondary variables. Amplification is needed when G s (θ̄ , θ) is of

the form

G s (θ̄ , θ) = G s 1(θ̄ , θ) + G s 2(θ̄).

Therefore, we introduce an auxiliary variable ŷs , so that after amplification

we are dealing with

Ĝ s (θ̄ , y) = G s 1(θ̄ , θ) + ŷs G s 2(θ̄), s = 1, . . . , d ,

where

y = (θ , ŷ), ŷ = (ŷ1, . . . , ŷd).

(In fact, some ŷs ’s may be superfluous when G s2
(θ̄) ≡ 0, i.e., when at this

point, there is no additive term depending on θ̄ but free of θ . However,

uniform notation seems desirable.)
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Hence,

Ĥσ =

⎛
⎜⎜⎜⎜⎝

Ĝ s
θ̄1θ1

. . . Ĝ s
θ̄1θn

... Ĝ s
θ̄1 ŷ1

. . . Ĝ s
θ̄1 ŷd...

...
...

...
...

...
...

...
...

...
...

...

Ĝ s
θ̄mθ1

. . . Ĝ s
θ̄mθn

... Ĝ s
θ̄m ŷ1

. . . Ĝ s
θ̄m ŷd

⎞
⎟⎟⎟⎟⎠

and

BĤ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ĝ 1
θ̄1

. . . Ĝ d
θ̄1

...
...

...
...

... Ĥ1 ... Ĥ2 ...
. . . ... Ĥd

...
...

...
...

...

Ĝ 1
θ̄m

Ĝ d
θ̄m

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

where

Ĝ s
θ̄i θ j

= ∂2Ĝ s

∂θ̄i∂θ j

and Ĝ s
θ̄i ŷ t

= ∂2Ĝ s

∂θ̄i∂ ŷ t

.

2.4.3 Walrasian Mechanism Construction

As above, the Walrasian Goal function is

F = b2 − a2

a1 + b1

,

and we write

F̄ =: F (θ̄) = b̄2 − ā2

ā1 + b̄1

,

where, by hypothesis,

ā1 + b̄1 > 0 and ā2 + b̄2 > 0.

The method of rectangles yields a (reflexive) covering with the equilibrium

functions G 1(θ̄ , a), G 2(θ̄ , b) given by

G 1(θ̄ , a) = 0 :

�1︷ ︸︸ ︷
a1 F̄ + (b̄1 F̄ − b̄2) + a2 = 0 (0)

G 2(θ̄ , b) = 0 :

�2︷ ︸︸ ︷
b1 F̄ − b2 + (b̄2 − b̄1 F̄ ) = 0 (00)

We also set

�3 =: F (θ̄). (000)
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The three expressions, labeled �i , 1 = 1, 2, 3, are our candidates for con-

densation.

2.4.3.1 Recapitulating Notation

θ̄ = (ā , b̄); θ = (a , b), ā = (ā1, ā2),

b = (b̄1, b̄2) a = (a1, a2), b = (b1, b2)

F̄ =:
b̄2 − ā2

b̄1 + ā1

.

As yet not amplified candidates

for condensation
→

⎧⎨
⎩

�1 ≡ a1 F̄ + (b̄1 F̄ − b̄2) + a2

�2 = b1 F̄ − b2 + (b̄2 − b̄1 F̄ )

�3 = F̄ .

2.4.3.2 Need for Amplification

Calculate the (nonamplified) matrix H :

Without amplification (i.e., with y = (a1, b1, a2, b2)), we find

H1 =

/∂a1 /∂a2 /∂b1 /∂b2

/∂ ā1

/∂ ā2

/∂ b̄1

/∂ b̄2

∣∣∣∣∣∣∣∣∣

F̄ā1
0 0 0

F̄ā2
0 0 0

F̄b̄1
0 0 0

F̄b̄2
0 0 0

∣∣∣∣∣∣∣∣∣
,

where

F̄ = b̄2 − ā2

b̄1 + ā1

.

Then

H1 = (F̄θ̄ 0
˜

0
˜

0
˜
),

where 0
˜

is a 4 × 1 column vector of zeros.

Similarly,

H2 = (0
˜

0
˜

F̃θ̄ 0
˜
).

Since

�3 = F̄ ,
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we get

H3 = (0
˜

0
˜

0
˜

0
˜
).

Hence, H = (H1 H2 H3) = (F̃θ̄ 0
˜

0
˜

0
˜

... 0
˜

0
˜

F̃θ̄ 0
˜

... 0
˜

0
˜

0
˜

0
˜

).

So (with or without �3), rank H = rank H∗ = 1.

However, it is clear that in fact the four primary variables in θ̄ =
(ā1, ā2, b̄1, b̄2) appearing in �1, �2, �3 can be condensed into two func-

tions. In fact, setting

z1 = F̄ , z2 = b1 F̄ − b̄2,

we obtain

�1 = a1z1 + a2 + z2

�2 = b1z1 − b2 − z2

�3 = z1.

Without amplification, Theorem 4.4.6 (ii) with r = 2 is not satisfied,

since rank H∗ �= 2, so Condition II is violated.

This illustrates the need for the amplification procedure.

2.4.3.3

We introduce the auxiliary secondary variables ŷ1, ŷ2, ŷ3, (one for each �i

function), so that the amplified functions �̂i are

�̂1 = a1 F̄ + a2 + (b̄1 F̄ − b̄2) · ŷ1

�̂2 = b1 F̄ − b2 + (b̄2 − b̄1 F̄ ) · ŷ2

�̂3 = F̄ · ŷ3.

(Note that b̄2 − b̄1 F̄ = b̄1ā2+b̄2ā1

b̄1+ā1
.)

Then

Ĥ1 =

a1 a2 b1 b2 ŷ1 ŷ2 ŷ3

ā1 F̄ā1
0 0 0 b̄1 F̄ā1

0 0

ā2 F̄ā2
0 0 0 b̄1 F̄ā2

0 0

b̄1 F̄b̄1
0 0 0 F̄ + b̄1 F̄b̄1

0 0

b̄2 F̄b̄2
0 0 0 −1 + b̄1 F̄b̄2

0 0

= Ĥ ∗1.
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Next,

Ĥ2 =

a1 a2 b1 b2 ŷ1 ŷ2 ŷ3

ā1 0 0 F̄ā1
0 0 −b̄1 F̄ā1

0

ā2 0 0 F̄ā2
0 0 −b̄1 F̄ā2

0

b̄1 0 0 F̄b̄1
0 0 −b̄1 F̄b̄1

− F̄ 0

b̄2 0 0 F̄b̄2
0 0 −b̄1 F̄b̄2

+ 1 0

= Ĥ ∗2.

Finally,

Ĥ3 = a1 a2 b1 b2 ŷ1 ŷ2 ŷ3

(0
˜

0
˜

0
˜

0
˜

0
˜

0
˜

F̄θ̄ )
= Ĥ ∗3 ≈ (F̄θ̄ ).

Hence, omitting 0
˜
-columns and repetitious columns, we have

Ĥ ∗ ≈

⎛
⎜⎜⎝ F̄θ̄

... b̄1 F̄θ̄
+

⎡
⎢⎢⎣

0

0

F̄

−1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

Hence, performing elementary operations, we have

Ĥ ∗ ≈

⎡
⎢⎢⎢⎢⎣

F̄ā1

... 0

F̄ā2

... 0

F̄b̄1

... F̄

F̄b̄2

... −1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− b̄2 − ā2

(b̄1 + ā1)2
0

− 1

b̄1 + ā1

0

1

b̄1 + ā1

F̄

− b̄2 − ā2

(b̄1 + ā1)2
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider the submatrix that consists of the second and last rows of Ĥ∗,[
F̄ā2

0

F̄b̄2
−1

]
,

whose determinant F̄ā2
= 1

b̄1+ā1
�= 0 by hypothesis.

Hence rank H∗ = 2.
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Now look at BH to check Condition (I).

BĤ ≈

�̂1 �̂2 �̂3 (�̂1, ŷ1) (�̂3, ŷ3)

ā1 (a1 + ŷ1b̄1)F̄ā1 (b1 − b̄1 ŷ2)F̄ā1 ŷ3 F̄ā1 b̄1 F̄ā1 F̄ā1

ā2 (a1 + ŷ1b̄1)F̄ā2 (b1 − b̄1 ŷ2)F̄ā2 ŷ3 F̄ā2 b̄1 F̄ā2 F̄ā2

b̄1 (a1 + ŷ1b̄1)F̄ā1 + F̄ ŷ1 (b1 − b̄1 ŷ2)F̄b̄1
− ŷ2 F̄2 ŷ3 F̄b̄1

F̄ + b̄1 F̄b̄1
F̄b̄2

b̄2 (a1 + ŷ1b̄1)F̄ā1 − ŷ1 (b1 − b̄1 ŷ2)F̄b̄2
+ ŷ2 ŷ3 F̄b̄2

−1b̄1 F̄b̄2
F̄b̄2

The above is a matrix BH rank-equivalent.

Next, by subtraction of multiples of columns, we obtain

�̂1 �̂2 (�̂1, ŷ1) (�̂3, ŷ3)

BH ≈

⎛
⎜⎜⎝

0 0

0 0

F̄ −F̄

−1 +1

............

−1

0

F̄

−1

............

F̄ā1

F̄ā2

F̄b̄1

F̄b̄2

⎞
⎟⎟⎠ .

Clearly, the first two columns are eliminated (by the 3rd column). Hence,

only the last two columns remain, and we conclude that

rank (BH) =< 2,

and so condition (I) of Theorem 4.4.6 (i) is satisfied.81

We are thus entitled to apply the theorem in amplified form. We shall show

in the next section that θ̄ can indeed be condensed to two functions of its

four components (ā1, ā2, b̄1, b̄2). Not surprisingly, the two functions are

F̄ = F (θ̄) = b̄2 − ā2

b̄1 + ā1

and b̄2 − b̄1 F̄ .

the ‘‘algorithm” for condensation (m /r notation). Although The-

orem 4.4.6 (ii) is an existence theorem, it is important to note that the proof

provides a “constructive”82 procedure for condensation when the sufficient

conditions are satisfied. We recapitulate the notation and procedure.

The condensing functions A1(x), . . . , Ar (x) are obtained as follows.

Since, by condition (II), the matrix H∗ has rank r , there exists a subvector

81 In fact, rank (BH ) = 2, as seen if we take rows 2 and 4, so (BH ) = F̄ā2
= − 1

b̄1+ā1
�= 0 by

hypothesis.
82 A step in the construction involves solving a system of equations that can be nonlinear. In

such a case “solving” might be difficult, or require resort to computational procedures that
are approximate.
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ξ = (ξ1, . . . , ξr ) of x = (x1, . . . , xm) and a subset of r columns such that

the submatrix H̃ formed from the r ξ -rows and the r columns is nonsingu-

lar. Without loss of generality, let ξ = (x1, . . . , xr ). Each column of H∗ is

of the form ⎛
⎜⎝

∂2�σ/∂x1∂y j

...

∂2�σ/∂xr ∂y j

⎞
⎟⎠

for some i ∈ {1, . . . , N}, j ∈ {1, . . . , n}. Let the columns of the nonsingu-

lar matrix H̃ correspond to i = α1, . . . , αr and j = β1, . . . , βr . Then the

condensing functions A1(x), . . . , Ar (x) are defined as follows:

A1(x) = ∂�σ
α1

∂yβ1

∣∣∣∣∣∣
, . . . , Ar = ∂�σ

αr

∂yβr

y = q

∣∣∣∣∣∣ y = q

In turn the functions �σ (the condensed counterparts of the �σ ) are

given by

�σ (w1, . . . , wr , xr+1, . . . , xm, y)

= �σ(h1(w1, . . . , wr , xr+1, . . . , xm), . . . , φr (w1, . . . , wr , xr+1, . . . , xm),

xr+1, . . . , xm, y),

where the functions h1(·), . . . , hr (·) are the respective solutions for

(x1, . . . , xr ) of the equation system

wi = Ai (x1, . . . , xm), i = 1, . . . , r. (∧)

(The local solvability is guaranteed by the implicit function theorem, since

the Jacobian H̃ is nonsingular by hypothesis, the Aμ(x) functions are of

class at least C 2 in view of the smoothness assumptions on the �σ ′’s, and –

by construction – there exist values of x and w satisfying (∧). To obtain

global solvability, additional assumptions would have to be made, e.g., those

in Gale and Nikaido. We are treating the solution of (∧) as a step in the

“algorithm.” In practice, this may turn out to be a stumbling block.)

2.4.3.4 Constructing the Condensing Functions

for the Amplified Walrasian

We show first how to obtain the condensing functions A1(x), A2(x). Here

θ̄ corresponds to x and (θ , ŷ) to y in the M/R notation.Take the columns

corresponding to the pair
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(�1, a1) and (�1, ŷ); then, by the “algorithm,”

A1(θ̄) = ∂�1

∂a1

A2(θ̄) = ∂�1

∂ ŷ1

.

But

∂�1

∂a1

= F̄ 1,
∂�1

∂ ŷ1

= (b̄1 F̄ − b̄2).

These are, of course, the obvious condensations.

Having found the condensing mapping A(x), the next step is to construct

the condensed counterparts, denoted by�σ , of the originally given functions

�σ , so that

�σ (x , y) = �σ (Ar , (x), . . . , Ar (x), y) σ = 1, . . . , N. (+)

In the Walrasian example (with a slight change in notation) we

seek the functions �1, �2, �i (w1, w2, θ), i = 1, 2, 3 such that for all

θ̄ , θ in �, �i = �i (θ̄ , (θ , ŷ)
∣∣

ŷ=(1,1,1)
= �i (A1(θ̄), A2(θ̄)θ) i = 1, 2, 3.

Consider a 2 × 2 submatrix H̃ of H∗ of rank 2 guaranteeing that rank

H∗ = 2. Specifically, let H̃ consist of elements in rows of H∗ corresponding

to differentiation with respect to ā2 and b̄2, and columns corresponding to

the differentiation of �1 with respect to a1 and ŷ1.

That is,

(�1, /∂a1) (�1, /∂ ŷ1)

H̃ =
/∂ ā2

/∂ b̄2

[
F̄ā2

b̄1 F̄ā2

F̄b̄2
−1 + b̄1 F̄b̄2

]
.

Writing L = b̄1 + ā1, we have

det H̃

∣∣∣∣∣∣∣∣
− 1

L
− b̄1

L

1

L
−1 + b̄1

L

∣∣∣∣∣∣∣∣
= 1

L
�= 0.

As an intermediate step, introduce the equation in general notation:

w1 = A1(x), w2 = A2(x), . . . , wr = Ar (x);

hence in the Walrasian example (++) w1 = F̄ , w2 = b̄1 F̄ − b̄2.

Next, partition the vector θ̄ of the primary variables into θ̄ = (θ̄∗, θ̄∗∗)

where the elements of θ̄∗ correspond to the variables that index the rows of

H̃ . Then θ̄∗ = (ā2, b̄2), θ̄∗∗ = (ā1, b̄1). Note that H̃ is the Jacobian of the
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system (++) with respect to the elements of θ̄∗, and that the conditions for

the applicability of the implicit function theorem are satisfied.83

Therefore, at least locally,84 system (++) can be solved for θ̄∗ in terms

of w1, w2, and θ̄∗∗. The solution is written as θ̄∗ = φ(w, θ̄∗∗) or, more

explicitly, as {
ā2 = φ1(w1, w2, ā1, b̄1),

b̄2 = φ2(w1, w2, ā1, b̄1).

In the Walrasian example, system (++) is

w1 = b̄2 − ā2

b̄1 + ā1

, w2 = b̄1 · b̄2 − ā2

b̄1 + ā1

− b̄2.

Solving for ā2 and b̄2, we obtain

ā2 = φ1(w1, w2, ā1, b̄1) = −(ā1w1 − w2)

b̄2 = φ2(w1, w2, ā1, b̄1) = b̄1w1 − w2.

We are now ready to construct the functions �1, �2, and �3. The general

recipe is

�σ (w, y) = �σ

⎛
⎜⎝

= x∗︷ ︸︸ ︷
φ(w, x∗∗), x∗∗, y

⎞
⎟⎠ , σ = 1, . . . , N.

(Contrary to appearances, the RHS does not depend on x∗∗!) Hence, in the

Walrasian example,

�i (w, θ) = �i (φ(w, θ̄∗∗), θ̄∗∗, (θ , ŷ))
∣∣

ŷ=(1,1,1)
, i = 1, 2, 3.

In particular,

�1(w1, θ) = a1

φ2 − φ1

b̄1 + ā1

+ a2 +
(

b̄1 · φ2 − φ1

b̄1 + ā1

− φ2

)
ŷ1

∣∣∣∣
ŷ1=1

,

where φ j stands for φ j (w, ā1, b̄1), j = 1, 2; w = (w1, w2), and θ =
(a1, a2, b1, b2).

Noting that

φ2 − φ1

b̄1 + ā1

= (b̄1w1 − w2) + (ā1w1 + w2)

b̄1 + ā1

= (b̄1 + ā1)w1

b̄1 + ā1

= w1,

83 By hypothesis, the functions Aμ(·), μ = 1, 2, are of at least class C 1, the Jacobian is non-
singular, and the equations (++) are satisfied at θ̄ = p̄ since the Aμ are partial derivatives
at that point.

84 Also globally if additional assumptions on H̃ along the lines of Gale–Nikaido are made.
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we find that

�1(w, θ) = a1w1 + a2 + (b̄1w1 − (b̄1w1 + w2))

= a1w1 + a2 + w2.

In turn

�2(w, y) ≡ b1 F̄ − b2 + (b̄2 − b̄1 F̄ )ŷ2

∣∣
ŷ2=1

= b1

φ2 − φ1

b̄1 + ā1

− b2 +
(

φ2 − φ2 − φ1

b̄1 + ā1

)
= b1w1 − b2 + [(b̄1w1 − w2) − b̄1w1]

= b1w1 − b2 − w2,

and

�3(w, y) = F̄ · ŷ3

∣∣
ŷ2=1

= φ2 − φ1

b̄1 + ā1

= w1.

2.4.3.5 Verifying the Privacy-Preserving Property of the Mechanism

We observe that each �i (w, θ), i = 1, 2, inherits the property of being inde-

pendent of θ j , j �= i, which means that we have a privacy-preserving mech-

anism. In the usual mechanism notation, �i (w, y) is written as g i (m, θ i )

and �3(w, y) = h(w) ≡ m1. The message space M is a subset of R2, and

the equilibrium equations are

g 1(m, θ1) ≡ g 1(m, a) ≡ a1m1 + a2 + m2 = 0,

g 2(m, θ2) ≡ g 2(m, b) ≡ b1m1 − b2 − m2 = 0.

2.4.3.6 Verification of F -Optimality and Existence

It remains to show that this mechanism realizes the goal function

F (a , b) ≡ b2 − a2

b1 + a1

.

F -optimality. Let gi (m, a) = 0 and g2(m, b) = 0, that is,

a1m1 + a2 + m2 = 0

b1m1 − b2 − m2 = 0,
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hence

(a1 + b1)m1 + (a2 − b2) = 0.

Therefore,

h(m) ≡ m1 = b2 − a2

b1 + a1

= F (θ),

as was to be shown.

Existence. By hypothesis, the covering V(·) is self-belonging – for every

θ ∈ �, θ ∈ V(θ) – hence G(θ , θ) = 0.

Now, by construction in Theorem 4.4.6,

φσ ′(x , y) = �σ (A(x), y) for all (x , y).

In the Walrasian example, σ = 1, 2, φσ (x , y) = 0 ⇔ Gσ (θ̄ , θ) = 0.

Also,

A1(x) = A1(θ̄) = ∂�̂1

∂a1

∣∣∣
ŷ1=1

= F̄ 1

(
= ∂G 1

∂a1

)

A2(x) = A2(θ̄) = ∂�̂1

∂ ŷ1

∣∣∣
ŷ1=1

= b̄1 F̄ − b̄2.

We have

G 1(θ , θ) = 0 (by self-belonging).

Hence,

g i (w, θ̄ i ) = 0 when w = A(θ̄). That is, g i (w, θ i ) = 0 if wi = Ai (θ).

This proves existence. Hence, the mechanism constructed by the condensa-

tion method is decentralized, and does realize the Walrasian goal function.

2.4.4 Phase Two of Mechanism Design via Condensation
for the Augmented Two-Dimensional Inner Product

2.4.4.1 Example 2. Mechanism Construction By Condensation

In this section we design a (maximal A-set) mechanism that realizes the

goal function F (θ) = a1b1 + a2b2 + b3, defined on � = R5\{b1 �= 0}. We

use the equilibrium equation system G(θ̄ , θ) = 0 obtained by rRM in phase
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one, with the first equation (G 1 = 0) divided by b̄1 �= 0.85 In the notation

used previously, the system is as follows:

G 1(θ̄ , a) ≡ a1 + a2

(
b̄2

b̄1

)
−

(
ā1 + ā2

(
b̄2

b̄1

))
= 0

G 21(θ̄ , b) ≡ b1 ·
(

b̄2

b̄1

)
− b2 = 0

G 22(θ̄ , b) ≡ b1 ·
(

ā1 + ā2

(
b̄2

b̄1

))
+ b3 − F (θ̄) = 0.

In order to facilitate the calculation of the Hessians used in the conden-

sation procedure, we use the following abbreviations:

F̄ = ā1b̄1 + ā2b̄2 + b̄3 = F (θ̄)

B̄ = b̄2

b̄1

K̄ = ā1 + ā2

(
b̄2

b̄1

)
.

In amplified form the candidates for condensation are denoted by �’s

(with circumflexes where appropriate); �̂1 = Ĝ 1, �2 = G 21, �3 = Ĝ 22,

and �4 = ŷ3 F̄ K. Explicitly, using the new abbreviations,

�̂1 ≡ a1 + a2 B̄ − ŷ1 K̄

�2 ≡ b1 B̄ − b2

�̂3 ≡ b1 K̄ + b3 − ŷ2 F̄

�̂4 ≡ ŷ3 F̄ ,

where ŷ1, ŷ2, ŷ3 are the auxiliary variables used in amplification. After dif-

ferentiation, we set ŷ1 = 1, i = 1, 2, 3. The fourth candidate is introduced

as a convenience in constructing the outcome function h(m) needed to

complete the mechanism.

Next, we construct the bordered Hessian BH, in this case a 5 by 11 matrix

(see the BH table below), and choose a (maximal rank) nonsingular “test”

submatrix T . This submatrix is formed from rows of BH corresponding to

the elements (ā1, b̄1, b̄3) = θ̄∗ of θ̄ and the columns of BH for (∂�̂1/∂a2,

∂�̂3/∂b1,∂�̂3/∂ ŷ2). The condensing mapping A(·) = (A1(·), A2(·), A3(·))

85 This division does not affect the equilibrium values and does not affect decentralization
properties. It does help the condensation process.
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is then defined by the relations

A1 = ∂�1

∂a2

= B̄ , A2 = ∂�3

∂b1

= K̄ , A3 = ∂�3

∂ ŷ2

= −F̄ ,

where B̄ , K̄ , F̄ are defined as above. We note from the BH-table that both

BH and H∗ have rank 3.

Following the prescribed procedure we consider the equation system

wi = ai (θ̄), i = 1, 2, 3,

that is,

w1 = b̄2

b̄1

w2 = ā1 + ā2 B̄ , w3 = −(ā1b̄1 + ā2b̄2 + b̄3).

We solve this system for the components of θ̄∗ = (ā1, b̄2, b̄3) as functions

of w = (w1, w2, w3) and of θ∗∗ = (ā1, b̄1). We find ā1 = w2 − ā2w1, b̄2 =
w1b̄1, b̄3 = −w3 − w2b̄1, abbreviated as θ̄∗ = φ(w, θ̄∗∗). Using these solu-

tions, we note that B̄ = w1, K̄ = w2, and F̄ = −w3.

Finally, these results enable us to obtain the condensed functions �i , i =
1, 2, 3, 4, according to the general recipe

�i (w, θ) = �̂i (φ(w, θ̄∗∗), θ̄∗∗, θ , ŷ)
∣∣

ŷ=(1,1,1)
.

Thus,

�1(w, θ) = �̂1(φ(w, θ̄∗∗), θ̄∗∗, θ , ŷ1)
∣∣

ŷ1=1
.

= a1 + a2 B̄ − 1 · K̄ = a1 + a2w1 − w2,

�2(w, θ) = �2(φ(w, θ̄∗∗), θ̄∗∗, θ)

= b1 B̄ − b2 = b1w1 − b2,

�3(w, θ) = �̂3(φ(w, θ̄∗∗), θ̄∗∗, θ , ŷ2)
∣∣

ŷ2=1

= b1 K̄ + b3 − F̄

= b1w2 + b3 + w3,

�4(w, θ) = �̂4(φ(w, θ̄∗∗), θ̄∗∗, θ , ŷ3)
∣∣

ŷ3=1

= ŷ3 F̄ = 1 · (−w3) = −w3.

Since, to get realization, we want to have the outcome function to have the

F -optimality property, we define the outcome function by

h(w) = �4 = F̄ ,
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that is,

h(w) = −w3.

2.4.4.2 Verification of F -Optimality, Existence and Decentralization

To verify F -optimality of the mechanism, suppose that the three equilibrium

conditions hold – that is, �1 = �2 = �3 = 0. Then

h(w) = −w3 = b1w2 + b3 ← by �3 = 0

= b1(a1 + a2w1) + b3 ← by �1 = 0

= b1

(
a1 + a2

b2

b1

)
+ b3 ← by �2 = 0

= a1b1 + a2b2 + b3 ← by elementary algebra

= F (θ). ← by definition of F

Hence, at equilibrium, h(w) = F (θ), and so the F -optimality condition

holds. Existence property is also easily verified (see below). Finally, �1 is

independent of b while �2 and �3 are independent of a . Hence the privacy-

preserving mechanism defined by

M ⊆ R3, g 1(m, a) = �1(w, θ)
∣∣
w=m

, g 21(m, b) = �2(w, θ)
∣∣
w=m,

g 22(m, b) = �3(w, θ)
∣∣
w=m

, and h(m) = �4(w)
∣∣
w=m

= −w3

realizes F and is informationally decentralized. More explicitly, we have

g 1(m, a) ≡ a1 + a2m1 − m2

g 21(m, b) ≡ b1m1 − b2

g 22(m, b) ≡ b1m2 + b3 + m3

h(m) ≡ −m3.

The message equation system is, of course,

g 1(m, a) = 0, g 21(m, b) = 0, g 22(m, b) = 0.

It is uniquely solvable for m = (m1, m2, m3) as a function of (a , b):

m1 = b2

b1

; m2 = a1 + a2 m1 = a1 + a2

(
b2

b1

)

m3 = −(b1a2 + b3) = −
(

b1(a1 + a2

(
b2

b1

))
+ b3.

This proves the existence property of realization.

Since agent 1 only verifies g 1(m, a) = 0, while agent 2 checks the

equations g 21(m, b) = 0, g 22(m, b) = 0, the mechanism is informationally

decentralized (privacy preserving).
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2.5 Overlaps

2.5.0 Constructing a Mechanism When the Parameter-Indexed
Product Structure Is Not a Partition: An Example

The example is extremely simple, but not trivial. The goal function is what

may be called “augmented hyperbolic” or “augmented one-dimensional

inner product.” For the sake of continuity, although at the cost of some

repetition, we present both phases, one and two, consecutively.

The algebraic formula for the goal function is

F (a , b) = a1b1 + b2

so that �1 = {θ1 : θ1 = a1, a1 ∈ R};

�2 = {θ2 : θ2 = (b1, b2), (b1, b2) ∈ R2}, � = �1 × �2 = R3.

The construction of a covering (phase one) would be very simple if we

restricted the parameter space by ruling out points with b1 = 0. In that

case, using left-RM, and choosing the maximal A-set in order to guarantee

reflexivity, we define the A-set by the relation F (a , b̄) = F (ā , b̄), i.e.,

a1b̄1 + b̄2 = ā1b̄1 + b̄2.

Since b̄1 �= 0,

A(θ̄) = {a1 ∈ R : a1 = ā1} = {ā1}. (1)

In turn, the corresponding B-set is defined by the requirement that

F (a , b) = F (ā , b̄) for all a ∈ A(θ̄).

That is,

ā1b1 + b2 = ā1b̄1 + b̄2. (2)

Thus the covering correspondence is

V(θ̄) = V 1(θ̄) × V 2(θ̄)

= {ā1} × {(b1, b2) ∈ R2 : ā1b1 + b2 = ā1b̄1 + b̄2}. (3)

In equation form, we have

G 1(θ̄ , a) ≡ a1 − ā1 = 0 (4.1)

G 2(θ̄ , b) ≡ ā1b1 + b2 − (ā1b̄1 + b̄2) = 0. (4.2)
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We skip the formalities of making the transition to message form. It

is obvious that this can be accomplished by setting m1 = ā1 and m2 =
ā1b̄1 + b̄2. Then the message-form equations become

g 1(m, a) ≡ a1 − m1 = 0 (5.1)

g 2(m, b) ≡ m1b1 + b2 − m2 = 0, (5.2)

and a natural outcome function is h(m1, m2) ≡ m2. It turns out that the

mechanism in this case is the parameter transfer, PTab , from agent 1 to

agent 2.

But if we do not exclude the zero value for b1, things get more interesting,

although more complicated. We then divide our analysis into two cases: Case

(i) when b̄1 �= 0 and Case (ii) when b̄1 = 0. In what follows, we use the left-

RM (L-RM) method throughout, and start with the maximal A-set to assure

reflexivity. This guarantees that we construct a maximally coarse covering,

and therefore the mechanism has the informational efficiency property of

maximal coarseness.86

case (i): constructing V(θ̄) when b̄1 �= 0. In this case the derivation of

the covering correspondence yields the same formulae as those obtained

above in Equations (3) and (4). There is a difference, however: even though

b̄1 �= 0 in Case (i), the value b1 = 0 is not ruled out.

case (ii): constructing V(θ̄) when b̄1 = 0. Here the maximal A-set is

defined, as always in L-RM, by F (a , b̄) = F (ā , b̄), but when b̄1 = 0, this

becomes

a1 · 0 + b̄2 = ā1 · 0 + b̄2,

which is the identity 0 = 0. The parameter a1 ranges over all real values.

Thus,

A(θ̄) = R. (6.1)

The B-set is again defined by the condition F (a , b) = F (ā , b̄) for all a ∈
A (θ̄), i.e., by

a1b1 + b2 = ā1 · 0 + b̄2 = b̄2 for all a1 ∈ R. (6.2)

86 The complications arising in using L-RM, maximal A, do not arise with R-RM, maximal
B, even when all of R3 is the parameter space. In the latter approach we use at PTab and the
covering is a partition. But our purpose in this section is to gain insight into mechanism
construction when the covering is not a partition. For that purpose, L-RM, maximal A,
with F = a1b1 + b2 is particularly instructive. (For more detail on the R-RM approach,
see the Appendix.)
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Setting a1 = 0 we obtain b2 = b̄2, hence a1b1 = 0. Then setting a1 = 1

yields b1 = 0. So, when b̄1 = 0, we find

B(θ̄) = {(b1, b2) ∈ R2 : b1 = 0, b2 = b̄2}, (7.1)

and

V(θ̄) = R × {(b1, b2) ∈ R2 : b1 = 0, b2 = b̄2}. (7.2)

Equivalently, when87 θ̄ = (ā1; b̄1, b̄2) and b̄1 = 0, the relation θ ∈ V(θ̄),

θ = (a1; b1, b2), a = a1, b = (b1, b2), can be expressed by the following sys-

tem of equations:

G 1(θ̄ , a) ≡ 0 = 0 (or G 1(θ̄ , a) ≡ a1 · 0 = 0)

G 21(θ̄ , b) ≡ b1 = 0

G 22(θ̄ , b) ≡ b2 − b̄2 = 0. (7.3)

The next stage of the mechanism construction process is the choice of

an SDR. But to accomplish this, we first describe the covering CV of �

generated by the correspondence V . It is most helpful at this stage to look

at the geometry of the covering.

The Covering CV when b̄1 = 0.

First, we study the “rectangles”88 generated by V in Case (ii), when b̄1 = 0.

Consider a three-dimensional diagram, with a1 on the vertical axis, while

the axes for b1 and b2 are in the horizontal plane.

Then K = V(θ̄) for θ̄ = (ā1; b̄1, b̄2) = (ā1; 0, b̄2) is a vertical line (parallel

to the a1-axis) lying in the (b2, a1) -plane, (defined by the condition b1 = 0),

and intersecting the b2 -axis at the point b̄2, or, more precisely, at the point

(ā1; b1, b2) = (0; 0, b̄2).

Since b2 is free to range over all reals, the family of all these rectangles

(lines) for Case (ii) fills the whole plane b1 = 0.

The description of rectangles generated in Case (i) is somewhat more

complicated. As seen in Equation (3), when b̄1 �= 0, the rectangle for a given

θ̄ = (ā1; b̄1, b̄2), b̄1 �= 0 is the set

V(θ̄) = {ā1} × {(b2, b3) ∈ R : ā1b1 + b2 = ā1b̄1 + b̄2}.

87 We often find it helpful to separate the a-components from the b-components by a semi-
colon rather than a comma.

88 Subsequently, we dispense with the inverted commas when referring to a set K = K1 × K2

where K1 ⊆ �1 and K2 ⊆ �2 as a rectangle.
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a1

b2

b1

Figure 2.5.1 AugHyperbolic.

a1

a1 b2

b2

b1
0

(0;0,b2)

K = V(θ)

θ = (a1;0,b2)

θ

Figure 2.5.2 AugHyperbolic.
(Note : The value of a1 does not affect K = V(θ̄) when θ̄ belongs to category (ii)).
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That is, V(θ̄) is a straight line in the (horizontal) a1 = ā1 plane, defined by

the equation

b2 = −ā1b1 + F̄ , (8)

where F̄ = F (ā , b̄) = ā1b1 + b̄2. Thus, the value of ā2 determines both the

level at which the line lies and its slope.

a1

a1

a1

b2

b1

K (category (i))

K (category (ii))

b2 = −a1b1 + F

a'1 = (θ' ;0,b2)

θ

θ'

K ∩ K = {θ'}

Figure 2.5.3 AugHyperbolic. Showing the intersection θ ′ of K̄ ; of category (i) with ¯̄K
of category (ii).

Note that if two parameter points θ̄ = (ā1; b̄1, b̄2) and ¯̄θ = ( ¯̄a1; ¯̄b1, ¯̄b2)

have the same a-component, that is, if ā1 = ¯̄a , then the two rectangles

K̄ = V(θ̄), ¯̄K = V( ¯̄θ) lie in the same horizontal plane, but also have the

same slope; hence they are either distinct and parallel (when F (θ̄) �= F ( ¯̄θ))

or coincide (when F (θ̄) = F ( ¯̄θ) even though θ̄ �= ¯̄θ). Hence when ā1 = ¯̄a1,

there are no nontrivial overlaps. But, in fact, there are no overlaps altogether,

since then the two rectangles K̄ and ¯̄K lie in two different horizontal planes.

We thus see that there can be no nontrivial overlaps between two rectangles

of the same category – both generated by θ̄ of the same case: either both
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F

b1

b2

F

a1

(a1 > 0, F > 0)
θ

b2 = −a1 b1 + F

Figure 2.5.4 AugHyperbolic. A horizontal cross-section at level a1 = ā1; note that
∂b2/∂b1 = −ā1.

of Case (i) or both of Case (ii). But there are common points that involve

rectangles of different categories.

Consider a rectangle K̄ such that (i) holds, i.e., K̄ = V(θ̄), b̄1 �= 0. Call

this a category (i) rectangle and also consider a rectangle such that ¯̄K =
V( ¯̄θ), ¯̄b1 = 0, which is called category (ii) (see Figures 2.5.3 and 2.5.4).

Since all rectangles of category (ii) are in the plane b1 = 0, a point of

overlap must also have b1 = 0. But then, at such a point we have b2 = b̄2 =
¯̄b2 and a1 = ā1. So points (a1; b2, b3) = (ā1; 0, b̄2) with b̄2 = ¯̄b2, are points

of (nontrivial) overlaps, and these are the only such points. Clearly, the

covering is not a partition.

It is helpful to know the location of overlaps because any point of a

rectangle K that is not a point of overlap with any (distinct) other rectangle

can serve as an SDR point.

A rectangle K of category (i) in the covering CV can be characterized by

K = {(a1; b1, b2) ∈ R3 : there exist numbers p and q such that

a1 = p and b2 = −p b1 + q}. (9.1)

Such a rectangle will sometimes be denoted K pq . For such a rectangle, in

defining an SDR we avoid points of overlap by setting b1 = 1. That is, for

K = K pq of category (i) as defined by Equation (9.1), we define the value
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of the SDR function � : CV → � by

�(K ) = ( p; 1, s ) where s = −p + q . (10.1)

As for a rectangle K in CV of category (ii), it can be characterized by

K = {(a1; b1, b2) ∈ R3 : b1 = 0, b2 = r for some r }. (9.2)

For such K , we choose the SDR value

�(K ) = (0; 0, r ). (10.2)

Next, we proceed to check that our choice of the function � satisfies the

two parts of the definition of SDR:

�(K ) ∈ K (1)

K ′ �= K ′′ ⇒ �(K ′) �= �(K ′′). (2)

For category (i), and hence b1 = 1, b2 = −p + q . Substituting these val-

ues into the equation b2 = −pb1 + q we obtain −p + q = −p. 1 + q ,

which is an identity. So SDR (1) is satisfied.

To check SDR (2) for category (i), suppose �(K ′) = �(K ′′). Now

�(K ′) = (p′; 1, −p′ + q ′) and �(K ′′) = ( p′′; 1, −p′′ + q ′′), so p′ = p′′

and −p′ + q ′ = p′′ + q ′′. But then p′ = p′′ and q ′ = q ′′, hence K ′ = K ′′.
Therefore SDR (ii) is also satisfied in category (ii).

Now consider a rectangle K of category (ii). We have K = {(a1; b1, b2) ∈
R3 : b1 = 0, b2 = r }, so a1 can take any numerical value, in particular a1 =
0. But (0; 0, r ) = �(K ). So SDR (1) is satisfied.

To check SDR (2) for category (ii), suppose �(K ′) = �(K ′′). Now

K ′ = {(a1; b1, b2) ∈ R3 : b1 = 0, b2 = r ′} and K ′′ = {(a1; b1, b2) ∈ R3 :

b1 = 0, b2 = r ′′}. Therefore, �(K ′) = (0; 0, r ′) and �(K ′′) = (0; 0, r ′′).

But �(K ′) = �(K ′′) implies r ′ = r ′′, and r ′ = r ′′ implies K ′ = K ′′. Hence

our function � satisfies SDR (1) and SDR (2) in both categories. Q.E.D.

Having constructed an SDR function, it remains to make a transition to

message form. To simplify matters we choose the transversal T = �(CV ) as

our message space M.

We start by constructing the individual equilibrium correspondences μ1 :

�1 ⇒ M, and μ2 : �2 ⇒ M, using the set-theoretic formulation.

The individual correspondence μ1 is defined as follows:

for m in M and θ1 in �1,

m ∈ μ1(θ1) if and only if ∃ K in CV such that θ1 ∈ K1.



P1: KVU
CUNY425-02 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:41

2.5 Overlaps 161

Here it is understood that K = K1 × K2 ⊆ �1 × �2, so that K1 is the

projection of K onto the parameter space �1of the first agent.

The definition of μ2 is analogous (just replace 1’s by 2’s). Then the group

(social) correspondence μ : � ⇒ M is defined as the intersection of the

two individual correspondences:

μ(θ1, θ2) = μ1(θ1) ∩ μ2(θ2),

more directly, by the following: for θ ∈ � and m ∈ M,

m ∈ μ(θ) if and only if ∃ K in CV such that θ ∈ K .

Next, we describe the verification scenario, both in set-theoretic and analytic

form.

There are two types of message vectors:

m′ = (p; 1, s ) for some (p, s ) ∈ R2

and

m′′ = (0; 0, r ) for some r ∈ R.

Suppose the coordinator or central computer proposes a message of type

m′ = (p; 1, s ). According to the definition of the message correspondence

μ1, agent 1 will say “yes” if and only if there exists a rectangle K ∗ in the cover-

ing89 C such that his/her parameter value is “covered” by the �1-projection

of K ∗; formally, if K ∗ = K ∗
1 × K ∗

2 , K ∗ ∈ C , K ∗
1 ⊆ �1, K ∗

2 ⊆ �2, andθ1 ≡
a1 ∈ K ∗

1 , and m′ = �(K ∗). (This requires that agent 1 know that such a K ∗

exists in the covering C , but agent 1 need not know whether θ2 ≡ (b1, b2)

is a point in K ∗
2 . Thus the informational decentralization requirements are

not violated.)

Agent 2 will say “yes” if and only if there exists a rectangle K ∗∗ = K
∗∗
1 ×

K
∗∗
2 in C such that m′ = �(K ∗∗) and her parameter value is “covered” by

K ∗∗
2 , i.e., θ2 = (b1, b2) ∈ K ∗∗

2 .

Could it happen that both agents say “yes,” but K ∗ �= K ∗∗? If that were

the case, since �(K ∗) = m′ and �(K ∗∗) = m′, we would have a situation

where �(K ∗) = �(K ∗∗) but K ∗ �= K ∗∗, thus violating rule (2) of SDR’s. It

follows that both agents will say “yes,” i.e., m′ ∈ μ (θ) for θ = (θ1, θ2), if and

only if there exists K in C such that m′ = �(K ), K = K1 × K2 ⊆ �1 × �2

and θ1 ∈ K1, θ2 ∈ K2.

Note that such a rectangle K would “automatically” be of Category (i),

since only such rectangles have representatives �(K ) with b1 = 1.

89 We write C for CV .
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Also note that θ1 ∈ K1 when �(K ) = ( p; 1, s ) means that p = a1, while

(b1, b2) ∈ K2 means that pb1 + b2 = p + s .

In the case where the coordinator proposes a message of type m′′ =
(0; 0, r ), agent 1 says “yes” if and only if there is a rectangle K ∈ C , m′′ =
�(K ), and θ1 = a1 ∈ K1. But, by construction of �, it must be the case

that K1 = R, hence condition a1 ∈ K1 is necessarily satisfied with K ∗ of

Category (ii).

Agent 2 says “yes” if and only if θ2 = (b1, b2) ∈ K2, i.e., b1 = 0 and

b2 = r .

In Summary, the equilibrium conditions are as follows.

If m = m′ = (p; 1, s ), then m′ = �(K ) where K = K pq of Category

(i), and

g 1(m′, a) ≡ a1 − p = 0

g 2(m′, b) ≡ pb1 + b2 − (p + s ) = 0.

If m = m′′ = (0; 0, r ), then m′′ = �(K ), where K = Kr of category (ii),

and the equilibrium conditions are

g 1(m′′, a) ≡ 0 = 0 (or g 1(m′′, a) ≡ 0 · a1 = 0)

g 21(m′′, b) ≡ b1 = 0

g 22(m′′, b) ≡ b2 − r = 0.

To complete the construction of the mechanism we define the outcome

function, h : M → Z; in this case h : M → R, since we have specialized to

Z = R.

If m = m′, we set h(m′) ≡ p + s ; if m = m′′, we set h(m′′) = r .

To verify F -optimality, consider first the case m = m′. Here h(m′) ≡ p +
s = pb1 + b2 = a1b1 + b2 = F (θ). When m = m′′, h(m′′) = r = b2 =
F (θ) since b1 �= 0. So the mechanism is F -optimal.

Next we check existence. First, let θ = (a1; b1, b2), with b1 �= 0. Then 0 =
(p; 1, s ) will satisfy the equilibrium conditions g 1(m, a) = 0, g 21(m, b) = 0

provided p = a1 and s = −p + q with q = a1b1 + b2.

On the other hand, if θ = (a1; b1, b2) with b1 = 0, then m′′ = (0; 0, r )

satisfies the equilibrium conditions provided r = b2. Thus in all cases an

equilibrium message for any given θ ∈ � = R3 exists.

Thus, we have constructed a decentralized and minimally coarse message

mechanism that realizes the given goal function F (θ) = a1b1 + b2 over the

full R3 parameter space. The design procedure used was “algorithmic”; that

no guessing was involved.
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APPENDIX

Following up on comments made in footnote 1, page 3, we show that the

right-RM approach with maximal B-set for F (θ) = a1b1 + b2 generates a

partition when the parameter space � is all of R3.

When R-RM is used, the maximal B-set is defined by F (ā , b) = F (ā , b̄) –

here by

ā1b1 + b2 = ā1b̄1 + b̄2. (+)

Thus, for every θ̄ in R3, whether b̄1 �= 0 or b̄1 = 0, we have90

BR(θ̄) = {b ∈ R2 : ā1b1 + b2 = ā1b̄1 + b̄2}.
The corresponding A-set is the �1 space, denoted by A∗(BR(θ̄), θ̄); it is

defined by the relation

a1b1 + b2 = ā1b̄1 + b2 for all b ∈ BR(θ̄). (++)

Substituting into (++) the value of b2 obtained from (+), we get

a1b1 + (ā1b̄1 + b̄2 − ā1b1) = ā1b̄1 + b̄2,

and then,

(a1 − ā1) b1 = 0 for all b1 ∈ R.

For b1 = 1, this yields

a1 = ā1.

Thus, for all θ̄ in R3,

A∗(BR(θ̄), θ̄) = {ā1}.
Therefore,

VR(θ̄) = V 1
R(θ̄) × V 2

R(θ̄)

= {ā1} × {b ∈ R2 : ā1b1 + b2 = ā1b̄1 + b̄2},
where V 1

R(θ̄) ⊆ �1 and V 2
R(θ̄) ⊆ �2.

Consequently, every set K of the covering C R generated by VR is of the

form

K = K1 × K2

= {p} × {b ∈ R2 : pb1 + b2 = q for some two numbersp, q},
where Ki ⊆ �i , i = 1, 2.

90 In this appendix we use the subscripts R and L to distinguish sets obtained through R-RM
from those derived through L-RM.



P1: KVU
CUNY425-02 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:41

164 From Goals to Means: Constructing Mechanisms

By contrast, category (ii) sets in CL (the covering generated by L-RM with

maximal A) are of the form

K = K1 × K2 ⊆ �1 × �2

with K = R, not a singleton {p} as in K1 ∈ C R .

Clearly, the two coverings are not the same: C R �= CL . In particular, the set

A∗(BR(θ̄), θ̄) = {ā1} is not maximal for θ̄ with b̄1 = 0, since AL (θ̄) = R
is a proper superset of {ā} and remains in the same F -contour set when

b̄1 = 0. Nevertheless, both coverings, C R and CL are reflexive RM’s.

We now proceed to show that C R is a partition. Suppose K̄ and ¯̄K are

two sets in C R . Then K̄ = { p̄} × {b1 ∈ R2 : p̄ b1 + b2 = q̄}and ¯̄K = { ¯̄p} ×
{b1 ∈ R2 : ¯̄p b1 + b2 = ¯̄q}. We shall show that if K̄ and ¯̄K have a point θ̂ in

common, then any point θ belonging to K̄ must also belong to ¯̄K , and vice

versa.

Suppose θ̂ = (â1; b̂1, b̂2) belongs both to K̄ and ¯̄K . Then â1 = p̄ and

â1 = ¯̄p. Also, p̄ b̂1 + b̂2 = q and ¯̄p b̂1 + b̂2 = q̄ . But â1 = p̄ and â1 = ¯̄p

imply p̄ = ¯̄p. Hence the equalities involving b’s can be written as

a∗
1 b̂1 + b̂2 = q̄ ,

and

a∗
1 b̂1 + b̂2 = ¯̄q ,

where a∗
1 = p̄ = ¯̄p. It follows that q̄ = ¯̄q . Consider now anyθ = (a1; b1, b2).

Suppose θ ∈ K̄ , i.e., a1 = p̄ and p̄b1 + b2 = q̄ . But since p̄ = ¯̄p and q̄ = ¯̄q ,

it follows that a1 = ¯̄p and ¯̄p ab1 + b2 = ¯̄q . Hence θ ∈ ¯̄K as well. Similarly,

for every θ in �, � ∈ ¯̄K implies � ∈ K̄ . Hence K̄ = ¯̄K . It follows that C R

is a partition.

The equation form of the covering correspondence VR is{
G 1(θ̄ , a) ≡ a1 − ā1 = 0

G 2(θ̄ , b) ≡ ā1b1 + b2 − (ā1b̄1 + b̄2) = 0.
(+++)

A natural transition to message form is to set

m1 = ā1

m2 = ā1b̄1 + b̄2.

The message equilibrium equations are

g 1(m, a) ≡ a1 − m1 = 0

g 2(m, b) ≡ m1b1 + b2 − m2 = 0,

where m = (m1, m2) ∈ R2.
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With the outcome function h(m) ≡ m2, we have a mechanism

(M, g 1, g 2, h), M = R2, that realizes the goal function F (θ) = a1b2 + b2.

We recognize this mechanism as PTab , the parameter transfer from agent 1

to agent 2.

It is striking that the functions G 1, G 2 in Equations (+++) define VR in

equation form over all of � = R3 have the same form as Equations (4.1),

(4.2) VL for θ̄ with b̄1 �= 0. This observation leads us to take another look

at CL , the covering generated by VL . We first note that the equation system

G(θ̄ , θ) = 0 there derived for θ̄ with b̄1 �= 0 is solvable (not uniquely) for

θ̄ given any θ ∈ R3, namely by setting θ̄ equal to any given θ . This gives

us G(θ̄ , θ) = 0 for every θ in R3. But this means that the vertical rectangles

obtained in Case (ii) b̄1 = 0 for L-RM, are superfluous: the rectangles gener-

ated by G(θ̄ , θ) = 0 cover the whole parameter space � = R3. We have not

just overlaps, but also redundancy. In fact, if we remove from CL the super-

fluous vertical rectangles we are left with the covering that is precisely equal

to C R , this reduced CL covering, say C ′
L = C R , is still rRM, but no longer

redundant. And, as we have seen above, it leads to a decentralized mecha-

nism that realizes the goal function F (θ) = a1b1 + b2, is free of redundancy

or even overlaps, and is informationally efficient (in the sense of maximal

coarseness).

2.6 Informational Efficiency

2.6.1 Main Results

We use three concepts included in the concept of informational efficiency.

The two principal ones are maximal coarseness and informational size

(mainly, cardinality for finite spaces, and vectorial dimension for Euclidean

spaces). The third concept is equation efficiency, measured by taking into

account the number of equations each agent must verify.

We study each concept in the setting of the reflexive rectangles method.

First, we find that among decentralized mechanisms that realize a goal func-

tion, rRM constructs a maximally coarse covering. It is also true that a

maximally coarse covering yields an rRM mechanism. The relationship of

rRM to information size of the message space is more complicated. It can

happen that an rRM covering (or mechanism) fails to have a message space

of minimal size. This is shown by examples in this section. However, it

is shown in 2.6.5 that if m∗(F ) is the minimal informational size attain-

able by an informationally decentralized mechanism that realizes the goal

function F , then there exists an rRM covering of the domain of F , and a
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decentralized rRM mechanism that realizes F whose message space also has

size m∗(F ).

In Section 2.6.7 we provide more detailed results for Euclidean cases with

parameter spaces of low dimension.

2.6.2 The Maximality of Reflexive RM-Coverings

definition 2.6.2.1. (a) A covering C ′ of � is a coarsening of a covering C of

� if for every k ∈ C , ∃k ′ ∈ C ′ such that

k ⊆ k ′.

(b) C ′ is a proper coarsening of C if it is a coarsening of C and if there

exists k∗ in C and k ′∗ in C ′ such that

k ′∗ ⊇ k∗, but k ′∗ �= k∗.91

(c) A covering of � is called self-belonging if it is generated by a self-

belonging correspondence.

(d) A covering C of � is eligible if it is rectangular, F -cc (for some given

function F ), and self-belonging.

(e) An eligible covering C of � is called maximal 92 if it has no proper

eligible coarsening.

theorem 2.6.2.1 (Sufficiency). If C is a reflexive93 RM for F on �, then it

has no proper eligible coarsening – C is maximal.

Proof: Suppose C is reflexive RM, but not maximal. Then there exists a

proper, eligible coarsening C ′ of C . That is, C ′ is rectangular, F -cc, and

self-belonging. Because C ′ is a coarsening of C ′ it follows that, for every

k ∈ C , there is a k ′ in C ′ such that k ′ ⊇ k, k ′ = A′ × B ′ ⊆ �1 × �2, and

k ′ is contained in the contour set of F that contains k. Also, there are sets

A ⊆ �1, B ⊆ �2, with k = A × B .

Because k ⊆ k ′, it follows from rectangularity of C and C ′ that

A′ ⊇ A, B ′ ⊇ B . (∗)

91 C is a refinement of C ′.
92 This term seems natural in that a “maximal” coarsening maximizes informational efficiency

of a mechanism as measured by the degree of coarseness of its covering.
93 I.e., both left-RM and right-RM.
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Let a ∈ A and b ′ ∈ B ′. Because C and C ′ are self-belonging and F -cc,

there exists θ̄ ∈ k such that k is the image of θ̄ by the generating correspon-

dence, and the contour set of F that contains θ̄ also contains k. But k is a

subset of k ′. Hence the contour set that contains k ′ is the same as the one

that contains k ′. It follows from the inclusions labeled (∗) that

(a , b ′) ∈ F −1(F (θ̄)),

and also k ′ ⊆ F −1(F (θ̄)).

Hence, by the definition of B∗(A, θ̄) we have94

(a , b ′) ∈ A × B ∗(A, θ̄) = A × B .

The equality follows from the fact that C is assumed to be reflexive, and

hence left-RM.

Thus, b ′ ∈ B ′ implies b ′ ∈ B . But b ′ is an arbitrary element of B ′. Hence

B ′ ⊆ B . Therefore, by (∗),

B ′ = B .

Recall that C is reflexive RM, and therefore it is right-RM. Hence, we can

show that

A = A′

by reasoning similar to that used to show that B ′ = B . It then follows that

K ′ = K .

This shows that C ′ is not a proper coarsening of C . Thus, the supposition

that C is not maximal leads to a contradiction. This contradiction completes

the proof.

theorem 2.6.2.2 (Necessity). If C is a rectangular F -cc covering of � that

is maximal (that is, there is no eligible proper coarsening of C ), then C is a

reflexive-RM covering of �.

Proof: Suppose, to the contrary, that C is maximal and is not a reflexive RM

covering. Without loss of generality, suppose C is not left-RM. Then there

exists θ̄ and k = A × B ∈ C such that

B �= B∗(A, θ̄).

94 The set B∗(A, θ̄) is defined as the union of all sets B ⊆ �2 such that θ̄ ∈ A × B and
A × B ⊆ F −1(F (θ̄)).
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It follows from the definition of B∗(A, θ̄) that

B � B∗(A, θ̄)

Hence,

k � A × B∗(A, θ̄). (∗∗)

Write k ′ = A × B∗(A, θ̄),

so that (∗∗) becomes

k ′ � k. (+)

Consider the collection

C ′ = (C \{k}) ∪ {k ′}.
C is a covering. The inclusion (+) implies that C ′ is an eligible covering,

because C is an eligible covering, and, from its definition, k ′ is rectangular,

F -cc and self-belonging. Clearly C ′ coarsens C because, for every set r of C ,

there is a set r ′ of C ′ such that r ⊆ r ′. This is so because all sets r in C other

than k have their identical twins r ′ = r in C ′; and for k in C there is k ′ in

C ′ with k ⊆ k ′. Moreover, the coarsening C ′ is proper because k ′ �= k. This

contradicts the hypothesis that C is maximal, and thus proves the theorem.

2.6.3 Informational Efficiency: General Considerations

A theory of design of economic mechanisms must consider the “cost” in

terms of resources, of operating a given mechanism – otherwise every design

problem can be solved by using a complete revelation mechanism, or a

parameter transfer. In a given design problem these mechanisms, along with

many others, might be infeasible in that the resources required to operate

any of them might not be available. The resources required are determined

by activities that fall under one of three headings:

� Observing the environment;
� Communicating;
� Computing.

A decentralized mechanism that realizes a given goal function, F , deter-

mines how finely each agent must observe her component of the envi-

ronment. This accuracy is formalized by the rectangular covering of the

parameter space – a characteristic of the given mechanism.

The amount of communication required by the mechanism is measured

by the informational size of its message space. Coarseness of a covering is
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a set-theoretic concept; size of the message space can be set-theoretic or

analytic.

These two indicators or measures of information processing requirements

are related, but not equivalent. They are related, because the messages used

by the mechanism index the sets in the covering from which the mechanism

is constructed. But, to put it informally, the “size” of the index set depends on

the “number” of rectangles in the covering, not the “size” of the rectangles.

The size of the sets is a property of the covering, and is, loosely speaking,

related to the coarseness of the covering. We show in Chapter 3, Section

3.7.4 that coarseness of the covering and informational size of the message

space are different concepts. Examples in this section illustrate that point.

The resource costs associated with the computing required to operate a

mechanism are determined by their computational complexity. We do not

study computational complexity of goal functions, or of the computations

performed by agents in this book.95 However, when the mechanism is given

in equation form, rather than set theoretically, an intuitively appealing rough

indicator of the burden of calculation imposed by the mechanism is the

number of equations that have to be evaluated by agents – referred to as

equation efficiency, briefly, eq-efficiency. The concept of equation-efficiency

is formalized by the eq-vector (q1, . . . , qN), where qi is the nonnegative

integer that specifies the number of equations to be checked by agent i in

the verification scenario. Given two alternative mechanisms π ′ and π ′′ that

each realize a goal function F , we say that π ′ is strictly more equation-

efficient than π ′′ if q ′
i ≤ q ′′

i for all i = 1, . . . , N, and at least one of the

inequalities is strict.

A mechanism π is eq-efficient if it realizes the given F and there is no

mechanisms strictly more eq-efficient than π . We show by example that

a mechanism can be eq-efficient without being m-efficient. The example

appears toward the end of Section 2.6.6. That eq-efficiency is formalized

by a vector shows that the concept of eq-efficiency is useful where different

agents have different resources or different skills with which to carry out the

required verifications.

The number of equations that characterizes a message verification sce-

nario is meaningful only if the equilibrium functions are “smooth,” in

the sense that justifies the application of the implicit function theorem;

95 Mount and Reiter (2002) presents a formal model of computation that applies to computa-
tions performed in a setting in which functions of real variables are computed, and in which
computations are carried out by human beings with the aid of machines. A formal analysis
of complexity of computations is presented in that book, and examples of its application
to models in economics and game theory are given.
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in particular, such that the Jacobian of the equation system that defines

the message correspondence, as well as the equilibrium of the mechanism,

satisfies a rank condition.96

The informational size of the message space97 is defined in the more

general setting of topological spaces, but in the case of Euclidean parameter

spaces and equation systems that satisfy the smoothness conditions imposed

about, we can take the size of a message space to be its dimension. In fact,

continuity of the functions is sufficient to justify this. We denote the size of

the Euclidean message space M by dim M.

In this book we confine attention to three components of informational

efficiency – coarseness of the covering, informational size of the message

space, and, in cases where regularity conditions are satisfied, to eq-efficiency.

(The concept of redundancy also plays a role.) The concept of informational

efficiency is similar to that of production or technological efficiency where

the question is whether any input quantity could be reduced without increas-

ing the requirements for other inputs or decreasing output, “other things

being equal.”

Ideally, we would like to have an algorithm for designing decentralized

mechanisms that realize a given goal function, and that are informationally

efficient – specifically, that have maximally coarse coverings, and message

spaces of minimal informational size – and that is generally applicable. We

present such an algorithm for the case of finite environments in Chapter

3, Section 3.4. But the case of Euclidean environments is less satisfactory.

We do not have an algorithm that is generally applicable and constructs a

mechanism that realizes a given goal function, and whose message space has

minimal dimension. Further, we cannot assure that the covering generated

has no redundant sets, although in examples where the Jacobian has maximal

rank, the covering is a partition, and therefore has no redundant sets. This

suggests a possible generalization; if the equilibrium system is linear, as is

the case in many examples, there is an algorithm that produces a mechanism

that realizes the goal function and has an rRM – maximally coarse – covering.

We use this algorithm for the inner product goal function, and also for the

Walrasian goal function, with a suitably chosen domain. But in nonlinear

cases the usual difficulties presented by nonlinearity prevent development

of an algorithmic approach to minimizing the dimension of the message

96 The standard textbook condition is that the relevant functions be continuously differ-
entiable (C 1) and have Jacobians of the highest rank permitted by the dimension of the
matrix. See somewhat less demanding conditions in Hurwicz (1969), and Mount and Reiter
(1974). Also Gale and Nikaido (1965) and Nikaido (1968) for global conditions.

97 See Mount and Reiter (1974).
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space. However, the rectangles method – rRM – construction applied to a

given goal function, followed by the N-step construction, does in all cases

construct coverings that cannot be properly coarsened.

Coarsening a covering associated with a mechanism does not raise, and

can lower, the informational costs associated with the mechanism. Infor-

mally, an agent who, for instance, must “observe” his endowment with high

precision would generally have to do some – in some cases, a considerable

amount – of work to make that observation. We also show that in Euclidean

environments coarsening does not raise, and may – but does not necessar-

ily – lower, the dimension of the message space. This is particularly clear

when the covering is a partition. However, it is not the case that coarseness-

minimal mechanisms – a class that is the same as reflexive RM mechanisms –

always minimize the dimension of the message space. We have examples,

presented in subsequent sections, in which a coarseness-minimal mecha-

nism uses a message space whose dimension is higher than the minimum

dimension for mechanisms that realize that particular goal function.

We show in the next section that, for a given goal function, there always

exists an rRM covering, hence maximally coarse, that generates a mecha-

nism whose message space has minimal dimension among all decentralized

mechanisms – not restricted to those rRM constructed by rRM – that realize

the given goal function.

2.6.4 A Comment on Informational Efficiency Concepts

In the preceding discussion there are three concepts of informational effi-

ciency, based respectively on the coarseness of coverings, the number of

equations to be verified by each agent, and the dimension of the message

space.

The coarseness concept is set-theoretic and so applicable regardless of the

analytic properties of the correspondences and mechanisms (e.g., smooth-

ness, ranks of Jacobians, etc.). But the other two concepts relate to a narrower

class of structures, those in which correspondences, transversals, and equi-

librium functions are “smooth” – satisfy conditions in which it is meaningful

to speak of the number of equations.

The dimension of the message space is a positive integer. Therefore mes-

sage spaces are ordered by their dimension. In contrast, the other two

concepts lead to only partial orderings. Hence two mechanisms may be

noncomparable either in terms of coarseness, or, where regularity con-

ditions make counting equations meaningful, by their equation-number
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vectors. This results in a multiplicity of noncomparable mechanisms that

are either minimally coarse or equation-efficient.

We can recognize a fourth candidate for an informational efficiency prop-

erty, that of redundancy. A rectangle in a covering C is redundant if the set

of rectangles K that remain after deletingK is a covering. This set-theoretic

concept induces a partial ordering of mechanisms. Coarseness-maximality

does not imply nonredundancy, nor does nonredundancy imply coarseness-

maximality.

When the parameter space is a finite set, each redundant rectangle in

a covering increases the size of the message space by one additional mes-

sage – the label of that redundant rectangle. Since we have an algorithm for

constructing minimal F -cc rectangular coverings, we can be assured that

redundant rectangles do not arise.

When the parameter space is Euclidean there might be redundant rect-

angles that do not increase the dimension of the message space. In such a

case the property of redundancy in the covering would itself be redundant.

Example 3.7.4 shows two different coverings of the parameter space. If the

two coverings are superimposed so that the resulting covering has redundant

rectangles, the dimension of the message space remains the same.

2.6.5 Minimal Informational Size Is Achievable
by an rRM Mechanism

In this section we analyze the relationship between two concepts of informa-

tional efficiency: maximal coarseness of the covering and minimum size of

the message space – a central issue in mechanism design. When the param-

eter space is finite the cardinality of the message space is its informational

size. When the parameter space is a Euclidean space, or a subset of it with

a nonempty interior, its (finite) dimension is its informational size. We

know from examples (in Sections 2.6.6, 2.5, and this section) that maximal

coarseness of the covering does not by itself imply minimal dimension of the

message space constructed from it. There are examples in which two max-

imally coarse coverings lead to message spaces of different informational

size.

When the parameter space is finite there is an algorithm for constructing

a mechanism whose message space has minimum size.98 (See Chapter 3,

98 This algorithm also applies to cases in which the parameter space is Euclidean, but the goal
function does not satisfy regularity conditions. See the example shown in Figure 3.4.1.l 7,
and the hyperbolic example 2.5.0, 2.5.1.
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Section 3.4.1.) For the Euclidean smooth case, we only have the existence

result shown in Section, 2.6.5.2, but not an algorithm for locating a mech-

anism whose message space is of minimal informational size in the class of

mechanisms with maximally coarse coverings, nor an algorithm for con-

structing a mechanism with a message space whose message space has mini-

mal dimension. However, there is a constructive procedure for constructing

an rRM mechanism that realizes F when we know a nonrRM mechanism

that realizes F . This procedure is used in the proof of 2.6.5.2.

2.6.5.2 Minimal Size Message Spaces versus rRM Mechanisms:

Lemma A and the Theorem

Consider a privacy-preserving mechanism π = (M, g 1, g 2, h) or π =
(M, μ1, μ2, h) realizing a given goal function F : � → Z, � = �1 × �2.

Such a mechanism generates a covering of � by F -cc “rectangles,” i.e., sets of

the form K = K1 × K2, where K1 ⊆ �1 and K2 ⊆ �2, and K ⊆ F −1(z)

for some z in Z. We write99 K = {θ ∈ � : g (m, θ) = 0}, or 100 K = {θ ∈
� : m ∈ μ(θ)} where m ∈ M. We call m the “label” of K when the preced-

ing equalities hold. Each rectangle has one and only one label.

It may happen that there are two rectangles, say K (1)andK (2) in C π , with

K (1) �= K (2), but K
(1)
1 = K

(2)
1 or K

(1)
2 = K

(2)
2 , both rectangles in the same

contour set, but with different labels. That is, there is z ∈ Z such that K (i) ⊂
F −1(z), i = 1, 2, but K (i) = {θ ∈ � : g (m(i), θ) = 0}, i = 1, 2, and m(1) �=
m(2).

lemma a. Given a privacy-preserving mechanism π realizing the given goal

function F , there exists a privacy-preserving rRM mechanism with the same

or lower size (dimension or cardinality) of the message space.

Proof: Let Cπ
1 be the projection of the covering C π into the subspace �1.

Formally,

Cπ
1 = {K1 ⊆ �1 : K1 = proj�1 (K ), K ∈ Cπ }.

Next, define the set

Aπ
1 = {K1 ⊆ �1 : K1 ∈ Cπ

1 }.

99 g (m, θ) = 0 ⇔ g 1(m, θ1) = 0 and g 2(m, θ2) = 0 where θ = (θ1, θ2)
100 μ(θ) = μ1(θ1) ∩ μ2(θ2) where θ = (θ1, θ2).
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Note that, for every point θ̄1 ∈ Aπ
1 , there is θ̄2 ∈ �2 such that

Aπ
1 × {θ̄2} ⊆ F −1(F (θ̄1, θ̄2)).

We now proceed to carry out the “two-step convergence” procedure. That

is, for each K1 ∈ Cπ
1 , we construct a maximal

�2-set compatible with K1. Formally, we construct the set

B∗(K1, θ̄) =
⋂

θ1∈K1

B̂(θ1, θ̄),

where

B̂(θ1, θ̄) = {θ2 ∈ �2 : (θ1, θ2) ∈ F −1(F (θ̄))}.
Note that we have now obtained a left-RM covering of �, to be denoted

say by C ′, and that C ′ is a coarsening of C π . In turn we carry out the

second step of “two step convergence,” starting with the projection of C ′

in �2 and carrying out the procedure formally defined by constructing

Ã(θ̄) = A∗(B(θ̄), θ̄) where B(θ̄) = B∗(K1, θ̄).

Thus we obtain a right-RM covering of �, say C ′′. Now C ′′ is a coarsening

of C ′, hence also of C π . But C ′′ is a maximally coarse rRM.

Now we proceed to allocate messages to the rectangles of C ′′. Since C π

covers�, given any rectangle K ′′ of C ′′, there exists at least one rectangle K of

C π such that K ∩ K ′′ �= ∅ . From among rectangles K of C π satisfying the

preceding set inequality choose an arbitrary K̄ ∈ C π . Suppose the “label”

of K̄ is m̄ ; i.e., K̄ = {θ ∈ � : g (m̄, θ) = 0} or K̄ = {θ ∈ � : m̄ ∈ μ(θ)}.
Then in the newly constructed rRM covering C ′′, give to the rectangle K ′′

the label m̄. That is, we set K ′′ = {θ ∈ � : g (m̄, θ) = {θ ∈ � : m̄ ∈ μ(θ)}.
It may happen that there is a rectangle101 K̂ in C π with label m̂ other

than m̄, but also intersecting K ′′. That is, m̂ �= m̄, K̂ = {θ ∈ � : g (m̂, θ) =
0} = {θ ∈ � : m̂ ∈ μ(θ)}, and K̂ ∩ K ′′ �= ∅.

But allocating to K ′′ the label m̄ will not violate the F -cc requirement

for C ′′, since the “two-step convergence” results in an F -cc covering so that

there is an outcome z ∈ Z such that K ′′ ⊆ F −1(z). Also, since π realizes F ,

and both K̄ and K̂ intersect K ′′, K̂ ⊆ F −1(z).102

The label allocation process produces a message space M ∗ for a decen-

tralized rRM mechanism �∗ = (M ∗, μ1∗, μ2∗, h∗), with M ∗ constituting

a subset of M. In fact, M ∗ may be a proper subset if some elements such as

m̂ ∈ M above fail to be used as labels for any rectangles in C ′′.

101 Or even that there are more than two such rectangles.
102 The two inclusions for K̄ andK̂ use the same z as the inclusion for K ′′.



P1: KVU
CUNY425-02 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:41

2.6 Informational Efficiency 175

A generic rectangle K ′′ = K ′′
1 × K ′′

2 in π∗ was already defined in the

“two-step” procedure as

K ′′ = Ã(θ̄) × B(θ̄)

for a properly selected point θ̄ .

Since M ∗ ⊆ M, we may define the outcome function h∗ of π∗ as follows:

for m ∈ M ∗,

h∗(m) = h(m),

where h is the outcome function of the originally given mechanism π .

We have thus obtained a decentralized rRM mechanism, say π∗ =
(M ∗, μ1, μ2, h) = (M ∗, g 1, g 2, h), M ∗ ⊆ M. Hence, by the monotonic-

ity of size (dimension or cardinality) with regard to inclusion,103{
dim M ∗ =< dim M if � is Euclidean, finite-dimensional:

and #M =< #M if � is finete
(+)

Among privacy-preserving mechanisms realizing a given goal function

F : � → Z, � = �1 × �2, there is at least one such mechanism with a

message space M of minimal size (dimension or cardinality). This is so

because we are assuming either � ⊆ E n, a finite-dimensional Euclidean

space, and the message space M is also assumed a subset of a finite-

dimensional Euclidean space, say E m, m < ∞, and for nonempty M,dim

M is a nonnegative integer, or because we are assuming � to be a finite set.

theorem. For every goal function F defined on a subset � of a finite-

dimensional Euclidean parameter space E N , or on a finite set �, (in either

case � = �1 × �2), there exists a decentralized (privacy-preserving) rRM,

hence maximally coarse, mechanism realizing F whose message space is of

minimal size in the class of such mechanisms.

Proof: The conclusion follows from Lemma A and the two inequalities in

(+). For finite � it also follows from Theorem 3.4.1.1 in Chapter 3.

2.6.6 Two rRM Coverings of Different Informational Size
for the Same Goal Function: An Example

Consider the goal function

F (a , b) = a1b1 + a2b2 + b3 + a2
1 ,

where b2 �= 0 and a2 > 0.

103 In separable metric (hence Euclidean) spaces. See Hurewicz and Wallman (1948).
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We construct two different left-RM coverings, and show that they are

reflexive, nonredundant, and symmetric, so that the resulting covering is

a partition. It turns out that the corresponding mechanisms are parameter

transfers, one from agent 1 to agent 2; the other vice versa. It follows that

rRM does not necessarily minimize the dimension of the message space,

even if the covering it constructs is nonredundant, or even a partition. (This

is in contrast to the situation with the augmented inner product exam-

ple where F (a , b) = a1b1 + a2b2 + b3, and where reflexive RM does yield

mechanisms whose message spaces have minimum dimension.)

The first mechanism, denoted π ′, uses as a point of departure the A-set

defined by the equation

F (a , b̄) = F (ā , b̄),

or explicitly,

a1b̄1 + a2b̄2 + b̄3 + a2
1 = F (ā , b̄). (1)

To find the corresponding B-set, we solve Equation (1) for a2 and substitute

the solution into the equation F (a , b) = F (ā , b̄). The solution of Equation

(1) for a2 is (since b̄2 �= 0),

a2 = 1

b̄2

(
F̄ − a1b̄1 − b̄3 − a2

1

)
(2)

where F̄ is an abbreviation for F (ā , b̄).

Substituting the expression for a2 from Equation (2) into F (a , b) = F̄ ,

we obtain

a1b1 + b2

b̄2

(
F̄ − b̄3 − a1b̄1 − a2

1

) + b3 + a2
1 − F̄ = 0. (3)

This relation must be an identity in a1, so the coefficients of the powers of

a1 must vanish. This yields three equations:

b1 − b2

b̄2

b̄1 = 0 (from terms linear in a1) (4.1)

−b2

b̄2

+ 1 = 0 (from terms quadratic in a1) (4.2)

b2

b̄2

(F̄ − b̄3) + b3 − F̄ = 0 (from other terms). (4.3)

Using equations (4.2), (4.1), and (4.3) in turn, we find that this system of

equations is equivalent to

b1 = b̄1, b2 = b̄2, b3 = b̄3.
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Hence the B-set is defined by

B = {(b1, b2, b3) : b j = b̄ j ; j = 1, 2, 3},
and it becomes clear that we are dealing with parameter transfer from agent

2 to agent 1. Thus, the message space M′ of π ′ has dim M′ = 4.

Next, we check reflexivity, that is, whether A∗(B , θ̄) is the original A-set.

To do this we substitute the values of the b j ’s in the set B into the equation

F (a , b) = F̄ . This gives the equation

a1b̄1 + a2b̄2 + b̄3 + a2
1 = F (ā , b̄),

which is precisely Equation (1) defining the original set A. Hence we do

have a reflexive RM covering.

Next, we show that this rRM covering is nonredundant; we do this by

showing that it is a partition. The proof relies on Theorem 3.6.1, which

states that if a covering is rRM and symmetric then it is a partition. It

remains to prove symmetry.

For this purpose we write the equations of the covering correspondence

in equation form as G(θ̄ , θ) = 0, or more explicitly as

G 1(θ̄ , a) = 0

G 2(θ̄ , b) = 0,

where

G 1(θ̄ , a) ≡ a1b̄1 + a2b̄2 + b̄3 + a2
1 − F (ā , b̄)

and

G 2(θ̄ , b) ≡ (G 21(θ̄ , b), G 22(θ̄ , b), G 23(θ̄ , b)),

with

G 2 j (θ̄ , b) ≡ b j − b̄ j , j = 1, 2, 3.

G(θ̄ , θ) is said to be symmetric if

G(θ̄ , θ) = 0 ⇒ G(θ , θ̄) = 0.

To prove symmetry of our G(θ̄ , θ) = 0 system we first note that G 2(θ̄ , b) =
0 implies G 2(θ̄ , b̄) = 0, since b = b̄ is the same as b̄ = b. As for G 1(θ̄ , a) =
0, or F (a , b̄) − F (ā , b̄) = 0, the interchange of θ̄ and θ yields F (ā , b) −
F (a , b) = 0. However, since the interchange left b = b̄, we are entitled to

rewrite F (ā , b̄) − F (a , b̄) = 0 by replacing b by b̄ in both expressions in

the equation, thus obtaining F (ā , b̄) − F (a , b̄) = 0, which is the original
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equation G 1(θ̄ , a) = 0. This completes the proof of symmetry, and hence

shows that the covering is a partition. This completes the analysis of the first

covering and its generating correspondence.

Now the second covering generates a mechanism π ′′. For the second

covering, using the L-RM correspondence, we choose to define the set A by

A(θ̄) = {(a1, a2) : a1 = ā1, a2 = ā2, a2 > 0}. (1)

Clearly, this will be the parameter transfer from agent 1 to agent 2. Agent 1

sends two messages m1
1 = a1; m1

2 = a2, and agent 2 sends one message:

m2 = F
(
m1

1, m1
2, b

)
. (∗)

Thus, dim M′′ = 3, which shows that π ′′ is not m-efficient.

Again we substitute the values from the A-equations into F (a , b) =
F (ā , b̄), obtaining the B-equation:

ā1b1 + ā2b2 + b3 + ā2
1 = ā1b̄1 + ā2b̄2 + b̄3 + ā2

1 . (2)

To verify reflexivity, we consider the set A∗(B , θ̄) and ask whether it is the

original set A. For this purpose we solve equation (2) for b3 and substitute

the solution into F (a , b) = F̄ .

The solution of (2) for b3 is

b3 = −ā1(b1 − b̄1) − ā2(b2 − b̄2) + b̄3.

Its substitution into F (a , b) = F (ā , b̄) yields

(a1 − ā1) b1 + (a2 − ā2) b2 + (
a2

1 − ā2
1

) = 0, (3)

which must be an identity in b1 and b2. Let b1 be any nonzero number and

b2 so chosen that (a1 − ā1) b1 + (a2 − ā2) b2 = 0. (By hypothesis, b1 �= 0!)

Then (3) becomes

a2
1 − ā2

1 = 0,

and since (by hypothesis) a1 > 0, ā1 > 0, it follows that

a1 = ā1. (4.1)

Hence, by equation (3) together with a1 = ā1,

(a2 − ā2) b2 = 0.

Hence,

a2 = ā2, (4.2)
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and Equations (4.1), (4.2) bring us back to the original A-set. Hence, we

have reflexivity.

It remains to verify symmetry. Here the G(θ̄ , θ) = 0 system consists of

G 1(θ̄ , a) ≡ (G 11(θ̄ , a), G 12(θ̄ , a)) = 0,

with

G 1i (θ̄ , a) ≡ (a1 − ā1) = 0, i = 1, 2,

and

G 2(θ̄ , b) ≡ (a1 − ā1) b1 + (a2 − ā2) b2 + (
a2

1 − ā2
1

) = 0.

When θ and θ̄ are interchanged, it still remains the case that a = ā . As for

G 2(θ̄ , b) = 0, it becomes

(ā1 − a1) b̄1 + (ā2 − a2) b̄2 + (
ā2

1 − a2
1

) = 0,

but, since b j = b̄ j , the preceding relation can be rewritten as

(ā1 − a1) b1 + (ā2 − a2) b2 + (
ā2

1 − a2
1

) = 0,

which is equivalent to the original B-equation (3). Thus we have symmetry,

hence partition and therefore nonredundancy.

One important conclusion is that a nonredundant rRM covering can yield

a mechanism with higher than minimum dimension of the message space.

Furthermore, although π ′ is not m-efficient, it does have the property of

being eq-efficient, assuming nondegeneracy104

π ′ is eq-efficient. (∗∗)

Proof: Suppose π ′ is not eq-efficient. Then there exists π# whose equation

numbers are q #
1 =< 1, q #

2 =< 3, with one of the two inequalities strict. It seems

obvious that q #
1 < 1, i.e., q #

1 = 0, is impossible – since this would mean that

agent 1 supplies no information. So it must be that q #
2 < 3, , i.e., q #

2 =< 2. But

that is also impossible for the following reasons.

Since the set A in π ′ is maximal, either A# = A or A# is a refinement of

A in π ′. But if A# = A while B# �= (B in π ′, it follows that B# coarsens B

104 To make equation counting meaningful, we assume nondegeneracy, as defined in Hurwicz
and Weinberger (1990). To define nondegeneracy, consider a mapping G : W →→ Rk . G
is said to be nondegenerate at W0 ∈ W if the range (image) of its derivative (differentiable)
Gw(W0; ω) as ω varies is the whole space Rk Ġw is linear in ω.



P1: KVU
CUNY425-02 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 14:41

180 From Goals to Means: Constructing Mechanisms

in π ′.105 But this cannot be true since π ′ is maximally coarse. So A# is a

nontrivial refinement of A.

Since coverings are represented by nondegenerate equation systems, the

A# covering is representted by more equations than A, i.e., q # > 1. Thus,

contrary to our hypothesis, π# is not more efficient than π ′ (it is eq-

noncomparable). This completes the proof of (∗∗), i.e., of the eq-efficiency

of π ′.

APPENDIX

Recall that given θ̄ = (ā , b̄) ∈ �1 × �2, and Ā ⊆ �1 such that ā ∈ Ã and

Ã × {b̄} ⊆ F −1(F (θ̄)), we define the operator B∗ by the relation

B∗
(

Ã, θ =
⋃

B

{B ⊆ �2 : Ã × B ⊆ F −1(F θ̄)}
)

remark. The operator B∗ is monotone decreasing with regard to the inclu-

sion in the first argument; i.e.,

A′ ⊇ A′′ :⇒: B∗(A′, θ̄) ⊆ B∗(A′′, θ̄).

Similarly, given θ̄ = (ā , b̄) ∈ �1 × �2 and B̃ ⊆ �2 such that b ∈ B̃ and

{ā} × B ⊆ F −1(F (θ̄)}, we define the operator A∗ by the relation

A∗(B̃ , θ̄) =
⋃

A

{A ⊆ �1 : A × B̃ ⊆ F −1(F (θ̄))}

A∗ is also monotone decreasing with regard to inclusion in the first argu-

ment.

theorem. “Two-step convergence”

Given θ̄ and A, such that ā ∈ A, ⊆ �1, and A1 × {b̄} ⊆ F −1(F (θ̄)), let

B1 = B∗(A1, θ̄). Also let A2 = A∗(B1, θ̄).

Then B2 = defB∗(A2, θ̄) = B1.

Proof of the Theorem

(i) Claim: A2 = def A∗(B1, θ̄) ⊇ A1

To show this, it is sufficient to prove that

(i′) A2 × B1 ⊇ A1 × B1.

105 B in π ′ is maximally fine.
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Note that every set B (hence B1 in particular) in the definition of B∗(A1, θ̄)

satisfies A1 × B ⊆ F −1(F (θ̄)); hence A1 is among the sets A in the defini-

tion of A∗(B1, θ̄). This implies (i ′) above, hence also claim (i).

(ii) Claim: B2 = def B ′(A2, θ̄) ⊆ B1 = defB∗(A1, θ̄).

This follows by monotonicity and Claim (i).

(iii) Claim: B2 ⊇ B1.

Since A2 × B1 is in the level set of θ̄ (i.e., A2 × B1 ⊆ F −1(F (θ̄)), it follows

that B1 is among the sets whose union constitutes B∗(A2, θ̄). Hence the

union B∗(A2, θ̄) includes B1, i.e., the Claim (iii).

(iv) Since B2 ⊇ B1 by (ii), and B2 ⊇ B1 by (iii), it follows that B2 ⊆ B1.

Q.E.D.
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Designing Informationally Efficient Mechanisms

Using the Language of Sets

3.1 Introduction

This chapter presents a formal and concise account of the process of design-

ing a decentralized mechanism that realizes a given goal function. The pre-

sentation here differs from the one in Chapter 2 in that this process is

set-theoretic, whereas in Chapter 2 (and Chapter 4), sets and relations are

represented by equations. The set-theoretic formulation is more general,

and covers cases in which the set of environments is a finite or discrete

set. A merit of the set-theoretic formulation is that it helps make clear the

essential logic and properties of our procedures for designing decentralized

mechanisms. On the other hand, the formulation in which sets and relations

are represented by equations permits the components of a mechanism to

be expressed in terms of algebraic expressions that hold across the set of

environments, rather than pointwise, as is the case with the set-theoretic

formulation. The process of mechanism design is “algorithmic” in both

formulations, in the sense that the design process consists of a sequence

of prescribed steps that starts with a specified goal function, and results

in an informationally efficient decentralized mechanism that realizes the

given goal function. Both approaches use the axiom of choice to prove the

existence of a transversal. However, the equations approach may in specific

instances derive a transversal by algebraic means, or through the use of cal-

culus. In the approach that uses smooth equations to characterize sets and

functions, an analysis may require solution of systems of nonlinear equa-

tions of high degree. Section 1.9 – the regulation of logging in a National

Forest – serves to motivate and illustrate mechanism design, but the formal

structure presented in this chapter does not require working through the

example. Section 1.9 is revisited in Section 3.8, where it is used to illustrate

the formal structures presented in this chapter.

182
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3.2 Mechanism Design

In an existing economy, mechanisms are typically designed in the midst of

ongoing economic activity, and it is also often the case that the set of design-

ers includes economic agents who are also engaged in economic activity.

Nevertheless, in the interest of clarity, it is helpful to separate the process of

mechanism design from the conduct of ordinary economic activity. There-

fore, we consider two phases of mechanism theory. The first phase is the

design phase; the second is the operating phase. The design phase takes place

before the operating phase. It must be completed before the operating phase

can start. (In some cases the design was completed even before the current

generation of economic agents was born.) We assume that there is a designer,

who, possibly together with assistants, designs and constructs an informa-

tionally decentralized mechanism to be used to organize the activities of

present and future economic agents.

More specifically, in the basic set up there is a set of economic agents,

{1, . . . , N}, a set of (factored) economic environments, � = �1 ×· · ·×
�N , and a goal function F : � → Z. We assume that the designer knows

the set of agents, the factored parameter space, �, and the goal function, F.

The designer can share her information with her assistants. The designer

does not know which of the possible environments will prevail after the

design phase is over. The product of that phase is a decentralized mechanism,

π = (M, μ, h). Each agent learns his part of the mechanism; that is, agent

i learns μi : �i ⇒ M, and possibly the outcome function h. The outcome

function translates equilibrium messages into outcomes.

After the design phase is finished, a particular environment θ in � mate-

rializes, and each economic agent learns his component θ i of θ . Thus, in

the operating phase, each economic agent knows the part of the mechanism

that governs her behavior, and her component θ i of θ . It is possible that the

designer, or one of her assistants, is one of the economic agents. In that case,

she must function in the design phase knowing only the information that

the designer is assumed to have, that is, without knowledge of the value of

θ , or of her component θ i of θ .1

Designing a mechanism can be a process that consists of steps, and these

steps can be distributed among assistants to the designer. Although it is

tempting to think of the design of the mechanism as itself being decentral-

ized, we use the term “distributed,” because the process is not necessarily

1 Otherwise incentives would create an additional problem. Here we can think of designing
mechanisms that will operate in the future.
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informationally decentralized in the sense in which that term applies to a

mechanism.

The basic framework and notation used here is the same as that used in

Chapter 2. It consists of

� a parameter space �;
� an outcome space Z;
� a single-valued goal function F : � → Z;
� a mechanism π = (M, μ, h),
� where M is the message space of the mechanism;
� μ : � ⇒ M is the (group) equilibrium message correspondence,

and
� h : M → Z is the outcome function.

It is convenient to distinguish between the message space M and the space

M ′ ⊆ M, where M ′ = μ(�) is the image of � under μ, and consists of

the subset of messages in M that are actually used by the mechanism.

A mechanism π ′ = (M ′, μ, h′), where M ′ = μ(�), and h′ : M ′ → Z,

can be extended to π = (M, μ, h) by defining h : M → Z by

h (m) =
{

h′(m) if m ∈ M ′

z◦ ∈ Z if m ∈ M\M ′ .

definition 3.2.1. The mechanism π = (M, μ, h) realizes F if and only if for

all θ ∈ �

h ◦ μ(θ) = F (θ).

It is implicit in the definition of “realizing” that μ(θ) is nonempty for

every θ ∈ �, and that h is defined on μ(�).

3.2.1 Decentralization

We assume that knowledge of the environment is distributed among a finite

set of agents I = {1, . . . , N}. Specifically, we assume that

� = �1 ×· · ·× �N . (3.2.1)

When � is the domain of the goal function, F, and (3.2.1) holds, we say that

F is factored.
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We assume that when θ ∈ � is the prevailing parameter point, θ =
(θ1, . . . , θ N), agent i knows θ i and does not know θ j , for any j �= i .2 In that

case no communication from agent i can depend directly on θ j , for j �= i .3

Insofar as realization is concerned, this requirement is expressed formally

by defining individual equilibrium message correspondences

μi : �i ⇒ M, for i ∈ I .

The set μi (θ i ) consists of messages m ∈ M such that when i ′s parameter

value is θ i , agent i accepts message m ∈ M as an equilibrium if and only

if m ∈ μi (θ i ). Thus, agent i ’s behavior in equilibrium depends only on the

component of the environment that she knows.

definition 3.2.2. A mechanism π = (M, μ, h) is called informationally

decentralized, briefly decentralized, if and only if there exist correspondences

μi : �i → M such that for all θ ∈ �, μ(θ) = ⋂N
i=1 μi (θ i ).

That is, μ(θ) consists of messages that each agent individually agrees to

when the environment is θ .

Our objective here is to design informationally decentralized mecha-

nisms (with desirable informational properties) that realize a given goal

function. Consider the situation of a designer of mechanisms. The designer

would know the set of agents, I , and the goal function, F : � → Z; that is,

she knows the set of environments, the distribution of information about

each environment among the agents – the designer knows what informa-

tion each individual agent would have in each possible environment, but

would not herself know that information – and the goal function. The

designer’s task is to choose a message space, a decentralized message corre-

spondence, and an outcome function that together realize the given goal

function. She is to do this using only what she knows, namely, the set

of agents, the set of possible environments (including the distribution of

information about environments among the agents), and the goal func-

tion. The design process generally cannot be decentralized. It is inherent

in the design problem that the designer knows the goal function, and the

2 This is a simplification of a more general assumption. Suppose that what agent i knows
when the environment is θ is the value ηi (θ) of a function ηi : � → Y i , where Y i is the set
of signals available to agent i . In that case ηi (θ) is what agent i knows about the environment
θ . Hence his message can depend only on ηi (θ).

3 In Section 3.9.2, where mechanisms that implement a goal function in Nash equilibrium
are considered, the implementation literature, and requires the strategy of an individual
agent to depend on the vector θ = (θ1, . . . , θ N ), but, according to the requirements of a
verification scenario, verification by agent i uses only knowledge by agent i of θ i .
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distribution of information among the agents. On the other hand, decen-

tralization is a property of a mechanism. It concerns the information that

each economic agent has about the prevailing environment. Though the

designer does not know the prevailing environment she can, in the first

phase of mechanism design, distribute her task among her assistants, shar-

ing with them the relevant parts of her information about the goal function,

and the structure of the space of environments. In light of the magnitude

of the task of designing a decentralized mechanism that realizes a given

goal function, it is often desirable to distribute that task among many assis-

tant designers, when that is possible, that is, to distribute the process of

design. We show how this can be done in the N-step process presented in

Section 3.3.

As a guide for the designer, we consider next how a decentralized mecha-

nism that realizes a goal function F structures the parameter space in relation

to F.

3.3 Mechanisms and Coverings

The message correspondence μ : � ⇒ M of a mechanism π induces a

covering C = Cμ of the parameter space �, as follows. For m ∈ M ′, K ∈
Cμ(m) if and only if

K = {θ ∈ � | θ ∈ μ−1(m)}.
Here μ−1 : M ′ ⇒ � is the correspondence defined by

θ ∈ μ−1(m) ⇔ m ∈ μ(θ).

Thus, a set K in this covering is the set of all parameter points that give rise

to the same message in the mechanism under consideration.

If π realizes F on �, then for every point m ∈ M ′ and every point in

θ ∈ μ−1(m), we have h(m) = F (θ). It follows that for every set K ∈ Cμ,

K ⊆ F −1(F (θ)). Thus, each set of the covering Cμ is contained in a contour

set of the goal function F.

definition 3.3.2. A set K that is contained in a contour set of F is said to

be F-contour contained, briefly, F-cc; a collection of sets that are each F-cc is

said to be F-cc.

When � = �1 ×· · ·× �N and μ is privacy preserving, θ ∈ μ−1(m) if
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and only if θ j ∈ (μ j )−1(m), for j = 1, . . . , N, where θ = (θ1, . . . , θ N). It

follows that

μ−1(m) = ( μ1)−1(m) ×· · ·× (μN)−1(m),

where (μi )−1(m) ⊆ �i . The proof is immediate.

Thus, the set μ−1(m) is the product of sets (μi )−1(m) in the individual

parameter space �i of agent i . If the message correspondence is privacy

preserving, we call the set μ−1(m) a rectangle. It is not a geometric rectangle,

except in the case where the set μi −1
(m) is a geometric rectangle in �i for

every i = 1, . . . , N.

If the mechanism π realizes the goal function F, it must be the case, as

stated above, that the inverse image of a message is F-contour contained.

That is, for all m ∈ M ′ ≡ μ(�), the setμ−1(m) ⊆ F −1(z) , where h(m) = z.

Suppose F (θ̄) = z for some fixed value θ̄ ∈ �. Then for m ∈
μ(θ̄)h(m) = z. Consequently, θ̄ ∈ μ−1(m). Moreover if θ ′ ∈ μ−1(m), it

must be the case that F (θ ′) = z, because F (θ ′) = h(μ(θ ′)) = h(m) = z.

Therefore, the set μ−1(m) = ( μ1)−1(m) ×· · ·× (μN)−1(m) is a subset

of F −1(z), a contour set of F . That is, μ−1(m) is F-cc.

To summarize, the covering Cμ induced by the message correspondence

μ is

(+) rectangular

and

(++) F-contour contained, that is, each set K ∈ Cμ is a subset of a contour

set F −1(z) for some z in the range of F.

The property of rectangularity, namely, that each K ∈ Cμ is the product

of sets K i ∈ �i , i = 1, . . . , N, is a consequence of the privacy-preserving

property of the message correspondence, μ, and hence of the fact that a

mechanism π that has the message correspondence μ is decentralized.

The relationship between the decentralized mechanism π = (m, μ, h)

and the covering Cμ of the parameter space � suggests a procedure for

constructing decentralized mechanisms that realize a given goal function,

when such a mechanism is not known in advance. The idea is to work

from the right sort of covering of the parameter space to a mechanism.

Without reference to any mechanism, using only knowledge of the goal

function F, we construct a covering of the parameter space that satisfies

properties (+) and (++). That is, first we construct a rectangular, F-cc

covering of �, and then we construct a decentralized mechanism from that
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covering by indexing the sets in the covering by “messages.” Furthermore,

from the standpoint of informational efficiency it is desirable to make the

rectangles in the covering as “large” as possible, in an appropriate sense,

because the larger the set in the covering, the less is the information about

the environment conveyed by the set, or by the name of the set. Moreover,

from the standpoint of informational efficiency, it is also desirable to make

the names, or labels, of sets as “small” as possible, in an appropriate sense,

because the cost of processing and transmitting small signals is likely to

be less than the cost of processing and transmitting large ones. This, along

with other considerations related to informational efficiency, is discussed in

Section 3.7 and in Chapter 2. Next, we turn to a procedure for constructing

a suitable covering.

3.4 A Systematic Process (an Algorithm) for Constructing
an rRM Covering

Suppose we are given a factored space of environments � = �1 ×· · ·×
�N , and a goal function F : � → Z. The first step in the procedure for

constructing a decentralized mechanism that realizes F is to construct a

correspondence V : � ⇒ � with three properties:

For every θ ∈ �,V(θ) is a rectangle. (3.4.1)

That is, there are sets K 1, K 2, . . . , K N K i ⊆ �i such that

V(θ) = K 1 × K 2 ×· · ·× K N .

For every θ ∈ �, V(θ) ⊆ F −1 (F (θ)). (3.4.2)

That is, V is F-cc.

For every θ ∈ �, θ ∈ V(θ). (3.4.3)

We say that V is self-belonging if it satisfies (3.4.3).

We first present the construction for the case of two agents. In that case

� = �1 × �2.

Define a correspondence A : � ⇒ �1 as follows. For an arbitrary point

θ̄ = (θ̄1, θ̄2) ∈ �, define a set A(θ̄) in �1 such that

θ̄1 ∈ A(θ̄), (3.4.4)

and

A(θ̄) × {θ̄2} ⊆ F −1(F (θ̄)). (3.4.5)
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Next, define a “rectangle” by choosing a set B(A(θ̄), θ̄) ⊆ �2, such that

θ̄2 ∈ B(A(θ̄), θ̄), (3.4.6)

and

A(θ̄) × B(A(θ̄), θ̄) ⊆ F −1(F (θ̄)). (3.4.7)

We define V(θ̄) = A(θ̄) × B(A(θ̄), θ̄). Then (3.4.4), (3.4.6), and (3.4.7)

ensure that V : � ⇒ � is self-belonging, rectangular, and F-cc.

Note that this construction can be carried out in steps, each done per-

haps by a different assistant designer. This feature also holds when there

are more than two agents. We show in Section 3.5 that a mechanism

constructed from this covering is decentralized, and does realize the goal

function F.

The preceding construction does not take informational efficiency into

account in prescribing the sets A and B. For instance, the sets A(θ̄) =
{θ̄1}, B(A(θ̄), θ̄) = {θ̄2} are acceptable. This particular specification results

in the covering that leads to the complete revelation mechanism. How-

ever, with informational efficiency in mind, we require that the sets A and

B be as large as possible without resulting in a rectangle that includes

points not in the contour set F −1(F (θ̄). Thus, in a preliminary step

we specify A(θ̄) to satisfy 3.4.4 and 3.4.5, as above. In the next step we

choose

B∗(A(θ̄), θ̄) = ∪{B ⊆ �2 | θ̄2 ∈ B and A(θ̄) × B ⊆ F −1(F (θ̄))}
(3.4.8)

so as to make the B-side of the rectangle as large as possible without going

outside the contour set of θ̄ , given the set A(θ̄).

This choice of the B-set defines a correspondence L : � ⇒ � , by

L (θ) := A(θ) × B∗(A(θ), θ). (3.4.9)

This is called the left rectangles method correspondence, abbreviated left RM

correspondence. As constructed, it is self-belonging, F-cc and rectangular.

If we had chosen to start with agent 2, we would have started the con-

struction with the preliminary choice of a set B(θ̄) such that for

θ̄ = (θ̄1, θ̄2) ∈ �,

θ̄2 ∈ B(θ̄), (3.4.10)
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and

{θ̄1} × B(θ̄) ⊆ F −1(F (θ̄)). (3.4.11)

In turn, we would define

A∗(B(θ̄), θ̄)) = ∪{A ⊂ �1 | θ̄1 ∈ A and A × B(θ̄) ⊆ (F −1(θ̄))}
(3.4.12)

and define the right-RM correspondence

R : � ⇒ � by R(θ) = A∗(B(θ), θ) × B(θ). (3.4.13)

As with L , the right RM correspondence is self-belonging, F-cc, and rect-

angular.

In general, the left RM and right-RM correspondences are different. How-

ever, by using the operators A∗ and B∗ we can construct a correspondence

that is both left-RM and right-RM. We call such a correspondence reflexive

RM, briefly rRM. To do this we first choose a correspondence A : � ⇒ �1

that satisfies conditions (3.4.4) and (3.4.5). Then form the sets B∗(A(θ̄), θ̄)

as described. Second, define B̃(θ) = B∗(A(θ̄), θ̄), and form the right-RM

correspondence for B̃(θ), using the operator A∗ to form the set

A∗(B̃(θ̄), θ̄).

Let

Ã(θ̄) = A∗(B̃(θ̄), θ̄).

Then the self-belonging, F-cc, and rectangular correspondence,

V(θ) = Ã(θ) × B̃(θ),

such that

B̃(θ) = B∗( Ã(θ), θ)

and

Ã(θ) = A∗(B̃(θ), θ),

is both left and right RM, that is, reflexive RM. If we think of this construction

as a dynamic process, then the initial value is the initial step – the choice of the

preliminary set either A(θ̄) or B(θ̄), and the stationary value is the result of

the final step, V(θ) = Ã(θ) × B̃(θ). This rectangle can also be considered to

be a fixed point of a mapping defined by the operators A∗ and B∗. Examples

presented subsequently show that the correspondence V and the covering
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CV that it generates depend on the initial step, that is, on which side of the

rectangle is chosen first, and on what set is chosen in that preliminary step.

Formally,

theorem 3.4.1 (Two step rRM construction). Let θ̄ ∈ � = �1 × �2, let

A1 ⊆ �1, and suppose that θ̄1 ∈ A1. We claim that the set B1 := B∗(A1, θ̄)

is reflexive. That is, if A2 = A∗(B1, θ̄) , then B∗(A2, θ̄) = B1.

Proof: (∗) Note that the operators B∗ andA∗ are each monotone decreasing

with respect to set inclusion.

Thus,

A′ ⊇ A′′ implies B∗(A′, θ̄) ⊆ B∗(A′′, θ̄).

(Similarly for A∗.) To see this, observe that A1 ⊆ A2 = A∗(B1, θ̄). This

follows from the definition of A∗, and B∗, and the construction of B1.

Furthermore, by construction we have A2 × B1 ⊆ F −1(F (θ̄). It follows

that B1 ⊆ B∗(A2, θ̄). But because A2 ⊇ A1, it follows from (∗) that B1 ⊇
B∗(A2, θ̄). Thus, we have shown that B1 = B∗(A2, θ̄), that is, we have shown

that B∗(A∗(B1)) = B1. This completes the proof.

In the case of two agents the construction can be illustrated graphically.

Figures 3.4.1a and 3.4.1b show the two steps of the construction.

A similar construction works for an arbitrary finite number, N, of agents.

We begin with notation.

Let � = �1 ×· · ·× �N , and for K i ∈ �i , i = 1, . . . , N, let K =
K1 ×· · ·× K N . Thus, K is a rectangle in �. We write K−i =
K1, . . . , Ki−1, Ki+1, . . . , K N . The set K−i is an ordered list of sets corre-

sponding to the agents other than agent i in the order {1, . . . , N}. Similarly,

�−i = �1 ×· · ·× �i−1 × �i+1 ×· · ·× �N .

Our construction begins by choosing a sequence of agents 〈i1, i2, . . . , iN〉,
from the set {1, . . . , N}, that is, a permutation of the agents. The construc-

tion starts with agent i1, and continues through the set of agents in the

order given by the permutation. For convenience, and without loss of gen-

erality, we can consider the agents in the same order as they appear in the

set {1, . . . , N}. Let θ̄ be an arbitrary point in �. The designer constructs

a rectangle corresponding to the point θ̄ that has two properties; first, it

contains the point θ̄ , and second, it is contained in the same contour set of

the goal function F as θ̄ . We use the following notation.
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Figure 3.4.1a

The set Ki is the i-side of a rectangle K = K1 ×· · ·× K N = Ki × K−i .

We write K ′
−i ⊆ K ′′

−i to mean that every component of K ′
−i is a subset of

the corresponding component of K ′′
−i .

The designer’s construction proceeds in steps. In each step the designer

specifies a “side” of the rectangle corresponding to an agent, and does so

in steps, agent by agent in order. There is a preliminary step, called the 0th

step. In this step the designer specifies a provisional set for agent 1, denoted

K 0
1 , that satisfies the condition

θ̄ ∈ K 0
1 × {θ̄−1} = K 0

1 × {θ̄2} ×· · ·× {θ̄ N} ⊆ F −1(F (θ̄)).

In the following N steps, the designer constructs the sides of the rectangle

corresponding to the point θ̄ . This is done by means of operators A∗
i , for i =
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Figure 3.4.1b

1, . . . , N. The operator A∗
i specifies the maximal i-side of an F-cc rectangle

that contains the point θ̄ , from given sides K−i . We write

K ∗
i = A∗

i (K−i ; θ̄).

Formally, for each i ∈ {1, . . . , N}, we define the operator A∗
i by the relation

A∗
i (K−i ; θ̄) = ∪{K ′

i ⊆ �i : θ̄ ∈ K ′
i × K−i ⊆ F −1(F (θ̄))}. (3.4.14)

It is immediately evident that each operator A∗
i is monotone decreasing with

respect to inclusion, in the sense that

(+) for every i = 1, . . . , N, and every θ̄ ,

if K ′
−i ⊆ K ′′

−i , then A∗
i (K ′

−i ; θ̄) ⊇ A∗
i (K ′′

−i ; θ̄).
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The N steps of the designer’s construction are as follows. For agents

2, . . . , N, the designer proposes sides

K2 = (
K 0

1 , {θ̄3}, . . . , {θ̄ N}, θ̄
)

K3 = A∗
3

(
K 0

1 , K2, {θ̄4}, . . . , {θ̄ N}, θ̄
)

...

Ki = A∗
i

(
K 0

1 , K2, Ki−1, {θ̄ i+1}, . . . , {θ̄ N}, θ̄
)

...

K N = A∗
N

(
K 0

1 , K2, . . . , K N−1, θ̄
)

and, in theNth step, the designer constructs the final specification of agent

1’s side, namely

K1 = A∗
1(K2, . . . , K N , θ̄).

The N-step construction defines a correspondence V : � ⇒ � that is self-

belonging, rectangular, and F-cc.

Note that this construction has two “free parameters,” the permutation of

agents and the choice of the “initial set” in each preliminary step. Thus, even

for a given permutation of the agents, and a given point, θ̄ , there may be

several different rectangles that can be constructed by the N-step procedure.

In Chapter 2, where we define sets and functions by smooth equations, we

show how the covering and correspondence described here in set-theoretic

terms (without smoothness assumptions) can be constructed by an algebraic

procedure. It is not necessary to carry out the construction separately for

each parameter point.

Just as the two-step process results in a reflexive rectangle (see Theo-

rem 3.3.1 for two agents) so does the N-step process. To prove this, we first

define reflexivity in the setting of N ≥ 2 agents at an arbitrary hypothetical

parameter point θ̄ ∈ �.

definition 3.4.1. Let C be a rectangular, self-belonging, F-cc covering of

�. C is called reflexive, if and only if for every θ̄ ∈ �, and each rectan-

gle K = K1 ×· · ·× K N ∈ C such that θ̄ ∈ K , it is the case that for each

i ∈ {1, . . . , N}, Ki = A∗
i (K−i , θ̄). If C is generated by a correspondence

V : � ⇒ � and C is reflexive, we also call V reflexive.
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theorem 3.4.2. If CV is a covering of � generated by a correspondence V

as θ̄ ranges over �, that is constructed by an N-step procedure, then CV is

reflexive, F-cc, rectangular, and self-belonging, and so is V .

Proof: Only reflexivity is not obvious. To prove reflexivity we must show

that, for an arbitrary θ̄ in �, a rectangle K = K1 ×· · ·× K N , that is, con-

structed by the N-step process, Ki = A∗
i (K−i , θ̄), for each i ∈ {1, . . . , N}.

For i ∈ {2, . . . , N}, because K is constructed by the N-step process,

Ki = ∪{K ′
i ⊆ �i : θ̄ ∈ K 0

1 ×· · ·× Ki−1 × K ′
i × {θ̄ i+1} ×· · ·× {θ̄ N}

⊆ F −1(F (θ̄))}. (∗)

It follows that

K−i = (K1, . . . , Ki−1, {θ̄ i+1}, . . . , {θ̄ N}). (&)

From the definition of K , and the assumption that K is constructed by the

N-step process, it follows that

K−i = (K1, . . . , Ki−1, Ki+1, . . . , K N) , (∗∗)

and that

(K1, . . . , Ki−1, Ki+1, . . . , K N) ⊇ (K1, . . . , Ki−1, {θ̄ i+1}, . . . , {θ̄ N}).
This implies that K−i ⊇ A∗

i (K1, . . . , Ki−1, {θ̄ i+1}, . . . , {θ̄ N}).

Then, monotonicity of the operators A∗
i yields the relation

A∗
i (K−i , θ̄) ⊆ A∗

i (K 0
1 ×· · ·× Ki−1 × {θ̄ i+1} ×· · ·× {θ̄ N}, θ̄) = Ki .

But

θ̄ ∈ Ki × K−i ⊆ F −1(F (θ̄)),

hence,

Ki ⊆ A∗
i (K−i , θ̄).

It follows that Ki = A∗
i (K−i , θ̄), for i = 2, . . . , N.

To see that the conclusion also holds for i = 1, note that

K−1 = (K2, . . . , K N),

and hence by the Nth step of the N-step process,

K1 = A∗
1(K−1, θ̄).
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We have shown that for all i = 1, . . . , N

Ki = A∗
i (K−i , θ̄).

This completes the proof.

Theorem 3.4.2 tells us that the N-step process constructs reflexive RM

coverings. It is also the case that every reflexive RM covering of the param-

eter space �, for the function F, can be constructed by the N-step pro-

cess. To see this, suppose that C is a reflexive RM covering of � for

F, and let θ̄ be an arbitrary point of �. Then θ̄ is contained in some

rectangle, or possibly several rectangles, in C . Let K = K1 ×· · ·× K N

be a rectangle that contains θ̄ . Begin the N-step process with K 0
1 = K1

as the preliminary step. The first step constructs K ′
2 = ∪{B ⊆ �2 : θ̄ ∈

K 0
1 × B × {θ̄3} ×· · ·× {θ̄N} ⊆ F −1(F (θ̄))}. Thus, K ′

2 = A∗
2(K1 × {θ̄−2},

θ̄). Because K is a reflexive RM rectangle, K2 = A∗
2(K−2, θ̄). Now,

K1 × {θ̄−2} ⊆ K−2. Therefore, A∗
2(K−2, θ̄) ⊆ A∗

2(K1 × {θ̄−2}), and hence

K2 ⊆ K ′
2. But K2 ⊆ {B ⊆ �2 : θ̄ ∈ K 0

1 × B × {θ̄3} ×· · ·× {θ̄N} ⊆ F −1

(F (θ̄))}. Hence, K2 ⊇ A∗
2(K1 × {θ̄−2}) = K ′

2. Thus, K2 = K ′
2.

A similar argument shows that Ki = K ′
i for all i ∈ {1, . . . , N}.

We have shown the following.

theorem 3.4.3. A covering C of � for F is reflexive RM if and only if it can

be constructed by the N-step process.

The rRM construction applied to a given goal function can produce sev-

eral different coverings. All of them are maximally coarse, and therefore are

efficient in the sense that they require the agents to observe their environ-

ments only as precisely as is necessary to realize the given goal function.

We say they are observationally efficient. However, the rRM procedure can

construct decentralized mechanisms that realize a given goal function, but

that have different sized message spaces. Thus, as it stands so far, it is not

guaranteed that the rRM algorithm constructs mechanisms that have mes-

sage spaces that are of minimum informational size, although mechanisms

that realize the given goal function and have minimum informational size

are among those that are produced by the rRM algorithm. We show next that

adding a step to the algorithm can result in mechanisms that have minimal

observational requirements and also minimal message spaces. More specifi-

cally, in the case of finite parameter spaces the modified rRM construction,

called OrRM, results in a covering of the parameter space that leads to a
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message space that has minimal informational size, and therefore has no

redundant rectangles.

3.4.1 OrRM: An Algorithm for Constructing an rRM Covering
of a Finite Parameter Space That Is Minimal in the Class

of Rectangular, F-Contour Contained Coverings

The rRM algorithm for constructing a covering of the level sets of a goal

function in its parameter space can construct several different coverings.

Each of them is maximally coarse, but they do not necessarily have the

same number of sets (see Example 3.6.2). In the case of a finite parameter

space, the number of sets in a covering is important because, anticipating

the construction of a transversal to the covering in the next section, the

size of a covering determines the size of the message space of a mechanism

based on that covering. In this subsection we modify the rRM construction

so that it generates minimal coverings, that is, coverings that consist of the

smallest possible number of F-contour contained rectangles for a given goal

function. We show that the covering so constructed, an rRM covering, is

minimal in the class of all F-contour contained rectangular coverings for

the given goal function. It follows that the mechanism constructed from that

covering is informationally efficient with respect to two criteria of efficiency:

observational efficiency and communication efficiency. The covering con-

structed by OrRM is maximally coarse, because it is an rRM covering, and,

in the case of a finite parameter space, the message space of a mechanism so

constructed has minimal informational size in the space of all decentralized

mechanisms that realize the given goal function. Furthermore, the covering

from which the mechanism is constructed does not contain any superfluous

rectangles.

The idea underlying the modification of the rRM algorithm is to choose

a special order in which the rectangles are constructed. Specifically, the set

constructed first is one in which, for left-RM, the A-side is most constrained

(in a sense made clear in what follows) (for right-RM, it is the B-side),

and proceeds in order through those that are successively less constrained,

stopping at the first collection of rRM sets that form a covering. This pro-

cess defines the (self-belonging) covering correspondence V on the full

parameter space. It therefore defines the covering CV , and also ensures that

CV contains no superfluous sets. We call this an ordered rRM construction,

abbreviated OrRM. The OrRM construction is presented for the case of two

agents, first for a goal function that is defined on a finite parameter space,

and subsequently for certain special goal functions defined on a continuum,
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specifically, a Euclidean space, that do not satisfy the regularity assumptions

made in Chapters 2 and 4.

Chapters 2 and 4 deal with goal functions defined on Euclidean spaces,

and usually assume that they satisfy regularity conditions. In Chapter 2

regular goal functions are usually assumed either to have nonzero Jacobians,

or, to satisfy certain rank conditions on bordered Hessian matrices. (Some

functions that are not so regular also appear in Chapter 2.) The requirement

on the bordered Hessian matrix is imposed when the condensation method

is used to construct decentralized mechanisms. These conditions, and the

theorems that the condensation method is based on, are presented in Chapter

4. But “between” the finite case and the smooth cases treated in Chapters

2 and 4 there is a class of goal functions defined on continua that do not

satisfy smoothness conditions, for instance, step-functions. Goal functions

of this kind can arise in applications in which goals are described in ordinary

language, or in legal language, perhaps in legislation, or in an administrative

context. To represent the intended goal formally in such cases it may be

convenient, or necessary, to use step-functions, or functions pieced together

from local approximations (splines), as in the Example in Section 1.9. The

OrRM method of constructing a covering correspondence can be used in

such cases, at least to a certain extent, to construct a minimal covering of the

parameter space. It is applied in this subsection to a step-function whose

domain is a rectangle in two-dimensional Euclidean space. It is also applied

to a function made up of linear pieces. These applications are illustrated

graphically. We begin with the case of a finite parameter space.

A Finite Parameter Space

definition 3.4.1.1. Let

Bco(�, F , θ̂) = �\F −1(F (θ̂)) = {θ ∈ � = �1 × �2 | θ /∈ F −1(F (θ̂))}.
This is the set of all points in the rectangle �1 × �2 that are not in a given

contour set of the goal function F.

The parameter spaces �1 and �2, the goal function F, and the point θ̂

are all fixed in the analysis that follows, so we drop explicit reference to them

from the notation and write

Bco = Bco(�, F , θ̂).

assumption 3.4.1.1. �1 and �2 are finite sets.

Therefore, so is � = �1 × �2.

For given θ̂ ∈ �1 × �2, F −1(F (θ̂)) ⊆ �1 × �2.
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Another piece of notation that is useful is to mark points in the contour

set F −1(F (θ̂)) by o and points in Bco by ×.

Following the convention used earlier in this chapter for finite sets � =
�1 × �2, we represent them graphically as a box in which the sides consist

of points a1, a2, . . . , an of �1, and b1, b2, . . . , bm of �2. The box is

proj1(F −1(F (θ̂))) × proj2(F −1(F (θ̂))) ⊆ �1 × �2.4

Let

B(θ̂) = proj1(F −1(F (θ̂))) × proj2(F −1(F (θ̂))).

Note that

B(θ) = B(θ̂) for all θ ∈ F −1(F (θ̂)).

B(θ̂) is the smallest box that contains F −1(F (θ̂)).

With the understanding that θ̂ is fixed, we write elements of B in

the coordinates (a , b). Thus, proj1(B) = {a1, a2, . . . , a p̄}, and proj2(B) =
{b1, b2, . . . , bq̄ }. We use two representations of the contour set. The first uses

the set B. Because � = �1 × �2 is finite, we can represent B as a matrix,

or table, in which each element (a , b) occupies a “cell” in the matrix. The

second is to construct a matrix Q that has the same structure as B, but the

entries are either o or ×, according to whether the corresponding entry in

B is in the contour set, in which case it is o, or not, in which case it is ×.

Thus, we can represent the contour set in its minimal containing box B by

a p̄ × q̄ matrix Q, whose entries are either o or ×, where p̄ ≤ n, q̄ ≤ m.

We show a contour set and its containing box in Table 3.4.1.1.

Table 3.4.1.1

1 o o × o
2 − − − −
3 o o × o
4 − − − −
5 − − − −

1 2 3 4

4 In some cases it is possible to decompose a contour set of F so that there is a collection of
pairs of subsets in which each pair forms a rectangular block with the property that the part
of the contour set of F in that block can be analyzed separately from the rest of the contour
set. That is, there are subset S1 ⊆ �1 and S2 ⊆ �2 such that

{proj1(F −1(F (θ̂)) ∩ S1 × S2) × �2} × {proj2(F −1(F (θ̂)) ∩ S1 × S2) × �1}
⊆ (F −1(F (θ̂)) ∩ S1 × S2).

Of course, �1 × �2 is itself such a block. In specific applications it may be convenient to
decompose a contour set in this way. In a general treatment one block, which might as well
be �1 × �2, suffices.
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This matrix, or table, Q is used to construct a rectangular, F-cc, cov-

ering of the contour set that is minimal in the set of all F-cc, rectangular

coverings of the contour set F −1(F (θ̂)), whether RM coverings or not.

There are two versions of the OrRM algorithm. One starts from the A-

side and uses the “maximum A-set left-RM” construction. The other starts

from the B-side and uses the “maximum B-set right-RM” construction. The

two versions do not necessarily yield the same covering, nor do they yield

the same marked sets in Q, especially when the numbers of elements in

| proj1(B)| and |proj2(B)| (respectively equal to the number of columns in

Q, and to the number of rows in Q) are not the same. In such a case it is

better to use left-RM, when |proj1(B)| < |proj2(B)|, and right-RM when

the inequality is reversed. A similar thing happens in the case of a Euclidean

parameter space. In an example, the “augmented inner product” goal func-

tion, analyzed in Chapter 2 [2.1.1], the parameter space consists of two

real parameters that characterize the first agent, and three that characterize

the second. There are only two mechanisms that realize that goal function.

One is parameter transfer from agent 1 to agent 2, the other is parameter

transfer from agent 2 to agent 1. These mechanisms correspond to F-cc

rectangular coverings of the parameter spaces, one to the max A-side RM

covering, and the other to the max B-side RM covering. The A-side covering,

corresponding to the agent with two parameters, constructs a mechanism

with a two-dimensional message space, the other, corresponding to the agent

with three parameters, constructs a mechanism with a three-dimensional

message space. In the finite case, in the max-A left-RM, (resp. max-B right-

RM) the number of choices for A-sets, (resp. B-sets) can depend on the size

of |proj1(B)| (resp. |proj2(B)|). We present the max A-set left-RM version of

the algorithm, in a case where the parameter space of agent 1 is not larger

than that of agent 2.

The OrRM algorithm also constructs the self-belonging covering corre-

spondence that generates the covering CV .

The OrRM algorithm.

To begin with, note that the matrix Q might contain several identi-

cal rows. For instance, suppose q̄ = 4, and p̄ = 5, and suppose that the

points (a1, b1) , (a2, b1) , (a4, b1), and (a1, b3) , (a2, b3) , (a4, b3) are all in

F −1 (F (a1, b1)). Then the matrix Q would have two identical rows, for

example, as shown in Table 3.4.1.1.

The rows 1 and 3 are defined to be equivalent, because, as is made clear

below, they are treated identically by the algorithm.

We begin with an informal discussion of the max A-set left-RM algorithm.
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The first step is to select a row of Q with the property that the number of

entries in that row that are marked × is a maximum among the rows of Q.

Call such a row maximal (in Q). If there are several maximal rows, choose

one of them arbitrarily, and name it Row 1. We call this a named row, and

distinguish it from other rows of Q that are not named. Named rows are

numbered separately.

The second step is to apply the maximal A-set (abbreviated max A-set)

version of the left-RM algorithm to Row 1. This constructs a rectangle in Q

(and the corresponding rectangle in B), which we call K1. Without confusion

we use the same name to refer to a rectangle in Q, and to the rectangle in B

that has entries (a , b) in exactly the matrix positions (cells) that are marked

o in Q.

Next, for any point θ = (a , b) ∈ K1 let

V(θ) = V(a , b) = K1.

Notice that applying the max A-set left-RM algorithm to rows in Q that are

equivalent to Row 1 results in the same rectangle K1.

If K1 contains all the points in Q marked o, then the covering CV = {K1}
is a covering of the contour set F −1(F (θ̂)).

If there are points of Q marked o that are not in K1, there

must be a point θ = (a , b) /∈ K1. Then there must be at least one

row in Q\{rows equivalent to Row 1}. Find a row that is maximal in

Q\{rows equivalent to Row 1}. Name it Row 2, and apply the max A-set

algorithm to that row, and all rows equivalent to Row 2. It follows from

the fact that there is at least one point that is marked × in Row 1, but not

marked × in Row 2 that the max A-set left-RM algorithm constructs a rect-

angle K2 �⊂�= K1. Thus, K2\K1 �= φ. For each point θ = (a , b) ∈ K2\K1,

let V(θ) = K2. In other words, for θ ∈ K2,

V(θ) =
{

K1 if θ ∈ K1 ∩ K2,

K2 if θ ∈ K2\K1.

If V is defined at every cell in Q that is marked o, then K1 and K2 together

cover the full contour set.

So, suppose there is a cell in Q marked o at which V is not defined. If

such a cell is in Row 3 we apply the max A-side left-RM algorithm to Row 3.

If there is no such cell in Row 3, then V is already defined at every cell of that

row. We call such a Row inactive given the rectangles already constructed. In
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that case the construction proceeds to the next named Row in which there is

an entry o at which V is not defined. Suppose without loss of generality that

this is Row 4. Then the max A-side left-RM algorithm is applied to Row 4.

This constructs the set K3.

This process continues until the first step at which a set Kt , t ≤ p̄, is

reached such that there is no θ ∈ B at which V(θ) is undefined. The process

must stop in at most p̄ steps.

Theorem 3.4.1.1 shows that this process guarantees that the covering CV

so constructed consists of the smallest number of F-cc rectangles that can

cover the set F −1(F (θ̂)). The covering CV might contain sets that overlap,

but it contains no superfluous sets.

Before presenting a formal treatment, we take up an example that shows

the algorithm in action.

example 3.4.1.1. An informal idea of why we might expect the OrRM algo-

rithm to construct a minimal covering is that it starts with an A-side set such

that the rectangle that is constructed is the most constrained. That is, it starts

with a row with the most entries marked ×, and therefore contains elements

that will not be covered by other less constrained rectangles. Therefore, the

rectangles that are constructed first are ones that would in any case have to be

constructed. It might then happen that those rectangles also cover cells that

would be covered by other rectangles, ones that could create redundancies if

they were constructed too early in the process. The following example illus-

trates this point, and the process of construction. The example is followed

by a formal specification of the algorithm and a statement and proof of

Theorem 3.4.1.1.

In this example �1 = {a1, . . . , a6}, and �2 = {b1, . . . , b8}. The goal

function is F : �1 × �2 → Z. The matrix Q can without loss of generality

incorporate the effect of the initial step in selecting a row to be considered

“next” by first ordering its rows according to the criteria laid out in the infor-

mal discussion that precedes this example. If this is done to begin with, the

algorithm starts with the top row, and goes through the set of rows from the

top row in the order in which they are listed. In this example the reordered

matrix Q is shown in Table 3.4.1.2.

Starting with Row 1 we apply the maximal A-set rRM algorithm. The max-

imal A-set in Row 1 is A = {a1, a2}. Then

B∗(A) = {b1, b2, b6, b7, b8} ,
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Table 3.4.1.2

b1 o o × × × ×
b2 o o × × × ×
b3 o × o × × o
b4 o × × × o o
b5 × × o o o o
b6 o o o o o ×
b7 o o o o o o
b8 o o o o o o

a1 a2 a3 a4 a5 a6

and hence

{a1, a2} × {b1, b2, b6, b7, b8} = K1.

(Recall that the max A-side left-RM construction automatically produces

reflexive RM rectangles. That is, if A is maximal, then A∗(B∗(A)) = A.)

Then for every point (a , b) ∈ K1 let V(a , b) = K1.

The second row is identical to Row 1. The algorithm constructs the same

rectangle K1 for every row that is equivalent to Row 1. Therefore, every

element in the rows equivalent to Row 1 are covered by K1, and the covering

correspondence V is defined for every point in K1.

Table 3.4.1.3

b1 1 1 × × × ×
b2 1 1 × × × ×
b3 × × ×
b4 × × ×
b5 × ×
b6 1 1 ×
b7 1 1
b8 1 1

a1 a2 a3 a4 a5 a6

The entries in Q covered by K1 are indicated in Table 3.4.1.3 by replacing

the mark o in a covered cell with the entry 1.

Attention turns to the next row. The third row of Q is the first row that

is different from Row 1, though it has the same number of × entries (cells

marked ×). It is designated Row 2. The max A-set for Row 2 is {a1, a3, a6}.
Then,

B∗({a1, a3, a6}) = {b3, b7, b8}.
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Therefore,

{a1, a3, a6} × {b3, b7, b8} = K2.

The entries in Q covered by K1 and K2, as indicated in Table 3.4.1.4 by the

entries 1 and 2, respectively.

Table 3.4.1.4

b1 1 1 × × × ×
b2 1 1 × × × ×
b3 2 × 2 × × 2
b4 × × ×
b5 × ×
b6 1 1 ×
b7 1,2 1 2 2
b8 1,2 1 2 2

a1 a2 a3 a4 a5 a6

Next, V is defined at the points in K2 at which V is not already defined.

This results in the extension of V as follows:

V((a1, b3)) = V((a3, b3)) = V((a6, b3)) = V((a3, b7))

= V((a3, b8)) = V((a6, b7)) = V((a6, b8)) = K2.

The fourth row of Q is different from the third, and is designated Row 3.

The max A-set is {a1, a5, a6}. Then B∗({a1, a5, a6}) = {b1, b7, b8}, and

consequently {a1, a5, a6} × {b1, b7, b8} = K3.

Table 3.4.1.5

b1 1 1 × × × ×
b2 1 1 × × × ×
b3 2 × 2 × × 2
b4 3 × × × 3 3
b5 × ×
b6 1 1 ×
b7 1,2,3 1 2 3 2,3
b8 1,2,3 1 2 3 2,3

a1 a2 a3 a4 a5 a6

The entries in Q covered by K1, K2, and K3 are indicated in Table 3.4.1.5

by the entries 1, 2, 3, respectively.



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

3.4 A Systematic Process for Constructing an rRM Covering 205

The points that do not already have V values are shown next with their

V values. These are

V((a3, b5)) = V((a4, b5)) = V((a5, b5)) = V((a6, b5))

= V((a4, b7)) = V((a4, b8)) = K3.

The fifth row of Q comes next, and is designated Row 4. The max A-set is

{a3, a4, a5, a6}.
B∗({a3, a4, a5, a6}) = {b5, b7, b8};

therefore,

{a3, a4, a5, a6} × {b5, b7, b8} = K4.

The entries in Q covered by K1, K2,K3, and K4 are indicated in Table 3.4.1.6

by the entries 1, 2, 3, 4, respectively.

Table 3.4.1.6

b1 1 1 × × × ×
b2 1 1 × × × ×
b3 2 × 2 × × 2
b4 3 × × × 3 3
b5 × × 4 4 4 4
b6 1 1 ×
b7 1,2,3 1 2,4 4 3,4 2,3,4
b8 1,2,3 1 2,4 4 3,4 2,3,4

a1 a2 a3 a4 a5 a6

The elements of K4 not already assigned receive the assignments

V((a3, b5)) = V((a4, b5)) = V((a5, b5)) = V((a6, b5))

= V((a4, b7)) = V((a4, b8)) = K4.

Unassigned points remain, so the sixth row of Q must be considered.

Designate this row as Row 5. The max A-set in Row 5 is

{a1, a2, a3, a4, a5}.
B∗({a1, a2, a3, a4, a5}) = {b6, b7.b8};

therefore,

{a1, a2, a3, a4, a5} × {b6, b7.b8} = K5.

The entries in Q covered by K1, K2, K3, K4, and K5 are indicated in

Table 3.4.1.7 by the entries 1, 2, 3, 4, and 5, respectively.
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Table 3.4.1.7

b1 1 1 × × × ×
b2 1 1 × × × ×
b3 2 × 2 × × 2
b4 3 × × × 3 3
b5 × × 4 4 4 4
b6 1 1 5 5 5 ×
b7 1,2,3 1 2,4,5 4,5 3,4,5 2,3,4
b8 1,2,3 1 2,4,5 4,5 3,4,5 2,3,4

a1 a2 a3 a4 a5 a6

At this point every element of �1 × �2 that is in the contour set under

consideration has been assigned a V value. Thus, the construction is com-

pleted. The covering is

CV = {K1, K2, K3, K4, K5} .

It is evident that this covering is not redundant, but perhaps not so evi-

dent that it is minimal in the class of all F-cc rectangular coverings of Q.

Theorem 3.4.1.1 shows this.

Note that the last two rows of Q form an rRM rectangle. If the construction

of a covering had started with this rectangle, or had formed it “too soon,”

then the covering that resulted would have at least one redundant set.

The OrRM construction starting from the B-side generally does not

produce the same covering, nor does it necessarily produce a covering

that consists of the same number of rectangles. This is illustrated by

Example 3.4.1.1.

Next, apply the maximum B-side right-OrRM algorithm to Table 3.4.1.2.

We do not reorder the columns of Table 3.4.1.2 as we did the rows, but

rather number them as shown in Table 3.4.1.8 to display the order in which

rectangles are constructed in this example, using the principle that governs

the order in which either rows or columns are considered. This is done

so as to avoid creating a second matrix, and confusion that might arise

from differences in the appearance of the two matrices. It was already noted

that the left-OrRM and right-OrRM algorithms do not necessarily construct

coverings with the same number of rectangles, and commented that it seems

the difference is related to the number of columns compared to the number

of rows. But we have not proved this.
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Table 3.4.1.8

Col 6 Col 5 Col 3 Col 1 Col 2 Col 4

b1 o o × × × ×
b2 o o × × × ×
b3 o × o × × o
b4 o × × × o o
b5 × × o o o o
b6 o o o o o ×
b7 o o o o o o
b8 o o o o o o

a1 a2 a3 a4 a5 a6

The first named column in Table 3.4.1.8 is the fourth column from the

left. It has four cells marked ×, the maximum number of cells marked ×
among the six columns.

This is named Column 1, labeled (Col 1), in the table. Applying the max

B-side right-RM construction to this column yields the rectangle

K1 = {a3, a4, a5} × {b5, b6, b7, b8},
as shown in Table 3.4.1.9. The covering correspondence values are

V(a3, b5) = · · · = V(a5, b8) = K1

Table 3.4.1.9

Col 6 Col 5 Col 3 Col 1 Col 2 Col 4

b1 o o × × × ×
b2 o o × × × ×
b3 o × o × × o
b4 o × × × o o
b5 × × 1 1 1 o
b6 o o 1 1 1 ×
b7 o o 1 1 1 o
b8 o o 1 1 1 o

a1 a2 a3 a4 a5 a6

The next named column is column 2, which leads to construction of

the setK2 = {a5} × {b4, . . . , b8}, and to defining the covering correspon-

dence at the lone cell in K2 at which it is not already defined. Thus,

V(a5, b4) = K2.
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Table 3.4.1.10 shows this construction.

Table 3.4.1.10

Col 6 Col 5 Col 3 Col 1 Col 2 Col 4

b1 o o × × × ×
b2 o o × × × ×
b3 o × o × × o
b4 o × × × 2 o
b5 × × 1 1 1,2 o
b6 o o 1 1 1,2 ×
b7 o o 1 1 1,2 o
b8 o o 1 1 1,2 o

a1 a2 a3 a4 a5 a6

The rectangle K3 = {a3} × {b3, b5, . . . , b8} is the next one constructed, as

shown in Table 3.4.1.11.

Table 3.4.1.11

Col 6 Col 5 Col 3 Col 1 Col 2 Col 4

b1 o o × × × ×
b2 o o × × × ×
b3 o × 3 × × o
b4 o × × × 2 o
b5 × × 1,3 1 1,2 o
b6 o o 1,3 1 1,2 ×
b7 o o 1,3 1 1,2 o
b8 o o 1,3 1 1,2 o

a1 a2 a3 a4 a5 a6

The covering correspondence is defined at the one cell not already covered.

Thus, V(a3, b3) = K3.

Continuing, we get successively

Table 3.4.1.12

Col 6 Col 5 Col 3 Col 1 Col 2 Col 4

b1 o o × × × ×
b2 o o × × × ×
b3 o × 3 × × 4
b4 o × × × 2 4
b5 × × 1,3 1 1,2 4
b6 o o 1,3 1 1,2 ×
b7 o o 1,3 1 1,2 4
b8 o o 1,3 1 1,2 4

a1 a2 a3 a4 a5 a6
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with K4 ={a6}×{b3,b4,b5,b7,b8}, and V(a6, b3)=V(a6, b4)=V(a6, b5)=
V(a6, b7) = V(a6, b8) = K4.

Then,

Table 3.4.1.13

Col 6 Col 5 Col 3 Col 1 Col 2 Col 4

b1 5 5 × × × ×
b2 5 5 × × × ×
b3 o × 3 × × 4
b4 o × × × 2 4
b5 × × 1,3 1 1,2 4
b6 5 5 1,3 1 1,2 ×
b7 5 5 1,3 1 1,2 4
b8 5 5 1,3 1 1,2 4

a1 a2 a3 a4 a5 a6

and K5 = {a1, a2} × {b1, b2, b6, b7, b8} and V(ai , b j ) = K5 for all (i, j )

that identify a cell in K5. Finally, we have Table 3.4.1.14.

Table 3.4.1.14

Col 6 Col 5 Col 3 Col 1 Col 2 Col 4

b1 5,6 5 × × × ×
b2 5,6 5 × × × ×
b3 6 × 3 × × 4
b4 6 × × × 2 4
b5 × × 1,3 1 1,2 4
b6 5,6 5 1,3 1 1,2 ×
b7 5,6 5 1,3 1 1,2 4
b8 5,6 5 1,3 1 1,2 4

a1 a2 a3 a4 a5 a6

where K6 ={a1}×{b1, . . . , b4, b6, . . . , b8}, and V((a1, b3))=V((a1, b4))=
K6.

This covering consists of six rectangles. It is minimal among right RM

coverings, but recalling that max A-side left-OrRM construction resulted

in a covering of B\Bco by five rectangles, we see that it is not minimal in

the set of F-cc rectangular coverings of B\Bco .

Formal Treatment

Suppose we are given a finite set � = �1 × �2, a goal function F : �1 ×
�2 → Z, and the sets and notation introduced above. The matrix Q is as
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defined above for a given contour set. Note that there is an upper bound

on the number of rectangles required to cover Q, that is, to cover the cells

in Q marked o. Because there is a cell marked o in every column of Q,

and there is an F-cc rectangular covering that consists of rectangles that

are each confined to its own column of Q, it is not necessary to consider

coverings that consist of more than q̄ rectangles. (Recall that q̄ is the number

of columns in Q.) But there might be coverings that consist of fewer than q̄

rectangles. Suppose that the number of rows in Q is less than the number

of columns in Q.

Let left-OrRM denote the max A-set left-RM algorithm. We show next

that the left-OrRM algorithm constructs minimal coverings. That is, we show

that every F-cc, rectangular covering of the contour set of F contains at least

as many rectangles as one constructed by left-OrRM.

assumption 3.4.1.1. Suppose that � = �1 × �2, and Z are finite sets, F :

� → Z, and the matrix Q is defined for each contour set of F such that its

named Rows are arranged in order with the first, or top, Row having the

largest number of cells marked × among the rows of Q, and therefore the

smallest number marked o. The second Row has the next largest number

marked ×, but not all in the same columns as Row 1. (The possibility that

the number of cells marked × in Row 2 is the same as in Row 1 is not ruled

out.) The arrangement and numbering of named Rows continues until every

named Row has a number.

Suppose, without loss of generality, that the number of columns of Q is

less than or equal to the number of rows.

Under this assumption it suffices to consider the left-OrRM algorithm.

theorem 3.4.1.1. Let CV be a left-OrRM covering of the contour sets of F,

then every rectangular, F-cc (RF) covering of the contour sets of F contains

at least as many sets as CV . CV is a minimal covering of the contour sets of F.

Proof: It suffices to consider one of the contour sets of F, and let B\Bco and

Q be the matrices defined for that contour set.

Suppose the number of cells in Row 1 of Q that are marked × is x1.

Then y1 = q̄ − x1 > 0 is the number of cells in Row 1 that are marked o.

The smallest number of rectangles that can cover the cells in Row 1 that are

marked o is 1. There is at least one such rectangle, for instance, the rectangle,

R1, that consists of all the cells in Row 1 that are marked o. We seek a covering
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of Q that has the smallest number of rectangles. Therefore we enlarge R1 as

much as possible. This is accomplished by replacing R1 by the rectangle

K1 = A1 × B∗(A1),

where A1 = proj1 R1,and B∗ is the operator defined in the left-RM con-

struction in Section 3.3. It is clear that K1 covers Row 1.

The covering correspondence V associated with the covering we are con-

structing can be defined on K1, by

V(θ) = K1, for all θ ∈ K1.

If V(θ) = K1 for all θ ∈ B\Bco , then K1 covers the entire contour set B\Bco .

In that case, CV = {K1}. Therefore, because any rectangular F-cc (RF) cov-

ering of the contour set B\Bco must contain at least one set, the left-OrRM

covering CV is minimal in the class of all RF coverings of B\Bco .

Suppose that not all cells in Row 2 are in K1.

lemma 3.4.1.1. A rectangle that covers a cell in a column whose projection on

(B\Bco) \A1 is not empty, cannot cover Row 1. That is, a rectangle that

� contains a cell in Q that is marked o, and
� that cell is located in a column whose projection on �1 is not in A1

cannot cover Row 1.

Proof: To verify this, suppose to the contrary that there is a column, say c ,

such that the only cell that c has in common with Row 1 is marked ×, and

there is an F-cc rectangle, R, that includes a cell in c marked o, and also

covers Row 1. Let the cell at (1, c ′) be marked o. Then R includes the cell at

(1, c ′) and a cell at (r, c). If r = 1, then (1, c) is marked ×, and therefore is

not in R.

If r �= 1, then the cells at (r, c ′) and (r, c) are in R, because R is a rect-

angle. Therefore, the cell at (1, c) would have to be marked o. But the cell

at (1, c) is marked ×, which is a contradiction.

It follows that any covering of Row 1 must include at least one set that is

a subset of K1, possibly K1 itself .

Consider named Row 2. This set has no more cells marked × than Row 1,

and therefore has no fewer cells marked o than Row 1. Recall that Row 2

is not equivalent to Row 1. It follows that Row 2 contains a cell marked o

in a column, say d, in which the cell at (1, d) is marked ×. Lemma 3.4.1.1

assures us that if K is a rectangle that covers Row 2, then it cannot also
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cover any cell in Row 1 that is marked o. (A direct proof is as follows:

suppose a cell in Row 1, say, (1, d ′), is marked o. Then d �= d ′. If K covers

both (1, d ′), and (2, d), then K also covers the cells (2, d ′) and (1, d). This

implies that (1, d) is marked o, which contradicts the statement that (1, d) is

marked ×.)

We have shown that if K2 is a rectangle that covers Row 2, then K2 �⊂�= K1,

though K2 ∩ K1 need not be empty. It follows that any collection of F-cc

rectangles that covers Rows 1 and 2 must contain at least two rectangles.

The collection of left-OrRM rectangles

{K1 = A1 × B∗(A1), K2 = A2 × B∗(A2)}
covers both Row 1 and Row 2 , and consists of exactly two sets. This estab-

lishes the proposition that the left-OrRM algorithm constructs a minimal

rectangular F-cc (RF), covering of Rows 1 and 2 that consists of exactly two

rectangles.

According to the left-OrRM algorithm, the covering correspondence is V

defined as follows:

V(θ) =
{

K1 for all θ ∈ K1

K2 for all θ ∈ K2\K1.

Consider Row 3. It can be in one of two states:

� every cell in Row 3 is covered by either K1 or K2,5 or
� there is a cell in Row 3 that is not covered by K1 or K2.

In the first case Row 3 is called inactive given K1 and K2. The covering

correspondence V is defined at every cell in Row 3. The left-OrRM algo-

rithm goes on to the next named row that is active (not inactive) given K1

and K2.

In the second case, there is a cell in Row 3 marked o, say at Row 3, column

c, or (3, c) such that the cell at (1, c) is marked ×, and another cell at (3, c ′)
marked o such that (2, c ′) is marked ×. (Possibly c = c ′.)

It is a consequence of Lemma 3.4.1, including the argument in its proof,

that when Row 3 is active there is no F-cc rectangle K3 that also covers either

5 For example,

Row 1 x o x

Row 2 x x o

Row 3 x o o

Col 1 Col 2 Col 3

.
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Row 1 or Row 2. The largest rectangle that covers Row 3 when Row 3 is

active is

A3 × B∗(A3).6

Define

K3 = A3 × B∗ (A3) , and

V(θ) =

⎧⎪⎨
⎪⎩

K1 if θ ∈ K1

K2 if θ ∈ K2 \K1

K3 if θ ∈ K3\K1 ∪ K2.

The left-OrRM construction continues row by row until the first row is

reached at which the covering correspondence V is defined at every element

in B\Bco . The Proof of Lemma 3.4.1 applies to every Row j that is active

given the rectangles Ki i = 1, . . . , r, r ≤ j − 1 that are constructed for

preceding active Rows. Therefore, at each stage of the construction, any F-cc,

rectangular covering of the contour set of F, B\Bco , must contain at least

as many rectangles as the left-OrRm covering CV . In other words, CV is a

minimal covering in the set of all F-cc, rectangular coverings of the con-

tour set F −1(F (θ̂)), and the covering correspondence V is defined on all

of B\Bco . Q.E.D.

Next, we consider some simple examples of goal functions defined on a

Euclidean parameter space.

The Euclidean Parameter Space

The ideas for constructing minimal coverings presented in the preceding

subsection for finite parameters spaces also apply to some cases in which

the parameter space is a continuum, for instance, a Euclidean space. Goal

functions defined on Euclidean parameter spaces are discussed in Chap-

ters 2 and 4. A goal function can be constructed to model goals that are

defined without regard to algebraic representation. For instance, goals that

are specified in legislation, or in documents generated for administrative

agencies. These can require mathematical formulations that are not so neat

and smooth. In such a case the ideas developed to deal with the case of a

finite parameter space can sometimes be useful when the parameter space is

a continuum, say a Euclidean space, but the goal function is not sufficiently

6 According to the left-OrRM algorithm A3 = proj1(B\Bco ∩ Row 3), and B∗(A3) is the
largest set β in �2 such that A3 × β ⊆ B\Bco .
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regular for the methods of Chapters 2 or 4 to apply. When the parameter

space is Euclidean and the goal function consists of splines pieced together so

that some of them have algebraic formulas, and others are defined by means

of set generators, a construction that uses algebraic formulas for some parts

of the space, and set-theoretic methods for others, may be useful.

In this subsection, we illustrate the use of the ordered rRM procedure

for constructing a minimal covering of the level sets of a “nonsmooth” goal

function whose domain is a Euclidean parameter space. The illustration is

by way of examples in which the parameter space is two dimensional.

We consider the case of two agents. The parameter space is the Cartesian

product of two intervals in the real line. The goal function F is a step function.

A contour set of F is shown in Figure 3.4.1.1.

Θ2

      b5

     b4

    b3

     b 2

     b 1

    b0

   a0                        a1     a2             a3   a4                             a5             Θ
1

F z− ( )1

coL B

Figure 3.4.1.1

In the Euclidean case the length of horizontal lines in Bco plays the role

that the number of ×s in the rows of the matrix Q play in the finite case.7

In Figure 3.4.1.1 the longest horizontal line in Bco is one that runs from

the right-hand boundary of B to the contour set as shown in Figure 3.4.1.

7 In a case with more agents, or parameters, “flats” of higher dimension would replace lines.
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Starting the max A-set left-RM construction with the A-set taken to be the

interval [a0, a2], the left-RM algorithm constructs the rectangle K1 shown

in Figure 3.4.1.2.

Θ 2

      b5

     b
4

    b3

b2

     b1

    b0

   a
0
                        a1     a 2             a 3   a 4                             a 5             

Θ 1

K1

Figure 3.4.1.2

According to the OrRM procedure, every point (a , b) ∈ K1 takes the value

V (a , b) = K1. The next longest horizontal line in Bco to the contour set is

shown in Figure 3.4.1.3.

The OrRM procedure constructs the rectangle K2 shown in Figure 3.4.1.4.

Each point in K2\K1 is assigned to K2; that is,V (a , b) = K2 for all (a , b) ∈
K2\K1.

The third longest horizontal line in Bco leads to constructing the rectangle

K3, shown in Figure 3.4.1.5, and to assigning each point in K3\ (K1 ∪ K2)

to K3. Thus, V (a , b) = K3 for all (a , b) ∈ K3\K1 ∪ K2.

At this point V has been defined at every point in the contour set. There-

fore, the algorithm stops. It constructs a three-set covering with overlapping

but not redundant sets.
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      b5

     b4

    b3

     b2

b1

    b0

   a 0                        a1     a 2             a 3   a 4                             a 5             
Θ 1

K 1

Figure 3.4.1.3

It is also possible to get coverings that consist of four rectangles, one of

which is redundant, or five sets, two of which are redundant. These added

rectangles are, respectively, the one with corners (a0, b3), (a0, b4), (a4, b3),

(a4, b4), and the one with corners (a1, b1), (a1, b2), (a5, b1), (a5, b2). These

are shown in Figure 3.4.1.6.

The next example illustrates a situation in which the goal function consists

of linear pieces. It is shown in Figure 3.4.1.7.

According to the OrRM procedure for constructing the covering corre-

spondence V , and the covering CV that it defines, the A-side construction

should start with a point in the contour set F −1(z̄) such that the part of

the horizontal line through that point that lies in the set B has a maximal

intersection with Bco . In this case, it is clear that the vertical segment of the

contour set at the point a = 2 and all points on the slanted segment between

a = 2 and a = 10 are tied with respect to this criterion. In each case, the

length of the relevant line through an arbitrary point of each set is the same,



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

3.4 A Systematic Process for Constructing an rRM Covering 217

      b5
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b3

b2

b1

b0

   a 0                        a1     a 2             a 3   a 4                             a 5             
Θ 1

K 1

K 2

Figure 3.4.1.4

namely the width of B minus one point, which is the width of B. Thus, the

max A-side construction can begin with any point (a , b) such that

a = 2 and 4 ≤ b ≤ 14, (+)

or,

2 < a ≤ 10 and 0 < b ≤ 4. (++)

If we begin with a point in (+) then the max A-side algorithm con-

structs the set K1, which is the vertical segment defined by the inequali-

ties (+). The covering correspondence is V (a , b) = K1 for all (a , b) that

satisfy (+).

If we begin with a point (a , b) that satisfies (++), then the rectan-

gle constructed is the singleton {(a , b)}, and V (a , b) = {(a , b)} for all

(a , b) that satisfy (++) and do not satisfy (+). Note that this collection
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Figure 3.4.1.7

of sets can be described algebraically. The line segment, with end points

(2, 4), and (10, 0), has the equation

b = −1

2
a + 9. (+++)

For

10 ≤ a ≤ 16 and b = 0. (#)

The max A-side algorithm constructs the set K2 consisting of all (a , b) that

satisfy (#). The correspondence V(a , b) takes the value K2 at all (a , b) that

satisfy (#), but do not satisfy (+) or (++).

Each set K1, K2 requires one element to represent it, hence one mes-

sage. The line segment given by (+++) requires a parameter transfer

mechanism.

Thus, the message space consists of the closed line segment given by

equation (+++), where the end points are the representatives of the vertical

and horizontal segments, respectively.
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3.5 Constructing a Mechanism from a Covering
by the Transversals Method (TM)

In Section 3.4 we showed how to construct an rRM correspondence V and its

associated covering CV of �. In Section 3.4.1 we show, for a finite environ-

ment space, how to construct a covering correspondence, and its associated

covering, that consists of a minimum number of rectangles. When the cov-

ering CV consists of a minimum number of sets, a mechanism constructed

from that covering has minimum informational size. To construct a mech-

anism, the next step is to construct a transversal for the covering CV . We use

the term transversal to the covering CV despite the fact that it does not have

the usual geometric interpretation in finite spaces. Informally, a transversal

to a covering C is a subset of � that intersects every set K ∈ C just once, and

so is in one-to-one correspondence with C . When the covering is a partition,

a transversal consists of one point from each set K in the partition; for every

set K , the point can be chosen arbitrarily. But, because the rRM construc-

tion can produce a covering that may contain overlapping sets, we need a

more general definition of transversal. For this purpose we use the concept

of a system of distinct representatives (SDR) for a collection of subsets (Hall

1935). A distinct representative of a set in a collection of sets is an element

that identifies that set uniquely. Thus, when the covering has overlaps, the

representative point of a set cannot generally be chosen independently of

the representatives of other sets in the covering.

definition 3.5.1. An SDR for a covering C of � is a function � : C → �

that has two properties:

for every K ∈ C , �(K ) ∈ K ; (SDR i)

K ′ �= K ′′ implies �(K ′) �= �(K ′′) . (SDR ii)

definition 3.5.2. Let C be a covering of � and let � : C → (�) be an

SDR for C. The set T = �(C ) is called a transversal for C (associated

with �).

Theorem 3.5.1 shows that if C is a collection of subsets that are generated

by a self-belonging correspondence, then C has an SDR, and therefore also

has a transversal. (The converse is also true.)

theorem 3.5.1. Let C be an arbitrary covering of a set �. C has an SDR if

and only if C is generated by a self-belonging correspondence U : � ⇒ �.
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Proof: To prove sufficiency, suppose C is generated by a self-belonging

correspondence U : � ⇒ �. Then for each K ∈ C there exists θK ∈ K

such that U (θK ) = K . Define � : C → � by �(K ) = θK . This establishes

(i) of Definition 3.5.1. To establish (ii), suppose �(K ) = θK = θK ′ =
�(K ′). It follows from θK = θK ′ that U (θK ) = U (θK ′). Thus K = K ′.

To prove necessity, suppose C has an SDR � : C → �. Then by (i)

of Definition 3.5.1, for every K ∈ C , �(K ) ∈ K . We define the gen-

erating correspondence U : � ⇒ � in two steps. First, for θ ∈ �(C ),

let U1 : �(C ) ⇒ � given by U1(θ) = K if and only if �(K ) = θ . Sec-

ond, for θ ∈ �\�(C) define U2 : �\�(C ) ⇒ � as follows. First, for all

θ ∈ �, let Cθ = {K ∈ C | θ ∈ K }. Note that Cθ is not empty, because C is

a covering of �. Let U2(θ) = K for some arbitrary K ∈ Cθ . Now, define

the correspondence U by

U (θ) =
{

U1(θ) if θ ∈ �(C ) .
U2(θ) if θ ∈ � | (C )

Thus, U is a self-belonging correspondence that generates C . The Axiom of

Choice is used in both parts of this proof.

The next step is to construct a decentralized mechanism from the rRM

correspondence V and a transversal for the covering CV .

We discuss properties of V and the covering CV that are relevant to infor-

mational efficiency after completing the construction of the mechanism. As

we have said, the construction here is set-theoretic.8

Returning to the main line of our presentation, we construct a mechanism

from a covering of �, and a transversal. We do this in steps. Recall that a

mechanism consists of a message space, an equilibrium message correspon-

dence, and an outcome function. Our first step is to construct a mechanism

without requiring that the message correspondence preserve-privacy, that is,

we do not require that the mechanism to be decentralized. Subsequently, we

construct a decentralized version of the mechanism.9

The following notation, definitions, and assumptions are maintained

throughout this section.

8 In Chapter 2 sets, correspondences, and functions are given by equations. There we give two
systematic methods of construction that are based on a representation of the correspondence
V by equations. These are called “flagpole” and “condensation.” These general methods
presuppose that the covering generated by V is a partition, unlike the methods presented in
this chapter. However, in Chapter 2 we also give simple examples that show how transversals
can be constructed by algebraic or calculus methods when the underlying coverings have
overlaps.

9 See Chapter 2 for an alternative exposition, and illustrative examples.
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We are given

� a goal function F : � → Z;
� a covering C of � that is generated by a self-belonging correspondence

V : � ⇒ �;
� Thus, CV = C = {K ⊆ � : K = V(θ) for some θ ∈ �}.
� C is F-contour contained, (that is, if K ∈ C , then the goal function F is

constant on K );
� C has an SDR � : C → �. Consequently, C has a transversal T = �(C ).

We introduce a set M, the message space, and a function ν : T → M. The

set M contains, or possibly is the same as, the subset M ′ = ν(T) that consists

of the messages actually needed. The function ν encodes the elements of

the transversal T in the form of messages. (Recall that the elements of T

uniquely identify and hence label the sets in the covering.)

Next, we note some properties that are used in the construction of a

mechanism. Begin with the goal function F. Because F is a function, it

induces a partition of the transversal T such that for each z ∈ Z, F −1(z)

has the properties:

(a)

(θ ∈ F −1(z) ∩ T)

and

(θ ′ ∈ F −1(z) ∩ T)

⎫⎬
⎭ ⇒ F (θ) = F (θ ′),

and

(b) z �= z′ ⇒ (F −1(z) ∩ T) ∩ (F −1(z′) ∩ T) = ∅.

Proof: Property (a) follows immediately from the fact that C is an F-cc

covering. Property (b) is almost as immediate. Suppose z �= z ′, and let

θ ∈ (F −1(z) ∩ T) ∩ (F −1(z ′) ∩ T). Then, θ ∈ F −1(z) ∩ F −1(z ′). Because

F is single-valued, it follows that z = z ′, which is a contradiction.

This completes the proof.

Because C is a rectangular F-cc covering, it suffices to confine the discus-

sion to a single contour set of F.

Let FT : T → Z be the restriction of F to T . The partition induced by FT

on T is the same as the partition induced by F on T .

For a function F defined on a set X we write P (X, f ) for the partition

induced by F on X . The points of a transversal T have the same description

as points of �, because T is a subset of �. If � has a dimension, then the
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dimension of T would generally be less than the dimension of �, but its

points, being points of �, have the same description as do points of �.

Hence, in the case in which � is a space with coordinates, the points of the

transversal have the same number of coordinates as those of � that are not

in T . We introduce the function ν : T → M in order to encode the points

of the transversal in fewer variables than the number of parameters in �.

More formally, write ν(T) = M ′ ⊆ M, and ν−1 : ν(T) ⇒ T , or equiva-

lently, ν−1 : M ′ ⇒ T . The (single-valued) function ν induces the partition

P (T, ν) = {k ⊆ T | k ∈ v−1(m) for some m ∈ M ′.}.
Recall that for a set A ⊆ � we say that A is F-cc if and only if (θ , θ ′ ∈

A) ⇒ F (θ) = F (θ ′), and a collection E of subsets of � is F-cc if and only

if every set in E is F-cc.

Lemma 3.5.1 characterizes the collection of inverse images of messages

corresponding to the function ν.

lemma 3.5.1. The collection P (T, ν) is F-cc if and only if P (T, ν) is a refine-

ment of P (T, F ) = P (T, FT ).

Proof: (⇒) Suppose P (T, ν) is F-cc. P (T, ν) is a refinement of P (T, F )

if and only if for every k ∈ P (T, ν) there exists K ∈ P (T, F ) such that

k ⊆ K . Let k ∈ P (T, ν), and let θ ∈ k. Write z = F (θ) and note that there

is a set K ∈ P (T, F ) such that K = F −1(z). Because P (T, ν) is F-cc,

θ ′ ∈ k ⇒ F (θ ′) = F (θ) = z. Therefore, k ⊆ K ∈ P (T, F ).

(⇐) Suppose P (T, ν) is a refinement of P (T, F ). Then it is immediate

that P (T, ν) is F-cc.

corollary. If ν−1 is singleton-valued, then P (T, ν) is F-cc.

definition 3.5.5. A function f : T → M is F-compatible if and only if

P (T, f ) is F-cc.

The next step is to construct a mechanism. (Recall that we are temporarily

dropping the requirement that it be decentralized.) To do this we must define

a message space, a (group) message correspondence, but not the individual

message correspondences, and an outcome function. We take the message

space to be M ′ = ν(T). Define the outcome function h by

h = F ◦ ν−1 : M ′ → Z.

It follows from Lemma 3.5.1 that h is single-valued.



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

224 Designing Informationally Efficient Mechanisms

To define the message correspondence, first, recall that the covering C is

F-cc, and define the correspondence


 : � ⇒ C

by


(θ) = {K ∈ C | θ ∈ K } .

Thus, for each θ ∈ �, 
(θ) is the collection of sets in C that contain the

point θ , or equivalently, cover θ . Note that 
(θ) is never empty, because

C is a covering of �. Next, assume that ν is F-compatible, and define the

(group) message correspondence, μ by

μ = ν ◦ � ◦ 
.

That is, for all θ ∈ �,

μ(θ) = ν(� (
(θ))).

Thus, the messages assigned to the point θ are obtained by first looking at

the collection of sets in the covering C that cover θ , then considering the

subset of the transversal that consists of the distinct representatives of those

sets, and finally look at the collection of messages that encode those distinct

representatives. It is evident that a mechanism so constructed must realize

the goal function. Lemma 3.5.2 establishes this formally.

lemma 3.5.2. The mechanism (M ′, μ, h) realizes F.

Proof: We must show that for every θ ∈ �,

F (θ) = h(μ(θ)).

We know that

μ = ν ◦ � ◦ 


h = F ◦ ν−1

and that


(θ) = {k ∈ C : θ ∈ k} .

Because the covering C is F-cc, if(
θ̄ ∈ ⋃

k∈
(θ)

k

)
, then F (θ̄) = F (θ). (#)

By the definition of an SDR,

for every k ∈ C , � (k) ∈ k. (##)
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It follows from (#) and (##) that for every k ∈ 
(θ),

F (�(k)) = F (θ).

Therefore, for every θ ∈ �,

F (�(
(θ))) = F (θ). (###)

But by (###),

F (θ) = F (ν−1(ν(�(
(θ))))) = h(μ(θ)).

That is,

h ◦ μ(θ) = F ◦ ν−1 ◦ ν ◦ � ◦ 
(θ)

= F (�(
(θ))) = F (θ)
.

This completes the proof.

The next step is to modify the mechanism just constructed to make it

decentralized.

To do this we must take account of the fact that � = �1 ×· · ·× �N .

However, to simplify exposition when the notation becomes complex for

larger values of N, we take N = 2. To construct a decentralized mecha-

nism we must construct individual equilibrium message correspondences

μi : �i ⇒ M ′ and show that the group message correspondence μ can be

written as

μ =
⋂

i=1, ..., N

μi .

Recall that the message correspondence μ is defined in terms of 
. We begin

the construction by factoring the correspondence 
. Define


i : �i ⇒ C

as follows.

For θ̄ i ∈ �i , 
i (θ̄ i ) = {K ∈ C | there exists θ−i ∈ �−i

such that the point (θ̄ i , θ−i ) ∈ K }.
(Recall that θ−i = (θ1, . . . , θ i−1, θ i+1, . . . , θ N)).

Thus, 
i (θ̄ i ) consists of the sets K in C whose projection on �i covers θ̄ i .

Next, consider the set

� ◦ 
i (θ̄ i ) ⊆ T.
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Because � is an SDR, every set K ∈ 
i (θ̄ i ) has a distinct representative

in T . Thus, the set � ◦ 
i (θ̄ i ) is in one-to-one correspondence with 
i (θ̄ i ).

Now assume that the function ν is injective; that is, ν is one-to-one from

T onto M ′. (Recall that ν(T) = M ′.) Then ν(� ◦ 
i (θ̄ i )) is in one-to-one

correspondence with � ◦ 
i (θ̄ i ). Because � is one-to-one from C to T , it

follows that ν(� ◦ 
i (θ̄ i )) is in one-to-one correspondence with 
i (θ̄ i ).

Now, define

μi : �i ⇒ M,

by

μi (θ̄ i ) = {m ∈ M |m = (ν ◦ �)(K ) for some K ∈ 
i (θ̄ i )}.
Define μ : �1 ×· · ·× �N ⇒ M by μ = ⋂

i=1, ..., N μi .

Then, taking θ̄ = (
θ̄1, . . . , θ̄ N

) ∈ � = ∏
i �i ,

μ(θ̄) = ⋂
i

μi (θ̄ i ) =
N⋂

i=1

{m ∈ M | m = ν ◦ � (K i ) for some K i ∈ 
i (θ̄ i )}.

Note that for each θ̄ ∈ �, μ(θ̄) is in one-to-one correspondence with⋂N
i=1 
i (θ̄ i ). To see this, suppose m̄ ∈ μ(θ̄). Then, taking N = 2,

m̄ ∈ μ1(θ̄1) ∩ μ2(θ̄2).

But m̄ ∈ μ1(θ̄1) if and only if m̄ ∈ ν ◦ �(K 1) for some K 1 ∈ 
1(θ̄1), and

m̄ ∈ μ2(θ̄2) if and only if m̄ ∈ ν ◦ �(K 2) for some K 2 ∈ 
2(θ̄2).

If K 1 �= K 2, then (ν ◦ �)(K 1) �= (ν ◦ �)(K 2), because ν is injective,

and � is an SDR. It follows that m̄ ∈ μ(θ̄) implies m̄ ∈ ν ◦ �(K̄ ) for some

K̄ ∈ 
1(θ̄1) ∩ 
2(θ̄2).

The converse of the preceding statement is immediate.

To summarize,

m̄ ∈
N⋂

i=1

μi (θ̄ i ) if and only if

K̄ ∈
N⋂

i=1


i (θ̄ i ), where m̄ = ν ◦ �(K̄ ). (+)

It remains to show that the decentralized mechanism (M, μ, h) we have

constructed realizes F .

Let θ̄ ∈ �, and suppose m̄ ∈ μ(θ̄). Then m̄ ∈ ⋂
N μi (θ̄ i ). It follows

from (+) that there is a set K̄ ∈ ⋂
i 
i (θ̄ i ) in C such that m̄ = ν ◦ �(K̄ ).

Furthermore θ̄ ∈ K̄ , because K̄ covers θ̄ i for all i ; that is, for all

i, θ̄ i ∈ Pr�i (K̄ ).
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It follows that

θ̄ ∈
N∏

i=1

Pr�i (K̄ ) = K̄ .

Note that �(K̄ ) ∈ K̄ , because � is an SDR.

Because C is an F-cc covering of �, and K̄ ∈ C , it follows that

F (θ̄) = F (�(K̄ )) = FT (�(K̄ )).

By construction

h = FT ◦ ν−1 : M ′ → Z.

Therefore,

h(m̄) = FT ◦ ν−1(m̄) = FT ◦ ν−1 ◦ ν ◦ �(K̄ )

= FT (�(K̄ )) = F (�(K̄ ) = F (θ̄).

This completes the proof.

In constructing a decentralized mechanism that realizes a goal function

F : � → Z we assumed that the encoding function ν : T → M ′is injective;

that is, in the presence of the other definitions and assumptions, the injective-

ness of the encoding function is a sufficient condition for the construction

to produce a mechanism that realizes the goal function. Is it possible to

complete the construction described in the preceding pages with an encod-

ing function that is not injective? The answer is “no.” We show next that

injectiveness of ν is a necessary condition for the construction to result in

a decentralized mechanism that realizes the goal function F : � → Z. The

notation, definitions, and assumptions used in the preceding construction

are maintained.

lemma 3.5.3. If the decentralized mechanism (M ′, μ, h) realizes the goal

function F : � → Z, and has the encoding function ν : T → M ′, then ν

is injective.

Proof: 10 We begin with a preliminary proposition. To state the proposition

we need some additional notation.

Let S ⊂ {1, . . . , N} be a subset of agents, and let θ , θ ′ ∈ � be two

parameter points. The parameter point θS ⊗ θ ′
SC consists of the components

10 This proof is based on a proof given by Antoine Loeper in response to a conjecture that
Reiter presented in his course on mechanism design.
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of θ corresponding to agents in S, and the components of θ ′ correspond

to agents in the complement of S, denoted SC . For example, if N = 5,

and S = {1, 3}, then θS ⊗ θ ′
SC = (θ1, θ ′

2, θ3, θ ′
4, θ ′

5). Generally, we write

θS ⊗ θSC = ((θS ⊗ θSC )1, . . . , (θS ⊗ θSC )N). We can now state the proposi-

tion.

proposition p. Suppose K , K ′ ∈ CV where K �= K ′. Then there exists a

subset of agents S ⊂ {1, . . . , N}, and two points θ ∈ K , and θ ′ ∈ K ′ such

that θS ⊗ θ ′
SC /∈ F −1 (F (θ)).

(Recall that CV is an rRM covering of the parameter space � = �1 ×· · ·×
�N generated by the self-belonging, rectangular, F-cc correspondence

V : � ⇒ �.)

Proof: The sets K , K ′ ∈ CV are written as

K = K1 ×· · ·× K N K ′ = K ′
1 ×· · ·× K ′

N .

Define

K ′′ = (K1 ∪ K ′
1) ×· · ·× (K N ∪ K ′

N).

Suppose P is false. Then,

for every S ⊆ {1, . . . , N} and for every θ ∈ K ,

and θ ′ ∈ K ′, θS ⊗ θ ′
SC ∈ F −1(F (θ)). (∗)

The statement (∗) says that K ′′ is F-cc, because every element in K ′′ can

be written as θS ⊗ θ ′
SC for some θ ∈ K , and θ ′ ∈ K ′. Note that K ′′ is rect-

angular and that K ⊆ K ′′ andK ′ ⊆ K ′′. Moreover, at least one of these

inclusions is strict, because K �= K ′. Without loss of generality suppose

K ⊂ K ′′. This contradicts the assumption that K is an rRM rectangle,

because K ⊂ K ′′ ⊆ F −1 (F (θ)).

We return to the proof of Lemma 3.5.3. The proof is by contradiction. So,

suppose ν is not injective. Then there exist θ̄ and θ̄ ′ in T such that θ̄ �= θ̄ ′,
but ν(θ̄) = ν(θ̄ ′) = m, for some m in M ′. There are two cases:

Case (a) F (θ̄) �= F (θ̄ ′),

Case (b) F (θ̄) = F (θ̄ ′).
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In Case (a) , because the mechanism (M ′, μ, h) realizes F, we must have

h(m) = h(ν(θ̄)) = F (θ̄),

h(m) = h(ν(θ̄ ′)) = F (θ̄ ′)
F (θ̄) �= F (θ̄ ′),

which is a contradiction.

We turn to Case (b). We continue to suppose that ν is not injective. There

are unique sets K , K ′ such that θ̄ = �(K ) and θ̄ ′ = �(K ′).

Applying Proposition P , there exist

θ ∈ K , θ ′ ∈ K ′ and S ⊆ {1, . . . , N} ,

such that

θS ⊗ θ ′
SC /∈ F −1(F (θ)). (∗∗)

Consider the message correspondence μi ((θS ⊗ θ ′
SC )i ) of agent i . For every

i ∈ {1, . . . , N}, either i ∈ S or i ∈ SC , but not both.

If i ∈ S , then K ∈ 
i ((θS ⊗ θ ′
SC )i ). The representative of K in T is

�(K ) = θ̄ . By hypothesis ν(θ̄) = m. It follows from the construction of

μi that m ∈ μi ((θS ⊗ θ ′
SC )i ).

If i ∈ SC , then K ′ ∈ 
i ((θS ⊗ θ ′
SC )i ). The representative of K ′ in T is

�(K ) = θ̄ ′. Again, by hypothesis, ν(θ̄ ′) = m.

Thus, for all i ∈ {1, . . . , N} m ∈ μi ((θS ⊗ θ ′
SC )i ). It follows that

m ∈
⋂

i∈{1, ..., N}
μi ((θS ⊗ θ ′

SC )i ) = μ((θS ⊗ θ ′
SC )),

and hence that h(m) ∈ F (θS ⊗ θ ′
SC ). But h(m) = h(ν(θ̄)) = h(ν(θ̄ ′))

implies that h(m) ∈ F (θ̄) = F (θ̄ ′), and hence that

θS ⊗ θ ′
SC ∈ F −1(F (θ)) = F −1(F (θ ′) = F −1(F (θ̄) = F −1(F (θ̄ ′).

This contradicts (∗∗), which states that

θS ⊗ θ ′
SC /∈ F −1(F (θ)) = F −1(F (θ ′) = F −1(F (θ̄) = F −1(F (θ̄ ′).

This completes the proof.

Suppose there are two agents, and that the parameter spaces �1, �2are

finite sets. Then the OrRM construction presented in Section 3.4.1 will

produce a minimal covering of the contour map of the goal function, and

therefore a mechanism with a minimal size message space.
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3.6 Coverings and Partitions

The construction of a mechanism from a covering is considerably simplified

when the covering is a partition. If the covering is a partition, then the cor-

respondence 
 is single-valued, that is, for each point θ ∈ � there is exactly

one set that contains the point θ. In that case the message associated with

the parameter value θ (by the encoding function ν) is uniquely determined.

That is not the case if θ is covered by more than one rectangle. In that case the

task of constructing a mechanism is more difficult. Therefore, it is helpful

to know when the rRM procedure generates a partition.11

The reflexive rectangles method of constructing a covering of the param-

eter space � is not in general guaranteed to produce a partition of that space.

This is true whether or not � is finite. Yet in many examples rRM does in

fact produce a partition of the parameter space. It is therefore interesting

to know what distinguishes the cases in which rRM produces a partition

from those in which it produces a covering that is not a partition. An rRM

covering, whether or not a partition, is generated by a self-belonging, F-cc

correspondence V : � ⇒ �. Therefore, the question is, “Which additional

properties of V determine whether or not the covering it generates is a parti-

tion?”12 Because V depends on F (V must be F-cc) the answer depends both

on a property of F, and on a property of V . The property of V is symmetry.

definition 3.6.1. A correspondence V : � ⇒ � is said to be symmetric, or

to satisfy symmetry, if θ ′ ∈ V(θ) ⇔ θ ∈ V(θ ′).

remark. It is easy to see that if a self-belonging correspondence V generates

a partition, then it is symmetric.

Proof: Suppose θ ′ ∈ V(θ). Certainly θ ′ ∈ V(θ ′), because V is self-

belonging. Hence, θ ′ ∈ V(θ) ⊆ V(θ ′). Because V generates a partition, it

follows that V(θ) = V(θ ′), and hence θ ∈ V(θ ′).

11 This subject is also discussed in Chapter 2 (unique solvability lemma) in the context of
mechanisms in equation form.

12 Related questions come up when we consider mechanisms that are not constructed from
rRM coverings, or coverings that are self-belonging, but not rectangular. What conditions
on V ensure that the covering is a partition when V is RM but not necessarily rRM, and
more generally yet, when V is self-belonging, but not necessarily rectangular? We take up
these questions in a general setting in the Appendix to this chapter, although we are mainly
interested in applying the results stated there to rRM coverings.
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Before taking up the converse, we consider some necessary conditions.

If the covering generated by an rRM, self-belonging correspondence V is

not a partition, then there must exist two sets, call them K1, K2, generated

by V , that have a point, β, in common. Because V is F-cc, both these sets

must be subsets of the same contour set of F. Furthermore, neither set can

be a subset of the other, because V generates an rRM covering. Therefore,

there must be four distinct points in �, call them α, β, γ , δ such that

F (α) = F (β) = F (γ ) �= F (δ) (3.6.1)

β ∈ K1 ∩ K2, γ ∈ K2\K1 and α ∈ K1\K2. (3.6.2)

Suppose for the sake of simplicity that there are only two agents, 1 and 2. In

that case � = �1 × �2, and therefore we can write

α = (a1, b2) , β = (a1, b1) , γ = (a2, b1) , δ = (a2.b2) .

According to 3.6.1, α, β, γ are in the same contour set of F, whereas δ is in

a different contour set. Of course, a1, a2 ∈ �1 and b1, b2 ∈ �2 . We call a

configuration of four points and two sets satisfying 3.6.1 and 3.6.2 an overlap

pattern (OP), and the four points satisfying 3.6.2 an L-dot configuration. The

point β is called the elbow ; the points α and γ are called fingers, and the

point δ is the dot, for reasons that are apparent in Figure 3.6.1, which displays

this L-dot configuration. Note that an L-dot configuration is a property of

the goal function F, whereas an overlap pattern is a property of the covering

generated by V . Furthermore, if V has an overlap pattern, then the points

in it that satisfy condition 3.6.1 form an L-dot configuration.

b2

b1

a1
a2

β

α

γ

δ

• •

• •

• •

Figure 3.6.1
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First, note that for the rRM construction to produce a covering with an

overlap it is necessary that F have an L-dot configuration, that is, a set of

four points

α = (a1, b2)

β = (a1, b1)

γ = (a2, b1)

δ = (a2, b2)

in � such that F (α) = F (β) = F (δ) �= F (δ). The point β is the elbow of

the L-dot configuration.

lemma 3.6.1 (Necessity of L-dot). Let C be an F-cc, rRM covering of � =
�1 × �2. If C is not a partition, then F has an L-dot configuration.

Proof: Suppose C is not a partition. Then there is a point β and two sets,

K1, K2 ∈ C such that β ∈ K1 ∩ K2. Let

β = (a1, b1) , a1 ∈ �1, b1 ∈ �2.

Let U = K1 ∪ K2 and let W = Pr�1 (K1) × Pr�2 (K2).

Note that K1\K2 �= ∅, and K2\K1 �= ∅. Otherwise one of the sets

K1, K2 would be a subset of the other, contradicting either K1 ∈ C

or K2 ∈ C .

For any point y = (y1, y2) define the sets

�(y) = {x = (x1, x2) | x2 = y2},
and

�(y) = {x = (x1, x2) | x1 = y1}.
�(y)is the longest horizontal line segment through y that lies in W,

and �(y) is the longest such vertical line segment.

Note that �(β) ∩ K1\K2 �= ∅ or �(β) ∩ K2\K1 �= ∅, but not both.

To see this, suppose �(β) ∩ K1\K2 �= ∅, and �(β) ∩ K2\K1 �= ∅.

Let x = (x1, x2) ∈ �(β) ∩ K1\K2, and let y = (y1, y2) ∈ �(β) ∩ K2\K1.

Then x2 = b1 and y2 = b1. The sets K1 and K2 are each rRM sets. It follows

from the rRM construction that y ∈ K1. But this contradicts the assumption

that y ∈ K2\K1.

In summary, we have shown that exactly one of the statements �(β) ∩
K1\K2 �= ∅, �(β) ∩ K2\K1 �= ∅ is true.
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A similar argument shows that only one of the sets �(β) ∩ K2\K1 and

�(β) ∩ K1\K2 is nonempty.

Furthermore, of the four pairs of statements (�(β) ∩ Ki\K j �= ∅,

�(β) ∩ Ki\K j �= ∅) for i, j ∈ {1, 2} only two of them are possible; if

�(β) ∩ Ki\K j �= ∅, then only �(β) ∩ K j \Ki �= ∅ is possible. Without

loss of generality we suppose that �(β) ∩ K1\K2 �= ∅. Hence �(β) ∩
K2\K1 �= ∅.

Thus, there are a point x = (x1, b1) ∈ �(β) ∩ K1\K2 and a point

y = (a1, y2) ∈ �(β) ∩ K2\K1. It follows that x1 ∈ Pr�1 (U ), and y2 ∈
Pr�2 (U ).

If for every β ∈ K1\K2 and every x ∈ �(β) ∩ K1\K2, and y ∈ �(β) ∩
K2\K1, it were the case that F (x1, y2) = F (β), then W would be an

F-cc rectangle, thus contradicting K1 and K2 in C . Therefore, there must

be points, α, β, γ , δ, where

α = x , or y,

γ = y if α = x ,

γ = x if α = y,

δ = (x1, y2),

such that

F (α) = F (β) = F (γ ), and F (δ) �= F (β).

This concludes the proof.

Lemma 3.6.1 shows that the existence of an L-dot configuration is a necessary

condition for the covering CV to contain overlaps.

On the other hand, the existence of an L-dot configuration, briefly an

L-dot, does not ensure that the covering generated by V has sets that overlap.

This is shown by the following example.

The correspondence V : � ⇒ � in this example is constructed by rRM;

it is symmetric, and it generates a partition of the parameter space �

in a case where there is an L-dot configuration in � for a given goal

function F.

example 3.6.1.

� = �1 × �2

�1 = {a1, a2} �2 = {b1, b2, b3}.
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For convenience we label the points of �, α, β, λ, δ, ε as shown in

Figure 3.6.2.

λ

b3

b2

b1

a1 a2

β

α δ •

γ
− =1 (2) {δ,ε}.

• ••

•

•

•

• •

•

− =1 (1) {α,β,γ,λ}
ε • •

Figure 3.6.2

The rRM construction can lead to either of the two different correspon-

dences V1 and V2, where

V1(α) = V1(β) = {α, β} = K1

V1(γ ) = V1(λ) = {β, γ } = K2

V1(δ) = {δ} = K3

V1(ε) = {ε} = K4,

which determines the covering {K1, K2, K3, K4} of �. Here

C1 = {K1, K2}

is a covering of F −1(1), and

C2 = {K3, K4}

is a covering of F −1(2).

Note that V1 is symmetric, self-belonging, rectangular and F-cc. Clearly

C1 is a partition of F −1(1), but F −1(1) has an L-dot. Figure 3.6.3 shows this

covering.
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K1

•λ

b3

b2

b1 ε •

a1
a2

•β

•α δ

•γ

→

K2←

F − =1
1( ) { , , , }α   β

F − =1 2( ) { , }.δ  ε

γ λ

Figure 3.6.3

On the other hand, the rRM construction can also lead to the covering

V2(α) = V2(β) = {α, β} = K1

V2(γ ) = {β, γ } = K ′
2

V2(λ) = {γ , λ} = K2

V2(δ) = {δ} = K3

V2(ε) = {ε} = K4.

λ

b3

b2

b1

a1 a2

β

α δ

γ

K1

K2

F
−1

(1) = {α , β ,γ , λ}

F
−1

(2 ) = {δ , ε}.

Κ 3

ε • •

••

• •

Figure 3.6.4

The correspondence V2 is not symmetric (β ∈ V2 (γ ) , but γ /∈ V2(β)),

but it is self-belonging and F-cc. The covering CV2
is not a partition.
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Moreover, for later reference we note that the set K ′
2 is redundant in the

sense that if it were removed from the covering CV2
the remaining sets

would still be a covering. Figure 3.6.4 shows this covering. Furthermore, as

Theorem 3.4.1 assures us, the rRM covering shown in Figure 3.6.4 can be

constructed by the two-step process. This is done by taking the initial A-sets

to be

{a1}, {a2}, {a1, a2}.
The nonredundant covering shown in Figure 3.6.5 results from taking the

initial A-sets to be {a1}, {a2}.

K1

• λ

b3

b2

b1 ε •

a1
a2

•β

•α δ

•γ

→

K2←

F − =1 1( ) { , , , }α β γ λ

F − =1 2( ) { , }.δ ε

Figure 3.6.5

Of course, the absence of an L-dot is a sufficient condition for a covering

to be a partition. However, this is not a generally useful condition, because

its application requires that the entire domain � of F be examined. The fol-

lowing theorem gives a sufficient condition that is more useful, but is more

limited in scope, because it applies only to coverings that are generated by

an rRM (self-belonging) correspondence. But not every rectangular cover-

ing of the parameter space � is an rRM covering. Theorem 3.A.413 gives

conditions that a covering generated by a self-belonging correspondence V ,

not necessarily rRM, is a partition. As might be expected, these conditions

are more complicated.

Again, we suppose that � = �1 × �2, where �1 and �2 are arbitrary

sets; F : � → Z is the goal function, and F −1(F (θ)) is the contour set of F

containing the point θ .

13 A numbered statement whose number contains the symbol A appears in the Appendix
to this chapter. It is reproduced here for convenient reference. Proofs are given in the
Appendix, but are not repeated here.
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We write W(z) for the contour set F −1(F (θ)) when F (θ) = z. Fix z =
z0, W = W(z0).

We write CV for the rRM covering of W generated by V , thus, C = CV .

theorem 3.6.1. Let W be an arbitrary contour set of a goal function F. If

CV is an rRM covering of W generated by a self-belonging correspondence

V : W ⇒ W, and if V is symmetric, then CV is a partition.

Proof: The proof is easier to follow if we lay out its logical structure explicitly.

Let R denote the statement “CV is an rRM covering of W.”

Let S denote the statement “V is symmetric.”

Let P denote the statement “CV is a partition.”

In this notation theorem 3.6.1 is

“(R and S) implies P .” (∗)

We assume R is true. Therefore, (∗) is logically equivalent to

“S implies P .” (∗∗)

Notice that (∗∗) is logically equivalent to

“not S” or P .” (++)

The statement (++) is true exactly when its negation is false. The negation

of (++) is

not (not S or P ) = “S and “not P .” (+++)

Our proof assumes “S and not P ” and R, and derives a contradiction. This

shows that (+++) is false. Therefore, (++) is true, hence (∗∗) is true and

(∗) is true.

We begin the proof.

Given a covering C = CV of W and a point θ ∈ W, define the subcovering


(θ) by


(θ) = {K ∈ CV | θ ∈ K }.

(θ) is the collection of rRM rectangles in CV that cover θ ∈ W.

For arbitrary θ̄ , ¯̄θ ∈ W, let 
̂(θ̄ , ¯̄θ) = 
(θ̄) ∩ 
(¯̄θ). That is, a set K is in


̂(θ̄ , ¯̄θ) if and only if K covers both θ̄ and ¯̄θ .

From now on we write 
(θ̄ , ¯̄θ) for 
̂(θ̄ , ¯̄θ) where there is no risk of con-

fusion.
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If C is not partition of W (that is, “not P ′′), then there must be an overlap

pattern with points α, β, γ and sets K1, K2 ∈ C such that

(1) β ∈ K1 ∩ K2,

(2) α ∈ K1\K2, γ ∈ K2\K1 , and

(3) 
(α, β) ∩ 
(β, γ ) = ∅.

(1), (2), and (3) are equivalent to

(i) 
(α, β) �= ∅,

(ii) 
(β, γ ) �= ∅, and

(iii) if 
(α, β) ∩ 
(β, γ ) �= ∅, then, for all K ∈ 
(α, β) ∩ 
(β, γ ),

K ⊆ /W

Next, notice that for any point θ̄ ∈ W,

(4) 
(θ̄) = (
(θ̄)\
(θ̄ , ¯̄θ)) ∪ 
(θ̄ , ¯̄θ).

That is, the collection of sets that cover a point θ̄ in W, consists of sets that

cover both θ̄ and ¯̄θ , together with the collection of sets that cover θ̄ and do

not cover ¯̄θ .

It follows that for any θ̄ ∈ W, and any ¯̄θ ∈ W, θ̄ �= ¯̄θ , either

(a) V(θ̄) ∈ 
(θ̄ , ¯̄θ) or

(b) V(θ̄) ∈ 
(θ̄)\
(θ̄ , ¯̄θ),

but not both.

Suppose C is not a partition of W. Then there is an overlap and hence

there are points, α, β, γ , and sets K1, K2, as in Lemma 3.6.1 satisfying (1),

(2), and (3).

Consider V(α). There are two cases labeled (a) and (b) as above for θ̄ = α.

Suppose (b) is the case. That is, V(α) ∈ 
(α)\
(α, β).

Then,

V(α) /∈ 
(α, β).

Because V generates the covering C , and K1 ∈ C , there exists a point v

in K1 such that V(ν) = K1. Given the L-dot configuration α, β, γ , where

α = (a1, b2), β = (a1, b1), γ = (a2, b1), and δ = (a2, b2), such that δ is

not in the same contour set as the other points, we may assume without

loss of generality that ν = (a1, b3). First, we consider the case in which

ν ∈ V(α). If V(α) = {α, ν}, then V(α) ⊆ K1. This would violate rRM.

Therefore, there must be a point η ∈ V(α) such that η /∈ K1 = V(ν). Now,

V(α) is an rRM rectangle that includes the points α = (a1, b2) β = (a1, b1),
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η = (x , y). Without loss of generality we can take x = a3, y = b1. There-

fore, V(α) must also include the point η′ = (a3, b2).

Now if V(η′) = V(α), then ν ∈ V(η′), but η′ /∈ V(ν) = K1. This would

violate symmetry of V . So, suppose α /∈ V(η′). Then η′ ∈ V(α), but α /∈
V(η′), which violates symmetry.

So suppose α ∈ V(η′). Then V(η′) must also contain v. Consequently

ν ∈ V(η′), but η′ /∈ V(ν), which again violates symmetry.

We have shown that ν /∈ V(α).

But α ∈ K1 = V(ν), whereas ν /∈ V(α), which contradicts symmetry of

V . Thus, S is false. Hence (+++) is false.

The same analysis applies to V(γ ) when V(γ ) /∈ 
(β, γ ).

Therefore, we may assume the only remaining case, which is

V(α) ∈ 
(α, β) and V(γ ) ∈ 
(β, γ ).

Let V(α) = K1 ∈ 
(α, β), and let V(γ ) = K2 ∈ 
(β, γ ).

Then β ∈ V(α). Symmetry of V requires α ∈ V(β).

Similarly, β ∈ V(γ ), and hence symmetry of V requires γ ∈ V(β).

It follows that α ∈ V(β), β ∈ V(β), γ ∈ V(β) (by symmetry and selfbe-

longing of V). Then

V(β) ∈ 
(α, β) ∩ 
(β, γ ) ∩ 
(α, γ ),

which, by (iii) shows that

V(β) �⊂�= W.

This, contradicts the requirement that V(β) is F-cc and hence that it is an

rRM rectangle.

Thus in all cases S is false. Therefore (+++) is false, from which it follows

that (++) is true. By logical equivalence (∗∗) is true, and because R is true

by hypothesis, (∗) is true.

This completes the proof.

The following example (Example 3.6.2) shows that the assumption that

the covering is rRM is indispensable. The covering in the example is gen-

erated by a self-belonging, symmetric correspondence V , but it is not a

partition. The covering generated by V is not an rRM covering. Note also

that the requirement that no set in the covering can be a subset of another

in the covering, which is a property of rRM coverings, is alone not sufficient

to ensure that the covering generated by V is a partition.



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

240 Designing Informationally Efficient Mechanisms

example 3.6.2. Let a contour set of F consist of four points, α, b, γ , δ.

Let

V(α) = {δ, α, β}
V(β) = {α, β, γ }
V(γ ) = {β, γ , δ}
V(δ) = {γ , δ, α} .

Figure 3.6.6 shows the following level set:

a1 a2

βb1 • • • δγ

α3 α4

α • •

Figure 3.6.6

Observe that no set in CV is a proper subset of any other.

Furthermore,

β ∈ V(α), and α ∈ V(β)

γ ∈ V(β), and β ∈ V(γ )

δ ∈ V(γ ), and γ ∈ V(δ)

α ∈ V(δ), and δ ∈ V(α).

Therefore, V is symmetric, and also self-belonging. But the covering is not

a partition. It is also not rRM. If it were, we would have

V(α) = V(β) = V(γ ) = V(δ) = {α, β, γ , δ} ,

and hence that CV is the partition {{α, β, γ , δ}}.
Although we are mainly concerned with rRM coverings, with the cor-

respondences that generate them, and with the mechanisms constructed

from them, there are other mechanisms, including some that are not decen-

tralized, that are constructed from coverings that are not rRM, but are

generated by self-belonging, F-cc correspondences. Such a covering will not

be an rRM covering, and might not even be rectangular. This leads to the

following questions:

� If a covering of the parameter space is a partition, is it generated by a

self-belonging correspondence, U : � ⇒ �?
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� If a self-belonging correspondence U : � ⇒ �generates a covering, what

properties of the correspondence assure that the covering it generates is

a partition?

We address these questions formally in the Appendix of this chapter. The

results in the Appendix are summarized here.

theorem 3.A.1. A covering C of � is a partition if and only if every function

� : C ⇒ � that satisfies

(A) �(K ) ∈ K , for every K ∈ C ,

is an SDR for C .

Next, we give a characterization of partitions in terms of the generating

correspondence, V : � ⇒ �. First, we define a property that we subse-

quently show is a property of correspondences that generate partitions.

definition 3.A.2. Let θ̄ , θ ′, θ ′′ denote points of �. A correspondence,

V : � ⇒ �, is block symmetric if and only if

(B) [θ ′ ∈ V(θ̄) and θ ′′ ∈ V(θ̄)] ⇒ [θ ′ ∈ V(θ ′′) and θ ′′ ∈ V(θ ′)].

Block symmetry is a strengthening of the concept of symmetry. The term

“block symmetric” is used because, when (B) is satisfied, there is a per-

mutation of the elements of � such that the graph of V consists of blocks

(“squares”) with the “northeast” and “southwest” vertices on the diagonal

of � × �.

It is shown in the Appendix that if a self-belonging correspondence is

block symmetric, then it is symmetric.

theorem 3.A.2. A covering C of � is a partition if and only if there is a block

symmetric, self-belonging correspondence that generates C .

The following example shows that symmetry of the generating (self-

belonging) correspondence is not sufficient for the covering it generates

to be a partition.

example 3.A.1. Let � = {a , b, c}, and let V(a) = {a , b, c}, V(b) = {a , b},
V(c) = {a , c}. Then V is self-belonging and symmetric, but the covering it

generates is not a partition.
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However, in this example the covering is reducible in the sense of the

following definition.

definition 3.A.3. An element of a covering C of� is redundant if eliminating

that element from C still leaves a covering of �. A covering is irreducible14

if it has no redundant elements; otherwise it is reducible.

If C is a finite covering, then it has an irreducible subcovering, which might

be C itself. If C is not irreducible, then it has a redundant element. When

C is finite, successive elimination of redundant elements must eventually

result in an irreducible subcovering. This is not true when C is infinite, as

is shown by Dugundji’s example (Dugundji, p. 161).

The covering C in Example 3.A.1 can be reduced in two different ways.

First, to the covering C ′ = {{a , b, c}}, which is generated by the (constant)

correspondence U ′(θ) = {a , b, c}, for θ ∈ {a , b, c}, and, second, to the

covering C ′′ = {{a , b}, {b, c}}, which is generated by the correspondence

V ′′(a) = V ′′(b) = {a , b}, and V ′′(c) = {b, c}. Both C ′ and C ′′ are irre-

ducible, and V ′ is symmetric, while V ′′ is not. Of course, C ′ is a partition

and C ′′ is not.

Whereas symmetry is not enough to guarantee that the covering generated

by a self-belonging correspondence is a partition, but if the covering is

irreducible, then symmetry ensures that it is a partition. The converse also

holds.

theorem 3.A.3. Let C be a covering of �. C is a partition if and only if

(i) C is generated by a self-belonging, symmetric correspondence V :

� ⇒ �, and

(ii) C is irreducible.

Theorems 3.A.1, 3.A.2, and 3.A.3 are summarized in Theorem 3.A.4.

theorem 3.A.4. The following four propositions are equivalent:

(1) A covering C is a partition;

(2) Every function � : C → � that satisfies condition (A) is an SDR

for C ;

(3) C is generated by a block symmetric, self-belonging correspondence

V : � ⇒ �;

(4) C is an irreducible covering generated by a symmetric, self-belonging

correspondence V : � ⇒ �.

14 The term “irreducible” applied to a covering was introduced by Dugundji (5 p. 160).
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What are the relationships between Theorem 3.A.4 and Theorem 3.6.1?

The following observations show that the two theorems are not equivalent,

and that neither is a generalization of the other.

(1) If a self-belonging correspondence is block symmetric, then it is sym-

metric. The converse is false, as shown by Example 3.6.2.

(2) If a self-belonging correspondence is rRM is it also irreducible? The

answer is “no”, as shown by Example 3.6.1b.

(3) If a self-belonging correspondence is irreducible, is it rRM? The answer

is “no,” as shown by Example 3.6.1b.

(4) If a self-belonging correspondence is rRM, is it block symmetric? The

answer is “no,” as shown by the example shown in Figure 3.6.7;

(5) If a self-belonging correspondence is block symmetric, is it rRM? The

answer is “no.” as shown by the example in Figure 3.6.8.
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� = �1 × �2 = {a1, a2, a3, a4} × {b1, b2} .

α = (a1, b2), β = (a1, b2), γ = (a1, b1), δ = (a2, b2),

ε = (a3, b2), η = (a4, b2), ν = (a3, b1), τ = (a4, b1)

F −1(1) = {α, β, γ , δ, ε, η} ,

F −1(2) = {ν, τ } .

Let

V(α) = V(β) = V(γ ) = K1,

and

V(δ) = V(ε) = V(η) = K2.

We see that V is block symmetric, but the covering it generates is not

rRM.

3.7 Informational Efficiency

3.7.1 Introduction

The informational efficiency of the mechanisms constructed by rRM and the

transversals method (TM) is significant for comparing “costs” of alternative

mechanisms that realize the same goal. The determinants of informational

costs include:

� the precision with which agents are required to perceive their environ-

ments in order to operate the mechanism;
� the “amount” of information that the mechanism requires agents to com-

municate; and
� the complexity of computations required by the mechanism.

The costs related to the first item involve both the means by which agents

observe their environments, and the time and effort agents must devote to

observing, perhaps introspectively.

The second item involves the infrastructure and institutions by which

communication is accomplished. Two kinds of costs are involved here. One

is a capital cost, the cost of constructing and maintaining the “pipelines” that

messages flow through, in other words, the cost of providing the channel

capacity for communication. This includes establishing and maintaining the

personal relationships that accompany inter-personal and both intra- and

inter-organizational networks through which much communication flows.
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The second is a variable cost – the cost of transmitting a particular message

among agents. Both items of cost depend on the “size” of the messages to

be transmitted.

The third item, the complexity of the computations that agents carry

out, includes the time and effort needed to figure out the actions required

by the mechanism in the prevailing environment. Those calculations use

the observations of the environment, and the messages received by each

agent from others, as inputs. Thus, we might expect that the complexity of

computation might depend on the messages that are transmitted, as well as

on the encoding of observations of the environment. Therefore, we should

expect there to be tradeoffs between message size, the precision with which

agents are required to report the environment, and computational com-

plexity. Here we assume agents can know their own parameters exactly, but

might not be required by the mechanism to do so. We do not consider

issues of accuracy, nor do we consider costs associated with approximation.

Analysis of the costs associated with or resulting from computational com-

plexity depends on the model of computation that is used.15 Here we do not

address computational complexity, except in a limited way. In Chapter 2,

where mechanisms in equation form are studied, the number of equations

each agent must verify when a mechanism is given in equation form is taken

as a rough indicator of the burden of computation. We focus here on the

first two components of informational efficiency.

3.7.2 Observational Efficiency

As we saw earlier, a mechanism π = (M, μ, h) that realizes a goal function

F : � → Z induces a covering of the parameter space � generated by the

correspondence μ−1 : M ⇒ �. A set μ−1(m) consists of parameter values

that do not have to be distinguished from one another for the agents to agree

(or not to agree) to a given message.

15 An analysis of computational complexity in a framework that is applicable to economic
mechanisms is presented in Mount and Reiter (2002). The measure of complexity in that
model is delay. If we assume that an elementary computational step takes a unit of time,
then delay is equal to the number of sequential (some steps might be carried out in parallel)
elementary computational steps used to complete the required computations. The com-
plexity of the computations required in the Walrasian pure exchange example introduced
in Chapter 1 is analyzed. It is shown that there is a tradeoff between communication and
computation in that example. The efficient frontier between “size of the message space”
and the “delay” is found. Increasing message space size from the minimum possible size,
2 to 3 allows a reduction in complexity (delay) from 3 to 2. Further increases in message
space size do not result in further decreases in complexity.
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When the mechanism is privacy-preserving, the individual message cor-

respondences μi define sets in the individual parameter spaces �i , i =
1, . . . , N that contain individual parameter values that agent i is not

required to distinguish from one another. Thus, the larger these sets are,

the lighter is the burden of observation on the agents. The coverings of

the parameter space corresponding to the mechanisms under consideration

are partially ordered by coarseness. That is, the observational requirements

associated with different mechanisms are partially ordered by the coarseness

of the coverings of the parameter space induced by each mechanism. Thus,

the comparison of mechanisms according to the degree of observational

precision required to operate the mechanisms is made by comparing the

coarseness of their coverings.

We show next that decentralized mechanisms constructed using the

reflexive rectangles method, rRM, are maximal (maximally coarse) in the

set of rectangular coverings generated by mechanisms that realize a given

goal function. Thus, a mechanism constructed by rRM can be said to be

maximally efficient with respect to observational precision. This result also

applies to OrRM coverings.

3.7.3 The Maximality of rRM-Coverings

definition 3.7.3.1. (i) A covering C ′ of � is a coarsening of a covering C of

� if, for every K ∈ C , there is K ′ ∈ C ′ such that K ⊆ K ′.

(ii) It is a proper coarsening if there exists sets K ∗ ∈ C , and K ′∗ ∈ C ′

such that K ∗ ⊆ K ′∗, but K ′∗ �= K ∗.

(iii) A reflexive RM covering C of� for F, that has no proper self belonging,

rectangular, F-cc (briefly, an RM) coarsening is called maximal.

theorem 3.7.3.1 (Sufficiency). If C is a reflexive RM (briefly, an rRM) cov-

ering of � for F, then C is maximal.

Proof: We present the proof first for the case of two agents, and use the

notation introduced in Section 3.4.1 for that case.

Suppose C is an rRM covering for F of � = �1 × �2, but C is not

maximal. Then there exists a proper coarsening C ′of C . That is, for every

K ∈ C , there is K ′ ∈ C ′ such that K ⊆ K ′, and at least one set K ∈ C

such that the corresponding set K ′ ∈ C ′ satisfies K ⊂�= K ′. Because K ′ ∈
C ′, there exist sets A′ ∈ �1, B ′ ∈ �2 such that K ′ = A′ × B ′. Moreover,
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K ′ is in the contour set of F that contains K . Furthermore, there are sets

A ⊆ �1, B ⊆ �2, with K = A × B . Furthermore, because K ⊂�= K ′, these

sets satisfy

A′ ⊇ A, B ′ ⊇ B . (∗)

Let a ∈ A and b′ ∈ B ′. By the inclusions (∗) above, and because C ′ is F-cc,

(a , b ′) ∈ F −1(F (θ̄)),

where θ̄ ∈ K , and K ′ ⊆ F −1(F (θ̄)).

Hence, by the definition of B∗(A, θ̄) in the definition of left-RM, we have

(a , b ′) ∈ A × B∗(A, θ̄) = A × B .

Equality follows from the fact that C is reflexive, and hence left-RM.

So, b ′ ∈ B ′ implies b ′ ∈ B . It follows that B∗ ⊆ B , because b ′ is an arbi-

trary element of B ′. Therefore, by (∗),

B = B ′

Similarly, because C is reflexive, it is also right-RM. A similar reasoning

shows that

A = A′.

It follows that

K = K ′.

But then C ′ is not a proper coarsening of C . This contradiction concludes

the proof.

theorem 3.7.3.2 (Necessity). If C is maximal in the class of RM mechanisms,

(that is, if C is a self belonging, rectangular, F-cc covering of � that has no

proper coarsening), then C is reflexive-RM.

Proof: Suppose C is not reflexive RM. Without loss of generality, suppose

it is not left-RM. Then there exists θ̄ and k = A × B ∈ L such that

B �= B∗(A, θ̄).

Then it must be the case that

B ⊂
�=

B∗(A, θ̄).
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It follows that

k ⊂
�=

A × B∗(A, θ̄). (∗∗)

Write K ′ = A × B∗(A, θ̄).

Then (∗∗) becomes

K ⊂
�=

K ′. (+)

Consider the collection

C ′ = (C\{K }) ∪ {K ′}.
Because C is a covering, the inclusion (+) implies that C ′ is a covering.

Clearly, C ′ coarsens C , because every set R in C other than K has its

identical twin in C ′, and for K in C , there is K ′ in C ′such that K ⊆ K ′.
The coarsening is proper because K ′ �= K . (Moreover, C ′ is not a superset

of C , because it does not contain K .)

This contradicts the hypothesis that C is maximal.

This concludes the proof.

Next, we establish the same results for the case where N > 2. We use

the notation established in Section 3.4 for the discussion of the N-step

construction of coverings in the N-agent case, with N > 2.

theorem 3.7.3.3 (Sufficiency). If C is a reflexive RM covering of � = �1

×· · ·× �N for F, then C is maximal.

Proof: Suppose C is reflexive RM , but not maximal, and C ′ is any coarsen-

ing of C . Then, for every K in C , K = K1 ×· · ·× K N ⊆ �1 ×· · ·× �N ,

there exists K ′ ∈ C ′ such that K ⊆ K ′, where K ′ = K ′
1 ×· · ·× K ′

N ⊆
�1 ×· · ·× �N , and K ′ is in the contour set of F that contains K . Sup-

pose θ̄ ∈ K . For any sets L ∈ C , L ′ ∈ C ′ such that L ⊆ L ′, it follows

that

L i ⊆ L ′
i for all i ∈ {1, . . . , N}. (∗)

For any i ∈ {1, . . . , N} let ai ∈ L i , b ′
i ∈ L ′

i . If θ̄ ∈ L , then it follows by the

inclusion (∗), and the assumption that C ′ is F-cc, that

(ai , b ′
i ) ∈ F −1(F (θ̄)).
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We show next that L i ⊇ L ′
i . This inclusion, together with (∗), would establish

that, for every i ∈ {1, . . . , N}, L i ⊇ L ′
i , and thus show that

L = L ′.

By hypothesis, C is reflexive RM. Take θ̄ ∈ L . It follows that

(ai , b ′
i ) ∈ L i × A∗

i (L−i , θ̄).

Thus, b ′
i ∈ L ′

i implies b ′
i ∈ L i . Therefore, L i ⊇ L ′

i . It follows from (∗) that

L i = L ′
i for every i ∈ {1, . . . , N}.

It follows that for any sets K ∈ C , K ′ ∈ C ′ such that K ⊆ K ′, the equal-

ity K = K ′ holds. Thus, if C ′ is a rectangular, F-cc coarsening of a reflexive

RM covering C , then C ′ is not a proper coarsening of C . It follows that C

is maximal. This completes the proof.

theorem 3.7.3.4 (Necessity). If C is maximal for F then C is reflexive RM.

Proof: Suppose to the contrary that C is maximal for F, but not a reflexive

RM covering. Then there exist i ∈ {1, . . . , N}, θ̄ ∈ �, and a rectangle K =
Ki × K−i in C such that Ki �= A∗

i (K−1, θ̄). It follows from the definition

of A∗
i (K−i , θ̄) that

Ki ⊂
�=

A∗
i (K−i , θ̄).

It follows that

K ⊂
�=

Ki × A∗
i (Ki−1, θ̄). (∗∗)

Write K ′ = Ki × A∗
i (Ki−1, θ̄). Then (∗∗) becomes

K ⊂
�=

K ′. (+)

Now consider the collection of sets,

C ′ = (C\ {K }) ∪ K ′.

C ′is a covering, because C is a covering and the inclusion (+) implies that

C ′ is also a covering. The covering C ′ coarsens C , because for every set

R ∈ C there is a set R′ ∈ C ′ such that R ⊆ R′. This is so, because every

set R ∈ C except for R′ has its identical twin R = R′ in C ′, and for the set

K ∈ C , there is K ′ ∈ C ′ such that K ⊂�= K ′. Thus, C ′coarsens C properly.

This contradicts the hypothesis that C is maximal.

This concludes the proof.
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We turn next to another aspect of informational efficiency, namely, the

informational size of the message space of a mechanism. We also consider

its relation to coarseness of the covering associated with the mechanism.

3.7.4 Informational Size and Coarseness

Informational Size

Mount and Reiter (1974) introduced a concept of the informational size of a

(topological ) space. To make our discussion of comparisons of informational

size self-contained, we discuss briefly the idea that underlies that formal

concept. It is the intuitive idea of the capacity of a space to carry information.

In ordinary usage information means knowledge about something. In

more technical settings information can also mean anything that reduces

uncertainty. Shannon’s well-known measure of information was developed

to analyze the capacity required to transmit signals that go between a sender

and a receiver without regard for the meaning of what is transmitted. Jacob

Marschak, and others, sought to apply this concept and measure of infor-

mation in economic settings, and eventually abandoned that enterprise,

because it seemed that the “amount” of information as measured by the

Shannon formula (entropy) has no necessary relation to the relevance or

usefulness or value of the information in economic decision-making.

Information is usually about something. The definition of informational

size given in Mount–Reiter (1974) was intended to apply to information

about something, and to formalize a notion about the capacity of a mathe-

matical space to “carry” information. However, the concept of informational

size is formalized not as a measure of the absolute “size” of a space, but as an

ordering of spaces, an ordering that reflects the relative capacities of spaces

to carry information. For any two spaces either one of them is information-

ally larger than the other, or they are not comparable. (Any two finite spaces

are comparable. Spaces that have dimension are comparable when certain

regularity conditions on mappings are imposed.)

A prototypical instance of a piece of information is:

“Henry’s income after taxes in the year 2002 was $100,000.” (∗)

This can be formalized by defining variables whose values identify points

in the domain and points in the range of a function. In the sentence (∗)

the domain D = N × Y includes values that identify a person, n = H =
Henry ∈ N, and the year y = 2002 ∈ Y ; the range consists of nonnegative



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

3.7 Informational Efficiency 251

integers interpreted as a number of dollars, and the function f1 : D → I

specifies the after-tax income in year y ∈ Y of person n ∈ N. This func-

tion formalizes a class of observations, namely, the after-tax income of any

specified person in the set N, in any specified year in Y.

We might have also observed:

“Henry lived in a blue house during the year 2002.” (∗∗)

This observation is formalized by the function f2 : D → G , where G is the

set of colors of houses under consideration.

It should be clear that the set of functions that can be interpreted as

information about entities represented by points in the domain D is very

large – perhaps infinite. Even if we were to restrict attention to observations

of Henry in the year 2002, there would be a very large – perhaps infinite –

number of different possible observations.

These considerations underlie the formal definition of informational size

of spaces given in Mount and Reiter (1974). Roughly, if every function

defined on a space M ′ has a corresponding function defined on a space M,

and if there are functions defined on M that have no corresponding functions

defined on M ′, then M is said to be informationally larger than M ′. The

meaning of “corresponding function” uses the idea of lifting functions from

M ′ to M to capture the notion that the two functions involved represent

the same observation. ‘Lifting functions’ is defined as follows.

definition 3.7.4.1.a Suppose g : M ′ → g (M ′) = W is a function from M ′

to some set W. If there is a function ϕ : M → M ′ that is surjective (here

M ′ might be a subset of M), then the function f = g ◦ ϕ is the lifting of g

to the function f = g ◦ ϕ on M.

If there is such a function ϕ from M to M ′, then it is evident from

Figure 3.7.4.1 that every function on M ′ can be lifted to a function on M.

It is also evident that the function g ◦ ϕ represents the same observation as

g does. If there is no surjective function from M ′ toM, then there could be

functions on M ′ with no corresponding functions on M.

The following simple example, in which M and M ′ are finite sets, illus-

trates lifting functions.

Suppose M ′ = {x1, x2}, and M = {y1, y2, y3}. Then clearly there is a sur-

jective function ϕ : M → M ′. For instance,

φ(y1) = x1, φ(y2) = φ(y3) = x2.
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M ′ g g(M ′)

ϕ

M

g oϕ

Figure 3.7.4.1

Now if g : M ′ → g (M ′), then the function f : M → g (M ′) defined by

f (y) = g (ϕ(y)) is the function on M associated with g . That is,

f (y1) = g (ϕ(y1)) = g (x1),

f (y2) = g (ϕ(y2)) = g (x2) = g (ϕ(y3)) = f (y3).

The lifting is not unique. We could have taken

ϕ′(y1) = ϕ′(y2) = x1, ϕ′(y3) = x2

and as a result gotten

f ′(y1) = g (ϕ′(y1)) = g (x1) = g (ϕ′(y2)) = f ′(y2),

and

f ′(y3) = g (ϕ′(y3)) = g (x2).

The concept of lifting functions is the idea behind the definition of infor-

mational size of a space given in Mount and Reiter (1974), where a (topolog-

ical) space X is said to be informationally at least as large as a (topological)

space Y if and only if there is a (continuous and locally sectioned16) function

16 A surjective function f : X → Y is called locally sectioned if its inverse f −1 correspondence
is locally threaded. A correspondence φ : A ⇒ B is locally threaded if for every point a ∈ A
there is an open neighborhood U in A of a , and a continuous function g : U → B such
that g (a ′) ∈ φ(a) for every a ′ ∈ U .
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ϕ : X −→
onto

Y .17 These conditions rule out dimension-increasing functions,

like the Peano function.

definition 3.7.4.1.b A set (space) M is informationally at least as large as a

set (space) M ′ if every function on M ′ can be lifted to a function defined

on M; it is strictly larger if there is at least one function defined on M ′ that

cannot be lifted to one on M.

In the case in which M and M ′ are spaces, that is sets with additional

structure, for instance Euclidean spaces, the functions that appear in the

definition of lifting would naturally be required to satisfy conditions corre-

sponding to the additional structure. In order to accommodate the compet-

itive mechanism, whose message space is Euclidean, as well as more general

possibilities, message spaces in the class of topological spaces were consid-

ered. This class of course includes Euclidean spaces and, more generally,

metric spaces, as well as finite or infinite discrete spaces, the latter with the

discrete topology.

Correspondingly, all functions involved are required to be continuous.

This is a natural requirement in relation to information, because commu-

nication should not amplify small errors too much. But here a technical

difficulty complicates matters. A natural measure of size of messages , say,

in the case of Euclidean spaces, is dimension, that is, the number of variables

involved. It seems intuitive that it is more costly to transmit the values of

two variables than it is to transmit the value of one variable. In the case of

Euclidean spaces, the values of variables are real numbers; the distinction

between communicating the values of two real numbers and communicating

the value of one real number can disappear unless an additional restriction

is imposed. This difficulty would arise if it were possible to encode two real

numbers in one real number, communicate that number, and then decode

the received value to recover the original two numbers. For concreteness sup-

pose x1 and x2 are variables that take values in the unit interval. Then the

variable x = (x1, x2) has the unit square I 2 = [0, 1] × [0, 1] as its domain.

If it were possible to encode this variable in one real variable, the function

representing the encoding would map I 2 into the unit interval I = [0, 1]. Of

course, there are many such functions. Suppose ξ : I 2 → I is the encoding

function. Then, to communicate the point x ∈ I 2, compute ξ(x) = y ∈ I

17 A number of papers that modify and apply the Mount–Reiter concept of informational size
are surveyed in Hurwicz (1986). An alternative condition involving the Lipschitz continuity,
due to Hurwicz is also discussed in the cited survey.
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and communicate that value to the receiver. To recover the original point

x from the value y = ξ(x) we need a function, say ψ , that maps I onto

I 2. Furthermore, to be sure we get the original point back, it must be the

case that x = ψ(y) = ψ(ξ(x)), which is to say that ψ and ξ are inverses

of one another. If there were such functions ψ and ξ , and they were both

continuous, then there would be no meaningful informational distinction

between one real variable and two real variables. (By extending the argu-

ment, the number of real variables would not be meaningful as a measure

of information content.)

Furthermore, we would require that the image of ψ cover an open set

in I 2, because the point to be encoded can be any point in an open set

in I 2, (otherwise we are effectively not in I 2). Now, there are continu-

ous functions that map I continuously onto I 2. The Peano function, P ,

whose image of the unit interval is the unit square, is one such continuous,

dimension-increasing function. Therefore, when considering lifting func-

tions in order to maintain the distinction between dimensions, the function

ϕ in Definition 3.7.4a is required to be locally sectioned. This condition is

sufficient to rule out dimension-increasing mappings.

We have shown in Theorem 3.7.4.1 that the rRM method of construct-

ing a covering of the parameter space results in a covering that is maximal.

Another desirable informational property of a mechanism is that its message

space be as small in informational size as possible. Are these two informa-

tional properties equivalent? If not, are they in conflict? That is, is there a

tradeoff between communication efficiency, as indicated by the informa-

tional size of the message space, and observational precision, as indicated

by the coarseness of the covering of the level sets of the goal function?

Suppose that π = (M, μ, h) is a decentralized mechanism that realizes

a goal function F, and suppose that the message space of π has minimal

informational size. If the covering Cμ of the parameter space induced by the

message correspondence is an rRM covering, then Theorem 3.7.4.1 assures

us that the covering Cμ is maximally coarse.

Example 3.8.1 shows that the two-step method constructs two rRM

coverings, one of them results in a mechanism with a message space of

size 2 and the other of size 3. Each mechanism has a maximal covering.

(Examination of the two coverings in Figure 3.8.4 and 3.8.5 shows that nei-

ther is coarser than the other, but one of them has a redundant set.) More

generally, mechanisms that realize a given goal function have at least two

properties relevant to informational efficiency: coarseness of the covering

and size of the message space. Theorem 3.8.4.3 assures us that a mechanism
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constructed by the N-step procedure has an rRM covering of the parameter

space, and hence is maximally coarse in the set of mechanisms that realize

that goal function. Therefore, if a mechanism is constructed by the N-step

procedure, or otherwise is known to have an rRM covering (whether or

not its message space is of minimal informational size), then its associated

covering is maximal.

In the augmented inner product example, with

F (a , b) = a1b1 + a2b2 + b3,

the mechanism that has an informationally minimal message space also has

the property that the covering of the parameter space that it determines is

maximally coarse.18

The augmented inner product is a goal function for which rRM constructs

two mechanisms, one using left-RM, the other right-RM. One of them is

informationally efficient with respect to coarseness and informational size

of the message space, whereas the other mechanism does not have a min-

imum size message space. In that example, parameter transfer from 2 to 1

is never efficient. However, if we took account of computational complex-

ity as a component of informational comparison, parameter transfer from

2 to 1 might sometimes be efficient, perhaps because agent 1 has better

computational resources than agent 2.

Suppose, we have a mechanism whose message space has minimal infor-

mational size among all RM mechanisms that realize a given goal function.

Does it follow that the covering corresponding to that mechanism is maxi-

mal? We know from Theorem 3.7.4.1 that if the covering is an rRM covering,

then the covering is maximally coarse, whatever the size of the message space.

But suppose that the covering is not rRM. The following examples show

that a mechanism whose message space has minimal informational size need

not generate a maximally coarse covering of the parameter space.

In the first example, Example 3.7.4.2, the parameter space is Euclidean,

whereas in Example 3.7.4.3, it is a finite set. The examples indicate that the

concepts of informational size of the message space, and of the coarseness of

the covering that mechanism generates are quite different. This is perhaps

surprising in the case of a finite parameter space, because in that case,

the size of the message space is simply the number of distinct messages

it contains, and there is a one-to-one correspondence between messages

18 A proof appears in Chapter 2 in the discussion of the condensation method. See also
Theorem 4.4.6 in Chapter 4.
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and sets in the covering. Therefore, if one message space is informationally

smaller than another, it contains fewer messages, and the covering associated

with it must contain fewer sets. However, two message spaces can have the

same size and yet, as Example 3.8.4.3 shows, the covering associated with

one of them can be a coarsening of the covering associated with the other.

(In the latter example, the maximally coarse covering has overlaps, while

the one that is not maximal is a partition.)

example 3.7.4.2. (Euclidean).

Let the parameter space, � = �1 × �2, be two dimensional. For con-

venience we sometimes write X = �1, Y = �2, and correspondingly

x for θ1, and y for θ2. Suppose that the goal function F is such that the

contour set F −1(1) is the set S shown in Figure 3.7.4.2. It is the trapezoid

defined by the two lines labeled L 1, L 2 in Figure 3.7.4.2, together with the

line segments in X and Y that complete the trapezoid.19

More explicitly, the line L 1 has the equation

x + y = 1, where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

and the line L 2 has the equation

x + y = 2, where 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

The other two line segments are the intervals [(0, 1), (0, 2)] on the Y -axis

and [(1, 0), (2, 0)] on the X-axis.

We consider two mechanisms. The first is π , a mechanism that generates

the covering C shown in Figure 3.7.4.2. C consists of horizontal line seg-

ments that go between L 1 and L 2. The generating correspondence V(θ̄) =
K θ̄ is defined by V(θ̄) = {(x , y) ∈ F −1(1) | y = ȳ, and 1 ≤ x + ȳ ≤ 2},
where θ̄ = (x̄ , ȳ) and x ≥ 0, y ≥ 0.

The unique point (2 − ȳ, ȳ) ∈ L 2 corresponding to the set K θ̄ is to be the

distinct representative of K θ̄ . That is, �(K θ̄ ) = (2 − ȳ, ȳ), and the transver-

sal T = �(C) is the line L 2 itself.

We take the message space of the mechanism to be the line segment

[0, 2] ⊂ X . This is defined by choosing the mapping ν : T → X to be

ν(2 − ȳ, ȳ) = 2 − ȳ. This defines the message space of π to be

(i) M = [0, 2].

To define the second mechanism we introduce another line, L 3, into

Figure 3.7.4.2, as shown in Figure 3.7.4.3. This line is halfway between L 1

19 For our purposes here, that is all we need to know about the goal function.
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θ
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Figure 3.7.4.2

and L 2. Its equation is

x + y = 1.5, where 0 ≤ x ≤ 1.5, 0 ≤ y ≤ 1.5.

This line partitions the contour set F −1(1) = S into two subsets, denoted

S1, S2, where

S1 = {(x , y) ∈ S | 1 ≤ x + y ≤ 1.5},
and

S2 = {(x , y) ∈ S | 1.5 < x + y ≤ 2}.
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Figure 3.7.4.3

We define the covering C ′ generated by the correspondence V ′ : � ⇒ �

of the second mechanism. For θ̄ ∈ �, if θ̄ ∈ S1 then let

V ′(θ̄) = K ′̄
θ

= {(x , y) ∈ S | 1 ≤ x + ȳ ≤ 1.5, and y = ȳ},

and if θ̄ ∈ S2 then let

V ′(θ̄) = K ′̄
θ

= {(x , y) ∈ S | 1.5 < x + ȳ ≤ 2, and y = ȳ}.
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The covering C ′ generated by V ′ has the SDR �′, defined by

�′(K ′) = K ′ ∩ (L 2 ∪ L 3).

If K ′ ∈ S1 then K ′ ∩ L 2 �= ∅, but K ′ ∩ L 3 = ∅, and, if K ′ ∈ S2 then

K ′ ∩ L 2 = ∅, and K ′ ∩ L 3 �= ∅.

It follows that if K ′ ∈ S1, then �′(K ′̄
θ
) = (1.5 − ȳ, ȳ), 0 ≤ ȳ ≤ 1.5 and

if K ′ ∈ S2, then �′(K ′̄
θ
) = (2 − ȳ, ȳ), 0 ≤ ȳ ≤ 2.

The transversal is T ′ = �′(C ′).

Next, we define the one-to-one function ν ′ : T ′ → M ′ to obtain the

message space M ′ of the second mechanism π ′.
For K ′ ⊆ S1�

′(K ′) ∈ L 3. Suppose �′(K ′) = (t1, t2). Then it must be the

case that

t1 = 1.5 − t2, where 0 ≤ t2 ≤ 1.5.

Define

ν ′(t1, t2) = ν ′(1.5 − t2, t2) = 1
3
t2.

For K ′ ⊆ S2, �′(K ′) ∈ L 2. Then for �′(K ′) = (t1, t2), it must be the case

that

t1 = 2 − t2, where 1.5 < t2 ≤ 2.

Define

ν ′(t1, t2) = ν ′(2 − t2, t2) = 1 + 1
2
t2.

Then the message space is

M ′ = ν ′(T ′) = ν ′(L 2 ∪ L 3) = [
0, 1

2

] ∪ [1, 2]. (ii)

It is clear that C is a proper coarsening of C ′, but M and M ′ have the

same informational size, that is, dim(M) = dim(M ′) = 1. Moreover, M ′ is

a proper subset of M.

example 3.7.6.3 (Finite sets). In this example the parameter space � =
�1 × �2, where �1 = {a1, a2} and �2 = {b1, b2}. Thus,

� = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}.
Let α = (a1, b2), β = (a1, b1), γ = (a2, b1), δ = (a2, b2), and suppose

F −1(1) = {α, β, γ },and F −1(0) = {δ}.
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This is shown in Figure 3.7.4.4.

b2

b1

a1
a2

β

α

γ

δ• •

• •

• •

Figure 3.7.4.4

Confine attention to the contour set F −1(1). The smallest message space that

is possible for a rectangular covering of F −1(1) consists of two messages,

say, m1 and m2. A covering of F −1(1) that consists of two rectangles, shown

in Figure 3.7.4.5, is C1 = {K1, K2}, where

K1 = {α}, and K2 = {β, γ }.

b2

b1

a1 a 2

β

α δ

γ

K1

K2

• •

•

•

• •

• •

Figure 3.7.4.5

But C1 has a proper coarsening,

C2 = {K ′
1, K ′

2}, where K ′
1 = {α, β} and K ′

2 = {β, γ },
as shown in Figure 3.7.4.6.
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Figure 3.7.4.6

This shows that, although the message space associated with the covering

C1 has minimal informational size, the covering C1 is not a maximally coarse

covering. Note that the covering C2 is maximally coarse, and the message

space it generates has minimal informational size in the set of decentralized

(self-belonging, rectangular, and F-cc) coverings of mechanisms that realize

the goal function.

Although these examples indicate that informational size of the message

space and coarseness of the associated covering are different concepts, in

sufficiently regular cases there is a connection between the size of the mes-

sage space and the “size” of sets in the covering. Suppose the parameter

space is � = R3, a Euclidean space, and suppose the goal function is suffi-

ciently smooth. Then level sets of a real-valued goal function will be (locally)

two-dimensional smooth manifolds in R3. A rectangular covering of a level

set could consist of two-dimensional rectangles, one-dimensional rectan-

gles, or zero-dimensional rectangles. In the regular case the rectangles will

be one dimensional. Correspondingly, the transversal to the covering will

be one dimensional. If, as in the case of a revelation mechanism, the sets are

zero dimensional, the transversal will be two dimensional. Let the dimension

of the level set be d , the dimension of the rectangles in the covering be r , and

the dimension of the transversal be t. Then, in the regular case, the relation

d = r + t (%)

will hold.20 We know from the construction of a mechanism from an rRM

covering and a transversal that the dimension of the message space is the

20 The differential approach to mechanisms is explored in Chapter 4, where there is a system-
atic treatment of the ideas underlying equation (%) , or variants of it.



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

262 Designing Informationally Efficient Mechanisms

same as the dimension of the transversal. This follows from the requirement

that the mapping ν : T → M be injective. In the regular case this mapping

is required to be smooth, and hence dimension preserving. Consequently,

if the informational size of the message space (namely its dimension) is

smaller, then the dimension of the sets that make up the covering will be

larger. Although this relationship is not directly between informational size

and coarseness, it suggests that in regular cases the covering corresponding

to the smaller message space is either coarser than the original one, or not

comparable with it.

The second component of informational efficiency is, as we have indi-

cated, the informational size of the mechanism’s message space. In the case

of a mechanism constructed from an rRM covering, the message correspon-

dence induces the same covering as the one it was constructed from. This

suggests that there might be some relationship between the coarseness of

the covering and the informational size of the message space.

More specifically, suppose a goal function is given, and consider the class

of decentralized mechanisms that realize that goal function. We have shown

that an rRM covering C of � is generated by a self-belonging correspon-

dence V : � ⇒ �, and that C is maximal (with respect to the partial order-

ing of coverings by coarseness, as defined in the preceding subsection) in

the class of coverings that are self-belonging, rectangular and F-cc for the

given goal function F. A decentralized mechanism, say π = (M, μ, h), con-

structed from that covering, whether by the method of transversals, or by

the condensation procedure (see Chapter 2) also generates a covering of

the parameter space, namely, the one induced by the inverse of its message

correspondence. We have seen that this covering is the same as the covering

CV generated by V . This connection between the covering and the message

space suggests the question: “How is the size of the message space ofπ related

to the coarseness of the covering generated by the message correspondence

of π?” More specifically;

(A) “If C is maximally coarse in the class of mechanisms that realize

the goal function F, then does the message space M of a decen-

tralized mechanism constructed from that covering have minimal

informational size in that same class of mechanisms?

(B) If a decentralized mechanism that realizes F, however constructed,

has a message space of minimal informational size, then is the asso-

ciated covering of � maximally coarse in the class of RM mecha-

nisms for F?

If the answer were ‘yes’ to both questions, then any decentralized mecha-

nism constructed from an rRM covering would be informationally efficient
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in both senses. However, it is not in general the case that a decentralized

mechanism, whose associated covering is maximally coarse, and that real-

izes the goal function, has a message space that is informationally minimal

in the class of decentralized mechanisms that realize that goal function.

If the parameter space is finite, the OrRM algorithm constructs a cover-

ing that is maximally coarse, and a message space that has minimal infor-

mational size among all decentralized mechanisms that realize that goal

function.

Example 3.7.4.1 also shows an analogous result in a case in which the

parameter space is a Euclidean, and the goal function is smooth. In this

example from Chapter 2, the mechanism is represented in equation form.

We refer to the goal function in this, and similar examples, as an augmented

inner product (see Chapter 2).

example 3.7.4.1. There are two agents, with parameter spaces �1 = R2, and

�2 = R3. We write parameters of agents 1 and 2 as a = (a1, a2) and b =
(b1, b2, b3), respectively. The goal function is

F (a , b) = a1b1 + a2b2 + b3 + 1
2
a2

1 .

There are two mechanisms: one has a message space M1 whose dimension

is 3; the other has a message space M2 whose dimension is 4. It is shown

in Chapter 2 (Section 2.1.3.2) that each of the coverings associated with

these mechanisms is constructed by a two-step process, and hence each is

a reflexive RM covering. It follows from Theorem 3.7.3.2 that each of these

coverings is maximally coarse. The coverings are, of course, not comparable

with respect to coarseness. But the two message spaces are comparable with

respect to informational size, one being strictly smaller than the other. That

is, the message space of the first mechanism is three dimensional, whereas the

message space of the second is four dimensional. Thus, maximal coarseness

in the class of rRM mechanisms does not imply minimal message space size of

the mechanism. However, it is an immediate consequence of Theorem 3.7.3.2

that a reflexive RM mechanism that has a message space whose informational

size is minimal in the class of mechanisms that realize a given goal function

has a maximal covering in that class.

3.8 Section 1.9 Revisited: A Graphical Presentation

We revisit Section 1.9 in order to show how our algorithm constructs a

decentralized, informationally efficient mechanism that realizes the goal

function in that example. We follow the steps laid out in the Sections 3.2

through 3.5. Here we present the construction graphically, as far as possible.
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We use notation and assumptions that are introduced in Section 1.8., but in

places we change some assumptions so as to enrich the example, and to show

more of the construction. The treatment of Example 1.8 here is somewhat

more formal than the exposition in Section 1.8. We begin by defining the

sets and functions that appear in Section 1.8. Recall that the function ϕ =
(ϕ1, ϕ2) maps the interval of possible logging amounts λ ∈ [0, 1] onto the

piecewise linear curveϕ(λ) = (ϕ1(λ), ϕ2(λ)) = (w, n), wherew denotes the

amount of “wood” produced, and n is the amount of “nature” remaining,

when the amount of logging is λ. To define the political pressure functions

we first define two functions, P ′
1 andP ′

2 on the set ϕ([0, 1]) = ϕ1([0, 1]) ×
ϕ2([0, 1]), by the formulas

P ′
1 : ϕ([0, 1]) → R+, P ′

2 : ϕ([0, 1]) → R+.

The values

p1 = P ′
1(w, n) and p2 = P ′

2(w, n)

are the measures of (maximum) political pressure that agent 1 and agent 2

can bring to bear when the amounts of wood and of nature are (w, n). The

political pressure functions are

Pi = P ′
i ◦ ϕ i = 1, 2.

Thus, Pi : [0, 1] → R+ i = 1, 2.

We assume that the functions Pi are continuous, and piecewise linear,

with linear segments on the intervals [0, λ1), [λ1, λ2], (λ2, 1], and that P1

is strictly decreasing and P2 is strictly increasing on [0, 1]. Under these

assumptions each p-function is uniquely specified by its value at four points,

0, λ1, λ2, 1. Denote these values a0, a1, a2, a3 for P1, and b0, b1, b2, b3 for P2.

Finally, we suppose that there are numbers, denoted τ 1
min, τ 1

max, τ 2
min, τ 2

max,

which bound the two functions. Then, the set of environments is � =
�1 × �2, where

�1 = {
a = (a0, a1, a2, a3) : τ 1

max ≥ a0 > a1 > a2 > a3 ≥ τ 1
min

}
,

and

�2 = {
b = (b0, b1, b2, b3) : τ 2

min ≤ b0 < b1 < b2 < b3 ≤ τ 2
max

}
.

(Recall that in Section 1.8 it was assumed that the set of environments that

are possible for the loggers’ agent, agent 1, is the set of all pairs, (a1, a2), that

lie strictly between τ 1
max and τ 1

min.)

Note that for any parameter point, (a , b) ∈ �, the graphs of the

corresponding functions P1, P2 intersect in a unique point (λ∗, τ ∗) ∈
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[0, 1] × [τ 1
min, τ 1

max] ∩ [τ 2
min, τ 2

max]. Thus, a pair of functions, P1, P2 in

� = �1 × �2, determines a unique point (λ∗, τ ∗). We define the goal

function F : �1 × �2 → R+ by the condition that its value at the point

θ = (a , b) ∈ � be the value λ∗ from the unique pair (λ∗, τ ∗) so determined.

A typical pair of p-functions is shown in Figure 3.8.1a. It shows one of

three possible cases. The other two are shown in Figures 3.8.1b and 3.8.1c.

0 λ λ 1

τmax

τmin

τmax

τmin

a

a

b2

b3

1
2

2

1 2

1

3

2

b0

b1

a1

a0

Figure 3.8.1a

Figures 3.8.1b and 3.8.1c show the other two possible cases. In Figure

3.8.1b the point of intersection (λ∗, τ ∗) is such that λ∗ is between 0 and λ1,

and in Figure 3.8.1c, the intersection of the two p-functions is such that the

λ∗ is in the rightmost interval.

The individual environment spaces are four dimensional. Hence, the full

environment space is eight dimensional – a case that does not lend itself

to graphical presentation. However, we can see that in each of the three

regions in which the p-functions can intersect, only two parameters per

agent determine the point of intersection, and hence the outcome. In the

region defined by the condition that λ is in the interval [0, λ1) they are

a0, a1 for agent 1 and b0, b1 for agent 2, and correspondingly in the other

two regions. A graphical presentation of the analysis can be given for any
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one of the regions; the analysis in the other two regions is the same. We take

up the case presented in Figure 3.8.1a, in which the p-functions intersect in

the middle region, the one in which λ∗ is in [λ1, λ2].

The first step in our algorithmic procedure is to construct a cover-

ing of the joint parameter space � by rectangles. This is accomplished

by constructing a correspondence V : � ⇒ �, that is self-belonging and

F-contour contained. First, we choose an arbitrary point θ̄ = (θ̄1, θ̄2) =
(ā0, ā1, ā2, ā3, b̄0, b̄1, b̄2, b̄3) = (ā , b̄).

Next, following the two-step construction, we construct agent 1’s side of

the rectangle for the given point. This is shown in Figure 3.8.2a.

0 λ λ 1

τmax

τmin

τmax

τ min

a0

a1

a2

a3

b1

b

b3

b2

λ∗

τ∗

â1

= â2

1

0

2

1 2

1

2

Figure 3.8.2a

Figure 3.8.2a shows that any line segment whose left endpoint is (λ1, a1)

such that τ ∗ < a1 ≤ â1, and whose right endpoint is (λ∗, τ ∗), is the basis

of a parameter point in the set A(ā , b̄). For any point a ′
1 that satisfies the

condition (λ1, a ′
1); τ ∗ < a ′

1 < â1, consider the set of values of a0 such that

(0, a0) is the left endpoint of a line segment whose right endpoint is in the

interval (λ1, a ′
1); τ ∗ < a ′

1 < a ′
0. We can see in Figure 3.8.2a that this set is

not empty. Every such pair of points determines the left endpoint of a line

segment that “starts” on the vertical line over the point 0, and whose right
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endpoint is on the line above λ1. Furthermore, that point determines the

left endpoint of a line segment that passes through the point (λ∗, τ ∗), and

terminates at the point at which it intersects the vertical line on λ2. The

termination point is the value ξ1((λ1, a ′
1), (λ∗, τ ∗)) of the function defined

in Section 1.9. It is clear that each such line connects at its right endpoint

with a line segment that decreases monotonically from the vertical line on

λ2 to the vertical line on 1.

The part of the four-dimensional set of parameter points that is essential

here is the set of pairs (a1, a2) that characterize the middle line segments

that contain the point (λ∗, τ ∗); for each such pair we can find the points a0

and a3 that complete the specification of the parameter point.

In summary, Figure 3.8.2a shows the set A(ā , b̄) × {b̄}. It should be clear

from the graph that the set A(ā , b̄) is the largest set that satisfies the condi-

tions of our construction, and is such that A(ā , b̄) × {b̄} is in F −1(F (ā , b̄)).

It remains to construct agent 2’s side of the rectangle. Figure 3.8.2.b shows

the result of this construction.

We have constructed the rectangle A(ā , b̄) × B∗(A(ā , b̄), b̄), where

B∗(A(ā , b̄)b̄) is the set in the parameter space of agent 2 corresponding

to the horizontally hatched area in Figure 3.8.2b.

0 λ λ 1

τmax

τ min

τ max

τmin

a0

a1

a2

a3

b1

b

b3

b2

λ∗

τ∗

â1

= â2

1

0

2

1 2

1

2

Figure 3.8.2b
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Thus, V(ā , b̄) = A(ā , b̄) × B∗(A(ā , b̄), b̄). This is a rectangle in the full

parameter space. In order to represent it in a diagram on the page, we

note that the defining points are the values of (a1, a2) and (b1, b2). The

rectangle in the parameter space corresponding to these values is shown in

Figures 3.8.3a and 3.8.3b.

a2

τ τ= max

max

τ
τ

∗ â1

b, .

a1

ˆ min2
1= τ

τ∗

θ1

A

a

Figure 3.8.3a

We have constructed the covering generated by the correspondence

V : � ⇒ �.

The next step is to find a system of distinct representatives (SDR) for

that covering. But that is completely obvious from Figure 3.8.2b; we can

choose the point θ̄ to be the representative of the set V(θ̄). This choice

indeed defines an SDR, because if θ̄ were an element of another set, say,

V( ¯̄θ), ¯̄θ = ( ¯̄a1, ¯̄a2, ¯̄b1, ¯̄b2); ¯̄θ �= θ̄ , then either the two line segments gen-

erated by ( ¯̄a1, ¯̄a2) and ( ¯̄b1, ¯̄b2) intersect at the same point as do the two

line segments generated by θ̄ , or they intersect at a different point. If they
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τmax
2

τmax
2

b2 = ∗τ

τ∗

The B-side of the rectangle V a b,( )

b1

b2

′b1

ˆ , , ˆb b b b1 1 2 1 2≤ ′ < ′ ( )( ) =∗ ∗ ∗τ ξ λ τ   

b̂2 =

′ = ′ ( )( )∗ ∗b b2 2 1ξ λ τ, ,

θ 2

Figure 3.8.3b

intersect at the same point, then V(θ̄) = V( ¯̄θ), because by the construction,

neither can be a subset of the other.

If they intersect at two different points, then there would be two different

points (λ′, τ ′) and (λ′′, τ ′′) such that the line segment corresponding to θ̄

contains both (λ′τ ′) and (λ′′, τ ′′). But the construction guarantees that the

line segments determined by θ̄ have a unique intersection. Thus, given a set

in the covering , any parameter point in that set can be its representative.

Note that the elements in the SDR are four dimensional. They are the

four parameters that determine the two lines that represent the set. But a set

V(θ) is also uniquely associated with the point at which that representative

pair of lines intersect. The points of intersection have the form (λ, τ ), which

is two dimensional.

These two-dimensional points can be chosen as the messages, because the

function that associates a point of intersection with the representative of a

rectangle in the full parameter space has been shown to be injective, that is,

uniquely associated with the representative of the rectangle. We see that the
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rRM construction produces a mechanism with a two-dimensional message

space in this example.

In the original formulation of Section 1.9 the domain of the logging

rate, λ, is in the interval [0, 1]. This is mapped into the first quadrant

of two-dimensional space R2
+, whose coordinates represent the outputs of

“wood” and “nature” that result from logging. The image of the unit inter-

val is assumed to be a continuous curve whose endpoints are (0, nmax) and

(1, wmax). We assumed that curve to be piecewise linear with kinks at the

points ϕ(λ1) = (ϕ1(λ1), ϕ2(λ1)) and ϕ(λ2) = (ϕ1(λ2), ϕ2(λ2)). This piece-

wise linearity is assumed to be inherited by the p-functions, as shown in

Figure 1.1.1. This, together with the assumptions that imply that the p-

functions have unique intersections over the interval [0, 1], ensures that

an environment is characterized by eight parameters, namely, the values of

each p-function at the four values 0, λ1, λ2, 1. Our algorithm for mechanism

construction (the rectangles method, followed by the transversals method

construction) produces a decentralized mechanism whose message space is

two dimensional when applied to that set of environments and goal func-

tion. Next, we examine what the algorithmic construction produces when

we keep the same goal function, but enlarge the set of environments.

Suppose that instead of approximating the curve ϕ(λ) that shows the

results of logging at the rate λ at four points 0, λ1, λ2, 1, we consider n

points between 0 and 1. Thus, the points at which there are kinks in the

p-functions are 0, λ1, . . . , λn, 1. The assumptions that ensure an intersec-

tion of the two p-functions at a point λ∗ between 0 and 1 are maintained.

In this setting the number of parameters that characterize an environment

is 2(n + 2). For any environment in the set corresponding to this size sub-

division, the intersection appears in one of the intervals [λ j , λ j+1), for

j = 0, 1, . . . , n − 1, and λ0 = 0, or in the interval [λn, λn+1] = [λn, 1]].

As in the case in which n = 2, the set of p-functions that intersect in a par-

ticular interval, say, [λ j , λ j+1), the RM construction begins by identifying

the class of parameters a j−1, a j and b j−1, b j such that the two correspond-

ing p-functions intersect at λ∗, and then extending each of those functions

piecewise to the entire interval [0, 1]. This process constructs a rectangle in

the joint parameter space of the two agents. Construction of a transversal

is exactly parallel to what was done in the case n = 2. As in that case, there

is an injective mapping of the transversal into the two-dimensional space

[0, 1] × [τ 1
min, τ 1

max] ∩ [τ 2
min, τ 2

max]. The point at which any two p-functions

in a particular RM rectangle intersect is the same, and the rectangles are

disjoint, and are maximal with respect to inclusion. Hence the point of

intersection uniquely identifies that rectangle. Thus, the message consists of

two numbers, (λ∗, τ ∗), independent of the number of parameters.
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Next, we consider a more complex goal function. Suppose the Forester

favors the interests of one of the two groups of interested parties over the

other. Say he favors more logging, and so is willing to cope with pressure

from the preservationists that is not fully offset by countering pressure from

the loggers. This can be expressed by a goal function defined as follows. The

Forester wants to choose a logging rate such that the pressure from agent

2 – the representative of the preservationists – exceeds the pressure from

agent 1 by an amount β > 0. Thus, the Forester’s desired logging rate is

λ∗∗ ∈ [0, 1] satisfying

P2(λ∗∗) − P1(λ∗∗) = β. (+)

Here we drop the assumption that the p-functions are piecewise lin-

ear, but continue to assume that they are strictly monotone. Under these

assumptions there is a unique value of λ∗∗ that satisfies the condition (+),

given β > 0. This is shown in Figure 3.8.4a for nonlinear p-functions.

Figure 3.8.4a



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

3.8 Section 1.9 Revisited: A Graphical Presentation 273

Next, we use the rectangles method to construct a covering of the envi-

ronment spaces. This is shown in Figure 3.8.4b.

τ max
1

τ min
1

τ min
2

τ max
2

λ∗∗

τ1
∗∗

τ1
∗∗

τ 2
∗∗

0 1

Figure 3.8.4b

The covering is as follows. For agent 1, the relevant rectangle in agent

1’s parameter space consists of all p-functions, however represented, whose

graph is a curve whose left end point lies in the interval in the line λ = 0

indicated by the rectangle whose left boundary is in that line. That curve then

passes through the point (λ∗∗, τ ∗∗
1 ), and terminates in a point that lies in

the interval in the line indicated by the thin rectangle inside that line λ = 1.

For agent 2 the construction is similar. The endpoints of the graph of a

p-function that passes through the point (λ∗∗, τ ∗∗
2 ) must lie in the intervals

indicated by the rectangles outside the lines at λ = 1, λ = 2, respectively.

The points of the form (λ, τ1, τ2) constitute an SDR for this covering,

and hence can be used as the messages of the mechanism constructed from
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this covering. It is clear that no smaller message space will work, except in

the special case that β = 0. In that case τ1 = τ2; we are in the case in which

the Forester wants to balance the opposing political pressures.

We can see that for each goal function in the family characterized by β,

the size of the message space is independent of the number of parameters

that characterize the p-functions, that is, of the number of parameters that

characterize the environment – in this case, the agents.

The property that the size of the message space is independent of the num-

ber of parameters extends to other cases. For instance, in the case where

β = 0, suppose that the linear segments that make up a p-function are

replaced by nonlinear segments, so that the graph of a p-function consists

of curved segments. The number of parameters might be more or less than

the ones needed to characterize linear segments, but as long as the points of

intersection of the p-functions are uniquely associated with the RM rectan-

gles, it remains the case that the size of the message space is independent of

the number of parameters.

The property that the size of the message space is independent of the

number of parameters that characterize agents is a property of the com-

petitive mechanism in exchange environments. There it is well-known that

the size of the message space is determined by the number of goods, and

the number of agents. It is considered to be an important informational

advantage of that mechanism. Section 1.9 suggests that this advantage may

also be available in cases that appear at first glance to be quite different.

3.9 Strategic Behavior

3.9.1 Dominant Strategy Implementation

In this section we consider briefly the problem that strategic behavior

presents to design of informationally efficient mechanisms. We focus on

informational properties of mechanisms in this book, because information

processing is costly, and mechanisms that impose information processing

tasks that exceed the capacities of human beings, even when equipped with

the best information technology available, cannot in fact be operated. But

a complete theory of mechanism design should not ignore the effects of

distributed information on incentives, and therefore on the operation of

decentralized mechanisms when agents have incentives to exploit private

information. Indeed, the literature that deals with incentives in mechanism

design is extensive, but that literature, with very few exceptions, ignores the

burden of information processing. A more complete approach to mecha-

nism design should address both informational and strategic issues.
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A few papers in the literature on mechanisms deal with both strategic

behavior and informational efficiency. See Reichelstein (1984), Reichelstein

and Reiter (1988), Hurwicz (1972), and Williams (1986). These papers show

in special contexts that strategic behavior increases informational require-

ments beyond what would be minimal if the people operating in the mech-

anism behaved as they were instructed. More specifically, for a given goal

function strategic behavior increases the size of the message space that would

be required by a decentralized mechanism that realizes that goal function

when strategic behavior is ruled out. On the other hand, when informational

requirements are ignored, mechanisms can be designed to implement goal

functions in a large class. But often these mechanisms impose infeasible

informational tasks.21 The algorithms that we present in this book for con-

structing informationally efficient decentralized mechanisms that realize a

given goal function can, we think, be usefully combined with methods of

mechanism design that focus on implementation in the presence of strategic

behavior. Although we do not provide a general treatment of this matter in

this book, we do suggest ways of including both strategic and informational

objectives in a mechanism design process. We show how this might be done

in two settings. First, in Section 1.8 we show how an incentive compatible

mechanism designed using the revelation principle can be made informa-

tionally efficient by applying our algorithm for designing mechanisms. Sec-

ond, in the case of finite environment spaces we show how a mechanism that

implements a goal function in Nash equilibrium can be modified by use of

OrRM and the transversals method into a mechanism that is informationally

efficient and implements the same goal function in Nash equilbrium.

We begin with the simplest version of Section 1.8. Recall that the deci-

sion variable for the Forester is λ ∈ [0, 1], denoting the amount of logging

the Forester permits in the given forest. The two functions Pi : [0, 1] →
[τ i

max, τ i
min], i = 1, 2, denote respectively a measure of the “amount” of

political pressure that agent 1, the representatives of the loggers, can bring

to bear on the Forester, and the amount of political pressure that the repre-

sentative of the preservationists, agent 2, can bring to bear on the Forester,

as functions of the amount of logging λ that might prevail22 Figure 3.9.1.1

is reproduced here for convenient reference.

21 This is not to say that such mechanisms are not valuable. They help establish the limits of
feasibility.

22 We have taken the p-functions Pi : [0, 1] → [τ i
max, τ i

min], i = 1, 2, to be primitives. How-
ever, they could be derived from utility functions of each individual logger and for each
individual preservationist, and from functions that specify the cost, in effort or money, of
creating political pressure. The resulting p-functions would have values determined by the
aggregate of those individual contributions given the technology of applying or creating
political pressure.
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(λ2 , b2 )
(λ1 , a1 )
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τ1
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a1

b1

τ
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1
max

τ2
min

λ2λ λ∗

Figure 3.9.1.1

It reflects the simplifying assumption that for all admissible environ-

ments θ = (θ1, θ2) specified by the parameters θ1 = (a0, a1, a2, a3), θ2 =
(b0, b1, b2, b3), we have

(1) a0 = τ 1
max, a3 = τ 1

min, b0 = τ 2
min, b3 = τ 2

max

(2) a0 > a1 > a2 > a3, b0 < b1 < b2 < b3 (3.9.1)

(3) a0 > b0, a3 < b3.

We assume that in any admissible environment θ = (θ1, θ2), θ i is known

by agent i , but not by agent j, j �= i , nor by the Forester.
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Suppose that the agents behave strategically. In the verification scenario

described in Section 1.9, the Agents replied “yes,” or “no” to proposed

values of λ ∈ [0, 1]. The solution value of λ is the one (unique under

our assumptions) to which both Agents say, “yes.” It is equivalent in terms

of outcome to suppose that each agent i transmits his parameter θ i to

the Forester; the Forester computes the solution (λ∗, τ ∗) of the equation

P1(λ, θ1) − P2(λ, θ2) = 0, and designates λ∗ as the amount of logging he

will permit. This process results in the decision called for by the goal function

when the agents communicate their parameters truthfully. But, when the

agents behave strategically they have incentives not to respond truthfully.

Their p-functions are private information. Agent i would like to behave

as if the value of her p-function at any value of λwas as large as is consistent

with the conditions on the environment that are common knowledge. These

are the conditions displayed in Formula (3.9.1). The p-functions that result

(ε1

 + ε1)

10

τ2

τ2

τ1

τ1

τ −1

τ2
min

λ2λ1 λ∗ λ∗∗

1 2

(ε2

 + ε2)− 1 2ˆ ˆ

ˆ ˆ

max

max

max

min

max

Figure 3.9.1.2
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are displayed in Figure 3.9.1.2. That is,

â0 = τ 1
max, â1 = τ 1

max − ε1, â2 = â1 − ε1, â3 = τ 1
min

b̂0 = τ 2
max, b̂1 = τ 2

max − ε2, b̂2 = b̂1 − ε2, b̂3 = τ 2
min.

Strict monotonicity of the p-functions rules out εi = 0, i = 1, 2 so for

simplicity, we assume that there are positive numbers ε̂i = 0, i = 1, 2 that

are respectively lower bounds for ε1, ε2.

If τ 1
max − 2ε̂1 > τ 2

max, then agent 1 has an advantage; in that case that

the solution λ∗∗ of the equation P1(λ, â) − P2(λ, b̂) = 0 lies in the interval

(λ2, 1]. Similarly, if τ 1
max < τ 2

max − 2ε2, then λ∗∗ ∈ [0, λ1].

Applying the revelation principle here, with the Forester as the mediator,

each agent announces his p-function, which is uniquely specified by his

parameter θ i . The Forester then finds the unique value λ̂ determined by the

reported parameter values θ , and announces λ̂ as the amount of logging per-

mitted. To make this mechanism implement the Forester’s goal function, he

must create incentives that induce the agents to report their parameter val-

ues truthfully. One way the Forester can do this is to introduce another stage

in the dialogue between the Forester and the agents. First, the agents report

their parameters, â for agent 1 and b̂ for agent 2. Then in the second stage

each agent must demonstrate the political pressure that his group can bring to

bear at the point λ∗∗ that solves the equation P1(λ, â) − P2(λ, b̂) = 0. But

Pi (λ
∗∗, θ̄ i ) is the maximum political pressure that agent i can actually bring

to bear at λ∗∗ when her true parameter value is θ̄ i . The disparity is E i (λ∗∗) =
Pi (λ

∗∗, θ̂ i ) − Pi (λ
∗∗, θ̄ i ). The Forester can observe this disparity. He

announces the rule defined in (3.9.2) as his rule of behavior, or decision rule.

If

⎧⎪⎪⎨
⎪⎪⎩

E 1 > E 2

E 1 < E 2

E 1 = E 2 > 0

E 1 = E 2 = 0

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ∗ = 0

λ∗ = 1

λ∗ =
{

0 with probabilty 1/2

1 with probabilty 1/2

λ∗ = λ∗∗.

(3.9.2)

It is evident that it is best for each agent to announce his true parameter

value in the first stage. Thus, agent 1 reports â = ā , his true parameter

value, and agent 2 announces b̂ = b̄. This is a revelation mechanism in

which truth-telling is a dominant strategy equilibrium.

We turn next to informational considerations. The message space of

the revelation mechanism is four dimensional. An environment of each

agent is characterized by two parameters, the other two being fixed at
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commonly known values. Starting with this mechanism we apply the

algorithm presented in Sections 3.2 to 3.5. We see that for any admissi-

ble environment (ā , b̄) the verification scenario requires the Forester to

announce the triple (λ∗, τ 1∗, τ 2∗), where agent 1 replies “yes” if and only if

P1(λ∗, â) − P1(λ∗, ā) = 0, and τ 1∗ = P1(λ∗, ā), and agent 2 relies “yes” if

and only if P2(λ∗, b̂) − P2(λ∗, b̄) = 0, and τ 2∗ = P2(λ∗, b̄).

This mechanism is:

� incentive compatible – it is equivalent to the revelation mechanism

defined above,
� decentralized, and
� informationally efficient – its message space is three dimensional.

This example suggests a general procedure for making revelation mecha-

nisms into informationally efficient decentralized mechanisms that imple-

ment a given goal function. The first step is to start with a revelation mecha-

nism that implements the given goal function, and then apply the rectangles

method, to construct a covering correspondence Vand the covering CV that

it defines. Then construct an SDR, �, an encoding function ν, and the mes-

sage space it maps into, and finally the outcome function, as constructed in

Section 3.5.

It is interesting to note that the Forester’s introduction of an intermediate

step results in a process that roughly resembles the procedure commonly

followed when a Federal regulatory agency proposes a new regulation or

revises an existing one. It is also the case that Federal agencies operate

mechanisms that have several stages. For instance, the process specified

by the Internal Revenue Service for determining the amount of income tax

to be paid by a taxpayer consists of a sequence of steps, where the number

of steps may vary depending on what happens.

3.9.2 Designing Informationally Efficient
Nash-Implementing Mechanisms23

Earlier sections of this book are devoted to designing informationally effi-

cient decentralized mechanisms that realize a given goal function; strate-

gic behavior of agents is ignored. In this subsection we consider strategic

behavior modeled by game forms that Nash implement a given goal function

F : � → Z, where � = �1 × · · · × �n and �i models the private char-

acteristics of agent i . Given F, we construct informationally efficient game

23 This subsection was written by Stanley Reiter and Adam Galambos.
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forms that Nash implement F, where F satisfies “Maskin monotonicity” and

“no veto power.”

A game form is a mechanism in the sense defined in preceding sec-

tions of this chapter. Here we extend our preceding results to cases where

Nash implementation is required. We present a two-stage procedure – an

algorithm – for constructing a game form that Nash implements F. This

algorithm can be used to construct a rectangular F-cc covering C of � that

is “monotonically generated.” Proposition 3.9.2.2 establishes that this cov-

ering is informationally efficient, in a sense made precise in what follows.

Following that, Proposition 3.9.2.1 is used to construct a game form that

Nash implements F and generates the informationally efficient covering C

by its equilibrium message correspondence. We also show that any covering

of � generated by the equilibrium message correspondence of a game form

must be rectangular, F-cc, and monotonically generated.

More precisely, we construct informationally efficient mechanisms

(M, μ, h) such that24 M = M1 × · · · Mn and μ is the Nash equilibrium

message correspondence. Such mechanisms are said to have the Nash prop-

erty (Reichelstein and Reiter (1988)). With such a mechanism, a mediator

could check the set of possible Nash equilibrium messages (i.e., μ(�)) and

ask players to individually verify whether a message would be an equilib-

rium. Since we are interested in informational efficiency, we would like the

set of messages the mediator has to check to be minimal in some sense. Thus,

we are looking for Nash implementing game forms that have a minimal set of

equilbrium messages. We will construct such game forms by considering the

coverings of � induced by the Nash equilibrium message correspondences

of different game forms that implement F.

remark. For Nash implementation it is necessary that players condition

their strategies on the entire profile of types θ = (θ1, . . . , θn). But the

game form (M, h) together with its induced equilibrium correspondence

E : � ⇒ M is an informationally decentralized mechanism. The Nash equi-

librium message correspondence can be factored into the correspondences

E i (θ̄ i ) = {m ∈ M : mRi (θ̄
i )(m̄i , m−i ) for all m̄i ∈ Mi }. (3.9.2.1)

The correspondence E is analogous with the correspondence μ in earlier

sections, and the E i play the role of the μi (see Figure 3.9.2.1). Using the

language of noncooperative game theory, E i (θ i ) is the graph of the best-

response correspondence of player i at θ i . (M, E , h) is then an informationally

24 We assume that � and Z are finite. The set of players is I , and |I | = n.



P1: JZZ

CUNY425-03 CUNY425/Hurwicz 0 521 83641 7 March 31, 2006 16:2

3.9 Strategic Behavior 281

decentralized mechanism with the Nash property (as in Reichelstein and

Reiter (1988, Theorem 2.4)).

Figure 3.9.2.1 The Nash implementing game form (M, h) together with the Nash equi-
librium correspondence E is informationally decentralized. P(·) denotes the set of all
nonempty subsets.

However, incentive compatibility might not be preserved in factoring E

and having players announce best-response correspondences rather than

individual messages in M. At some state θ some player i might have an

incentive to announce the messageμi (θ̄ i ) for some θ̄ i ∈ �i . In particular, the

Nash equilibrium in state (θ̄ i , θ−i ) might be better for player i than the Nash

equilibrium in state θ . Although this “false” equilibrium in state (θ̄ i , θ−i )

might not be accessible by i ’s unilateral deviation from the equilibrium in

state θ in the game form (M, h), it could be accessible for i by the false

announcement μi (θ̄ i ). The example below illustrates this point.

example: There are two players, and Z = {a , b, c , d}. Player 1 has two

types, θ̄1, ¯̄θ1. Player 2 has two types: θ̄2, ¯̄θ2. Preferences are

R1(θ̄1) =
a

c

b

d

, R1( ¯̄θ1) =
b

a

d

c

, R2(θ̄2) =
b

c

a

d

, R2( ¯̄θ2) =
c

b

d

a

. (3.9.2.2)

All preferences are strict; the top element is the most preferred. Consider

the goal function F shown below:

θ̄1 ¯̄θ1

θ̄2 a b
¯̄θ2 c d

. (3.9.2.3)
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The following game form Nash implements F. Player 1 has strategy space

M1 = {m′
1, m′′

1} and player 2 has strategy space M2 = {m′
2, m′′

2}. (Let M =
M1 × M2.) The outcome function h is given by

m′
1 m′′

1

m′
2 a b

m′′
2 d c

. (3.9.2.4)

The Nash equilibrium message correspondence is

E ((θ̄1, θ̄2)) = (m′
1, m′

2), (3.9.2.5)

E ((θ̄1, ¯̄θ2)) = (m′′
1 , m′′

2), (3.9.2.6)

E (( ¯̄θ1, θ̄2)) = (m′′
1 , m′

2), (3.9.2.7)

E (( ¯̄θ1, ¯̄θ2)) = (m′
1, m′′

2). (3.9.2.8)

The mechanism (M, E , h) is informationally decentralized, because we can

factor E into the best response correspondences E 1 and E 2:

E 1(θ̄1) = {(m′
1, m′

2), (m′′
1 , m′′

2)}, E 1( ¯̄θ1) = {(m′′
1 , m′

2), (m′
1, m′′

2)},
(3.9.2.9)

E 2(θ̄2) = {(m′
1, m′

2), (m′′
1 , m′

2)}, E 2( ¯̄θ2) = {(m′
1, m′′

2), (m′′
1 , m′′

2)}.
(3.9.2.10)

It is easy to see that for all states (θ1, θ2), we have E (θ1, θ2) = E 1(θ1) ∩
E 2(θ2). However, sending the messages prescribed by the maps E 1

and E 2 is not always incentive compatible for the players. In state

(θ̄1, θ̄2), player 2 could pretend to be of type ¯̄θ2 and send the mes-

sage E 2( ¯̄θ2) = {(m′
1, m′′

2), (m′′
1 , m′′

2)}. With player 1 sending E 1(θ̄1) =
{(m′

1, m′
2), (m′′

1 , m′′
2)}, the outcome would be

{(m′
1, m′′

2), (m′′
1 , m′′

2)}
⋂

{(m′
1, m′

2), (m′′
1 , m′′

2)} = {(m′′
1 , m′′

2)}. (3.9.2.11)

But h(m′′
1 , m′′

2) = c , which is better for player 2 in state θ̄2 than a , which

would have resulted from following the message prescribed by E 2.

As a first step, we now derive some conditions which must be satisfied

by a covering of � that is induced by the Nash equilibrium message cor-

respondence of some game form implementing F. Suppose we are given a

game form (M, h) that Nash implements F, where M = M1 × · · · × Mn

and h : M → Z. “Nash implements F” means that for every θ ∈ θ the

unique Nash equilibrium outcome of the game defined by [R(θ), M, h]

is F (θ). Note that there may be several Nash equilibrium strategy profiles
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m̄∗, ¯̄m∗, . . . ∈ M at a state θ , but they must lead to the same outcome:

h(m̄∗) = h( ¯̄m∗) = · · ·.
For every θ ∈ � let E (θ) be the set of equilibrium messages of

[R(θ), M, h]. If there are several equilibrium messages, they must lead to

the same outcome in Z, because (M, h) was assumed to Nash implement

F . Let M∗ ⊆ M be the image of � under E . Then E induces a covering of

�:

C E := {{θ ∈ � : m̄ ∈ E (θ)} : m̄ ∈ M}. (3.9.2.12)

This covering is rectangular – the equilibrium property of m̄ ∈ M can be

verified one player at a time. It is also F-contour contained, because (M, h)

was assumed to implement F. In this way, every game form (m̄, h̄) that

implements F induces a covering C Ē of � through its equilibrium message

map Ē . Our goal is to construct minimal coverings that are induced by some

game form. As in previous sections, we construct minimal, F-cc, rectangular

coverings, but now with the additional requirement that these coverings

be induced by some game form that implements F. To construct minimal

coverings, we note that the covering C Ē induced by a Nash implementing

game form (m̄, h̄) is not only rectangular and F-cc, but it is also monotonically

generated.

definition 3.9.2.1. For i ∈ I , z̄ ∈ Z and θ̄ i ∈ �i let L (z̄, θ̄ i ) = {z ∈ Z :

z̄ R(θ̄ i ) z} denote player i ’s lower contour set of z̄ at θ̄ i , and let L (z̄, θ) =
(L (z̄, θ1), . . . , L (z̄, θn)). An F-cc covering C of� is monotonically generated

if for all K ∈ C and for all θ̄ ∈ �⋂
θ∈K

L (F (K ), θ) ⊆ L (F (K ), θ̄) =⇒ θ̄ ∈ K , (3.9.2.13)

where F (K ) denotes the common value of F at all points in K , and both

“∩” and “⊆” are componentwise.25

This condition is derived from Maskin monotonicity (Maskin 1999), which

is a necessary condition for Nash implementability.

25 By “componentwise” we mean that for z ∈ Z and θ , θ̄ ∈ �, L (z, θ) ∩ L (z, θ̄) means

(L (z, θ1) ∩ L (z, θ̄1), . . . , L (z, θn) ∩ L (z, θ̄n)),

and L (z, θ) ⊆ L (z, θ̄) means

[L (z, θ1) ⊆ L (z, θ̄1)], . . . , [L (z, θn) ⊆ L (z, θ̄n)].

We use the same shorthand notation in several places below.
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definition 3.9.2.2. The goal function F is Maskin monotonic if for all θ̄ , ¯̄θ ∈ �

and z̄ ∈ Z

[F (θ̄) = z̄] and [L (z̄, θ̄) ⊆ L (z̄, ¯̄θ)] =⇒ F ( ¯̄θ) = z̄. (3.9.2.14)

Note that every monotonically generated covering is rectangular.

Whereas Maskin monotonicity is necessary for Nash implementability, it

is not sufficient. To ensure that F is Nash implementable, we also impose

the no veto power condition.26

definition 3.9.2.3. The goal function F satisfies the no veto power condition

if for all θ̄ ∈ � and all z̄ ∈ Z

there exists j ∈ I such that for all i �= j and for all z �= z̄,

z̄ R(θ̄ i )z =⇒ F (θ̄) = z̄. (3.9.2.15)

proposition 3.9.2.1. Assume that |I | ≥ 3, and F : � → Z is onto, Maskin

monotonic and satisfies no veto power. Then

(i) A covering of � induced by the equilibrium message map of a game

form that implements F is F-cc and monotonically generated.

(ii) If a covering C of � is F-cc and monotonically generated, then there

exists a game form (m̄, h̄) that implements F and whose equilibrium

message map induces a covering C Ē that contains C .

remark. We cannot guarantee that the covering C Ē induced by the

equilibrium message map in (ii) be identical to C . However, the con-

struction in the proof guarantees that the only elements that can be

in C Ē \C correspond to equilibrium messages that are “no-veto equilib-

ria”: messages that are equilibria only when their outcome is most preferred

for all players but one. Also, all elements in C Ē \C are redundant in the sense

that each is contained (as a set) in some element of C . That is, in any state θ

a coordinator may use a message from C .

Proof: To prove (i), suppose (m̄, h̄) implements F and C Ē is the covering

induced by its equilibrium message map. As discussed above, it is immediate

that C Ē is F-cc. To see that it is monotonically generated, fix an element K

26 Though it is often used with Maskin monotonicity to guarantee Nash implementability,
the no veto power condition is not necessary for implementability.
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of the covering, and let Ē (K ) = m̄ be the equilibrium message at all states

in K. Let

Di (m̄) := {h(mi , m̄−i ): mi ∈ Mi } (3.9.2.16)

be the set of outcomes player i can reach from m̄ by unilateral deviation. Let

D(m̄) = (D1(m̄), . . . , Dn(m̄). Since (m̄, h̄) Nash implements F,

for all θ ∈ �, D(m̄) ⊆ L (h̄(m̄), θ) ⇐⇒ m̄ ∈ Ē (θ). (3.9.2.17)

In particular, for all θ ∈ K , D(m̄) ⊆ L (h̄(m̄), θ). Thus

D(m̄) ⊆
⋂
θ∈K

L (h̄(m̄), θ). (3.9.2.18)

Then for all θ̄ ∈ θ ,⋂
θ∈K

L (h̄(m̄), θ) ⊆ L (h̄(m̄), θ̄) =⇒ D(m̄) ⊆ L (h̄(m̄), θ̄)

=⇒ m̄ ∈ Ē (θ̄) =⇒ θ̄ ∈ K , (3.9.2.19)

which proves (i).

To prove (ii), suppose the covering C is F-cc and monotonically generated.

We construct a mechanism (m̄, h̄) that implements F, and we show that its

equilibrium message map Ē induces a covering C Ē containing C . Our

construction is similar to that in McKelvey (1989).

Figure 3.9.2.2. Illustration for defining h̄ in the proof of Proposition 3.9.2.1, part (ii)
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For each K ∈ C , let

g K :=
⋂
θ∈K

L (F (K ), θ) (3.9.2.20)

“monotonically generate” K . Let G : = {g K : K ∈ C }, with typical element

g K = (g 1
K , . . . , g n

K ). For each player, a message will consist of an element

of G and either a 0 or a 1, that is, m̄i = G × {0, 1}.
Before we define the outcome function h̄ formally, we describe the intu-

ition behind the construction, using Figure 3.9.2.2. Player 1 can move left-

right, player 2 can move up-down, player 3 can move in the third dimen-

sion. There are three types of points in the message space (the entire cube in

Figure 3.9.2.2).

1. At points along the “central diagonal” (the double line), like at •, all

players choose the same element of G – say ḡ K – and “1.” The outcome

is then F (K ). Each player can deviate to “off central diagonal points”

(the dashed lines). The set of outcomes along the dashed line for

player i is ḡ i
K . For example, player 3 can reach from • the outcomes

ḡ 3
K (see Figure 3.9.2.2). Thus, a diagonal point (ḡ K , . . . , ḡ K ) will

be an equilibrium at θ if, and only if, for all i ∈ I we have ḡ i
K ⊆

L (F (K ), θ i ).

2. At “off central diagonal points,” like ◦, all players i ∈ I except one (say

j ) announce the same ḡ K and “1.” Then player j can deviate along

his dashed line, that is, to any outcome in ḡ
j
K . The other players can

deviate along the dotted lines. Along dotted lines (that is, lines that

are not central diagonal and not off central diagonal) all outcomes in

Z appear. Thus, the other players I\{ j } can deviate to any outcome

in Z. An off central diagonal point like ◦ will be an equilibrium at θ if,

and only if, the outcome at this point is preferred by j to all outcomes

in ḡ i
K and preferred by all other players to everything in Z.

3. At points like � that are not central diagonal and not off central diag-

onal, all players can deviate along dotted lines. That is, all players can

deviate to any outcome in Z. Such a point will be an equilibrium at θ

if, and only if, all players prefer the outcome at this point to everything

in Z.

To define h̄ formally, we first number the elements of G : let c :

G → {1, 2, . . . , |G |} be a bijection. For m̄ ∈ m̄ let c∗(m̄) := ∑
i∈I c(m̄i )

mod |G |. Next, we define for each i ∈ I a function di : G × G → Z with

the property that for all g K ∈ G , {di (g K , g ) : g ∈ G\{g K }} = g i
K . This is
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possible because the assumption that F is onto implies that |G | ≥ |Z|. Now

define h̄ as follows:

h̄(m1, m2, . . . , m|I |)

=

⎧⎪⎪⎨
⎪⎪⎩

F (K ) if m1 = m2 = · · · = m|I | = (g K , 1)

d j (g K , g ) if mi = (g K , 1) for all i �= j, m j

∈ {(g , 0), (g , 1)}, g K �= g

c−1 (c∗(m)) otherwise.

(3.9.2.21)

To show that (m̄, h̄) implements F: First, suppose that for arbitrary

θ̄ ∈ �, F (θ̄) = z̄. We show next that z̄ is a Nash equilibrium outcome. Let K̄

denote an element of C containing θ̄ . Since C is monotonically generated,

g K ⊆ L (z̄, θ̄). Then each player choosing (g K , 1) is a Nash equilibrium,

because each player i can deviate only to g i
K given h̄, and these outcomes

are worse (by the previous sentence). Also, given h̄ this strategy profile leads

to z̄.

Next, suppose that for θ̄ ∈ �, m̄ is a Nash equilibrium strategy. Given h̄,

this means that either h̄(m̄) is a most preferred element for at least n − 1

players, or all players choose the same (g K , 1). In the first case, h̄(m̄) = F (θ̄)

by no veto power. In the second case, it must be that g K ⊆ L (F (K ), θ̄). But

since C is monotonically generated, this means that θ̄ ∈ K , and since C is

F-cc, F (θ̄) = F (K ) = h̄(m̄).

To show that the covering C Ē contains C : Fix K ∈ C . Each player choosing

the message (g K , 1) is an equilibrium exactly in the states θ ∈ K , so this

message induces K . Each K ∈ C is thus in C Ē .

This completes the proof of Proposition 3.9.2.1.

Now we present the algorithm to construct minimal coverings that are

induced by Nash implementing game forms. Our construction relies only

on the Maskin monotonicity of F.

We construct the covering for each z̄ ∈ Z separately. The values of a

Maskin monotonic F are fully determined by its values at certain important

points in �. We call these points F-minimal (McKelvey 1989).

definition 3.9.2.4. Given a goal function F and a state θ̄ ∈ θ , suppose F (θ̄) =
z̄. Then θ̄ is F-minimal for z̄ if there does not exist ¯̄θ �= θ̄ such that

F ( ¯̄θ) = z̄ and for all i ∈ I , L (z̄, ¯̄θ i ) ⊆ L (z̄, θ̄ i ). (3.9.2.22)
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Let F min
z̄ ⊆ � denote the set of states that are F-minimal27 for z̄, and F min :=

∪z∈Z F min
z . Let P(F min

z̄ ) denote the set of nonempty subsets of F min
z̄ .

definition 3.9.2.5. Let S ⊆ F min
z̄ . We say that S has the generating property

if for all θ̄ ∈ � the following holds:⋂
θ∈S

L (z̄, θ) ⊆ L (z̄, θ̄) =⇒ F (θ̄) = z̄. (3.9.2.23)

Algorithm:

1. For any subset Q of F min
z̄ (i.e., Q ∈ P(F min

z̄ )), let Q0, Q1,

Q2, . . . , Q2Q−1 be any ordering of all nonempty subsets of Q such

that greater cardinality subsets have lower indices (so that Q0 = Q).

Let r = 0, c = 1, and Q = F min
z̄ .

2. If Qr has the generating property, then let

G Kc =
⋂

θ∈Qr

L (z̄, θ), (3.9.2.24)

and let Kc = {θ ∈ θ : G Kc ⊆ L (z̄, θ)} be an element of the covering.

Increase c by 1. Let Q = F min
z̄ \ ∪t<c Kt . If Q = ∅, stop. If Q �= ∅,

let r = 0 and go to step 2.

3. Otherwise increase r by 1 and go to step 2.

proposition 3.9.2.2. The covering {Kt} constructed above is F-cc, mono-

tonically generated and minimal in the following sense: there does not exist

another covering that is coarser and has fewer elements.

Proof: That the covering is F-cc and monotonically generated follows from

the generating property, which holds for each element of the cover by step 2.

As for minimality, suppose there exists another F-cc, monotonically gener-

ated covering C that is coarser and has fewer elements. Then there must exist

two elements Ka , Kb of the constructed cover that are contained in the same

element C p of the cover C . Without loss of generality, suppose Ka was con-

structed before Kb in the algorithm. Since the F-minimal states in Kb were

not covered yet when Ka was constructed, and since the algorithm checks

the generating property for larger subsets first, the set of F-minimal states in

Ka ∪ Kb would have been checked first. But this set has the generating prop-

erty, because C p ⊇ Ka ∪ Kb is part of the monotonically generated cover

27 “Minimal” because these states are minimal in the following partial order ≤L on the
set {θ ∈ � : F (θ) = z̄} : θ̄ ≤L

¯̄θ ⇐⇒ L (z̄, θ̄) ⊆ L (z̄, ¯̄θ).
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C . Thus, C p would have been constructed instead of Ka . This completes the

proof of Proposition 3.9.2.2.

Once we construct a minimal, F-cc, monotonically generated covering

C̄ using the algorithm above, we can use Proposition 3.9.2.1 to construct a

game form (m̄, h̄) that induces a covering C Ē containing C (with all elements

in C Ē \C̄ contained in some single element of C̄ – see the remark after

Proposition 3.9.2.1). Then a coordinator running the verification scenario

can restrict himself to the messages associated with the covering C̄ .

Alternatively, we could interpret the covering C̄ constructed by the algo-

rithm as the coordination device in a coordinated ex post equilibrium.

definition 3.9.2.6. Given a set of players I with type spaces �1, . . . , �n

and preferences Ri (θ
i ), a set of outcomes Z, action spaces M1, . . . , Mn,

an outcome function h : M → Z, and a covering C of �, the strategies

s ∗
i : C → Mi form a coordinated ex post equilibrium if for every K ∈ C , for

every θ ∈ K , and for every player i ∈ I we have

h(s ∗
1 (K ), . . . , s ∗

n (K ))Ri (θ
i )h(m̂i , s ∗

−i (K )) (3.9.2.25)

for all m̂i ∈ Mi .

In the verification scenario, the coordinator does not need to know any-

thing about the state of the world – he just checks all messages in M asso-

ciated with the covering C̄ , and asks players to verify individually whether

these messages would be an equilibrium. Instead, we can think of the coor-

dinator as having partial knowledge of the state of the world. This partial

knowledge is represented by the covering C̄ of �. Now the coordinator

learns which element of the covering C̄ contains the state of the world, and

recommends actions to the players.28 Thus the coordinator takes over the

coordinating role played – implicitly – by the Nash equilibrium notion. If

it is more costly to learn more detailed information about the state of the

world, the coordinator would prefer coarser coverings. At the same time,

there must be an implementing mechanism that, together with the covering,

can implement F in coordinated ex post equilibrium. Thus coverings con-

structed by the algorithm above are the minimal ones the coordinator could

use.

28 In a Bayesian setting, the analogous solution would be the “partial Bayesian approach”
to defining correlated equilibrium in Forges (1993, Section 4.4). There an omniscient
mediator recommends actions to the players conditional on their types.
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APPENDIX: CHARACTERIZATIONS OF PARTITIONS

If a collection of sets C is a covering of �, then there is a self-belonging

correspondence V : � ⇒ � that generates C . What conditions must V

satisfy to ensure that C is a partition? Theorems 3.A.1, 3.A.2, and 3.A.3

presented here with proofs, and quoted in Section 3.5 of Chapter 3, provide

answers to these questions. To make this appendix self-contained, we repeat

some definitions.29

definition 3.A.1. A collection C of sets (equivalently a covering C of �) is

a partition, if and only if, for K , K ′ ∈ C , either K ∩ K ′ = ∅ or K = K ′

The following characterization of partitions in terms of SDRs is straight-

forward to prove.

theorem 3.A.1. A covering C of � is a partition if and only if every function

� : C → � that satisfies

�(K ) ∈ K , for every K ∈ C , (A)

is an SDR for C .

Proof (Necessity): Suppose C is a partition, and suppose � : C → �

satisfies (A). We show that K , K ′ ∈ C , K �= K ′ implies �(K ) �= �(K ′).

Suppose K , K ′ ∈ C , and K �= K ′. Because C is a partition, K ∩ K ′ = ∅.

Because� satisfies (A),�(K ) ∈ K , and�(K ′ ∈ K ′). Hence,�K �= �(K ′).

Thus, �(•) is an SDR for C .

Sufficiency : Suppose that every function � : C → � that satisfies (A) is an

SDR for C . Because the sets K ∈ C are not empty, there can be many such

functions. We choose one such function, �̄, if necessary, using the axiom of

choice. Thus, �̄ is an SDR for C .

If C is a partition, there is nothing to prove. So suppose C is not a partition.

Then there are two sets K ′ and K ′′ in C such that

(a) K ′ ∩ K ′′ �= ∅,

(b) K ′ �= K ′′.

29 The material presented here comes from Hurwicz and Reiter (2001).
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By (a), there is a point θ ′ ∈ �, such that θ ′ ∈ K ′ and θ ′ ∈ K ′′. Now define

the function �′: C → � by

�′(K ) = �̄(K ), for all K ∈ C\{K ′, K ′′}.

and

�′(K ′) = �′(K ′′) = θ ′. (∗)

Then, for all K ∈ C , �′(K ) ∈ K . But, by (b), K ′ �= K ′′, and by

(∗), �′(K ′) = �′K ′′. Therefore, �′ is not an SDR for C.

This completes the proof.

Next, we give a characterization of partitions in terms of the generating

correspondence V : � ⇒ �. First, we define a property that we show is a

property of correspondences that generate partitions.

definition 3.A.2. Let θ̄ , θ ′, θ ′′ denote points of �. A correspondence, V :

� ⇒ �, is block symmetric if and only if

[θ ′ ∈ V(θ ′) and θ ′′ ∈ V(θ̄)] ⇐⇒ [θ ′ ∈ V(θ ′′) and θ ′′ ∈ V(θ ′)]. (B)

We show next that block symmetry is a strengthening of the concept

of symmetry. The term “block symmetric” is used because, when (B) is

satisfied, there is a permutation of the elements of � such that the graph

of V consists of blocks (“squares”) with the “northeast” and “southwest”

vertices on the diagonal of � × �.

remark 3.A.1. Symmetry may be defined by the condition

θ ′ ∈ V(θ̄) ⇐⇒ θ̄ ∈ V(θ ′). (S)

To see that (B) implies (S), suppose V is block symmetric. Suppose

θ ′ ∈ V(θ̄). We show that θ̄ ∈ V(θ̄). The hypotheses of (B) in the defini-

tion of block symmetry are satisfied for θ ′, θ ′′, θ̄ , where θ ′′ = θ̄ . Therefore,

θ ′′ = θ̄ ∈ V(θ ′).

theorem 3.A.2. A covering C of � is a partition if and only if C is generated

by a block symmetric, self-belonging correspondence V : � ⇒ �.
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Proof (Necessity): Suppose C is a partition of �. Then C has an SDR. To

see this, define �(K ) to be any element in K . Because C is a partition, K

and K ′ are disjoint. Thus, K �= K ′ implies �(K ) �= �(K ′).

Because C has an SDR, it follows from Theorem 3.A.1 that C is generated

by a self-belonging correspondence V : � ⇒ �. It remains to show that V

is block symmetric.

Let θ̄ , θ ′, θ ′′ be elements of � that satisfy the hypothesis of (B)–let

θ ′ ∈ V(θ̄) and θ ′′ ∈ V(θ̄). (i)

To prove (B) we show that

θ ′ ∈ V(θ ′′) and θ ′′ ∈ V(θ ′). (ii)

Relation (i) and the self-belonging property of V yield

θ ′ ∈ V(θ̄) ∩ V(θ ′) (iiia)

and

θ ′′ ∈ V(θ̄) ∩ V(θ ′′). (iiib)

Because C is generated by V , there exist C such that

K̄ = V(θ̄), K ′ = V(θ ′), K ′′ = V(θ ′′). (iv)

C is a partition. Therefore,

K̄ ∩ K ′ = ∅ or K̄ = K ′ (v)

and

K̄ ∩ K ′′ = ∅ or K̄ = K ′′.

But Relations (iii.a) and (iii.b) rule out emptiness of the intersections

K̄ ∩ K ′ and K̄ ∩ K ′′. Hence K̄ = K ′ and K̄ = K ′′. By (iv), this yields

V(θ̄) = V(θ ′)

and

V(θ̄) = V(θ ′′).

Using each of these relations in (i) yields the corresponding relation

in (ii), and hence V is block symmetric.

This concludes the proof of necessity.
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Sufficiency: Suppose that C is generated by a block symmetric, self-belonging

correspondence V : � ⇒ �. We show that C is a partition. That is, we show

that for every K , K ′ ∈ C either K ∩ K ′ = ∅ or K = K ′.
Let K and K ′ be elements of C . If K ∩ K ′ = ∅ there is nothing to prove.

So, suppose there is θ̃ ∈ K ∩ K ′. Then, because C is generated by V , there

are elements, θ̂ and ˆ̂θ in � such that K = V(θ̂) and K ′ = V( ˆ̂θ). Thus,

θ̃ ∈ V(θ̂) and θ̃ ∈ V( ˆ̂θ).

It follows from (B) and θ̃ ∈ V(θ̂) that

for every θ ∈ V(θ̃).

Therefore,

V(θ̂) ⊆ V(θ̃).

Now, because θ̂ ∈ V(θ̃), and θ̂ ∈ V(θ̃), by self-belonging, and V(θ̂) ⊆ V(θ̃)

as just shown, it follows from (B) (with θ̂ here corresponding to θ ′ in (B), θ

to θ ′′, and θ̃ to θ̄ in (B)) that

θ ∈ V(θ̃), θ ∈ V(θ̂).

Thus,

V(θ̂) ⊇ V(θ̃).

Therefore,

V(θ̂) = V(θ̃).

The same argument applied to V(θ̂) and V(θ̃) shows that

V(θ̂) = V(θ̃)

Therefore,

K = V(θ̂) = V(θ̃) = K ′.

This concludes the proof.

The following example shows that symmetry of the generating (self-

belonging) correspondence is not sufficient for the covering it generates

to be a partition.

example 3.A.1. Let � = {a , b, c}, and let V(a) = {a , b, c}, V(b) =
{a , b}, V(c) = {a , c}. Then V is self-belonging and symmetric, but the cov-

ering it generates is not a partition.
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However, in this example the covering is reducible in the sense of the

following definition.

definition 3.A.3. An element of a covering C of� is redundant if eliminating

that element from C still leaves a covering of �. A covering is irreducible 30

if it has no redundant elements; otherwise it is reducible.

If C is a finite covering, then it has an irreducible subcovering, which might

be C itself. If C is not irreducible, then it has a redundant element. When

C is finite, successive eliminations of redundant elements must eventually

result in an irreducible subcovering. This is not true when C is infinite, as

shown by Dugundji’s example (1966, p. 161).

The covering C in Example 3.A.3 can be reduced in two different ways.

First, to the covering C ′ = {{a , b, c}}, which is generated by the (con-

stant) correspondence U ′(θ) = {a , b, c}, for θ ∈ {a , b, c} and, second, to

the covering C ′′ = {{a , b}, {b, c}}, which is generated by the correspon-

dence V ′′(a) = V ′′(b) = {a , b}, and V ′′(c) = {b, c}. Both C ′ and C ′′ are

irreducible, and V ′ is symmetric, while V ′′ is not. Of course, C ′ is a parti-

tion and C ′′ is not.

Symmetry is not enough to guarantee that the covering generated by a

self-belonging correspondence be a partition, but it is the case that if the

covering is irreducible, then symmetry ensures that it is a partition. The

converse also holds.

theorem 3.A.3. Let C be a covering of �. C is a partition if and only if (i)

C is generated by a self-belonging, symmetric correspondence V : � ⇒ �,

and (ii) C is irreducible.

Proof: (⇐) Suppose (i) and (ii) hold. We show that V is block symmetric,

and hence, by Theorem 3.A.3, that C is a partition. To show that V is block

symmetric we must show that V satisfies

[θ ′ ∈ V(θ̄) and θ ′′ ∈ V(θ̄)] ⇒ [θ ′ ∈ V(θ ′′) and θ ′′ ∈ V(θ ′)]. (B)

So, suppose that θ̄ is an arbitrary point of �, and consider V(θ̄). Let

E (θ̄) = {θ ∈ V(θ̄) : V(θ) = V(θ̄)}
and

D(θ̄) = {θ ∈ V(θ̄) : V(θ) �= V(θ̄)}.
30 The term “irreducible” applied to a covering was introduced by Dugundji (1966, p. 160).
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Note that V(θ̄) = E (θ̄) ∪ D(θ̄), and E (θ̄) ∩ D(θ̄) = ∅. Either D = ∅ or

D �= ∅.

Suppose D �= ∅. We shall show that D �= ∅ leads to the conclusion that

the set K = V(θ̄) is redundant, thereby contradicting (ii).

Consider ¯̄θ ∈ V(θ̄). Either ¯̄θ ∈ E (θ̄) or ¯̄θ ∈ D(θ̄).

If ¯̄θ ∈ D(θ̄), then ¯̄θ ∈ ∪θ∈D(θ̄)V(θ̄).

Now suppose that ¯̄θ ∈ E (θ̄). Then V( ¯̄θ) = V(θ̄). Let θ̂ ∈ V( ¯̄θ). If for all
¯̄θ ∈ E (θ̄), and all θ̂ ∈ V( ¯̄θ)θ̂ ∈ E (θ̄), then D(θ̄) = ∅. So we may suppose

that θ̂ ∈ (θ̄). By symmetry, ¯̄θ ∈ V(θ̄). It follows that ¯̄θ ∈ ∪θ∈D(θ̄)V(θ̄).

Because ¯̄θ is an arbitrary point of V(θ̄), we have shown that V(θ̄) ⊆
∪θ∈D(θ̄)V(θ̄). In order to conclude that K = U (θ̄) is redundant, we must

show that not every set V(θ), for θ ∈ D(θ̄), is equal to V(θ̄). But this follows

immediately from the definition of D(θ̄).

Thus, we have shown that if D �= ∅, then V(θ̄) is redundant, contradict-

ing (ii). Therefore, we may conclude that D = ∅.

It then follows from the hypotheses of (B) (which tell us that θ ′ ∈ V(θ̄)

and θ ′′ ∈ V(θ̄)) that θ ′ ∈ V(θ ′′) and θ ′′ ∈ V(θ ′), because it follows from

D = ∅, that for every θ ∈ V(θ̄), V(θ) = V(θ̄), and hence V(θ ′) = V(θ̄) =
V(θ ′′). Thus, (B) is satisfied. Hence, V is block symmetric, and by Theorem

3.A.2, C is a partition.

(⇒) Suppose C is a partition. A covering C is a partition if and only if it is

generated by a block symmetric, self-belonging correspondence U : � ⇒
�. Block symmetry implies symmetry. Hence, U is symmetric. Finally, if C

is a partition, then it is irreducible. This establishes (i) and (ii).

Theorems 3.A.1, 3.A.2, and 3.A.3 are summarized in Theorem 3.A.4.

theorem 3.A.4. The following four propositions are equivalent:

(1) A covering C is a partition;

(2) Every function � : C → � that satisfies condition (A) is an SDR

for C ;

(3) C is generated by a block symmetric, self-belonging correspondence

V : � ⇒ �; and

(4) C is an irreducible covering generated by a symmetric, self-belonging

correspondence V : � ⇒ �.
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Revelation Mechanisms

4.1 Introduction

This chapter establishes an elementary lower bound on the computational

complexity of differentiable functions between Euclidean spaces (actually,

differentiable manifolds). The main motivation for this comes from mech-

anism design theory and as a result, the functions we examine are defined

on products of differentiable manifolds and generally have values that are

vectors in a Euclidean space. The complexity of computations required

by a mechanism determines an element of the costs associated with that

mechanism. The lower bound presented in this paper is useful in part

because it does not require specification in detail of the computations to

be performed by the mechanism, but depends only on the goal function

that the mechanism is to realize or implement.

Our lower bound generalizes a bound due to Arbib and Spira (Arbib 1960,

Spira 1969, Spira and Arbib 1967) for the complexity of functions between

finite sets. The Arbib–Spira bound is based on the concept of separator

sets for a function. A little later, in Section 4.1.2 of this introduction and

in the next paragraph, we discuss briefly the concept and uses of separa-

tor sets. A complete description is given in Section 4.2. This concept is

used to determine a lower bound to the number of Boolean variables –

variables whose values are either 0 or 1 that the function actually depends

on. In the finite case the number of variables can be counted easily. But a

counting procedure is too crude to be used for functions between infinite

sets. Instead, our analysis uses an equivalence relation that corresponds to

separator sets in the finite case, and also applies to functions with infinite

domains and ranges. The counting procedure is replaced by construction of

a quotient object.

296
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Consider the case of a function F defined on a product of two sets S =
{0, 1} × {0, 1} and T = {0, 1} with values in the set Z = {0, 1}. A diagram

representing this is S × T → Z. Arbib and Spira were interested in deciding

whether knowledge of all four points in S is required to determine F . In

fact such a complete knowledge might not be required. For example, if the

function F (s1, s2, t) = s1 + t , where (s1, s2) ∈ S and t ∈ T , then we only

need information about s1 andT. That is, to compute F it suffices to know

the values of F on the product of T and the subset S0 of S that consists

of points with the second coordinate set to 0. Similarly, one could choose

the second coordinate to equal 1 and reach the same conclusion about

computing F . On the other hand, for the function F (s1, s2, t) = s1 + t,

note that since F (0, 0, t) = t while F (1, 0, t) = 1 + t, one cannot eliminate

any points from the set S0 and still determine F . Arbib and Spira call S0 a

separator set for F . They argue that to evaluate F one needs the values of F

on the set S0 × T ⊂ S × T. Therefore, if Boolean coordinates are used on

S × T , one needs at least one coordinate on S and one coordinate on T.

To see how quotient objects enter, we examine the same example as

above, but we replace Arbib and Spira’s argument with a slight variant. Say,

two points s and s ′ in S are equivalent if for each t ∈ T, F (s , t) = F (s ′, t).

Denote the collection of equivalence classes for this equivalence relation

by Q. In our example it is easy to see that Q consists of only two points.

One point is the equivalence class that consists of the points (0, 0) and (0, 1),

whereas the other consists of the points (1, 0) and (1, 1). The set Q has three

properties that we examine. The first property is as follows. We define a

function q that assigns to each point in S its equivalence class, then we

can define a function F ∗ from Q × T to Z by setting F ∗(y, t) = F (s , t)

when q(s ) = y. To compute F we need only F ∗ and the equivalence rela-

tion map q . In other words, we can replace the computation of F with the

computation of F ∗. Another way of stating this is to say that we can factor

F through the set Q × T using the function F ∗ on the set Q × T. Secondly,

there is a less obvious fact. Suppose there is a set X and two functions, one,

denoted by p, from S to X, and a function H from X × T to Z such that F

is the composition of the function p × I dT : S × T → X × T , where I dT

is the identity function on T and H. So we suppose we can replace F by

the function H or, equivalently, suppose we can factor F through X × T

using the function H. It then follows that we can factor H through the set

Q × T using the function F ∗. In fact, there is a function ρ : X → Q such

that H is the composition of ρ × I dT and the function F ∗. In Section 4.2 we

construct the function ρ. Finally, if S ′ is a separator set for F in S, then there
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is a map σ defined on a subset Q′ of Q with values in S that is onto that

separator set S ′ and is such that the composition q ◦ σ is the identity on Q′.
Furthermore, there is a separator set S ′ in S that is mapped onto Q by the

map q . In summary, separator sets in S are images of Q, so Q can be used

to compute F and no set of smaller cardinality than that of Q can be used to

compute F .

For those readers who are familiar with category theory, Q, using the

maps q and F ∗, is a universal object in a category. The dimension (when it

exists) of the message space of the universal object is the number of variables

on which F depends.1

The basic construction of the quotient space Q does not use coordinates

and is easy to generalize to a discussion of functions from a product S × T

to a set V, where the sets S, T, and Z are differentiable manifolds and the

function F is differentiable. Of course, we treat the more general case of

a function F : E 1 × · · · × E N → Z. We place sufficient conditions on the

function F to ensure that the quotient Z is a differentiable manifold and

that the maps we construct, i.e. F ∗ and q , are differentiable. Then we work

backwards to build coordinates on the quotient that can be pulled back to

the original spaces.

Besides an abstract characterization of the number of variables that must

be used to compute the function, F , we give an algebraic characterization

that uses conditions on the ranks of certain bordered Hessian matrices of F .

The formal presentation of this material is organized as follows. Sec-

tion 4.2.2 contains the set-theoretic constructions used subsequently. Def-

initions of F -equivalence (see Definition 4.2.2), of encoded and essential

revelation mechanisms are given. It is established (Lemma 4.2.1 and Theo-

rem 4.2.1) that the essential revelation mechanism for a given function, F ,

is the “smallest” encoded revelation mechanism among encoded revelation

mechanisms for F . Section 4.3 deals with the case where the domain of F is

a product of differentiable manifolds, and F is differentiable. Simple con-

ditions are given that ensure that the quotient sets (under F -equivalence)

are C 0, i.e., topological manifolds (Golubitsky and Guillemin 1973, p. 3)

and therefore have dimensions.

The matrices used in the algebraic analysis are defined, and so is the con-

cept of differentiable separability . The main results concerning the essential

revelation mechanism for a function are established.

1 While we use a concept from category theory, our analysis is self-contained and does not
require knowledge of category theory. Category theory is not new to economic theory;
Sonnenschein (1974) and Jordan (1982) used concepts from category theory to analyze
economic mechanisms.
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Section 4.4 contains three propositions, a corollary, and their proofs,

namely, Lemma 4.4.1, Theorem 4.4.2, Theorem 4.4.6 and Corollary 4.4.7.

These propositions present an altered version of a theorem of Leontief

(1947) that is used to obtain the results on encoded revelation mechanisms

in Section 4.3. Section 4.4 also contains an example of the constructions

required. Corollary 4.4.7 is used in Chapter 2.

The remainder of this introduction contains an informal presentation of

background and concepts useful for understanding the formal presentation

that follows, and relates the results to the literature on mechanism design.

We begin with a brief discussion of computational complexity of functions.

4.1.1 Computational Complexity of Functions

The computational complexity of a function depends on the model of com-

puting used. We use the model of computing presented in Mount and Reiter

(1990, 2002). In that model a network consists of a set of elementary pro-

cessors connected by a directed graph that computes as follows.

Each processor p is a function that receives the values of its inputs, say,

x1, . . . , xs , from outside the network, or from immediately preceding pro-

cessors, and computes in one step or unit of time the value of a function

y = f p(x1, . . . , xs ). Here s ≤ r , where r is a given integer parameter, xi can

be a vector of some fixed dimension, say d , and f p belongs to a specified class

F of vector valued functions. For example, an (r , 1)-network of real-valued

functions is composed of functions of at most r real variables. Typically, in

the finite case, the processors in an (r , d)-network are functions of at most

r variables where the variables accept d-tuples of 0’s and 1’s (i.e., vectors

of Boolean values). The class F is a primitive of the model. Each processor

sends the result of its computation to inputs of every successor, i.e., to every

processor to which it is connected by a single arc in the graph, or to outside

the network if it has no successor.

A network of this kind, called an (r , d )-network in Mount and Reiter

(1983, 1990, or 2002) is said to compute a function

F : E 1 × E 2 × · · · × E N → Z

in time t if there is an initial state of the network such that when the val-

ues e1, . . . , e N are constantly fed into the network starting from time 0,

the value of F (e1, . . . , e N) appears as output of the network at time t. It

is important to note that in this model of computing F (e1, . . . , e N), the

values of the ei are passed to an (r, d)-network, and the time required to

compute F (e1, . . . , e N) is determined by an analysis of that (r, d)-network.
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All computations should be carried out by this (r, d )-network. Therefore, we

require that no computations are performed by exchanges of information

among the sets E i prior to passing the knowledge of the ei to the network.

For example, suppose F is a linear function . Then the matrix that represents

F algebraically depends on the coordinate system in the spaces E i . Com-

putations of F can be hidden in coordinate transformations in the space

E 1 × E 2 × · · · × E N .

In the finite case, when F consists of functions on finite products of finite

sets, one can compare (r, d )-networks with finite state machines (Arbib

1960, Hopcroft and Ullman 1979, or Mount and Reiter 2002). A finite state

machine is a device that processes information using a finite number of

inputs, outputs, and internal states. The inputs accepted and the outputs

produced are elements of a finite alphabet. The output depends on the

internal states of the device and the internal states change and outputs are

produced as inputs are accepted. Hopcroft and Ullman (1979, p. 13) give as

a simple example of such a machine the control mechanism of an elevator.

Inputs are accepted from the call buttons, the outputs are instructions to

move (up, down, or stop) and the internal states are directions of motion,

current floor and the collection of not yet satisfied requests for service. Every

finite (r, d )-network (using d-tuples of Boolean values) is equivalent to a

finite state machine (Arbib 1960 or Mount and Reiter 2002) and conversely

every finite state machine can be represented as an (r, d )-network.

The complexity of F relative to the class of networks characterized by r, d

andF is the minimum over all such networks of the time needed to compute

F . If the time is infinite, then F is said to be not computable by networks

in that class.

An (r, d )-network N that computes F in time t may contain loops. It is

shown in Mount and Reiter (2002, Theorem 2.1.4) that an (r, d )-network

T can be constructed which is:

(i) free of loops,

(ii) uses the same elementary functions (modules) that N uses (perhaps

with the identity function, projections, and constants added to the

functions used by N ), and

(iii) computes F in time t.

The network T is a tree with inputs entering at the leaves and the value

of F emerging at the root. The length of T is the time needed to compute

F . The processors in an (r, d )-network are functions of at most r variables.

A node in the tree represents either a function or a leaf and each variable

accepts values produced by a predecessor or by a leaf. In a tree that represents
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an (r, d )-network, each node can have at most r immediate predecessors.

It follows that for a fixed r , the number of variables entering the leaves

determines a lower bound on the length of a tree that computes F . Thus,

the minimum number of variables on which F depends provides a lower

bound on the time needed to compute F by (r, d )-networks with elementary

functions in the class F .

To arrive at this lower bound it is helpful to view the process of computing

F as follows. Each factor E i in the domain of F is regarded as the parameter

space of an agent i , and it is equipped with coordinates. To compute F at the

point e = (e1, . . . , e N), each agent sends the coordinates of her parameter

point to the (r, d )-network that computes F . Thus, agent i ’s message, ei ,

is the same as that used by a direct revelation mechanism. But it can be the

case that some coordinates of E i are not needed to compute F , then only

partial revelation of ei ∈ E i would be required. Therefore, we extend the

concept of a revelation mechanism to include partial revelation.

When the domain of F is a differentiable manifold, the number of vari-

ables on which F depends is not obvious. Suppose that F is a real-valued

function with partial derivatives defined on the Euclidean space E 1 = R2,

(R denotes the real numbers) where the Euclidean space has specified co-

ordinates, x and y. Then the number of coordinates required to compute

F is usually easy to estimate by computing the number of nonzero partial

derivatives. For example, the function F (x , y) = x + y2 has partial deriva-

tives in x and y that are both nonzero. One might be tempted to think that

F (x , y) is a function more complex than, say, the function x. However, if

one treats R2 as a differentiable manifold, where differentiable coordinate

changes are allowed, then the function F (x , y) can be introduced as a co-

ordinate function on R2, so that R2 has coordinate functions F (x , y)

and y. Having done that, F (x , y) is a function of the one parameter F

and is no more complex than x. Thus, the possibility of unrestricted (dif-

ferentiable) coordinate changes invalidates using the number of nonzero

partial derivatives of F , i.e., the number of variables on which F appar-

ently depends, as an indicator of its complexity. Another view of this is

as follows. Define an equivalence relation according to which two points

a and a ′ in R2 are equivalent if F takes the same value at a and a ′.
The level sets of F are the equivalence classes of this equivalence rela-

tion. This set of equivalence classes is a one-dimensional family (indexed

by the values of F ), and so is no more complex than the level sets of the

function x.

We must allow different choices for coordinates. This is especially clear

when the space E i is the parameter space of an agent i. In the individual
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E i there may be nothing intrinsic about the coordinate system used, since

agent i’s parameters are private to i. Indeed, if E i is the topological space

R2, agent i may choose to view the space as a vector space and use standard

coordinates, or the agent may choose to use polar coordinates. Thus, we

should not restrict the choice of coordinates, in the individual E i .

Beyond that, when F is defined on a product space E 1 × · · · × E N and

the object is to determine the amount of computation required to evalu-

ate F (e), e ∈ E 1 × · · · × E N , there is a natural restriction on coordinate

choices allowed in the product space. The restriction is to allow only coor-

dinate choices that are the product of individual coordinate choices in the

separate spaces E i . A choice of coordinates on E 1 × · · · × E N in which

coordinates on E i depend on parameters in E j with j 	= i is ruled out

because such a choice can smuggle computation. Suppose, for example,

E 2 = R2 − {the y2 axis} with coordinates y1 and y2, E 1 = R2 with coordi-

nates x1 and x2 and G(x1, x2, y1, y2) = x1 y1 + x2 y2. To determine the com-

putation required to evaluate G we should certainly consider coordinates

x ′
1 = x2, x ′

2 = x1, and y ′
1 = y1 + y2, y ′

2 = y2 as a possible choice to be made

by the agents. After all, a tax payer’s spread-sheet need not have the same

line numbers as his tax form. However, a change of coordinates in E 1 × E 2

to the system x ′′
1 = G(x1, x2, y1, y2), x ′′

2 = x2, and y ′′
1 = y1, y ′′

2 = y2 hides

computation. In the x ′′
i , y ′′

i coordinate system, evaluation of G at a point

is no more than reading the first coordinate of the point. The restriction

that a coordinate change is allowable only if it is the product of a coor-

dinate change in E 1 and a coordinate change in E 2 leads to the conclu-

sion that all four of the parameters x1, y1, x2, and y2 are required for

the evaluation of G. To see this we again examine the level sets of the

function to be computed. Following Arbib–Spira, one must have a suffi-

cient number of parameters from E 1 to be able to distinguish a pair of

points a = (a1, a2) and b = (b1, b2) in E 1 if there is a point z in E 2 such

that G(a , z) 	= G(b, z). Define two points a and b in E 1 to be equiva-

lent if and only if G(a , y) = G(b, y) independent of the point y chosen in

E 2. If a1 	= b1, then G(a1, a2; 1, 0) = a1 	= b1 = G(b1, b2, 1, 0). A similar

argument applies if a2 	= b2. Thus, to compute G one needs sufficiently

many parameters to distinguish between each two points of E 1. That is,

one needs two parameters from E 1. Similarly, one needs two parameters

from E 2.

The previous remarks justify the restriction that we choose coordinates

that preserve the product structure on E 1 × E 2. It is also clear that if, in the

previous example, the function to be evaluated was G(x1, x2, y1, y2) = x1 y1,

then agent 1 needs only to reveal x1 while agent 2 needs to reveal only y1.
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With these considerations in mind, we extend the concept of a revelation

mechanism to allow for partial revelation of parameters in each allowable

coordinate system used in the space E i . We refer to a mechanism of this type

as an encoded revelation mechanism. Note that while these mechanisms form

a larger class than do revelation mechanisms, the class of encoded revelation

mechanism does not include all privacy-preserving mechanisms, or game

forms, with the given structure of private information.

In order to make this point clear and to help make this paper self-

contained, we include below a brief summary of the formal structure of

privacy-preserving mechanisms, and relate encoded revelation mechanisms

to them. This is done in Section 4.1.4 of the Introduction.

4.1.2 Separator Sets and Quotients

We formulate the concept of separator sets for the function F : E 1 × · · · ×
E N → Z in terms of an equivalence relation induced on each of the sets

E i by F . The quotients we use to determine the number of variables on

which a function F depends is a natural generalization of the argument

used in the discussion of the function G(x1, x2, y1, y2) = x1 y1 + x2 y2. We

begin with a set-theoretic presentation that does not assume topological or

smoothness conditions of the set E i or Z. No concept of dimension plays

a role in the set-theoretic discussion. When E i are differentiable manifolds

the set-theoretic constructions are used to establish the existence of certain

required functions, for which appropriate smoothness conditions can then

be verified.

In the case that F is a differentiable function, once the quotient object

is constructed the remaining task is to establish conditions that ensure

the quotient object has the structure of a differentiable manifold. The

conditions we use are rank conditions on certain matrices associated with

the function F . The manifold structure on the quotient object allows us to

conclude that the dimension of the quotient exists as a topological concept

(see Hurewicz and Wallman (1948)) and that the dimension of the quotient

is the number of variables required to compute the function. The quotient

object is a space with the least number of variables (i.e., least dimension)

sufficient to compute the function.

Specifically, for the function F : E 1 × · · · × E N → Z we establish that

(i) for each 1 ≤ i ≤ N there exists a set (E i/F ) and a function q i : E i →
(E i/F ),

(ii) there exists a function F ∗ : (E 1/F ) × · · · × (E N/F ) → Z
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such that (E i/F ), q i , and F ∗ satisfy the following conditions (See Dia-

gram A). First, F = F ∗ ◦ (q 1 × · · · × q N). In this case the function F can

be factored through the space (E 1/F ) × · · · × (E N/F ). Second, if for each

1 ≤ i ≤ N there is a function pi : E i → Xi , pi onto Xi , and there is a

function H : X1 × · · · × X N → Z for which F = H ◦ ( p1 × · · · × pN),

(See Diagram B), then (See Diagram C) for each 1 ≤ i ≤ N, there is a

unique function ρi : Xi → (E i/F ) such that ρi ◦ pi = q i , and such that

H = F ∗ ◦ (ρ1, . . . , ρN).

Arbib and Spira (1960) give a lower bound on the time required for a

McCulloch–Pitts neural network to compute F . The bound is expressed as

a function of the cardinalities of the separator sets for F in E i . A subset Si

of E i is a separator set for the function F in E i if for each pair of distinct

points a , b ∈ Si there is a point z j ∈ E j , for each j 	= i, 1 ≤ j ≤ N, where

z j are dependent on a and b, such that F (z1, . . . , zi−1, a , zi+1, . . . , zN) 	=
F (z1, . . . , zi−1, b, zi+1, . . . , zN). Each separator set in E i is the image of

a subset of (E i/F ) under some thread of q i . By a thread of q i we mean a

function T from (E i/F ) to E i such that q i ◦ T is the identity function. If the

sets E i are finite, then the cardinality of the set (E i/F ) is an upper bound

on the cardinality of each Arbib–Spira separator set for F in E i . Roughly,

the higher the cardinality of a separator set in E i , the longer it takes to

compute F . Thus, the cardinality of the (E i/F ) yields the smallest lower

bound on the time required to compute F that can be derived from separator

sets. The lower bound on the time required derived from separator sets is

a very rough estimate and it is generally not possible to compute F in that

time.

Next, we assume that each E i is a differentiable manifold with appropriate

smoothness, and suppose for the sake of discussion that F has values that

are real numbers. The lower bound on the time it takes an (r, 1)-network to

compute a real-valued function of D real variables is, roughly, logr (D)(See

Mount and Reiter 2002). In order to apply that lower bound estimate

to the function F we convert the computation of F on E 1 × · · · × E N

to the evaluation of a real-valued function of real variables. Therefore,

we are about to consider coordinates explicitly. Since coordinates are

usually locally defined functions on differentiable manifolds, the dis-

cussion involves neighborhoods of points. A little later we return to

the globally defined separator sets and the quotient spaces (E i/F ).

By using local coordinates we, unfortunately, enter a thicket of nota-

tions. Each of E i has some coordinate system (xi,1, . . . , xi,d(i)) (d(i)

is the dimension of E i ) given in an appropriate neighborhood U i in

E i , and there is a real-valued function F ′ of d(1) + · · · + d(N) real
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variables such that for each e = (e1, . . . , e N) ∈ U 1 × · · · × U N , F (e) =
F ′((x1,1(e1), . . . , x1,d(1)(e1)), . . . , (xN,1(e N), . . . , xN,d(N)(e N)). The lower

bound on computing time for F is then, again roughly, logr (d(1) + · · · +
d(N)).

However, as one would suspect from the preceding remarks, an incor-

rect choice of coordinate systems on E i can lead to a lower bound of

logr (d(1) + · · · + d(N)) that is too large. Suppose that on U 1, it is pos-

sible to ignore the coordinate x1,d(1) and still evaluate F . That is, suppose

that for all (e2, . . . , e N) ∈ U 2 × · · · × U N and for all e in the neighbor-

hood U 1

F (e , e2, . . . , e N) = F ′(x1,1(e), . . . , x1,d(1)−1(e), x2,1(e2), . . . , xN,d(N)(e N)
)
.

When the evaluation of F requires, besides the parameters from E j , 2 ≤
j ≤ N, only the knowledge of the variables x1,1, . . . , x1,d(1)−1, ignoring

the variable x1,d(1) in the evaluation of F ′(thus, also the evaluation of F )

is the same as replacing the manifold E i , at least locally, by the space of

the variables x1,1, . . . , x1,d(1)−1. The meaning of the phrase, “replacing the

manifold E 1 ”, is not entirely clear. A more precise statement is the follow-

ing. Replace E 1 by the quotient space induced by an equivalence relation,

denoted by “∼”. The equivalence relation we use is the following one . Two

points e and e ′ in E 1 are equivalent if and only if (x1,1(e), . . . , x1,d(1)−1(e)) =
(x1,1(e ′), . . . , x1,d(1)−1(e ′)). Note that the equivalence relation used here is

not the equivalence relation used to construct E 1/F . If E 1/(∼) denotes

the quotient of E 1 by the equivalence relation “∼” and if q 1 : E 1 →
E 1/(∼) is the quotient map, then E 1/(∼) has a natural set of coordinates

(x ′
1,1, . . . , x ′

1,d(1)−1) induced by the variables x1,1, . . . x1,d(1)−1 of E 1. Fur-

thermore, we can replace F by a map F ∗ : E 1/(∼) × E 2 × · · · × E N → R

defined by setting F ∗(a ′, e2, . . . , e N) = F (a , e2, . . . , e N) where q 1(a) =
a ′. Now for e ∈ U 1 F (e , e2, . . . , e N) = F ∗(q 1(e), e2, . . . , e N). This clears

the thicket of notation. Note that we can estimate a lower bound on the

computation time to compute F by seeking a lower bound on the time

required to compute the function F ∗.
Even if, in a given coordinate system, no variable can be eliminated, it

is possible that another choice of coordinates might lead to a reduction in

the number of variables required to compute F . Furthermore, even if in a

particular coordinate system some of the coordinates can be eliminated, we

might be able to change coordinates and eliminate a greater number. There-

fore, we seek a “good” coordinate system by looking for a “good” quotient.

Note that the discussion of “∼” in the previous paragraph shows that if the



P1: JZZ

CUNY425-04 CUNY425/Hurwicz 0 521 83641 7 February 28, 2006 19:19

306 Revelation Mechanisms

map q 1 carries two points (e , e2, . . . , e N) and (e ′, e2, . . . , e N) to the same

point, then F (e , e2, . . . , e N) = F (e ′, e2, . . . , e N). This observation leads

us to the following method of choosing quotients. We form the quotient

(E 1/F ) induced by an equivalence relation “≈ ,” called F -equivalence. Two

points e , e ′ ∈ E 1 are F-equivalent if for all y ∈ E 2 × · · · × E N , F (e , y) =
F (e ′, y). Next, we add sufficient local conditions on F to guarantee that

the quotient of E 1 by the relation “≈” is a differentiable manifold, that the

quotient map q 1 is differentiable and that F grows quickly enough to sepa-

rate points in the appropriate neighborhoods. We then argue that (E 1/F )

is the “good” quotient we seek. More generally, conditions are imposed that

ensure that the quotient object, (E 1/F ) × · · · × (E N/F ), is a topological

manifold. Then the dimension of the quotient manifold counts the minimal

number of variables required.2

Observe that if the quotient map q 1 is one-to-one then no reduction in the

number of variables required from E 1 is possible no matter what coordinate

system is used.

4.1.3 Algebraic Conditions

An algebraic characterization of the number of variables required to com-

pute a given function F is obtained from a theorem of Leontief (1947).3

Suppose that for 1 ≤ j ≤ N, E i denotes a Euclidean space of dimen-

sion d(i), suppose R denotes the real numbers and suppose that F : E 1 ×
· · · × E N → R denotes a differentiable function. Assume that for each

2 ≤ i ≤ N, E i has a coordinate system y
i
= (yi,1, . . . , yi,d(i)) and denote

by y the coordinate system (y
2
, . . . , y

N
) on the product E 2 × · · · × E N .

We suppose that E 1 has a coordinate system x = (x1, . . . , xd(1)). We seek a

“good” quotient for the space E 1, where a good quotient is as described in

Section 5.1.2. We use rank conditions on bordered Hessian matrices to con-

struct such a quotient of E 1 (see Mount and Reiter 2002, p. 48). The matrices

we call “bordered Hessian” are different from the classical bordered Hessians

used in the second derivative test for constrained optima. The matrices we

2 When we assume the existence of certain local threads, this quotient object satisfies uni-
versality conditions. We do not know that there is such a universal object that is also as
differentiable as the original product E 1 × · · · × E N . Possibly Godement’s Theorem (Serre
1965, p. LG 3.27) might resolve this objection.

3 Abelson used this result to construct a lower bound on the communication complexity
of F in a distributed system. In Abelson’s paper (1980), communication complexity is the
number of real variables that must be transmitted among the processors to compute F .
This is essentially the same as the size of the message space in the analysis carried out by
Mount Reiter (1974) and in Hurwicz (1986) and Chen (1992).
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use are constructed from derivatives of the function F , and reflect the prod-

uct structure on the product E 1 × · · · × E N . The bordered Hessian we use

is denoted B H(x , y)(F ). This matrix has rows indexed by coordinates xi from

E 1, and columns indexed by F and the coordinates y from E 2 × · · · × E N .

The (xi , F ) entry in B H(x , y)(F ) is ∂ F
∂xi

, and the (xi , y j ) entry is ∂2 F
∂xi ∂y j

. The

Hessian (again we abuse the term Hessian), H(x , y)(F ), is the submatrix of

the bordered Hessian that consists of the columns other than column F .

The full bordered Hessian, F B H(x , y)(F ) is the bordered Hessian with a row

added indexed by F . The entry in position (F , F ) is 0. The (F , y j ) entry in

the full bordered Hessian is ∂ F
∂y j

.

We use conditions on the submatrix B H(x , y)(F ) of the full bordered

Hessian to guarantee the existence of a manifold structure on the quotient

objects (E i/F ). If at each point p of E 1 and each point q of E 2 × · · · × E N

the matrix B H(x , y)(F ) |(p,q) has rank r and H(F )(x , y) |(p,q) also has rank r ,

then the quotient of E 1 under the equivalence relation “≈” is a manifold of

dimension r.

As an example, consider the function

K (x , x ′, y, y ′) = xy + x ′2 y + 2xy ′2 + 2x ′2 y ′2 = (y + 2y ′2)(x + x ′2)

defined on the product R2 × R2 = E 1 × E 2, where the variables x , x ′ are

coordinates on E 1 and y, y ′ are coordinates on E 2. None of the variables

can be eliminated from the computation of K . To see this, compute the

classical Hessian for K . The classical Hessian for K is the 4 × 4 matrix

with rows and columns indexed by the variables x , x ′, y, y ′. The entry in

the (x , x) position of the classical Hessian is ∂2 F
(∂x)2)

, the entry in the (x , y)

position is ∂2 F
(∂x) ∂y)

, etc. However, the (nonlinear) change of coordinates given

by X(x , x ′) = (x + x ′2), Y (y, y ′) = (y + 2y ′2) permits K to be written in

terms of only two variables, namely,

K (x , x ′, y, y ′) = X(x , x ′)Y (y, y ′).

The matrices B H(x , y)(K ) and B H(y, x)(K ) each has rank equal to 1 as do

the matrices B H(X,Y )(XY ) and B H(Y, X)(XY ).

4.1.4 Privacy-Preserving Mechanisms

The basic setup is as follows. There are N (a positive integer) economic

agents, each of whom has a space of characteristics. Let E i denote the space of

characteristics of agent i (such as her preference relations). It is assumed that

the information about the joint environment e = (e1, . . . , e N) is distributed
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among the agents so that agent i knows only her characteristic ei . A function

F : E 1 × · · · × E N → Z is given, which is called the goal function. That

function expresses the goal of economic activity. For example, for each

e = (e1, . . . , e N) in E 1 × · · · E N , let F (e) denote the Walrasian allocation

(or trade). Agents communicate by exchanging messages drawn from a

message space denoted M.The final or consensus message, also called the group

equilibrium message, for the environment e is given by a correspondence μ :

E 1 × · · · × E N → M. Equilibrium messages are translated into outcomes

by an outcome function h : M → Z.

A mechanism π = (M, μ, h) is said to realize the goal function F (on E )

if for all e ∈ E , F (e) = h(μ(e)).4

The mechanism (M, μ, h) is called privacy preserving if there exist corre-

spondences μi : E i → M, for i = 1, . . . , N, such that for all e ∈ E ,

μ(e) = μ1(e1) ∩ μ2(e2) ∩ · · · ∩ μN(e N).

This condition states that the set of equilibrium messages acceptable to

agent i can depend on the environment only through the component ei .

The component ei is, according to the assumption made above, everything

that i knows about the environment.

From now on we focus on the case in which the characteristics of the agents

are given by real parameters and the mechanisms are privacy preserving. It

has been shown (see Hurwicz (1986) and the references given therein) that in

the case of privacy-preserving mechanisms the inverse image of a point m in

the message space M is a rectangle contained in the level set F −1(h(m)). This

fact, in the presence of appropriate smoothness conditions, allows one to

compute a lower bound on the dimension of the message space of a privacy-

preserving mechanism that realizes F . (See Hurwicz 1986 or Hurwicz et al.

1980.)

A revelation mechanism is, of course, one in which each agent trans-

mits his/her parameter value to the message space. (If the mechanism

realizes F then the outcome function h is F itself.) This can be rep-

resented as a mechanism in which the message space M is a product

M = E 1 × · · · × E N . If Mi = E i , and if the individual message correspon-

dence of agent i maps the parameter ei in E i toμi (ei ) = E 1 × · · · × E i−1 ×
{ei } × E i+1 × · · · × E N , then the mechanism is a direct revelation mecha-

nism. To realize a goal function F : E 1 × · · · × E N → Z using the message

space E 1 × · · · × E N it may be unnecessary for an agent to completely

4 More generally, F can be a correspondence, in which case the definition of realizing F must
be modified, as in Hurwicz (1986).
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reveal his/her parameters. For example, suppose there are two agents with

environments E i = R2, i = 1, 2, where the first agent uses coordinates x

and y on E 1 while agent 2 uses coordinates z and w on E 2. If the goal

function is F (x , y, z, w) = (x + y)(z + w), then the revelation mecha-

nism realizes F (x , y, z, w), but it is also clear that one can construct a

mechanism that realizes F in which it is unnecessary for the agents to com-

pletely reveal their environmental parameters. One can use the product

R × E 2 as the message space, where the first component R has coordinate

t. Agent 1 uses as message correspondence ν1(x , y) = (x + y, E 2), agent 2

uses ν2(z, w) = (R(z, w)) and the mechanism has as outcome function

h(t, z, w) = t(z + w). In this example, agent 2’s parameters also enter only

through their sum. We do not take advantage of that fact because the point

can be made using only agent 1. Agent 1 does completely reveal his/her

parameters. The reduction has been achieved by an explicit choice of a

coordinate on the space R and an explicit representation of the function

x + y. In other words, one can change coordinates in the space E 1, i.e.,

recode E i , and use the mechanism (R × E 2, ν1 ∩ ν2, t) to realize F . This

mechanism design recognizes that a simple change of coordinates makes it

possible to realize the goal function requiring of agent 1 only a projection of

his/her parameters. In the subsequent discussions we will be most interested

in the construction of mechanisms that arise from recoding and projection,

but it is technically useful to consider mechanisms (M, μ, h) where the

message space is a product M = M1 × · · · × MN and the message corre-

spondence is the product g 1 × · · · × g N of functions g i : E i → Mi . Such

a mechanism (M1 × · · · × MN , (g 1, . . . , g N), h) is an encoded revelation

mechanism . We formalize the concept of encoded revelation mechanisms in

Section 4.2.1.

Encoded revelation mechanisms that realize a goal function F are a sub-

class of the class of privacy-preserving mechanisms that realize F . To see that

the mechanism (M1 × · · · × MN , (g 1, . . . , g N), h) is privacy-preserving

note that ifμi (ei ) = E 1 × · · · × E i−1 × {g i (ei )} × E i+1 × · · · × E N , then

μ(e1) ∩ · · · ∩ μN(e N) = (g 1(e1), . . . , g N(e N)). There are simple condi-

tions on the function F that guarantee the existence of a “best” encoded

revelation mechanism. Of course, we mean that there is a “best” coordinate

system for the realization of the function F by encoded revelation mecha-

nisms constructed using projections of coordinates. What we construct is

an encoded revelation mechanism through which each encoded revelation

mechanism that realizes F factors. Although the dimension of the message

space of this “best” encoded revelation mechanism is a lower bound on the

dimensions of message spaces of encoded revelation mechanisms, it is not a
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lower bound on the dimensions of messages spaces of all privacy-preserving

mechanisms that realize a goal function F . Theorems due to Hurwicz, Chen

and Abelson, already mentioned, do establish lower bounds on the dimen-

sions of message spaces of privacy-preserving mechanisms that realize F .

While those theorems use rank conditions on certain Hessian matrices of

F , they do not yield the same bounds as those given by encoded revelation

mechanisms.

4.2 Initial Set-Theoretic Constructions

Notation: If X j , 1 ≤ j ≤ N, are sets and X denotes the product

set X1 × · · · × X N , then X 〈− j 〉 denotes the set X1 × · · · × X j−1 ×
X j+1 × · · · × X N . If x ∈ X1 × · · · × X N , and 1 ≤ j ≤ N, then x〈− j 〉

denotes the element (x1, . . . , x j−1, x j+1, . . . , x N) ∈ X 〈− j 〉. If x ∈ X j , if

for each 1 ≤ i 	= j ≤ N, zi ∈ Xi and z = (z1, . . . , z j−1, z j+1, . . . , zN) ∈
X 〈− j 〉, then z〈x@ j 〉 denotes the element (z1, . . . , z j−1, x , z j , . . . , zN) of

X1 × · · · × X N .

4.2.1 Encoded and Essential Revelation Mechanisms

definition 4.2.1. Suppose that E i , 1 ≤ i ≤ N, and Z are sets and sup-

pose that F : E 1 × · · · × E N → Z is a function. An encoded revelation

mechanism realizing F is a triple (M1 × · · · × MN , (q 1, . . . , q N), h) that

consists of:

(i) a product of sets M1 × · · · × MN ,

(ii) a collection of functions q i : E i → Mi , 1 ≤ i ≤ N,

(iii) a function h : M1 × · · · × MN → Z, such that for each (e1, . . . , e N)

∈ E 1 × · · · × E N , F (e1, . . . , e N) = h(q 1(e1), . . . , q N(e N)). The

function (q 1, . . . , q N) is the message function for the encoded reve-

lation mechanism.

4.2.2 F-Equivalence and Encoded Revelation Mechanisms

definition 4.2.2. Suppose that E i , 1 ≤ i ≤ N, and Z are sets, that F :∏N
i=1 E i → Z is a function, and that 1 ≤ j ≤ N. Two points x and x ′ in E j

are F -equivalent in E j if for each z ∈ E 〈− j 〉, F (z〈x@ j 〉) = F (z〈x ′@ j 〉).

F-equivalence is the relation we introduced in the fourth paragraph of Sec-

tion 4.1. It is elementary that F -equivalence in E j is an equivalence relation

on points of E j . Denote by (E j /F ) the collection of F -equivalence classes
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of E j : denote by q j the quotient map from E j to (E j /F ). That is, q j carries

a point in E j to the equivalence class of that point under F -equivalence.

The following lemma establishes the sense in which the set (E 1/F ) ×
· · · × (E N/F ) is the smallest product set through which F factors.

lemma 4.2.1. Suppose that E 1, . . . , E N , and Z are sets and suppose that

F : E 1 × · · · × E N → Z is a function. For each 1 ≤ j ≤ N, denote by q j :

E j → (E j /F ) the map that carries each point of E j to its equivalence class

under F -equivalence. Then:

(i) there is a unique function F ∗ : (E 1/F ) × · · · × (E N/F ) → Z that

makes the Diagram A commute;

(ii) if X1, . . . , X N are sets, and if there are functions pi : E i → Xi , 1 ≤
i ≤ N, pi onto Xi , and a function H : X1 × · · · × X N → Z that

makes Diagram B commute, then there are uniquely determined maps

ρ1, . . . , ρN , ρi : Xi → (E i/F ), that make Diagram C commute; and

(iii) if X1, . . . , X N are sets, and if there are functions pi : E i → Xi , 1 ≤
i ≤ N, and a function H : X1 × · · · × X N → Z that makes Diagram

B commute, then for each 1 ≤ i ≤ N, the cardinality of Xi is at least

the cardinality of (E i/F ).

We now give a proof of Lemma 4.2.1.

Proof: Define a correspondence F ∗ : (E 1/F ) × · · · × (E N/F ) → Z by

setting F ∗(q 1(e1), . . . , q N(e N)) = F (e1, . . . , e N). It follows immedi-

ately from Definition 4.2.2 that this defines a function on (E 1/F ) ×
· · · × (E N/F ). For each 1 ≤ j ≤ N, the map q j carries E j onto

(E j /F ) because each point in (E j /F ) is the equivalence class of

a point in E j . If F ′ : (E 1/F ) × · · · × (E N/F ) → Z such that F ′ ◦
q 1 × · · · × q N = F , then for each point (y1, . . . , y N) ∈ (E 1/F ) × · · · ×
(E N/F ), (y1, . . . , y N) = (q 1(e1), . . . , q N(e N)) for some (e1, . . . , e N) ∈
E 1 × · · · × E N . Therefore, F ′(y1, . . . , y N) = F ′(q 1(e1), . . . , q N(e N)) =
F (e1, . . . , e N) = F ∗(q 1(e1), . . . , q N(e N)) = F (y1, . . . , y N). This estab-

lishes the uniqueness of the map F ∗.
We next show that if pi : E i → Xi and H :

∏N
1 Xi → Z are functions

that make Diagram B commute, then we can factor the map
∏N

1 pi through

the product
∏N

1 (E i/F ). If x ∈ Xi , choose e , e ′ ∈ E i such that pi (e ′) =
pi (e) = x. For each w ∈ E 〈−i〉, set

p(w) = (p1(w1), . . . , pi−1(wi−1), pi+1(wi+1), . . . , pN(wN)) ∈ X 〈−i〉.
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Then F (w〈e@i〉)= H( p(w)〈pi (e)@i〉)= H( p(w)〈pi (e ′)@i〉) = F (w〈e ′@i〉). It fol-

lows that for each i , q i (e) = q i (e ′). Therefore, setting ρi (x) = q i (e) defines

a function ρi from Xi to (E i/F ). It is clear that Diagram C commutes.

To see the uniqueness of the maps ρi , note that if ρ∗i : Xi → (E i/F ),

1 ≤ i ≤ N, are maps that make Diagram C commute when used in place

of the maps ρi , then for each x ∈ Xi and each e ∈ E i so that pi (e) = x ,

it follows that ρi (x) = ρi ( pi (e)) = q i (e) = ρ∗i ( pi (e)) = ρ∗i (x). Finally,

we turn to assertion (iii). If the maps pi : E i → Xi are onto, then the

maps ρi : Xi → (E i/F ) are also onto, therefore the cardinality of Xi is at

least that of (E i/F ).5 If the map pi : E i → Xi is not onto, then replace

Xi with the image of pi . It follows that the image of pi has cardinality

at least that of (E i/F ), while the cardinality of Xi is at least that of the

image of pi .

definition 4.2.3. Using the notation of Lemma 4.2.1, the triple ((E 1/F ) ×
· · · × (E N/F ), (q 1, . . . , q N), F ∗) is an encoded revelation mechanism real-

izing F , called an essential revelation mechanism realizing F .

The following theorem is a restatement of Lemma 4.2.1 in terms of

encoded revelation mechanisms. It states that not only is (E 1/F )1 × · · · ×
(E N/F N) the product with the smallest cardinality that can be used as

the message space for an encoded revelation mechanism, but it is also

the case that for every other product space that acts as a message space

for an encoded revelation mechanism that realizes F there is a product

map onto (E 1/F ) × · · · × (E N/F ). This is a characteristic of a univer-

sal object in the sense of category theory. Theorem 4.2.1 states that the

essential revelation mechanism is a universal object in the category of

encoded revelation mechanisms. In order to use the language of cate-

gory theory, a definition of morphisms between encoded revelation mecha-

nisms must be added. For our purposes it suffices to introduce the concept

of isomorphic encoded revelation mechanisms realizing F . The mechanism

((E 1/F ) × · · · × (E N/F ), (q 1, . . . , q N), F ∗) is then a representative of a

class of isomorphic mechanisms. Each member of that class is an essential

revelation mechanism realizing F .

definition 4.2.4. Suppose that M = (M1 × · · · × MN , ( p1, . . . , pN), h)

and M′ = (M′1 × · · · × M′N , ( p′1, . . . , p′N), h′) are encoded revelation

mechanisms realizing a function F . An isomorphism from M to M′ is

5 It is a standard theorem in set theory that an onto mapping does not increase cardinality,
and a set has cardinality at least that of each subset (cf. Lang (1993)).
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a collection of one-to-one and onto functions g i : Mi → M′i , 1 ≤ i ≤ N

such that Diagram D is a commutative diagram.

theorem 4.2.1. Suppose that E i , 1 ≤ i ≤ N, and Z are nonempty sets and

suppose that F : E 1 × · · · × E N → Z is a function.

(i) The triple (E 1/F ) × · · · × (E N/F ), (q 1, . . . , q N), F ∗) is an encoded

revelation mechanism that realizes F .

(ii) The message function for any other encoded revelation mechanism

factors through (E 1/F ) × · · · × (E N/F ).

(iii) The set (E 1/F ) × · · · × (E N/F ) is the smallest set in cardinality that

can be used as an encoded revelation message space for a mechanism

that realizes F .

(iv) Finally, the essential revelation mechanism is the unique encoded

revelation mechanism (M1 × · · · × MN , ( p1, . . . , pN), h) (to within

isomorphism) that realizes F for which the message function is onto,

and through which each encoded revelation mechanism that realizes

F factors.

4.3 The Topological Case

When E i are topological manifolds and when F is continuous, it is gen-

erally not true that the sets (E i/F ) are manifolds. Even a high degree of

smoothness of F is insufficient to guarantee that (E i/F ) is a topological

manifold. However, when the (E i/F ) are Hausdorff, a simple condition on

the Jacobian of F coupled with a global separation condition does imply that

the (E i/F ) are manifolds. When these conditions are satisfied, the essential

revelation mechanism has the structure of a manifold, and the dimensions

of the (E i/F ) can be used to establish a lower bound on the number of

variables, i.e., the number of functions in a coordinate system, that must

be passed to a central processor to compute F . This number determines a

lower bound for the complexity of the function F .

In this section, we introduce the concept of differentiable separability,

which is the Jacobian condition that we use. We then give simple global

conditions on the function F to ensure that the sets (E i/F ) are topolog-

ical manifolds. We begin with some concepts from differential geometry

(cf. Golubitsky and Guillemin (1973)).

definition 4.3.1. Let X and Y be differentiable manifolds. Let � : X →
Y be a differentiable mapping. If at a point p ∈ X the Jacobian of the

mapping � has the maximum rank, and if dim X ≥ dim Y , then � is
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said to be a submersion at p. If � is a submersion at each point of X,

then � is a submersion. If a map g : X → Y is a submersion, then it is

known (cf. Golubitsky and Guillemin (1973, p.9)) that the map can be

linearized (rectified). That is, if dim(X) = n, dim(Y) = m, and if p ∈ X,

we can choose coordinates (x1, . . . , xn) in a neighborhood U of p, and

coordinates (y1, . . . , ym), in a neighborhood of g( p) so that for each q ∈ U,

(y1(g (q)), . . . , ym(g (q))) = (x1(q), . . . , xm(q)).

Notation: Suppose that for 1 ≤ i ≤ N, Mi denotes a topological manifold,

for each i, pi ∈ Mi , and xi is a local coordinate system in a neighborhood of

pi on Mi . We denote by x the coordinate system (x1, . . . , x N) on the prod-

uct M = M1 × · · · × MN . We extend the notation of page 25 and denote

by x〈−i〉 the coordinate system (x1, . . . , xi−1, xi+1, . . . , x N) on M〈−i〉.
If z are coordinates on Mi , and y〈− j 〉 = (y

1
, . . . , y

j−1
, y

j+1
, . . . , y

N
)

are coordinates on M〈− j 〉, then y〈− j 〉〈z@ j 〉 denotes the coordinates

(y
1
, . . . , y

j−1
, z, y

j+1
, . . . , y

N
) on M1, . . . , MN .

Next, we introduce a collection of matrices that are generalizations of

matrices used by Leontief (1947).

Suppose E 1, . . . , E N are Euclidean spaces of dimensions d1, . . . , dN ,

such that the space E i , 1 ≤ i ≤ N, has coordinates xi = (xi,1, . . . , xi,di
).

Assume that (p1, . . . , pN) is a point of E 1 × · · · × E N , and assume that

U i is an open neighborhood of the point pi , 1 ≤ i ≤ N. We assume that

F is a real-valued C 2-function defined on U 1 × · · · × U N . We require four

matrices.

(i) The matrix BH(xi , x〈−i〉)(F ) =
BH((xi,1, ..., xi,d(i)),(x1,1, ..., xi−1,di−1

, xi+1,1, ..., xN,dN
))(F ) is a matrix that

has rows indexed by xi,1, . . . , xi,di
and columns indexed by

F , x1,1, . . . , x(i−1),di−1
, x(i+1),1, . . . , xN,dN

. The entry in the xi,u row

and in the F column is ∂ F
∂xi,u

. The entry in row xi,u and in column x j,w

is ∂2 F
∂xi,u ∂x j,w

.

(ii) The matrix H(xi , x〈−i〉)(F ) is the submatrix of BH(xi , x〈−i〉)(F ) that con-

sists of the columns indexed by xu,v , u ∈ {1, . . . , i − 1, i + 1, . . . , N}
and 1 ≤ v ≤ du. In other words, we derive H from BH by elim-

inating the column indexed by the function F . If the number of

Euclidean spaces is two, so F : E 1 × E 2 → R, we use a slightly less

cumbersome notation. Suppose that E 1 has coordinates (x1, . . . , xp)

and E 2 has coordinates (y1, . . . , yq ). We use as row indices for

BH({x1, ..., xp},{y1, ..., yq })(F ) the variables x1, . . . , xp and as column indices
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F , y1, . . . , yq . The (xi , F ) entry in BH(x1, ..., xp ;y1, ..., yq )(F ) is ∂ F
∂xi

and the

(xi , y j ) entry is ∂2 F
∂xi ∂y j

. The matrices H(xi , x〈−i〉)(F ) and BH(xi , x〈−i〉)(F )

are matrices of functions in the coordinates x1, . . . , x N of E 1 × · · · ×
E N . The conditions we place on the matrices BH and H require that

some, but not all, of the variables are to be evaluated at a point. When

that partial evaluation takes place we indicate this by adding an asterisk

to the H or BH.

(iii) Specifically, the matrix BH∗
(xi , x〈−i〉)

(F ) |[xi , p〈−i〉]
is the matrix that

results from evaluating the variables x1, . . . , xi−1, xi+1, . . . , x N of

the entries of BH(xi , x〈−i〉)(F ) at the point p〈−i〉 = (p
1
, . . . , p

i−1
,

p
i+1

, . . . , p
N

). The matrix BH∗
(xi , x〈−i〉)

(F ) |[xi , p〈−i〉]
is a function of the

variables xi,1, . . . , xi,di
alone.

(iv) Similarly, the matrix H∗
(xi , x〈−i〉)

(F ) |[xi , p〈−i〉]
is the submatrix of

BH∗
(xi , x〈−i〉)

(F ) |[xi , p〈−i〉]
derived by deleting the column indexed

by F .

4.3.1 Differential Separability

definition 4.3.2. Suppose X1, . . . , X N are differentiable manifolds, where

for each 1 ≤ i ≤ N, Xi has dimension di . Suppose that pi ∈ Xi , 1 ≤ i ≤
N, and suppose that for each i, φi = (φi,1, . . . , φi,di

) is a coordinate system

in an open neighborhood U i of pi . Suppose that F :
∏N

i=1 Xi → R is a

C 2-function. Assume that for 1 ≤ i ≤ N, φi = ∏
j φi, j maps U i onto an

open neighborhood V i of the origin 0i of a Euclidean space E i = Rdi and

that φi carries pi to 0i . We assume that E i has coordinates (xi,1, . . . , xi,di
).

The function F is said to be differentiably separable of rank (r1, . . . , r N) at

the point (p1, . . . , pN) in the coordinate system (φ1,1, . . . , φN,dN
) if for each

1 ≤ i ≤ N, the matrices

BH((xi,1, ..., xi,di
), x〈−i〉)

(
F ◦

(∏
φt

)−1
)

and

H∗
((xi,1, ..., xi,di

), x〈−i〉)

(
F ◦

(∏
φt

)−1
) ∣∣∣∣

[xi ,0〈−i〉]

have rank ri in a neighborhood of (01, . . . , 0N). If F is differentiably sep-

arable of rank (r1, . . . , r N) at ( p1, . . . , pN), and if ri = dim (Xi ) for each

1 ≤ i ≤ N, then we will say that F is differentiably separable at ( p1, . . . , pN)

in the coordinate system (φ1 × · · · × φN).
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The following lemma notes that the ranks of the Hessians used in the

previous definition are unchanged by coordinate changes. The proof is a

simple computation.

lemma 4.3.1. Suppose that for 1 ≤ i ≤ N, Xi and Y i are C 2-manifolds

and suppose that hi : Y i → Xi is a C 2-diffeomorphism. Assume that

g :
∏N

i=1 Y i → R and F :
∏N

i=1 Xi → R are C 2-functions such that g =∏
hi ◦ F . Suppose that (q 1, . . . , q N) ∈ ∏

i Y i and let hi (q i ) = pi . If F is

differentiably separable of rank (r1, . . . , r N) at (p1, . . . , pN), then g is dif-

ferentiably separable of rank (r1, . . . , r N) at (q 1, . . . , q N).

We can now define the term differentiably separable for a function defined

on a differentiable manifold.

definition 4.3.3. If Xi , 1 ≤ i ≤ N, are C 2-manifolds, the function F :

X1 × · · · × X N → R is differentiably separable of rank (r1, . . . , r N) at the

point ( p1, . . . , pN) if there is a coordinate system (φi, j ) at the point

(p1, . . . , pN) such that F is differentiably separable of rank (r1, . . . , r N)

at the point (p1, . . . , pN) in the coordinate system (φ1,1, . . . , φN,dN
).

4.3.2 The Number of Variables on which F Really Depends

If F : X1 × · · · × X N → R is differentiably separable of rank (r1, . . . , r N)

at a point (p1, . . . , pN), then it is possible to write F as a function of vari-

ables {y1,1, . . . , y1,r1
, . . . , yN,1, . . . , yN,r N

}. This assertion, Lemma 4.3.2, is

a restatement of Theorem 4.2.1. The proof of Theorem 4.2.1 is to be found

in Section 4.4 together with an example of the construction.

lemma 4.3.2. Suppose that for 1 ≤ i ≤ N, Xi is a C k+1-manifold, k ≥ 2.

Assume,

(i) F : X1 × · · · × X N → R is a C k+1- function,

(ii) (p1, . . . , pN) is a point on X1 × · · · × X N , and

(iii) Xi has coordinates xi .

A necessary condition that F can be written in the form

G(y1,1, . . . , y1,r (1), . . . , yN,1, . . . , yN,r N
),

for (yi,1, . . . , yi,di
), a coordinate system in a neighborhood of the point

(p1, . . . , pN) ∈ Xi , is that the matrix BH(xi , x〈−i〉)(F ) has rank at most ri for

each i .
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Furthermore, a sufficient condition for F to be written in the form

G(y1,1, . . . , y1,r1
, . . . , yN,1, . . . , yN,r N

), for a C k-function G in a neigh-

borhood of a point ( p1, . . . , pN), is that F is differentiably separable of

rank exactly (r1, . . . , r N) at ( p1, . . . , pN).

4.3.3 Rank Conditions and Construction of an Essential
Revelation Mechanism for F

Lemma 4.3.2 suggests that in the case of a differentiable function F satisfying

the rank conditions stated in the lemma, it is possible to construct an essential

revelation mechanism whose message space is a topological manifold. We

now carry out the construction suggested by the lemma. The main result is

given in Theorem 4.3.2 and in Corollary 4.3.3.

definition 4.3.4. Suppose that Xi , 1 ≤ i ≤ N, and Z are C k-manifolds

and suppose that F : X1 × · · · × X N → Z is a differentiable function.

The triple (M1 × · · · × MN , (q 1, . . . , q N), h) that consists of spaces

M1 × · · · × MN , maps q 1, . . . , q N , q i : Xi → Mi , 1 ≤ i ≤ N, and the

function h : M1 × · · · × MN → Z is an encoded C k-revelation mechanism

that realizes F if

(i) each of the spaces Mi is a C k-manifold;

(ii) each of the functions q i , 1 ≤ i ≤ N, and h is a C k-differentiable

function;

(iii) each q i , 1 ≤ i ≤ N, has a local thread at each point of Mi , and

(iv) h ◦ (
∏

i q i ) = F .

definition 4.3.5. Suppose that F : E 1 × · · · × E N → Z is a differentiable

map from a product of differentiable manifolds E 1, . . . , E N to a differen-

tiable manifold Z. The function F factors through a product of manifolds

X1 × · · · × X N if there are submersions pi : E i → Xi , and a differentiable

mapping H : X1 × · · · × X N → Z such that Diagram B commutes.

It has not been established that the essential revelation mechanism is

an encoded C k-revelation mechanism, because the construction given in

Theorem 4.2.1 ignores all topological and differentiable structure.

The general outline of the method we use to put a structure on the (E i/F )

is straightforward. We first show that when the rank of BH(xi , x〈−i〉)(F ) is the

same as the dimension of E i , then for each two points x and x ′ in E i ,

there is an element y ∈ E 〈−i〉 such that F (x , y) 	= F (x ′, y). Therefore, the
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set (E i/F ) is E i . We next appeal to the generalization of a theorem of

Leontief and Abelson given in Lemma 4.3.2. This lemma shows that if the

rank of BH(xi , x〈−i〉)(F ) at a point is ri , then in a neighborhood of the point

there is a coordinate system (xi,1, . . . , xi,di
) and a function G such that

F (x1,1, . . . , xN,dN
) = G(x〈−i〉〈(xi,1, ..., xi,r )@i〉). We can use the remaining set

of coordinates in E i to determine a subspace S of E i by setting xi,(r+1) =
0, . . . , xi,di

= 0. The set S is a submanifold of E i and the restric-

tion of F to the space S × E 〈−i〉 has the property that the rank of

BH((xi,1, ..., xi,r ), x〈−i〉)(restrict F ) is the dimension of S. On S, the restriction

of F separates points (at least in a neighborhood) and therefore the map

from S to (E i/F ) is one-to-one. Some technical fiddling with quotient

topologies makes the quotient map, locally, a homeomorphism. Therefore,

at least locally, the space (E i/F ) has the same structure as S. The rest of

the proof consists of adding enough restrictions to ensure that the local

argument can be carried out everywhere on E 1 × · · · × E N .

theorem 4.3.1. Suppose that Xi , 1 ≤ i ≤ N, is a Euclidean space of dimen-

sion d(i) ≥ 1. Suppose that for each 1 ≤ i ≤ N, U i is an open neighbor-

hood of the origin 0i of E i and suppose that F is a C 3-function differentiably

separable at each point ( p1, . . . , pN) ∈ U 1 × · · · × U N . Then there is an

open neighborhood U of pi such that for each pair of points x and x ′ in U,

x 	= x ′, there is a point w ∈ U 〈−i〉 such that F (x , w) 	= F (x ′, w).

Proof: Denote by x the standard coordinate system on E i and denote

by y the standard coordinate system on the space E 〈−i〉. The matrix

H(x , y)(F ) |[0,0] has rank d(i), by assumption. Set X = Xi , set X 〈−i〉 = Y,

denote dim(X 〈−i〉) by N, and denote di by m. We can change coordinates in

X and Y separately to coordinates z in X and w in Y so that the new matrix

H(z,w)(F ) |[0,0] has a 1 in the z j × w j position, 1 ≤ j ≤ m, and zero in all the

other positions. The Taylor series expansion for F (z1, . . . , zm, w1, . . . , wN̄)

then has the form

F (z, w) = F (0, 0) + u ◦ z + v′ ◦ w + w ◦ z + zT Qz

+ wT Q′w + P (z∗, w∗)[z, w],

where Q and Q′ are square matrices, u and v′ are vectors in Rm and RN ,

respectively, v′ ◦ w denotes inner product, zT denotes the transpose of the

column vector z, and where P (z∗, w∗)[z, w] is a cubic polynomial in the

variables (z1, . . . , zm, w1, . . . , wN̄) with coefficients that are continuous
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functions on U × V evaluated at some point z∗ ∈ U and w∗ ∈ V. These

coefficients of P are bounded on a ball that is a compact neighborhood of

(0, 0) ∈ U ′ × V ′, U ′ ⊆ U and V ′ ⊆ V. Then for z, z′ ∈ U ′ and w ∈ V ′, |
F (z, w) − F (z′, w) |=

| u ◦ (z − z ′) + w ◦ (z − z ′) + zT Qz ′

+P (z ′∗, w′∗)[z ′, w] − P (z∗, w∗)[z, w] | .
We suppose that the vector (z − z ′) 	= 0 and denote (z − z ′) by v. The point

w is to be chosen in the set V ′. Denote z ′T Qz ′ − zT Qz by K and denote

u ◦ v by L . To complete the proof, it will suffice to show that the function

w ◦ v + P (z∗, w∗)[z, w] − P (z ′∗, w′∗)[z ′, w] + K + L

is not constant on the ball V ′. For this it will suffice to show that the function

Q̃ = w ◦ v + P (z′, w∗)[z′, w] − P (z′∗, w′∗)[z′, w]

is not constant on the ball V ′. The function P (z∗, w∗)[z′, w] −
P (z∗, w∗)[z, w] is a cubic 	α, βaα,βzαwβ in the variables w1, . . . , wN with

coefficients {aα,β(z, z ′, w, w′)} that are functions bounded on U ′ × V ′. Set

w = tv. The powers of the constants z1, . . . , zm can be combined with

the coefficients aα,β and therefore Q̃ = t | v |2 +a(t)t3, where the a(t) is

also bounded as a function of t. If a(t) = 0 identically in t, then because

v 	= 0, different values of t produce different values of Q̃. If a(t) 	= 0, and

| v |2 +a(t)t2 = c (a constant), then a(t) = (c− | v |2)/t2, and therefore

a(t) is not bounded as t approaches 0. Therefore, Q̃ is not a constant.

We now give conditions on a function F that is differentiably separable

of rank (r1, . . . , r N), so that each of the sets (Xi/F ), with the quotient

topology, has the structure of a C 0-manifold of dimension ri . Under these

conditions the set-theoretic essential revelation mechanism is a topological

essential revelation mechanism.

definition 4.3.6. If Xi , 1 ≤ i ≤ N, are topological spaces, then a real-

valued function F : X1 × · · · × X N → R induces strong equivalence on

Xi , if the following condition is satisfied. For each x , x ′ ∈ Xi , such that

x 	= x ′ there is an open neighborhood U of a point q ∈ X 〈−i〉, such that

F (u〈x@i〉) = F (u〈x ′@i 〉) for each u ∈ U, then F (z〈x@i〉) = F (z〈x ′@i〉) for all

z ∈ X 〈−i〉.



P1: JZZ

CUNY425-04 CUNY425/Hurwicz 0 521 83641 7 February 28, 2006 19:19

320 Revelation Mechanisms

Finding classes of functions that induce strong equivalence is easy. Sup-

pose the Xi are Euclidean spaces with coordinates xi = (xi,1, . . . , xi,di
), 1 ≤

i ≤ N. If for each 1 ≤ i ≤ N, β(i) = (β(i, 1), . . . , β(i, di )) is a sequence

of nonnegative integers, denoted by x
β(i)
i the monomial x

β(i,1)
i,1 · · · x

β(i,di )
i,di

,

and denoted by x
β(1)
1 · · · x

β(N)
N the product of the monomials x

β(i)
i . Write

F (x1, . . . , x N) = 	β(1), ...,β(N) Aβ(1)...β(N)x
β(2)
2 · · · x

β(N)
N ,

where Aβ(x1) are polynomials in x1. Then for x1, x ′
1 ∈ X1, F (x1, x〈−1〉) =

F (x ′
1, x〈−1〉) for x〈−1〉 in an open set in X 〈−1〉, if and only if [Aβ(x1) −

Aβ(x ′
1)]x

β(2)
2 · · · x

β(N)
N = 0 for the x2, . . . , xN chosen arbitrarily in an open

set in X2 × · · · × X N . However, a polynomial vanishes in an open set

if and only if each of its coefficients is zero. Therefore, if F (x1, x〈−1〉) =
F (x ′

1, x〈−1〉) for the x〈−1〉 chosen in some open set, it follows that for each

β, Aβ(x1) − Aβ(x ′
1) = 0. That is, F induces a strong equivalence relation

on X1.

theorem 4.3.2. Suppose that E i , 1 ≤ i ≤ N, are C 4−manifolds of dimen-

sions d1, . . . , dN , respectively. Suppose F : E 1 × · · · × E N → R is a

C 4−function that is differentiably separable on E 1 × · · · × E N of rank

(r1, . . . , r N) where each ri ≥ 1. Assume that F induces strong equivalence

in E i for each i. If

(i) the spaces (E i/F ) are all Hausdorff in the quotient topology,

(ii) quotient map q i : E i → (E i/F ) is open for each 1 ≤ i ≤ N,

then, for each 1 ≤ i ≤ N, the space (E i/F ) (with the quotient topology) is a

topological manifold (i.e., a C 0-manifold). Furthermore, the quotient map

q i : E i → (E i/F ) has a local thread in the neighborhood of each point.

Proof: Suppose that P i∗ ∈ (E i/F ), 1 ≤ i ≤ N. Choose a point P i ∈
E i , 1 ≤ i ≤ N, such that q i (P i ) = P i∗. Because the function F is differen-

tiably separable of rank (r1, . . . , r N) at the point (P 1, . . . , P N), it follows

from Theorem 4.4.6 that for 1 ≤ i ≤ N, there is an open neighborhood

U 〈−i〉 of P 〈−i〉 in X 〈−i〉, an open neighborhood U i of the point P i , and a

coordinate system xi = (xi,1, . . . , xi,di
) in E i such that xi (P i ) = (0, . . . , 0)

and a C 3-function G defined in a neighborhood of the origin, such

that

F (z1,1, . . . , zi−1,di−1
, xi,1, . . . , xi,di

, zi+1,1, . . . , zN,dN
)

= G(z1,1, . . . , zi−1,ri
, xi,1, . . . , xi,ri

, zi+1,1, . . . , zN,dN
)
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for each z ∈ U 〈−i〉. Denote by S∗ i the set of elements {xi,1, . . . ,

xi,ri
, 0, . . . , 0} that lie in U i . Choose in S∗ i a compact neighborhood Si

of (0, . . . , 0) (in the induced topology on S∗, i .) The map q i carries the set

U i to an open set of (E i/F ) because we have assumed that q i is an open

map. We have assumed that the equivalence relation induced on X 〈−i〉 by F

is strong, therefore the equality

F ((z1,1, . . . , zi−1,di−1), (xi,1, . . . , xi,ri
), b1, . . . , bdi −ri

, zi+1,1, . . . , zN,dN
)

= F (z〈−i〉〈(xi,1, ..., xi,ri
,0, ...,0)@i〉)

implies that qi (xi,1, . . . , xi,di
) = qi (xi,1, . . . , xi,ri

) for each (xi,1, . . . , xi,di
)

in U i . Therefore, q i (U i ) = q i (S∗ i ). The set S∗ i was constructed so that q i is

one-to-one on S∗ i . By assumption, the space (E i/F ) is Hausdorff, therefore

the restriction of q i to Si is a homeomorphism from Si to a neighborhood

N i of p∗ i . Denote by s i the inverse of q i on N i . It follows that the point

P ∗ i ∈ Xi has a neighborhood Ni that is homeomorphic to a neighborhood

of the origin of the space Rri . Furthermore, the function s i is a thread of q i

on the set N i .

The following corollary states that the essential revelation mechanism is

a C 0-essential revelation mechanism. In this case, under the assumptions

made about F , each C 0-encoded revelation mechanism factors through the

C 0-essential revelation mechanism.

corollary 4.3.3. Suppose that E i , 1 ≤ i ≤ N, are C 4-manifolds and that

E i has dimension di . Assume that F : X1 × · · · × E n → R is a real-valued

C 4 function that satisfies the following conditions:

(i) there are integers (r1, . . . , r N), 1 ≤ ri ≤ di , such that at each point

(P 1, . . . , P N) ∈ E 1 × · · · × E N , F is differentiably separable of rank

(r1, . . . , r N);

(ii) for each i, the map qi : E i → (E i/F ) is open and (E i/F ) is

Hausdorff ; and

(iii) for each i, F induces a strong equivalence relation on E i .

Then the triple

((E 1/F ) × · · · × (E N/F ), (q 1, . . . , q N), F ∗),

where

(1) each (E i/F ) is given the quotient topology;

(2) the maps q i : E i → (E i/F ) are quotient maps;
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(3) F ∗ : (E 1/F ) × · · · × (E N/F ) → R is such that

F ∗(q 1(x1), . . . , q N(x N)) = F (x1, . . . , x N)

for each (x1, . . . , x N) ∈ E 1 × · · · × E N , is an encoded C 0-reve-

lation mechanism that realizes F . The space (E i/F ) has dimen-

sion ri .

Furthermore, if a triple

(X1 × · · · × X N , ( p1, . . . , pN), H)

is such that pi : E i → Xi , H : X1 × · · · × X N → R, and the triple is an

encoded revelation mechanism that realizes F , then there are continuous

maps ρi : Xi → (E i/F ) such that Diagram C commutes, with Z = R.

Proof: We have already shown in Theorem 4.3.2 that the triple

((E 1/F ) × · · · × (E N/F ), (q 1, . . . , q N), F ∗),

is an encoded revelation mechanism that realizes F . Suppose that z∗i ∈ Xi .

Denote (p1(w), . . . , pi−1(w), pi+1(w), . . . , pN(w)) by p〈−i〉(w), for each

w ∈ E 〈−i〉. Choose an element x∗i ∈ E i such that pi (x∗i ) = z∗i . Suppose

that x ′i ∈ E i , such that pi (x∗i ) = pi (x ′i ) = z∗i . Then for each

w ∈ E 〈−i〉, F (w〈x∗i @i〉) = H( p〈−i〉(w)〈pi (x∗i )@i〉)
= H( p〈−i〉(w)〈pi (x ′

i )@i〉) = F (w〈x ′i @i〉).

Therefore, q i (x∗i ) = q i (x ′i ). Set ρ∗i i(z∗i ) = q i (x∗i ). Because the map

pi : E i → Xi has a thread in the neighborhood of each point, there is

a neighborhood N of the point z∗i and a thread si : N → E i such that

pi (s i (z∗)) = pi (z∗) for each z∗ ∈ N . Then ρi (z∗) = q i (s i (z∗)). Because

both q i and s i are continuous, it follows that the map ρi is continuous.

4.4 Proofs and Examples

4.4.1 Leontief and Abelson Theorem

The following statement is a classical result sometimes referred to as the

“General Theorem on Functional Dependence” (c.f. Widder , 1963).

Notation: If F is a function of one variable and G is a real-valued function

of a vector x , then (F ◦ G)(x) denotes the composition F (G(x)).
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theorem 4.4.1. Suppose that x = {x1, . . . , xm} and y = {y1, . . . , yn} are

sets of real variables and suppose F (x , y) and G(x) are real-valued

C 1-functions defined on a neighbourhood U of the point ( p, q) =
(p1, . . . , pm, q1, . . . qn) ∈ Rm × Rn that satisfy the following conditions.

(i)

(
∂ F
∂x1

· · · ∂ F
∂xm

∂G
∂x1

· · · ∂G
∂xm

)

is a matrix of rank at most one,

(ii) at p, ∂G
∂x1

	= 0.

Then there is a function C (w, y), where w is a real variable, such that

F (x , y) = C (G(x), y) in some neighborhood of ( p, q).

Proof: Because of assumption (ii) the equation w = G(c(w, x2, . . . , xm),

x2, . . . , xm) = 0 has a unique solution in a neighborhood U ′ of (p, q).

Thus, there is a function c(w, x2, . . . , xm) such that w = G(c(w,

x2, . . . , xm), x2, . . . , xm) and such that c(G(x1, . . . , xm), x2, . . . , xm) = x1.

Set C(w, x2, . . . , xm, y) = F (c(w, x2, . . . , xm), x2, . . . , xm, y). Then

∂C

∂x j

=
(

∂ F

∂x

) (
∂c

∂x j

)
+

(
∂ F

∂x j

)

for j > 1. Because

w = G(c(w, x2, . . . , xm), x2, . . . , xm),

it follows that

0 = ∂G

∂x1

∂c

∂x j

+ ∂G

∂x j

for j > 1. Further, by condition (i), there is an � so that ∂ F
∂x j

= � ∂G
∂x j

for

1 ≤ j ≤ m. Therefore,

∂C

∂x j

= �

[(
∂G

∂x1

∂c

∂x j

)
+ ∂G

∂x j

]
= 0.

Hence the function C is independent of the variables x2, . . . , xm and we can

write C(w, x2, . . . , xm, y) = C (w, y). Then

C (G(x1, . . . , xm), y) = F (c(G(x1, . . . , xm), x2, . . . , xm), x2, . . . , xm, y)

= F (x1, . . . , xm, y).
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4.4.2 Leontief ’s Theorem

Leontief proved the following result (1947).

theorem 4.4.2. Suppose F is a function of variables x1, . . . , xm, y1, . . . , yn.

Set Fi = ∂ F
∂xi

, 1 ≤ i ≤ m. Assume that (p, q) = ( p1, . . . , pm, q1, . . . , qn)

is a set of values for the variables (x1, . . . , xm, y1, . . . , yn). A necessary

and sufficient condition that there exist functions C (w, y1, . . . , yn) and

G(x1, . . . , xm) such that F (x , y) = C (G(x), y) in a neighborhood U of

the point ( p, q) is that

(i) for each 1 ≤ i, j ≤ m and each 1 ≤ k ≤ n,

∂

∂yk

[
Fi

F j

]
= 0 and

(ii) for some j, F j (x1, . . . , xm)( p, q) 	= 0.

Proof: The conditions are clearly necessary. We turn to the proof of the

sufficiency. Form the matrix

M =
(

F1 · · · Fm

F ∗
1 . . . F ∗

m

)
,

where F ∗
j = ∂ F (x ,q)

∂x j
. Condition (i) states that the derivative ∂

∂yk
[ Fi

F j
] = 0.

Thus the ratio Fi/F j is independent of y. Also at ( p, q), F ∗
i /F ∗

j =
Fi (x , q)/F j (x , q). It follows that F ∗

i /F ∗
j = Fi/F j for all (x , y). Therefore,

the matrix M has rank at most one. Further, by assumption, F j (p, q) 	= 0

for some j. The previous theorem shows that we can write F (x , y) =
C (G(x), y).

corollary 4.4.3. A necessary and sufficient condition that there exist func-

tions C(w, y) and G(x) such that F (x , y) = C (G(x), y) in a neighborhood

of (p, q) is that the matrix BH(x , y)(F ) have rank at most one in a neighbor-

hood of (p, q) and [ ∂ F
∂x j

]( p, q) 	= 0, for some j .

Proof: The necessity of the given rank condition has already been demon-

strated. Set F j = ∂ F
∂x j

. Theorem 4.4.2 shows that to prove the sufficiency of

the rank condition on BH(x , y)(F ), we need only prove that ∂
∂yk

[ Fi

F j
] = 0 for

each i, j , and k. But

∂

∂yk

[
Fi

F j

]
=

[
∂ Fi

∂yk

F j − ∂ F j

∂yk

Fi

] /
F 2

j .
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By assumption, there is an � such that

�(F1, . . . , Fm)t =
(

∂2 F

∂x1∂yk

, . . . ,
∂2 F

∂xm∂yk

)t

(Mt denotes the transpose of M). Thus,

�
∂ F

∂xi

= ∂2 F

∂xi∂yk

= ∂ Fi

∂yk

for each i and k. Therefore, ∂
∂yk

[ Fi

F j
] = 0 for all k.

corollary 4.4.4. Suppose F (x , y) is a C 2-function of the ordered sets of

real variables

x = (x1, . . . , xm) and y = (y1, . . . , yn).

A necessary condition that there are functions C (u, v), A(x), and B(y)

such that F (x ; y) = C(A(x), B(y)) is that the matrices

BH(x , y)(F ) and BH(y, x)(F )

each have rank at most one. Further, if for some 1 ≤ j ≤ m and some

1 ≤ k ≤ n, [ ∂ F
∂x j

](p,q) 	= 0, and [ ∂ F
∂yk

]( p,q) 	= 0, then the rank condition is

also sufficient for the existence of C , A, and B such that F = C (A, B).

Proof: Because BH(x , y)(F ) has rank at most one and ∂ F
∂x j

	== 0 for some

j , it follows from Theorem 4.4.2 that F (x , y) = C (A(x), y) for some A

and C . To complete the proof, it will suffice to prove that C (w, y) satisfies

the conditions of Corollary 4.4.4 using y j ’s as the x ′
j s and w as x1. For

convenience of notation, assume that [ ∂ F
∂x1

](p,q) 	= 0. Then

C (w, y) = F (h(w, x2, . . . , xm), x2, . . . , xm, y1, . . . yn).

Therefore,

∂C

∂y j

= ∂ F (h(w, x2, . . . , xm), x2, . . . , xm, y1, . . . , yn)

∂y j

and

∂2C

∂w∂y j

=
[

∂2 F

∂x1∂y j

]
∂h

∂w
.
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By hypothesis there is a  such that ∂2 F
∂x1∂y j

=  ∂ F
∂y j

for each j . Therefore,

∂2C

∂w∂y j

= 
∂ F

∂y j

∂h

∂w
= 

∂C

∂y j

∂h

∂w
.

Therefore, by Theorem 4.4.2, C (w, y) = G(w, B(y)) if for some y j , and

for

w0 = F ( p, q),

[
∂C (w, y)

∂y j

]
(p,q)

	= 0.

However, from the proof of Theorem 4.4.2,

C(w, y) = F (h(w, x2, . . . , xm), x2, . . . , xm, y),

where h(F (x1, . . . , xm, q), x2, . . . , xm) = x1. If w0 = F (p, q), because

C (w, y) is independent of the variables x2, . . . , xm, it follows that

C(w0, y) = F (h(F ( p, q), p2, . . . , pm, y) = F (p, y).

Therefore, ∂C
∂y j

= ∂ F (p, y)
∂y j

	= 0 for some j .

corollary 4.4.5. Suppose that for each 1 ≤ i ≤ r , xi denotes the ordered

set of real variables (xi,1, . . . , xi,di
). Assume

P = ( p
1
, . . . , p

p
) = ( p1,1, . . . , pr,dr

)

is a point. A necessary condition that in some neighborhood of the point P

there are functions G , A j , 1 ≤ j ≤ r, such that

F (x1, . . . , xr ) = G(A1(x1), . . . , Ar (xr ))

is that each matrix BH(x j , x〈− j 〉)(F ) has rank at most one. The condition is

also sufficient if for each j , there exists a k( j ) such that the derivative

∂ F (p
1
, . . . , p

j−1
, x j , p

j+1
, . . . , p

r
)

∂x j,k( j )

	= 0.

Our results on encoded revelation mechanisms require a slightly altered

version of Leontief ’s theorem. This version is closely related to a result

announced by Abelson (1980). We begin with some notation.

Notation: Suppose that X and Y are Euclidean spaces of dimensions m

and n, respectively. Assume that X has coordinates x = (x1, . . . , xm) and

that Y has coordinates y = (y1, . . . , yn). Assume that F1, . . . , FN are real
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valued continuously differentiable functions that are defined on a neigh-

borhood of a point (a , b) ∈ X × Y . We denote by BH(x , y)(F1, . . . , FN) an

(m × Nn) matrix with rows indexed by the variables x1, . . . , xm, columns

indexed by the functions F1, . . . , FN together with columns indexed by the

pairs (F j , y�), 1 ≤ j ≤ m, 1 ≤ � ≤ n. The entry at position (x j , Fk) in the

matrix is the derivative ∂ Fk

∂x j
. The entry at position (x j , (Fk , y�)) is ∂2 Fk

∂x j ∂y�
.

We denote by H̃(x , y)(F1, . . . , FN) the submatrix of BH(x , y)(F1, . . . , FN)

with rows indexed by x j , 1 ≤ j ≤ m and columns indexed by the pairs

(Fk , y�), 1 ≤ k ≤ m, 1 ≤ � ≤ n. Thus, BH(x , y)(F1, . . . , FN) can be con-

sidered to be a matrix consisting of a single row where the jth entry in the

row is the matrix BH(x , y)(F j ) (cf. Mount and Reiter (2002, p. 211)).

lemma 4.4.1. Suppose that X and Y are Euclidean spaces of dimensions m

and n, respectively. Assume that X has coordinates x = (x1, . . . , xm) and

Y has coordinates y = (y1, . . . , yn). Assume that F1, . . . , FN are functions

from X × Y to R that are defined on a neighborhood U × V of a point

(a , b), a ∈ X and b ∈ Y. A necessary condition that there are functions

A1(x1, . . . , xm), . . . , Ar (x1, . . . , xm),

and functions

G i (W1, . . . , Wr , y1, . . . , yn), 1 ≤ i ≤ N,

such that for each (x1, . . . , xm) ∈ U and (y1, . . . , yn) ∈ V

Fi (x1, . . . , xm, y1, . . . , yn) = G i (A1, . . . , Ar , y1, . . . , yn), 1 ≤ i ≤ N,

is that the matrix

BH(x , y)(F1, . . . , FN)

has rank less than or equal to r at each point of U × V.

Proof: Because

Fi (x1, . . . , xm, y1, . . . , yn) = G i (A1, . . . , Ar , y1, . . . , yn),

it follows that

∂ Fi

∂x j

=
∑

r
s=1

∂G i

∂ As

∂ As

∂x j

and

∂2 Fi

∂x j ∂yk

=
∑

r
s=1

∂2G i

∂yk∂ As

∂ As

∂x j

.
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Each of the columns is a linear combination of the r columns(
∂ Ai

∂x1

, . . . ,
∂ Ai

∂xm

)t

, 1 ≤ i ≤ r.

Therefore, the matrix BH(x , y)(F1, . . . , FN) has rank at most r .

The next theorem shows that for a product of Euclidean spaces, if F is a

differentiably separable function of ranks (r1, . . . , rn), then the rank ri gives

the number of variables required from the space Xi in order to compute the

function. We state a more general assertion for sequences of functions that

can be used for vector-valued functions (cf. Mount Reiter (2002)).

theorem 4.4.6. Suppose that X and Y are Euclidean spaces of dimensions

m and n, respectively. Suppose that X has coordinates x = (x1, . . . , xm) and

that Y has coordinates y = (y1, . . . , yn). Assume that p ∈ X, q ∈ Y, that

U is a neighborhood of p, V is a neighborhood of q , and that Fi , 1 ≤ i ≤ n,

is a C k+1-function, k ≥ 2, from U × V to R. Then,

(i) a necessary condition that there is a neighborhood W × V of a point

(p′, q) ∈ Rr × V, C k-functions, k ≥ 2,

G 1(W1, . . . , Wr , y1, . . . , yn), . . . , G N(W1, . . . , Wr , y1, . . . , yn)

defined on W × V , and C k-functions A1(x1, . . . , xm), . . . ,

Ar (x1, . . . , xm) defined on U × V such that for each 1 ≤ i ≤ n,

Fi (x1, . . . , xm, y1, . . . , yn) = G i (A1(x1, . . . , xm), . . . ,

Ar (x1, . . . , xm), y1, . . . , yn),

is that the matrix BH(x , y)(F1, . . . , FN) has rank less than or equal to

r at each point of U × V ;

(ii) if BH(x , y)(F1, . . . FN) has rank at most r in the neighborhood U × V,

and if H̃(x , y(F1, . . . , FN) |[x ,q] has rank r at each point of U , then

there is a point (p′, q) inRr × Y, a neighborhood W × V of (p′, q), a

neighborhood U ′ × V ′ of (p, q), a C k-function G defined on W × V ′,
and C k-functions A1(x1, . . . , xm), . . . , Ar (x1, . . . , xm) defined on a

neighborhood of p, such that on U ′ × V ′

Fi (x1, . . . , xm, y1, . . . , yn)

= G i (A1(x1, . . . , xm), . . . , Ar (x1, . . . , xm), y1, . . . , yn),

1 ≤ i ≤ n, for each (x1, . . . , xm) ∈ U ′ and (y1, . . . , yq ) ∈ V ′.
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The proof of Theorem 4.4.6 shows how to construct the functions Ai

and G j .

4.4.3 An Example of the Coordinate Construction

As an example, we carry out the constructions for the function

F (x1, x2, x3, y1, y2, y3, y4)

= F (x , y)x1(y1 + y3 + y1 y4) + x2(y2 + y3 − y1 y4)

+ x2
2 (y1 + y3 + y1 y4) + x2

3 (y2 + y3 − y1 y4).

We first construct the matrix BH(x , y)(F ) =⎛
⎝ y1 + y3 + y1 y4 1 + y4

(y2 + y3 − y1 y4 + 2x2(y1 + y3 + y1 y4) −y4 + 2x2(1 + y4)

2x3(y2 + y3 − y1 y4) −2x3 y4

0 1 y1

× 1 1 + 2x2 −y1 + 2x2 y1

2x3 2x3 −2x3 y1.

⎞
⎠ .

The matrix BH(x , y)(F ) has rank at most 2, and for the point

(x1, x2, x3, y1, y2, y3, y4) = (0, 0, 0, 1, 1, 1, 1)

= (p, q), BH∗
(x , y)(F ) |[x ,q]

=
⎛
⎝ 3 2 0 1 1

1 + 6x2 −1 + 4x2 1 1 + 2x2 −1 + 2x2

2x3 −2x3 2x3 2x3 −2x3

⎞
⎠ .

It is an easy exercise to check that BH∗(F ) has rank 2 in R3. Furthermore,

the matrix

H∗
(x , y)(F ) |[ p,q]=

⎛
⎝ 2 0 1 1

−1 1 1 −1

0 0 0 0

⎞
⎠

has rank 2. Theorem 4.4.6 states that there are two functions A and B

with variables x1, . . . , x3, and a function C of two variables such that

F = C(A, B). To construct A and B , we first compute the derivatives
∂ F
∂yi

, 1 ≤ i ≤ 4. The derivatives are

∂ F

∂y1

= x1 + x2
2 + x1 y4 − x2 y4 + x2

2 y4 − x2
3 y4,

∂ F

∂y2

= x2 + x2
3 ,

∂ F

∂y3

= x1 + x2 + x2
2 + x2

3 ,
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and

∂ F

∂y4

= x1 y1 − x2 y1 + x2
2 y1 − x2

3 y1.

At the point q these derivatives are

∂ F

∂y1

= 2x1 − x2 + 2x2
2 − x2

3 ,
∂ F

∂y2

= x2 + x2
3 ,

∂ F

∂y3

= x1 + x2 + x2
2 + x2

3 ,

and

∂ F

∂y4

= x1 − x2 + x2
2 − x2

3 .

The 2 × 2 submatrix of H∗ whose entries are in the first two rows and

columns has rank 2. This is equivalent to the observation that the func-

tions ∂ F
∂y1

= 2x1 − x2 + 2x2
2 − x2

3 , and ∂ F
∂y2

= x2 + x2
3 , are independent at

the point p. It is the conclusion of the theorem that the functions ∂ F
∂y1

=
2x1 − x2 + 2x2

2 − x2
3 , and ∂ F

∂y2
= x2 + x2

3 , can be used as the functions A

and B. To check this, set w1 = 2x1 − x2 + 2x2
2 − x2

3 and w2 = x2 + x2
3 .

We can solve these equations for x1 and x2, using the implicit func-

tion theorem (Golubitsky and Guillemin 1973, p. 7), because we have

already observed that the necessary rank condition is satisfied using the

first two rows and first two columns of H∗
x , y(F ) |[p,q] . In this case, of

course, the solutions are easily written down. That is, x2 = w2 − x2
3 , and

x1 = (1/2)(w1 + w2 − 2w2
2 + 4w2x2

3 − 2x4
3 ). The final computation in the

proof of Theorem 4.4.6 shows that if we substitute these functions in the

original function F , we derive a function G(w1, w2, y1, . . . , y4) that is inde-

pendent of the variable x3. Indeed,

G(w1, w2, y1, y2, y3, y4) = (w1 y1)/2 + (w2 y1)/2 + w2 y2 + (w1 y3)/2

+ (3w2 y3)/2 + (w1 y1 y4)/2 − (w2 y1 y4)/2.

If we set

A1 = 2x1 − x2 + 2x2
2 − x2

3 ,

and

A2 = x2 + x2
3 ,

then

G(A1, A2, y1, y2, y3, y4) = F (x1, x2, x3, y1, y2, y3, y4).



P1: JZZ

CUNY425-04 CUNY425/Hurwicz 0 521 83641 7 February 28, 2006 19:19

4.4 Proofs and Examples 331

4.4.4 Proof of Theorem 4.4.6

We now turn to the formal proof of Theorem 4.4.6.

Proof: Condition (i) has already been established in Lemma 4.4.1. We turn

to the proof of (ii). Because the matrix

H̃(x , y)(F1, . . . , FN)|[x ,q]

has rank r in the set U, there is a neighborhood U ′′ of p and an (r × r )−
submatrix of

H̃(x , y)(F1, . . . , FN)|[x ,q]

that has nonzero determinant everywhere in U ′′. We can assume, without

loss of generality, that the rows of the submatrix are indexed by x1, . . . , xr

and that the columns are indexed by (Fα(1), yβ(1)), . . . , (Fα(r ), yβ(r )). The

functions of x ,

A1(x) = ∂ Fα(1)

∂yβ(1)

(x , q), . . . , Ar (x) = ∂ Fα(r )

∂yβ(r )

(x , q),

are C k-functions of (x1, . . . , xm) in a neighborhood of p. Set

z1 = A1(x1, . . . , xm), . . . , zr = Ar (x1, . . . , xm).

Because

∂ Ai

∂x j

( p) = ∂2 Fα(i)

∂x j ∂yβ( j )

( p, q),

the matrix with (i, j ) entry ∂ Ai

∂x j
( p, q) has rank r . Therefore, the implicit

function theorem (Golubitsky and Guillemin, 1973) shows that there is a

neighborhood U ∗ of p, and C k-functions

h1(z1, . . . , zr , xr+1, . . . , xm), . . . , hr (z1, . . . , zr , xr+1, . . . , xm)

that are defined on U ∗ such that

zi = Ai (h1, . . . , hr , xr+1, . . . , xm), (4.4.1)

1 ≤ i ≤ r, in the set U ∗. Then,

hi (A1(x1, . . . , xm), . . . , Ar (x1, . . . , xm), xr+1, . . . , xm) = xi ,

1 ≤ i ≤ r, for (x1, . . . , xp) ∈ U ∗. Set

G i (w1, . . . , wr , xr+1, . . . , xm, y1, . . . , yn)

= Fi (h1(w1, . . . , wr , xr+1, . . . , xm), . . . , hr

×(w1, . . . , wr , xr+1, . . . , xm), y1, . . . , yq ),
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1 ≤ i ≤ N. Because

G i (A1, . . . , Ar , xr+1, . . . , xm, y1, . . . , yn)

= Fi (h1(A1, . . . , Ar , xr+1, . . . , xm), . . . , hr (A1, . . . , Ar , xr+1, . . . , xm),

(xr+1, . . . , xm, y1, . . . , yn) = Fi (x1, . . . , xm, y1, . . . , yn),

in order to complete the proof of the assertion it will suffice to show that

the function G i is independent of the variables xr+1, . . . , xm. Hypothesis

(ii) asserts that the column vector(
∂ Fi

∂x1

, . . . ,
∂ Fi

∂xm

)t

is a linear combination of the columns of the matrix

H̃(x , y)(F1, . . . , FN)[x , q]

in the neighborhood U ∗ × V, because BH has rank at most r in U × V,

and H̃ has rank r in U ∗. Therefore, the column ( ∂ Fi

∂x1
, . . . , ∂ Fi

∂xm
)t is a linear

combination of columns indexed by (Fα(1), yβ(1)), . . . , (Fα(r ), yβ(r )) in the

neighborhood U ∗ × V. It follows, that for each 1 ≤ i ≤ N, and 1 ≤ t ≤ m,

∂ Fi

∂xt

=
r∑

s=1

Ci,s

∂ As

∂xt

,

where the Ci,s are functions on U ∗ × V. Furthermore, if one differentiates

Equation 4.4.1 by x j , for r + 1 ≤ j ≤ m, it follows that

0 =
r∑

t=1

∂ Ai

∂xt

∂ht

∂x j

+ ∂ Ai

∂x j

.

Therefore, if r + 1 ≤ j ≤ m,

∂G i

∂x j

=
r∑

t=1

∂ Fi

∂xt

∂ht

∂x j

+ ∂ Fi

∂x j

=
r∑

t=1

[
r∑

s=1

Ci,s

∂ As

∂xt

]
∂ht

∂x j

+ 	r
s=1Ci,s

∂ As

∂x j

=
r∑

s=1

[
r∑

t=1

∂ As

∂xt

∂ht

∂x j

+ ∂ As

∂x j

]
Ci,s = 0.
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corollary 4.4.7. (Hurwicz) Write x = (x1, . . . , xm), y = (y1, . . . , yn) and

let k ≥ 2. Assume that each function Fi : X × Y → R, i = 1, . . . , N is a

C k+1-function in a neighborhood U × V of the point ( p, q). Suppose that

there is a positive integer r ∈ {1, . . . , m} such that:

(i) rank(BH(x , y)) = r at each point of U × V ⊆ X × Y ,6 and

(ii) rank(H̃(x , y)|(x ,q)) = r at each point of U ⊆ X.

Then there do not exist the following: an integer r ′ < r and C k-functions

F i : Rr ′ × V → R, i = 1, . . . , N in a neighborhood W × V of (p, q) and

C k-functions φ j : U → R, j = 1, . . . r ′ such that for all i = 1, . . . N,

Fi (x , y) = �i (φ1(x), . . . , φr ′(x), y) (4.4.2)

for all (x , y) ∈ U × V.

Proof: Suppose, to the contrary, that such an r ′ < r, �i , i ∈ {1, . . . , N}
and φ j , j ∈ {1, . . . , r ′} do exist and satisfy equation 4.4.2.

Then by Theorem 4.4.6 (i), or Lemma 4.4.1, the matrix BH(x , y) is neces-

sarily of rank at most r ′ < r at each point of U × V. But, H̃(x , y)|(x ,q) is a

submatrix of BH(x , y) and has rank r on points in U × q ⊆ U × V. Hence,

rank (BH(x , y)) = r at those points of its domain, thus contradicting the

requirement that rank(BH(x , y)) ≤ r ′ < r on all of U × V.

remark 4.4.1. Assumption (i), rank(BH(x , y)) = r , was not used in the proof

of the corollary. Also, W is a neighborhood of p′ ∈ Rr ′
, not of p.

remark 4.4.2. Under assumptions (i) and (ii) stated in the corollary, The-

orem 4.4.6 (ii) states that for k ≥ 2 there exist C k-functions, G 1 : Rr ×
V → R, . . . , , G N : Rr × V → R and for k ≥ 2, C k-functions A1 : U →
R, . . . , Ar : U → R such that for all i ∈ 1, . . . , N

Fi (x , y) = G i (A1(x), . . . , Ar (x), y), (4.4.3)

for all (x , y) ∈ U ′ × V ′, a neighbourhood of ( p, q). More specifically, as

seen in the proof of Theorem 4.4.6, Equation 4.4.2 is satisfied, then

A j (x) = ∂ Fα( j )

∂yβ( j )

(x , q), j = 1, . . . , r, (4.4.4)

6 This assumption is only for later reference. It is not used in the proof of the corollary.
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and the functions G i are defined by

G i (w1, . . . , wr , xr+1, . . . , xm, y)

= Fi (h1(w, xr+1, . . . , xm), . . . ,

hr (w, xr+1, . . . , xm), xr+1, . . . , xm, y), (4.4.5)

after some reordering of the variables. Hence, under assumptions (i) and

(ii) stated in the corollary, a condensation of degree r is possible, as stated

in Equations (4.4.3), (4.4.4), and (4.4.5) by Theorem 4.4.6 (ii) and this r is

the minimal feasible degree of condensation, as shown in the corollary.
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