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Preface

What the role of mathematics in physical sciences is, is a relevant 

philosophical and historical question whose answer is necessary to fully 

understand the real status of physics, in particular of contemporary physics.

Exactly the wish to have good and plausible answers has spurred 

physicists, mathematicians, historians of science, and philosophers of science 

from many countries to join together and friendly but rigorously discuss. 

From that meeting, which was held in the wonderful Isle of Losinj (Croatia) 

in 2003, this book had its origin.

Actually, it does not simply contain the text of the lectures given. It is 

something different and something more. Some chapters are new and 

improved versions of what was presented. Some others have been added to 

enrich the variety of possible suggestions. 

This book has been published in occasion of the 40th anniversary 

celebrations of the Consorzio per la Fisica of Trieste.

The editors 
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SCIENCES – INTERDISCIPLINARY AND 

PHILOSOPHICAL ASPECTS 
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3
University of Rijeka, Rijeka, Croatia

As only a cursory examination of the subject can illustrate, mathematics 

and physics have been related for centuries and now it seems quite 

impossible to think the latter without the former. In other words, to speak 

about the indispensability of mathematics for physics appears to be a real 

platitude. However it is not at all that simple and unproblematic. In fact a lot 

of problems arise from this relation: is mathematics really indispensable for 

physics, or could we have physics without mathematics? Did physics without 

mathematics exist? Could physics without mathematics exist now? Which 

are the relations between physics and mathematics? Is mathematics just a 

tool, or something more? Is it the language in which is written the nature or 

is it the language by means of which we try to know nature? Has it only a 

role in the logical structuration of a physical theory or does it furnish also a 

good path to discover new physical entities? Should we think physically and 

then should we add the mathematics apt to formalise our physical intuition, 

or should we think mathematically and then should we interpret physically 

what found? Can physics generate new mathematics? Can mathematics 

generate new physics? How can we explain the success of mathematics in 

the physical sciences? Should it really be explained, or is such a question a 

pseudo-question? Are there any limits to the mathematical applications? 

Does a pure mathematical method to construct new physical theories exist? 

Do we get mathematical objects by abstraction from real objects, or are they 

a direct product of our intuition? 

5
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6 GIOVANNI BONIOLO, PAOLO BUDINICH, MAJDA TROBOK

All these questions and problems have been discussed in this book from 

different perspectives and by authors with different philosophical 

backgrounds.

We have thought of dividing the book into three parts. The first one 

contains four contributions on the historical role of mathematics in physics.

Giorello and Sinigaglia question the idea that mathematical objects are 

not obtained by abstraction from real ones, but rather that they are generated 

by mathematical practice. The authors analyse this thesis in the light of two 

historical cases: the evolution of complex numbers and the development of 

Heaviside’s Operational Calculus and give arguments for supporting 

Lakatos’s idea of quasi-empiricism in mathematics.

Gómez Pin discusses the problem of the ontological priority between 

continuous and discrete quantity and analyses the relationship between 

discrete and continuous quantity as one of the main topics in both history of 

philosophy and science. He explains that, while the unit of discrete quantity 

is a genuine (atomic) unit but ontologically is a vacuum, the unit of a 

continuous quantity has great ontological weight but it is in fact a false (non 

atomic) unit. The history the author concentrates on is the debate Aristotle-

Thom/Dedekind-Cantor.

Rédei presents J. von Neumann’s view on mathematical and axiomatic 

physics. The author argues that the common evaluation of von Neumann’s 

view on the mathematical rigour in physics, according to which he 

considered the axioms of set theory as a purely formal system, is misleading. 

Namely, as the author points out, von Neumann thought that conceptual 

clarity and an intuitively satisfactory interpretation was more important for a 

physical theory than its mathematical rigour and precision. 

Finally, Singh looks at the Indian tradition of mathematics with respect to 

theories of mind and matter. In particular, the author explores the reason for 

the absence of mathematical physics in Indian mathematical traditions, while 

at the same time the mathematical thought was employed by several Indian 

philosophical schools in order to understand the functioning of human’s 

mind. The author enquires the reasons for this analysing the connection 

between mathematics and the idea of causation in Indian tradition. The 

relation between causation and mathematics is clarified through the causal 

analysis of numeric cognition. 

The second group of papers deals with philosophical analyses on the 

interaction between mathematics and physics.

Boniolo and Budinich join the contemporary discussion about the 

relation between mathematics and physics, via a semiotic approach, which is 

useful for the many aspects it allows us to tackle. In particular, they argue 

that the problem of the effectiveness of mathematics in physics is actually a 

false problem, caused by a misunderstanding of contemporary theoretical 
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physics, which is intrinsically mathematical. Finally, they emphasize what 

they call Dirac’s methodological revolution according to which the 

contemporary physical theory should be constructed by working with pure 

mathematics instead of reflecting conjecturally only on physical phenomena, 

thus allowing the discovery of new phenomena, as it happened with the 

discovery of antimatter, gravitational lenses and so on. 

Crivellari looks at the algorithmic representation of astrophysical 

structures and presents an iterative structural algorithm that is the numerical 

stimulation of the physical processes that occur in a stellar atmosphere. 

Through its analysis the author tries to show that, when the right 

mathematics is to be determined, it is the physics of the problem to have a 

bearing on what the most efficient solution is. 

Dieks discusses the, so called, unreasonable effectiveness of mathematics 

and argues that, quite the contrary, its effectiveness is actually to be expected 

and its being unreasonable is unfairly attributed to it. Dieks shows that 

mathematics is flexible and versatile and that it is the very difference in 

nature between mathematics and physics that makes it applicable in the most 

disparate scientific domains and hence vastly effective. The author illustrates 

his view by offering many examples from fundamental physics.

Dorato questions the mathematical aspects of physics, by analysing the 

possible connection between the problem of effectiveness of mathematics in 

the natural sciences and the philosophical questions concerning the nature of 

natural laws. The author argues that the problem of the effectiveness is, 

contrary to what some authors endorse, a genuine one and criticises the 

algorithmic conception of law. The aim is to review and evaluate the 

available literature on that matter and suggest new possible directions of 

inquiry regarding the problem. 

Ghirardi analyses some mathematical aspects of modern science and 

argues that new and inexplicable phenomena can suggest new and innovative 

theoretical and mathematical perspectives; those perspectives and their 

formal aspects might in turn yield new and innovative views about nature, 

and therefore all such formal aspects should be fully developed whenever 

they qualify themselves as successful tools, to account for some basic 

features of a revolutionary phenomenological framework. 

Rivadulla presents some theoretical explanations in mathematical 

physics in the context of the analysis of the problem of the usefulness of 

mathematics in physics. The authors criticises the view according to which 

mathematics tallies with nature since it is a structural science as nature is, 

and because of some evolutionary reasons that make us adapted to the 

structured world; Rivadulla gives reasons for sustaining that such a view is 

incomplete because it does not take into account the overdetermination of 

physics.
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Šiki  is interested in the relationship among mathematics, physics and 

music. He investigates the Pythagorean law of small numbers and its 

relevance in order to interpret our sensory discriminations of consonance vs.

dissonance. The author argues that the view, which is allegedly confirmed by 

the fact of non-western musical traditions, according to which we should 

take the discriminations to be acquired and subjective, is a wrong one. 

Finally, Stöltzner looks at theoretical mathematics and points to the 

philosophical significance of the Jaffe-Quinn debate, which is viewed as a 

paradigm for problems of rigour and mathematical ontology. After going 

over the essential of the debate, the author concentrates on the quasi-

empirical character of mathematics and the dialectics of proofs and 

refutations, trying to make sense of “theoretical mathematics” within the 

Lakatosian approach.

 The third part of the book contains two interesting considerations on 

the relation between mathematics and physics that spur us to think about it in 

a wider way.

In particular Arnold joins the discussion about the relationship between 

mathematics and physics. He presents, through examples, the problem of the 

mathematical rigour of the bases of physics and explains what the utility of a 

precise mathematical perspective of the real world is. The author also offers 

some arguments for the existing difference in the approach to the truth as 

understood by mathematicians and physicists. 

In the last paper, Zovko questions the notions of value and meaning in 

quantum universe. The author suggests that the mental universe is subject to 

the same mechanism as the physical universe and that human thoughts are 

just actual quantum events over the entire brain or over a large part of it. He 

points out that both the mental and material universe can be unified as a 

physical reality on a deeper level, beyond our direct experience; such a  

realm could also accommodate ethical concepts of choice, meaning and 

value.



PART 1 

MATHEMATICS AND PHYSICS: REFLECTING 

ON THE HISTORICAL ROLE OF 

MATHEMATICS



OLIVER HEAVISIDE’S “DINNER” 

Algebraic Imagination and Geometrical Rigour

GIULIO GIORELLO
1
 and CORRADO SINIGAGLIA

2

1
University of Milan, Milan, Italy; 

2
University of Milan, Milan, Italy 

Abstract: In the following pages we begin, in the first chapter, with a reappraisal of some 

ideas of Edouard Le Roy about mathematical experience, mainly in relation 

with the history of complex numbers. In the second chapter we discuss in some 

detail the i-story, and we draw a comparison between “Imaginary Quantity” 

and Operational Calculus from the perspective of Heaviside’s conceptions of 

the growth of mathematics. In the third chapter we reconstruct the -story, i.e. 

the Heaviside calculus leading to the constitution of a new mathematical 

object, the so-called Dirac’s -function. Finally, in the last chapter, we bring 

together methodological and historical considerations in order to support 

Lakatos’ idea of quasi-empiricism in mathematics. 

Key words: complex numbers; operational calculus; -function; abstraction; quasi-

empiricism in mathematics; mixed mathematics; applications to physics.

1. “MATHEMATICAL FACTS” AS CONSTRAINTS 

Le progrès [de la Mathématique] consiste moins en une application de 

formes intelligibles données d’avance rigides et toutes faites qu’en une 

création incessante de formes intelligibles nouvelles, en un élargissement 

graduel des conditions de l’intelligibilité. Elle suppose une transformation 

de l’esprit lui-même. (Le Roy, 1960, p. 304).

 We wish to thank G. Bertolotti, G. Boniolo, P. Budinich, V. Fano, N. Guicciardini, and B. 

Sassoli for suggestions and comments. 
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12 GIULIO GIORELLO and CORRADO SINIGAGLIA

The quotation is from Le Roy’s lectures at the Collège de France (Paris) 

in the years 1914-1915 and 1918-1919.  More or less in the same years, Le 

Roy’s key idea is echoed in Pierre Boutroux’s search for the objective 

character of mathematical knowledge, based on 

1. the so called “résistance” (resistance) of the mathematical matters to our 

will (we have really some “mathematical facts”)   and 

2. the “contingence” (contingency) of mathematical findings or discoveries 

(see e.g. (Boutroux, 1920)). 

Le Roy’s version, as we shall see, helps to clarify crucial epistemological 

notions concerning “discovery/invention” in mathematics, mainly in 

connection with Lakatos’ quasi-empiricism (Lakatos, 1976a); see also 

(Crowe, 1975; Gillies, 2000; Cellucci, 2000).  Moreover, even if the title of 

Le Roy’s lectures sounds Pure Mathematical Thought, some of his remarks 

contribute powerful insights into the standard dichotomy pure/applied 

mathematics, and throw important light on the controversial matter of the 

status of “mathematical objects”. Indeed, in Le Roy’s own words (Le Roy, 

1960): “Même en Analyse pure, l’expérience joue un rôle, et un rôle capital. 

L’invention y est souvent découverte” (p. 298); see also (Hadamard, 1949).

According to Le Roy (see Boutroux point (1)), the working 

mathematician receives some inputs from the constellation of established 

ideas; however this constellation is not sufficient for generating outputs. The 

case of complex numbers will be exemplar. Le Roy observes (Le Roy, 

1960):

Les [quantités] imaginaires ne se déduisent pas de la science antérieure. 

Mais elles sont réclamées par celle-ci comme une condition de sa vie et 

de son progrès (p. 298).

He goes on: 

[Les quantités imaginaires] marquent pour l’analyste je ne sais quelle 

obligation de synthèse créatrice. Et leur apparition au bout d’une foule de 

voies dialectiques diverses, comme point de concours ou centre de 

convergence, comme élément simple ou invariant méthodique, leur 

confère une réelle objectivité, c’est-à-dire une existence indépendante de 

nos procédés d’étude. Mais une véritable expérience en a été nécessaire 

pour en arriver là. […] On […] saisira mieux encore [ça] en songeant aux 

deux problèmes que soulève encore de nos jours – au moins en quelque 

mesure – la conception des imaginaires. Comment, inventées qu’elles 

furent pour la résolution de l’équation du second ou du troisième degré, 

sont-elles non seulement nécessaires, mais encore suffisantes, pour la 

démonstration générale du théorème de D’Alembert qui domine toute 

l’algèbre? Comment ne faut-il pas des imaginaires nouvelles pour chaque 
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degré nouveau d’équation? Pourquoi d’autre part, couples numériques 

représentables par des vecteurs dans un plan, ne se prêtent-elles à aucune 

extension, complexes à n éléments, vecteurs de l’espace à trois 

dimensions ou même de l’hyperespace, qui respecte la permanence des 

formes opératoires? (p. 298).

In these two passages, Le Roy emphasizes the need (this is the meaning 

of the French “réclamées”) of resorting to a sort of experience in connection 

with the genesis of objectivity: in his own example, such is the research on 

factorisation of extensions of Q or R via some particular complex numbers 

(e.g. see (Ellison, 1978), as well the research on extensions of C violating 

some relevant formal properties (as in the case of William Rowan 

Hamilton’s quaternions; see (Kline, 1972; van der Waerden, 1985).

So far, so good. However, it is not so easy to find any “counterpart in 

nature” for complex numbers (Giusti, 1999). This is not tantamount to 

claiming that complex numbers have no applications to the physical world. 

Of course, they do; indeed, applications in Electromagnetism and in 

Quantum Mechanics are well known. The point is rather this: the genesis of 

complex numbers theory, and in the building of the complex functions 

theory, “abstraction from physical objects” does not seem to be working 

(Giusti, 1999).

Yet, even here, we are dealing with what Le Roy calls “experience” (Le 

Roy, 1960): 

les imaginaires ne sont pas [...] le résultat d’une création factice. Elles ont 

été suggérées, amenées, appelées par toutes sortes d’exigences  

préalables. De bien des manières, avant même qu’on en eût élucidé la 

théorie, elles voulaient être, elles s’imposaient. Puis elles se sont 

montrées infiniment fécondes et, de plus en plus à mesure qu’on les 

expérimentait davantage, elles ont heureusement réagi sur le système 

entier de la mathématique. Aurait-on pu prévoir a priori qu’elles 

permettraient de résoudre les équations de tous les degrés, qu’elles 

engendreraient la théorie générale des fonctions par où l’Analyse a été 

plus que doublée ? Qui aurait pu deviner avant toute expérience le line 

merveilleux qui devait s’établir entre les nombres e et  et l’unité 

imaginaire i ? Remarque sur l’imprévisibilité du fait que les imaginaires 

seraient suffisants pour les équations de tous les degrés, alors qu’on avait 

démontré l’impossibilité d’une résolution algébrique. De même, qui 

aurait pu deviner avant toute expérience tant de liens merveilleux entre 

des éléments réels, établis par l’intermédiaire des nombres complexes? 

Remarque sur l’étonnement qu’on éprouve à trouver la dépendance 

foncière de certaines intégrations par rapport aux fonctions de variable 

imaginaire, jusqu’en physique mathématique. Cauchy a eu profondément 
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ce sens du réel dont je parlais tout à l’heure, et le travail par lequel s’est 

constituée peu à peu la doctrine des imaginaires nous présente vraiment 

l’aspect d’une élaboration expérimentale. (pp. 301-302)

Let us take an example. Remember that in the ring of the whole numbers 

Z we have the fundamental theorem of arithmetic (a generalization of 

Euclid’s Elements, IX, 14: “If a number be the least that is measured by 

prime numbers, it will not be measured by any other prime number except 

those originating measuring it” (Euclid, 1956); see also (Heath, 1981)) 

stating that (except for + 1 and – 1) a number can only be resolved into prime 

factors in one way. After Pierre de Fermat and mainly thanks to Leonhard 

Euler, it was an interesting new mathematical practice to study “numbers” of 

the form a D , with a, b Z, where D is a given integer (positive or 

negative) which is not a perfect square. The idea was to build a kind of 

arithmetic of numeri surdi; indeed, for D < 0, “numbers” a + b D  are 

complex numbers, as it happens in Euler’s procedure for Fermat’s equation 

x
3
 + y

3
 = z

3
, where D = – 3. Moreover, rings Z[ D ] proved to be very useful 

tools in dealing with many mathematical problems in 19
th
 Century; the same 

is true for rings Z[ ], where  is a complex nth-root of the unity (i.e. 
n
 = 1). 

Yet, the initial approach to problems like higher forms of Fermat’s Last 

Theorem was guided by the idea that, for Z D  or Z[ ],we have “natural” 

analogues of Euclid fundamental theorem of arithmetic. Now, this is 

obviously true for Z[ 3 ], but it is false in general. For instance, assume D

= – 5, and try with “numbers” a + b 5 , with a, b Z. Check that 6 = 2 

3 = (1 + 5 ) (1 5 ). It proves that in Z 5  it is impossible to get a 

unique prime factors decomposition. Likewise, it is possible to find 

counterexamples to the unique decomposition also in Z[ ]. (For the question 

see (Ellison, 1978, pp. 172-193); see also (Ribenboim, 1979; Giorello and 

Sinigaglia, 2001)

The proof that for some rings unique decomposition does not hold 

amounts to a refutation of this initial conjecture, which seemed so useful 

within Euler’s approach. It is precisely a conjecture like this that for Le Roy 

(Le Roy, 1960) constitutes a kind of guiding ideas, a sort of preconceived 

hypotheses, something similar in the realm of mathematics to the empirical 

hypotheses “qui, selon Claude Bernard, constituent le premier moment d’une 

expérience” (p. 299). As it is the case of Z 5 , we ignore a priori wheter 
or not this conjecture might be incorporated into the body of formal 
mathematics. The only way to settle the question is (Le Roy, 1960): 

mettre en pratique, en service, mettre à l’essai, faire fonctionner le 

concept et voir comment il se comporte dans le calcul, bref éprouver 

l’idée par ses fruits (p. 299).
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And Le Roy rhetorically asks (Le Roy, 1960):

Nous ne savons aucunement d’avance quelle sera la réponse, ni quel 

remaniement l’épreuve nous forcera de faire subir au système antérieur at 

au concept nouveau, quel aspect final ils prendront l’un et l’autre (p. 

299).

(Note that in this case one interesting “remaniement” led to Kummer’s 

theory of ideal numbers; on this point see (Ellison, 1978, pp. 195-200.))

Considerations like these support Mach’s well-known idea of a structural 

analogy between experiments in physics and demonstrations in mathematics 

(e.g. see (Mach, 1976). Indeed, this seems to explain why in general complex 

numbers offer a typical example of circumstances where “the body of 

mathematical tools anticipated the physicist’s needs” (Thom, 1982). 

2. THE I-STORY 

Keeping this in mind, let us come back to the crucial object studied by 

mathematicians who were building an arithmetic for various Z[D] or directly 

for C: the quantity i, where i
2
= – 1. To begin with, consider the following 

quotation from Heaviside’s Theory of Electromagnetism (ETM) (Heaviside, 

1899):

It is not so long ago since mathematicians of the highest repute could not 

see the validity of investigations based upon the use of the algebraic 

imaginary. The results reached were, according to them, to be regarded as 

suggestive merely, and required proof by methods not involving the 

imaginary. (p. 459)

Heaviside remarks that in a research of this kind, strict Euclideanism 

represents an obstacle.
1
 To those critics who note that “the rigorous logic of 

1
 “The reader who may think that mathematics is all found out, and can be put in a cut-and-

dried from like Euclid, in proposition and corollaries, is very much mistaken; and if he 

expects a similar systematic exposition here he will be disappointed. The virtues of the 

academical system of rigorous mathematical training are well known. But it has its faults. 

As very serious one (perhaps a necessary one) is that it checks instead of stimulating any 

originality student may possess, by keeping him in regular grooves. Outsiders may find 

that there are other grooves just as good, and perhaps a great deal better, for their  

purposes. Now, as my grooves are not the conventional ones, there is no need for any 

formal treatment. Such would be quite improper for our purpose, and would not be 

favourable to rapid acquisition and comprehension. For it is in mathematics just as in the 

real world; you must observe and experiment to find out the go of it. All experimentation  

is deductive work in a sense, only it is done by trial and error, followed by new deductions 
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the matter is not plain”, Heaviside replies (Heaviside, 1899): “Well, what of 

that? Shall I refuse my dinner because I do not fully understand of the 

process of digestion?” (p. 9). 

Quite correctly, Heaviside (1899) insists on the need for algebra to reach 

“a certain stage of development” before the imaginary “turns up”:

It was exceptional, however, and unintelligible, and therefore to be 

evaded, if possible. But it would not submit to be ignored. It demanded 

consideration, and has since received it. The algebra of real quantity is 

now a specialisation of the algebra of the complex quantity, say a + bi,

and great extensions of mathematical knowledge have arisen out of the 

investigation of this once impossible and non-existent quantity. It may be 

questioned whether it is entitled to be called a quantity, but there is no 

question as to its usefulness, and the algebra of real quantity would be 

imperfect without it. (pp. 457-458) 

As has recently been suggested (Stillwell, 1989), the quantity i seemed 

unintelligible because “a square of negative area did not exist in geometry” 

(p. 189). Appeal to history is here fundamental. The same historian pinpoints 

(Stillwell, 1989): 

The usual way to introduce complex numbers in a mathematical course is 

to point out that they are needed to solve certain quadratic equations, such 

as equation x
2
 + 1 = 0. However, this did not happen when quadratic 

equations first appeared, since at that time there was no need for all 

quadratic equations to have solutions. Many quadratic equations are 

implicit in Greek geometry, as one would expect when circles, parabolas, 

and the like, are being investigated, but one does not demand that every 

geometric problem have a solution. If one ask whether a particular circle 

and line intersect, say, then the answer can be yes or no. If yes, the 

quadratic equation for the intersection has a solution; if no, it has no 

solution. An “imaginary solution” is uncalled in this context. (p. 189) 

Indeed, the origin of i as a “solution” of the equation x
2
 + 1 = 0 is a myth 

(Giusti, 1999). The context for the imaginary quantity was the solution of the 

                                                                      

and changes of direction to suit circumstances. Only afterwards, when the go of it is 

known, is any formal exposition possible. Nothing could be more fatal to progress than to 

make fixed rules and conventions at the beginning, and then go by mere deduction. You 

would be fettered by your own conventions, and be in the same fix as the House of 

Commons with respect to the despatch of business, stopped by its own rules” (Heaviside, 

1899, pp. 32-33).  On the limits of the Euclidean approach see also (Lakatos, 1976a, pp. 

205-207).
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cubic equation in the heroic age of the Italian algebra. In fact, the del Ferro-

Tartaglia-Cardano solution of the cubic equation y
3
 = py  q is

3

32

3

32

322322

pqqpqq
y … .

The formula involves complex numbers when 

32

32

pq
 0. 

However, it is not possible to dismiss this as a case with no solution, 

because a cubic always has at least one real root (since y
3
 – py – q is 

positive for sufficiently large positive y and negative for sufficiently large 

negative y).

Thus the Cardano formula raises the problem of reconciling a real value, 

found by inspection, say, with an expression of the form (Stillwell, 1989, p. 

189):

33
11 baba .

The first work to take complex numbers seriously was not Cardano’s Ars

Magna (1545) (in spite of  the phrase “Cardano’s formula”), but Rafael 

Bombelli’s Algebra (1572). We will not attempt a detailed historical 

discussion of the solutions to this particular paradox of the cubic equation. 

For us, obviously, the solution is connected with the nature of i and the 

geometrical explanation of the meaning of this symbol in the Wessel-

Argand-Gauss geometrical interpretation (Kline; 1972; van der Waerden, 

1985, 178). But this interpretation came centuries after Cardano’s formula 

and the algebraic approach sketched in Bombelli’s work! Moreover, the 

turning point occurred when Descartes, in his Geometry, merged the problem 

of the nature of square root of –1 with the more general problem of 

“demonstrating” the so-called fundamental theorem of algebra. As he wrote, 

every algebraic equation has many solutions as his degree, but these 

solutions “ne sont pas toujours reelles, mais quelquefois seulement 

imaginaires” (Descartes, 1637). Aptly, Giusti comments that (Giusti, 1999) 

“Descartes does not explain what these imaginary roots are, and we have to 

intend literaliter this adjective imaginary” (p. 90); see also (van der Waerden 

1985, pp. 72-75).
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Be that as it may, the general development of algebra needed the 

consideration of numbers like a b 1 , as Heaviside pointed out. Today, 

we can say that (Stillwell, 1989) 

at the beginning of their history, complex numbers a + b 1 were

considered to be “impossible numbers”, tolerated only in a limited 

algebraic domain because they seemed useful in the solutions of cubic 

equations. But their significance turned out to be geometric and 

ultimately led to the unification of algebraic functions with conformal 

mapping, potential theory, and another “impossible” field, non Euclidean 

geometry. This resolution of the paradox of 1 was so powerful, 

unexpected, and beautiful that only the word “miracle” seems adequate to 

describe it. (p. 188) 

This “miracle” is more astounding than the description of the i-story

offered by Heaviside would suggest. However, Heaviside’s account discloses 

an interesting pattern in the growth of mathematics: namely, the transition 

from intuition to geometrical rigour via a process guided by the reliance on 

the power of algebra, tested by some kind of “mathematical experiments”. 

Even more significantly, he draws a comparison between Imaginary Quantity 

and his Operational Calculus, in particular with the so-called fractional 

differentiation (Heaviside, 1899): 

Now just as the imaginary first presented itself in algebra as unintelligible 

anomaly, so does fractional differentiation turn up in physical 

mathematics. It seems meaningless, and that suggests its avoidance in 

favour of more roundabout but understandable methods. But it refuses to 

be ignored. Starting from the ideas associated with complete 

differentiations, we come in practice quite naturally to fractional ones and 

combinations. This occurs when we known unique solutions to exist, and 

asserts the necessity of a proper development of the subject. Besides, as 

the imaginary was the source of a large branch of mathematics, so I think 

must be with generalised analysis and series. Ordinary analysis is a 

specialised form of it. There is a universe of mathematics lying in 

between the complete differentiations and integrations. The bulk of it 

may not be useful, when found, to a physical mathematician. The same 

can be said of the imaginary lore. (pp. 459-460) 

We claim that an analogous pattern can be found in the Operational 

Calculus or in what we call the -story.
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3. THE DRIVING FORCE OF “ALGEBRAICAL” 

IMAGINATION. THE -STORY 

It is well known that Heaviside’s main contribution to science was his 

development and reformulation of Maxwell’s Electrodynamics.
2
 It was in 

this context that his mathematical ideas concerning Vector Analysis and 

Operational Calculus arose. In both fields, Heaviside was a great dissenter

with respect to the scientific community of his time. In what follows, we 

shall focus just on the Operational Calculus. In his classic article on 

Heaviside, sir Edmund Witthaker writes (Whittaker, 1928/1929): 

We should now (1928) place the Operational Calculus with Poincaré’s 

discovery of automorphic functions and Ricci’s discovery of the Tensor 

Calculus as the three most important mathematical advances of the last 

quarter of the nineteenth century. Applications, extensions and 

justifications of it constitute a considerable part of the mathematical 

activity of to day. (p. 216) 

The same source emphasizes Heaviside’s discomfort caused by criticism 

from Cambridge mathematicians (Witthaker, 1928/1929, pp. 211-216). In 

hindsight, however, we can say that it was precisely his experimental 

conception of mathematics, so despised by his purist critics, to lead him to 

the definition of operational methods and to the intuition of what would later 

be known as Dirac’s -function.

In the rest of this section, we are going to offer a reconstruction of 

Heaviside’s procedure with respect to some physical issues discussed in his 

EMT.  Along the lines of (Lützen, 1979) and (Petrova, 1987) (see also 

(Struppa, 1983; Guicciardini, 1993)), though in a somewhat different way, 

we shall distinguish four steps in Heaviside’s procedure:

a) operational solution 

b) algebrization 

c) fractional differentiation 

d) impulsive function 

(a)Operational solution 

In EMT §§ 238-242, Heaviside considers a semi-infinite cable and a 

network with resistance operator Z in sequence, operated upon by an electro-

motive force E. Putting aside the self-induction in the cable, he finds that the 

potential V(x, t) and the current C(x, t) are connected by the equations: 

2
 On Heaviside’s life and work see (Süsskind, 1972; Nahin, 1988; Lynch 1991). 
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where S is the permittance, R the resistance per unit length, and p the 

Heaviside’s notation for the differential operator 
t

.  From Eqs.(1) 

Heaviside derives the “characteristic” or operational equation 
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where q is defined by RSpq
2

. If we treat q as a constant, the 

operational solution of Eq.(2) would be 

qxqx
BeAetxV ,  (3) 

where A and B are arbitrary functions of t. Yet, A and B are determined 

from the boundary conditions at x = 0 and x =  yielding

qx

o
eVtxV ,  (4) 

where V0 is the impressed electro-motive force at the end (x = 0). By 

Eq.(4), and the second equation of Eqs.(1), we get 
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where C0 is the current at the end of the cable (x = 0). We have also 

0
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and similarly,
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0
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1
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Thus, Heaviside can write that (Heaviside, 1899) “the resistance operator 

is
2

1

Sp

R
” (p. 34). 

(b)Algebrization

Now, if we put the resistance operator Z between the cable and the earth 

with the impressed voltage acting, we have

2

10

1
Sp

R
Z

E
C  (8) 

0

2

1

0
C

Sp

R
V  as before; consequently, by Eq.(8) we get 

2

10

1
R

Sp
Z

E
V  (9) 

The latter expresses V0, the potential at the beginning of the cable, in 

terms of E. If we suppose that Z is a “mere resistance” r and that the 

impressed force E is “constant after t = 0, having previously been zero” (this 

is the fundamental hypothesis on the physical interpretation of the problem; 

this hypothesis can be translated in mathematical language simply writing E

= H(t), where H(t) is the so called “Heaviside’s function”), we can 

to express the current through Z and entering the cable. As he explains, 

“this is because the operators are additive like resistances” (Heaviside, 1899, 

p. 37). Also, we have 
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“algebrize” Eq.(9), i.e. “convert [it] to algebraical form” (Heaviside, 1899, p. 

37),  by expanding in ascending powers of p:

E
R

Sp
r

R

Sp
r

R

Sp
rV ...1

2

3

32
2

1

0
. (10) 

For integral values of n, Heaviside puts p
n
E = 0 and obtains 

E
R

Sp

R
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(c)Fractional differentiation 

We come now to the step of fractional differentiation. Whittaker remarks 

(Whittaker, 1928/1929):

This is an old subject: Leibniz considered it in 1695 and Euler in 1729: 

and indeed it was in order to generalize the equations 

nk

n

kn

xnkkkk

dx

xd
1...21  to fractional values of n that 

Euler invented the the Gamma-Function (p. 213).

Since Leibniz, Johann Bernoulli and Euler times there has been an almost 

continuous succession of papers about fractional derivates (Ross, 1977); but, 

as Whittaker says, “Heaviside seems to have known nothing of them beyond 

a reference of few lines in Thomson and in Tait’s Natural Philosophy: but he 

carried the subject on original lines further, in some directions, than any of 

his predecessors” (p. 213).

Heaviside’s awareness of the relevance of the problem is striking. In 

EMT (§ 225) he asserts that “physical problems lead to improved 

mathematical methods”. As we proceed in extending the electrical theory, 

“so it is in mathematics. The fundamental notions are so simple that one 

might expect that unlimited developments could be made without ever 

coming to anything unintelligible. But we do, and in various direction” (p. 

8). A typical example, as we have seen, is represented by complex numbers. 

But (Heaviside, 1899) 
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there are much more obscure and ill understood questions, such as the 

meaning and true manipulation of divergent series, and of fractional 

differentiations or integrations, and connected matters. It is customary to 

keep to convergent series and whole differentiations and regard divergent 

series and fractional differentiations as meaningless and practically 

useless, or even to ignore the altogether, as if they did not exist. The latter 

is the usual attitude of moderate and practical mathematicians, for 

obvious reasons. If they can be ignored, why trouble about them at all? 

But when these things turn up in the mathematics of physics the physicist 

is bound to consider them, and make the best use of them that he can. I 

am thinking more particularly here of the solution of the differential 

equations to which physicist are led by quasi-algebraical processes. [...] I 

suppose all workers in mathematical physics have noticed how the 

mathematics seems made for the physics, the latter suggesting the former, 

and that practical ways of working arise naturally. This is really the case 

with resistance operators. It is a fact that their use frequently effects great 

simplifications, and the avoidance of complicated evaluations of definite 

integrals. But then the rigorous logic of the matter is not plain! Well, 

what of that? Shall I refuse my dinner because I do not fully understand 

the process of digestion? No, not if I am satisfied with the result. Now a 

physicist may in like manner employ unrigorous processes with 

satisfaction and usefulness if he, by the application of tests, satisfies 

himself of the accuracy of his results. At the same time he may be fully 

aware of his want of infallibility, and that his investigations are largely of 

an experimental character, and may be repellent to unsympathetically 

constituted mathematicians accustomed to a different kind of work.  

(pp. 8-10) 

In order to handle fractional differentiation, Heaviside  deduces in a 

“purely experimental way” the “fundamental formula” (Heaviside, 1899) 

ttHp 2

1

2

1

 (12) 

From Eqs.(11) and (12), it follows that 

where H(t) “means that function of time which is zero before and unity 

after t = 0” (p. 36). We find here the function H(t), defined as H(t) = 1, for t

0; H(t) = 0, for t  0. 
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As Heaviside comments (Heaviside, 1899)

when t is big enough, the only significant term is e, the final value. When 

t is smaller, the next becomes significant. When smaller still another term 

requires to be counted, and so on. But we must never pass beyond the 

smallest term in the series. As t decreases, the smallest term moves to the 

left. As it comes near the beginning of the series, the accuracy of 

calculation becomes somewhat impaired. When it reaches the first t term, 

so that the initial convergence has wholly disappeared, then we can only 

roughly guess the value of the series. So Eq.(13) is unsuitable when t is 

small enough to make the initial convergence be insufficient (p. 38).

However, “every bane has its antidote”, and amateur botanists know that 

“the antidote is to be found near the bane” (pp. 38-39).

In our case, the antidote is got by algebrizing Eq.(9) in “a different way”, 

i.e. by expanding the expression in Eq.(9) in descending powers of p
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and by applying Eq.(12), to obtain 
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We see now that “we can calculate V0 conveniently when t is small”. But, 

as adds Heaviside (Heaviside, 1899), “(15) is bad when t is big. Then we 

may consider (15) the bane, and (13) the antidote. They are complementary, 

though not mutually destructive” (p. 39). 

(d)The impulsive function 
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As we saw in (c), Heaviside puts p
n
E = p

n
H(t) = 0. However, as Lützen 

remarks (Lützen, 1979), “in other connections [...] he often showed a deeper 

understanding of p
n
H(t) considering it the ‘function’ similar to what we 

denote by 
n-1

” (p. 174). For instance, in EMT § 249 (Heaviside, 1899) he 

considers the “interesting and instructive case” which arises “when the 

impressed force at the beginning of the cable, inserted between it and earth, 

is variable whit the time in a certain way” (p. 54). Let the impressed force be 

given by 

1

2R
E Q

S t

 (16) 

since Q is constant for any finite value of time, the result is zero. That is, 

there is no current entering the cable under the action of the continuously-

present impressed force at any finite value of the time (pp. 54-55).

Even more important is his remark (Heaviside, 1899):

where Q is a constant charge. For t < 0 the cable is to be understood 

uncharged. Obviously, the potential V0 is raised to the value E, i.e. 

1

2
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R
V Q

S t
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From the definition of q
2
 and from (12), it is easy to obtain 

0

qQ
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Now we can find the current entering the cable due to the impressed 

force. By Eq.(5), this is 

2

0 0

q q
C V Q pQ

R RS

 (19) 

where the second equation arises by Eq.(18), and the third by the 

definition of q
2
. Heaviside is thus led to conclude that (Heaviside), 
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Is it nonsense? Is it an absurd result indicating the untrustworthy nature of 

the operational mathematics, or at least indicative of some modification 

of treatment being desirable? Not at all. […] We have to note that if Q is 

any function of the time, then pQ is its rate of increase. If, then, as in the 

present case, Q is zero before and constant after t = 0, pQ is zero except 

when t = 0. It is then infinite. But its total amount is Q. That it to say, p1

means a function of t which is wholly concentrated at the moment t = 0, 

of total amount 1. It is an impulsive function, so to speak. The idea of an 

impulse is well known in mechanics, and it is essentially the same here. 

Unlike the function p
1/2

1 [1 = H(t)], the function p1 does not involve 

appeal either to experiment or to generalized differentiation, but involves 

only the ordinary ideas of differentiation and integration pushed to their 

limit.  Our result C0=pQ therefore means that an impulsive current, that is 

a charge, is generated by the impressed force at the first moment of its 

application; that the amount of the charge is Q, and that there is no 

subsequent current. It is the same as saying that the charge Q is 

instantaneously given to the cable at its beginning, which charge then 

spreads itself without loss anything. (pp. 54-55) 

It is obvious for us to find in this description a very interesting 

“mathematical object”, i.e. Dirac’s “ -function” (Dirac, 1947). We also 

know the “happy end” of the story, i.e. the rigorous reformulation of 

Operational Calculus (Lützen, 1979), for example in the context of Laurent 

Schwartz’s distribution theory (Schwartz, 1966).
3
 Moreover, the “discovery” 

of  “ -function” by Heaviside in EMT is not the first discovery of it (Lützen, 

1982). Yet, Heaviside’s presentation is perhaps the most striking formulation 

before Dirac’s, and it shades light on the relevance of the physical and/or 

technological context.

4. SOME CONCLUSIVE REMARKS 

In spite of their different origins, the -story parallels the i-story (as 

Heaviside himself remarks). As mentioned before, the Cambridge 

mathematicians rejected Heaviside’s procedures, i.e. “demonstrations” like 

sequence (1)-(19); they were less than satisfied by Heaviside’s justification 

3
 As Synowiec remarks (Synowiec, 1983), not only did Schwartz write (Schwartz, 1945) the 

“first systematic paper” on the theory of distributions, which “already contained most of 

the basic ideas, but he also wrote expository papers on distributions for electrical engineers 

(1948)”.
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of it, according to which “the use of operators frequently effects great 

simplifications, and the avoidance of complicated evaluations of definite 

integrals” (Heaviside, 1899, p. 9). (For the refusal from “pure” 

mathematicians see also (Hunt, 1991; Guicciardini 1993)) 

Yet, as Lützen (1982, p. 120) notes, Heaviside’s polemic was not only 

just directed against Cambridge mathematicians but also against some 

engineers and technological people who might on the one hand be inclined to 

accept Heaviside’s appeal to physical intuition, but were suspicious of his 

algebraic imagination on the other. Paraphrasing Lakatos, we can say that 

this fact is not just an historical oddity: it is also a sign of the quasi-empirical

character of Heaviside’s procedures. His apology on “the derivative of the H-

function” reveals that in Heaviside’s mathematical practice (and also in his 

idea of science), mathematics grows moving from physics (this is its 

empirical character), but proceeds by using “algebraical” tools in a novel 

way, stretching (in Lakatos’ sense)– or “pushing to their limit” (in 

Heaviside’s words)– standard concepts for new applications, and eventually 

testing the whole thing with mathematical experiments (this is its quasi-

empirical character, and the emphasis on “quasi” now is crucial). He writes 

(Heaviside, 1899): 

It may be remembered that I have insisted upon the definitess and fullness 

of meaning of an operational solution, and that it contains within itself 

not only the full statement of the problem, but also its solution. No 

external aid is therefore required to algebrise it fully; no assumption, for 

instance, of a special type of solution, and that the solution is the sum of a 

number of that type, with subsequent determination of the constants 

required to complete the matter. The work of satisfying the imposed 

conditions has been done already. The conversion to algebraical or 

quantitative form may be easy or hard, self-evident or very obscure. But 

in any case it is possible, by the prior construction of the operational 

solution. Thus, the conversion furnishes a distinct subject of study which 

is of great practical value from the physical standpoint. As regards 

finding out how to effect the conversion, that is a matter principally of 

observation and experiment, and is in a great measure independent of 

logical demonstrations. It is the How, rather than the Why, with which we 

are mainly concerned in the first place; though, of course, parts of the 

Why cannot fail to be perceived in the course of examination of the How. 

A complete logical understanding of the subject implies the existence of a 

full theory to account for why certain ways of working are successful, 

and others not. It is important to note that it is just the same in the 

mathematical research into unknown regions as in experimental physical 

research. Observations of facts and experiments come first, with merely 
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tentative suggestions of theory. As the subject opens out, so does the 

theory improve. But it can only become logical when the subject is very 

well known indeed, and even then it is bound to be only imperfectly 

logical, for the reasons mentioned at the beginning of this volume. I feel 

inclined to be rather emphatic on the matter of the use of experiment in 

mathematics, even without proper understanding. For there is an idea 

widely prevalent [...] that in mathematics, unless you follow regular 

paths, you do not prove anything; and that you are bound to fully 

understand and rigorously prove everything as you go along. This is a 

most pernicious doctrine, when applied to imperfectly explored regions. 

Does anybody fully understand anything? (pp. 122-123) 

It is important to stress that “full understanding” may be impossible (as 

Lakatos says: in theory, research never ends). Nevertheless, this kind of 

quasi-empiricism in mathematics is a good tool for understanding, i.e. 

representing and intervening in the constitution of a mathematical object. For 

example, consider that the final (for us) part of the -story is not only some 

standard distribution theories (Sobolev spaces, Schwartz’s theory, etc.), but 

reformulations of “the derivative of the H-function” in the context of 

Robinson’s non-standard analysis (e.g. see (Robinson, 1966)) or another 

version of it.

Well, as in the case of Imaginary Quantity, in this case as well the starting 

point was a typical method of quasi-empirical mathematics offering 

“demonstrations” – and only after mathematicians were able to find rigorous 

“proofs”.
4

 Still, even here we can talk of mathematical facts (in Le Roy’s sense), 

namely the required properties of the “derivative of the H function”.
5

4
Demonstration (from Latin demonstratio) means (i) “the action of showing forth or 

exhibiting”, (ii) “the action or process of [...] making evident by reasoning”, (iii) the 

“explanation of specimens and practical operations”, (iv) and also “a public 

manifestation”. While proof (late Latin proba, old French prouve and Italian prova or

pruova) means “evidence sufficient (or contributing) to establish a fact  or produce belief 

in the certainty of something” (OED). 
5
 “Four different definitions or characteristic properties were mentioned in the literature before 

1945:

xH

x

x ;

xfx
n

n

lim  or 
0n

n
f for suitable functions 

n
f ;



OLIVER HEAVISIDE’S “DINNER” 29

Moreover, the results obtained by Heaviside’s “experimental method” are 

mathematically correct! Subsequent “rigorizations” have explained the 

reason why, connecting the Operational Calculus with other topics in 

mathematics and physics which form the context of the “prehistory” (see 

(Lützen, 1982, 163-165) of the rigorous theory of distributions (see 

(Schwartz, 1966); for a more general context see (Dieudonné, 1970, 1975). 

This is also the case for Dirac’s  in the non-standard analysis (e.g. see 

(Giorello, 1973). 

Thus, the rigid opposition between discovery and invention is, with 

respect to mathematics, misleading; moreover, the picture of the growth of 

mathematics as “quasi-empirical” in Le Roy’s or in Lakatos’ sense is not so 

narrow as a simple step-by-step translation from mathematical language to 

physical language may suggest. If we look at the history of mathematical 

practice, both the i-story and the -story demonstrate that we have many 

layers of abstractions from scientific practice (physical or mathematical, for 

instance); for every layer, new objects obtained by abstraction are checked or 

tested by results or needs coming from former levels (a contrario evidence): 

think of the charge against Heaviside by engineers worried about too much

“abstraction”! These engineers simply misunderstood the nature of 

Heaviside’s “experimental” method, that is, the quasi-empirical pattern in the 

growth of mathematics.

If engineers in the 19
th
 Century Britain feared that algebraic imagination 

could “pervert” their own practice, in the 20
th
 Century some “pure” 

mathematicians maintained that mathematics “may be compared to a game – 

or rather an infinite variety of games” (Stone, 1961): two faces of the same 

picture! Yet, the story we have told shows that quasi-empiricism aims at 

reinstating into mathematics some “content”. We insist that the prefix quasi

is here the crucial term, because empiricism in Heaviside’s sense needs a 

“whiff” of dialectics (Lakatos, 1976b; Motterlini, 2000; Lützen, 1982) in 

order to qualify the same idea of experience (consider l’expérience

mathématique in Le Roy’s sense).

                                                                      

0x for 0x , and 1x ;

afdxxfax , or 0fdxxfx ”. (Lützen, 1982, p. 130)
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In “experimental mathematics” (in Heaviside’s terminology) we find a 

starting point for considering mathematical experience as a continuum which 

has as its poles motives coming from physics, technology, and so on, on the 

one hand, and “mathematical facts” apparently belonging in the domain of 

“pure mathematics”, on the other.

Now, at least in some cases (e.g. distribution theory, functional analysis, 

but also Calculus, variation theory, differential equations, and so on), highly 

sophisticated mathematical methods give generality and soundness precisely 

to those original “experimental” methods that we have described. This move, 

moreover, seems to correspond in some aspects to the classical request of 

“geometrical rigour” in the i-story.
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Universitat Autonoma de Barcelona, Barcelona, Spain 

Abstract:     In his book about the Categories (that is about the ultimate elements of 

classification and order), in the chapter concerning the quantity (IV, 20) 

Aristotle says that this concept recovers two kinds of modalities: the discrete 

quantity and the continuous quantity and he gives as examples the number for 

the first one; line, surface, solid, times and space for the second one. The main 

philosophical problem raised by this text is to determine which of the two 

modalities of the quantity has the ontological priority over the other (given two 

concepts A and B, we assume that A has ontological priority over B if every 

entity that possesses the quality B possesses necessarily the quality A). The 

problem is magnified by the fact that space, which in some part of Aristotle’s 

Physics is mentioned not only as a category properly speaking but even as the 

main category whose power can be amazing, is in the evoked text of the 

Categories’s Book reduced to expression of the continuum, and sharing this 

condition with time. In this matter the controversy is constant through the 

common history of Science and Philosophy.

 In this paper we will recall the main points of projection of the controversy 

through the history of thought, from Zeno’s aporias (and the mathematical 

attempts of solution) to the contemporary non standard analysis. To 

summarize: in order to display the ontological weight of quantum physics we 

will replace in its philosophical background the dramatic moment when 

Einstein suggested that Max Planck’s theory was faraway of being merely an 

speculative mathematical construction, and that energy in nature actually 

comes in indivisible packets, instead of infinitely divisible streams. We will 

ask ourselves what different answers to the question have been brought 

forward by the ulterior developments of the discipline. In a second part of the 
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paper we will try to establish the link between the problem raised up, the 

controversies about quantum non locality and the contemporary philosophical 

objections concerning the lack of rational explanation in the quantum theory, 

in spite of being largely successful at predicting the results of atomic 

processes. For, as the Newton’s hypothesis non fingo displays, description and 

prevision does not necessarily means explanation. 

Key words: continuous quantity; discrete quantity; ontological priority; quantum physics; 

locality; description versus explanation; Aristotle; Max Planck; Cantor; 

Einstein.

An electron can revolve in an orbit around the nucleus without losing 

energy, provided that the orbit... is a whole number of de Broglie wavelength 

in circumference.

Even if it has later been replaced by a more accurate model Bohr’s 

picture (in 1913) of an electron’s behaviour (completed by the de Broglie’s 

idea of electron waves, idea that Bohr did not have, the whole set 

corresponding in fact to the ingenuous mental image that non specialist 

cultured people have of the atom) is well adjusted to the philosophical 

question that we would raise.

The problem is centred on the connected words whole and number. Of 

course at a certain level everyone knows what these expressions mean, and 

we are conscious that the scientist’s work can hardly be subordinated to the 

philosophical controversies about the basic concepts of the mathematical 

background of the discipline. 

Nevertheless, contemporary physics (quantum physics as well as 

relativity theory) has shown the impossibility of preserving the rigid division 

between scientific and philosophical work; and this is for two reasons: 

a) Some of the prominent, and unanswered questions raised by quantum 

physics become necessary outstanding topics in the philosophy of science. 

I have taken from a remarkable article of Nancy Cartwright (Cartwright, 

1979) a provisional list of these topics: 

- The nature of the time-energy uncertainty relations. 

- Backward causation. 

- Existence of photons. 

- The nature of coherence. 

b) The second and perhaps more important argument: nowadays when 

physicists have a look at the problems which would have arisen in the 

conceptual background of their disciplines by the very discoveries they 

make, they find exactly the same problems which are found in the classical 

content of ontology. In short: present physical knowledge tends intrinsically 

to become a reflexion about the categories that constitute the basis of the 

discipline itself and perhaps the basis of human knowledge... In this way 
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contemporary physics re-establishes a link with Greeks’ physics, and 

particularly with Aristotle’s physics steps: the description of the physis

behaviour, the explanation of the recorded phenomena by displaying the 

causes that are immediately operating and finally, afterwards, -meta-

research concerning the real explanation (looking after the last causes) which 

implies the evoked reflexion about the concepts presupposed by the previous 

work, and perhaps modified by the issues themselves (for example the 

backward causation as revolution in the concept of cause itself). 

By reintegrating the third step the physics of today again becomes 

intrinsically reflexion after work, literally, meta-ta-physika.

Before coming to the main point of my purpose, I would like to recall that 

the giving up of the third step, the rupture of the intrinsic link between 

science and philosophy has a nitid birthday (even if it was announced by 

previous tendencies). In fact the official assumption of the divorce adopted 

the form of a new marriage: the repudiated philosophy as research of the last 

causes, and of a global explanation, was replaced by a philosophy “light” 

christened by its own promoter as experimental.  Let us quote the text of 

Newton himself, the triumphal “hypothesis non fingo” in the scolia general 

of the third book of Principia Mathematica:

I haven’t succeeded in deducing from the phenomena the grounds of 

gravity and hypothesis non fingo, for everything that doesn’t come from 

phenomena is a hypothesis and hypothesis can’t be admitted into 

experimental philosophy. In this philosophy the propositions are 

extracted from the phenomena and next they are generalized by way of 

induction.

In fact Newton’s hypothesis non fingo is not faraway from the concept of 

science that Roberto Bellarmino displayed in his famous letter of April 1512 

to P. A. Foscarini, a friend of Galileo, in order to warn the latter about the 

danger of considering mathematical models operating from the point of view 

of the description of the phenomena as the real knowledge of these: 

... Perche il dire che, supposto che la terra si muova e il sole stia fermo si 

salvano tute l’apparenze meglio che con gli eccentrici ed epicicli è 

benissimo detto e non ha pericolo nessuno; e questo basta al 

mathematico: ma volere affermare che realmente il sole stia nel centro del 

mondo... e cosa molto pericolosa non solo di irritare tutti i filosofi e 

theologi scholastici ma anche di nuocere alla Santa Fede con rendere 

false le Scritture Sante...

Describe and compute the phenomena “basta al matematico” whose work 

has nothing to do with the truth... 
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Analogously we could say: the phenomena follow a pattern that Newton’s 

formula describes ... But these formulae have nothing to do with the cause of 

such behaviour. 

So, experimental philosophy may replace classical natural philosophy. 

Leibniz was ready to object that the new theory was in fact a renouncement 

of the philosophy which intrinsically “cherche la raison et la divine sagesse 

qui la fournit”
6
.

Moreover Leibniz pretends that experimental philosophy does not 

actually give up hypothesis.  Simply the very fruitful hypothesis, these that 

would display reason (causal or not) of the phenomena are replaced by 

hypothesis that merely show some kind of correlation with the phenomena; 

hypothesis in fact asthenic (hypothèses fainéants, as Leibniz wrote) which 

would imply for science a complete rupture with the demands of rationality. 

In comparison with this very hard appreciation of Leibniz, the 

observations concerning the disturbing paradoxes in some important aspects 

of quantum physics look almost like friendly encouragements to improve the 

general presentation of the theory. In fact the first people to keep their 

distance with the theory were the quantum-physicists themselves, which 

supposed a radical difference in relation to the Leibniz-Newton 

controversies.

In a letter of December 1926 Einstein claims that in spite of the fact that 

it describes the world with a level of accuracy without precedent in science, 

quantum mechanics (as a theory which would reduce God to a die player) “is 

not yet the real thing ... hardly brings us closer to the secret of the Old One” 

(Born and Einstein, 1971). But it was Einstein himself who 20 years before 

was compelled to consider the beam of light as an amount of discrete 

entities. An attitude nothing to do with Newton self indulgence concerning 

the lack of explanations (therefore the lack of meaning) in gravitational 

theory.

Einstein was confronted to a real contradiction between two scientific 

theories that he himself had helped to set up, and he could hardly be true to 

both of them. The choice had to be made, and Einstein’s option became 

unequivocal in 1935 with the publication of Einstein’s, Podolsky’s and 

Rosen’s famous paper (Einstein, Podolsky and Rosen, 1935)
7
 concerning the 

6
 1978, Cherche la raison et la divine sagesse qui la fournit, Nouveaux Essais, T. V. Gerhardt, 

reed., Hildesheim N. Y. Olms, p. 39. 
7
 At the symposium “New Developments on Fundamental Problems in Quantum Mechanics” 

celebrated in August 1995 in Oviedo, Spain, Professor Fine of Evanson has precised which 

had been the real role of Einstein in relation to the reduction of this paper. Fine said 

namely that Einstein had red the paper only after the first publication and even that he had 
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so called EPR effect, that is: a causal dependence between two phenomena 

which, according to the premises of quantum mechanics, should invalidate 

the thesis of the absolute speed of light, which was a basis of relativity 

theory.

It is not necessary to recall the Einstein Podolsky Rosen paper has to be 

completed by J. S. Bell’s reflexion (Bell, 1964) since he demonstrated that 

the statistical laws of quantum theory are not compatible with both of the 

following assumptions: a) the universe has objective behaviour; b) every 

causation is necessarily local. 

Certainly after 1964 number of purposes concerning this problem have 

been brought forward, but in substance the Bell’s alternative remains: either 

Quantum Physics with just local causation but also no independent world, or 

Quantum Physics with causation necessarily “superluminal”
8
.

We are here in presence of a controversy concerning concepts so 

important as causa, effect, temporality, movement and locality which form 

the nucleus of the traditional ontological problematic. 

As N. Cartwright suggests, contemporary physics tends intrinsically to re-

establish the link with the problems of philosophical tradition: the physicist, 

and especially the quantum physicist, without leaving his specific discipline, 

is sometimes confronted with questions which involves important 

discussions on ontology and epistemology.

But among the general issues on ontology one of the most controversial 

(at least from the point of view of a mathematical contemporary perspective) 

concerns the word that qualifies quantum physics itself: “quantity”, poson

which Aristotle tried, perhaps for the first times, to determine; this not 

through showing the specific differences with other categories (quality 

particularly) what should be impossible in Aristotle’s conception of the 

ontological status of the first concepts but by displaying the internal division 

of the concept itself. Indeed, in his work known as Categorie’s Book

Aristotle writes (Aristotle, 1928): 

Quantity (poson) is either discrete (diorismenon) or continuous 

(suneches). Moreover, some quantities are such that each part of the 

                                                                      

manifested some disagreement with the form (not of course with the content) and required 

some revisions before accepting to put his name in the second edition. 
8
 For a general view of the issues of Bell’s demonstration and its interpretations from Bernard 

d’Espagnat to Alain Aspect see (Woodhouse, 1992). The author pretends that, “barring 

current intuitive alternatives such as these stipulated by many-world theories”, the 

“superluminal” theory should have the advantages of being:  “a) consistent with QM; b) 

presupposed by the possibility of E. P. R. effects; c) derivable in part from the 

indivisibility of Planck's Quantum of actions, and, d) indirectly testable”. 
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whole has a relative position to the other parts, other have within them no 

such relation of part to part. 

Instances of discrete quantities are numbers and speech; of continuous: 

lines, surfaces, solids and, besides these time (kronos) and place (pou).

In the case of the parts of a number there is no common boundary at 

which they join. For example: two fives make ten, but the two fives have 

no common boundary, but are separate [...] A line on the other hand, is a 

continuous quantity for it is possible to find a common boundary at which 

its parts join; in the case of the line, this common boundary is the point; 

in the case of the plane, it is the line [...].

This distinction between two concepts of quantity has to be completed by 

another, drawn in Metaphysics D13 (1020 a 7-12): “quantity (poson) is either 

plurality, multitude (plethos) or magnitude (megethos)”.  The first has to be 

understood as numerable (arithméton) while the second has to be understood 

as measurable (metreton). Moreover, while the first is divisible in parts that 

were discrete before the division and remain discrete afterwards, the second 

is divisible in parts that were continuous one to another and that after the 

division keep separated continuity. 

Finally, there is a very important aspect: while the plurality (plethos)

there is an absolute reference of enumeration, the unit, which is intrinsically 

indivisible
9
 the magnitude (megethos) has not “natural” and absolute 

principle, but only an arbitrary and relative one.

In short: contrasting with the unit of enumeration, the unit of measure 

appears only as a result of “treating length as an atomic entity”  (1052 b 32-

33). This is because we do not consider the fact that the metron has a support 

that is intrinsically continuous, therefore intrinsically divisible. 

We have in short: 

____________________________________

Aristotle claims that the quantity as plurality does not have ontological 

objectivity, but it results merely from the capacity that the human mind has 

for making abstraction of the ontological reality. Meanwhile, for quantity as 

magnitude, the situation is not far from being the opposite, since the 

continuous is that to which we are confronted with, just when we stop in the 

work of making abstraction. 

9
 The evoked texts have to be completed with Met. 10.1 1052b 22-23 (“The one is the first 

principle of number qua number”) and following. 
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To summarize: while the unit of discrete quantity is a very (atomic) unit 

but ontologically is a vacuum, the unit of continuous quantity has great 

ontological weight but it is in fact a false (non atomic) unit. 

The Aristotelian ontological priority of the continuum over the discrete 

quantity follows directly from these premises if we assume that given two 

concepts A and B, A has ontological priority over B if every entity that 

possesses the quality B also possesses the quality A. This definition of the 

ontological priority comes from René Thom who explains this idea more 

accurately in the following sentences (Thom, 1990a):

L’être X est ontologiquement antérieur à l'être Y si et seulement si X peut 

recevoir naturellement Y comme prédicat, alors que X ne peut être que 

difficilement prédicat de Y... Ainsi il est lingüistiquement tout-à-fait 

acceptabe de parler d'une surface colorée alors qu'une couleur “ 

“superficielle” ne pourrait s'employer que très métaphoriquement.

Before coming back to the main purpose of my talk let us recall some of 

René Thom’s topological examples. The main idea is that a discrete entity is 

in fact a continuum that appears as discrete only by playing the role of 

attribute of a continuum of bigger dimensions (Thom, 1990b). 

So if we consider a three-dimensional entity, its bidimensional surfaces 

are discrete accidents but in fact each of these is in itself a continuous 

support of lines as one-dimensional entities. 

Moreover, the continuum remains locally continuous when considered as 

holding discrete attributes (like a body when determined by its dimension) 

meanwhile the entities playing the role of discrete attributes become locally 

continuous if they hold a continuous attribute. 

The Aristotelian thought becomes clear when considered from Thom’s 

contemporary perspective: the unit arithmeton, the foundation of discrete 

quantity, would never emerge, would never come to view, even merely as 

construction of the mind if the continuous was not there as intrinsic support. 

It might be said that for Aristotle the indivisible produces only counting 

numbers (arithmoi): 1, 2, 3 and so on, which, as reduced to iteration of 

something intrinsically inexistent, are themselves merely abstractions of 

mind. On the other hand, the rational fractions (not arithmoi), which as 

results of the division of the unit interval [0, 1] would intrinsically pertain to 

the continuous, would so explain the structure of the substance itself. The 

latter is in fact a three-dimensional body, by essence intrinsically and 

infinitely divisible. Without continuous magnitude (sunechen megethos) not 

division and not rational fractions; a fortiori not irrational portions which, as
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parcel of proportions theory, are not conceivable without reference to the 

megethé
10

.

Therefore, the come back to Aristotle that implies René Thom’s 

topological thought is completely in contradiction with the modern 

mathematics originated in the late nineteenth century with the works of 

Dedekind and Cantor, and which leads to a reduction of the continuous 

magnitude (megethos) to the discrete multitude (plethos).

In a work published in 1883, under the title of Grundlagen allgenmeinen 

Manigfaltigkeitslehre, Georg Cantor (Cantor, 1883/1932) displays his 

conviction that his theory of numbers carries out a revolution in both 

mathematical and philosophical reasoning, because it implies a modification 

in the concept of number itself and perhaps simply in the concept of quantity. 

Of course the main point of this revolution is the legitimisation of 

magnitudes infinite magnas, which Leibniz repudiated
11

, but a very important 

role is also played by the new mathematical conception of the continuum. 

Given an n-dimensional space, each point of this space is reduced to n-tuples 

defined from real numbers forming a complete ordered field which in fact 

find legitimacy in a reflexion submitted to the notion intrinsically discrete of 

cardinality. This last point becomes obvious if we consider the construction 

of real numbers as classes of equivalence of sequences of rational numbers; 

in such a way that every element of the complete field R becomes the limit of 

some denumerable, bounded and monotic sequence, either ascendent or 

descendent
12

.

Well then: 

In 1970 René Thom published a paper (Thom, 1970) that was a merciless 

condemnation of Cantor’s views and proposed what René Thom himself 

called (some years later) “return to Aristotle”. But the most explicit 

confrontation is the one that opposes René Thom to Dedekind’s views. 

10
 “It is instructive to note that in the primer of the theory of proportions that constitutes Book

5 of Euclid, the definitions and theorems are all stated in terms of megethé.” (White, 1992)
11

 At least in some texts: “Je leur tegmoirai que je ne croyais pas qu’il y eût des grandeurs 

vritablement infinies ni véritablement infinitesimals, ce que n’était que des fictions mais 

des fictions utiles pour abréger et pour parler universellement” (Letter to Dagincourt, 11 

September 1916). The following sentence, which is in another register, is interesting too: 

“Mais comme M. le Marquis de l’Hôspital craignait que je ne trahisse la cause, ils me 

prièrent de n’en rien dire”. 
12

 Notice that the converse is also true: given a monotonic ascendent sequence of rational 

numbers, there exists a member of the complete ordered field R that is the limit of the 

sequence.
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In his work ‘Was sind and was sollen die Zahlen’ Dedekind reduces the 

continuous line R to the completion of cuts (schnits) defined in rational 

numbers.

Evoking this text Thom writes (Thom, 1990a): 

Ici je voudrais m’attaquer à un mythe profondement ancré dans la 

mathématique contemporaine, à savoir que le continu s’engendre (voir se 

definit) à partir de la générativité de l’arithmétique, celle de la suitte des 

entiers naturels. Je fais, bien entendu, allusions à la construction de 

Dedekind.

But if we object to the arithmetical generativity of the continuum, we will 

be able to advance arguments backing the opposite hypothesis. Several 

attempts have been made before this of Professor Thom, which in fact has 

never been published in a very demonstrative way. 

Let us simply recall that the link between contiguity and continuity has 

been reversed by Leibniz when he was confronted with the classical problem 

of the rupture of continuity, symbolized by the path from life to death. 

Leibniz’s “solution” consisted of displaying the contiguity as a kind of 

rupture of topological continuity, an interpretation that would certainly 

appear scandalous to contemporary mathematical set theory
13

.

First we had only a point C, and then ... we have two points A, B. 

Nevertheless these points are distinct but not distant; C has become a 

complex entity
14

.

Of course contiguity as the rupture of continuity still does not mean 

discretion. But we are on the way... Leibniz’s position shows that the 

problem of relationship between discrete quantity and continuous quantity is 

a nuclear point of the common history of philosophy and science. The history 

we have concentrated on is the debate Aristotle-Thom/Dedekind-Cantor. In 

this debate there is room for a third argument to be raised: that of non-

standard analysis, but unfortunately there is not time to talk about it
15

.

13
 As Enrico Giusti said (Giusti, 1986): “ciò che è privo di grandezza non è necessariamente 

privo di struttura”. 
14

 Nowadays, after Abraham Robinson’s Non Standard Analysis, we could say that the 

structure C has only a lack of grandezza standard, for in the neighbour of C there exists 

hyperreal distances. 
15

 Let us mention simply that the ontological weight of N. S. A. lies in the fact that for the first 

time since the problem occupied science and philosophy the infinitely small is legitimately 

introduced into Mathematics. 
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JOHN VON NEUMANN ON MATHEMATICAL 

AND AXIOMATIC PHYSICS 

MIKLÓS RÉDEI 

Loránd Eötvös University, Budapest, Hungary 

Abstract: The aim of this paper is to recall and analyse von Neumann’s position on 

mathematical and axiomatic physics. It will be argued that von Neumann 

demanded much less mathematical rigor in physics than commonly thought 

and that he followed an opportunistically interpreted soft axiomatic method in 

physics. The notion of opportunistic soft axiomatization is illustrated by 

recalling his work on the mathematical foundations of quantum mechanics. 

Key words: von Neumann; axiomatization; quantum mechanics. 

1. TWO ATTITUDES TOWARDS MATHEMATICAL 

PRECISION AND AXIOMATIZATION IN 

PHYSICS

One of the key distinguishing features of physics has been since the dawn 

of the modern age that it is mathematical. By “being mathematical” I mean 

not only that it is quantitative in the sense that it gives a description of the 

physical world in numbers; rather, what is meant by being mathematical is 

that physics applies mathematical concepts above and beyond numbers, that 

it builds mathematical models of intricate structure by using sophisticated 

mathematical entities and procedures.

Merging of physics and mathematics on the non-numerical, conceptual 

level has never been unproblematic however: One just has to recall some of 

the famous conceptual-mathematical difficulties that accompanied the 

development of physics since the time of Galileo: the lack of a 
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mathematically-logically acceptable calculus in Newton’s physics, (so 

brilliantly pointed out and criticized by Berkeley (1948/1951)), the 

mathematically problematic status of the ergodic hypothesis in the work of 

Boltzmann on classical statistical mechanics (made clear and analysed by the 

Ehrenfests (Ehrenfests P. and Ehrenfests T., 1911)) and the mathematically 

unacceptable treatment of the eigenvalue problem of selfadjoint operators in 

quantum mechanics (pointed out and solved in full generality by von 

Neumann (1927a)) are well-known and much quoted classical examples of 

the inconveniences of the marriage between physics and mathematics.

There are two typical attitudes towards the conceptual difficulties arising 

from mathematical imprecision and sloppiness in physics: the easy-going and 

the concerned; accordingly, there are two attitudes towards the function of 

mathematical precision in physics: the sceptical and the reflective. The 

Sceptics claim that mathematical exactness is alien to and useless in physics. 

This view is explicitly formulated by R. Feynman, for instance (Feynman, 

1965):

The mathematical rigor of great precision is not very useful in physics. 

But one should not criticize the mathematicians on this score…They are 

doing their own job. (p. 56) 

While Feynman’s position might be typical in the physics community, the 

opposite, reflective position, according to which mathematical precision in 

physics is both needed and useful, has been successful enough to have led to 

a whole new discipline called mathematical physics. This field has become 

institutionalised in the 20th Century with a well-defined scientific 

community, with scholarly periodicals specializing in mathematical physics 

and with professional associations organizing the community of 

mathematical physicists.

The idea of mathematical physics has been intertwined in the 20th 

Century with another one that also is rooted deeply in mathematics: 

application of the axiomatic method in physics. Hilbert’s sixth problem 

formulated this idea programmatically in 1900 (see (Wightman, 1976) for a 

review of Hilbert’s sixth problem and its impact on the development of 

physics), and attempts have been made since to axiomatize all the basic 

physical theories.

Similarly to mathematical physics, axiomatic physics is not typically 

considered by physicists as especially useful. Weyl probably expresses the 

typical sentiment of the physics community’s attitude towards the value of 

axiomatic physics when he writes (Weyl, 1944): 

The maze of experimental facts which the physicist has to take into 

account is too manifold, their expansion too fast, and their aspect and 
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relative weight too changeable for the axiomatic method to find a firm 

enough foothold, except in the thoroughly consolidated parts of our 

physical knowledge. Men like Einstein or Niels Bohr grope their way in 

the dark toward their conceptions of general relativity or atomic structure 

by another type of experience and imagination than those of the 

mathematician, although mathematics is an essential ingredient. Thus 

Hilbert’s vast plans in physics never matured. (p. 653) 

John von Neumann is regarded by both the Skeptics and the Concerned as 

a typical mathematical physicist relying heavily on the axiomatic method. 

The aim of this paper is to describe von Neumann’s position on 

mathematical and axiomatic physics. The analysis is motivated in part by 

what I take to be a somewhat curious situation: While mathematical 

physicists view his work as a paradigm example to be followed, and although 

even the Sceptics acknowledge that von Neumann’s work is a great 

intellectual achievement, one hardly finds any detailed historical or 

philosophical analysis of his views on mathematical and axiomatic physics 

((Halmos, 1973) and (Wightman, 1976) being exceptions). Lack of a careful 

study of von Neumann’s views and of the method he actually followed in his 

work has led, I claim, to a somewhat distorted picture, showing him to 

demand far more mathematical rigor in physics than he actually did. I hope 

to be able to correct this one-sided picture of von Neumann.

2. VON NEUMANN ON MATHEMATICAL PHYSICS 

The only explicit assertion by von Neumann I am aware of in which von 

Neumann discusses the nature of mathematical physics is in his letter to R. 

O. Fornaguera, the Spanish translator of von Neumann’s book Mathematical

Foundation of Quantum Mechanics (von Neumann, 1932). Von Neumann 

writes

Your questions on the nature of mathematical physics and theoretical 

physics are interesting but a little difficult to answer with precision in my 

own mind. I have always drawn a somewhat vague line of demarcation 

between the two subjects, but it was really more a difference in 

distribution of emphasis. I think that in theoretical physics the main 

emphasis is on the connection with experimental physics and those 

methodological processes which lead to new theories and new 

formulations, whereas mathematical physics deals with the actual 

solution and mathematical execution of a theory which is assumed to be 

correct per se, or assumed to be correct for the sake of the discussion.
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In other words, I would say that theoretical physics deals rather with the 

formation and mathematical physics rather with the exploitation of 

physical theories. However, when a new theory has to be evaluated and 

compared with experience, both aspects mix. (quoted in (Redei, 2002), p. 

242)

The position von Neumann takes in the above quotation concerning 

mathematical physics is a very moderate one: he does not see a neat 

separation of mathematics and theoretical physics and he takes the reflective 

nature of mathematical physics as its main characteristics – not mathematical 

exactness. “Reflective nature” means here that the immediate subject of 

mathematical physics is considered by him to be the physical theory rather 

than the physical world, the latter implicitly taken by von Neumann as the 

subject of theoretical physics. Investigating and “exploiting physical 

theories” is very much what philosophy of science (physics) typically does 

however, and I have argued elsewhere that this reflective nature of 

mathematical physics lends this discipline a philosophical character indeed 

(Redei, 2002). Von Neumann was very much aware of this feature of 

mathematical physics: he himself regarded his 1932 seminal work, “The 

mathematical foundations of quantum mechanics” (von Neumann, 1932) 

rather a conceptual-logical analysis than physics or mathematics: in 

characterizing the nature of this book, von Neumann points out in a letter to 

H. Cirker (von Neumann, 1949) that the real novelty and justification of the 

book is carrying out the very involved conceptual critique of the logical 

foundations of the relevant mathematical and physical discipline (such as 

theory of probability, thermodynamics, classical statistical mechanics and 

quantum mechanics. 

3. VON NEUMANN ON THE AXIOMATIC METHOD 

One can – and therefore has to – distinguish two different notions of 

“axiomatization” and “axiomatic theory” in von Neumann’s works:

1. axiomatizing and axiomatic theory in the strict sense of formal (or 

syntactic) systems or languages (call this “formal axiomatization”) 

2. axiomatizing and axiomatic theory in the less formal sense in which it 

occurs in physics (following (Rédei and Stöltzner, forthcoming) - see also 

(Stöltzner, 2001) – let us call this “soft axiomatization”) 

Formal axiomatization is what von Neumann does in his work on 

axiomatic set theory (the topic of his PhD dissertation in 1926). This formal 

axiomatization is as it is understood today in the theory of formal languages  
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(syntactic systems). However, even in connection with formal  

axiomatization von Neumann takes a very sensible, only moderately formal 

position, making clear that there is always some intuitively given content or 

meaning behind the primitive concepts and the axioms in terms of which 

axiomatic set theory is formulated (von Neumann, 1927d): 

We begin with describing the system to be axiomatized and with giving 

the axioms. This will be followed by a brief clarification of the meaning 

of the symbols and axioms ... . It goes without saying that in axiomatic 

investigations as ours, expressions such as ‘meaning of a symbol’ or 

‘meaning of an axiom’ should not be taken literally: these symbols and 

axioms do not have a meaning at all (in principle at least), they only 

represent (in more or less complete manner) certain concepts of the 

untenable ‘naive set theory’. Speaking of ‘meaning’ we always intend the 

meaning of the concepts taken from ‘naive set theory’. (p. 344) 

(translation from (Rédei and Stöltzner, forthcoming)

As opposed to formal axiomatization, soft axiomatization is a less well-

defined, more intuitive and a structured concept. Its explicit formulation can 

be found in the 1926 joint paper by Hilbert, Nordheim and von Neumann on 

the foundations of quantum mechanics (Hilbert, Nordheim and von 

Neumann, 1926). This paper contains a lengthy passage on the axiomatic 

method in physics. The main idea is that a physical theory consists of three, 

sharply distinguishable parts:

1. physical axioms 

2. analytic machinery (also called “formalism”) 

3. physical interpretation 

The physical axioms are supposed to be semi-formal requirements 

(postulates) formulated for certain physical quantities and relations among 

them. The basis of these postulates is our experience and observations; thus 

the basis of the axioms in physics is empirical, which is not necessarily the 

case in formal axiomatization: von Neumann points out that the fifth 

postulate in Euclid’s geometry is non-empirical.

The analytic machinery is a mathematical structure containing quantities 

that have the same relation among themselves as the relation between the 

physical quantities. Ideally, the physical axioms should be strong and rich 

enough to determine the analytic machinery completely. The physical 

interpretation connects then the elements of the analytic machinery and the 

physical axioms.

Here is the idea in the author’s words and specified for the case of 

quantum mechanics, where probability density for the distribution of values 

of physical quantities is taken as the basic, primitive concept (Hilbert, 

Nordheim and von Neumann, 1926):
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The way leading to this theory is the following: one formulates certain 

physical requirements concerning these probabilities, requirements that 

are plausible on the basis of our experiences and developments and which 

entail certain relations between these probabilities. Then one searches for 

a simple analytic machinery in which quantities appear that satisfy 

exactly these relations. This analytic machinery and the quantities 

occurring in it receive a physical interpretation on the basis of the 

physical requirements. The aim is to formulate the physical requirements 

in a way that is complete enough to determine the analytic machinery 

unambiguously. This way is then the way of axiomatizing, as this had 

been carried out in geometry for instance. The relations between 

geometric shapes such as point, line, plane are described by axioms, and 

then it is shown that these relations are satisfied by an analytic machinery 

namely linear equations. Thereby one can deduce geometric theorems 

from properties of the linear equations. (p. 105) (translation from (Rédei 

and Stöltzner, forthcoming). 

Hilbert, Nordheim and von Neumann see clearly, however, that not even 

soft axiomatization is practiced in actual science. They point out that what 

happens is that one typically conjectures the analytic machinery first and 

without having formulated the physical axioms. It is only after the analytic, 

mathematical part is fixed that one gets insight into what the physical axioms 

should be. In their words (Hilbert, Nordheim and von Neumann, 1926): 

In physics the axiomatic procedure alluded to above is not followed 

closely, however; here and as a rule the way to set up a new theory is the 

following.

One typically conjectures the analytic machinery before one has set up a 

complete system of axioms, and then one gets to setting up the basic 

physical relations only through the interpretation of the formalism. It is 

difficult to understand such a theory if these two things, the formalism 

and its physical interpretation, are not kept sharply apart. This separation 

should be performed here as clearly as possible although, corresponding 

to the current status of the theory, we do not want yet to establish a 

complete axiomatization. What however is uniquely determined, is the 

analytic machinery which – as a mathematical entity – cannot be altered. 

What can be modified – and is likely to be modified in the future – is the 

physical interpretation, which contains a certain freedom and 

arbitrariness. (p. 106) (translation from (Rédei and Stöltzner, 

forthcoming)
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So, to the extent axiomatization is a method practiced in physics, it is 

only this soft axiomatization, and as Hilbert-Nordheim-Neumann point out, 

even this sort of axiomatization is typically practiced in a very opportunistic 

manner with many concessions to the given science’s state of formalization.

It seems fair to say then that, according to the Hilbert-Nordheim-

Neumann paper, axiomatization in physics is an opportunistic soft 

axiomatization, which seems such a soft notion indeed that one may wonder 

whether such a method should at all bear the name “axiomatization” and not 

be called simply “model building”. Von Neumann would most likely not 

oppose such a terminology: in his later essays in which he addresses the issue 

of method in science he emphasizes precisely this feature of science (von 

Neumann, 1961): 

To begin, we must emphasize a statement which I am sure you have 

heard before, but which must be repeated again and again. It is that the 

sciences do not try to explain, they hardly ever try to interpret, they 

mainly make models. By a model is meant a mathematical construct 

which, with the addition of some verbal interpretations describes 

observed phenomena. The justification of such a mathematical construct 

is solely and precisely that it is expected to work – that is correctly to 

describe phenomena from a reasonably wide area.

I will further limit myself to saying a few things about procedure and 

method which will illustrate the general character of method in science. 

Not only for the sake of argument but also because I really believe it, I 

shall defend the thesis that the method in question is primarily 

opportunistic – also that outside of the sciences, few people appreciate 

how utterly opportunistic it is. (p. 492)

To summarize: According to von Neumann, the method in the physical 

sciences is (and should be) a pragmatically interpreted opportunistic soft 

axiomatization.

4. CONCEPTUAL CLARITY IS MORE IMPORTANT 

THAN MATHEMATICAL PRECISION: VON 

NEUMANN’S WORK ON QUANTUM THEORY 

It could in principle be that von Neumann’s actual work in physics does 

not comply with the methodological prescription of pragmatically  

interpreted opportunistic soft axiomatization – but his work is in the spirit of  
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this methodological principle, and the aim of this section is to show this on 

the example of von Neumann’s work on quantum mechanics.

Von Neumann’s foundational work on quantum mechanics can be 

divided into two periods: the work between the years 1926-1932 and the post 

1932 period. Von Neumann started working on quantum mechanics in 1926 

while being an assistant of Hilbert in Göttingen. He published 3 papers (von 

Neumann, 1927a, 1927b, 1927c) in Göttingen and these papers served as the 

basis of his 1932 book (von Neumann, 1932) that summarizes what can be 

properly called the “Hilbert space quantum mechanics”. This first period is 

the better known and it has been reviewed in (Jammer, 1974) for instance.

Less well known is that soon after von Neumann had finished his book, 

he started questioning the Hilbert space formalism, and by 1935-1936 he 

came to the conclusion that the Hilbert space formalism is not a suitable 

framework for quantum theory. Why? To understand von Neumann’s 

position and in particular his abandoning the Hilbert space formalism one has 

to recall the core of the Hilbert space formalism as this was formulated in his 

1932 book.

Von Neumann formulates only two, explicitly formulated physical 

axioms, both concern the nature of the expectation value of physical 

quantities in a statistical ensemble:

A Expectation value assignments ( )a E a  are linear: 

( ) ( ) ( )E a b … E a E b …

B Expectation value assignments are positive: 

( ) 0 if can take on only non negative valuesE a a

These two postulates are informal and are based on empirical 

observations exactly in the sense in which the Hilbert-Nordheim-Neumann 

paper talks about physical axioms: The physical quantities a b  are left 

completely unspecified, and the two postulates spell out something that is a 

basic, empirically observable feature of expectation value assignments in a 

relative frequency interpreted probability theory.

The analytic machinery is the set of all selfadjoint operators on a Hilbert 

space, the third (C) and fourth (D) “postulates” specify the physical 

interpretation, the link between the physical quantities and the operators:
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C If the operators A B…represent the physical quantities a b…then  the 

operator A B …represents the physical quantity a b…

D If operator A  represents the physical quantity a then the operator 

( )f A represents the physical quantity ( )f a .

It is rather obvious that the above axiomatization is indeed the sort of 

opportunistic soft axiomatization characterized in the Section 3: The 

opportunistic aspect of this soft axiomatization manifests in the fact that 

postulates A and B do not imply that the physical quantities need to be 

represented by the set of all linear operators on a Hilbert space. One has to, 

and von Neumann does indeed, stipulate that the physical quantities are 

represented by the formal machinery of linear operators on a Hilbert space.

From postulates A+B+C+D von Neumann deduces that every expectation 

value assignment is of the form

( ) ( )E a Tr UA  (1) 

with some statistical operator U  (= positive, linear, not necessarily trace 

class!) and where the selfadjoint operator A  represents physical quantity a .

Equation (1) is the heart of the whole theory, it contains all probability 

statements; specifically, according to von Neumann’s interpretation, Eq. (1) 

yields the probabilities of quantum events: 

( ( )) ( ( ))
A A

p P d Tr UP d  (2) 

where ( )
A

P d is a spectral projection of some observable S  with spectral 

measure
A

P , the projection ( )
A

P d representing the event that observable A

takes its value in the set d  of real numbers. 

This is in a nutshell of von Neumann’s approach to quantum mechanics 

in the years 1926-1932. Von Neumann realized however that his 

interpretation of the trace formula is beset with deep conceptual problems: in 

order to be able to interpret the probabilities ( )p X  as relative frequencies (in 

von Mises’ sense, where there is a fixed statistical ensemble in which one has 

to compute the probabilities) the probability assignment ( )X p X needs to 

satisfy the following “subadditivity” property:

( ) ( ) ( ) for all projections ,p X p Y p X Y p X Y X Y  (3) 

where and are the standard lattice operations between Hilbert  

space projections. But the subadditivity property is violated by every 

p defined by a every non-trivial statistical operator U I ; on the other hand, 

the “probabilities” given by the identity operator U I  as statistical  
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operator are not finite, hence they cannot be interpreted as relative 

frequencies at all. 

Von Neumann was struggling with this problem already in his second 

1927 paper on the foundations of quantum mechanics (von Neumann, 1927b) 

and also in his book (von Neumann, 1932); and this conceptual problem was 

the main reason, I claim, why he lost his belief in the Hilbert space 

formalism by about 1935 (see (Rédei, 1996) for further details). Von 

Neumann’s solution of this conceptual problem in 1935-1936 was that he 

suggested that the proper mathematical framework for quantum theory is the 

theory of type
1
factor von Neumann algebras. He maintained this view as 

late as in his 1954 address on “Open Problems in Mathematics”, which is his 

last word on quantum theory (see (Rédei, 1999) for details).

It is important to point out that von Neumann’s preference of the theory 

of
1
factors as the proper mathematical framework of quantum theory was 

not based on any mathematical imprecision in the Hilbert space formalism, 

nor was it motivated by any discovery of a new physical fact or 

phenomenon: it was motivated exclusively by informal, conceptual-

philosophical difficulties related to the interpretation of probability in 

quantum theory. Thus one has to conclude that what drove von Neumann’s 

research in physics was not his desire to have mathematically impeccable 

theories: It was more important for him to create theories that are 

conceptually sound. What better further proof of this claim can one have than 

the fact that von Neumann also realized that even taking the theory of 

1
factor von Neumann algebras as the proper mathematical framework for 

quantum theory does not solve the problem of how to interpret quantum 

probability, and in 1936 he finally abandoned the relative frequency view of 

quantum probabilities altogether (von Neumann, 1962): 

This view, the so-called ‘frequency theory of probability’ has been very 

brilliantly upheld and expounded by R. von Mises. This view, however, is 

not acceptable to us, at least not in the present ‘logical’ context. (p.196) 

(See (Rédei, 1998, 1999, 2001) for further details of von Neumann’s post 

1932 views on quantum mechanics and quantum probability.) 

5. SUMMARY 

Contrary to what seems to be a common evaluation of von Neumann’s 

position concerning the role of mathematical rigor in physics, von Neumann 

was very relaxed about mathematical precision in physics. A closer look at 

his views on the nature of the axiomatic method in mathematics (set theory)  



VON NEUMANN ON MATHEM. AND AXIOMATIC PHYSICS 53

and physics (quantum mechanics) show that he did not consider the axioms 

of set theory as a purely formal system and that he followed an 

opportunistically interpreted soft axiomatic method in quantum theory. Von 

Neumann’s post 1932 work on quantum mechanics, and in particular his 

abandoning the Hilbert space formalism in favour of operator algebra theory, 

show that for him conceptual clarity and existence of an intuitively 

satisfactory interpretation of a physical theory were more important than its 

mathematical precision. Von Neumann was ready to abandon a physical 

theory, however clean mathematically, if it was conceptually problematic – 

like any truly deep thinker he was against any dogmatism in science.

Work supported by OTKA (contract numbers: T 043642 and TS 040899).
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THEORIES OF MATTER AND MIND 
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Abstract: It is said that – if mathematics was considered as queen of sciences in Greece 

then linguistics was considered as queen of sciences in India. There is a 

noteworthy absence of mathematical physics in the Indian mathematical 

traditions. On the other hand mathematical thought was employed for 

understanding working of mind by different Indian philosophical schools. We 

will explore reason for this strangeness by focusing on the nexus between the 

ideas of causation and mathematics in the classical Indian intellectual context. 

The relation between causation and mathematics is clarified through the causal 

analysis of numeric cognition. It is shown that the insights thus gained can be 

generalised to causally account for any cognition.

Key words: causation; mathematics; extension; obstructability; causal asymmetry; 

expectancy; adequacy; cognition. 

1. ENIGMATIC NEXUS BETWEEN CAUSATION 

AND MATHEMATICS 

The two popular doctrines that continue to impinge upon concerns 

regarding the relation between physics and mathematics are: 

1. Causal closure of physical domain: Kim has articulated ‘causal closure’ 

disposition as (Kim, 1993) – “... the assumption that if we trace the causal 

ancestry of a physical event, we need never go outside the physical 

domain.”(p. 280) 
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2. Causal inertness of mathematical domain: The ‘inertness’ disposition can 

be characterized in the words of Balaguer (Balaguer, 1998) as – “… the 

belief that there is something real and objective that exists outside of 

space-time and that our mathematical theories characterize.”(p. 8)

These two doctrines are seemingly founded on independent rationale and 

practice. Mathematics is seen as causally inert and physics as causally self-

contained. Together they radically partition domains of physics and 

mathematics rather neatly. 

In spite of the division between causal order and logical order that 

seemingly informs physics and mathematics respectively, we have witnessed 

mutually enriching and close collaboration between the two disciplines for 

the last four centuries. The mysterious accord between the two is strikingly 

illustrated by Galileo’s purely logical proof of an entirely empirical issue, 

namely, the proof of “equal rate of descent of material bodies.”
16

 He arrived 

at a causally significant feature of gravitational reality on the basis of purely 

a-causal and logical argument. Similarly, purely for the sake of mathematical 

brevity, Dirac paved way for the reality of positron and anti-particles. These 

examples show that the relation between causality and mathematics is not as 

innocent as hinted in the powerful twin-doctrines stated above.

At a fundamental level these twin-doctrines were reinforced by 

convergence and congruence of two independent philosophical distinctions, 

namely, between 

1. Causality and logicality: in the Indian philosophical traditions
17

 similar 

distinction is drawn between pram na (veridical causation) and tarka

(eliminative reason), and

16
 We quote from Galileo to bring home the import of his proof (Galilei, 1632) – “But, even 

without further experiment, it is possible to prove clearly, by means of a short and 

conclusive argument, that the heavier body does not move more rapidly than a lighter 

body.”(p.62) The proof, given by Galileo, proceeds by taking two bodies, say, A which is 

heavier then B. If they are made to fall from the same height, either heavier will fall earlier 

or lighter. In case heavier falls faster, tie up with mass-less string the two masses as A B.

When A B falls from the same height, A will pull B down whereas B will pull A up and as 

a result A B will fall in between the time taken for A and B to fall the same height. But 

since A B is heavier then A, it will fall faster then A. Thus there is a logical contradiction. 

Same contradiction will result in the case when lighter body falls earlier. To avoid 

contradictions all bodies will have to fall with equal rate of descent. QED. 
17

Pram na is derived from pram  (true cognition) + karana (causing of) meaning ‘causation 

of true knowing’. This is distinguished from tarka, suppositional reason, that does not 

directly yield ‘true knowledge’ but only helps focus causal apparatus of ‘phenomenal 

knowledge’ by eliminating logically contradictory possibilities. Tarka is a-causal whereas 

pram na is not. Tarka radically leaves open possibility of new ‘phenomenal truth’ about 
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2. Matter and mind: in the Indian philosophical traditions
18

 similar 

distinction is drawn between jada (stuff) and cit (consciousness). 

Though these philosophical distinctions are very old, both in the Greco-

European and the Indian analytic traditions
19

, their convergence is new and 

has been brought into force only since European Renaissance. Basic impetus 

for this convergence came from Descartes’ radical bifurcation
20

 of spatio-

                                                                      

its subject matter. For example, Galileo’s argument in footnote 1 is an instance of a 

particular tarka, reductio ad absurdum. It, however, presumes identity of the nature of 

vertical and horizontal motion (that is, unity of gravitational and inertial mass) to derive 

contradictions, which is questionable as was later done by Einstein. Thus, General Theory 

of Relativity, giving new causal knowledge about gravity, can be articulated in spite of this 

reductio argument. Pram na stands for causal aspect of knowing and not inert causality of 

matter as such. More accurate translation of pram na is ‘causation of veridical cognition’. 

The distinction between tarka (eliminative reason) and pram na (veridical causation) is 

firmly upheld by various Indian philosophical schools except by the Jaina tradition, which 

regards tarka as an independent pram na. See (Singh, 1997) for fuller discussions on this 

Indian distinction, which is homologous to the distinction between causal and logical order 

but can be more accurately rendered as a distinction between ‘causation of veridical 

cognition’ and ‘ratiocination’. In the Indian traditions reflection on causal aspect of matter 

is subsumed under causal aspect of veridical cognition. 
18

 Ancient Vedic doctrine of tman (self) created a deep and lasting schism from bh ta

(matter). Separation of the two has been internalized in a most general and widely accepted 

distinction between jada/cit (stuff/consciousness) in the Indian philosophical traditions. 

The specific characterization of the two, however, differs from one philosophical school to 

another. Usually ‘phenomenal mind’ (manas) is understood as jada (stuff) along with 

bh ta (matter) and both are radically distinguished from cit (consciousness). Even 

an tmav din (no-self-theorist) Buddhist accept this distinction and most radical among 

them identify transcendental cit (consciousness) with unya (emptiness).
19

 Various articulations of these distinctions are well known in the Greco-European traditions 

as well as in the Indian traditions. A recent comparative survey of Indian and Greek 

philosophies, (McEvilley, 2002), shows antiquity of the distinction between matter and 

mind in Indian and Greek philosophies. However, distinction between causal and ordinal 

aspect of reality in the Indian tradition is not well known. It is Pra astap da (530, p. 238, 

247 & 272-313) who first proposed that numbers do not play any causal role though they 

are effects that are caused and that they involve event of ‘expectancy cognition’ (apeks

buddhi) as a conditional cause for their production and that numbers play role in 

revealing/making order in reality. The distinction between causal role and ordinal role has 

no obvious relation with various characterizations of the distinction between matter and 

mind in the Indian analytic traditions including the one proposed by Pra astap da.
20

 Concept of res extensae was propounded by Rene Descartes to create lasting distinction 

between the material world and the mental world. “Matter has the essential attribute of 

extension, and all genuine properties of matter, must be (quantitative) modes of extension. 

These modes include duration, which necessarily is contained in our conception of the 

existing material things, since to conceive of it as existing is to conceive of it as continuing  
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temporally extended matter and un-extended mind (Descartes, 1641). 

Causality was thought to be necessarily and only associated with spatio-

temporally extended stuff and not with non-extensional reality. Numbers, 

however, are not given to us the way spatio-temporal matter is given to us. 

Numbers in their being are mind-entangled and are non-extensional (in the 

sense of non-spatio-temporal-extension). Likewise, in logic, entities like 

negation etc. are non-extensional. On the basis of the property of extension, 

the matter-mind dichotomy becomes intimately congruent with causality-

logicality dichotomy. It is only this congruence that remoulded ancient 

philosophical distinctions into twin-doctrines pointed above. 

2. CAUSALITY BEYOND MIND-MATTER 

INCOMMENSURABILITY

However, there is a serious error in Descartes’ extension doctrine. Mind 

is extended as much as matter is, though extension of mental entities is

purely temporal whereas extension of material entities is spatio-temporal.

Mental entities are temporally extended
21

 at least in two senses –

(i) mental events ceaselessly consecute, and  

(ii) mental event can be composite and thus can be inclusive of the 

content from temporally different mental events.

Further, relative temporal indexing of mental events is possible – as in 

reports such as “first I thought, then I felt bad and then I remembered etc.” 

Though, unlike material events, mental events are not spatio-temporally 

extended, as there is no place for them to dwell (perdure) synchronically and 

to be commeasured as coeval real events. Nonetheless any extended entity is 

obstructable or transversable, hence manipulable and evidentially 

theorizable.
22

 Mental as well as physical entities are prone to obstruction, 

hindrance, cessation, sublation and termination and thus ought to be subject 

                                                                      

to exist.” (Descartes, 1644, I, 55 & 57). According to Descartes, duration of mental 

event/entity is inconceivable. Thus in contrast, the realm of mind, res cogito, is non-

material without any attributes of extension.
21

 In contrast to the Cartesian outlook, modern phenomenological traditions, Brentano and 

Husserl et al, in Europe have always accepted pure temporal extension of mind and 

consciousness. In the Indian philosophical traditions experienced (anubhuta) mental 

entities are universally regarded as extended in time. 
22

 Detailed arguments, drawing from Indian analytic traditions, on mind being obstructable 

(b dhita) as much as matter is obstructable has been given in Singh (2003, ch.4) and a 

generalized theory of obstruction is proposed using which causal underpinnings of the laws 

of motion or consecution for first person experience have been suggested in the book. 
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to causation. Events of both classes are at least subject to one or other caused 

obstruction in their persistence. More generally, they are amenable to being 

caused into birth, existence and termination. By virtue of being caused, 

mental as well as physical entities/events are manipulable.

For Descartes, manipulability rests on durability (an extension “which 

necessarily is contained in our conception of the existing material things, 

since to conceive of it as existing is to conceive of it as continuing to exist”, 

see footnote 5). Unlike physical events mental events are not durable; they 

are momentary (they have intrinsically indeterminate duration). It needs to be 

realised that manipulability results not because of durability but because of 

the terminals of durable. Eternally durable entity is neither caused into birth 

nor caused into termination. Non-eternal entities are caused at the junctures 

of beginning and end terminals. More fundamental are the terminals of 

duration and not duration itself. Duration can be indeterminate in spite of 

having determinate terminals. Extension is simply not a key that lets in 

causation; instead obstructability is a window to causation. Descartes’ error 

is in mistaking powers of the terminals of extension for powers of the 

extension. Mental as well as physical events/entities are subject to 

obstruction and thus to causation. Therefore, the distinction between matter 

and mind cannot exactly be congruent with the distinction between causality 

and logicality. Mental events are not causally inert, nor are physical events 

logically inassessable. Thus, there is a serious breakdown of Renaissance 

congruence that had originally enshrined the twin-doctrines. This collapse 

throws up a challenging arena for fresh reflection on the relation between 

causality and mathematics. It can be safely claimed that the nexus between 

causation and mathematics has to be re-addressed in the context that clearly 

rises above matter-mind incommensurability thesis, which is the basic force 

behind the twin-doctrines. Traditional Indian analytic and conceptual milieu 

precisely provides such a context. Causal aspect of first person experience 

and in particular causal aspect of cognition has been a subject of sustained 

inquiry and abiding interest in the Indian analytic traditions.

In the Indian analytic traditions the hard impenetrable mental-material 

dichotomy is never proposed though a firm distinction between mental and 

material is maintained. Mental and material is resolutely distinguished on the 

epistemic ground that mental is privately accessible to one cognizer whereas 

material is publicly accessible to all cognizers. At least Cartesian extensional 

dichotomy is not upheld. Instead, hard-dichotomy between obstructable 

(b dhita) and unobstructable (ab dhita) entities
23

 is accepted by numerous 

23
 The distinction between obstructable (b dhita) and unobstructable (ab dhita) entities is an 

analytic distinction. Obstructability or ‘being transversable’ is a property of being subject 
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contending and persistently quarrelling Indian philosophical traditions. And 

for all of them, almost without exception, phenomenal mind (manas) as well 

as matter firmly belongs to the realm of obstructable entities (jada). For, it is 

in the nature of mental and material entities that they are subject to temporal 

consecution and spatio-temporal change respectively. Such change is not 

possible without causation. Both types of entities are non-perennial, since 

their perdurance is contained, checked or obstructed by the rest of the world. 

They are subject to causation and change irrespective of whether they are 

publicly accessible (as are material entities) or privately accessible (as are 

mental entities). The very conception of the realm of obstructable entities 

simply breaks down mind-matter incommensurability thesis.

In contrast to the obstructable realm is conceptualized the realm of 

unobstructable.
24

 There is no necessity that unobstructable entities/entity 

cannot play causal role, however, it is necessary that they are not effects of 

any cause. Obstructable entities, in contrast, can be cause as well as effect.

The Indian framework of obstructability provides a natural platform for 

the study of the nexus between causality and mathematical objects. In 

particular, it is in the perennial-pluralist outlooks, like that of Vai esika and 

Jaina traditions, that causality-mathematics nexus is explicitly worked out. 

                                                                      

to containment in the state of perdurance. It embodies most elemental conceptualization of 

‘change’ that is common to mental and material entities. Ceasing to perdure involves 

causality; such an entity requires external causal condition for it to be non-perennial. It is 

not perdurance as such that involves causality, as Cartesians would want to believe. For, 

perennially perduring entity is not caused, only an entity that is obstructable is caused.
24

 Usually Brahman (often translated as ‘pure consciousness’) and even M h k la (grand 

time) are popularly conceived as unobstructable entities. ankara’s Advaita (passive non-

dualism), aiva Advaita (active non-dualism) Bauddha unyav da (emptiness-monism) are 

the three popular philosophical schools that have cultivated monist idea of unobstructable 

entity. Vai esika, M m ms  and Jaina philosophical traditions take pluralist position on 

unobstructable entities and propose comprehensive system of invariant categories. Even 

plural pad rtha-s (scheme of ontological categories) can be legitimately conceived as 

unobstructable entities that perennially perdure and remain invariant through changes. 

Pra astap da is an important Vai esika thinker who explicitly theorized on the problem of 

the nexus between causality and mathematical objects (Pra astap da, 530). In such a 

reckoning, space and time are unobstructable real entities among other such entities, 

whereas all events, mental or physical, are obstructable. Analytic issues such as the unity 

or plurality of the realm of unobstructable entities or issues such as causal/logical relation 

between obstructable and unobstructable entities are ceaselessly debated by traditional 

Indian philosophers and theorists. 
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3. CAUSATION OF MATHEMATICAL ENTITY IS 

MIND ENTANGLED 

In modern scholarship Benacerraf
25

 (1983, pp. 403-420) has argued, “If 

mathematical facts are causally inert, we cannot know them (or entertain 

belief about them).” Maddy has suggested the realist causal underpinnings of 

the perceptibility of sets of physical objects (Maddy, 1990). Koons has 

proposed a causal theory of modal knowledge, including logical and 

mathematical knowledge (Koons, 1999). Mathematical knowledge itself is 

causally arrived at simply because mental activity involving mathematical 

entities is subject to causation. Phenomena of causally governed mental 

activity are assertably true even from the first person perspective apart from 

being true from the third person perspective. Mathematics is thus mind-

entangled in its causal bearings. But the question is in which precise way 

numbers and other mathematical entities can be causally accounted for. More 

compelling is the question whether mathematical truth itself is causally 

anchored. And what endows mathematics with the power to play a role in 

causality-centric physical theories.

Pra astap da (530, p. 239) had proposed that numbers, numeral-

distinctions and graphic-aggregations are fundamentally mental 

(buddhyapeksa) in nature.
26

 Their being involves mental event and mental 

properties. They come into being because of mental activity. ridhara (991, 

p. 239), in his commentary on the passage, gives a following supportive 

syllogism – “The number ‘two’ is produced by cognition because ‘two’ is 

cognized by only one cognizer; All that are cognised by only one cognizer 

are produced by cognition like pain etc.; The number ‘two’ is cognised by 

only one cognizer therefore ‘two’ is produced by cognition.” This argument, 

however, does not diminish objectivity of ‘two’ that could be independently 

cognised by each of many cognizers. The argument can be generalized as – 

“mathematical entity is produced by cognition, because while being an effect 

it is necessarily cognised by one cognizer, like satisfaction.” Thus, causation

of mathematical entities is mind-entangled. Mind is necessarily implicated in 

the coming-to-be of mathematical entities and interestingly such coming-to-

be is not a material cause of anything. 

25
 Earlier too Benacerraf had made a plea for the causal aspect of mathematical object 

(Benacerraf, 1965).
26

paratv paratvadvitvadviprthaktv dayo buddhyapeks .
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4. CAUSAL ASYMMETRY INVOLVED IN 

MATHEMATICAL ENTITIES 

Interestingly, in the Vai esika analytic tradition, Pra astap da (530, p. 

247) had claimed that numbers (dvitv di samkhy ), numeral-distinctions 

(dvi-prthaktva) and graphic-segregations (paratva-aparatva guna-s) are not 

cause of anything unlike substances (dravya), actions (karma) and other 

qualities (guna), which play determinate causal role. Such non-causative 

entities can be safely called pure mathematical objects. This holds for all 

numbers other then ‘one’, which, however, plays a role of a cause.
27

 At the 

same time he had maintained that numbers (other then ‘one’) etc. are caused 

and thus are effects of determinate causes.
28

 This is an interesting thesis of 

causal asymmetry involving mathematical entities. They are effects but not 

causes. Unlike unobstructable entities, which cannot be effects, numbers etc. 

are effects. Among obstructable entities, numbers etc. are distinct from the 

27
 Pra astap da (530, p. 243) states that number ‘one’ inherent in each of the constituent 

atoms, is a cause of ‘one’ in a whole made out of them and is also a cause of ‘two’ etc. in 

loci of the parts of whole. Such a causal theory is a result of sophisticated Vai esika

doctrines of ‘whole residing in each of its parts’ and ‘whole being constituted by parts and 

yet being different entity from sum of parts’. However, caused numbers ‘two’ onwards are 

not further cause of any being. Number ‘one’ creates effect in its own locus (like ‘two’ 

etc.)  as well as in other locus (like ‘one’ in a whole). This is said to hold for the causal role 

of one-distinct-ness (eka-prthaktva) as well. Pra astap da (530, p. 240) says that unlike 

several real qualities, number ‘one’ and ‘one-distinctness’ produce effects of the same 

kind, i.e., numbers and distinctness respectively. Another property that goes with ‘one’ and 

‘one-distinctness’, according to Pra astap da (530, p. 249), is that they remain till their loci 

exist whereas other numbers etc. can disappear while their loci survive. Because of these 

complications with ‘one’ Jaina thinkers even upheld that smallest number is ‘two’ and not 

‘one’.
28

 Apart from causing numbers in physical-whole there is one other way that number ‘one’ 

plays a causal role. This deals with the construction of mental-whole. Mental-whole, i.e., 

cognition, is different from physical-whole only in a way whole relates to its parts. A 

single perceptual cognition has many parts or aspects that ultimately constitute it, but such 

constituted cognition does not inhere in those parts whereas physical-wholes necessarily 

inhere in their parts. When I visually perceive ‘monitor, table etc.’ as mental-whole, even 

if my head moves towards left to visually perceive ‘bookshelf, papers etc.’ as another 

mental-whole, the monitor etc. are not left poorer because of lack of visual cognitive-

whole that they had constituted and of which they no longer are parts. ‘One’, subsisting in 

a real locus, can cause perceptual cognition ‘this is one’. Two such cognitions in 

consecution lead to mental event involving an entity ‘two-ness’, which in turn causes ‘two’ 

in the constituents of perception. Such an entity ‘two-ness’ is available to self (cognizer) as 

its surrogate property (dharma guna of atman) and the process is quite akin to Platonic 

reminiscence of form by soul. Subsequently, perceptual cognition ‘these are two’ is 

caused.
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rest by not being a cause but being only effects. Thus there can be a division 

of entities into three classes on the basis of their role as a cause and effect –

(i) causes but never effects: unobstructable entities;  

(ii) effects but never causes: obstructable mathematical entities, and; 

(iii) causes as well as effects: other obstructable entities.  

Pra astap da (530, p. 231) had also noted that the unique causal 

asymmetry of mathematical objects (i.e., being effect and not cause) endows 

them with the ordinal power over everything including them. He had 

included them in the category of general qualities (s m nya guna), which are 

found in all substances without exception. They do not causally soil the 

reality but are nonetheless created by the reality and in turn disclose ordinal 

features of reality. Product-cum-causally-impotent nature endows numbers 

etc with supervening and divulging role.
29

Again this does not hold for ‘one’ whose being is not dependent on 

mental processes and thus can be a cause as well as an effect unlike other 

mathematical entities. ‘One’ can produce as effects numbers in two types of 

wholes – (i) physical-whole (objects), which inheres in each of its parts, and; 

(ii) mental-whole (cognition), which does not inhere in its parts.
30

Causal behaviour of ‘one’ as a cause and as an effect is implicated in the 

process of the construction of physical-whole from parts. Formation of a 

unitary physical-whole, in which comes to in-exist ‘one’, is explained by 

Pra astap da with a help of a general Vai esika thesis ( rambhav da) that 

“being of whole though constructed by parts is different from the sum of 

parts.” Though its parts causally construct a physical-whole, it becomes a 

whole only if it comes to in-exist in each of its parts. Inhering of a real 

physical-whole in each of its parts endows it with robust compactness and 

unity. Unity of a physical whole, as a quality ‘one’ in-existing in a whole, is 

produced by (i) ‘one’ inhering in each constituent parts, and (ii) ‘whole’ also 

29
 In contrast, popular modern doctrine – ‘Platonic realism of numbers’, see (Balaguer, 1998) 

– takes numbers as perennial beings, which can be causes but not effects. It is thought that 

matter is condemned to imitate such perfect beings. Such a meek imitation by uncouth 

matter supposedly accounts for the potency of numbers. Reminiscence of their being leads 

to numeric cognition as well as to true verifiable knowledge about material form. 
30

 In Western philosophy, Brentano (1917, p. 195), using Aristotelian terminology, makes a 

similar distinction between two types of accidents – (i) An accident that is last-of-the-part-

full is inherent accidents (eigenschaften) that inheres in its subject (in all its parts) and is a 

compact whole which displays unitary coherence of parts when acted upon and does not 

require activity to sustain itself; (ii) Accidents that are mere-part-full are called by 

Brentano passive affections (erleidungen) which require activity to remain in their 

subjects. These exactly correspond to physical whole and mental whole in our 

terminology.
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inhering in each of them.
31

 Through such intricate mereology Pra astap da

explains how a physical-whole moves when only one part of it is pushed or 

how entire physical-whole is perceptually cognised while only one portion of 

it is visible to the eye or is touched. Unity of whole, embodied in a produced 

quality ‘one’, clearly has a causal role there. 

5. “EXPECTANCY COGNITION” IN THE 

PRODUCTION OF NUMBERS 

Production of numbers other than ‘one’ in a mental-whole and in a 

physical-whole is an altogether different process. The complexity in 

understanding these processes results because mental-wholes do not in-exist 

in their parts. Locus of mental-wholes is self and not what is cognized. 

Further, numbers other then ‘one’, even in physical-wholes, for their 

existence presume occurrence of a mental-whole. Physical-wholes occur as 

parts of a mental-whole. Causal production of numeric cognitions by ‘one’ 

in-existing in such parts of a mental-whole is analytically a challenging 

issue. The simplest case is the production of ‘two’ in physical-wholes (as in 

“‘two’ things”) and its perceptual cognition “two things”. According to 

Pra astap da this process involves subsequent atomic cognitions “this is one” 

and “that is one”. ‘Two’ as an entity is produced and destroyed in the process 

of the formation of a final mental-whole (that is, perceptual cognition) “two 

things”. Several cognitive events take place in causal order to accomplish 

this process. Working out the causal details of numeric cognition, 

Pra astap da (530, p. 272) had proposed that it is invariably an episodic 

event of ‘expectancy-cognition’ (apeks  buddhi) that brings them (numbers 

other then ‘one’ etc.) into being.
32

 He had worked out a detailed causal 

process involved therein (pp. 272-313).
33

 This causal process of 

31
 According to Pra astap da there are certain qualities that produce effect in locus other than 

their own and ‘one’ is such a quality. ‘One’ inhering in part produces ‘one’ inhering in a 

whole. When a physical-whole comes into being it comes to inhere in each of its parts. In 

any part, apart from inherence of substantive whole, also inheres a quality ‘one’. These in-

existing ‘one’s of all parts simultaneously, through a binding act, produce a quality ‘one’ 

in a physical-whole. This is because in each part it is the same whole that comes to reside. 

Foundations of this mereology have been formally articulated in Singh (2003, chapter 5). 
32

 Commentator ridhara (991, p. 272) had clarified that in the production of ‘two’, two 

substances are the material cause, two of the numbers ‘one’ are the non-material cause and 

‘expectancy cognition’ is the efficient cause.
33

 The entire process of the production and the destruction of ‘two’ in perceptual cognition 

“two objects” involve six serial moments (ksana-s) and four cognitive episodes (jñ na)
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mathematical cognitions has been a subject of discussions, criticism and 

suitable amendments from different perspectives by several thinkers since 

then.
34

Since production of ‘two’ etc. is a result of the conditional existence of 

‘expectancy cognition’, numbers in their being are non-persistent as 

‘expectancy cognition’ is non-persistent. Ephemerality of cognition 

permeates down to ephemerality of its effects. So far as numbers (other than 

‘one’) are qualities of substances and numbers are caused effect, numbers

have ‘contingent being’ dependent on ‘expectancy cognition’. Number, 

however, has many senses apart from the sense of the quality of substances. 

It is these other senses of number that can make it possible for even robots to 

count.

6. THREE-TIER ONTOLOGY OF NUMBER 

Interesting to note in the proposed causal process is that Pra astap da

delineates and employs three different senses of a number. For instance, 

nominal number ‘2’ has following three ontological senses
35

(i) ‘two-ness’ as an abstract entity (dharma);

(ii) ‘two-ness’ as quality (guna), and 

(iii) ‘two-ness-ness’ as a natural kind (j ti).

He had stitched together these three senses of number into an  

episodically unified causal process of counting, which eventually produces 

perceptual cognition “two physical-wholes”. Nominal number ‘2’ as a 

quality is technically called ‘two-ness’ (meaning ordinal 2) because it 

independently in-exists in two different loci of two things at once. All 

possible occurrences of such ‘two-ness’ are however instances of a universal 

or natural kind ‘two-ness-ness’ (meaning cardinal ‘2’). In distinction from 

these two types of real entities, namely quality and universal, ‘two-ness’ as 

                                                                      

with each cognitive episode of three moments. In the process quality ‘two’ comes to in-

exist in real substantive objects before being perceives in cognition.
34

 For instance, according to the analysis of ankarami ra (1430, pp. 219-223) the entire 

process of creation and destruction of ‘two’ takes 16 moments. 
35

 Pra astap da’s cognitive process of counting is: (i) Perceptual cognitions of “‘one-ness’ 

inherent in ‘one’ inhering in a physical-whole” and of “‘one-ness’ in ‘one’ inhering in 

another physical-whole”; (ii) Expectancy cognition of “abstract ‘two-ness’ in each ‘one’”; 

(iii) Birth of quality ‘two-ness’ in each physical-whole; (iv) Perceptual cognition of 

universal ‘two-ness-ness’, and (v) Perceptual cognition of ‘two-ness’ quality, and (vi) 

Perceptual cognition “two physical-wholes”. The existence of ‘two-ness’ quality in 

physical-wholes lasts till ‘expectancy cognition’ lasts. 
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an abstract entity is necessary to account for the causation of the content of 

‘expectancy cognition’, which indeed is a crucial part of the causal process. 

Since veridical cognitions “this is one” and “that is one” cannot by 

themselves provide an entity ‘2’, an abstract ‘two-ness’ has to be posited. 

This abstract ‘two-ness’ is not a cause but a content of ‘expectancy 

cognition’. From where does an abstract entity ‘two-ness’ arrive in the first 

place?

Ontologically, abstract ‘two-ness’ is always available to cognizer as a 

‘non-experienced’ quality of self (adrsta guna of tman).  It is called  

abstract (dharma m tra) because though it is located in self it also can 

surrogate to be a property of an entity (dharmi or its adopted locus) that is 

different from the self. Abstract entities can be defined as entities being 

capable of par lambana or ‘embracing the locus other than its own’. 

Vai esika term for them is aup dhika dharma (imposable properties). 

Abstract number merely dangles in the self, fated to be embodied in 

substances through ‘expectancy cognition’ while counting. Various qualities 

of self usually are expected to characterize self, but abstract entities, though 

being a special quality of self, come by its nature to characterize entities 

other than self.
36

 Besides, fund of abstract entities dwell in self without being 

experienced. Memories, for example, are abstract entities that are non-

experiential quality of self (adrsta guna of tman). They however participate 

in experiential ‘memory cognition’. Abstract ‘two-ness’ is similarly 

recollected from non-experiential fund of self in an event of ‘expectancy 

cognition’. Experienced qualities are temporally extended, are ephemeral and 

are momentary (like cognition, desire, aversion, effort, contentment etc.) but 

non-experienced qualities (memory, morals, classes etc.) are synchronic 

depositories. They do play a-causal role in constructing experience like that 

of “two wholes”.
37

 The depository of abstract entities is, however, caused by 

the traces of experience. 

36
 Among ‘non-experienced’ qualities of self are entities that characterize self itself. These are 

moral dispositional qualities like merit/demerit (dharma/adharma). Like other abstract 

entities, which embrace other locus as well, moral dispositional qualities necessarily 

implicate imposition on the entire expanse of the plurality of selfs and not just a particular 

self. Nature of par lambana in moral disposition is an interesting issue that is intimately 

related to the universal role of abstract entities. 
37

 Such a role of abstract entities in cognition is quite analogous to relation between tarka

(eliminative reason) and pram na (veridical causation) noted in footnote 2. Tarka is like 

memory that does not directly yield ‘true knowledge’ but only helps focus causal apparatus 

of ‘phenomenal knowledge’ by endowing it with parsimony. Parsimonious function in 

mind is non-experienced (adrsta) but underlies all experience (anubhava). Production of 

abstract entities as quality of self is an independent and interesting causal question. In a 

general way it can be said that any event of structured cognition (savikalpaka jñ na) goes 
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The idea of an abstract number is important as it plays logical role in the 

causal construction of ordinal and cardinal number. It plays role in the 

content of ‘expectancy cognition’, which in turn causes in other real objects a 

momentary existence of quality (ordinal number) and natural-kind (cardinal 

number) for the duration of its existence. These momentarily existing ordinal 

and cardinal in real locus give rise to perceptual cognition with numerical 

content. This numeric cognition in turn causes formation of abstract 

depository as its trace. Thus, the logical and the causal are integrated in a 

loop-like manner in Pra astap da’s causal process of the cognition of 

number. The key step in the process is occurrence of abstract or imposed 

property (aup dhika dharma) in ‘expectancy cognition’.

Nexus between causality and mathematical entities is one of the most 

intricate theories proposed by Pra astap da involving –

(i) causal asymmetry of mathematical entities;  

(ii) mind-entangled causation of mathematical entities;  

(iii) necessary occurrence of ‘expectancy cognition’ in a production 

of mathematical entity;

(iv) ephemeral nature of real mathematical entities;  

(v) existence of abstract mathematical entities;  

(vi) three-tier ontology of a mathematical entity, and; 

(vii) loop-like integration of logical and causal in the production and 

the destruction of mathematical entities.

In the proposed causal process, the realm of abstract entities and the 

realm of real entities participate in an ordered and causally exact manner.

7. ADEQUACY CRITERION AND THE PROBLEM 

OF THE UNITY OF MENTAL WHOLE 

It was felt that in this account of numbers there is one issue that has been 

left unaccounted for. The issue is regarding production of the unity of 

cognitive-whole, in particular production of the unity of ‘expectancy 

cognition’. Production of unity in physical-whole can be understood and 

such a unity leading to cognitive generation of numbers in things can be 

                                                                      

in the production of abstract entities. Vijñ nav di Buddhists have paid detailed attention to 

this causal process. In modern research Zalta (1983) attempted a-causal axiomatic theory 

of abstract entities and Tennant (1997) gives a priori arguments for the necessity of 

abstract entities. Contemporary disputes over existence of abstract entities are reviewed in 

(Burgess and Gideon, 1997). 
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understood as well. But how does one understand unity of ‘expectancy 

cognition’?

Raghun tha (1510) gave a deep turn to Pra astap da’s theory by 

proposing a relation of adequacy (pary pti sambandha) to understand unity 

of cognitive-whole.
38

 Number ‘one’ does not capture the unity in a 

hypothetical construction “one expectancy cognition”, since ‘one’ in such 

cognition is not caused by the content (parts) of cognition. Instead, pary pti
39

(adequacy) relation between abstract entity and real entities captures compact 

adequacy
40

 of ‘cognition’. In case of ‘expectancy cognition’, adequacy 

relation obtains between an abstract ‘two-ness’ and real ‘two-ness’ that 

inheres in each thing that is paired. The real ‘two-ness’ that inheres in each 

member of pairs is a ‘class of two members’, that is, each member inheres 

that class to which it has come to belong. Such a class is thus compact 

because mental act, where abstract ‘two-ness’ occurs, makes real members 

belong to that class. Abstract ‘two-ness’ is instead ‘class of all classes of two 

members’ which is related by adequacy relation to the pairs and not to the 

members of pairs. 

In modern period Frege similarly defined number exclusively as an 

abstract entity since for him nominal number ‘2’ is ‘class of all classes of 

two members’.
41

 But Raghun tha’s adequacy relation is a cognitive structure 

relating abstract ‘two-ness’ with pair of two entities in each of which inheres 

real ‘two-ness’ as quality. It is adequacy relation that makes loci of abstract 

‘two-ness’, ‘three-ness’, ‘four-ness’ etc. as mutually exclusive even if same 

real entities participates in them. For Raghun tha number is a structure 

governed by adequacy criterion that relates abstract number with real 

entities. Mathematical knowledge is an expression of adequacy conditions 

associated with numerical cognitions.

The theory of adequacy relation is later generalized by Gad dhara (1660) 

to cover all cognitions and not just restricted to application in understanding 

structure of numeric cognitions. In any cognition, meaning of participating 

real entities is limited (avacchinna) by other participating real entities. 

38
 While defining an analytic device of limitor-ness (avacchedakatva) Raghun tha (1530, pp. 

42-43) introduced an idea of adequacy relation. “The limitor must be understood as 

occurring in its locus, i.e., as occurring completely in it by the adequacy (pary pti)

relation.” Earlier even Bh sarvajña (950) had flouted Pra astap da’s theory on the ground 

that even “‘two-ness’ is ‘one’.” 
39

Pary pti means ‘completion’, ‘wholeness’ (paryavas nam, s kalyam).
40

 In temperament, the idea of ‘adequacy relation’ is somewhat akin to Tarski’s theory of truth 

(Tarski, 1933).
41

 This was pointed by Ingalls (1951) and later analysed by Shah (1982), Roy (1985) and 

Matilal (1985). 
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Usually meaning of a real entity is determined by the scope of a real 

universal that characterizes it and inheres in it. But in cognition this scope is 

curtailed by other participating entities. Each such curtailment is called 

limiter (avacchedaka). It is in this mutual-curtailment of participating entities 

that unity or ‘unified binding’ of that cognition has to be founded. Cognitive-

whole is unified and complete iff ‘extent of limiters’ (avacchedakat ) of 

participating entities (their meaning may not extend to whole extent of their 

corresponding universals) gets related by adequacy relation with abstract 

limiter-ness-ness (avacchedakat tva). It is such an adequacy that makes 

cognition a well-bounded whole. Gad dhara (1660) employs this 

generalization for explaining how perceptual cognition like “smoke on the 

mountain” through adequacy relation causes inferential cognition “fire on the 

mountain.” Logical knowledge is an expression of adequacy conditions 

associated with any cognition.

Though arguments given above deal with numbers but they can be 

appropriately recasted for numeral-distinctions and graphic-aggregations 

which also invariably involve ‘expectancy cognition’ in their causal account. 

‘Adequacy relation’ would relate corresponding abstract entities with ‘co-

ordinated’ real entities to understand causal underpinnings as well as to 

understand binding composure of cognition. Mathematics is not about 

abstract entities alone but is about relation of abstract entities with real 

entities. Further, though the example taken for analysis above is regarding 

causal account of simple cognition “two things”, the analysis holds for all 

numbers with suitable adoption. Prime object of mathematical investigations 

is adequacy conditions that implicate mathematical operations, 

constructions and application to variety of real situations.

Adequacy relations between abstract and real entities provide space or 

opportunity where mathematical and logical thought operates 

parsimoniously. Solution of a typical mathematical problem (say by a 

student) is cognitive movement form the situation of inadequacy to the 

establishment of adequacy relation demanded by the problem. Exact 

formulation of inadequacy (for instance with the idea of variable in many 

typical algebraic school problems) and its solution typically takes place over 

several cognitive episodes (even interspaced with faltered cognitive 

episodes). Once adequacy relation is established, resolution of such  

problems can take place even in a single cognitive episode.
42

 It is real 

42
 Indian mathematician Srinivasa Ramanujan (1887-1920) with no university education 

would just list results on elliptic functions, continued fractions and infinite series without 

being able to reproduce procedure of arriving at the results. When Hardy asked him as to 

how he arrived at results, his explanation was no more then that the Goddess reveals it to 

him. Hardy remarked (Hardy, 1940) – “The limitations of his knowledge were as startling 
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situation of inadequacy (as is witnessed in familiar mathematical, physical 

and social problems) that drives mathematical and logical thinking. Invention 

of new adequacy relation punctuates history of ideas and is also a task wide 

open at the frontiers of ideas.

8. CONCLUSION: NEXUS BETWEEN CAUSATION 

AND MATHEMATICS 

Foundation of mathematics outside the spell of mind-matter 

incommensurability thesis involves causal account of mathematical cognition 

and mathematical entities. Riding on the shoulders of Vai esika tradition we 

have conceptually cleared ground for that. Mathematical entities have three-

tier ontology apart from their nominal being. These are woven together in 

adequacy relation between abstract and real that obtains in any mathematical 

cognition. Mathematical theory is an organism of such adequacy conditions 

imbedded into a systemic organism, which in turn makes causation of 

advanced mathematical cognition possible. Rather man’s quest for non-

experienced systematisations of adequacy relations makes possible causation 

of any wholesome cognition. Abstract depositories adequately copulate with 

reality to yield normal cognitions, which in turn causes reconfiguration of 

abstract depository. Mathematics is discovered and yet invented because it is 

inalienably soiled with causality.
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Abstract:        In our paper, avoiding any strong metaphysical commitment on the world, we 

face the topic of the interplay between mathematics and physics by starting 

from a semiotic approach. It will be shown that it allows us to insert in a 

unitary and coherent framework answers to questions such as: Why 

mathematics is physics? What is the role of mathematics in physics? Why is 

mathematics effective in physical sciences? In the second part of the paper, and 

by utilizing what discussed in the first one, we analyse what we call Dirac’s 

methodological revolution, according to which to do good and new physics we 

must first work on good and promising mathematics. Finally, we exemplify 

Dirac’s methodological revolution by recalling the role of the mathematical 

theory of simple spinors in constructing new perspectives for theoretical 

physics.

Key words: mathematics; physics; semiotic; methodological revolution; spinor. 

What, however, was not expected by all the scientific workers of the last 

century was the particular form that the line of advancement of the 

mathematics would take, namely, it was expected that the mathematics 

would get more and more complicated, but would rest on a permanent 

basis of axioms and definitions, while actually the modern physical 

development have required a mathematics that continually shifts its 

foundations and get more abstract. (Dirac, 1931) 
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1. INTRODUCTION 

Certain physicists, when asked why mathematics is so effective as to their 

theories, reply that they do not know. Others, such as E. Wigner, answer that 

it is a mystery (Wigner, 1960). Others still, such as F. Dyson, reply that it is 

not their concern, since they are physicists (Dyson, 1964). 

Dyson is perfectly correct in admitting that this problem does not concern 

physics, but philosophy. Indeed during the history of philosophy many 

scholars have tried to provide an adequately articulate and argued solution. 

However, each one may, in one way or another, fall into one of the following 

lines of thought: 

1) the so called Platonic line: mathematics is effective because the 

world is intrinsically mathematical; 

2) G. Galilei’s line contained in Il saggiatore (1623) and in Dialogo

sopra i due massimi sistemi del mondo (1632): mathematics in 

physics is effective because there is a close homogeneity between 

the physical world and mathematics; 

3) G. Berkeley’s line contained in A Treatise Concerning the Principle 

of Human Knowledge (1710): mathematics is effective only because 

it is nothing else but a good tool; 

4) I. Kant’s line contained in Kritik der reinen Vernunft (1781-1787): 

mathematics is effective because we cognitively constitute the world 

in a mathematical manner; 

5) I. Kant’s line contained in Metaphysische Anfangsgründe der 

Naturwissenschft (1786): mathematics is effective in physics because 

it is only thanks to mathematics that we are able to construct 

concepts of objects of which we do not have direct experience. 

In the subsequent pages, we will endeavor to follow a different path. In 

particular, we will not assume any metaphysics on the world (as in the 

Platonic one), or a strongly committing theory of knowledge (such as 

Galilei’s or Kant’s), but we will not even demean the importance of the 

problem by adopting a too naive instrumentalistic approach à la Berkeley.

Instead, we will start from what Peirce sustained regarding the structure of 

the physical theories that he analysed in semiotic terms (Peirce, 1895). 

 Notwithstanding this approach, we will not develop an in-depth semiotic 

analysis of the physical language. We will limit ourselves to attempting to 

show how an apparently atypical point of view may describe and highlight 

interesting aspects of the relation between physics and mathematics. Exactly, 

by means of this semiotic perspective we will outline plausible replies to the 

following three questions: 

1) Why mathematics in physics? 

2) What is the role of mathematics in physics? 
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 3) Why is mathematics effective in physical sciences?

After attempting to tackle the above questions, we will present some 

remarks on what we call Dirac’s methodological revolution, according to 

which to do good and new physics we must first work on good and 

promising mathematics. 

At the end, we will concisely illustrate how the recently emerging 

mathematical theory of simple spinors while opening new perspectives for 

theoretical physics, well illustrates the role of Dirac’s methodological 

revolution.

2. WHY MATHEMATICS IN PHYSICS? 

First of all, let us ask ourselves whether, as suggested by Quine, it is true 

that there is no way of doing physics without mathematics (Quine, 1976); 

whether physics must necessarily contain mathematics, and whether physics 

has always contained mathematics. 

By recalling the existence of Aristotelian physics, which is considered 

physics without mathematics by excellence, the reply to the last question is 

immediately negative. Once this is ascertained, it naturally ensues that the 

first question has an obvious reply. If physics existed without mathematics it 

means it is possible to have physics without mathematics. Obviously the 

epistemological and methodological features of that physics are different 

from those of the contemporary physics. Physics without mathematics is 

more a philosophy of nature based on intuitive common sense, than a precise 

and exact science such as those we want now. However, let us not forget that 

physics without mathematics is not a disorganized pile of data, incapable of 

any prediction. The Aristotelian physics was a well-organized discipline, 

albeit not organized according to contemporary canons. In addition, it was 

also capable of providing predictions. The absence of mathematics is not at 

all detrimental to neither predictive power, nor explanatory power, nor 

organizational power.

Thus, physics without mathematics is conceivable, or rather, physics 

without mathematics was feasible, because this type of physics is no longer 

acceptable. The simple reason being that it would not have the empirical and 

theoretical accuracy which only mathematics provides. 

At this point, it is appropriate to recall that Koyré illustrated that, 

excluding rare instances, the accuracy pertained to Greek astronomy entered 

physics only as of the XVII century, when began the tendency of using 

regularly measuring instruments also within the terrestrial domain (Koyré, 

1948). Consequently, mathematics, which already existed in ancient 
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astronomy both in the modeling context and in the predictive context, also 

began to enter physics enabling it to have greater accuracy. 

Notwithstanding Koyré’s historical thesis may be criticized, what is 

relevant from an epistemological view is that it clarifies the fact that when 

accuracy of a theory of nature is sought, one must mathematize it, since only 

mathematics allows for the accuracy that, at the most elementary level, is 

given by the numbers resulting from the measuring instruments. 

That the transition du monde de l'“a-peu-près” a l'univers de la precision

happened in the XVII century, as Koyré suggested, or in a previous time, is 

the concern of historians of science. What is relevant for us is that this 

occurred only by mathematizing the representations of nature. The transition 

du monde de l' “a-peu-près” a l'univers de la precision is the transition from 

a physics without mathematics to a physics with mathematics, that is, to a 

contemporary physics. 

Therefore, at the beginning, mathematics was associated with physics 

above all as the language that allowed dealing with the numbers linked to the 

measurements. It is only afterwards that mathematics also becomes an agent 

for construing well-organized structures from which one can precisely 

deduce numbers, which will then be compared with the world. 

Hence, the least philosophical answer to the question “Why mathematics 

in Physics?” consists in ascertaining that this is the only way one can obtain 

a precise physical theory which may be accurately compared with the world. 

This is a reply that depends neither on strong metaphysics such as Plato’s, 

nor on strong epistemologies such as Galilei’s, or Kant’s, but neither does it 

eliminate the problem instrumentalistically as Berkeley did. 

3. WHAT IS THE ROLE OF MATHEMATICS IN 

PHYSICS?

3.1 The theory of physics as a sign 

To propose an à la Peirce approach, it is worthwhile briefly recalling that 

a sign is something which connects the object with the interpretant, that is, 

both its interpretation (the cognitive aspect of the interpretant) and what has 

to do with a related action (the pragmatic aspect of the interpretant).

It follows that considering, as we will do, a mathematized physical theory 

as a physical-mathematical sign means regarding it as something connecting 

the physical world (the object) which we wish to represent, and the 
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interpretant which, by providing an interpretation of the former, cognitively 

signifies it and allows us to act in it. 

A triadic approach of this kind enables us to deal with many problems in 

an organized and efficient manner, also because a sign has to be considered 

as an icon, as an index and as a symbol (fig. l). In other words, three points of 

view which allow us to consider the sign as such, the sign in relation to the 

object and the sign in relation to the interpretant, respectively. It is exactly 

by understanding the significance of the icon, the index and the symbol that 

it is possible to discern the theoretical value and the mutual dependence of 

1) the physical-mathematical sign as something in itself;

2) the relation between the physical-mathematical sign and the world;

the relation between the physicist and the physical-

mathematical sign, as well as the relation, realized by the physical-

mathematical sign, between the physicist and the world. 

Figure 1. The semiotic triad. 

However, careful attention must be paid to the fact that the triad 

object/sign/interpretant must be understood as being historically 

contextualized. If we do not consider it in this way, we risk being misled by 

historical and philosophical ingenuity, particularly so far as the relation 

between sign and object is concerned. Nothing, neither the sign, object, nor 

the interpretant are a-historical and a-cultural entities. 

It is worthwhile noting here, that although we do not entirely concur with 

Peirce’s proposal, we believe that the triadic approach which has just been 

outlined, is extremely efficient in clarifying relevant aspects of the 

contemporary physics. 

   physical world    interpretant 

index – icon – symbol 

physical-mathematical sign 
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3.2 The physical-mathematical sign as an icon 

The icon is a representation of the object and therefore it is something 

similar to the object, where the similarity is intended to be between the 

relations of the representations and those of the elements with which the 

object is made. This similarity must be considered as a conjecture, as it 

follows from the fallibility of its constructor: man. 

Apart from being a representation, an important characteristic of the icon 

is its independence. In fact, once constructed for a given purpose, it may be 

manipulated as an entity in itself, or, in other words, as having an interpretant 

without any connection to any object. 

The most classical way of working within a physical-mathematical sign, 

thought of as an icon, is that concerning its logical organization. This may 

occur at different levels of abstraction. For example, we can work like A. H. 

Lorentz who, in his Theory of Electrons, reformulates the classical 

electrodynamics as a theory of principles (Lorentz, 1915), to use an 

Einsteinian terminology (cf. Einstein, 1934). An analogous logical 

reconstruction is proposed by H. Hertz in his classical Die Prinzipien der 

Mechanik (Hertz, 1894). 

One immediately perceives that the logical reorganization of a physical-

mathematical icon in terms of a theory of principles is nothing other than the 

most intuitive physical phase of the axiomatisation. The more axiomatisation 

is abstract, the more the physical significance of what is axiomatized recedes. 

From this point of view, the axiomatisations of quantum mechanics proposed 

by P.A.M. Dirac (Dirac, 1958), J. von Neumann (von Neumann, 1932) and 

by G.W. Mackey (Mackey, 1963), are totally different: the former is the least 

abstract one, the latter is the most abstract one. 

But even attempts for the unification of more icons in one, which 

comprises all of them, or reducing more icons to a fundamental one, are 

efforts which have to do precisely with the iconic aspect of the physical-

mathematical sign. 

3.3 The physical-mathematical sign as an index 

We have said that the physical-mathematical sign as an icon is a 

conjectural representation that yearns, in one way of another, to be similar to 

the physical world that it represents, but to have autonomy once it is 

constructed. The physical-mathematical sign as an index is also involved 

with the physical world, but this relation is much more narrow. 

An index is something that indicates. It thus follows that the physical-

mathematical sign as an index has an intentional value, or in other words, it 

indicates the physical world that, as an icon, it represents. Actually, the 
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relation between sign and object is twofold. On the one hand, it moves from 

the sign to the object (this is the gnoseologic aspect) and on the other hand, 

from the object it moves to the sign and then, through this, to the interpretant 

(this is the methodological aspect of the empirical control). This twofold 

relation is feasible only because the physical-mathematical sign, as an index, 

indicates something beyond itself. In fact, to indicate comprises two equally 

essential and important moments: 

1) the assertion of the existence of something beyond the physical-

mathematical sign; 

2) the possibility of checking whether the indication is indeed correct, 

that is, whether what the physical-mathematical sign indicates, is 

truly correct. 

For example, quantum field theory as an icon indicates certain elementary 

particles, and as an index it tells us that, apart from the formalization which 

represents them, they should indeed exist. It thus follows that to indicate 

means, on the one hand, the affirmation of the presumed existence of certain 

particles, and on the other hand, the possibility of checking whether this 

assumption is indeed founded. 

It is worthwhile noting here, that there are mathematical elements within 

a physical theory which have no referent (for instance, Dirac’s ), or which 

have a dubious referent (for instance, the Higgs boson). There are also 

mathematical elements whose referent is closely linked to the interpretant as 

a whole (for instance, the wave function of quantum mechanics). 

Another aspect that should be kept in mind regarding the physical-

mathematical sign as an index, is that it also has a very relevant relation with 

the interpreter. In fact, at the moment in which the interpreter constructs the 

physical-mathematical sign, correspondence laws are contemporaneously 

posed such that they provide the sign with a given physical significance. 

An example of this type of correspondence laws may be found in any 

textbook concerning quantum mechanics, where you find the three usual 

statements that give a physical meaning to the entities of an Hilbert space.
43

Therefore, as of the beginning, the physical-mathematical sign indicates 

something and it is precisely this intentional aspect that allows it, as an icon, 

to represent (albeit conjecturally) the physical world. In addition, it is in this 

43
 We are speaking of the following three statements: 1) Every state of a physical system s, at 

the time of t, is described by a ket | > of the Hilbert space H. 2) Every measurable 

physical quantity A of a quantum system is described by an operator A defined in H and 

this operator is an observable. 3) The results of the measurements of a physical quantity A 

are given by the eigenvalues of the corresponding observable A. 

indicative aspect of the sign that lies the reason for its potentiality to  
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1) By attributing physical significance to mathematical entities in order 

to “make ends meet”. Very often when working with the physical-

mathematical sign as an icon, new mathematical entities must be 

inserted This is either in order to eliminate a theoretical 

contradiction, or to unite two theoretical possibilities, or to ensure 

that the theory is able to coopt an otherwise negative experimental 

result. But the mathematical sign is also an index and thus, when 

inserting these new entities, there is the possibility these may 

indicate something other than themselves. In other words, they may 

disclose something in the physical world that could not have been 

denoted beforehand. For example, in 1892, A.H. Lorentz introduced 

a new system for the transformation of coordinates in order to 

resolve the aporia by which classical mechanics was invariant for 

Galilean transformations, whilst it was not for classical 

electromagnetism. At the beginning, the new transformations were 

considered as mathematical tools only, but in 1895, Lorentz assigned 

a physical significance to them. In our language, he first worked 

inside the icon in order to solve a formal problem by proposing an ad

hoc correction. Then he began to consider this new “piece” of the 

physical-mathematical sign as an index also, and thus as something 

which indicated a real physical entity. 

2) By attributing physical significance to mathematical deductions. We 

have seen that the icon has an autonomous life and this is true 

particularly from the deductive point of view. Once the icon is 

constructed, it is possible to manipulate it by deductively extracting 

results which may not have been contemplated at all at the time of its 

construction. Knowing that the sign is not only an icon but also an 

index, what is deduced also indicates something beyond itself, 

something that should exist in the physical world, thereby enticing 

one to determine whether this something really exists. This, for 

example, is what occurred with the deductive consequences obtained 

from general relativity after it was proposed. 

3.4 The physical-mathematical sign as a symbol 

To consider the physical-mathematical sign as a symbol also means 

thinking about how and why it is constructed. There certainly is no  

constraint in constructing the physical-mathematical sign, but this freedom is 

definitely not arbitrary since the creation of the sign is linked to both the 

historical context in which one works and to the problem one would like the 

discover new physical entities. And this discover may occur according to two 

modalities:
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sign to solve. The historical constraint is so obvious that it appears banal: it is 

impossible to use mathematics that does not pertain to the time in which the 

mathematical sign is constructed. Newton would not have been able to write 

his Principia Mathematica Philosophiae Naturalis with the variational 

method because it did not yet exist; Maxwell did not write classical 

electrodynamics with the tensorial formalism, since this still had to be.

Actually, most of the physical theories are constructed by what may be 

called prefabricated mathematics, that is, a mathematics already existing “in 

the market”. Metaphorically, one may think of a physicist like a person who 

goes to the market of mathematics to take what he needs to construct his 

theory. Einstein took Ricci and Levi-Civita’s tensorial calculation for general 

relativity; for his work on quantum mechanics, von Neumann took Hilbert 

space; Weyl and Wigner took Lie groups for their works on physical 

symmetries. All these physicists used a prefabricated mathematics in the 

sense that it was constructed before of the physics in which it was then 

utilized
44

.

However, a physicist does not necessarily have to avail of prefabricated 

mathematics, since he himself may create the mathematics he requires. This 

is Dirac’s case when he introduced the pseudo-function  to solve the 

problem of the continuous spectrum in quantum mechanics, or Feynman’s 

case with his diagrams that not only visualized, but also formalized the 

interactions in quantum electrodynamics, as Dyson showed afterwards. 

Thus on the one hand, there is the use of prefabricated mathematics, and 

on the other, the ad hoc creation of mathematical tools for the topic being 

dealt with, which may not necessarily be logically well-done. 

44
 There actually are cases in which mathematics was available as of centuries without anyone 

realizing its existence. This is the emblematic case of the theory of the conic sections 

proposed by Apollonius of Perga in the III century B.C and used by Kepler in the XVII 

century A.D. Precisely the fact that even hundreds of years after it was created, a certain 

type of mathematics is used to create the physical-mathematical sign, brings one to the 

conclusion that it is impossible to know beforehand whether the given mathematics will be 

useful for theoretical physics. An evident example of this impossibility of knowing in 

advance what will be and whether there will be use for a certain type of mathematics is 

recalled by Dyson (Dyson, 1964). He relates the dispute between O. Veblen and J. Jeans in 

1910 concerning the amendments to the mathematics syllabus at Princeton University. So, 

regarding which mathematics should no longer be taught, Jeans proposed eliminating 

group theories “as a subject which will never be used in physics”! The fact that it is 

impossible to know beforehand which mathematics will be used within a physical theory 

has two consequences. The first one is that it is impossible to distinguish between pure 

mathematics and applied mathematics. In fact it is obvious, as Browder maintains, there is 

no certainty that mathematics which has no application today, may not be applied 

tomorrow (Browder, 1976). The second consequence is that the more mathematics a 

physicist knows, the more possibilities he has to construct a good physics. 
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The problem now arises as to which mathematics should be utilized to 

construct the physical-mathematical sign. Actually, we do not have only one 

problem, but two: 

1) the problem regarding the fact that using a particular mathematics 

may, at times, entail dealing with the philosophical interpretation 

with which that mathematics was linked up until that moment; 

2) the problems related to the facts that the same physical situation may 

entail several different physical-mathematical signs, and that the 

same physical-mathematical sign may be constructed by starting 

from more than one mathematics.

Let us begin with the first problem. To utilize one type of mathematics 

rather than another may sometimes mean having to deal with a particular 

interpretation of the physical world. An example of this is given by 

Schrödinger’s utilization of differential equations in his formalization of 

quantum mechanics. This method also involved an attempt to insert quantum 

mechanics within a predefined philosophical conception. This was founded 

on the fact that from Cauchy onwards, the formalized aspect of determinism 

was based on Cauchy’s theorem of the existence and uniqueness of solutions 

of the differential equations. Totally different from a conceptual point of 

view, is Heisenberg's utilization of the matrix theory that was meant also as a 

renounce of Schrödinger’s classical ideas. 

So far as the second point is concerned, i.e., that we may have more than 

one physical-mathematical sign for the same physical situation and more 

than one mathematics for the same sign, one faces an epistemological 

problem which has its contemporary formulation in the second half of the 

XIX century.
45

 In fact, it was Hertz in his ‘Introduction’ to Die Prinzipien der 

Mechanik who first in an explicit way stated that the same physical situation 

might be formalized by many theories. In other words, there is an 

underdetermination of the physical-mathematical sign by data. That is, the 

empirical world cannot settle the question of which is the best physical-

mathematical that can represent it.

However, there is not only the underdetermination of the physical-

mathematical sign by data, but also the underdetermination of mathematics 

by physical-mathematical signs, since, as has already been said, there is  

more than one mathematics which may be utilized to construct it. For 

example, and apart from the problems connected with the philosophical 

interpretation associated with the mathematics utilized, we may adopt the 

theory of differential equations or the matrix theory to construct quantum 

mechanics.

45
 Actually its original formulation has to be dated back to the Hellenistic astronomy. 
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3.5 The complementarity of the three aspects 

Speaking of the physical-mathematical sign as an index, an icon and as a 

symbol, we have shown how each aspect is linked to the other two. Icon, 

index and symbol are not three totally independent aspects of the sign, but 

they are three moments which must be considered contemporaneously in 

order to fully comprehend it. To neglect one, or to favour another means 

obscuring the integral significance of the sign. 

If we considered the physical-mathematical sign as an icon only, it would 

mean overlooking the fact that it also indicates something beyond itself, thus 

yielding to instrumentalism, or to empty formalism. In this case, the 

physical-mathematical sign might become only a formal abstract game that 

would be increasingly farther away from the physical referent. But in this 

manner, one would risk debasing physics, which is instead a form of 

knowledge concerning the empirical world. On the other hand, this is the risk 

one faces if one wishes to overcome theoretical difficulties such as, for 

example, those met in the quantisation of the gravitational field. Obviously, 

these difficulties impel the pursuit of abstract mathematics, but when the 

indical aspect is taken into account, they may be a source for important 

discoveries which were unthought of before, as we will see when we speak 

of Dirac’s methodological revolution. But, we would like to emphasize it, 

such an indical aspect has to be taken into extremely great consideration.

However, if we considered the physical-mathematical sign as an index 

only and neglected it is also a conjectural icon, i.e., a tentative representation, 

and as a symbol, that is, a man’s product which is historically contextualized, 

we would succumb to naive realism. The sign, with its correlated 

interpretant, would be no longer seen as a formalized attempt to capture the 

physical world, but as its precise mirror image. Everything would be 

considered only as an index. In this manner, we would forget the historicity 

of the physical knowledge and its hypothetical status that is connected with 

the fallibility of the physicist.

Lastly, if we considered the physical-mathematical sign as a symbol only, 

we might succumb to far-fetched conventionalism, or to more radical 

constructivism. In the former case, the interpretant would be considered as 

the result of an agreement; a negotiation between scientists in which the real 

world has no active role. In the latter case, the interpretant would be 

everything; it would be what creates the real world, which cognitively would 

exist only because the interpretant, formalized by the sign, exists. From this 

point of view, quarks would exist only because the standard model exists. All 

this would be the creation of the physicist who, were he God, at the time in 

which he constructs the mathematical sign and the correlated interpretant, 

creates the external world.
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4. A FALSE PROBLEM: “WHY IS MATHEMATICS 

EFFECTIVE IN PHYSICAL SCIENCES?” 

Let us now proceed to the main question of the first part of this essay: 

“Why is mathematics effective in physical sciences?”. Let us ask ourselves: 

are we truly facing a real problem? 

If we were to take mathematics in itself, that is, the formal part of a 

physical theory, it would indeed appear there was something strange and 

enigmatic in its effectiveness. But, as we have tried to illustrate, the physical 

theory is not something to which mathematics might be added externally, 

thereby asking ourselves the reason for this effectiveness. The modern and 

the contemporary physical theories are physical-mathematical signs. They 

are something that cannot be divided into a mathematical part and non-

mathematical part.

The real problem does not lie in asking ourselves the motive according to 

which mathematics is effective, but, ultimately, in questioning the reason 

why physics in its entire iconic, indical and symbolic aspects is effective. 

Therefore, to pose the problem of the effectiveness of mathematics in 

physical sciences is to pose a false-problem, that is, a problem that does not 

exist since mathematics is an indivisible part of the modern and 

contemporary physical theories. 

A mathematics that is effective in capturing the physical world does not 

exist other than as a mathematics with which the physical theory is 

constructed. Hence, it is the physical-mathematical sign as a whole that has 

to be considered as effective. However, in this manner, the problem shifts 

and becomes that of the effectiveness of the physical-mathematical sign. In 

other words, it becomes the problem of the effectiveness of human 

knowledge, since a physical-mathematical sign is one of the ways through 

which human knowledge acts. But this is a completely different problem and 

we do not deal with it.
46

5. DIRAC’S METHODOLOGICAL REVOLUTION 

In 1931 Dirac wrote (Dirac, 1931): 

46
 Note that we are claiming that the problem of the effectiveness of mathematics in physical 

sciences is a false-problem since we cannot have contemporary physical sciences without 

mathematics. We are not claiming that metaphysical problems connected, for example, 

with a possible Platonic interpretation of the rooting of mathematics in the world is a false-

problem. We do not tackle this question, as said in the introduction.
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There are at present fundamental problems in theoretical physics awaiting 

solution, e.g., the relativistic formulation of quantum mechanics and the 

nature of atomic nuclei (to be followed by more difficult ones such as the 

problem of life), the solution of which problems will presumably require 

a more drastic revision of our fundamental concepts that any that have 

gone before. Quite likely these changes will be beyond the power of 

human intelligence to get the necessary new ideas by direct attempts to 

formulate the experimental data in mathematical terms. The theoretical 

worker in the future will therefore have to proceed in a more indirect 

way. The most powerful method of advance that can be suggested at 

present is to employ all resources of pure mathematics in attempts to 

perfect and generalise the mathematical formalism that forms the existing 

basis of theoretical physics, and after each success in this direction, to try 

to interpret the new mathematical features in terms of physical entities.

(p. 60, our italic).

This is a real genuine revolutionary change in methodology; and only a 

few, even amongst philosophers of science and historians of science, are 

apparently aware of it. With those words, Dirac emphasized that the relation 

between mathematics, the physical-mathematical sign and the physical world 

has to be considered under a different light. Let us see how. 

We began our essay by recalling how mathematics became involved with 

physics when the numbers, obtained from the measuring instruments, started 

to be considered by the philosophers of nature. In this way, it began the path 

which brought to contemporary physics; in other words, to a discipline in 

which distinguishing mathematical and physical components is senseless, but 

where we have a physical-mathematical sign constructed by using 

mathematics.

From the history of physics, we know that this long course has a topic 

moment when the laws describing terrestrial phenomena began to be written 

in a mathematical language rather than in a natural one. 

Galilei proffers a paradigmatic example when he asked himself which 

was the law that gave significance to the phenomena of the falling bodies. He 

answered in mathematical terms, with a phenomenological law that allowed 

him not only to precisely describe but also to predict the evolution of those 

phenomena.

From then on, and for a prolonged period of time, this was the procedure: 

by reflecting on the observed and measured physical phenomena, one looks 

for a phenomenological law written in mathematical form that, conjecturally, 

represents them. In other words, starting by reflecting on what happens in the 

empirical world, one tries to conjecturally find the correct physical-

mathematical sign. 
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If Galilei proceeded from the reflection on the observed evolving 

phenomena to the tentative phenomenological laws, Newton did something 

more abstract: from the reflection both on phenomena and on the 

phenomenological laws he knew, he passed, always conjecturally, to the laws 

from which the previous ones could be deduced. This is precisely the 

Galilean-Newtonian method. It consists into two steps: a) the Galilean step, 

dedicated to the formulation of the phenomenological laws describing the 

evolution of the phenomena observed in the empirical world; b) the more 

abstract Newtonian step, aimed at the formulation of general laws from 

which what obtained in the first step could be derived. 

At this point, we think that it is useful to introduce a tripartition among 

physical-mathematical signs, even if here we do not discuss it profoundly. In 

particular, they may be classified as follows: 

1) the evolutive laws, (they include also the phenomenological laws of 

the Galilean phase) which are the laws closer to the empirical world 

since they describe the temporal evolution of the phenomena and 

therefore they  permit us to represent what happens in a given place 

and in a given time (for example, the law of motion, the wave 

function solution of Schrödinger’s equation, etc.). Of course, these 

first level laws may be checked directly by experience
7
.

2) the frame laws (generally discovered in the Newtonian phase), which 

enable the deduction of the evolutive laws as their solutions (for 

example, the equations of classical dynamics which enable the 

inference of the law of the falling bodies and, in general, the 

classical laws of motion; Maxwell’s equations; the Schrödinger’s 

equation; etc.). In this case, their empirical control is realized via

theoretical modus tollens because of the results obtained at the level 

of the evolutive laws;

3) the principles which, in a certain sense, mark the boundaries of the 

working domain of the frame laws, and at times, also promote their 

construction. Here, we are thinking about principles such as that of 

causality which often have a metaphysical counterpart, but we are 

also thinking about formal principles such as those of symmetry 

from which, for example, owing to the powerful Noether’s theorem, 

we can derive the frame laws of conservation. 

We think that the role of time is extremely relevant in characterizing the 

three classes of laws. While in the first category time plays an explicit and

7 It could be objected that there are also the so-called co-existence laws (for example, the 

Ohm law), that is, the laws which seem to be time-independent. Actually, the time-

dependence can always be found through a deeper analysis.
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important role, this is not the case for the other two categories: the frame 

laws and the principles refer to something invariant in time. In a certain 

sense, they refer to something that does not occur, but it is. Thus the 

knowledge offered by the frame laws and principles refers to something 

which does not depend on time; something atemporal. However from the 

atemporal representations given by such frame laws and principles, we can 

obtain, via deduction, the temporal representation, offered by the evolutive 

laws, of the phenomenic world. 

It is interesting to note that the final outcome of the Galileian-Newtonian 

method concisely illustrated above was highlighted also by A. Einstein in a 

renowned letter dated 7 May 1952 to his friend Solovine (Fig. 2).

Figure 2. Einstein speaks about System der Axiome (our frame law, or frame physical-

mathematics sign), about gefolgerte Sätze (our evolutive law, or evolutivephysical-

mathematical sign), and about Manningfaltigkeit der unmittelbaren (Sinnes) Eerlebnisse (our

phenomenic world). For a discussion of his letter, cf. (Miller, 1986). 

But at a certain point, something changes, as Dirac wrote in the quoted 

passage: “it will be beyond the power of human intelligence to get the 

necessary new ideas by direct attempts to formulate the experiment data in 

mathematical terms”. Therefore, whilst working within certain mathematics, 

at a certain point one may realize that it may be a physical-mathematical 

sign. In other words, one may realize that the mathematics with which is 

working also has an indical aspect that indicates something which exists in 

the world. This is what Dirac meant. In this case, it is by reflecting on the 

pure mathematics that we have a direct access to the level of the frame laws. 

In this manner, the mathematical thought assumes the role of a powerful 

creator of conceivably new physical-mathematical signs, and thus, as a 

promoter of the discovery of new phenomenic aspects of the world, derivable 

from those framing laws (Table 1.) 
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Table 1. [1] Galilei’s method; [2] Newton’s method; [3] Dirac’s method 

                reflective and conjectural paths 

                deductive paths 

Dirac himself used this method when, in 1928, he adopted the spinor 

geometry in order to formulate his relativistic equation for the motion of the 

electrons.
8
 This equation provided the prevision of the existence of the 

8
 Even if Einstein, due to the letter to his friend Solovine, might be indicated as an emblematic 

example of those who followed Galilei-Newton’s method, some historians of physics 

identify him as the one of the forerunners of what we call Dirac's method. In fact, it is 

sufficient to recall that it was his reflection of the principles of symmetry (covariance of 

the equations of motion with respect to Lorentz and general transformations) which 

enabled him to formulate both the frame laws of special relativity and those of general 

relativity, which amongst other things, allowed the prediction of nuclear energy, 

gravitational lenses, and black holes. In short, we are not suggesting that Dirac was the 

first who proposed the new method, but only that he was the first who put it in a clear and 

explicit manner. 

   conjecturally constructs 

  3 

and by reflecting on     metaphysical and formal principles

KNOWING

SUBJECT

by abstractely reflecting

on mathematics 

frame physical-mathematical sign 

 (frame law)

evolutive physical-mathematical sign 

               (evolutive law)

  2 

  1 

conjecturally constructs

by reflecting on phenomenic world 
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positron, or in other terms, of the antimatter, which had neither been seen nor 

conceived of before and was discovered only two years afterwards by 

Anderson.

This role of the mathematical thought as a machinery to construct 

physical-mathematical signs and, therefore, as an inductor of discoveries of 

new phenomenic aspects that enhance and develop our knowledge of the 

world, is certainly the most relevant point of Dirac’s methodological 

revolution. In this case, the physical-mathematical signs are something 

mentally and hypothetically constructed at the level of the frame laws and

principles, simply following criteria both of internal coherence (among the 

propositions from which they are made up) and external coherence (with the 

other physical-mathematical signs). 

It appears evident that the frame laws are much richer of cognitive 

content than the evolutive laws. In fact each one of the former implies the 

potential knowledge of innumerable evolutive laws of possible phenomena.

It follows that discovering frame laws means enlarging our capability of 

knowing the world in which we live. It so happened for example with 

Dirac’s equation that permitted us to foresee antimatter, which is now 

conceived as one of the pieces of the furniture of our world. And the same 

may be affirmed for the discovery of the curvature of space and time, now 

clearly visible, as gravitational lenses, in the distant clusters of galaxies. 

This way of arriving to new knowledge through purely abstract thought 

reminds that of ancient philosophy which brought to the formulation of 

hypothetical metaphysical propositions, with the difference that: while the 

latter had to receive the general consensus through an act of faith, the 

hypothetical frame laws, formulated through mathematical thinking, can be 

empirically checked in the world. 

The methodological revolution perceived and clearly illustrated by Dirac 

is the revolution that brings us to a substantial portion of contemporary 

theoretical physics
9
, which favors abstract mathematical thought as a way for 

the construction of physical-mathematical signs that will then possibly bring 

us to the discovery of new entities and phenomena. The potentiality of this 

revolution may be well illustrated by spinor geometry, as we are going to 

concisely show. 

9
 After the XVII Century the Galilean-Newtonian method has allowed to formulate the frame 

laws in a great portion of physical science. It is still adopted today as research method in 

several sectors of condensed matter physics, elementary particle physics and astrophysics 

some of which are still in the first phase: that of the phenomenological laws. It is 

interesting to observe that if Einstein would not have discovered general relativity, today it 

could be possible to discover it as a frame law, with the Galilean-Newtonian method, after 

the discovery of gravitational lenses. 
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6. THE EXAMPLE OF SPINOR GEOMETRY 

Spinor geometry was discovered in 1913 by the outstanding 

mathematician É. Cartan who emphasized its remarkable elegance. It is 

based on what he called “simple spinors”.
10

 Cartan also suggested that the 

fundamental geometry of nature may be a spinor geometry rather than an 

Euclidean geometry (Cartan, 1937). In fact, Cartan showed how Euclidean 

vectors may be bilinearly constructed from spinors, of which they are, so to 

speak, the square roots.
11

 More precisely he conjectured that simple or pure 

spinors may be conceived as the elementary constituents of ordinary 

Euclidean vectors in so far with those spinors one can construct bilinearly 

Euclidean null vectors and sums (or integrals) of null vectors generally give 

ordinary Euclidean vectors (or minimal surfaces and strings). It was a crucial 

conjecture which is presently being studied and expanded further to show 

that it may explain several of the still obscure phenomena which were 

recently discovered in elementary particle physics. It may then become an 

efficient mathematical instrument for the discovery of new frame laws along 

the lines indicated by Dirac’s methodological revolution. We will try 

illustrating this briefly, beginning with Dirac himself, who was certainly the 

first person to adopt spinors in physics. This was in 1928 when he proposed 

the equation that represented the relativistic generalization of Schrödinger’s 

wave equation for the electrons (which are fermions: spin 1/2-particles) in 

the form

( ) ( ) 0D x x  (1) 

where ( )D x is the Dirac operator and ( )x , which represents the electron 

wave function, is a 4-component spinor, and x indicated a 4-dimensional 

space-time point (that is, the coordinates x1, x2, x3, x0=ct, where c is the 

velocity of light and t indicated the time). 

Now suppose we adopt the Dirac’s Eq. (1) to represent a particular 

electron phenomenon and find a certain solution ( )x . If we reinsert it in 

Eq. (1), we find an identity for all values of x
1, x

2, x
3, x

0
=ct. This simply 

means that the description of this phenomenon is valid for the whole space-

time, as is Dirac’s equation, from which this solution derives,

10
 They were renamed “pure spinors” by Chevalley in (Chevalley, 1954). 

11
 Note that the spinor geometry is not so intuitive as Euclidean geometry. In fact the former 

deals with null Euclidean vectors and totally null Euclidean planes whose vectors are all 

null and orthogonal, which may not be visualized by our common intuition. 
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In order to illustrate the role of spinor geometry it is necessary to 

represent Dirac’s equation in 4-dimensional momentum space (or space of 

velocities). This entails taking the Fourier transformation of Eq. (1), which 

becomes

( ) ( ) 0D p p  (2) 

where p indicates a 4-dimensional point in the momentum space (with 

coordinates
1 2 3 0
, , ,p p p p E c , where E indicates the energy), and 

( )
j

j
D p p ; where 

j
 are Dirac’s 4 4 matrices and repeated indices are 

summed. By repeating the previous procedure, we obtain an identity in the 

entire momentum space. 

 Equation (2) may be derived from Cartan’s equations that 

geometrically define spinors. In particular, Cartan’s conjecture of the 

elementary nature of spinor geometry may be explicitly formulated by 

expressing the Euclidean 4-vector p  in terms of spinors as follows: 

†

0j j
p        ( 1,2,3,0j ) (3) 

where  is an arbitrary spinor and 
†
its Hermitian conjugate. 

If in Eq. (2), we again substitute a particular solution ( )p , taking into 

account Cartan’s conjecture in the form (3), we once more obtain an identity. 

However, this time, it is for all values of , or for the entire spinor space. 

This is a geometrical space that is different from space-time. It may be 

interpreted as the purely geometrical (spinorial) origin of Dirac’s equation as 

an atemporal frame law. 

In this manner, Dirac’s equation represents a sound example of a 

physical-mathematical sign, in particular a frame law, obtained working with 

pure mathematics. It predicted a new evolutive law; that of antimatter, which 

was discovered afterwards. 

It may be shown that what we briefly exposed here for Dirac’s equation 

may be extended to the equations of motion for higher component spinors 

representing fermion multiplets. In the general case, one adopts again Eq. 

(3), where 1,2,...,2j n ; that is, for a 2n  dimensional momentum space, and 

where, if and only if,  is a simple or pure spinor, the vector with 

components
j

p  is null, thus well representing Cartan’s conjecture. This 

means that the momentum spaces where to deal with the physics of the 

fermions will be compact: equivalent to spheres embedded in each other. 

Furthermore, it can be found that most of the elementary particle properties 

may be derived from the four division algebras existing in mathematics. 

These are: real and complex numbers, quaternions and octonions.
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In particular complex numbers appear to be at the origin of charges: both 

the electric, the weak and the strong ones. Quaternions appear to be at the 

origin of the so-called isotopic spin symmetry SU(2) (discovered by 

Heisenberg), which in turn is the origin of the proton-neutron symmetry of 

nuclear forces and also at the origin of the electroweak model (co-discovered 

by Salam). Quaternions explain also the origin of other “mysterious” 

properties of physics, for example, the signature of space-time.
12

 From this 

result we may conclude that, according to Cartan’s simple spinor geometry, 

the Minkowsky space-time of special relativity appears to be simply the 

image of quaternions in nature. Octonions, finally, have seven imaginary 

units and they may be at the origin of the so-called SU(3) internal symmetry 

of flavours and colours, recently discovered in elementary particles 

(Budinich, 2002).

Therefore, in keeping with Dirac’s indications, spinor geometry appears 

to be one of the few feasible mathematical instruments needed to overcome 

the severe difficulties that have hindered the progress of theoretical physics 

for several decades. The most promising idea derives from Cartan’s 

conjecture on the non-elementary nature of Euclidean geometry. Already 

now this provides a picture that displays a marked parallelism between 

geometry and physics. 

In fact, we know that classical mechanics of macroscopic bodies is well 

described with the Euclidean geometry and in space-time. However, neither 

macroscopic matter nor, according to Cartan, Euclidean geometry, are 

elementary. The “elementary constituents” of the macroscopic matter are 

fermions and those of Euclidean geometry are, in Cartan’s view, simple 

spinors. Therefore it follows that the spinors are the appropriate 

mathematical entities for the representation of the mechanics of fermions. 

The resulting mechanics is wave mechanics which then should be the 

“elementary constituent” of classical mechanics, as in fact it is, and in which 

the Euclidean concept of point-event has to be necessarily substituted by that 

of an integral of null vectors, which happens to be the so called string and 

which is non local. It could appear then that, coherently with Cartan’s 

conjecture, it is in this framework of spinor geometry (in the space of 

velocities) that wave mechanic should be properly discussed and understood 

(rather than in Euclidean space-time geometry, which instead is well 

appropriate only for the description of classical mechanics of macroscopic 

bodies).

12
 Note that a quaternion is an hypercomplex number characterized by 1 real and 3 imaginary 

numbers, or vice versa. 
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Thus we have a new physical-mathematical sign, and we have it 

simply by reflecting on pure mathematics. A sign which once more, 

after general relativity, shows a further geometrization of physics 

which, in this case, is identified with an abstract and elegant form of 

geometry, that of Cartan’s simple spinors.

7. CONCLUSION 

In this essay we have tried, through semiotic approach, to illustrate the 

relation between physics and mathematics, showing how: 

1) one must speak about the physical-mathematical sign as an entirety; 

2) the problem of the effectiveness of mathematics within physics may 

be considered as a false-problem due to the misunderstanding of 

what is contemporary theoretical physics; 

3) the truly relevant fact is the methodological revolution that Dirac 

singled out and according to which the physical-mathematical sign is 

no longer constructed by conjecturally reflecting on the physical 

phenomena, but by working with pure mathematics and endeavoring 

to understand whether it also has an indical aspect and therefore if it 

is also a physical-mathematical sign, as well exemplified by Cartan’s 

spinor geometry. 

Keeping the last point in mind, we hope, particularly because it is rather 

undervalued, that the transition between Galilei-Newton’s method to Dirac’s 

method may become a field of research for both historians of contemporary 

physics as well as for philosophers of science.
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Abstract: In the first part of this paper (§1) we give a brief review of astronomical 

systems and discuss a unified approach to the study of their structure by means 

of the kinetic theory. In the second part we deal with the algorithmic 

representation of physical structures (§2), and consider successively (§3) the 

stellar atmosphere problem as an ideal benchmark for the structural iterative 

algorithms designed in order to get rid of strongly non-linear problems. The 

underlying aim is to show that, when searching for the right mathematics, it is 

the physics of the problem that dictates the most efficient way to its solution. 

As an example we present an iterative structural algorithm that is the numerical 

simulation of the physical processes occurring in a stellar atmosphere. In such 

a way the numerical algorithm not only offers a fast and reliable mathematical 

tool, but also constitutes a faithful representation of the structure of the 

physical system.

Key words: globular clusters; groups and clusters of galaxies; the stellar atmosphere 

problem; Boltzmann’s equation; numerical modelling; iterative procedures. 

1. ASTROPHYSICAL STRUCTURES 

1.1 Structure and evolution of physical systems 

In order to describe physical systems, we are driven in a natural way to 

ideally separate inside them individual components that can be the object of 

our measurements, and hence can be identified with physical magnitudes. 
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Observations may suggest the existence of causal nexuses among the distinct 

components, so that we are led to individuate a hierarchy of interactions that 

can be expressed by means of mathematical relations among the 

corresponding magnitudes. In such a way, by moving from observations to 

measurements, we are able to get a quantitative description of the whole 

process.

For sake of the following discussion, let us briefly recall some basic 

definitions. Firstly, we will consider a physical system as any arbitrary 

assemblage of objects that can be identified and quantified by means of a 

proper set of physical variables. The state of a system will be determined by 

the set of values taken by the ensemble of magnitudes that are necessary and 

sufficient to yield the maximum possible amount of information in order to 

determine the physical properties of the system at a given instant, and to 

predict its evolution with time. 

In “The Oxford Dictionary” one of the definitions of the word structure

is: “The mutual relation of the constituent parts or elements of a whole as 

determining its peculiar nature or character, make, frame.” Such a definition 

can be sharpened to suit our present context by taking into consideration 

some lines from the issue structure in Abbagnano (1964):

In a specific sense, a structure is not any plot of relations, but a plot 

characterized by a finalistic order. [...] According to the biologist A.C. 

Moulyn, a structure would be “the form relevant to the function”, as the 

function is “the structure changing with time”. 

Then we will call structure of a physical system the organization of the 

parts, interacting among them, into which a system can be ideally separated.

According to the laws of thermodynamics, closed systems, i.e. systems 

adiabatically isolated from the external world, reach eventually the state of 

equilibrium, which implies a homogeneous and steady structure. On the 

contrary, due to the lack of adiabatic walls, open systems are characterized 

by outward fluxes of matter and energy that reflect a state of non-

equilibrium, which implies that the variables corresponding to the relevant 

physical magnitudes take distinct values at the different points of the system. 

In general these values will change with time. The existence of space 

gradients are at the origin of transport phenomena, hence of non-local effect.

The structure of physical systems will be shaped by the mutual 

interactions among their components. In some cases antagonist forces may 

compensate each other and drive to a steady state configuration, stable over 

characteristic time scales. The evolution of a system in non-equilibrium can 

be sometimes considered as the progressive unfolding of quasi-equilibrium 

configurations.
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Often we will be able to yield a quantitative description of the structure 

and the space-time evolution of the system under study in terms of 

differential equations that express the relations among the relevant physical 

variables and their rate of change. In general we will derive them from the 

corresponding conservation laws that we have assumed at the basis of our 

picture of the phenomenological world. Thus the constraints imposed by the 

conservation laws take part in the configuration of the system’s structure. 

Moreover the initial and boundary conditions of the corresponding 

differential equations, determined from the observational data, will specify 

the individual systems. 

1.2 Astronomical systems 

We present in Table 1 a list of the most outstanding astronomical 

systems. Although the Galaxy, as well as the other galaxies, contain an 

important fraction of diffuse matter in form of gas, dust and perhaps diffuse 

dark matter, in the spirit of this review we will consider individual stars as 

the basic building blocks of these stellar systems. 

Table 1. List of the most outstanding astronomical systems formed by either stars or galaxies 

  individual stars 0.5 < M < 100
Sun Sun

M M

  binary systems 

  open clusters up to hundreds of stars 

  globular clusters ~  10
5
 stars 

  individual galaxies                         ~  10
11

 stars 

  groups of galaxies   3 or more galaxies 

  clusters of galaxies  from 50 up to 10
3
 galaxies 
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1.3 Structures and their interpretation 

The aim of this Section is to give, by means of two illustrative examples, 

some hints about the mathematical tools required for the study of 

astrophysical structures. 

Figure 1. Left panel: The globular cluster Messier 22 (NGC 6656) in Sagittarius. (Keel, 2001) 

Right panel: The spiral galaxy Messier (NGC 4254) (the same source). These two images 

show very well the visually striking features of the selected objects, and reveal the existence 

of completely different structures. 

Globular clusters are self-graviting collections of typically 10
5
 old, low 

mass stars. They are characterised by a high central stellar density, and tend 

to have a spherical shape. By means of quantitative studies it is possible to 

describe the structure of a globular cluster in terms of the special distribution 

and the random velocities of its stars. The geometrical shape and its 

evolution with time are expected to be consequences of Newton’s laws of 

motion and the gravitation as applied to an isolated spherical system 

composed of a very large number of point-like objects. In particular the rate 

of change of the stars’ velocity distribution is interpreted as the result of 

dynamical friction, brought about by random encounters between pairs of 

stars.

Seminal works in this field have been carried on in the 1940’s by 

Chandrasenkhar and Spitzer jr., whose books on the subject are still an 

essential reference (Chandrasenkhar, 1942; Spitzer jr., 1987). The

connection of stellar dynamics with statistical mechanics is self-evident, 

because of the huge number of stars in the system. The specific approach to 

stellar dynamics in globular clusters is mainly centred on the question of the 
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time of relaxation of the system as the result of random stellar encounters 

described in terms of the classical two-body problem, and around Liouville’s 

theorem and the solution of the equation of continuity. 

Spiral galaxies are flattened systems formed by stars, gas and dust that 

rotate in a nearly circular fashion. The stellar component of spiral galaxies is 

constituted by stars with a wide range of ages that have different locations 

inside the overall structure. The youngest stars concentrate in a flattened 

disk, while older stars occupy a slightly thicker disk. The oldest stars tend to 

reside in a more three-dimensional distribution, which may include a central 

bulge, a system of globular clusters, and a low-luminosity halo.

The study of differentially rotating disks is a complex dynamical 

problem. Simplified analyses (like, e.g., the Wentzel-Brillouin-Kramers 

approximation) cannot give a complete picture of disk dynamics. In 

particular, there are no analytical methods that can determine the stability of 

a general galactic disk against arbitrary perturbations; hence N-body 

simulations become necessary (See Binney and Tremaine, 1997). 

Whirling arms are the most striking features of the spiral galaxies. The 

nature of these structures, that can dominate the internal dynamics and 

evolution of the galaxy, is explained to day by the quasi-stationary spiral 

structure hypothesis formulated by Lin and Shu (1964): spirals form when 

compression waves propagate through the disk, growing in length and 

amplitude because of self-gravitational forces.

1.4 A unifying approach: the role of kinetic theory 

Because of the enormous range of values taken by their fundamental 

parameters (i.e., the total mass of the system, its linear dimensions and the 

number of its members) the systems listed in Table 1 are extremely different. 

Nevertheless all of them share two basic features:

i) they are gravitationally bound assemblages of a very large 

number of interacting compact objects;

ii) the linear dimensions of the compact objects are completely 

negligible, compared with their average mutual distances.

These considerations justify the representation of these systems by means 

of the simplifying picture of a swarm of point-like particles. The paradigm of 

such idealized systems is yield by the theoretical model of a perfect gas, as 

considered by the kinetic theory.

Therefore we may describe the structure of our astronomical systems by 

means of the space and velocity distribution functions of their constituent 

particles. The evolution of the system will then be governed by the transport 

Boltzmann’s equation for the corresponding distribution functions. Thus the 

mathematical methods of the kinetic theory may become, in a natural way, a 
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unifying approach to the study of the astrophysical structures under 

consideration.

The general form of Boltzmann’s equation that masters the space-time 

evolution of the distribution function ( )f tr v can be written as 

( )

coll

d f
f t

dt t

r v  (1) 

The LHS of Eq. (1) is the total derivative of ( )f tr v ; the RHS denotes 

the collisional operator that describes the interactions among the constituent 

particles of the system. The specific physical conditions of each system will 

lead us to introduce different models in order to describe schematically the 

random encounters among the particles. We may try then to classify the 

systems according to the different approximations introduced for the 

corresponding operators. 

1.4.1 Collisionless systems 

The gravitational interaction is a long-range force. Consequently the net 

pull felt by any star in a galaxy (or by a galaxy in a cluster) will arise from 

the overall mass distribution of the system rather than from the presence of 

neighbouring objects. Hence the granularity of the self-gravitating matter can 

be ignored, and the gravitational potential 
s
 can be assumed to be smooth. 

For such systems, in which random binary encounters can be fairly 

neglected, the collisional operator can be set equal to zero:

0
s

df f f
f

dt t

v
v

 (2) 

Equation (2) is the collisionless Boltzmann equation (CBE; also called 

Vaslov equation), which represents a special case of Liouville’s theorem.

In order to get rid of the difficulties intrinsic to the complete solution of 

the CBE, valuable insights can be obtained by taking the moments of the 

CBE. In such a way we can derive the Jeans equations (three partial 

differential equations for the spatial density of stars and the velocity 

moments) and, in a further step, to convert the latter into a single tensor 

equation (a form of the virial theorem), relating global properties of the 

system, such as its total kinetic energy and mean-square streaming velocity. 

The use of the virial theorem (either in tensor or scalar form) makes it 
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possible, for instance, to evaluate the virial mass and the mass-to-light ratio 

of spherical systems. 

1.4.2 Binary collisions 

The CBE is not valid, however, for arbitrary long time intervals. 

Individual stellar encounters gradually perturb stars away from the 

trajectories they would have taken if the distribution of the self-gravitating 

matter were smooth. From the comparison of the lifetime of the system with 

its relaxation time, defined as the characteristic time over which a star losses 

memory of its initial orbit, it is immediate to ascertain case by case whether 

the collisionless approximation holds valid or not.

For instance, the lifetime of globular clusters results to be about one 

hundred times larger than the relaxation time. Encounters must then be taken 

into account. A major difficulty arises from the fact that the value of the 

collisional term depends in general on the unknown distribution functions. 

However, if most of the stellar scattering is due to “weak” encounters, it 

results possible to derive a simplified form of the collisional operator by 

employing the Fokker-Planck approximation.

2. ALGORITHMIC REPRESENTATION 

2.1 Modelling the physical world 

We can ideally dissect a system into many simpler interacting parts, in 

order to describe its global behaviour in terms of the laws governing the 

elementary components. Such a process of dissection allows us to get 

eventually a model of the physical system. Modelling is an unparalleled tool 

for scientific inquiry because, for its own analytical nature, it can be easily 

translated into a set of equations, i.e. into a mathematical model.

A premise to this Section, that deals with the “gentle art of modelling”, 

might be Fourier’s claim (Fourier, 1830) that the relations among the 

mathematical functions of the physical variables and their derivatives do not 

just pertain to the abstract realm of Calculus; they do actually exist in the 

natural phenomena themselves. According to this view, the general scheme 

required in order to convert the mathematical models into numerical 

information by means of algorithms should also partakes of Nature. 

Although Fourier’s words are the expression of a naive form of realism, by 

echoing the famous statement by Galileo that the Great Book of Nature is 
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written with geometrical characters, they suggest however that Nature 

displays herself to human mind through algorithms. 

The steps required for moving from the physical word to its quantitative 

representation by means of numerical algorithms are pictured in Figure 2. 

The realization of these steps is the result of the efforts done by the 

mathematicians, especially in the second half of the last century, in order to 

find out a precise link between the mathematical models and the numerical 

information necessary to describe the physical world. 

Figure 2. From the observation of the physical world to the algorithmic representation of a 

physical system. 

2.1.1 From the physical world to the continuous model 

The interactions among the different parts of the physical system and its 

space-time evolution are necessarily simplified and idealized in terms of a 

system of differential equations (either ODE or PDE), with the 

corresponding initial and boundary conditions. 
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2.1.2 From the continuous to the discrete model 

In the previous step the structure of the physical system has been 

formalized in terms of a system of equations. But for very special cases, an 

exact solution will not be feasible, hence the need of a numerical solution via 

discretization (e.g., by means of discrete ordinate methods). In order to 

achieve the optimal discretization, it is not just matter of the analysis of the 

structure of a formula merely mathematical in character. The physics of the 

problem will dictate the grid of discrete ordinates, according to the scale 

heights of the intervening physical variables. 

2.1.3 From the discrete model to the algorithm 

After that the original system of equations has been transformed into the 

corresponding system of discretized equations, we are in a position to build 

eventually a suitable numerical algorithm for achieving their solution.

If each step of the above chain has been worked out properly, the 

structure of the physical system will have been reflected into the 

mathematical form of the relevant equations, and the structure of the ultimate 

resolving algorithm will be akin to that of the initial model. Then we can 

consider the numerical algorithm as an image of the original physical system, 

in other words, a representation of its structure.

2.2 The search for the best numerical algorithm 

The original system of discretized differential or integral equation will be 

not, in general, linear. However, via a proper linearization technique, it may 

be converted into an equivalent system of linear algebraic equations, whose 

matrix will reproduce, for the nature and the collocation of its elements, the 

structure of the initial model.

What looks simple in principle results often, however, infeasible in the 

practice of actual computation. It is well known that the numerical inversion 

of large or ill-conditioned matrices is a nasty problem. In a seminal paper 

von Neumann and Goldstine (von Neumann and Goldstine, 1947) analysed 

the four main sources of error in numerical computation. In particular they 

discuss the errors introduced when “exact” arithmetic (i.e. transcendental 

operations) is replaced by “approximate” arithmetic (i.e. elementary 

operations that can be handled by a computer). No computing machine can 

perform all of its elementary operations rigorously and faultlessly because of 

the finite number of digits available. Even if we could master the other 

sources of error that arise from the translation of the physical model into a 

system of equations and its successive discretization, the problem of stability 



106 LUCIO CRIVELLARI

brought about by the former unavoidable source of errors should always 

constitute a critical drawback for the numerical inversion of huge matrices, 

by means of either direct or iterative methods.

We are therefore compelled to seek for strategies alternative to the 

complete linearization technique. By keeping in mind Henry Poincare’s 

words: “La physique ne nous donne pas seulement l’occasion de résoudre 

des problèmes ... elle nous fait pressentir la solution”, we will ask to the 

physics of the problem under study to dictate the right approach to its 

solution. In the next section we are going to illustrate our point by means of 

the case study of the stellar atmosphere problem.

3. STRUCTURAL ITERATIVE ALGORITHMS 

3.1 The stellar atmosphere problem 

We call stellar atmosphere the outer layers of a star, in which the 

radiation flowing out of the stellar core acquires its spectral features. 

Spectroscopy shows that their constituting material is plasma at high 

temperatures, whose particles are gravitationally confined. On the other 

hand, the major observational evidence of an outward flux of radiation 

reveals the anisotropy of the radiation field, which is the signature of 

radiative transfer. Hence we can consider stellar atmospheres as an open 

boundary between the stellar interior and the interstellar medium. From the 

physical standpoint we have to deal with a system that consists of two main 

components: matter and the radiation field in which matter particles are 

embedded.

The steady-state conditions observed over very long time scales warrant 

the existence of a mechanical equilibrium among the external and internal 

forces acting on the particles, i.e. gravitation, gas pressure and radiation 

pressure. The interchange of energy between the two components of the 

systems and the absence (as a reasonable first order approximation) of 

energy sources in the atmosphere impose the additional constraint that the 

total sum of the internal energy of matter and the energy of the radiation field 

be constant. The resulting energy balance is intrinsically linked with the 

mechanical equilibrium. 

The internal energy of matter determines its temperature, and 

consequently the values of the other thermodynamic variables. In turns, the 

thermodynamic state of matter determines the values of the radiative transfer 

coefficients. That is to say, the coupling between matter and radiation results 

strongly non-linear. Moreover, the energy balance is governed by radiative 
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transfer, i.e. by a transport process. Therefore the stellar atmosphere problem 

happens to be non-local and highly non-linear.

3.2 The equations of the problem 

The problem of determining the structure of a stellar atmosphere is 

tantamount to describe the local concentration of matter and energy. 

According to the specific requirements, we shall make use of either a 

microscopical or a macroscopic description of the physical system.

In stellar atmospheres the temperature is sufficiently high and the density 

is sufficiently low for the matter particles to be localized wave packets 

whose extensions are small compared to the average inter-particle distance. 

Thus they can be idealized as point-like particles, which will have however 

also internal degrees of freedom as postulated by the old quantum theory. In 

parallel, the radiation component can be also treated according to the kinetic 

theory, if the specific intensity of the radiation field is described by means of 

the photons distribution function. Then the radiative transfer equation can be 

interpreted as the Boltzmann transport equation for the photon gas. It would 

be easy to demonstrate that the usual formulation of the RHS member of the 

latter in terms of the specific intensity and the transport coefficients 

corresponds, in the kinetic formulation, to a collisional operator that consists 

of a scattering term and a conventional Bahtnagar-Gross-Krook relaxation 

term.

All that makes it possible to employ the methods of the kinetic theory for 

the derivation of the fundamental equations of the stellar atmosphere 

problems. (This fact is a further example of the unifying role of the kinetic 

theory suggested above.) In the normal way, following the paradigm of 

thermodynamics and fluid dynamics, we will be able to derive the set of 

equations the express the relations among macroscopic quantities that are 

defined by the proper moments of the corresponding distribution functions. 

From the analysis of its components and their mutual relations, we can 

deduce those elements that determine the structure of a stellar atmosphere. 

These elements, which shall therefore be taken into account by the 

corresponding mathematical model, are essentially:

i) the constraints imposed by the equilibrium hypotheses;  

ii) the description of the physical state of matter, either through the 

equation of state if local thermodynamic equilibrium (LTE) can 

be assumed, or a kinetic treatment of the atomic level populations 

under non-LTE conditions;

iii) the transport equations (i.e. radiative transfer and - sometimes - 

convective transport);

iv) a proper set of initial and boundary conditions. 
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On this basis we will eventually derive the system of equations of the 

stellar atmosphere problem. A picture of these equations is given in Table 2, 

which may be viewed as a snapshot of the mathematical model of a stellar 

atmosphere.

Table 2. The equations of the stellar atmosphere problem. This table is taken from (Crivellari, 

2002), where the stellar atmosphere problem and iterative methods for its solution are 

presented in full details. 
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3.3 Iterative solutions and the method of the iteration 

factors

The standard approach to the numerical solution of non-linear problems is 

the complete linearization technique, which consists of the linearization of 

all the equations together with their initial and boundary conditions. This 

method is iterative in character: the unknown variables are linearized around 

a current estimate of their values, that can be obtained either from an initial 

guess or be the result of the previous step of iterations.

At each step of iterations the resulting system of linear algebraic 

equations must be solved numerically. Although always possible in principle, 

when the dimensions of the system are huge (which is always the case in the 

stellar atmosphere problem) the direct solution becomes infeasible, as 

already mentioned in § 2.2. Therefore one must look for iterative methods of 

solution also for this instance.

The fact that actual non-linear problems require an iterative solution is 

the rationale for seeking case by case the optimum one. Again the best 

strategy is to look at the physics of the problem, instead of trying smart 

improvements of the existing mathematical methods. Moreover, very often 

the numerical simulation of the physical processes suits perfectly the 

capabilities of nowadays computers. 

An implicit assumption of the complete linearization technique is that all 

the physical variables can be treated on equal footing. In our opinion, there 

are reasons of principles against such an “equalitarian” treatment. Indeed the 

different processes taking place in stellar atmosphere are characterized by 

very different height scales. Moreover, the strength of the coupling between 

the different phenomena may vary considerably case by case. On these 

grounds we propose an alternative sequential approach. According to the 

nature of their mutual interactions, the different physical processes are 

grouped into elementary blocks, so that each one of them contain the 

minimum amount of information necessary for the self-consistent statement 

of the corresponding physical problem, that can thus be considered as 

“atomic”. The blocks are treated separately one by one. The current values of 

the external variables (i.e. those not pertaining to the block), are taken as 

input data that will not be altered inside the block. The equations of the 

atomic problem are solved to yield the current values of the internal 

variables, which constitute the output of the block.

The elementary blocks are organized into a sequential structure that can 

be straightforwardly translated into an iterative algorithm for the global 

solution of the problem. The most natural sequential organization of the 

elementary blocks for the stellar atmosphere problem would be the one we 

present in Fig. 3. 
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Figure 3. Flow-chart of the sequential iterative procedure. 

Two macro-blocks can be individuated at once. The upper one, the 

constitutive macro-block, consists of the two-coupled elementary blocks that 



ALGORITHMIC REPR. OF ASTROPHYSICAL STRUCTURES 111

account respectively for the mass and momentum conservation and the 

equation of state (here formulated in macroscopic terms). The lower one, the 

energy macro-block, considers sequentially the system of the radiative 

transfer (RT) equations and the constraint of energy conservation. In the 

simplified model considered here the latter condition states that the amount 

of radiative energy absorbed by matter must be equal to the energy gained by 

the radiation field through emission processes. The energy balance equation 

reads

( )a J d a B T d ,

where a is the absorption coefficient, J the mean intensity of the 

radiation field, and ( )B T Planck’s function. The two macro-blocks are 

coupled through the equation of state, here formulated in microscopical

terms.

The input of each step of the whole sequential procedure is the current 

value
i

T  of the temperature. The output values of the variables of the 

constitutive macro-block, P and , are easily obtained by means of a simple 

iterative loop, because the physical interaction between the two elementary 

blocks is weak. By means of the microscopical equation of state it is possible 

to compute the coefficients a and  of the RT equations that, together with 

the constitutive variables are the input data of the energy macro-block. The 

successive solution of the RT equations yields the current values of the 

specific intensity of the radiation field.

At this stage the current values of the relevant variables should fulfil the 

constraint of energy conservation. In general, of course, that will not be the 

case. Therefore we shall make use of the energy balance as an implicit 

transcendental equation in the unknown T  in order to get a new value 
n

T of

the temperature that satisfy the energy constraint. The whole procedure is 

iterated till the convergence to the correct physical solution is achieved. 

The internal loop of the energy macro-block is a version of the Picard - 

von Neumann series. The problem is that in most of the actual astrophysical 

applications its rate of convergence results exceedingly slow (if the 

convergence to the correct solution is achieved at all) because of the very 

large optical depth of the medium through which photons propagate. To cut a 

long story short
47

, the reason of the failure has to be found in the sequential 

treatment of the RT equations and the temperature correction. The exchange 

of energy between the radiation field and matter constitutes a strong physical 

47
 For a detailed discussion see (Crivellari, 2002; Simonneau and Crivellari, 1999). 



112 LUCIO CRIVELLARI

coupling between the two components. Consequently radiative transfer and 

the energy constraint cannot be treated sequentially in the energy macro-

block, but the corresponding equations must be solved simultaneously. 

That could be done, in principle, by including the energy balance in the 

source functions of the corresponding RT equations. However this 

straightforward strategy cannot work because the integral a J d  that will 

appear in the source functions of the RT equations is mathematically 

equivalent to a scattering integral, and it is a matter of experience that 

diffusion problems cannot be effectively solved by means of iterative 

procedures for large optical depths. 

The way to get out from this impasse is offered by the Method of the 

Iteration Factors (IFM)
48

 At any step of an iterative procedure, the current 

values of the fundamental variables may be very far from those of the final 

solution. However, the ratios of certain homologous variables may be very 

close to their correct value, because offset errors have been mended by the 

division between homologous magnitudes. Such ratios (e.g., between pair of 

moments of a distribution function, or different kinds of average of the 

absorption coefficients, and so on), that result to be quasi-invariant along the 

run of iterations, are called iteration factors.

In the specific application of the IFM to the energy macro-block, inside 

each step of the internal loop the RT equations are firstly solved one by one 

in order to get the current values of the specific intensity. A set of iteration 

factors is successively built by taking the ratios of proper pairs of both 

moments of the specific intensity and averages of the absorption coefficient. 

By taking in the standard way the moments of the RT equation, a bolometric 

radiative transfer equation can be derived, whose solution will automatically 

fulfil the energy constraint. The coefficients of the bolometric equation will 

be given by the above iteration factors.

The graphical representation of the energy macro-block, given by Fig. 3, 

will now be altered. The single elementary block energy conservation shall 

be replaced by two blocks in parallel: bolometric radiative transfer and 

energy conservation, linked by a two-way arrow. The latter symbol denotes 

the channel through which information is exchanged between the two blocks 

by means of the iteration factors.

The above scheme quickly converges to the correct physical solution 

thanks to the numerical properties of the iteration factors. Ordinary 

sequential iterative methods carry on a burden of spurious information 

among elementary blocks. On the contrary, when the iteration factors are the 

channel through which information flows, a filtered output is transmitted as 

48
 See (Simonneau and Crivellari, 1988; Crivellari and Simonneau, 1991). 
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input to the next blocks. That not only dramatically fastens the rate of 

convergence, but also warrants the stability of the iterative procedure. 
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THE FLEXIBILITY OF MATHEMATICS 
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Netherlands

Abstract: Mathematics is quite unlike physics: it does not possess empirical content and 

lives in an independent realm of its own. It seems surprising that the 

partnership of these dissimilar companions, mathematics and physics, is so 

extremely successful. But I argue that on further reflection this success is not 

‘unreasonable’: the very difference between the nature of mathematics and that 

of physics makes it possible for mathematics to be highly flexible and 

adaptable to the most diverse needs. By means of a number of examples, 

drawn from fundamental physics, I illustrate how mathematics, through its 

flexibility and versatility, achieves its great effectiveness.

Key words: effectiveness of mathematics; physics; holism; relativity; quantum mechanics. 

1. INTRODUCTION 

“Mathematics may be defined as the subject where we never know what 

we are talking about, nor whether what we are saying is true”, Bertrand 

Russell famously remarked (Russell, 1917). What Russell wanted to express 

is that mathematics is very different from empirical science: it is not about 

the physical world in which we live and which we can see, touch and smell. 

One does not have to subscribe to the details of Russell’s philosophy of 

mathematics to agree with this point. For example, Platonists think that 

mathematics does describe something and can be true (in the correspondence 

sense): it describes an Ideal mathematical world. Still, this mathematical 

heaven is completely separate from the physical world around us. 

Formalists, on the other hand, believe that mathematics does not describe 

anything at all but is a mere play with symbols, according to man-made 
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rules. But in spite of this shift in philosophical outlook, it remains true that 

mathematics is without physical content.

In view of the great distance between physics and mathematics it may 

come as a surprise that mathematics plays such an important role in modern 

physics. In some instances mathematical considerations are even the 

dominant force in physical research. Is this proven effectiveness of 

mathematics in physics not hard to understand, very ‘unreasonable’, as 

Wigner put it in a famous essay (Wigner, 1960)?

Now, it seems plausible that it is not a priori necessary that a scientific 

account, in the usual sense, of the physical world is possible. The world 

might have been dramatically irregular, with no structural permanence at all. 

The concept of a ‘law of nature’ would not be usable in such a situation and 

the question of whether natural laws can be couched in mathematical 

language would not even arise. So, perhaps, it may be considered astounding 

that there is regularity in our world at all, that the concept of a law of nature 

actually makes sense. Perhaps one could argue that a priori it is more 

probable that there is no order than that there is—that we therefore find 

ourselves in an improbable situation, which justifies surprise. I am not sure 

about arguments of this sort—the status of the a priori probabilities used in 

them, and the justification of the values assigned to these probabilities, seem 

very much open to question. Moreover, Kantian or anthropic 

counterarguments may be defensible, about the physical conditions that have 

to be satisfied in order to make our own existence possible. But in this essay 

I will not embark on speculations about whether there might be reasons why 

regularities in nature exist: I am going to take the existence of such 

regularities as something given.

The Wignerian question then becomes: granted that there is order and 

structure in nature, isn’t it unreasonable to expect that mathematics is highly 

effective? Is it not strange that mathematics not infrequently plays an 

inspiring role in physical research, and points the way to new results?

The answer that I want to suggest is that the very observation that 

mathematics has no physical content can take away most of the surprise. 

Indeed, exactly because mathematics is a ‘freely floating construction’, not 

tightly bound to sense experience, it is extremely flexible and versatile—and 

therefore useful. I will illustrate some aspects of this flexibility and 

versatility below, by examples from fundamental physics.

One thing I want to make clear by these examples is that the same 

physical situation can usually be described in a variety of mathematical 

ways. The mathematical toolbox is so well-stocked that researchers of 

different approaches and persuasions can often find a way of dealing with a 

subject that suits their particular tastes and enables them to pursue their own 

programs. Conversely, since mathematics itself is empirically empty, the 



THE FLEXIBILITY OF MATHEMATICS 117

same mathematical techniques and results can often be applied to a diversity 

of physical situations; new insights can thus be gained at small costs by 

transporting old results to new contexts. The effectiveness of mathematics 

thus appears as a built-in feature: because of its flexible applicability 

anywhere where some type of order reigns, and because of its adaptability to 

research preferences, mathematics is likely to be effective.

2. NON-UNIQUENESS OF MATHEMATICAL 

MODELS

In the years during which the genesis of modern quantum theory took 

place, mathematical techniques from different directions were employed. 

Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics, 

respectively, had a radically different mathematical form and fitted in with 

very different methodological programs. However, both formalisms were 

able to handle the discreteness of spectral lines, and therefore succeeded in 

explaining the most crucial experimental fact that classical theory could not 

handle. This already furnishes a first example of the flexibility of 

mathematics. Schrödinger, repelled by the abstract character of Heisenberg’s 

theory, was able to find an alternative mathematical treatment that satisfied 

his own philosophical and aesthetic demands but made the same observable 

physical predictions as the abhorred rival theory. This new mathematical 

scheme enabled him to pursue his favourite idea, according to which 

quantum objects are inherently wave-like.

However, there is a limit to this kind of adaptability. One cannot impose 

any philosophical preference whatsoever on nature. Although mathematics is 

very flexible and will go a long way in meeting a researcher’s wishes, it 

cannot guarantee that all desiderata will be implementable. Nature itself, 

experimental results, obviously limit the possibilities: Schrödinger was in 

fact unable to carry through his pet notion that particles are local spots of 

high density in an omnipresent continuous field. The mathematical reason for 

this is that the wave field is defined in configuration space rather than in 

ordinary three-dimensional space, which becomes important as soon as 

systems consisting of more than one particle are considered; an additional 

problem is that local regions of high field intensity will not be stable because 

of dispersion. These features of the wave theory prove inevitable if justice is 

to be done to the observed phenomena.

Nevertheless, the flexibility of the mathematical treatment permitted 

Schrödinger to make the most of his research program. The discrete nature of 

Heisenberg’s calculus clearly turned out to be avoidable; a continuum 
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treatment could be put in its place. Mathematics afforded the maximum of 

flexibility compatible with empirical results.

Not long after the discussions about these issues in the nineteen twenties, 

von Neumann showed that both Heisenberg’s and Schrödinger’s theories 

could be seen as versions of one encompassing mathematical scheme—

quantum theory as formulated in Hilbert space (von Neumann, 1932). In 

spite of the fact that matrix mechanics and wave mechanics are so very 

different—the former a calculus of discrete quantities, the latter a continuum 

theory—mathematics was able to provide a unifying framework. By going 

up one level of mathematical generality, it proved possible to transcend the 

seemingly unbridgeable differences and to turn the two theories into one. 

This exemplifies the power of mathematics in bringing out hidden 

similarities and common structures.

But it should be noted that this unifying power of mathematics is not 

directly related to effectiveness in dealing with natural phenomena. The two 

theories under discussion—matrix and wave mechanics—can be regarded as 

purely mathematical schemes. They are unified by von Neumann’s Hilbert 

space formulation, which itself can also be seen as purely mathematical. 

Mathematics is able to do its unifying work here just because it is able to 

describe structure (in this case the—at first hidden—common structure of 

wave and matrix mechanics), quite independently of whether this structure 

represents something in physical reality. If some kind of structure is realized 

in physical reality, mathematics can be counted on to give a fitting 

description. This statement cannot be reversed: if mathematics defines a 

certain structure, we cannot count on its importance in physical theory. The 

unifying power of mathematics does therefore not testify to an a priori

rapport between mathematics and physical reality.

Von Neumann’s Hilbert space formulation, with its non-commuting 

observables, has become standard. Still, it has not remained unchallenged. 

The Bohm formulation of quantum mechanics does not work with Hilbert 

space, but with configuration space as the fundamental arena of physical 

processes. It operates with the classical particle concept, according to which 

a particle possesses a definite position and momentum at all times. By 

contrast, in the standard scheme physical systems cannot have both a definite 

value of momentum and position, because the corresponding operators do 

not commute. 

There is no need to rehearse the mathematical details of the Bohm 

approach, which are well known. The point of mentioning this alternative to 

the standard formulation is that we have here another example of two 

completely different mathematical schemes that agree about the results of 

empirical observation. As in our previous example, it again is true that we 

cannot impose everything we might wish. In order to achieve empirical 
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adequacy we have to accept non-locality of interactions in the Bohm theory, 

for instance. But this case does provide another illustration of how 

mathematics allows us the maximum possible latitude in accommodating our 

methodological, interpretational and philosophical preferences. Mathematics 

thus facilitates the formulation and execution of diverse and rival research 

programs, and consequently enhances the chances of progress. In the case at 

hand, it gives us the means to investigate to what extent the classical particle 

concept is still viable within the quantum context. Again, granted that there 

is a particular structure of the world out there to be discovered (this is what 

we assumed to begin with), it is no miracle that the richness of mathematical 

tools and the corresponding variety of possible research paths help us to 

actually do the discovering.

3. HOLISM 

The Bohm theory differs from standard quantum theory in that it operates 

with particles that occupy spatial points, and with many-particles systems 

whose state (in the sense of their location in phase space) is fixed by the 

states of their components—like we are used to in Newtonian physics. In this 

sense the Bohm theory is associated with a ‘local’ world picture. By contrast, 

standard quantum mechanics is ‘holistic’, because properties of composite 

systems can often not be reconstructed from properties of their component 

systems. Think, for example, of the two-electron singlet spin state, in which 

the total spin is definite but cannot be regarded as the sum of definite spin 

values of the individual particles.

The empirical results are compatible both with Bohm’s theory and with 

standard quantum mechanics, so they can be accommodated both within a 

local and a holistic treatment. More generally, discussions about ‘locality’ 

and ‘holism’ in physics usually cannot be decided by empirical data alone. 

The empirical findings have to be evaluated within a theoretical scheme—

and mathematics is often able to supply adequate schemes of different kinds.

An interesting further case is furnished by electrodynamics. Classical 

electrodynamics has a purely local form, in the sense that the central 

quantities E and B are fields, defined ‘per point’. That is, an electric and a 

magnetic field strength are assigned to each spatial point, and these field 

strengths determine the force on a charged particle there. In addition, the 

theory works with electromagnetic potentials,  and A . These are also 

defined locally; moreover, they determine andE B  via local relations. In the 

relativistic treatment these electromagnetic quantities are represented by the 

anti-symmetric electromagnetic field tensor F and the four-potential A ;

again, both are defined locally.  
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The potentials are not uniquely determined by the observable phenomena: 

gauge transformations A A , with an arbitrary scalar field, 

change the local values of the potentials but leave the field strengths, and the 

forces exerted on charges, the same. In classical electrodynamics the 

underdetermination caused by this gauge freedom is usually considered as 

insignificant, because the electromagnetic potentials are regarded as purely 

mathematical expediencies—only F  is accepted as physically real. In 

quantum mechanics, however, the situation becomes different: the wave 

function couples directly to A . Even if no electromagnetic fields are present 

in a region (i.e., 0F ), the wave function does not evolve freely if 

0A . The notorious example is the Aharonov-Bohm effect, in which an 

electron can move along two different paths around a solenoid. Inside the 

solenoid there is a magnetic field, but E and B vanish outside of it. The 

electron moves outside the solenoid and therefore cannot experience the 

fields. Still, the electron’s wave function is changed because of the presence 

of A  in the region where the electric and magnetic fields disappear.

More in detail, the wave function incurs a phase .
C

A dr  along a path C .

This phase is empirically significant: the phase difference between the two 

paths around the solenoid, which is given by .
C

A dr  with the integral taken 

over a closed contour surrounding the solenoid, is responsible for 

interference effects that can be measured.

The presence of A  thus has observable effects, and the potential 

therefore cannot simply be dismissed as physically unreal. Nevertheless, the 

gauge freedom A A is still there, because the integral .
C

A dr  is 

invariant under such gauge transformations. So the value of A at a point

remains unobservable; it is only the integral taken over a closed path that is 

measurable.

One can now choose between two positions. One is that we are dealing 

with a completely local theory, characterized by the real physical fields 

F and A . It is true that the local values of A cannot be observed; but 

according to the position under discussion this does not automatically entail 

that there is nothing real corresponding to A . Indeed, there are many things 

in physics which are not directly accessible, and about which information 

can only be obtained in a roundabout way. It is often taken for granted 

nevertheless that the entities in question exist - think of atoms or elementary 

particles. It is natural, however, if one is convinced of their reality, to look 

for ways of obtaining more direct information about them. In our case, if one 

believes that the potentials are physically real, it is plausible to think of ways 

by which A  could be observed directly; to accommodate this theoretically, 

the theory should be modified. Now, suppose that such an attempt succeeds 

and results in a better theory, one that is able to predict more. Perhaps one is  
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then inclined to say: “Mathematics has miraculously led the way; even 

before we could measure A , mathematics already indicated its existence! 

Mathematics is unreasonably effective.” 

But we may also take the position that A  does not represent a real 

physical field. In that case it is plausible to look for formulations of the 

theory in which A  does not occur; one would like to be parsimonious and 

only represent quantities that do possess physical significance. Mathematics 

is an obedient servant: a formulation of electrodynamics in which the phases 

over closed contours (the gauge-invariant quantities that can be directly 

observed, as we saw above) are central can readily be found (Wu and Yang, 

1975). In this formulation one starts with the ‘anholonomy’ (the mentioned 

phase) associated with closed curves, and there is no need to introduce local 

potentials. Now, suppose no evidence for the reality of potentials is ever 

found. One is then perhaps inclined to say: “Mathematics has miraculously 

led the way: even before experiments convinced us that A  has no physical 

existence, mathematics already indicated the holistic nature of 

electrodynamics! Mathematics is unreasonably effective.” 

The moral is that mathematics is so versatile that it can fit diametrically 

opposed heuristics and research programs. There is no pre-established 

harmony between mathematics and the eventual course physics will take. 

4. RELATIVITY 

General relativity is sometimes adduced as an example of a situation in 

which a mathematical framework—differential geometry—that was 

developed completely independently of physical needs proved unreasonably 

efficient. Differential geometry was first developed as a branch of geometry 

by Gauss—as a metrical theory of curved two-dimensional surfaces—and 

then generalized to an arbitrary number of dimensions by Riemann. In the 

second half of the 19th century the subject underwent further evolution, 

through the work of mathematicians like Levi-Civita. After Einstein got 

acquainted with differential geometry, this branch of mathematics proved to 

be of decisive importance in achieving a break-through in his struggle for a 

relativistic theory of gravitation.

I do not think, however, that the great effectiveness of mathematics in this 

episode qualifies as unreasonable, in spite of the magnificent character of the 

achievement (the general theory of relativity). First, the considerable 

development of differential geometry in the 19th century shows no signs of a 

pre-established link between mathematics and physical needs. Rather, this 

development matches what we have stressed before: the freedom of 

mathematics from physical content and the concomitant possibility of 
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evolution free from external influences. Indeed, Gauss’s theory fits in 

perfectly with the historical tradition of work in geometry. The abstract 

character of mathematics made it subsequently possible and natural to 

construct a geometrical theory of spaces of an arbitrary number of 

dimensions, in spite of the fact that this notion seemed completely 

superfluous in physics.

Second, differential geometry did not inspire relativity in its initial stages. 

It is true, as demonstrated by Minkowski, that already special relativity can 

be regarded as a geometrical theory of a four-dimensional space-time 

manifold. But mathematics did not really anticipate this application of its 

concepts to physics (a point regretfully noted by Minkowski in his essay). 

The geometrical approach did not play a role in the genesis of special 

relativity, and it took Einstein considerable time to recognize the value of the 

geometrical viewpoint. Indeed, one can very well defend the viewpoint that 

Einstein’s original three-dimensional treatment is closer to physical 

experience than the abstract four-dimensional approach. The situation is 

similar to the ones discussed above: there are more ways than one to 

formulate special relativity mathematically, and it cannot be decided 

beforehand which way will proffer the best chances of fruitful generalization. 

But one can see beforehand that once the geometrical formulation is taken 

seriously, going from flat Minkowski space-time to curved Riemannian 

space-time constitutes a way of generalizing special relativity; this 

generalization is in its mathematical essence identical to what Gauss did in 

going from flat to curved surfaces. So differential geometry is evidently a 

suitable instrument to achieve one type of generalization of special relativity.

Summing up, the development of differential geometry can be  

understood from the internal dynamics of mathematics, without reference to 

its later application in relativity. The mathematics of differential geometry 

did not play a role in the genesis of special relativity. After the special theory 

had been developed, it turned out that differential geometry could be used as 

a tool—but that mathematics is able to give a geometrical description of 

special relativity cannot be considered remarkable, given its nature of a 

theory of invariants. It was not obvious beforehand that the use of  

differential geometry, and the type of generalization of special relativity 

suggested by it, would lead to a revolutionary new physical theory. Indeed, 

many physicists made attempts to incorporate gravitation into relativity in a 

non-geometrical way. That the application of differential geometry to 

relativity was in fact highly successful is very understandable with hindsight, 

given that general relativity has made it clear that the space-time of our 

world can be treated as a curved manifold. But the latter is almost 

tautological, and does not point into the direction of a pre-established  
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harmony between the developments of mathematics and physics. If one of 

the other research programs that were pursued after 1905 (e.g., Abraham’s or 

Lorentz’s) had been successful, the geometrical approach might have been 

forgotten by now.

One might answer that it is still an unreasonable coincidence that the 

geometrical tools lay ready just in time, waiting for Einstein to come along. I 

do not think that this is a convincing manoeuvre, however. We already saw 

that it is of the essence in mathematics that developments take place freely, 

in diverse directions. There is a steady rate of addition of new tools to the 

mathematical repertoire. In line with this, cases in which there are several 

mathematical approaches to choose from abound in the history of physics, 

and are not surprising. The genesis of relativity theory exemplifies this 

situation: traditional mechanical techniques competed with the geometrical 

approach. However, situations in which no suitable mathematical tools are 

available certainly occur too. For example, in present-day elementary particle 

physics physicists feel obliged to develop their own specialized new 

mathematics, adapted to the particular needs of string and membrane 

theories. This underscores the fact that the development of mathematics is 

not tuned to needs about to arise in physics.

5. TRANSPORTING INSIGHT 

It is a well-known phenomenon that mathematical models and techniques 

used in the context of one physical problem are often also applicable to 

completely different areas in physics. This is made possible by the neutrality, 

in the sense of freedom of physical content, of mathematics: the same 

mathematical objects and symbols can receive completely different physical 

interpretations. Results achieved in one context can thus be translated to 

other contexts. For example, the same equations apply to electrostatics and 

laminar flow in fluids; these very different phenomena can both be regarded 

as models (in the sense of model theory) of the equations.

Mathematical correspondences between different fields are often used for 

illustrative purposes, for instance in physics education. But, importantly, they 

also play a significant role at the forefront of physical research, in breaking 

new ground. An interesting example from recent research in the foundations 

of physics is provided by a translation of the famous Bell theorem to a space-

time context.

Bell’s theorem demonstrates that the measurement results that are 

predicted by quantum mechanics cannot be interpreted as simply mirroring 

system properties that already existed independently of the measurements. 

This is to be contrasted with the situation in classical physics. According to 
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classical mechanics, particles possess properties like position and momentum 

quite independently of whether any measurements of these quantities take 

place. If measurements are made, the results should of course reflect the 

values that were already there. But as just said, this cannot be maintained in 

quantum theory. Here, the outcome of a measurement is in general not the 

reflection of an object system property that was already there; and what is 

more, it cannot even be considered to be independent of measurements 

performed far away.

The latter point is illustrated by experiments of the Einstein-Podolsky-

Rosen type (Einstein, Rosen and Podolsky, 1935). In a modern version, two 

electrons whose total spin state is the singlet state, in which the total spin is 

zero, fly apart until their mutual distance has become very great. 

Subsequently, spin measurements are made on the individual particles. For 

each particle, there is the choice of measuring the spin in one of two 

directions. The experiment can be repeated with different choices of these 

directions, so that four combinations of directions will be measured in the 

series of repetitions. Correlations between outcomes in these four pairs of 

directions are predicted by quantum mechanics, and are verified in actual 

experiments. As is well known, these correlations violate the Bell inequality. 

Now, it is a mathematical fact that the Bell inequality is satisfied as soon as 

the spin values found in the measurements on the individual particles can be 

regarded as coming from one joint probability distribution of spin values 

(Fine, 1982a, 1982b). The latter would be the case if the individual electrons 

possessed spin values in all directions, as in classical theory, independently 

of which—or whether—measurements are going to be made. If that were 

true, there would be well-defined, definite spin values in the four directions 

under discussion in each run of the experiment; in repetitions of the 

experiment these values would vary and form an ensemble that defines a 

joint distribution of the four spin quantities. Only two of them could actually 

be measured in any single experimental run (one direction for each particle); 

the measured values would therefore be samples from this joint distribution. 

The violation of Bell’s inequality by the predictions of quantum mechanics, 

and by the experimental results, shows that we cannot think of the EPR 

situation in such classical terms—the measurements do not reveal pre-

existing jointly defined quantities.

In other words: the actually measured spin values cannot be considered to 

reveal local particle spins, independently of the kind of measurement 

performed on the other, far-away particle. See Figure 1 for a schematic 

representation of the situation: either 
1
 or 

1
'  is measured on electron 1, 

and
2
 or 

2
' on electron 2. The two horizontal and two diagonal lines 

symbolize the four possible combinations of measurements. The vertical 

double lines represent the electrons.
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Figure 1. The four possible combinations of spin measurements. 

This result is shocking for the classical intuition. It undermines the 

classical concept of locality, and even the very concepts of physical 

properties and physical systems; its ramifications have not been completely 

digested yet. But it turns out that there is even more in store. Exactly the 

same mathematical structure can be recognized in a new situation, so that the 

argument can be repeated there—with results that appear even farther-

reaching (Myrvold, 2002).

Consider two well-localized systems, 
i

S , 1 2i . Let  and  be two 

hyperplanes of simultaneity for some reference frame . Let 
i

E  be the 

places where the systems 
i

S  are located on , and let 
i

F  be the 

corresponding regions on  (see Figure 2). We assume that the two systems 

are sufficiently far apart that 
1

E  is spacelike separated from 
2

F , and 
2

E  is 

spacelike separated from 
1

F . Let  be a spacelike hypersurface containing 

1
F  and 

2
E , and let  be a spacelike hypersurface containing 

1
E  and 

2
F .

If
1

S  and 
2

S  are isolated during their evolution between  and  there 

will be unitary operators 
i

U  such that the state of the combined system 

1 2
S S  on  will be related to its state on  by   

† †

1 2 1 2
( ) ( )U U U U  (1)  

If the regions 
1

E ,
2

E ,
1

F ,
2

F  are sufficiently small, they may be treated as 

points, and we may regard  and  as hyperplanes of simultaneity for 

reference frames , , respectively. 
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Figure 2. The four simultaneity hyperplanes , ,  and .

Let ( )  be the state on hypersurface , and let ( )  be the state 

according on . On the basis of the assumption of unitary evolution between 

 and , the states on the hyperplanes  and  can easily be related to 

( ) . We find:   

†

1 2 1 2
( ) ( )U I U I  (2) 

and similarly 

†

1 2 1 2
( ) ( )I U I U . (3) 

Now suppose that 
1

A  and 
2

A  are definite properties of 
1

S and
2

S ,

respectively, on , and 
1

B  and 
2

B are definite properties on . This 

supposition fits in with interpretations of quantum mechanics according to 

which the quantum state assigns probabilities to objectively existing 

quantities (Bohm’s interpretation or modal interpretations, for instance (Bub, 

1997; Dieks and Vermaas, 1998)). Suppose further that the value of 
1

A

possessed by 
1

S  at 
1

E  is possessed by it without reference to the 

hypersurface containing 
1

E  that is contemplated, and similarly for the other 

points of intersection 
2 1 2
, ,E F F ; this is just the almost self-evident 

assumption that what happens at these four points are objective events 

located in space-time. There must then be a joint probability distribution  

over the values of our four observables, that yields as marginals the quantum 

mechanical Born probabilities on all four hyperplanes. In this we have 



THE FLEXIBILITY OF MATHEMATICS 127

assumed the central tenet of special relativity, namely that the different 

frames of reference are equivalent; in our case that the Born probability rule 

applies equally on , ,  and .

But the states on the various hyperplanes are interrelated, as indicated in 

Eqs. (2)-(3). By inspection of these relations we find that the existence of 

such a joint distribution is equivalent to the existence of a joint distribution 

calculated in one state, namely ( ) , and yielding, as marginals, the 

statistics for the observables 
1 2 1 2 1 2 1 2

, , ,A A A C C A C C  where 

†

i i i i
C U B U . (4) 

However, as we have explained for the case of the EPR-experiment, such 

a joint distribution of four non-commuting observables, yielding the quantum 

mechanical Born marginals for the pairs of observables, cannot exist in 

general (Fine, 1982a; Fine, 1982b). Bell inequalities can be violated if there 

are no restrictions on the state, and the violation of a Bell inequality entails 

the non-existence of a joint distribution. Therefore, if ( )  is a state such 

that a Bell inequality can be derived for the observables 
1 1 2 2
, , ,A C A C , then it 

cannot be the case that 
1

A  is objective at 
1

E ,
2

A  is objective at 
2

E ,
1

B  is 

objective at 
1

F , and 
2

B  is objective at 
2

F .

The argument here completely mimics the earlier Bell argument: the 

mathematics is identical. The structural isomorphy of the two arguments can 

clearly be seen from the similarity between Figure 1 and Figure 2. The 

symbols have different meanings, but the mutual relations are the same. 

Whereas in the original Bell case locality was at issue, we now find that it 

must make a difference whether we consider what happens in 
1

E , e.g., from 

the perspective of 
2

E  or from the perspective of 
2

F . In other words, events 

are not just there, but are different depending on the hyperplane of which 

they are considered a part. This result is a lot more perplexing than the 

original Bell non-locality conclusion! In the Bell case a property could be 

considered to depend on what kind of far-away measurement was made. But 

since only one such measurement can actually be made, no conflict arises 

with the uniqueness and objectivity of the property in question. In our new 

case, however, all the different contexts, i.e. the different hyperplanes, are 

jointly present. So, events cannot in general be unique and objective in 

themselves according to this quantum mechanical scheme, but must depend 

on the hyperplane on which they are considered to lie: a truly amazing 

conception.
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6. CONCLUSION 

The previous section illustrates how mathematical arguments and 

techniques that are elementary and well-known in themselves can lead to 

unexpected new results, new ideas, and new directions of research. In the 

concrete case discussed, indications are that the very concept of an 

‘event’ has to be modified in quantum mechanics. Quite generally, it 

appears that properties of physical systems are relational in character—

that they are perspective-dependent (Bene and Dieks, 2002). This 

conclusion is tentative, and further research concerning these issues is 

needed. It is not the purpose of this article to argue for specific theses 

concerning the nature of quantum mechanical reality.

Rather, what I wanted to show is how mathematics, by its very nature of a 

subject without physical content, lends itself to an unlimited variety of 

applications. As soon as some type of order, structure or regularity is present 

in an area, mathematics becomes almost automatically useful. Because of the 

strong internal dynamics of the discipline, and the steady growth of its 

repertoire, it is not unlikely that some suitable mathematical technique is 

already available when new fields of physical research are opened up. If not, 

this will be an impetus to develop new mathematical tools for the purpose at 

hand.

It would be wrong to summarize this by saying that mathematics is 

nothing but a descriptive instrument, which can be employed in many 

circumstances. Because mathematics is so expressive and rich in conceptual 

tools, it transcends the role of just a language; it can sometimes actively lead 

the way in physical research. More accurately, mathematics does not impose 

directives about how to proceed; rather, the abundance of mathematical 

instruments makes it possible for researchers of all sorts and inclinations to 

proceed along the ways of their own liking. In this process, mathematics can 

suggest generalizations and new directions, as illustrated by the cases of 

holism and relativity. It can also provide new insight by transporting old 

results to new contexts. It can thus make for ‘miraculous’ progress, even 

though its effectiveness is no wonder at all.
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MAURO DORATO 

University of Rome 3, Rome, Italy 

Abstract: In this paper I try to evaluate what I regard as the main attempts at explaining 

the effectiveness of mathematics in the natural sciences, namely (1) 

Antinaturalism, (2) Kantism, (3) Semanticism, (4) Algorithmic Complexity 

Theory. The first position has been defended by Mark Steiner, who claims that 

the “user friendliness” of nature for the applied mathematician is the best 

argument against a naturalistic explanation of the origin of the universe. The 

second is naturalistic and mixes the Kantian tradition with evolutionary studies 

about our innate mathematical abilities. The third turns to the Fregean tradition 

and considers mathematics a particular kind of language, thus treating the 

effectiveness of mathematics as a particular instance of the effectiveness of 

natural languages. The fourth hypothesis, building on formal results by 

Kolmogorov, Solomonov and Chaitin, claims that mathematics is so useful in 

describing the natural world because it is the science of the abbreviation of 

sequences, and mathematically formulated laws of nature enable us to 

compress the information contained in the sequence of numbers in which we 

code our observations. In this tradition, laws are equivalent to the shortest 

algorithms capable of generating the lists of zeros and ones representing the 

empirical data. Along the way, I present and reject the “deflationary 

explanation”, which claims that in wondering about the applicability of so 

many mathematical structures to nature, we tend to forget the many cases in 

which no application is possible. 

Key words: mathematics; laws of nature; algorithmic complexity theory; evolution; 

semantics.

Our experience hitherto justifies us in believing that nature is the 

realization of the simplest conceivable mathematical ideas. 

(Einstein,1933)
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1. INTRODUCTION 

In this note I will try to connect the difficult question of the effectiveness 

of mathematics in the natural science (Wigner, 1967) with the philosophical 

issue of the nature of natural laws. Trying to create a bridge between these 

two as-yet unrelated areas of philosophical research seems a fruitful 

enterprise as it could shed light on both. On the one hand, for example, the 

philosophical questions of (i) what laws are (ontological and semantic 

realism vs. ontological and semantic antirealism about laws) and (ii) how we 

come to know them, seem to be questions that can be fruitfully approached 

anew if we pay attention to the mathematical character of laws: the idealized, 

abstract and simplified character of laws in our models is often due to the 

need of having tractable mathematical problems and solutions. This is, for 

instance, why stable solutions to linear differential equations were privileged 

at the beginning of modern mathematical physics. On the other hand, the 

“unreasonable effectiveness of mathematics” is an abbreviated slogan to 

refer to the descriptive, predictive and explanatory power of mathematics in 

dealing with the natural (and social) world, a power that almost exclusively 

depends on the fact that laws in most natural and social sciences are 

expressed in mathematical language. The fact that scientific descriptions, 

predictions and explanations are often a matter of subsuming single 

phenomena under laws (together, of course, with a specification of boundary 

conditions and/or initial conditions), confirms the importance of establishing 

a relationship between the problem of the effectiveness of mathematics and 

the philosophy of the laws of nature. 

As a further illustration of the opportunity of a cross-fertilization of the 

two areas above, consider that the ontological realist about laws believes that 

there are mind-independent truth-makers (for instance, relations about 

properties of physical systems) making any well-confirmed law-statement 

true. What is the character of such truth-makers? It is an interesting and not-

yet sufficiently explored question whether the entities referred to by such 

statements are describable in a sufficiently faithful way in a non-

mathematical language. If this were not feasible, we might have to conclude 

in a Pythagorean fashion that the ultimate structure of the universe is 

mathematical in character. As Steiner put it (Steiner, 1998):

Can we specify, by using a non-mathematical language, how can the 

world be made in such a way that valid mathematical deductions are 

effective in predicting observations? (p. 24) 

I should add that rather than offering alleged “definitive solutions” to the 

hard problems raised above, the paper tries to suggest new directions of 

inquiry by reviewing and briefly evaluating the scanty available literature. In 
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the next section, I will try to provide arguments to the effect that the problem 

of the effectiveness of mathematics is a genuine one. Such a preliminary task 

is necessary, since if the problem posed by Wigner were a pseudo-problem, 

the claim that it could help us to look at the issue of scientific laws under a 

new light would be groundless. In the third section, I will present and briefly 

evaluate the current attempts at answering Wigner’s problem (I will list four 

of them). In the fourth section, I will focus on one of these attempts, centred 

on the view that laws of nature are the software of the physical universe 

(algorithmic view of the laws of nature and of the applicability of 

mathematics). In this metaphor, which for its proponents is suggestive of a 

deeper truth about mathematically formulated laws, the universe is 

considered to be a gigantic computer whose hardware is whatever 

fundamental physics tells us about the ultimate component of matter (fields, 

particles, superstrings, etc) and whose software abbreviates and compresses 

the ordered sequence of states it goes through in time. In the fifth section, I 

will raise various difficulties to the algorithmic conception of laws, some of 

which may appear fatal to the whole project. 

2. SOME SCEPTICAL REMARKS AGAINST 

WIGNER’S QUESTION 

As is often the case in philosophy, one often wonders whether an 

apparently deep problem to a closer analysis might reveal itself but a pseudo 

problem. In our case, a dissolution of the question why mathematics can be 

used to describe, predict and even explain physical phenomena – think of the 

structural-geometrical explanation of the time-dilation or of the length-

contraction effects in terms of the geometry of Minkowski space-time, in 

which an invariant four-dimensional entity is projected onto different relative 

3-spaces with its own inertial time – is the remark that the effectiveness of 

mathematics meant in this sense results from a selective effect, making us 

focus only on the evidence of success. Ignoring evidence of failure, one can 

make any hypothesis look good, so that one could as well refer to the un-

effectiveness (or the very frequent failure) of many mathematical theories to 

apply to the natural world. A second objection consists in the fact that very 

often, as in the case of calculus at the times of Newton and Leibniz, pieces of 

mathematics are invented and constructed with the intention to solve 

physical problems: no wonder that they sometimes work! 

In order to tackle the first objection, note that we cannot take statistics in 

order to determine the fraction of areas of mathematics that have had a 

successful application over the total number of areas of mathematical  
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research. Therefore, since the objection presupposes such a statistical count, 

it loses its force. However, even if it did make sense to take such a counting, 

we would not find many branches of pure, non-applied mathematics that are 

not somehow connected with the empirical world.
49

Of course, we must agree that we can apply mathematics to the empirical 

reality only in some few, lucky cases and not in others, namely when we are 

dealing with simplified or “simple” enough phenomena
50

. Cases in which the 

mathematician cannot find the way to describe a natural process clearly 

outnumber those in which she can (see Steiner, 1998, p. 9).

However, I take it that it is still mysterious that some of the consequences 

of our mathematical symbols are also consequences of the symbolized 

phenomena, as Hertz once put it, especially when the symbols were not 

created for applicative purposes. If the application of a part of mathematics 

to physics has been, at least sometimes, unpredictable and unexpected – that 

is, if that part of mathematics had been constructed for pure, or non-

applicative purposes – then I claim that even a single instance of successful 

applicability would cry for an explanation.

This remark takes us to the second reply to our question: for instance 

there are parts of mathematics like group theory that had not been invented to 

deal with physical problems, but nowadays it would be difficult to deal with 

the zoo of elementary particles without using the algebra of groups. The use 

of Levi Civita’s and Ricci’s absolute differential calculus in the general 

theory of relativity is an often quoted instance of a surprising spin off that 

had not been pursued intentionally. Dirac discovered his equation (and the 

existence of antimatter) by working on a formal, syntactical analogy with 

what Pauli had done before him with 2x2 matrices: despite the fact that Dirac 

was trying to solve a physical problem, it is still mysterious that merely 

formal analogies like these can sometimes be conducive to truth or success. 

In his characteristically direct and non-pompous style, Feynman put it thus 

(Feynman, 1967):

I find it quite amazing that it is possible to predict what will happen by 

mathematics, which is simply following rules which really have nothing 

to do with the original thing. (p. 171)

Finally, we should also note that an explanation for the applicative 

success of mathematics cannot be easily found just by taking a philosophical 

stance on the ontology of mathematical objects. In fact, just to name two 

49
 By “connected” I mean to refer also to cases like the application of number theory to the 

problem of secret coding. 
50

 Simple here is almost a synonymous of “can be captured by a mathematical model”. 
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positions, the problem of the applicability of mathematics creates troubles for 

both the constructivists and the platonists. The former must explain why a 

creation of ours, often pursued for subjective purposes and without any 

pragmatist interest, can carry so much descriptive and predictive power, 

enabling us to explain and classify entities of the natural world that we did 

not create (under the typical assumption of the scientific realist). The 

platonists should explain why the natural world should conform or be 

partially isomorphic to the abstract realm populated by mathematical facts 

and entities, besides answering the usual objection coming from the causal 

theory of knowledge. If the abstract real is causally inert, how can we get to 

know it?  

3. FOUR POSITIONS ON WIGNER’S QUESTION 

3.1 Steiner’s antinaturalism 

The first position I will list, which is antinaturalistic, has been explicitly 

defended by Steiner (1998): the universe is “user friendly” for the 

mathematician, but no explanation in natural terms seems available. Here, 

anthropomorphism strikes back, with a theological undertone (Steiner, 1998, 

p.10). According to Steiner (1998): 

to use mathematics to define similarity and analogy in physics is almost 

as anthropocentric as using “male-female” or “earthly-heavenly” as 

classifying tools. Why? Because the concept of mathematics itself is 

species-specific. There is no objective criterion for a structure to be 

mathematics  and not every structure count as a mathematical 

structure…Mathematicians today have adopted internal criteria to decide 

whether to study a structure as mathematical. Two of these are beauty and 

convenience. (pp. 8-9). 

The interest of Steiner’s book lies more in providing interesting historical 

examples of unexpected applications of mathematical concepts to the 

physical world via mathematical, formal analogies than in trying to explain 

the problem at stake. Concluding that the effectiveness of mathematics 

amounts to an anthropomorphic (“childish-like”) projection of our 

constructed structures onto the physical world is simply a re-description of 

what needs to be explained, namely that mathematics, viewed as a social 

construction, somehow miraculously captures parts of a universe that is 

independent of our minds. 
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 Another “risk” of Steiner’s antinaturalistic position is that of encouraging 

a sort of mysticism about Wigner’s problem: if naturalism means (i) that the 

existing or the real coincides with what exists in space and time, (ii) that we 

have the power in principle to investigate and get to know reality via the 

discovery of natural laws, (iii) that we can also find out how we get to know 

the world, antinaturalism might mean that we will never find out through 

science why our mathematically formulated laws enable us to predict and 

classify natural entities. This would somehow mean the bankruptcy of the 

possibility of coming up with an explanation to our question. We can 

therefore move on to a different attempt at explaining the problem. 

3.2 The Kantian answer  

The second position could be called a form of “kantism”: mathematics 

works because, roughly speaking, we perceive the world by using inner 

mathematical intuitions (space and time), that is, we project a priori forms, 

constructions and categories of our own unto our experience of nature. Here 

the explanation of the effectiveness of mathematics can rely on data coming 

from evolutionary and cognitive psychology and as such it is not at all 

antinaturalistic (Longo, 2000a, 2000b). On the contrary, its promising aspect 

is the fact that it can be measured against in principle available empirical

evidence, like data on arithmetical abilities of other animals, based on the 

evolutionary advantage of being able to distinguish, for example, “one 

predator” from “many predators” or even “one” from “two” or “three” 

(Devlin, 1999) 

Just to offer an argument based on mere a priori plausibility of a Kant-

type explanation, one could reason as follows. Since mathematical abilities

are to a good extent genetically determined, fundamental mathematical 

concepts, like number or space, might be a priori, in the same sense in which 

fundamental concepts are a priori in Fodor’s language of thought.

Otherwise, one could ask, what would be the object of such mathematical 

abilities? Furthermore, if the contents of our thoughts are expressed in 

symbolic structures of an innate language, whose syntax and semantics are 

similar to (though more abstract than) those of the natural language, then the

claim that all our mental processes are essentially computational could 

explain why the development and justification – not thought necessarily the 

origin of certain concepts – of mathematical knowledge is a priori without 

invoking any outlandish form of Platonism.

Note that the question of applicability within this second attempt would 

be solved only in part, because while it can be true that we perceive the 

world also thanks to “primitive mathematical intuitions”, it remains to be 
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explained why developments of mathematics that are very remote from those 

intuitions can still have an empirical application. The question of the nature 

of laws of nature is therefore not even touched by this second attempt.

One should in fact consider that mathematics is applicable also at scales 

(like those typical of atoms and subatomic particles on the one hand and 

cluster of galaxies on the other) that differ by many orders of magnitude 

from the dimension of the physical bodies to which we adapted during our 

biological evolution. The difficulty then is as follows: if one believed in this 

sort of Kantian explanation, supplemented by whatever part of evolutionary 

psychology or cognitive psychology may come to help, one would have to 

say that it is only through analogy that we can extend what works at our 

dimension to other, much smaller or much bigger dimensions. But 

notoriously the analogies between the laws of the atom and those of classical 

physics break down, and we certainly have no direct experience of atoms and 

molecules. And yet mathematics applies successfully also to the quantum 

world, which in Kantian terms is a sort of noumenal world going beyond 

experience. It seems that the Kantian position needs to answer this objection, 

at least to the extent that it is plausible to assume, as it is, the mind-

independent existence of atoms and molecules:
51

 if mathematics applies to 

the objects of our experience because the latter is possible only via the 

primitive mathematical notions that belong to our subjective side, how can 

we apply mathematics so successfully to objects that are beyond the reach of 

experience? Why should evolution have equipped us with the laws of objects 

that, like atoms, play no role in our ordinary life? 

A possible reply to this objection is suggested by Steiner: scientists 

extend the applicability of mathematics by using Pythagorean or syntactic-

formal analogies between physical laws written in purely mathematical 

language, for which no translation into non-mathematical language is 

possible. This suggestion can have a two-fold interpretation. Either scientists 

correctly believe that the world is objectively written in mathematical 

language, as Galilei thought, or the success of mathematics in extra-

phenomenical realms is utterly unexplainable, because it is the result of pure 

chance, the coincidence being given, for instance, by the fact that physical 

laws suggested by mathematical analogies with laws working within the 

domain of macroscopic bodies work also within the quantum domain.

In either hypothesis, however, the Kantian position is in trouble, because 

it makes the explanation of the effectiveness of mathematics impossible. 

51
 The way out of denying the existence of mind-independent entities is of no use, since the 

predictive power of structures like that of the Hilbert space is undeniable and needs to be 

explained.
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3.3 Mathematics as a kind of language 

The third position is very close to the second, and argues that 

mathematics is a type of language, so that the question of the applicability of 

mathematics is a chapter of a generalized theory of semantics. Ordinary 

language is successful in describing, predicting and explaining many 

properties of ordinary objects: mathematics is just a sophistication of these 

abilities, since relative to the natural languages, mathematics is just a more 

rigorous, less ambiguous, and formally organized language. Chomsky’s 

generative linguistics and Fodor’s computational view of human thought 

(Fodor, 1975) may give support to this third position, since besides the 

algorithmic nature, mathematics seems to share with both language and 

thought the characters of productivity and systematicity. The number of 

mathematical results and theorems that can be generated from certain 

premises seems potentially infinite, and mathematics keeps growing in many 

different directions simply by building in a recursive and combinatorial way 

on previous results (productivity). All branches of mathematics are deeply 

connected with each other, so that the capacity to generate a certain result is 

intrinsically connected to the capacity of generating other results 

(systematicity).

However, a linguistic approach to the problem of effectiveness of 

mathematics is affected by the difficulty of finding non-mathematical 

correlates for central mathematical concepts. This is certainly not the case 

with ordinary languages, whose referential terms have always a well-defined 

extension in the outer world. Consider the following list of notions, 

characterized by an increasing abstraction. We do not have too many 

troubles in finding a non-mathematical correlate for the mathematical notion 

of subtracting two numbers, since it corresponds to the physical operation of 

separating objects that were previously together; likewise, the mathematical 

notion of “linearity” corresponds to the superposition of two waves or to the 

fact that two causes contribute separately to their effect. Fiber bundles may 

be taken to describe gauge fields, but what does the analyticity of a function 

correspond to in the real world?
52

 While the latter mathematical notion is 

crucial in the applicability of many parts of mathematics, it does not seem to 

have any counterpart in the physical world. Once again, unless we assume 

that any important mathematics notion can be parsed in a non-mathematical 

language, which seems difficult, we have no way of making sense of the 

applicability of the symbolic language of mathematics to the physical world. 

A literary quotation addressing the role of complex numbers, due to the 

52
 Some of these examples are due to Steiner (1998). 
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German writer Robert Musil, will conclude this brief discussion of the third 

position (Musil, 1906):

The strange fact is that with these imaginary or even impossible numbers 

one can anyway make perfectly real calculations which end in a concrete 

result. (p. 56) 

Ironically, at the time of The Confusions of the Young Törless, from 

which this passage is taken, Musil could not be aware at the fact that the 

most successful theory of the atomic structure of matter – quantum 

mechanics – would have been using complex, “imaginary” numbers to 

calculate the probability of measurements. 

3.4 Mathematics as the science of the abbreviation of 

sequences

We can regard a mathematically formulated law as a “bridge” colligating 

two banks of a river, each constituted by quantitative data resulting from 

measurements. On one side of the river we find the initial data or boundary 

conditions, which in our metaphor we can regard as the input, and on the 

other side we find the predictions or retrodictions – the output – the result of 

a calculus.

Since such a result is obtained in a purely deductive fashion, that is, 

thanks to the application to the initial data of a mechanical rule given by the 

physical law, the metaphor of the scientific laws regarded as the algorithm of 

a computer appears initially justified. If the initial data in fact are such as to 

satisfy some mathematical conditions which in this context can be omitted,
53

and whenever the solution to the equation exists and is unique, a 

mathematical law expressed as a differential equation enables us to transform 

in a finite numbers of steps, and in purely mechanical fashion, the initial data 

in final predictions or retrodictions (output).

What interests us is, of course, whether such an analogy between the laws 

of succession of any physical system – regarded as something that  

evolves in time by going through a finite number of states describable in 

physical language – and the software of a computer, can help us to better 

understand: (i) why the world is describable by mathematical laws and (ii) 

how the latter are related to the world, that is, how they represent it. In order 

to shed light on the presuppositions of the law-software analogy, we should 

ask whether also a physical system, in a sense to be specified, could be said 

53
 The functions representing the data must be differentiable at least as many times as the 

degree of the differential equation giving the algorithm. 
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to “compute” its “next” state by bringing it about. Let us assume, for the 

sake of the argument, that it makes literal sense to claim that a physical 

system going from an initial to a final state literally executes a program or

calculates its future state, in the same sense in which a mathematical 

physicist deduces or calculates the predictions corresponding to the initial 

data.

We will now discuss more closely this view of the applicability of 

mathematics, in order to evaluate its chance to be a candidate to meet 

Wigner’s challenge. 

4. THE ALGORITHMIC VIEW OF THE LAWS OF 

NATURE 

Suppose that the temporal evolution of any physical system is describable 

by finite strings of real numbers, corresponding to operational measures of 

physical magnitudes (temperature, pressure etc.). We can have two cases: 

such strings can be ordered 

(111000111000111000…)

or truly random 

(0100110101100110…).

In the first case, the string can be generated by a simple instruction (“print 

111000 n times”), which is much shorter than the list itself. In the second 

case, the string appears as truly random, where “appear” is meant to stress 

that while we can show that a finite string is not random by giving the 

generating law (algorithm), we can never prove that a string is random (this 

is a version of the halting theorem).

At this point we can give two definitions, based on algorithmic 

complexity theory, which will be relevant for our purpose: 

Definition1: the complexity of a string is the length of the shortest   

algorithm capable of generating it 

Definition2: a string is said to be algorithmically compressible when 

there is an algorithm capable of generating it, such that its information 

content (number of bits) is much less than that of the string. 

As an illustration of these definitions, consider that a string like

{1, 4, 9, 16, 25, 36, …}                     (1) 

is obviously not random, since it can be trivially obtained by squaring the 

positive integers in the list
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{1, 2, 3, 4, 5, 6, …}                            (2) 

If the numbers in (2) correspond to measured magnitudes in such a way 

that, say in a temporal interval of 1, 2, 3 seconds (the input data), a body 

travels 1, 4, 9 meters (the output), then the existence of a rule generating (1) 

from (2) shows that (1) is algorithmically compressible. The above algorithm 

is – modulo the constant ½g. – Galileo’s law of free fall, generating the 

spatial intervals (1) from the square of the temporal intervals (2).

In a word, by following the metaphor of scientific laws regarded as the 

software of a physical system, we discover that searching for laws is 

tantamount to asking which is the length of the shortest program capable of 

generating the string of numbers expressing the experimental measures.

Such a length – the complexity of the string – will be equal to that of the 

original string only if the latter is composed by apparently random numbers, 

and does not obey any known law.

The idea that scientific laws are an economic synthesis of all the 

information contained in our observations is certainly not new, and in this 

algorithmic approach it finds a new, rigorous and precise formulation. It was 

especially Ernst Mach who regarded science and its theories and laws as an 

economic “summary” of our observations. As he wrote (Mach, 1896):

Science is a form of business. Its purpose is to find the maximum amount 

of the infinite eternal truth with the minimum amount of work, in the 

minimum expenditure of time and with the minimum amount of thought 

effort. (p. 14) 

After having made explicit the philosophical consequences that seem to 

follow from the software metaphor for scientific laws, we can now finally 

discuss a possible explanation of the applicability of mathematics, due to the 

physicist John Barrow (Barrow, 1992):

science exists because the natural world seems algorithmically 

compressible. The mathematical formulae that we call laws of nature are 

economical reductions of enormous sequences of data expressing  

changes of state of the world: here is what we mean by intelligibility of 

the world…Since the physical world is algorithmically compressible,

mathematics is useful to describe it because it is the language of the 

abbreviation of sequences. The human mind enables us to make contact 

with that world because our brain has the ability of compressing complex 

sequences of sense data in shorter form. Such abbreviations make  

thought and memory possible. The natural limits that nature poses to our  



142 MAURO DORATO

senses prevent us from overloading our brains with information about the 

world. Such limits are security gates for our minds. (p. 93-96) 

5. SOME DIFFICULTIES OF THE ALGORITHMIC 

VIEW

In discussing some of the difficulties generated by this position, let us 

start to discuss parts of Barrow’s quotation. 

(1) On the “epistemic” hand, if it is the brain that filters sense data and 

elaborates them through the construction of mathematical concepts, what is 

the relationship between such a capacity and the applicability of 

mathematics, regarded as the technique of compressing sequences? This is an 

open question and it connects this approach with the second (and third) 

position. Until we have a clear answer to this question, it is difficult to credit 

Barrow’s claim for being more than an interesting speculation. 

(2) On the “ontic” hand, it is not clear what it means to affirm that “the 

physical world is compressible”: isn’t this another way of formulating what 

we are trying to explain? Furthermore, note that compressibility is an 

epistemic notion: we are interested in compressing information, nature isn’t. 

However, we are after an ontological interpretation of laws regarded as 

algorithms, enabling us to understand why mathematics is applicable with 

success.

(3) As persuasively shown by McAllister in a different context 

(McAllister, 2003), strings of data have interest-relative patterns. In his 

example, McAllister asks us to consider a very long string of data on the 

atmospheric temperature: we can find many regular patterns with different 

periods. We will find regularities with a period of a day (due to the rotation 

of the earth), other patterns lasting some days (due to the weather systems), 

one lasting a year (due to the earth’s revolution around the sun), patterns 

which are repeated every 11 years (due to the sun spots), other regularities 

which are 21000 years long (due to the precession of the earth’s orbit). Each 

of these patterns has a different algorithmic complexity. Which is the 

intrinsic algorithmic or effective complexity of the string of data? Since the 

answer to this question is interest-relative, this approach cannot be used for 

any ontological purpose. 

(4) Not all laws of nature are sequential (i.e., laws of succession) as the 

notion of laws as algorithm requires! Since the notion of algorithm is 

essential temporal (even in parallel-distributed computation, the results of  

the distinct calculations must interact before the output), either all natural 

laws are laws of succession, or else natural laws cannot be given an 
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ontological interpretation within the algorithmic view, because ontologically

interpreted laws have to be executed by physical systems. Tale laws such as 

F = G(M1 M2)/r2 (3) 

 = e0 q (4)

PV = kT  (5) 

Either they all derive from laws of succession, or physical systems cannot 

be said to instantiate them, because their parts would have to communicate at 

superluminal speed. A law of coexistence in fact links by definition parts of 

physical systems that are spacelike-related.

Before concluding, it is important to clarify what this objection does not

entail. Clearly, we can use the laws in Eqs.(3)-(5) to calculate one side of the 

equation from the other, and in this sense their algorithmic character is 

obviously not refuted. However, calculations to humans take time, and note 

that – in order to give the current interpretation of laws an ontic significance 

– we were assuming that physical systems do go from one of their states to 

another one by executing an algorithm. It is in this sense that only temporally 

related states of a system can execute an algorithm and only laws of 

succession can be captured by the algorithmic view of the laws of nature. 

6. CONCLUSION 

As it should be obvious from the above survey, the problem of the 

effectiveness of mathematics is here to stay, and no one of the solutions that 

we have sketched here is devoid of serious difficulty. Clearly, research in 

this stimulating area calls for a multidisciplinary effort, coming from 

philosophers of mathematics, historians of philosophy, epistemologists, 

linguists, historians of science, cognitive scientists and possibly neuro-

physiologists. And the problem is of immense interest also to physicists, as 

the contemporary Nobel prize Weinberg admits that “it is positively spooky 

that the physicist finds the mathematician has been there before him” 

(Weinberg , 1986, p. 725). 

 Finally, Wigner’s problem has all the trademark of a deep philosophical 

problem, since not only does it favour the dialogue between the science and 
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the humanities, but also helps us to understand the place of mankind in the 

universe.
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Abstract: After having stressed the role of mathematics for the elaboration of one of the 

pillars of modern science, Quantum Mechanics, we point out one of its most 

striking features: entanglement. It stems from the fact that the Hilbert space 

appropriate for the description of such a system is the direct product of the 

Hilbert spaces of the constituents. The linear nature of the theory allows then 

the occurrence of states that are not the direct product of two states belonging 

to the factors of the total Hilbert space. Such states are entangled and their 

mathematical structure gives rise to extremely interesting quantum effects that 

exhibit nonlocal features. It is shown how the elaboration of the mathematical 

framework which is appropriate for the quantum world has led to consider 

entangled states and to discover their extremely peculiar and interesting 

features, the most important being actually nonlocality. We also prove that the 

nonlocal features of nature which are associated to entangled states do not 

derive from the specific formulation and interpretation of the theory but are 

unavoidable, just due to the tested correlations between far away states implied 

by the formalism. The subject represents an ideal arena to see how the 

mathematical formalism, when combined with the appropriate physical insight 

and with extremely refined experimental techniques, can lead to discover 

unsuspected and revolutionary aspects of natural phenomena. 
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1. INTRODUCTION 

I consider it extremely stimulating the subject of this year's Losinj 

meeting, i.e. to reconsider the role of mathematics in Physical Sciences, an 

expression to which I will attach a much more general meaning by 

reformulating it as “the role of mathematics for our understanding of the 

world around us”. In this spirit I will start by summarizing the peculiar 

intellectual experience of all those who have been seriously involved in the 

theoretical aspects of science by making reference to a relevant quotation by 

the great theoretician E. P. Wigner (1959) who decided to choose as the title 

of one of his most relevant lectures the following one: 

The unreasonable effectiveness of mathematics in the natural sciences. 

This statement expresses in an extremely significant and synthetic way 

the wonder of any researcher when he realizes how the formal and 

mathematical achievements of human thought represent an important key for 

penetrating the mystery of natural processes. 

 However, to make clear my position, I feel also the duty of reporting 

the opinion that Wigner himself has expressed in the closing sentences of the 

above paper: 

The miracle of the appropriateness of the language of mathematics for 

the formulation of the laws of physics is a wonderful gift which we neither 

understand nor deserve. We should be grateful for it and hope that it will 

remain valid in future research and that it will extend, for better or for 

worse, to our pleasure, even though perhaps also to our bafflement, to 

wide branches of learning. (p. 237) 

I have reported the last sentence to specify that, even though I consider 

them perfectly legitimate, I do not share "Platonic" attitudes about our 

subject. In my opinion the fact that a specific mathematical formalism 

reveals itself as the appropriate and ideal language to account for new

phenomena has, by itself, an extreme conceptual relevance and can lead to 

radical changes about our understanding of natural processes. On the 

contrary, I do not believe that looking for new abstract formalisms, i.e. 

doing,

“mathematics for mathematics’ sake” 

can, by itself, open the way to revolutionary new intuitions about the 

world around us when it is not accompanied by a corresponding 

identification of new and unexpected physical phenomena. Unfortunately my 

friend Prof. A. Miller has not been able to participate to this conference. 

However, I cannot loose the opportunity of calling attention to his deep 

investigations on the processes of scientific discovery and in particular on the 

detailed analysis appearing in his book: Imagery and Scientific Thought
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(Miller, 1987). Among many interesting topics, he gives a detailed account 

of the birth of our best theory, Quantum Mechanics. We can raise the 

question: what emerges from this extremely lucid analysis? 

First, that some physicists, like N. Bohr with his love for “atomic orbits” 

or E. Schrödinger with his desire to stick to the illuminating suggestions of 

de Broglie and Einstein, have chosen

visualizability

as the key road to scientific knowledge, while others, like W. Heisenberg, 

have privileged

abstract and formal approaches 

resorting to what Schrödinger himself has qualified as “transcendental 

algebra”. However, Heisenberg did not discover “matrix mechanics” or 

better “linear infinite dimensional complete and separable Hilbert spaces” 

just by adventuring himself in formal speculations – actually this had been 

done years before by D. Hilbert within a precise mathematical line of 

research. Heisenberg’s research program was firmly grounded on empirical 

data and he appropriately insisted on the need of disregarding the untestable 

statements about atomic orbits and/or positions (which unavoidably led to 

contradictions) claiming that one had to stick to the only clear empirical new 

facts contradicting the classical view: the quantization of physical quantities 

and the discrete nature of spectral lines. 

Summarizing, I convincingly share the opinion of Galileo that: 

Philosophy is written in that big book which is continuously open in front 

of our eyes (I mean the Universe), which however one cannot understand 

if, in advance, one does not master the language and one does not know 

the ciphers it uses. The language is mathematics and the ciphers are 

triangles, circles and other geometrical figures, 

but at the same time I consider extremely important to keep always in 

mind his fundamental motto: 

Provando e riprovando 

which invites us to be guided by experience before adventuring in wild 

speculations about what is out there.

To conclude these preliminary remarks I will therefore summarize my 

position as follows: 

Experience, the basis of any scientific knowledge, suggests new and 

innovative theoretical and mathematical perspectives. When one such 

perspective reveals itself as particularly successful to account for some basic 

features of a revolutionary phenomenological framework one has to exploit 

all its subtle formal aspects since they can yield unexpected, new and 

innovative views about nature. 
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This situation is paradigmatically exemplified by quantum phenomena, 

the Hilbert space description of them, and in particular by its peculiar 

mathematical trait, entanglement, with its implications for the non-local 

character of natural phenomena. After this premises I can pass to the subject 

of my talk. 

2. THE QUANTUM FORMALISM 

The way quantum theory accounts for natural process is embodied in the 

following rules: 

1. The states of a physical system are described by elements (statevectors) 

of a linear, complex, infinite dimensional complete and separable vector 

space, and, as such, they can be multiplied by arbitrary complex numbers 

and summed (the superposition principle).

2. The physical observables are represented by appropriate (self-adjoint) 

operators on this space. Any such operator ˆ  identifies uniquely its 

spectral family, i.e., its eigenvalues 
k
 – a subset of the real axis – and 

the associated eigenvectors >
k

 : 

ˆ >=  >
k k k

 (2.1) 

The eigenvectors are a complete set, in the sense that any statevector

 can be expressed as a linear combination (discrete and/or 

continuous) of them

.

> > + ( ) >
k k

k

cont spectrum

c c d  (2.2)

Assuming that  and the eigenvectors of ˆ  are appropriately 

normalized, the coefficients of the development are given by the 

corresponding scalar products: , ( )
k k

c c , which 

satisfy
2 2

.

( ) 1
k

k

cont spectrum

c c d .

3. The only possible outcomes of a measurement of the observable ˆ  are 

the   eigenvalues of the associated operator.

4. The preparation procedure of a system consists in measuring an 

observable and getting an outcome: after the measurement the statevector 

coincides with the eigenvector associated to the obtained outcome. 
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5. The evolution is governed by the (norm preserving) deterministic and 

linear Schrödinger’s equation: 

,
ˆ ,

t
H t i

t

 (2.3) 

where Ĥ is the Hamiltonian (the energy operator) and , t  the 

normalized statevector at time t . Note that since the equation is of first 

order in time, knowledge of the statevector at the initial time 0t

uniquely determines it at any subsequent time. 

6.  Knowledge of the statevector yields all possible information one can have 

about an individual physical system (this assumption being referred to as 

the completeness of the theory), the predictions of the formalism being 

fundamentally probabilistic: for any conceivable observable ˆ  the 

probability ˆ | ,
k

P t  (or the probability density 
ˆ( | , )P t ) of 

getting the indicated outcome in a measurement of ˆ  when the state is 

, t  is given by: 

2 22 2ˆ ˆ( , ) , , ( ( , ) ( ) , )
k k k

P t c t P t c t

 (2.4) 

7. When a measurement is performed and a specific result is obtained, wave 

packet reduction (WPR) takes place: the statevector of the system is 

transformed instantaneously into the normalized eigenvector associated to 

the obtained result (in the degenerate case in which there is a whole linear 

manifold associated to such a result - this typically occurring in the case of 

a result belonging to the continuous spectrum for which an infinitely 

precise measurement cannot be performed - the statevector is transformed 

into its normalized projection onto the considered linear manifold). 

With reference to the axiomatic structure of the theory some remarks are 

appropriate:

I.  If it happens that the statevector , t  coincides with one of the 

eigenstates
k

 of an observable ˆ

, ,
k

t
 (2.5a) 
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then the probability of getting the result 
k

 in a measurement of ˆ

equals 1 and one can legitimately state, following Einstein, Podolsky and 

Rosen (1935), that the system “objectively possesses” the considered 

property. Similarly, if , t  can be expressed as an integral of the 

eigenstates of the continuous spectrum confined to a certain interval 

, ( )t c d

 (2.5b) 

the probability of getting the outcome belonging to the interval  equals 

one, so that one can state that the system objectively possesses the 

property ˆ . However, since in general the state is a superposition of 

eigenvectors belonging to different eigenvalus, e.g., 

,
k k

k
t a , there are nonepistemic probabilities 

2ˆ( , ) | |
k k

P t a of getting different outcomes. As a consequence 

one cannot claim that the system possesses an objective (i.e. independent 

of the measurement process) property related to ˆ .

II. It has to be stressed that in the considered case and if completeness is 

assumed, one cannot even think that the system possesses properties 

pertaining to ˆ  which are simply not known to the experimenter; in fact 

such an assumption would imply that there are ways of specifying more 

accurately the actual physical situation which would consent a precise 

prediction of the outcome. But this would amount to claim the 

incompleteness of the theory. Thus, in general, given a statevector and an 

observable, the situation corresponds to the system having potentialities

referring to ˆ  which, however, require the act of measurement to become 

actual. This point must be always kept clearly in mind: the very logical 

structure of the theory implies that it makes probabilistic predictions about 

the outcomes of all conceivable measurement procedures, conditional on 

the measurement being performed.

III. If consideration is given to all conceivable observables of an individual 

physical system the very fact that they are associated to operators and not 

to functions as in the classical case, implies that they in general do not 

commute with each other. This in turn implies that (in general) an  
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eigenvector of an observable is a linear superpositions of eigenvectors 

corresponding to different eigenvalues for other observables. In brief, even 

if a property can be considered as possessed by the system, surely other 

properties are possessed only as potentialities. However, in the case of a 

system considered by itself (i.e. as isolated from the rest of the universe) 

there always exist at least an observable such that the statevector of the 

system is an eigenvector of the associated operator corresponding to a 

certain eigenvalue. Accordingly, the theory allows us to claim that any 

isolated system possesses objectively at least some properties. In this sense 

quantum mechanics can be considered as having taught us that one cannot 

attribute simultaneously too many properties to a given system. This is a 

simplified way of expressing Heisenberg’s indeterminacy principle. 

   To conclude, we can concisely summarize the above analysis by stating 

that, according to quantum mechanics: 

Some property is always possessed by an isolated system as a whole. 

However, quantum mechanics tells us that one cannot consider too many 

properties as objectively possessed. There are potentialities that are 

actualized (by WPR) only if one actually performs an appropriate 

measurement.

3. COMPOSITE SYSTEMS 

The just outlined situation becomes much more complicated when one is 

interested in studying the constituents of a composite system. In such a case 

the already mentioned peculiar trait of quantum mechanics - entanglement 

(Verschrankung), in Schrödinger’s words (Schrödinger, 1984): the 

characteristic trait of quantum mechanics, the one that enforces its entire 

departure from classical line of thought - emerges and gives rise to further 

interpretational problems (p. 424). We stress that entanglement is a direct 

consequence of two precise and peculiar mathematical features of the formal 

language of the theory, i.e. of the fact that the Hilbert space of a composite 

system is the direct product of those of the constituents and of the linear 

character of the resulting Hilbert space itself. 

For our purposes we can confine our considerations to the case of a 

system S made up only of two constituents: S = S1  S2. In such a case two 

different types of states can be considered, the factorised and the entangled 

ones. The factorized states are simply the product of a state of one 

constituent times one of the other: 
(1) (2)

k j
. For them, 

according to the previous discussion, there is an observable of system S1

such that 
(1)

k
 is an eigenstate of the corresponding operator 

(1)ˆ

belonging, say, to the eigenvalue 
k

 and an observable of system S2 such
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that
(2)

j
 is an eigenstate of the corresponding operator 

(2)ˆ  belonging, 

say, to the eigenvalue 
j
, so that we can state that the subsystem possesses 

the objective properties 
k

 and 
j
. Obviously, other factorised states 

corresponding to different eigenvalues for both considered observables can 

be taken into account, e.g., a state 
(1) (2)

r s  with 
r k

 and 

s j
. But this is not the whole story. The linear nature of the state space of 

the theory tells us that if  is a possible state and  is also a possible 

state, then any linear (normalized) combination of them, in particular the 

entangled state:

2 2

, 1,

 (3.1) 

is also a possible state for the system S = S1  S2. Now, according to “the 

rules of the game” the theory tells us that, in such a state, the observable 
(1) (2)ˆ ˆ( )  has probabilities | |

2
 and | |

2
, respectively, of yielding the 

outcome
r

( )or the outcome ( )
k j s

 in a measurement. In other words the 

system has only potentialities concerning the considered observables 
(1) (2)ˆ ˆand . Obviously, if a measurement of one (e.g. 

(1)ˆ ) observable is 

performed a precise outcome (say 
k

) is obtained. Then WPR tells us that 

the state transforms instantaneously from  to 
(1) (2)

k j ,

which, being an eigenstate of 
(2)ˆ , implies that in a subsequent measurement 

of such observable, the outcome 
j
 will be obtained with certainty. 

It is important to point out that in the most general case it may even 

happen that the entangled state is not an eigenstate of any conceivable 

observable of the subsystems: the composite systems represents then an 

unbroken whole which, as such, has some property, but whose constituents 

have no properties at all. To clarify this point we will resort to an extremely 

simple case, i.e., we will limit our considerations to the spin space of a 

system of two spin-1/2 particles, and to the singlet state: 

| Ψ(1,2) >= 1

2
|1,↑>| 2,↓> − |1,↓>| 2,↑>[ ] (3.2) 

Actually, since the state is invariant for rotations, there is no need to 

specify the direction to which the arrows refer. Due to the fact that the 

arrows can point in any chosen direction, any spin measurement on one of 

the constituents has probability ½ of giving the outcome 1 and ½ of giving 

the outcome 1 (in units of /2). There follows, in particular, that there is 

no direction n  such that: 
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P(σ (1) • n = +1 | Ψ) =1 (3.3) 

This analysis focuses two extremely important facts about the composite 

system, i.e. that its constituents may have, in general, no actual but only 

potential properties, and, moreover, that a measurement performed on a 

constituent leading to the actualization of the measured quantity implies the 

instantaneous emergence of an actual property also for the other constituent, 

independently of the fact that the two constituents be far apart and non 

interacting (quantum nonlocality). Let us proceed. 

4. INSTANTANEOUS OBJECTIFICATION AT-A-

DISTANCE 

Let us consider once more the singlet state and let us assume that S1  and 

S2  are far away and noninteracting. Let us decide to perform a spin 

measurement on one constituent, along an arbitrarily chosen direction. What 

does the theory tell us? To answer it is sufficient to write the state in the 

usual form with the arrow denoting the direction we have chosen: 

| Ψ(1,2) >= 1

2
|1,↑>| 2,↓> − |1,↓>| 2,↑>[ ] (4.1) 

Then:

• There is a probability ½ of getting the outcome 1 or 1 in the 

measurement

• According to the outcome, the statevector is reduced either to 1,↑ 2,↓  or 

to |1,↓>| 2,↑> ,

• A subsequent measurement along the same direction of the spin of the 

other particle gives, with certainity, the opposite outcome. 

It has to be stressed that the measurement has objectified the measured 

quantity but, instantaneously, also the spin component along the same 

direction of the partner particle, in spite of the fact that it can be very far 

away and no more interacting with it. An element of physical reality for 

particle 2, which, if completeness is assumed, cannot even be thought to 

exist prior to the measurement, has emerged instantaneously at-a-

distance.
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5. THE SO-CALLED EPR PARADOX 

We can now sketch the reasoning of the famous EPR-paper. It is based on 

the following assumptions: 

 - Completeness of the theory: there is nothing but the wave function. Its 

knowledge represents the maximum possible specification of the state of an 

individual physical system. The quantum probabilities are then epistemic, i.e. 

they do not admit an ignorance interpretation. 

 - Reality criterion: When one, without disturbing in any way the system, 

can predict the outcome of a prospective measurement with certainty then 

there is a possessed property or element of physical reality associated to the 

considered observable.

 - Einstein locality criterion: elements of physical reality cannot be 

influenced instantaneously at-a-distance . 

The argument then goes as follows: 

1. Before any measurement the theory attaches equal probabilities (1/2) to 

the two outcomes 2  of any conceivable measurement of the spin 

component in any arbitrarily chosen direction n : there is no objective 

element of physical reality, no property related to such observables. 

2. One can choose to perform a measurement at one wing of the apparatus 

(let us say on system S1): he gets one of the two outcomes, WPR induces 

the instantaneous transition from the singlet to the factorized state. Such a 

state attaches probability 1 to the outcome opposite to the one which has 

been obtained concerning the measurement of the spin component along 

the same direction n  of the other particle. Immediately after the 

measurement a property of the far away particle has become objective. 

3. Since immediately after the measurement on the system S1 we can 

instantaneously predict with certainty the outcome of a measurement on 

system S2, according to the locality requirement such a system must have 

possessed the property even before. However, there is no formal element 

of the theory that can be related to this fact: the theory is incomplete!

This conclusion of the EPR paper raises immediately an obvious 

question: is it possible to work out a deterministic (or even stochastic) 

completion of the theory in such a way to make epistemic the nonepistemic 

probabilities of the theory? In other words, the EPR paper led in a natural 

way to contemplate the possibility of a Hidden Variable Theory.
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6. BELL’S INEQUALITY 

At this point J.S. Bell enters the game. He, contrary to the adherent to the 

orthodox position about quantum mechanics, is seriously worried by the EPR 

argument. He knows that one can actually exhibit a deterministic completion 

of quantum mechanics, i.e., the de Broglie-Bohm pilot wave theory in its 

logically clean formulation due to Bohm (1952a, 1952b). 

John Bell (1964) studies such a theory in all details and discovers that it 

has a characteristic feature: it is nonlocal in a quite precise sense. So he tries 

to find a local completion of quantum mechanics but he does not succeed. He 

gets the idea of proving that such a completion is impossible and derives his 

celebrated inequality. 

The nice fact about his approach derives from its being based exclusively 

on an absolutely natural assumption of locality for space-like separated 

events. In order to appropriately specify its meaning one has to introduce 

some definitions. First of all, let us denote by  the entities that specify the 

maximum possible knowledge that the theory allows about an individual 

physical system. Thus, within quantum mechanics with the completeness 

assumption  must be identified with the statevector of the system, in a 

hidden variable theory with the hidden variables, in a theory like Bohmian 

mechanics with the statevector plus the positions of all particles of the 

system. To go on, let us specify the notation we will use. We denote as: 

- pλ
(1,2)(a,b;α,β) the probability of getting, for a given , the outcomes 

(= 1)  and  (= 1) in a joint measurement of σ (1) ⋅ a  and σ (2) ⋅ b ,

- pλ
(1)(a,*;α,*) and pλ

(2)(*,b;*,β) the probabilities of getting, for the 

same , the outcome or  in a measurement of σ (1) ⋅ a  or σ (2) ⋅ b ,

respectively, when no measurement is performed on system S2 or S 1.

We can now formulate in a mathematically precise way the locality 

assumption made by Bell which will be denoted as B-Loc by making 

reference to a situation in which the two measurements performed on the two 

subsystems of a pair of particles in the singlet state are space-like separated 

events:

B − Loc ⇔ pλ
(1,2)(a,b;α,β) = pλ

(1)(a,*;α,*)• pλ
(2)(*,b;*,β)  (6.1) 
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Bell’s locality requirement implies an inequality between appropriately 

defined quantities. We will not derive it (even though its proof is quite 

staightforward) but we will limit ourselves to state the result. For arbitrary 

directions a and b , one defines the quantity: 

Eλ(a,b) = pλ
(1,2)(a,b;+,+) − pλ

(1,2)(a,b;+,−) − pλ
(1,2)(a,b;−,+) + pλ

(1,2)(a,b;−,−)
 (6.2) 

and shows that for any chosen directions a,b,c,d  one has: 

| ( , ) ( , ) | | ( , ) ( , ) | 2E a b E a d E c b E c d
 (6.3) 

which implies, denoting as E(a,b) the average of Eλ(a,b)  over the 

hidden variables :

| ( , ) ( , ) | | ( , ) ( , ) | 2E a b E a d E c b E c d
 (6.4) 

Note that in accordance with its definitions and with the requirement that 

averaging on the possible hidden variables one gets the corresponding 

quantum predictions one has to identify E(a,b) with the quantum mean 

value of the observable σ (1) ⋅ a σ (2) ⋅ b . For such a quantity standard Q.M. 

gives:

( , ) cos 2 ˆE a b a b  (6.5) 

Then, if one chooses 

a = 00, b = 22.50, c = 450, d = 67.50

one gets: 

| E(a,b) − E(a,d) | + | E(c,b) + E(c,d) |= 2 × 2 = 2.828  (6.6) 

i.e. quantum mechanics violates appreciably the predictions of any 

conceivable theory which satisfies the B-Loc condition. 

The conclusion should be obvious: completions of quantum mechanics 

(both deterministic and stochastic) are in principle possible (Bohmian 
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Mechanics representing a paradigmatic example) but they are unavoidably 

nonlocal in the precise sense that they violate B-Loc. 

7. EXPERIMENTAL METAPHYSICS 

According to some authors, there were various loopholes in the 

experimental tests of Bell’s inequality. The most relevant one was due to the 

fact that one chooses the directions along which to perform the spin 

measurements well in advance, so that there is, in principle, all the time in 

order that the choice of such directions allow a physical influence to 

propagate from one to the other wing of the apparatus. The quantum 

correlations might then be induced by a physical action from one wing of the 

apparatus to the other. 

Alain Aspect (1982) accepted the challenge and, by taking advantage of 

important technological improvements, devised an experiment in which the 

choices of the orientations of the polarizers (he was working with photons) 

were made at a genuine space-like separation. He got agreement (within 

various standard deviations) with quantum predictions and a clear cut 

violation of Bell’s inequality. Somebody still believes that the result is not 

conclusive by making appeal to the low efficiency of the detectors, but this 

way out is really untenable (in my opinion) by any serious scientist. 

The now mentioned experiment has been appropriately denoted by Abner 

Shimony (1989) as an example of Experimental metaphysics, since it gives a 

clear cut experimental proof that one cannot think that one particle possesses 

objectively definite properties before the measurement on the other one is 

performed, but it acquires such properties instantaneously, in spite of the fact 

that the two measurements are space-like separated.  To clarify the reasons 

for this position of Shimony one must remember that the Copenhagen 

orthodoxy was claiming that the reality request of Einstein (its pretension 

concerning the existence of objective properties of individual systems under 

appropriate circumstances) was due to his metaphysical prejudices 

concerning reality. In particular, since such a request could not be subjected 

to any experimental test, it was considered meaningless. It has been a merit 

of J.S. Bell to show how to test it and of Aspect to have performed the 

experiment.
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8. THE CONCEPTUALLY REVOLUTIONARY 

IMPLICATIONS OF BELL’S INEQUALITY 

Bell’s fundamental result can be used to prove that, independently of any 

theory one adopts or of any conceivable interpretation of the formalism, if 

the experimental correlations between pairs of entangled particles in the 

singlet state predicted by quantum mechanics are true (i.e. if one ascertains 

that the experimental outcomes, agreeing with the predictions of quantum 

mechanics, violate Bell’s inequality) then natural processes are basically 

nonlocal, something that nobody had suspected before the EPR paper and 

Bell’s investigations. 

Let us present a completely general proof of this statement. We first of all 

specify the notations we will use. We denote as 

- }%100{ Corr : the fact that if one performs the same measurement at the 

two wings of the apparatus one always gets perfectly anticorrelated results. 

    - Det: the fact that all probabilities like 
(1) (2)

( , ; , ), (*, ;*, )p a p b  (and 

consequently, due to B-Loc, pλ
(1,2)(a,b;α,β)) can take only either the value 1 

or the value 0, i.e. that the assignment of the hidden variables determines the 

precise outcome of any measurement. 

- Q.M.: the assumotion athta all predictions of quantum mechanics, i.e. 

also the correlations concerning measurements in different directions at the 

two wings of the apparatus occur in accordance with the quantum 

predictions.

- Bell’s Ineq.: the statement that Bell’s inequality holds. 

Before going on we need a lemma, i.e.: 

{100%Corr}∧{B − Loc} ⊃ Det . Let us prove it. 

Since B-Loc implies 

i)
(1,2) (1) (2)

( , ; , ) ( ,*; ,*) (*, ;*, ) 0p a a p a p a

ii) pλ
(1,2)(a,a;−,−) = pλ

(1)(a,*;−,*) × pλ
(2)(*,a;*,−) = 0

one has, either pλ
(1)(a,*;+,*) = 0  or pλ

(2)(*,a;*,+) = 0.

In the first case, since 

iii) pλ
(1)(a,*;+,*) + pλ

(1)(a,*;−,*) =1
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iv) pλ
(2)(*,a;*,+) + pλ

(2)(*,a;*,−) =1

one has 1,*),*;(
)1(

ap . Then ii) implies pλ
(2)(*,a;*,−) = 0  and

iv) pλ
(2)(*,a;*,+) =1, and so on. Concluding: all elementary probabilities 

are then either 0 or 1 and the same holds for their products, i.e. Det .

We can now go on with our simple logical proof: 

{100%Corr}∧{B − Loc} ⊃ Det

Det ∧{B − Loc} ⊃ Bell's Ineq.

Q.M. ⊃ ¬{Bell's Ineq.}

Q.M. ⊃ [¬{B − Loc}]∨[¬Det]

[¬Det] ⊃ [¬{100%Corr}]∨[¬{B − Loc}]

Q.M.⊃ {100%Corr}

Q.M. ⊃ ¬{B − Loc}

Thus, independently of any interpretation and with exclusive reference to 

the outcomes of our experiments we have to accept that natural processes are 

fundamentally nonlocal. Nobody, before Bell's theorem, had suspected that 

quantum processes, even though they were considered rather peculiar, might 

exhibit such unbelievable features. 

9. CONCLUSION 

It is important to stress that the identification of the extraordinary  

features analysed in the previous sections is a consequence of the specific 

behaviour of natural processes and of the fact that such processes require to 

resort to the Hilbert space language for their formalization. The linear nature 

of such a formalism and the fact that the description of composite systems 

demands the consideration of the direct product of the associated Hilbert 

spaces, as well as the fact that entangled states are natural elements of such a 

space, lead, by subtle formal and logical arguments, to the conclusion that 

most physical processes exhibit an unavoidable nonlocal character. I think 

this is a paradigmatic example of how the exploitation of the subtle 

mathematical properties of the formalism can lead to a deeper understanding 

of reality.
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I hope to have been able to allow the reader to understand, with reference 

to the considered example, the fundamental role which mathematics plays for 

physics.
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THEORETICAL EXPLANATIONS IN 

MATHEMATICAL PHYSICS
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Abstract: Many physicists wonder at the usefulness of mathematics in physics. 

According to Einstein mathematics is admirably appropriate to the objects of 

reality. Wigner asserts that mathematics plays an unreasonable important role 

in physics. James Jeans affirms that God is a mathematician, and that the first 

aim of physics is to discover the laws of nature, which are written in 

mathematical language. Dirac suggests that God may have used very advanced 

mathematics in constructing the universe. And Barrow adheres himself to 

Wigner’s claim about the unreasonable effectiveness of mathematics for the 

workings of the physical world.

Wondering at the usefulness of mathematics in the physical description of 

reality is understandable indeed, if we assume that the laws, hypotheses, and 

theories of mathematical physics do describe, represent, or mirror Nature. But 

the fact that these physical constructs sometimes are empirically acceptable is 

no compelling logical reason for claiming that they do this job. The inference 

from empirical success to truth is logically illegitimate.

Theoretical models of physics use to be thought to represent reality. It is 

sometimes claimed that mathematical physics attempts to ‘simulate’ reality by 

means of models. But as the history of physics shows, it is perfectly possible to 

have different models of the same domain of phenomena, both empirically 

successful and based on entirely different assumptions. Thus theoretical 

models cannot be supposed to represent or simulate reality. 

If instrumentalism about theories and theoretical models is adopted instead of 

realism in the philosophy of physics, the alleged unreasonable usefulness of 
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mathematics is less alarming. Mathematics then becomes an appropriate 

language, a useful instrument, in order to deal with Nature. But this has also 

consequences for the doctrine of theoretical explanations. Deprived of 

metaphysical connotations any physical construct, like facts, laws, hypotheses, 

etc., is considered to receive a theoretical explanation only when it has been 

deduced mathematically in the framework of another physical construct of 

higher level. Thus not only facts, but also empirical generalizations, abstract 

laws and even theories themselves admit of explanations in this sense. Now, 

explanation is, as well as prediction, the most important instance of realization 

of the hypothetic-deductive method. Since the methodology of physics is 

unthinkable without mathematics, mathematics becomes the possibility 

condition for theoretical explanations in physics. 

Key words: mathematics; theoretical physics; realism; instrumentalism; empirical success; 

explanation; history of physics. 

1. INTRODUCTION 

Many physicists wonder at the usefulness of mathematics in physics. 

Allegedly mathematics is admirably appropriate for the description of natural 

phenomena, for the formulation of physical laws and theories. For instance 

Albert Einstein (1921) wonders at the ‘enigma’ of the certainty that 

mathematics gives the natural sciences: 

 How can it be that mathematics, being after all a product of human 

thought which is independent of experience, is so admirably appropriate 

to the objects of reality? (p. 233) 

Similarly, Paul Dirac (1963) claims 

 It seems to be one of the fundamental features of nature that 

fundamental physical laws are described in terms of a mathematical 

theory of great beauty and power, needing quite a high standard of 

mathematics for one to understand it. You may wonder: Why is nature 

constructed along these lines? One can only answer that our present 

knowledge seems to show that nature is so constructed. We simply have 

to accept it. One could perhaps describe the situation by saying that God 

is a mathematician of a very high order, and He used very advanced 

mathematics in constructing the Universe.(p. 53) 

Along with these lines Eugen Wigner (Wigner, 1967, p. 223) points to the 

problem, that, although mathematics often permits accurate descriptions of 

phenomena, we do not understand the reasons of its usefulness: “the 

enormous usefulness of mathematics in the natural sciences is something 
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bordering on the mysterious and …there is no rational explanation for it.” 

Wigner (Wigner, 1967) concludes his article claiming that

The miracle of the appropriateness of the language of mathematics for the 

formulation of the laws of physics is a wonderful gift which we neither 

understand nor deserve. We should be grateful for it and hope that it will 

remain valid in future research and that it will extend, for better or for 

worse, to our pleasure, even though perhaps to our bafflement, to wide 

branches of learning.(p. 237) 

Among the philosophers of science the applicability of mathematics to 

reality has concerned for instance Gerhard Vollmer (Vollmer, 2001), who 

wonders: “How is it that mathematics, being silent about the world, can be 

used (so well) in the description of the world?”. Also Vollmer refers to many 

scientists, some of them have been mentioned above, who make use of terms 

like ‘riddle’, ‘secret’, ‘mystery’ and ‘miracle’ in relation to this issue. 

Vollmer’s response to this question is: Mathematics fits Nature, because

1) it is a structural science,  

2) Nature is structured,  

3) we are adapted to this structured world by evolution,  

4) we are adapted to cognise some of these structures, and  

5) we have language to devise non-mesocosmic structures. 

This is a reasonable answer indeed. But it is incomplete, since it does not 

take into account a fact that Erhard Scheibe (Scheibe, 1992) has pointed to, 

as he also wondered at the amazing usefulness of mathematics, to wit: the 

overdetermination of physics by mathematics, i. e. the fact that we usually 

have in the physical theories more mathematics than we are able to interpret 

physically. According to Scheibe each physical law relates physical entities 

by means of mathematical operations for which there are no intended 

physical interpretations. Thus we can only enjoy the benefits of physically 

dealing with Nature at the costs of overdetermination, which seems to be 

unavoidable.

2. THE NATURALNESS OF THE USE OF 

MATHEMATICS IN PHYSICS 

Wondering at the effectiveness of mathematics for the physical 

description of reality is not incompatible with the assumption of the 

naturalness of the use of mathematics in physics. For instance Albert 

Einstein (Einstein, 1933) maintains that “Our experience hitherto justifies us 

in believing that nature is the realization of the simplest conceivable 

mathematical ideas”(p. 274).
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The naturalness of the use of mathematics in physics has been 

emphasized by many other physicists as well. For instance James Jeans, 

according to whom mathematical representations meet reality perfectly. 

Jeans (Jeans, 1954) claims that God is a mathematician, and that the first aim 

of physics is to discover the laws of nature, which are written in 

mathematical language. And the same applies to John D. Barrow (Barrow, 

1992), who admits that the relationship between mathematics and physics is 

a symbiotic one. According to Barrow the reason of our success in revealing 

the working of the Universe is that we have discovered the language in 

which the book of Nature seems to be written, i.e. the language of 

mathematics. In spite of this Barrow (Barrow, 1992) maintains that

There is one qualitative aspect of reality that sticks out from all others in 

both profundity and mystery. It is the consistent success of mathematics 

as a description of the workings of reality. (p. 173) 

     A success that is still considered by Barrow (Barrow, 1991, p. 175) 

the expression of an unreasonable effectiveness of mathematics in 

accounting for the workings of the physical world. 

It is commonplace to point to Galilei’s Saggiatore, 1623, in order to 

justify historically the effectiveness of the applicability of mathematics in 

physics: Book’s Nature is written in mathematical language. But 

philosophers of science widely ignore that already nearly four centuries 

before Galilei, the founder of the Oxford’s Franciscan school, Robert 

Grosseteste (1175-1253), had claimed
54

 that 

 utilitas considerationis linearum, angulorum et figurarum est maxima, 

quoniam impossibile est sciri naturalem philosophiam sine illis. 

and that 

omnes causae effectuum naturalium habent dari per lineas, angulos et 

figuras.

Grosseteste’s disciple Roger Bacon also maintained
55

 that 

impossibile est res huius mundi sciri, nisi sciatur mathematica. 

In the XIV century, the mathematization of Nature reached the climax 

among the calculatores at the Oxonian Merton College: Thomas 

Bradwardine (1290-1349), Roger Swineshead, and William Heytesbury 

(1313-1372), who for the first time posed the so-called average velocity 

54
Cfr. (Gilson, 1965, pp. 439-441). 

55
Cfr. (Gilson, 1965, pp. 444-449). 
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theorem: the space covered by an uniformly accelerated body is the same 

that he would cover with a constant velocity equivalent to the average value 

of its initial and final velocities. A theorem that repeatedly appeared in 

Nicolás de Oresme (1320-1382), Domingo de Soto (1494-1560) and Galileo 

Galilei (1564-1462). 

But the history of the mathematization of Nature goes further back to the 

very beginnings of western science. Plato (427-347 BC) is not only the 

founder of mathematical astronomy. In the Timeus he also outlines a sort of 

mathematical protochemistry. Each atom of Empedocles’ element theory: 

earth, air, water and fire, has an own geometric structure. The earth-atom is a 

hexahedron; the air-atom is an octahedron; the water-atom is an icosahedron, 

and the fire-atom is a tetrahedron. 

With Plato starts geometric astronomy indeed. Plato’s disciples Eudoxus 

and Calipus continued their master’s astronomical way, making use of 

mathematical models intended to save celestial bodies’ movements. It was 

the beginning of instrumentalism in physics and in the philosophy of science. 

The further development of astronomy, including the works by Ptolemy’s, 

Copernicus, Brahe, Galilei and Kepler, until Newton, is branded by the 

question of whether mathematical models of the world do represent, mirror 

or describe reality as it is, or whether they merely save the observations. 

Thus the use of mathematics in astronomy is responsible for the polemic 

realism-instrumentalism in science, that has not abandoned the philosophical 

dispute ever since. 

Any case it was obvious from the beginning of scientific theory that both 

celestial physics and mechanics would be unviable without mathematics. 

Mathematics was the natural way of dealing scientifically with Nature. This 

obviousness does not constitute any answer to the question of the 

effectiveness of mathematics in natural sciences, but it certainly makes this 

question less dramatic. Physics uses mathematics in order to build up models 

of reality and to formulate in the most precise way hypotheses about 

empirical phenomena. 

3. INSTRUMENTALISM AND THEORETICAL 

EXPLANATIONS IN MATHEMATICAL PHYSICS 

Wondering at the usefulness of mathematics in the physical description of 

reality is understandable indeed, if we assume that laws, hypotheses, and 

theories of mathematical physics do describe, represent, or mirror Nature. 

Theoretical models of physics use to be thought to represent reality. It is 

sometimes claimed that mathematical physics attempts to ‘simulate’ reality 

by means of models. But as Popper (Popper, 1983, 1994) has argued 
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correctly, models are vast and schematic oversimplifications, so that they 

simply cannot be true. 

Mirroring reality is an illusory task, for, in order to picturing something, 

you need to have it in front of you, you have to know it. Otherwise you could 

not be sure that you are describing that portion of reality you intend to 

reflect. This is obviously not the common situation in physical sciences, 

where you only have some ways or appearances –usually not understandable 

at the beginning- by means of which an unknown phenomenon manifests 

itself. When we are able to construct theoretical models for phenomena, the 

fact that these physical constructs sometimes work is no compelling logical 

reason for claiming that they do simulate or represent Nature fairly. 

Therefore I disagree with Popper’s view that we can determine by testing 

which models are nearer to the truth. But I reject as well that the 

relationships of models to reality is either isomorphism (Van Fraassen, 

1980), or even the weaker views of similarity (Giere, 1988), or analogy 

(Boniolo, 2003). The inference from empirical success to truth, 

verisimilitude, similarity or analogy is logically illegitimate. 

 Finally as the history of modern physics shows, it is possible to have 

different models of the same domain of phenomena, both empirically 

successful and based on entirely different assumptions. This is the case for 

instance in nuclear physics
56

, and in gravitational physics as well, where the 

successful Newtonian model based on forces and potentials was replaced by 

the geometrical model of general relativity theory, or by the hypothesis of 

gravitational interactions caused by exchange of gravitons, as quantum 

gravitation postulates. Thus theoretical models cannot be supposed to 

represent or simulate reality either.

If instrumentalism about theories and theoretical models is adopted 

instead of realism in the philosophy of physics, the alleged unreasonable 

usefulness of mathematics becomes less alarming: mathematics merely is an 

appropriate language, an useful instrument, in order to deal with Nature. And 

Scheibe’s threatening doctrine of superdetermination of physics by 

mathematics loses a lot of its dramatic force. 

This has serious consequences for the doctrine of theoretical explanations 

indeed. Deprived of metaphysical compromises I claim that any physical 

construct: facts, laws, hypotheses, etc., can only receive a theoretical 

explanation, when it can be deduced mathematically in the framework of 

another physical construct of higher level. Thus not only facts, but also 

empirical generalizations, abstract laws and even theories themselves admit 

56
 As to the role played by theoretical models in nuclear physics see (Boniolo, 2002; 

Rivadulla, 2002c)



THEORETICAL EXPLANATIONS IN MATHEMATICAL PHYSICS 167

of explanations in this sense. Now, explanation is, as well as prediction, the 

most important instance of realization of the hypothetic-deductive method. 

Since the methodology of physics is unthinkable without mathematics, 

mathematics becomes the possibility condition for theoretical explanations in 

physics.

My viewpoint on theoretical explanations bases upon Einstein’s 

assumptions on the hypothetic-deductive method of mathematical physics. 

Indeed, as to the theoretician’s task, the search for explanations, Einstein 

claims (Einstein, 1914) 

 The theorist’s method involves his using as his foundation of general 

postulates or ‘principles’ from which he can deduce conclusions. His 

work thus falls into two parts. He must first discover his principles and 

then draw the conclusions that follow from them. […]

 Once this formulation is successfully accomplished, inference follows 

on inference, often revealing unforeseen relations that extend far beyond 

the province of the reality from which the principles were drawn. But as 

long as no principles are found on which to base the deduction, the 

individual empirical fact is of no use to the theorist; indeed he cannot 

even do anything with isolated general laws abstracted from experience. 

He will remain helpless in the face of separate results of empirical 

research, until principles that he can make the basis of deductive 

reasoning have revealed themselves to him. (p. 221, my italics)

Einstein insists on the idea of empirical laws waiting for explanation 

(Einstein, 1927): 

 Newton’s object was to answer the question: is there any simple rule by 

which one can calculate the movements of the heavenly bodies in our 

planetary system completely, when the state of motion of all these bodies 

at one moment is known? Kepler’s empirical laws of planetary 

movement, deduced from Tycho Brahe’s observations, confronted him, 

and demanded explanation. These laws gave, it is true, a complete answer 

to the question of how the planets move round the sun: the elliptical shape 

of the orbit, the sweeping of equal areas by the radii in equal times, the 

relation between the major axes and the periods of revolution. But these 

rules do not satisfy the demand for causal explanation. They are logically 

independent rules, revealing no inner connection with each other. (my 

italics)
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This holds too for the separated laws that can be deduced from Planck’s 

radiation law
57

.

The ideal of a hypothetical-deductive physics is the following according 

to Einstein (Einstein, 1918)

The supreme task of the physicist is to arrive at those universal 

elementary laws from which the cosmos can be built up by pure 

deduction. There is no logical path to these laws; only intuition, resting 

on sympathetic understanding of experience, can reach them. (p. 226) 

Also in Einstein (Einstein, 1934): 

the grand aim of all science … is to cover the greatest possible number of 

empirical facts by logical deduction from the smallest possible number of 

hypotheses or axioms. (…) The theoretical scientist is compelled in an 

increasing degree to be guided by purely mathematical, formal 

considerations in his search for a theory, because the physical experience 

of the experimenter cannot lead him up to the regions of highest 

abstraction. The predominantly inductive methods appropriate to the 

youth of science are giving place to tentative deduction. Such a 

theoretical structure needs to be very thoroughly elaborated before it can 

lead to conclusions which can be compared with experience. Here, too, 

the observed fact is undoubtedly the supreme arbiter; but it cannot 

pronounce sentence until the wide chasm separating the axioms from  

their verifiable consequences has been bridged by much intense, hard 

thinking. The theorist has to set about this Herculean task fully aware that 

his efforts may only be destined to prepare the death blow to his theory. 

(p. 282) 

At a first look, the object of the methodology of physics consists of 

accounting for facts or phenomena like: the retrogradation of planets, Mars’ 

orbit, Balmer’s spectral lines, the photoelectric effect, the anomalous

Mercury’s perihelion, natural radioactivity, etc. For instance Hanson claims 

that (Hanson, 1958) 

 Phenomena are observed which are surprising and require explanation. 

[…] The theoretician seeks concepts from which he can generate 

explanations of the phenomena. […[ he aspires to fix the data in an 

intelligible conceptual pattern. (p. 123) 

But from my viewpoint this is a rather restrictive way to look at 

explanation in physics. Further constructs are submitted to explanation too, 

57
Cfr. Rivadulla (2002b, pp. 152-154) 
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to wit: 1) empirical or phenomenological formulae like: Galilei’s free fall 

laws, Kepler’s laws of planetary motion, Stefan’s law of black body’s 

radiation, etc. But also 2) abstracts laws of theoretical physics, like: 

Boltzmann’s distribution laws, Wilhelm Wien’s radiation laws, etc., and 3) 

even theories themselves, are capable of receiving explanation, like the 

statistical justification of classical thermodynamics, or the mathematical 

deduction of Planck’s radiation law in the framework of Bose-Einstein’s 

quantum mechanical statistics. 

Indeed, earlier or later physical constructs like empirical facts, 

phenomenological formulae, theoretical laws and even theories themselves 

become explained by more general laws and theories. When a physical 

construct can be deduced mathematically in the framework of a more general 

construct we affirm that it has received a theoretical explanation.

This use of explanation has nothing to do with metaphysical realism, i. e. 

it is not committed to any ontologically ready-made world expecting for 

intelligibility. Theoretical models and theories only are merely instruments 

enabling us to deal with Nature. No description or explanation of the 

independent world is possible. We live in a world that we cannot explain. 

Theoretical physics’ main object is not to understand the world. No 

explanation in metaphysical sense is possible. Thus I disagree with Hanson, 

op. cit., ibid., when he keeps on claiming: 

When this is achieved he will know what properties fundamental entities 

do have; and he will have learned this by retroduction. 

4. CASE STUDY I. THEORETICAL 

EXPLANATIONS OF THE HYDROGEN’S 

SPECTRAL LINES DISTRIBUTION 

4.1 The explanandum: Johann Balmer’s empirical 

formula

 At the end of the XIXth century there was no explanation available for 

the spectra of the atomic elements. In spite of this fact, in 1885 the Swiss 

physicist Johann Jakob Balmer (1825-1898) found empirically, i. e. without 

reference to any theory about the atomic structure of matter, that the 

distribution of the Hydrogen spectral lines verifies that the number 1

is given by the formula: 
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n

1
-

4

1
R=

2H
,

where RH=109677,576 cm
-1

 is known as the Rydberg constant, and n 3.

Thus it was urgent to account for both, the atomic spectra of elements and 

Balmer’s formula. 

4.2 Bohr’s account of Balmer’s empirical formula 

In 1913 Niels Bohr (1885-1962) proposed his famous model of the 

Hydrogen atom. He assumed Rutherford’s planetary model and completed it 

resorting to Planck-Einstein’s quantum theory. Bohr’s hydrogen atomic 

model was based on following postulates: 

1. The electron is only allowed to have well defined energy values in 

stationary states. 

2. In these stationary states the electron moves around the nucleus in 

circular orbits of radius r.

In order to maintain this postulate he introduced the bold hypothesis of 

the mechanical equilibrium among the Coulomb force, acting between atom 

nucleus and electron, and the centrifugal force due to the circular movement 

of the electron: 

1

4

Z e

r

= m
v

r0

2

2

2

3.  When the electron jumps from an initial orbit to another orbit of lower 

energy, it does emit energy. The frequency of the emitted electromagnetic 

radiation by the electron is given by

=
E - E

h

i f

where Ei and Ef  denote respectively the energy of the initial and final 

orbits.

4. The orbital angular momentum of the electron is quantised, i. e. 

nmvr=L .

From these postulates it follows that the total energy E of the electron –

the sum of its kinetic energy Ek= ½mv
2
 and its potential energy
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V = -
Ze

4 r

2

0

  is 

222

0

24

2)4( n

Zem
=E

e

where n = 1, 2, 3, ... is known as Bohr’s quantum number.

We only need now to insert this value of the total energy in Bohr’s 

expression

E-E

h

E-E
=

fifi

2

1
,

and to take into account that the initial energy is less negative than the 

final one, in order to obtain 

n

1
-

n
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=

2

i

2
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e

3

24

2

0
44

1
.

Now, since 
c

1
, if we divide the expression above by c, we obtain 
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1
.

Finally, as 
1

3

4

2

0

3,109737
44

1
cm

c
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e
,

widely agrees with Rydberg’s constant, we conclude – the Hydrogen 

atomic number being Z=1- that 

n

1
-

n

1
R=

2

i

2

f

.
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In case nf=2 we recover precisely Balmer’s formula. Thus we are allowed 

to conclude that Bohr’s atom model gives for the first time a theoretical

explanation of Balmer’s formula.

4.3 Erwin Schrödinger’s account of Balmer’s empirical 

formula

In spherical coordinates Schrödinger’s time independent equation of 

hydrogenic atoms is
58
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where ),(r,)()(R(r)  are its solutions, factorized in 

functions of only one coordinate. The application of the technique of 

variable separation allows solving Schrödinger’s equation above in three 

steps:

 (1)

2

2

2d

d

= -m ,

(2)

r

R
=RV(r)-E

2
+

dr

dR
r

dr

d

r

1

22

2

2
,

and

(3)

2

2

m

sen

-
1

sen

d

d
sen

d

d
= .

Equation (2) is known as Schrödinger’s radial equation, and its solution 

allows us to obtain
59

58
Cfr. (Eisberg and Resnick, 1974). 

59
Cfr. (Eisberg and Resnick, 1974; Bransden and Joachain, 1983), etc. 
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n

2 4

0

2 2 2
E = -

Z e

(4 ) 2 n

,

where ( ) ( )m M m M  is the reduced mass of the mass m of the 

electron and the mass M of the nucleus. Since the value just deduced of the 

electron energy is the same as the one obtained in the framework of Bohr’s 

theory, we can legitimately claim that Balmer’s empirical formula receives a 

theoretical explanation in the framework of the more sophisticated 

Schrödinger’s wave mechanics. Moreover this allows us to conclude that 

Schrödinger’s theory is empirically and theoretically more progressive than 

Bohr’s atom theory.

5. CASE STUDY II. THEORETICAL 

EXPLANATIONS OF PLANCK’S RADIATION 

LAW 

5.1 The explanandum: Max Planck’s radiation law of the 

black body 

Any body that absorbs all the radiation falling upon it is called a black

body. Depending exclusively on its temperature a black body does radiate 

too. The radiation emitted by a black body in thermal equilibrium with the 

environment is called black body radiation, and its spectral distribution is the 

same for all black bodies, displacing itself to the shortest wave lengths with 

increasing temperature. 

Wilhelm Wien (1864-1928) had obtained
60

 that the energy density 

emitted by a black body satisfies the law 

T
eTE

3
),( .

Max Planck (1858-1947) had also deduced that the energy density obeys 

the equation
61

:

60
Cfr. (Jammer, 1989, pp.7-8) 

61
Cfr. (Jammer, 1989, Appendix A) 
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E T

c

U( , )
8

2

3
,

where U denotes the average energy of an oscillator at temperature T. In 

October 1900 Planck was able to deduce that 

1
/ Tb

e

b
U .

Thus Planck’s radiation law took the form
62

:

1

8
),(

/

3

3 TB
e

A

c

TE ,

where A and B are constants. 

The problem with this law was that it was the result of a glücklich

erratene Interpolationsformel. For a theoretician like Planck this law needed 

further theoretical justification.

5.2 Max Planck’s account of Planck’s radiation law 

In order to recover the value of U on theoretical grounds Planck resorted 

to statistical thermodynamics. He thus assumed
63

 1) that SN was the total 

entropy of a system of N oscillators of frequency  and average energy U,

and 2) that the total energy UN=NU of the system was equivalent to the 

energy UN= P  of a whole number P of energy elements . Applying the 

second principle of statistical thermodynamics, SN=kln , after a few 

calculations, Planck deduced that the value of U was: 

U

e
kT/

1
.

Since Wien’s law exiged that  had to be proportional to , putting 

=h  Planck obtained finally his famous radiation law for the black body: 

62
 Published in Max Planck: “Über eine Verbesserung der Wienschen Spektralgleichung”. 

Verhandlungen der deutschen physikalischen Gesellsachft 2, 1900, pp. 202-204. Reprinted 

in M. Planck, Physikalische Abhandlungen und Vorträge, Vol.1. 
63

Cfr. (Rivadulla, 2002a, pp. 53-54). 
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2

3
,

which he presented
64

 before the physical society on December 14th 1900. 

As it is very well known, this formula, which contained the hypothesis of the 

quantization of energy, started a new era in theoretical physics.

5.3 Bose-Einstein’s quantum-mechanical account of 

Planck’s radiation law 

When a single photon is confined in a cubic box of side L, then his energy 

is given by

n

L

c
E .

It is very appropriate to take the radiation of a photon gas enclosed in a 

cavity as a model for the radiation of a black body. If the side L of the box is 

big compared with the radiation’s average wave length, we can assume a 

continuum distribution of the energy of the photons. Moreover, we know 

from quantum mechanics that for every energy level of a particle there is a 

number g of different states. If we denote by g(E)dE the number of states 

with energy in the interval [E, E+dE], then, according to Bose-Einstein

distribution law,

1-e

g(E)dE
=dN

kTE /
.

In order to compute the value of g(E)dE we assume that the number N(E)

of states with energy E are the points of an sphere of radius n. In the volume 

of an octant of this sphere, the number of points will be
65

33

6

1

3

4

8

1
)( nnEN .

64
 He published it in Max Planck: “Zur Theorie des Gesetzes der Energieverteilung im 

Normalspektrum”. Verhandlungen der deutschen physikalischen Gesellsachft 2, 1900, pp. 

237-245. Reprinted in M. Planck, Physikalische Abhandlungen und Vorträge, Vol.1. 
65

 Basically I follow (Alonso and Finn, 1969).
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From the value of energy above – knowing that L
3
=V and that 

2

h
 - 

we obtain 
33

3

3
8

hc

E
Vn .

Following

33
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6

8
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hc

EV
EN .

By differentiation,

33

2

4
)(

hc

E
V

dE

EdN
.

If we now call dN(E)=g(E)dE, and multiply by 2, due to the double 

polarization of photons, the number of states in the interval [E, E+dE] will be 

g(E)dE =
8 V

c h
E dE

3 3

2
.

Obviously the number of states with frequency in [ , +d ] will be 

g( )d =
8 V

c

d
3

2
,

and, according to Bose-Einstein’s distribution law, the number of photons 

with frequency [ , +d ], is 

1-e

d

c

V8
=dN

kTh

2

3 /
;

multiplying the left side by E and the right side by h  and dividing the 

whole expression by V, we finally get 

1-e

d

c

h8
=

V

EdN

kTh3

3

/
,
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that is, Planck’s radiation law of the black body 

1-e

1

c

h8
=)E(

kTh3

3

/
.

The mathematical deduction of Planck’s radiation law amounts to its 

theoretical explanation in the framework of Bose-Einstein’s statistical 

quantum mechanics. 
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MATHEMATICS, PHYSICS AND MUSIC 

A Case Study 

ZVONIMIR ŠIKI

University of Zagreb, Zagreb, Croatia 

Abstract: I discuss the Pythagorean law of small numbers and its use in interpretations of 

our sensory discriminations of consonance vs. dissonance. It seems that the 

fact of non-western musical traditions contradicts the law and forces us to 

interpret the discriminations as acquired and subjective. I would like to show 

that this is a wrong interpretation, because it is based on the irrelevant 

empirical evidence. It does not take into account the correct mathematical and 

physical explanation of the law, provided by Helmholtz’s theory in 1877 and 

corroborated by Plomp-Levelt experiment in 1965. 

Key words: consonance; dissonance; Pythagorean law of small numbers; Helmholtz’s 

dissonance curve; Plomp-Levelet experiment. 

1. THE PROBLEM 

The Pythagoreans came to believe that principles of mathematics are the 

principles of everything. The starting point of this rather general belief was 

their discovery of  “the law of small numbers” i.e. their discovery that the 

pitch of a string is simply related to its length. When the length is shortened 

in ratio 1:2 the pitch jumps up an octave, when shortened in ratio 2:3 it 

jumps up a fifth, in ratio 3:4 it jumps up a fourth, in ratio 4:5 a major third 

etc.
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Figure 1. Ratio 1:2 produces an octave, 2:3 produces a fifth and 3: 4 a fourth. 

To shorten the length is to enlarge the frequency and we could say that 

the Pythagoreans discovered that the frequency ratio between the octave and 

the fundamental is 2:1, between the fifth and the fundamental 3:2, between 

the fourth and the fundamental 4:3 etc. 

Pythagoreans proceeded to describe the whole universe in terms of simple 

harmonic relationships; from the harmonious or inharmonious resonances in 

human bodies bellow the moon, to the harmony of the spheres above. To use 

the nomenclature of a later era, musica instrumentalis, the ordinary music 

made by plucking the lyre, was extended from musica humana to musica

mundana.

What interests us here is the following question. Do our discriminations 

of consonant and dissonant intervals have some basic origin in facts “out 

there” in the real world? 

According to the law of small numbers it seems that there is something 

unique “out there” which we discriminate as consonance “in here”. This 

unique source of our discriminations is the harmonic sequence of frequencies 

1f : 2f : 3f : 4f : … . This sequence of integer frequencies is different from all 

the other non-integer sequences and we perceive this objective difference as 

consonance. In this sense our discriminations are objective and not 

subjective.
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This objective explanation of the consonance discriminations is the 

common opinion in western arts and sciences. We illustrate it with a 

quotation from 17
th
 century scientist: 

The laws of music are unchangeably fixed by nature, hence they should 

hold not only for the entire earth, but fot the inhabitants of other planets 

as well. (C. Huygens as quoted in (Perlman, 1994)). 

and a 20
th
 century artist: 

A music – whether folk, pop, …, tonal, atonal, …, past, future, … - all of 

it has a common origin in the universal phenomenon of the harmonic 

series. (Bernstein, 1976). 

But there is a huge problem with the common opinion. It is the existence 

of non-western musical traditions whose consonant intervals have nothing to 

do with the harmonic series. For example, the gamelan percussive orchestra, 

which is the indigenous musical tradition of Java and Bali, use 5 tone slendro

and 7 tone pelog scales. Neither scale lies even remotely close to the western 

harmonic scales. Their consonances are based on non-integer sequences of 

frequencies.

Hence, there is nothing unique “out there” which humans discriminate as 

consonances “in here”. It seems that our discriminations are subjective and 

not objective. 

We have two opposing conclusions. According to the law of small 

numbers Pythagorean just intonation, which is based on the integer sequence 

of frequencies, is a human universal. If we take into account the existence of 

the non-western musical traditions, whose scales are based on many different 

non-integer sequences of frequencies, it is not a human universal
66

.

2. ANOTHER DIMENSION 

There is also another dimension of the problem. Do our discriminations 

depend on innate systems, as we have tacitly presupposed until now, or do 

they depend on our experiences? In other words, are these discriminations 

innate or acquired
67

? According to the law of small numbers it seems that 

they are innate and objective. According to the fact of the existence of 

66
 Note that it does not necessarily mean that intonation is not human universal. (English 

language is not human universal although language could be) 
67

 By innate I mean acquired by evolution at least in some respects. By acquired I mean 

acquired exclusively by culture. 
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different musical traditions they could be acquired and subjective or perhaps 

innate and subjective
68

. Prevailing opinion is that they are acquired and that 

means changeable. Around this opinion evolved a lot of music-policy 

nonsense:

Musical racist imperialism: 

The music of other cultures should evolve towards western higher

forms which are based on immutable laws of nature.

Musical cultural imperialism: 

The music of other cultures should evolve towards OUR higher

forms which are produced by OUR superior culture. 

Musical cosmopolitanism: 

All musical traditions are equally worthy and should influence each other

Musical nationalism: 

It is OUR music and we do not want any influences. 

As far as it is based on the notion of the consonant intervals it is all 

wrong, because it is based on the irrelevant empirical evidence. In particular 

it does not take into account what happened to the law of small numbers in 

the last few thousand years and to the understanding of the other musical 

traditions in the last century. Let me explain.
69

3. GALILEO’S THEORY 

Notice that Pythagoreans offered no explanation of the law of small 

numbers. To offer one you should have some ideas about sound. 

If you focus on perceptual aspect, sound is the sensation stimulated in the 

organs of hearing by vibrations in the air with frequencies in the range of 20 

to 20 000 Hz. The vibrations are vibrations of a pressure wave, also known 

as a sound wave. It is explained in the following figure. 

68
 Let me show you with some examples that our auditory discriminations can be of any of the 

four types. Our discrimination between loud and soft sound is innate and objective; 

between a string and a wind instrument it is acquired and objective; between an ugly and a 

beautiful piece of music it is acquired and subjective; between the mother tongue and a 

foreign language it is innate and subjective (cf.
1)

).
69

 My explanation follows (Sethares, 1997). 
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Figure 2. Vibrations of a pressure wave are perceived as sound. 

The peaks represent times when air molecules are clustered, causing 

higher pressure. The valleys represent times when the air density, and hence 

the pressure, is lower. The wave pushes against the eardrum in times of 

higher pressure, and pulls during times of low pressure, causing the drum to 

vibrate. These vibrations are perceived as sound. 

In accordance with this general idea Galileo offered one of the first 

explanations of the law of small numbers (Galilei, 1974) 

… agreeable consonances are pairs of tones which strike the ear with a 

certain regularity; this regularity consists in the fact that the pulses 

delivered by the two tones, in the same interval of time, shall be 

commensurable in number, so as not to keep the eardrum in perpetual 

torment, bending in two different directions in order to yield to the ever 

discordant impulses.

Galileo’s pulses are the periods of the corresponding sound waves. If we 

represent them as below, then the number of points per unit interval 

represents the corresponding frequency. 
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Figure 3. A representation of Galileo’s pulses. 

Looking at this representation we could say that one half of the 

octave is contained in the fundamental, and that explains the intimacy 

of the octave and its fundamental. Similarly, one third of the fifth is 

contained in the fundamental, and that explains a bit less intimacy of 

the fifth and its fundamental. In the same way one fourth of the fourth 

is contained in the fundamental, one fifth of the major third, one sixth 

of the minor third etc. That explains their diminishing consonances. 

The same pattern could be represented arithmetically. 

Table 1. One half of the octave is contained in the fundamental.

C 2  4  6  8  10  12 … 

c 1 2 3 4 5 6 7 8 9 10 11 12 … 

Table 2. One third of the fifth is contained in the fundamental. 

C 3   6   9   12   15   18  

G 2 4  6  8  10  12  14  16  18 … 

Table 3. One fourth of the fourth is contained in the fundamental. 

C 4    8    12   16    20    24 … 

F 3  6   9   12   15   18   21   24 … 
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     Note how initial ratios determine the intimacy of the tones in given 

intervals i.e. their consonances. 

Galileo’s theory is very nice and frequently cited, even today, but there is 

one big problem with it. It is not true. 

4. THE TRUE THEORY FOR SIMPLE SOUNDS 

In an important experiment in 1965, Plomp and Levelt investigated how 

untrained listeners judge the dissonance
70

 of a variety of intervals when

sounded by pairs of pure sine waves. The result of the experiment is 

represented by the dissonance curve. 
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Figure 4. The dissonance curve of  Plomp and Levelet. 

(1) The dissonance is minimum, zero, when both sine waves are of the 

same frequency. 

(2) It increases rapidly to its maximum somewhere around the second, in 

the middle range. 

(3) Then it decreases steadily back toward zero. 

Notice that major 7
th
 and minor 9

th
 are almost indistinguishable from the 

octave in terms of sensory dissonance for pure sine waves. This is in 

complete disagreement with Galileo’s theory. 

70
 The dissonance was defined as unpleasantness. 
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Helmholtz explained what is happening here, almost a century before 

Plomp and Levelet made their experiment.
71

 He based his explanation on the 

phenomenon of beating which we explain very briefly. 

The phenomenon of beating is caused by alternation of constructive and 

destructive interference. When two sine waves of exactly the same frequency 

are played together they sound just like a single wave, but the combination 

may be louder or softer then the original waves. When the waves have the 

same phase, the same starting point, their peaks and valleys line up exactly 

and the magnitude of the sum is greater then either are alone. This is 

constructive interference. When the waves which are out of phase are added 

together the peaks of one could line up with the valleys of the other and their 

sum is smaller then either alone. This is destructive interference. 

What if the two sine waves differ slightly in frequency? The easiest way 

to picture this is to imagine that the two waves are at the same frequency, but 

that their relative phase slowly changes. When the phases are aligned they 

add constructively, while when out of phase they add destructively. The 

result is beating. 

Figure 5. Constructive interference. Destructive interference. Beating. 

Now, it is easy to understand the already announced Helmholtz’s 

explanation:

1. When the sine waves are very close in frequency they are heard as a 

simple pleasant tone with slow vibrations in loudness. The physical origin 

of this pleasant vibrato is the phenomenon of beating. 

71
 Helmholtz could make a relevant experiment only with complex sounds produced by then 

available instruments. The pure sounds, so easy available on computers these days, were 

not so easily available in Helmholtz’s days. 
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2. Somewhat further apart in frequency the beating becomes rapid and this 

is heard as dissonance. 

3. Then the tones separate and are perceived individually as a consonant 

pair.

It is illustrated in the following figure. 
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Figure 6. Helmholtz’s explanation of sensory dissonance. 
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5. COMPLEX SOUNDS 

We are really interested in complex sound waves produced by our 

musical instruments and not in the pure sine waves. The pure sine waves are 

important only because the complex waves are made of them.

Just as a complex light wave is made of the rainbow spectrum of pure 

color waves, a complex sound wave is made of pure sine waves in various 

bass, midrange and treble frequencies. First could be analyzed by a prism, 

second by the Fourier analysis. 

Figure 7. The analysis of the complex light and sound waves. 

The Fourier analysis reduces a complex sound wave to its spectrum of 

frequencies. For example, the complex sound waves (d) and (e), which are 

(a) + (b) and (a) + (c) respectively, are both reduced to spectrum (f), which 

rediscovers the frequencies of the original sine waves.
72

72
 The figure is from (Sethares, 1997), p. 15. 
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Figure 8. What we hear is the spectrum of a sound wave. 

Our auditory system is a biological spectrum analyzer doing the same. It 

transforms a sound wave into a frequency spectrum which has an auditory 

meaning. (G. Ohm was first to propose this idea in 1843.) This is explained 

in the following illustration.
73

73
 Ibid. p.16. 
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Figure 9. Our auditory mechanism. 

The vibrations are transferred to the cochlea
74

 which is filled with fluid. 

The motion of the fluid rocks the membrane spread along the cochlea. The 

region nearest the oval window responds to high frequencies, while the far 

end responds to low frequencies. Tiny neurons sit on the membrane sending 

messages towards the brain when jostled.

Thus the ear takes in a sound wave, like (d) or (e) above, and sends to the 

brain a representation of its spectrum, like (f) above. This representation has 

an auditory meaning. 

6. HARMONIC AND NON-HARMONIC SOUNDS 

As we said above, what really interests us is how to explain the 

dissonance of variety of intervals, when sounded by pairs of complex sound 

waves. These are sounds produced by our musical instruments.

First of all there is a big difference between complex sounds that are 

harmonic and those that are not harmonic. We introduce these two kinds of 

sound with two examples. 

A typical example of the harmonic sound is the sound of a guitar pluck. 

Here is its spectrum. 

74
 The cochlea is straightened out in the illustration. In reality it is curled up like a snail shell. 
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Figure 10. The spectrum of a guitar pluck. 

Notice that the spectrum consists of the fundamental at f = 196 Hz and of 

the near integer partials at  2f  384 Hz,  3f  589 Hz,  4f  787 Hz etc. Such 

a spectrum in which all the frequencies of vibration are integer multiples of 

some fundamental f  is called harmonic and the corresponding sound is 

called harmonic sound. Since every partial repeats exactly within the period 

of the fundamental, harmonic sound waves are periodic. 

A typical example of the non-harmonic sound is the sound of the strike of 

a metal bar. Here is its spectrum. 

Figure 11. The spectrum of the strike of a metal bar. 

Notice that the spectrum consists of the fundamental at f = 526 Hz,  and 

of the non-integer partials at  2.68 f = 1413 Hz,  5.11f = 2689 Hz  and  8.11 f

= 4267 Hz. Such a spectrum in which the frequencies of vibration are not the 

integer multiples of some fundamental f  is called non-harmonic and the 

corresponding sound is called non-harmonic sound. Since at least some 

partials do not repeat exactly within the period of the fundamental, harmonic 

sound waves are not periodic. 

The guitar string and the metal bar are only two of many possible sound 

making devices. The harmonic vibrations of the string instruments are also 

characteristic of many other musical instruments. For example, when air 
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oscillates in a wind instrument, its motion is constrained in the same way that 

the string is constrained by its fixed ends. At the closed end of the wind 

instrument the flow air must be zero, while at an open end the pressure must 

drop to zero. Thus all wind and string instruments have spectra which are 

harmonic. In contrast, most percussion instruments such as drums, marimbas, 

gongs etc. have non harmonic spectra. 

The spectrum of the string is harmonic because the string is fixed at both 

ends, and can only sustain oscillations that fit exactly into the length of the 

string. It is possible to prove mathematically that for an ideal string, if the 

fundamental occurs at frequency f,  the second partial must be at  2f,  the 

third at  3f  etc.

The spectrum of the metal bar is non-harmonic because the bar is free at 

both ends. Hence, the movement of the struck bar is characterized by 

“bending modes” that specify how the bar will vibrate once it is set into 

motion.

It is possible to prove mathematically that for an ideal metal bar, if the 

fundamental occurs at frequency f,  the second partial must be at 2.76 f,  the 

third at  5.41 f , the fourth at  8.94 f etc.

Figure 12. The "bending modes" of the string. The "bending modes" of the metal bar. 

7. THE TRUE THEORY FOR COMPLEX SOUNDS 

Let us return to our main question. How to explain the dissonance of 

variety of intervals, when sounded by pairs of complex sound waves?

The Plomp-Levelt experiment gathered data only on perceptions of pure 

sine waves. A century before that, to explain the sensory dissonance of 

complex sounds, Helmholtz proposed  the following procedure: add up all of 

the dissonances, between all pairs of pure sine partials.
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Notice that even if there is no beating interference of the fundamentals, 

there can be some beating interference of the other partials. Here is one 

example:

Figure 13. Some partials are interfering although the fundamentals are not. 

A harmonic sound at fundamental frequency f = 200 Hz  is transposed to  

g = 258 Hz. When this interval is played simultaneously some of the partials 

interfere by beating rapidly, causing sensory dissonance.

If we add up dissonances between all pairs of partials for all intervals we 

will get the dissonance curve for a given spectrum.

The dissonance curve for a harmonic spectrum with six partials at f, 2f,

3f, 4f, 5f  and  6f  is shown in the following figure.
75

75
 Ibid. p. 92. This is the figure that Helmholtz got as the result of his calculation. 
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Figure 14. The dissonance curve for complex harmonic sound. 

Notice, that minima of the dissonance curve coincide with many 

Pythagorean intervals, which are characterized by the law of small numbers. 

It is easy to prove that dissonance curves of harmonic spectra always have 

this property, and this is the final explanation of the law of small numbers for 

harmonic sounds. 

The dissonance curve for a non harmonic spectrum of a metal bar with 

six partial at f,  2.76 f,  5.41 f,  8.94 f,  13.35 f   and  18.65 f   is shown in the 

following figure
76
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Figure 15. The dissonance curve for complex non harmonic sound. 

76
 Ibid. p. 107. Helmoltz did not make the calculations for non-harmonic spectra because he 

was focused exclusively on harmonic instruments. 
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Notice, that minima of the dissonance curve do not coincide with any of 

the Pythagorean intervals, which are characterized by the law of small 

numbers. It is easy to prove that dissonance curves of non-harmonic spectra 

always have this property, and this is the final refutation of the law of small 

numbers for non harmonic sounds. 

8. CONCLUSION 

We may conclude that the law of small numbers is just an 

epiphenomenon which is empirically irrelevant for our explanations as much 

as are the non-integer “laws” of slendro, pelog and other non-harmonic 

scales. The real source of our consonance discriminations is the phenomenon 

of beating, as hypothesized by Helmholtz and directly corroborated by 

Plomp-Levelt experiment
77

. The beating is really something unique “out 

there” which we discriminate as dissonance “in here” and in this sense our 

discriminations are objective and not subjective. Furthermore, it is common 

to all musical traditions harmonic or not to discriminate between consonant 

and dissonant intervals in this way. It seems then that this is common to all 

humans, which means that our consonance discriminations are innate and not 

acquired. Hence, our sensory discriminations of consonant and dissonant 

musical intervals are objective and innate and this is corroborated by the 

western harmonic tradition as well as by the non-western non-harmonic 

traditions.

To be more specific we may say that sensory dissonance and consonance 

are functions of the interval and the spectrum of the sound. A scale and a 

spectrum are related if the dissonance curve for the spectrum has minima at 

the scale steps. Harmonic spectra of western musical instruments are related 

to western scales with many Pythagorean intervals. Non-harmonic spectra of 

different musical traditions are related to their scales. 

And this is not the whole story. Nowadays musicians compose for very 

unusual sounds. In accordance with the previous explanations, their 

procedure is as follows: 

(1) Choose a sound. 

(2) Find the spectrum of the sound. 

(3) Simplify the spectrum. 

77
 It was indirectly corroborated by Helmholtz when he calculated that the minima of the 

dissonance curve for harmonic sounds (he was exclusively dealing with) correspond to 

Pythagorean intervals of the western harmonic tradition. 
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(4) Calculate the dissonance curve. 

(5) Choose a set of intervals from the minima i.e. choose related scale. 

(6) Create (synthesize) an instrument with the simplified spectrum that 

can play the sound at the chosen scale steps. 

(7) Compose and play music. 

We made the full circle. From music, to the first empirical laws, to their 

mathematical refinements and physical corroborations, and finely back to the 

music. To appreciate that you should listen to some music composed 

according to the procedure (1)–(7), which is the by product of this full circle 

history. The best starting point I can suggest is (Sethares, 1997). 
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Abstract: Answering to the double-faced influence of string theory on mathematical 

practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn 

have contemplated the idea that there exists a ‘theoretical’ mathematics 

(alongside ‘theoretical’ physics) whose basic structures and results still require 

independent corroboration by mathematical proof. In this paper, I shall take the 

Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse 

it against the backdrop of two philosophical views that are appreciative 

towards informal mathematical development and conjectural results: Lakatos’s 

methodology of proofs and refutations and John von Neumann’s opportunistic 

reading of Hilbert’s axiomatic method. The comparison of both approaches 

shows that mitigating Lakatos’s falsificationism makes his insights about 

mathematical quasi-ontology more relevant to 20
th

 century mathematics in 

which new structures are introduced by axiomatisation and not necessarily 

motivated by informal ancestors. The final section discusses the consequences 

of string theorists’ claim to finality for the theory’s mathematical make-up. I 

argue that ontological reductionism as advocated by particle physicists and the 

quest for mathematically deeper axioms do not necessarily lead to identical 

results.

Key words: Jaffe-Quinn debate; rigour in string theory; final theories; Lakatos’s 

philosophy of mathematics, John von Neumann; axiomatic method; theoretical 

mathematics; mathematical ontology. 

In discussing the intimate relationship between theoretical physics and 

mathematics, scientists and philosophers alike keep wondering about what 

Eugene P. Wigner once called “the unreasonable effectiveness of 

mathematics in the natural sciences.” (1960) Only few scientists find this 

effectiveness simply “reasonable” (Tisza, 1997); logical empiricism and the 

rigorous analytic-synthetic distinction have got out of fashion; mathematical 

platonists in Gödel’s wake treat mathematics as a peculiar kind of empirical 
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science (Köhler, 2002); realists and naturalists instead ponder whether 

mathematics is indispensable for the empirical sciences (Maddy, 1997; 

Colyvan, 2001; Leng, 2001). The light of mathematization, at any rate, does 

not spread homogeneously across the physical sciences; at places 

mathematics exhibits an “unreasonable uncooperativeness” (Wilson, 2001a) 

with scientists’ ontological needs.

These contributions document an increasing interest into a philosophy of 

mathematics that is not narrowly foundationalist in spirit but oriented at 

mathematical practice. (See the programmatic Corfield, 2003) The present 

paper intends to address a specific philosophical problem at the crossroads of 

theoretical physics and mathematics which in recent years has sparked 

controversies among scientists, but has not yet received much attention 

among philosophers of science – the new trend notwithstanding. 

Wigner cited the examples of planetary motion, quantum mechanics, and 

quantum electrodynamics to show “that the mathematical language has more 

to commend it than being the only language which we can speak; … it is, in 

a very real sense, the correct language.” (Wigner, 1960, p. 8) What Wigner 

took as “the empirical law of epistemology,” (Ibid., p. 10) however, at 

bottom remained an act of faith. “The miracle of the appropriateness of the 

language of mathematics for the formulation of the laws of nature is a 

wonderful gift which we neither understand nor deserve.” (Ibid., p. 14)

Around the year 1990, or so it seems, another miracle, comparable in size 

but opposite in kind, has occurred in the domain of pure mathematics. It 

unveiled a converse of Wigner’s dictum. “Not only is mathematics the 

language of physics, but … in quite a large area of mathematical research 

today, theoretical physics has become the language of mathematics. … [W]e

are confronted in mathematics with the difficulty of understanding the 

‘unreasonable effectiveness of theoretical physics in mathematics’.” (Jaffe, 

1997, p. 138)

In 1990, the theoretical physicist Edward Witten was awarded the Fields 

Medal for his contributions to geometry, which were largely stimulated by 

string theory. This prompted discussions among mathematicians and 

mathematical physicists as to how Witten’s mostly conjectural results ought 

to be appraised. No mathematician doubted that his representation of the 

Jones invariants of knots using Chern-Simons field theory was a major 

breakthrough that connected two hitherto unrelated subjects. Moreover, 

considerable parts of the results were quickly proven by pure geometers. But 

some conjectures were disproved and significant gaps remained. Had 

mathematicians witnessed “one of the most refreshing events in the 

mathematics of the 20
th
 century” (Atiyah et al., 1994, p. 179), as Michael 

Atiyah felt, or did the dangers for mathematical rigour prevail unless one 
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prevented an uncritical copying of the methods at work in this singular 

success story? 

In their 1993 article “‘Theoretical Mathematics’: Toward a Cultural 

Synthesis of Mathematics and Theoretical Physics”, the mathematical 

physicists Arthur Jaffe and Frank Quinn proposed a set of prescriptions for 

the interaction between mathematicians and theoretical physicists that should 

foster mathematicians’ receptivity of ideas from physics by safeguarding 

mathematical rigour against uncontrolled speculation. All authors of 

mathematical papers “should make a choice: either they provide complete 

proofs, or they should agree that their work is incomplete [conjectural] and 

the essential credit will be shared. Referees and editors should enforce this 

distinction, and it should be included in the education of students.”

(Jaffe/Quinn 1993, p. 10) Mathematics, so they argued, is either rigorous or 

theoretical. While rigorous results are final, even well-founded theoretical 

claims require corroboration by proof. The reliability of the literature, one of 

the prerequisites of progress and education, should be secured by a standard 

nomenclature that unambiguously flags ‘theoretical’ results as ‘conjectures’ 

(instead of ‘theorems’) that ‘predict’ (instead of ‘show’), etc.

The Jaffe-Quinn paper provoked a broad controversy that is documented 

in no less than 16 responses by leading mathematicians and the authors’ 

summary rejoinder in the next volume of the Bulletin of the American 

Mathematical Society.
78

 Further voices on this “culture clash” between 

mathematics and physics were cited in the Scientific American. (Horgan, 

1993) On the 1994 International Congress of Mathematical Physics in Paris, 

the Jaffe-Quinn debate was incitement enough to organise a round table 

“Physics and Mathematics.”
79

 However, its convenor Joel Lebowitz gave it a 

somewhat different thrust and asked participants to sketch problems of 

mathematical physics that did or did not contribute in advancing human 

understanding of nature.
80

 By this shift away from the issues of reliability  

and proof, Lebowitz largely followed William Thurston’s (1994) 

contribution to the debate. As regards the community of philosophers, the 

matter was taken up in the May 1997 issue of Synthese, but only 

mathematicians took a stand on “Proof and Progress in Mathematics.”
81

Meanwhile, however, philosophers have devoted some thoughts to the Jaffe-

Quinn debate as an example for problems of rigour and mathematical 

78
 (Atiyah et al., 1994; Thurston, 1994; Jaffe and Quinn, 1994). 

79
 See the Foreword of Daniel Iagolnitzer in (Iagolnitzer, 1995, p. 692). 

80
 See Lebowitz’s letter to the panellists in the materials distributed at the conference, p. 3; 

Atiyah’s response on p. 4 expresses a certain discomfort with the change of focus.
81

 The only paper penned by a philosopher (Jaakko Hintikka’s) is dedicated to the foundations 

of mathematics and, consequently, does not mention the Jaffe-Quinn debate. 
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ontology (Corfield, 1997, 2003; Aberdein, 2003; Davey 2003; Stöltzner, 

2002a). A more profound discussion, however, is still lacking. 

The present paper takes a first step in this direction by studying the Jaffe-

Quinn debate against the backdrop of two philosophical accounts that are 

highly appreciative towards informal mathematical growth and conjectural 

results. After rehearsing the essentials of the debate (Section 1), I shall try to 

make sense of ‘theoretical mathematics’ within a Lakatosian approach. 

Particular emphasis will be given to the quasi-empirical character of 

mathematics and the dialectics of proofs and refutations. (Section 2) It is 

well-known that Lakatos’s falsificationist methodology performs badly when 

it comes to modern axiomatized mathematics or to mathematical concepts 

without easily discernible informal ancestors. John von Neumann’s 

conception of opportunistic axiomatics promises remedy by emphasizing the 

flexibility and the pragmatic virtues of axiom systems. (Section 3) An 

important element of the axiomatic method is the search for more general 

theorems or mathematically ‘deeper’ concepts that make the mathematical 

structure of the theory more conspicuous. Yet, “deepening the foundations” 

mathematically might yield concepts and entities that starkly differ from 

those favoured by physical reductionists. This problem is particularly 

pressing for string theory which, owing to the dim prospects of ever attaining 

experimental corroboration, can derive independent support only from the 

quality of its basic mathematical structures. Since string theorists, 

nonetheless, insist that their theory embraces all physical interactions and, 

accordingly, “has provided our first plausible candidate for a final theory,” 

(Weinberg 1993, p. 169) the issue of mathematical rigour might influence the 

ontology of string theory. What if the basic physical concepts of the alleged 

‘Theory of Everything’ are mathematically ill-founded? Moreover, and in 

stark contrast to these high aspirations, all attempts to squeeze at least some 

empirical predictions out of string theory by deriving, or at least establishing 

consistency with, those lower-level theories which have empirical support, 

typically involve perturbative methods. (Section 4) 

It is true, a substantial part of the Jaffe-Quinn debate concerned the socio-

cultural problems at the border between mathematics and theoretical physics. 

Who is to be credited, if a non-rigorous result is rigorously proven 

afterwards? Shall the community standards be safeguarded by explicit rules 

of conduct? Who controls whether these standards are obeyed? No doubt, 

these questions suggest interesting methodological considerations. But the 

philosophical core of the debate, to my mind, concerns ontological matters. 

If there is – all rules of conduct observed – a meaningful way of pursuing 

‘theoretical mathematics’, what is it all about? If the concepts of ‘theoretical 

mathematics’ are analogous to those of theoretical physics, they must exceed 
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the stage of merely provisional speculations and become amenable to 

realistic or anti-realistic interpretations.

1. THE JAFFE-QUINN THESES 

The main motivation for Jaffe and Quinn to stipulate a clear-cut 

distinction between mathematical speculation and rigorous proofs derived 

from their philosophical understanding of the discipline and its history. 

“Modern mathematics is nearly characterized by the use of rigorous proofs. 

This practice, the result of literally thousands of years of refinement, has 

brought to mathematics a clarity and reliability unmatched by any other 

science.” (Jaffe and Quinn, 1993, p. 1) They distinguish two stages of 

mathematical research.

First, intuitive insights are developed, conjectures are made, and 

speculative outlines of justifications are suggested. Then the conjectures 

and speculations are corrected; they are made reliable by proving them. 

We use the term theoretical mathematics for the speculative and intuitive 

work; we refer to the proof-oriented phase as rigorous mathematics. 

(Ibid.)

     This terminology expresses a functional analogy between rigorous 

proof and experimental physics. Both correct, refine and validate the 

claims of their theoretical counterparts. 

Proofs serve two main purposes. First, they “provide a way to ensure the 

reliability of mathematical claims.” (Ibid., p. 2) “Second, the act of finding a 

proof often yields, as a by-product, new insights and unexpected new data.” 

(Ibid.) Hence, ‘theoretical mathematics’ is built on an asymmetry of proof 

and conjecture. Posing a conjecture does not necessarily involve proof; 

heuristics is subordinated to the justificatory role of proof. 

1.1 The Theoretical and the Experimental 

Jaffe and Quinn are aware that the analogy between physics and 

mathematics is limited: “we are not suggesting that proofs should be called 

‘experimental’ mathematics. There is already a well-established and 

appropriate use of that term, namely to refer to numerical simulations as tests 

of mathematical concepts.” (Ibid., p. 2) Still, many mathematicians dispute 

the reliability of computer proofs. Armand Borel criticises where the 

functional distinction is situated. “Roughly, the experimental side is the 

investigation of special cases … and the theoretical side is the search of 
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general theorems. In both, I expect proofs of course, and I categorically 

reject a division into two parts, one with proof, the other without.” (Atiyah et 

al., 1994, p. 180) According to Saunders Mac Lane, the comparison of proofs 

with experiments is faulty. “Experiments may check up on a theory, but they 

may not be final; they depend on instrumentation, and they may even be 

fudged. The proof that there are infinitely many primes … is always there. … 

Mathematics rests on proof – and proof is eternal.” (Ibid., p. 193) 

Morris W. Hirsch emphasises that “the nonrigorous use of mathematics 

by scientists, engineers, applied mathematicians and others is in fact more 

complex than simple speculation.” (Ibid., p. 186) It involves the use of 

mathematical language for ‘narrative purposes’, in particular if the result has 

already been experimentally verified. Karen Uhlenbeck holds that 

“‘theoretical mathematics’ already exists. It is called ‘applied mathematics’, 

a much bigger field than pure mathematics. … Only the combined elitism of 

very pure mathematics and high-energy fundamental physics would claim 

that its own brand of speculative and applicable mathematics should have a 

special name.” (Ibid., p. 202) What about non-linear dynamics or 

mathematical biology? A representative of this alleged elite, the string 

theorist Albert Schwarz, equally considers the terminology inappropriate as a 

common name for heuristic mathematics and theoretical physics. But he 

stresses the peculiarity of string theory within applied mathematics: Today, 

theorists “are not able to extract reliable predictions from string theory 

because this is connected with enormous mathematical difficulties. The 

physicists have chosen the only possible way: to analyze carefully the 

mathematical structure of string theory.” (Ibid., p. 197) This is exactly Jaffe 

and Quinn’s point: Theoretical physicists “have found a new ‘experimental 

community’: mathematicians … who provide them with reliable new 

information about the structure they study.” (Jaffe and Quinn, 1993, p. 3) 

Indeed quite a singular situation if measured against the whole of the 

interactions between physicists and mathematicians. 

1.2 The Ontology of Theoretical Mathematics 

‘Theoretical mathematics’ tacitly requires some sort of ‘quasi-empirical’ 

ontology. “For if we don’t assume that mathematical speculations are about 

‘reality’ then the analogy with physics is greatly weakened – and there is no 

reason to suggest that a speculative mathematical argument is a theory of 

anything, any more than a poem or novel is ‘theoretical’” (Atiyah et al., 

1994, p. 186) writes Hirsch. Mac Lane, in contrast, advocates austerity: “If a 

result has not yet been given valid proof, it isn’t yet mathematics: we should 

strive to make it such.” (Mac Lane, 1997, p. 151) To his mind, all other 

assertions root in the misconception of “set theory as THE foundation of 
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mathematics, and so sometimes [philosophers of mathematics] eagerly 

spread the gospel that mathematics is the study of an ideal realm of sets – set 

theoretic platonism.” (Ibid.)

Also some of those advocating ‘theoretical mathematics’ without the 

Jaffe-Quinn strictures count on foundational support. René Thome uses, 

expectedly, Gödel’s incompleteness theorem to bolster his claim “that rigor 

can be no more than a local and sociological criterion.” (Atiyah et al., 1994, 

p. 203) But Mac Lane (1997) is fully right to stress that Gödel’s theorem 

concerns very specific systems, those that admit a Gödel numbering.

It appears to me, however, that foundationalist aspects in the narrow 

sense are of only minor importance to the Jaffe-Quinn debate. What Mac 

Lane, in effect, rejects is string theoreticians’ belief that the mathematical 

structures they have heuristically justified necessarily exist in some sense or 

other, the more concrete determination of which is generously left to 

rigorous mathematicians. Citing historical examples from classical applied 

mathematics, Mark Wilson has adequately baptized such a stand as “lazy 

mathematical optimism”. It is characterised by the belief that “every real-life 

physical structure can [a priori] be expected to possess a suitable direct 

representative within the world of mathematics.” (Wilson, 2000, p. 297) In 

view of the many mismatches between mathematics and physics, even in 

domains as profane as continuum mechanics or elasticity theory, lazy 

optimism becomes untenable. But there is still an honest version of 

mathematical optimism which, on Wilson’s account, goes back to Leonhard 

Euler.
82

 After diagnosing the lack of a suitable mathematical structure to treat 

a physical problem, the mathematical optimist can try to liberalize 

mathematical ontology so as to include all physically possible solutions or 

devise new concepts that have been ill-defined within the previously 

accepted mathematical framework. The difference between lazy and honest 

optimism lies precisely in whether one succeeds in providing such a 

liberalized ontology or concepts that are well-defined in a suitable sense. 

‘Theoretical mathematics’ is the first step of the honest optimist, and the 

Jaffe-Quinn debate concerns precisely the question at which point we can 

trust in mathematical honesty. 

Notice that in applied mathematics matters stand better than in string 

theory because one typically possesses independent physical evidence that a 

system described by the mathematical equation under scrutiny exists as a 

well-entrenched entity. Take, for instance, the turbulences of a water flow 

through a pipe or a fracturing rod. In contrast, all available evidence for 

string theory obtains only by way of other physical theories which have 

82
 But also many of Hilbert’s problems were like this; see (Stöltzner, 2004). 
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mathematical problems of their own. Moreover, the mathematical transitions 

to these theories involve perturbative methods and unpredictable symmetry 

breaking mechanisms. All problems of experimental verification 

notwithstanding, Witten aspires beyond mathematical optimism: “when a 

mathematical result is really relevant to a physics problem it often happens 

that, turning things around, the result can be deduced from the behaviour of 

the physics problem.” (Iagolnitzer, 1995, p. 704) Such claims make the 

problems of mathematical ontology even more pressing.

1.3 Linearising Mathematical Progress 

A considerable part of Jaffe and Quinn’s paper and the responses dealt 

with the controversial lessons historical examples teach. Aside from 

undisputed success stories, there are also ‘cautionary tales’ that demonstrate 

that relaxing standards and relying on intuitions occasionally was a 

hindrance – or even disastrous – for a budding research programme. 

The ideal attitude in the contact between mathematics and physics was 

assumed by mathematical physicists, such as “D. Hilbert, F. Klein, H. 

Poincaré, M. Born, and later H. Weyl, J. von Neumann, E.P. Wigner, M. 

Kac, A.S. Wightman, R. Jost, and R. Haag. … These people often worked on 

questions motivated by physics, but they retained the traditions and values of 

mathematics,” (Jaffe and Quinn, 1993, p. 4) to wit: rigour, scholarship, and 

knowledge of the literature. Their speculations, on the other hand, were 

addressed to physicists.

Jaffe and Quinn discuss essentially three types of success stories. (i) 

Brilliant conjectures have inspired the development of whole fields. “The 

Hilbert problem list, of amazing breadth and depth, has been very influential 

in the development of mathematics in this century.” (Jaffe and Quinn, 1993, 

p. 6) (ii) Conjectures that were accompanied by technical details or even an 

outline of a proof, such as the Weil conjectures, have initiated entire research 

programmes. (iii) Famous conjectures, among them Fermat’s Last Theorem, 

can be highly motivating if they turn out to be the corollary of a general 

theorem.

“Most of the experiences with theoretical mathematics have been less 

positive.” Here are two examples: At the beginning of this century, the 

‘Italian school’ of algebraic geometry “collapsed after a generation of 

brilliant speculation. … In 1946 the subject was still regarded with such 

suspicion that Weil felt he had to defend his interest in it.” The historian 

Jeremy J. Gray, however, emphasised that the Italian school “by modern 

standards … seems to lack rigour – but this perception is modern, and due to 

Zariski, who also brought new questions to bear (such as arbitrary fields).” 

(Atiyah et al., 1994, p. 185) 
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The way how Jaffe and Quinn classify success and failure suggests that 

they prefer a linear growth that is initiated by a conjecture or a theoretical 

result from which a research programme, though slowly and piecemeal, 

immediately takes off and yields rigorous results. Ruptures should best be 

avoided, because they hamper progress in the long run, although momentary 

growth might be considerable. Lasting historical progress requires 

scholarship and a reliable literature. Moreover, Jaffe and Quinn expect 

scientific journals to provide the same reliability as textbooks. Put in a 

nutshell: although the authors do not write a piece of Whig historiography, 

they seem to wish that the growth of mathematics be guided to conform to a 

Whiggish account. 

In his Response, Atiyah lodges a protest against the linear growth model:

[Jaffe and Quinn] present a sanitized view of mathematics which 

condemns the subject to an arthritic old age. They see an inexorable 

increase in standards and are embarrassed by earlier periods of sloppy 

reasoning. But if mathematics is to rejuvenate itself and break new 

ground it will have to allow for the exploration of new ideas and 

techniques which, in their creative phase, are likely to be dubious as in 

some of the great eras of the past. Perhaps we now have high standards of 

proof to aim at but, in the early stages of new developments, we must be 

prepared to act in more buccaneering style. (Ibid., p. 178.) 

“However, a buccaneer is a pirate, and a pirate is often engaged in 

stealing,” retorts Mac Lane: “Buccaneers have no place in mathematics.” 

(1997, p. 150) And thus, so one might continue, the Jaffe-Quinn 

prescriptions represent much-needed maritime law. Yet, a bad metaphor does 

not make a faulty argument. To my mind, Atiyah is plainly right to argue that 

the linear model of mathematical growth is incapable of assessing the boost 

of knowledge that geometry has received from string theory. 

2. A LAKATOSIAN PERSPECTIVE 

In his much-read dialogue Proofs and Refutations, Imre Lakatos outlined 

a philosophical methodology in which the growth of mathematical 

knowledge is driven by the dialectics of proofs and refutations and by the 

continuous interaction of heuristics and validation. Lakatos’s rational 

reconstruction of the history of the Euler conjecture thus challenges the 

linear account of history to the same extent as his methodology attributes due 

space to ‘theoretical mathematics’.

In this section I argue that (i) any hermetic separation between heuristics 

(‘theoretical mathematics’) and proof (rigorous, experiment-like 
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mathematics) ignores the subtle dialectic between conjectures and proofs. (ii) 

In the history of science, we are not faced with a one-shot interaction 

conjecture-proof, but with the course of a mathematical research programme. 

(iii) A Lakatosian perspective gives ontological justification to ‘theoretical 

mathematics’ because it provides a mechanism to create the ontology 

appropriate for a certain mathematical quasi-fact. (iv) But due to his 

unrestrained fallibilism, Lakatos failed to appraise the virtues of 

axiomatization. Moreover, it is unclear what stuff mathematical research 

programmes are about. 

2.1 The Mechanism of Proofs and Refutations 

Jaffe-Quinn and Lakatos share a common starting point: ‘Proof’ stands 

“for a thought-experiment – or ‘quasi-experiment’ – which suggests a 

decomposition of the original conjecture into subconjectures or lemmas, thus 

embedding it in a possibly quite distant body of knowledge.” (Lakatos, 1976, 

p. 9) Thought-experiments follow an initial naive trial and error phase. In the 

example around which Proofs and Refutations is built, they correspond to a 

stretching and a triangulation of a polyhedron. The lemmas, or 

subconjectures, ensure that the ‘thought-experimental’ steps of the proof are 

permissible, such that the proof can validate the conjecture. But, quite similar 

to the development of experimental techniques in science, the decomposition 

is informative even if validation does not obtain. And if it does, its main 

achievement is to provide an improved basis for scepticism. 

Refutations are suggested by counterexamples that either concern the 

conjecture (global counterexamples) or the lemmas (local counterexamples). 

(i) Global, but not local counterexamples logically refute the conjecture. 

They are what most mathematicians would call a counterexample. (ii) If a 

global counterexample is also local, it does not refute the theorem, but 

confirms it. (iii) Local, but not global counterexamples show a weakness of 

the theorem, such that one has to search for modified lemmas. Cases (ii) and 

(iii) are not genuinely logical, but heuristic counterexamples. 

The imaginary class of Proofs and Refutations discusses various 

strategies to handle counterexamples. Monster-barring, rejects the global 

counterexample as “a pathological case” (Ibid., p. 14) of a polyhedron by 

modifying the latter’s definition in a suitable way. It decreases the domain of 

validity of the conjecture, only. But counterexamples abound despite such 

linguistic ad hoc remedies. Theoretical physicists often apply this strategy by 

suggesting a natural ‘physical definition’ of the mathematical concept in 

question or, more operationally, by rejecting ‘pathologies’ as beyond the 

scope of the studied model. The history of theoretical physics, however, 
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teaches us that monsters may always return because many mathematical 

structures eventually have turned out to be of physical interest. 

The next strategy, exception-barring, restricts the domains of both the 

conjecture and of the guilty lemma. But the strategic withdrawal could have 

been too radical, and the method still does not exploit the proof. Monster-

adjustment, the third strategy, also concerns the domain of validity of the 

basic concepts. “Monsters don’t exist, only monstrous interpretations.” 

(Ibid., p. 31) This therapeutic method strives to see an example in the alleged 

counterexample by finding a suitable interpretation. In a footnote, Lakatos 

rejects it. “Nothing is more characteristic of dogmatist epistemology than its 

theory of error.” (Ibid., p. 31, fn. 3) Later, however, he noted that monster-

adjustment could be empirically progressive in science.
83

 Indeed, empirical 

science might ease monster-adjustment by singling out ‘physical’ or 

‘realistic’ interpretations. But this cannot compensate for faulty proofs and 

mathematically ill-defined concepts. 

In Cauchy’s days, mathematics matured through an appropriate 

estimation of proof-analysis. The method of lemma-incorporation “upholds 

the proof but reduces the domain of the main conjecture to the very domain 

of the guilty lemma.” (Lakatos, 1976, p. 34) In this way, the lemma refuted 

by the counterexample is built into the conjecture. Hence, proofs improve a 

conjecture, even if they do not prove it. This “displays the fundamental 

dialectical unity of proof and refutations.” (Ibid., p. 37) But on principle, one 

has to incorporate expectable, but not yet known, counterexamples. This 

reveals that lemma incorporation proceeds through constant overstatements, 

by attempting to keep as much as possible from the initial thought-

experiment and its heuristics. While this method emphasises the heuristic 

role of proof, exception-barring focuses on validity and advances through a 

series of understatements. Accordingly, it corresponds to the ‘better-safe-

than-sorry’ strategy prescribed by Jaffe and Quinn. Lakatos stresses that a 

careful proof-analysis, which constantly suspends unnecessary restrictions, 

makes the method of proof and refutations “a limiting case of the exception-

barring method.” (Ibid.) 

In a later footnote, Lakatos recalls his “deliberate mixed usage of the 

justificationist term ‘proof’ and of the heuristic term ‘proof’.” (Lakatos, 

1978b, p. 135, fn. 3) More than being a mere by-product, as Jaffe and Quinn 

hold, heuristics stands on a par with rigorous justification. Exploiting the 

heuristic possibilities of the proof might overthrow the initial conjecture and 

supplant it by newly formulated theorems. Moreover, “different proofs 

83
 See fn. 3 on p. 63 of “Falsification and the methodology of scientific research programmes” 

in (Lakatos, 1978a). 



208 MICHAEL STÖLTZNER

[better: ‘improofs’] of the same naive conjecture lead to quite different 

theorems.” (Lakatos, 1976, p. 65) This leads to the full-blown method of 

proofs and refutations. The important point for the Jaffe-Quinn debate is that 

Lakatos’s methodology of mathematical growth does not play down the role 

of proofs. Emphasising their heuristic role, on the contrary, puts proof 

thought-experiments into the core of historical development. The 

‘speculations’ that make up ‘theoretical mathematics’ only concern single 

conjectures – be they supplemented with a proof-technique or not.

Later, Lakatos considered it to be a leitmotiv of Proofs and Refutations 

that “one may bravely – and profitably – go on to ‘explain’ a hypothesis 

known to be false.” (Lakatos, 1978b, p. 176 fn. 3) One may not even need a 

conjecture to start proving or testing by means of thought-experiments. 

Being ready to give up the naive conjecture, a more general theorem might 

be easier to prove. An extended version of the method of analysis-synthesis 

driven by heuristic and validating thought-experiments contains possible 

occult hypotheses. For the evaluation of certain real integrals, the 

introduction of complex numbers is a necessary prerequisite. For geometry, 

string theory has provided brilliant occult hypotheses and new concepts that 

were generated by Witten’s heuristic proofs. Hence, from a Lakatosian 

perspective, ‘theoretical mathematics’ is not an intermediate step in the 

sequence from conjecture to proof, but rather an indispensable element of the 

extended analysis-synthesis circuit. 

Over the course of history, concepts grow – sometimes even by rather 

wild extensions, such as the Peano curve which fills a two-dimensional 

surface. Lakatos argues that it was not the monster barrers who contracted 

concepts, but the refutationists expanded them to cover objects unintended 

by the naive conjecture. “Often, as soon as concept-stretching refutes a 

proposition, the refuted proposition seems such an elementary mistake that 

one cannot imagine that great mathematicians could have made it.”

(Lakatos, 1976, p. 87, fn. 1) But such an accusation, which also characterises 

Jaffe and Quinn’s ‘cautionary tales’, neglects precisely that sort of concept 

growth that reaches beyond a mere change in rigour. In this respect, most 

negative Responses to “Theoretical Mathematics” still have too narrow a 

focus.

Lakatos severely criticises the widespread view that an ‘informal’ proof is 

a formal proof with gaps. “[T]o suggest that an informal proof is just an 

incomplete formal proof seems to me to be to make the same mistake as 

early educationalists did, when, assuming that a child was merely a miniature 

grown-up, they neglected the direct study of child-behaviour.” (Lakatos, 

1978b, p. 63) In the same vein, Jaffe and Quinn distinguished two groups of 

informal reasoning according to whether the conjecture in question could 

subsequently be proven. However, justificationists unduly maximise 
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historical continuity by separating the hard formal kernel that holds true still 

today from the erroneous ‘metaphysical’ interpretation. Thus, Poincaré’s 

results are still not fully assessed if one insists (against Jaffe-Quinn) that they 

matched the standards of the day.

Instead, heuristic power decides the faith of a research programme that 

was ventured from an initial conjecture. Formal arguments alone, however, 

cannot make up the core of a research programme without taking into 

account ‘metaphysical’ heuristics. The latter might even be linked to the 

heuristic support derived from physics. This was the case for Dirac’s delta 

function which had become part and parcel of quantum theory long before it 

was made mathematically rigorous. While von Neumann (1932) opposed it, 

Laurent Schwartz relaxed the ontology of the concept of function by defining 

generalised functions (distributions), thus winning honesty for Dirac’s 

mathematical optimism. 

2.2 Quasi-empirical Ontology 

Let me now show how it is possible to obtain some quasi-ontological 

backing for ‘theoretical mathematics’ from Lakatos’s criticism of 

foundationalism. While Euclidean theories are built on indubitable axioms 

from which truth flows down through valid inferences, in quasi-empirical 

theories truth is injected at the bottom by virtue of a set of accepted basic 

statements. In the latter case, truth does not flow downward from the axioms, 

but falsity is retransmitted upward. “[I]n a quasi-empirical theory the (true) 

basic statements are explained by the rest of the system.“ (Lakatos, 1978b, p. 

28f.) And it is only the flow of truth that is at stake; “a theory which is quasi-

empirical in my sense may be either empirical or non-empirical in the usual 

sense.” (Ibid., p. 29) Theoretical physics is, of course, quasi-empirical and 

empirical. Among the basic statements of a conceptually mature theory 

which ‘explain’ physical facts, genuinely mathematical ones can be found 

alongside basic empirical facts, such as measurable constants of nature. But 

can one, quite generally, consider ‘theoretical mathematics’ as quasi-

empirical without counting on such ‘empirical axioms’? 

In Lakatos’s view, the borderline between mathematics and the sciences 

is drawn by the mode of verification: “If mathematics and science are both 

quasi-empirical, the crucial difference between them, if any, must be in the 

nature of their ‘basic statements’ or ‘potential falsifiers’.” (Ibid., p. 35) 

Contradictions are the typical logical falsifiers.

But if we insist that a formal theory should be the formalization of some 

informal theory, then a formal theory may be said to be ‘refuted’ if one of 

its theorems is negated by the corresponding theorem of the informal 
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theory. One could call such an informal theorem a heuristic falsifier of 

the formal theory. Not all formal theories are in equal danger of heuristic 

refutation in a given period. For instance, elementary group theory is 

scarcely in any danger: in this case the original informal theories have 

been so radically replaced by the axiomatic theory that heuristic 

refutations seem to be inconceivable. (Ibid., p. 36) 

On the other hand, after the destruction of naive set theory by logical 

falsifiers, one cannot speak any longer of set-theoretical facts. Nevertheless, 

one might still continue to consider it to be the unifying basis of 

mathematics. Hence, the question of mathematical facts rests upon a subtle 

interaction between the informal and the formal level. For the Jaffe-Quinn 

debate, this entails that those objects of informal ‘theoretical mathematics’, 

which are blatantly inconsistent, can hardly count as quasi-empirical 

mathematical facts in Lakatos’s sense. Moreover, attitudes as relaxed 

concerning rigour as Thom’s cannot count on Lakatos because they neglect 

the heuristic power or rigour. 

2.3 On Mathematical Research Programmes 

At the time of his death, Lakatos had planned to apply the methodology 

of scientific research programmes (MSRP) to the history of mathematics. A 

footnote in the 1970 paper launching MSRP reads as follows: “Unfortunately 

in 1963-4 I had not yet made a clear terminological distinction between 

theories and research programmes, and this impaired my exposition of a 

research programme in informal, quasi-empirical mathematics.” (Lakatos, 

1978a, p. 52, fn. 1)

A research programme is defined by its hard core, which is tenaciously 

defended by negative heuristics. It is surrounded by a protective belt of quite 

flexible positive heuristics, which constantly put forward auxiliary 

hypotheses against anomalies. The programme supplies a conceptual 

framework and contains a powerful problem solving machinery. As there is 

no sharp distinction between theory and experiment, rival theories do not 

encounter each other one-by-one; rather, sequences of theories within a 

research programme compete with rivals in the face of a larger body of 

empirical evidence. This makes it possible to establish internal criteria of 

progress. A programme is progressive if each theory has excess empirical 

content over its predecessors, and if some of the predicted novel facts are 

corroborated. A programme is degenerating if its theories are only fabricated 

to accommodate known facts by way of a (content-decreasing) linguistic 

reinterpretation.
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So far, all this fits quite neatly to Lakatos’s philosophy of mathematics, 

which emphasises the inseparability of conjecture and proof. Lakatos’s 

concept of growth elucidates why string theory has to seek the vicinity of 

mathematics to get its excess content corroborated – at least as a 

mathematical quasi-fact. MSRP seems to be a reasonable approach, if 

theories abound. If, in contrast, theories grow more slowly than empirical 

facts are provided, Lakatos could call hardly any programme progressive. To 

Lakatos, unifications that are usually held in high regard by mathematicians 

cannot count as progressive problemshifts, unless they lead to concepts of 

results unknown so far, such as the five exceptional Lie groups. 

The ambiguity of the notion of progress is mitigated by a dose of 

lenience. “Criticism is not a Popperian quick kill, by refutation. Criticism is 

always constructive: there is no refutation without a better theory.” (Ibid., p. 

6) Content-decreasing strategies can be temporarily employed, if anomalies 

abound and technical difficulties slow down possible predictions. Then one 

does not accept anomalies as genuine counterexamples, and one allows for a 

certain autonomy of theory. “Mature science consists of research 

programmes in which not only novel facts but, in an important sense, also 

novel auxiliary theories, are anticipated; mature science – unlike pedestrian 

trial-and-error – has ‘heuristic power’ … [which] generates the autonomy of 

theoretical science.” (Ibid., p. 88) Hence, MSRP justifies the autonomy of 

‘theoretical mathematics’ – even if it is not empirically progressive due to 

incomplete proofs – but rejects its neat separability from rigorous 

mathematics.

It seems then that the general scheme of progress versus degeneration can 

be easily translated from empirical science to mathematics. A programme is 

theoretically progressive if it proposes fruitful concepts and techniques; it 

progresses empirically if it solves interesting problems (particularly those 

posed in another field). 

What stuff a methodology of mathematical research programmes could 

be all about, seems less clear. In this respect, Lakatos’s quasi-empirical 

ontology needs qualification. David Corfield argues that “rivalry between 

research programmes concerns high level issues.” (1998, p. 276) These 

levels come about because, in comparison to physical science, 

“[m]athematics appears to have an extra degree of freedom at this [basic] 

level [where battles are usually fought out] which makes it improbable that 

programmes will be in direct competition for precisely the same territory.” 

(Ibid., p. 295) Hard cores do not simply boil down to axioms, and there are 

no universally agreed-upon facts – as it was the case in the paradigmatic 

competition between ondulatory and emission theory in 17
th
 and 18

th
 century 

optics. Beliefs or general aims, might enter the hard core, shifting emphasis 

away from conjectures as the sole driving force of research programmes. In 
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fact, conjectures might “be decided one way or the other by an uninformative 

proof or an uninstructive counterexample.” (Ibid., p. 280) Introducing 

higher-level issues “would bring the hard core and positive heuristic closer, 

thereby threatening to collapse the whole construction.” (Ibid., p. 281) But 

this move seems necessary, if one wants to assess the phenomenon – quite 

common in mathematics – that two theories emerge from a single common 

problem, or converge into one, although they do not dispute the same area of 

quasi-empirical facts. 

3. JOHN VON NEUMANN’S OPPORTUNISTIC 

AXIOMATICS 

When Lakatos diagnosed “A renaissance of empiricism in the recent 

philosophy of mathematics”, John von Neumann was among his witnesses. 

Unfortunately, he only assessed the foundationalist themes in “The 

Mathematician”, but not the relationship between their views about the 

mathematical method. This surprising neglect might be a consequence of 

Lakatos’s far-reaching aversion against the axiomatisation of science that 

was rooted in his stubborn insistence that no proof whatsoever be considered 

final – not even relative to the (always revocable) acceptance of certain 

axioms and a suitable metatheory.
84

Identifying axiomatization with absolute finality blatantly misrepresents 

von Neumann’s methodological stance. More than Hilbert, von Neumann 

gave the axiomatic method a decidedly pragmatic twist that allows one, so 

the present section argues, to avoid several shortcomings of the Lakatosian 

account. (i) Although von Neumann regards proofs as more definitive than 

Lakatos, mathematical rigour is not immutable and the reliability of 

mathematics, accordingly, comes close to that of well-established scientific 

facts. (ii) What is more, there exists no neat separation between the 

theoretical branches of the empirical sciences and mathematics. (iii) 

Rigorous axiomatization, on the other hand, proves fertile even in case the 

basic concepts of a science are not yet clarified and empirical evidence is 

poor because mathematization permits great flexibility and opportunism in 

concept formation. (iv) Quite in line with Lakatosian methodology, 

mathematics is itself capable of heuristic development relevant to the 

sciences because its best inspirations stem from empirical problems. (v) 

Mathematics and the sciences share some aesthetic criteria of success. 

Mathematics proper disposes of a further aesthetic criterion that concerns the 

84
 Cf. Worrall and Zahar’s editors’ note on p. 138 of (Lakatos, 1976). 
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maturity of theories and the architecture of proofs. They are good candidates 

for the higher level issues mathematical research programmes compete for. 

3.1 Rigour and the Role of Physics for Mathematics 

In The Mathematician, von Neumann remembers “how humiliatingly 

easily my own views regarding the absolute mathematical truth changed … 

three times in succession.” (Neumann 1947, p. 6)

The main hope for justification of classical mathematics – in the sense of 

Hilbert or of Brouwer and Weyl – being gone, most mathematicians 

decided to use that system anyway. After all, classical mathematics … 

stood on at least as sound a foundation as, for example, the existence of 

the electron. Hence, if one is willing to accept the sciences, one might as 

well accept the classical system of mathematics. (Ibid., p. 6). 

But the erosion of meta-theory does not lead to the complete demise of 

mathematical rigour. Although any particular set of basic propositions can be 

doubted, mathematics “establishes certain standards of objectivity, certain 

standards of truth … rather independently of everything else.” (Neumann, 

1954, p. 478). This objectivity does not contradict the historical fact that 

many non-rigorous arguments were accepted – either with a certain sense of 

guilt or due to bona fide disagreements as to whether a particular proof was 

really a proof. Rather do the historical fluctuations of rigour teach a lesson 

that is of great importance to ontology of ‘theoretical mathematics.’ 

“The variability of the concept of rigor shows that something else besides 

mathematical abstraction must enter into the makeup of mathematics” 

(Neumann, 1947, p. 4). Here the empirical sciences are called upon. “The 

most vitally characteristic fact about mathematics is … its quite peculiar 

relationship … to any science which interprets experience on a higher than 

purely descriptive level.” (Ibid., p. 1) This relationship has two sides: On the 

one side,

[i]n modern empirical sciences it has become a major criterion of success 

whether they have become accessible to the mathematical method or to 

the near-mathematical methods of physics. Indeed, throughout the natural 

sciences an unbroken chain of pseudomorphoses, all of them pressing 

toward mathematics, and almost identified with the idea of scientific 

progress, has become more and more evident. (Ibid., p. 2)

On the other side, “[s]ome of the best inspirations of modern mathematics 

(I believe, the best ones) clearly originated in the natural sciences.”(Ibid.) 

Von Neumann provides two examples.
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(i) The origin of geometry in antiquity was empirical; “it began as a 

discipline not unlike theoretical physics today.” (Ibid.) Euclid’s ensuing 

postulational treatment even served as a model for Newton’s Principia. The

‘de-empirisation’ of Euclidean geometry was never quite completed until 

with Hilbert the axiomatic method itself obtained a new abstract meaning 

and was extended to non-Euclidean geometries. Yet, in the form of general 

relativity empiry has not only the final say, but also initial doubt stems from 

there: “The prime reason, why, of all Euclid’s postulates, the fifth was 

questioned, was clearly the unempirical character of the concept of the entire 

infinite plane which intervenes there, and there only.” (Ibid., p. 3) 

(ii) Calculus, Newton’s fluxions in particular, was explicitly created for 

the purpose of celestial mechanics. “An inexact, semiphysical formulation 

was the only one available for over a hundred and fifty years after Newton!” 

(Ibid.) Despite major advances, “[t]he development was as confused and 

ambiguous as can be. … And even after the reign of rigor was essentially re-

established with Cauchy, a very peculiar relapse into semiphysical methods 

took place with Riemann.” (Ibid., p. 3f.) 

Hence, quite generically, those scientific theories which cannot avail 

themselves of previously created mathematical structures are likely to incite 

their own mathematics that sets out in a rather informal way. Thus a certain 

part of empirical science as a whole becomes the informal ancestor of a 

mathematical discipline. While these examples could be subsumed under the 

Lakatosian outlook, von Neumann was well aware that there exist 

counterexamples. “There are various important parts of modern mathematics 

in which the empirical origin is untraceable” (Ibid., p. 6) or very remote, 

such as topology or abstract algebra. “Two strange examples are given by 

differential geometry and by group theory: they were certainly conceived as 

abstract, nonapplied disciplines. … After a decade in one case, and a century 

in the other, they turned out to be very useful in physics. And they are still 

mostly performed in the indicated, abstract, nonapplied spirit.” (Ibid., p. 7) 

Hence, there must be specific and self-contained mathematical criteria of 

success which, on the other hand, permit a rather smooth transition from 

empirical science to mathematics.

3.2 On Progress in the Science and Mathematics 

To von Neumann, the prevailing attitude in science is opportunism: the 

sciences “mainly make models” (Neumann, 1955, p. 492) which are valid 

over limited scales only.

The criterion of success of such a theory is simply whether it can, by a 

simple and elegant classifying and correlating scheme, cover very many 
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phenomena, which without this scheme would seem complicated and 

heterogeneous, and whether this scheme covers phenomena which were 

not considered at the time when the scheme was evolved. (Neumann, 

1947, p. 7) 

“Simplicity is largely a matter of historical background … and it is very 

much a function of what is explained by it,” (Neumann, 1955, p. 492) to wit, 

how heterogeneous the material covered by the explanation is. Accordingly, 

simplicity and unificatory power have to be equilibrated. In contrast to 

MSRP, von Neumann attributes little weight to whether prediction occurs 

before of after the fact. Heterogeneity ranks higher, in particular 

“confirmations in areas which were not in the mind of anyone who invented 

the theory.” (Ibid., p. 493) Both simplicity and heterogeneity are “clearly to a 

great extent of an aesthetical nature.” (Ibid.) 

Mathematics proper possesses a further measure of progress. “One 

expects a mathematical theorem or a mathematical theory not only to 

describe and to classify in a simple and elegant way. … One also expects 

‘elegance’ in its ‘architectural’, structural makeup,” (Neumann, 1947, p. 9) 

e.g., a surprising twist in the argument which immediately makes a point 

very easy, or some general principle which explains why difficulties crop up 

and which reduces the apparent arbitrariness. “These criteria are clearly those 

of creative art” (Ibid.) so that

the subject begins to live a particular life of its own and is better 

compared to a creative one, governed by almost entirely aesthetical 

motivations, than to anything else and in particular, to an empirical 

science. … As a mathematical discipline travels far from its empirical 

source … it is beset with very grave dangers. It becomes more and more 

purely aestheticizing, more and more purely l’art pour l’art. (Ibid., p. 9) 

The field is then in danger of developing along the line of least resistance 

and might “separate into a multitude of insignificant branches.” (Ibid., p. 9) 

“[W]henever this stage is reached, the only remedy seems … to be a 

rejuvenating return to the source: the reinjection of more or less directly 

empirical ideas.” (Ibid., p. 9) Rejuvenation sounds less threatening to 

mathematicians than Atiyah’s buccaneers. To von Neumann’s mind, even in 

mathematical subdisciplines that possess a well-entrenched conception of 

rigour, such as geometry, a temporal return to ‘theoretical mathematics’ 

might be on the agenda. 

While the aesthetic criteria of success bring mathematics and theoretical 

physics close to one another, von Neumann locates major differences 

regarding their actual modus procedendi. Even without signs of 

degeneration, mathematics is more finely subdivided because often the 
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selection of problems itself is aesthetically oriented. These divisions permit 

competition between mathematical research programmes as regards the 

above-mentioned higher-level issues. Theoretical physics, to the contrary, is 

typically highly focused to resolve an internal difficulty or to solve a 

problem that was posed by experimental results. Once a break-through is 

reached, “the predictive and unifying achievements usually come afterward.” 

(Neumann, 1947, p. 8) “[T]he problems of theoretical physics are objectively 

given; and, while the criteria which govern the exploitation of a success are 

… mainly aesthetical, yet the portion of the problem, and that which I called 

above the original ‘break-through’, are hard, objective facts.” (Ibid., p. 8)

Thus, the manifold methodological bridges between mathematics and 

physics do not rest upon a joint ontological domain. But, there exists a joint 

domain of Lakatosian quasi-ontology where both in mathematics and 

theoretical physics basic principles are explained by the theorems ensuing 

from them. Retransmission of falsity is not foreign to the axiomatic method. 

Already within Hilbert’s conception, the axioms in first place had to be 

complete, that is, permit to derive all laws of the respective field, be they 

mathematical or physical in kind. Hilbert understood the axiomatic method 

as a critical companion to evolving scientific theories. Apart from checking 

completeness, the mathematician had to establish the internal and external 

consistency of the axiom system, and examine whether the axioms were 

mutually independent or whether they could be replaced by fewer, simpler or 

mathematically more natural axioms – a method which Hilbert called 

‘deepening the foundations.’ (See Section 4.) Hilbert understood external 

consistency in a rather loose sense: the axioms should not contradict 

neighbouring domains of facts. Internal consistency, on the other hand, was 

established by construing appropriate number fields, thus playing internal 

consistency back to the consistency of arithmetic. Only this last step, the idea 

of establishing an absolute mathematical ontology, proved unfeasible after 

Gödel’s Incompleteness Theorems. Completeness in Gödel’s sense meant 

that all mathematical statements that are true within an axiom system are 

provable by internal operations; hence Gödel-completeness was a purely 

syntactic property. Hilbert’s above-mentioned requirement of completeness, 

however, was semantic and remained unassailed if re-interpreted as a brand 

of ‘post-formal mathematics’. With this term Lakatos denoted the 

classification of possible representations; for “axioms in the most important 

mathematical theories implicitly not just define one, but quite a family of 

structures.” (Lakatos, 1978b, p. 69) Some of these models are intended, 

others are not, and among those are monsters that can easily be barred and 

monsters that cannot. 
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Dropping the requirement of internal consistency in the absolute sense 

but granting that mathematical concepts, relatively consistent with respect to 

arithmetic or set theory, were still more reliable than concepts of the 

empirical science von Neumann changed Euclideanist ontology into quasi-

empirical ontology. Maintaining, however, that mathematical ontology was 

awarded by axiomatisation and giving the axiomatic method a pragmatic 

twist, he was simultaneously able to stress the parallels to the empirical 

sciences and avoid the problematic Lakatosian requirement that every formal 

theory must have an informal ancestor. This move gave heuristics a broader 

domain of application because some aesthetic and empirical inspirations are 

possible only after the respective field has been formalised to a sufficient 

degree.

It is true, axiomatisation implicitly contains the danger of becoming 

static, thus excluding the possibility of a richer theory. For this reason, 

Lakatos warned against early Euclideanisation because “we have no 

guarantee that our formal system contains the full empirical or quasi-

empirical stuff in which we are really interested and with which we dealt in 

the informal theory. There is no formal criterion as to the correctness of 

formalization.” (Lakatos, 1978b, p. 67). Agreed, probability theory without 

the Lebesque integral or algebra without complex numbers would be much 

poorer theories and lack key theorems. It is unclear whether these poorer 

theories would ever be diagnosed of aestheticism by internal mathematical 

criteria. Moreover, opportunism alone does not prompt mathematicians to 

seek rejunivation from the empirical sciences. This is, to my mind, one of the 

major reasons why ‘theoretical mathematics’ is indispensable for enriching 

the content of mathematics. 

To sum up, the axiomatic method, as understood by Hilbert and von 

Neumann, represents a dynamical process in which the mathematical quality 

of an axiom system and the adequacy of the scientific theory derivable from 

it are constantly under scrutiny. This makes the study of a particular axiom 

system together with its rigorous and theoretical machinery a good candidate 

for the core of a mathematical research programme.

3.3  Mathematization as Theorizing 

The opportunism of the axiomatic method, in von Neumann’s 

understanding, is not only expressed in the central role of aesthetic criteria of 

success but it also derives from the great conceptual flexibility inherent in 

mathematics. Only this unleashes the Lakatosian conceptual dynamics 

between heuristics and rigour, or between proofs and refutations. It is also 

this flexibility due to which the honest mathematical optimist might always 

prevail in the long run. 
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I feel that one of the most important contributions of mathematics to our 

thinking is, that it has demonstrated an enormous flexibility in the 

formation of concepts, a degree of flexibility to which it is very difficult 

to arrive in a non-mathematical mode. (Neumann, 1954, p. 482)

Two aspects of this flexibility are of specific importance. First, after 

mathematization has revealed formal equivalencies or isomorphisms between 

two competing approaches, certain philosophical problems connected to 

them become simply meaningless. For instance, the problems of quantum 

mechanics can be expressed either by the apparently deterministic 

Schrödinger equation or by Heisenberg’s completely probabilistic and 

abstract calculus. Since von Neumann could prove that both formulations are 

isomorphic, the philosophical controversy about determinism can probably 

be settled in an unphilosophical way. This does not exclude a difference in 

heuristic content that might become poignant outside the domain of quantum 

mechanics where von Neumann’s uniqueness theorem fails. Second, 

mathematization makes it possible to formulate some sophisticated ‘logical 

cycles’ within and to find the absolute limitations of a theory. 

[In the field of quantum mechanics,] by the best descriptions we can give 

today, there are absolute limitations to what is knowable. However, they 

can be expressed mathematically very precisely, by concepts which 

would be very puzzling when attempted to be expressed by any other 

means. Thus, both in relativity and in quantum mechanics the things 

which cannot be known always exist; but you have a considerable latitude 

in controlling which ones they are. … This is certainly a situation of a 

degree of sophistication which it would be completely hopeless to 

develop or to handle by other than mathematical methods. (Ibid., p. 487) 

If string theorists are right to believe that there exists a final theory of 

physics, mathematics should rather make available a proof that there do not 

exist such limitations. 

4. SOME LESSONS FOR STRING THEORY 

The discovery of smaller and smaller subatomic particles of higher and 

higher energy and the general acceptance of big-bang cosmology has led to a 

rather peculiar picture of physical theory. The tiniest parts of the Universe 

are governed by the most fundamental laws, invigorated in the earliest split 

seconds of its existence. Although in virtue of symmetry breaking not all 

features of lower energy theories can be completely deduced from the  
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respective higher theory – that is, theory reduction fails at places –, most 

present-day particle physicists believe in a sequence of (ontological) 

reductions to ever more fundamental levels of reality. String theorists, 

additionally, hold that this series comes to an end at the Planck scale, such 

that strings represent the fundamental building blocks of nature. It seems 

evident that if string theory truly is the final theory of physics, it should not 

rest on mathematically shaky arguments. Or put differently, it cannot stay 

‘theoretical’ forever. 

But there is also a more specific problem that concerns the axiomatic 

expression of finality. Steven Weinberg, for instance, holds that the “final 

theory … is so rigid that it cannot be warped into some slightly different 

theory without introducing logical absurdities like infinite energies.” 

(Weinberg, 1993, p. 12) Thus, it is logically isolated. “In a logically isolated 

theory every constant of nature could be calculated from first principles; a 

small change in the value of any constant would destroy the consistency of 

the theory.” (Ibid., p. 189) Phrased in the language of Lakatosian quasi-

ontology, there is no longer any basis to retransmit falsity to a single axiom; 

one would have to abandon them altogether in the face of striking 

counterevidence. The theory is thus immune against heuristic falsification. 

But this characterization of finality yields a problem. Why should physical 

heuristics, that is, ontological reductionism, and mathematical heuristics pull 

in the same direction. Or put differently, what is most fundamental to the 

theoretical physicist need not be most fundamental to the theoretical 

mathematician.

It is true, string theory exhibits a remarkable uniqueness. It can be 

consistently formulated only in 10 dimensions (for the fermionic string), 

there are no free parameters, and it automatically produces a smallest scale 

(Planck length). But in recent years, a large variety of dual string theories has 

emerged despite these strictures. Two dual theories have the same empirical 

content, but involve different basic objects and different topologies. Dawid 

(2003) identifies dualities as a source of problems for a realist interpretation 

of string theory. More generally, the duality problem is a somewhat 

paradoxical feature of the purported endpoint of a research programme 

motivated by ontological reductionism. Weinberg’s finality criterion does not 

isolate only one single theory.

But even if there are no explicit ambiguities, it is always possible that a 

given theory, even the final one, may well be formalisable in two different 

axiom systems one of which is preferred by the physicist on ontological 

grounds while the mathematician cherishes the structural features of the 

other one. For instance, string dualities may turn out to be a deep 

mathematical fact, physicists’ ontological quibbles notwithstanding. 



220 MICHAEL STÖLTZNER

To my mind, the problem is of a generic kind and reaches back to 

Hilbert’s notion of ‘deepening the foundations’ which – ensuing from the 

analysis of the axioms’ independence – was the heir of the ancient attempts 

to prove the fundamental presuppositions of science themselves. Within the 

axiomatic method it rather corresponds to an architectonic reorganisation of 

the axiom system. One can distinguish deepenings of different scope 

(Stöltzner, 2002c), the simplest one being just to drop a dependent axiom. 

Hilbert lauded Boltzmann and Hertz for having deepened the foundations of 

Lagrange’s mechanics containing arbitrary forces and constraints to either 

forces without constraints or constraints without forces. Both deepenings 

expressed starkly different physical ontologies. Moreover, mathematical 

deepening occasionally arrives at a formulation hardly any physicist is 

familiar with, such as basing classical mechanics on Bertrand’s maximum 

principle.

Hilbert’s formulation of general relativity amounted to the strongest type 

of deepening because he attempted to reduce all physical constants to 

geometrical ones. In its aspiration to eliminate physical constants, it 

corresponded to string theory. Hilbert’s work was clearly an instance of 

‘theoretical mathematics’, while Einstein’s was a model episode of 

theoretical physics. In a lecture at Göttingen, Einstein had sketched the open 

problem in his theory, and Hilbert worked arduously to solve it first. 

Following the line of thought of his earlier works in mathematical physics, 

Hilbert came out first with an action principle while Einstein presented a 

differential equation – which Hilbert, after getting to know his competitor’s 

solution, tacitly inserted into the galleys of his paper. Hilbert’s work was 

theoretical insofar as he found a new mathematical structure inspired by 

physics, the Hilbert action integral. It was also theoretical in the negative 

sense because the main theorem of the paper was not proven; even worse, it 

was flawed and thus the programme to reduce all physical constants to 

purely geometrical ones failed. The claim disappeared from later versions of 

Hilbert’s paper where he cited a result which is today known as Noether’s 

second theorem. But it is certainly not Hilbert’s theoretical style that is 

responsible for the poor recognition of his approach among present-day 

theoretical physicists. On the basis of the concepts at his disposal, Hilbert 

spotted the deepest mathematical structure of relativity theory. Yet it did not 

agree with what physicists, rightly on their part, considered as the core 

structures of general relativity, to wit, the metric and the affine connection.

This shows in conclusion that even if one tries to make proper space for 

‘theoretical mathematics’ by deliberately blurring the boundary between 

mathematical and physical ontology in favour of a Lakatosian quasi-

ontology, one does not enter into a unique (platonist or realist) world. This 

might be bad news for some advocates of a ‘Theory of Everything’, but good 
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news for those who endorse a pragmatic view about the axiomatic method 

that emphasises its experimental character alongside its justificationary force. 
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Abstract: In this paper I present, through examples, the problem of the mathematical 

rigour of the bases of physics and explain what the utility of a precise 

mathematical perspective of the real world is. I also offer some arguments for 

the existing difference in the approach to the truth as understood by 

mathematicians and physicists. 
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The word “mathematics” means “precise knowledge”. Barbaric peoples, 

with no inclination for such things, had no corresponding words in their 

languages, so that now in almost all languages one uses the uncomprehended 

Greek term. The only exception to this is the Dutch language, for which 

Stevin already in the seventeenths century fought against the pollution of the 

terminology by foreign words, and insisted in the translation of all terms into 

mother tongue words. So, the term “viskunde” - i.e., “knowledge” -, since 

childhood brings mathematics close to the real world. 

When Ya. B. Zel'dovich, eminent theoretical physicist and one of the 

founders of Russian nuclear physics, gave birth to his Higher Mathematics 

for Beginners Physicists, he raised the terrible anger of the Russian 

mathematical literature censor of the time - the Academic of Sciences L.C. 

Pontryagin.

He rightly showed that in his book, Zel'dovich had defined the derivative 

of a function as “the quantity expressing the ratio between the function 

increment and the argument increment, provided that the last one is small”. 

The mathematician was indignant at the complete exclusion, in this 

definition, of concepts of the limits theory, as well as of a considerable part 

of the logical bases of the mathematical analysis, which attained his 
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perfection only at the end of the nineteenth century, with the construction of 

a coherent theory of the real numbers continuum. 

Zel'dovich answered in this way: We are always interested only in ratios 

of finite increments, and never in any abstract mathematical limit. 

To take the argument increment - say, of the coordinate of a point or of 

the time moment – less than, say, 10
-10

 or 10
-30

 (in reasonable measurement 

units) – “evidently exceeds the model precision because the physical

structure of space (or of time) inside such small intervals already do not 

correspond to the mathematical theory of the real numbers (as consequence

of the quantum phenomena).”

“The question consists simply in the fact - Zel'dovich continued - that to 

find the finite increments ratios which interest us is difficult; for this reason 

approximating asymptotic formulae was invented for them. Mathematicians 

call these approximating asymptotic formulae by their words ‘limits’ and 

‘derivatives’. In any real application of the theory one must consider 

increments sufficiently small as to have a correspondence of the theory with 

experiments, but smaller increments are not needed.” 

The long discussion had as consequence that Pontryagin wrote his own 

textbook on the analysis principles. Already in the introduction of this book, 

Pontryagin indicated that “some physicists believe that it is possible to study 

and to apply analysis, avoiding its absolutely logical notations, and the 

author of the present textbook … agrees with them”. 

I was remembered of this discussion on the mathematical rigor of the 

bases of Science, when my close friend M. L. Lidov, who was working on 

the calculation of trajectories of Sputniks and of the space-shuttles, began to 

quarrel with me about my course on the theory of differential equations (at 

that time he gave a course at the Moscow State University on the ballistics of 

Sputniks, and we often discussed together, mainly because at that time I was 

myself working in celestial mechanics). 

“As all mathematicians - told me Misha - you teach the uniqueness 

theorem, according to which the integral curves of the ordinary differential 

equations do not intersect. But this statement (albeit you prove it correctly 

and perfectly) is untrue. For example, the equation /dx dt x  has solutions 

0 and
t

x x e . The integral curves are the graphs of these functions (any 

computer can draw them) and you see that they are clearly intersecting each 

other. Indeed, for example, at 10t  between any two of such integral curves 

even one atom cannot pass. 

So, the uniqueness theorem is only a mathematical fiction, having little to 

deal with the real world.” 

After that, the interlocutor explained to me that it is exactly for the effect 

above that, on landing, at the last moment the seaman throws the rope on the 

quay, where is quickly secured to the bollard (sometimes, this is done by the 
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seaman himself, who jumped on the quay). Finally, the last part of booring is 

hand made by winding the rope. 

This has the following explanation. Automatic landing, corresponding to 

the general principles of control theory, is based on the negative feedback.

Depending on the distance x remaining to the landing, the control is done in 

such a way that the velocity decreases to zero (as a function of x). Of course, 

this function is smooth, i.e., for small distances the velocity will vanish with 

x approximately linearly. 

According to the theorem of uniqueness mentioned above, the booring 

time will be infinite for any smooth feedback mechanism. To land in a finite 

time, one has either to renounce to the regularity principle (with a smooth 

negative feedback), changing the control of the boat velocity by the work the 

seaman does on the rope, or accept that the boat strikes the quay (it is for this 

that worn out car tires hang on the dock). 

The fact that all this is not discussed by mathematicians neither in courses 

of theory of dynamical systems nor of differential equations, nor in theory of 

control and optimisation, is, of course, a displeasing consequence of the long 

lasting detachment from the real world, from physics and technics, of 

mathematicians who live in the ivory tower of their axiomatic science.

M.L. Lidov knew very well the axiomatic science, but he was interested 

in the above problems because he was dealing with the calculation of the 

landing of the space shuttles on the moon, where one encounters the same 

problems as in the landing of boats. 

Since I don't want to bound myself only to criticism, I give another 

example of the great utility of the precise mathematical view point of the real 

word, taking it from another work by Lidov. 

The Moon turns around the Earth along an orbit lying nearly in the 

ecliptic (i.e., in the plane of the orbit of the Earth around the Sun). The 

famous “Laplace Theorem on the stability of the Solar System” states that if 

the inclination of the Moon orbit on the ecliptic is small, then, neglecting the 

perturbation due to the Sun influence, the Moon orbit will slightly oscillate 

(giving rise to eclipses), but it will not change systematically (neither falling 

to the Earth nor going away). 

Lidov posed to himself the problem of what should happen if the initial 

Moon orbit were strongly inclined on the ecliptic - say - making an angle of 

80 degrees with it (while staying at today's distance from the Sun). 

Of course, it is impossible to force our Moon to move in such an orbit. 

However, it is possible to put an artificial satellite on an orbit perpendicular 

to the ecliptic. The question on the evolution of its orbits (under the Sun 

attraction) is of real interest for the Sputnik future. 
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Lidov’s result was very surprising: Such artificial moon would fall on the 

Earth in three years. Therefore, it is not convenient to put a satellite on such 

an orbit. 

The reason of the falling does not consists in the vanishing of the orbit 

radius (the mean distance of the satellite from the Earth), but in the reduction 

of the shortest axis of the ellipse along which the satellite is moving - i.e., in 

the increase of ellipse's eccentricity. 

Even if the initial orbit of the artificial moon where with good 

approximation like a circle, the perturbation would quickly transform it into 

an ellipse (with the shorter axis decreasing in time). Whereas the highest axis 

of this ellipse should keep its length (as Laplace proved) equal to the 

diameter of the non-perturbed orbit (i.e., the diameter of the today's Moon 

orbit) the increase of eccentricity in time would make this narrow ellipse 

finally similar to a segment (travelled forward and backwards). 

As a consequence of the big eccentricity, the orbit of the artificial moon 

would begin to intersect the Earth, so that such satellite should fall on the 

Earth, whereas its mean distance from the Earth centre over one revolution 

period should remain equal to the same mean distance of today's Moon (even 

at the very moment of falling). 

A few words, now, on the difference of opinions between physicists and 

mathematicians on the character of our common science. At the end of the 

Second Millennium of our era, the journal Uspekhi Fizicheskikh nauk

(Russian Physics Surveys) published a jubilee issue and asked me to write 

for this issue a survey “Mathematics and Physics” (two other mathematical 

articles on the same journal where written by K. Weierstrass and C. Jacobi). 

What struck me, was that the journal editor erased from my article two 

clear demonstrations of the strong difference between the approaches to the 

truth understanding by physicists and by mathematicians: one of these 

demonstrations was contained in a citation, chosen as epigraph, from the 

book by E. Schrödinger on thermodynamics, and the second was contained 

in a problem for children. 

These are the passages, evidently non understood by the editor. There 

were in my article two epigraphs. The first one (kept) was a statement by 

Stendhal: “Among all sciences I like mathematics the most, because in this 

science any hypocrisy, which I most detest, is totally impossible”. It seems 

that Stendhal liked the fact that in mathematics, if it was somehow calculated 

that seven by six is equal to forty two, this would hold forever: the truth is 

final and unquestionable. 

Schrödinger instead wrote: “Let us suppose that  is equal to zero, even 

though, firstly,  cannot be equal to zero, and, secondly, vanishing 

contradicts the quantum mechanics”. Evidently, physicists prefer not to  
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make apparent their constant hypocrisy, with their ambiguous terminology 

and the internal logical contradictions of their theories. 

Afterward, when I tried to discuss the evident differences with the 

academic V.L. Ginzburg, the journal editorial chief, he demonstrated to me 

that “mathematicians in general cannot understand anything in physics”,

showing me a formula in his own article. “Which in your mind is the 

meaning of these symbols?” - he asked. 

Thinking to have understood, I answered: “Index i is repeated, so, 

according to the Einstein convention, it is a positive definite form - a sum of 

squares. Only I don't know how many they are, because the sum limits are 

not specified”. 

Well, - cheered the physicist - as all mathematicians, you do not 

understand anything. Letter i, you see, is ‘Latin’, and not ‘Greek’. This 

means that its values are four: 0, 1, 2, and 3. As for the sum, this is absolutely 

not the case: this notation is relativistic; therefore one of the squares must be 

taken with opposite sign with respect to the others. 

I did not succeed in persuading my interlocutor that it is not appropriate 

to indicate a subtraction with the symbol of sum (and that a limit like 

“velocity not higher than 60” is a nonsense while it is not specified whether 

one means kilometres per hours or parsecs per second). 

But there is now the second example, showing the cardinal difference of 

way of posing and understand problems by mathematicians and physicists. 

In my article there where two examples (taken from old text-books). 

Mathematical question: “On a book-shelf there are two volumes of Pushkin 's 

poetry. The thickness of the pages of each volume is 2 cm and that of each 

cover 2 mm. A worm holes through from the first page of the first volume to 

the last page of the second, along the normal director to the pages. What 

distance did it cover?”

I gave the unexpected answer: 4 mm. The journal editors thus corrected it 

into: “from the last page of first volume to the first page of the second”. The 

topological thinking is more difficult of what one may expect from the 

editors of a physics journal. Journal editors try always to change into the 

usual triviality any statement having originally an opposed meaning. 

Another example of the typical physical style is given by the following 

problem taken from an old textbook. 

A man of S. Petersburg went rowing along the Neva River against the 

stream. When he was under the Troitski Bridge, he lost his hat. Reaching the 

Liteinyi Bridge, he met a friend, who informed him of this loss. Then the 

man went back with the same speed with respect to the river stream as before 

and got his hat after 20 minutes, under the Dvortsovyi Bridge. Find the 

velocity of the Neva stream. 
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For mathematicians it is evident that this problem is not solvable. 

However, with the proper physicists hypocrisy the solution was provided: 

following the Galileo principle of relativity, the man rowed off from the hat 

against the stream and reached it boating in the stream direction in equal time 

intervals of 20 minutes. This means that the hat went from the Troitski to the 

Dvortsovyi Bridge in 40 minutes. Since the distance between these bridges is 

one mile, then... 

All physics textbooks are written in this style: there are not plainly 

expressed some distances between bridges or other things speaking of which 

“does not matter”. 

The mathematical rigor is often attained with difficulty even from good 

mathematicians. The following example is taken from the famous book by 

Courant and Robbins What is Mathematics.

Let us suppose that a wagon is moving along a horizontal 

track, and that a rod, with one end hinged to the wagon's floor, may 

rotate around a fixed horizontal axis orthogonal to the railway. 

The statement is that for whatever given motion law of the wagon (in the 

time interval from zero to one) the initial position of the pendulum can be 

chosen in such a way that in the final instant it will not be horizontal. (This 

problem was suggested by H. Whitney). 

The authors demonstrate this in this way: if the initial position of the 

pendulum is horizontal and in the motion direction, then it remains 

horizontal. If the initial position is horizontal in the opposite direction, then it 

remains horizontal. Consider now an arbitrary initial condition. The initial 

one defines the final position. This is a continuous function taking the values 

“forwards” and “backwards”. By a topology theorem, it takes also all the 

intermediate values, which completes the proof. 

Some years ago I was requested from professor Robbins (Courant was 

already dead at that time) to try to improve this “incorrect proof”. In fact, it is 

not immediate to see any continuous function ‘final position versus initial 

position’. One must define it exactly (taking into account the influence of the 

allowed hits to the wagon) and demonstrate its continuity. 

I heard that some American mathematicians, trying to do this, wrote a 

demonstration with erroneous intermediate statements so that the problem of 

the rod even today appears to be open
85

.

In a meeting of the French Academy of Sciences, I told that  

“mathematics is a part of physics, being, as physics, an experimental  

85
 Discussions on this problem are published in (Blank, 2001; Gillman, 1998; and Littlewood, 

1986).
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science: the only difference is that experiments in physics cost usually 

millions of dollars, whereas in mathematics they cost a few cents”. 

An eminent French mathematicians sent me a letter, in which he wrote 

that, on the contrary, “mathematics has nothing to share with physics”. 

Some time later in an official debate on the education problem in 

Moscow, academician D.V. Anosov intervened with the following “criticism 

of Arnold”: Arnold put (and this is true) in his paper “Polymathematics: is 

mathematics a single science or a set of arts?” in the book Mathematics:

Frontiers and Perspectives (Arnold, Atiyah; Lax; Mazur Eds.) the 

comparison of opinions of two great algebrists. Hilbert, in 1930, in the article 

“Mathematics and Natural Sciences” writes that “Geometry is a part of 

Physics”, while the above-mentioned french mathematician claims that 

“Mathematics and physics have nothing in common”.

In these two statements Arnold - the lecturer said - sees a contradiction. 

The reason of this is that Arnold, due to his intellectual lacks, either did not 

read, or did not understand Aristotle. Indeed, in my mind, having read and 

understood Aristotle, there is no contradiction in this, because there is the 

consequence: mathematics has nothing in common with geometry. For this 

reason - in this way the academician terminated his speech - I propose to 

eliminate completely geometry from all mathematical courses (in 

universities, in high school, in junior high school, in elementary school). 

Few weeks later I received from the Russian Minister of Education the 

Ministry project of new programs for schools in all subjects. Following the 

Anosov’s opinion, geometry courses were completely eliminated from all 

education programs.

Afterwards, I was fighting against this obscurantist decision; letters 

against the elimination of geometry were sent to the Ministry from the 

Scientific Council of the Steklov Mathematical Institute of the Russian 

Academy of Sciences and, on the other hand, from the representatives of 

several war industries (informing me about this a year later in Dubna). After 

some months, the Minister sent me (with his thanks) the new elaborated 

version of the education programs, where geometry had been returned to his 

old place
86

.

Another difference between physicists an mathematicians was remarked 

by Nikolai N. Bogolyubov, the director of the Mathematical department of 

the Russian Academy of Science, who always tried to persuade me to  

86
 A manager of a supercomputers factory recently wrote: “Geometry has to be transferred 

into history courses, because all problems of it are either solved or can be solved with other 

methods” (Bailey, 1996). Any attempt to explain to such people thinking, logic, esteem of 

science and culture is hopeless. 
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publish my articles not in mathematical, but in physical journals. According 

to his words, the number of readers of a good paper will be the same, say, 

one thousand. “The difference - he continued - consists in the fact, that after 

a publication in a Journal of mathematics, these thousand readers live in a 

century, i.e., ten readers per year, and this is the eternal glory. After 

publication in a journal of physics, all these thousand persons read the paper 

in few weeks, and the author is immediately elected member of Academies, 

but one hundred days later nobody will remember the name of the author, 

whereas the results and the methods contained in his article will be 

continuously used by all, as common knowledge (and, surely, without 

citation of the author and with a consequent award the Nobel prize for his 

discover to other people)”. 

I remember also that N.N. Bogolyubov showed me a wonderful example 

of the advantage of his pragmatic point of view. At that time I wanted to 

publish the Russian translation of the Poincaré selected works, but the editor 

refused (citing the critic of Poincaré, published in 1909, in Materialism and 

Empirocriticism). When I asked N.N. Bogolyubov, who had developed 

Poincaré’s ideas, to help me, he said: “We shall use the fact that Poincaré, as 

both you and me, was not only a mathematician, but also a physicist, even a 

naturalist. But a naturalist must see in any natural phenomenon, even 

unpleasant, as the volcanoes eruptions, the possibility to utilize it for 

scientific purposes, for example, to know something on the internal of Earth. 

In our case we are dealing with another unpleasant phenomenon of 

nature, that we need to utilize: it is the antisemitism and the anti-eisteinism 

of various people”. 

Saying this, he wrote a letter to the editor, explaining (in all fairness) 

which big merits Poincaré had in the foundation of Relativity. He published 

the relativity principles in his article “On the measure of time” ten years 

before Einstein, who only in the forties admitted, under the advice of his 

teacher, Minkowski, to have examined the Poincaré works from the 

beginning of his own. 

So, three volumes of the Poincaré selected works were published in 

Russian, including the article on the measure of time, but without any 

Einstein criticism. 
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Abstract: Concepts of a natural set of values and a natural (intrinsic) meaning within a 

quantum Universe are discussed. Going beyond the Copenhagen interpretation 

orthodoxy by the Dirac-Heisenberg-Pauli-Stapp ontological model, it seems 

possible, at least in principle, to have a philosophically acceptable material 

Universe that is also inherently meaningful. 
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1. INTRODUCTION 

After stating that the last century was the bloodiest and the most cruel 

century in the history of mankind, the recent UNESCO Conference on 

Science in Budapest declared the 21st century to be the century of ethics. But 

we know what is going on just at the beginning of this century. The situation 

seems desperate and frustrating.

Ethical fundaments of global religions, although rather similar, are of no 

help: they more divide and cause wars then they unify and create peace. 

Ecumenism is practically dead.

Is the scientific approach of much practical help? More than ever it is 

needed today. To which extent can the science offer an empirical basis for a 

philosophically acceptable selfcontained matterial universe and speak of  a 

meaninful universe at least in principle? “More we understand it more it 

seems pointless” is the famous Weinberg's discouraging claim. Can one take 

a more optimistic position having in sight a meaningful quantum universe? 
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Since concepts of absolute set of values and absolute meaning are illusions, 

how about asking the Nature herself about some natural values and natural 

meaning?  One might hope to read them off from the world view emerging 

from quantum properties of the Universe. Following Henry Stapp, the 

answer to those questions is positive. At a fundamental level the Nature 

indeed makes “decisions”, generates “choices” and stands “consequences”.

Generally, question of ethics is glued to the Cartesian problem of the 

mind – matter orthogonality, more than three centuries. It is well understood 

today that the realm of classical physics has no natural place for human 

mind, not even for the very life. No any set of values can be attributed to the 

classical universe and humans are scientifically justified automata obeying 

mathematically expressed cold laws of deterministic classical physics. Being 

predetermined, they are responssible for nothing and their ethics consists 

merely of their own interests and survival. Of course, today we are aware of 

the fact that even the classical physics is not really fully deterministic due to 

essential uncertainties in the classical knowledge, but the prevailing natural 

phylosophy is considered to be deterministic. The only ethical act in this 

classical world view is the choice of initial conditions that fully fixed the 

destiny of the entire spacetime. This is reserved for God. 

At the other hand, quantum theory creates, at least in principle, the 

possibility of a fundamental bridge between the matterlike and the idealike 

things in nature
87

. A great deal of physicists now tries to look beyond the 

ortodoxy of the standard interpretation of quantum theory, which is pure 

epistemology, and eventually asks “What is really happening there?”. As will 

be disscussed later, at the level of actual quantum events (in what follows 

called Heisenberg events) one may recognize that a profound quantum 

choice takes place everywhere and forever and injects the meaning into the 

physical universe. Menthal universe is subject to the same mechanism once 

we accept the idea that human conscious thoughts are just the actual quantum 

events over the entire brain or over a large part of it. Thus the menthal and 

the matterial universes are brought together on a deeper level of physical 

reality beyond our direct experience. Such a realm can in principle 

accommodate ethical concepts of choice, meaning, value, etc. 

87
 An excellent introduction into the subject may be found in (Stapp, 1993) 
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2. CLASSICAL MECHANICS AND ITS STILL 

PREVAILING WORLD-VIEW 

(WELTANSCHAUUNG) 

As mentioned in Introduction, classical mechanics fails badly when we 

deal with the mind-matter problem, the problem of ethics and the like. Why 

is it so, and what is the basis of the natural philosophy fixed by the classical 

mechanics?

All motions in the Universe are fixed by deterministic differential 

equations generated by the mathematically expressed lows of nature. In order 

to solve those equations completely one has to know the state of motions 

(initial conditions) at some earlier time, usually shifted to the  “beginning of 

time”, to the time the Universe was created. But who did choose this initial 

condition? If, by definition, a choice means a fixing of any aspect of nature 

not fixed by known laws of nature, then the classical physics contains only 

one such choice – “ethical act”. This also holds for motion and behaviour of 

humans in time. They are fully predetermined; they cannot do anything by 

their free will; whichever way they behave science gives them a full excuse 

for their eventually unethical behaviour. Moreover, classical physics cannot 

define anything that would look like a set of values in accord with which 

humans should behave. Even if such a set of values could be given, then the 

role of science is understood as serving to reach these values, not to define 

them. So, if a man/woman would behave in accord with some prescribed 

ethics for benefits of the entire society, his/her behaviour would still be 

explained as doing well for the society because he/she is convinced it is the 

best for his/her private interests. His/her behaviour is entirely determined and 

led by own interests since there is no scientific foundation of what is a value.

Finally, and most important of all, is that classical mechanics failed badly 

in describing the material universe in the micro world. All atomic and 

subatomic phenomena did not follow its predictions. The fresh new ideas 

about the concept of the physical reality had to be accepted.  Certainly, 

physical reality is not that what we observe by the direct perceptions of our 

senses. It just happened so that the phenomenon of life and the human mind 

appeared at a certain (classical) scale in the material universe at which its 

quantum properties do not get so drastically pronounced. In short, we can say 

that the world-view based on classical physics provides a scientific 

justification for eventually unethical behaviour of human beings. As also in 

few other disastrous cases in history of physics, the situation was saved by 

quantum mechanics.
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3. QUANTUM MECHANICS AND THE WORLD-

VIEW EMERGING FROM IT 

What did the quantum theory? Besides of giving us a consistent picture of 

our understanding of the material micro world, it opened the window for the 

explanation of the existence of life (Wigner, 1967; Bohr, 1934, 1963), it 

offered us a bridge to connect matter and mind (Stapp, 1993; Wigner, 1962), 

and it gave us a real chance to shape some natural ethical concepts consistent 

with the quantum vision of man and its role in the quantum universe (Stapp, 

1993). The essential feature of quantum laws is that they are of statistical and 

nondeterministic nature. According to orthodox thinking, they fix not what in 

nature actually happens, but only probabilities for various things that might 

happen. Quantum theory is a two-component structure sketched by Roger 

Penrose as (Penrose, 1994) 

Quantum Theory = U + R. 

Here U represents a unitary deterministic, local, linear and time symmetric 

evolution of the quantum system as given by some quantum evolution 

equation (like the Schrödinger’s equation), while R represents what is called 

reduction
88

 or collapse of the wave function – source of all troubles with the 

interpretation of quantum mechanics. In all aspects R is opposite to U: it is 

nondeterministic, it is nonlocal, it is non-linear, and it is nonsymmetric in 

time. In connection with it one talks also about very unpopular quantum 

jumps of a system. Since the beginning of quantum theory they sit on nerves 

of many physicists. Especially hard to accept is the property of nonlocality 

(Bell, 1987). Since those early days up to the present times a huge activity, 

both theoretical and experimental, is concentrated on that problem. 

The borderline between U and R is governed by some unknown physics 

one can only speculate about. According to Werner Heisenberg (Heisenberg, 

1958), each quantum jump is a “choice” or a “decision” that picks out and 

actualises just one out of many linearly superposed possibilities previously 

generated by the unitary evolution process U. It is the process R that brings 

into the theory the unnatural element of chance and looks as a hand of God 

that, within the complex structure of possible physical realities generated by 

the process U, selects the reality actually appearing to us. Since this is of 

fundamental importance, we will elaborate this in more details in what 

follows.

88
 The most recent review of the problem of reduction of the wave function with an exhaustive 

list of references may be found in (Bassi and Ghirardi, 2003). 
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First, immediately after any observation, a quantum system does not exist 

anymore as that what was observed but rather evolves in time as a complex 

linear superposition of different quantum states. Each of those alternatives in 

linear superposition is fully determined by the evolution equation and being 

unitary means that the sum of all their probabilities at any time equals to 

unity. How long lasts this soup of alternative possibilities? Until the next 

observation, or better, until the next registration by a measuring device 

(photographic plate, Geiger counter and the like) is done. In that moment the 

quantum jump or a quantum choice takes place.

All paradoxity of a quantum jump is illustrated with the following 

example. Assume that a spin zero particle is emitted from a centrally 

symmetric quantum source. The space is isotropic and homogenous. Since 

there is no preferred direction in space, the wave function depends only of 

the distance and has a constant value all over an arbitrarily chosen sphere. 

Geiger counters are spread over the sphere and we know only one of them 

will make a click and register the emitted particle. When the counter makes a 

click, the quantum system jumps and the wave function suddenly reduces 

(collapses) over the sphere and assumes a form essentially different from 

zero only around the position of the counter that has registered. A sort of 

information travels in zero time (nonlocality) over the sphere of whatever 

size we can imagine. Strange indeed behaves the Nature in the micro world! 

Or should this refer only to our knowledge?

Why should we call it a quantum choice? Because the Nature makes a 

choice when the system jumps into the state just being observed. Henry 

Stapp calls it a Heisenberg event (Stapp, 1993) and it represents a 

fundamental element of the physical reality. After the event again a soup of 

superposed states evolves until the next Heisenberg event takes place and so 

on. One may visualize a picture of two intertwined chains (U and R). 

Terms “quantum choice” and “Nature makes a quantum choice on her 

part” were first used by Paul Dirac. And so, by continuously making 

quantum choices always and everywhere, Nature injects into the Universe 

the entire particularness that we observe. Nature is doing an “ethical act” 

over the entire space-time manifold. Of course, all this holds within what we 

call the Dirac-Heisenberg-Pauli ontologicalization of quantum mechanics.

Asking the central questions “What actually happens there?” and “Who 

governs the quantum choice?” leads us to several different proposals. The 

most advocated one is the Copenhagen interpretation, which is pure 

epistemology. It does not describe quantum systems; it describes our 

knowledge about quantum systems. Albert Einstein called it a “soft pillow” 

for physicists, while David Mermin named it a “shut up and calculate” 

(transition probabilities) proposal. It is a closed door for any deeper 

philosophical insight. Many consider it as a brain washing for generations of 
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physicists. Details may be found in recent textbooks discussing the 

interpretations of quantum mechanics. Also popular is parallel minds 

(universes) model, and pilot wave model, but seemingly they create more 

problems than they solve. In what follows we stick to the Dirac-Heisenberg-

Pauli-Stapp proposal, just mentioned above.

In his famous book (Heisenberg, 1958) Heisenberg writes: 

…observation makes a change in the probability function abruptly; out of 

all possible events it selects the actual one that just has taken place… 

…transition from “possible” to “actual” happens during the act of 

observation…

It is therefore the observation (registration) that transforms “potentiality” 

into “actuality”. A quantum system lasts in time in a variety of virtual states 

but only one out of those states becomes actualised by the very fact of 

observation. The idea of the potential and the real is rather old in natural 

philosophy (Boscovich, 1763).

4. UNIFICATION OF MENTAL AND MATERIAL 

UNIVERSES

It seemed for three centuries absolutely impossible to find, even in 

principle, a way to unify the matter like and the idea like objects in the 

world. Today this task seems equally impossible if we stay in the realm of 

classical physics and its world-view. But the so called Grand Unification of 

three fundamental forces in physics teaches us the following: if you cannot 

unify them at ordinary (classical) conditions where things look so 

desperately different, go to energies far away from those in our laboratories, 

and the things might appear similar in some respect. Indeed, the 

electromagnetic force has an infinite range, while the weak and the strong 

nuclear forces reach far shorter than a billionth part of a metre. Their 

strengths are also very different. How can one bring them together? As it is 

well known today, a way out is to go to energies of hundreds, millions or 

billions of GeV, very far from energies achievable in our laboratories. There 

those forces become similar and have the strengths of the same order of 

magnitude. Why should not one try to look for similarities of the mind and 

the matter in regions far away from the realm of classical physics?

Quantum mechanics, according to standard Copenhagen interpretation, 

has no answer to the mind-matter problem: the task of physics is to predict 

and not to understand, they claim. Among physicists belonging to the 

Copenhagen circle only Heisenberg was eventually willing to ask and put 
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questions like “What really happens there?”. Henry Stapp, therefore, calls his 

unification model the Heisenberg – James model. He combines the 

Heisenberg's ontologicalization (Heisenberg, 1958) of quantum mechanics 

with observations in psychology done by William James more than a century 

ago.

William James discovered (James, 1890/1950) in psychology the essential 

feature of quantum mechanics. He found, namely, that the conscious thought 

has properties specific for what we today call a quantum object in atomic and 

subatomic phenomena! Either “whole or nothing” property is characteristic 

for a thought. One cannot cut a thought into two peaces that are also 

thoughts. The meaning is lost if we decompose a thought into its 

components, like the word looses its meaning if analysed in terms of its 

letters. This is the very property of a quantum system. Either the whole 

photon enters the counter or it will not be registered at all.  The idea of 

William James was not accepted at that time because physicists did not yet 

arrive to the quantum mechanics.

Biophysics and neurosciences tend today to a general conclusion: if 

quantum transitions take place over the entire brain or a large part of it, then 

the human brain, in an important aspect, behaves as a quantum measuring 

device. John von Neumann was first who showed a half a century ago that 

quantum events in human brain need not to happen at the level of individual 

neuron firings or individual synaptic discharges (von Neumann, 1955). 

Quantum events are taking place over the whole brain in a correlation with 

occurrences of conscious thoughts. Conscious thoughts are quantum events 

in the brain! 

5. ARROW OF TIME AND INTRINSIC MEANING 

Deeper insight into ethical concepts brings us immediately to questions 

about the category of physical time: what is the true nature of time, why the 

arrow of time is fixed and the like. The concept of meaning is based on a 

definite arrow of time, on a sense of duration, on a direction with endurance. 

Meaning persists in time as a process that sustains itself and refines itself. 

According to Henry Stapp (Stapp, 1993), 

                     Meaning = a mechanism that enables a form

                                       to be recreated in a refined form.

Of course this mechanism is not dynamical one, it is an element of chance. 

Hence, endurance and reproducibility, essential features of meaningful 

forms, are nondynamically generated intrinsic properties. Such an intrinsic 

meaning is carried by a form if it persists in unidirectional time; it reproduces 

and refines itself without influence of some external agent.
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Are there obvious carriers of meaning in the quantum universe? Yes, there 

are such carriers and they must be pure quantum states. They are 

characterized by local observable properties. Superposed states cannot carry 

any intrinsic meaning because the interaction with the environment destroys 

the property of endurance and reproducibility. Such states decay. Natural and 

exclusive carriers of meaning in the quantum universe are local observable 

properties associated with pure quantum states. The quantum law of 

evolution, after any observation, continuously creates a variety of forms that 

can act as carriers of meaning. Among them, through Heisenberg events, 

Nature chooses those that have the property to sustain and refine themselves. 

What can we read off from such a choice? Is there some obvious meaning in 

that what the Nature has chosen? We can take it only as the definition of the 

natural meaning that is very relevant for us if we are to survive in such a 

quantum universe. A full set of quantum states develops (Schrödinger’s 

equation) after any observational act; any of them could become reality, but 

according to ideas of Dirac and Heisenberg, states actually chosen are those 

of an exceptionally special kind – those states are forms that last in time and 

sustain themselves.

How the Nature chooses events that will be actualised and become 

elements of physical reality? Things happen so as if She (mother Nature) 

considers each form having in view not what it is but what it does, how it 

behaves and what it produces in the quantum universe. Choice is “by 

purpose”. Take as an example a number of protons closed in a box. As time 

is passing by they will assume a vast variety of different forms, and 

intrinsically all of them will be equivalent. Having in view only what they 

are, with no external agent, there will be no discrimination among them. 

However, there is one logical distinction among them, and this distinction is 

a very special one because it does not refer to any structure outside the form 

itself: one deals with the property of the form to sustain itself. Outside of 

known lows of physics a fundamental ethical act is continually happening in 

the quantum universe. In words of Henry Stapp (Stapp, 1993), 

… quantum choices are meaningful choices, where meaningful is defined 

intrinsically, within the quantum system itself, with no reference to any 

external criterion of meaning: it is defined in terms of the sustainability of 

the form… 

…quantum formalism is such that the quantum choice is a grasping, as a 

unified whole, of certain combination of possibilities that hang together 

as a local enduring form. Actualisation of this form utilizes and 

restructures some of quantum potentialities and produces an immediate 

rearrangement of possibilities for the next Heisenber event to occur. 
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Sustainable forms last only if the arrow of time is stable. Therefore, a 

meaningful universe must have a fixed arrow of time. However, all 

fundamental equations of physics are formulated with einsteinian time and 

are symmetric in time: they do not change if we replace t with –t. Equations 

stay the same if time starts running backwards. In order to induce the 

meaning into universe, God had to give a definite direction to time. How this 

was and still is one of greatest problems of fundamental physics. Where is 

that hidden place in our theoretical understanding of the history of Universe 

from which on the time starts to be undirected and the quantum nature of 

matter generates an intrinsically defined notion of meaning? So, a 

satisfactory foundation of natural ethics will seemingly wait for a deeper 

understanding of the nature of time (Penrose, 1994).

The very happening of quantum choices is spread over the entire space-

time, and, therefore, it creates meaning locally where Heisenberg's events 

occur. However, the effect of the mathematical formalism of quantum theory 

is such that each event is registered globally. Quantum theory does not allow 

a free physical system to exist (Bell, 1987). Everything in the Universe is 

correlated. We elaborate this on the case of a single proton: When a 

Heisenberg event occurs and a detector registers a proton, this means that the 

potentiality for its detection is actualised in that detector while the 

potentialities for its detection in distant regions immediately vanish. 

Quantum world acts as a whole. The wave function collapses to zero 

everywhere except in the domain of the detector that made a click. 

Therefore, the quantum choice that occurred should be considered to be a 

local affair, because it actualises (brings into physical reality) a particular 

meaningful form in a local region of space-time. However, the collapse of 

the wave function took place globally, and the event is registered in a global 

bookkeeping: when the Heisenberg event occurred the rearrangement and 

adjustment of potentialities was immediately made over the entire Universe, 

mathematically over the entire space-time manifold.

6. CONCLUSION 

Concluding this short review one may say that the conception of the 

quantum Universe emerges today naturally from the theoretical foundation 

and experimental verification of quantum mechanics. Among several models 

that try to explain what is the quantum physical reality, the most popular one 

seems to be the Dirac-Heisenberg-Stapp proposal. Their quantum ontology 

provides the answer to the question about fixing things not fixed by known 

laws of physics. As a consequence of this ontology one may say that (Stapp, 

1993)
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...under particular kind of conditions, Nature makes a choice .....  and 

locally induces meaning into Universe… 

…the condition under which Nature acts is construed as an expression of 

a criterion of natural value. 

Therefore, there is only one step to extend the idea of sustainable forms 

from the micro world to macroscopic scale and have a basis for a scientific 

foundation of concepts of natural ethics.

Conscious mental events are naturally correlated with events in human 

brains as they are conceived by quantum theory. Those events in the brain 

are typical Heisenberg events and their appearance is not governed by the 

known lows of physics. Decisions for them to occur or not to occur are the 

matter of the quantum choice. In words of Henry Stapp, such ontology offers 

a possibility for a meaningful Universe and a meaningful role of humans 

within it. Each actual thing (as an element of the physical reality in the micro 

world) is fundamentally the actualisation of an entire enduring complex 

macroscopic form. So, the micro world decides what happens in the macro 

world.
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