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Chapter 1 
Explaining Modern Technology 

A couple of years ago, on a subway ride in Berlin, I overheard a conversation be-
tween two students, and I remember one of them saying, “Last semester I took Dr. 
Anderson’s course on computer electronics. But I should have stayed in bed instead 
of getting up early each Tuesday morning in order to attend his eight o’clock lec-
ture, since nobody learned anything from this course. This semester, I am attending 
the lectures of Dr. Heymann, and she is the best professor I ever had. Her explana-
tions are so illustrative that even the most complex subjects have become abso-
lutely clear to me.” This made me think back to my own years in high school and 
college, and I remembered my math teacher as the one whom I still would grade an 
A plus, while at the same time, I remembered some other teachers who did a rather 
poor job. I am convinced that almost all of my readers have experienced extremely 
good teachers and others who weren’t worth the salary they were paid. 

During my over thirty years of teaching engineering courses, I certainly tried to 
be a good teacher. But it was not until I was approaching retirement that I explicitly 
considered the question about how to become a good teacher. Although I don’t have 
the complete answer to this question, at least I am convinced that there is a specific 
condition that must be satisfied under all circumstances: whenever a teacher enters 
the classroom, he must consciously consider the fact that his way of viewing the 
world may differ substantially from the views of the students. This makes him aware 
that he must try to view the world through the eyes of his students. 

As a professor of engineering sciences, I am, of course, mainly interested in the 
different ways a person may view the world with respect to its technological as-
pects. Thus, it happened that I  not only considered the differences between my 
view and the views of my students, but I also asked myself what the differences 
were between my view and the views of my wife and my three year old grandson. 
This made me aware of the fact that, for a little child, all technical devices belong 
to the natural world. A child doesn’t wonder about the buttons which can be 
pushed to turn the light on or off, or that there is a cell phone which can be used to 
talk to Grandma. The child doesn’t ask where the cell phone comes from or why a 
car can move so much faster than a running horse. For the child, cell phones and 
cars are as natural as apples and horses. We might say that for a little child, either 
everything is a miracle or nothing is a miracle. 

When my philosophical considerations had reached this point, it only required a 
short further step for me to come up with the question of how someone who had died 
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hundreds or thousands of years before our time, would view our world. Obviously, my 
thinking had been influenced by a novel I had read some years ago, and a movie I had 
seen at about the same time. The German novel “Pachmayr” [SPO] and the French 
movie “Hibernatus” were created around 1970, and both works involved complica-
tions which occur when a person who died long ago suddenly comes to life in the 
present time, and still remembers everything about his former life. In the movie, the 
time gap was one hundred years, while in the novel it was almost five hundred years. 
Thus, it seemed quite natural to me to ask myself how a person from the middle ages 
or from classical antiquity would react if he would be confronted with a world where 
there are electric lights, pills for headaches, food freezers, microwave ovens, airplanes, 
television sets, automobiles, mobile phones and computers. Instead of considering this 
question with respect to an abstract person, I wanted to think of a real person who had 
lived in the past. Finally, I chose the Greek philosopher Socrates (469-399 BC) be-
cause he is the perfect example of someone who continued asking critical questions 
until he either reached the fundamental essence of the subject, or realized that the 
limits of knowledge had been reached for the person being asked. Thus, the following 
chapters are my answer to the question, “How could I help Socrates understand our 
present world?”  

What Socrates Would Ask Me 
Socrates’ Questions 

In part, Socrates would be in the same situation as a newborn child who must learn about 
the world. The difference between the situations for the newborn and Socrates is that 
Socrates would be able to recall the rich experiences of his former life. The only things 
Socrates must learn are how the present world differs from that of his former life.  

An important guideline for my teaching efforts always has been the saying, “A 
picture is worth a thousand words.” Therefore, as you will see, a major part of the 
text of this book is just a sequence of comments about diagrams. For example, 
consider Fig. 1.1 where rectangles represent six areas of knowledge which I 
placed in levels, one on top of the other like the floors of a building. 

Fundamental Findings
in Engineering

Fundamental Findings
in Natural Sciences

Fundamental Findings in
Mathematics and Logic

Scientific Findings
in Humanities

Basic Knowledge
in Humanities

Operating Know-how
 

Fig. 1.1     Layers of knowledge 
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The different types of knowledge shown must be acquired from bottom to top. 
This means that a newborn child must first acquire the knowledge which I called 
“Operating Know-how.” This is the kind of knowledge needed to operate complex 
technical equipment. Actually, for our Socrates as for any newborn child, the 
unknown world is like a new machine which they must learn to use. This learning 
does not require any understanding since it consists only of remembering causal 
relationships. Thus a child not only learns what happens when certain buttons are 
pressed – the light goes on, the door bell rings or the garage door opens – but it 
will also soon know in which drawer grandma keeps the candy. Learning one’s 
native language also means acquiring operating know-how, since this is nothing 
but remembering the causal relationships between certain acoustic patterns and 
types of human behavior. One characteristic of all kinds of operational know-how 
is that it completely loses its value when its owner is placed in a new environment. 
There was a time when I often had to travel for professional reasons, and in those 
days it frequently happened that I could not immediately drive away from the 
airport in a rental car because the buttons and switches for the wipers and the 
headlights were not where I expected them to be. Each time in these situations I 
had to acquire new operating know-how which was valuable only as long as I 
drove that particular make and model of car. Ask yourself how much of what you 
actually know is valuable only when you are in certain environments. Even 
knowledge about the location of the nearest toilet is of that type.  

Despite the tremendous amount of operating know-how Socrates would need in 
order to survive in our present world, this is not the kind of knowledge he would 
ask me to provide. Nor would his questions be related to the two areas of knowl-
edge which are on the right hand side in Fig. 1.1, since these subjects are just what 
Socrates had experienced in his former lifetime, namely politics, sociology, eco-
nomics and arts. He was involved in wars in his time, and so he would not be 
surprised to learn that since then many more wars have been fought, people have 
had to leave their countries and move to other regions, and empires have grown 
and vanished. He had known sculptors, painters and poets and would consider it 
normal that in the meantime many new artists have created new works, and that 
aesthetic criteria have undergone evolutionary changes. Certainly it would be very 
interesting for him to learn that Athens is no longer the center of the universe, that 
the earth is a globe, that Columbus had discovered America, that Marco Polo had 
traveled to China and that today there are precise maps of the entire earth.  But 
probably all of these changes would not cause him to say, “I don’t understand it.” 
The same can be said about the fact that letterpress printing was invented and that 
our children learn to read and write in elementary school. Although historians say 
that Socrates never produced any written text, Socrates certainly would appreciate 
the fact that today it is quite easy to obtain a fundamental education in humanities 
just by reading a few books. Today there are even books on the market with titles 
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such as “Everything an Educated Person Should Know.” But even after Socrates 
had read these books and had acquired all that knowledge, he would still be dissat-
isfied and see the need to ask for my help. He would come and say, ”All this 
knowledge does not help me in the least to understand the strange phenomena I 
regularly encounter almost all the time, and wherever I go. You press a button and 
a huge stadium gets bright; then you press the same button and the stadium gets 
dark again. You press other buttons and the church bells in the tower start to ring 
or heavy doors swing open. Objects looking like extremely long houses on wheels 
with hundreds of people sitting inside move at high speeds on rails, although no 
apparent reason for the movement can be discerned. And, of course, the devices 
and systems which you call television and mobile telephones remain absolute 
mysteries to me. On the other hand,  I have been with you long enough to be sure 
that mankind is still completely human and has not turned into a crowd of demi-
gods. Therefore, I am looking for someone who is willing and able to clearly 
explain to me the fundamental findings which enabled humans to create such 
mysterious devices and systems.” 

In my present situation as a retired professor of engineering, nothing could be 
more gratifying to me than to be asked by Socrates to give him these explana-
tions. Erwin Chargaff whom, in many respects, I consider a model of a very wise 
man, once wrote [CH 1]: “A real explanation requires two persons, one who 
explains and another one who understands.” From my long experience as a uni-
versity professor, I must add another requirement: “Understanding an explanation 
requires a person who wants to understand it.” In the case of Socrates I can be 
sure that he wants to understand and that he would not refuse to make the neces-
sary effort. The effort I must impose for the reader is not more than the careful 
study of the 440 pages of this book. I certainly would have preferred to reach my 
goal with fewer pages, and I really tried hard to do this. But I had to guide Mr. 
Socrates and my other readers from bottom to top over the three stacked grey 
areas of knowledge on the left hand side of Fig. 1.1. This stack tells us that the 
knowledge about fundamental engineering findings can be acquired only after 
one has gained a certain insight into the fundamental findings in natural sciences, 
and that these require knowledge about fundamental findings in mathematics and 
logic. Therefore, this book is structured as a sequence of three groups of chapters 
with each group corresponding exactly to one of the grey areas of knowledge in 
Fig. 1.1. 

You will not find any information about the internal details of technical products 
in this book. The purpose of this entire book is to provide the knowledge which 
leads the reader to believe that these products can be conceived and built. No one 
would ever have invested a minute in the development of a technical product if he 
or she had not been convinced about its possible success. This conviction about 
possible success has always been based on the level of knowledge a person had 
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reached. From a particular level of knowledge, they could look down and see all 
the findings or results which would help them solve all the problems which might 
turn up in the course of the development process. Someone who begins the devel-
opment of a technical product has a vague idea of the overall solution that can be 
implemented if certain types of problems can be solved. Solving any of these prob-
lems does not require any findings outside of the plateaus of knowledge which have 
already been reached and can be seen from the place where the developer is stand-
ing. In most cases, solving all these problems still requires hard work. Sometimes 
good luck is needed to come up with a reasonable solution. Never does any magic 
come into play. Thus, it is my goal to lead my readers to that small set of plateaus 
of knowledge, the plateaus on which the technicians walk when they are looking 
for solutions of problems with which they are confronted when developing new 
products. While walking around on these plateaus is part of the job of profession-
als, I shall not take my readers on such excursions. Instead, I shall help them climb 
the rock walls which lead to these plateaus. In the course of history, each of these 
rock walls has been conquered for the first time. But since then, the walls have 
been climbed often, and hooks which make it easier to go up have been hammered 
into the rock. There are no cable cars leading up to the plateaus of knowledge, but 
with the help of an experienced mountain guide, even inexperienced mountaineers 
can reach the plateaus with reasonable effort. 
The Art of Omitting 

Omitting Irrelevant Subjects Is an Art 
The Art of Omitting 

When the physicist Richard Feynman (1918-1988) was given the Nobel Prize, a 
journalist asked him to summarize in three sentences what he got the prize for. 
This request certainly was for an explanation far below an acceptable limit of 
brevity, and Feynman answered, “If I could explain this in three sentences, it cer-
tainly would not be worth the Nobel Prize. But I could explain the essence of my 
work to your educated readers on two pages.” 

Although I did not win the Nobel Prize, I am somehow in a similar situation 
since I am expected to present my subject in a minimum number of pages. I have 
omitted everything that could be omitted without reducing the comprehensibility 
and the intellectual depth of the presentation. Since this book is restricted to find-
ings which are fundamental for our present technical systems, I could omit all 
findings from mathematics and natural sciences which have not yet been applied 
to any technical products. Therefore this book does not contain the theories of 
cosmology which explain the origin of the world. If you are interested in the so-
called “big bang” theory, you must look in other books. By the way, did you know 
that Albert Einstein commented on the idea of the big bang with the words, “This 
theory is as absurd as having an encyclopedia originate from the explosion of a 
printing shop?” Among the subjects I omitted in this book is the theory of strings, 



6 1. Introduction
 

which is an attempt to combine cosmology with quantum theory, and Darwin’s 
theory of evolution which is an explanation of the origin of living species. 

But there are subjects which I omitted even though they are technologically 
relevant – for instance acoustics and geometric optics. My decisions not to discuss 
them are based on my judgment that, in these cases, the corresponding knowledge 
plateaus can be reached without a mountain guide. I also omitted most of the his-
torical details of the processes which finally resulted in the knowledge we have 
today. The way in which I will guide you up the rock walls will always lead di-
rectly to the plateau we want to reach. Certainly it would have been nice to show 
you all the dead end roads which have been tried in the past. For example, 
consider the definition of electricity which a student of the German philosopher 
Georg Wilhelm Friedrich Hegel (1770-1831) once wrote [HEG]: 

 

“Electricity is the pure purpose of the shape which liberates itself from 
it, which begins to cancel its indifference, since electricity is the imme-
diate emergence, or the existence which does not yet emerge from or be 
conditional upon the shape, or is not yet the dissolution of the shape it-
self, but is the superficial process wherein the differences leave their 
shape but still are dependent on it and are not yet independent with it.” 

Today, we can only laugh about this, and it remains absolutely mysterious how 
someone could ever dream up such nonsense. Perhaps Professor Hegel said some-
thing reasonable, but a student taking notes confused all of it. Certainly we can 
take this definition as a hint about how difficult it was in those days to gain a fun-
damental insight about the basis for today’s electrical engineering. 

When I discussed my intention to write this book with friends and relatives, 
some of them spontaneously expressed their doubts about whether I could succeed 
at all during a time when “the total knowledge of mankind doubles every few 
years.” Why am I not afraid of this doubling? It is simply because it is not a dou-
bling of our knowledge, but only of the available information, which can be ac-
quired by searching and reading. Admittedly, people very often use the term 
“knowledge of mankind.” But this is not a correct concept, because knowledge is 
only what one person knows. In order to be able to get access to and use the enor-
mous wealth of information stored in libraries and on the internet, a person must 
possess some knowledge, because someone who knows nothing cannot ask ques-
tions. We cannot expand the range of our understanding unless we have already 
understood some fundamentals. Do you know why, for example, the sky is blue on 
a sunny day? Actually, I don’t know this myself, but I do know exactly where I 
could look or whom I could ask to get a comprehensive answer if the need arose. 

I recently read the following statement of the Austrian philosopher Konrad Paul 
Liessmann in the German journal “Research and Teaching” [LI]: 
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“What a person can or should know today is no longer determined by 
some standard theories of education, but mainly by the market which 
constantly changes. This knowledge can be produced and acquired rap-
idly, but just as rapidly be forgotten.” 

Nothing of what he said in this statement applies to the fundamental findings I 
present to you in this book. These findings and their presentation could not be 
produced rapidly; they required a laborious process of hard work. They cannot be 
acquired rapidly, since in spite of all the support of an experienced mountain 
guide, a lot of effort is still needed to climb up the steep walls of understanding. 
However, those who invest this effort and reach the plateaus of knowledge shall 
never forget the essential findings, and shall be glad to be able to refer to them for 
the rest of their lives. That which is discussed in this book will not be affected by a 
constantly changing market.  
Not Fearing For mulas 

No One Should Be Afraid of Formulas 
Not Fearing For mulas 

In 1905, Albert Einstein climbed Mount Sinai. When he arrived at the top, he was 
shrouded by a cloud and heard a voice saying to him, “Albert, take this slab of 
stone, carry it down the mountain, and then read what I wrote on it and explain it to 
your people.” When Albert Einstein came down from the mountain, he read 
“E=mc2,” and then he explained this formula to the people. Did it happen this way? 
We all know that this never happened. Why then does almost every author of a 
science book for non-professionals introduce this formula as if it had come from 
heaven? The reason for this can be found in the preface to the book “A Brief His-
tory of Time” by the English physicist Stephen Hawking [HA 1]. There he wrote: 

“I was told that each formula in the book would halve the number of its 
readers. Therefore I decided to refrain from including any formulas. But 
finally, I made one exception, E=mc2.” 

Publishers of books on science for non-professionals apparently believe that such 
books do not sell well to a broad public if they contain mathematical formulas. 
Why do publishers have this belief?  Unfortunately, mathematics has acquired the 
image that it can be understood only by an extremely small minority of people 
who are gifted in a very exotic way, and that therefore it is quite natural for 
mathematics to remain closed for the rest of mankind. The German philosopher 
Arthur Schopenhauer (1788-1860) contributed to establishing this image of 
mathematics by writing [SCH]: “The talent for mathematics is a very specific and 
unique one which is not at all parallel to the other faculties of a human head, and 
indeed has nothing in common with them.” And in the book “Lies in Educational 
Politics,” the German author Werner Fuld [FU] wrote: “Does not Schopenhauer’s 
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statement call to mind our years in school, and especially those schoolmates from 
whom we could gratefully copy each math paper, but whom, on the other hand, 
we considered rather dumb if not even mentally deficient?” Obviously, the author 
Fuld must have had some problems with his lessons in math, and he sought to get 
applause from those of his readers with similar experiences. By his statements, he 
reinforces a prejudice which can be easily disproved. Of course, I myself do know 
some extremely unworldly mathematicians whom Mr. Fuld presumably would call 
“mentally deficient.” I would be more specific about such mathematicians and 
say, “They cannot communicate adequately.” But it is a severe logical sin to gen-
eralize from a small number of pathological cases. Think of the many engineers 
who move with great competence through many fields of mathematics; Mr. Fuld 
would have great difficulty in finding such pathological cases among them. 

How about the belief that a rare and exotic talent was required for understand-
ing mathematics and having fun dealing with it? Here the situation is the same as 
in all kinds of arts: a rare and special talent is required for creating a valuable 
work of art, but almost everybody is gifted enough to understand the work and 
enjoy it. Only a very few people can be good composers or writers, but many can 
enjoy listening to the music and reading the novels. If you think mathematics is 
extremely difficult and requires a rare talent which you don’t have, this might be 
true concerning the creation of mathematical works. But if you don’t understand a 
mathematical work presented to you, this might not be a consequence of not hav-
ing a particular talent. Very often it will be the consequence of the fact that the 
“performing artist” was not gifted enough to communicate the work to others.  
The Spanish philosopher Ortega y Gasset (1883-1955) once wrote [OYG 1]:  

“Mathematicians exaggerate the difficulty of their subject a bit. If it ap-
pears so incomprehensible today, it is because the necessary energy has 
not been applied to simplifying its teaching.” 

Although I think that Ortega’s statement is correct, I also think that there is some-
thing special about dealing with mathematics. It is not primarily a question of a 
good memory, but it requires the motivation to struggle for understanding. 
Throughout this entire book, I shall refer to the rock walls and plateaus of  
knowledge, where acquiring the understanding of mathematical findings corre-
sponds to conquering a rock wall leading to a plateau. In contrast to this, acquiring 
knowledge about history, literature or art corresponds to walking around in a plane 
or on a plateau where the hikers need only a good memory to help them remember 
all the places they have been. But these hikers will never experience the moment 
of joy which causes the mountaineers to shout “Hooray!” when they reach the top 
of the mountain. 

Attempts to teach findings in natural science and engineering without using 
mathematics are similar to attempts to teach the evolution of styles in painting to a 
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blind person. Formulas are just statements in a special type of language which 
help to state facts about abstract structures as briefly and precisely as possible. 
Any attempt to state these facts by exclusively using natural language would result 
in bulky and confusing phrases which nobody would understand except for their 
authors. Formulas are needed especially for defining concepts about higher levels 
of abstractions which otherwise could not be defined at all. For instance, there 
would not be a relativity theory, or any type of electrical engineering, because 
they depend heavily on abstract concepts like imaginary numbers and four-
dimensional spaces which can be defined only by using formulas. These concepts 
are completely formal and even Einstein and all the other geniuses in physics and 
mathematics depend on formulas to deal with these concepts.  

In the course of decades of academic teaching, I became strongly convinced 
that I finally know why so many people are scared of formulas: they believe that 
mathematicians, in contrast to normal people, have a sixth sense for formulas. 
They don’t believe that what the teacher tells them about a certain formula is all 
that could be said about it. They believe that there is something “behind the for-
mula” to which they don’t have any access. Throughout the entire book, I keep 
emphasizing that nobody needs a sixth sense to understand a formula, because 
there is never anything hidden behind it. 

In about 1925, the Spanish philosopher Ortega y Gasset, whom I mentioned 
above, wrote an essay entitled “Mission of the University”. In this essay, I found 
the following paragraph which hopefully motivates you to go through all the re-
maining chapters of this book [OYG 2]: 

“Consider the gentleman who professes to be a doctor, a magistrate, a 
general, a philologist, or a bishop, i.e., a person who belongs to the 
leadership class of society. If he is ignorant about what the physical 
universe is today, he is a perfect barbarian, no matter how well he may 
know his laws, or his medicine or his Holy Fathers. It is certain that all 
the other things he does in life, including parts of his own profession 
which transcend its proper academic boundaries, will turn out unfortu-
nately. His political ideas and actions will be inept. He will bring an at-
mosphere of unreality and cramped narrowness to his family life, and 
this will warp the upbringing of his children. With his friends, he will 
emit thoughts that are monstrosities and opinions that are a torrent of 
drivel and bluff.” 

If you now follow me through the coming chapters and finally climb all the rock 
walls to the plateaus of knowledge, you certainly will not belong to the kind of 
people Ortega was talking about.  

Now it’s time to tackle the first wall.  Let’s go! 
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Chapter 2 
Mathematicians Are Humans Like You and 
Me – They Count and Arrange 

“Math – no, thanks!“ said my daughter and the majority of all people I’ve met 
during the course of my life. How about you – do you also belong to those who 
haven’t liked mathematics since they encountered it in high school?  Let’s 
assume we are not talking about mathematics but about a lamb roast, and you 
say, “I have never liked a lamb roast.” Do you think a gourmet cook would 
accept this just as it was said? No, he would suspect that your aversion to a lamb 
roast was the consequence of the fact that you never have been served an 
optimally prepared lamb roast. Now let me persuade you to taste the meal of 
mathematics which I have prepared especially for you. 

In this chapter, I shall present a view of mathematics “from high above” as if 
mathematics were a continent over which we could fly in a satellite. Think of 
Europe which actually can be seen from a satellite. It is evident that from such a 
far distance we cannot see any details, but only the rough topography of the 
continent. Sometimes we want to look a little bit closer which in our analogy 
means that we then use binoculars. 

The textbooks for the mathematics courses from my years in high school have 
long disappeared, but I still remember that on their covers were printed certain 
strange words which at the time nobody explained to me, words like Arithmetic, 
Algebra and Analysis. Only the word Geometry referred to the world I knew. In 
our analogy, these words on the covers of math books correspond to the names of 
the countries printed on the maps of Europe. When we study a map of Europe, 
we are interested in the structure of the continent, that is, how the outlines are 
shaped, where the borders between the countries are located, which way the 
rivers flow and where the mountains and the big cities are located. In this 
situation, we do not ask what Europe is good for and how it could be applied. In 
the same way, we first have to get to know the structure of the “math continent.”  
We should not yet ask what it could be used for. Of course, we already know that 
we had no reason to study this continent except that it had become fundamental 
for physics and technology. 
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What a Number “Sees” When It Looks into a Mirror 
Numbers 

The mathematician Leopold Kronecker (1823-1891) said, “The natural numbers 
have been created by the dear God and everything else is the work of humans.” In 
the following paragraphs, we shall reconstruct this human act of creation. For 
each day in the creation of the world, the bible includes the closing statement: 
“And God saw that it was good.” I hope that we can write at the end of our 
creation story: “And we saw how wonderfully and logically one result implied 
the next.” 

The natural numbers are so natural that even small children quite intuitively 
grasp the corresponding concepts. The grandchild goes up the stairs holding 
grandma’s hand and counts: “One, two, three, ….” The natural numbers serve to 
count, and that means that a position in a sequence is assigned to each element of 
a set, and that the size of the set is found at the same time. Of course, the steps of a 
staircase have their positions in a sequence before we count them. By counting, 
we only assign names to these positions, for after there is a sixth step there is a 
seventh, etc. The name which we assign to the last position is the name of the 
number of steps in the staircase. When we count, we pass through all positions of 
a sequence, and therefore the most natural way of counting consists of 
sequentially saying the names of the numbers. We can remember the sequence of 
these names as if they were words in a rhythmic song: “One, two, three, four, five, 
six, seven – all the angels look down from heaven.” It is true, though, that we also 
count things which don’t have a natural sequential order: think of apples in a 
basket. In such a case, we produce an artificial order which is destroyed when we 
are done counting. For example, we pour the apples from the basket onto the table 
and then put them, one after the other, back into the basket “singing” our numbers 
song. 

Although the natural numbers and their application in counting are the nucleus 
of mathematics, the true concept of mathematics was not born until addition, 
subtraction, multiplication and division were performed as abstract operations. 
They are called the four basic arithmetic operations where the word “arithmetic” 
refers to the Greek word “arithmos” for number. People always used to illustrate 
these operations by thinking of containers which hold countable objects, for 
example apples in baskets. Addition means pouring the contents from one 
container into a second container on top of its contents. The inverse of this 
operation is called subtraction, and this means that a part or all of the contents of 
one container is removed and put into another container which originally was 
empty. Of course, we cannot take out more apples than had been in the basket 
originally. Only magicians in a circus can demonstrate that they can take 8 balls 
out of a bag which originally seemed to contain no more than 5 balls. Subtraction 
is the first operation which motivates us to create a new number, “Zero,” which is 
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the number of apples remaining in a basket after we have removed all of the 
apples which were there originally. Zero can occur only as a result of computing 
and not when we count. Therefore, it does not belong to the natural numbers, but 
to those numbers which Kronecker said were not created “by the dear God.” 

In addition and subtraction, we deal only with objects of the same type, for 
example, apples or steps. In multiplication and division, however, objects of two 
different types are counted, for example baskets and apples. Multiplication is 
illustrated by the idea that we originally have ‘b’, a certain number of baskets, 
each containing an equal number ‘a’ of apples. As an example, think of 5 baskets 
each containing 8 apples. By pouring the contents of all of these baskets into one 
basket, we obtain the so-called product, namely 40 apples. Another way to 
illustrate a product is with a rectangular floor which is covered by many smaller 
rectangularly shaped tiles, and where we wish to find the total number of tiles. 
Two numbers must be known, namely how many tiles fit into one row and how 
many tiles fit into one column. From these two numbers, we can get the total 
number of tiles by multiplication. 

Division is based on the idea that the apples in one basket must be equally 
distributed into a given number of originally empty baskets. If we are not allowed 
to cut apples into parts it will quite often occur that an equal distribution is 
impossible. This can be done in the case of 3 baskets if 15 apples are to be 
distributed, but not if we start with 17 apples.  

While addition and multiplication can be performed on any pair of natural 
numbers, this is not true for subtraction and division. This is a consequence of the 
restriction that the result of the operation must be a natural number or zero. Now 
we lift this restriction and allow the objects to be distributed to be cut into parts if 
necessary. At this point we no longer think of apples but of sticks of butter, since 
these can be cut easily and precisely. When such a stick is cut into three parts of 
equal length, it is said that each part has one third the length of the original stick. 
“One third” is formally written 1/3. Such a form consisting of two numbers 
separated by a slash is called a fraction. The number in front of the slash is called 
the numerator; it stands for the number of objects to be distributed. The number 
behind the slash is called the denominator; it stands for the number of containers 
or receivers among which the objects are to be distributed. In our example, we 
wanted to distribute 17 sticks equally among 3 receivers. First, we perform the 
easy part of the task and distribute 15 sticks with each receiver getting 5 of these. 
Then we cut each of the two remaining sticks into three parts of equal length and 
distribute the resulting six thirds among the three baskets with each basket 
receiving two of the thirds. The operation of distributing 17 sticks among 3 
receivers can be written formally as 17/3 = 5 + 2/3. 

The above statement which says that the division of 17 by 3 cannot be 
performed is now revised by introducing a new type of number. If it is possible to 
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cut objects into parts of equal size, it is certainly possible to distribute any natural 
number of such objects among any natural number of receivers. By definition, the 
number of objects one receiver gets is said to be a number though it may not be 
natural. Thus, 1/3 and 17/3 are numbers of a new type, called “fractions,” created 
by us. The set of numbers which we discussed up to now is the union of the 
natural numbers, the zero and those fractions which do not result in natural 
numbers. 

We eliminated the impossibility of division for certain pairs of numbers by 
allowing objects to be cut into parts of equal size. Now we eliminate the 
impossibility of subtraction for certain pairs of numbers by a formal trick. At this 
point, we cannot see a way to subtract 8 from 5 since this would mean that we can 
take 8 objects out of a container which originally contained only 5 objects. As 
long as we are restricted to operations in the real world, we have no way of 
overcoming this impossibility. But in mathematics it has sometimes been very 
common to leave the real world and enter the so-called formal world. In this 
formal world, objects and operations are defined without any reference to reality. 
The formal objects are “created” just by giving them names, and the formal 
operations are defined just by writing down which formal objects should be the 
result of the formal operation on other formal objects. The first formal objects 
which I shall now introduce are the so-called negative numbers. Imagine that we 
could place the numbers which we already have in front of a mirror. All these 
numbers are ordered according to their “weight,” i.e., for each pair of different 
numbers we can always say which of the two numbers is greater. Therefore, we 
can imagine a straight line onto which we place the numbers ordered according to 
their weight. This line begins with the position of the zero, and from there on the 
natural numbers follow at equal distances. The fractions will be placed between 
the positions of these numbers. Now we imagine we could put this straight line in 
front of a mirror in such a way that the zero position touches the mirror, and that 
the line stands at a right angle (90 degrees) to the mirror surface. Now we see this 
straight line twice, both in front of and behind the mirror surface. Thus, each 
number in front of the mirror has its partner in the mirror. Since the zero sits on 
the mirror surface, it is the only number which does not have a separate partner. 
Obviously, we must now introduce a way to make clear whether we are talking 
about a number in front of the mirror or about its partner behind the mirror. For 
example, we could identify the partner of five by calling it “mirrored five.” Or, at 
least in the case of writing, we could use black ink for the numbers in front of the 
mirror and red ink for their partners in the mirror. This use of colors is actually 
used when people denote the financial condition of a company by writing 
monetary numbers in black or red. This indicates that a company is making either 
a profit or a loss. Mathematicians use the minus sign to identify the numbers in the 
mirror (-1, -2, -3, etc.). In this way they indicate that such a number can be 
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obtained only as the result of a subtraction where more objects are taken out of a 
container than have previously been in it. Such numbers are called negative 
numbers. 

I have very often heard the statement, “Negative numbers don’t mean anything 
to me since I cannot relate them to any picture from the real world.” People say 
this with the same kind of regret as if they were talking about a personal 
weakness: “I cannot make attractive drawings.” They believe that mathematicians 
relate much more meaning to the concept of negative numbers than a “normal 
person.” But this belief is not justified. The description above prescribed what 
picture you should use to relate to the concept of negative numbers, and this is 
exactly the picture all mathematicians have. A negative number is a mirrored 
positive number – and nothing more. Once you can accept this idea of a number 
sitting in front of a mirror and seeing its reflection, you are well-prepared to 
accept another type of reflection which will be introduced later. 

The reasons for “creating” fractions and negative numbers came up when we 
found that a particular arithmetic operation could not be performed on all pairs of 
known (natural) numbers unless we allowed the results to be numbers which were 
of a type different from those we already knew. Consequently, we must now ask 
whether arithmetic operations with numbers of the new types (fractions and 
negative numbers) again force us to create new types of numbers. There is no 
space or reason here for presenting all the cases which have to be considered in 
order to answer this question. The answer is that no new types need to be 
introduced. Figure 2.1 represents the results obtained in our process of creating 
numbers. Besides the natural numbers originally given, there are four new types of 
numbers, namely the zero, the positive fractions, the negative whole numbers and 
the negative fractions. All these numbers together are called rational numbers 
which comes from the Latin word ‘ratio’. In the figure, the four arithmetic 
operations are symbolized by rectangles, each of which has two arrows entering 
and one arrow leaving. The two arriving arrows symbolize the two numbers which 
are the inputs of the operation, and the leaving arrow symbolizes the result. In 
each case, the result is a rational number. Division is the only operation which 
does not allow the input to be any pair of rational numbers; there is the restriction 
that zero not be allowed to be the denominator. It does not make any sense to 
request that a certain number of objects be distributed without specifying the 
number of receivers for the distribution. 

Although the results shown in Fig. 2.1 do not imply any need for finding new 
types of numbers, the rational numbers actually do not yet represent the end of the 
process of creating numbers. The old Greek mathematicians found that there are 
certain relations between the lengths of lines in geometric shapes which are not 
based on rational numbers. The two best-known examples are the relation between 
the diagonal and the edge of a square, and the relation between the circumference  
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Fig. 2.1     The rational numbers and the four arithmetic operations 

and the diameter of a circle. It is impossible to express these relations exactly as 
fractions, although they can be approximated arbitrarily closely by fractions. 
Numbers of this type are called irrational numbers. Rather good approximations 
are 707/500 for the relation of the square and 3927/1250 for the relation of the 
circle. All over the world, the relation between the circumference and the diameter 
of a circle is symbolized by the Greek letter π (“pi”). The set of numbers which 
we get by gathering the rational numbers and the irrational numbers together is 
called the set of real numbers. 

There is a fundamental difference between the square’s diagonal relation and the 
circle’s number π. In the case of the diagonal relation d, a so-called arithmetic 
equation exists which exactly defines this number. Although the concept of 
equations will be presented in a later section of this book, you will easily understand 
the following equation: d∗d=2. This equation says that the multiplication of d with 
itself has the result 2. In the case of the number π an arithmetic equation defining the 
number does not exist. The types of numbers which cannot be defined by an 
arithmetic equation are called transcendental numbers. The prefix “trans” indicates 
that something beyond certain limits is considered. The transcendental numbers lie 
beyond any considerations which start with natural numbers and lead to a definition 
of the number we are interested in. In later sections we shall encounter this type of 
number again. 

Before describing the last part of the process of creating numbers, we stay for a 
while on the playground of the real numbers. In this sentence, I used the word 
“playground” deliberately in order to make it clear to you that many mathematical 
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findings have been found by playing around and not by searching for solutions to 
serious problems. Naturally, children beginning to play do not question what their 
play might be good for, and this attitude is also often very true for mathematicians. 
We could even think that the following biblical quotation was meant for 
mathematicians: “Unless you become like little children, you shall not enter into 
the kingdom of heaven.” (Matthew 18, 3). Therefore, let’s begin to play. 

Formal representationReduction to
known operations

Addition of
multiple equal summands:
Product = 2 + 2 + 2 + 2 + 2

Search for the Factor Q
in the Multiplication:

10 = 5  Q

Multiplication of
multiple equal factors:

Power = 2  2  2  2  2

Search for the Base R
in the Power:

32 = R5

Search for the Exponent L
in the Power:

32 = 2L

Name of
the operation

Multiplication

Division
(Inversion of

Multiplication)

Power

Root 
(First Inversion

of Power)

Logarithm
(Second 
Inversion
of Power)

Product = 10 = 5  2

Quotient = 2 = 10:5 = 10
5

Power = 32 = 25

Logarithm of 32
to the Base 2

= 5 = log2 32 

Fifth root of 32

5 32= 2 = 

 

Fig. 2.2     Powers, roots and logarithms 

The table in Fig. 2.2 summarizes the results of our playing around with 
numbers and operations, and leads us to new concepts and operations. We see that 
the division operation is the inverse of the multiplication operation, and that 
multiplication gives us the idea to introduce the concept of power. By formally 
replacing the plus sign in the definition of the multiplication by the multiplication 
symbol, we obtain the definition of the power relation. In the example, we write 
the power operation as 25 where the 2 is called the base and the 5 is called the 
exponent. These words refer to facts from our every day lives: the position of the 
basement is underneath the rest of the house, and the position of something which 
is exposed is above in order to make sure that it can be seen by everybody. 
Multiplication has only one type of inversion because the order of the two factors 
can be reversed without having an effect on the result. In contrast to this, the 
power relation has two types of inversions because reversing base and exponent 
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may change the result: 25=32 and 52=25. The first type of inversion of the power 
relation provides the concept of roots. The symbol used in formulas for the 
operation “root” is an abstraction from the letter r which makes us think of the 
word root. The second type of inversion of the power relation provides the concept 
of the “logarithm”. The name of this operation comes from the two Greek words, 
“logos” and “arithmos”. 

The new operations introduced in Fig. 2.2, namely the power, the root and the 
logarithm help us to dream up the next steps in our play activities. In Fig. 2.2 we 
restricted ourselves to using only natural numbers. Now we ask whether it makes 
sense to ask for the results of these operations if their operands are no longer 
natural numbers, but negative numbers or fractions. If we define a power bn as a 
chain of n numbers which all have the value b and are connected by multiplication 
symbols, the expressions b0, b-3 or b4.5 cannot be interpreted as meaningful powers. 
But Fig. 2.3 shows that it really makes sense to define powers with exponents 
which are negative numbers or fractions. 

(3•3)•(3•3)•(3•3)•(3•3)•(3•3) = (32)5 = 310

(3•3 • 3•3 •3)•(3 • 3•3 • 3•3) = (35)2 = 310

Conclusions:   (bm)n = (bn)m = bm•n

b0 = 1 b- m = 1
bm

2 • 2 • 2 • 2 • 2 • 2 • 2
2 • 2 • 2 • 2

27

24 = 23=

bm

bn = bm-nConclusions:

b m1 m
= b1 = b

b
m

=b m
1

 

Fig. 2.3     Powers whose exponents are not natural numbers 

From Fig. 2.3 follows b0=1, b-3=1/b3 and b4.5=b9/2=(b1/2)9=(√b)9. The values of 
these powers are real numbers, i.e., they are elements of the set of numbers which 
we have already found. But we are forced to create a new type of number when 
we ask for the square root of a negative number, i.e., when we ask for a number x 
which satisfies the equation x2 = -1. This number x cannot be a real number since 
the square of a real number is always a positive number, even if the original 
number is negative: (-1)∗(-1) = +1. In a textbook written in 1768 by the brilliant 
mathematician Leonhard Euler (1707-1783), I found the amusing statement [EU]: 
“When we have to compute the square root of a negative number, we certainly are 
in an embarrassing situation.” We now remember the situation when we used a 
mirror to create the negative numbers. A method which was successful once could 
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be successful again. Therefore, we will take all of the real numbers and place them 
in front of a mirror, but we cannot proceed in the same way as we did when we 
created the negative numbers. Otherwise, we would not be able to distinguish 
between the negative numbers and the new type of numbers. When creating the 
negative numbers, the straight line with the numbers was placed at a right angle to 
the surface of the mirror. Now the line with the numbers to be mirrored must be 
placed at a different angle. A reasonable choice turns out to be 45 degrees. 

As in the previous case, the zero is the number which touches the surface of the 
mirror. In this way, we get a partner in the mirror for every real number in front of 
it except for the 0. Since the numbers in front of the mirror are called real 
numbers, the numbers in the mirror could have been called unreal numbers, but 
Leonhard Euler suggested the name “imaginary numbers” and introduced the 
letter i to identify the number whose square is -1. That which I pointed out when 
we created the negative numbers by using a mirror can be repeated here: there is 
nothing strange or miraculous about imaginary numbers, they are just real 
numbers in a mirror, and the only property we assign to them is that their square is 
a negative real number: i∗i=-1, 2i∗2i=-4, 3i∗3i=-9, etc. You should not think that 
mathematicians know more about imaginary numbers than what I just told you. 

However, the process of creating numbers is not finished with the creation of 
the imaginary numbers, for now, we must check what types of numbers we get as 
results from arithmetic operations where at least one of the operands is imaginary. 
The different possible combinations are shown in the table in Fig. 2.4. The 
thickly-framed field stands out as the one with a result which is neither real nor 
imaginary. When the pair of operands for an addition or a subtraction contains one 
real and one imaginary number, the result is a number of a type which does not 
belong to the types we already know. This means that again we are forced to 
create a new type of number. These new numbers are called complex numbers.  
 

Both operands
are imaginary.

Imaginary result: Real result:

One operand is real, the
other one is imaginary.

5i + 2i =  7i
5i  - 7i = -2i

 5i  2i = -10
10i : 5i = 2

Complex result: Imaginary result:

5 + 2i = 5 + 2i
5  - 7i = 5 - 7i

  5i 2 = 10i
10i : 5  =  2i
 10 : 5i = -2i

Addition
or Subtraction

Multiplication
or Division

 

Fig 2.4     Arithmetic operations with imaginary numbers 
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A complex number is always the sum of its real part and its imaginary part. These 
two parts stay separate and are not merged in the result in contrast to a normal 
addition where the two operands can no longer be seen in the result. In normal 
addition, the two operands +7 and (-4) are merged and don’t show up in the result, 
+3. In contrast to this, in a complex number the real part +7 and the imaginary part 
3i keep their identity and stay visible. The real part and the imaginary part are like 
a husband and wife who do not disappear by being married. 

Although it was Leonhard Euler who introduced the symbol i for the square 
root of -1, he was not the first one who had the idea of “creating” numbers which 
are square roots of negative numbers. This idea was born about 200 years before 
Euler began to use such numbers. In 1545, the Italian mathematician Gerolamo 
Cardano (1501-1576) published a book that introduced the use of complex 
numbers for solving certain mathematical problems. 

Creating one type of number after the other might become boring if you are not 
a fanatic mathematician. Therefore, you probably will be pleased to hear that now 
we really have reached the end of this number creation process. The result of an 
arithmetic operation will always be of one of the number types we created so far if 
the operands are of these types, too. Addition and subtraction are the simplest cases 
since here the operation can be performed on the real parts and the imaginary parts 
independently: (4+3i)+(12+5i)=(16+8i). In the case of multiplication we have to do 
what is shown in Fig. 2.5. 

 

(4 + 3)
17

4

apples

(12 + 5)

=
=
=

4
4
4

17
apples

(12 + 5)

3
(4 + 3)
(4 + 3)

17
apples

(12 + 5)

(12 + 5) 3(12 + 5) = 12 4 5 4 12 3 5 3

3
3

+
+
+

+ + ++

4

(12 + 5i) = 4 (12 + 5i)(4 + 3i)

(12 + 5i) 3i(12 + 5i) = 12 4 5i 4 12 3i 5i 3i

3i+

+ + ++

(12 + 5i)

48 + ++ 20i 36i (-15)

48 + ++ (-15) 20i 36i = 33 + 56i
 

Fig 2.5     Example showing the multiplication of complex numbers 
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In the upper section of this figure, the method of multiplying two sums is 
developed. In each of the first three rows, you see the same pattern of white and 
grey fields. The first row shows that this pattern is not restricted to multiplication. 
It illustrates the possibility of expanding the expression “four plus three apples” to 
the longer expression “four apples plus three apples”. The next two rows show 
that the apples can be replaced by any factor following the multiplication symbol. 
In the third row, this factor is a sum, and thus we have a product of two sums on 
the left side of the equation. By reordering the right side of this equation, we 
obtain the expression on the left side of the fourth row. Here, the method of 
expanding a white-grey-pattern can be applied twice, and this finally results in 
four products, the factors of which are no longer sums, but numbers. 

In the lower section of Fig. 2.5, the method from the upper section is applied to 
a product of two sums, each of which has one real and one imaginary summand. 
You see that the product of these two complex numbers is again a complex 
number, 33+56i. 

Now we have reached the point where I can show you that still another number 
creator, often unnoticed, was sometimes involved behind the scenes of our 
number-creation activities. First we look at Fig. 2.6. On the left hand side, all the 
types of numbers which we know by now are represented in a container view of 
the kind already used in Fig. 2.1. In this view, you should think of containers into 
which you are looking from above. There is one big container which contains 
smaller containers. Certainly, it would be more natural for you to consider if these 
were not containers for numbers but for flour, sugar and rice. In our case, the 
containers are for the zero, the positive real numbers, etc. On the right of this 
container view, the same numbers are represented as points in a plane. The points 
on the horizontal line represent the real numbers with the negative numbers on the 
left, the zero in the middle, and the positive numbers on the right. The points on 
the vertical line below and above the zero represent the imaginary numbers. This  
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Fig 2.6     Different types of numbers and their representations as points in a plane 
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vertical line is a copy of the horizontal line turned by 90 degrees. The points in the 
plane which are neither on the horizontal line nor on the vertical line represent the 
complex numbers. As an example, I selected and marked the number 4+3i. Instead 
of identifying this number by providing its real part and its imaginary part, I could 
have used an alternative identification by providing the radius 5 and the angle 
36.87 degrees. The horizontal line of real numbers, the line of the radius and the 
circle define the grey area which has the shape of a piece of pie. The particular 
form of identification to choose depends on the actual situation. Please note that a 
complex number is not a point in a plane, but can be represented as such a point. 

By applying this representation of complex numbers to the numbers in Fig. 2.5, 
we get Fig. 2.7. Even if I had not explicitly expressed the relations in the thickly 
framed fields, you presumably would have soon noticed that the radius of the 
product is equal to the product of the radiuses of the factors, and that the angle of 
the product is equal to the sum of the angles of the factors. Isn’t this amazing? 
When complex numbers were created as sums by adding the real parts and the 
imaginary parts of the numbers, radiuses and angles were not considered at all. 
Obviously, we were able to create something containing hidden laws of great 
importance, although we were absolutely unaware of these laws during the 
creation process. That’s what I meant when I said that another number creator was 
involved behind the scenes in our number creation activities. 

1. Factor

2. Factor

Product

Re + Im

4 + 3i

12 + 5i

33 + 56i

Radius

5

13

65 = 5 13

Angle

36.87 degrees

22.62 degrees

59.49 degrees = (36.87+22.62) degrees
 

Fig 2.7     Radiuses and angles for the multiplication in Fig. 2.5 

This new insight now makes it easy for us to define the division of two 
complex numbers as the inverse of their multiplication. Since in the multiplication 
operation, two radiuses are multiplied and two angles are added, the division 
operation can be performed by dividing radiuses and subtracting angles. This new 
insight also indicates how powers and roots of complex numbers can be 
computed: we have to compute powers or roots of radiuses and we have to 
multiply or divide angles. But certainly, this is only well-defined for real 
exponents. It is easy to write 2i, but it is not at all easy to find out whether this 
power expression defines a number or whether it does not make any sense at all. 
The richness of our language makes it possible not only to write down reasonable 
expressions or statements, but also to construct grammatically-correct sequences 
of words which are without any reasonable meaning. As an example, consider the 
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expression “the natural number between 17 and 18”. This can be written or said, 
but it has no meaning since it contradicts the definition of the natural numbers. 
Thus, the expression 2i could be nonsense or it could define a number. What I 
have presented to you so far is totally insufficient for determining which is true. 
You’ll have to wait until the end of Chapter 3. Then all the results we need for 
finding the answer will have been presented. However, it might be interesting for 
you to see the answer even if you cannot understand how it is obtained: 2i equals 
the complex number 0.769+0.639i. 

I think that now, at the end of the story of the creation of numbers, you will 
agree that we can say, “We saw how wonderfully and logically one result implied 
the next.” 
Sets 

Sets Are Everywhere 
Sets 

I still very well remember the time when the so-called set theory was introduced 
as a subject in elementary school teaching. All of a sudden, parents realized that 
they no longer could help their children with their homework. Adult education 
centers reacted by offering evening courses for parents to make them familiar with 
the modern way to teach mathematics, called the “new math.”  One of my 
classmates from high school became an elementary school teacher, and every now 
and then we still meet. At one of these meetings, I mentioned set theory and asked 
her to give me her view of it.  I still remembered that mathematics had not been 
her favorite subject in high school. But I also knew that being an expert in 
mathematics is not a requirement for understanding the basic concepts of set 
theory if they are adequately explained. Obviously, she had not been lucky enough 
to be taught by a good teacher at her college of education. From what she 
enthusiastically told me, I easily realized that she had not really understood the 
sense and the purpose of set theory. In the following section, I will tell you what 
her college teacher should have told my classmate. 

The mathematical concept of a set corresponds to the idea of a container which 
contains nothing, little or much, where the set is what’s in the container. In the 
previous section, I told you the story about the creation of the numbers, and there, 
in a few cases, I used the term “set” in its mathematical sense. When we look 
again at figures 2.1 and 2.6, we can imagine looking from above into containers 
which contain numbers. For example, there is a container for the zero, another one 
for the positive rational numbers, etc. Of course, the containers for numbers are 
not real containers like baskets or boxes. Only specific objects can lie in specific 
containers, like apples in baskets. If the objects are abstract, like numbers, their 
containers must be abstract, too. Most sets we are interested in are sets of objects  
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of the same type – like sets of apples or sets of numbers. It doesn’t make much 
sense to imagine a container which contains two apples, the fraction 3/5 and the 
moon.  Our interest in sets is restricted to cases where the elements in a set share 
some common characteristics which are worth talking about. For instance, we 
talked a lot about the characteristics of complex numbers. 

The objects which belong to a set are said to be the elements of the set. When 
we consider a well-defined set and some arbitrary object, it makes sense to ask 
whether or not the object is an element of the set.  For example, we may ask 
whether the number π is an element of the set of rational numbers, and the answer 
is no. The symbol ∈ is used in formulas to state the fact that a given object, x, is 
an element of a given set, S. The formula for this is written  x ∈ S. The shape of 
the symbol ∈ resembles the capital letter E to which we can associate the word 
“enclosed”. Accordingly, we can express the fact that x is not contained in S by 
writing x ∉ S. 

The use of the concept of sets lies in two quite different areas which I call the 
“language area” and the “infinity area”. In the language area, a small number of 
words with very strict meanings have been selected in order to make communication 
clearer and unambiguous. It was the language area which motivated the introduction 
of set theory into elementary school teaching. Mathematicians, however, think the 
language area is rather trivial.  For them, it’s the infinity area which makes set 
theory interesting. We shall now spend some time in the language area and, only at 
the end, shall we have a short look at the infinity area. 

It is appropriate for us to enter the language area like a child in the first grade. At 
first, we have to determine a universe which means only that we have to agree upon 
the type of objects we are going to talk about. Once we have determined our 
universe, we will not talk about other types of objects until we explicitly change the 
universe. Our first universe is shown in Fig. 2.8. It contains 18 geometric shapes 
which differ in size, shape and color. If we don’t want to talk about the universe as 
a whole, but only about certain selected elements, we may draw container borders 
within the universe and associate the selected elements with their containers. In 
Fig. 2.8 you see a border which encloses all white elements, and another border 
which encloses all triangles. The set of elements within such a border is called a 
subset of the universe. Once we have determined two subsets, we can ask two 
questions concerning these subsets. For the first question, we ask for the 
intersection of the two subsets which is the set of those elements which are 
contained in both subsets at the same time. In Fig. 2.8, the intersection shown is the 
set of all white triangles. Instead of asking for the intersection, we can ask for the 
union of two given subsets which is the set of all elements which are contained in 
at least one of the two subsets. If their intersection is empty, two subsets are said to 
be disjoint. In this case, there are no elements which are contained in both subsets. 
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Size Shape Color

{small, big}

{white, striped, grey}

{Triangle, Square, Circle}

White

Triangle

Universe

All elements, which are white or triangular
= Union (White, Triangle)

= White      Triangle

All white triangles
= Intersection (White, Triangle)

= White      Triangle

 

Fig 2.8     Illustration for the concepts of sets 

When we select a subset S from a universe U, we cannot avoid selecting a 
second subset at the same time.  It is the set which contains all elements which 
have not been selected in the first place. This set of all non-selected elements is 
called the complement of the original subset S. In our examples in Fig. 2.8, the 
complement of the set of all triangles is the set of all non-triangles, and the 
complement of the set of all white shapes is the set of all non-white shapes. By 
definition, a set and its complement are always disjoint, since they cannot share 
any elements. The union of a set and its complement is always the entire universe. 

The formula S1 ∩ S2 is read as “the intersection of the two sets S1 and S2.” You 
may imagine the symbol ∩  as a bridge which connects two river banks. The 
formula for an intersection means that an object belongs to both sets. The formula 
S1 ∪ S2 is read as “the union of the two sets S1 and S2.”  You may imagine the 
symbol ∪ to be a container into which objects are thrown from both sides. The 
formula for a union means that an object may come from either set.  

With this, our visit to the elementary school ends, and we return to the world of 
adults. Now we no longer play with shapes but with so-called “tuples.” The term 
tuple does not belong to our everyday language, but is used only in mathematics. 
Nevertheless, as you will soon see, there is no special theory behind it. A tuple is 
just an ordered set of positions or containers where each position is filled with an 
element from a set for that specific position. Many situations in our everyday life 
can be looked at as being tuples. Think of the position of a conductor in front of 
his orchestra, and think of the music stand where his score is placed. Each pair 
consisting of a conductor and a score is a tuple with two positions. The set from 
which an actual element for a given position can be selected is called the domain 
for this position. Every time when you have a finite set of positions and the 
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associated domains, you know the set of all possible tuples using these positions. 
On the right hand side of Fig. 2.8 you see three ordered positions (size, shape, 
color), where the domains for each of these positions are assigned as finite sets. 
While the elements of the domains are listed within curly brackets { , , , }, the 
tuples are written using round brackets ( , , , ). In the case of sets, the order in 
which the elements are listed is irrelevant. The curly brackets can be seen as 
borders of a container into which the elements are thrown. Thus, the formula {a, b, 
c} means exactly the same set as {b, c, a}. In contrast to this, the round brackets 
can be seen as borders of a form containing specific fields which have to be filled. 
For instance, the first field could be used for the age of a person, and the second 
field for the age of the spouse. Thus, the tuple (53, 56) is not the same as (56, 53). 

In most cases, we don’t consider elements which can be put on a table and 
grouped as in Fig. 2.8. Therefore, we no longer make drawings of our sets, but we 
define them using formulas. 

As I mentioned earlier, formulas are nothing but adequate abbreviations for 
situations which we could have expressed in natural language. You previously saw 
formulas in the section where the creation of the numbers was considered, but 
those formulas were of a type which people usually don’t think of as formulas. 
Nevertheless, the arithmetic expression (3+4)∗5 is a formula, since it is an 
abbreviation of the much longer text “the result which we get when we first add 
the two numbers 3 and 4 and then multiply this sum by the number 5”. An 
example of an expression which everybody will call a formula is the following: 
(x, y) with y=(x+2)∗x-3. This stands for “all ordered pairs of two numbers where 
the second number is obtained by adding 2 to the first number, then multiplying 
this sum by the first number and finally subtracting 3 from the product”. Here, the 
letters x and y stand for the longer expressions “first number” and “second 
number”, i.e., the letters are substitutes for actual numbers whose values are left 
open until the formula is applied. Such substitutes in formulas are called variables. 
Although in most cases formulas do contain variables, this is not a requirement for 
an expression to be a formula.  

The formulas defining the sets from Fig. 2.8 are given in Fig. 2.9. In the formulas in 
Fig. 2.9, you find two symbols, × and ⎜, with which you probably are not familiar. The 
symbol × is the multiplication symbol in so-called Cartesian products where the two 
factors are sets. ”Oh no, not again!” you might now possibly object. “We just learned 
how to multiply complex numbers, and now you expect us to multiply sets.”  But 
again, you shall see that in spite of the strange wording, the idea behind it is quite 
simple. The term “Cartesian product” is named after the French philosopher René 
Descartes [DES] (1596-1650). The Cartesian product of n sets is defined as the set of 
all tuples with n positions, where the domains of these are the factors of the product. 
Our universe in Fig. 2.8 is the Cartesian product of the domains for the three positions 
size, shape and color. The domain of the size has two elements, that of the shape has 
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three elements, and that of the color also has three elements. Therefore, the Cartesian 
product must contain 2∗3∗3=18 tuples. If you count the elements in Fig. 2.8, you will 
find 18 elements. 

The first formula in Fig. 2.8 which contains the symbol ⎜is read as “The set 
‘white’ is defined as the set of all elements x from the actual universe for which it 
is true that their color is white.” In this text, the symbol  ⎜ stands for the section 
“from the actual universe, for which it is true that…” 

Domains of the Attributes: Size     = {small, big}
Shape  = {Triangle, Square, Circle}
Color    = {white, striped, grey}

= { (small, Triangle, white),   . . .   (big, Circle, grey) }

White = { x  x has the color white. }
 x is a Triangle. }

Intersection: White Triangle  = { x  White)  AND  (x  Triangle) }
Union: White Triangle  = { x  White)    OR   (x  Triangle) }

Universe   =  Size Shape Color

Triangle = { x 

(x
(x

 

Fig. 2.9     Formulas for the sets in Fig. 2.8 

We stayed long enough in the language area for you to realize how the concepts 
of set theory can help to communicate clearly and unambiguously. These concepts 
have been created for no other purpose. We now move on to the second area 
where set theory is useful. I called this the infinity area. Because a set could have 
infinite size, it is no longer reasonable to talk about “the number of elements in a 
set,“ but to use the term ”power“ instead. The power of the set in Fig. 2.8 is 18. 
All the sets you learned about in the story of the creation of numbers have infinite 
power. From the beginning of mankind, humans have struggled with their fate. 
This fate forces them to think about the infinite but, at the same time, prevents 
them from really understanding it. My son was still in kindergarten when he asked 
me, “What is greater than infinity?“ 

The mathematician George Cantor (1845-1918) is called the father of set 
theory. He used this theory mainly to prove that there are different powers of 
infinity. When mathematicians argue about infinity, they always use the infinity of 
the set of natural numbers as a reference for infinite powers; this might be called 
the “natural infinity.” Realizing that there is no biggest natural number is a 
fundamental consequence of having understood the concept of counting. Cantor 
asked himself how he could compare the powers of infinite sets. He came up with 
an answer to this question by first answering it for finite sets and then transferring 
the answer to infinite sets. Assume you could not count, but you wanted to 
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compare the powers of two finite sets. What would you do?  Imagine a set of cups 
and a set of saucers. You would make pairs by placing cups on saucers until no 
more pairs could be formed. At the end of this process, you would have reached 
one of three possible situations: either you found a saucer for each cup, or there 
are cups or saucers left over. In each case, you can say whether the two sets have 
equal powers or which one has a bigger power. 

Now we can transfer this method to compare two infinite sets. As an example, we 
consider two sets, one being the set of all natural numbers, and the other being the 
set of all positive even numbers. Intuitively, you might say that the set of all positive 
even numbers has half the power of the set of all natural numbers, since only every 
second natural number is even. But this is not true according to Cantor’s definition 
since, as in the case of cups and saucers, you can make pairs which you can write 
down as tuples: (1, 2), (2, 4), (3, 6), (4, 8) and so on. You see that for each natural 
number or for each positive even number, you find its partner in the pair. You shall 
not reach an end in the process of making pairs because you are working with 
infinite sets. According to Cantor’s definition, the powers of the two sets considered 
are equal. Whenever it is possible to order the elements of an infinite set as a 
countable sequence, this set has the same power as the set of all natural numbers. 

Consider Fig. 2.10. Each circle stands for a pair of two natural numbers. These 
circles are connected by a directed path beginning at the circle for the pair (1, 1). 
By this path, all circles are ordered in a countable sequence with the count number 
contained inside each circle. Thus the set of all pairs of natural numbers has the 
same power as the set of all natural numbers alone. It could even be shown that 
the same result is obtained when tuples with more than two positions are 
considered.  

1

15 16

17

6 7

8 14

1 2

3 5

13 18

19

4 9

10 12

11 20

2 3 4 5 6

1

2

3

4

5

n1

n2

 

Fig. 2.10     Enumeration of all ordered pairs of natural numbers 
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We have not yet considered a set whose power is larger than natural infinity. 
Recall that each positive rational number can be written as a fraction n/d where 
both the numerator n and the denominator d are natural numbers. Therefore the set 
of all positive rational numbers is a subset of the set of all pairs of natural numbers 
and cannot have a power greater than natural infinity. But Cantor showed that the 
power of the set of all real numbers is greater than natural infinity. This means that 
he proved that the real numbers cannot be ordered completely as a countable 
sequence. I won’t show you how he did it. If you want to know, you will have to 
ask an expert. Further, Cantor was even able to show that there are sets which 
have powers greater than the power of the set of all real numbers. 
Functio ns 

Functions Tell Us How to Get Results 
Functio ns 

In everyday language, the noun and the verb “function” are used frequently. “I just 
don’t function early in the morning.”  “Our TV set doesn’t function any more.”  “I 
have no idea what the function of this device might be.”  These phrases talk about 
the purpose of a system which might not be fulfilled correctly or could be 
unknown. From this everyday meaning of the word function, one cannot conclude 
how this word is interpreted in mathematics. A mathematical function is a definite 
assignment by which each element of an input set gets a partner in an output set. 
Instead of talking about the pair (input element, output element), mathematicians 
prefer to say (argument, result). Here, the word argument is used with a quite 
different meaning than usual where arguments are a type of discussions. The input 
and output sets of a function may be the same set or two different sets. Let’s 
consider the simple example of doubling natural numbers. The input set of this 
function is the set of all natural numbers, and the output set is the set of all even 
natural numbers. In this case, the output set is a subset of the input set. The 
function of doubling is reversible since to each element of the output set belongs 
exactly one input element. By halving the output element, we get the 
corresponding input element. A simple example of a non-reversible function is 
“omitting the sign.” The input set is the set of all real numbers, and the output set 
is the set of all non-negative real numbers. Each non-zero result is assigned to two 
input elements, e.g., if the output result is 5, the input element could be -5 or +5. 

In most texts where the concept of mathematical functions is introduced, the 
input and output sets of the examples are sets of numbers. From this, most people 
conclude that it is part of the definition of mathematical functions that they 
determine how the resulting number is computed from input numbers. Therefore, I 
emphasize that the concept of mathematical functions does not refer to numbers at 
all. Neither the input set nor the output set must be a set of numbers. Although it is 
true that in many cases of interest these sets are number sets, this does not mean 
that the concept of functions is connected to the concept of numbers. The fact that 
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many people wear glasses does not justify the assumption that all human beings 
wear glasses. Anything concrete or abstract which is unambiguously connected to 
something may be considered as an input element of a function. For instance, 
think of the children in first grade in a certain elementary school. Many things are 
connected unambiguously to these children, e.g., the date and location of their 
birth, their parents, etc. Therefore, we may say that the relation between the 
children and their parents is a function where each child is an input element and 
each pair of parents is an output element. If a child has no sisters or brothers in the 
class, the function is reversible since then it is possible to start with a pair of 
parents and unambiguously get to the corresponding child. 

Until now, all the functions considered as examples related one set to one other 
set, and therefore they had only one input position and one output position.  But 
this is not necessarily the case. A function may have multiple input positions and 
multiple output positions where each has its own domain. As an example, we 
consider the function 

 
(CEO, CFO, CIO) = Top Management (Corporation, Point in Time). 

 
The form in which this is written is the standard form for functions in 
mathematical formulas: the name of the function, Top Management, is followed 
by the list of input positions enclosed in round brackets. This indicates the fact 
that the input elements are in a tuple. The input positions are written using italic 
letters in order to emphasize the difference between positions and what actually 
fills these positions. The position Corporation may be filled by “General Electric 
Co.” or “General Motors Co.” In contrast to this, “Top Management” is the name 
of the function, and this must be distinguished from the result positions which are 
listed on the left side of the equation symbol. Here, too, the position names are 
written using italic letters. Possible entries for the position CEO might be “Henry 
Ford” or “James P. Goodwin”. Whenever the value of the input tuple is given, the 
value of the output tuple is determined.  

Of special interest are those functions with only one output position and 
possibly multiple input positions where the same domain applies to all these 
positions. A very simple example of such a function is the Addition function, 

 
sum = Addition (first summand, second summand). 

 
Our next example is introduced in Fig. 2.11 which shows a round table with three 
chairs. We assume that these chairs cannot be moved. This could be the situation 
in the restaurant of a cruise ship where tables and chairs are fastened to the floor in 
order to avoid accidents in case of rough seas. The right side of the figure lists the 
six possibilities for how three persons A, B and C could be seated in the chairs at 
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this table. We now assume that the captain can tell these persons to change their 
seating order. There are six different movement orders the captain could give, 
including the order “Stay seated!” Using the two domains, “seating plans” (like 
A=3, B=1, C=2) and “orders” like “move clockwise!”, each having six elements, 
we can define some functions which are presented in Fig. 2.12 
 

Original seating plan
1 2 3

A B C

Round table
for the three

persons
A, B and C

1

2 3

A

B C

Set of the
orders to move

stay

anticlock

clockwise

2 with 3

1 with 2

3 with 1

1 2 3
Resulting seating plan

A B C

C A B

B C A

A C B

B A C

C B A

 

Fig. 2.11     Example about “seating plans“ 

We now concentrate on the “order combination function” which has the same 
formal structure as the addition function: there are two input positions and one 
output position, and all three positions have the same domain, the set of the six 
movement orders. The order combination function specifies the results when the 
captain gives two orders sequentially. The results are defined by the table in the 
lower part of the figure. The shaded fields contain the results which are not 
changed by interchanging the two input orders. If, for instance, the captain first 
says: “Move anticlockwise!” and then says: “Move clockwise!”, the final seating 
plan is the same as if he had said: “Stay seated!” Not all fields in Fig. 2.12 are 
shaded since in many cases the result depends on which of the two orders was 
given first. Such a dependency on the order of the input elements is not new to us, 
since we already have seen it in subtraction and division. When the result of a 
function with two input positions is independent of the order of the input elements 
in all cases, this function is said to be “commutative”. The best known examples 
of commutative functions are the addition and multiplication functions. 
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Six "move-functions" with one argument:
new seating plan = stay seated (original seating plan)
new seating plan = move counterclockwise (original seating plan)

new seating plan = exchange seats 3 and 1 (original seating plan)

. .
 .

One "move-function" with two arguments:
new seating plan = execute (move-order, original seating plan)

One "order combination function" with two arguments:
equivalent order = sequence of (first order, second order)

 

Fig. 2.12     Alternative functions for Fig. 2.11 

Playing around with functions leads to structures which might be called 
“Function chains”. In such a structure, the result of an “inner function” is used as 
an input element of an “outer function”. In the example of Fig. 2.12 the possibility 
of creating chains is quite obvious. Consider the example 

 
3and1 (original seating plan) =  2and3 ( clockwise (original seating plan) ) 
 

Here, the original seating plan is first changed by all three persons moving 
clockwise. Then the resulting seating situation is changed by interchanging the 
two persons on chairs 2 and 3. The final seating situation is the same as if the 
original seating plan had only been changed once by interchanging the two 
persons on chairs 1 and 3. 

The next function we consider is called a “polynomial”. This name has no 
everyday meaning, but is used only in mathematics. Nevertheless, polynomials have 
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a rather simple functional structure. They are defined by chaining multiplications 
and additions in a specific way. An example is presented in Fig. 2.13. A polynomial 
function P(x) has only the single input position x. The highest exponent which 
occurs in a polynomial determines the so-called degree of the polynomial. Thus, the 
example in Fig. 2.13 is a 3rd degree polynomial. The numbers multiplying the 
powers of x are called the coefficients of the polynomial; they can be seen as 
weights of the powers of x.  

The Polynomial written as a sum is determined
by its coefficients:

The Polynomial written as a product is determined
by its zeros and the coefficient of the highest power:

P(x) = 2 x3 + (-15) x2 + 54 x1 + (-91)

P(x) = 2 3,5(x - ) (2+3i) ) (2-3i) )(x - (x -
 

Fig. 2.13     Alternative representations of a polynomial 

Mathematicians have come up with many questions which could be asked 
concerning polynomials. They found that a polynomial can be expressed in two 
alternative forms, either as a sum of weighted powers of x, or (in factored form) as 
a product based on those values of x for which the result of the polynomial is zero. 
In factored form, each factor enclosed in brackets is a term where a number is 
subtracted from x. When x gets the value of this number, the factor and with it the 
entire product becomes zero. This value of x is called a “zero” of P(x). The 
number of these factors is always equal to the degree of the polynomial. 
Depending on the coefficients, zeros can be complex numbers. If all coefficients 
are real numbers, complex zeros can only occur in pairs where the real parts of 
both partners in a pair are equal, and the imaginary parts differ only in sign. This 
is the case in the example in Fig. 2.13. It is also possible for a zero to occur more 
than once in the product form. That’s enough for you to know about polynomials. 
The main thing is that polynomials and their zeros belong together like cars and 
their wheels. 

We are still sitting in our space ship flying over the mathematics continent and 
actually looking down on function country. Maybe you have read that we could 
see the Great Wall of China from a spaceship with only the naked eye. Of similar 
importance is the function we consider next; it cannot be missed when we look 
down on function country. When I introduced complex numbers, I said that it is 
only a question of appropriateness whether a complex number is represented by its 
real part and its imaginary part, or by its radius and its angle (see Fig. 2.6). From 
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that statement we can conclude that there must exist two pairs of functions which 
transform the one form of representation into the other and vice versa. When the 
real part and the imaginary part are given as inputs, two functions provide the 
radius and the angle as their results, and when the radius and the angle are given, 
two other functions provide the real part and the imaginary part. These pairs of 
functions are presented in Fig. 2.14. 

A complex number is determined by two parts:

real part = Re(radius, ) imaginary part = Im(radius, )

radius = Radius (re, im)  = Angle (re, im)

either by

or by

and

and

These parts are connected by the following relations:

radius2 = re2 + im2

re = radius  Re(1, )
re = radius  cos( )

im = radius  Im(1, )
im = radius  sin( )

 

Fig. 2. 14     Functional relations between the parts determining a complex number 

Again looking at Fig. 2.6, we consider the complex number (4 + 3i) which has 
radius 5 and angle 36.87 degrees. One-fifth of this complex number will have the 
radius 1 and still have the angle 36.87 degrees, since the division by a real number 
does not change the angle. Whenever we start with a complex number which has 
radius 1, we can obtain any other complex number which has the same angle by 
multiplying the real part and the imaginary part by the desired radius. This is 
expressed in the lower part of Fig. 2.14 for the complex number (re) + i (im) with 
angle α. By restricting the position radius in the two functions Re(radius, angle) 
and Im(radius, angle) to the value 1, two new functions are defined which have 
only one input position each. These two functions are called “sine” and ”cosine”, 
and they are abbreviated by sin and cos, respectively. These two functions are 
called transcendental functions; this means that the result for a given input cannot 
be obtained by a finite arithmetic computation. But at least we can draw diagrams 
which represent these functions. Fig. 2.15 shows the graph of the sine function and 
how it is obtained. The circle on the left has the radius 1 and, correspondingly, its 
circumference is 2π. This circumference appears again as a horizontal straight line 
on the right – only it is shortened by applying a certain scaling. Thus, each point 
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on the circle corresponds unambiguously to a point on the horizontal line. 
Therefore, each point on the horizontal line has an imaginary part assigned to it, 
and its length can be taken from the circle on the left. The curve is the line which 
connects all the ends of the vertical lines having the length of the corresponding 
imaginary parts. The graph of the cosine function has the same form, but 
compared to the sine function, it is shifted left by π/2, i.e., its maximum is located 
at α=0 and is repeated at α=2π, while its minimum is located at α=π. 

/2, i.e.
quarter circle

im = Im(1, ) = sin( )

+1

-1

im

reradius = 1

 

Fig. 2. 15     The function sin(α) 

Although there is a particular connection between complex numbers and the 
functions sine and cosine – more details about this will be presented in Chapter 3 - 
these functions can also be defined without any reference to complex numbers. In 
that case, the definition refers to a right-angled or right triangle. The longest side 
of such a triangle is called its “hypotenuse”. It is situated opposite the right angle. 
The other two sides are called “legs”; and they enclose the right angle. Usually, 
the letter c is chosen as the variable for the length of the hypotenuse, and the 
letters a and b are used for the lengths of the legs. Now, we assume that the angle 
α is enclosed by the hypotenuse and the leg which has the length b. Then sin(α) is 
defined to be the fraction a/c, and cos(α) is defined to be the fraction b/c. If we 
apply these definitions to the grey triangle in Fig. 2.15, the radius is the 
hypotenuse while the horizontal real part and the vertical imaginary part are the 
two legs. Thus, we have c=radius, a=im and b=re, and therefore sin(α)=im/radius 
and cos(α)=re/radius which corresponds to the definitions in Fig. 2.14.  

An interesting area in function country is called the “recursive function 
definition”. It is well known and emphasized by high school teachers that one 
should never use a term that is defined in its own definition, since otherwise the 
definition would be cyclic. At first look, the recursive definition of a function 
seems to be cyclic since, as a consequence of its being recursive, the name of the 
function appears in its definition. But a second look shows that the definition is 
not cyclic, but a spiral with a well-defined end point.  
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The concept of recursive function definitions can best be introduced by presenting a 
vivid example. In Fig. 2.16 you see the elements of the game “Towers of Hanoi”. On 
the foundation, three thin pillars are erected at equal distances, and on these pillars can 
be placed circular discs with holes in their centers. There are four discs with different 
diameters. In the left upper corner of the figure, you see a tower built with the four 
discs. 

Left
(L)

Middle
(M)

Right
(R)

Tower of (n-1) = 3 discs
from start = L

with auxiliary pos. = R
to destination = M

Tower of (n-1) = 3 discs
from start = M

with auxiliary pos. = L
to destination = R

Tower of n = 4 discs
from start = L  with auxiliary position = M  to destination = R 

One disc directly from start = L  to destination = R  

Fig. 2. 16     The game “The towers of Hanoi“ 

The game is played according to the following rules. At the beginning, all discs 
are on the left pillar where they are ordered according to their size, the biggest disc 
sitting directly on the foundation. At the end of the process, the same tower of 
discs in the same order must be located on the right pillar. The discs have to be 
moved one at a time, and never shall a disc be placed onto a smaller disc. Usually 
the game is played with seven discs. For each given number of discs n, there exists 
one optimal sequence of moves which requires the minimum number of moves: 
2n-1. We can define a function which results in the optimal sequence of moves. In 
the definition of this function, we do not assume that the original tower is sitting at 
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the left pillar and must be transferred to the right pillar. We leave open which 
pillars shall be the start, the destination and the auxiliary, i.e., the function will 
have these positions as input positions which actually have to be filled.  By 
looking at the recursive function definition in the lower part of Fig. 2.17, you can 
see that this is an appropriate decision. This definition is based on the assumption 
that it would be easy to find the optimal sequence of moves for n discs if we 
already knew the optimal sequence for (n-1) discs. Then we would first transfer a 
tower of (n-1) discs from the start to the auxiliary position, which leaves the 
biggest disc alone on the start. This disc then can be moved directly to the 
destination. And finally, we could move the tower of (n-1) discs, one at a time, 
from its auxiliary position to the destination using the optimal sequence for (n-1) 
discs. This process is illustrated in Fig. 2.16. 

 

if n = 1 if n > 1

The function for computing the optimal sequence of steps
for the game "The towers of Hanoi"

Sequence (Number of discs n, Start S, Auxiliary A, Destination D)

Example:
Sequence (4 discs, from Left, via Middle, to Right) =

[L M] [L R] [M R] [L M] [R L] [R M] [L M]
[L R]
[M R] [M L] [R L] [M R] [L M] [L R] [M R]

Recursive Definition:  Sequence (n, S, A, D) =

[S D]
Sequence (n-1, S, D, A)

followed by
followed by

[S D]
Sequence (n-1, A, S, D)

 

Fig. 2. 17     Recursive definition of the “Hanoi-sequence-function“ 

That the function definition in Fig. 2.17 is not cyclic is seen by distinguishing 
the two cases n=1 and n>1. If the original tower contains only a single disk – i.e., 
n=1 – the result of the function is determined directly, and this case will always be 
reached by a finite number of recursions. For each time when the number of discs 
is greater than one, this number is reduced by one which finally will lead us to the 
case n=1. 

When I decided to present the examples in Fig. 2.11 and 2.16, I had in mind to 
show you that you can find functions everywhere in your daily life – you only have 
to adapt your eyes appropriately. However, as I said earlier, most of the functions 
mathematicians work with are not taken from daily life. There is a special 
mathematical discipline called “function theory” where functions on the domain of 
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complex numbers are the subject. In Chapter 3, I shall introduce differentiation and 
integration which are functions whose domains are also functions. A function 
whose domains are also functions has already been presented to you. You can see 
this in Fig. 2.12. 

“Come Closer!” Is What Limits Want 
Limits 

The politician says, “I shall not comment on the outcome of the election before I 
have had time to analyze it.“ The chemist says, “Before one can begin the 
synthesis of chemical products, one first must learn how to analyze.” And the 
health advisor says, “The best therapy for you would be psychoanalysis.” When 
people use the word “analysis” they have the idea that something must be taken 
apart. There is a field within mathematics which also is called analysis, and here it 
is infinity which has to be taken apart. But now, the problems of infinity are not 
those which George Cantor tried to solve by comparing powers of infinite sets. 
Now the question is about how we can get from infinite to finite results. What I 
mean by this colloquial characteristic can best be explained by describing a 
paradox which was presented by the Greek philosopher Zenon of Elea (about 450 
BC). Principally, the argument can be applied to any race, but Zenon chose the 
race between the hero Achilles and a turtle, since in this case the difference of 
speed is so extreme that the absurdity of the paradox is evident beyond all doubt. 
The paradox seems to prove that Achilles can never catch up with the turtle when 
it starts with a lead. The reasoning goes as follows: First, Achilles has to run the 
distance of the lead granted to the turtle. When he reaches the point from where 
the turtle started, the turtle is no longer there but is at a point some distance away. 
Now, Achilles has to run this distance, but when he reaches the end of it, the turtle 
again is no longer there, but again is at some distance away. Thus the distance 
Achilles has to run is cut into an infinite sequence of sections which get shorter 
and shorter, but since their number is infinite, the question arises about whether or 
not Achilles can ever catch up with the turtle. Since the days of Zenon, 
mathematicians have been very creative, and they have found a way to add up an 
infinite number of summands and get a finite result. 

At the top of Fig.2.18 you find a formula describing the details about this 
paradox. In this formula, vA and vT are the speeds of Achilles and the turtle, 
respectively. Each summand in brackets represents the relative time Achilles 
needs to run a specific section of the infinite sequence of sections. The first 
summand, namely the 1, stands for the time Achilles needs to run the length of the 
original lead of the turtle. I chose a lead of 50 meters, and I assumed that Achilles 
runs at a speed of ten meters per second which is the typical speed of a runner in 
the one-hundred meter race in the Olympics. The speed of the turtle is assumed to 
be one hundredth of the speed of Achilles (q = vT/vA = 1/100). 
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Catch-up-time = 1
2 3 4

. . .++ + + +
Lead

vA

vT
vA

vT
vA

vT
vA

vT
vA

Catch-up-time =
50 m

10 m/s
1

2 3 4

. . .++ 1
100

+ 1
100

+ 1
100

+ 1
100

Catch-up-time = 5 s 
1 - 0,01

1 =
0,99
5 s

=  5.05050505... s

1 + q + q2 + q3 +  . . . + qn

q + q2 + q3 +  . . . + qn + qn+1

Sum (q, n) =

q  Sum (q, n) =

Sum (q, n) - q  Sum (q, n) = 1 - qn+1

(1 - q)  Sum (q, n) = 1 - qn+1

Sum (q, n) =
1 - q
1 - qn+1

For  0 < q < 1 :       Sum (q, ) = lim  
1 - q
1 - qn+1

=
1 - q

1
n ∞

 

Fig. 2. 18     Using an infinite sum to calculate the catch-up time for the Achilles-turtle race 

In the middle of Fig. 2.18 you see the equations that show the trick which made 
it possible to compute the sum of an infinite number of summands. First, we 
assume that we were interested only in the sum of the first (n+1) summands where 
the last summand is qn. This sum, Sum(q, n), is a function with two input 
positions. Now we multiply both sides of the equation for this sum by the factor q 
which is the base of the powers to be added. In the case of the race, we have 
q=1/100. By writing the product appropriately under the original sum, we see that 
the sum and the product share a long section in the middle and differ only at the 
left and the right ends. This makes it possible to get rid of the “unmathematical 
three little dots” (used to represent unwritten intermediate terms) by subtracting 
the lower line from the upper line. Dividing both sides of the equation by 1–q 
gives us the formula for computing the function Sum(q, n) for finite values of n. It 
is given in the second to last line in the middle of Fig. 2.18. 

Here, my wife says, “Look, that’s just the reason why I don’t like math. I have 
no difficulty in understanding your reasoning, but never in my life would I have 
come up with this trick. I don’t like a scientific discipline where you constantly 
have to come up with new tricks, and where you are called stupid if you don’t find 
the tricks.” I appreciate that my wife can express her aversion against mathematics 
so clearly. I can’t be sure whether I myself would have found the tricky solution  
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shown in Fig. 2.18, but certainly, I will not call you stupid if you don’t come up 
with such tricks. The only thing I expect is that you can easily follow the 
reasoning when it is adequately explained. 

We still have a short distance to go before we reach our final goal, the formula 
for computing the sum of an infinite sequence of summands. The number n of 
summands is still an input position in our function for the sum of finite length. 
Now we check what happens if we make n greater and greater. With growing n, 
the power qn+1 gets smaller and smaller when q is less than one. Think of our 
example of the race where q is 1/100.  In this case, qn+1 has already dropped to one 
millionth when n reaches the value of only two. As long as n has a finite value, the 
power qn+1 has a non-zero value, but this value can be made as close to zero as one 
might like just by making n big enough. This is a characteristic of any so-called 
limit value, that it is possible to get as close to it as one likes just by making n big 
enough. Mathematically speaking, qn+1 goes towards zero as n goes towards 
infinity. In formulas, limit values are symbolized by “lim”, the first three letters of 
the word limit. In our example, the limit value of the sum enclosed in brackets is 
100/99. The time Achilles needs to catch up with the turtle is found to be 500/99 
seconds. He needs 5 seconds to reach the position the turtle started from, and then 
he needs only 5/99 seconds to finally catch up. 

The next limit I shall present to you plays such a dominant role in mathematics 
that any one who does not know this limit will not be taken seriously by 
mathematicians. I am talking about the concept of steady growth. When they hear 
the word growth, many people do not think first of the growth of invested capital 
or money.  Most will think of the growth of trees or children. In the case of 
growing capital, there are predefined points in time when the interest is added to 
the capital, and this results in a stepwise growth. Natural growth, however, is 
always steady growth since there are no steps. The limit situation we are aiming at 
is obtained by starting with stepwise growth and making the equal time intervals 
between the steps shorter and shorter. The diagram on the left side of Fig. 2.19 
shows one step of the growth of capital C with a growth rate of 100 percent. 
Presumably, you think this is an exorbitant rate, but this is true only if this capital 
is money and the time interval is rather short. In Fig. 2.19, however, no 
assumptions are made concerning the type of capital and the duration of the time 
interval T. When both the growth rate and the step width are reduced to one-fourth 
of what they are on the left side, the growth process is shown in the diagram on 
the right side. While at the end of the time interval T, the capital in the left 
diagram has grown by a factor of only two, the capital in the right diagram has 
grown by a factor of 2.4414 = [ ( (1+0.25)∗(1+0.25) )∗(1+0.25) ]∗(1+0.25) = 
(1+0.25)4. This is an application of the formula (1+p)n for compound interest with 
an interest rate of p=0.25 and n=4 time intervals being used. 
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Interest = C

Capital = C

T
Interest rate = 100 % for time T

2 C

C

0.31 C

0.39 C

0.49 C

2.44 C

Interest rate = 25 % for time T/4
T

0.25 C

0 0

 

Fig. 2. 19     Stepwise growth at different rates 

Now we look at what we get when we increase the number of intervals n within 
the total time T and, at the same time, reduce the growth rate per interval to the 
value of 1/n. Here we get the limit which is shown in Fig. 2.20. This limit is 
symbolized by the small letter e in honor of the great mathematician Leonhard 
Euler (1707-1783). By setting both the initial capital C and the time T to one, we 
get the standardized function of steady growth, f(x)=ex, which is called the 
“exponential function” and is shown in Fig. 2.20. 

Curve of the standardized 
steady growth
y = ex

y

x

1

2

4

1 2-1 0-2-3

3
e = lim  (1 + 1

n )n = 2,71828
n ∞

 
Fig. 2. 20     The exponential function ex 
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An Eye for an Eye and a Tooth for a Tooth – That’s the 
Principle of Equations 
Equatio ns 

Around the year 800 AD, the Arab scientist Al-Hwarizmi, who lived in Bagdad, 
wrote a booklet on solving equations. One of the words occurring in the title of 
this booklet is al-gabr which means to set, complete or re-establish. This word is 
the root of the word “algebra” which is the name of the mathematical discipline 
dealing with equations. I still remember my time in high school when somebody 
told me that algebra meant computing with letters. It was not a teacher who said 
this, since a teacher would have given a more precise and complete explanation. 
Although computing with letters is not a completely wrong definition, it misses 
one important point. Algebra is the discipline of generating sequences of equations 
or inequalities.  An equation is a proposition saying that terms on both sides of the 
equals sign identify the same thing. An inequality is a proposition saying that the 
two things identified by the terms on both sides of the relation symbol are not 
equal and are related to each other in the way specified by the symbol. The 
relation symbols for inequalities which occur most often are ≠, <, >, ≤  and  ≥ . 
From here on, the presentation is restricted to equations because once equations 
have been understood, this understanding can be transferred easily to inequalities.  

Let’s have a look at a first example of an equation: 
 

The president of the United States in 1864 = Abraham Lincoln 

 

Although the terms on the left and right sides of the equals sign look quite 
different, they identify the same person. Identification in this context means 
providing enough information for unambiguous specification of an individual 
element from a concrete or abstract universe. Though many letters occur in the 
equation above, they are not used in the sense meant by the statement, “Algebra is 
computing with letters.” This statement means that letters are used as so-called 
“variables” which stand for elements and which will be specified later. In the 
equation 
 

(Sum of the summands (2k-1) for k from 1 through n ) = n2, 

 

two variables k and n occur. What this equation says can be said in natural 
language: “For any natural number n, the sum of the first n odd numbers equals 
the square of n.” For instance, if we choose n to be five, we get 
1+3+5+7+9=25=52.  In the natural language form of the equation, the term “odd 
numbers” can be used since it can be assumed that everybody knows what that is. 
But in the formula, the concept of odd numbers has to be expressed by the term 
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(2k-1) where k is used for counting the odd numbers. For example, if k is set to be 
five, we get the fifth odd number as (2∗5–1)=9.  

Since this equation is true for any natural number n, the equation states a so-
called mathematical law. But variables are needed not only to express 
mathematical laws; they are also useful for describing problems where certain 
individual elements have to be found. In these cases, the standard letter for the 
variable is x, and it represents an unknown value or an unknown element. Maybe 
you have already heard in a movie or read in a novel about a Mr. X. In this case, 
the variable X stands for the name of an unknown person who is to be found.  The 
example I chose to explain the use of x is a simple brain-teaser: “Today is Anna’s 
birthday. I am not telling you what her present age is, but it is hidden in the 
following statement: When Anna’s age is five times the age which she had three 
years ago, she will be exactly twice as old as she is today. What is her present 
age?”  In this case, the variable x is used to represent Anna’s present age and, 
using this, the text in the brain-teaser can be easily transformed into the formal 
equation of Fig. 2.21. 

 

she will be 
twice as old

as she is
today

When Anna
will have
five times

the age which 
she had three

years ago

2 x=5 ( x - 3 )
 

Fig. 2. 21     Transforming a brain-teaser into an equation 

In this figure, I arranged the text and the formula in such a way that you can see 
just how the formula was created. The equation in Fig. 2.21 is not a mathematical 
law, but just a statement about Anna’s present age. Please note that the number 
which is identified by the terms on the two sides of the equation do not equal 
Anna’s age, but equal twice her age. There is only one value for x which makes 
this equation a true statement, and this value is 5. That means that 5 is the solution 
of the equation. And how can this solution be found?  I mentioned earlier that 
algebra is the discipline of generating sequences of equations. This generation 
process begins with a first equation being given, and then the next equation is 
obtained from it. The process hopefully ends with the equation which we were 
looking for. What is the equation we are looking for in our example of Fig. 2.21? 
This final equation obviously is x=5, since once we find it we know Anna’s 
present age. The sequence of equations which begins with the equation in Fig. 
2.21 and ends with x=5, is shown in Fig. 2.22.  
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Application of the
distributive law

Subtraction of 2 x

Addition of 15

Division by 3

10 = 10

10 = 10

0 = 0

15 = 15

5 = 5

5 x - 15 = 2 x

3 x - 15 = 0

3 x = 15

x = 5

5 (x - 3) = 2 x

 

Fig. 2. 22     Steps for solving an equation 

The basic rule for generating the next equation from a given one is very simple: any 
operation may be performed as long as it is performed on both sides of the equation at 
the same time. The operation used may change that which it operates upon, but since 
the same change occurs on both sides of the equal sign, the equation remains correct. 
Look how the sequence of equations in Fig. 2.22 is generated. The first operation uses 
the distributive law. This law gives us the right to transform the product of a number 
with a sum into a sum of products. This operation leaves the result of the computation 
unchanged, and therefore it needs to be performed only on the left hand side of the 
equation. Each of the next three operations changes that which is operated upon and 
therefore each must be performed on both sides of the equation at the same time. The 
choice of the sequence of operations was guided by the desired form for the final 
equation. Once we know the value of x, we can determine the numerical values for the 
two sides of the equations. These values are indicated by the arrows on the right side 
which lead from the bottom up, whereas the equations were generated from the top 
down. 

Here again it may happen that some of my readers – and maybe my wife, too – 
will say: “How would I know which operations to perform on an equation in order 
to generate a sequence of equations which ends with the appropriate final 
equation?” Actually, because our first equation is of a very simple type, there exists 
a well-defined set of rules concerning how to choose the appropriate operations. 
But I don’t see the need to present these rules, particularly because there are only a 
few types of equations which can be solved following such strict rules. 

It often happens that there is not just a single unknown element x, but that the 
number of unknowns is greater than one. In these cases, a single equation is not 
sufficient to provide all the information needed to completely specify the 
unknowns. It can be proven that the number of equations which are needed must 
equal the number of unknowns. In Fig. 2.23 you see two examples of sets of 
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equations, each with two unknowns, x1 and x2. On the left hand side of the figure, 
there are two equations and their solution is given at the bottom. On the right hand 
side, again there are two unknowns, but here three equations are given. In this 
case, no solution exists, since the three equations are contradictory. In other 
words, no combination of values for x1 and x2  will satisfy all three equations. 

x1 + 2x2 = 29

6x1 - x2 = 18

x1 - 4x2 =   1

2x1 - 3x2 = 10

3x1 + 2x2 = 17

Solution:
x1=5  and  x2=12

No solution exists.

 

Fig. 2. 23     Examples of equation systems with two unknowns 

When information is provided as specifications for some unknown variable, 
there are three possible cases. In the first case no value, of possible values in its 
universe, exists which fits the given information. In the second case, there is 
exactly one value, and in the third case there are more values than one that fit the 
specified information. Think of a robbery where someone claims to have seen the 
robber. If he then describes the person as someone 8 feet tall and weighing less 
than 45 pounds, this specification probably does not fit anybody in the world. If, 
however, he describes the person as someone about 6 feet tall and weighing at 
most 180 pounds, his specification will include millions of people. In the best 
case, he can specify the robber so accurately that his description matches the 
properties of only one living person. Equations with unknowns are nothing more 
than information provided in order to find specific values whose properties match 
the given specification. 

Up until about 200 years ago, mathematicians dealt only with equations based 
on numbers. But in Figs. 2.11 and 2.16, you were introduced to functions which 
have nothing to do with numbers. In modern algebra, equations are no longer 
restricted to numbers. Modern algebra actually does not care at all what type of 
elements is used on both sides of an equation. The interest is focused on 
characteristic properties of the functions and the consequences thereof.  Perhaps 
you remember that earlier we looked at a certain type of function having two input 
positions with one common domain for both the input and output positions. 
Functions of this type are called closed. Mathematicians asked themselves what 
characteristic properties of such functions could be found without considering 
their domain.  Now consider Fig. 2.24. The first two rows show that a domain 
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must be defined for which a closed operation can be considered. In the last three 
columns, three specific domains and a closed operation for each of them are 
presented for illustrating the abstract statements. When no specific operation is 
considered, the operator symbol  is used for an operation which has no intuitive 
concrete meaning. We need such a symbol for writing the operation in the form 
f(a, b) = a  b which is called the infix form because the operator symbol is 
standing in between the two operands. Obviously, the infix form can be used only 
for functions having two input positions. 

yes yes no

The set of
all whole 
numbers

The set of
all positive

rational
numbers

The set of 
the six orders

to move
in Fig. 2.11

Addition

+

Multiplication Sequence

yes yes yes

yes

 = 0

yes

 = 1

yes

 = stay

yes

ainv = - a

yes yes

s. Fig. 2.251
aainv =

General independence from the 
order of the two operands

(commutative law), i.e.
(a  b) = (b  a)

The universe,
i.e. the set of

possible operands

The combining operator ,
i.e. the function with

two arguments

General independence
from the order of computing

(associative law), i.e.
(a  b)  c = a  (b  c)

Existence of a neutral
operand , such that for each

operand a it is true that
(  a) = (a ) = a

General inversability, i.e. for
each operand a exists

a partner ainv , such that
(a  ainv) = (ainv  a) = 

 

Fig. 2. 24     Definition and examples of algebraic groups 

The so-called commutative law is presented in the third row of Fig. 2.24.  Here, 
the question asked is whether the result of the operation always stays the same 
when the two operands are interchanged. Certainly you learned early in 
elementary school that this general interchangeability of the two operands exists 
for addition and multiplication. But this is not true for the operation considered in 
the rightmost column. 
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The so-called associative law is presented in the fourth row. Whenever the 
letters “soci” occur in a word – think of social security, association or high society 
– it is about communities sharing something. Now consider the case of the 
associative law in a community of three operands. In this case, it must be decided 
which operation is to be performed first, either the operation with the first two 
operands or the operation with the last two operands. If in all cases the result does 
not depend on the order of the operations, it is said that the associative law holds 
for this closed operation with its domain. 

The next structural property which a closed operation may have is the existence 
of a so-called neutral operand, ν. What this means is shown in the fifth row of 
Fig. 2.24. The Greek letter ν is chosen to symbolize the neutral operand, since this 
corresponds to the Latin letter n which is the first letter of the word neutral. This 
special operand ν is called neutral since, for any operand a from the domain of 
operands, the operation which combines a with ν has the result a. The best known 
neutral operands are the numbers 0 and 1 for addition and multiplication, 
respectively. You all know that adding 0 to any number a gives the result a, and 
that multiplying any number a by 1 also gives the result a.  

For a closed operation with a neutral operand ν, we can ask if all elements in 
the domain of operands have a corresponding inverse partner. What this means is 
shown in the sixth row of Fig. 2.24. By definition, the result of an operation which 
combines an operand a with its inverse partner ainv is the neutral element ν. Again, 
addition and multiplication are the best known examples of closed operations with 
general invertability. In the case of addition, inversion means changing the sign, 
since adding any number a to its inverse partner (-a) results in the neutral element 
0. In the case of multiplication, inversion of a number a means computing its 
reciprocal 1/a, since multiplying a by 1/a results in the neutral element 1. 

While the domains for addition and multiplication are sets of numbers, the 
domain of the third operation considered in Fig. 2.24 is the set of the six move 
orders introduced in Fig. 2.11. In this example, the overall closed operation comes 
from the compression of two consecutive orders into a single order which has the 
same effect. For this operation, the associative law holds, but the commutative law 
does not. Here the neutral element is the order “Stay seated!”. The inversion table 
in Fig. 2.25 can be derived from the function table given in Fig. 2.12. In this case, 
the inverse partners of some operands a are identically a. For instance, the inverse 
of the order “The persons on the chairs 2 and 3 must interchange their seats!” is 
exactly the same order, because when this order is given twice, it has the same 
effect as if the neutral order “Stay seated!” had been given. 

Any closed operation which has the three structural properties described within the 
thick rectangular frame in Fig. 2.24 is called an algebraic group. The group of people 
sitting around a table as shown in Fig. 2.11, who are ordered by someone to move 
(according to the set of six move orders), is an example of an algebraic group. 
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ainv

a stay anticlock clock 1 and 2 2 and 3 3 and 1

stay anticlockclock 1 and 2 2 and 3 3 and 1
 

Fig. 2. 25     Inversion of the orders in Fig. 2.11 

When the concept of an algebraic group was presented to me for the first time, I 
was rather surprised to learn that such an abstract concept can be applied to many 
different areas. Each law which can be derived from these abstract properties 
holds equally for addition, multiplication and changing seating orders. In addition, 
it will apply to all operations found in the future which have the group properties. 
Figs. 2.26 and 2.27 show an example of an interesting law which can be derived 
from the group properties defined in Fig. 2.24. From the tables in Fig. 2.26 and 
2.27, you can immediately conclude that our subject belongs to algebra, since 
these tables show sequences of equations. In both figures, we begin with the 
equation at the top and move down sequentially. Fig. 2.26 shows the derivation of 
the inversion law for chains of two operands. This law, shown in the last row, says 
that there are two alternative ways of inverting the chain which both provide the 
same result. Either we first compute the result of the chain which we then invert, 
or we first invert the operands and then compute the result of the chain in reverse 
order compared to the original chain. The first equation in Fig. 2.26 is taken from 
the definition of general invertability in Fig. 2.24, and the transformations 
downward are nothing more than applications of group properties, namely the 
associative law and the definitions of the neutral element and general invertability.  

In Fig. 2.27, the inversion law is extended to chains of more than two operands. 
In this derivation, I use the result from Fig. 2.26. Besides that, the derivation uses 
only the associative law. The final result of the derivation is found in the shaded row 
at the bottom. We now check what the result means in the case of our three 
examples in Fig. 2.24. In the case of addition, it means that a sum of multiple 
summands can be inverted either by first computing the sum and then inverting its 
sign, or by first inverting the signs of all the summands and then computing the sum. 
There is no need to reverse the sequence of the summands, since addition is a 
commutative operation. In the case of multiplication, the law says that the reciprocal 
of a product of multiple factors can be obtained either by first computing the product 
and then computing its reciprocal, or by first computing the reciprocals of all factors 
and then computing the product. Like addition, multiplication is a commutative 
operation, and therefore there is no need to reverse the order of the factors. For the 
last example, the operation is the compression of a sequence of two orders into an 
equivalent one, and this operation is not commutative. Therefore, in this case, the 
reversal of the sequence of orders according to the inversion law is relevant. 
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inv(a  b)
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inv(a  b)
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Fig. 2. 26     Derivation of the inversion law for two operands 
. . .

inv(am)  inv(a1   a2  ...   am-1)=

inv(am)  inv(am-1)   inv(a1  ...    am-2)=

inv(a1  a2   ...   am-1  am ) inv(am)  inv(am-1)   inv(am-2)  ...  inv(a1)=

inv( (a1  a2   ...   am-1)  am )

inv(a1  a2   ...   am-1  am )

 

Fig. 2. 27     Derivation of the inversion law for a chain of more than two operands 

At first, I could not imagine what a great variety of laws could be derived 
starting from nothing but the group properties. But eventually it became clear to 
me why there is a special discipline within mathematics called “group theory”. 

A group needs only one closed operation, but there are other algebraic 
structures which are based on two closed operations – think of the combination of 
addition and multiplication. Then, not only must the structural properties of the 
individual functions be considered, but also the characteristics of the combination 
of the two. An example of a law which says something about the combination of 
two closed operations is the so-called distributive law which we already applied in 
Fig. 2.22. Two important algebraic structures which are defined using two closed 
operations are called fields and lattices. I shall not tell you what the definitions of 
these structures are. I only mention them because I want you to know where they 
belong, in case you read or hear about them. 



Chapter 3 
Mathematicians Are Nothing Special – They 
Draw and Compare 

In the title of Chapter 2, mathematicians are said to be humans who count and arrange. 
Now this is supplemented by the statement that they also draw and compare. Although 
some drawings were used in Chapter 2 to illustrate numbers as relations concerning 
distances between points, now numbers no longer stand at the beginning of our 
considerations. Instead, we now start from points in drawings or in space.   

How Mr. Euclid’s Ideas Have Grown Up 
Coordinate Syste ms a nd Matrices 

Geometry is fun, since here everything is visual and there are no formulas. 
Undoubtedly, this is true when a ruler and a pair of compasses are used for 
drawing shapes in a plane. In these shapes, there are angles which can be 
measured and distances between points which also can be measured, and the 
results of these measurements can be related to each other. Lots of laws about 
such relations have been discovered and are explained in textbooks on geometry, 
e.g., the law that the sum of the three interior angles of any triangle drawn on a 
plane is 180 degrees, i.e., equal to two right (900) angles. In classical antiquity, 
this type of geometry was brought to a high level of maturity. Today it is called 
“Euclidean geometry,” referring to the Greek mathematician Euclid (365-300 
BC). Today, we no longer need to climb steep walls to reach the plateau of 
Euclidean geometry. It might even seem that there is a cable car leading up to that 
plateau. But this impression obscures a very difficult problem which most people 
don’t see. Since everybody believes they know exactly what a straight line or a 
plane is, nobody gets the idea that it might be difficult to define these objects with 
mathematical rigor. In the very beginning of his famous text “Elements”, Euclid 
made the following statements [LO]: 

 - A point is what has no parts. 
  - A line is what has length, but no width. 
  - The extreme ends of a line are points. 
  - A straight line is a line which lies in between its points  
     in a homogeneous way. 
 - A plane is an object which lies in between its straight  
    lines in a homogeneous way. 
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Euclid evidently assumed that everybody knew what length and width are, and 
what it means for points to lie in a homogeneous way. In Chapter 4, where the 
concept of axioms is introduced, we shall resume the discussion of this problem. 

The law which is presumably the most important in Euclidean geometry is 
called “the law of Pythagoras,” although historians agree on the fact that this law 
had already been discovered by Arabian or Egyptian mathematicians before 
Pythagoras (570-510 BC) was born. This law describes an interesting property of 
so-called right triangles, i.e., triangles with one angle of 90 degrees. On the left 
side of Fig. 3.1 you see the classical shape which illustrates this law. All three 
edges of the triangle shown are used as edges of squares. Looking at such a 
drawing, someone must have come up with the idea that the area of the big square 
equals the sum of the areas of the two smaller squares. When I saw this drawing 
for the first time in high school, I certainly did not see that there might be such a 
simple relationship between the three squares - I had to get this information from 
the math teacher. But believing what the teacher tells you is not sufficient in 
mathematics. You have to be convinced by a so-called proof. A proof is a 
sequence of “evident conclusions” the correctness of which cannot be doubted. 
Since the time of Euclid, many different proofs of the law of Pythagoras have 
been found. From all these proofs, the one I like best is based on the two drawings 
in the center and on the right side of Fig. 3.1. This proof is simple and vivid. The 
drawings show that the area of the square with the edge (a+b) can be filled using 
four copies of the right triangle together with either the big grey square (center 
drawing) or the two small grey squares (right drawing). From this it follows that 
the sum of the areas of the two small grey squares, a2+b2, must be equal to the area 
of the big grey square, c2.  

Shapes can be drawn not only in planes, but also on surfaces of solid bodies. 
Since the earth is a sphere, it is quite natural that shapes drawn on spheres were  
 

a2

b2

c2

a b
2

a+b

(a+b)2 = c2 + 2 a b

a+b

(a+b)2 = a2 + b2 + 2 a b  

Fig. 3.1     Verifying the law of Pythagoras 
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studied rather early and with great interest. Many laws which hold for shapes in 
planes no longer hold for shapes on the surface of spheres. As an example, let’s 
look at the sum of the three angles of a triangle. If the triangle is drawn in a plane, 
the sum of the three angles is 180 degrees. Now assume we draw a triangle on the 
surface of the earth with the first point at the North Pole. From there we draw a 
straight line southward until we reach the equator; here is the second point. The 
second edge is drawn eastward on the equator, with the third point on the equator 
at a distance of one fourth of the equator. From there the third edge goes back to 
the North Pole. In this triangle, all three edges have the same length, and if such a 
triangle had been drawn in a plane, the three angles would each be 60 degrees. But 
all three angles of our triangle on the sphere are 90 degree angles. 

When talking about geometry, we should, at least, mention topology. The term 
topology refers to the Greek word topos for location. While in conventional 
geometry we are interested in angles and distances between points, these are of no 
interest in topology. In topology, we ask whether it is possible to continuously 
distort a shape or a solid body in such a way that it is exactly the same as a second 
given shape or body. This can be illustrated using the assumption that the shape is 
drawn on a thin elastic foil or that the body consists of an elastic material which 
can be distorted continuously without breaking apart. The distortion may change 
the area of the shape or the volume of the body. Then it is possible to start with a 
circle and make a square out of it, or to start with a cube and make a sphere out of 
it. But it is impossible to start with a combination of two squares, one of which is 
drawn inside the other one, and make a single circle from this combination. 

Topology as an explicit discipline of mathematics began in about 1850. But it 
goes back to a question which had previously been asked by the ancient Greeks: 
“How is it possible that points constitute a space?” Geometric objects have length, 
area or volume, but a point doesn’t have any of these. If geometric objects consist 
only of points, how is it possible that these objects have substance although their 
constituents do not? The error in this argument lies in the assumption that the 
distance between two points is created by the points in between. Distance cannot 
be created by points, but is an elementary property of pairs of points. Think of the 
friendship of two persons. Friendship is not a property of an individual, but a 
relationship between the two individuals. 

The actual definition of the concept of a topological space is so abstract that it 
is questionable whether topology should be considered an aspect of geometry. 

We now leave traditional geometry which is characterized by drawing, 
measuring and comparing. We leave by a bridge which was built around 1640, the 
time of the 30 Years War in Europe. It takes us back into the world of numbers 
and arithmetic operations. The building of this bridge really must be considered a 
great success in conquering the mountains of mathematics, since drawing shapes 
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and measuring distances and angles seem to have nothing in common with 
arithmetic operations. 

The main barrier which had prevented the building of this bridge before then 
was a problem which is illustrated on the left hand side of Fig. 3.2. In this 
diagram, the product a∗b appears twice, namely both as the area of the shaded 
rectangle and as the length of the long vertical line on the left. The fact that the 
same value can be interpreted alternatively as an area or as a length is possible 
only if this value is neither an area nor a length, but just a number. Assume that a 
is the number 3 and b is the number 1.6. Then the product is the number 4.8. 
Certainly, 4.8 cm is something different from 4.8 cm2, but in both cases there is 
the same number, 4.8. It always has been quite clear that 3 apples are something 
different than 3 pears, and that the number 3 represents only what the two sets 
have in common, namely the result of counting the elements. We have to think in 
the same way when we look at the left diagram in Fig. 3.2. When I made this 
diagram, I had to choose a scale, i.e., I had to decide which length should 
correspond to the number 1. Usually, this length is called the unit length. Once the 
unit length is given, the unit area follows from it, since it is just the area of a 
square with edges of unit length. 

Curve showing y = x2/2 - 2
= (x+2) (x-2)/2

-2

Length a b

b

a
1

Area a b

(3; 2.5)

x

y

-2

2

3

2.5

 

Fig. 3.2     Geometry and numbers: the coordinate system 

Although I didn’t mention it explicitly at the time, we crossed the bridge 
between the world of drawings and the world of numbers once before. This 
occurred in connection with Fig. 2.6 where the complex numbers were illustrated 
as points in a plane. There, too, I had to choose a unit length. The points in the 
plane in Fig. 3.2 are not representations of complex numbers, but of pairs of real 
numbers (x, y) which we call the coordinates of the points. The number x in the 
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first position of the tuple corresponds to a distance on the horizontal axis, and the 
number y in the second position corresponds to a distance on the vertical axis. 
Thus the pair (3; 2.5) belongs to the point in the diagram on the right side of  
Fig. 3.2. The relation which assigns a pair of numbers to each point in the plane is 
called the coordinate system. If we do not restrict ourselves to points in planes, but 
deal with points in three-dimensional space, we need three coordinates (x, y, z). 
The z-axis usually is perpendicular to the plane which is determined by the two 
axes for x and y. 

All geometric shapes we are interested in can be drawn on the x-y plane. If we 
restrict ourselves to the use of a ruler and a pair of compasses only, many shapes 
are excluded, although they might be very interesting. But since the plane is not 
only the plane for drawings but for representing pairs of numbers, we are no 
longer restricted to defining shapes by drawing them, but we can define shapes 
using formulas. The curve in the right diagram of Fig. 3.2 is a so-called parabola, 
and I defined it by the formula y=x2/2 – 2. To any given value x, a corresponding 
value y can be computed using this formula, and each pair (x, y) for which this 
relationship holds defines a point of the curve. This concept of describing a curve 
in a plane by a formula y=f(x) , where the pairs (x, y) correspond to the points of 
the curve, is so commonly used today that I previously used it in Figs. 2.15 and 
2.20 to illustrate the sine function sin(x) and the exponential function ex without 
previous explanation. The formulas which until now were looked at only as 
arithmetic relations now may be looked at as shapes having geometric properties. 
Although this seems to be so simple to us today, it was a tremendous achievement 
when the first mathematicians climbed that mountain. 

It is possible to do geometry using pairs of numbers, and this is shown in the 
example in Fig.3.3. Each corner of the triangle is described by a pair of numbers. 
From these we get the pairs of numbers assigned to the edges by subtracting the 
coordinates of one end from the coordinates at the other end. These subtractions 
cannot be done without ordering the points, and this is indicated by the arrows on 
the edges. The pairs assigned to the edges are the basis for computing both the 
lengths of the edges and the angles between them. The lengths are obtained using 
the law of Pythagoras as it is shown in Fig. 3.3. The angles cannot be obtained by  
 

(17; 35)

(97; 95)

(160; 11)

(80; 60)
(63; -84)

(143; -24)

A
B

C

= 105CB =  

= 145AB =

632 + (-84)2

1432 + (-24)2

= 100Length of edge AC = 802 + 602

 

Fig. 3.3     Computing line lengths with coordinates 
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arithmetic operations, but at least we can get their cosines. The cosine function 
was introduced in Fig. 2.15 where the relationships between the four aspects of a 
complex number – real part, imaginary part, radius and angle – were considered. 
The method which provides the cosines of the angles of a triangle on the basis of 
the pairs of numbers assigned to the edges is formal and rather simple. It is an 
application of a computing formalism which is used in many different areas of 
mathematics. This formalism is called vector- and matrix-multiplication. 

I shall introduce this formalism using an example which has nothing at all to do 
with geometry. This may help you to understand that this formalism is universal 
and that its use is not restricted to a narrow mathematical field. Assume that you 
have to solve the following problem. Some customers want to buy different 
quantities of a variety of items from a single provider, and for this they have to 
select a provider from a list. Each provider has his own price list. The question is 
which provider should be chosen by each customer to make sure that the customer 
gets the lowest total cost for his list of supplies. In the example in Fig. 3.4, there 
are four customers A, B, C and D and two providers I and II. There are three types 
of items 1, 2 and 3. Looking at the list of customer C, you see that he wants to buy 
three pieces of item 1, four pieces of item 2 and two pieces of item 3. The price 
list of provider II shows that he charges five currency units per piece of item 1, 
four units per piece of item 2 and three units per piece of item 3. The diagram 
shows an arrangement of three rectangles which are divided into rows and 
columns, and at each intersection of a row and a column is a square field 
containing a number. The numbers in the rectangles at the left and at the top 
define the original problem. These are the price lists of the providers and the 
supply lists of the customers. Such rectangles filled with numbers are called 
matrices. In the special case that a matrix has only one row or one column, it is 
called a vector, and if both the number of rows and the number of columns are 
one, the matrix is called a scalar. The numbers in the matrix in the lower right 
corner, the result matrix, represent the amount of the bill the customer of the 
corresponding column has to pay if he buys his supplies from the provider of the 
corresponding row. I marked the minimal amounts for each customer by enclosing 
them in circles. Each amount is computed as a sum of three products. For 
example, the amount 37 which is in the shaded field is obtained as the result of 
5∗3+4∗4+3∗2. The numbers used in this computation are taken from the shaded 
row of the left matrix and the shaded column of the upper matrix. 

I characterized the three matrices using terms we know from arithmetic 
multiplication, namely first factor, second factor and product. If all three matrices 
are scalars, the formalism shown actually corresponds exactly to the multiplication 
of two numbers. The 90 degree curves, which in the example correspond to the 
different items, help us to find the pairs of numbers which have to be multiplied. 
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The number of products which have to be added to get the content of one field in 
the result matrix corresponds to the number of these curves. Therefore, two 
matrices can be multiplied only if the number of columns of the first factor matrix 
equals the number of rows of the second factor matrix, because otherwise we 
could not draw curves where each has a well-defined connection to both sides. 
The size of the result matrix is determined by the number of rows of the first 
factor and by the number of columns of the second factor. 
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Fig. 3.4     Pattern for matrix multiplication 

The commercial example in Fig. 3.4 was chosen to demonstrate that the use of 
matrix multiplication is not restricted to geometry. An interpretation of the 
formalism is not possible without considering its application. In the following 
section, either the factors or the result will be vectors in planes or in three-
dimensional space. The problem which led us to the concept of matrix multiplication 
was the question of how we could compute the values of the angles or at least the 
cosines of these angles in the triangle in Fig. 3.3. Fig. 3.5 shows how these cosines 
are obtained: the vectors of the two edges which enclose the angle are multiplied in 
such a way that the result is a scalar. This requires that the vector which is used as 
the first factor is arranged as a row-vector while the second factor must be a column-
vector. When two vectors are multiplied in this way, the result is a scalar, and 
therefore this way of multiplying two vectors is called computing the scalar 
product. The scalar product always equals the product of the lengths of the two 
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edges and the cosine of the enclosed angle. Isn’t that amazing? I certainly could 
prove this to you, but I don’t see the need to present this proof. 

Length(AC)  Length(AB)  cos( )
      100               145       0.6897

Length(CA)  Length(CB)  cos( )
      100               105       0

- 24

143

10 00080 60

Edge AC
Ed

ge
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B

- 84

63

0- 80 - 60

Edge CA
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ge

 C
B

 = 46.4 degrees  = 90 degrees

 

Fig. 3.5     Computing the scalar products of the triangle edges in Fig. 3.3 

When we describe points by tuples of coordinates, the values of these 
coordinates depend on how we placed the coordinate system in the plane or the 
space. In Fig. 3.6, the point P in the upper right corner is described in two different 
coordinate systems. These two systems are both rectangular and share the 
intersection of the x- and the y-axes. Since one of these coordinate systems is 
obtained from the other one by rotation, the subscripts o and r are used to identify 
the two systems; they refer to the words original and rotated. 

yo

xo

xr

yr

20

15

7

24

Point P
= (15 ; 20)o
= (24 ; 7)r

 

Fig. 3.6     Specifying a point in two different coordinate systems 
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In the o-system the coordinates of the point P are (15, 20), and in the r-system 
they are (24, 7). Now the question is how to obtain the r-coordinates from the o-
coordinates and vice-versa, once the rotational angle ϕ is given. This can be 
achieved easily by a matrix multiplication as shown in Fig. 3.7. The numbers in 
the matrices are obtained from the angle ϕ by taking its sine and cosine. Here I 
just repeat what I said earlier: I could prove this to you, but I don’t see the need to 
present this proof. You wouldn’t learn much from it. 

- sin 

cos sin 

cos 

- sin cos 
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Fig. 3.7     Matrix multiplications for the example in Fig. 3.6 

Next, I shall show you that matrices not only can be multiplied but that it is 
possible to compute the reciprocal of a matrix which is the basis for division. 
Once we have the reciprocal 1/B of a matrix B, we can get the quotient of two 
matrices A/B by computing A∗(1/B). But this requires that we know what the 
“unit matrix” looks like. The two matrices in Fig. 3.7 will help us to obtain the 
unit matrix since they were introduced to transform the coordinates in both 
directions: M1∗Po=Pr and M2∗Pr=Po. We can combine these two equations and get 
M2∗(M1∗Po)=Po, and from this follows M2∗M1=1, the unit matrix. This means that 
M2 is the reciprocal of M1 and vice-versa. In Fig. 3.8 the two matrices from Fig. 
3.7 are multiplied and the product is the unit matrix. The unit matrix of dimension 
n is a square matrix with n rows and n columns where all cells are filled with zeros 
except the cells in the diagonal leading from the upper left to the lower right; these 
are filled with ones. If the unit matrix of dimension n is multiplied by any square 
matrix M of the same dimension, the product will be identical to M. 

Matrix multiplication is a rather simple formal procedure where certain 
numbers must be multiplied according to a formal pattern and then their products 
must be added. This computation can be executed even by someone who has no  



62                                                                   3. Mathematics – Drawing and Comparing 
 

 

0

1

1

0

- 0.6

0.8

0.8

0.6

- 0.6 0.8

0.8 0.6

 

Fig. 3.8     Verifying the reciprocity of two matrices from Fig. 3.7 

idea about what the purpose of this procedure is. Now you have seen not only one 
but two completely different areas where matrix multiplication is extremely 
helpful. You must not feel bad at the thought that you would never have come up 
with such a great idea – I didn’t invent it either. It is the same situation which we 
encounter quite often. It needs a genius to find the concept, but once it has been 
found, it can be understood and applied by quite normal people. 

What I am going to show you now could have been found only by a genius, 
something we observed previously. Suppose you were expected to come up with a 
method to solve the problem which is represented at the top of Fig. 3.9 where the two 
edges a and b enclose the angle ϕ. These edges are described by their pairs of 
coordinates, and from these the method provides the coordinates of the vector which is 
perpendicular to the plane determined by a and b, and whose length equals the area of 
the shaded parallelogram. 

Many years ago, someone taught me the procedure for finding this vector, and I 
was very amazed to learn how many geometric problems can be solved formally 
by using matrix computation. In the lower left of Fig. 3.9 you see the formal 
pattern, and in the lower right this pattern is applied to a simple example. In a first 
step, the coordinates of the edge a are used to fill certain cells of a square matrix. 
Each coordinate appears twice in this matrix, and its sign is inverted once. The 
cells of the diagonal leading from the upper left corner to the lower right are filled 
with zeros. These rules for filling the cells of a matrix are applicable only if the 
matrix is three-dimensional. In the second step of the procedure, this matrix is 
multiplied by the coordinates of the edge b. The result of this multiplication is the 
vector asked for – what a miracle! Since the result of the procedure is a vector, 
this type of multiplication is called vector-multiplication which emphasizes the 
fact that there is a scalar multiplication, too. But I prefer to call it “perpendicular 
product” since this refers to the fact that the product is perpendicular to the plane 
determined by the two factors. 
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Fig. 3.9     Computing the “perpendicular product“ of two vectors 

I chose the numbers for the example in the lower right so that the relevant facts 
can be easily seen. The triangle, specified by the two edges a and b, was chosen to 
be half of a triangle with three edges of equal length, that length being 8. The edge 
a has this full length, but b has only half of it. The angle enclosed by a and b must 
then be 60 degrees. The plane determined by the two edges a and b is the x-y 
plane since the z-coordinates of both a and b are zero. It is easy to see that the 
resulting vector is perpendicular to the x-y plane since only its z-coordinate has a 
non-zero value. And its length is as required, since it equals the area of a triangle 
with all angles of 60 degrees and all edges of length 8. 

In my comments about Fig. 3.9, I did not mention a question which you may 
already have asked yourself. There are two possibilities for positioning a vector 
perpendicular to a given plane. The vector shown in Fig. 3.9 has an upward 
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direction, but it would also have been a correct solution of the problem if the 
resulting vector had pointed downwards. Somewhere in my procedure, I had to 
decide which side of the plane the resulting vector would point. This decision was 
made by selecting the order of the factors. The procedure illustrated in Fig. 3.9 
shows that the first factor a is used in a different way than the second factor b. 
Therefore, it is no wonder that the product depends on the order of the factors. If I 
had reversed the order, the resulting vector would have pointed downwards. In 
Fig. 3.9, the chosen order of the factors is illustrated by the arrow at the angle ϕ. 
How the direction of the resulting vector and the order of the factor edges are 
related is determined by the so-called “right hand rule”: Put your right hand on the 
plane in such a way that your small finger is on the plane and is curved in the 
direction of the arrow that circles around ϕ. Then your thumb will point in the 
direction of the resulting vector. 

While the perpendicular product is restricted to three-dimensional vectors, the 
scalar product is not restricted to any dimension. The scalar product requires only 
that the two factors have the same dimension. 

Without the concepts of vector- and matrix-multiplication, it would not be 
possible to solve geometric problems with the help of computers. While Mr. 
Euclid could draw shapes and could find right angles, or see how certain distances 
between points are related just by looking at these shapes, a computer cannot look 
and reason about shapes. Therefore, computers always use coordinate systems to 
solve geometric problems because, in this case, points and edges can be described 
in the form of pairs or triples of numbers. Instead of looking and measuring, the 
computer adds and multiplies and compares numbers, since that’s exactly what 
computers do very well.  
3.2   How t he Fraction “Zero Divided by Zero” and t he Product “Infinity Times Zero” 

How the Fraction “Zero Divided by Zero” and the Product 
“Infinity Times Zero” Are Related 
Differentiation and Integration 

When I introduced the term “topology” I said that it might be questionable 
whether this topic should be considered a part of geometry. Correspondingly, the 
question might be asked about whether the differential and integral calculus, 
which will be introduced now, should not be considered topics within geometry, 
since the fundamental concepts of calculus cannot be defined without referring to 
illustrations showing graphs of curves in a plane. Calculus was developed shortly 
after the concept of coordinate systems had been found, and this made it possible 
to represent functions as curves in a plane. When mathematicians got interested in 
certain properties of these curves, they had to look for new methods which could 
provide the answers to their questions. They soon found it desirable to 
simultaneously consider two curves which represent two functions f(x) and s(x), 
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where s(x) is the slope function of f(x). What this means is illustrated in Fig. 3.10. 
The upper part of this figure shows a graph of the curve for a function f(x), and the 
curve for its partner function s(x) is shown below. 
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Fig. 3.10     Example of the relationship between slope and area 

In order to illustrate that the special type of relationship between the two 
functions f(x) and s(x) considered here is of great practical relevance, I shall not 
introduce this relationship by looking at two abstract functions, but by looking at 
two functions with everyday interpretations. Let’s assume that a family goes on a 
one day excursion and leaves home in the morning at 10 a.m. The mother drives 
for one hour at a speed of 50 miles per hour. At 11 a.m., they arrive at a nice lake 
where they stay for one hour until noon in order to relax and swim in the clear 
water. Then, at noon, they continue their ride, but now the son is driving. He is not 
yet an experienced driver, so therefore he drives more slowly. This is just what the 
family wants, since they are now passing through very pretty countryside. The son 
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accelerates very slowly until he reaches the maximum speed of 15 miles per hour 
at 2 p.m. At that time, they are 20 miles away from the lake and 70 miles from 
home. Now the son begins reducing his speed until he comes to a stop at 4 p.m. At 
that time, the family has reached their maximum distance from home, 90 miles, 
and they decide to return. Now the father takes the wheel. They want to be back 
home no later than 7 p.m. which leaves them 3 hours for a distance of 90 miles. 
Instead of going at a constant speed of 30 miles per hour, the father constantly 
increases his speed to a maximum of 73.3 miles per hour which is reached 9 
minutes before 7 p.m., the time of their arrival back home. At 6 p.m., the speed 
was 45 miles per hour. 

Instead of reading the story I just told you, you could get the same information 
by studying the graphs shown in Fig. 3.10. The upper graph shows how the 
family’s distance from home changes over time, and the lower graph shows how 
their speed changes over time. The formal relationship between these two curves 
is indicated by the grey shaded areas. The grey triangles in the upper curve are 
used to compute the slope of the curve at given points. The slope at a point of a 
curve tells us how steep the tangent to the curve is at that point, and whether it 
leads up or down. The slope is given by the fraction Δf/Δx where Δf is the length 
of the vertical edge and Δx is the length of the horizontal edge of the actual grey 
triangle. The value of this fraction does not depend on the actual size of the 
triangle, since if Δx is changed by a factor, Δf will be changed by the same factor. 
In our example, Δf is measured in miles and Δx in hours, and therefore the slope 
Δf/Δx is a speed, measured in miles per hour. If the slope leads up, it is positive, 
which in our example means that the family is actually traveling away from home. 
And if the slope leads down, they are going towards home. The triangle in the 
right upper corner of Fig. 3.10 provides the slope of the curve f(x) at 6 p.m., and 
its value is - 45 miles per hour. 

As I mentioned, the lower curve shows how the speed changes over time 
which, more generally, means how the slope of the upper curve changes with 
respect to the horizontal axis x. Thus, at 6 p.m., the lower curve provides the speed 
value of - 45 miles per hour which we found as the slope of the upper curve at 6 
p.m. Where the slope of the upper curve is zero, i.e., at points x where the tangent 
to the upper curve is horizontal, the function s(x) must have the value zero, i.e., 
the corresponding points of the lower curve must intersect the horizontal x-axis. In 
Fig. 3.10, this is the case for the interval -1<x<0 and for the point x = 4 hours. In 
the intervals where the slope of the upper curve is constant, the lower curve is 
horizontal. In our example, this is the case in the intervals -2<x<-1 and -1< x<0. 
The grey triangles are used to determine the slopes in the upper diagram, and the 
grey areas in the lower diagram correspond to the distances f(xright)-f(xleft). The 
grey rectangle in the interval -2<x<-1 has the area (50 miles/hour)∗(1 hour)= 50 
miles, and this corresponds to the difference f(-1)-f(-2) =(50–0) miles. While it is 
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easy to get the area of a rectangle, it is difficult to get the areas of the shapes in the 
intervals 0<x<4 or 4<x<7 – unless we have specific knowledge about the upper 
curve. However, from the upper curve, we get f(4)-f(0)=(90-50) miles and 
f(6.852)-f(4)=(0-90) miles. An area which lies below the x-axis of the lower 
diagram corresponds to a negative value of the difference f(xright)-f(xleft), meaning 
that the direction of motion is toward home.  

As long as we actually draw the graphs of these curves and get our results by 
analyzing these curves, we may say we are solving problems of geometry. But 
now we assume that either the function f(x) or the function s(x) is given as a 
formula which tells us how we can compute the value of the function when the 
value of x is given. In our example in Fig. 3.10, the formulas for the two curves in 
the interval 0≤x≤7 are f(x)=50+7.5∗x2-1.25∗x3 and s(x)=15∗x-3.75∗x2, 
respectively. Wouldn’t it be great if we had methods for deriving the formula of 
s(x) from the formula of f(x) and vice versa? Such methods actually exist, and I 
shall give you at least an idea about what they are. Once the method for deriving 
the formula of s(x) from the formula of f(x) has been found, the method for 
deriving the formula of f(x) from the formula of s(x) could be obtained by just 
reversing the first method. 

x

f(a + x)

f(x)

f(a)

f

x

a a + x
 

Fig. 3.11     Getting the slope of a tangent by computing a limit 

The slope Δf/Δx which is defined by the grey triangle in Fig. 3.11 is not the 
slope of a tangent but of a straight line which intersects the curve at two points. 
But by making Δx smaller and smaller, this slope will become a better and better 
approximation of the slope of the tangent at the point [a, f(a)]. Clearly, we will get 
the exact slope of this tangent by computing the limit of the fraction Δf/Δx = 
( f(a+Δx) – f(a) )/Δx for Δx becoming infinitely small. Do you remember that I 
used the strange phrase “the fraction zero divided by zero” in the title of this 
section? I used this as a hint about the computation of the limit of the fraction 
Δf/Δx by making Δx smaller and smaller, with both the numerator and the 
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denominator approaching zero. In Fig. 3.12, this computation of a limit is 
performed for the special case where f(x)=x2, and then the result is generalized for 
functions f(x)=xn. The pair of formulas (f(x), s(x)) = (xn, n∗xn-1) which was 
deduced in Fig. 3.12 can be applied to all polynomials, since any polynomial can 
be written as a weighted sum of powers of x.  

If we apply this to the function f(x)
in Fig. 3.10, we get:

If the function f(x) is given as a formula, 
the formula of the slope function s(x) can 
be obtained by computing a limit:

s(x) =  lim
x 0

f(x + x) - f(x)
x

For the case  f(x) = x2 we get:

=  lim (x2 + 2 x x + x2) - x2

xs(x) =  lim (x + x)2 - x2

x

=  lim (2 x + x) = 2 x=  lim 2 x x + x2

x

For the case  f(x) = xn we get: = n xn-1s(x) =  lim (x + x)n - xn

x

f(x) = 50 + 7.5 x2 - 1.25 x3

s(x) =         15 x - 3.75 x2

x 0 x 0

x 0 x 0

x 0

 

Fig. 3.12     Derivation of the slope formula for the function f(x)=xn 

Once we know that the partner of the function f(x)=xn is the slope function 
s(x)=n∗xn-1, we can easily conclude that the partner of the function s(x)=xn will be 
the function f(x)= xn+1/(n+1). That’s what I had in mind when I said that the 
method which provides the formula of s(x) for a given formula of f(x) can be 
reversed. But there is a problem you might not yet be aware of. Assume that now 
the family whose journey was described by the functions in Fig. 3.10 does not 
start from home, but from the lake which is 50 miles from home. And assume 
further that the information about who is driving and at which speed stays as it 
was. Then, the function s(x), which describes how the speed changes over time, 
will stay exactly as it was, but the function fnew(x) which gives the position of the 
family for any point in time during their journey will no longer be as shown in 
Fig. 3.10. Since, at any point in time, the family’s distance from home now is 50 
miles more than the function fold(x) says, we get the new position function by 
adding 50 to the old function, i.e., fnew(x)=50+fold(x). The curve for this new 
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function will look similar to the one shown in Fig. 3.10, but will be shifted 
vertically by a distance of 50 miles. Such a shift will not change the slope of the 
curve at any point, and therefore the shifted curve will have the same slope 
function s(x) as the un-shifted curve. 

Since there is no difference between the new and the old speed functions, the 
areas under these curves will not be affected by changing the starting position of 
the family, i.e., by the vertical shift of the position curve. This is a consequence of 
the fact that such an area does not correspond to one value of the position 
function, but to the difference f(xright)-f(xleft) of two values. If the curve of f(x) is 
shifted vertically by a distance of Δf, the difference will stay the same: 
[Δf+f(xright)]-[Δf+f(xleft)]=f(xright)-f(xleft). From these considerations it follows that, 
while a given function f(x) has exactly one partner s(x), a given function s(x) has 
infinitely many partners f(x) where any two of these differ only by a constant, Δf. 

This unsymmetrical relationship between f(x) and s(x) can also be illustrated by 
a completely different approach. We now consider the problem of constructing an 
f-curve for a given s-curve on the basis of the areas under the s-curve. The area 
between an s-curve and the x-axis is well-defined only if an interval xleft ≤ x ≤ xright 
is given. This area is equal to the difference f(xright)-f(xleft). Thus we have a 
conflict: if we leave both ends of the interval open, we cannot have a well-defined 
area, and if we choose a well-defined interval, we cannot get a function f(x). This 
problem can be solved by choosing a particular value for xleft and leaving the value 
of xright open. In order to express the fact that xleft is still constant, but xright  is now 
a variable, we use x0  instead of xleft and x instead of xright. However, this creates a 
new problem: we now have lost the ability to use the letter x within the limits of 
the interval. It would be nonsense to write x0 ≤ x ≤ x. Again, we can overcome this 
problem by using a substitution. We can use a different letter within the limits. I 
chose the letter v, and with this the interval becomes as x0 ≤ v ≤ x. 

The choice of the constant value x0 determines a position where the f-curve 
intersects the x-axis because the area will be zero if the length of the interval is 
zero, and this is the case for x=x0. Clearly, our choice of a value for x0 determines 
what function f(x) we get. 

Fig. 3.13 shows how an area between an s-curve and the x-axis can be computed as 
the limit of a sum. The interval between x0 and x is divided into n subintervals of equal 
length Δv=(x-x0)/n. Each of the shaded rectangles has the width Δv, and its height is 
chosen so that the s-curve intersects the upper edge at its center. In the formula which 
describes the sum of the n shaded rectangles, the upper-case Greek letter sigma, Σ, is 
used. This corresponds to the first letter of the word sum. The values of the summands 
depend on the value of the variable j which is used to enumerate the summands. The 
lowest value of j is 1and it is written below the Σ. The highest value of j is n and it is 
written above the Σ. While the sum of n rectangles provides only an approximation of 
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the area between the s-curve and the x-axis, the exact area is obtained by computing 
the limit of the sum. The width Δv of the rectangles is made smaller and smaller, and 
at the same time the number n of rectangles is made greater and greater. It was this 
process of coming closer and closer to the limit which I had in mind when I included 
the phrase ‘the product “infinity times zero”’ in the title of this section. The transition 
from a finite number of summands to an infinite number is specified by replacing the 
symbol Σ by the symbol ∫ which looks like a capital letter S which has been 
compressed horizontally. This symbol is called the integration symbol. While the 
boundaries of the interval 1 ≤ j ≤ n are written at the bottom and the top of the Σ, the 
boundaries of the interval x0 ≤ v ≤ x are written at the bottom and top of the integration 
symbol.  

x0 x

v

v

s

j = 1 . . .2 3 4

Area under the curve v  s (x0 + j v - v/2) 

j = 1

j = (x-x0)/ v

v  0
= lim

= s(v) dv

v = x0

v = x

 

Fig. 3.13     Obtaining the area under a curve by computing a limit 

In Fig. 3.14 you can see how the slope of a function f(x) and the area between a 
curve s(x) and the x-axis in the interval x0 ≤ v ≤ x are expressed in formulas. Here 
the symbols Δf, Δx and Δv, which stand for small but finite differences, are 
replaced by df, dx and dv which indicate the fact that limits are computed by 
making Δf, Δx and Δv smaller and smaller. 

s(x) = 

Slope of the curve f(x)
(differential quotient)

df
dx

Area under the curve s(x)
(integral)

df =f(x) - f(x0) = s(v) dv

x0

x

x0

x

 

Fig. 3.14     Notations for derivatives and areas in formulas 
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The process which produces the slope function s(x) for a given function f(x) is 
called differentiation, and the slope function s(x) is called the derivative of f(x). 
The process which produces the function f(x) from its derivative s(x) is called 
integration, and the resulting function f(x) is called the integral of s(x). 

Differentiation, i.e., providing the derivative s(x) for a given function f(x), is of 
great practical importance when values xextreme must be found which determine the 
positions of extreme points of the f-curve. Such a point is either a mountain top or 
a valley bottom, i.e., a maximum or a minimum. At these points the tangent is 
horizontal and the slope s(xextreme) is zero. In the example in Fig. 3.10, the f-curve 
has a mountain top at xmax = 4 and a valley bottom at xmin = 0. Finding the 
positions xextreme of a given function f(x) is no problem when the f-curve is drawn, 
since then we can see these extremes just by looking at the curve. But in most 
cases, drawing the f-curve can be avoided and the positions of its extreme points 
can be found just by computation. This requires that the function f(x) be described 
by a formula. 

We now consider an example which illustrates the practical relevance of being 
able to compute extreme points of a given function f(x). Fig. 3.15 shows a section 
of a floor plan with a corner where a hall turns by 90 degrees and changes its 
width. We assume that some construction is going on in this building and that the 
construction workers must carry a ladder through the hall and around the corner. If 
the length of this ladder exceeds a certain maximum value, it will be impossible to 
move the ladder around the corner. How do we get this maximum length? We 
define a function f(x) which gives the length of the ladder for any value of the 
variable distance x shown in Fig. 3.15. The formula for this function can be easily  
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Applying the law of Pythagoras we get
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Fig. 3.15     Example of a problem solved by computing an extreme value 
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obtained by applying the law of Pythagoras. We also use the fact that the two 
shaded triangles are similar, with the same shapes but with different sizes. The 
details of the computation are not shown since they are not relevant for 
understanding this example. In the resulting formula, the widths a and b of the hall 
are left open. If we assume that these widths are 2 meters and 3 meters, the valley 
bottom (minimum) of the f-curve lies at x0=2.621 meters, and therefore the 
maximum length of the ladder is f(x0)=7.02 meters. 

So far, we looked only at the relationship between a function f(x) and its 
derivative s(x). But the function s(x) also has a derivative, which also has a 
derivative, and so on. Obviously, there is the need to find a way to symbolize the 
position of a derivative in a sequence of derivatives which begins with a function 
f(x). The following representation is used for a fourth derivative: 

dx4
d4f

 

This formula identifies a function which is the fourth derivative in a sequence 
of derivatives, the first being the derivative of the function f(x). This form of 
writing derivatives was introduced by the philosopher and mathematician, 
Gottfried Wilhelm Leibniz (1646-1716), over 300 years ago. It is important for 
you to notice the difference of the positions of the 4 in the numerator and the 
denominator of the fraction. In the denominator, the 4 is really an exponent of a 
power, namely (dx)4. In the numerator, the 4 is used only to identify the position 
of the derivative in the sequence of derivatives. This derivative is the fourth in the 
sequence. 

The example in Fig. 3.10 may help you to understand why there is an exponent 
of a power only in the denominator of the fraction, but not in the numerator. In 
Fig. 3.10, the values of x are points in time, measured in hours; the function f(x) 
describes the position of the vehicle, i.e., its distance from a reference point, 
measured in miles, and the function s(x) describes the speed of the vehicle in 
miles per hour. Since here f represents a distance, its physical unit, miles, will be 
unchanged in all derivatives in the sequence. In contrast to this, the physical unit 
of x which is a time unit, hours, will appear in a power with an increasing 
exponent in the sequence of derivatives of f(x). The first derivative is the speed 
which has the physical unit distance per time. The derivative of the speed function 
describes how the speed changes with time (acceleration); its unit is ((distance per 
time) per time) which has the square of the time unit in the denominator. 

Now we ask what happens when we continue computing derivatives of given 
functions. Besides the polynomials, I introduced two other functions which are of 
great importance in the world of applied mathematics, namely the sine function 
sin(x) and the exponential function ex (see Figs. 2.15 and 2.20).  
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These two functions together with the simple polynomial x4 appear in the 
leftmost column of the table in Fig. 3.16. To the right of these functions, you see 
the corresponding sequences of their derivatives. In the case of the function x4, 
each step which leads to the next derivative reduces the exponent by one. 
Consequently, after 4 steps the exponent will be zero with the corresponding curve 
being a horizontal straight line whose slope is zero for all values of x. This slope 
of zero will remain throughout the infinite remaining sequence. In the case of the 
sine function and the exponential function, however, the situation is quite 
different. In both cases, there are positions (shaded cells) in the sequence which 
are equal to the original function f(x). This means that the whole sequence of 
derivatives is a periodic repetition of a short section of finite length. 

df
dx

d2f
dx2

d3f
dx3

d4f
dx4

d5f
dx5f(x)

x4 4 x3 4 3 x2 4 3 2 x 4 3 2 1 0

sin(x) cos(x) - sin(x) - cos(x) sin(x) cos(x)

ex ex ex ex exex

 

Fig. 3.16     Examples of sequences of derivatives 

With the results shown in Fig. 3.16, I could easily compose the equations which 
are given in Fig. 3.17. The equations in the top row are called differential 
equations, since each of them describes a relationship between the elements of a 
sequence of derivatives of a function f(x). Solving a differential equation means 
finding the formula of the function f(x) for which the equation holds. I guess that 
most of you haven’t learned how to solve differential equations, and that is quite 
ok. Mathematicians, physicists and engineering professionals, however, are very 
familiar with such equations, and they know how to deal with them. For you, it is 
quite sufficient that you know what a differential equation is. And on the basis of 
the information given in Fig. 3.16, you should be able to verify that the solutions 
given in Fig. 3.17 are correct. 

f(x) = x4 f(x) = sin(x)

Differential
equation

Solution f(x) = ex

- f(x) = 0dx
df+ f(x) = 0d2f

dx2- 6 = 0x2 d3f
dx3 dx

df

 

Fig. 3.17     Examples of differential equations 
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Relations Which We Can Deduce, but Not Really Understand 
Euler’s Relation 

Do you still remember that, at the end of my discussion about the process for 
creating numbers, I said that the power term 2i has the value 0.769 + 0.639i ? At 
that time, I could not yet show you how this result was obtained, and I had to 
postpone this until later sections. But now, everything has been introduced which I 
need to deduce this result. Hopefully, reading my deduction in this section will 
make you realize that in mathematics almost everything is connected to everything 
else. Now I am ready to “prepare a soup” using as ingredients the concepts of 
complex numbers, polynomials, limits, derivatives and the transcendental 
functions ex, sin(x) and cos(x). 
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Fig. 3.18     Derivatives of a polynomial 

The preparation of this soup begins with Fig. 3.18. The first row of the table in 
this figure contains a polynomial where the coefficients are not specified numbers, 
but the variable coefficients c0, c1, c2, etc. Although a polynomial of fourth degree 
is shown, you should assume that there are more columns of the table to the right, 
i.e., that the polynomial could be of higher degree. Finally, we shall consider 
polynomials which don’t have any degree at all, but have an infinite number of 
summands. Starting with the polynomial in the top row, I moved down step by 
step by computing the derivatives, i.e., the polynomial in any row which is not the 
top row is the derivative of the polynomial in the row just above it. Thus, in each 
column, the exponent of x is decremented by one on the way down from row to 
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row. You will notice that the cells of the right-most column would have the same 
contents as the second row in Fig. 3.16 if c4 had the value 1. Now we move on to 
Fig. 3.19 whose structure should remind you of Fig. 3.16. In both figures, 
sequences of derivatives are shown for the different original functions f(x). While 
in Fig. 3.16 the value of the variable x has been left open, x is set to zero in  
Fig. 3.19. The correspondence between Fig. 3.18 and 3.19 has been made clearer 
by shading those cells which have the same contents in both figures. 
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Fig. 3.19     Values of different functions and their derivatives at x=0 

The fact that the sequence of derivatives of ex is just a sequence of ones in  
Fig. 3.19 is a consequence of the last row of Fig. 3.16 which says that all derivates 
of ex are equal to ex itself, and e0=1 (see Fig. 2.20). The zeros and ones in the rows 
of sin(x) and cos(x) are a consequence of the definitions of these functions which 
were given in Fig. 2.15. In this figure, the curve of the function sin(x) is shown, 
and as I mentioned previously, the curve of cos(x) is obtained by just shifting the 
sine-curve to the left by a distance of π/2. From this it follows that the value of 
cos(0) is equal to the value of sin(π/2) which is 1. Looking at the sine-curve in 
Fig. 2.15, you can see that the curve of its first derivative, i.e., its slope, must be 
the same as the cosine-curve. This knowledge was used previously to fill the cells 
of the third row of Fig. 3.16, and from there it is only a short step to the fill the 
cells in the last two rows of Fig. 3.19. 

I hope you could follow me as I deduced the contents of the tables in Figs. 3.18 
and 3.19. However, in following me, you might have had a feeling of uneasiness 
caused by the fact that you didn’t know my goal. Therefore, it is high time to give 
you some information about this goal. Long ago, some mathematicians asked 
themselves whether it could be possible for any curve to be approximated by a 
polynomial of adequate complexity. Once this idea was born, the problem to be 
solved became how to find the coefficients of the approximating polynomial for a 
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given function. The functions we want to approximate by polynomials are the 
exponential function, the sine function and the cosine function. With the results in 
the table in Fig. 3.19, we already are very close to finding the coefficients of these 
polynomials. 

But before we go to the last step which leads us to the goal, we have a brief 
look at a function that cannot be approximated by a single polynomial. The graph 
of this function is shown in the upper part of Fig. 3.20. It is composed of three 
sections, each defined as a polynomial, and therefore its slope curve is also 
composed of three sections. The graph of this slope curve is shown in the lower 
part of the figure, and you can see that this curve has two corners where no single 
tangent can be drawn. This means that for x=-1 and x=+1 the derivative of this 
function is not defined. As you soon shall see, the method which provides the 
coefficients of an approximating polynomial requires that the function to be 
approximated has an infinite sequence of well-defined derivatives. Since this is 
not the case for the f-function in Fig. 3.20, it cannot be approximated entirely by a 
single polynomial. 

From Fig. 3.16, we know that the exponential function and the sine function have 
infinite sequences of well-defined derivatives. The same is true for the cosine  
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Fig. 3.20     Example of a three-section curve 
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function. Now we go the last step which leads us to the coefficients of the 
approximating polynomials for the three non-polynomials in Fig. 3.19. These 
coefficients are shown in Fig. 3.21. The step which leads from Fig. 3.19 to Fig. 3.21 
is rather simple: we just ask what the values of the coefficients c0, c1, c2, etc. must be 
in order to obtain the values of the derivatives in Fig. 3.19. If, for example, we want 
all the values in the row of p(x) in Fig. 3.19 to be 1, we must set the variable 
coefficients ci to the values given in the row of ex in Fig. 3.21. In the third column of 
Fig. 3.19 involving c2 for ex, for example, 2∗c2 must equal 1, so c2 must equal 1/2. 
Although the table in Fig. 3.21 ends with the column for c6, one can easily deduce 
the general rule for getting from any coefficient to the next higher coefficient. In 
order to get an exact approximation of a non-polynomial function by a polynomial, 
we need an infinite number of coefficients. Since the term “polynomial” is restricted 
to cases where the number of coefficients is finite, mathematicians use the term 
“series” for the cases where the number of coefficients is infinite. 
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Fig. 3.21     Values for the coefficients in Fig. 3.19 

At the top of Fig. 3.22, the series for the three functions from Fig. 3.21 are 
arranged in such a way that you can easily see the rather simple relationship 
between corresponding series. In contrast to Fig. 3.21, I now use the abbreviation 
n! for the product chains 1∗2∗3∗4∗5∗ … ∗n. This abbreviation is common in 
mathematical formulas, and is spoken “n factorial”. The summands from the ex 
series appear alternately in the series of sin(x) and cos(x). But since their signs 
also alternate, the series of ex cannot be obtained simply by adding the series for 
sin(x) and cos(x). Once mathematicians had gotten that far, they began to look for 
a way to express the relationships among these three series by a single formula. 
Once again, they dipped into their bag of tricks and remembered that they had 
created the imaginary number i by defining a number whose square is -1. From 
this follows the sequence of powers of i shown in the shaded rows in the middle of 
Fig. 3.22. The information in these shaded rows gives a basis to the assumption 
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that the relationship between the three series could be expressed by one formula 
using ei∗x instead of ex. Actually, this assumption proved to be correct. Below the 
shaded rows, you find the series of ei∗x and its decomposition into two summands, 
one being the series for cos(x) and the other being the series for i*sin(x), with the 
final formula on the bottom line of Fig. 3.22. 
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Fig. 3.22     Derivation of Euler’s formula via polynomial approximation of functions 

This formula was discovered 250 years ago by the genius mathematician 
Leonhard Euler, and therefore it is called Euler’s formula. You should also notice 
that Euler is honored twice with this formula: it not only refers to him by name, 
but it also contains the limit number e which refers to the first letter of his name. 

The definitions of the functions sin(x) and cos(x) were referred to in Figs. 2.14 
and 2.15 where a complex number having radius r and angle α was written 
r∗[cos(α)+i∗sin(α)]. Comparing this to Euler’s formula, we see that the variable x 
corresponds to the angle α. Thus, once we have the radius r and the angle α of a 
complex number, this number can be expressed by the product r∗ei∗α. 

Now, please don’t say that you cannot understand Euler’s formula because it 
combines transcendental functions and imaginary numbers in a way which strikes 
you as odd. Don’t you realize that I have never referred to your experiences from 
everyday life? The important feature of my deduction lies in the fact that, when 
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writing the formulas, I arranged their elements in such a way that you could easily 
see where similar patterns are neighbors in their row or their column. Throughout, 
the order of the natural numbers played a central role. This is true in the case of 
the powers of x and i: x, x2, x3, x4 etc., or i, i2, i3, i4 etc., and in the case of the 
derivatives: df/dx, d2f/dx2, d3f/dx3, d4f/dx4 etc., and also in the case of the 
factorials: 1!, 2!, 3!, 4!, etc. Be assured that for me, and also for any 
mathematician, this formula is just a result which can be helpful in solving 
different kinds of mathematical problems, and which was deduced formally step 
by step. You should not believe that there is any hidden meaning behind this 
formula which only some expert geniuses can understand.  

We now use this formula to answer our original question about the value of 2i, 
the question posed at the beginning of this section. If we had asked for the value 
of ei, we would have obtained the result directly from Euler’s formula (see the 
second row in Fig. 3.23). But since we want the value of 2i, we first have to look 
up the value of x where ex is 2 (see Fig. 2.20). This is a problem where we need 
the logarithm, i.e., the function which provides the exponent exp to a given base b 
when the power p=bexp is given. This is expressed as exp=logb p. In our case, the 
base b is e and the power p is 2. When the base is Euler’s number e, the logarithm 
is called the natural logarithm and the function symbol is “ln.” So in this case, 
2=eln 2. You are likely to find the LN-key on your pocket calculator. Then you may 
check the result yourself: ln 2 = 0.693147. Using this, the result of 2i can be 
obtained as shown in the third row of Fig. 3.23,  2i = 0.7693+0.6389*i. 

Euler’s formula can even provide a result for the power ii. First we have to find 
a way of writing i as a power of e. Looking at Euler’s formula, we notice that the  
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Fig. 3.23     Examples using Euler’s formula 
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result will be ex =i if cos(x) is 0 and sin(x) is 1. This is the case for x=π/2. 
Therefore, we will obtain the result of ii by setting x=i∗π/2 in Euler’s formula (see 
the last row of Fig. 3.23). Isn’t this amazing? By jauntily defining a number whose 
square is -1, we created a number i and called it an imaginary number. And now 
we are confronted by the fact that a power term which is a simple abbreviation in 
the world of natural numbers, e.g., 55=5∗5∗5∗5∗5, still has a meaning in the case 
of the formal term ii where the exponent is an imaginary number. In this case, we 
cannot obtain the result by writing a product where all factors are equal and appear 
“i times” in a chain. A factor may appear five times, but not i times; the term “i 
times” is always complete nonsense. 

Now our flight in a space ship over the mathematics continent has come to its 
end. I wanted to show you two things which, hopefully, you shall never forget. 
One thing is the structure of this continent, i.e., which countries are present and 
how they are related to each other. The other thing is the fact that all journeys on 
this continent start with simple structures which can be interpreted by referring to 
our experiences in the real world, but soon lead us into regions which are purely 
formal and cannot be interpreted as abstractions from reality. You will never get 
lost, however, if you stay on the paths of logical consistency. 



Chapter 4 
When It Helps to Ignore Any Meaning 

In this chapter, you may find many concepts which you think belong to the two 
preceding chapters on mathematics. But it is also possible that a computer scientist, 
when he reads the following sections, will claim that the subjects covered here 
belong to the area of computer science. Both views have certain justifications. 
Therefore, I decided to assign my description of the world of formalisms neither to 
mathematics nor to computer science, but to grant it its own chapter. 

Where Discretionary Powers Are Not Allowed 

When a structural engineer has analyzed the structure of a building with respect to 
its static equilibrium, another engineer must check whether the computations of 
the first engineer are correct. While a judge in court may use his discretionary 
powers in making his judgements, the engineer has no discretionary powers at all 
on the way to his judgements. When the computations of the engineer are correct, 
no one has any reason to object to his judgement. But in court, it is possible that 
two different judges may come up with different judgements without one of them 
being wrong. In general, a judge has to weigh the different arguments against each 
other, and the result may depend on his personal preferences. In the world of 
formalisms, however, powers of discretion do not exist. We may even say that it 
was the goal of getting rid of all powers of discretion which led to the creation of 
the formal world. 

You almost certainly will remember statements which contain the word 
“formal.” For example, consider someone who makes a written application for 
something and finds that his application is rejected. Then he claims that the person 
responsible for the rejection had quite formally decided about it based upon a set 
routine, without considering the deeper meaning of the text of the application. Or 
think of an article in a newspaper saying that a higher court has repealed the 
judgment of a lower court on the basis of a formal irregularity in the process. For 
most people who are not graduates of a law school, decisions based purely on 
formal reasons have a negative taste. The reason for this lies in the assumption 
that the decider refused to use his powers of discretion, since otherwise he would 
have come up with a more favorable decision. Or consider the people who believe 
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that formal rules, whose sense and purpose cannot be understood at all, have been 
applied. I am not a judge or a lawyer and therefore I am allowed to come up with a 
rather silly example. Let’s suppose that there was a rule in the legal process 
regulations requiring that the accused person must stand when the judge reads the 
verdict. And let’s suppose further that a verdict is negated on the grounds of a 
video showing that the defendant stayed seated during the reading of the verdict. 
Would you think this was a good decision? I certainly would not. Fortunately, the 
formal rules presented in the following sections are not of the kind where we 
could argue about their sense or nonsense. 

The criterion for detecting whether a rule is completely formal or not is as 
follows: a rule is formal if, just by observing the process, anyone can deduce 
whether the rule was obeyed or violated. It is not difficult to invent rules which at 
the first glance look like formal rules but which, nevertheless, are not completely 
formal. For example, consider the rule, “A college student must write his name 
and address on the first page of his exam paper in such a way that it can be read 
clearly.” In this case, it can happen that the text which has been written is accepted 
by one professor, but rejected by another one. For our following discussions, we 
use this definition: A formal rule is characterized by the fact that it can be obeyed 
in such a way that no one is required to refer to his discretionary powers in order 
to verify that the rule has been obeyed. 

It would not be reasonable to try to write all laws and regulations as formal 
rules in order to eliminate the need for the discretionary powers of judges, thus 
enabling machines to provide the judgements. But there are some domains where 
it is absolutely necessary for decisions to be made without any reference to 
discretionary powers. For example, the question of whether a proof of a 
mathematical theorem is correct must have an answer that does not depend on the 
personal preferences of the examiners.  

When you were in high school, did you ever write a composition which the 
teacher returned to you with the remark “subject not addressed’’? In such a case, 
there was a question about how the subject assigned by the teacher was to be 
interpreted. Obviously, the teacher and the student had answered this question 
differently, and one of three possible cases had occurred. In case (1), the assigned 
subject had been worded so vaguely that it could be interpreted in different ways; 
in this case, the interpretation depended on the discretionary powers of the reader. 
In cases (2) and (3), the wording of the subject permitted only one interpretation, 
and the interpretation of either the student (case 2) or the teacher (case 3) was 
incorrect while the interpretation of the other was correct. 

There are many areas where we must require that a given text be interpreted in 
only one way. In these cases, it must be guaranteed that the interpretation of a text 
does not depend on the discretionary powers of the reader. One of these areas is 
the area of computer programming. A computer program is a text which tells the 
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computer what to do, and obviously it would not be acceptable if such a text has 
more than one valid interpretation. Therefore, so-called formal languages are used 
in the area of computer programming. 
Playing wit hout Thinking 

Games Which Can Be Played without Thinking  
Playing wit hout Thinking 

The games of the kind which shall be considered in subsequent sections are played 
using finite sets of elements which can be recognized and classified by merely 
looking at them. The rules of such a game define which combinations of the 
elements are allowed as initial states of the game, and what kind of steps are 
allowed to transfer from an initial state via intermediate states to a final state. A 
simple example of such a finite set of elements is the set of the 32 chessmen with 
16 being white and the other 16 being black. In this example, there is only one 
combination of the elements which is allowed as an initial state: the chessmen 
have to be placed in a well-defined way on the board. The rules specify that the 
two players alternate in changing the situation on the board by making moves. In 
each situation, the set of allowable moves, one of which must be selected, is well-
defined. Here you might object by saying, ”You said that we shall consider areas 
where no discretionary powers are allowed. But playing chess requires lots of 
discretionary powers. There are no rules telling us which moves to select. If we 
select the proper moves, we may win, or else we shall lose.” But you should 
realize that I never said that all decisions in our game must be determined 
completely by the rules. I specified only that the answer to the question about 
whether the rules of the game have been obeyed should not depend on any 
discretionary powers. There is a rule saying that the player who has to make a 
move, must select his move from a formally well-defined set of moves. But which 
move he selects from the actual set is not determined by a rule.  

For the most part, people play chess or card games or other interesting games as 
a pleasant pastime and, less often, to win money. You may recall that I mentioned 
playing games in the chapters on mathematics. The purpose of those games was 
not passing time or winning money, but gaining insight. The games we are 
considering in the present chapter are played for getting answers to questions. 
Before I tell you what kind of questions these are, I shall first present a simple 
game, and afterwards I shall show that this game really provides answers to 
certain questions. 

In Fig. 4.1 you see a table on which nine rectangular white and black pieces are 
placed in a certain configuration. Next to the table, on its right hand side, there is a 
box. It contains eight pieces of the same kind as of those on the table, three being 
black and five being white. On the table, there are two shaded areas on which 
pieces will be placed in the course of playing the game. The situation shown on 
the table is an initial state according to the rules. These rules require that in the 
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initial state, nine pieces must be sitting on the table on the locations filled in Fig. 
4.1. The color of eight of these nine pieces may be chosen arbitrarily; only the 
piece on the lower right position must be white. Since for eight positions there is 
the binary choice of the color, the number of possible initial states is 28=256. 

 

Fig. 4.1     An initial state for our game 

Once the initial state is given, the whole sequence of steps leading to the final 
state is completely determined, i.e., in the course of playing the game, there are no 
choices to decide about. The steps are determined by the rules presented in Fig. 4.2. 

If the pattern of the three pieces at the right edge of the table looks like

or or or or

the following two pieces have to be placed onto the two shaded locations

 

Fig. 4.2     Rules for moves in our game 

In each possible situation, the three pieces at the right edge of the table form 
one of the eight possible patterns given at the top of the figure. The actual pattern 
determines the colors of the two pieces, shown in the bottom of the figure, which 
must be taken out of the box and placed on the two marked locations. Shifting all 
pieces on the table one position to the right causes three of these pieces to fall into 
the box, and then a new pattern appears at the right edge of the table. After having 
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applied the rules of Fig. 4.2 four times where each time three pieces fall into the 
box, the four pieces which initially were sitting in the upper row now have all 
disappeared into the box. Then there are only two pieces left at the right edge of 
the table, and the rules of Fig. 4.2 may no longer be applied. This situation tells us 
that we have reached the final state. 

Surely, you had no problem understanding the rules of this game and now you 
could play it yourself. But the game is much too trivial to be played as a pastime. 
So now it is time to tell you what the purpose of this game is and how I invented 
the rules. Look at Fig. 4.3. 

8+4+2+4+1 = 2+1+16 = 19
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Fig. 4.3     Interpretation of our game 

The left side of this figure shows the eleven positions which, in the course of 
playing the game, can have pieces sitting on them. The nine positions for the 
initial state are inscribed with powers of two which means that a black piece 
sitting on that position has a weight equal to its corresponding number. The initial 
state from Fig. 4.1 is shown again in the middle of Fig. 4.3. In this state, the sum 
of the weights of all black pieces is 19. The final state is represented on the right 
side of the figure where you can see that the sum of the weights of the black 
pieces is again 19. Obviously, the purpose of this game is the implementation of 
some arithmetic operation. 

Fig. 4.4 helps you to see how I found the rules of the game. In the upper half of 
the figure, I illustrated the well-known procedure for adding decimal numbers. 
The two numbers to be added are 3,926 and 6,348. We write these summands one 
below the other such that corresponding digits are located in the same columns. 
The process of adding begins at the rightmost column. 6+8 is 14 where the 4 is 
placed in the row reserved for the sum and the 1 is copied as a carry into the left 
neighboring column. We continue moving stepwise to the left: “2+4+1 is 7, write 
7, transfer 0; 9+3+0 is 12, write 2, transfer 1; 3+6+1 is 10, write 10.” As the final 
result we obtain the number 10,274. 

Now look at the structure in the lower half of the figure. At first glance, it looks 
exactly like the structure above. Only the inscriptions differ. While the numbers in 
the upper half are decimal numbers, the numbers in the lower half are the 
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Fig. 4.4     Addition structures for decimal and binary numbers 

so-called binary numbers. The term “decimal” means that the weights of the digits 
in a number representation are powers of 10: at the rightmost position, the weight 
is 1; in the next position to the left, it is 10; then 100, then 1,000 and so on. The 
base of these powers is called the base of the number system. While the base is 10 
in the case of the decimal number system, the base is 2 in the case of the binary 
number system. The exponents of the powers are the same in all number systems. 
The rightmost weight is always 1 since here the exponent is 0. Moving stepwise to 
the left, the weight increases by a constant factor which is the base of the number 
system. While in the case of the decimal numbers we need a set of ten different 
digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, a set of two different digits {0, 1} is sufficient in 
the case of the binary numbers. In each number system, the number of different 
digits needed is equal to the basis B, and the weights of these digits are {0, 1, 2, 3, 
. . . , (B-1)}. In the lower half of Fig. 4.4, I have illustrated the addition of two 
binary numbers: 1110 + 0101 = 10011, corresponding to the addition of the 
decimal numbers: 14 + 5 = 19. 
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You may already have realized that the patterns within the oval shapes 
correspond to the game rules in Fig. 4.2. That was exactly how I discovered these 
rules: I looked at an example of adding two multiple digit binary numbers and 
asked myself how many different patterns could occur in a column. I found the 
eight patterns in Fig. 4.2. Since I didn’t want you to know from the very beginning 
that we were doing arithmetic with binary numbers, I didn’t inscribe the pieces 
with the digits 0 and 1, but I chose the white color for the 0 and the black color for 
the 1. When the game is implemented by technical means using a computer, it is 
up to us to decide what kind of physical properties to use for representation of the 
two binary digits. In the era of data processing with punched cards, the 1 was 
assigned to positions with a punched hole, and the 0 to positions which had not 
been punched.  

Looking at Fig. 4.4, you can see that our game must not necessarily be 
restricted to four columns; the structure may be easily extended to the left. 
Applying the formal rules in Fig. 4.2, we can add binary numbers of any length.  

The games we are considering here can always be interpreted as procedures for 
computing the result of a function for given input information. I could now present 
the games which provide the results for subtraction, multiplication or division. But 
from this, you would not gain any fundamentally new insight. Mathematicians and 
computer scientists use the word algorithm for such games which are played to get 
the results of functions. It is assumed that the root of the word algorithm is the 
Arabian name Al-Hwarizmi, the name of the mathematician whom I already 
mentioned in connection with the term algebra. Although the two words algorithm 
and logarithm differ only in the order of their first four letters, their meanings 
have nothing in common. 
Logic by Pattern Recognition 

How Logical Thinking Can Be Replaced by Pattern Recognition 
Logic by Pattern Recognition 

Instead of saying that the purpose of a formal game is getting the result of a 
function for given inputs, I could say that the purpose is getting the answer to a 
given question. These two definitions of the purpose of the game are equivalent. 
Instead of saying that the game from Fig. 4.1 provides the result of adding two 
given numbers, we could say that the game answers the question about what the 
sum of the two numbers is. In the following section, we consider only questions 
whose answers are restricted to yes or no. Such questions are called binary 
questions, since there are only two possible answers. Some important binary 
questions are, in particular, whether a given proof of a mathematical theorem is 
correct, or whether a hypothesis can be proven, or whether a linguistic term obeys 
the corresponding grammar. 

The binary question to be answered must be completely specified in the initial 
state of the game, and the sequence of moves must lead to a final state which can 
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be interpreted to mean either yes or no. If the initial state contains a hypothetical 
proof of a mathematical theorem or a linguistic term, the pieces of the game must 
be such that we can use them for writing text and formulas. The use of only two 
kinds of pieces, for example black and white pieces, doesn’t seem to be sufficient 
for these cases. In order to find out what kind of pieces we need, we must analyze 
the structure of texts and formulas. 

It is well known that the Greek philosopher Aristotle (around 340 BC) had the 
idea that the components of a text are always either factual or logical. Therefore, 
Aristotle is often called the father of formal logic. Fig. 4.5 illustrates the difference 
between factual and logical components. This figure shows a logical equation, a 
sequence of rectangles, with some of them being shaded while the others are 
white. The inscriptions a and b in the shaded fields are variables for propositions 
which can be only true or false. For example, as proposition a we could choose 
“Abraham Lincoln died in Washington D.C.”, and as proposition b we could 
choose “Thomas Jefferson was the second president of the United States.” 
Whether these propositions are true or false – the first is true and the second is 
false – cannot be decided by logical thinking since they say something about the 
real world where, at particular locations and at particular points in time, certain 
events occur which someone may observe. Factual components of texts are those 
that refer to such events or situations in the real world. According to this criterion, 
words such as tree, dog, red, wet, drink or die are factual words. In Fig. 4.5 factual 
words appear only in the shaded fields. All the components in the white fields are 
logical. I hope that you still remember what I told you about equations: the two 
terms on the left and the right side of the equals sign refer to the same thing. In the 
case of the logical equation in Fig. 4.5, the identified thing is the meaning of what 
is stated on either side. Someone who says the phrase which stands left of the  
 

A proposition a
with a well-defined truth value

notthennot( )If then If b ( )a=a b

A proposition b
with a well-defined truth value

 

Fig. 4.5     Example of a formula in propositional logic 
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equals sign could equally well have said the phrase which stands on the right side 
of the equals sign, since the meaning of these two phrases is the same. 

While in school, you certainly had to write many compositions, and one reason for 
this was to teach you that there are many ways to express a particular meaning. 
Therefore, you should not be surprised that we can put an equal sign between two 
phrases. If we now insert the propositions which we chose as examples for a and b, the 
phrase on the left side is “If Abraham Lincoln died in Washington D.C., then Thomas 
Jefferson was the second president of the United States.” The logical equation says 
that instead of saying this, we could say what stands on the right side of the equal sign, 
“If Thomas Jefferson was not the second president of the United States, then Abraham 
Lincoln did not die in Washington D.C.” I am sure that now you will severely object 
by pointing out that the location where Lincoln died had nothing at all to do with 
where Jefferson stands in the sequence of United States presidents. But your objection 
misses the point, since nowhere did I say that these two facts are causally related. 
What I said was that the phrase on the left side of the equals sign has the same 
meaning as the phrase on the right side. If you think that the phrase on the left side is 
nonsense – with which I perfectly agree – then the equation says that the same 
nonsense is stated with other words on the right side.  

So far, I have pretended that the equation in Fig. 4.5 is correct, but I have not 
proved it yet. The proof will now be presented. Equations of the type considered 
here can contain only a finite number of variables for propositions. Whether the two 
phrases on the two sides of the equal sign are true or false depends on whether the 
actual propositions which are chosen to replace the variables are true or false. 
Logicians state this by saying, “The truth value of the phrases on the two sides of the 
equations depends on the truth values of the propositions replacing the variables.” 
Since the number of the variables is finite and since each variable can provide only 
one of two truth values, the number of possible different combinations of the truth 
values is also finite. In the case of Fig. 4.5, there are the two variables, a and b, and 
the possible combinations of truth values for the pair (a, b) are {(false, false), (false, 
true), (true, false) and (true, true)}. These four combinations are listed on the left 
side of the table in Fig. 4.6. In order to find out whether the equation in Fig. 4.5 is 
correct, it is sufficient to check whether the truth values for the two sides of the 
equation are really identical for all four possible input combinations. First, we 
consider the left half of the table in Fig. 4.6 which corresponds to the left side of the 
equation in Fig. 4.5. You see that only one of the four input combinations results in 
the truth value false for the left side of the equation, namely when proposition a is 
true and proposition b is false. 

An example may help you to understand this result. Suppose I say to my son, 
“If I win $20,000 in the lottery next Sunday, I will buy you the car you have been 
wanting for so long.” There is only one situation when what I said will be a lie, 
namely when I win and don’t keep my promise. The first two rows in Fig. 4.6  
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Truth values for
the left side of the equation

Identical patterns of truth values

Corresponding truth values for 
the right side of the equation

IF a
THEN ba

false

false

true

true

b

false

true

false

true false

false

true

true

false

true

false

true

false

true

true

true

false

true

true

true

(NOT b) (NOT a) IF (NOT b)
THEN (NOT a)

 

Fig. 4.6     Proof of the correctness of the equation in Fig. 4.5 

correspond to the situations where I don’t win. In the first row, I don’t buy my son 
a car, but in the second row I do although I didn’t win. Nevertheless, I didn’t tell a 
lie in this case, since I promised to buy him a car in the case of a win. I didn’t say 
anything about what I would do if I didn’t win. 

Now look at the right half of the table in Fig. 4.6 which corresponds to the right 
side of the equation in Fig. 4.5. Here you see the truth value combinations for the 
pair (not b, not a). These combinations are obtained by simply inverting the 
corresponding values of a and b in the same row (true → false and false → true). 
For each combination on the right side, the result of the if-then proposition can be 
looked up on the left side. By comparing the patterns in the two columns which 
contain the results for the two sides of the equation, you can see that these patterns 
are identical, and this means that the equation is correct. Obviously, we could 
prove the correctness of the equation without considering any actual propositions 
instead of using the variables a and b. 

By using white and shaded fields for the truth values false and true, I built a bridge 
to our game in Fig. 4.1. There we had only two kinds of pieces, white and black, and 
now again we have two kinds of pieces, white and shaded. In the case of the game for 
adding binary numbers, there was no need for the player to know how to interpret the 
colors white and black. And now, in the case of propositional logic, again there is no 
need for the player to know how to interpret the white and shaded fields. Comparing 
the patterns can be done by anyone who is not blind. A formal game can always be 
played without knowing the purpose which led to the rules of the game. 

In Fig. 4.7, five so-called logical functions are shown, the first of which is the “If-
then function” we considered in Fig. 4.6. Each of these functions is defined by its 
characteristic pattern of white and shaded fields. In Chapter 14, we shall refer to 
these functions again since they are the basis for all kinds of computing machines. 
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Truth values
for the

input variables

IF a
THEN b

false

false

true

true

false

false

true

true

false

false

true

true

false

false

true

true

false

false

true

true

a AND b

Results of the
corresponding logical function f(a, b)

false

true

false

true

false

false

true

true

ba EITHER a
OR b

a AND/OR
b

NEITHER 
a NOR b

 

Fig. 4.7     Truth values for different logical functions 

The concepts of propositional logic as we know them today were developed by 
the English mathematician George Boole (1815-1864). Not much later, it became 
clear that propositional logic does not cover all the possibilities for formalizing 
logical thinking. Around the year 1900, an important step forward occurred when 
a major contribution was made by the German mathematician Gottlob Frege 
(1848-1925). In propositional logic, the internal structure of the propositions is not 
considered; it is relevant only whether the propositions are true or false. Going 
further, logicians looked inside of propositions hoping to find structures which 
could be formalized.  

From your English class, you know the terms subject, predicate and object for 
particular parts of a sentence.. Subject and object are connected by a certain 
relationship called the predicate. A very unpleasant relationship is expressed by the 
sentence “Cain killed his brother, Abel.” Sentences are represented in the so-called 
predicate logic where constants and variables are used to represent the subjects, the 
objects, and the predicates. The constants and variables for subjects and objects are 
called “individuals.” Using the variables x and y for the individuals and “killed” for 
the predicate, the sentence now reads “x killed y.” In the next step, we replace the 
actual predicate “killed” by another variable. This requires that we introduce a 
criterion for distinguishing between variables for individuals and those for 
predicates. It is common to use capital letters for the predicate variables and lower-
case letters for the variables associated with the individuals. Now our sentence reads 
“xPy”. This so-called infix form is possible only in cases where the predicate relates 
two individuals to each other. There are also predicates which relate more than two 
individuals to each other, e.g., “John owes Ruth $100.” Here the individuals are 
John, Ruth and $100. You may wonder why I call $100 an individual, but in 
predicate logic, ”individual” is the common name for anything that may become a 
subject or an object. While the infix form is a special case, the most general form for 
a sentence in predicate logic is P(x1, x2, . . . , xn). The predicate variable is placed in 
front of the brackets and the individual variables are listed within the brackets. In the 
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definition of such a predicate, it must be determined how the different positions 
within the bracket are to be interpreted, since there is more than one possible order 
for listing individuals. For example, we could use owing(John, Ruth, $100), 
owing(Ruth, John, $100), owing(John, $100, Ruth), owing(Ruth, $100, John), 
owing($100, John, Ruth) or, owing($100, Ruth, John). 

The introduction of new types of variables is a prerequisite for the concept of 
predicate logic, but it is not the key point. The key point is the concept of so-called 
quantifiers. The word quantifier is derived from the Latin word quantus (how 
much). In reference to these quantifiers, predicate logic is alternatively called 
quantificational logic. We need only two different kinds of quantifiers to express 
all logically relevant relations between a universe (containing all possible 
elements of a particular type) and its subsets. On the one hand, we want to say, 
“For all elements of the actual universe, it is true that … “, and on the other hand 
we want to say, “There is at least one element in the actual universe for which it is 
true that … “  The first of these is called universal quantification and the second is 
called existential quantification. The first letters of the words all and existing have 
been chosen as symbols for these quantifiers, and they are used in their capital 
letter form and inverted: ∀ and ∃.  

Fig. 4.8 represents an equation from predicate logic. What I said in my 
comment about Fig. 4.5 is also valid here. The equal sign says that the two phrases 
on its two sides have the same meaning. In natural language, the phrase on the left 
side reads: “Not all elements in the universe U have the property P.” On the right 
side, this fact is expressed again in a different form: “There is at least one element 
in the universe U which does not have the property P.” 

A Universe U

A Predicate P
with a single input position

Not Not (P )x )(U :(P:Ux ) ) x( x =

 

Fig. 4.8     Example of a formula in predicate logic 

Considering the fact that there are books with about 300 pages dealing 
exclusively with formal logic, you certainly shall forgive me for not presenting the 
rules of formal games, the states of which are formulas of predicate logic. But I 
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shall show you how any formula of predicate logic can be transformed into a 
structure containing only white and black pieces. Consider Fig. 4.9. In the upper 
part of this figure, you find a formula saying that all elements of the universe U 
have the property P. Underneath, there is a sequence of pieces where each is a 
square made of 3×3 elemental squares. An elemental square is either white or 
black, and with 3•3=9 such elemental squares we can create 29=512 different 
patterns. Since the rules of a formal game must be defined exclusively with 
reference to the looks of the pieces and without any reference to their meaning, it 
is possible to play the game with pieces having the black and white patterns of 
those in Fig. 4.9. A human player will undoubtedly not be able to memorize the 
rules of the game only by referring to the looks of the pieces, and a computing 
machine cannot assign meanings to patterns. Therefore, letting a computer play 
the game requires only that the pieces can be distinguished merely by their looks. 

x U : P ( x )

 

Fig. 4.9     Human-oriented versus machine-oriented patterns 

Without predicate logic it would not be possible to represent proofs of mathematical 
theorems in such a form that the question about whether a proof is correct can be 
answered by playing a formal game. When the correctness of a proof is checked 
formally, no interpretation of the states is allowed. However, human testers are not 
able to turn off their capability of interpreting texts and formulas. When looking at a 
proof written in common mathematical language, we cannot look at it as if it were just 
a structure of distinguishable patterns, but we automatically think about what this 
structure means to us. Therefore, when a proof is written for human testers, it does not 
contain those assumptions which are self evident to all of us. In particular, we take it 
for granted that the tester knows how to count using natural numbers, and therefore 
there is no need to include the concept of numbers and counting in a proof to be tested 
by humans. But when the tester is a computer which knows nothing about numbers 
and counting, it needs a formal text specifying what these concepts are. The first 
person who successfully formalized the concept of counting was the Italian 
mathematician Giuseppe Peano (1858-1932). Around the year 1900, he published the 
five formal expressions which are shown in Fig. 4.10. Of course, it was not Peano’s 
problem to create the natural numbers since for him as for everybody else, 
Kronecker’s statement was true: “The natural numbers have been created by the dear 
God and everything else is the work of humans.” The problem Mr. Peano had to solve 
was taking a concept which every educated human individual is familiar with and 
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formalizing it in such a way that the form could be manipulated by a machine which 
cannot assign any meaning to the formal structures. Our idea of counting is illustrated 
in the shaded field in the lower right corner of Fig. 4.10. We start with a first element, 
then go to the next, and so on, and we know that the chain continues indefinitely on the 
right side. 

 

Compatible with axiom 1

N( )

The universe is a set of circles, with
one of them having the inscription .

N is the predicate of 'being an element of the universe';
 is the name of a special element in the universe.

1.

Illustration:

Compatible with the axioms 1 through 4

...
The circle  is not pointed to.

Compatible with the axioms 1 and 2

Compatible with the axioms 1 through 3

Each circle is pointed to at most 
once.

Each circle is the origin of an arrow
pointing to a circle.

x, y:   ( N(x) & N(y) & (x not equal y) )  ( r(x) not equal r(y) )

There are no two different elements in the universe to which the function r 
provides the same result.

3.

x:   N(x)   ( r(x)      )
There is no element in the universe to which the function r provides
the result .

4.

x:   N(x)  N(r(x))

There is a function r defined on the elements of the universe, the result of 
which is an element of the universe, too. 

2.

Axiom of complete induction (see text)

5.

Compatible with the axioms 1 through 5

...There are no circles not being part of 
the chain which begins with .

P: ( P( ) & ( x: P(x) P((r(x)) ) )  ( x: N(x) P(x) )

 

Fig. 4.10     Peano’s axioms 
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The five expressions in Fig. 4.10 are called axioms. An axiom is a 
mathematical proposition of a special kind. Its purpose is to define a structured 
universe, and therefore it would be nonsense to require that such a proposition be 
proven. It is true simply because the person who writes it down defines it to be 
true. By the first axiom in Fig. 4.10, the first element in the chain with the name α 
is created. By the second axiom, the arrows are created which are needed for 
building the chain. By the axioms 3, 4 and 5, certain combinations of elements and 
arrows are enforced and certain others are prohibited. While the axioms 1 through 
4 can be easily understood, the fifth axiom cannot be understood at all, at least not 
at first glance. The great achievement of Mr. Peano was finding this fifth axiom. 

While I was able to comment on the first four axioms in Fig. 4.10 in natural 
language, a corresponding comment about the fifth axiom is missing. The first 
four axioms are sufficient for the creation of the chain which begins with α and 
continues indefinitely on one side. Therefore, the fifth axiom is needed only to 
exclude all other structures except the one chain. The fifth axiom is more complex 
than the other four since it is the only one containing not only quantifiers for 
individuals, but also quantifiers for predicates. The formal expression ∀P 
expressed in natural language is: “For any property P an element of the universe 
may have, it is true that …” Compared to this, the expression ∀x is much simpler: 
“For any element x of the universe, it is true that …”. You shall not be surprised to 
see that the complexity of the formula in Fig. 4.10 also shows up in the natural 
language form of the axiom:  

For the universe considered and for any property P an element may have, the 
following statement is true: 

 If the two conditions are met, 
   that the element α has the property P 

   and that each element x having the property P 
   transmits it to the element r(x), 
 then all elements of the universe have the property P. 

The fifth axiom of Peano is often called the “axiom of complete induction.” The 
principle of complete induction allows the conclusion that, under certain 
conditions, an infinite number of elements have a certain property. Let’s assume 
that α is the natural number 9 and that the function r(x) is defined as 2x+3. The 
property P we are looking at is natural divisibility by 3, i.e., the fact that the result 
of the division x/3 is a natural number. The element α has this property since 
9/3=3, and, if x has this property, then r(x) also has this property, since 
r(x)/3=2•(x/3)+1. Therefore, all elements in the chain which begins with 9 and is 
continued by r(x)=2x+3  (i.e. 9, 21, 45, 93…) have natural divisibility by 3. 

Formal games having a set of axioms as their initial state are called calculus. The 
purpose of the axioms is the creation of a universe of structures which are defined by 
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the individuals, functions and predicates introduced by the axioms. These individuals, 
functions and predicates are introduced merely by giving them names. In the case of  
Peano’s axioms, the individual is α, the function is r(x) and the predicate is N(x). 
Sometimes it is said that Peano introduced the axioms defining the natural numbers, 
but Fig. 4.11 shows that the universe of the natural numbers is obtained only by a 
special interpretation of the axioms. Different interpretations result in different 
universes. These interpretations all have in common that an infinite set of elements, 
which have a well-defined position in an enumeration, is created. It is correct to say 
that Peano formalized the concept of enumeration while leaving open what the 
elements are. I deliberately included an example where the elements are not numbers 
but geometric shapes (see the third column in Fig. 4.11). 

r(x)

If x is a square with the edge n:

If x is a rectangle with the width n:
the sqare obtained by adding
n elementary squares at the top

the rectangle obtained by adding
n elementary squares to the right

x + 2x + 1

11

3

5

7

9

11

2

3

4

5

6

Shapes which are either squares or
rectangles where the edge relation

is horizontal : vertical = (n+1):n
where n is a natural number.

N
Positive

odd 
numbers

Natural
numbers

 

Fig. 4.11     Alternative interpretations of Peano’s axioms 

A structured universe which is defined by providing a set of axioms is called a 
theory in the professional language of the mathematicians. Each interpretation of 
the names of individuals, functions and predicates which occurs in the axioms is 
called a model of the theory. Using these terms we may say that Fig. 4.11 shows 
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three models of Peano’s theory in its three columns. Two models belonging to the 
same theory are said to be isomorphic to each other. The Greek term morph means 
shape or structure. Correspondingly, the English word amorphous means “without 
structure”. The prefix iso comes from the Greek language, too, and means equal. 
Perhaps you know the word ”isobar” for locations having the same atmospheric 
pressure, or the word “isotherm” for locations having the same temperature. Thus, 
isomorphic means having the same structure. Isomorphism is of great importance 
in the formal world, and mathematicians wandering through the world of 
formalisms are always looking for isomorphisms. 

In a way similar to the way Peano formalized the concept of enumeration, other 
mathematicians were successful in formalizing the basic concepts of geometry. In 
particular, the German mathematician David Hilbert (1862-1943) made the major 
contributions [HIL]. He characterized his axioms of geometry by saying [SCR], 
“Instead of using the words point, straight line and plane you could as well say 
table, chair and beer mug.” By this statement, Hilbert emphasized the fact that the 
names for individuals, functions and predicates introduced in the axioms have no 
meaning of their own and therefore they could be chosen without any reference to 
geometry. Such a name could even be “qq13” or “Z28” or “dog food”. The only 
condition required is that different things must have different names. 

Fig. 4.12 shows a small excerpt from axiomatic geometry. In the shaded fields 
you find the names of the abstract concepts introduced by the axioms, namely the 
predicates U(x), P(x) and G(x) and the function g(x, y). Fig. 4.12 shows two 
different interpretations of axiomatic geometry. That one represented in the middle 
column corresponds to Euclidean geometry which is called geometry in a plane, 
while the one represented in the right column corresponds to spherical geometry. 

The predicate G(x)

All points
of a

plane

The result
of the function g(x, y) in the axiom

The
straight line
containing 

the two 
given points

x and y
x, y:   U(x) & U(y) & (x    y)  G( g(x, y) )

The universe

x is a
straight line

on the
plane

All diameters 
of a sphere

x is a
great circle

on the surface
of the sphere

x is an element
of the universeThe predicate U(x)

The great circle
having

the two given
diameters

x and y
 

Fig. 4.12     Alternative interpretations of axiomatic geometry 
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In Chapter 3 in the section on geometry, I pointed out that it is difficult or 
maybe even impossible to give a precise definition of the concepts of a straight 
line or a plane. There, I quoted the following “definition” from Euclid’s book: “A 
plane is an object which lies in between its straight lines in a homogeneous way.” 
In axiomatic geometry, definitions of the elementary geometric objects like points, 
straight lines or planes are not provided at all. It is enough to see that our freedom 
of interpretation allows us to interpret the axioms in such a way that the formal 
objects denominate points, straight lines or planes.   

Detours Which Are Shorter Than the Direct Route 
Convenient Detours 

When someone comes late to a meeting, he often excuses his lateness by saying 
that the direct route was blocked and that he had to take a detour. In everyday 
language, we use the term detour only for routes which are longer than a direct 
route. But in the formal world of mathematics, it is possible that we reach our goal 
faster than via the direct route by taking a detour. In these cases, the detours are 
alternate routes found by using what are called isomorphisms. This is illustrated by 
the example in Fig. 4.13 where the starting point is the number 17, and we are 
looking for the best way to reach our goal, finding the third root of 17. We reach 
our goal when we find the number 2.5713, since 2.57133=17. You probably have a 
pocket calculator which finds the third root of 17 very quickly, and therefore you 
might think that this is the shortest way to your goal. But actually, by using a 
pocket calculator, you are not going your way, but the way of the electronic process 
which occurs inside the calculator. That way is not necessarily the direct way. 

Original
input value
xoriginal = 17

Image of the
input value

ximage = 1.2304

 Transformation to
the world of images

ximage = log10 17

Computation in the
world of originals
y = third root (x)

Original 
result

yoriginal = 2.571

Image of the
result

yimage = 0.4101

Transformation back
to the originals

yoriginal = 100.4101

Computation in the
world of images

y = x / 3

The Direct Way

The Detour which
sometimes is

the easier way

 

Fig. 4.13     Operations in two worlds 
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When I was in high school, electronic pocket calculators were not yet available, 
but nevertheless we were expected to be able to compute the third root of 17. The 
direct way we used was first to guess a solution y1, and then to check and see 
whether y1

3 = y1 • y1 • y1 is close enough to 17. If not, a next guess was made 
which again was checked, and this procedure was continued until an acceptable 
solution was found. But our mathematics teacher showed us a very elegant detour. 
Each student had to buy a booklet which contained the so-called “tables of 
logarithms”. In these tables, we could look up the logarithm to the base 10 of any 
given positive rational number. In this booklet, we found the number 1.2304 
which is log1017, since 101.2304=17. In the language of mathematicians, obtaining 
the number 1.2304 that corresponds to the given number 17 is called a 
transformation which leads from the so-called “original” 17 to its “image,” the 
logarithm whose value is 1.2304. Correspondingly, moving from 1.2304 to 17 is 
called the reverse transformation. The logarithm of 17 will be used to find the 
third root of 17. 

The concept of detours using transformations can be explained by referring to 
the world of axiomatically defined theories and their isomorphic models which are 
obtained by different interpretations of the axioms (see Figs. 4.11 and 4.12). While 
the direct way lies within a single model, the detour consists of three sections: the 
first step leads from the original model to a different model within which  
the computation is performed (the second step), and the final step leads back to the 
original model. In Fig. 4.13, the direct way leads from the starting point in the 
upper model horizontally to the goal, while the detour has its computational 
section in the isomorphic model underneath. The advantage of taking the detour 
comes from the fact that instead of computing the third root in the original model, 
it is only necessary to divide the logarithm by 3 in the isomorphic model. 
However, we would not take the detour if the two transformational steps leading 
back and forth between the two models were too difficult or extensive. Using our 
tables of logarithms made it very easy to perform these transformational steps, 
although someone had to put a lot of effort into computing these tables. All kinds 
of transformations, not only the logarithmic transformation, are provided as look-
up tables which make it easy to take the detours, although computing these tables 
surely took a lot of effort. 

The general structure shown in Fig. 4.13 does not depend on which axiomatic 
world we are dealing with. The logarithmic transformation was chosen as a simple 
example. However, there are transformations which have nothing to do with 
simple arithmetic, although the relation between an original road and a detour is 
still as shown in Fig. 4.13. Perhaps you will occasionally encounter the name of 
one of the transformations which are of great importance in engineering. 
Therefore, I mention some of their names without trying to explain what they are 
about: Fourier-Transformation, Laplace-Transformation and Z-Transformation. 
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How We Can Enter into Four- or Higher-Dimensional Spaces 
Using Simple Steps 
Hig her-Dimensio nal Spaces 

In Chapter 8 we shall be confronted with a statement of Albert Einstein saying that 
the continuum of space and time is a four-dimensional space. Everybody who 
hears this for the first time is rather irritated since he has no idea what could be 
meant by four- or higher-dimensional spaces. He only knows the space where he 
is moving around and where he spends his life, where satellites circle the earth, 
where planets move around the sun and where all the other stars are located 
somewhere. We call this space our three-dimensional space, and we think it is 
quite obvious. But the idea of a three-dimensional space is not even five-hundred 
years old, and is a consequence of the bridge between the world of numbers and 
the world of geometry. 

Fig. 3.2 shows a so-called two-dimensional coordinate system where each point 
in the plane can be represented by a pair of numbers (x, y). In order to describe a 
point in the three-dimensional space, three numbers are required. The interpretation 
of such a triplet of numbers is in reference to a three-dimensional coordinate 
system. In most cases, a so-called Cartesian coordinate system is chosen which has 
three axes perpendicular to each other as shown in Fig. 4.14 where there are arrows 
on the axes. In this figure, a half-sphere is represented, and a point on the surface of 
this sphere is selected which is the upper corner of the grey-shaded triangle. The 
distance between this point and the center of the sphere is the radius r. In the given 
coordinate system, this point can be identified by the three numbers (x1, x2, x3). 
That’s the reason such a space is called a three-dimensional space. 

In Fig. 3.2, the plane was introduced as being two-dimensional, and the curve 
in this plane was described by an arithmetic relationship between the two numbers 
in the pair (x, y). Correspondingly, we can describe the surface of our sphere by an 
arithmetic relationship between the numbers of the triplet (x1, x2, x3) which holds 
only for the points on this surface. This relationship can be found by applying the 
law of Pythagoras to the two triangles in the upper part of Fig. 4.14. This formula 
holds not only for all points on the surface of the half sphere, but for the whole 
sphere, and now can be taken as the starting point for a very simple formal 
generalization. We just increase the number i of xi in the sum and pretend quite 
boldly that all the new formulas are also descriptions of surfaces of spheres, 
although they are no longer three-dimensional, but of higher dimension. This is 
shown in the lower part of Fig. 4.14. 

By doing this, we disconnect the term “sphere” from its everyday meaning and 
use it as the name of a special formal object. Nobody would normally call a circle 
a “two-dimensional sphere” or call a straight line of finite length a “one-
dimensional sphere”. But by this generalization, we made it possible to consider n-
dimensional spheres, with n being any natural number. Nobody can have a mental  
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The pattern of this equation is the basis of the
following purely formal generalization:

x1
2 + x2

2 + x3
2 = r2 Describes the surface of a

three-dimensional sphere.

x1
2 = r2 Describes the surface of a

one-dimensional sphere.
x1

2 + x2
2 = r2 Describes the surface of a

two-dimensional sphere.

x1
2 + x2

2 + x3
2 + x4

2 = r2 Describes the surface of a
four-dimensional sphere.

x1
2 + x2

2 + x3
2 + x4

2 + . . . + xn
2 = r2 Describes the surface of a

n-dimensional sphere.

. . .

According to the theorem of Pythagoras, the following relations hold for 
each point on the surface of the sphere: 

x2

x1

x3r

c

x12 + x22 + x32 = r2 .x1
2 + x2

2 = c2 and   c2 + x3
2 = r2,   hence

 

Fig. 4.14     The coordinate equation of a sphere and its generalization 

image of these formal objects, but only of the formulas describing them. Making 
the step from three to higher dimensions means crossing a border which should be 
emphasized explicitly. In the years shortly after the Second World War, Berlin, 
the old German capital city, was divided into four sectors, and I still remember the 
signs with the following warning:  
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Think of a similar sign whenever you cross the boarder between the world of 
perceivable objects and the formal world:    
 

 
 
 
 
 

In order to help you to overcome your fear of n-dimensional spaces, I shall show 
you how we even can deduce formulas for the surface area and the volume of n-
dimensional spheres. As an example of a three-dimensional sphere, we may think 
of our earth and its surface area and volume. We know that the area is measured in 
square meters m2 and the volume in cubic meters m3. Thus, we may conclude 
quite formally that the surface area of a four-dimensional sphere can be measured 
in m3 and its volume in m4.  

We found the formulas describing higher-dimensional spheres by starting with 
the formula for the three-dimensional sphere and formally increasing the number 
of coordinates xi. We now can proceed correspondingly in order to find the 
formulas for the surface area and the volume of higher-dimensional spheres. We 
first must analyze the process which leads to the formulas for the surface area and 
the volume of a three-dimensional sphere. The half-sphere from Fig. 4.14 is 
shown again in Fig. 4.15, but now in a different view. The grey-shaded triangle in 
this figure has the same position as the corresponding triangle in Fig. 2.15 which 
was used to introduce the two functions, sine and cosine. There, cos(α) was the 
length of the horizontal edge of the triangle, and this was equal to the real part of a 
complex number being determined by its angle α and its radius one. In Fig. 4.15, 
the radius r of the circle is not set to 1, but left open, and therefore the length of 
the horizontal edge of the triangle in Fig. 4.15 is r•cos(ϕ). The section of the 
circumference which belongs to the angle ϕ is r•ϕ since we do not measure the 
angle in degrees but as the corresponding section of a circle with radius 1. Thus, a 
right angle encompassing one-half of a semi-circle has the value π/2. 

We get the surface area and the volume of the sphere by integration, i.e., by 
computing the limit of a sum of an infinite number of infinitely small summands. 
We start with small, but not infinitely small summands and let them become 
smaller and smaller. Imagine that the half-sphere in Fig. 4.15 were half of an 
apple. Its surface area is the area that can be peeled. We now assume that we peel 
this half apple in such a way that we get a lot of thin rings where each ring has the 
same angle Δϕ. The area of such a ring is given as the product of its length and its 
width. Its length is equal to the length of the circumference of the circle having the 

ATTENTION! 

100 METERS FROM HERE ENDS THE AMERICAN SECTOR! 

ATTENTION! 

HERE ENDS THE WORLD OF PERCEIVABLE OBJECTS! 

YOU ARE NOW ENTERING THE FORMAL WORLD! 
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Fig. 4.15     Quantities needed to get the surface and volume formulas for n-dimensional 
spheres 

radius r•cos(ϕ), and this length is 2π•r•cos(ϕ), since the circumference of a circle 
is 2π times its radius. The width of the ring is r•Δϕ, and thus the area of the ring is 
2π•r2•cos(ϕ)•Δϕ. If we now add up the areas of all of these rings in the interval 0 
≤ ϕ ≤ π/2, we get an approximate value for the surface area of the half-sphere. The 
exact value for the surface area of the whole sphere is obtained by computing the 
limit of the sum for Δϕ → 0 and then doubling the result. 

In order to move forward into higher-dimensional spaces, I now introduce the 
abbreviation Sn(r) which means “formula for the surface area of an n-dimensional 
sphere having the radius r.” Now look at the formula in the top-most oval in  
Fig. 4.16. This formula describes exactly what I said before about adding up the 
areas of the rings of peeling and then doubling the result. In front of the 
integration symbol ∫ you find the factor 2. At the right-most end of the formula, 
you find the width r•dϕ of the actual ring. Here a “d” replaces the former Δ which 
is a consequence of computing the limit for Δϕ → 0. The limits 0 and π/2 of the 
integral ∫ express the fact that we add up the areas of the rings at all heights which 
are determined by the angle ϕ between 0 and π/2. Finally, the function Sn-1 
provides the length of the circumference of the actual ring. Not all rings have the 
same length since their radius depends on ϕ according to the product r•cos(ϕ). For 
ϕ=0 we get cos(0)=1, and for ϕ=π/2 we get cos(π/2)=0. This means that the ring at 
the bottom has the radius r and therefore is the longest, whereas the ring on the top 
has the radius 0 and is the shortest. 

In a way similar to the way we obtained the formula for the surface area of the 
sphere, we can obtain the formula for its volume. The only difference is that we no 
longer must add up areas of rings of peeling, but now we must add up volumes of  
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Fig. 4.16     Integral formulas for the surface and the volume of n-dimensional spheres 

thin disks. These disks are exactly the same which we had to peel previously in 
order to get our rings. Such a disk is shaded in grey in Fig. 4.15. All the rings have 
the same width r•Δϕ, but the disks do not all have the same thickness Δz. The 
expression describing this thickness as a function of the angle ϕ is r•Δϕ•cos(ϕ). 
This is a consequence of the fact that the very small white triangle, which you see 
at the left side of the grey disk, has the same angles as the big grey triangle. The 
volume of the disk is equal to the product of its base area and its thickness where 
the base area is a circle with radius r•cos(ϕ). Thus, the volume of the disk is π• 
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(r•cos(ϕ))2•r•Δϕ•cos(ϕ) = π•r3•Δϕ•cos3(ϕ). The volumes of all of these disks must 
be added up while Δϕ is made smaller and smaller. This is indicated by replacing 
Δϕ by dϕ. This procedure results in the formula which you find in the lower oval 
in Fig. 4.16. In analogy to Sn(r), the abbreviation Vn(r) means “formula for the 
volume of an n-dimensional sphere having the radius r.”  

n
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Fig. 4.17     Surface and volume of spheres for dimensions 1 through 6 

Starting from the one-dimensional sphere, i.e., from the straight line having the 
length 2r, I now have successively computed the formulas in Fig. 4.17. Once I had the 
formula for a certain n, I could compute the formula for n+1. However, I avoided the 
bother of deriving the formula for the integral of the expression cosn(ϕ) (see Fig. 4.18); 
I looked it up in my book of mathematical formulas [HUE]. 

cosn(  ) • d    =

  /2

0

if n is positive and even

if n is odd and greater than 1

2 • 1 • 3 • 5 • 7 • . . .   • (n - 1)
2 • 4 • 6 • 8 • . . .     • n

2 • 4 • 6 • 8 • . . .   • (n - 1)
3 • 5 • 7 • 9 • . . .     • n  

Fig. 4.18     Formula for integration of powers of the cosine function 
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Once I had computed the formulas in the white fields of the table in Fig. 4.17, I 
started to search for patterns in the relationships between (Sn and Vn), (Sn and Sn+1) 
and (Vn and Vn+1). It was easy to find the simple relationship between (Sn and Vn) 
which is represented in the grey field in the lower right corner. A much longer 
search finally let me find the relationship between (Sn and Sn+2) which is 
represented in the grey field in the lower left corner. The relationships represented 
in the grey fields make it possible to obtain the formulas for Sn(r) and Vn(r) for 
any natural number n without performing any integration. We need only the 
simple formulas S1(r)=2 and S2(r)=2πr as starting points. 

In the many years I worked with students in engineering and computer science, 
I found that the experience of dealing with formalisms which must not be 
interpreted can become a passion. Actually, the formalism then becomes a game 
which attracts and holds on to its players. Although I am not really an addict, I 
nevertheless sometimes enjoy playing with formalisms, and therefore I continued 
playing with the formulas for n-dimensional spheres. I wanted to check the 
correctness of these formulas numerically, and I thought the following procedure 
would be very suitable. Each (three-dimensional) sphere with radius r can be 
placed inside a (three-dimensional) cube with edges of length 2r. When the sphere 
is n-dimensional, the cube must also be n-dimensional. But what is an n-
dimensional cube? We start from a “real” three-dimensional cube which sits in a 
Cartesian coordinate system where each point is determined by three numbers (x1, 
x2, x3). We now ask for the two-dimensional cube. It will be what is left from the 
three-dimensional cube when we omit the x3-axis; therefore it is the square with 
edges of length 2r sitting in the (x1, x2)-plane. The one-dimensional cube is what is 
left from this square when we omit the x2 axis; it is the straight line with length 2r. 
The “volumes” of these cubes are (2r)1 for the straight line, (2r)2 for the square 
and (2r)3 for the “real” cube. Therefore, we may assume that the volume of an n-
dimensional cube with edges of length 2r is (2r)n. The table in Fig. 4.19 shows the 
ratios of the volumes Vn from Fig. 4.17 to the volumes (2r)n of the corresponding 
cubes. Would you have expected that higher dimensional spheres fitted into such 
cubes take smaller and smaller fractions of the cube’s volume as the dimension 
increases?  I really was surprised when I first saw the numbers in Fig. 4.19. 

4 6

2

32

2

60

3

384Vn(r)

(2r)n

1

1 0.785 0.524 0.308 0.164 0.081

n 1 2 3 4 5 6

 

Fig. 4.19     Ratio of the volume of a sphere to its outside cube 
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I then checked these numbers using a procedure which is illustrated in Fig. 4.20 
for the two-dimensional case. The cube is filled with a regular pattern of equally-
spaced points, and then those points which lie inside the sphere are counted. The 
counting can be restricted to the points with positive coordinate values only, i.e., 
to the points in the grey square, since the symmetric structure guarantees that we 
get the same relationship between the results of the counting as we would if we 
counted in the whole cube. Since the density of points in Fig. 4.20 is not very 
high, the relationship we get here is only a rough approximation of the exact value 
in Fig. 4.19. By increasing the density of points, this procedure provides values 
which get closer and closer to the exact value. 

+1

+1

-1

-1

x2

x1

Looking at the grey square:

area of the circle
area of the square = 52

64
= 0.812

The exact value is /4 = 0.785.

Approximate relation of the areas:

52 points within the circle
64 points within the square

 

Fig. 4.20     Checking the relations in Fig. 4.19 by computer 

Though the concept of computer programming will not be introduced until 
Chapter 14, I now must mention a computer program. I wrote a computer program 
to compute the volume relationships for dimensions 1 through 6 according to the 
procedure illustrated in Fig. 4.20, but with higher densities of points. In the 
program, each point is represented by its tuple of coordinates (x1, x2, x3, … xn) 
where each coordinate xi has  the same domain of possible values, namely {1/(2p), 
3/(2p), 5/(2p), …, (2p-1)/2p}. The letter p stands for the number of points in one 
row or column of the grey subcube. In Fig. 4.20, p has the value 8. In this figure, 
we not only see all the points, but we can also see which of the points lie within 
the circle and which don’t. The computer executing my program does not see 
anything at all. There, the decision about whether a point lies within the cube or 
not, is made by computing the value of  x1

2+x2
2+x3

2+ … +xn
2: if this value is less 

than 1, the point lies within the cube; otherwise it lies outside. The domain of 
possible values for the coordinates was chosen such that no point lies exactly on 
the surface of the cube. The values obtained with p=20 were very close to the 
exact values in Fig. 4.19; the relative difference was less than one in one thousand. 
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You should not think that the availability of the formulas for the surface area 
and the volume of a five-dimensional or 25-dimensional cube is of great practical 
relevance. There are only a small number of problems in physics and computer 
science where n-dimensional spaces are useful. I showed you all of this primarily 
because I want you to see that it is not very difficult to move around accurately in 
these spaces, although we do not have any idea what they look like. Don’t forget 
that we still are in the chapter which introduces formal worlds. It is the purpose of 
this chapter to make you aware of the fact that, besides our world of perceivable 
objects, there exists a formal world which we may enter and leave as we like, but 
which we must enter if we want to do information processing using computers. 
Even the computation of surface areas and volumes of n-dimensional cubes, which 
I demonstrated here, is nothing but a formal game which can be played by agents 
who have no idea about the considerations that led us to the rules of this game.  

 



Chapter 5 
About the Methods for Computing the 
Future 

When discussing the consequences of the theory of quantum mechanics, Albert 
Einstein is said to have maintained that, ”God doesn’t throw dice.” Others were 
convinced that the only acceptable interpretation of that theory required accep-
tance that there are elementary events which cannot be predicted accurately. Of 
course, Albert Einstein shared the conviction that mankind will never be in a posi-
tion to predict the future. However, he was convinced that the course of the world 
is determined completely by natural laws, although no one will ever be able to 
grasp all of these laws. In the terms of philosophy, the question is whether or not 
the world is causally determined. In simple language, we may ask, “Does the state 
of the world at a particular point in time imply that all future events are already 
completely determined?” If this were true, the actual configuration of all elemen-
tary particles in the universe would not only determine which football team will 
win the championship next year, but it would also determine that a murder which 
will happen twenty years from now is completely unavoidable and could not be 
prevented. In this case, the murderer could not be held responsible for what he did 
since he was only a victim of the laws of physics. I shall not discuss this issue any 
further, since it is enough for us to accept the fact that nobody can entirely predict 
the future, and that we must live with surprising events.  

The reason the problem of predicting the future is a subject of this book is that 
calculating probabilities is actually part of the job of scientists and engineers. For 
example, an engineer who plans a telephone network must make assumptions about 
the future behavior of the people using this network. And no physicist would ever 
have come up with the idea of building a laser (Light Amplification by Stimulated 
Emission of Radiation) unless he had understood the theory of the interactions 
between atoms and photons which is based heavily on the concept of probability. 

Did you groan because we have entered the field of mathematics again? Let me 
remind you that at the beginning of Chapter 2, when mathematics was discussed in 
geographical terms, I said, “We had no reason to study the continent of mathemat-
ics if it was not fundamental for physics and technology.” By doing math with 
probabilities, we do not introduce new mathematical structures. We only apply the 
old structures to a special problem domain. There is no reason to be frightened, 
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since the rock wall is not very high, and your mountain guide will lead you along 
the easiest possible path. 

Attempts to Reduce Expectations to Numbers 
Expectations as N umbers 

When people use the word probability in ordinary conversation, they do it for the 
purpose of telling us something about their expectations about certain future 
events. They might say, “The probability is not very high that …”, and sometimes 
they might even use explicit numbers such as in, “The probability that we shall 
spend this year’s vacation in Canada is over 90 percent.” How can we interpret 
this statement? Where did they get this 90 percent? Why didn’t they choose 60 or 
80 percent? If they had said 100 percent, we would have known that they were 
certain to spend their vacation in Canada, and if they had said 0 percent, this 
would have been equivalent to the statement that under no circumstances would 
they spend their vacation in Canada. Thus, we must now find out how an exact 
interpretation of probability values between 0 and 100 can be defined. However, 
instead of using percentages, we now shall use the interval between 0 and 1. The 
value 1 for a probability corresponds to 100 percent. The reason for this new scale 
is rather simple: we desire that the product of two probability values is also a 
probability value, and this would not be the case if we used the percentage scale. 
For example, the product of 50 % and 40 % is 2,000 (%)2 which cannot be inter-
preted as a probability unless we reduce it to 20 %. If, however, we restrict our-
selves to the interval between 0 and 1, the product in our example is 0.5∗0.4=0.2. 
Here, both the two factors and the result can easily be interpreted as probability 
values, and no additional reduction of the result is necessary. 

The considerations which lead us to an appropriate definition of numerical 
probabilities should begin with the study of devices which have been designed for 
generating random processes. An example of such a device, a so-called board of 
Galton, is shown in Fig. 5.1. Francis Galton was an Englishman who lived from 
1822 until 1911. He was a relative of Charles Darwin who introduced the theory 
of evolution which, among other things, says that men and monkeys have common 
ancestors. Mr. Galton did research concerning the inheritance of human properties 
– a field which nowadays is called human genetics. Readers of detective stories 
may find it interesting to know that Francis Galton was the first to come up with 
the idea that fingerprints might be helpful in solving crimes. 

Now we look at the device which he invented and which is shown in Fig. 5.1. 
The drawing on the right side of this figure shows what can be seen when the 
board is cut in two along the dashed line in its middle, and its edge is viewed. On 
the right side of the figure, three layers can be seen. They are, from left to right: a 
base board (usually wooden) which appears in the left view as the white area; the 
profile boards which appear in the left view as the grey areas; and the covering  
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Fig. 5.1     Board of Galton 

sheet of glass which is transparent in the left view. Galton’s board is placed verti-
cally on a table such that the opening for the insertion of the balls is on the top. 
Each ball inserted will move down along a path which contains five binary forks. 
At each fork a random decision determines whether the ball continues its way 
downwards on the left side or the right side of the fork. Both sides have the same 
probability, namely 0.5. The path of a ball ends in one of the six compartments, 
here numbered 1 through 6. Fig. 5.1 shows the result of an experiment where I 
inserted 25 balls, one after the other. 

Of course, besides Galton’s board, many other devices have been designed for 
generating random processes. Some of them are known much more commonly 
than Galton’s board. For example, think of using dice to generate random se-
quences of the natural numbers 1 through 6 using one die, or a roulette wheel with 
its 37 compartments which are numbered 0 through 36. All of these devices are 
used to generate random events from a given finite set of numbers where all 
events have the same probability. The corresponding probability of such an event 
is the reciprocal of the number of elements in the set. In the example of throwing a 
die, the probability that a predicted number will occur, such as the number 5, is 
1/6, and the probability that the ball of a roulette wheel will fall into a predicted 
compartment is 1/37. But in the case of our Galton’s board in Fig. 5.1, which has 6 
possible compartments for a ball, computing the probability of a ball landing in a 
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certain compartment is not nearly as simple as in the cases of the dice or roulette. 
The field of mathematics which we must enter in order to find these probabilities 
is called combinatorics or combinatorical analysis. 

How We Can Calculate the Number of Possible Cases  
Number of Poss ible Cases 

The name combinatorics suggests that we shall now do some kind of combining. 
The things to be combined are elementary sequential random events. Their combi-
nation is called a structured random event. The concept of structured random 
events is best illustrated by Fig. 5.1: the distribution of 25 balls among the six 
compartments of the board is a structured random event which results from com-
bining 125 elementary sequential random events. Each of the 25 balls, which are 
inserted one after the other, falls down along a path which is determined by five 
elementary sequential random events, namely by the decisions at the five binary 
forks where the ball can go either left or right. Another simple example of a se-
quence of elementary random events is the selection of the 6 numbers in a game 
called “Lotto.” In a particular version of this game, there is a machine which ran-
domly picks 6 balls out of a container originally containing 49 balls. The balls are 
labeled with the numbers 1 through 49, and the gamblers try to predict the set of 6 
numbers which the machine will pick next. For the selection of the first number, 
the probability is 1/49, since it is picked from the original set of 49 numbers. The 
probability for the second number is no longer 1/49, but 1/48 since there are only 
48 balls left in the container after the first ball has been removed. Whenever we 
consider a sequence of elementary random events, we must specify whether all 
these events occur with the same probability, or how the probability depends on 
the position of the event in the sequence. It may well be that past events have an 
effect on the next event. 

The main operation in combinatorics is filling a finite sequence of positions by 
random selection from given finite sets. This is illustrated in the top part of  
Fig. 5.2. The set from which an element xi for position j is selected at random is 
called Xj, and the number of elements it contains before an element is picked is mj  

= |Xj|. Thus, the probability of picking a certain element from this set is 1/mj. If 
the gamblers sitting at the roulette table in a casino would think of the structure 
shown in Fig. 5.2, they would immediately stop writing down the sequence of 
numbers from the past, because it is irrelevant. Once a year, I have the pleasure of 
spending a week or two at Baden-Baden which is not only a famous German spa, 
but which is also said to have the most beautiful casino in the world outside of 
Monte Carlo. During these stays, there is always one night which I reserve for 
going into this casino – not to gamble, but to watch the gamblers. On one of these 
occasions, I happened to see that the ball in roulette landed in red compartments 
twelve times in a row. Of the 37 compartments, 18 are red, 18 are black and one,  
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Position number j: 1 2 n

Selected elements x(j):

with
Sources from which
the elements are
selected at random:

There are  m1  m2  . . .  mn  different sequences with equal probability.

x(1) x(2) x(n)

x  Xnx  X2x  X1

with with

= mnXnX1 = m1 X2 = m2

X1 = X2 = X3 = X4 = X5 = { left, right }

m1 = m2 = m3 = m4 = m5 = 2
First example:
Galton's board
in Fig.5.1

There are 25 = 32 different paths for a ball.

Second example:
Lotto
(Game of chance:
 6 out of 49)

X1 = { 1, 2, 3,  . . .  48, 49 }    and    m1 = 49

For j from 1 to 5:
mj+1 = 49-j

The number of possible different sequences is
49 48 47 46 45 44 = 10,068,347,520.

. . .

Xj+1 = Xj  without x(j)                and   

 

Fig. 5.2     Filling a sequence of positions at random 

the compartment for 0, is green. The gamblers who had written down the sequence 
of numbers got quite excited when they realized that the color red had occurred 
twelve times in a row, since the probability of this structured event is extremely 
small, namely (18/37)12 = 0.0001757. From the fact that an event whose probabil-
ity is so small had occurred, they concluded that the probability of the next num-
ber again being a red one was also extremely small. Therefore, they put large 
amounts of money on the prediction that the next ball will land in a black com-
partment. But the fact that a sequence of red numbers had occurred did not have 
any effect at all, neither on the mechanism of the roulette wheel nor on the way 
the croupier would throw the ball. Therefore, the probability for the next number 
being red or black had not changed at all, it was still 18/37, and would remain so 
forever.  

Now we must consider the difference between the random selection of a se-
quence versus the random selection of an unordered subset. In the bottom line of 
Fig. 5.2, I gave you the number of different sequences the Lotto machine may 
select. But the rules of the Lotto game do not require that the gamblers predict the 
exact sequence in which the 6 numbers are picked by the machine, they only have 
to predict these 6 numbers in an unordered set. Therefore, the probability of 
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becoming a Lotto winner is higher than the reciprocal of the number given in  
Fig. 5.2. The factor by which this probability is higher is given by the number of 
different possible orderings of six numbers. This again is obtained by applying the 
scheme in Fig. 5.2. For filling the first position, one out of 6 numbers has to be 
selected. For filling the second position, one out of 5 numbers has to be selected 
since the number selected for the first position is no longer available for the sec-
ond position. After the fifth position has been filled by selecting one out of the two 
remaining numbers, there is only one number left which must be taken to fill the 
sixth position. Thus, there are 6∗5∗4∗3∗2∗1=720 different possible orderings of a 
set of six elements. 

What has been shown for the case of the Lotto game can, of course, be general-
ized to the question of how many different subsets with s elements can be selected 
from a universe with u elements. The result of this generalization is represented in 
Fig. 5.3. In the formulas shown there, you see a vertical symbolic structure or 
notation which looks like a fraction in brackets where the fraction line is missing. 
This symbolic structure is an abbreviation of the expression “number of different 
subsets with s elements which can be selected from a universe with u elements,” 
and I think this is a very helpful notation. In the case of the Lotto, each subset with 
6 elements selected from the universe with 49 numbers has the same probability, 
and the probability of becoming a Lotto-winner is 1/13,983,816. 

Number of posibilities for selecting a subset with s elements
from a set with u elements

Applied to Lotto:

=  13,983,816 6    5       4     3      2     1
49   48   47   46    45    44

=
u   (u-1)  (u-2)   (u-3)  . . .   (u-(s-2))  (u-(s-1))
s  (s-1)   (s-2)   (s-3)  . . .         2         1

= u
s

=

Number of possibilities for selecting a sequence
with s elements from a set of u elements

Number of different orders of a set of s elements

6 =
49

 

Fig. 5.3     Getting unordered sets from sequences 

The French mathematician Blaise Pascal (1623-1662), as with many other 
mathematicians, liked playing around with numbers, and one day he happened to 
find a rather interesting structure which is related to the problem of selecting sub-
sets from universes. This structure, which is called Pascal’s triangle, is represented 
in Fig. 5.4, and the principle for its construction is shown at the top of this figure. 
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15 different subsets with s=4 elements

The number in a cell - unless it is in the first row - is obtained as the sum
of the numbers in the two cells above it:

1

1 1

2

3 3

6

10 10

1

4 1

1

1 4

1 1

5 151

15 206 6151 1

0

0 0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

00

0 00

0

0

0

0

0

0

0

0

0

0

u

s0 1 2 3 4

0

1

2

3

4

5

6

can be selected from a universe with u=6 elements.
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Fig. 5.4     Pascal’s triangle and its interpretation 

We now return to the board of Galton shown in Fig. 5.1. An interesting question 
is how many different distributions are possible if we have b balls and c containers. 
In the example in Fig. 5.1, we have b=25 and c=6. It is not at all obvious that the 
number of different distributions is equal to the number of different subsets with b 
elements which can be selected from a universe with (c+b-1) elements. This sur-
prising equivalence of the two problems – selecting a subset on the one hand and 
distributing balls among containers on the other – cannot be understood unless the 
origin of the strange mathematical expression (c+b-1) is explained. This explana-
tion is given in Fig. 5.5. By selecting as many numbers from the universe as we 
have balls, each ball is associated with some kind of information. But this informa-
tion cannot always be the number of the container where the ball must be placed. In 
a subset, a single element of the universe can be contained at most once, although it 
must be possible to assign the same container number to different balls. The proce-
dure shown in Fig. 5.5 makes it possible to assign the same container number to 
different balls although in the subset selected from the universe, no number can 
occur more than once. The case where all b balls are placed in the container with 
the highest number c requires only that the smallest number in the subset is equal to 
c. The remaining numbers must be (c+1), (c+2), … until (c+b-1). 

We now apply the results that are represented in the figures 5.2, 5.3 and 5.5 to 
Galton’s board in Fig. 5.1. How can we compute the probability of a certain dis-
tribution, for example that in Fig. 5.1? Fig. 5.5 tells us how to get the number of 
different distributions for the case where b=25 and c=6. This number, 142,506, is  
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Procedure for distributing b balls among c containers:

Select a subset with b elements from the set { 1, 2, 3,  . . .  , (c+b-1) } 
and order the selected elements according to their value: 

Since different subsets with b elements can be selected from 

The container numbers for the b balls are obtained by subtracting the
position indices, decremented by one, from the selected values:

a set with (c+b-1) elements,  this is also the number of existing different 
distributions of b balls among c containers.

v1 v2 v3 vb

v1 v2-1 v3-2 vb-b+1

b
c+b-1

c=3 containers, b=5 balls;
c+b-1=7; thus, the set for the 
selection is  { 1, 2, 3, 4, 5, 6, 7 }

Selected subset with 5 elements:

1 2 3 1 2 3 4 5 6 7

-0 -1 -2 -3 -4

1 4 5 6 7

1 3 3 3 3

-0 -1 -2 -3

3 4 7 9

3 3 5 6

Example 1: Example 2:

. . .

. . .

c=7 containers, b=4 balls;
c+b-1=10; thus, the set for the selec-
tion is { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

Selected subset with 4 elements:

 

Fig. 5.5     Distributing balls among containers by selecting a subset from a given set 

given in the top section of Fig. 5.6. However, these different distributions don’t 
have the same probability. The probability of a ball reaching a certain compart-
ment depends on the number of different paths which lead to that compartment. 
The number n of a compartment is always one more than the number of decisions 
to move to the right at the forks along the path of the ball. In order to obtain the 
number of different paths leading to compartment n, we must compute the number 
of different subsets with (n-1) elements from the universe of five fork levels, since 
this is the number of different fork selections for the (n-1) right-moving decisions. 
The probability of a specific distribution of the balls among the compartments is 
then obtained as a fraction where the numerator is the number of different  
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The number of courses of the experiment which result in the distribution
shown in Fig. 5.1, is

4
25
4

5
1

7
21
7

5
2

10
14
10

5
3

4
2

5
4

2
2
2

5
5

2

There are 225 5 = 2125 different courses of the experiment,
since for each of the 25 balls, 5 arbitrary binary decisions
with respect to their path - left or right - are made.
2125 is approximately 42 (1 billion)4 .

Inserting 25 balls into the board of Galton in Fig. 5.1 leads to

one of the = = 142,506  possible distributions.
30
25

6 + 25 - 1
25

For each non-empty container, this product has a pair of factors 

b
r
b

5
n-1

with

n = index of the compartment;
b = number of balls in the compartment n;
r = remaining balls, which have not yet been
     assigned to a compartment with a lower index;
5 = number of the fork levels;

The first factor determines the number of different subsets with b balls which 
can be selected from the set of r balls.
The second factor determines the number of different path combinations by 
which the b balls will reach their compartment n.

 

Fig. 5.6     Numbers related to Galton’s board in Fig. 5.1 

path combinations for all balls, resulting in the specific distribution, and where the 
denominator is the number of all possible path combinations for all balls. 

The formula which provides the number of all path combinations for the 25 
balls resulting in the distribution shown in Fig. 5.1 is given in the lower section of 
Fig. 5.6. In this long product expression, there is a pair of two factors for each of 
the 5 non-empty compartments. The first factor provides the number of possibili-
ties for selecting the s balls for the actual compartment n from the set of those 
balls which have not yet been assigned to a compartment with an index smaller 
than n. The second factor is a power, the base of which is the number of different 
paths via which a ball can reach compartment n. The exponent of this power is the 
number of balls which lie in the compartment in the actual distribution. I did not 
go through the trouble of actually computing the values of these ten factors and 
multiplying them to obtain the overall product, since I think it is sufficient that 
you understand how this long product expression is obtained. 
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Now, at the end of this section on combinatorics, I present a problem which has 
caused numerous controversial discussions, and the solution of which seems para-
doxical to many people. There was a quiz show on television where a contestant 
had been told that a new car was hidden behind one of three closed doors and that, 
if he selected that particular door, the car would be his. Only consolation prizes 
were hidden behind the other two doors. After the contestant had pointed to the 
door he had decided to select, the quiz master opened one of the two other doors 
where a consolation prize became visible. Then, the quiz master offered the con-
testant a chance to change his first decision and select the other of the two still-
closed doors. The question is whether the probability of finding the car is the same 
for both doors, namely 0.5, or whether the probabilities for the two doors differ. 
Many people argue that the two probabilities cannot differ since there was no 
information available for giving a higher probability to either of these two doors. 
However, such information was actually provided by the quiz master when he 
decided which of the two non-selected doors he would open. He certainly would 
not open the door with the car behind it. At the beginning, all three doors were 
closed, and the probability of the car being hidden behind the door selected by the 
candidate was 1/3.  Correspondingly, the probability of the car not standing behind 
the selected door was 2/3. This could not be changed by the quiz master’s opening 
of one of the non-selected doors, and therefore, the contestant should change his 
decision.  If he stays with his first decision he will win the car with a probability 
of 1/3, whereas if he changes his decision, he will win with a probability of 2/3.  

What You Can Do If You Don’t Want to Know All the Details 
Expected Value a nd Sta ndar d Deviatio n 

Politicians and top level managers don’t have much time for individual subjects be-
cause they must multitask, i.e., switch from one task to another very often. Therefore, 
they expect that all information material they get has been prepared in such a way that 
all details have been omitted and only the essentials are included. Those who prepare 
this material have noted that their superiors look first at the length of a text and then 
ignore it if it is longer than one page. Very often such a superior expects his informa-
tion providers to explain a complex problem and its solution within ten minutes, al-
though it is quite clear that even an hour would not be enough. 

I made these introductory remarks in order to characterize the subject which we 
shall now consider. We are looking for ways to reduce information about a distri-
bution of probabilities to not more than a couple of numbers. This really can be 
done, but only under the following restriction: the random events must be such that 
each event has a number assigned to it, and, if there are more than two events, the 
assignment should not be arbitrary, i.e. the numbers assigned should correspond to 
some meaningful property of the events. In order to illustrate this restriction, let’s 
consider the following example. We assume that a young man will certainly marry 
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one of the three sisters living next door - Anne, Bess or Carol, but he has not yet 
decided which one. The probabilities may be p(A)=0.1, p(B)=0.6 and p(C)=0.3. 
Surely, we can assign numbers arbitrarily to the three girls, e. g., 1 to Ann, 2 to 
Bess and 3 to Carol, but the differences between these numbers have absolutely no 
meaning. One way to get meaningful numbers would be to consider the ages of the 
girls which certainly will differ because they are sisters. 

From here on we assume that the restriction specified above is satisfied, i.e., we as-
sume that the random process is generating meaningful numbers. It seems rather obvi-
ous that a so-called “average number” provides some information about the distribu-
tion of the probabilities. But the example specified in Fig. 5.7 may help you see that 
the concept of an average number is not as clear as it may seem. 

Possible number x,
which is selected at random

Probability of selecting x

0 7 9 11 13 15

0.1 0.3 0.05 0.05 0.3 0.2
 

Fig. 5.7     Example of a discrete probability distribution 

In Fig. 5.8 the values of the probabilities for the numbers in Fig. 5.7 are inter-
preted as weights of bodies sitting on a see-saw, and the positions of these  
 

50% 50%
Median

=
Point of half and half

Random number
x

0 10 15127 9 11 13

510

30
%

30
%

5
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%

1 1

3

10

3

5

Expected value
=

Point of equilibrium

 
Fig. 5.8     Expected value versus median for the example in Fig. 5.7 
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bodies are determined by the random numbers to which the probabilities belong. 
In this figure, two numbers are indicated which might be meant when the term 
“average” is used. One number is given by the point where the see-saw must be 
supported in order to bring it into equilibrium, and the other number, which is 
called the median, determines the point where the distribution is split into halves. 

There are distributions where these two numbers are the same, but these are 
only special cases as you can see in Fig. 5.8. Here the see-saw is in equilibrium 
although the sums of the weights on either side of the support are not the same. 
This is a consequence of the distances of the weights from the support. Probably 
you have seen two children sitting on a see-saw where one child was heavier than 
the other one. In such a situation, the heavier child must sit closer to the support 
than the other one in order to produce the equilibrium. The equilibrium point is 
determined by the fact that the sum of the products of weight and distance are the 
same on both sides of the support. In Fig. 5.8, these product sums are 

10∗10 + 30∗3 + 5∗1 = 5∗1 + 30∗3 + 20∗5 

In probability theory, this point of equilibrium is called the expected value, al-
though in certain cases this term is misleading. If you had to predict which one of 
the six random numbers given in Fig. 5.7 will be selected next, you certainly 
would not choose the number 10, the number for equilibrium, because 10 does not 
belong to the set of the six possible numbers and therefore cannot possibly occur. 

Once, an average value of a distribution – the expected value or the median - is 
known, we may question how the distances from this average point vary. We 
could consider these distances with their corresponding probabilities as a new 
distribution of random numbers, and we also can compute an expected value and a 
median for this. Clearly, we must decide whether we should take the distances 
measured from the expected value or from the median. The German mathemati-
cian Carl Friedrich Gauss (1777-1855) spent much time searching for interesting 
properties of probability distributions, and he found out that it is more useful to 
take the distances as measured from the expected value than from the median. He 
also suggested that, instead of considering the distribution of the distances them-
selves, the distribution of the squares of these distances should be considered. The 
expected value of such a distribution is called the variance of the original distribu-
tion, and the square root of the variance is called the standard deviation. For our 
example in Fig. 5.8, the distribution of the squares of the distances is shown in 
Fig. 5.9. The expected value of this distribution is 20.5 and its square root is 
4.5277.  In other words, the variance of the distribution in Fig. 5.8 is 20.5 and its 
standard deviation is 4.5277. 
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Fig. 5.9     Computing the variance for the distribution in Fig. 5.7 

The reason for using distributions of squares of distances lies in the simplicity 
of the calculations which must be performed when a probability distribution of 
structured random events is derived by combining the probability distributions of 
their elementary events. However, I shall not present an example to illustrate this 
since, in actual context, it is not really important. I think you can see the big pic-
ture without knowing those details.  

While the median, the expected value and the standard deviation are numbers 
which characterize a single distribution of probabilities, the so-called correlation 
factor says something about the relationship between two distributions. The con-
cept of the correlation factor goes back to the same Francis Galton who invented 
the board which is shown in Fig. 5.1. As you may recall, Mr. Galton did research 
in the field of inheritance of human properties. Thus, it was quite natural that he 
asked how he could combine the distributions of two human properties in such a 
way that the result would tell him whether or not these properties are independent 
of one other. The example I use to explain the concept of correlation is introduced 
in Fig. 5.10. Here, the question is whether there is a probability connection  
between a man’s being short-sighted and his being bald. In order to keep the ex-
ample as simple as possible, I neglect the existence of different degrees of short-
sightedness and baldness, i.e., we assume these properties are binary – yes or no. 
Since the only purpose of this example is illustrating the concept of correlation, I 
did not go through the trouble of finding the actual probabilities which some ex-
pert might have found by counting many thousands of real cases. My numbers 
given in Fig. 5.10 most likely differ greatly from the real numbers. 
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Sums of the columns

p(being short-sighted if being bald)
= 0.2/0.4 = 0.5 not equal 0.3

Su
m

s 
of

 th
e 

ro
w

s

Short-sighted

Not short-sighted

BaldNot
bald

0.6 0.4

0.7

0.3

p0

0.6 - p0 p0 - 0.3

0.7 - p0

p(being short-sighted if being bald)
= 0.12/0.4 = 0.3 = p(short-sighted)
This indicates that being bald and 
being short-sighted are 
independent properties.

Probabilities of the combinations for different values of p0:

Example 1:     p0 = 0.6 0.7 = 0.42 Example 2:     p0 = 0.5

This indicates that being bald and 
being short-sighted are not 
independent properties.

0.5 0.2

0.1 0.2

0.42 0.28

0.18 0.12

 

Fig. 5.10     Example illustrating the concept of correlation 

With respect to the two binary properties considered, there are four categories of 
men, and we can ask what the probability is that a man who is selected at random 
belongs to a particular one of these four categories. The four probabilities which are 
written in the four fields of the grey square are called combined probabilities since 
they belong to specific combinations of the two properties. The elementary prob-
abilities for being short-sighted or being bald do not completely determine the 
values of the combined probabilities. Therefore, I introduced the probability vari-
able p0 for the combination of a man being neither short-sighted nor bald. The 
arithmetic expressions in the remaining three fields provide the corresponding 
probabilities once a value for p0 has been chosen. Note that the sum of the prob-
abilities in the four grey squares is 1.0 because every man must be included in one 
of the four categories. The value of p0 must not be smaller than 0.3 and not greater 
than 0.6 in order to avoid negative values for all of these probabilities. 

Instead of saying that two properties are independent of one another, the ex-
perts say that they are uncorrelated. In the case of uncorrelatedness of two proper-
ties, the distribution of either of the properties does not depend upon the actual 
value of the other property. In our example, this means that if short-sightedness 
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and baldness are uncorrelated, both 30 percent of the bald men and 30 percent of 
the non-bald men are short-sighted. In this case, the combined probability p0 of 
not being bald and not being short-sighted will be 0.42 which is the product of the 
two probabilities, 0.6 for not being bald and 0.7 for not being short-sighted. The 
more the two properties are correlated, the more the value of p0 deviates from 
0.42. In Example 2 which is represented in the lower right corner of Fig. 5.10, the 
value for p0 has been chosen to be 0.5. In this case, the probability of being short-
sighted depends on the question of whether a particular man is bald or not. This 
shows that a bald man will be short-sighted with a probability of 50 percent, while 
a man who isn’t bald will be short-sighted with a probability of only 16.7 percent. 

Now we shall consider how to compute the correlation factor. This number is a 
measure of how strongly two distributions are interdependent. In the case of total 
uncorrelatedness, this number is zero, and in the case of total correlatedness, this 
number is either -1 or +1. A positive correlation factor indicates that the events 
with both properties being on the same side of the see-saw have higher probabili-
ties than they would have in the case of uncorrelatedness. Correspondingly, the 
negative sign indicates a preference of the events where the two properties are on 
different sides of the see-saw. From these definitions, it follows that the computa-
tion of a correlation factor requires that the elementary probabilities can be placed 
on a see-saw. This means that each property must have a number assigned to it. 
The additional requirement that the distances between these numbers must be 
meaningful does not apply here because our example is restricted to binary proper-
ties. When a distribution has only two events, the “distance” between these events 
may be chosen arbitrarily since it cannot be compared with other distances on the 
same see-saw – there are no such other distances. 

In the top section of Fig. 5.11, the distributions of baldness and short-
sightedness are shown on their see-saws, and you can see the numbers which I 
assigned arbitrarily. In order to simplify the following computation, I chose the 
numbers for the properties in such a way that in both distributions the equilibrium 
point sits at the zero position. Of course, my choices have an effect on the stan-
dard deviations. The next see-saw which we have to consider is the one on which 
we place the four combination probabilities. Fig. 5.11 shows the corresponding 
see-saw for both of the two examples in the lower part of Fig. 5.10. As you can 
see, the positions of the probabilities are the same on both see-saws. These posi-
tions are obtained by multiplying the positions from the two elementary distribu-
tions: -22.4 = (-16)∗1.4, -14.4 = 24∗(-0.6), 9.6 = (-16)∗(-0.6) and 33.6 = 24∗1.4.  
The probabilities on the see-saw for Example 1 are also obtained by multiplication 
where the factors are the probabilities from the elementary distributions. When the 
support of this see-saw is at position zero, equilibrium is obtained. This situation 
is the result of total uncorrelatedness.  
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Squares of the standard deviations:
0.6 162 + 0.4 242 = 384 0.7 0.62 + 0.3 1.42 = 0.84

Being bald 0.4
0.6

0- 16 +24

Being short-sighted
0.7

0.3

0- 0.6 +1.4

BB SS

Correlation factor  =  0

Probabilities of the combinations for example 1 in Fig. 5.10

0
- 22.4

0.28
0.12

0.42

+33.6

0.18

- 14.4 + 9.6

B SB SB S B S

0- 22.4 +33.6

0.1

- 14.4 + 9.6

0.20.2

0.5

+ 6.4

Correlation factor  =
384  0.84

= 0.356
+ 6.4

= no yes = = no yes =

Probabilities of the combinations for example 2 in Fig. 5.10

 

Fig. 5.11     Computing the correlation factors for the examples in Fig. 5.10 

The see-saw for Example 2 is obtained by exchanging the probabilities from 
Example 1 for those of Example 2, and then moving the support to the position 
which brings the see-saw to its equilibrium again. The fact that the position of the 
support had to be shifted away from its original zero position, indicates that now 
the properties are no longer uncorrelated. But the distance of this shift cannot yet 
be the correlation factor we are looking for, since it is influenced by the arbitrary 
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choice of the distances in the elementary distributions. This influence can be 
eliminated by dividing the distance of the shift by the product of the elementary 
standard deviations. As a final result, we get the number 0.356. This is a positive 
correlation factor which indicates that the probability of being both bald and short-
sighted on the one hand and the probability of being neither bald nor short-sighted 
on the other hand are higher than they would be in the case of uncorrelatedness. 
You can check this by comparing the inscriptions in the squares for the two exam-
ples in Fig. 5.10. Again, I emphasize the fact that the probabilities I chose do not 
correspond at all to reality, and therefore the real correlation factor between bald-
ness and short-sightedness might well be totally different from 0.356. 

Computing correlation factors for human properties does not necessarily corre-
spond to political correctness, since correlation factors may be used to discrimi-
nate against large groups of people. In the past, correlation factors have been used 
to “prove” that there is a correlation between intelligence and color of the skin, or 
between crime rate and nationality. 
Continuo us Do mains for Rando m Selections 

How to Handle the Situation When the Cases Are No Longer 
Countable 
Continuo us Do mains for Rando m Selections 

In the previous examples, we always had a finite set of numbers from which the 
random numbers could be selected. Think of Galton’s board, where we had the 
finite set of compartments for the balls. Now we shall discuss situations where the 
random numbers are no longer selected from a finite set, but from a continuous 
interval of real numbers. Think of a wheel which a motor spins rather fast, and then 
the motor is switched off. After some time, the wheel will come to a stop, and the 
position of this stop can be at any angle ϕ in the interval 0° ≤ ϕ < 360°. Without 
giving it much thought, we might say that each angle has the same probability – but 
which one? As long as the random numbers are picked from finite sets, each of 
these numbers has a specific probability assigned to it, and the sum of the prob-
abilities of all the numbers in the set is 1. But when the random numbers come 
from a continuous interval of real numbers, we have to consider an infinite set of 
numbers and, in this case, the random numbers cannot have non-zero probabilities 
assigned to them, because otherwise the sum of these probabilities would not be 1, 
but infinity. This problem should remind you of the process of integration where 
we obtained the area under a curve by adding an infinite number of infinitely small 
rectangles. The same procedure can be applied to the case of random numbers 
being selected from a continuous interval. We now consider curves where the total 
area under the curve has the value 1. These curves represent so-called probability 
density functions, with the notation dp/dx. An example of such a curve is shown in 
Fig. 5.12. Here, it is no longer meaningful to ask for the probability of a certain 
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number x, since this probability is infinitely small. But non-zero probabilities are 
obtained for intervals between two points on the x-axis. The area above such an 
interval corresponds to the probability that the random number x will lie within the 
limits of the interval  x1 ≤ x < x2. In the example of the spinning wheel coming to a 
stop, there is no non-zero probability that it will stop exactly at the angle ϕ=2°, but 
there is a non-zero probability that it will come to a stop within the interval 
1.5°≤ϕ<2.5°; this probability is 1°/360° = 0.00278. 

x

xmin xmax
xmedian

x1 x2

This area corresponds to the
probability of the random value
x being in the interval between
x1 and x2.

xexpected

area = 0.5

dp
dx

 

Fig. 5.12     Example of a probability density function 

Fig. 5.12 shows that the concepts of the expected value and the median which 
have been defined in Fig. 5.8 also can be applied in the case of distributions of 
probability densities. If we would take a thick wooden board and cut it into a form 
which exactly corresponds to the area between the given probability density curve 
and the x-axis, then we could experimentally find the point (the expected value of 
the distribution) where the board must be supported in order to stay in horizontal 
equilibrium and rotates neither to the left nor to the right. And certainly we can 
find the point (the median of the distribution) where a cut along a vertical line will 
split the two halves of the area under the curve.  

There is one type of distribution of probability densities which is called the 
“normal distribution.” This does not mean that any other distribution should be 
thought of being abnormal. It only means that many distributions which can be 
found in nature or every day life come close to this mathematically defined distri-
bution, for example, the weight of babies at the time of their birth.  

The concept of the normal distribution goes back to Carl Friedrich Gauss who 
was mentioned previously. The curve of this distribution and the formula for the 
probability density function describing it are shown in Fig. 5.13. 
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Fig. 5.13     Gaussian probability density function 

I think it is very interesting that this formula contains the two most important 
transcendental numbers, namely π and e. I don’t know how Mr. Gauss found this 
formula, but at least I can show you how the curve is obtained. I shall get to this 
distribution by starting with a distribution of a finite set of structured random 
events. If we throw one die eight times in a row and add up the eight random 
numbers, the sum will be a number from the finite set {8, 9, … ,  47, 48}. While 
there is only one sequence of eight thrown dice numbers having the sums 8 or 48,   
the other sums in the interval 9≤sum≤47 can be obtained by many sequences. For 
example, the sum 9 results from eight different sequences. The sum having the-
highest number of different sequences is 28; there are 135,954 different sequences 
having the sum 28. The number of all possible sequences is 68= 1,679,616. Thus, 
the probability of throwing the sum 28 is 135,954/1,679,616 = 0.08094 which is 
slightly more than eight percent. The distribution of all possible sequences over 
their sums is shown in Fig. 5.14. 

Obviously, there is a certain resemblance between this distribution and the 
normal distribution in Fig. 5.13, although there are some noticeable differences. 
The expected value of the normal distribution is 0 and its standard deviation is 1 
while in Fig. 5.14 these two values are 28 and 4.83, respectively. But it is possible 
to modify the experiment from Fig. 5.14 in such a way that the resulting distribu-
tion has an expected value of 0 and a standard deviation of 1. In this modified 
experiment, we no longer add up eight natural numbers which we select at random 
from the set {1, 2, 3, 4, 5, 6}, but now we select the eight summands from the set 
{-0.5, -0.25, 0, +0.25, +0.5}. Then we actually get a distribution which has an 
expected value of 0 and a standard deviation of 1.  
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Fig. 5.14     Distribution of sums of all possible sequences of 8 numbers from the set 
{1, 2, 3, 4, 5, 6} 

We must find a trick which leads us from a distribution of discrete probabili-
ties to a continuous function which can be interpreted as a distribution of prob-
ability densities. If we already had found the function we were looking for, the 
probabilities p(x) of the discrete distribution would correspond to areas under 
the density curve d(x). The intervals of these areas have equal lengths since the 
discrete probabilities have equal distances – see Fig. 5.14. This distance is the 
minimal difference between two sums, Δx, which is equal to the minimal differ-
ence between two summands. The area equal to p(x) will then be equal to the 
area of a rectangle having width Δx and height d(x). This area is given by the 
product Δx∗d(x). The fraction  p(x)/Δx will be an approximate value of the 
probability density for a given sum. Why is this approximate and not exact? 
Because we are still not considering a continuous function, but a sequence of 
discrete values, since the sums considered have the distance Δx. Such an ap-
proximation of the area under a curve was used in Fig. 3.13. There, the ap-
proximation had been made better and better by making the width of the rectan-
gles smaller and smaller. If the summands are selected from the set {-0.5, -0.25, 
0, +0.25, +0.5}, Δx is 0.25. If we make Δx smaller than 0.25 and take the eight 
summands from the set {-2∗Δx, -Δx, 0, Δx, 2∗Δx}, the standard deviation of this 
new distribution will no longer have the value 1, but will be less than 1. But 
there is a way to keep the standard deviation constant at 1: when Δx is made 
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smaller than 0.25, the number n of the summands must be made greater than 
eight. For the standard deviation to be 1, it is required that Δx and n are related 
by the equation 2∗n∗Δx2=1. Examples of pairs (Δx, n) which satisfy this condi-
tion are (0.25, 8), (0.1, 50) or (0.02, 1250). Now we really can make Δx smaller 
and smaller by making n greater and greater according to the given condition. In 
this process, the extreme values of the sums, which are –2∗n∗Δx and +2∗n∗Δx 
will grow beyond all limits, since they are -1/Δx and 1/Δx because of the rela-
tion between n and Δx.  

When the number of summands grows beyond all limits, the number of differ-
ent sums grows beyond all limits, too. Therefore, the probability of a sum, p(x), 
must become infinitely small, because otherwise the sum of the probabilities of all 
different sums could not be 1.  But the fraction p(x)/Δx of two infinitely small 
numbers has a well-defined limit which is the probability density d(x) of the nor-
mal distribution in Fig. 5.13. 
Statistics 

Statistics Are More Than Just Listing the Results of Counts 

Sir Winston Churchill (1874-1965), who was Prime Minister of Great Britain 
during the Second World War, once said, “I don’t believe any results from statis-
tics unless I myself falsified them.” In this statement, the term statistics is used in 
its restricted meaning – being a report about the results of counts. Sometimes 
newspapers or broadcast media publish more or less interesting results of counts 
which were performed by some governmental agency. For example, such informa-
tion could be that 19 percent of all couples who were married within the last five 
years have now been divorced. 

But the term statistics does not have only this restricted meaning of just doing 
counts. When it occurs in the titles of university textbooks, e.g., “Probability The-
ory and Statistics,” it means the area of relating probability distributions to the 
results of counts. There are mainly two questions which are of interest in this area: 
(1) if the results of a count are given, how can a corresponding probability distri-
bution be assigned to these results? and (2) if one assumes a certain probability 
distribution, how many events must be observed in order to verify the justification 
of this assumption?  

In general, we might say that the subject of statistics as a field of mathematics 
is the probability of probability distributions. For example, let’s assume someone 
suspects that the machine which selects the numbers of the state Lotto has been 
tampered with in such a way that the probability of even numbers is higher than 
that of odd numbers. If this person has no direct access to the machine, he or she 
can never be sure that the probability distribution really is as suspected. But using 
the results produced by the machine, the probability which says how likely it is 
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that the suspected distribution really is implemented by the machine can be com-
puted. The question is how many selections of the machine must be taken into 
account in order to reach a certain probability level - say 95 percent - to justify the 
suspicion. I shall not answer this question, since the only reason I introduced it, 
was to give you an idea of the kind of problems a statistician must solve. 



Chapter 6 
What Talking and Writing Have in Common 

The two words ‘communication’ and ‘communism’ both begin with communi 
which is a consequence of the fact that they have something in common with 
respect to their meaning. We must use the word common or shared in both cases 
when we describe what these words mean. In the case of the word communism, 
we must talk about common or shared property, and in the case of communication, 
we must talk about common or shared information. Think of Saint Martin who 
shared his overcoat with a beggar, and also think of someone who is the only one 
with certain information and communicates it with others in order to share it with 
them. There are two fundamental differences between these two types of sharing. 
After Saint Martin shared his overcoat with the beggar, only half of the overcoat 
was left for himself, while a person who shares information doesn’t lose a thing by 
sharing. The second difference has to do with observing the process of sharing. 
People observed how Saint Martin cut his overcoat into two halves, one of which 
he gave to the beggar. These people, without any doubt, could be sure that a shar-
ing had occurred. But now assume you were listening to a conversation between 
two persons who use a language unfamiliar to you. How could you know for sure 
that they were really sharing information? You could only assume that such a 
sharing had occurred. The only thing you could know for sure is the fact that these 
two persons were together and producing strange sounds. Therefore, when we 
consider communication processes, we always have to consider both the observ-
able process of producing physical signals and the interpretation of these signals 
by assigning meaning to them.  

We think primarily of people communicating when the word communication is 
used, but animals can communicate, too. Long ago, someone discovered how a 
bee communicates its knowledge about the location of a rich source of food to its 
fellow bees. This method of communication has even been called the “language of 
the bees.” We shall use the term language only in cases where 

- a set of symbols has been defined, 
- a set of rules has been defined which describe how structures of symbols can be 

composed, and 
- the interpretation of both the symbols and the structures composed of symbols is 

known to all communication partners. 
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A symbol is an observable pattern which can be easily reproduced and has a mean-
ing assigned to it. This definition applies not only to written or spoken letters or 
numbers, but also to nodding one’s head or to pawing at the ground with the right 
hind leg. 

According to the definition given above, what the bees use to communicate 
really is a language. The use of the term “defined” in connection with symbols and 
rules does not mean that this defining must necessarily be done by a human action. 
It only means that the symbols and rules are determined in such a way that they 
become common knowledge of all individuals in the actual community. In the 
case of the bees, this determination is the result of evolution and has been incorpo-
rated into their genes. 

How Speech and Writing Are Interrelated 

We now consider a process of two people communicating without using a language. 
Assume that a young man and a young girl have fallen in love with each other, and 
they want to talk on the phone as often as possible. But the girl’s father doesn’t like 
this, and will not allow his daughter to use the phone as long as he is at home. As a 
result, the young man needs information about when the father is at home and when 
he is away. In this case, the two young people came up with the idea of using the 
flower pot in the living room window as a symbol for their communication: if this 
pot, as seen from the street, stands on the right side of the window, the father is at 
home. Otherwise the young man may call without risk. Certainly, in this case, the 
two possible positions of the pot have been defined as two symbols. They can be 
observed and reproduced easily, and they have meanings assigned to them. But they 
are not elements of a language because there are no rules describing how these sym-
bols could be used to build meaningful structures.  

From now on, I shall restrict my considerations to written or spoken texts. These 
texts are structures built by putting elementary symbols in a linear order. How the 
evolution of speech occurred is undoubtedly very interesting, but this book is not 
the place to discuss this subject. Our ability to speak and write not only enables us 
to communicate with a much higher degree of efficiency than other creatures, but it 
also makes it possible for a single person to try to find answers to questions which 
could not even be thought of before. The use of texts is not restricted to inter-
human communication, but also applies to the basis of individual thinking. Assume 
that a philosopher is sitting at his desk, meditating over a difficult problem, and 
someone comes in and takes away all his papers and writing tools. This certainly 
would prevent the philosopher from trying different approaches for solving his 
problem, comparing the advantages and disadvantages of these approaches, and 
finally finding the best, or maybe the only, solution to his problem. When we watch 
what such a person is scribbling down while he is thinking, we see that he uses not 
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only letters from the common alphabet, but also digits (numbers 0 through 9) and 
other symbols. It is important to realize the fundamental difference between the 
letters on the one hand and all other symbols on the other hand. Try reading the 
following sentence aloud: 

The symbol + must be read as ”plus”. 

You probably got stuck when you reached the symbol having the shape of a cross. 
The letters from the common alphabet are symbols for transforming a written text 
into a spoken text and, therefore, we don’t have any problem reading aloud a  
written text which contains only letters. Also, we often use symbols which have 
been created primarily not for written speech. The best known symbols of this 
kind are the numerical digits. Consider the following two sentences: 

           In the year 1998, our son Andrew was born. 

Last year, 199 students graduated from our college. 

Both sentences contain the sequence 199, but this sequence is transformed to dif-
ferent acoustic patterns when the sentences are read aloud. In the first case we 
read “nineteenhundredandninetyeight”, and in the second case we read ”onehun-
dredandninetynine.” In a word which is written as a sequence of letters, the  
interpretation of a letter does not depend on its position in the sequence. Consider, 
for example, the word ”position.” Here, the first i doesn’t have a meaning different 
from the second i, and the same is true for the two letters o. But in a sequence of 
digits, the position of a digit determines its weight: e.g., the right-most digit has 
the weight 1. Then the next digit to the left has the weight 10, followed by the 
weight 100, and so on. While the meaning of a word which is written as a se-
quence of letters cannot be derived from the meanings of its letters, the meaning 
of a sequence of digits is completely determined by the meanings of its individual 
digits and their positions in the sequence. Therefore, a written or a spoken word is 
a composite symbol which got its meaning merely by an arbitrary assignment. In 
contrast to this, a sequence of digits is not a composite symbol, but a structure of 
symbols. It didn’t get its meaning by an arbitrary assignment, but by a well-
defined derivation from its digits and their positions. According to the definition 
of the concept of a language given above, digits can be considered elements of a 
language: they are symbols where each has a meaning, and the linear structures 
composed of such digits have meanings which can be derived according to a given 
rule. 
Grammar 

What Grammar Has to Do with the Meaning of Texts 
Grammar 

There are two different types of professionals dealing with language, the philolo-
gists and the linguists. I found the following definition in an encyclopedia: 
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Philology: Academic discipline with the focus on texts, analyzing cultures on the 
basis of their specific ways of using language and of their literary texts. 

While linguists are interested in the means and methods which can be used for 
producing texts, the philologists look at the texts produced. The fact that the 
means and the products are subjects of interest to different professional groups can 
be found not only in the field of texts, but in other areas, too. For example, think 
of paintings. With paintings, the means are paints which are a subject for chemists, 
light which is a subject for physicists and human eyes which are a subject for 
physiologists. Members of these professional groups may have no idea about what 
the people who view the products, namely the paintings, might be interested in. 

It will not surprise you that, in the following section, texts are not looked at in 
the way philologists look at them. We ask the questions which are asked by lin-
guists who are mainly interested in the rules for the composition of structures using 
given elementary symbols, and for the interpretation of such structures. Linguists 
strictly separate the so-called syntax and the so-called semantics of the structures. 
Syntax means the set of rules that determine which structures can be built using the 
elementary symbols as components, and semantics means the set of rules which 
determine the interpretation of these structures. If, for example, the elementary 
symbols are the words of a given natural language, the syntax is the grammar that 
determines which sequences of words are allowed. Such sequences are the sen-
tences. You know that the meaning of a sentence is not completely determined by 
the meanings of the individual words occurring in the sentence, but depends on the 
position of the words in the sequence. Thus, the two sentences “Cain killed his 
brother Abel.” and “Abel killed his brother Cain.” are not equivalent.  

Describing the syntax of a language is a much simpler problem than describing 
its semantics, since the objects considered in syntax are exclusively perceptible 
patterns while semantics deals with meaning.  

The example I chose for explaining the concepts of syntax and semantics is 
rather simple. Here I won’t consider sentences in a natural language, but rather 
arithmetic expressions for addition and multiplication. The elementary compo-
nents in these expressions are numbers, the two arithmetic operators + and ∗ and 
the opening and closing parentheses. In linguistics, the elementary components of 
expressions or sentences are called terminals (from Latin terminus for boarder, 
barrier, and end). Thus, our set of terminals is the union of the set of numbers with 
the set {+, ∗, (, )}. 

The syntactical rules cannot be expressed using terminals exclusively. In addi-
tion, the so-called non-terminals are required. If you think back to your English 
lessons in high school, you will remember the terms subject, predicate and object 
which were introduced as means to show the general structure of sentences. 
Probably at that time, you were not told that these terms were non-terminals - 
although, of course, they are. The set of non-terminals needed for expressing the 
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grammar of our arithmetic expressions is {expression, sum, component, product, 
factor, number}. Using these non-terminals, I could express the grammar of our 
arithmetic expressions in rules as shown in Fig. 6.1. These ten rules are required 
for capturing the principles for building the simple arithmetic expressions consid-
ered. Each of these rules says that the non-terminal standing on left side of the 
arrow can be replaced by the sequence of terminals and non-terminals standing on 
the right side of the arrow. In our case, seven of the rules say that a certain non-
terminal can be replaced by a certain other non-terminal. Only rules 3, 7 and 10 
have a sequence of more than one element on their right sides. 

   The non-terminal for the root is E (E stands for expression.)
   (1) E  S An expression is either a sum
   (2) E  P or a product.

   A sum is a sequence of two
components separated by

   the plus-symbol.
   (3) S  C + C

   A product is a sequence of two
factors separated by the

   multiplication-symbol.
   (7) P  F  F

   A component is either
   a number     (4) C  N
   or a product     (5) C  P
   or a sum.     (6) C  S

   A factor is either
   a number      (8) F  N
   or a product      (9) F  P
   or a sum enclosed   (10) F  (S)
   in brackets.

 

Fig. 6.1     Grammar for sum and product expressions 

At the top of Fig. 6.2 is an example of an arithmetic expression, and underneath 
is a graphical structure which has been derived by applying the rules from Fig. 
6.1. Perhaps, when you first looked at Fig. 6.1, you wondered what the term “for 
the root” in its top row means. In Fig. 6.2 you now can see what kind of root was 
meant. The graphical structure can be viewed as a tree which has the root E at the 
bottom. (Obviously, in the given context, the term ”root” has nothing to do with 
the arithmetic operation of computing a root, for example the square root). 

The leaves of the tree in Fig. 6.2 are the terminals at the very top. Going from 
the root to the leaves, you encounter many round nodes labeled with the non-
terminal symbols (E, S, C, P, F, and N). Each step upwards from one such a node 
corresponds exactly to one rule from the grammar in Fig. 6.1. Beginning at the 
root, rule 2 takes us to the node P. Since there is only one rule having P on its left 
side, namely rule 7, this rule must be applied in the next step, resulting in the left 
F, the multiplication symbol ∗ and the right F. The left F now corresponds to the 
left side of rule 10 which provides a sequence of three elements, the opening pa-
renthesis, the node S and the closing parenthesis. Continuing in this way, you can 
generate the entire tree from the root to the leaves. 
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Fig. 6.2     Tree showing the syntactical structure of an arithmetic expression using the 
grammar in Fig. 6.1 

Our grammar has a specific property which captures the fact that both addition 
and multiplication are associative operations. This means that in a chain of three 
operands, either a+b+c or a∗b∗c, the order in which the operations are performed 
is irrelevant because (a+b)+c=a+(b+c) and (a∗b)∗c=a∗(b∗c). Therefore, if such 
chains do occur in a given arithmetic expression – as is the case in Fig. 6.2, - the 
grammar will not completely determine the tree structure. The person who gener-
ates the tree by applying the rules of the grammar has the freedom to make these 
decisions. For example, look at the node P which is reached directly from the root. 
To this P, I assigned the ∗ which is sitting at the left side of the number 3. Thus, I 
decided that first the number 3 is multiplied by the factor to the right of it, and 
then this product is multiplied by the factor left of the number 3. But certainly, I 
could have selected the ∗ sitting at the right side of the number 3 and assigned this 
to the node P sitting directly above the root E. This would have generated a differ-
ent tree. 
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Since we know the meaning of the words and symbols in Fig. 6.1, we automati-
cally associate rules of interpretation to the syntactical rules although, formally, 
the syntactical rules do not provide any information concerning the interpretation 
of the terminal sequences they describe. When we look at the arithmetic expres-
sion at the top of Fig. 6.2, we automatically begin to add and to multiply until we 
reach the final result which is 1,677. By observing what you actually do when you 
evaluate the given expression, you come up with a rather simple insight: going 
from the top to the bottom, you assign numbers to the round nodes, and when you 
find the number which belongs to the root, you have found the total result for the 
expression. Before you reach the root, you must have found the numbers 43 and 
39 belonging to the two F-nodes sitting closest to the root. Not only in the given 
example, but in general, the nodes of a syntactical tree are containers for meaning, 
and the contents of such a container are derived from the containers sitting above 
it. While the rules of the grammar are read from left to right when the tree is gen-
erated, these rules are read from right to left in the interpretation process.  

In the case of the grammar given in Fig. 6.1, it is rather easy to see what it 
means to read a rule from right to left. We always have to ask what the informa-
tion contents of the left non-terminal is if the contents of the non-terminals on the 
right side of the rule are known. Seven of the ten rules have only a single non-
terminal standing on the right side, and therefore the contents of the right side 
non-terminal is just copied to the left side non-terminal. For example, let’s con-
sider rule 2 which was the first rule applied when the tree was generated. This rule 
will be the last one to be applied when the expression is interpreted. When this 
rule is applied in the interpretation process, all nodes except node E will already 
have a number assigned to them, and the contents of the node P above node E is 
the number 1,677. This number now has to be copied into the root node according 
to rule 2. Only the two rules 3 and 7 are such that an arithmetic operation must be 
performed when they are read from right to left. In these cases, there are two non-
terminals on the right side of the rule, and the numbers assigned to them are the 
operands of the corresponding operation, either addition or multiplication. 

In the case of Fig. 6.2, the type of information which is assigned to the nodes of 
the tree in the interpretation process is the same for all nodes, namely numbers. 
But this is only a very special case. The fact that normally the non-terminal nodes 
are containers for different types of information is illustrated in Fig. 6.3. There, 
you see two trees having the same structure and being mirrored at a horizontal 
line. These trees belong to two expressions, each determining a certain object. The 
object for the lower expression is the number 48, and the object for the upper 
expression is a person from the Bible, namely the young man Cain who, as I men-
tioned earlier, killed his brother Abel. The texts in the non-terminal nodes in 
Fig. 6.3 indicate that these nodes, at least in part, are containers for different types 
of information. For example, look at the lower tree. In the interpretation process, 
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the node “List of operands” will be filled with an ordered set of two numbers, (3; 
8), the node ”Function name,” with the meaning of the word product and the 
node ”Functional expression” with the number 24. 

Object
(= 48)

Functional
Description

List of
OperandsAttribute Function

Name

Number Number

Functional
Expression

the doubled product of 3 8and

Object
(= Cain)

Functional
Description

List of
OperandsAttribute Function

Name

Father Mother

Functional
Expression

the oldest son of Adam Eveand

 

Fig. 6.3     Example illustrating the concept of context sensitivity of a grammar 
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By representing two trees having the same structure, I wanted to illustrate the 
concept of so-called context-sensitivity. In both trees, you find a dashed line en-
closing three nodes, one of which, namely the node ”Function name,” is shaded 
grey. Using these graphical elements, I tried to indicate that the three nodes within 
the dashed line belong together, and that the choice made for the shaded node has 
a restricting effect on the two other nodes. While in the lower tree, the terminal 
assigned to the shaded node is the word product, the corresponding terminal in 
the upper tree is the word son. Once the terminal for the shaded node has been 
chosen, we obviously are no longer free to choose any adjective as an ”Attribute” 
or any pair of objects as a ”List of operands.” For example, it would be nonsense 
to speak of “the oldest product of 3 and Eve” or of ”the doubled son of Adam and 
8.” Such nonsense expressions are avoided by context-sensitivity. When the tree is 
generated bottom up from its root, the actual context, i.e., the choices made for the 
left and right neighbors of an actual node, may restrict the freedom of choice for 
this actual node. 

The term context-sensitivity sometimes is used without respect to grammars. 
Assume I stand in front of a grocer’s table in the food market, point to a melon 
and say, ”Could you please give me this tomato?” Undoubtedly, the grocer would 
be confused, since in the actual context, my behavior was inconsistent. But con-
text-sensitivity sometimes helps to interpret ambiguous symbols unambiguously. 
If a word is used which has two or more absolutely different interpretations, its 
actual meaning in most cases is quite clear because of the context which includes 
the information about where and when the word is used and who used it. For ex-
ample, consider the three uses of the word present in the following sentences: 

 Everyone needs to be present for a special meeting. 
 I need to buy my sister a present for her birthday. 
 The company executive will present his ideas to the Board of Directors 

tomorrow. 

Both the arithmetic expression in Fig. 6.2 and the expressions in Fig. 6.3 are texts 
which can be read and understood by human beings who have learned the corre-
sponding languages. However, the concept of a grammar is useful not only in 
connection with texts which can be read and understood by people, but also in the 
field of information technology. There, sequences of symbols are used which 
contain information that we cannot extract directly by interpreting the perceived 
patterns. These patterns are not produced as input for human interpretation, but as 
input for machines such as computers. Therefore, if we want to have access to the 
information that is contained, these patterns must be decoded. By writing or 
speaking, we produce perceptible patterns which contain the information we have 
in our mind and which we want to make accessible. This process of bringing in-
formation to a form which is accessible to human beings is called formulating or 
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expressing, but not encoding. Encoding is performed on perceptible patterns, not 
on information sitting in one’s mind. Both the input and the output of a process of 
encoding are perceptible patterns. But such a process is called encoding only if the 
rules applied do not refer to the interpretation of the input patterns. As a result, the 
translation of a given text from the original language into a different language is 
not an encoding process because the output text cannot be produced without inter-
preting the input text. If you look back at Fig. 4.9 which shows how the symbols 
for writing formulas in predicate logic could be encoded by patterns, you see that 
each is a specific combination of nine small black and white squares arranged in a 
3x3 square. Here the black and white patterns are assigned without referring to the 
meaning of the formula or the meaning of the symbols that occur.  

One of the first codes defined for transmitting information by technical means 
was the so-called Morse code. It was named for the American Samuel Morse who, 
in 1830, began to build electromagnetic systems such as the telegraph for trans-
mitting texts. Although the final code which was standardized in 1865 was de-
signed by others, its original name was retained. The Morse code is based on only 
five perceptible patterns which are produced by turning on and off a source of 
flowing energy, e.g., a source of light, sound or electrical energy. The five patterns 
are on short, on long, off short, off long and off very long. The ”off long” is used to 
separate the letters, while the ”off very long” separates the words. Combinations 
of the other three patterns are used to represent the letters. The relative lengths of 
the patterns are, according to the standard, 1:3:1:3:7. In tables which represent the 
assignment of Morse combinations to letters (see Fig. 6.4), the “on short” is repre-
sented by a dot, the ”on long” by a horizontal line or dash, and the ”off short” by 
the distance between two of these visible patterns. Both the ”off long” and the ”off 
very long” do not appear in such tables. While the Morse code was used heavily in 
earlier times, especially for communication between ships and between ships and 
their companies on shore, it is no longer needed for modern systems of informa-
tion technology. However, amateurs sometimes still use it: think of girl scouts and 
boy scouts who communicate at night using their flashlights. 

e t i m n s oa

. .. . . ...
 

Fig. 6.4     A partial table defining the Morse code 

There are two different reasons for encoding information. One reason is that 
technical systems for information transmission and processing can handle infor-
mation much more efficiently if it is adequately encoded. In Chapter 14, this sub-
ject is discussed in more detail. The other reason is that some information must be 
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kept secret, i.e., nobody outside of a group of insiders should have access to this 
information, although the patterns used must be public information. In this case, 
only insiders should be able to decode the text. It is amazing what ideas have been 
developed by the experts for encoding texts in such a way that outsiders have an 
extremely difficult time trying to interpret the resulting sequences of patterns.  
Protocols 

How to Control Conversations in Order to Make Sure All 
Participants Get a Fair Chance to Say Something 
Protocols 

The systems considered up to now were such that a sender formulates and possi-
bly encodes information, and the receiver gets this information by decoding and 
interpreting the transmitted patterns. Now we shall consider systems with two or 
more communicating partners who, in the course of the communication process, 
switch back and forth between the roles of sender and receiver. Think of a meeting 
of the board of directors of a company. Such a meeting is moderated by a presi-
dent who has special rights compared to the other members. The set of rules which 
the communicating group members must obey in order to get a well-organized 
communication process is called a protocol. You probably know that every gov-
ernment has a so-called ”Chief of Protocol” whose job it is to make sure that dip-
lomatic communication with the governments of other countries is done according 
to certain rules. The ceremonies you might watch on television when a foreign 
politician comes for a state visit are strictly defined by the rules of such a protocol.  

Protocols which are of special interest in this book are those which have been 
defined for communication processes where at least one partner is a machine, such 
as a telephone system. In these cases, it is impossible to have efficient communi-
cation without well-defined protocols. When two people communicate via a tele-
phone system, they do not communicate with each other all the time. For part of 
the time, they communicate with the technical parts of the telephone system. Only 
after they have been connected and can talk to each other can they forget about the 
system. But when they dial or hear the dial tone or the busy signal, their commu-
nication partner is a machine. Fig. 6.5 shows a graphical representation of the 
protocol for a telephone communication which was applied when an older, tradi-
tional type of telephone system was used. The protocols for using modern tele-
phone systems and cell-phone systems look slightly different. 

The elementary activities which must be executed as steps of the process are 
written in the rectangles. The time for executing such a step is when the circle, 
from which an arrow leads to the rectangle, is filled with a so-called token. You 
might think of the circles as being saucers and the tokens being coins. In Fig. 6.5, 
the only circle having a token, drawn as a solid circle, is the one in the upper left  
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Succeeded

Caller Telephone switch system Callee

Lift the
receiver

Dial

Lift the
receiver

Connection attempt

Put down
the receiver

Turn on dial tone

Turn on
busy signal

Turn on call signal

Put down
the receiver

Disconnect

Communication between caller and callee
(No precise protocol is needed.)

Put down
the receiver

Put down
the receiver

Disconnect
caller side

Disconnect
callee side

Patience exhausted

 

Fig. 6.5     Protocol for using a traditional telephone system 

corner of the diagram. In this situation, lifting the receiver is the only activity 
which must be performed next. After the activity which is specified in the rectan-
gle, has been executed, the token is taken away from the circle in front of the rec-
tangle and a token is placed inside each circle at the end of an arrow coming from 
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the rectangle. All rectangles except the one with the dashed outline have only one 
circle which must be filled after the execution of the corresponding activity. Fill-
ing two circles at the same time means that there are two steps which can be exe-
cuted concurrently. The only concurrency shown in Fig. 6.5 comes from the fact 
that both the caller and the callee can terminate the communication independently 
by putting down their receiver. Some circles have two arrows leading away from 
them. In these cases, a condition must be given which determines which of the two 
steps is to be executed next. When there are two alternative steps to be selected for 
a condition, and these belong to the same agent – either the caller, the telephone-
system or the callee – it is this agent who decides what will be done next. But 
there is one case where the two alternative steps belong to two different agents; in 
such cases, it is unpredictable what’s going to happen. Look at the circle which is 
filled after the call-signal has been turned on. Then, the telephone is ringing on the 
callee’s side and the caller is waiting for the callee to lift his receiver. Either the 
callee’s receiver is lifted before the caller’s patience is exhausted, or the caller 
puts down his own receiver. In this case, there is no single agent having the power 
to decide which of the two alternatives will actually happen. 

By presenting the protocol in Fig. 6.5, I wanted to show you how precisely one 
can define protocols. Such precision is needed whenever technical systems are 
involved in the communication process. 
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Fundamentals of Natural Sciences 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 
What the Moon Has to Do with Mechanical 
Engineering 

You are probably familiar with situations where a child doesn’t stop asking its 
why-questions. My brother-in-law once told me the story of his little daughter, 
Barbara, who went on and on asking why things are as they are, until he finally 
had to say, “Now look, my dear girl. I really don’t know the answer myself.” 
However, the child didn’t accept this and said, “That doesn’t matter. Answer any-
way!” Obviously, our urge to know and understand the principles behind our ex-
periences seems to be determined deeply in our genes. Most likely, the subjects of 
these questions have been the same for thousands of years; only the answers have 
changed over time. In order to get an idea what these subjects are, we only must 
listen to the questions of the children: “Why doesn’t coffee smell like perfume? 
Why did the stone I threw into the pool sink to the bottom? Why is the sky blue? 
Where do clouds come from? Why do these metal pins stick to this piece of iron? 
Why is there thunder and lightning? How is it possible that a big plant grows out 
of such a small seed? Why can’t grandma who died yesterday be brought back to 
life again? Why are the stars so small and the moon so big?” 

The old Greeks – and many other people before them – answered such questions 
quite differently than we would today. To us, many of these old answers sound funny 
and, since we know better answers, we are tempted to look down at the former scien-
tists and philosophers. But we should try not to be arrogant, since we have no reason 
whatsoever to believe that we would have come up with better answers if we had been 
in the situations of those people. For example, the Greek philosopher Aristotle spent 
much time thinking about the motion of stones that are thrown or falling. His conclu-
sion was that all things on earth have their natural location, a kind of home, and if, for 
some reason, such a thing was forced to leave its home, it would attempt to return. 
Thus, it was quite clear to him that the natural home of the stones was the earth, since 
this was the location they always attempted to return to. About a hundred years before 
the time of Aristotle, the idea was born that anything is composed of only the four 
elements: fire, earth, water and air. I could present to you many more examples of out-
dated answers, but this book is not a report on the history of science. It is my goal to 
bring you up to the plateaus of the actual answers without taking any detours. 

In many cases, there is more than one way leading to the top of a mountain. 
There is, of course, exactly one specific way mankind has taken for its journey to 



148 7. Mechanics
 

the plateaus of its present knowledge and understanding, but in the meantime, 
other ways have been found which are shorter and easier to travel. The way I have 
chosen for you leads us first to the plateau of mechanics. From there, we continue 
our journey to the plateau of electrodynamics. Then we reach the plateau of the 
elementary components of which all things around us are composed. This is the 
plateau of chemistry and quantum theory. Finally, we climb to the plateau of ge-
netics which combines chemistry and biology.  

What Galileo Galilei Could Teach Us without Upsetting the 
Pope 
Galilei’s Discoveries 

When they hear or read the name Galileo Galilei (1564-1642), most people imme-
diately think of the quarrel he had with the pope. Galilei pretended that, by look-
ing through his telescope, he had discovered facts which could be explained only 
by assuming that Nicolaus Kopernikus (1473 -1543) was correct. Kopernikus had 
come up with the hypothesis that all planets, including the earth, orbit the sun and 
that the earth rotates around its axis with one complete rotation per day. The pope 
objected by presenting texts from the bible which said that the earth sits in the 
center of the universe. You certainly can imagine how upset the pope was when 
Galilei bluntly answered that the bible could be partially wrong.  

If this quarrel with the pope were the only reason for remembering Galilei, his 
name would not have been mentioned in this book. But he left us something ex-
tremely valuable which has nothing at all to do with the question about where the 
earth is located in the universe. Galilei can be called the “father of physics,” since 
he used mathematical formulas to express relationships arising from the results of 
measurements. Such formulas are considered laws which not only describe ex-
periences made in the past, but make it possible to predict the results of future 
experiments. It was a rather revolutionary idea that laws exist which “force the 
universe to behave” according to certain rules which had been valid in the past and 
which will stay valid as long as the universe exists. Most of the laws Galilei found 
by experimenting belong to the field of gravity. He found that the speed of a fal-
ling body does not depend on its mass, i.e., that a light stone falls with the same 
speed as a much heavier one. The formula for the time a body needs to fall a cer-
tain distance when it begins its fall with zero speed is 

= 0.4515 distance
meter

duration
second  

The notation used here on the left side of the equation, for example, means that the 
time duration has the units of seconds. Similarly, distance has the units of meters. 
Time, distance and weight were the first quantities of physics which were com-
bined in formulas. It is the essence of all formulas of physics that quantities such 
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as time durations, distances, weights, temperatures, electrical voltages, etc., to-
gether with natural constants are operands of the arithmetic operations addition, 
subtraction, multiplication and division. Sometimes even the square root must be 
computed. Arithmetic operations have been introduced with numbers being both 
the operands and the results. But what could it mean if a temperature is multiplied 
by a time duration or a weight is divided by a distance? Maybe you haven’t yet 
realized that, in your daily life, you very often encounter such products or frac-
tions of physical quantities. For example, you measure the speed of your car in 
miles per hour which is a fraction having a distance as the numerator and a time 
duration as the denominator. And the amount on your bill for the electrical energy 
consumption of your house is calculated in kilowatt-hours (kWh) which is a prod-
uct where one factor is an electrical power (kilowatt) and the other factor is a time 
duration (hour). While the  operands of products and fractions can be of any type 
of physical quantity, the operands of sums and differences must be of the same 
type. It doesn’t make sense to add a length and a temperature. 

Whenever you apply a physics formula to compute a result, it is very important 
that you always introduce the complete information about the physical quantities 
involved. This information is represented by a number and a physical unit. Since 
the physical units can be chosen arbitrarily – for example inches, feet, yards, 
miles, meters or kilometers for a distance – the same physical quantity can be 
expressed in many different equivalent ways. Thus, it is correct to write 0.5 miles 
= 880 yards = 2,640 feet = 31,680 inches = 80,470 cm = 804.7 m = 0.8047 km, 
since the equal signs in this expression do not relate the numbers, but relate the 
distances, and these really are all the same. 

In physics formulas, letters are used as variables for physical quantities, as 
symbols of natural constants and as abbreviations of units. Since there are not 
enough different letters, the assignment of different meanings to the same letter 
cannot be avoided. For examples, we consider the letters m, g and s. When inter-
preted as abbreviations of units, they mean meter, gram and second, respectively. 
But the two letters m and s are also used as variables in formulas describing rela-
tionships between a mass m and a distance s. The letter g has a second meaning, 
since it is used to symbolize the constant acceleration of falling objects, 9.81 m/s2. 
In printed texts, it is possible to indicate the actual meaning of these letters by 
using different font styles. Wherever there might be the danger of confusing the 
meanings of the letters, variables are printed in italic style. For example, s means 
seconds and s means a variable distance. Of course, it requires very attentive read-
ing to notice this difference. Look at the formula s/t = 15 m/s which says that a 
speed is obtained by dividing a distance s by a time t and that the actual speed is 
15 meters per second. Now we want to express this speed in miles per hour, since 
this is the speed unit we are used to and which enables us to get a feeling of 
whether the actual speed is slow or fast. The calculation which transforms the 
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speed from the given unit (meters per second) to the requested unit (miles per 
hour) is as follows: 

speed = 15 m
s

60 s
min

mile
1609.4 m

60 min
h

= 15 m
s

60 s
min

mile
1609.4 m

60 min
h

1 1 1

= 15 60 60
1609.4

mile
h = 33.55 miles

h  

The fraction which describes the speed using the given units is multiplied by a 
chain of three factors, each with the value 1. These 1’s are given in the form of 
fractions whose numerators equal their corresponding denominators. The first 
fraction has the value 1 since 60 seconds is the same time duration as one minute. 
The second fraction has the value 1 since 60 minutes is the same duration as one 
hour. And the third fraction has the value 1 since one mile is the same distance as 
1609.4 meters. The multiplication of the speed by these three factors of 1 leaves 
the speed unchanged and changes only its representation in units. If the same 
physical unit appears as a factor in both the numerator and the denominator of a 
fraction, this factor can be eliminated (or cancelled) leaving the value of the frac-
tion unchanged. In our formula, such eliminations were possible with respect to 
the time units s and min, and the distance unit m. The final result says that 15 
meters per second is the same speed as 33.55 miles per hour. 

In the next example of transforming an original physical unit into a desired one, 
the calculation not only requires multiplications and divisions, but also the compu-
tation of a square root. Assume that an American is visiting Europe and gets the 
information from the TV news that a fire in Portugal has destroyed a forest with 
an area of 20,000 hectares. Since he is not familiar with the area unit hectare, he 
cannot imagine the size of the area involved. He might assume that a European 
who is familiar with hectares would be able to imagine such an area, but this as-
sumption is wrong. Both the American and the European can only imagine areas 
for which they know the lengths of the sides. The simplest shape of an area is a 
square, and so we can imagine such a square if we know the length of its edge. 
Therefore, the American tries to transform the information 20,000 hectares into 
the form (x miles)2. His calculation is as follows: 

20,000 hectares =

20,000 hectares = 20,000 hectares 

= ( 8.79 miles )2

1

yard  yard
0.9144 m  0.9144 m

1

mile  mile
1760 yards * 1760 yards

2,000,000  mile
0.9144  176

2

2,000,000  mile2

(0.9144  176)2 =

100 m 100 m
hectare

1

 

Looking it up on the internet or in a library or asking a friend what a hectare is, he 
will get the information that one hectare corresponds to the area of a square whose 
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sides have a length of 100 meters. Since he doesn’t want to imagine lengths meas-
ured in meters or kilometers, but in yards or miles, he needs to know what a meter 
corresponds to in American units. He has learned that one yard is a length which is 
a little less than one meter. The exact relationship is 0.9144 meters per yard. Fi-
nally he applies his knowledge that one mile corresponds to 1,760 yards.  Now, no 
additional information about relations between physical units is needed and the 
remaining arithmetic operations can be performed. The result tells him that the 
area of the forest destroyed by the fire corresponds to a square with sides having a 
length of 8.79 miles. This description is what he was aiming at since he has no 
problem imagining a square with sides being a little less than nine miles. 

All physics formulas describe relations between measurable quantities where 
“measuring” means comparing with a standardized quantity. It is no wonder that 
different standards have been defined at different places on earth. While Ameri-
cans still measure lengths in inches, feet, yards and miles, the Europeans agreed in 
1875 on a length standard which they called meter (from the Greek word “metron” 
for measure). Based on this standard, shorter or longer lengths could then be 
measured using decimal fractions or multiples of a meter, namely micrometer = 
meter/1,000,000, millimeter = meter/1,000, centimeter = meter/100, kilometer = 
1,000 meters. Before the meter was introduced, a large variety of standards for 
measuring lengths were used in the different countries of Europe.  

When standards for measuring lengths, time durations and masses were origi-
nally defined, these standards referred to quantities, related to the human body, 
which everybody could easily imagine. This reminds us of the old Greek philoso-
pher Protagoras (490-411 BC) who said, “Man is the measure of all things.” The 
unit “meter” corresponds to the length of one human step, a second is close to the 
time between two heartbeats, and a kilogram is approximately the mass of what a 
person eats and drinks at a meal. Though these elementary units originally were 
defined with reference to our daily experiences, their exact definitions deviated 
more and more from their original references because it became more and more 
necessary to increase the precision of the measurements. Today, the definitions of 
the units of time and length, meter and second, seem to be rather strange. The 
actual definitions are: 

A second is 9,192,631,770 times the cycle time of a certain periodic process 
based on cesium atoms changing their state of energy. 

A meter is the 299,792,458th fraction of the distance light travels in one second 
through a vacuum. 

Everybody who reads these definitions for the first time wonders where those two 
high numbers might have come from. But the evolution of these definitions is not 
as difficult to understand as you might suppose. Let’s consider the definition of 
the second as the unit of time duration. When people began to think about time 
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durations, it was quite natural that they used the time from noon to noon as the 
standard reference. Noon is defined as the point in time when the sun is at its ze-
nith with respect to an actual location on earth, i.e., the sun has reached its highest 
position during the day. In the old days, nobody could understand that this time is 
not an absolute constant, but varies over time. The construction of clocks required 
that the time from noon to noon be divided into shorter periods. These periods are 
the hour, the minute and the second. Once a clock was built, it could be tested to 
see if it really counted 60∗60∗24=86,400 seconds from noon to noon. Since the 
scientists wanted to measure time durations with very high precision, they began 
to search for periodic processes whose cycle times are much shorter than one 
second and don’t vary much over time. Today, they use very complex systems 
which are called “atomic clocks.” The periodic process in these systems is based 
on changing energy states  of cesium atoms (see Chapter 11). Once such a system 
is available, it is possible to count how many of its cycles are contained in one 
second as measured by a conventional clock. This conventional clock is not very 
precise, i.e., its second does not always correspond to the same time duration. 
Therefore, the number of cycles of the atomic clock which fit into a convention-
ally measured second will vary over time. But compared with the absolute number 
of such a count which lies in the range of billions, the variation is very small. 
Finally, in a purely arbitrary act, the number which lies in the middle of the varia-
tion interval was chosen for the definition of the “atomic second.” This number is 
9,192,631,770.  

In the definition of the meter as the standard unit of length, the speed of light is 
used as a reference. Originally, the meter had been defined as the ten millionth 
fraction of the distance from the equator to a pole of the earth. But this was only a 
rough guideline. The original standard meter was realized using a sectional beam 
which was kept in Paris since 1889. It was made of an alloy of iridium and plati-
num, and its length at zero degrees centigrade was defined to be one meter. But 
later, when it became possible to measure durations with very high precision, the 
unit of length could be defined with reference to the speed of light which is con-
sidered to be a natural constant and does not change with time. The meter is now 
defined as the 299,792,458-th fraction of the distance light travels in a vacuum in 
one second. This number has been determined in a way similar to the determina-
tion of the number in the definition of the second. Using atomic clocks and con-
ventional methods for measuring distances, the speed of light was measured. The 
results of these measurements were not all the same since the measurements of 
time and distance could not be absolutely precise. Arbitrarily, the middle of the 
variation interval of the measured speed of light was chosen. This makes it seem 
as though this decision has defined the speed of light, but since this speed is a 
natural constant and cannot be defined, determining a number for this speed 
merely means defining the unit of length. 
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My detailed description of the problems of measuring time durations and dis-
tances was to emphasize the fact that the foundations of physics consist in defini-
tions of physical quantities and their units of measurement. It was a tremendous 
achievement of mankind to come up with ideas about how to measure phenomena 
which are experienced as something that can be more or less. While it is easy to 
compare a given distance with a standard unit distance, it is not at all obvious how 
to compare two temperatures or two forces. Everyone can feel that the temperature 
of the air or water in a container is higher or lower, but nothing indicates how one 
could map temperature values to a continuous scale of numbers. The Swede An-
ders Celsius (1701-1744) defined a temperature scale where the freezing-point of 
water was given the number 0 and the boiling-point was given the number 100. 
This definition is still used, and the unit centigrade (°C) is associated with this 
scale. However, with the definition of the two end points of the temperature scale, 
0 °C and 100 °C, the problem of measuring temperatures was not yet solved. We 
want to know which temperature values are assigned to all the numbers between 0 
and 100. We may know that a temperature of 25 °C has a distance from the boil-
ing-point of water which is three times the distance from the freezing-point. But 
how could these distances be measured? In the 18th century, scientists found that 
gases expand when their temperature rises. Consider a closed balloon: its volume 
can be changed by putting it into a cooler or warmer environment. It is smaller 
when it is cooler. Volume also depends on temperature with metals. Unless they 
are restrained by strong forces, the rails of a railroad track expand in summer and 
contract in winter. As a consequence, the gap between two adjoining rails is 
smaller in summer and larger in winter.  

Many of the instruments used for measuring temperatures are based on this de-
pendency of volume on temperature. Using this effect even makes it possible to 
measure temperatures slightly outside of the range defined by the Celsius scale. 
But measuring temperatures far below the freezing-point of water or far above its 
boiling-point required completely new methods. At this point, I shall not present 
the definition of temperature which is actually used; you shall find this in Chapter 
10. But at least I can tell you here that this definition allows us to measure ex-
tremely low and high temperatures. For example, one now knows that the boiling-
point of hydrogen lies at -252.9 °C and that the flame of a welding torch has a 
temperature of roughly 3000 °C. 
Newton’s Discoveries 

What Sir Isaac Newton Found Out about Forces and Moving 
Bodies on Earth and in the Sky 
Newton’s Discoveries 

When I heard the word ‘mechanics’ for the first time, I was a child living in the 
Black Forest which is a mountainous region in south-western Germany. At that 
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time, the region hosted many companies which did precision engineering. The 
origin of these companies dates back to the time when the Black Forest was fa-
mous for its mechanical clocks which were mainly cuckoo clocks. Therefore it is 
no wonder that I thought that mechanics is a name for this type of industry. For 
me, the symbol of mechanics was a small gearwheel. Only some years later, I 
learned from my physics teacher that mechanics is the name of that special area of 
physics which deals with forces affecting the shapes and the motions of bodies. At 
least once a year, I still spend some days on vacation in the Black Forest. And on 
such a day, I was sitting on a bench in front of a farm house, listened to the bur-
bling of a fountain and, lost in thought, looked at its aesthetically shaped jet of 
water. I imagined being a Greek philosopher who asks himself why the jet has 
exactly this shape and not a different one. I went into the house, got a measuring 
stick and measured the characteristic distances of this shape. The result is repre-
sented in the left side of Fig. 7.1. Since, at that time, I had learned earlier in high 
school that the shape of a falling jet of water is a parabola, I defined an adequate 
xy-coordinate system and developed the formula of the parabola. This formula is 
included underneath the picture of the fountain. 

30 cm 70 cm

98 cm

 ( y / cm ) = ( x / cm )2 / 50

x

If time from A to B
=  time from C to D
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18 cm

x

y
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S

 

Fig. 7.1     Parabolic arc of a water jet and elliptic orbit of a planet 

Stimulated by the parabolic shape of the jet, it came to my mind that there is 
another aesthetic shape which also occurs in mechanics and is a relative of the 
parabola. This other shape is an ellipse, and both the parabola and the ellipse are 
so-called conic sections. Before I shall explain to you what this name means, I 
shall tell you where the ellipse can be found. While I could see the jet of water and 
its parabolic shape, and take a snapshot of it, the ellipse which came to my mind 
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cannot be seen but can only be derived from certain observations. I was thinking 
of the elliptical shape of the orbit of a planet around the sun, a shape like a slightly 
deformed circle. Nicolaus Kopernicus believed that the planets orbit the sun in 
circles, but the astronomer Johannes Kepler (1571-1630) had more precise data 
and came to the conclusion that the orbits are ellipses and that the position of the 
sun coincides with one of the two focuses of each of these ellipses. What a focus 
is shall soon be explained along with the relationship between ellipses and parabo-
las. Johannes Kepler not only discovered the elliptical shape of the orbits, but also 
found a law which describes the variation of the speed of the planets on their ellip-
tical courses. Any pair of light beams connecting the sun and the planet deter-
mines both a time interval and an area. Kepler’s law says that the ratio between 
the time interval and the area is always the same for any arbitrarily chosen pair of 
beams. This law is illustrated  in the right side of  Fig. 7.1. If the two shapes ASB 
and CSD have the same area, the time the planet needs to go from A to B is the 
same as the time needed for the way from C to D. From this it follows that the 
planet must go faster on its way from A to B than on its way from C to D, since 
the distance AB is longer than the distance CD. 

Figure 7.1 gives you an impression of the phenomena that confronted the great 
British scientist Isaac Newton (1642-1727) when he began his search for the laws 
of mechanics which explain these phenomena. But before I begin to describe the 
evolution of these laws, I first must give an explanation which I mentioned earlier. 
I said that parabolas and ellipses are conic sections. What this means is illustrated 
in Fig. 7.2. Assume that the cones shown are made of wood and that you cut off a 
certain piece, keeping the saw-blade in a plane. Depending on the relation between 
the angle of this plane and the angle of the cone, the border of the cut surface is a 
particular type of conic section. A parabola is obtained if the two angles are equal. 
If the two angles differ, the curve is either an ellipse or a hyperbola. While the 
cutting plane intersects only one cone in the case of a parabola or an ellipse, two 
cones are intersected in the case of a hyperbola as shown in the figure. 

The concept of a focus is illustrated in the bottom section of the Figure 7.2. As-
sume that the interior of the curves is covered with a reflecting material. Then, each 
beam which begins at one of the two focuses of the ellipse, will arrive at the other 
focus. While an ellipse has two focuses, a parabola has only one. Any beam which 
starts at the focus of a parabola will be reflected in such a way that afterwards it is 
parallel to the symmetry line of the parabola. And, of course, the direction of such a 
beam can been reversed, i.e., all beams which arrive as lines which are parallel to 
the symmetry line will be reflected into the focus. This property is used in a so-
called dish antenna such as those used for satellite television reception and whose 
shape is a rotated parabola. When such an antenna is used as a receiver, all incom-
ing energy is concentrated at the focus. In the case of a transmitting antenna, the 
energy to be transmitted is inserted at the focus of the antenna. 
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Fig. 7.2     Conic sections 

Now my introductory remarks are over, and we are ready to consider how the 
phenomena in Fig. 7.1 can be explained, i.e., what laws force the jet of water into 
the shape of a parabola and force the path of a planet around the sun into the shape 
of an ellipse. If we were left alone and had to find these laws by ourselves we 
most probably would be absolutely helpless. It required the mind of a genius to 
find the right approach, and that genius was the English scientist Isaac Newton 
(1642-1727). You shall soon see that Newton had to find not only one ingenious 
approach, but two. His first approach answers a question which had previously 
been posed by Aristotle, “What keeps a moving stone in motion?” Aristotle be-
lieved that a stone cannot stay in motion unless a so-called “mover” is active all 
the time. In contrast, Newton introduced an abstract property of the stone which 
later was called “momentum.” If the momentum is zero, the stone is stationary, 
otherwise it is in motion. Surely you will immediately object  that there was no 
need to introduce this new property, since the difference between resting and be-
ing in motion had been captured long before Newton by the concept of speed: if 
the speed is zero, the stone is at rest, otherwise it is in motion. Newton, however, 
realized that the speed is not sufficient to capture the essence of motion; he was 
convinced that the mass of the stone also had to be taken into account. Therefore 
he defined the momentum of an object as the product of its speed and mass. With 
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two bodies moving at the same speed, the one with the greater mass has the higher 
momentum. While the mass which usually is measured in kilograms (kg) is not a 
directed quantity, the speed not only has a value, but also a direction. Therefore 
momentum is also a directed quantity which has the same direction as the speed. 
The diagram in Fig. 7.3 illustrates the steps which lead from the concept of mo-
mentum to the other two fundamental concepts of mechanics, force and energy. 

Momentum
=

Mass  Speed

Can be changed
by the effect of 

a force
over a time interval:

(Difference of Momentum)
= Force  Time

Force
=

(Difference of Momentum) /Time
= Mass  Acceleration

Effect of 
a force

over a distance:
Work =

Force  Distance

Energy
(synonymous to Work)

=
Mass  (Speed)2

 

Fig. 7.3     Concepts of mass motion 

The momentum of a body stays unchanged as long as nothing happens which 
changes its speed or mass. A stone at rest will not begin to move unless it is influ-
enced by some force and correspondingly, a stone which is in motion will not 
change either the value or the direction of its speed unless a force acts on it. In 
Fig. 7.1 both the drops of water in the jet and the planet on its orbit around the sun 
have a continuously changing speed because in both cases there is a gravitational 
force in effect. In the case of the water jet, the force has a constant value and is 
directed downwards in the y-direction. In the case of the planet, the value of the 
force changes continuously, and it is always directed towards the sun. The effect 
of a force is greater, the longer it is acting. 

Besides the effect of a force over time, there is also an effect of a force over a 
distance. Imagine that someone had to carry a heavy suitcase from the ground 
floor to the third floor. When the person has reached the final destination, he or 
she might say, “Believe me, this was hard work.” Although during this process the 
momentum of the suitcase did not remain constant, the momentum at the end of 
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the process is the same as it was at the beginning, namely zero. At the beginning, 
the suitcase was standing on the ground floor, and at the end it is standing on the 
third floor. Obviously, the force applied by the carrying person did not cause a 
difference of momentum but, of course, it still had an effect since now the suitcase 
is standing high above the ground floor. In order to correctly capture the idea of 
the effect of a force over a distance, we also must look at a different process. Now 
consider the case where the suitcase is to be carried horizontally from one house to 
another house which is one mile away. We will not be surprised if the porter again 
says that it has been hard work. But in physics, only the first process where the 
suitcase was carried along a vertical distance is considered as work. On first 
glance, this might be hard to accept. But there is a reasonable explanation: in the 
case of the horizontal transportation, the pain could be almost eliminated by using 
adequate equipment. Think of a cart on wheels which would roll almost by itself 
to its destination after it has received a small initial momentum by being pushed a 
little bit. In contrast, there is no adequate equipment which would lift the suitcase 
to the third floor almost by itself. Using a motor as a substitute for the porter is not 
permitted, since then the motor would have to provide the same work. Using block 
and tackle is allowed but would not really reduce the needed work since the prod-
uct of force and distance would stay the same. If, for example, the number of sup-
porting ropes is four or six, the force to be provided by the pulling person will be 
one fourth or one sixth of the weight of the suitcase, but the distance the rope has 
to be pulled will be four or six times the distance between the ground and the third 
floor, so the product which corresponds to the work would be the same.  

The difference between vertical and horizontal transportation is obtained quite 
naturally by computing the work as the product of the force and the distance. In 
this case the two factors are both directed quantities since both the force and the 
distance have their own directions. Therefore it is not sufficient to specify that 
force and distance must be multiplied, but it must be decided which type of  
multiplication of directed quantities should be applied. In Chapter 3, two types of 
products of two vectors were introduced, namely the scalar product and the per-
pendicular product. When computing the work as a product of a force and a  
distance, the scalar product must be used, since the work is determined completely 
by its value and doesn’t have a direction. Maybe you still remember that the scalar 
product depends on the cosine of the angle between the two factor vectors. The 
function cos(ϕ) has its maximum value, namely 1, if the angle ϕ is 0, and cos(ϕ) is 
0 if the angle ϕ is 90 degrees. Thus, the work has its maximum value if force and 
distance have the same direction, and the work is zero if force and distance are 
perpendicular. When the suitcase is carried from the ground floor to the third 
floor, force and distance have the same direction and the work has its maximum 
value. If however the suitcase is carried along the horizontal road, the force points 
upward while the distance points horizontally, and therefore the work is zero. 
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The node of the momentum in Fig. 7.3 is shaded grey which indicates that the 
concept of momentum is the first concept in Newton’s mechanics. The standard 
units used to describe momentum are kilogram (kg) for the mass and meter (m) 
and second (s) for the speed which is measured in meters per second. If, as shown, 
the momentum can be changed by a force which acts over time, the force can be 
defined by the fraction momentum/time. Therefore, there is no need for a specific 
unit of force, since the force can be expressed using the units kg, m and s. While 
in the case of momentum, a mass is multiplied by a speed, the unit of the force is 
the product of a mass times an acceleration, i.e. kg∗(m/s2). Going from the force to 
energy, the force is multiplied by a distance. Thus, the resulting unit of the energy 
is kg∗(m/s)2, i.e., the product of a mass by the square of a speed.  

I wouldn’t be surprised if all the multiplying and dividing of physical quantities 
seems strange to you. Maybe you wonder how it could have happened that some-
one came up with such ideas. Certainly, I myself never would have come up with 
these ideas – they are the final result of centuries of intensive human thinking, and 
the genius Newton was the one who came to the final conclusions. Nowadays, we 
are the lucky ones who harvest these fruits.  

Fig. 7.4 shows how the momentum of a drop of water in a jet is changed along 
its way by the force of gravity which has a constant value and a downward direc-
tion. Both the speed and the momentum can be divided into two components, a 
horizontal one and a vertical one. Since there is only a vertical force, the horizon-
tal component of the momentum or of the speed is not changed, and stays the 
same all the time. Therefore, the drop moves to the right with a constant speed, 
and this allows us to interpret the x-axis alternatively as a time-axis or as a dis-
tance-axis. I used the symbol Δt for the time the drop needs to travel a horizontal 
distance of 10 cm. The value of Δt can be obtained by applying Galilei’s law 
which describes the relation between the distance and the time of a falling body. 
This law (see page 148) tells us that a drop needs 0.447 seconds to fall a distance 
of 98 cm. According to Fig. 7.1, the drop needs the same time to move 70 cm to 
the right. Thus, the value of Δt is 0.447/7 seconds= 0.06385 s.  

- 30 cm 0 30 cm 50 cm 70 cm

0 3 t 6 t 8 t 10 t t

x

 

Fig. 7.4     Momentum of the water jet in Fig. 7.1 over time 
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Since the force which changes the vertical component of the momentum of a 
drop is equal to its constant weight, the vertical component constantly increases. 
This is illustrated in Fig. 7.4 by the straight line which connects the arrowed ends 
of the vertical components of the momentum. The downward slope of this line is 
one vertical unit per Δt, since the horizontal interval of 10 Δt corresponds to a 
vertical interval of 10 units. At the point where the water leaves the pipe and the 
jet begins, the jet goes diagonally upward, and correspondingly the momentum of 
a drop has a vertical component which is directed upward. It has a value of three 
units which are decreased to zero on the way to the maximum height of the jet; 
this height is reached after 3 Δt. After that, the vertical component of the momen-
tum points downward. 

The arrows in Fig. 7.4 which are interpreted as momentums can also be inter-
preted as speeds. Then the vertical units, the distances between the dashed hori-
zontal lines, correspond to constant increases of the speed, Δv. The value of such a 
unit can be obtained as follows: for the vertical distance of 98 cm the jet needs 
0.447 s which corresponds to an average speed of (98 cm/0.447 s)=2.19 m/s. Since 
the speed at t=3∗Δt is zero, its value at t=10∗Δt will be 7∗Δv which corresponds to 
an average speed of (7∗Δv)/2. Thus, we know that 2.19 m/s= (7∗Δv)/2 from which 
we get Δv=0.626 m/s. An increase of speed per time unit is called an acceleration 
which in this case is Δv/Δt=(0.626 m/s)/(0.06385 s)=9.8 m/s2. This is the accelera-
tion due to the gravity on the surface of the earth, and it says that the speed of a 
falling body is growing at a rate of 9.8 m/s per second. In formulas, this accelera-
tion is symbolized by the letter g. 

Until now, we took it for granted that there is a force of gravity which pulls bod-
ies downward. But we didn’t ask where this force comes from. Finding an answer 
to this question was the second great achievement of Isaac Newton. He had the idea 
that the force which pulls bodies down to the floor or to the ground might have the 
same origin as the forces which keep the moon in its orbit around the earth and the 
planets in their orbits around the sun. On his search for an adequate law, he had to 
take into consideration that it should explain Kepler’s law which relates areas and 
times as illustrated in Fig. 7.1. The law he finally found is represented in Fig. 7.5; it 
is called Newton’s law of gravity. The letter γ stands for the so-called gravitational 
constant which must have the unit m3/(kg∗s2), since its multiplication by the frac-
tion (kg∗kg)/m2 must result in the unit of a force which is (kg∗m)/s2. The law of 
gravity says that two bodies attract each other with a force which depends upon the 
masses of their bodies and upon the distance between them. The force is doubled 
when the product of the masses is doubled, and the force is halved when the square 
of the distances is doubled. If, for example, the distance is increased by a factor of 
four, the force drops to one sixteenth of its former value. 

Now I shall show you that this law actually explains the elliptical shape of the 
orbit of a planet. However, I shall not develop the formula which describes an  
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(Force of attraction)  = 
(Mass of body 1)  (Mass of body 2)

(Distance between the two bodies)2

 

Fig. 7.5     Newton’s law of gravity 

ellipse in a coordinate system, but I shall start with the assumption that the orbit is 
an ellipse and then show that this assumption satisfies all the conditions described 
by Newton’s laws. For the following explanation, I need the concept of the so-
called field of potential. When we say that someone or something has a certain 
potential, we mean that the person or the object we are talking about has the abil-
ity to produce a certain effect. Think of a large tile resting on the roof of a house. 
This tile has the potential to cause severe damage by falling from the roof – it may 
even kill someone who is walking on the street. Since a tile which is lying on the 
street does not have the same potential as the tile on the roof, we may say that the 
potential of a tile increases with its height above the street. The concept of a field 
of potential is nothing more than the generalization of this idea. We want to assign 
to each point in the space, a physical quantity which describes the potential a body 
has when it is located at that point. The term “field” is used in physics when con-
sidering the distribution of a physical quantity in a space. The physical quantity 
might be directed like a speed or undirected like a temperature. In the case of the 
field of potential, an undirected quantity is assigned to each point in the space. The 
quantity we are looking for should be related to the energy a body has after it has 
fallen from the actual point down to the street level, since this energy determines 
the effect the body might have. But the unit of the potential cannot be that of an 
energy since the energy of a falling body is not completely determined by the 
height of the fall, but it also depends on the mass of the body. From this it follows 
that the unit of potential must be the unit of an energy divided by the unit of a 
mass. Thus, the unit of the potential is (kg∗(m/s)2)/kg = (m/s)2 which is the square 
of a speed.  

I derived the acceleration of falling bodies, g = 9.8 m/s2,  in connection with 
Fig. 7.4. The cause of this acceleration is the weight of the body, i.e., the force 
which pulls it down. According to Fig. 7.3, this force is equal to the product of the 
mass of the body and its acceleration. Thus we get weight=m∗g. Fig. 7.3 also 
implies that the energy which is needed to move the body from the street level to 
the height h is equal to the product of the weight and the height, energy = 
weight∗h = m∗g∗h. Since we already deduced that the potential is equal to the 
energy divided by the mass, we can now write potential = g∗h. This is a product of 
an acceleration times a distance which results in a square of a speed as is required. 
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While the potential above the street level is helpful for explaining the parabolic 
shape of a jet of water, the field of the potential around the sun is helpful for ex-
plaining the elliptical shape of the orbit of a planet. While the potential above the 
street level is proportional to the height h, the potential around the sun grows with 
increasing distance r from the sun. But it is not proportional to r because, accord-
ing to the law of gravity, the attracting force decreases proportionally with the 
square of the distance. In the case of the potential above the street level, we could 
neglect the dependency of the attracting force upon the distance between the earth 
and the falling body, since in this case the variation of the distance is relatively 
small. The attracting force between two bodies according to the law in 
Fig. 7.5 depends not on the distance between the surfaces, but on the distance 
between the centers of gravity of the two bodies. The radius of the earth is ap-
proximately 6,400 km, and this primarily determines the distance which has to be 
used in the law of gravity. In relation to this big number, the variation by a few 
meters because of the fall of the body from above the earth’s surface is so small 
that it doesn’t have a measurable effect. In the case of a planet in its orbit how-
ever, the variation of the distance between the planet and the sun cannot be ne-
glected. In the case of the earth, the distance varies between 147 and 152 million 
kilometers, and in the case of the planet Jupiter, the variation is even higher, 
namely between 740 and 816 million kilometers. Although an extreme variation 
such as shown in Fig. 7.6 does not occur in our solar system, the factor four be-
tween the shortest and the longest distance is helpful for my explanation.  

Since we are not considering a particular planet but only want to understand 
why a planetary orbit is an ellipse, I could choose the numbers in Fig. 7.6 to sim-
plify the formula which describes the potential. You may interpret the concentric 
circles which have the sun as their center as if they were lines of equal height on a 
map of a hilly region. The numbers assigned to these circles can then be inter-
preted as heights above the zero level. Whenever a group of circles having the 
same center occur on a map, this indicates either a conic hill or a conic crater. In 
the case of Fig. 7.6, it is a crater because the numbers are increasing with increas-
ing radius. The walls of the crater get steeper and steeper as we get closer to the 
center, and get shallower as we move away from the center. At a great distance 
from the center, the ground is almost flat. 

The arrows on the orbit indicate that the planet is moving clockwise around the 
sun. Along the left part of its path, the planet must climb up the wall of the crater 
and will continuously loose speed. Along the right part of its path, the planet rolls 
down the wall of the crater with increasing speed. Thus, the speed of the planet 
will have reached its maximum when its distance from the sun is minimal, and the 
speed will be minimal when the distance has reached its maximum. From Kepler’s 
law, it follows that the maximum speed must be four times the minimum speed 
since the relation of the corresponding distances from the sun is 1:4. Since the  
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Concept of the Potential Field:

Required work for transporting
a mass m from location A to location B = m  ( Potential(B) - Potential (A) )

Application of the concept to the space around the sun:
Required work for transporting a mass m
from the distance rA to the distance rB from the sun = m  ( P(rB) - P(rA) )
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Fig. 7.6     Planetary orbit in the potential field around the sun 

energy is determined by the square of the speed, the maximum energy is 16∗ΔE if 
the minimum energy is ΔE.  

The potential of the planet is minimum, namely 61, when its speed is at its 
maximum, and the potential has reached its maximum, namely 76, when the speed 
is minimum. On both the left and right halves of the orbit, there is an exchange of 
energy corresponding to the difference of 15 between the two extreme values of 
the potential. This corresponds exactly to the difference of 15∗ΔE between the 
minimum and the maximum speed-dependent energy. At the beginning of its way 
along the left part of the orbit, the planet has an energy of 16∗ΔE, and when it has 
reached the upper extreme point, it has lost most of it, namely 15∗ΔE. However, 
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this difference is not really lost, but has been stored in the potential which the 
planet gets back on its way along the right part of the orbit. Thus, the total energy 
of the planet is given by a sum of two components, namely the speed-dependent 
so-called kinetic energy and the position-dependent potential energy.  

You probably are very familiar with processes where a continuous exchange 
between kinetic and potential energy occurs, although you might not have been 
aware of such an exchange. Think of a pendulum clock. When the pendulum 
moves through its lowest position, its speed and its kinetic energy are at their 
maximum and the potential energy is at its minimum. When the pendulum has 
reached the point on the left or the right side where it reverses its direction, its 
speed and its kinetic energy are zero and its potential energy is maximum.  

To me, it seems like a miracle that the rather simple concepts defined in  
Fig. 7.3 together with the law of gravity enabled us to completely explain the 
phenomena shown in Fig. 7.1. But there are still some phenomena in mechanics 
which cannot be understood without the introduction of additional concepts. Until 
now, we considered only bodies which we could look at as if they were points of 
mass moving along a path which was either a straight line or a curve depending on 
whether or not a force was affecting the motion of the body. Now we must expand 
our view and take into account that the bodies might rotate. In this case, it is no 
longer adequate to look at these bodies as if they were points of mass. The most 
general case of the motion of a body is composed of two components, the motion 
of the center of gravity along a path, combined with a rotation of the body around 
its center of gravity. Think of a tennis player who, after having won a hard match, 
is so excited that he throws his racket high in the air. The center of gravity of this 
racket will move along a path which brings it back to the ground, and while it is 
moving along this path, the racket will spin around its center of gravity in a rather 
complex way. 

The mechanical system which we shall use as an example to illustrate the prob-
lem and the solution concepts for dealing with rotation is shown in Fig. 7.7. A 
heavy disk is rotating with rather high speed around its horizontal axis. One end of 
this axis is mounted at the top of a vertical rod using a bearing in such a way that 
it cannot become unattached from the base, but the bearing does not hinder the 
axis from changing its angle. Looking at this system, we wonder why the disk, 
instead of tipping down, keeps moving slowly in the horizontal plane with its 
center of gravity making a full turn around the z-axis every two seconds. One 
important application of this strange effect is the gyroscope which for many years 
has been the principal device for navigation on ships. The same effect makes it 
possible to ride a bike. 

When scientists are confronted with a new problem which they cannot solve us-
ing familiar concepts and methods, they first try to slightly modify the tools which 
have been so effective in the past. If such modifications are sufficient to solve the  



Newton’s Discoveries 165
  

 

x

y

z

Torque T = a F

z-component of the
angular velocity = 2 fzDiameter of the disk = 40 cm

Thickness of the disk = 3 cm
Mass of the disk = 5 kg
Distance a = 40 cm

Revolutions of the disk
fM = 10 revolutions/s
Revolutions around the z-axis
fz = 0.5 revolutions/s

a

Force of weight F 

Main axis component of the 
angular velocity = fM

 

Fig. 7.7     Motion of a rotating body 

new problem, this has the advantage that the scientists need not learn completely 
new concepts and methods, but still can apply the old formulas with only some 
changes in interpretations. This has actually been possible in the case of going 
from moving points of mass to rotating bodies. The starting point is Fig. 7.3 where 
the physical quantities of distance, duration, mass, speed, acceleration, momen-
tum, force and energy are considered with respect to mass points. A body consists 
of many mass points which cannot move relative to each other, and if such a body 
moves without rotating, all its mass points have the same speed. The opposite of 
this kind of motion is pure rotation which is characterized by the fact that the 
center of gravity doesn’t move at all, while the other mass points of the body 
move around a straight line, the axis of rotation, which contains the center of 
gravity. As long as there are no forces affecting the rotation, the direction of this 
axis of rotation and the number of turns per time unit will not change. This corre-
sponds to the fact that neither the direction nor the value of the speed of a mass 
point will change without having a force applied. Therefore, in the case of rota-
tion, the familiar concept of “speed” has to be modified to become the new con-
cept of “angular velocity.” Like normal speed, the angular velocity is a directed 
quantity. Its direction is the same as the direction of the rotation axis. Its value 
tells how often the body spins around this axis per unit of time. Its speed may be 
measured in turns per second or by any other fraction with a number as its nu-
merator and a time unit as its denominator. While the direction of the normal 
speed is defined by the motion of the mass point, the direction of the angular ve-
locity does not follow from the rotation; an additional definition is required. This 
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definition is called the “right hand rule” which says, “if the rotation axis is grasped 
by the right hand in such a way that four fingers point in the direction of the rota-
tion, the thumb will point in the direction of the angular velocity.”  

Although both the speed and the angular velocity have a time unit in the de-
nominator, they differ with respect to their numerators. While the numerator in the 
case of speed is a physical quantity, a distance, the numerator in the case of the 
angular velocity is a real number. This means that the angular velocity is not a 
fraction involving two physical quantities. It may sound strange to you that the 
number of turns is not considered a physical quantity. Doesn’t rotation happen in 
the physical world? Certainly it does, but you shouldn’t think that anything which 
can be expressed by numbers in the physical world is necessarily a physical quan-
tity. A physical quantity cannot be measured without comparing it to an arbitrarily 
defined standard quantity. Think of a distance which, for example, can be meas-
ured in meters or yards. And now think of the number of revolutions a body makes 
per second. Do you need an arbitrarily defined standard quantity for comparison? 
Of course you don’t, since the concept of a revolution is not a physical, but a 
mathematical concept. Here you don’t ask questions like, “How far is it?” or 
“How long does it take?,” but you ask only, “How often was it?” And that means 
counting which is a basic concept of mathematics. Instead of saying, “The body 
made one revolution,” we could say, “The body made a turn of 360 degrees,” or 
“The body turned by an angle of 2π.” We certainly can express the same fact by 
using different words, but we cannot refer to different standards as in the case of a 
distance. While the length of a meter or a yard could have been defined arbitrarily, 
we cannot arbitrarily define what a revolution should be. We can only define that 
the number π corresponds to half of a revolution and one degree corresponds to 
the 360-th part of a revolution. When the word “degree” is used as the unit of a 
temperature, it is a physical unit, but when it is used in connection with an angle, 
it is not a physical unit but a mathematical term. 

The fact that I gave you such a detailed explanation of the difference between 
the normal speed and the angular velocity should lead you to conclude that the 
concept of angular velocity is a crucial concept for an adequate handling of rota-
tion. The following is a list of pairs of concepts which shows that partners must be 
associated with the concepts in Fig. 7.3 in order to obtain the set of concepts for 
rotational motion: 

distance  ↔ angle 
speed  ↔ angular velocity 
acceleration  ↔ angular acceleration 
momentum  ↔ angular momentum 
force  ↔ torque 
mass  ↔ moment of inertia 
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When I introduced the concepts in Fig. 7.3, I began with momentum which corre-
sponds to the angular momentum in Fig. 7.8.  But my explanation of Fig. 7.8  
begins with the concept of torque which is the partner to the concept of force. 
Imagine that you own a clock or a toy driven by a spring mechanism which must be 
wound up every now and then in order to provide the energy the mechanism re-
quires. Winding up is done by turning a key having two symmetric flat surfaces. 
The resistance of the spring can be overcome only by applying a pair of opposite 
forces to these surfaces. These two forces together with the distance between the 
two surfaces determine the torque. Its value is obtained by multiplying the value of 
one of the forces and the distance, and its direction is defined by the right hand rule. 
In Fig. 7.3, the product of a force and a distance is the undirected energy, while in 
Fig. 7.8 the product of a force and a distance is the torque which has a direction. 
How can this difference be explained? In both cases, the physical unit of the prod-
uct must be the same, namely the product of the unit of force, (kg∗m)/s2,and the 
unit of distance, m, which gives kg∗(m/s)2. But it doesn’t follow from this that 
torque and energy are essentially equivalent concepts. The difference comes from 
the different types of multiplication. Both factors of the product, namely the force 
and the distance, are directed quantities and, as you know from Chapter 3, there are 
two types of products of such quantities, the scalar product and the perpendicular 
product. If an undirected result is desired, the scalar product must be computed; 
otherwise the product used must be the perpendicular product. While the maximum 
energy is obtained when force and distance have the same direction, the maximum 
torque is obtained when force and distance are perpendicular. Therefore, when 
winding up your clock, you make sure that the forces you apply to the surfaces of 
the key are perpendicular to the straight line connecting these surfaces. 

The introduction of the concept of torque, as given above, corresponds to that 
path in Fig. 7.8 which leads upward from the force to the torque. But, as you can 
see, there is a second path leading to the torque, and this path is coming down 
from the angular momentum. However, we cannot follow this path yet because we 
do not know what the angular momentum is. Of course, according to the formal 
correspondence between the structure in Fig. 7.8 and that in Fig. 7.3, the angular 
momentum must be the product of the partner of the mass and the partner of the 
speed. I already have introduced the angular velocity as the partner of the speed, 
but until now, the partner of the mass has been introduced only in the form of its 
name, moment of inertia, which still needs an explanation. The deduction in Fig. 
7.9 is based on the fact that in Fig. 7.8 two different paths lead to the concept of 
torque. The left side of the equation corresponds to the path leading upward from 
the force to the torque, while the right side of the equation corresponds to the path 
leading downward from the angular momentum to the torque. Fig. 7.9 tells us that 
the unit of the moment of inertia is kg∗m2 which is the product of a mass and the 
square of a distance. How can we interpret this result? Assume that you are sitting  
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Fig. 7.8     Concepts of rotational motion 

in a circus, e.g., Barnum & Bailey, and watching the impressive performance of a 
weight lifter. He not only lifts a heavy barbell with two thick disks at the ends, but 
he makes it rotate above his head. His upright body is the axis of rotation. The 
effort required depends not only on the total weight of the barbell and the number 
of turns per second to be achieved, but also on how far the heavy disks at the ends 
are apart from each other. Actually, it’s the square of this distance which deter-
mines the energy to be provided. If the weight is left unchanged, but the distance 
of the disks is doubled, four times the effort will be needed to obtain the same 
number of revolutions per second. The moment of inertia provides the information 
about how the parts of the mass are distributed around the axis of rotation. 
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Fig. 7.9     Two ways to define the concept of torque 

If you own a car, you will be familiar with the situation when new tires are 
needed. With a new tire, it may happen that the distribution of the mass of the tire 
on the wheel is not symmetric about the axis of rotation which can lead to vibra-
tions at high speeds. This can be rectified by attaching small pieces of metal at the 
right places on the wheel rim. This procedure is called balancing the wheel. 

Now all the partners of the concepts in Fig. 7.3 have been introduced, and we 
can compare the physical units for each pair. This comparison is shown in  
Fig. 7.10. The physical units of the partners differ both in the pair (momentum, 
angular momentum) and in the pair (force, torque). From this it follows that there 
are essential differences between the partners in these pairs. Such a difference 
does not exist between the two types of energy which indicates that these two 
types are equivalent. This becomes obvious by comparing the following two sce-
narios. In the first scenario, we are expected to accelerate a track vehicle to a cer-
tain speed. We do this by pulling a rope which is connected to the front of the 
vehicle. If the vehicle is going straight in one direction, it may be compared to a  
 

= (Moment of Inertia) (Angular Acceleration) 
=  (Mass Distance2) 1/Time)2 Force

Torque

Momentum = Mass Speed = Mass (Distance/Time)

Force = Mass Acceleration = Mass (Distance/Time2)

Energy of a moving mass point = Mass Speed2 = Mass (Distance/Time)2

Energy of a rotating body = (Moment of Inertia) (Angular Velocity)2

=  (Mass Distance2) (1/Time)2 = Energy of a moving mass point

Angular Momentum = (Moment of Inertia) (Angular Velocity)
=  (Mass Distance2) (1/Time)                                     Momentum

 

Fig. 7.10     Comparing units for moving mass points and rotating bodies 
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mass point. Acceleration means putting energy into the mass point. In the second 
scenario, we are expected to make a particular heavy wheel rotate with a certain 
number of revolutions per second. The wheel’s center of gravity cannot move 
since the axis of rotation is mounted between two fixed bearings. Next to the 
wheel, on the same axis, there is a drum with a rope wound around it. By pulling 
this rope, we can make the wheel rotate faster and faster which means that we put 
energy into the wheel. For the person pulling the rope there is no difference be-
tween the two scenarios. It requires a certain force to pull the end of the rope, 
independent of the question of what happens at the other end of the rope. This 
indicates that there cannot be any essential difference between the energy of a 
moving mass point and the energy of a rotating body. 

From what I told you about pure rotation, you should realize that the motion of 
the disk in Fig. 7.7 is not a pure rotation since its center of gravity moves on a 
circle around the z-axis. Pure rotation requires that the center of gravity of the 
rotating body doesn’t move at all. However, there is still a point in the system in  
Fig. 7.7 which doesn’t move and which is the center of the rotation, although it is 
not the center of gravity; this point is the top of the vertical rod. Therefore, the 
concepts of pure rotation can still be applied if the moment of inertia is appropri-
ately modified. When I introduced the moment of inertia, I said that this is the 
information about how the body’s mass is distributed around the axis of rotation. 
But this is correct only for cases where the direction of the axis of rotation doesn’t 
change over time. In the case of Fig. 7.7, this condition is not satisfied since the 
axis of rotation changes its direction continuously. In the most general case, the 
moment of inertia is not a single quantity, but a set of six quantities which are 
combined in the form of a 3×3 matrix whose elements in the pairs (Jjk, Jkj) have 
equal values if j≠k. There is no need for you to understand this special result. Even 
most mechanical engineering students have difficulties understanding the corre-
sponding deduction. Fortunately, the symmetries in the system in Fig. 7.7 simplify 
the problem of determining the moment of inertia. There are not six, but only two 
different components required for the moment of inertia, one, JM, for the main axis 
of the disk, and a second one, Jz, for the z-axis.  

The application of the concepts given in Fig. 7.8 to the system represented in 
Fig. 7.7 leads to Fig. 7.11. The angular velocity ω has two components, a horizon-
tal one ωM which is associated with the fast rotation around the main axis of the 
disk, and a vertical one ωz which is associated with the slow rotation around the z-
axis. Since there are 10 revolutions per second around the main axis and only 0.5 
rotations per second around the z-axis, the ratio ωM:ωz is 20:1. You may wonder 
why the angular momentum does not have the same direction as the angular veloc-
ity. In the case of moving mass points, the momentum always has the same direc-
tion as the speed since the momentum is obtained by multiplying the directed 
speed with the undirected mass. In the case of rotation, however, the angular 
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momentum is obtained by multiplying the directed angular velocity by the mo-
ment of inertia which, as I said above, is a matrix. A matrix is a structure of num-
bers which, in the most general case, is more complex than a vector and cannot be 
said to have a direction. However, in the case of the simple system in Fig. 7.7, the 
two components QM and Qz of the angular momentum can be obtained by multi-
plying the two components ωM and ωz of the angular velocity by the correspond-
ing components of the moment of inertia: QM = JM∗ωM and Qz=Jz∗ωz. The  
direction of the angular momentum is the same as the direction of the angular 
velocity only if the factors for the M- and the z-component were the same, i.e., if 
JM=Jz. This, however, is not the case in the example considered. Here, Jz is actu-
ally greater than JM by a factor of approximately ten. Therefore, the ratio QM:Qz is 
2:1 while the ratio ωM:ωz is 20:1. 

Angular 
Momentum  Q

z-axis

Angular
Velocity 

y = M sin( )

Main axis
of the disk

M

z

Qz

QM

 

Fig. 7.11     Angular velocity and angular momentum vectors for the system in Fig. 7.7 

According to Fig. 7.3, a momentum can be changed by a force, and the direc-
tion of the change is the same as the direction of the force. Correspondingly,  
Fig. 7.8 says that an angular momentum can be changed by a torque, and that the 
direction of the change is the same as the direction of the torque. The torque which 
changes the angular momentum in the system shown in Fig. 7.7 is determined by 
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the weight of the disk and the length of the lever arm. Its direction is given by the 
right hand rule; it is perpendicular to the plane defined by the two axes of rotation, 
the main axis and the z-axis. Thus, the torque cannot change the value of the angu-
lar momentum, but only its direction, since it is perpendicular to it. This, together 
with the fact that one end of the main axis is fixed to the top of the vertical rod, 
makes the disk rotate around the z-axis. 

=  Time dependent torque = T(t)

Time dependent angular momentum = Q(t) =

Slope of Q(t) =

Time dependent momentum = P(t)

Slope of P(t)  = = Time dependent force = F(t)dP
dt

( JM 2 fM cos(2 fz t)
( JM 2 fM  sin(2 fz t)
( Jz 2 fz

=  2
( 0.10 kg m2 ) ( 10 / s )  cos(2  0.5 / s t)
( 0.10 kg m2 ) ( 10 / s )  sin (2  0.5 / s t)
( 0.86 kg m2 ) ( 0.5 / s )

dQ
dt

= ( 2 )2
( JM fM fz ) (  sin(2 fz t) )

0
( JM fM fz ) (   cos(2 fz t) )

= ( 2 )2
( 0.5 kg (m/s)2 ) (  sin(2  0.5 / s t) )

0
( 0.5 kg (m/s)2 ) (    cos(2  0.5 / s t) )

 

Fig. 7.12     Formulas for the rotational system in Fig. 7.7 

Fig. 7.12 shows how the behavior of the system in Fig. 7.7 is captured by for-
mulas. This will be much too much detail for most of my readers who may skip 
Fig. 7.12. My main goal was to show you that in physics – as in other fields – it is 
sometimes possible to successfully transfer the structure of known concepts and 
methods to a new but related field. In our case, it was the structure in Fig. 7.3 
belonging to the field of moving mass points, which has been transferred to the 
field of rotating bodies. The corresponding structure is shown in Fig. 7.8. 



Chapter 8 
How Albert Einstein Disregarded Common 
Sense 

Until the turn of the century in the year 1900, so many philosophers, mathemati-
cians and physicists had considered the problems of space, time and motion that 
almost all experts were convinced that no further interesting concepts or laws could 
be found in this field. But then, in 1905, Albert Einstein entered the stage and pub-
lished a paper which wiped out the old ideas about space and time. Even today, 
most people believe that the ideas which Einstein presented in that paper can be 
understood only by someone who is a genius similar to Einstein, and that ordinary 
people shouldn’t even try to follow Einstein’s path to his results. I know for sure 
that this belief is a prejudice. It all depends on the quality of the explanation. At the 
beginning of this chapter, I feel like a mountain guide who takes his group on a 
rock wall climbing tour which is commonly said to be much too difficult for ordi-
nary tourists. Please trust me. I have climbed this wall very often, and hammered so 
many hooks into the rocks that you will find it quite natural to follow me.  

How Meters and Clocks Were “Relativized” and the Speed of 
Light Was Made the Standard Reference 
Special  Relativity Theory 

First, you must ask yourself what it means to say, “space and time are absolute” - 
since this was the belief everybody had until 1905. Someone who says this cer-
tainly doesn’t believe that the lengths of all meter sticks are exactly the same, and 
that all clocks are running absolutely synchronously. It has long been known that a 
meter stick gets longer with rising temperature, and that one clock may run slower 
or faster than another clock. Absolute space and time means that the simulta-
neousness of two events and the distance between two simultaneous events are 
well-defined absolute concepts. It is evident that, if the concept of absolute simul-
taneousness disappears, the concept of absolute distance will also disappear. And 
that’s exactly what Einstein did – he made these two concepts disappear. 

In all the illustrations which I shall present in this discussion, the concept of the 
so-called “life line” plays a major role. What a life line is shall be explained using 
Fig. 8.1. Here, we consider three different objects: a black arrow, a white arrow 
and a rocket flare. The diagram shows these objects in different situations over 
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time. The black arrow is flying with constant speed downward while, at the same 
time, the white arrow is flying upward at the same constant speed. Time passes 
from left to right and the objects move vertically along the x-axis. Since all objects 
are moving on the same straight line, the y- and z-coordinates are not relevant and 
could have been omitted. Lengths and distances are expressed as multiples of a 
reference length a, and time durations are expressed as multiples of a reference 
duration T. Each of the two arrows has a length a and the value of their speed is 
taken to be a/2T. The rocket flare is considered as a point object flying with the 
speed a/T, double the speed of the arrows; this will be discussed later. If we 
choose a = 100 m and T = 1 s, the diagram covers a distance of 400 meters (4 
lengths of an arrow) and a time of 4 seconds. In the situation shown at the far left, 
the two arrows are still apart by exactly one length of an arrow. One second later, 
the two arrow heads meet, and after one more second, when the time is zero, the 
two arrows lie in parallel. Then one second later, only the two tails are together. 
At the far right of the diagram, the distance between the two tails has already 
reached the length of an arrow. 
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Head of
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Fig. 8.1     Life lines for moving objects in absolute time 

For any point in time, each point of an object has its own location in the dia-
gram, and the line which connects all these locations for a given point of an object 
is called the life line of that point. The boundaries of the grey shaded bands are the 
life lines of the heads and the tails of the two arrows, and the fact that these lines 
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are straight indicates that the arrows are moving with constant speed. The third 
object, the rocket flare which is fired at t = 0, is also moving with constant speed. 
Since this speed is a/T, the life line leads upward at an angle of 45 degrees. I  
assumed that the rocket flare is fired vertically from the tail of the white arrow 
upwards towards its head. Since the rocket flare and the black arrow are flying 
against each other, the rocket flare needs only two thirds of T to reach the tail of 
the black arrow. At that point in time, it has travelled only one third of the length 
of the white arrow, since this arrow is flying in the same direction as the rocket 
flare. The head of the white arrow is finally reached after a time of 2T. 

The arrows at the right side of Fig. 8.1 are for time axes. You may wonder why 
there are three different axes for the time coordinate. The reason for this is the 
assumption that there are three different observers having individual views of the 
system, and that the three axes t0, tB and tW are the life lines of these observers. 
Each of these observers describes the situations he experiences over time in his 
own coordinate system, i.e., in (t0, x0) or (tB, xB) or (tW, xW) respectively.  Since the 
life line t0 is a straight horizontal line, the associated observer has the speed zero, 
i.e., this observer doesn’t move at all. He sees the black arrow flying downward, 
the white arrow flying upward and the rocket flare flying upward like the white 
arrow, but with double speed. The life line tB belongs to the head of the black 
arrow, and if this is also the life line of an observer, this observer must be sitting 
on the head of the black arrow. In the view of this observer, the black arrow 
doesn’t move.  This observer sees the white arrow flying upward with the speed 
a/T and the rocket flare flying upward, too, with the speed 1.5 a/T. For the ob-
server sitting on the black arrow it seems as though the observer having the life 
line t0 is flying upward with the speed 0.5 a/T. The third observer, i.e., that one 
with the life line tW, is sitting on the tail of the white arrow, and his experiences 
are quite different compared to those of the observer on the black arrow. 

The concept of life lines is very helpful for explaining processes occurring in 
space and time, and this is shown quite convincingly in Fig. 8.2. You probably are 
familiar with the rather amazing sound effect which occurs when you are in a 
fixed position and a police car, a fire engine or an emergency vehicle passes you at 
high speed while sounding its siren: the pitch of the siren drops significantly ex-
actly at the moment when the vehicle reaches your position and passes by. Your 
life line in Fig. 8.2 is the horizontal axis while the straight line leading upward is 
the life line of the vehicle. The points located at equal distances from each other 
on the life line of the vehicle indicate the fact that the emitted sound of the siren 
has a constant pitch. The shorter the distance between the points, the higher is the 
pitch. Although the distances between the points on the life line of the vehicle are 
the same on the left and right sides of the vertical axis, the corresponding dis-
tances on the horizontal life line are different. They differ by a factor of 3 which is 
a consequence of my unrealistic assumption that the speed of the vehicle is half 
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the speed of the sound. The first scientist who analyzed and described this phe-
nomenon was Christian Doppler (1803-1853), and in order to honor him this 
effect is called the “Doppler-effect.” 
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Fig. 8.2     Doppler effect 

In order to follow Einstein’s thoughts, we have to go back again to Fig. 8.1. We 
now assume that instead of the rocket flare, a flash of light is sent towards the 
head of the white arrow and that the speed a/T is now the speed of the light. Cor-
respondingly, the two arrows now fly with half the speed of the light. If Fig. 8.1 
were a correct description of the facts, observers sitting on the arrows would 
measure different relative speeds of the light. Observers sitting on the black arrow 
would realize that it takes two thirds of the time T for the light to go the full length 
a of the arrow, and from this they would conclude that the relative speed of the 
light is 1.5 a/T. In contrast to this, observers sitting on the white arrow would 
realize that it takes twice the time T for the light to go the full length a of the ar-
row, and from this they would get 0.5 a/T for the relative speed of the light. The 
two relative speeds measured by observers sitting on the two arrows would differ 
by a factor of 3. This difference cannot be avoided if space and time are really 
absolute.  

However, at the end of the nineteenth century, physicists were confronted with 
the fact that all recent measurements of the speed of light showed that the measured 
speed did not depend at all on the question of whether or not the source of light and 
the observers are moving relative to each other. From this it follows that Fig. 8.1 
doesn’t describe the facts correctly, and that a new approach was required – at least 
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for the case when the speed a/T is considered to be the speed of light. That was 
exactly the situation in the year 1905 when Einstein came up with his approach. Of 
course, he was not the only one searching for a solution to the problem, but he was 
the first one to come up with the right approach. His idea was that it might well be 
that space and time are interwoven in such a way that distances and time durations 
cannot be determined independent of each other, with the interdependence only 
becoming relevant when the speeds considered get close to the speed of light. As 
long as the speeds considered are one-millionth or less of the speed of light, 
Fig. 8.1 describes the facts correctly.  

Einstein began his considerations with two assumptions. His first assumption 
was that there are no experimental phenomena from which it would be possible to 
decide whether an object is or is not moving. Think of two spaceships flying 
through space at constant speeds. An astronaut who is sitting in one of these 
spaceships and looks out of the window, may see the other spaceship passing by, 
but from his observations he cannot determine whether his spaceship or the other 
one or both are in motion. The second assumption Einstein made was that two 
observers moving relative to each other with constant speed will measure the same 
speed of light. On the basis on these two assumptions, Einstein deduced rather 
simple mathematical results which I now shall present to you. The top section of 
Fig. 8.3 shows how physicists handle space and time mathematically in the case of 
a system where two objects are flying in opposite directions with constant relative 
speed v, where v is extremely small compared to the speed of light. Each of the 
two objects is assumed to be connected to its own coordinate system. The origin, 
i.e., the intersection of the three axis x, y and z of each coordinate system, is lo-
cated at the tail of the actual arrow. Since the motion occurs only along the 
x-coordinate, the y- and z-coordinates could have been omitted in the diagram. In 
order to get a completely symmetric situation, we assume that the two z-axes are 
pointing upward. With these given directions of the x- and the z-axis, the direction 
of the y-axis is obtained by applying the right hand rule: the axis y1 points away 
from the reader into the book, while y2 points into the face of the reader. From 
these directions we get the relations y1=(-y2) and z1=z2. 

The position (x, y, z) and the time t of an event can be described alternatively in 
either of the two coordinate systems, and once an event has been described in one 
system, its description as a vector in the other system can be obtained by multiply-
ing the vector for this system by a particular transformation matrix. This simple 
transformation was known to Galileo Galilei, and he was honored by having it 
named the “Galilei transformation.” The transformation matrix is therefore called 
the “Galilei matrix.” 

Now we leave the assumption that space and time are absolute, and therefore I 
can no longer draw a picture showing two objects flying in opposite directions. 
Such a picture would suggest that it shows a situation at a certain point in time.  
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From the requirement that the matrix must be reciprocal to itself,
we can derive the two equations  A = -D   and  A2 = 1-B C.
(no difference from Galilei-Transformation)

From the fact that the two systems move with the speed (-v)
relative to each other, it follows that x2/t2 = (-v) for x1= 0. 
From this we get the equation  B/D = (-v).
(no difference from Galilei-Transformation)

From the requirement that the measured speed of light shall be
the same in both systems, the fraction x2/t2 must have the value c
when the fraction x1/t1 has the value (-c).
From this we get the equation (B - c A)/(D - c C) = c.
(Here is the difference from the Galiei-Transformation.)
Thus we have four equations with the four unknowns
A, B, C and D.  Solving these equations provides the formulas
for computing A, B, C and D from the values of v and c.

 

Fig. 8.3     Deducing the Lorentz transformation 
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This would be misleading to the reader because when space and time are relative, 
there is no point in time at which two observers, each sitting on his own object, 
have the same view of the situation. The only thing we know is that each observer 
has his own devices for measuring time and distance, such as a clock and a meter 
stick. Unfortunately, some authors try to explain the concept of relativity by using 
a picture that shows a train with an observer inside and another observer standing 
next to the track. Such a picture is not at all helpful, since it confuses the essential 
difference between absolute and relative space and time, and thus makes it diffi-
cult if not impossible to reach an adequate understanding. Therefore, in the lower 
section of Fig. 8.3, you will not find such a picture, but only a cloud with question 
marks in it.   

It would be convenient if the transformation in the case of relativity could also 
be expressed in form of a matrix, and so we – as Einstein did – will try to find this 
matrix.  As you shall soon see, it really can be found. If this matrix does exist, 
only the entries in its four corners will differ from the Galilei matrix because these 
are the positions which describe the relations between distances on the x-axis and 
the corresponding time durations. Since the motion occurs only along the x-axis, 
the coordinates y and z cannot be affected by the following considerations. What 
we are looking for is a set of four formulas which describe how the entries A, B, C 
and D can be obtained once the relative speed v is given. Certainly, it should be 
expected that the speed of light will appear in these formulas. The standard sym-
bol for the speed of light used in formulas is the lower-case letter c. As you know 
from what I told you about equations with unknowns, we need four equations 
because we have four unknowns. The notes (1) through (3) in Fig. 8.3 explain how 
these equations are obtained. You should note that three of these equations also 
must be satisfied in the case of the Galilei transformation.  

The solution of the four equations is given by the matrix equation in Fig. 8.4. 
The coordinate transformation based on this matrix is not called the “Einstein 
transformation” as one might expect, but the “Lorentz transformation.” Hendrik 
Antoon Lorentz (1853-1928) found this transformation some years before Einstein 
as a consequence of his analysis of Maxwell’s theory of electrodynamics which 
shall be presented in Chapter 9. Albert Einstein deduced the transformation not by 
using Lorentz’s approach, but merely by thoughts about space and time as pre-
sented here. 
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Fig. 8.4     Lorentz transformation: Solution of the equations in Fig. 8.3 
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By applying the Lorentz transformation to the scenario in Fig. 8.1, we get  
Fig. 8.5. While in Fig. 8.1 the observations of the three observers B, 0 and W who 
are moving relative to each other, could be illustrated by a single diagram, three 
diagrams are required for the relativistic view, one for each observer. In any (x, t) 
coordinate system, the lines of simultaneousness are defined as the lines that are 
parallel to the actual x-axis, and the life lines of objects which don’t change their 
x-position over time are lines that are parallel to the actual t-axis. If, as is the case 
in Fig. 8.1, all the x-axes are identical, the lines of simultaneousness are the same 
in all coordinate systems. This means that in Fig. 8.1 each vertical line is a line of 
simultaneousness, and thus, all observers measure the same time, whether they are 
in motion or not. This, of course, is not surprising, since Fig. 8.1 has been drawn 
under the assumption that space and time are absolute. In contrast to Fig. 8.1, the 
x-axes in Fig. 8.5 have different directions, and consequently, the lines of simulta-
neousness cannot be the same in the three coordinate systems B, 0 and W. In the 
0-system, the lines of simultaneousness are vertical, and in the B- and the W-
system, they have the directions of their arrows. Visibility of an object requires 
that all points of the object have the same time, i.e., that they are located on a line 
of simultaneousness. Therefore, the arrows as seen by the particular observers, 
have the direction of the corresponding x-axis. 

The diagrams in Fig. 8.5 which are based on the Lorentz transformation could 
be drawn only under the constraint that the geometric distances in the planes are 
not consistent with the values of the coordinates in the three different coordinate 
systems. This inconsistency can easily be seen by computing the length of the 
white arrow which is sitting on the xW-axis. According to the labeling of this axis, 
the length of the arrow is 1. In the 0-system, the same distance corresponds to the 
length of the diagonal of a rectangle, which can be computed by applying the law 
of Pythagoras with q being the length of one side of a dash-lined square: 

Length of diagonal = q2 + (2q)2 =  q 5 3
3with  q =

Length of diagonal = 3
15 = 1.291

 

The discrepancy between the two different values 1 and 1.291 for the same geo-
metric distance is a consequence of the fact that Fig. 8.5 is a mere mathematical 
construct obtained by applying the matrix in Fig. 8.4. Later on, I shall show you 
how this discrepancy can be resolved. 

The diagram in the middle of Fig. 8.5 shows the view of an observer having the 
life line t0 since for him the lines of simultaneousness are vertical. At t0=0 he sees 
the two arrows side by side in parallel, and for him the two arrows have the same 
length, namely a∗(√3)/2. He is the only one who sees the two events “white head 
touches black tail” and “black head touches white tail” at the same point in time. 
For observers in the systems B and W, these two events are consecutive, and the 
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Fig. 8.5     Relativistic version of Fig. 8.1 
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observers don’t even see them in the same order: An observer in the system B first 
sees the event “black head touches white tail,” and some time later the event “white 
head touches black tail.” From this he concludes that the white arrow is shorter than 
the black one. For an observer in the system W, it’s just the other way around. 

Most people, when they heard about Mr. Einstein’s ideas, were convinced that 
his mind had been confused. His results were so obviously opposite to common 
sense that most people didn’t take them seriously. But Albert Einstein had clearly 
realized that common sense only provides useful results as long as it is applied to 
the phenomena of every day life, and that it fails completely when scenarios are 
considered which lie far away from our everyday experiences. You should not 
forget that Fig. 8.5 is based on the assumption that an observer sees two arrows 
passing by with half the speed of the light. Nobody ever has experienced objects 
flying at such a high speed. If we talk about high speeds, we think of rockets or 
rifle bullets. But their speeds are not even one thousandth of the speed of light, 
because otherwise they would need only one second to travel the distance from 
New York City to Boston. Most speeds we are used to from our every day experi-
ences are less than one millionth of the speed of light. In these cases, the differ-
ences between the Galilei transformation and the Lorentz transformation are so 
small that they cannot be detected using standard measuring equipment. 

Perhaps you once heard or read somewhere that according to Einstein there is 
no speed greater than the speed of light. However, this is not an assumption which 
he made before he began his mathematical deduction, but a result which can be 
deduced from the Lorentz transformation. This result is the answer to the question 
of how two speeds which point in the same direction can be added. Think of an 
observer who is standing near railroad tracks and sees a train passing by in which 
a passenger is walking towards the front of the train. Let’s assume that the train 
travels at a speed of 50 miles per hour and that the passenger is walking with a 
speed of 2 miles per hour. If time and space were absolute, the speed of the pas-
senger, as measured by the observer, would be the sum of the two speeds, i.e., 52 
miles per hour. But from the Lorentz transformation, it follows that the resulting 
speed must be computed according to the formula 

(v1 +relativistic v2) = 
v1
c

v2
c1 +

v1 + v2

 

where v1 and v2 are the two speeds, and c is the speed of light. If we apply this 
formula to the speeds of our example, we get the relativistic sum 
51.999,999,999,999,988,56 miles per hour which is so close to the arithmetic sum 
52 miles per hour that it is impossible to measure the difference between these two 
values. Now we assume that the two speeds v1 and v2 both have the value of half 
the speed of the light. The conventional sum of these two speeds is exactly the 



Special Relativity Theory 183
  

speed of light whereas their relativistic sum is only 80 percent of the speed of 
light. The formula for computing the relativistic sum of two speeds has an interest-
ing property: the result does not exceed the speed of light as long as neither of the 
two summands exceeds the speed of light.  

Fig. 8.5 illustrates that the relativistic sum of two speeds which both are half of 
the speed of light is 80 percent of the speed of light. Since the observers in the 0-
system sees the two arrows flying with half the speed of light in opposite direc-
tions, observers sitting on one of the arrows will see the other arrow passing by 
with a speed which is the relativistic sum of two summands each having the value 
0.5c, with c= a/T. Let’s consider observers sitting on the black arrow, one sitting 
at the head and the other sitting at the tail. The view of these observers is illus-
trated by the upper diagram in Fig. 8.5. The white head reaches the observer at the 
black head at the time tBh = - 0.75T, and the white head arrives at the observer at 
the black tail at the time tBt = 0.5T. In the view of the two observers, the white 
head needed (tBt-tBh) = 1.25T for the length a of the black arrow, and from this 
they conclude that the speed of the white arrow is a/(1.25T)=0.8∗(a/T)=0.8c.  

The left part of Fig. 8.6 illustrates how it is possible for the observers in all 
three systems B, 0 and W to measure the same speed of light. In all three coordi-
nate systems, distances are expressed as multiples of a standard length a, and time 
durations are expressed as multiples of a standard duration T with a/T=c. Thus, the 
life line of a flash of light must be a straight line with a slope of 45 degrees. While 
the coordinates of the start event are the same in all three systems, namely x=0 and 
t=0, the coordinates of the arrival event depend on the system. But since the arri-
val event is a point on the 45 degrees line, the ratio (x/a):(t/T) is 1 in all three 
coordinate systems, and this means that the speed x/t is a/T=c and does not depend 
on the coordinate system. 
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Fig. 8.6     Observer-independent speed of light 
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Fig. 8.1 shows a 45 degrees line which is interpreted as the life line of a rocket 
flare which is fired at t = 0 from the tail of the white arrow towards its head. The 
diagram on the right side of Fig. 8.6 also shows the life line of something which is 
fired at t=0 from the tail of the white arrow towards its head, but now it is no 
longer a rocket flare, but a flash of light. When this flash of light reaches the end 
of the black arrow, it has travelled only one third of the length of the white arrow. 
Thus, the coordinates of this event are 

(tB, xB) = (a, T)   and   (tW, xW) = (a/3, T/3). 

When the flash reaches the head of the white arrow, it has already travelled three 
times the length of the black arrow. Thus, the coordinates of this event are 

(tW, xW) = (a, T)   and   (tB, xB) = (3a, 3T). 

In each of the coordinate systems, an event has its own coordinates, and this 
means that distances and time durations depend on the system in which they are 
measured. This is illustrated by Figs. 8.7 and 8.8. Fig. 8.7 deals with the question 
of what is the measured length of the black arrow in each system. This length is 
the distance between the head and the tail of the arrow and must be measured on a 
line of simultaneousness. The two points which determine the length must be 
points on the life lines of the head and the tail of the arrow. Since the direction of 
the lines of simultaneousness depends on the coordinate system, the measured 
lengths will differ. 

Fig. 8.8 deals with the question of what time duration is measured between two 
events. The event that the head of the black arrow touches the tail of the white  
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Fig. 8.7     Observer-dependent lengths 
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arrow is considered as the first event. All three time coordinates of this first event 
have the value zero. The second event is defined by the coordinates (tB, xB)=(T, 0) 
which means that T units of time have passed since the first event; this corre-
sponds to an “aging” of the head of the black arrow. In Fig. 8.8, three lines of 
simultaneousness, one for each coordinate system, are drawn through the point 
which corresponds to this event. The time coordinates which belong to these lines 
differ, and the corresponding values indicate that the greater the relative speed 
between an observed object and its observers is, the faster is the process of aging 
of the observers in relation to the observed object. The factor by which an ob-
server ages faster than the black arrow corresponds to the relative times belonging 
to the observer’s line of simultaneousness. The table in Fig. 8.8 contains the recip-
rocals of these values since here the observed object, and not the observers, is 
taken as reference. 
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Fig. 8.8     Observer-dependent time durations 

Although it is very hard for us to accept these strange results, there are experi-
mental findings through which they have been confirmed. Muons are elementary 
particles which can be generated using high energy radiation to break up certain 
atoms. These muons have a very short lifespan, namely only about two millionth 
of a second, and then they are consumed in the creation of other particles. Muons 
are generated not only in physics laboratories, but also about 10 km above the 
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earth where high energy radiation coming out of space hits the atoms of the at-
mosphere and partially breaks them up. Without the effects described by the Lor-
entz transformation, it would be impossible for these muons to fly from high up in 
the atmosphere down to the ground. Even if they could fly with the speed of the 
light, their short lifespan wouldn’t allow them to fly a distance longer than 600 m. 
Travelling the distance of 10 km with a speed close to the speed of light would 
require 33.5 millionth of a second. But to the great surprise of the physicists, such 
muons have been detected at ground level. This can be explained only by the fact 
that for objects moving with a speed which is close to the speed of light, distances 
and time durations differ very much from those measured by the observers. A 
distance which we measure as 10 km can well be 600 m for the muon, and a time 
duration which for us is 33.5 millionth of a second, can be 2 millionth of a second 
for the muon if it moves fast enough. The relative speed, 

as measured by the muon is          (600 m)/(2∗10-6 s),  
while the observer measures (10,000 m)/(33.5∗10-6 s),  
but the value is the same in both cases, namely 300,000 km/s.   

Again, I want to emphasize that the results presented in the figures 8.5 through 8.8 
could be obtained by formal application of the Lorentz transformation, and that I 
am in the same situation as you and Albert Einstein: we have to accept the 
mathematical results, and we cannot reconcile them using our common sense.  

In 1905, Einstein published three extraordinary papers, among them the paper 
containing the ideas presented above. Einstein died in 1955. These were the rea-
sons the German government and some scientific associations declared the year 
2005 as “the Einstein year.” His famous formula E=m∗c2 could be found on many 
of the posters which invited the public to visit special exhibitions and events. Most 
people couldn’t explain what it means, and from those who could, only a very 
small percentage could explain how Einstein came up with this formula. Since the 
basis of nuclear power plants and nuclear weapons follow from this formula, it 
should be expected that any person who considers himself well-educated knows 
this formula and can tell which thoughts led to it. Again I repeat what I have said 
before more than once: it required a genius to find the chain of thoughts which led 
to the results presented here, but any somewhat intelligent person can understand 
these thoughts if they are explained well enough. If you could follow me to this 
point, you certainly will have no problems following me on the rest of the way.  

In Fig. 7.3, the concept of energy was introduced as work which can be deliv-
ered, stored or consumed. The unit of energy was derived as the product of a mass 
and the square of a speed. The only new aspect which is provided by the formula 
E=m∗c2 is that it contains the speed of light c. As long as you don’t know the 
details behind this formula, you might think that this formula determines the en-
ergy which has to be provided for accelerating an object until it is flying at the 
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speed of light. But from what I told you about the relativistic sum of two speeds, 
you know that it is impossible to accelerate an object to the speed of light. Then 
what happens if we keep applying a force to a body which is already flying with 
very high speed? Even if we cannot accelerate it any more, we keep putting more 
energy into it. From this we may conclude that, if the energy cannot be increased 
anymore by increasing the speed, we actually increase the energy by increasing 
the mass. From our every day experiences, we don’t know any processes where 
we increase a mass without adding matter. Until now, mass has always been for us 
a property of matter, a property which doesn’t change unless matter is added or 
taken away. But now we have to face the possibility that mass cannot only be 
changed by adding or removing matter, but also by adding or removing energy. 
Again, this can be deduced from the Lorentz transformation. 

Assume that we have two heavy cubes of exactly the same size and material. 
They differ only with respect to their color, where one cube is white and the other 
one is black. In between these cubes, we place a strong spring which we initially 
compress and lock. Thus, we have a symmetrical system. As long as we do not 
unlock the spring, all three objects, i.e., the two cubes and the spring, move to-
gether and have the same life line. At time t=0 we unlock the spring which now 
will push the two cubes in opposite directions. Since the system is completely 
symmetric, the value of the acceleration of the two cubes will always be the same 
in the view of an observer sitting at the spring. After a very short time, the spring 
will no longer touch the cubes which from then on will fly with constant speed. 
We assume that this final speed is half the speed of light. From this point on, there 
are three life lines, namely the two life lines of the two cubes and the life line of 
the spring which also is the lifeline of the observer. These three life lines corre-
spond to the axis tB, t0 and tW in the two diagrams in Fig. 8.9. The left diagram 
shows the view of the observer who is sitting at the spring and who sees the two  
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Fig. 8.9     Symmetric versus asymmetric view of the system used for deducing relativistic 
mass 
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cubes flying away in opposite directions. The life line of this observer is horizon-
tal which indicates that his relative speed is zero. In the right diagram, the horizon-
tal life line belongs to the black cube which indicates that this diagram shows the 
scenario in the view of an observer sitting on the black cube. 

While the left diagram shows that the observer with life line t0 sees a symmetrical 
scenario, the right diagram shows that same scenario is unsymmetrical in the view of 
an observer with life line tB. He sees observer 0 flying upward together with the spring 
with half the speed of light, and the white cube flying upward with 80 percent of 
the speed of light. In the view of the observer B, observer 0 is not in the middle of the 
distance between the two cubes. But he knows that the spring had been in between the 
two cubes and that the forces of the spring affecting the two cubes had been the same, 
only in opposite directions. Therefore the values of the momentums of the two cubes 
should be equal. From this, the observer B concludes that the mass of the white cube 
must be greater than the mass of the black cube, since only then is it possible for the 
two products (white mass)∗(white speed) and (black mass)∗(black speed) to be equal. 
The ratio (white speed):(black speed) relative to the spring in the view of the observer 
B is (0.8c – 0.5c):(0.5c) = 3:5, and therefore, observer B concludes that the ratio (white 
mass):(black mass) must be 5:3. 

While we previously had to accept that distances and time durations depend on 
the relative speed between the observers and the system whose properties are 
measured, we now are confronted with the fact that this speed dependency also 
exists with respect to masses. An observer who measures the mass of an object 
which, in his view, doesn’t move, will get the mass m0, while an observer who 
sees the object moving with the relative speed v will measure a greater mass m(v), 
which is the mass of the object as a function of its relative speed. By generalizing 
the scenario in Fig. 8.9, the formula can be deduced which describes the relation-
ship between m0, v and m(v). This formula is shown in the upper left corner of 
Fig. 8.10. If we had the special disposition of Albert Einstein, we now would 
begin playing around with this formula, and one result of our manipulations would 
be the series expression which says that m(v) is equal to the sum of an infinite 
number of weighted powers of (v/c). A relativistic formula can be correct only if, 
for cases where v is extremely small compared to c, it provides the results accord-
ing to the Galilei transformation. Therefore, we check what the series expression 
in Fig. 8.10 provides for the case v << c, and we get m(v) = m0 + m0∗(v/c)2/2. 
Someone who is familiar with formulas in the field of mechanics would see im-
mediately that the second summand in the reduced series strongly resembles the 
formula for the kinetic energy of a body moving with speed v. According to New-
ton’s laws of mechanics, this energy is m∗v2/2. Therefore, it is not a far-fetched 
idea to multiply the series expression by c2; the result is represented in the lower 
section of Fig. 8.10. 
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Fig. 8.10     Deducing the equivalence of energy and mass 

While this equation could be deduced formally from the Lorentz transformation, its 
interpretation was mere speculation, at least until it could be confirmed by experi-
ments. Einstein was convinced that the formula not only provides a more accurate 
expression for the energy of a body in motion, but that there is already energy con-
tained in a body which doesn’t move, and that this energy is m0∗c2. It took over 30 
years until Einstein’s theory, which he published in 1905, got confirmed experimen-
tally. In 1938, the three scientists Otto Hahn (1879-1968), Lise Meitner (1878-1968) 
and Fritz Strassmann (1902-1980) detected and explained the existence of nuclear 
fission. They showed that the sum of the masses of the fragments after the fission was 
less than the mass of the uranium nucleus before the fission. The difference of the 
mass corresponds to the energy which was dissipated as heat. 

According to the formula E = m0∗c2, one kilogram of matter corresponds to the 
amount of electrical energy which a big power plant produces in one year. Unfor-
tunately, no methods have yet been found to transform a common material like 
sand in such a way that its entire mass is turned into energy. If this were possible, 
half a ton of sand per year would be sufficient to satisfy the demand for energy for 
all nations on earth. 
General Relativity Theory 

How the Beautiful World of Mr. Newton Got Bended 
General Relativity Theory 

After he had finished the theory which is presented above and which later became 
called “Special Relativity Theory,” Einstein then found it quite natural to ask what 
two observers would observe if their relative speed doesn’t stay constant, but 
changes over time. He finally found the answer to this question, and this answer is 
called “General Relativity Theory.” At the time when Einstein was developing his 
Special Relativity Theory, he was an employee of the Swiss patent office in Bern, 
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and it was only in the evenings and over weekends that he could find time to think 
about finding a consistent theory. Nevertheless, it took him less than a year to 
come up with his solution which was published in 1905. At that time, he was only 
26 years old and had not yet received his Ph.D. degree which he received a few 
months later. The papers he had published in 1905 were so extraordinary that he 
immediately became well known in the academic world. In 1909 he obtained a 
position as associate professor at the Institute of Technology in Zurich, and from 
then on he could spend most of his time searching for the solution to the problem 
of general relativity. But it took him six more years to finalize this theory. In com-
parison to the development of the General Relativity Theory, the development of 
the Special Relativity Theory can be considered child’s play. Otherwise it would 
not have been possible to present the basic mathematical deduction of this theory 
within the scope of this book. In contrast to this, it is absolutely impossible for me 
to go into similar detail with respect to General Relativity Theory. From the mo-
ment of its first publication, this theory got the reputation that only an extreme 
minority of scientists could understand it. This has been expressed by the follow-
ing anecdote. A journalist wanted to write an article about Einstein’s new theory 
and went to a physicist of high reputation to ask him for help. As an introduction 
to their conversation, the journalist told a joke he had heard that there were only 
three people on earth who really had a profound understanding of this theory. 
Hereupon the scientist said, “I wonder who the third one might be.” 

But I shall not restrict myself to telling you that this theory is very difficult. At 
the very least, I want to tell you about the problem this theory deals with, and what 
the characteristics of the solution are, since both the problem and the characteris-
tics of the solution are not too difficult to be understood by most people. The ex-
treme difficulty lies only in the mathematical deduction which is so difficult that 
even Einstein had to ask a friendly mathematician (Marcel Grossmann, 1878-
1936) for help. That the related mathematical problems are extremely challenging 
can be seen, too, by the fact that the great mathematician David Hilbert (1862-
1943) also spent some time searching for adequate solutions.  

Most people, including Albert Einstein, begin to look for new explanations as 
soon as they encounter facts which are inconsistent with their present view of the 
world. The fact that motivated Einstein to search for the Special Relativity Theory 
was the independence of the speed of light from the relative speed between the 
source of the light and the measuring observers. This was inconsistent with the 
Galilei transformation which, until then, had been believed to be absolutely correct. 
Einstein’s motivation to search for the General Relativity Theory originated from 
his wondering about the fact that the concept of mass is used in the explanation of 
two extremely different phenomena. On one hand, the mass of a body is used to 
explain the effect of inertia which determines the relation between a force and the 
resulting acceleration. On the other hand, mass is used to explain gravitation, 
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i.e., the attracting force between two bodies. The sameness of the so-called inertial 
mass and the heavy mass had been introduced by Isaac Newton in his laws of 
mechanics and gravitation. And since no experimental results had been found 
which contradicted the assumption of this sameness, nobody saw any reason to ask 
further questions concerning this subject. Everybody was satisfied with the situa-
tion as it was, i.e., that the inertia of a body is doubled or tripled when its weight is 
doubled or tripled. Einstein, however, found it very strange that nobody had won-
dered about this sameness and nobody had begun to search for an explanation. 
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Fig. 8.11     Impossibility of discriminating between inertia and gravitation 

I hope to make you wonder in the same way Einstein wondered using Fig. 8.11 
and 8.12. Fig. 8.11 shows two scenarios which could occur in a physics labora-
tory. In the scenario on the left side, the beam of light and the jet of water are 
exactly horizontal and the spring is not compressed. In the contrasting scenario on 
the right side, the beam and the jet are bent downward and the spring is com-
pressed. What you should wonder about is the fact that it is impossible to conclude 
from these observations whether or not the laboratory is actually accelerating. You 
might object that the impossibility of a conclusion is only a consequence of the 
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fact that the laboratory doesn’t have any windows. But even if it had windows and 
we could see objects passing by with constant or time variant speed, this wouldn’t 
enable us to determine whether the laboratory is accelerating. In the case of an 
observed relative acceleration, there is no way to decide which object is accelerat-
ing, the observer or the observed object or both. In most situations we are con-
vinced we know exactly whether or not we are accelerating, but this is merely a 
subjective opinion and cannot be proven by objective observations. A roofer who 
unfortunately is falling from the roof will find it absurd to assume that it is not he 
who is accelerating towards the earth, but that it is the earth which is approaching 
him with increasing speed. Nevertheless, the two views are absolutely equivalent. 

 

Fig. 8.12     The problem of relative rotational motion 

While Fig. 8.11 concerns the question of whether an object is accelerated in a cer-
tain direction, Fig. 8.12 concerns the question of rotation. When I was drawing Fig. 
8.12, I was thinking of a ride on a chairoplane in an amusement park. I put two such 
systems one above the other on the same axis. From what you see, you certainly will 
say spontaneously that the upper system is rotating while the lower one is standing 
still. You will argue that the centrifugal forces which pull the balls outward are a 
clear indication of rotation. Until now, you probably have not yet realized what it is 
you should wonder about. And of course, I also hadn’t been aware that there is 
something to wonder about here before I became familiar with Einstein’s considera-
tions. His arguments were as follows: “There are no observable phenomena from 
which one could conclude whether an object is moving or not. Motion is always 
relative and is a relation between two objects.” With respect to the two systems 
sitting on one common axis in Fig. 8.12, it is not justified for us to say that one is 
rotating and the other one is standing still; the only thing we can say is that they are 
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rotating relatively to each other. Therefore, an explanation must be found why the 
balls of the upper system are pulled outward while the balls of the lower system are 
hanging straightly down. If the system shown in Fig. 8.12 were the only object in the 
universe, the situation in the drawing could not possibly occur. But since the uni-
verse contains not only the system in Fig. 8.12, but unimaginably many galaxies 
with unimaginably great masses, the situation shown somehow must be the conse-
quence of the distribution of masses in the universe. 

Fig. 8.13 also deals with rotation, but in contrast to Fig. 8.12, the dimensions of the 
system shown are so big that it cannot be thought as possible to build. We now assume 
that the circumferential points move with 80 percent of the speed of light. If the diame-
ter of the wheel is big enough, even such a high speed does not require an extremely 
high number of revolutions per second. Think of the rotation of the wheel of a water 
mill; such a wheel rotates rather slowly and it may well need up to ten seconds for one 
revolution. In the case of Fig. 8.13, I assumed that the wheel needs five seconds for 
one revolution, and from the requirement that its circumferential speed is 80 percent of 
the speed of light it follows that the radius must have a length of 190,000 km, which is 
half the distance between the earth and the moon. 

xfix

yfix
xrot

yrot

Assumptions: 
Circumference = 3,141 arrows
Radius  =  500 arrows
Length of an arrow = 380 km
Angular Velocity
= 1 revolution in 5 seconds 

Radius

The speed of the points on the circumference relative to the observer is 0,8 c.

The corresponding length reduction factor is v
c

2
1 - = 0,6 .

 

Fig. 8.13     Relativistic view of a rotating wheel 

Although the two coordinate systems in Fig. 8.13 rotate relatively to each other 
– the fix-system clockwise and the rot-system counterclockwise – the subscript fix 
indicates that this system is assumed to be connected to the page of the book while 
the rot-system is connected to the wheel. The wheel is thought of as being built of 
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arrows which are welded together. Thus, the circumference is a regular polygon 
with 3,141 corners. In the view of an observer in the fix-system, all arrows have 
approximately equal length, namely 380 km, with the circumferential arrows be-
ing longer by a few meters compared to the arrows of the radius. The window 
shown at the right side of the circle is assumed to be fixed in the fix-system, and 
its height is such that a circumferential arrow fits into it exactly. When an observer 
in the fix-system measures the diameter and the circumference of the wheel and 
then computes their ratio, he will get the number π as expected. And by measuring 
the height of the window and the time an arrow head needs from the moment it 
enters the window until the moment it leaves it, he can compute the circumferen-
tial speed and get a value which is 80 percent of the speed of light. 

Now we assume that the observer in the fix-system is familiar with Special 
Relativity Theory. Then he must conclude that an observer in the rot-system who 
is sitting on the wheel and rotating with it will measure a smaller height of the 
window. For the rot-observer, the window will not be high enough for an arrow to 
fit into it entirely. For him, the height of the window will only be 60 percent of the 
length of a circumferential arrow. That a fix-observer and a rot-observer measure 
different lengths of an arrow is only true with respect to the circumferential ar-
rows, but not to the radius arrows. Their length does not have the same direction 
as the relative speed between the two observers, but is perpendicular to it, and 
therefore the Lorentz transformation does not apply to the radius arrows. Thus, the 
ratio of the arrow lengths (length of a radius arrow):(length of a circumferential 
arrow) is 1:1 for the fix-observer and 1:(1/0.6) = 0.6 for the rot-observer. From 
this it follows that the ratio between the circumference and the diameter, which is 
π for the fix-observer, is π:0.6 for the rot-observer. This strange result says that 
the laws of plane geometry do not apply in the world of the rot-observer.  

A detailed consideration of the time relations will provide another surprise. We 
assume that there are the four clocks shown in the upper right part of Fig. 8.13. 
The shaded clock is fastened to the wheel and is rotating with it while the other 
three clocks belong to the fix-system. For the fix-observer, these three clocks 
always run synchronously and he can read the actual time from any of them. For 
measuring the circumferential speed, the fix-observer uses the two clocks which 
are located at the entrance and the exit of the window. For him, an arrow head 
needs the time Δtfix to travel through the window. The rot-observer reads the 
shaded clock when the arrow head enters the window and again when it leaves it. 
Then, he computes the time difference and gets Δtrot. Because of the Lorentz trans-
formation, the ratio between the two times is Δtrot:Δtfix=0.6. The fact that Δtrot is 
less than Δtfix corresponds to the fact that the height of the window hrot as meas-
ured by the rot-observer is by a factor of 0.6 less than the height hfix measured by 
the fix-observer. Thus, both observers measure the same relative speed, since 
hfix/Δtfix is equal to hrot/Δtrot = (0.6∗hfix)/(0.6*Δtfix). 
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Until now, we have not considered the clock which is sitting at the center of the 
wheel. We assumed that it isn’t rotating, i.e., it belongs to the fix-system. But even 
if it were fastened to the wheel, it would still run almost synchronously with the 
other two clocks in the fix-system since it would stay in the center of the wheel 
and rotate with one revolution in five seconds. Everybody knows that the time he 
reads from a watch does not depend on whether he reads it while he is riding a 
merry-go-round or while he is standing outside and watching his child going 
around. Thus, we are confronted by the surprising fact that two clocks which don’t 
move relatively to the rot-observer cannot run synchronously although they are 
built exactly the same. The clock at the circumference runs slower by a factor of 
0.6 compared to the clock in the center.  

Summing up our considerations we may say that only the fix-observer experi-
ences a “normal world” where Euclid’s laws of geometry do apply, and where all 
clocks which do not move relatively to each other can be synchronized. In contrast 
to this, the rot-observer experiences a world where the laws of conventional ge-
ometry do not apply and where the running speed of a clock depends upon its 
location. The cause for these different worlds cannot be the mere rotation, since 
each observer rotates relatively to the other one with the same angular velocity. 
The cause must be the same as in the case of Fig. 8.12: only one of the observers 
experiences centrifugal forces. Einstein himself wrote about this [EIN]: 

The observer who is sitting on the wheel may consider the wheel as the system 
in relation to which all phenomena are described. He may do so because of the 
relativity principle. In his view, the forces which affect him and other objects 
which are fastened to the wheel can be considered as caused by a field of gravi-
tation though the values and directions of this field cannot be explained by 
Newton’s law of gravitation.  But this doesn’t bother him since he believes in 
the general relativity principle. He is hoping, and rightly so, that a general law 
of gravitation will be found which does not only explain correctly the motion of 
the objects in the sky but also the forces he is experiencing on his wheel.  

These considerations motivated Einstein to search for a generalization of New-
ton’s theory of gravitation. In Newton’s law which describes the attracting force 
between two bodies, Newton assumed that a force can be caused just by the fact 
that another body is located at a certain distance. In contrast to this, Einstein was 
convinced that such instantaneous effects over a distance do not exist. According 
to his view, the cause of a force of gravity which affects a given body can be 
found only in the direct local neighborhood of the body. Of course, he didn’t deny 
the fact that the force somehow depends on other bodies being somewhere; but he 
stated that the influence of the distant masses must be explained by certain 
changes in the space between the bodies. 
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From the finding that the standard laws of geometry could not be applied with 
respect to all observations in the universe, Einstein concluded that the solution of 
this problem could be found only in the form of an adequate mathematical descrip-
tion of the geometry of the space. He was convinced that the “bent space” and the 
problem of non-synchronizable clocks must have the same cause. As a result of his 
Special Relativity Theory, he had already found that space and time were not quan-
tities which were independent from each other, but had to be considered as a com-
posite structure. Therefore, the new laws of geometry he was searching for had to 
be laws for the four-dimensional space with the coordinates x, y, z and t. Unlike the 
time in 1905 when he developed his Special Relativity Theory, he now could apply 
the results which the mathematician Hermann Minkowski (1864-1909) had pub-
lished in 1908. Maybe you still remember the problem of inconsistent distances 
which I described in my comments about Fig. 8.5. There I showed that the law of 
Pythagoras provides different results depending upon the choice of the coordinate 
system. Mr. Minkowski was quite unhappy with this inconsistency, and he was 
convinced that it could be eliminated. As Albert Einstein had done before, Mr. 
Minkowski disregarded common sense and therefore finally found a surprising 
solution: he introduced imaginary values for the time coordinate. 

When I presented the history of the creation of numbers and introduced the 
imaginary numbers as mirrored real numbers, I tried to convince you that there 
was no reason to be scared by these numbers. Here again, I emphasize the fact that 
everybody, even the most genius mathematician, has to accept imaginary numbers 
as pure formal constructs which have no further meaning beyond the fact that their 
squares are negative numbers. Nothing more is required since it is enough to know 
how to use them in arithmetic computations. In contrast to me, the British physi-
cist Stephen Hawking (born in 1942) has an absolutely contrary opinion. He wrote 
[HA 2]: 

I would like to make it clear that the imaginary time is a concept which we have 
to accept. It is a mental leap of the same type as the discovery that the earth 
has the shape of a sphere. The day will come when we shall consider the imagi-
nary time as evident as the fact that the earth is a sphere. 

I object to this opinion by pointing out that disks and spheres are shapes which we 
observe every day and which we can easily imagine scaled to extremely small or big 
sizes. The problem of imagining the earth being a sphere did not originate from an 
inability of imagining a very big sphere, but from the fact that gravity had not yet 
been observed as a force which can have different directions. In contrast to this, the 
concept of an imaginary time is a formal mathematical concept from the outset and 
will stay so forever. Of course we can write  t = 5i seconds and conclude from this 
that then t2 must be minus 25 seconds2, but this doesn’t give us any reason to expect 
that one day we will be able to associate an actual picture with this imaginary time.  
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Fig. 8.14     Invariance of distance in the space-time continuum using imaginary time 

In the case of the ball-shaped earth, however, the real picture exists, not only in our 
imagination, but even by looking out of the window of a spaceship. 

The example in Fig. 8.14, which refers to Fig. 8.5, illustrates the fact that the 
dependency of distances from the choice of the coordinate system really disap-
pears by using imaginary values for the time coordinate. The distance between the 
intersection of the t- and x-axes and the point P is found by applying the law of 
Pythagoras; the square of the length is tj

2 + xj
2.  If we would not take imaginary 

values for the time coordinates tj, the result of this computation would not be the 
same in all coordinate systems. Only by using imaginary values for tj, can we 
make the result independent from our choice of the coordinate system; in this case, 
the resulting length is always one.  

In the example in Fig. 8.14, the resulting length is a real number since its 
square is a positive number. This is always the case when the angle between the 
horizontal axis and the line considered exceeds 45 degrees. If, however, this angle 
is less than 45 degrees, the square of the length is negative and the resulting length 



198 8. Relativity Theory 
 

is imaginary. If the angle is exactly 45 degrees, the square of the length is zero. In 
this case, the line is the life line of a flash of light. Life lines of real objects – think 
of the head of the white arrow – always have an angle which is less than 45 de-
grees. Distances on such life lines are always imaginary which indicates that the 
distance is to be interpreted as a time duration. A positive distance can never be 
part of a life line, but always lies on a line of simultaneousness and describes the 
distance between two points in space. 

The Lorentz transformation and Minkowski’s imaginary time are the concepts 
which define the structure of the four-dimensional space-time continuum of Spe-
cial Relativity Theory. However, you already know that this structure cannot be 
applied by an observer sitting on the wheel in Fig. 8.13. Einstein suspected that 
the strange phenomena which occur in connection with rotation could be ex-
plained by the assumption that the four-dimensional space-time continuum were 
somehow bent, and that this bending is determined by the distribution of the 
masses. This certainly sounds rather strange, but instead of being scared away you 
should remember what I told you when I introduced the concept of higher dimen-
sional spaces: we always look first at structures in the real three-dimensional 
space, describe these by formulas, and then extend these formulas by formally 
adding further dimensions. That’s exactly how we shall now proceed. We look at 
a bent two-dimensional space, i.e., a bent surface which is embedded in the three-
dimensional space. Fig. 8.15 shows a bent surface which is sitting on a plane. It 
reminds me of a sun-helmet sitting on a table, but it also might be a hill out in the 
country. Now we consider the task of drawing a circle having its center at the top 
of the surface. This circle which is shown in the left part of the figure runs at a 
certain height along the hillside, and its radiuses are the lines to the top of the hill, 
along which drops of water would run down from the top. The ratio between the 
circumference and the diameter of this circle is less than π since the diameter is 
longer than it would be if the circle had been drawn in a plane. This is a conse-
quence of the condition that all lines must be drawn on the bent surface. We are 
not allowed to drill a tunnel through the hill in order to obtain shorter diameters. 

The right part of the figure illustrates the fact that the shortest connection be-
tween two points can be a bent line. Think of a rubber string whose two ends are 
fixed by hammering nails into the table at the rim of the sun-helmet. Since all 
points of the string have to touch the bent surface the string will necessarily run 
along a bent line, and among of all possible such bent lines, there is exactly one 
which is the shortest.  

The reason we have no problems seeing the bent surface in Fig. 8.15 is the fact 
that it is embedded in the three-dimensional space. If we could see a four-
dimensional space, we presumably would have no problems seeing a bent three-
dimensional space embedded in it. But since four-dimensional spaces are mere 
formal mathematical constructs which nobody can see, the question of whether the  
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Fig. 8.15     A circle and a shortest distance on a bent surface 

three-dimensional space we are living in is bent cannot be determined by looking 
at it. The problem of answering the question about bent spaces actually had been 
considered long before Albert Einstein came up with it. It was the German 
mathematician Carl Friedrich Gauss who, while he was involved in a project sur-
veying Northern Germany starting in 1818, had the idea that it might be possible 
using certain measurements to find out whether or not our three-dimensional space 
is bent. The idea is quite simple, since it only requires a formal transfer of certain 
geometric phenomena from the case of bent surfaces to the case of our three-
dimensional space. In the case of a bent surface, the ratio between the circumfer-
ence and the diameter of a circle can be less than π, and the sum of the angles of a 
triangle can be more than 180 degrees. While these phenomena can be detected by 
measuring lengths and angles on very small bent surfaces, they cannot be detected 
by measurements in small sections of our three-dimensional space. From this, 
Gauss concluded that the bending of the three-dimensional space, if such a bend-
ing exists at all, could be detected only by measuring edges or angles of triangles 
which are much bigger than those we have access to on earth. It took about 100 
years until the ideas of Gauss could be applied and the bending of space was 
proven on the basis of observations of astronomers. 

Fig. 8.16 illustrates that a bending cannot be detected if the section within 
which the measurements are performed is too small. Here, a bent one-dimensional 
space, i.e., a curve, is partitioned into a sequence of intervals, and the lengths of 
these intervals is chosen such that within an interval no bending can be detected. 

We now take this bent one-dimensional space as the starting point for our way 
which finally shall lead us to the mathematical description of bent four-
dimensional spaces. This is the reason the formula for computing the distance Δs 
between the entrance point of an interval, i.e., its origin, and a point within seems  
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Fig. 8.16     Piecewise linear view of a bent one-dimensional space 

to be unnecessarily complicated. Each interval has its individual total length Dx, 
and each point within the interval is determined by its relative coordinate Δx 
which has the value Δs/Dx. You will not understand why the formula has been 
structured in this way until we proceed to higher dimensions. 

The step which leads us from one dimension to two dimensions will enable us 
see how the formula must be structured in order to apply to four-dimensions. 
Since the time when mankind realized that the earth has the shape of a globe, 
mathematical methods for dealing with bent two-dimensional spaces have been 
developed. By drawing a net of lines onto a surface, this surface can be partitioned 
into a set of meshes. If the distances between the lines are small enough, each 
mesh can be considered approximately either as a quadrangle or as a triangle in a 
plane for which Euclid’s laws of geometry apply. In the case of the globe of the 
earth, the partitioning lines are the meridians containing the poles, with the circles 
of latitude being concentric with the equator.  

Fig. 8.17 shows a mesh of an assumed grid on a bent surface. The lines of the 
grid are assumed to have natural numbers assigned to them, with the x-lines and 
the y-lines being enumerated separately. The mesh in Fig. 8.17 lies in between the 
x-lines 34 and 35 and the y-lines 13 and 14. In Fig. 8.16, each interval had a spe-
cific factor g = (Dx)2 assigned to it for being used in the formula Δs2 = Δx∗g∗Δx. 
Now we now try to find a corresponding factor G assigned to the mesh 
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Fig. 8.17     Determination of a distance in a mesh of coordinates 

in Fig. 8.17 to produce the formula Δs2 = (Δx, Δy)∗G∗(Δx, Δy). Such a factor G 
cannot be a simple number but must be a “two-dimensional factor.” Fig. 8.18 
shows that the factor G is a matrix having the elements gjk according to Fig. 8.17. 
The formulas in Fig. 8.17 are obtained by applying the law of Pythagoras together 
with the definitions of the two functions cos(α) and sin(α). As can be expected 
from Fig. 8.16, in Fig. 8.17 only the variables Δs, Dx and Dy represent real physi-
cal distances while the variables Δx and Δy represent the ratios Δs/Dx and Δs/Dy, 
respectively, and have values which are pure numbers. The computation in the 
bottom part of Fig. 8.18 is based on the assumption that the two distances Dx and 
Dy have the values 10 km and 9 km and that the angle α is 36.87 degrees; then 
cos(α)=0.8. With these values the point P in Fig. 8.17 has the coordinates (Δx; 
Δy)=(0.25; 0.65). 

The structure shown in Fig. 8.18 is exactly what enables us to perform the last 
step which brings us to our goal. It doesn’t require a genius to conclude that, while 
the bent two-dimensional space could be described by two-dimensional matrices, 
the description of a bent four-dimensional space will require four-dimensional 
matrices where each section of the space has its own individual matrix assigned to 
it (see Fig. 8.19). Since each entry gjk of the matrix is equal to the entry gkj, we 
need ten entries to fill the 4×4-matrix. In the simplest case, the matrix can be the 
unit matrix, and in this case the distance Δs is obtained by simply applying the law 
of Pythagoras Δs2= Δx2+Δy2+Δz2+Δt2, as shown in Fig. 8.19. It is always possible 
to partition a bent surface in such a way that one or more sections get the unit  
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Fig. 8.18     Computing a distance using a mesh-specific matrix 

matrix assigned them, but it is impossible to find a partition where the unit matrix 
can be assigned to all sections. Think of the surface of the globe being partitioned 
by the meridians and the circles of latitude: the meshes near the equator can be 
treated approximately as squares, but the nearer we get to a pole, the more the 
borders Dx and Dy of the meshes are no longer perpendicular; i.e., the angle α 
then is no longer 90 degrees and the value of cos(α) is no longer zero. 

I believe that the mathematical structures which I have introduced to this point 
have not yet been too difficult to be presented to non-expert readers. But this was 
only the simplest part of the tour to the top of the mountain which is called Gen-
eral Relativity Theory. Actually, we have only walked from the valley over a 
hiking trail to a mountain shelter at the bottom of the steep rock wall. Climbing 
this wall really is much too difficult for us. This is the rock wall which I had in 
mind when I said at the beginning of this section that the mathematical deduction 
of the General Relativity Theory could not be presented in this book. Soon after 
Einstein had published this theory, the German physicist Max Born (1882-1970) 
wrote a book in attempt to explain the concepts of this theory to an interested non-
expert audience. In this book, I found the following statement [BOR]:  

It has been Einstein’s idea that the field which is generated by a body produces a 
repercussion on the body itself and thus affects its life line. This is an extremely 
difficult mathematical problem the structure of which we cannot even adumbrate. 
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Fig. 8.19     Extending the concept from Fig. 8.18 to the four-dimensional space-time continuum 

Another indication of the difficulty of this problem is the fact that, in most univer-
sity physics curricula, General Relativity Theory is not a required subject, but only 
an elective.  

In his book, Max Born characterizes the results of the theory as follows: 

The metric field (which determines distances) and the field of gravity (which 
determines forces)  are two different aspects of the same thing and both are 
represented by the ten quantities of the 4×4-matrix (see Fig. 8.19).Thus, Ein-
stein’s theory is a miraculous merger of geometry and physics, a synthesis of 
the laws of Pythagoras and Newton. 

In the two-dimensional space-time-continuum in Fig. 8.5, the lifelines of the objects 
considered are straight lines which indicate that the motion of these bodies stays un-
changed as a consequence of their inertia. The lines of simultaneousness are also 
straight lines. In a plane, the shortest distance between two points is a straight line. 
Bending a surface has the effect that the shortest distances are no longer straight lines 
(see Fig. 8.15). Nevertheless, these shortest distances still have the same interpretation 
as in a plane: either they represent the life lines of bodies which are not influenced by 
any forces besides those caused by their inertia, or they are lines of simultaneousness. 
The square Δs2 of the distance between two points on such a shortest connection still 
can be positive or negative.  

With respect to the basic concepts of General Relativity Theory, we may say 
that most of them have already been introduced by Special Relativity Theory. The 
only new concept is the bending of the space-time-continuum which is due to the 
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distribution of the masses. A four-dimensional space-time-continuum was already 
a basic concept of Special Relativity Theory, but there it is not bent and does not 
depend on the distribution of the masses. 

Figures 8.15 and 8.16 show examples of bent spaces, the first being two-
dimensional and the second being one-dimensional. These illustrations of bent 
spaces were possible only because, in both cases, the bent space could be repre-
sented as a continuous subspace of a space which has one additional dimension: 
the line is a subspace of a (two-dimensional) plane, and the surface is a subspace 
of the three-dimensional space. From this, we can conclude that an illustration of a 
bent four-dimensional space would be possible only if we could represent it as a 
subspace of a five-dimensional space which, however, is impossible. But in order 
to give you an idea of a space whose bending depends on a distribution of masses, 
I suggest that you think of a trampoline. As long as no bodies are placed on the 
jumping surface, it can be considered approximately as a plane. Now we assume 
that balls of different sizes and weights are placed randomly on the sheet which 
will cause the sheet to be bent. As a consequence of this bending, some of the 
balls may begin to move which will change the bending, and this again will have 
an effect on the motion of the balls. Obviously, the distribution of the balls influ-
ences the bending and the bending influences the distribution of the balls. If I had 
to find a mathematical description of a four-dimensional bent space whose bend-
ing depends on the distribution of masses and where the bending influences the 
distribution, I would begin with the problem of describing the case of the  
trampoline, and if I found a solution I would try to expand it formally into higher 
dimensions. 

Since General Relativity Theory describes the interdependence of space, time 
and the distribution of masses, it is no wonder that this theory became of great 
importance for astronomy and cosmology. Astronomy is the science of the posi-
tions of bodies in the universe as they actually are and how they change over time, 
and cosmology is the science of the emergence and evolution of the universe. 
General Relativity Theory became relevant only recently for the development of 
systems which we use in our every day life. These systems contain clocks which 
are moving with high speed relative to each other, with some of them being on 
earth while the others are in satellites out in space. The high relative speeds be-
tween these clocks requires the application of Special Relativity Theory while the 
fact that the influence of gravity is not the same for all of the clocks, requires the 
application of General Relativity Theory. According to this theory, the time 
measured by a clock sitting on the ground differs slightly from the time measured 
by a clock in an airplane flying at an altitude of 30,000 feet. But this difference is 
so small that it could not be measured during Einstein’s lifetime. But in the mean-
time, it became possible to compare the times measured with very high precision, 
and actually the difference has the value predicted by Einstein’s theory. Since 
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according to Newton’s law of gravity (see Fig. 7.5) the force of gravity on ground 
level is stronger than in the height where the airplane is flying, the clock in the 
plane runs faster than that on the ground. Modern navigation systems based on 
ground positioning systems (GPS) which are installed in cars and tell the driver 
when to turn right or left are based on the comparison of the time measured by a 
clock in the car to the times measured by clocks in different satellites. Based on 
this information, these systems can deduce the actual position within an interval of 
a couple of yards. If the engineers who developed the systems would not have 
applied Einstein’s theories, the uncertainty interval for the position would be much 
greater. 



Chapter 9 
How a Few Frog Legs Triggered the Origin 
of Electrical Engineering 

When we were discussing historical events from the beginning of modern technol-
ogy, a friend of mine used to say, “That was in the days when electricity was still 
made from frog legs!” With this statement, he referred to the accidental observation 
by the Italian Luigi Galvani (1737-1798) which actually triggered the tremendous 
development of electrical engineering. But before I discuss this observation in more 
detail, let’s have a closer look at the time when all this happened. In those days, all 
of the scientists who were trying to find new laws for explaining physical phenom-
ena were naturally well familiar with Newton’s findings about mechanics. New-
ton’s book had been published about one hundred years before Galvani made his 
observation. In the decades just before this observation, chemistry had made great 
progress. Until about 1750, most chemists still believed that the air is a simple 
element which does not play any role in chemical reactions. But within the next 
twenty years, it was found that air is a composite of different gases. Carbon dioxide 
was detected as its first component, and soon afterwards the other two essential 
components, nitrogen and oxygen, were found. At the same time, hydrogen was 
found. It is reasonable to assume that all scientists who made major contributions to 
the progress of knowledge about electricity and magnetism were familiar with 
actual knowledge in the fields of physics and chemistry. But in Galvani’s days, 
there was not yet much knowledge about electricity and magnetism, and it was still 
completely unknown that these two are closely interrelated. As in the time of the 
old Greeks, certain phenomena were well known from every day experience. Cer-
tain blocks of iron attract needles and other small iron objects. And by rubbing 
bodies of certain materials together, attractive or repulsive forces between the bod-
ies can be produced, or sparks can jump from one body to the other. Perhaps you 
had the experience that you winced because a spark jumped from your hand to a 
door knob after you walked over a certain flooring material, or your hair stood on 
end after you took off your woolen hat or used a certain comb. 

You probably know that Benjamin Franklin (1706-1790) invented the lightning 
arrester. He had the bright idea that lightning is nothing but an extreme form of the 
sparks which jumped from his hand to the door knob. Nevertheless, electrical and 
magnetic phenomena were still mysterious and unexplained when Galvani made 
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his observation. From that event, it took only eighty years until all electrical and 
magnetic phenomena and their interrelations were completely understood and the 
corresponding laws had been expressed by mathematical formulas of surprising 
clarity. Even the work of today’s electrical engineers is based on a theoretical 
foundation which was completed in 1860. The rock wall which I shall now tackle 
with you begins with Galvani making his observation in the year 1780, and ends 
with Maxwell writing his equations in 1860. And at the bottom of this rock wall, 
we pass a plate with the inscription: “Nine years from now, the French revolution 
will begin.” 

The Tremendous Consequences of Accidental and Simple 
Observations 
Accidental Observatio ns 

Luigi Galvani was a professor of anatomy and gynaecology at the University of 
Bologna which is one of the two oldest universities in Europe. Galvani performed 
experiments with frog legs because he wanted to find out how muscles are con-
trolled by nerves. One day, he accidentally observed that the frog legs twitched 
whenever they touched the iron grid of the window where they were hanging from 
copper hooks. Galvani published his observation in a journal, and thus Alessandro 
Volta (1745-1827) got to know about it. Volta was a professor of physics and had 
already done many experiments with electricity produced by rubbing suitable 
materials together. He had the idea – which later proved to be correct – that the 
cause of the twitching of the frog legs was purely physical. In order to check 
whether his assumption was correct, Volta made experiments with a set-up which 
contained only those elements from Galvani’s structure, which Volta believed 
were the relevant ones. Instead of a frog leg, he used a piece of cardboard which 
he dipped into salt water, and instead of the iron window grid and the copper hook 
he used disks of these metals. The sandwich composed of the two metal disks 
outside and the cardboard inside showed the same effects as a body which had 
been charged by rubbing. Volta could intensify the effects by piling up more of 
such sandwiches and by replacing the original metals with others. He had invented 
an electrical battery. It worked perfectly, but nobody could explain why. It took 
more than one hundred years until the explanation was found: it is based on quan-
tum theory.  

Of course, Volta published his results, and from then on many scientists per-
formed experiments using such batteries. One of them was the Danish scientist 
Hans Christian Oersted (1777-1851). One day in the year 1820, there was, acci-
dentally, a magnetic compass lying next to his experimental set-up – perhaps 
Mr. Oersted owned a sail boat. He observed that whenever he closed the circuit 
and allowed the current to flow, the magnetic needle of the compass jumped to a 
new direction and did not return to its original direction until the current was 
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turned off. You certainly can imagine that Mr. Oersted was quite surprised when 
he realized that his set-up for experiments with current from a battery could have 
an effect on the compass, although there was no connection; there was only air in 
between. Oersted, of course, realized that his observation was of great importance, 
since it indicated that there was a strange interrelation between electricity and 
magnetism. Therefore he published his findings immediately. Among those who 
read this publication with great interest were the Frenchman André Marie Ampère 
(1775-1836) and the Englishman Michael Faraday (1791-1867). Mr. Ampère had 
done many experiments before using Volta type batteries, and he had observed 
that there is a force between two parallel wires when currents are flowing through 
both of them. Whether the force was attractive or repulsive depended on whether 
the currents in the two wires went in the same direction or in opposite directions. 
This effect is the basis of the actual definition of the unit Ampere for the electric 
current – I shall come back to this later. 

I think it is helpful for you to realize how little was known at that time about 
the essence of electrical current. Nobody could see the current flowing, and no-
body could know what it might be that was flowing. Somehow, the scientists had 
the vision that a battery works like a pump which presses something through a 
closed circuit. In this analogy, the wires correspond to pipes through which a gas 
or a liquid can flow. Although nobody knew how a battery could work as a pump, 
the analogy between an electric circuit and a closed system with flowing water 
was quite useful. However, in contrast to flowing water where we can see in 
which direction it is flowing, no information was available for determining the 
direction of flow of the electric current. But the analogy to flowing water required 
that the electric current had a direction, and therefore the direction was defined 
arbitrarily. Such a definition had to refer to something unsymmetrical in the elec-
trical circuits. The different metals at the two ends of the battery were easy to 
discern and formed the basis for specifying the current direction. Referring to the 
iron and the copper which previously had caused the twitching of the frog legs at 
Mr. Galvani’s window, the arbitrary definition says that the current leaves the 
battery at its copper end and enters it at its iron end. Today, however, we know 
that the electric current is a stream of flowing electrons, and they don’t flow ac-
cording to the definition, but opposite to it. When this was detected – which hap-
pened eighty years after the original definition was chosen - it had to be decided 
whether the original definition should be reversed or retained. Since a reversion 
would have caused much confusion, the original definition of the direction of the 
electric current was retained. This was done by defining the electrical charge of 
the electrons as being negative. It is interesting to know that the term electricity 
was used before the existence of electrons was discovered – electron is the Greek 
word for amber which is one of the materials that can be electrically charged by 
rubbing, and this was known even at the time of Socrates. 
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Fig. 9.1     Analogy between the flow of water and the flow of electrical current 

Fig. 9.1 illustrates the analogy between flowing water and electric current. This 
analogy is not only helpful in teaching, but determines the view of professionals in 
their daily work. In the upper part of the figure, you see a system filled with water. 
In the middle section of the figure is represented an electric circuit whose structure is 
in all details analogous to the water system. At first, we consider the flow of the 
water. You should assume that the system is horizontal in order to eliminate the 
influence of gravity. If the system stood vertically, gravity would affect the pressure 
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in the system. The pump tries to make the water flow clockwise through the closed 
system which is possible only if the stop valve is open. There are two components in 
the system which prevent the water from flowing with a speed which is determined 
only by the pump, and these components are the thin resistor pipe which sits next to 
the valve and the cylinder with a piston which sits between two springs. These two 
springs are assumed to be exactly of the same type such that the piston will sit in the 
middle of the cylinder if the difference of pressure between the two entrance points 
is zero. This situation will be in effect as long as the stop valve is closed. When the 
valve is opened, the water will begin to flow. The water leaving the thin pipe will 
enter into the cylinder, the piston will leave its middle position and water will leave 
the cylinder through the cylinder’s opposite opening. One spring will be stretched, 
while the other will be compressed. This will cause an increase in the pressure p2 
compared to p1 until the value of p2 has reached the pressure p0 of the pump. Then, 
the water will stop flowing since the pressure difference between the two ends of the 
thin pipe, p1-p2, will be zero. In this situation, the values of p0, p1 and p2 will be 
equal. 

In the electrical circuit, the battery corresponds to the pump, the ohmic resistor 
corresponds to the thin pipe and the two metallic plates which are standing very 
close to each other correspond to the cylinder with the piston and the springs. 
Although the symbol for the ohmic resistor looks more like a thick short wire, you 
should think of a long and thin wire through which the electric current has to be 
forced. The term ohmic resistor refers to the German physicist Georg Simon Ohm 
(1789-1854) whose name is known because of the so-called Ohm’s law. Amaz-
ingly, many people, even those who have degrees in electrical engineering, con-
fuse Ohm’s law with the definition of an ohmic resistor. You will not make this 
mistake if you never forget that a law of physics is something completely different 
than a definition of a physical concept. Laws are found as results of experiments, 
whereas definitions are the result of arbitrary human decisions. An ohmic resistor 
is defined as an electrical circuit element having two connectors where the current 
which enters the resistor through one connector and exits through the other con-
nector is proportional to the voltage between the two connectors. I will discuss the 
concept of voltage later. That means that a doubling of the voltage leads to a dou-
bling of the current. The symbol R, taken from the word resistor, is used as the 
factor which determines the relation between voltage and current. Thus, the equa-
tion R=v/i is not Ohm’s law, but the definition of an ohmic resistor. Mr. Ohm 
found “his” law by experimenting with batteries and wires. The law says that long 
thin wires behave approximately like ohmic resistors whose value R can be dou-
bled by doubling their length or by halving their cross-sectional area. That’s the 
reason for taking a long thin pipe as the analog of an ohmic resistor.  

In professional language, the structure consisting of two plates facing each 
other with a very small separation is called a capacitor. Like the piston in the 
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cylinder which doesn’t allow a continuous flow of water in one direction, the gap 
in between the two plates doesn’t allow a continuous flow of electrons in one 
direction. In the case of the cylinder, a certain amount of water can enter on one 
side of the piston only if at the same time the same amount of water leaves the 
cylinder on the other side of the piston. This applies in an analogous way to the 
capacitor: a certain number of electrons, i.e., a certain amount of electrical charge, 
can be brought onto one of the plates only if, at the same time, the same amount of 
electrical charge is flowing away from the other plate. The voltage between the 
two plates can differ from zero only if the two plates contain different amounts of 
charge. Now we assume that the voltage u2 is zero when the switch is closed, i.e., 
that there is no charge on the capacitor. Closing the switch will cause a current to 
flow which brings charge to one plate and takes charge away from the other plate. 
This will result in an increase of the voltage u2 which will continue until the ca-
pacitive voltage has reached the voltage of the battery. Then, all three voltages u0, 
u1 and u2 will be equal, and no current can flow any more because the voltage 
difference (u2 - u1) which forces the current through the ohmic resistor is zero. 

It should have been clear to you that my descriptions of the processes in the wa-
ter system and the electric circuit were almost the same. Only the flowing medium 
was different, with water in the one case and electrons in the other case. There-
fore, the driving forces had to be different, namely the pressures p0, p1 and p2 for 
pushing the water, and the voltages u0, u1 and u2 for pushing the electrons. Thus, 
you will not be surprised that the curve at the bottom of Fig. 9.1 applies to both 
the water system and the electric circuit. The horizontal line labeled “0” represents 
the constant pressure P0 of the pump or the constant voltage U0 of the battery. As 
long as the valve stays closed or the switch stays open, the pressures p1 and p2 
behind the valve, as well as the voltages u1 and u2 following the switch, are still 
zero. This is a consequence of our assumption that, at the beginning, the two com-
partments of the cylinder, as well as the two plates of the capacitor, are symmetri-
cally loaded. At the moment when the valve is opened or the switch is closed, the 
pressure p1 as well as the voltage u1 jumps to the value provided by the pump and 
the battery, respectively. But the pressure p2 as well as the voltage u2 cannot jump 
to a higher value since this would require that, in zero time, the cylinder and the 
capacitor, respectively, get unsymmetrical fillings. But this is inhibited by the thin 
pipe and the ohmic resistor, respectively. The initial slope of the curve in Fig. 9.1 
is given by the initial flow of water and the initial current, respectively, but these 
initial values will immediately begin to decrease because of the rising values of p2 
and u2. This will cause a decrease in the differences (p2 - p1) and (u2 - u1), respec-
tively, which are the driving forces of the flow through the thin pipe and the ohmic 
resistor, respectively. Therefore, the pressure p2 and the voltage u2, respectively, 
will increase with decreasing slope according to the line labeled “2” in Fig. 9.1. 
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Although the explanations given above make it plausible that the curve repre-
senting the rise of the values p2 and u2, respectively, looks as shown, we have to 
go into some mathematics if we want to know the exact formula for this curve. 
Fig. 9.2 shows how this formula can be deduced. Since the water system is closer 
to our daily experience, I did the calculations with the letter p for the pressure, but 
alternatively, I could have chosen the letter v for the voltage and still come to the 
same structure for the formula. At the left of the diagram, you find an equation 
whose two sides were obtained by simply translating our knowledge about the 
behavior of the thin pipe and the cylinder with the piston and the springs from 
natural language into mathematical expressions. The left side expresses the fact 
that the higher the pressure (P0 – p2) is which presses the water through the thin 
pipe, the more water will flow. The higher the value of R, i.e., the longer or thin-
ner the thin pipe is, the less water will flow through per time unit. The right side of 
the equation expresses the fact that the greater the amount of water entering the 
cylinder per time unit, the greater the increase of the pressure p2 per time unit. The 
symbol C is determined by technical characteristics of the cylinder, e.g., the sur-
face of the piston and the stiffness of the springs. The letter C refers to the word 
capacitor. This word might mislead you to assume that such a capacitor has a 
fixed capacity, but what is really meant is that the more you force water to flow, 
the greater the volume of water gets into it. I recommend that you associate C with 
the idea of elasticity: the higher the value of C, i.e., the more elastic the springs 
are, the more water is needed to get a certain increase of the pressure p2. 

Time t

R C

P0

p2(t)  =  P0 ( 1 - e R C
- t

)

Flow through
the thin pipe

=
P0 - p2

R   C 
dp2

dt

Flow into
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Fig. 9.2     Mathematical properties of the curve in Fig. 9.1 

The equation is a differential equation which does not explicitly represent the 
desired formula for the curve, but is only a statement of certain facts from which 
the desired formula follows. I assume that you haven’t learned how to solve such 
differential equations; at least you cannot have learned it from this book. But I 
have learned it, and therefore I wrote the result at the top of the diagram in  
Fig. 9.2. From this formula, an interesting feature of the curve can be derived: the 



214 9. Electrodynamics
 

initial slope of the curve is given by the fraction P0/R∗C. Once the curve has been 
found by adequate experimentation, the product R∗C can be obtained by simply 
measuring the corresponding distance, and from this, the value of C follows if the 
value of R is already known. This procedure was performed almost two hundred 
years ago by the physicists who performed experiments with Volta type batteries. 
They discovered that two plates facing each other with a very small separation 
distance have the behavior described above. And they found out that the value of 
C can be doubled by doubling the surface area of the plates or by halving the dis-
tance between them. 

In the paragraphs above, I used the term voltage without giving an explanation 
about what that is. The only hint I gave was the analogy between pressure and 
voltage. When the physicists at the time of Volta thought about voltage, which at 
that time was not yet called voltage, but electrical force, they referred to the force 
between the two plates of a capacitor. While the force between two parallel wires 
depends on the distance between the wires and on the current which flows through 
them, the force between the two plates of a capacitor depends on the distance 
between the plates and the voltage across them. Only five years after the twitching 
of the frog legs had been observed by Mr. Galvani, the French nobleman Charles 
Auguste de Coulomb discovered that the force between two bodies which carry 
electrical charges can be expressed by a formula which has the same structure as 
Newton’s law of gravity (Fig. 7.5). The so-called Coulomb’s law is 

Force of repulsion  = 
(Charge on body 1)  (Charge on body 2)

(Distance of the two bodies)2
 

In the case of the law of gravity, the fraction never can have a negative value, 
since masses are always positive. But electrical charges can be positive or nega-
tive, and therefore, the result of Coulomb’s law can be positive or negative which 
means that the force can be that of attraction or repulsion. While at Volta’s time, 
the definition of the unit of voltage referred to the force between two bodies carry-
ing electrical charges, today the unit of voltage is coupled elegantly to the unit of 
current. But before I can explain this to you, we still have to climb to a higher 
point.  

The analogy between flowing water and flowing electrical charge is helpful only 
as long as magnetic phenomena are not be taken into account. Now, we shall con-
sider the relationship between electrical and magnetic phenomena. I mentioned 
earlier that it was a Mr. Oersted from Denmark who accidentally detected that there 
is such a relationship. When Michael Faraday became aware of this, he began a 
long series of experiments which finally lead to our present understanding of elec-
tromagnetic phenomena. Fig. 9.3 illustrates the essence of Faraday’s experiments. 

You see a wire through which a current is flowing upward. This wire is cutting 
through the grey shaded horizontal plane on which have been drawn concentric  
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Fig. 9.3     Experiment showing the connection between electrical and magnetic phenomena 

circles. The center of the circles is at the point where the wire cuts through the 
plane. In Mr. Faraday’s experiment, the plane was a piece of cardboard onto 
which he had scattered iron filings before he turned on the current. At first, these 
filings were lying without forming any regular pattern. At the moment when the 
current was turned on, the filings immediately adjusted themselves and formed the 
circles shown. From this observation, Faraday concluded that the current generates 
a so-called magnetic field which lies concentrically around the wire. He used the 
term field for the filling of the space with invisible properties, and by this ingen-
ious idea he laid the groundwork for a new way of thinking and talking for physi-
cists, a way which since then hasn’t lost its importance. 

It is quite plausible that the magnetic force which affects the direction of the fil-
ings depends on their distance from the wire through which the current is flowing, 
and that this force is lower at greater distances. The idea to perform the experi-
ment with the filings didn’t require a genius mind since it suggests itself as a  
consequence of Oersted’s observation. But Faraday also performed another ex-
periment which doesn’t suggest itself at all. The right part of Fig. 9.3 shows a coil 
which is in such a position that some of the circles of the magnetic field run 
through its center. Faraday was very much surprised when he found that a short 
pulse of voltage appeared between the two ends of the coil whenever the current 
was turned on or turned off. The direction of the voltage depended on whether the 
current was turned on or off, and the value of the voltage was higher when the coil 
had more turns. Of course, these observations motivated him to try variations of 
the experiment, and thus he found that he could leave the current turned on and 
still obtain voltage pulses: he only had to move the coil, either by pushing it closer 
to the wire or pulling it away from it, or by changing the angle between the plane 
of the coil and the plane of the magnetic field (the horizontal plane). The more 
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turns the coil has, the higher was the value of the voltage. Today, the law which 
describes all these effects and which already was expressed correctly by Faraday 
himself is called “the law of induction.” It says that the voltage “induced” in a coil 
is proportional to the speed at which the magnetic flow through the coil is 
changed. However, at this point in my description, I cannot yet tell you the defini-
tion of a magnetic flow; I shall present this later.  

From the fact that currents, voltages and the related forces are directed quanti-
ties, it follows that the magnetic field must have a direction, too. In Fig. 9.3, I 
indicated the direction by placing arrows on the concentric circles. But how could 
I decide what the direction was to be? There is no “magnetic something” which 
we could see flowing. Therefore, as was the case with the direction of the electri-
cal current, the direction of the magnetic field can be defined arbitrarily. The defi-
nition has been based on the right-hand-rule which is known from mechanics 
where it is used to describe the relationship between the directions of the torque, 
the angular speed and the angular momentum. Applied to a current which is sur-
rounded by a magnet field as shown in Fig. 9.3, the thumb of the right hand must 
point in the direction of the current. Then the remaining four fingers point in the 
direction of the magnetic field. 

The direction of the voltage which is induced in a coil by the change of the 
magnetic flow is also obtained by the right-hand-rule. If the thumb of the right 
hand points in the direction of the increasing magnetic flow, the four fingers point 
in the opposite direction of the current which would flow if the coil were closed. 
The induced voltage which is measured between the two ends of the unclosed coil 
has the same direction the current would have if the two ends were connected 
together to allow a current to flow.  

Between 1831 and 1838, Michael Faraday published many reports describing 
his experiments and the corresponding conclusions. Later, he summarized the 
individual papers in two thick volumes with a total of more than 2,000 pages [FA] 
which contain many precise drawings of the experimental set-ups and results, but 
not a single formula. Faraday had no college education and was not familiar with 
higher mathematics. A later author once even made the derogatory remark that 
Faraday hadn’t got beyond the rule of three. But this view is opposite to the high 
esteem the ingenious James Maxwell had for Faraday when he wrote that Fara-
day’s ideas went far beyond the visions of narrow-minded mathematicians. 

How Mr. Maxwell Transferred His Ideas from the Bath Tub to 
Free Space 
Maxwell’s Law s 

It was quite clear that it wouldn’t take long until someone would successfully 
express in mathematical language the laws which Faraday had described in natural 
language. Actually, it was James Clerk Maxwell (1831-1879) who expressed these 
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laws in a form which, even now, most physicists and electrical engineers think is 
absolutely perfect [MA]. The Austrian physicist Ludwig Boltzmann (1844-1906) 
was so excited about the elegance of Maxwell’s equations that he began a lecture 
on this subject with a citation from “Faust,” the best known piece of poetry from 
the German poet Goethe: “Was it a god who wrote these symbols?” 

In the preface to his book which was published in 1873, Maxwell praised the 
great importance of Faraday’s preparatory work. In contrast to some malicious 
authors of later times, Maxwell didn’t mock Faraday’s lack of education in higher 
mathematics. In fact, he wrote, “When I made progress at studying Faraday’s 
papers, I became aware that his way of looking at the phenomena actually was 
mathematical, although the ideas were not written in the usual form of formulas. I 
saw that his methods were well suited for being expressed in standard form with 
mathematical symbols. With his mind’s eye, Faraday saw lines of force running 
throughout all of space where, up until then, mathematicians had seen only the 
effect of forces over distances. Faraday saw a medium where the others saw only a 
distance.”  With these statements, Maxwell emphasized the importance of the 
change represented in Faraday’s viewpoint. Since Newton had published his law 
of gravity, it was quite common to accept a remote action, i.e., to believe that 
forces can have effects over great distances. Now this concept was replaced by the 
so-called close-range effect. 

After these preliminary remarks, we have reached the point where we can start 
to climb Maxwell’s rock wall. When the gentlemen Volta, Ampère and Ohm were 
searching for laws describing the relationship between current and voltage, they 
could base their considerations completely on the analogy between flowing elec-
tricity and flowing water. They considered only currents flowing through wires, 
and according to the analogy, the elements corresponding to the wires were the 
pipes. But Maxwell had to consider phenomena which occur in the entire  
three-dimensional space in which wires do not exist except at some particular 
locations. Look again at Fig. 9.3; there are only two wires, the vertical one with 
the current and the other one which has the form of a coil. Motivated by Faraday, 
Maxwell saw something streaming along all the lines to which I added an arrow, 
although in some cases, it couldn’t be a current. Looking at Fig. 9.3, Maxwell 
would have seen three different kinds of flow, namely the current flowing upward 
through the vertical wire, the magnetic flow along the concentric circles, and a 
flow along the arrows belonging to the coil. For this third kind of flow, which is 
called dielectrical flow, it doesn’t matter that the coil is not closed; it can flow as 
if there were a bridge between the two ends of the coil.  

Even before Maxwell began his study of Faraday’s papers, he was familiar with 
the mathematical methods for describing streaming media, although at that time the 
media he considered were fluids. Following Maxwell’s way upward towards the top 
of the mountain called electromagnetism, we also have to acquire some knowledge 
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about the methods for describing streaming media in three-dimensional space. 
Therefore, for a while, we now leave the world of electromagnetic phenomena and 
restrict our consideration to a space filled with streaming water. If the water doesn’t 
stream at all, each particle has a fixed location which it never leaves. If there is some 
kind of streaming, some particles may still stay at their initial location, but at least 
there will be some which move at certain speeds in certain directions. Of course, 
there is the possibility that all particles move at the same speed in the same direction, 
but this special case is not what we are interested in. If some of the particles carried 
small lights, we could see the paths along which they move. As long as no particles 
enter or leave the space considered, the paths cannot have beginnings or ends. In this 
case, the streaming field is said to be without sources or sinks. This, however, is not 
the case either with a swimming pool or with the ocean. In both cases, there is rain 
and evaporation. In addition, there are pipes connected to the pool for adding or 
removing water, and there are rivers which flow into the ocean. Therefore, the ques-
tion of where the sources and sinks are located in the space is considered of great 
importance. The question of whether there are turbulences, where they are and how 
fast they are spinning is of similar importance. 

The sum of the flows 
of all internal sources

is equal to the flow
through the enclosing cover.

6 + 3 - 5 = 6 - 2

The sum of the strengths of all turbulences
i.e of all internal circular balances,

is equal to the circular balance
of the peripheral boundary.
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Fig. 9.4     Fundamental properties of sources, sinks and turbulences 

Figure 9.4 illustrates the mathematical concepts for describing sources and tur-
bulences. Assume that you are looking from above down to the surface of the 
water in a pool. The two shaded areas shown in Fig. 9.4 do not represent the entire 
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pool, but are only sections which have been selected arbitrarily. Thus, the borders 
are not real walls; they just define the part of the pool which actually interests us. 
In the left half of the figure, sources and sinks are considered. Here three pipes 
ending at the bottom of the pool have the relative yields (flow rates) of 6, 3 and -5. 
A source with a negative flow is called a sink. The sum of these yields is 4 which 
means that more water is entering through the two pipes than is leaving through 
the sink. Now the border of the whole shaded area is considered the opening of a 
bigger pipe, and the total yield or flow of this pipe will be the sum of the flows of 
the inner pipes. 

Turbulences are circular motions of water and are considered in the right half of 
the figure. In order to focus your view on the essentials, I made some simplifying 
assumptions. I assumed that the paths of the particles could have sharp bends, and 
that their speed could change abruptly. Although this doesn’t correspond to real-
ity, the concepts presented are still correct. Whether or not there is turbulence 
within a closed border can be decided by computing the so-called circular bal-
ance, i.e., the sum of weighted speeds along the closed border which makes up the 
outside border or periphery. If the speed were constant along the entire periphery, 
the circular balance would be the product of this speed and the length of the pe-
riphery. The areas considered in Fig. 9.4 are hexagons where all six edges having 
the same length. Thus, I could assume that the speed stays constant along an edge, 
and the balance corresponds to the sum of the numbers written next to the edges. 
Since the speeds are directed, it was necessary to decide which direction should be 
used as the positive one. I decided that turbulences spinning counter-clockwise 
would have a positive balance. Then the vector of the angular velocity, which is 
determined by the right hand rule, will point into our face, since this is where the 
thumb is pointing when the remaining fingers are wrapped counter-clockwise. A 
speed belonging to a border between two hexagons cannot have the same sign in 
the balances of both hexagons, since for one hexagon it points clockwise and for 
the other one it points counter-clockwise. By combining the three hexagons into a 
larger area, we get a new enclosure for which we can also compute the circular 
balance. This is equal to the sum of the balances of the hexagons.  

Until now, we assumed that the locations and directions of all sources, sinks 
and turbulences were such that everything could be seen by looking onto a plane 
from above. But now, we have to overcome this simplification and be more realis-
tic since sources and sinks can be distributed all over the three-dimensional space, 
and turbulences can have any directions. The most general concept for describing 
a distribution of sources and sinks within a three-dimensional space is the so-
called divergence which is an abstract property of the points in the space. Diver-
gence is the limit of the ratio between the flow through an enclosing surface and 
the volume of the space enclosed within the surface for the case when the volume 
becomes infinitely small. Since the flow has the unit “unit of the flowing media 
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per time”, e.g., gallons per second, the divergence which represents a flow per 
volume will have the unit “unit of the flowing media per time and volume.” If the 
divergence has a negative value, it describes a sink. A detailed analysis, which I 
shall omit, leads to the result that the divergence is equal to the sum of the deriva-
tives of the three components of the streaming vector (Sx,  Sy, Sz) with respect to 
their own directions, i.e., div(S) = ∂Sx/∂x + ∂Sy/∂y + ∂Sz/∂z. You may wonder 
why the derivatives in this formula are not expressed with the normal letter d, but 
with the strange round ∂. This indicates that the function which is derived is not 
only a function of the variable for which the derivative is taken, but of at least one 
additional variable which is considered to be a constant in the derivative. In 
streaming fields, all three components of the stream are functions of four vari-
ables, i.e., the values of Sx, Sy and Sz depend on the coordinates (x, y, z) of the 
point in the space to which the actual stream components belong, and of the actual 
point in time t.  

While the distribution of sources and sinks can be captured by an undirected 
property of the points of the space, the distribution of turbulences requires that a 
directed quantity be assigned to the points. A turbulence has an angular velocity, 
and this has a direction which is defined by the right hand rule: when the fingers 
go around the axis of rotation in the direction of the turbulent flow, the thumb 
points in the direction of the angular velocity. Look again at Fig. 9.3 and assume 
that the concentric circles show the direction of a turbulence in a pool; then the 
wire would be the axis of rotation, and the direction of the angular velocity would 
correspond to the direction of the current. The directed quantity which is assigned 
to the points in order to capture the distribution of turbulences is called rotation. It 
has the direction of the angular velocity, and its value is the limit of the ratio be-
tween the circular balance of the flow along the circumference of a circle around 
the axis of rotation and the area of the circle whose radius becomes infinitely 
small. The direction for computing the circular balance can be chosen arbitrarily 
since the actual direction of the angular velocity will be indicated by the sign of 
the result: if the result is positive, the right hand rule applies; otherwise, the direc-
tion is opposite. 

Since a turbulence can have any direction in the space, the rotation vector must 
be described as a set of three components, one for each of the three directions of 
the axes x, y and z of a coordinate system. Fig. 9.5 illustrates the process of com-
puting these three components, each of which is perpendicular to a square face of 
the cube. The circular balance is the sum of the values belonging to the four edges 
of this square. The right half of the figure is of interest only for those readers who 
really want to know in detail how the components of the rotation vector are com-
puted. This computation uses differential equations, and from this it follows that 
we have to assume that the edges of the cube are infinitely short. The stream  
cannot change abruptly from one point to another nearby point, and therefore, the 
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difference between the streams along two parallel edges of the cube will decrease 
when the distance between these edges is decreased. If the stream differences of 
both pairs of parallel edges of a square were zero, the circular balance would be 
zero, too, since then the positive contribution of one edge would always be can-
celled by the negative contribution of its parallel partner. The stream difference 
between a pair of parallel edges, related to the area of the square, is equal to the 
derivative of the stream component along the edge with respect to the distance 
between the two edges. As an example, we look at the vertical edge in the rear of 
the grey shaded square. It has the distance dy from the z-axis. Its contribution to 
the circular balance of the grey shaded square is determined by the derivative of 
the z-component of the stream in the direction of the distance dy. At the bottom of 
Fig. 9.5 you find the sum which we get if we compute the circular balance along 
the edges of the grey shaded square. The result is the value of the y-component of 
the rotation vector. 

(rot S)y

(rot S)z

y

z

x

(rot S)x

dy

dz

dx

∂y
∂Sx ∂Sx+ z

∂x
∂Sy ∂Sy+ ∂z

∂Sz ∂Sz+∂x ∂y

∂Sx

z

∂Sy

∂z

∂x
∂Sy

∂Sz
∂y

∂Sz
∂x

y

z

x

∂y
∂Sx

(rot S)y =
∂x
∂Sz

∂y
∂Sz+ ∂y

∂Sx
∂y
∂Sz

∂z
∂Sx

∂y
∂Sx ++ - - = ∂x

∂Sz
∂z
∂Sx -

 

Fig. 9.5     Computing the three components of the rotation vector 

There is a third concept besides divergence and rotation related to streaming 
fields. Although it is not used in Maxwell’s equations, I shall present it here in 
order to complete the subject. I presented the concept of potential (see Fig. 7.6) in 
connection with the law of gravity. There I said that a potential field can be con-
sidered like a mountainous region which is characterized by two types of lines, 
i.e., the lines which connect points of equal height, and the lines which connect the 
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points of maximal slope. The lines of the second type are those along which water 
would flow downhill. The potential field is not directed, i.e., the potential p(x, y, z) 
is an undirected quantity assigned to the points of the space. But the maximal 
slope, which is well defined for each point of the space, has both a value and a 
direction and therefore can be considered a streaming field. The slope has three 
components (Sx, Sy, Sz) and is called the gradient of the potential p. If the potential 
is given, the gradient can be obtained by computing the derivative of the potential 
in the three directions of the coordinates, i.e., grad(p) = (Sx, Sy, Sz) = (∂p/∂x, 
∂p/∂y, ∂p/∂z).  

At this point, I must remind you that we have not yet returned to the subject of 
electromagnetism, but are still strolling through the area of flowing media of any 
kind. The diagram in Fig. 9.6 shows the relationships between the fields which 
have been discussed in the paragraphs above. There are two types of fields of undi-
rected quantities and two types of fields of directed quantities. The grey shaded 
node represents the streaming field.  The other three fields have been introduced in 
reference to the streaming field. If the potential field is given, the streaming field is 
obtained by computing the gradient. And from a given streaming field, both the 
field which describes the distribution of the yields of the sources and the field 
which describes the velocities of the turbulences can be derived. 

Potential Field
(Distribution of altitude)

Distribution of
sources

Fields of undirected
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Streaming Field Distribution of
turbulences

Fields of
directed quantities

Computing the gradient

Determination of the
maximal slope

Computing the divergence Computing the rotation

Determination of the
yield of sources

Determination of the
velocity of turbulences

 

Fig. 9.6     Relations between a streaming field and related fields 
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As has been shown, the formulas for computing rotation and divergence con-
tain the derivatives of the three components of the streaming field (Sx, Sy, Sz). 
Since there are three different derivatives for each component, corresponding to 
the directions of the coordinates x, y and z, there are all together nine different 
derivatives to be considered. Three of them occur in the formula for the diver-
gence, the other six in the formula for the rotation according to Fig. 9.5. Like 
everyone else, mathematicians try to avoid unnecessary work, and therefore they 
looked for a formal scheme which would allow them to obtain the formulas for 
computing gradient, divergence and rotation without much thought. They finally 
found a rather ingenious combination of the symbolism for derivatives and the 
structure of matrix multiplication. This is presented in Fig. 9.7. If the cells of 
the vectors and the matrix were filled with numbers, the figure would represent at 
the left the multiplication of a vector with a single number, in the middle the scalar 
multiplication of two vectors, and at the right the computation of the perpendicular 
product of two vectors (see Fig. 3.9). However, the structures in Fig. 9.7 cannot 
really represent multiplications since the rectangle with the thick border, which 
has the position of the first factor in the multiplication structures, is not a vector. 
The entries in the three cells of this rectangle are not numbers but requests to 
compute certain derivatives. The functions from which the derivatives must be 
computed can be found by following the 90 degrees curves to the cells in the 
structures which have the position of the second factor. The derivatives then have  
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Fig. 9.7     Computing the gradient, divergence and  rotation using the matrix multiplication 
pattern 
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to be added as if they were the component products in a real matrix multiplication. 
It is amazing how this modification of the interpretation of the matrix multiplica-
tion formalism simplifies and unifies the formulas for computing the gradient, the 
divergence and the rotation. 

I can imagine that the wall we have just climbed was more difficult for you 
than the ones you had to cope with earlier. There is still a short distance ahead of 
us before we reach the plateau of Maxwell’s laws of electromagnetism, but we 
have already reached a rather high rest area where we can linger for a moment. A 
mountaineer who reaches such a rest place will certainly look back to the lower 
regions from which he came. Our position is already so high that we have to use 
binoculars in order to see the frog legs of Mr. Galvani or the magnetic compass of 
Mr. Oersted which are far down in the valley. From our rest area, we now take the 
same route to the top which James Maxwell took. All mountaineers who came 
later saw no reason to search for a different route. 

After having discussed Fig. 9.3 which illustrates the essential experiments by 
which Michael Faraday found the most important relationships between electrical 
and magnetic quantities, we left the area of electromagnetism and considered 
concepts for capturing three-dimensional streaming fields of fluids or gases. Now 
we return to the area of electromagnetism. In my comment about Fig. 9.3, I said 
that if Maxwell would have looked at this figure with his mind’s eye, he would 
have seen three different kinds of flow, namely the flowing current through the 
vertical wire, the magnetic flow around this wire and the dielectric flow along the 
coil. Maxwell had the idea that any streaming field requires a field of “pressure” 
in analogy to water which will flow through a pipe only if it is pressed through the 
pipe. When the pressing field is given, the strength of the streaming field will 
depend on the permeability of the space with respect to the flowing media. Perme-
ability is just a physical constant whose unit compensates for the difference be-
tween the units of pressure and flow. 

In the simple example of streaming water, the unit of flow is either “volume per 
time and area” or “mass per time and area”, and the unit of pressure is “force per 
area.” Then the unit of the permeability which is (unit of flow)/(unit of pressure) 
will be either “volume per time and force” or “mass per time and force.” When the 
standard units of meter, kilogram and second are used, the unit of permeability for 
flowing water will be either (m2∗s)/kg or s/m, respectively. You should not try to 
find plausible interpretations of these units; even experts just use them in their 
computations and rely on the fact that they have been deduced correctly. 

Now we are ready to interpret Maxwell’s equations which are written in the 
shaded fields of Fig. 9.8. The equation S = δ∗P in the top field does not belong to 
the set of Maxwell’s equations; I introduced this equation as a pattern for the in-
terpretation of the first three of Maxwell’s equations which are represented in the 
two frames underneath. The letter J stands for the density of the electrical current, 
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and its unit is “current per area.” The symbol for the unit of the current is A which 
is the first letter of the name Ampère, and with this, the unit of J is A/m2. The 
pressing field which forces J through the space is called the electric field and its 
symbol is E. However, this field E not only provides the force for moving electri-
cal charges through wires or space, but also forces the dielectrical stream D. The 
permeabilities which express the relation between the pressing field E and the 
resulting streams J and D are symbolized by the Greek letters γ and ε, respec-
tively. You should not brood over the question of what kind of stream D might be. 
It is an abstract concept called dielectrical flow which Maxwell introduced, since 
without it, he could not completely capture all the phenomena which occurred in 
Faraday’s experiments. 
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Fig. 9.8     Maxwell’s equations for electromagnetism 
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In the case of magnetism, there are no different kinds of streams, but only one 
magnetic flow which is symbolized by the letter B and which is forced through the 
space by the field H. The ratio B/H is given by the magnetic permeability μ.  

The three equations just considered do not represent physical laws which could 
be checked by experiments, but are definitions which Maxwell introduced as a 
basis for the equations which finally will describe the real laws. Once the stream-
ing fields J, D and B have been introduced, the question comes up about what the 
sources of these streams might be, i.e., what div(J), div(D) and div(B) might be. 
The answers are given by the three equations in the middle of Fig. 9.8. The equa-
tion on the left side states a quite logical fact: a small enclosed part of the space 
which contains electrical charges in an actual concentration ρ can be the source of 
a flow of charges through its enclosure only if the concentration ρ decreases over 
time. Such a logical explanation does not exist with respect to the equation de-
scribing the divergence of D. This equation is just an ingenious approach by which 
Maxwell achieved the completeness of the theory. With respect to the magnetic 
flow B, no experimental results had been observed which would have required the 
introduction of magnetic sources. Therefore, the divergence of B is zero every-
where and at all times. 

The laws which describe the relationship between electricity and magnetism as 
they follow from Faraday’s experiments are expressed by the two equations in the 
frames at the bottom of Fig. 9.8. These two laws have already been described in 
natural language in my comment concerning Fig. 9.3. In an interpretation which 
refers to Figure 9.3, the first equation, which is called Ampere’s circuital law, 
captures the relationship between the current i and the magnetic field H. Addition-
ally, this law says that it is not absolutely necessary to have a real flow of electri-
cal charges, but that the same effect is obtained by an increase of the dielectrical 
flow D over time. With respect to Fig. 9.3, the second equation, which is called 
the law of induction, captures the relationship between the voltage induced in the 
coil and the speed at which the magnetic flow through the area of the coil de-
creases over time. 

Some years ago, when I was walking through Manhattan, I came by a construc-
tion site where a whole block of houses had been torn down in order to put up a 
new building. At the time, no part of the new building was yet to be seen except 
for a big and deep hole.  At the bottom of the hole, construction workers were 
busy making the foundation, using tons of concrete and iron. The reason I am 
telling you this is the fact that Fig. 9.8 shows a foundation which has a much 
greater significance than all the foundations underneath buildings. Fig. 9.8 actu-
ally shows the foundation for the entirety of modern electrical technology. While 
the foundations of buildings deteriorate over time – the concrete crumbles and the 
iron rusts – the foundation shown in Fig. 9.8 doesn’t show any signs of wear and 
tear although it already has lasted one hundred and fifty years. 
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As in the case of foundations of real buildings, the foundation in Fig. 9.8 
doesn’t tell us anything about the building which finally has been erected above. 
This building consists of two very high towers, one which is the tower of electrical 
power technology, and the other one which is the tower of information technol-
ogy. But before I provide you with a closer look on these towers, I have to get 
back for a moment to the Lorentz transformation which I discussed in detail in 
Chapter 8 on relativity theory. There I told you that Antoon Hendrik Lorentz 
found this transformation some years before Einstein. By a quite formal analysis 
of Maxwell’s equations, Lorentz discovered that the form of these equations stays 
the same when the variables x, y, z, t and ρ are substituted by x’, y’, z’, t’ and ρ’ 
which he obtained by a certain transformation from the original variables. Einstein 
later discovered that this transformation has a much more general interpretation 
and tells us something about the essence of space and time. 
Generators and Radio Waves 

How the Feasibility of High Voltage and Radio Waves Became 
Evident without Experimenting 
Generators and Radio Waves 

Whenever electrical current is used to generate heat, light or motion, the systems 
are said to belong to the area of electrical power engineering. Since sparks caused 
by static electricity have been observed even since the time of Socrates, the physi-
cists who experimented with Volta type batteries were not really surprised when 
they found that a thin wire gets hot when a current is flowing through it. And 
when the current and the heat with it are increased, the wire begins to glow and 
emit light. The problem of inventing the light bulb consisted mainly of finding a 
metal which doesn’t melt too quickly. In addition, it was necessary to prevent the 
hot wire from reacting with the oxygen of the air and burning up. Therefore, the 
wire had to be placed in an evacuated bulb, in a vacuum where the oxygen had 
been removed. 

Evidently, Mr. Maxwell’s theory is not needed for generating heat and light 
with electricity. The findings of the gentlemen Volta and Ohm are quite sufficient. 
The only connection between their experiments and Maxwell’s equations consists 
in the permeability γ. After Ampère and Oersted found out how electrical current 
could be used to generate magnetic forces, enough knowledge was available for 
the invention of electrical motors. Thus, the knowledge of how to use electrical 
current to generate heat, light and motion already existed before Maxwell devel-
oped his equations. But generating the tremendous amounts of heat, light and 
motion which we use today requires much more electrical current than was avail-
able in those days. Then, the only way to get electrical current was to use batteries, 
and their energy density, i.e., the ratio between the deliverable electrical power 
and their volume, is rather low. If the electrical power which is consumed today in 
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a big city had to be provided exclusively by batteries, these batteries would take 
up about ten percent of the volume of all the buildings in the city. Furthermore, 
the batteries would have to be replaced by new ones every few weeks. A big step 
forward was made when someone saw the possibility to generate almost unlimited 
amounts of electrical power with rather little effort. In 1866, the Englishman 
Charles Wheatstone (1802-1875) and the German Werner von Siemens (1816-
1892) independently came up with the same great idea. At that time they could not 
yet have read Maxwell’s book since it wasn’t published until 1873.  

You probably are familiar with the so-called chicken or egg problem – which 
came first? In order to get chickens, there must be eggs, and in order to get eggs, 
there must be chickens. It’s a dynamic cycle, and we ask how it got started. By 
looking at the two laws at the bottom of Fig. 9.8, we may be reminded of the 
chicken or egg problem: if we have a current we get a magnetic field, and if we 
have a magnetic field, we can get an electric current. If we could succeed in get-
ting this dynamic cycle started, we would have a method to generate electrical 
power, as much as we want. Of course, mechanical energy would be required for 
turning a coil through the magnetic field (see Fig. 9.3). The chicken or egg prob-
lem is not a difficult problem in this case because we already have currents from 
batteries and magnetic fields coming from magnetic blocks of iron before the 
cycle is started. To get the dynamic cycle started, the weak magnetic field which is 
provided by the steel components of the generators is sufficient. This cycle is the 
basis of all generators which run in our power plants; their rotation is produced by 
steam turbines. Once the principle of rotating electrical generators had been in-
vented, it took only a few years until the first cities installed electric street lights 
and the first electric street cars were running. 

But even before the generator was invented, electromagnetism was utilized. Be-
cause of the restricted availability of electrical power from batteries, the purpose of the 
electrical systems was not the production of heat or light, but providing communica-
tion over long distances. Since it had been discovered that currents produce magnetic 
forces, the forces could be turned on and off by turning a current on and off. A simple 
system could be built with a pen which moved up and down and made dots or dashes 
on a continuously running paper tape. Thus it was possible to transmit messages in 
Morse code (see Fig. 6.4) between two locations if they were connected via a cable. In 
the following paragraphs, I shall show you how the basis of wireless long distance 
communication follows from Maxwell’s equations. 

We now assume a space which doesn’t contain any electrical charges and where, 
consequently, no electrical currents can flow. In addition, we assume that the perme-
abilities ε and μ for the dielectric flow and the magnetic flow, respectively, do not 
depend on location but have the same values everywhere in the space. Think of a 
space which is empty except that it is filled with air. The simplified version of Max-
well’s equations which is shown in Fig. 9.9 follows from these assumptions. 
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We assume that there are no stored or flowing electrical charges
i.e.  = 0 and J = 0, at all locations and at any point in time.
We also assume that the permeabilities  and  do not depend
on the location or on the time.

Then, Maxwell's equations are simplified as follows:

div D = div ( E)  =  div E = 0

div B = div ( H) =  div H = 0

rot H = = D
t

E
t

=  -rot E = ∂B
∂ t

- H
t

 

Fig. 9.9     Simplified Maxwell’s equations 

Although this system of equations looks rather simple, you should still be 
aware that the field quantities depend on the four variables x, y, z and t, although 
only the latter appears explicitly in Fig. 9.9. The coordinates x, y and z will be-
come relevant in the computation of the rotation as in Fig. 9.5. If we assume that 
the directions of the fields are restricted as shown in Fig. 9.10, where E has only a 
y-component and H has only a z-component and both depend only on x and t, we 
get the simplest possible form of the rotations. This assumption takes into account 
that Faraday’s experiments had shown that the fields E and H are perpendicular 
and cannot have the same direction. 
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Fig. 9.10     Simplest case of the rotation equations 
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By applying the assumptions from Fig. 9.10 to the equations in Fig. 9.9, we get 
the equations in Fig. 9.11. A professional mathematician would not have any diffi-
culty solving the system of two differential equations at the left side of the arrow 
and find the solution given in the shaded rectangle at the right. There is no reason 
to feel bad because you don’t know the methods which lead to this result. You may 
wonder why the two constants ε and μ which occur in the differential equations are 
not contained in the solution, but that doesn’t mean that they are irrelevant. The 
information about these values is now contained in the new constants E0, H0 and v, 
i.e., the values of ε and μ determine the values of E0/H0 and v. The solution leaves 
open the value of E0 and the function f; they may be chosen arbitrarily. 
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Fig. 9.11     Consequences of the assumptions in figures 9.9 and 9.10 

The function f stands for a distribution of values along the x-axis which moves 
in the direction x at the speed v. Fig. 9.12 illustrates this. Imagine that the thick 
line represents a rope having a length of about ten meters whose right end is fas-
tened to a wall and whose left end is held in the hand of a strong man. Since this 
man has given a short vertical pulse to his end, the rope is no longer a horizontal 
line, but contains a specifically-shaped curve which is now moving to the right. 
The thick line shows the situation at the time ta, and after the time duration Δt, the 
shape has moved to the right by the distance v∗Δt as indicated by the dashed line. 
The time doesn’t change the shape of the rope, only its horizontal position. There-
fore, such wave propagation can be described by a function f(s) which originally 
has only one argument s and describes the static shape. Using the substitution s=x-
v∗t captures the moving shape, because now many different pairs of values of x 
and t provide the same argument for the function f. In Fig. 9.12, the two pairs (a, 
ta) and (a+v∗Δt, ta+Δt) are considered. They both provide the same argument 
s=a-v∗ta and give the same value to the function: f = b. 

Because the function f appears in the solutions for both Ey and Hz in Fig. 9.11, 
it follows that the electric field and the magnetic field have the same shape, al-
though physically they are quite different. But the difference between these two 
fields is expressed only by the two constants E0 and H0. Now I shall outline the 
way how Fig. 9.11 leads to the formulas which describe the way E0/H0 and v can  
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Fig. 9.12     Example of a wave running along a rope 

be computed from the values of ε and μ. However, those readers who are not in-
terested in the details of this mathematical excursion may skip the next paragraphs 
and join me again two pages from here – like readers of a detective story who skip 
the description of the detailed investigations and jump immediately to the last 
pages of a book in order to find out who the murderer was. 

Since the function f actually has only one argument s which is substituted for 
by an expression containing x and t, there is a simple relationship between the two 
derivatives of f in the x and t directions. The derivative in the x direction when t is 
assumed to be constant gives the slope of the shape f at time t. In the case of  
Fig. 9.12, this means that the shape of the rope and its slope are determined for all 
points along the x-axis. Correspondingly, the position x is assumed to be constant 
when the derivative in the t direction is determined. In this case, you have to as-
sume that you were sitting at a certain position on the x-axis, e.g., the position a, 
and had to measure the speed of change of the actual vertical deviation of the rope 
at your position. Since the shape on the rope is running from left to right, the de-
viations which in Fig. 9.12 are farther right, i.e., at higher values of x, will come to 
you earlier at your position than those which are farther left. Thus, you would 
observe the small negative deviation before the large positive deviation. The rela-
tion between the two kinds of derivatives is represented in the big arrow pointing 
downward in Fig. 9.13. Above this arrow, you see again the differential equations 
from Fig. 9.11, but now the variables Ey and Hz have been substituted using the 
expressions from the shaded rectangle. By applying the relationships contained in 
the big arrow pointing downward to the differential equations which are standing 
above this arrow, we get the two equations below the arrow. Here, the derivative 
∂f/∂x occurs as a factor on both sides of both equations, and therefore it can be 
deleted. This is a consequence of the fact that the function f can be chosen arbi-
trarily and is irrelevant to the structure of the solution of the differential equations 
in Fig. 9.11. After the derivatives of f have been eliminated from the equations, 
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the remaining equations describe arithmetic relationships between the five values 
E0, H0, v, ε and μ. An equation which does not contain the constant v is obtained 
by dividing the upper equation by the lower one, i.e., by dividing both the left 
sides and the right sides of these equations. The resulting equation finally provides 
the ratio E0/H0 as it is represented in the shaded rectangle in the lower left corner 
of the figure. The other equation in this rectangle tells us how to get the value of v 
from ε and μ. This formula, too, is obtained by dividing the two equations at the 
lower right, but this time the two sides of one of these equations must be inter-
changed before the division. Only then do we obtain an equation which no longer 
contains the two constants E0 and H0. 

Ey = E0  f(x - v t)

Hz = H0  f(x - v t)

= -

- =
∂x

∂(E0∗f(x – v∗t))

∂x
∂(H0∗f(x – v∗t))

∂ t
∂(E0∗f(x – v∗t))

∂ t
∂(H0∗f(x – v∗t))

= -

- =

=  (- v) 
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∂f

=    E0 ∂x
∂f

=
E0

H0

v = 1

From Fig. 9.11

∂ t
∂Ey

∂x
∂Hz

∂ t
∂Hz

∂x
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Fig. 9.13     Relations between the constants in Fig. 9.11 

Here ends the section which you could have skipped without missing any im-
portant information.  

The formula in the lower left of Fig. 9.13 tells us how to get the value of v from ε 
and μ, but we cannot apply it yet since I did not yet provide enough information about 
the constants ε and μ. Although it is quite clear that the letter v stands for the propaga-
tion speed of an electromagnetic wave and therefore has the unit “distance per time,” 
e.g., m/s, we did not yet consider the units of ε and μ. The formula in Fig. 9.13 re-
quires that the product ε∗μ has the unit of the reciprocal of the square of a speed, e.g., 
(s/m)2, but from this we cannot conclude what the units of the factors are. Therefore, 
we must deal with the questions about what the units are of all the quantities and con-
stants which have been introduced on the way to Maxwell’s equations. 
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Units of P hys ical Q uantities 

What We Get by Multiplying or Dividing Volts, Amperes and 
Similar Things 
Units of P hys ical Q uantities 

Each letter which appears in our formulas represents a variable physical quantity 
or a constant. Distances and times are quantities we are used to in our daily life, 
and it is well understood that they can be measured in meters and seconds, respec-
tively. But what could the units be for measuring the strength of the magnetic field 
H, the magnetic flow B or the dielectric flow D? Probably you will be surprised to 
hear that besides the three units which are needed in the laws of mechanics, 
namely meter (m), kilogram (kg) and second(s), only one additional unit is  
required to cover the entire area of electromagnetism. From Fig. 7.3 which repre-
sents the basic concepts of mechanics and their interrelations, you know that nei-
ther momentum nor force nor energy have their own elementary units. Instead, the 
units of these quantities are arithmetic expressions composed of meter, kilogram 
and second – kg∗(m/s) for the momentum, (kg∗m)/s2 for the force and kg∗(m/s)2 
for the energy. Similarly, most of the quantities in the area of electromagnetism 
don’t have their own elementary units.  

After Mr. Volta invented the battery and many scientists used batteries of this 
type, they wanted to measure the new quantities which they associated with their 
observations. In analogy to the pressure and the stream flow in systems where 
water is forced through pipes, they introduced the concepts of voltage and current 
although they didn’t know what was flowing and what caused this flow. You 
shouldn’t think that we know much more about this today. Of course, we now 
know that there are extremely small components of atoms called electrons and 
protons which have a certain property called “electrical charge,” where this charge 
is negative in the case of the electrons and positive in the case of the protons. We 
know that the current through a wire corresponds to moving electrons - but we still 
don’t know what electrical charge really is. The concept of an electrical charge 
was invented as an explanation for the attractive or repulsive forces which  
occurred between bodies of certain materials after they had been rubbed together. 
As far as our not knowing what a certain quantity really is, there is no difference 
between the electrical charge of a body and the mass of a body. The concept of 
mass was introduced by Newton as an explanation of his observations of moving 
bodies and the related forces – but even today, we don’t know what mass really is. 
The forces between bodies which carry electrical charges are captured in Cou-
lomb’s law. These forces could have been taken as a basis for a definition for the 
unit of charge. Alternatively, the forces between two parallel wires through which 
currents are flowing could have been taken as a basis for a definition of the unit of 
current. It was an absolutely arbitrary decision to choose the current to have an 
elementary unit based on forces, and not on charge. If the charge had been chosen, 
the unit of the current would have been a fraction “unit of charge / unit of time.” 
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But with the current having the elementary unit, the unit of the charge now is the 
product “unit of current ∗ unit of time,” since the longer a current is bringing 
charge to a body, the more charge the body will have.  

The existence of electrons was discovered eighty years after the need to define 
a unit for current came up (see Chapter 10). If however the existence of electrons 
had already been discovered before a unit for current was defined, the definition 
could have referred to the charge of a single electron. Then the unit of the current 
would be “a certain number of electrons per second.” The definition which is used 
today was agreed upon in 1948, and although this definition refers to different 
experimental phenomena than the older ones, the defined unit Ampere (A) is ap-
proximately the same as before. The actual definition says: 

This corresponds to 

1 ampere = 
6,241,509,485,400,000,000  electrons 

second

millions
billions

billions of billions

 

That means that if the current through a wire is said to be one Ampere, approxi-
mately 6.24 billions of billions of electrons per second are flowing through the 
cross section of the wire. 

In the table in Fig. 9.14 you will find all the units for electrical and magnetic quanti-
ties which follow directly from the unit of current. However, the units in the last two 
rows of the table cannot be understood without reference to Maxwell’s equations in 
Fig. 9.8 and to the definitions of div and rot as shown in Fig. 9.7. From Fig. 9.7, it 
follows that the unit of div(D) is equal to “the unit of D per distance”, and from this we 
may conclude that the unit of D is equal to the product “unit of div(D) ∗ meter.” The 
unit of div(D) can be determined from Maxwell’s equation div(D)=ρ, which requires 
that the unit of div(D) be equal to the unit of the density of charge ρ which is given in 
Fig. 9.14 as A∗s/m3. By multiplying this with the unit meter, we get the unit of D. 

Ampere’s law in Fig. 9.8 says that the unit of rot(H) is the same as the unit of J 
which is A/m2. From Fig. 9.7, it follows that the unit of rot(H) equals “the unit of 
H per distance” from which we may conclude that the unit of H is equal to the 
product “unit of rot(H) ∗ meter”, i.e., A/m. 

One Ampere is defined to be the constant current which per meter 
of length will produce an attractive force of 2*10-7 (kg∗m)/s2 be-
tween two straight parallel conductors of infinite length and negli-
gible circular cross section placed one meter apart in free space. 
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Fig. 9.14     Physical units derived from the unit of the electrical current 

Although the table in Fig.9.14 contains many of the quantities occurring in 
Maxell’s equations, there are still some more to be considered, namely the electri-
cal field E, the magnetic flow B and the permeabilities γ, ε and μ. These quantities 
and constants have been introduced in the upper part of Fig. 9.8, and they are 
related to the quantities J, D and H whose units are given in Fig. 9.14. Thus, we 
already know the units of the fractions J/γ, D/ε and B/μ, but we cannot conclude 
what the units of the numerators and denominators are from these. Therefore, we 
need some inspiration which helps us to find an adequate approach. Fortunately, 
someone else already had the ingenious idea to transfer the concept of potential 
from the area of mechanics to the area of electricity. When I introduced Cou-
lomb’s law, I emphasized the fact that this law has exactly the same structure as 
Newton’s law of gravity. And since this law of gravity led us to the concept of 
mechanical potential which relates mechanical work to masses, it is no wonder 
that this concept can be transferred to the area of electricity where it relates me-
chanical work to charges. Fig. 9.15 illustrates this transfer. In both cases, there is a 
product which has a difference of potentials as its second factor, and in both cases, 
the result of the product is an energy. Therefore, we obtain the unit of the corre-
sponding potential by dividing the unit of energy by the unit of the first factor of 
the corresponding product. From this we obtain the unit of electrical potential as 
(kg∗m2)/(A∗s3). This looks rather strange and certainly has no evident interpreta-
tion. But this doesn’t matter as long as we know that the result has been deduced 
correctly. And there is no need to keep this expression in mind; it is sufficient to 
know the name which has been given to it, namely Volt, and that this is the unit of 
a difference of electrical potentials. When you are told that the voltage at the 
power sockets in your home is 110 Volts, this means that the two contacts in a 
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socket have different electrical potentials and that the difference between these is 
110 (kg∗m2)/(A∗s3). 

Energy required for transporting
a mass m
from location A to location B

= m (Difference between Potentials)
= m (P(B) - P(A)) 

Concept of Potential
in the case of gravitation:

Energy required for transporting
an electrical charge q
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= q (Difference between Potentials)
= q (P(B) - P(A))

Concept of Potential
in the case of electricity:

kg
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2kg
A s

m
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Fig. 9.15     Concepts of potential in gravitation and electricity 

The fact that names are assigned to units which are arithmetic expressions of 
elementary units could have been seen in Fig. 9.14 where the product A∗s, which is 
the unit of charge, got the name Coulomb (C). It is important for you to realize that 
elementary units must have names – like meter or second – but that in contrast it is 
only a possibility and not a necessity that a composed unit have a name. Let’s look 
at the composed units in mechanics (see Fig. 7.3): the unit kg∗(m/s) of the momen-
tum has no name, but the unit (kg∗m)/s2 of the force was given the name Newton 
(N), and the unit kg∗(m/s)2 of the energy has been called Joule (J). The unit of 
power, i.e., energy per time is (kg∗m2)/s3, and it was given the name Watt (W). 

The names for units are always chosen in reference to scientists who made ma-
jor contributions to the field. The name Ampere for the unit of current refers to 
André Marie Ampère (1775-1836), who detected the force between parallel wires 
through which a current was flowing. The name Volt for the unit of voltage was 
chosen in honor of Alessandro Volta (1745-1827), the inventor of the battery. 
Charles Augustin de Coulomb (1736-1806) had already been honored by assign-
ing his name to the law he found; thus, naming the unit of charge after him is a 
second honor. Sir Isaac Newton (1642-1727) is the father of modern mechanics 
and certainly is worthy of being honored. James Prescott Joule (1818-1889) was 
the first who studied the relationship between electric current and heat  
development. Many people believe that James Watt (1736-1819) invented the 
steam engine, but this is not correct; he only made major improvements which 
considerably increased the output of the engine. 

The world of electricity was connected to the world of mechanics by defining the 
unit of voltage to be a difference of potentials. Fig. 9.16 illustrates this connection. 
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The shaded area contains the quantities from mechanics which were introduced in 
Fig. 7.3 where the units of momentum, force and energy were defined as arithmetic 
expressions on the basis of the elementary units of distance, mass and time. The 
white area in Fig. 9.16 contains the electrical and magnetic quantities with their 
corresponding units which were not introduced in Fig. 9.14. By comparing the unit 
of mechanical power to the unit of voltage, we see that the two units differ only by 
the unit Ampere (A) which appears in the denominator of the unit of voltage. From 
this we can conclude that the product of a voltage and a current is a power, i.e., 
Watt=Volt∗Ampere. This is one of the two most important equations of electrical 
engineering; the other is Volt=Ampere∗Ohm. When you read the information “110 
V, 60 W” on a light bulb, you can conclude that, in operation, the current which 
flows through the bulb is 0.5455 A because (60 V∗A)/110 V=0.5455 A. 

Tesla
Density of
magnetic
streaming field

= Force per
   speed of charge

B
V s
m2

VVolt

Strength of
electrical
pressing field

= Difference of elec-
   trical potentials
= Energy
   per charge

= Voltage per
   distance
= Force
   per charge

Joule J

Newton N

Watt W

= Mass
   times speed

= Momentum
   per time

= Force
   times distance

= Energy
   per time

Voltage

Momentum

Force

Energy
(Work)

Power

v

E

p

E
or
W

F

P

kg m
s

kg m2

s2

kg m
s2

kg m2

s3

kg m2

A s3

kg m
A s3

W
A

V
m

kg
A s2 T

 

Fig. 9.16     Connections between physical units in mechanics, electricity and magnetism 

The units of the field quantities E and B are given in the last two rows of the ta-
ble in Fig. 9.16. In order to find the unit of E, we consider the equation J=γ∗E 
which is one of Maxwell’s equations in Fig. 9.8. It says that the density J of the 
current, measured in A/m2, is determined by the strength of the electric field E at 
an actual point in space. Since we have shown that current must be driven by 
voltage, E must contain voltage. But it cannot be a pure voltage because a voltage 
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is the difference of the potentials between two different points, and E is defined at 
a single point. This problem can be resolved by defining the unit of E to be Volt 
per meter. 

Once we have found the unit of E, we can obtain the unit of B from the law of 
induction in Fig. 9.8. This law requires that the unit of rot(E) is the same as the 
unit of ∂B/∂t which is the unit of B per second. From Fig. 9.7 we know that the 
unit of rot(E) is equal to the unit of E per meter. Thus we have the equation “unit 
of B per second = unit of E per meter.” From this it follows that the unit of B is 
equal to the unit of E multiplied by the fraction s/m.  

From the experiments of the gentlemen Ampere and Faraday, it is well known 
that the force which affects an electrical charge in an electric field is determined 
by the forcing field E and not by the streaming field D. Those experiments also 
showed that the force affecting an electrical charge in a magnetic field is deter-
mined by the streaming field B and affects only moving charges. The higher the 
speed of the charge, the stronger this force. This shows up in the unit of B which 
corresponds to the ratio force/(charge∗speed).  

In Fig. 9.17, I attempted to make you see the twin relationships between elec-
tricity and magnetism which no one had the faintest idea about one hundred years 
before Maxwell developed his equations. You see that any unit on one side can be 
obtained from the corresponding unit on the other side just by interchanging Volt 
and Ampere. Fig. 9.17 also shows the units of the permeabilities ε and μ which 
correspond to the fractions D/E and B/H, respectively. This is a consequence of 
the corresponding equations in Fig. 9.8. 
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Fig. 9.17     Symmetrical relations between electrical and magnetic quantities 

Mountaineers sometimes shout “Hooray!” when they finally reach the top of the 
mountain, and that’s what you may shout now, since we really have reached the top 
of our mountain which makes us understand the theory of the pair of twins called 
electricity and magnetism. One of the results which we can see by looking downhill 
was represented in Fig. 9.13. When you look at this figure again, you may conclude 
that it is still incomplete because, although it represents the formulas for computing 
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the ratio E0/H0 and the speed v of an electromagnetic wave from the permeabilities 
ε and μ, it does not give us any real values. I didn’t want to introduce the values of 
the constants ε and μ before their units had been deduced. Now these units are 
given in Fig. 9.17, and thus it’s time to apply the formulas from Fig. 9.13. 
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Fig. 9.18     Resistance and speed of electromagnetic waves 

Even before Maxwell developed his equations, approximate values of ε and μ 
in free space had been found experimentally. Although much more accurate values 
have been measured in the meantime, we use the approximations in Fig. 9.18 to 
get values for the ratio E0/H0 and the speed v. You should note the fact that the 
unit of the ratio E0/H0 is the same as the unit of the ratio voltage/current, which is 
the unit of ohmic resistors and was given the name Ohm. Therefore, the ratio 
E0/H0 is called the wave resistance in free space. This ratio is not restricted by the 
assumptions shown in Fig. 9.9 which we made in order to simplify the deduction 
of the formulas in Fig. 9.13. In any electromagnetic wave, the ratio between E and 
H at any point in space and at any point in time is the same and has the value 316 
Ω. Maybe you noticed the fact that all other units which have been introduced in 
this chapter, e.g., A (Ampere), V (Volt), W (Watt) etc., are abbreviated by the 
capital first letter of the name of the person to be honored, and that the unit Ohm is 
the only exception to this rule. The reason for this is that the first letter of the 
name Ohm can be easily mistaken for a zero; therefore the Greek letter Ω has been 
taken which corresponds to the Latin letter capital O.   

When Mr. Maxwell applied the formula for the computation of the value of the 
propagation speed of electromagnetic waves (see Fig. 9.18), he got a result which 
was a great surprise to him. This result is approximately three hundred thousand 
kilometers per second and is equal to the speed of light which the Danish as-
tronomer Olaf Roemer (1644-1710) had measured about two hundred years before 
Maxwell performed his computation. From this equality, Maxwell concluded that 
light is an electro-magnetic wave. Isn’t this amazing? Just by performing some 
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computations on the basis of his equations, Maxwell not only discovered the exis-
tence of electromagnetic waves, but he also came to the conclusion that light is 
such a wave. Maxwell’s book, which contains his equations and conclusions, was 
published in 1773. Thirteen years later in 1886, the German physicist Heinrich 
Hertz (1857-1894) confirmed Maxwell’s theory by experiments. He was the first 
who succeeded in generating electromagnetic waves in a transmitter and detecting 
them in a receiver. Only fifteen years later in 1901, the Italian physicist and engi-
neer Guglielmo Marconi (1874-1937) established the first system for wireless 
transatlantic telegraph communication, which is based upon Maxwell’s theory. 



Chapter 10 
Small, Smaller, Smallest – How the 
Components of Matter Were Found 

Alhough we are not always aware of it, our experience makes us classify all phe-
nomena into two categories, discrete and continuous. Those which are not discrete 
must be continuous. Being discrete means being countable, and undoubtedly we 
see around us a world of objects which we could begin to count. Besides this dis-
crete world, we also experience a continuous world, for the flow of time, the mo-
tion through space and the changes of temperature or daylight are perceived as 
continuous processes without any granularity. In mathematics, the discrete world 
is captured by the natural numbers which are used for counting, while the continu-
ous world is captured by the real numbers which are used for measuring. While 
philosophers never questioned the existence of the discrete world of countable 
objects, there were philosophers, even at the time of Socrates, who speculated that 
the continuous world does not really exist, but is only a mental construction as a 
consequence of the restricted resolution of human perception. In Chapter 7 on 
mechanics, I mentioned the Greek philosopher Protagoras (490-411 BC) who said, 
“Man is the measure of all things.” In today’s language of science, this means that 
the restricted resolution of our sense organs determines our world view. But in 
spite of that, we are able to talk and write about magnitudes which are far beyond 
our capability of perception. We just express extremely great or small numbers by 
using powers of ten as shown in Fig. 10.1. Nobody can really imagine how short a 
picosecond is, but of course we can define it as the millionth part of the millionth 
part of a second. Using these powers of ten, we can enter into the world of ex-
tremely long distances and time durations which become relevant when consider-
ing the universe. But we can also enter into the world of extremely short distances 
and time durations which are typical in the areas of electronics and nuclear proc-
esses. This is the world which we shall now consider. 
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Fig 10.1     Powers of ten with their names 

How the Age-Old Assumption That Matter Is Composed of 
Atoms became Experimentally Relevant 
Chemistry 

The question of whether some or all processes which we perceive as being con-
tinuous actually have a granularity can only be answered separately for each type 
of process. Until now, no experimental results have been found which would force 
us to accept that the flow of time is granular. But granularity was discovered for 
matter and energy. I shall now describe the ways which led to these findings.    

Even small children have the idea that material objects consist of something. 
They watch their mother baking a cake or a pie and see how she prepares the 
dough with flour, eggs, milk, butter, salt and other ingredients. And they have no 
problem accepting the fact that the ingredients cannot be separated once the dough 
has been prepared. You probably know that there was a time when people be-
lieved that gold could be made in a way similar to dough, except that the recipe 
had not yet been found. 

The question “What is this made of?” is not only asked by children, but is a 
concern of philosophy from its very beginning. Someone who asks himself about 
the existence of a small set of elements, from which all kinds of matter could be 
composed, puts himself in the role of a creator who, by an ingenious idea, tries to 
simplify his job of creation. For if he succeeds and finds the elementary compo-
nents, his job is almost done, since then the creation of a certain kind of matter can 
be done just by defining a specific combination of elementary components. About 
500 years before Christ, some Greek philosophers, among them Heraclitus and 
Empedocles., came up with the idea that all phenomena which humans could 
observe are produced by the interaction of fire, water, earth and wind. About one 
hundred years later, another Greek philosopher, Democritus, was convinced that 
all matter is composed of extremely small particles which cannot be divided into 
smaller parts. Thus, Democritus is the father of the hypothesis of the existence of 



Chemistry 243
 

atoms as indivisible components of matter; the Greek word for “indivisible” is 
atomos. It took more than 2000 years until it could be proven experimentally that 
Democritus was right. But before that happened, many philosophers believed he 
was wrong. The Dutch philosopher Baruch de Spinoza (1632-1677) tried to  
logically deduce that atoms cannot exist [SPI]. And the German philosopher and 
mathematician Gottfried Wilhelm Leibniz (1646-1716) wrote [LEI], “Matter can 
be divided infinitely.” 

The era when the hypothesis of the existence of atoms became experimentally 
relevant began around the year 1775, which is about the time when the American 
Declaration of Independence was written. We may say that the transition from 
alchemy to chemistry occurred in those years. The main progress consisted of the 
use of very precise scales for weighing the input and output substances of chemi-
cal reactions. The French nobleman Antoine Laurent de Lavoisier (1743-1794), 
especially, must be mentioned here because he contributed most to the new meth-
ods [LA]. But this was not really appreciated by his fellow Frenchmen who re-
sented that he wasn’t just a scientist, but also a member of the Financial Council 
of the French government when the French revolution began. Therefore, he was 
sentenced to death and executed on the guillotine in 1794. But this couldn’t stop 
the process of establishing chemistry as a serious science. Soon, everyone who 
performed chemical experiments knew that it is absolutely necessary to measure 
the exact weights of the substances involved. 

The British scientist John Dalton (1766-1844) very carefully analyzed the pro-
portions of these weights, and this led him to the conclusion that a chemical reac-
tion is nothing but a transition from the original grouping of the atoms involved to 
a different one. Let’s assume that the three different kinds of atoms A, B and C are 
involved in a chemical reaction, and that the proportion of the numbers of atoms 
involved is a:b:c=3:3:4 where a, b and c are the numbers of the atoms of the kinds 
A, B and C, respectively. A chemical reaction which corresponds to these assump-
tions then could be 

AC4 + A2B3 → A3BC + B2C3 

The formula AC4 which describes one of the original substances says that this 
substance contains four times as many atoms of the kind C than of the kind A, and 
that is doesn’t contain any atoms of the kind B. By letting the two original sub-
stances (AC4 and A2B3) react, we get two different resulting substances (A3BC + 
B2C3). The total numbers of the atoms involved are not changed by the reaction, 
but the grouping of the atoms is changed.  

The proportions measured by Mr. Dalton allowed him to conclude that the 
weight of a hydrogen atom is lower than the weights of any other atoms. There-
fore he defined the relative weight of the hydrogen atom to be 1. He could do this 
without knowing what the real weight of a hydrogen atom is; in those days, 
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nobody knew how to determine the real weight of an atom. The relative weights of 
atoms of other kinds correspond to the factor by which such atoms weigh more 
than hydrogen atoms. Dalton‘s idea of using relative weights of atoms has kept its 
importance until the present time, although in the meantime the actual values of 
these relative weights had to be partially corrected because of more accurate 
measurements. During Mr. Dalton’s lifetime, the concept of atoms was not yet 
commonly accepted. Even in 1887, when the concept had been accepted by most 
scientists, the Englishman Henry Roscoe (1833-1915) made the following mock-
ing remark, “Atoms are small wooden balls invented by Mr. Dalton.” 

However, even during the lifetime of John Dalton, additional support for his 
hypothesis came based on a new type of experiments. Alessandro Volta invented 
the battery, and Michael Faraday used it in his experiments. He wanted to know if 
there were liquids through which an electric current could flow. He dipped two 
metal plates apart from each other into a container which contained a liquid he had 
chosen, and then he connected the metal plates to the terminals of a battery. He 
made many such experiments by varying the particular liquid and the metals of the 
plates. In 1832, Faraday coined the term “electrolysis” in order to characterize this 
type of experiments. His experiments showed that the liquid itself, or substances 
being dissolved in the liquid, were electrically decomposed into two kinds of 
components, where one went to one plate and the other went to the other plate. 
Even pure water was decomposed into its oxygen and hydrogen components, with 
the oxygen going to the metal plate which had been connected to the positive 
terminal of the battery and the hydrogen going to the other plate. The ratio of the 
weights was always hydrogen:oxygen=1:8, and the ratio of the volumes of the 
gases was always hydrogen:oxygen=2:1. At the time when Faraday did his ex-
periments and measured these ratios, neither he himself nor anybody else could 
give a reasonable explanation for these results.  

The assumption of the existence of different atoms which can be grouped to 
form molecules was a reasonable explanation for the tremendous number of dif-
ferent kinds of matter, but it was not yet sufficient to explain all the weight ratios 
which had been measured in chemical experiments. An additional idea was re-
quired, and this was the idea that each kind of atom has a specific valency. The 
simplest view of a valency is that it is the number of bonds which an atom can use 
to connect to other atoms. Each hydrogen atom has one bond, and each oxygen 
atom has two. Since water consists of only hydrogen and oxygen atoms, the water 
molecule can be built from one oxygen atom and two hydrogen atoms where there 
are two bonds from the oxygen atom, with each connecting to one hydrogen atom. 
A large part of the concept of valencies was developed by the German chemist 
Friedrich August Kekulé von Stradonitz (1829-1896). The idea of atoms having 
valencies made it possible to represent molecules in the form of structure dia-
grams, examples of which are shown in Fig. 10.2. Once the concept of valencies  
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Fig. 10.2     Chemical structures of common substances 

was established, Mr. Kekulé saw that atoms could be connected not only in the 
form of chains, but also as rings, and that the bonds between two atoms must not 
necessarily be restricted to one pair of atoms forming a bond, but could consist of 
two bonds (see Fig. 10.3). The chemical structure diagrams represent the mole-
cules as lying flat in a plane, but of course, this does not correspond to reality 
where a molecule is a three-dimensional structure. At the time of Kekulé, there 
was no way of getting any information about the three-dimensional structures of 
molecules. It took about half a century before such information became available. 

C5H5N5

Adenine

C

H
N

N

N
N

NH

HH

H

C

C

C
C

 

Fig. 10.3     Chemical structure of the organic molecule adenine 

Around the year 1865, which was the time when Maxwell produced his equa-
tions describing the theory of electromagnetism, chemistry had become an estab-
lished science. In those days, some chemists began to wonder whether it might be 
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possible to structure the “zoo” of the known kinds of atoms not only as a linear 
ordering according to their relative atom weights, but according to additional 
criteria. Maybe they thought of the Swede Carl von Linné (1707-1778) who had 
developed a systematic ordering scheme wherein all plants and animals had their 
proper places. Comparing the tremendous number of different plants and animals 
with the rather small number of different atoms, it might seem to be a rather sim-
ple problem to find an adequate structuring scheme for the less than one hundred 
chemical elements which were known at that time. But the problem was not sim-
ple at all since the desired scheme had to contain empty positions for those ele-
ments which had not yet been discovered. The Russian Dimitri Iwanowitsch Men-
delejew (1834-1907) and the German Lothar Meyer (1830-1895) independently 
developed the same scheme which is called the “periodic table of chemical ele-
ments,” but the results of the Russian were published in 1869, two years before 
those of the German. 

I shall now use Fig. 10.4 to explain the concept of the periodic table of chemi-
cal elements and how it was developed. None of the so-called noble or rare gases, 
which are represented in the right-most column of the scheme, had been discov-
ered before 1894, and therefore these elements could not be taken into account 
when the periodic table was developed. Since these gases have zero valency, i.e., 
their atoms have no ability to bond with other atoms, they are almost never in-
volved in any chemical reaction. Besides that, they are, as their name “rare gases” 
says, extremely rare. Although they are contained in air, their percentage is ex-
tremely small. Therefore it is no wonder that it took so long before they were 
discovered. In 1869, all chemists were convinced that the shaded cells contained 
the complete set of all 15 elements with the lowest relative atomic weights, i.e., 
that no element exists which is not present in Fig. 10.4 and which has a relative 
atomic weight lower than 35.5, that of chlorine. By ordering these 15 elements 
according to their relative atomic weights and by grouping them according to the 
number of their valencies and taking into account certain chemical similarities, 
seven groups were found which correspond to the seven shaded columns. Because 
of the fact that the pattern 1-2-3-4-3-2-1 of the number of valencies is repeated 
periodically in the sequence of the elements, the scheme has been called the  
periodic table. 

Once the seven groups of elements corresponding to the shaded columns had 
been found, an interesting question arose concerning whether all other elements 
which were known at the time would also fit into these groups. Some of them did, 
but there were others which didn’t. The first elements which didn’t fit were in 
positions 21 through 30 in the sequence of all elements ordered according to their 
relative atomic weights. This required an expansion of the periodic table by insert-
ing additional columns between the elements calcium at position 20 and gallium at 
position 31. The need for inserting additional columns occurred again when 



Chemistry 247
 

 

1-
valent

2-
valent

3-
valent

4-
valent

3-
valent

2-
valent

1-
valent

0-
valent

1.
Hydro-

gen

3.
Lithium

4.
Beryl-
lium

5.
Boron

6.
Carbon

7.
Nitro-
gen

8.
Oxy-
gen

9.
Fluo-
rine

2.
Helium

10.
Neon

11.
Sodium

12.
Magne-

sium

13.
Alu-

minium

14.
Sili-
con

15.
Phos-
phor

16.
Sul-
fur

17.
Chlo-
rine

18.
Argon

19.
Potas-
sium

20.
Cal-
cium

31.
Gal-
lium

32.
Germa-

nium

33.
Ar-

senic

34.
Sele-
nium

35.
Bro-
mine

36.
Kryp
-ton

2
Ele-

ments

8
Ele-

ments

8
Ele-

ments

18
Ele-

ments

21.
Scan-
dium

22.
Tita-
nium

23.
Vana-
dium

24.
Chro-
mium

25.
Man-

ganese

26.
Iron

27.
Co-
balt

28.
Nickel

29.
Cop-
per

30.
Zinc

47.
Sil-
ver

79.
Gold

78.
Plati-
num

80.
Mer-
cury

 

Fig. 10.4     Evolution of the periodic table of the chemical elements 

elements with a relative atomic weight in the interval 58 ≤ w ≤ 71 were discov-
ered; again these elements didn’t fit into the existing columns. The final structure 
of the periodic table is shown in Fig. 10.5. The neighbors to the right of uranium 
are called transuraniums, most of which do not occur outside of laboratories where 
they can be produced by certain experiments. Their lifetime is extremely short, 
i.e., they decompose soon after they have been produced. At the time of Mendele-
jew, the transuraniums and many other elements which are known today had not 
yet been discovered. Beginning in about 1940, one transuranium element after 
another was discovered, and names were assigned to them. The freedom of choos-
ing names was a good opportunity to honor scientists who had made major contri-
butions to the field. Thus, elements were called Curium, Einsteinium, Fermium,  
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Fig. 10.5     Completely expanded periodic table 

Mendelevium, Nobelium, Rutherfordium, Bohrium and Meitnerium. However, in 
technology, these elements are completely irrelevant. 

When the periodic table was found, nobody could explain the origin of its 
structure. It took about half a century before an explanation was found. This was 
when the internal structure of atoms was discovered and the energy states of elec-
trons in the atomic shell could be described by means of quantum theory. This 
made it possible to understand the nature of different types of valencies. The es-
sence of quantum theory will be presented in Chapter 11. 

In 1870, many indications had been found which made it very likely that the 
hypothesis of the existence of atoms was correct, although no information whatso-
ever was known about the size and mass of these atoms. Besides this, nobody 
could say whether atoms really are as indivisible as their Greek name indicates, or 
whether they consist of specific components.  

What Can Be Deduced from the Assumption That Gases Are 
Small Balls Flying Around 
Theory of Gases 

Although quantum theory later showed that the assumption of atoms being small 
balls is far from reality, this assumption nevertheless leads to some rather realistic 
conclusions. Despite the fact that nothing was known about the size and mass of 
an atom, interesting physical laws could be deduced theoretically and later  
confirmed experimentally. However, these laws did not say anything about solid 
matter or liquids, but only about gases. A gas was thought to be made up of a 
tremendous number of small elastic balls flying around in complete disorder and 
bumping into each other every now and then. What happens with such collisions is 
described by Newton’s laws of mechanics. Obviously, knowledge about the be-
havior of billiard balls was just transferred to the world of atoms. 
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In addition to knowledge about mechanics, another ingenious idea could be ap-
plied concerning the concept of heat and the definition of the unit of temperature. 
In 1738, the Swiss scientist Daniel Bernoulli (1700-1782) wrote, “The springiness 
of the air can be increased not only by compression, but also by increasing its 
temperature, since it is a fact that increasing heat corresponds to an increasing 
motion of the particles.” When the Englishman Benjamin Thompson (1753-1814) 
observed that both the drill and the barrel got hot when drilling gun-barrels, he 
said, “I find it difficult if not impossible to imagine that, in this process, anything 
different from motion could be produced and dissipated.” These ideas, which were 
so evident to the gentlemen Bernoulli and Thompson, were not at all evident to 
their contemporaries. Even Mr. Lavoisier, who was the one who began measuring 
the weights of the substances involved in chemical reactions, believed at the be-
ginning of his career that there is something which might be called fire substance. 
He once wrote, “The same substance can consecutively pass through all three 
states (solid, fluid, gaseous), and in order to make this happen, a certain quantity 
of fire substance must be added or withdrawn.” Finally, about the year 1800, it 
was well established that heat is nothing but the disordered motion of atoms or 
molecules; kinetic energy of this motion corresponds to the energy of heat, and 
temperature is a linear measure of the mean value of this energy. 

This definition of temperature laid the groundwork for a new area in physics 
which is called statistical thermodynamics. It is amazing that something useful 
could be said about the energy of the small balls, even though their mass was 
absolutely unknown. By applying Newton’s laws of mechanics, one can compute 
how a collision of two elastic balls changes the ratio of their speeds, depending on 
the ratio of their masses. These computations show that after many collisions have 
occurred, all balls will have approximately the same kinetic energy regardless of 
their masses. The gas then has a well-defined temperature only when this equilib-
rium state has been reached. 

The law which I shall deduce in the following paragraphs is – at least in my 
opinion – the most important law of gas theory. The physical quantities which are 
related in this law are measured in the system shown in the upper part of Fig. 10.6. 
The volume of the gas in the container can be varied by shifting the closing piston 
in or out. The gas produces a force which tries to push the piston out, and there-
fore a counterforce is needed to keep the piston in its actual position. The follow-
ing considerations will help us to find the pressure of the gas as a function of the 
volume and the temperature: 

(1) The speed v of a particle has the three components vx, vy and vz, 
from which the value of the speed is obtained by the application 
of the law of Pythagoras: v2 = vx

2+vy
2+vz

2. Since none of the three 
directions is preferred, we may write vx

2 = v2/3. 
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Fig. 10.6     Experiments with an enclosed gas 

(2) We now consider all of the particles which hit the piston within 
the time interval t1 ≤ t ≤ t1+Δt. At the beginning of this time inter-
val, i.e., at t1, their distance from the piston could not have been 
greater than vx∗Δt since otherwise they would not have been able 
to reach the piston within the given time interval. Therefore, they 
were all contained in a slice sitting left of the piston and having 
the volume vx∗Δt∗surface. The factor “surface” means the surface 
area of the piston. The number of particles in this slice is 
(vx∗Δt∗surface)∗(N/V) with V being the total volume and N be-
ing the total number of particles in the volume. 

(3) Only half of the number of particles in the slice of (2) will hit the 
piston within the given time interval because the other half has a 
vx leading away from the piston. 

(4) Since the piston is held in its position by the counterforce, the 
particles will hit a fixed wall and be reflected, i.e., the sign of the 
speed vx will be reversed while the number of particles will stay 
the same. This corresponds to a change of the momentum from 
(m∗vx) to (–m∗vx). Thus, the difference of momentum caused by 
this reflection is 2m∗vx. 
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(5) The total difference of momentum, which results from all parti-
cles being reflected within the given time interval, is the product 
of the momentum difference for one particle with half the number 
of particles in the slice of (2). This product is 
N∗m∗vx

2∗Δt∗surface/V. According to Fig. 7.3, each difference of 
momentum corresponds to the product of a force and a time dura-
tion. Thus we get a force by dividing our difference of momen-
tum by the length Δt of the corresponding time interval. This 
force is N∗m∗vx

2∗surface/V.   
(6) The pressure is the ratio between force and surface, and this is 

N∗m∗vx
2/V = N∗m∗(v2/3)/V. Since the temperature T has been 

defined to be a measure for the mean value of the kinetic energy 
of a particle, m∗v2/2, we can write T ∝ m∗v2 where the symbol ∝ 
is read as “is proportional to.” With this substitution, the pressure 
formula can be written as p ∝ N∗T/V which can be transformed 
to the more common form p∗V ∝ N∗T. 

Although the number N of particles in the container is unknown, the relation de-
duced can nevertheless be tested. For a first experiment, an arbitrary quantity of 
gas is enclosed in a container as shown in Fig. 10.6 and the functional relation 
between the product p∗V and the temperature T is determined by varying the 
volume and the temperature of the system. The volume can be varied easily by 
shifting the piston in or out, but before we can vary the temperature we have to 
find a method for measuring it. The definition which says that the temperature is a 
linear measure of the mean value of the kinetic energy of the molecules doesn’t 
give us any hint about how we could measure it. It is quite obvious that we cannot 
measure the speed and the mass of the molecules. At least we can begin with two 
well-defined temperatures which were used by Mr. Celsius when he thought about 
measuring temperatures. He assigned the value 0 to the freezing point of water and 
the value 100 to its boiling point. Fig. 10.7 illustrates a method for producing 
precise temperatures of water in the interval between 0 and 100 degrees Centi-
grade. We just mix freezing and boiling water in an adequate ratio. If, for exam-
ple, we want the gas in Fig. 10.6 to have a temperature of 60 °C, we can start with 
a bathtub full of water at 60 °C and place the container with the gas into the  
bathtub. Then we can add more water of the same temperature until the whole 
system has reached its equilibrium state at 60 °C. 

Once we have completed the experiment with the original quantity of gas, we 
can repeat this experiment with twice the original quantity. Although we don’t 
know what the original number N of molecules was, at least we know that in the 
second experiment the number is 2N. Fig. 10.8 shows the results of our two ex-
periments. The fact that the product p∗V varies linearly with the temperature T as 
long as the quantity of gas is kept constant confirms the formula p∗V ∝ N∗T 
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Fig. 10.7     Producing temperatures between the freezing and boiling points of water 

concerning the dependency on T. The fact that the ratio (p∗V)1/(p∗V)2 is equal to 
the ratio N1/N2 is a confirmation concerning the dependency on N. 

The two straight lines in Fig. 10.8 meet at a point which corresponds to the 
temperature – 273 °C. It is no wonder that lower temperatures do not exist, since 
the mean value of the kinetic energy of the molecules cannot be less than zero. If 
this had been known earlier, nobody would have defined a temperature scale with 
the lowest possible temperature not having the value zero. Unfortunately, different 
temperature scales were defined before the findings described in Fig. 10.8 became 
available. Therefore, it became necessary to agree upon a standard way of repre-
senting temperatures. In honor of William Thomson (1824-1907), later known as 
Lord Kelvin, who made major contributions to thermodynamics, this standard has 
been called the Kelvin temperature. With this standard, the interval between the 
freezing point and the boiling point of water is still subdivided into one hundred 
units, as Mr. Celsius had defined, but now the freezing point no longer corre-
sponds to the value 0, but to the value 273 Kelvin. The lowest possible tempera-
ture is now 0 degrees Kelvin which is the same as – 273 °C. 

In the upper left corner of Fig. 10.8, you again find the formula p∗V ∝ N∗T 
which has been confirmed by the experimental results represented in the diagram. 
This formula contains the number of molecules N which are enclosed in the vol-
ume V. In 1811, the Italian physicist Amadeo Avogadro (1776-1856) concluded 
that the number of gas atoms or molecules within a given volume does not depend 
on the actual type of gas, but is the same for all gases. This could be concluded 
from the fact that the ratio of the weights of different gases in a given volume 
corresponds exactly to the ratio of the relative atomic or molecule weights of these 
gases. This also explained the different ratios of the volumes and the weights of  
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Fig. 10.8     Experimental confirmation of the relationship between the volume, pressure 
and temperature of gases 

hydrogen and oxygen which result from electrolysis of water. With water, the 
volume ratio is 2:1 while the weight ratio is 1:8. This corresponds to the fact that 
the ratio of the relative atomic weights of hydrogen and oxygen is 1:16. I should 
mention here that the particles in these gases are not atoms but molecules, since an 
atom uses all possible bonding positions when bonding with other atoms. A hy-
drogen atom has one bonding position which forms a bond with a second hydro-
gen atom. And an oxygen atom has two bonding positions, which forms bonds 
with a second oxygen atom. Since both the hydrogen and the oxygen particles are 
pairs of atoms, the ratios of the volumes and the weights for a given number of 
particles is the same as if these particles were atoms. 

Although Avogadro’s idea was correct, it didn’t provide any information about 
the actual number of particles in a given volume. Only ten years after Mr. 
Avogadro’s death, the first approximate value of the number of particles per unit 
volume was determined by the Austrian chemist Josef Loschmidt (1821-1895). He 
found that one cubic meter of gas at a temperature of 0 °C and a pressure of 10 
N/cm2 contained approximately 27∗1024 particles. In his honor, this number was 
later called the “Loschmidt number.” From this number, the so-called “Avogadro 
number” which corresponds to the number of particles of such a quantity of a 
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substance whose weight measured in grams has the value of the relative atom or 
molecule weight, was derived. For example, let’s consider the substances gold and 
water. The relative atomic weight of gold is 197, and for hydrogen and oxygen, 
the components of water, it is 1 and 16, respectively. In the case of gold, the parti-
cles are atoms, in the case of water they are the molecules H2O. Thus, according to 
Avogadro, 197 grams of gold and 18 grams of water consist of the same number 
of particles, namely 6∗1023 particles. Once the Avogadro number NA had been 
determined, the number N of gas particles in the volume V could be expressed as a 
multiple of NA. The factor ν in the relation N = ν∗NA corresponds to the ratio 
between the weight of the gas in the volume V and the relative atomic or molecule 
weight, both measured in grams. The two straight lines in the diagram in Fig. 10.8 
show the results of experiments with 16 and 32 grams of oxygen. The relative 
atomic weight of oxygen is 16, and the particles in an oxygen gas are molecules 
O2. Thus, 16 grams of oxygen correspond to ν = 0.5. 

A formula containing the symbol ∝ cannot be used for computations; it has to be 
transformed into an equation. This can be done by introducing a constant factor 
which is then called a proportionality constant. In the case of our formula p∗V ∝ 
ν∗NA∗T we have the choice of either using the constant k or the constant R, since 
we can either include the constant NA in the proportionality constant or leave it out. 
The determination of the value of the constant R from experimental results does not 
require the knowledge of NA; the value of R corresponds to the slope of the straight 
line in the diagram for the value ν = 1. This slope is 2,270/273 = 8.31. The unit of 
R is energy/degree. In honor of Ludwig Boltzmann, the Austrian physicist who 
made major contributions to statistical thermodynamics, the constant k is called the 
“Boltzmann constant.” The universal gas constant R and the Boltzmann constant k 
are interrelated via the Avogadro number NA, i.e., R = k∗NA. 

The findings represented in Fig. 10.8 make it possible to measure temperatures 
which are outside of the interval between the freezing point and the boiling point of 
water. The basic idea of a so-called gas thermometer was presented to you in Fig. 10.6 
where a well defined quantity of gas is enclosed in a container, and the temperature 
can be determined from the product of pressure and volume. Although the tempera-
tures which can be measured by such a thermometer are not restricted to the interval 
between 0 °C and 100 °C, such thermometers also have a restricted range because, the 
gas will become fluid at very low temperatures, and the container will melt at very 
high temperatures. Different ranges of temperatures require different types of ther-
mometers which are based on different physical laws. 

The idea that heat is nothing but the kinetic energy of atoms or molecules being 
in some kind of disordered motion finally led to the law of conservation of energy. 
The essence of this law is the idea that energy is a physical quantity which, in the 
universe, cannot be generated or eliminated, but only converted. The first form of 
energy which I introduced in this book was mechanical work (see Fig. 7.3). Then I 
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divided mechanical energy into the kinetic energy of moving bodies and the po-
tential energy of bodies in the field of gravity. Two other forms of energy are 
chemical energy and electrical energy, both of which can be converted into heat, 
chemically by burning coal and electrically by current flowing through thin wires. 
All substances which can be burned contain chemical energy – think especially 
about natural gas, crude oil and coal, which play major roles in today’s energy 
supply. In Chapter 8 on relativity theory, you learned that even the rest mass of 
atoms can be partially converted into energy; this occurs in nuclear power plants. 
Electromagnetic waves also contain energy. This can be deduced from the rela-
tionship between the units of the electrical and magnetic fields E and H. The unit 
of E is Volt/meter, and the unit of H is Ampere/meter. The product of these two 
units is Watt/square meter which corresponds to energy per second and square 
meter. Since we know the propagation speed c of the wave, we can determine the 
amount of energy which is contained in one cubic meter of the space through 
which the wave is passing. The formula for this computation is E∗H/c.  

An important question with respect to energy is how one form of energy can be 
converted into another form. The generators in electric power plants convert me-
chanical energy into electrical energy; the reverse conversion occurs in electric 
motors. Electricity generators are driven by steam turbines whose mechanical 
energy is obtained from the heat of the steam. The steam is obtained by converting 
chemical or nuclear energy to heat. A similar chain of conversions is needed to 
run a car engine: the chemical energy contained in the fuel is converted into heat, 
which then is transformed into mechanical energy. 

It would be nice if any form of energy could be completely converted into any other 
form but, unfortunately, this is not the case. The various forms of energy can be ranked 
according to their convertibility. Energy of a higher rank can be converted completely 
into energy of a lower rank, while in the reverse direction, only a partial conversion is 
possible. Electromagnetic energy has the highest rank, and heat has the lowest. This 
means that any form of energy can be converted completely into heat, but heat can be 
only partially converted into energy of a higher rank. As an example, let’s consider a 
gas turbine. By burning gas, its chemical energy is converted into heat, and this, ac-
cording to Fig. 10.8, increases the product of pressure and volume. The resulting 
forces push the blades of the turbine and produce mechanical work. But this work 
cannot be as much as the chemical energy consumed at the input of the conversion 
chain, because part of the energy is used to warm up the turbine and another part 
leaves the turbine in form of the heat of the exhaust.    

Why can’t a stone which is lying in the front yard convert part of its thermal energy 
into kinetic energy, and then convert this into potential energy by flying onto the roof? 
Such a process would not violate the first law of thermodynamics, i.e., the law of en-
ergy conservation, but nobody ever observed such a process happening. This finally 
led scientists to believe that such chains of energy conversion are impossible, and they 
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called this belief the second law of thermodynamics. In other words, this law says that 
certain conversions of energy are irreversible. The elliptic orbit of a planet around the 
sun (see Fig. 7.6) could be explained as a periodic process of converting kinetic energy 
into potential energy and then back into kinetic energy. Obviously, these energy con-
versions are reversible. But think of a container being divided into two compartments 
of equal size by a removable wall, with each compartment filled with the same quan-
tity of water. The temperature in one compartment is close to the freezing point while 
the temperature in the other compartment is close to the boiling point. Immediately 
after the separating wall is removed, the water which original was cold will get 
warmer, and the water which originally was hot will get cooler. After a short time, all 
the water in the container will have a temperature of approximately 50 °C. This proc-
ess of change towards a state of equilibrium is irreversible, which means that if we 
start with 50 °C water it cannot happen that one half of the water gets hotter and the 
other half gets colder. Another example of an irreversible process is the spreading of a 
drop of ink which falls into a bathtub full of water. Immediately after the drop hits the 
water, its blue color indicates the position where the drop hit on the surface. But the 
blue spot will then spread, and after a short time all the water will have the same ex-
tremely faint blue color. It will not happen that the ink molecules, after being equally 
distributed over all the water in the bathtub, will come together again at the original 
position of the drop. However, although the probability of such an event is extremely 
low, there is no reason to say that the probability is exactly zero.  

The example in Fig. 10.9 should help you to understand the second law of 
thermodynamics concerning the distribution of particles. It illustrates the fact that 
the less the distribution of particles differs from the equilibrium, the higher the 
probability of that distribution. The figure shows a square-shaped container which 
appears divided into four chambers, although there are no real walls separating the 
chambers. We assume that eight particles are placed into the container and that 
neither a certain particle nor a certain chamber is favored with respect to the dis-
tribution of particles. There are 48 = 65,536 different ways to distribute the eight 
particles among the four chambers. The probabilities are as shown in Fig. 10.9. In 
the figure, these cases are grouped according to how many chambers are empty. 
The probability that two or three chambers are empty is slightly higher than 2 
percent, while the probability that no chamber is empty is approximately 62 per-
cent. If we had not restricted the example to eight particles but had taken 100 or 
1,000 particles, the probability of at least one chamber being empty would have 
been very close to zero. You now have to consider the fact that the number of 
particles in a full bathtub is not a million or a billion, and not even billions of 
billions, but a number which is so high that there is no name for it. Thus it be-
comes quite evident that the probability of the ink molecules coming together at a 
certain small region of the water in the bathtub actually will be extremely close to 
zero.  
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Possible patterns of distribution:
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4
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Fig. 10.9     Probabilities of particles in equilibrium 

Once the idea was conceived that irreversible processes can be explained by 
looking at the probability distributions of certain properties such as position or 
kinetic energy for an extremely large number of particles, the question arose about 
whether an abstract physical quantity could be defined for capturing the degree of 
reversibility of state transitions. It was the German physicist Rudolf Clausius 
(1822-1888) who defined the so-called entropy as a property of the actual state of a 
closed system. It is completely irrelevant what the value of the entropy of a specific 
state is because it’s only the difference between the entropies of two states which is 
interesting. This should remind you of the concept of potential which is a quantity 
assigned to points in space. Here, too, it is completely irrelevant what the potential 
of a single point is; only the difference between the potentials of two points is of 
interest (see Fig. 9.15). The greater the ratio p2/p1, where p1 and p2 are the prob-
abilities of the two states S1 and S2, the higher the probability of a transition from 
state S1 to state S2. Thus, the difference Ent(S2) - Ent(S1) between the entropies of 
the two states, which is a measure of the probability of a transition from state S1 to 
state S2, must be a function of p2/p1. This requirement can only be satisfied by the 
definition that the entropy of a state corresponds to the logarithm of its probability, 
since then the difference Ent(S2) - Ent(S1) is equal to log(p2) – log(p1) = log(p2/p1). 
The difference of the entropies will be positive only if state 2 has a greater prob-
ability than state 1. Since the transition from a state with low probability to a state 
with high probability is more likely than the reverse transition, the entropy of a 
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system tends to increase until it has reached its maximum value. This corresponds 
to the equilibrium state.  

In thermodynamics, the interesting system states are determined by the distribu-
tion of the location and the kinetic energy of the particles, and these are related to 
temperatures and flowing thermal energies. Therefore it must be possible to com-
pute the difference of entropy corresponding to a transition from one state to an-
other from the values of the flowing thermal energies and the applicable tempera-
tures. However, the deduction of the formula for this would not give you much 
additional insight, and therefore, I decided to omit it.   

How Particles Which Had Been Called “Indivisible” Broke 
Apart 
Components of  Atoms 

As I already mentioned, the word atom is derived from the Greek word ‘atomos’ 
which means indivisible. Of course, the use of this name did not prevent scientists 
from performing experiments with the goal of dividing atoms. Such experiments 
had become possible by the findings of Faraday and Maxwell. They had detected a 
way of “shooting bullets against atoms” where the bullets are electrical charges 
being accelerated in an electric field. However, they could not perform such ex-
periments themselves, since suitable bullets had not yet been found.  

Michael Faraday had done experiments with electrical currents flowing through 
liquids. Thus, it is no wonder that other scientists tried to make current flow 
through gases or even through a vacuum. They produced closed glass bulbs con-
taining two separate metal plates, called electrodes, which could be connected to 
an external voltage source via wires leading through the glass wall. Battery volt-
ages were not high enough to cause a current to flow between the electrodes. But 
generators based on the law of induction provided much higher voltages. The 
experiments could be varied by choosing different gases and by varying the pres-
sure of the gas and the distance between the electrodes. In cases where an ade-
quate experimental setup was found, a current really did flow, and sometimes 
strange light phenomena were observed. Today’s fluorescent tubes are successors 
to those experimental setups. Like children who always come up with new varia-
tions of games, physicists develop many ideas about how to vary their experi-
ments. Thus, someone had the idea of heating one of the electrodes and making it 
glow. This led to the detection of electrons. The electrons which are components 
of the atoms close to the surface of the glowing electrode can be torn away from 
their atoms if the electric field caused by the voltage between the electrodes is 
strong enough, and if it is directed towards the glowing electrode. These electrons, 
which have a negative charge, will then be accelerated in a direction opposite to 
the direction of the electric field and will fly toward the cold electrode. 
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From the history of the evolution of the theory of electromagnetism, we know 
that sometimes an accidental observation triggers an avalanche of findings – re-
member Mr. Galvani observing the twitching of the frog legs or Mr. Oersted ob-
serving the turning of the compass needle. Now, again, an accidental observation 
stood at the beginning of a development which drastically changed human life. This 
development finally led to nuclear weapons and nuclear power plants. In 1896, the 
French physicist Antoine Henri Becquerel (1852-1908) put a piece of uranium ore 
into a drawer next to a pack of black-and-white film. The element uranium was 
discovered in 1789 and got its name in reference to the planet Uranus which had 
been discovered eight years earlier. When Mr. Becquerel developed the film, he 
detected a black spot whose shape corresponded to the shape of the piece of ore. 
Since both the ore and the film had been wrapped with opaque paper, the spot 
could not have been caused by light the ore might have emitted. Therefore, 
Mr. Becquerel concluded that the uranium ore must have emitted a kind of radia-
tion which had been unknown previously. He had detected natural radioactivity. 
Soon, other physicists also performed experiments with radioactive materials. Best 
known is Maria Slodovska (1867-1934) who, in 1891, had come from Poland to 
Paris for a university education in physics. She is better known as Madame Curie 
since, in 1895, she married the French physicist Pierre Curie with whom she later 
shared interests in radioactivity. In 1898 she found the element radium whose ra-
dioactivity is stronger than that of uranium by a factor of more than one million. In 
1903, Madame Curie, her husband and Mr. Becquerel got the Nobel Prize in phys-
ics. In 1911, Madame Curie got her second Nobel Prize, this time in chemistry. 

The idea that certain materials emit an unknown kind of radiation had been 
concluded from the fact that these materials could produce spots on a film as if the 
film had been exposed to light. But what kind of radiation could this be? Though 
the rays could not be seen, the places where they hit the film were visible. From 
this it was possible to find out whether and how much the paths of rays can be 
changed in direction by an electric or magnetic field. The corresponding experi-
ments showed that there is not just one type of rays, but three which were called 
alpha-, beta- and gamma-rays. The first two are rays of particles which can be 
deviated by an electric field because they have an electric charge. They differ in 
their masses and their charges. Once all the three components of atoms - electrons, 
protons and neutrons - were known, in 1932, alpha-particles were found to be 
nuclei of helium atoms which consist of two protons and two neutrons, and beta 
particles were found to be electrons. The direction of gamma-rays could not be 
changed by electric or magnetic fields from which follows that they are not rays of 
charged particles. In 1914, the final experimental confirmation found that gamma-
rays are electromagnetic waves. 

Looking for spots on films was not the only way to find out whether there was 
radiation and whether the rays could be deviated. In 1824, an interesting property 
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of the mineral fluorite was discovered. When fluorite was exposed to ultraviolet 
light, it emitted light of colors between green and blue. The effect later was called 
fluorescence in reference to the mineral for which this property had been ob-
served. Those of you, who are old enough to be familiar with television sets where 
the picture tube was a cathode ray tube, saw the application of fluorescence, per-
haps without knowing it. For the pictures you saw on those TV monitors were 
produced by rays of electrons hitting fluorescent material which had been coated 
onto the inside surface of the picture tube. 

Many of the experiments which finally provided information about the internal 
structure of atoms were performed in the laboratories of Ernest Rutherford (1871-
1937). He was born in New Zealand, where he got his university education in 
physics. He then moved to Canada where he did research from 1898 until 1907. 
Afterwards, he worked in England, first in Manchester, then in Cambridge. In his 
laboratory, he found what the alpha-, beta- and gamma-rays really are. As a con-
sequence of this, the components of atoms – electrons, protons and neutrons – 
could be identified. The electric charge of a proton is positive and that of an  
electron is negative, but the amounts of charge are the same. The mass of a proton 
is approximately equal to that of a hydrogen atom while the mass of an electron is 
less by a factor of 1836. This justifies the assumption that a hydrogen atom con-
sists of only two components, one proton and one electron. An alpha-particle has 
the charge of two protons and the mass of approximately four protons. This led to 
the question about whether an alpha-particle consists of four protons and two 
electrons, in which case the negative charges of the two electrons would neutralize 
the positive charges of two of the protons. Another structure which also would 
explain the behavior of alpha-particles is that the alpha-particle consists of two 
protons and two other components which don’t have any charge, but whose mass 
is close to that of protons. This second structure finally was confirmed in 1932; 
the components which have approximately the same mass as the protons, but don’t 
have any charge, were called neutrons to indicate their electrical neutrality. 

After the masses and charges of the components of atoms had been found, sci-
entists asked themselves how they could find information about the sizes of these 
components. From the ratio between the masses, e.g., (electron mass):(proton 
mass) = 1:1836, no conclusions could be drawn with respect to the actual sizes of 
these components. Again, it was Ernest Rutherford who, in 1909, did experiments 
which provided useful information about these sizes. He exposed a very thin foil 
of gold to alpha-rays which were emitted by a piece of radioactive material and 
observed the distribution of the light spots on a fluorescent screen located behind 
the foil. The distribution he observed indicated that most of the alpha-particles 
went through the foil without being deviated, while a minor fraction of the parti-
cles was deviated more or less. Some of them were even totally reflected. This 
observation could be explained by assuming that the gold atoms have a very small 
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center, the so-called nucleus, where the mass of the atom and the charges of the 
protons are concentrated. The distance between these nuclei is so great that there 
is enough space in between for the alpha-particles to pass through without being 
deviated either by the mass or by the charge of the protons. This distance could be 
explained by the assumption that the electrons of an atom, which neutralize the 
charge of the protons, move around the nucleus at a great distance and thus deter-
mine the size of the atom.  

This model of an atom, consisting of a very small nucleus in the center and a 
distant shell where the electrons move around, obviously conflicts with common 
sense, since it says that all matter, be it gold, iron or stone, which we experience to 
be extremely impermeable, actually consists to the greatest extent of “nothing”, 
just empty space. Fig. 10.10 roughly illustrates the proportions of an atom, but 
unless you read the numbers in this figure, you would still get the wrong impres-
sion. The numbers say that the distance between two nuclei is greater than the 
diameter of a nucleus by a factor of ten thousand. The grey shaded overlapping 
shells indicate the zone which contains the electrons. Originally, Rutherford and 
others assumed that the electrons orbit the nucleus like the planets of the sun. But 
quantum theory, which shall be presented in the next chapter, showed that the 
assumption of electrons moving in well-defined orbits is wrong. 

d = 10-14 m

10,000 d

 

Fig. 10.10     Proportions concerning the size of atoms 

Every time I look at Fig. 10.10, my thoughts go back to a man whom, many 
years ago, I saw walking up and down in front of the cafeteria at our university, 
carrying a poster with an inscription which said, “All physicists are deceivers 
because they claim that solid matter consists of small atomic nuclei which sit 
extremely far from each other, leaving a lot of empty space in between. If this 
actually were the case, we could look through all solid material as if it were 
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glass.” I didn’t see any way to convince him that he was wrong, since this would 
have meant that I must introduce him to quantum theory which tells us how matter 
and light interact. 

When the neutron as the third component of atoms was discovered in 1932, 
many phenomena of chemistry including the periodic table of the elements could 
be explained. Nevertheless, the search for elementary particles continued, since 
now the question that had to be answered was whether electrons, protons and 
neutrons are also composed of smaller components. Many such particles have 
been detected since then, but until now, knowledge about them is still absolutely 
irrelevant for the work of engineers. The corresponding theories do not help to 
develop better basic materials or to design more powerful systems. But these theo-
ries are fundamental with respect to developing new hypotheses concerning the 
evolution of the universe. A few years ago, a physicist working in this area said, 
“The distance between our world of elementary particle physics and the world of 
common people has become breathtaking.” This breathtaking distance is partially 
the consequence of the fact that, in this field of physics, only about 25 percent 
really is physics, while 70 percent is mathematics. The remaining five percent 
belongs to philosophy. I didn’t find these numbers in any source; they merely 
illustrate my personal view. By reading Chapter 8 on relativity theory, it should 
have become obvious to you that mathematics is playing a more and more domi-
nant role in physics. This is even more the case in the field of elementary particle 
physics.  

A very impressive result was the detection of the so-called antiparticles. In 
1928, the British physicist Paul Dirac (1902-1984) came up with an equation 
which combined quantum theory with relativity theory, and this equation has, as is 
the case with many equations, more than one solution. One of these solutions 
could be associated with the well-known electron, but the other solution seemed to 
correspond to an electron having negative energy. This triggered a lot of thinking 
about the question of how this second solution should be interpreted. Later ex-
perimental results led to the assumption that any subatomic particle has a partner 
which can be viewed as its mirror image and which is called its antiparticle. The 
theory required that some particles are identical to their antiparticles. The situation 
is analogous to the relation between positive and negative numbers, where the 
negative numbers are the mirror images of the positive numbers, and where the 
negative zero is identical to the positive zero. When they meet each other in a 
sum, the positive number and the negative number disappear, and the result is 
zero. In the analogy, this means that if a particle and its antiparticle meet, they 
both disappear and the sum of their original masses is completely converted into 
energy. For the electron-positron pair, this actually could be confirmed experimen-
tally. The concept of matter and antimatter led to a completely new theory of the 
so-called empty space. 



Components of  Atoms 263
 

Experimental results in elementary particle physics are mainly geometric prop-
erties of the tracks which the particles leave behind after they have traveled 
through a detector chamber. Although the types of detector chambers have 
changed drastically over the years, the basic principle has not changed at all. The 
chamber is filled with a gas or a liquid, and the particles which enter the chamber 
with very high speed cause the atoms or molecules of the gas or the liquid to emit 
light. Then, the tracks can be saved on film or on digital memory devices. Usually, 
the chambers are located in strong electrical or magnetic fields which make a track 
of charged particles deviate from a straight line. From such a track it is possible to 
deduce the speed, the mass and the charge of the particle. In many experiments, 
there are two rays of particles entering the chamber from opposite ends, and when 
two particles collide, the resulting tracks provide the information about whether 
the particles remained complete or broke apart. In the case of a break up, the 
tracks provide information about the pieces. 

The laws of conservation of energy and momentum apply not only to processes 
in the macro world, but also in the world of elementary particles. When the physi-
cist Wolfgang Pauli (1900-1958) applied the law of conservation of momentum to 
the results of a certain kind of radioactive decay, he came to speculate that, in 
addition to each electron which is emitted, another particle which has no charge is 
also emitted, and if it has any mass at all, this mass must be extremely small. 
Later, this hypothetic particle was called the neutrino. Physicists for many years 
had no hope of ever detecting this particle experimentally because of its not being 
charged and its extremely small mass. Computations said that a nuclear reactor 
emits rays of neutrinos with a density of 1012 neutrinos, i.e., one thousand billions 
neutrinos per square meter and second. However, almost all of these neutrinos go 
unhindered through steel walls, even those with a thickness of ten meters. The 
probability that one neutrino gets stuck on its way is extremely small. In order to 
illustrate the situation, an expert in particle physics once said, “There are ten bil-
lion rain drops per second falling on our town, and one of these is pink. That’s the 
one we have to find.” 

It may be that you already know that there are particles called quarks. The 
physicists who first assumed the existence of such a type of particle had to choose 
a name for them, and they had all the freedom of choosing any name. The pro-
posal to call them quarks came from Murray Gell-Mann (1929- ). He took the 
word from the sentence, “Three quarks for Muster Mark!” which can be found in 
the short novel “Finnegan’s Wake” by the Irish author James Joyce. Actually, it is 
not the word quark, but the number 3 which has a meaningful relation to this new 
type of particle. The hypothesis that such particles might exist was a conclusion 
from the observation that the track of an electron, which passes very close by a 
proton, does not have exactly the shape it should have if the charge of the proton 
were concentrated in its center. The shape of the track could be explained by the 
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assumption that the charge of the proton is distributed asymmetrically, and this 
would be the case if the proton consisted of components having different charges. 
Today, the experts in particle physics are convinced that the proton is composed of 
three quarks, two of which have the same charge while the third one has a differ-
ent charge. Again, names had to be chosen for these different types of quarks, and, 
quite arbitrarily, they were called Up and Down. The charge of an Up is 2/3 of the 
charge of a proton, and the charge of a Down is 1/3 of the charge of an electron 
which corresponds to 1/3 of the opposite charge of a proton. Thus, the charge of a 
proton is the sum of the charges of two Ups and one Down: 2/3 + 2/3 - 1/3 = 1. By 
combining two Downs with one Up, a particle with zero charge is obtained, and 
this is the neutron: 2/3 - 1/3 -1/3 = 0. 

While two types of quarks, Up and Down, were sufficient to explain the exis-
tence and the behavior of the protons and the neutrons which are the components 
of the long-lived matter of our daily experiences, they could not explain the exis-
tence of certain extremely short-lived particles which occur during certain experi-
ments. The muon which I mentioned in the chapter on relativity theory and which 
has a life span of about two microseconds, is an example of such a short-lived 
particle. In order to explain such particles, the existence of two additional pairs of 
types of quarks was assumed, and these types got the names (Strange and Charm) 
and (Top and Bottom). These names, again, were chosen arbitrarily – this choice 
has no better justification than the choice of names like Tom and Jerry or Pretty 
and Ugly would have had. It has not yet been possible to isolate single quarks 
experimentally. They have been assumed to be components of higher particles, 
and it seems that the forces which keep them together in certain groups are so 
strong that there is no way of breaking up such a group. 

The question of which forces keep the components of structured particles to-
gether came up as soon as it became clear that the nucleus of an atom contains 
protons which have positive charges. Coulomb’s law says that a force of repulsion 
pushes particles apart if their charges have the same sign. Thus, an explanation had 
to be found concerning why the protons of an atom nucleus are not pushed apart. 
There must be an attracting force between them which is stronger than the repul-
sion force according to Coulomb’s law. In the field of particle physics, the concept 
of force has been replaced by the concept of interaction. This is the consequence of 
the idea that there are no static forces at all, and that forces occur only in the case of 
collisions. When I introduced the concept of force as one basic concept of New-
ton’s theory of mechanics, I first introduced the concept of momentum as the origi-
nal concept on which I then could establish the definition of force (see Fig. 7.3). In 
the view of elementary particle physics, however, the process of two particles being 
driven apart requires a third particle which moves back and forth between the two 
particles as a result of alternating collisions. Consequently, the process of two par-
ticles attracting each other would require that the third particle orbit the other two 
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particles and push them together from the outside, like a sheep dog running around 
the flock and pushing the sheep to the center. If, however, we neglect our experi-
ence from the macro world, we can also produce an attracting force by letting the 
third particle transmit a negative momentum at its collisions. 

Since about 1945, physicists distinguish four different kinds of interactions: (1) 
gravity which keeps the planets in their orbits and is the reason for our being at-
tracted towards the center of the earth; (2) electromagnetism which keeps an elec-
tron near the nucleus of its atom and is used in all kinds of technical systems such 
as electric motors; (3) strong nuclear interaction which makes the components of 
an atom nucleus stick together; (4) weak nuclear interaction which occurs in con-
nection with radioactivity. 

While Ernest Rutherford and his colleagues who clarified the structure of atoms 
could perform their experiments with rather simple set-ups, the experimental sys-
tems of particle physicists have become more and more complex. The biggest and 
most expensive laboratory in the world for research in particle physics is located 
near the Swiss city of Geneva. It was founded in 1952 and is called CERN, which 
is an abbreviation of the French name of the institution, Conseil Européen pour la 
Recherche Nucléaire. By the end of 2008, their biggest experimental set-up was 
completed, a circular tunnel with a diameter of about 10 kilometers. The equip-
ment in this tunnel makes it possible to accelerate charged particles until they have 
a speed which is very close to the speed of light. Finally, particles flying in oppo-
site directions collide and the tracks in the detector chamber provide information 
about the results of such collisions. The energy of a moving particle is not ex-
pressed in the usual unit Watt∗seconds (Ws), but in the standard unit electronVolts 
(eV) which is commonly used in elementary particle physics. One eV is the ki-
netic energy of an electron which has been accelerated by a potential difference of 
1 Volt. Modern particle accelerators make it possible for the colliding particles to 
have an energy in the range of 1012 eV. From the high exponent of this power of 
10, you might get the impression that this is an extremely high energy, but it cor-
responds only to approximately one sixth of the millionth part of one Ws. This is 
less than the kinetic energy of a flying mosquito. But since the mass of an electron 
is much, much less than the mass of a mosquito, the electron would have to move 
faster by a factor of over one billion in order to have the same kinetic energy as 
the mosquito. 



Chapter 11 
How the Difference between Particles and 
Waves Disappeared 

Before James Maxwell discovered that light is an electromagnetic wave, scientists 
discussed the question of whether or not light is a stream of particles, similar to 
those considered in the previous chapter. Such particles have a rest mass and can be 
accelerated. The Dutch Christiaan Huygens (1629-1695) argued that light couldn’t 
be a stream of particles since two beams of light, in contrast to beams of water, 
intersect without affecting each other. Many scientists invested a lot of thought into 
how to experimentally determine whether light is a wave or a stream of particles.  

How Waves Can Be Forced to Show Us That They Really Are 
Waves 
Waves and Oscil lations 

Finally, someone came up with the idea to check whether the kind of interference 
which had been observed in the case of intersecting water waves could also be 
produced with light. Fig. 11.1 illustrates this kind of interference. In this figure, 
the wave is coming from the top and hits a wall which has two openings. From 
each of these openings, a semicircular wave propagates, and these two waves 
interfere with each other. At points where a peak meets a peak and a trough meets 
a trough, the wave will be reinforced, and at the points where a peak meets a 
trough, the wave will be cancelled. The angles between the directions of rein-
forcement and cancellation are determined by the distance between the openings 
and the wave length, which is the distance between two consecutive peaks. Thus, 
the wave length can be determined from the distance between the openings and 
the angles between the directions of reinforcement and cancellation. While the 
wave length lies in the range of centimeters or meters in the case of water waves, 
it is less than a thousandth of a millimeter in the case of light waves. Although it is 
much easier to demonstrate wave interference in the case of water waves, it is also 
possible to produce it with light waves. But since interference occurs only if the 
wave has a well-defined wave length, no interference will be observed when 
sunlight is used in the experiment. Sunlight has no well-defined frequency but is 
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made up of a combination and superposition of waves having different frequen-
cies. The entire set of these frequencies is called the spectrum of sunlight. Each of 
these frequencies corresponds to a different color, and the colors of this spectrum 
become visible as rainbow colors when raindrops and sunlight come together in a 
certain combination, or when sunlight passes through a glass prism. The lower 
frequencies which correspond to longer wave lengths are at the red end of the 
rainbow, and the higher frequencies which correspond to shorter wave lengths are 
at the violet end.  

Cancellation

Reinforcement

Reinforcement

Reinforcement

Cancellation

 

Fig. 11.1     Wave interference following a pair of openings 

When he analyzed the spectrum of the sun with very precise optical instru-
ments, the German optician Josef von Fraunhofer (1787-1826) detected over 500 
dark lines which were irregularly distributed among the rainbow colors. Later, 
these lines were called Fraunhofer lines. Obviously, he had detected some missing 
frequencies which were either never emitted by the sun or were eliminated on the 
way from the sun to the earth. That it’s actually an elimination and how this hap-
pens will be discussed in the following paragraphs. 

The frequencies in light are so extremely high that we cannot really imagine 
them – or can you imagine something oscillating a million of billions times per 
second? To understand this, we will first think of oscillators having frequencies in 
the range of only a few cycles per second, and afterwards we shall transfer our 
findings formally to the unimaginable high frequencies of light. The system which 
is represented at the top of Fig. 11.2 contains a block which is sitting between two 
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springs, the left one being stronger than the right one by a factor of 11. The end of 
the spring at the right can be moved back and forth by a stimulator. We assume 
that the block is sitting on an oil film and that the friction between the block and 
the base plane can be neglected. The form of stimulation considered is represented 
by the curve s(t) in the two diagrams which also contain the corresponding re-
sponses r(t). I got the stimulation function s(t) by adding five cosine functions 
whose frequencies have the ratio 1:2:3:4:5. Since the stimulation should begin at 
s(0) = 0, but the cosine function is 1 at x = 0, I had to shift the curve f(2π∗t/T) to 
the right by 0.225 T. The lowest frequency contained in s(t) is 1/T, and this deter-
mines the cycle time T of the periodic curve. This curve doesn’t have the shape of 
a cosine function because of the higher frequencies 2/T through 5/T. The response 
curves r(t) will be discussed later. 
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Fig. 11.2     Fourier decomposition and resonance 
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In his book on the theory of heat [FOU], the French scientist Jean Baptiste Jo-
seph Fourier (1768-1830) presented a method for decomposing a given periodic 
function of arbitrary shape into a sum of sine and cosine functions. This method 
later was called the Fourier transformation. Without the knowledge that any peri-
odic function can be considered as a sum of weighted sine and cosine functions 
having the frequencies 1/T, 2/T, 3/T …, we could not explain the phenomenon of 
resonance. Each system which can behave as an oscillator has its resonant  
frequency which is also called its eigenfrequency. “Eigen” is a German word that 
means “own.”  It is universally used in mathematics and physics to indicate certain 
characteristics of systems. When a system which has a resonant frequency is 
brought into a state outside of its equilibrium state and then left alone, it will oscil-
late at its resonant frequency. The most illustrative occurrence of resonance I 
remember is related to a bus ride in my home city: each time the bus had to stop at 
a red traffic light, its windows began to rattle loudly. The periodic stimulation of 
the windows by the engine idling at a low speed obviously corresponded to the 
resonant frequency of the windows. Resonance effects can be so strong that they 
destroy a stimulated system. The system in Fig. 11.2 has a resonance frequency 
which is determined by the mass m of the block and the constant c which de-
scribes the strength of the springs. 

The upper diagram in Fig. 11.2 represents the behavior of the system when its 
resonance frequency is 3/T. Since this corresponds exactly to the frequency of one 
of the summands of the stimulation s(t), the system responds as if it were stimu-
lated only by this frequency and therefore it shows the effects of resonance, i.e., it 
begins to oscillate at the resonant frequency with increasing amplitude. If there 
were no friction, the amplitude would continue to grow until either the system 
would break apart or its structure would finally limit the amplitude. In this proc-
ess, the stimulator provides the energy which the oscillator absorbs. The lower 
diagram represents the situation where the resonance frequency is 6.32/T which 
does not correspond to any of the frequencies of the summands in the stimulation 
function s(t), or to any multiple of these frequencies. Therefore, the response r(t) 
doesn’t show any resonance effects, i.e., the amplitude of r(t) stays limited. 

The finding that an oscillator can withdraw energy from a stimulator helps us to 
explain the Fraunhofer lines which I mentioned above. There is no reason to as-
sume that the frequencies belonging to the Fraunhofer lines are not emitted by the 
sun. But since they are missing when sunlight reaches the earth, the corresponding 
energy must have been withdrawn on the way from the sun to the earth. This leads 
to the assumption that light passes through systems that have resonance frequen-
cies which correspond exactly to the frequencies of the Fraunhofer lines. It took 
about one hundred years after Fraunhofer’s discovery in 1814 before it became 
known what kind of systems caused these resonance effects.  
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Discovery of Q uanta 

How It became Necessary to Consider Rays of Light and Heat as 
Flying Packets of Energy 
Discovery of Q uanta 

As a child growing up in a small town, I loved to watch the blacksmith shoeing 
the horses of the farmers from the nearby villages of the Black Forest. Even today, 
I remember this blacksmith whenever I see a block of iron at red heat. Although 
mankind knew for thousands of years that iron at red heat emits light and heat, it 
was unknown what kind of rays these are until about 150 years ago. In Chapter 9, 
I told you the logic by which James Maxwell discovered that light is an electro-
magnetic wave. This led to the question of whether, perhaps, heat might also be 
such a kind of wave. Actually, the difference between a wave of light and a wave 
of heat lies only in the frequency which is higher in the case of light. Another 
question was how the intensity of the emitted waves depends on the temperature 
of the emitting body and the frequency of the wave. This intensity is defined as the 
energy which arrives at a square meter of an irradiated surface each second. In 
order to measure the dependency on the frequency, the spectrum of the rays had to 
be expanded beyond the spectrum we know for the rainbow. The experimental 
results are shown in Fig. 11.3. As long as the temperature is not high enough to 
make the bodies glow, the entire energy of the emitted radiation lies in the infrared 
section of the spectrum. Only after the bodies have been heated to higher tempera-
tures do they also emit energy in the visible part of the spectrum. With increasing 
temperature, the emitted light goes from faint red to more and more intense white. 

In 1900, the German physicist Max Planck (1858-1947) became interested in 
the curves concerning the radiation of heat shown in Fig. 11.3. Until then, no  
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Fig. 11.3     Radiation, heat and temperature 
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convincing explanation of the shape of these curves had been found. After having 
tried many dead ends, Mr. Planck finally brought himself to assume – “in an act of 
desperation” – that heat energy is not emitted continuously but as a stream of 
extremely small packets whose contained energy is proportional to a particular 
frequency. He had to choose a name for the proportional factor, and he chose the 
letter h as a reference to the German word “Hilfsgröße” which means “auxiliary 
quantity” in English. Later, h was interpreted as “action quantum,” and in honor of 
Max Planck it is called Planck’s constant. Its value is h = 6.626∗10-34 kg∗m2/s; its 
unit corresponds to the product of an energy with a time, and thus the unit can also 
be written as Ws2 (see Fig. 9.17). This is also the unit of an angular momentum 
(see Fig. 7.10). The packets of energy are called quantums, and in the special case 
of light they are called photons. In order to get an idea about how extremely small 
the energy of a quantum is, let’s consider a radiator in a living room at a tempera-
ture of about 40 °C. According to Fig. 11.3, this radiator emits packets of energy 
in the frequency interval 1013 Hz < f < 1014 Hz, and thus the energy of a packet in 
the middle of this interval is approximately h∗f = 3∗10-21 Ws. In order to get just 
one Wattsecond, we would need more than one hundred billions of billions of 
such packets.  

Planck’s theory conflicted heavily with classical physics where the energy of a 
wave depends on its amplitude, but not on its frequency. However, even before 
Planck, experimental results had been found which indicated a connection be-
tween the frequency and the energy of light. In 1839, Alexandre Edmond Bec-
querel, the father of Henri Becquerel who discovered the radioactivity of uranium, 
observed a phenomenon which later was called the photoelectric effect. In his 
experiments, a current began to flow through a vacuum as soon as the negative 
electrode was hit by rays of light. Today, we can say that the light “hammers out” 
the electrons from the metal of the electrode, but when the effect was detected in 
1839, the existence of electrons had not yet been discovered. Fifty years after the 
discovery of this effect, Wilhelm Hallwachs, an assistant of Heinrich Hertz, de-
termined experimentally how the kinetic energy of the electrons at the moment of 
their leaving the electrode depends on the frequency of the light which sets them 
free. This dependency was not explained until 1905. For his explanation, Albert 
Einstein got the Nobel Prize in 1921. The light arrives at the electrode as a stream 
of energy packets whose energy is proportional to their frequency according to the 
formula h∗f. When hitting the electrode, a packet cannot free an electron if its 
energy is below a certain threshold E0 which is specific to the material of the elec-
trode. The energy E0 is absorbed in the process of detaching the electron from the 
electrode. Thus, the kinetic energy of the free electron will correspond to the dif-
ference between the energy brought by the packet and the energy absorbed by the 
electrode, i.e., Ekin = h∗f – E0. 
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In his book [HUN] on the history of quantum theory, Friedrich Hund (1896-
1997) wrote: “Quantum theory is the description of the role which Planck’s con-
stant h plays in the universe.” After Max Planck had his ingenious idea in 1900, it 
took almost three decades until most of the questions concerning the role of h had 
been answered. But the answers refer to rather mysterious phenomena which con-
flict strongly with our common sense. Not only laymen in the area of physics, but 
even professional quantum physicists cannot really understand these phenomena, 
but have to accept them despite how mysterious they are. The existence of these 
phenomena has been confirmed experimentally many, many times, and never did 
the experimental results contradict the formulas which describe these phenomena. 

At first, the questions asked did not refer to mysterious phenomena, but to phe-
nomena which always had been thought to be quite natural. Heated metal blocks 
emit rays of light and heat, and Maxwell had concluded from his equations that 
these rays are electromagnetic waves. Thus, an interesting question was how the 
atoms of the heated material could emit electromagnetic waves. Since the year 
1896, when Heinrich Hertz (1857-1894) designed an experimental set-up for gen-
erating and receiving electromagnetic waves in his laboratory, it is well known 
how to build electromagnetic oscillators and antennas for emitting and receiving 
electromagnetic waves. Today, the earth is full of such devices – think of radio 
and television broadcasting, or cellular telephony. The wavelengths of these radio 
waves lie in the range of meters, centimeters or millimeters and are longer than the 
wave lengths of light and heat waves by a factor of 100,000. Radio waves are 
emitted when a current flows periodically to and from an antenna. The electrical 
energy which is carried away by the electromagnetic wave must be provided con-
tinuously from batteries or from a generator in a power plant. In the case of radiat-
ing atoms, the process of providing the energy for the electromagnetic waves 
emitted by the atoms certainly cannot be the same as in the case of radio or televi-
sion stations. The energy which an atom passes to the emitted electromagnetic 
wave can come only from heat, and heat is nothing but the kinetic energy of mov-
ing particles in the micro world. Thus, the assumption that atoms are able to trans-
form kinetic energy into electromagnetic energy was justified. The only way an 
atom can obtain energy from heat is by collisions. It seemed reasonable to assume 
that such a collision could cause a transition of the state of the atom from not 
being able to emit a wave to a state of potential radiation. An analogy to the atom 
would be a mechanical system containing a spring: the transition from the state 
where the spring is without tension to the state with tension requires mechanical 
work which is converted into the potential energy of the spring. The mechanical 
energy an atom receives in the process of a collision  becomes potential energy 
within the atom. And later, this potential energy is emitted in form of an electro-
magnetic wave carrying the energy h∗f. Experimental results which showed that 
specific atoms can emit waves only at very specific frequencies could now be 
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explained by the assumption that an atom can be only in states where the potential 
energy has very specific values. 

Since an atom certainly doesn’t contain any springs, there must be other meth-
ods of storage for the potential energy. It seemed reasonable to assume that the 
different states which correspond to different values of the potential energy are 
determined by different locations of the electrons in the electric field caused by 
the positive charge of the protons in the nucleus of the atom. However, this as-
sumption still doesn’t explain the fact that there are only very specific possible 
values for the potential energy. Before I can introduce the theory which explains 
this, some other considerations must first be presented. 

In the chapter on Einstein’s theory of relativity, you learned that there is a rela-
tion between mass and energy which is expressed by the formula E=m∗c2. Since 
this formula is believed to be universally valid, it can be applied to a single photon 
which has the energy h∗f, and from this it follows formally that a photon has a 
mass and a momentum (see Fig. 11.4). The speed of the photons is always equal to 
the speed of light c, and from this we can conclude that photons don’t have a rest 
mass. Here, you should take the time to look back at Fig. 8.10 which represents 
the deductions leading to the formula E=m∗c2. If you try to apply this formula to 
the case where the rest mass m0 is zero and the ratio v/c is 1 – the case that charac-
terizes the photon -, you cannot get a resulting energy, since the formula now 
contains the product zero times infinity. But since the energy of the photon is 
known to be h∗f, we can equate this formally with m∗c2.  The formula for the 
momentum refers to the wave length λ which is related to the frequency f and the 
propagation speed c by the equation f∗λ=c. This equation can be easily understood 
as follows: f corresponds to the number of wave lengths λ which are generated per 
second, and so f∗λ corresponds to the distance the wave propagates in one second, 
and this is equal to the speed c. 

Energy E
(Planck)

Energy E
(Einstein) Mass m Momentum p

= m c

h f m c2 h f
c2 =h f

c
h

 

Fig. 11.4     Mass and momentum of a photon 

In the area of mechanics, momentums become relevant mainly in the case of 
collisions. Since in Fig. 11.4 the photons have momentums assigned to them, the 
question arises about whether a photon can collide with another photon or with a 
particle which has a rest mass. As an example of such a particle, let’s consider an 
electron which has a rest mass of 9.1∗10-31 kilogram. A photon of visible light has 
an average frequency of about 5∗1014 Hertz from which, according to Fig. 11.4, it 
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follows that its mass is 4∗10-36 kilogram. Thus, the mass of a photon is less than 
the rest mass of an electron by a factor of about 200,000. Therefore, a photon 
colliding with an electron is similar to a tennis ball colliding with a locomotive. 
However, there are quantums having frequencies which are much higher than the 
frequency of light. In 1895, the German physicist Wilhelm Conrad Roentgen 
(1845-1923) discovered a new type of rays which he called X-rays in reference to 
the variable x which is used for unknowns in equations. At that time, he could not 
have known that these rays are the result of two different processes. Both proc-
esses are initiated by a beam of electrons hitting a metal electrode. The electrons 
are slowed down and stopped, and thus lose their kinetic energy which, partially 
or completely, is converted directly into electromagnetic radiation. But there is 
also the possibility that the kinetic energy of the electrons is consumed for transi-
tions of the energy states of the atoms of the electrode. These atoms originally are 
in a state of low energy and are taken into states of very high energy. They stay in 
the state of high energy for some time which is not defined precisely, but defined 
only by a probability distribution, and then they return to the state of low energy 
by emitting radiation at a frequency determined by the energy difference ΔE be-
tween the two states according to the equation f=ΔE/h. The frequencies of X-rays 
lie in the range of 5∗1017 Hz < f < 5∗1019 Hz which is higher than the average 
frequency of light by a factor of 1,000 to 100,000. These high frequencies corre-
spond to very small wave lengths and these are the reason for the fact that X-rays 
can pass through bodies which are impermeable to light. In 1923, the American 
physicist Arthur Holly Compton (1892-1962) confirmed experimentally that colli-
sions between X-quantums and electrons really do have the effects which corre-
spond to their masses and momentums given in Fig. 11.4. 

Clearly, our image of two colliding particles does not correspond to the idea that 
a photon is a wave. It is impossible to find out experimentally what a photon “looks 
like.” Some experimental results can be explained only by the assumption that the 
photons are particles, while other experimental results can be explained only by the 
assumption that a stream of a huge number of photons is a wave. As a compromise, 
we can assume that a single photon is a so-called wave packet which has a shape 
similar to the examples in Fig. 11.5. The energy contained in such a wave packet is 
proportional to its length and to the square of its amplitude. From this it follows 
that the two wave packets in the figure have the same energy, since 8∗12 = 32∗0.52. 

If someone who is not familiar with the findings of Mr. Fourier looks at the func-
tions in Fig. 11.5, he might conclude that these functions have a well-defined wave 
length λ from which the exact value of the frequency can be obtained by applying 
the equation f = c/λ. But this conclusion would not be correct. In my comments 
about Fig. 11.2, I referred to the so-called Fourier decomposition. Mr. Fourier found 
that any periodic function can be expressed as a sum of sine and cosine functions. 
Later, he even showed that non-periodic functions, if they satisfy certain conditions,  
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Fig. 11.5     Two wave packets with the same wave length and energy 

can be decomposed into sine and cosine functions. In this case, adding up the com-
ponents must be done by integration. From this it follows that only waves which can 
be described by the formula sin[2π∗(x/λ – f∗t)] have an exact frequency f; all other 
waves are compositions of more than one sine-wave, each with a different fre-
quency. Thus, the wave packets in Fig. 11.5 contain many frequencies.  

Each function which can be drawn in a rectangular area, as it is the case for the 
wave packets in Fig. 11.5, satisfies the condition for being representable in the 
form of a Fourier integral. Thus, I could have applied the Fourier transformation 
to the two wave packets in Fig. 11.5. But this would have required a rather exten-
sive computation which I wanted to avoid. Therefore I considered the simpler 
“wave packets” which are represented in the left half of Fig. 11.6. Each of these 
wave packets consists of an odd number of sine cycles. By placing the center of 
the coordinate system at the middle of the wave packets, I obtained functions 
which satisfy the condition F(-x) = -F(x). The Fourier transformation of such func-
tions requires only the computation of the sine-component S(f), since the associ-
ated cosine-component C(f) is identically zero. In the right section of the figure, 
you see the functions S(f) which correspond to the wave packets on the left side. 
The frequency f0 belongs to a wave having infinitely many sine cycles of length λ. 

While for each of the functions F(x) in Fig. 11.6 there exists a threshold Δx 
which determines an interval –Δx < x < Δx outside of which F(x) is zero, a corre-
sponding threshold Δf for the functions S(f) does not exist. Nevertheless, as a help-
ful approximation we can assume that for each of the functions S(f) a threshold Δf  
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Generally, the spectrum of a non-periodic function F(x) consists of a
sine component S(f) and a cosine component C(f). From these two 
spectrum functions, the original function F(x) is obtained as follows:

F(x) = C(f)  cos( 2 f x )S(f)  sin( 2 f x )  +
f = 0

df

The actual functions F(x) considered here have the property  F(-x) = - F(x).
For such functions C(f) is identical to zero,

and therefore only the function S(f) has to be considered.  
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Fig. 11.6     Segments of a sine function and the corresponding spectrum functions 

exists which determines an interval –Δf < f < Δf outside of which S(f) is zero. The 
values for Δf which we shall consider are indicated in the right half of Fig. 11.6. 
The ratio f0/Δf is equal to n which is the number of sine cycles in the corresponding 
wave packet. From this we can conclude that the frequency interval which must be 
considered is smaller when the wave packet contains more cycles. This means that 
considering the frequency f0 as the frequency of the wave packet is more justified 
when the packet contains more sine cycles – which is rather trivial. But this leads 
immediately to the nontrivial question of how many sine cycles are contained in the 
wave packet of a photon. I said earlier that we cannot find out experimentally what 
a photon looks like. When I introduced Fig. 11.5 and said that we might assume a 
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photon to be a wave packet as a compromise, I didn’t say how many cycles of 
length λ the photon might contain. In cases where it behaves as a particle, it seems 
to be concentrated locally, which means that it does not contain many cycles in 
these cases. In the other cases, however, where it behaves as a wave, it seems justi-
fied to assume that the photon is a wave packet with many cycles. Since we cannot 
have an image of something which sometimes behaves as a particle and sometimes 
as a wave, it would be unreasonable to expect that there is a well-defined number 
of cycles which we could assign to a photon. But from Fig. 11.6, at least we can 
deduce that the more we know about the location x of a photon, the less can we 
know about its momentum p, and vice versa. 

Fig. 11.7 shows how a relation between Δx and Δp can be obtained from the re-
lation between Δx and Δf in Fig. 11.6. This relation says that if the location of a 
photon is determined with an uncertainty Δx, its momentum can be determined at 
best with an uncertainty of Δp = h/(2∗Δx). This uncertainty relation was first de-
duced by the German physicist Werner Heisenberg (1901-1976) in 1927. The 
assumptions he made differ slightly from mine which lead to Fig. 11.6. Heisen-
berg got the value 4π for the denominator instead of our value of 2. 
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Fig. 11.7     Deducing the uncertainty relation of quantum mechanics 

In 1808, roughly one hundred years before the development of quantum theory 
began, the Frenchman Étienne Louis Malus (1775-1812), who had been a student 
of Mr. Fourier, observed a phenomenon which he could describe, but not explain. 
For the explanation, two concepts had to be found first, namely the concept of 
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electromagnetic waves which was introduced by James Maxwell in 1865, and the 
idea of photons being indivisible energy packets which was introduced by Max 
Planck in 1900. In his experiments, Monsieur Malus sent light through crystals of 
calcite and observed that the crystals had the effect of filters. By changing the 
angle between the light source and the crystal, the intensity of the light which 
passed could be varied between almost zero and full intensity. In today’s termi-
nology, we say that Mr. Malus discovered the polarization of light and the exis-
tence of polarizing filters. In Fig. 9.10 which accompanies my discussion of elec-
tromagnetic waves, you see that the electric field E and the magnetic field H are 
perpendicular both to each other and to the direction of the wave propagation. A 
polarizing filter has a preferred direction for the electric field, which means that 
light passes through the filter unhindered if the electric field has the preferred 
direction of the filter while light cannot pass at all if the direction of the electric 
field is perpendicular to the preferred direction. 

But instead of viewing light as an electromagnetic wave which more or less can 
pass through the filter, we can also view light as a stream of photons which hit the 
filter and can pass or not pass through the filter. In this view, for each photon it 
must be decided whether it is allowed to pass individually, or whether it is re-
pulsed. In the case that the light has the preferred direction of the filter, all photons 
will pass, and in the opposite case, all photons will be repulsed or blocked. In 
other cases in between these two extremes, light passes with reduced intensity 
which means that a certain percentage of the photons pass while all the others are 
repulsed. This can be captured mathematically by a probability of passing which 
depends on the angle between the field direction of the light and the preferred 
direction of the filter. Fig. 11.8 illustrates this dependency.  

You should realize that the outcome of polarizing filtering provides almost no 
information about the polarizing direction of a single photon which hits the filter. 
Even if its probability of passing is very low, it might pass, and if this possibility 
is very high, the photon still might be repulsed. But there is an interesting effect: 
each photon which succeeded in passing the filter interacted with the filter in such 
a way that afterwards it was polarized in the polarizing direction of the filter. This 
explains the results of the experiments which are illustrated in Fig. 11.9. In both 
the upper and lower sections of the figure, a chain of three filters is represented. 
The two chains differ only with respect to the ordering of the filters. In both ex-
periments, the number of photons which pass the first filter each second is chosen 
as a reference which corresponds to 100 %. All these photons passed the first filter 
and therefore are horizontally polarized. Since the polarizing direction of the sec-
ond filter in the lower chain is vertical, none of the arriving photons can pass. In the 
upper chain, however, the preference direction of the second filter is at 45 degrees, 
and therefore, half of the arriving photons will pass this filter. By interacting with  
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Fig. 11.8     Characteristic of a polarizing filter 

the filter, their polarization will be changed from horizontal to 45 degrees, and this 
makes it possible for half of those remaining to pass the third filter. 

The example in Fig. 11.9 is an example of a general law which says that all ex-
periments in the world of quantums change the original state of the system in such 
a way that it is impossible to deduce from the experimental results, what the pre-
vious state was. 
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Fig. 11.9     Alteration of polarization by filtering 

 



Quantum Theory 281
  

Q uantum Theory 

A Theory Which Could Be Confirmed, but Stayed Inconceivable 
Q uantum Theory 

In the table in Fig. 11.3, the mechanical quantities of mass and momentum were 
assigned to a photon. I am quite sure that, by looking at this table, I never would 
have come up with the idea to ask whether it might be meaningful to make an 
inverse assignment, i.e., to assign wave properties to particles having a rest mass. 
It was the French nobleman Louis Victor de Broglie (1892-1987) who, in 1923, 
proposed and wrote down such an assignment in his PhD thesis. Once he had 
come up with the idea, it was an absolutely formal act to make the assignments 
which are represented in Fig. 11.10. 

Momentum Kinetic energy

p = m v =m v2

2
p2

2 m
According to Newton

h h f

Properties of the
"matter wave"

Frequency

= h
p

f  =
p

2 m = v
2

f =
p2

2 m h

Wave length

Propagation speed

According to quantum 
theory (see Fig. 11.4)

 

Fig. 11.10     Particles considered as waves (non-relativistic view: v << c) 

We all know that paper accepts anything written on it, so that it can represent 
deep insights or pure nonsense. Therefore, de Broglie’s assignments immediately 
provoked experimental physicists to ask how they could confirm or disprove these 
ideas experimentally. It didn’t require a genius to come up with the idea that, if the 
assignments in Fig. 11.10 represented any truth concerning the physical world, it 
should be possible to produce interference phenomena with beams of particles 
with mass such as electrons. Look again at Fig. 11.1: as long as we imagine a real 
wave arriving at the wall with the two openings, we have no problems accepting 
the fact that, beyond the openings, there are directions of enhancement and others 
of cancellation. But it is absolutely impossible for us to imagine a process which 
produces the same enhancements and cancellations when, instead of a wave, a 
stream of particles hits the wall with the openings. Maybe you didn’t think about 
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this problem when you read about the photons in the paragraphs above. Our diffi-
culty in understanding interference phenomena produced by streams of particles is 
not restricted to particles which have a rest mass such as electrons and which we 
think of as being “real particles,” but this difficulty is the same for the case of the 
“particles of light” which we call photons. 

This problem can be illustrated by an example which has nothing at all to do 
with waves or particles hitting a wall with two openings. Imagine you were sitting 
high up in a football stadium and were looking down on the green playing field 
expecting the opening ceremony of a championship game. All of a sudden, a 
player dressed in white comes running onto the field and stops at a position which, 
to you, seems arbitrarily chosen. Soon afterwards, a second player dressed in 
white comes and stands at another seemingly arbitrary position. One after the 
other, more and more players come and place themselves somewhere on the field. 
At first the white pattern on the green field seems to look absolutely arbitrary, but 
then, more and more, your conviction grows that the pattern will converge to rep-
resent a word or a text. Finally, you actually can read the word “WELCOME”. 
Obviously, each player knew exactly where to place himself. 

Now we return to Fig. 11.1. In addition to what is shown in this figure, you 
have to assume that there is a screen placed at some distance beyond the wall. 
Now we imagine a sequence of particles reaching the wall, one after the other. We 
assume that our view is restricted in such a way that we cannot see the moving 
particles, but only the positions where the particles hit the screen after they suc-
cessfully passed the openings of the wall. This screen might be a film or a fluores-
cent plane. Some of the particles will hit the wall far away from its openings and 
therefore will be repulsed. But some will succeed in passing an opening and mark 
a position on the screen. This screen corresponds to the green field in the stadium 
on which we saw the players appear one after the other. Similar to the example 
where, at the beginning of the process, we saw only the development of a random 
pattern on the field, a random pattern will develop on the screen. But as time 
passes, this pattern will converge to the pattern which is determined by the direc-
tions of enhancements and cancellations according to the interference of a wave. 
Nobody can explain how this can happen; we have to accept it as a mystery, even 
though it can be reproduced in the laboratory as often as we want. In the case of 
the pattern produced by the white-dressed players on the green field, we of course 
know that each of these players had received clear directions about where to place 
himself. But in the case of the particles hitting the screen, it would be absurd to 
assume that they have a memory and know what they were told about their speci-
fied positions on the screen. This has remained a mystery, i.e., even the cleverest 
physicists haven’t found an explanation. They just accept the fact that such strange 
phenomena can be observed in the world of quantums. 
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In Fig. 11.10, you find not only the frequency f and the wave length λ which 
are assigned to a particle moving at the speed v, but you also find the propagation 
speed which follows from these assignments. Surprisingly, this speed is only half 
the speed v at which the particle moves. But since we have already learned that, 
when dealing with the quantum world, strange phenomena must be accepted with-
out explanation, we shall not ask how this difference between the speed of the 
particle and the speed of its associated wave might be interpreted.  

The fact that interference patterns can be produced by letting particles flow 
against a wall with two openings, quite naturally leads to the question about what 
kind of wave it might be which is assigned to the moving particles. From the inter-
ference pattern, the wave length λ can be deduced, but this does not provide any 
information about the kind of wave to which this wave length belongs. The final 
interpretation was introduced by the German physicist Max Born (1882-1970) 
who suggested that such a wave be viewed as a moving probability density distri-
bution with respect to the location of the particle. In the coming paragraphs, more 
details will be presented concerning the connection between particles and associ-
ated probability densities. 

Now we shall come back to the question of how it could be explained that spe-
cific atoms can emit radiation only at specific frequencies. The explanation will be 
based on certain probability densities. It was not a single person who found the 
solution to this problem, but four scientists contributed equally to this solution: the 
Dane Niels Bohr (1885-1962), the Austrian Erwin Schroedinger (1887-1961) and 
the two Germans Werner Heisenberg and Max Born. When I was looking through 
many different textbooks in order to see how the authors introduce quantum the-
ory to their students, I was very surprised to note that often this theory is intro-
duced as if it fell from heaven. It is true that the central formalism of quantum 
theory differs a lot from all the methods and laws which characterize classical 
physics. Therefore, it is no wonder that anyone who sees this formalism for the 
first time asks himself how the development of such a strange formalism could 
happen. It was postulated in the year 1927, and since then no experimental results 
have been found which contradict the predictions according to this formalism. It is 
impossible to deduce this formalism as the result of a sequence of logical steps. It 
could be found only because its originators were willing to leave all conventional 
paths and move like sleepwalkers in directions which they could not justify by 
logical reasoning. This is illustrated by the words which Heisenberg [HEI] wrote 
about Bohr: “We all could sense immediately that Bohr had obtained his results 
not from computations and proofs, but by dreaming and guessing, and that he now 
finds it difficult to defend them in front of the critical faculty of mathematics in 
Goettingen.” And Bohr himself once said: “We must be aware of the fact that in 
our field the natural language can be used only as it is similarly used in poetry, 
where the purpose is not the accurate description of facts, but the generation of 
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mental images and connections between ideas.” And in addition, Heisenberg said: 
“We got used to accepting that concepts and images which had been transferred 
from early physics to the area of atoms in this new context, were only half right 
and half wrong. Therefore, we could apply them without being guided by strict 
rules. This gave us the freedom to guess the correct mathematical relationships if 
they could not be deduced logically. Thus, we concentrated our efforts on guess-
ing adequate formulas which were similar to the formulas of the classical theory, 
and yet satisfied the new requirements.” I cited these statements from the origina-
tors of quantum theory in order to convince you that there is no simple way of 
introducing this theory. But while those originators were searching for an un-
known goal, I am in a better position since I already know the results they found. 
And therefore, I now can present a sequence of more or less intuitive steps which 
lead to this result. 

If a mathematician were asked if he could suggest a formalism by which a set 
of discrete values could be singled out from a continuum, he might refer to the 
concept of eigenvalues of matrices. In my comments concerning Fig. 11.2, I men-
tioned that the German word “eigen” indicates a kind of ownership. In the case of 
Fig. 11.2, it was a mechanical system which had a resonant frequency. By analyz-
ing the formalism of matrix multiplication (see Fig. 3.4), mathematicians discov-
ered a new kind of ownership. Until now, we used matrices here to capture the 
relation between two different coordinate systems, and we had no reason to con-
sider a matrix as an owner of something. But with the help of Fig. 11.11, I shall 
now show you that matrices actually own certain properties in the form of charac-
terizing numbers. Fig. 11.11 illustrates the fact that a matrix can be interpreted in 
two different ways. Either it is interpreted as a description of the relation between 
two different coordinate systems, or it is considered as an interpretation of a re-
versible mapping between the points of two spaces which have the same coordi-
nate system. 

In the upper left corner of Fig. 11.11, you see a plane the points of which are 
described by the coordinates (x1, y1). Six points of this plane have been selected to 
become the corners of the grey-shaded hexagon. The matrix underneath defines a 
mapping between the pairs of coordinates (x1, y1) and their partners (x2, y2). The 
figure shows that the pairs (x2, y2) can be interpreted in two different ways. They 
can be interpreted as alternative descriptions of the points of the original plane. In 
this case, only the coordinate system has been changed, but not the shape of the 
original hexagon as shown in the upper right corner of the figure. But the pairs (x2, 
y2) can also be interpreted as the coordinates of the points of a second plane which 
are mapping partners of the points of the original plane. In this case, the two 
planes have the same coordinate system assigned, but shapes such as the hexagon 
no longer remain the same as shown in the lower right corner of the figure. 
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Fig. 11.11     Background for introducing eigenvalues and eigenvectors 

Now you should focus on the rays which run from the center of the coordinate 
system to the corners of the hexagon. When the hexagon is transformed from its 
original symmetric shape to the asymmetrical shape, only two of the six rays in 
the new version still have the same directions as before, while the other four rays 
don’t point in the original directions any more. The directions which were not 
changed by the application of the matrix are called eigendirections of the matrix, 
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and the factors by which the lengths of the rays which point in these eigendirec-
tions differ from their original lengths, are called eigenfactors or eigenvalues. In 
the example in Fig. 11.11, the eigenvalues are 2 and 4 which is illustrated by the 
black dots on the corresponding rays. Each square-shaped matrix with n∗n entries 
has exactly n eigenvalues. Since the matrix in Fig. 11.11 has 2∗2=4 entries, it has 
2 eigenvalues. 

It is still too early for an explanation about the role of these eigenvalues in quan-
tum theory. Therefore, I kindly ask you to be patient and trust me that I shall guide 
you to a useful application. Just wait a little bit until we have finished all the pre-
liminaries. The next step on our way is represented in Fig. 11.12. Once we have 
found the eigendirections and eigenvalues, we can define a coordinate system 
whose axes point in the eigendirections. It is always possible to find a matrix which 
describes the relation between the original coordinate system (x1, y1) and this new 
one (xE, yE). Since this is only a transformation of the coordinate systems, the cor-
ner points of the hexagon in the original plane will not be mapped to new points, 
and therefore the original shape of the hexagon will not be changed. But as in 
Fig. 11.11, we now want to transform the shape of the hexagon. Once the shape has 
been described in the coordinate system whose axes point in the eigendirections, 
the transformation requires only the multiplication of the coordinates xE and yE by 
the corresponding eigenvalues. This corresponds to a multiplication of the vector 
(xE, yE) by a so-called diagonal matrix which has the eigenvalues in the positions 
on the main diagonal while the other positions contain zeros. The diagonal matrix 
which corresponds to our example is shown in the lower left corner of Fig. 11.12.  

Although I used an example from geometry in my introduction of the concept 
of eigendirections and eigenvalues, the application of these concepts in quantum 
theory is absolutely formal and does not refer to geometric shapes. The possibility 
of formalizing these concepts is based on the structure which is represented in Fig. 
11.13. Here, the definition of the concepts is given in the form of formulas only, 
without any reference to diagrams. The formulas refer to so-called eigenvectors 
which are vectors pointing in the eigendirections. 

I shall now apply the formalism to a case where there are no rays having ei-
gendirections and no eigenfactors describing ratios of real lengths. In the left part 
of Fig. 3.7, a matrix is presented which describes the relation between the two 
coordinate systems in Fig. 3.6. Since, in this case, the coordinate system (xr, yr) is 
obtained by rotating the coordinate system (xo, yo) counter-clockwise by the angle 
ϕ, there can’t be any ray which keeps its original direction. But even in this case, 
eigenvalues and eigendirections exist; only they can no longer be real (see Fig. 
11.14). No one can associate more meaning to these complex numbers beyond 
their being solutions of the equation in Fig. 11.13 with respect to the matrix from 
Fig. 3.7. It is an interesting experience that people such as me, after having applied 
mathematics intensively over a long period of time, get used to applying formulas  
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Fig. 11.12     Application of eigenvalues and eigenvectors 
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Fig. 11.13     Roles of eigenvalues and eigenvectors in matrix multiplication 
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in a strictly formal way without asking what their meaning might be beyond their 
arithmetic correctness. 

Eigenvalues(0.8 + 0.6i) (0.8 - 0.6i)and
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Fig. 11.14     A matrix with complex eigenvalues 

Now we have reached the point where we can apply the concepts of eigenval-
ues and eigenvectors to a real problem of quantum physics. The example which is 
well suited for demonstrating the application of this formalism is the polarizing 
filtering of Fig. 11.8. In quantum theory, the possible outcomes of an experiment 
are taken as eigenvalues. In my introduction to the concept of eigenvalues, I first 
had to choose a matrix, and then I could show that it has eigendirections and ei-
genfactors. Now it is the other way around, i.e., we are now given the eigenvalues 
and we ask for the matrix to which they belong. 

In the case of polarizing filtering, there are only two possible outcomes with re-
spect to a photon which hits the filter: either it passes or it is blocked. We are used 
to expressing these possible outcomes in natural language, but since this is not 
suitable for computations, we have to encode the outcomes by assigning numbers 
to them. Because of the symmetry of the situation where neither of the two out-
comes {passage, blockage} is preferred, it is reasonable to choose the numbers +1 
for passage and -1 for blockage (see Fig. 11.15). Once the eigenvalues are given, 
the diagonal matrix is defined and its eigendirections can be determined. Because 
of the fact that only the entries on the main diagonal have non-zero entries in a 
diagonal matrix, each eigenvector will also have only one non-zero component. 
The value of this non-zero component is not determined by the matrix, but can be 
chosen arbitrarily. The reason for choosing the value 1 comes from the require-
ment that each eigenvector can be interpreted as the representation of a probability 
distribution, and this requires that its length be 1. 

Fig. 11.15 shows that the corresponding matrix for a given set of eigenvalues is 
not yet completely determined. The entries of the matrix in the upper right corner 
depend on the value of the angle ϕ which can be chosen arbitrarily. The diagonal 
matrix in the upper left corner is obtained for ϕ=0. If two matrices differ, but have  
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Fig. 11.15     Application of eigenvalues to polarizing filtering 

the same eigenvalues, they must necessarily have different eigendirections. Thus, 
by choosing different values for the angle ϕ, we get different eigenvectors.  

By interpreting the eigenvalues as names for the potential outcomes of an ex-
periment in quantum physics, we decided not to be interested in the properties of 
an isolated particle, but only in the behavior of the particle in a specific experi-
mental set-up. In the example of polarizing filtering, the matrix and its eigenvalues 
and eigenvectors do not belong to the isolated photon, but to the system containing 
the photon and the filter. When the theory which says that it is nonsense to talk 
about the state of a particle as long as it is not observed was introduced, it caused a 
lot of discussions and objections within philosophical associations. But today, this 
theory with its strange consequences is as well-accepted as relativity theory. 

In quantum theory formulas, the state of a system of interest is represented by 
the Greek letter Ψ. Using a mathematical view, this state corresponds to a point in 
space to which the describing matrix refers. In the case of polarizing filtering, this 
space has two dimensions, and therefore, the state Ψ can be captured by two num-
bers a0 and b0. In Fig. 11.8, the dependency of the experimental outcome was 
given by the function (cos ϕ)2 which corresponds to a0

2 in Fig. 11.15.  As you may 
remember, sine and cosine are related by the equation (sin ϕ)2 + (cos ϕ)2 = 1 from 
which it follows that a0

2 + b0
2 = 1. As I mentioned above, the length of an eigen-

vector is chosen to be 1 because it is to be interpreted as a representation of a 
probability distribution. Now you see that the squares of the components of these 
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eigenvectors and the squares of the weight factors a0 and b0 represent the prob-
abilities of specific outcomes of the experiment in the set-up which is represented 
by the state Ψ. 

The grey-shaded structure in the left half of Fig. 11.15 can be transferred to any 
kind of quantum system. The diagonal matrix which contains the eigenvalues 
determines a set of eigenvectors, each of which has only one component with a 
non-zero value which is 1. The state Ψ of the system can always be represented as 
a sum of the weighted eigenvectors where the squares of the weights – in Fig. 
11.15 these are a0

2 and b0
2 – are the probabilities of the outcome which belongs to 

the weighted eigenvector.  
Fig. 11.16 illustrates the fact that this kind of state description, where the poten-

tial outcomes are subject of a probability distribution, can also be applied to  
systems which are not quantum systems at all. The system to which the state de-
scription in Fig. 11.16 belongs consists of a person holding a die which he will 
soon throw. The set of possible outcomes contains six elements, each of which 
will occur with a probability of 1/6. Since the probability is equal to the square of 
the weight of the corresponding eigenvector, the weights are 1/√6. 
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Fig. 11.16     Diagonal matrix and state representation for the throwing of dice 

Quantum physicists like to say that the state Ψ of a quantum system is formed 
as a superposition of different “pure states.” By this, they refer to the fact that Ψ 
can be represented as a sum of weighted eigenvectors, each of which corresponds 
to a potential outcome of the actual experiment. Sometimes, they even say that the 
system is “in different states at the same time.” But this is an inadequate descrip-
tion of a mathematical structure. As far as the system described in Fig. 11.16 is 
concerned, no one would say that the person who is prepared to throw dice is in 
six different states at the same time. An appropriate description would be to say 
that the system is in a state which will lead to one out of a given set of potential 
outcomes, each of which has a known probability.  

While in both the case of polarizing filtering and in the case of throwing dice the 
probability distribution does not change over time, such a change characterizes the 
system which Erwin Schroedinger dreamed up and which later became known as 
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“Schroedinger’s cat.” The idea is that a cat is enclosed in a box which also contains a 
mechanism for poisoning the cat. This poisoning mechanism is triggered by the po-
tential decay of a radioactive atom. The probability that the decay which has not yet 
occurred until the point in time t0 will occur within the interval t0 ≤ t < t0+Δt is given 
by the function p(Δt) = 1 – e-Δt/T. If the box is closed with the cat alive at the moment 
t0, and opened again after time Δt has passed, the probability for finding the cat still 
alive is 1 - p(Δt) =  e-Δt/T; as time Δt grows, this probability gets closer and closer to 
zero. Schroedinger invented this set-up for making clear that it would be nonsense to 
say the cat were in a superposition of two states. Either the cat is still alive or it is 
dead, but it can’t be in a state which is the sum of 40% being alive and 60% being 
dead. It would be wrong to consider the cat as the quantum system whose state can-
not be observed, but it is the indicator of the actual outcome of the experiment. The 
kernel of the quantum system is the radioactive atom whose state cannot be observed, 
but can be described only by a probability distribution. There are two potential out-
comes of the experiment, and their probabilities change over time. 

We are getting closer and closer to our goal of being able to explain why atoms 
can emit radiation only with frequencies which are specific for the material. The 
last preliminary step leads from eigenvectors to eigenfunctions. In Chapter 5 on 
probability theory, you learned the difference between probabilities and probabil-
ity densities, and this is also relevant in quantum theory. As long as the set of 
potential outcomes is finite, the system can be described by a square matrix whose 
dimension corresponds to the number of different potential outcomes, each of 
which has its specific probability. In the case of polarizing filtering, the set con-
tained only two elements, and therefore we had to consider only two discrete 
probabilities. Probability densities must be considered in all cases where the set of 
potential outcomes is infinite. Since there is no reason to assume that the number 
of energy states of the electrons in an atom is finite, we can no longer use square 
matrices to describe  the set of possible states. Fortunately, the great German 
mathematician David Hilbert (1862-1943) found a way to transfer eigenconcepts 
from the world of matrices to the world of functions. In this transfer, vectors be-
come functions and matrices become so-called operators.  

The left part of Fig. 11.17 illustrates a way of considering a vector as a discrete 
function. Each component F(j) of the six-dimensional vector is the result of a func-
tion whose argument is the position index j of the component. In the example given, 
the result of F(j) is 13 for j=5. In the case of continuous functions, the continuous 
variable x replaces the position index j. While the set of values for j is finite and 
therefore the function F(j) can be defined by listing its resulting values, the domain 
of x is an infinite set which makes it impossible to list all the resulting values of f(x). 
In this case, the function must be defined by an expression for computing its values. 
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Fig. 11.17     Possible way of relating a vector to a function 

Fig. 11.18 shows that it is possible to transfer the eigenconcepts from the world 
of matrices to the world of functions. Now the owners of the eigenvalues are no 
longer square matrices, but operators. The number of eigenvalues for a matrix is 
equal to the dimension of the matrix. In the case of polarizing filtering, the matrix 
is a 2x2-matrix which has two eigenvalues. In comparison, the set of eigenvalues 
for an operator is infinite. Such an operator must define a way for getting from a 
given argument function to a resulting function. These operators belong to the 
world of differential equations, and therefore it might be helpful for you to take 
another look at Fig. 3.17 which presents some examples of differential equations. 
Whenever a differential equation is of a particular type, it can be written in the so-
called operator representation. This is shown in Fig. 11.19. From the infinite set of 
eigenvalues, I selected two samples which are represented in Fig. 11.19 together 
with their corresponding eigenfunctions. 

Resulting vector =   Factor   Argument vectorSpecial case:

Matrix Argument vector = Resulting vector

Eigenvalue     Eigenvector

Operator(Argument function) = Resulting function

Resulting function = Factor   Argument function

Eigenvalue   Eigenfunction

Special case:

 

Fig. 11.18     Transferring eigenconcepts from vectors to functions 

You are now well-equipped to follow me on the path which will lead us to the 
energy operator of quantum mechanics. At the beginning of this path is the sine 
wave function which propagates with constant speed u in the direction x. Look 
again at Fig. 9.12 which represents a rope along which the drawn shape is running  
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The following differential equation determines a set of functions (x): 

Standard representation:

Operator representation:

This differential equation can alternatively be represented in the so-called 

The functions (x) are the eigenfunctions of this operator.

- a   = 0+  13 d4

dx4
d2

dx2

   =  a + 13 d4

dx4
d2

dx2

+ 13 d4

dx4
d2

dx2

sin(2x) + cos(3x)

e5x

Argument function
= Eigenfunction Operator

=

=

Eigen-
value

- 36

950

sin(2x) + cos(3x)

e5x

=

 

Fig. 11.19     Example of an operator with eigenvalues and eigenfunctions 

to the right with the constant speed v. If the wave, instead of having the shape 
shown in the figure, had the shape of a sine function, it could be described by the 
expression in the upper left corner of Fig. 11.20. The reason for choosing the letter 
u instead of the letter v for the propagation speed of the wave is that, in the case of 
de Broglie‘s matter waves according to Fig. 11.10, the speed of a particle and the 
speed of its corresponding wave differ by a factor of two. In Fig. 11.20, we are not 
considering a particle, but a wave and its speed. 
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Fig. 11.20     Part of the path from an arbitrary sine wave to the energy operator of quantum 
mechanics 
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The mathematical approach illustrated in Fig. 11.20 leads from the wave func-
tion in the upper left corner via four steps to the expression in the fourth row. The 
first step leads from the left side to the right side of the first row. In this step, the 
denominator λ is moved from outside of the brackets to the inside and, addition-
ally, Planck’s constant h is introduced as a factor inside the brackets and compen-
sated by the denominator outside. The second row is obtained by substitutions 
according to Fig. 11.10. The third row is reached by applying Euler’s equation 
which is represented in the bottom line of Fig. 3.22. Euler’s equation says that a 
sine function is equal to the imaginary part of an exponential function having an 
imaginary exponent. Since the exponent in the third row is a sum of two sum-
mands, the exponential function can be written as a product of two exponential 
functions, each having one of the original summands as its exponent. This is well 
known from the world of natural numbers: 2∗2∗2∗2∗2=25=23+2=23∗22. 

The expression Im[Ψ(x)∗Θ(t)] requires that the complex results of the functions 
Ψ and Θ must be first computed and then multiplied, and the imaginary part must 
be taken from their product. When I told you the story of the creation numbers, I 
illustrated the numbers as points in a plane (see Fig. 2.6). From this it followed 
that there are four different ways of assigning real numbers to a complex number: 
we can take its real part, its imaginary part, its angle or its radius. Each time when 
mathematicians leave the world of real numbers and functions and enter the world 
of complex numbers and functions – as we did in Fig. 11.20 – the computations 
with complex numbers can be performed without constantly indicating which path 
will be chosen for returning to the world of real numbers. Although computations 
in the world of complex numbers make sense only if the final results are inter-
preted in the world of real numbers, this does not require that the mapping be-
tween the two worlds is explicitly expressed in all equations. Therefore, we now 
omit the term “Im” in subsequent equations. And since we are interested only in 
systems whose energy does not change over time, we can also omit the function 
Θ(t) and restrict our consideration to the function Ψ(x) which is given in the grey 
shaded area in Fig. 11.20. This expression contains the momentum p as a factor of 
the exponent, but it does not contain any term which could be interpreted as an 
energy. According to Fig. 11.10, the kinetic energy is equal to p2/2m. Therefore, 
we now look for a way which leads from Ψ(x) to an expression which contains p2.  

Fig. 11.21 illustrates the fact that the derivatives of an exponential function are 
also exponential functions which have the same exponent as the original function. 
The derivatives differ only by a constant factor which comes from the exponent. 
Therefore, the second derivative of Ψ(x) which is given in the top row of  
Fig. 11.22 has p2 as a factor, and this makes it possible to rearrange the equation in 
such a way that instead of p2 it contains the variable Ekin for the kinetic energy. 
This corresponds to the path which leads from the first row to the third row in  
Fig. 11.22. Since it is our goal to get an operator representation with respect to the  
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Fig. 11.21     Derivatives of an exponential function 

function Ψ, we isolate the term Ekin∗Ψ and then substitute Ekin for the difference 
between the total energy Etotal and the potential energy Epot. The resulting equation 
is given in the middle part of the figure. From here, two simple rearrangements 
lead to the final representation in the bottom row which is an operator representa-
tion of the differential equation defining the function Ψ and where the total energy 
Etotal is the variable of the eigenvalues. The operator in the grey shaded area is 
called the energy operator of quantum mechanics. It was first developed by Erwin 
Schroedinger in 1926 and, in his honor, the equation in the bottom row of  
Fig. 11.22 is called “Schroedinger’s equation.” This equation contains the variable 
Epot for the potential energy. When the equation is applied to an actual system, this 
variable must be substituted using a specific function Epot(x) which captures the 
specific properties of the actual system. It is no wonder that the resulting eigen-
values depend strongly on this function. 

The computations for solving Schroedinger’s equation are rather simple if the 
potential energy is proportional to x2, and therefore both Schroedinger and 
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Fig. 11.22     Energy operator of quantum mechanics (“Schroedinger’s equation“) 
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Heisenberg chose this case when they first checked whether their theories provided 
reasonable results. Therefore, we now follow the steps of these great physicists and 
ask what the function Ψ(x) is in the case of Epot/E0 = (x/x0)

2. By selecting conven-
ient values for the reference constants E0 and x0, the operator from Fig. 11.22 can 
be simplified to the form in Fig. 11.23. Fortunately, the eigenvalues and eigenfunc-
tions of this operator have already been found by the French mathematician Charles 
Hermite (1822-1901), and thus they could be used by Schroedinger and Heisen-
berg. Each positive odd number is an eigenvalue of this operator. The eigenfunc-
tions for the first three eigenvalues from the infinite set of eigenvalues are given in 
Fig. 11.23. 
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Fig. 11.23     Eigenvalues and eigenfunctions of the energy operator for a particular  case 

How these eigenvalues and eigenfunctions are interpreted with respect to quantum 
physics shall now be explained by reference to Fig. 11.24. The left part of this figure 
applies to the simple mechanical oscillator which was introduced in Fig. 11.2. We 
assume that no stimulation occurs and the mass block oscillates with the eigenfre-
quency of the system. The oscillation is characterized by a periodic exchange be-
tween the kinetic energy of the moving block and the potential energy stored in the 
springs. The value of the potential energy is 0.5∗c∗x2, i.e., it is a function of the dis-
tance x between the actual location of the block and its equilibrium position. The 
sine-curve in the lower left corner of the figure illustrates how the location x changes 
over time. In its extreme left and right positions, the speed of the block is zero be-
cause the direction of the motion of the block changes at these positions. Here the 
kinetic energy is zero and the potential energy is equal to the total energy. The  
diagram above the sine-curve shows a parabola which represents the function  
Etotal (xextreme), i.e., it describes how the total energy depends upon the amplitude of the 
oscillation. The total energy which corresponds to the actual amplitude is marked by 
the horizontal line which connects two points of the parabola. The white area just 
above this horizontal line represents the probability density of the time dependent 
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location of the oscillating block. Each point on the horizontal line corresponds to a 
possible location, and so the set of possible locations is infinite. It is therefore impos-
sible to assign non-zero probabilities to specific points. Probabilities may be assigned 
only to intervals xleft ≤ x ≤ xright, and the probability of the block actually being at a 
position in such an interval corresponds to the white area above the interval. Thus, the 
whole area must have the value 1, because the block must always be somewhere on 
the horizontal line. The probability of the block being in the middle zone is the lowest 
since there it has its maximum speed and doesn’t stay long. The zones with the high-
est probability are those in the neighborhood of the extreme positions because there 
the speed of the block is low and the block spends more time. 

Position x

E1

E3

There is no well-defined 
relation between

the position and the time.

Time t

Conventional oscillator Quantum "oscillator"

Total energy 
or, respectively,
densitiy of the probability
of being at a certain position

 

Fig. 11.24     Conventional oscillator and its counterpart in the quantum world 

Now we leave the left side of Fig. 11.24 and look at its right side. The diagram 
represents the results which are given in Fig. 11.23. The energies considered here 
can be thought to belong to an electron which moves within an electric field. The 
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potential energy is assumed to have the same quadratic dependency from the loca-
tion x as in the case of the mechanical oscillator on the left side of the figure. The 
question of where this electric field might come from is not considered. It cannot 
be the field which is caused by the positive charge of the protons in the nucleus of 
an atom since, in this case, the potential energy is not proportional to x2 but de-
pends on (-1/x). This dependency had already been given in the case of a planet 
which orbits the sun (see Fig. 7.6).  

The most conspicuous difference between the left and the right sides of  
Fig. 11.24 is in the fact that the sine function on the left side, which describes how 
the position of the block changes over time, has no corresponding partner function 
on the right side. On the left side, we could begin with the sine function, and from 
this we could deduce the probability density function above. On the right side, we 
have only the probability density functions which we obtained from Fig. 11.23. 
The two functions belong to the first two eigenvalues of the given energy opera-
tor; however, they are not the original eigenfunctions from Fig. 11.23. In my 
comment about Fig. 11.15 which represents the eigenvalues and eigenvectors for 
the case of polarizing filtering, I pointed out that the probabilities are not equal to 
the weights and components of the eigenvectors, but to the squares of these 
weights, and that therefore the components had to be chosen such that the sum of 
their squares is equal to one. These conditions must now be applied correspond-
ingly to the eigenfunctions which means that a probability density function is 
obtained by squaring the corresponding eigenfunction and multiplying it by a 
factor such that the white area under the curve has the value 1. 

On the left side, there are no restrictions concerning the amplitude of the oscil-
lator; from this it follows that the total energy can have any value including zero. 
In the case of the quantum system on the right side, however, the total energy can 
have only values which correspond to the eigenvalues of the energy operator. In 
particular, it cannot have the value zero, a fact which could also have been de-
duced from the uncertainty relation. If the total energy were zero, the momentum 
would also be zero, and consequently, the product Δx∗Δp of the uncertainties of 
the location and the momentum would be zero. This would contradict the uncer-
tainty relation Δx∗Δp ≥ h/2 which was deduced in Fig. 11.7. 

The probability density functions on the right side of Fig. 11.24 have a property 
which we have to accept as a formal result but which is opposite of common 
sense. In the case of the mechanical oscillator, it would be nonsense to assume that 
the block’s position could be beyond the limit which is given by the parabola. This 
parabola represents the maximum potential energy which corresponds to the am-
plitudes where the block changes the direction of its motion. Therefore, the prob-
ability density function on the left side does not reach beyond the parabola. In the 
case of the quantum system, however, the probability density functions have non-
zero values outside of the limiting parabola. This forces us to assume that,  
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although it is with a rather low probability, an electron can have a potential energy 
which is greater than that given by the parabola. Since the total energy, the sum of 
the kinetic and the potential energy, corresponds to the eigenvalue of the energy 
operator, its value must be the same in all situations on the horizontal line inside 
and outside of the parabola. The kinetic energy is zero in the situations which 
correspond to the two points on the parabola, is positive in the situations between 
these points, and it must be negative outside of the parabola. We have no idea how 
to imagine a negative kinetic energy – but we have to accept it as one more of 
those mysterious results of quantum theory.  

Although the curves in the diagram on the right side of Fig. 11.24 do not apply 
to an electron in the electric field of the protons of an atom, two of the results can 
nevertheless be transferred to the situations of the electrons of an atom. Each elec-
tron can have only a total energy which corresponds to an eigenvalue of Schroed-
inger’s energy operator. An electron can have a negative kinetic energy for an 
extremely short time duration and with extremely low probability. 

Whenever an electron “jumps” from its initial energy level to a different one, 
this corresponds to a change of the energy state of the atom. If the electron falls 
from a higher level to a lower one, the atom emits a quantum of radiation; in the 
opposite case, the atom must receive the corresponding amount of energy from its 
environment. The distance of the energy jump of an electron is not restricted to the 
distance between two neighboring levels, i.e., a jump may go from the initial level 
to any other level. 

My deduction and interpretation of Schroedinger’s energy operator were re-
stricted to the one-dimensional case, since I considered only the location coordi-
nate x and omitted the other two coordinates y and z.  But physics always occurs 
in the three-dimensional space, and therefore two more eigenvalues will exist. 
However, a Cartesian coordinate system (x, y, z) with three axes perpendicular to 
each other is not the best way to capture the space around the nucleus of an atom. 
A more appropriate coordinate system for this case is the so-called spherical co-
ordinate system which specifies a point by its distance from the center of a sphere 
and by two angles. Think of the earth where each point on the surface has ap-
proximately the same distance from the center and is determined by the two angles 
of longitude and latitude. The distribution of the probability density of the location 
of an electron corresponding to the three coordinates must be imagined as a three-
dimensional cloud whose position and shape is determined by corresponding ei-
genfunctions. The shapes of the probability density curves in Fig. 11.24 justify the 
assumption that the probability density cloud will be like a spherical shell around 
the nucleus of the atom only in the case of the lowest energy level. This shell 
depends only on the distance from the center, but not on the two angles. In the 
case of higher energy levels, there will be angles where the probability density has 
high values, and other angles where the value is low or even zero.  
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Certain experimental results indicated that even three eigenvalues were not 
enough for completely capturing the state of an electron in an atom. There is an 
analogy between an electron moving around the nucleus of an atom, and the earth 
orbiting the sun. The actual astronomical state of the earth is not completely de-
scribed by the knowledge of where the center of the earth is located in relation to 
the sun, since we also need to know the value of the angle of rotation of the earth 
about its axis as additional information. Physicists introduced a property of the 
electron which they called spin which corresponds to the rotation of the earth 
about its axis. In classical mechanics, the term spin stands for the angular momen-
tum which was introduced in Fig. 7.8 in order to explain the phenomena shown in 
Fig. 7.7. In the case of a wheel of a bicycle or of a car, we can easily see how fast 
and in which direction it is spinning, but there are no direct means for detecting 
whether an electron is spinning. An electron carries an electrical charge and, ac-
cording to the findings of Michael Faraday and James Maxwell, a spinning charge 
must behave like a bar magnet. If a bar magnet is moved through a magnetic field, 
certain forces, whose directions depend on the direction of the bar, will act on it. 
Using very sophisticated equipment, today’s physicists can actually detect that 
there is something which might be called the spin of an electron. From mechanics 
we know that ordinary angular momentum is a directed quantity which, in a Carte-
sian coordinate system, has three components, one for each of the three coordi-
nates x, y and z. Rather mysteriously, the results of measuring the components of 
the spin of an electron always have values from the binary set {-h/4π, +h/4π}, 
regardless of the directions of the coordinate axes. I mentioned previously that the 
unit of Planck’s constant h is that of an angular momentum. The spin of other 
particles such as protons and neutrons was detected and measured later, after the 
assumption of electrons having a spin was confirmed. The fact that the neutron, 
which has no electrical charge, also has a spin proves that spin does not require an 
electrical charge. Systems which are composed of such particles, i.e., atoms and 
molecules, also have spins. The possible values for the results of measuring a 
component of such a spin are always integer multiples of the two possible values 
for the spin of a single electron. 

After the discovery that particles like electrons and atoms have a spin, the hy-
pothesis that a photon also has a spin had to be checked. In experiments where 
light was absorbed by free atoms, this hypothesis could be confirmed: each time a 
photon was absorbed by an atom, the spin of the atom changed, and the value of 
the difference was h/2π. It is a basic law of mechanics that a collision between two 
bodies or particles does not change the sum of the angular momentums. Conse-
quently, when a collision changes an atom’s spin by h/2π, the spin of the partner 
in the collision must change by the opposite amount, -h/2π. If the spin of this 
partner can have only one of the two values from the set {-h/4π, +h/4π}, a change 
of h/2π corresponds to a reversal of the spin’s direction.  
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The simplest case for applying Schroedinger’s energy operator is when the 
atom contains only one electron. This applies only to the hydrogen atom, since the 
atoms of all other chemical elements have more than one electron. These multiple 
electrons have interactions that make it very difficult if not impossible to solve 
Schroedinger’s equation. Each of these electrons has a specific state within the 
atom, and this state is described by four eigenvalues, the so-called quantum  
numbers. No two electrons can have the same state, i.e., they must differ with 
respect to the value of at least one of the four quantum numbers. 

An isolated atom is not nearly as relevant as materials which consist of many 
atoms. In the simplest case, all atoms of the material are of the same kind. But 
much more interesting are materials or composed structures which contain differ-
ent atoms. Once the theory had been developed which described the configura-
tions of the electrons in a single atom, it became possible to explain experimental 
results which could not be understood previously. Think of Mr. Volta’s battery 
which he invented more than one hundred years before Heisenberg and Schroed-
inger thought to use eigenvalues for explaining the energy states of electrons in 
atoms. Now such batteries could be explained by the fact that the energy levels of 
electrons in atoms of different elements are not the same. Even the simple  
question about why metals are good conductors of electric current while other 
materials are bad conductors or insulators cannot be answered without reference to 
quantum theory. This also applies to so-called superconductivity which was dis-
covered by the Dutch Heike Kamerlingh Onnes in 1911. He observed that the 
electric resistance of mercury dropped to zero or an extremely small value which 
could not be measured whenever the temperature of the metal was decreased be-
low 4.2 degrees Kelvin. Since then, many other materials were found whose elec-
trical resistance gets extremely small when the temperature drops below a certain 
threshold value which is specific to the material. 

Knowledge about the probability densities which describe the local distribution 
of electrons with respect to their actual energy levels provided the basis for an 
explanation of valencies which were introduced by chemists for explaining the 
specific combinations of atoms in molecules. Now the molecules could be consid-
ered as three-dimensional structures where the atoms are connected by bridges of 
different strengths. Steel is a material which consists mainly of iron and a small 
fraction of carbon, where the atoms are not bound in molecules, but nevertheless 
are located in a regular spatial structure. The specific properties of steel could now 
be explained as a consequence of the bridges between neighboring atoms. It also 
became possible to explain how these properties could be modified by adding low 
percentages of manganese, chromium or nickel. 

The new insight into the structure of atoms motivated physicists to experiment 
with structures similar to those of Alessandro Volta. He built a sandwich consist-
ing of three layers of different materials, and found that this structure behaved as a 
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voltage source. Alternative sandwiches can be obtained not only by modifying the 
materials of the layers, but also by modifying their thicknesses. Today, it is possi-
ble to implement layers with thicknesses less than one-thousandth of a millimeter. 
It is primarily the electrical resistance of such sandwiches which is measured. In 
general, it is quite difficult to predict the properties of such sandwiches by deduc-
tion from theory, but once experimental results are known, the properties can be 
explained by reference to the theory. Two types of sandwiches consisting of  
so-called semiconductor material are of extreme importance, both in information 
electronics and in power electronics. Semiconductors are materials with a low 
conductivity which depends strongly on temperature and whose conductivity  
can be increased by inserting atoms of appropriate other elements. Today’s  
semiconductor technology is based almost exclusively on silicon. The two semi-
conductor sandwiches which are fundamental to modern electronics are the diode 
which is a two-layer sandwich, and the transistor which is a three-layer sandwich. 
The diode is an “electric valve” which is open only for a current flowing in one 
direction and is closed for the opposite direction. A transistor can be considered as 
a pair of diodes sharing one electrode. The current flowing through one of these 
two diodes controls the current through the other diode; the ratio between the 
controlling current and the controlled current is a constant amplification factor. 
While electron tubes were used to amplify the audio signals in the sound systems 
of your grandparents, no electron tubes can be found anymore in the correspond-
ing systems of today – all amplification is now done using transistors.  

Even today, experiments with sandwiches can provide surprising results. This 
can be seen from the fact that in 2007 the Nobel Prize in physics was awarded on 
the basis of a sandwich-effect. The German physicist Peter Gruenberg (1928--) 
and his French colleague Albert Fert (1938--) had done experiments with sand-
wiches which consisted of many extremely thin layers of different metals. Each 
layer had a thickness of only approximately one-millionth of a millimeter. They 
found that the electrical resistance of such sandwiches could be varied by extreme 
amounts using rather small magnetic fields. This effect made it possible to signifi-
cantly increase the density of the digital information stored on storage devices 
such as disks and memory cards. 
Entangle ment of Q uanta 

Phenomena Which Even Einstein Thought to Be Impossible 
Entangle ment of Q uanta 

Everything I told you in the previous sections about the granularity of matter and 
energy had a significant influence on the progress of technological developments, 
especially in the areas of materials and microelectronics. Now, however, before 
closing this chapter, I shall describe certain theories and corresponding experi-
mental results which have not yet affected today’s world of technology. Neverthe-
less, I include them here because they are said to bring revolutionary technological 
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progress once this field has matured. Quantum physicists claim that the findings in 
this field will make it possible to build failure-free communication systems and 
computers whose speed and storage capacity will exceed the capabilities of to-
day’s computers by factors of one million or more. Computational results of the 
underlying theories had already been found when Albert Einstein was alive, and to 
him these results seemed absurd. Therefore he was convinced that they never 
could be confirmed experimentally. I shall now try to represent these absurdities. 

The central concept in this area is the so-called entanglement of quantum states 
which can best be introduced and explained by presenting an example of a so-
called quantum bit. The word “bit” was created by information technologists and 
is the result of combining the two words binary and digit. A bit characterizes a 
situation which can result in only one out of two possible outcomes. A simple 
example of a bit is a light switch which can be only in the states ON or OFF. 
When the term bit is used in the quantum world, the examples we may think of are 
the spin of an electron or the relation between a photon and a polarizing filter. In 
these examples, the corresponding experiments can have only one out of two pos-
sible results: in the case of the electron it is the sign of the spin; and in the case of 
the photon it is the decision about its passing or not passing through the filter. 

Although the same word “bit” is used in both areas, there is a significant differ-
ence between a bit in conventional information technology and in the world of 
quantum systems. In conventional information technology, the state of a system 
can be observed and the result of the observation is equal to the state. Think of the 
light switch whose state is either ON or OFF. Which of the two it actually is in can 
be seen just by looking at the switch. In contrast to this, the state of a system in the 
quantum world cannot be observed at all since the system interacts with the obser-
vation equipment. The only information which can be obtained is the result of this 
interaction which changes the state. The relation between the state and the result 
of an observation can be described only by a probability distribution. This distri-
bution can be imagined as a point on the surface of a sphere in a space whose 
dimensions correspond to the different possible outcomes of an observation (see 
Fig.11.25). This sphere has radius one because then the sum of the squares of the 
coordinates will have the value 1 according to the generalized law of Pythagoras 
(see Fig. 4.14). Consequently, the square xi

2 of a coordinate will correspond to the 
probability that the observation will provide the result which is associated with 
this coordinate.  

Now let’s look again at figures 11.8 and 11.15 which I introduced in order to 
explain the phenomenon of polarizing filtering. As an example of entangled states, 
I now use two such systems, each consisting of a photon and an associated filter. 
In this case, there are four possible results of an observation, since the two possi-
ble results from each of the two photons must be combined. In my comment about 
Fig. 11.15, I pointed out that the possible results of an observation must be 
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Fig. 11.25     Differences between conventional binary memory cells and quantum bits 

encoded as numbers in order to perform matrix computations. The observation 
that the photon passed the filter was encoded with the number +1, and the opposite 
case that the photon was blocked by the filter was encoded with the number -1. 
Now, we have two photons and four possible results of an observation to which 
we must assign four numbers. In principle, we have great freedom in choosing an 
assignment, but not all assignments are equally suitable. The interpretation of the 
numbers should be as easy as possible, i.e., it should be possible to come from the 
given number to the corresponding observation result by simple logical reasoning. 
The right side of the table in Fig. 11.26 represents a method for encoding the 2n 
observation results of a system of n quantum bits; the left part shows the actual 
code numbers for n=3, where the letters P and B stand for passage and blockade. 

In the case of a system of two polarized photons, the set of observation results 
is {BB, BP, PB, PP} which is encoded as {-3, -1, +1, +3}. The actual state of the 
system is considered to be a point on the surface of a four-dimensional sphere 
having radius 1. The values of its coordinates determine whether a point repre-
sents an entangled or a non-entangled state. In Fig. 11.27, two state vectors are 
represented whose coordinates are determined by the values of the two angles ϕ1 
and ϕ2. Recognizing the significant difference between these two vectors requires 
that you remember the relation sin2(ϕ) + cos2(ϕ) = 1 which follows from the defi-
nitions of the sine and cosine functions in Fig. 2.13, together with the law of 
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Fig. 11.26     Coding possible observable situations of a system 

Pythagoras. Because of the fact that the squares of the vector components repre-
sent probabilities, their sum must be 1. This requirement leads to the common fac-
tor 1/√2 in front of the brackets of the lower vector, since here the sum of the 
squared components within the brackets is 2. In the case of the non-entangled state 
which is described by the upper vector, the probabilities for photon 1 passing or not 
passing its filter are cos2(ϕ1) and sin2(ϕ1), and the corresponding probabilities for  
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Fig. 11.27     State vectors of an entangled and a non-entangled pair of photons 
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photon 2 are cos2(ϕ2) and sin2(ϕ2). This means that the decision about whether 
photon 1 passes its filter is completely independent from the corresponding deci-
sion concerning photon 2, and vice-versa. Such independence does not exist in the 
case of the entangled state, since here all sine and cosine functions have the same 
argument, namely (ϕ1-ϕ2). Consequently, changing the value of one of the angles 
will always have an effect on the probabilities concerning both photons.  

The difference between non-entanglement and entanglement becomes clear by 
comparing the second row with the third row of the table in Fig. 11.28. All entries 
in the cells of this table are products of two factors. Each factor of the products in 
the cells of the second row represents a probability concerning one of the two 
photons, and this reflects the fact that the decisions concerning the two photons 
are independent of each other. In the third row, however, one of the two factors of 
the products in the cells always is either pE or pU, with E standing for “equal” and 
U standing for “unequal.” This reflects the fact that in this state the two decisions 
concerning the two photons are not independent of each other. The two decisions 
are equal, i.e., both photons pass or both are blocked, or they are different, i.e., one 
photon passes and the other one is blocked. Therefore, the sum of pE and pU must 
be one. The entries in the third row refer to the probabilities of photon 1, and the 
entries in the fourth row refer to the probabilities of photon 2. But in each column, 
the entries in the two grey shaded cells represent the same value, and from this it 
follows that each of the two photons passes its filter with a probability of 50 %. 

We now consider the case where the two angles ϕ1 and ϕ2 are equal. From (ϕ1-
ϕ2) = 0, it follows that pE=1 and pU=0 which means the decisions concerning the 
two photons will always be the same. Quantum physicists say that this does apply 
even to the case where the two photons have been flying in opposite directions for 
some time before reaching their filters. You should remember the fact that the 
decision about whether a photon passes its filter is still completely undetermined,  
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Fig. 11.28     Restrictions on probability for an entangled pair 
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and occurs only with a probability of 50 %. But in contrast to the non-entangled 
case, the random decisions occurring at the two filters are now strongly coupled in 
such a way that either both photons pass or both are blocked. This immediately 
leads to the question of how one of the partner systems, consisting of a photon and 
its filter, could know what happens at the same time at the site of its partner. 
Wouldn’t this constitute a case of information transmission with a speed higher 
than the speed of light, maybe even with infinite speed? Although the phenome-
non is rather mysterious, it should not be considered a case of information trans-
mission since this would require that the information to be transmitted could be 
chosen arbitrarily by the sender. In the case of the entangled photons, no one on 
either side has any way to prescribe which information should be transmitted, i.e., 
there is no way to “tell the photons” what they should do. 

Ideas have been developed about how entanglement could be used to build safe 
communication channels where it is possible to recognize any reading or tamper-
ing of the transmitted information by a third party. While two entangled quantum 
bits are sufficient for building such communication channels, many more bits are 
required if entanglement is to be used for implementing new concepts of informa-
tion processing. The vision of being able to build computers for solving problems 
which are much too complex for today’s systems is based on the difference be-
tween conventional bits and quantum bits (see Fig. 11.25). The states of a system 
containing n conventional bits correspond to the corners of an n-dimensional cube. 
Thus, a transition from one state to another corresponds to a jump from one corner 
to another. In contrast, the states of a system containing n quantum bits correspond 
to points on the surface of a sphere in a 2n-dimensional space. Here, the state can 
be changed continuously. 

I shall not continue this subject any further since it is still a research area today. 
Optimists predict that in a few years, results will be provided which can be applied 
for building marketable systems. Pessimists, however, say that it isn’t at all certain 
whether this field will ever provide useful applications. At the very least, entan-
glement is no longer a purely theoretical concept. Since 1995, quantum physicists 
successfully performed experiments entangling more than two bits. But these 
entangled states are extremely sensitive and the slightest interaction with the envi-
ronment destroys the entanglement. At any rate, you now have an idea of what is 
meant when you hear or read the terms quantum bit or quantum computing. 



Chapter 12 
How “Recipes” in the Cells of Living 
Organisms Were Found and Can Be 
Rewritten 

There is such a plethora of questions concerning life that, of course, the subset I 
shall consider in this chapter must be relatively small. In particular, I shall not 
consider Darwin's theory of evolution because it has not contributed to the pro-
gress of technology, i.e., there is no technological product or process whose de-
signers or implementers have used any findings from the theory of evolution. In 
his book "On the Living" [CH 2] the biochemist Erwin Chargaff (1905-2002) 
wrote that it is impossible to give a satisfying and final definition for the term 
“life.” He was convinced that whatever definition is given, some facts will exist 
which do not fit it. But this didn't bother him, since he didn't see any need for such 
a definition. However, he got upset whenever someone behaved as if he knew 
exactly what life is. In Chargaff's texts, I also found the statement that “life can 
never be the subject of any research, because scientists can look only at this or that 
living object.” Since I share his opinion, the following paragraphs will not be 
about life, but only about the living. 

How Organization and Life Are Connected 
Organization and Life 

Although living can certainly be the subject of research, this research must be 
rather restricted by narrow and insurmountable borders. This is a consequence of 
the fact that any living object is an extremely complex system which allows only 
very restricted experimental interventions. Therefore, for a long time, no really 
essential experimental findings could be obtained. The findings obtained referred to 
objects which once had been living, but could be analyzed only after death. It is 
quite obvious that all of the methods of physics and chemistry can be applied in 
order to obtain scientific insights about something that once had been living. But it 
is doubtful whether these findings tell us anything about life. At least there are 
opposing opinions concerning this question, and no representative of either side has 
sufficiently strong arguments which could convince the other side of being wrong. 
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Another reason for the restriction of research concerning living creatures is the 
difference between subjective experiences and objective results of observations. In 
particular, I am considering the difference between the results of observing chemi-
cal and physical processes in the brain and the nervous system on one side, and the 
subjective experience of the person who is subject to those observations on the 
other side. Today, there are many methods for observing the processes taking 
place in the brains of living animals and persons. A primitive method consists of 
inserting electrodes into the brain and recording the voltages between them. More 
advanced methods which have been applied to build so-called tomographs are 
based on quantum theory. 

The term “tomography” (from the Greek words tomos for layer and graphein 
for writing) stands for generating images by evaluating the intensity of radiation 
which has passed through an inhomogeneous body. The inhomogeneity refers to 
the spatial distribution of a physical quantity such as permeability for X-rays or 
the magnetic spin resonance of atoms. What is actually measured is the intensity 
of a signal whose actual value results from an integration along a straight line 
leading through the body. By stepwise changing the direction of the observation 
within a constant plane, a set of many measured values is obtained from which the 
spatial distribution of the quantity of interest can be computed, and finally made 
visible as an image. The reconstruction of the spatial distribution from the meas-
ured values requires a lot of computing power, and this is the reason why tomo-
graphs always contain rather powerful computers. Think of a ball made of colored 
acrylic glass, and assume that the intensity of the color is inhomogeneously dis-
tributed within the ball. By looking at this ball from different perspectives, the 
intensity of the color you actually see will vary with the direction in which you are 
looking. Unless you apply very complex mathematical methods, you shall not be 
able to reconstruct the spatial intensity distribution merely from what you have 
seen. 

There are only a few philosophers interested in science or scientists interested 
in philosophy who strongly defend the opinion that there are only neuronal states 
and no mental states. They believe, or at least they pretend to believe, that all 
words referring to subjective experience such as consciousness, pain, fear, convic-
tion, etc. should be replaced by words referring to objective neuronal states. Here 
again there are two opposing positions without the likelihood of really proving 
convincingly that one position is wrong. Nevertheless, I myself am convinced that 
both worlds must be taken into account: the world of objective scientific facts on 
one hand and the world of subjective experiences on the other hand. Frankly 
speaking, and in my opinion, the opposite position is just nonsense. 

I don’t know when the question was asked for the first time about whether there 
is life beyond our earth, on planets in our neighborhood or far away in other galax-
ies. When people ask this question, they should have spent some time considering 
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the problem of choosing which phenomena they would accept as proof of the 
existence of such life. Couldn’t it be that the living creatures found in such places 
look and behave quite differently from what we are used to seeing here on earth? 
Since living extraterrestrial objects presented in movies always look like modified 
humans, animals or plants from our daily experience, we may conclude that, in 
this respect, human imagination is rather restricted. 

From what we know today, we are convinced that human individuals and bacte-
ria both are living objects, although they don’t have much in common except for 
their capability to reproduce and the inevitability of their death. As an electrical 
engineer who knows how to build computers and robots, I asked myself why I 
wouldn’t consider a robot which could build copies of itself to be a living object. 
Certainly, it cannot exist forever, i.e., it will “die” which means that it will break 
down or be destroyed, and thus get into a state of not being able to repair itself 
anymore. If we repair such a broken robot, this must not be considered “bringing 
this robot back to life,” but rather using the material of the former robot to build a 
new one. Although I would never consider such a robot as a living object, I am not 
able to clearly state the criteria on which my decision is based. If I really could list 
these criteria, I would know the exact definition of life. The capability of repro-
ducing itself and being subject to death are, at least for me, only necessary but not 
sufficient attributes for living objects. The philosopher René Descartes is known 
for his statement, “Cogito, ergo sum.” which is Latin and has the English mean-
ing, “I think, and therefore I am.” My personal position with respect to separating 
the living from the not living can be expressed by a modified version of Descartes’ 
statement: “I experience myself, and thus, I live.” I can talk about other living 
objects only as their being analogous to myself.  

Up until the present time, nobody knows how life first appeared on earth. Nice 
stories have been invented such as the one in the Bible (1. Mose 2, Verse 7) where 
Adam is made from a lump of clay by a divine breath being blown into it, but 
these stories have had no consequence for the life of mankind. Although the ques-
tion is asked, “what came first, the chicken or the egg?,” everybody knows that 
this question should not really be taken seriously. The German physician and 
bacteriologist Rudolf Virchow (1821-1902) was convinced that all we can know is 
that life comes from life. His belief was the result of his dealing with living cells 
where, by segmentation, two cells are created from one. The question of where the 
first cell might have come from was considered irrelevant and not being answer-
able by humans. 

The knowledge that all living objects are either single cells or compositions of 
cells was obtained only after high resolution microscopes became available. By 
looking through such a microscope, a single-cell creature can be seen as a whole, 
while the cells of multicellular creatures can be seen only by placing very thin 
layers of tissue under a microscope. The German botanist Matthias Schleiden 
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(1804-1881) and the German physiologist Theodor Schwann (1810-1882) can be 
considered the fathers of the so-called cell theory. Schleiden discovered the cells 
in plants, while Schwann discovered the cells in animals. It was an essential find-
ing that a cell is not just a simple component used for building living objects.  
Instead, a cell is itself a unit of living, i.e., an individual containing all the re-
quirements for living and which, together with other cells, can constitute higher 
forms of living organisms. 

It is useful to compare organisms and organizations. The essence of organisms 
and organizations lies in the fact that living objects are connected and constitute a 
higher unit by coordinated interaction. Presumably, the largest organization on 
earth is the United Nations Organization which has its headquarter in New York 
City. Other examples of human organizations are industrial companies, cities and 
churches. In these cases, a group of people constitute the organization by coordi-
nated interaction. But a human being who consists of lower interacting living units 
is a higher unit himself. These interacting living units are the organs such as the 
heart, the lung, the liver, etc. Certainly, you may doubt whether such an organ 
really is a living unit since it cannot survive on its own once it has been taken out 
of the human body. But it is not really too extreme to consider an organ as a living 
individual whose survival is guaranteed only as long as the higher organization 
exists. We can consider an organ in analogy to a department of a company or an 
administration. When the company or the administration is closed down, its de-
partments loose their rights to exist and will also be closed. The division of labor 
between the departments or the organs, respectively, led to a specialization which 
made it impossible for the departments or the organs to exist on their own. Never-
theless, is it reasonable to consider a department or an organ as a living unit. The 
adequacy of this view was confirmed in the last decades by the development of 
organ transplantation. When a person dies, his organs don't all die at the same 
time. Therefore, a living organ, e.g., a kidney, can be removed from the dead body 
and placed in a special container where it can be kept alive for a certain time. It 
can be transplanted only into the body of a patient if it has not died in the mean-
time. In analogy, a finance department might be extracted from a company which 
went bankrupt and be "transplanted" into a different company. This, too, requires 
that the department doesn't die in the meantime which means that its employees - 
analogous to the cells - still keep their ability to function cooperatively as before. 

From this it follows that understanding the living requires that the structure of 
cells, the processes inside and their interactions with their environment, is under-
stood. We can talk only about these processes and interactions by using the same 
words we use when talking about organizations whose cells are human individu-
als. But we must not forget that within a cell or an organ there are no agents  
having a free will which determines their goals. The processes within cells and 
between them are strictly determined by the laws of physics and chemistry. 
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We know that the trajectory of a ball which is flying along, after having been 
kicked by a soccer player, is not the result of the ball's eagerness to reach the goal. 
In the same way, molecules and particles have no idea what their moving through 
the cell or taking part in chemical reactions might be good for. But considering the 
fact that there are hundreds of thousands of different kinds of molecules in a cell, 
and millions of reactions between them each second, we have no chance at all to 
obtain the least understanding of this complex system unless we assume that the 
concepts which apply to human organizations like companies and administrations 
also apply to cells. 

We now consider systems which are clearly separated from their environment 
and where matter, energy and information is flowing both inside and across their 
borders. To these systems we apply abstractions which have proven to be very 
useful in system theory. Although we can observe only flowing matter and energy, 
we also talk about the flow of information. Matter and energy are physical quanti-
ties, while information is the result of an interpretation of a form and, of course, 
this form can exist only as formed matter or formed energy. Think of written text 
on paper as formed matter, or of radio waves as formed energy. If we see matter or 
energy flowing, the purpose of this flow could be communication, but this is not 
necessarily so. When I put a leaf of green lettuce into my mouth, I certainly don't 
want to interpret the form of this leaf, but I eat it because it is a piece of matter 
which is conducive to the processes of metabolism. The concept of information 
shall be discussed in more detail in Chapter 14. Fig. 12.1 presents examples of the 
different purposes to which the two kinds of flowing quantities, matter and energy, 
might serve. 

Purpose of the flow:

Fulfilling
a demand for 

Energy

Matter

Information

Type of the flow

EnergyMatter
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Coal Heat rays

Newspaper Radio waves
 

Fig. 12.1     Purposes of flows in systems 

Research concerning the structure of cells and their related processes belong to 
specific areas of physics and chemistry. Biophysicists are interested in the forces 
between the molecules which cause their motion and deformation. Biochemists 
look for the different kinds of molecules which can be found in cells, and they are 
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interested in the reactions which consume or produce such molecules. In the early 
years of chemistry, the field was not yet subdivided into specific areas. But today, 
there are specific branches of chemistry from which three are of interest here: 
inorganic chemistry, organic chemistry and biochemistry. The substances which 
inorganic chemistry deals with are all elements from the periodic table (Fig. 10.4) 
and all compounds which existed before the appearance of any kind of life. Exam-
ples of such compounds are water, sulfuric acid, common salt and carbon dioxide. 
The substances which organic chemistry deals with are those which occur as com-
ponents of, or are produced by, living objects. For a long time, chemists were 
convinced that they could only decompose these substances, but could not synthe-
size them using only elements as components. From this they concluded that there 
must exist something within living objects which they called “life power” and 
which they thought to be required for certain chemical reactions. When I read 
about the concept of life power for the first time, it reminded me of the concept of 
a “fire substance” which had been assumed by early chemists when the essence of 
heat had not yet been understood. Of course, when the first organic substance had 
been successfully synthesized in the laboratory, it became obvious that such a 
thing as “life power” is not a scientific concept. 

Major contributions for establishing organic chemistry as a discipline of its own 
were made by the Swede Joens Jacob Berzelius (1779-1848) and the German 
Friedrich Woehler (1800-1882). The latter was a student of Berzelius. In 1828, 
Woehler successfully synthesized the organic substance urea in his laboratory. 
The structure of the urea molecule is shown in Fig. 12.2. This molecule contains 
the four elements, carbon, oxygen, nitrogen and hydrogen, which had previously 
been found as components of most organic substances that had been decomposed. 
Carbon is the only element which had been found in organic substances in all 
cases. The important role the carbon atom plays is a consequence of its having 
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Fig. 12.2     First organic substances synthesized in a laboratory 
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four electrons on its outermost shell. This enables it to have connections to at most 
four other carbon atoms. Thus, rings and linear or branching chains can be built 
which can become the backbones of huge molecules. This explains the enormous 
plentifulness of organic substances. The valencies which are not used for connect-
ing further carbon atoms are mostly used as bridges to atoms of hydrogen, oxygen, 
nitrogen, sulfur and phosphor. 

Besides inorganic substances, organic chemists use substances which once 
were produced by living plants or animals, although these plants and animals 
may have died long ago. Think of coal and crude oil coming from plants and 
animals which died 350 to 400 million years ago. In contrast to this, biochemists 
explore processes in which living cells play a part. Besides the word “biochemis-
try,” you may also have heard the term “molecular biology.” Both disciplines 
look at processes which occur in cells and communities of cells. The biochemist 
asks what the structures of the participating molecules are, and how they can be 
synthesized. The molecular biologist asks what the purposes of the processes are, 
and how they can be influenced. Of course, we can easily find many ways of 
influencing such complex interactions between hundreds of thousands of differ-
ent kinds of molecules. But unless we have at least a rough understanding of the 
system, our intervention will in most cases have the effect that the system col-
lapses and the cells die. 

A person who swallows a chemical substance certainly intervenes in the proc-
esses which take place within his body. A certain chemical in an appropriate dose 
can have the effect of healing the sickness of a patient or of improving the per-
formance of a sportsman; the latter is called “doping.” But in most cases, swallow-
ing chemical substances will often cause the death of the person. Even thousands 
of years ago, people had knowledge about the positive effects of swallowing  
certain substances, although they certainly had no knowledge at all about the un-
derlying processes. Unlike their predecessors, today's biochemists and molecular 
biologists know a lot about these processes. For example, they know exactly 
which substance it is which causes a person to die after eating a piece of a poison-
ous mushroom. And they can tell us how the process goes which finally leads to 
death. But we don't have much reason to assume that complex living systems, with 
their huge large number of different interacting molecules, will one day be under-
stood well enough so that we could control the processes in any way we want. We 
shall always depend on doing experiments in order to find out whether a certain 
substance or a mixture of substances helps against a certain disease or has suffi-
cient negative side effects to prohibit its use. 

I find it interesting that certain substances which proved to be very beneficial 
drugs against certain bad diseases have been called antibiotics; antibiotic is a Latin 
word meaning "against life." They terminate the life process of bacteria without 
having bad effects on the life process of humans and animals. It seems to be a 
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general law that different kinds of living creatures are competing against each 
other in the sense that an advantage for one kind is compensated for by a disad-
vantage for another kind. 

How the Living became “Technological Matter” 
Breeding and Techno logy 

When you read in the previous chapters about the theories of mechanics, electro-
magnetism, relativity, atoms and quantums, you probably had no doubts that these 
theories are fundamental findings which had an effect on the progress of technol-
ogy, and therefore must be included in this book. Therefore, I could refrain from 
starting those chapters with a justification explaining how the theories presented 
became relevant for technology. But here it seems necessary for me to put such a 
justification at the beginning. About twenty years ago, most people would not 
have expected a chapter on biology in a book on the fundamentals of technology. 
The only reason for including such a chapter then would have been an interest in 
the technology of fermentation or sewage treatment. Technology, as I understand 
it, has always had the purpose of providing something useful to us humans, some-
thing which nature does not provide at all, or not enough to satisfy our demands. 
Steel is an example of a technological product which is used in manifold ways in 
mechanical engineering and which we must produce because nature does not pro-
vide it. An example of an energetic service, a service based on the use of energy, 
which nature does not provide is the elevator which takes us from the first to the 
tenth floor in a very short time. In addition, we cannot overlook the examples of 
technological systems which help us to transport and process information, since 
television sets, telephones and computers are almost everywhere. 

When we consider the area of living things, we first ask what kind of benefit 
we can obtain from living creatures, and we begin our consideration of them with-
out insisting upon a connection to any technology. There are two kinds of benefits, 
matter and service. Matter can be food, drugs or materials for making products 
like clothing, jewelry, tools or housing. Matter can be provided by a living crea-
ture, e.g., milk, apples or maple syrup, or in form of the material of the creature 
itself, e.g., bones, fur or wood. Service can be energetic or informational: think of 
an ox pulling a plow, a horse carrying a person or a carrier pigeon transporting a 
written message. All these benefits are provided by nature without requiring the 
use of technology. But since people were never satisfied with what they actually 
had, they began to look for ways to increase the quantity and the quality of what 
they got from nature. They wanted oxen which were stronger than those they had, 
and they wanted cherry trees providing bigger and sweeter cherries than those 
from the trees they had. This was the beginning of breeding plants and animals 
which dates back thousands of years. Someone first realized that, with a high 
probability, a strong bull will have stronger offspring than a weak bull, and that a 
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better tree will grow from the seeds of a tree which produces first class fruit than 
from one that grows from the seeds of a tree which produces puny fruit. This was 
all known before the Augustinian monk Gregor Mendel (1822-1884) began to 
search for the laws of inheritance. The only way to experiment was to select plants 
whose pollen and blossoms were brought together for pollination, or to pair the 
animals brought together for mating. Although this might be considered as an 
intervention into the processes of nature, it certainly would be inappropriate to call 
it technology. 

Once Charles Darwin (1809-1882) came up with the idea of the evolution of 
genetic information, it was only a question of time before someone would try to 
modify genetic information by physical or chemical means. The American 
Hermann Joseph Muller (1890-1967) had the idea that X-rays might have an effect 
on the genetic information in semen or eggs, the consequences of which would 
become visible as unusual properties of the resulting creatures. Of course, nobody 
expected that such experiments would provide "improved" creatures, but they 
would confirm the assumption that eggs contain genetic information which can be 
influenced. The first object chosen for such experiments was the fruit fly (droso-
phila melanogaster) which could not object about being used for such a proce-
dure. People always assume that the more an animal differs from a human being, 
the less it can suffer. As expected, the exposure of the eggs to the X-rays did not 
lead to "improved" flies, but to a variety of crippled flies. This was considered 
great scientific progress, and therefore Mr. Muller was awarded the Nobel Prize. 

Breeding of plants and animals had always involved a procedure for exploiting 
arbitrary changes of genetic information. Later, such changes were called “muta-
tions,” and for a long time, the causes of these mutations were unknown. But as soon 
as the essence of genetic information and the biochemical background of mutations 
were discovered, changing genetic information became a technological issue. 
Inheritance and DNA 

Like the Mother, Like the Father - How Inheritance Works 
Inheritance and DNA 

It didn't require any research to discover that inheritance exists. Everyone who 
attentively observes generations of humans around him becomes aware of amaz-
ing similarities between parents and children. I still remember quite clearly how 
amazed I was when, many years ago, I was walking behind my brother-in-law and 
his five year old son. The little boy, holding the hand of his father, was walking 
exactly with the same characteristic gait as his father. I had noticed long ago that 
their faces strongly resembled each other, but that their ways of walking were the 
same came as a great surprise. It is quite natural for someone who detects such a 
similarity to ask himself how properties or traits transfer from parents to their 
children. 
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After high resolution microscopes became available, it was discovered that all 
higher animals and humans always evolve from a single cell which results from 
the merger of a female cell with a male cell. Thus, all genetic information trans-
ferred from the mother to the child must be contained in the egg, and correspond-
ingly, all similarities between the father and the child must be the result of genetic 
information contained in the sperm cell. Research, of course, was not restricted to 
higher animals, but to all kinds of living objects such as plants and bacteria. In the 
case of bacteria, there is no merger of an egg with a male cell, but a splitting of the 
bacteria, i.e., one bacterium gives up its individual existence in order to produce 
two new bacteria. While the process of a cell splitting has the purpose of repro-
duction in the case of bacteria, such processes also occur in multicellular animals 
and plants where they are the basis for growth and regeneration of tissue. At first, 
after an animal has been conceived, it consists of only a single cell. Then it grows 
by successive cell divisions: the original cell splits into two cells, these split again 
and generate four cells, etc. The number of cells is very large and these cells of 
multicellular creatures are not all of the same kind. They are specialized according 
to the role they must play within the whole system. Since the creature consists of a 
single cell only at the beginning, this specialization must take place in the course 
of the successive cell divisions. The fact that all of these highly developed crea-
tures which populate our earth have finally evolved is certainly a great miracle. It 
could be assumed that cell divisions and the related cell differentiations are some-
how controlled by genetic information. But until the middle of the 20th century, 
no one had the slightest idea about how the information about the genetic proper-
ties of mother and father determine these processes. 

When quantum physics reached a mature state in about 1935, it was possible to 
build so-called electron microscopes which have a much higher resolution than 
conventional microscopes which operate using light. This is a consequence of the 
fact that the wave length determines the resolution. The wave length of the de 
Broglie wave (see Fig. 11.10) associated with a beam of electrons is much shorter 
than that of a beam of light, and this explains the difference of resolution between 
electron microscopes and conventional light microscopes. However, the principles 
of building light microscopes could not be applied to building electron micro-
scopes because light waves are electromagnetic waves while de Broglie waves are 
probability density waves. Therefore, electron microscopes cannot be explained 
without referring to the particle aspect of the electrons. Imagine that you are di-
recting a jet of water at a marble sculpture and measuring how much water is 
splashing away in different directions. By varying the direction of the water jet, 
the reflections of the water provide enough information to deduce the shape of the 
sculpture. In an electron microscope, the direction of a beam of electrons is con-
trolled by electrical and magnetic fields, and the electrons are reflected and scat-
tered by the atoms of the "observed" object. The number of the scattered electrons 
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which arrive at a certain location in a given time interval determines an electric 
current which can be measured. By measuring such currents at different locations 
around the object of interest, enough information is obtained to deduce an image 
of the object. 

 

Fig. 12.3     Cutaway view of a cell (from [BR]) 

Once the electron microscopes became available, they could be used to "look" 
at cells and produce images. Fig. 12.3 represents an example of such an image. 
Although the figure represents a drawing, the proportions and shapes of its com-
ponents nevertheless correspond to the image which originally was produced by 
an electron microscope. But even such excellent images don't provide much help 
for finding the answer to the question of how inheritance works. Here again, we 
have to remember the old truth: “if you don't know what it looks like, you won't be 
able to find it.” 

The path which finally led to the knowledge about what should be looked for 
began in the middle of the 19th century in a city which today is called Brno, a city 
located in the Czech Republic. At that time, it was the city of Brünn and a part of 
the Austrian monarchy. A young man whose original name was Johann Mendel 
joined the local Augustinian monastery where he got the new first name, Gregor. 
He spent much time in the monastery garden and performed a lot of experiments 
with peas. He was very familiar with the methods of artificial pollination where the 
pollen of one plant is placed on the stigma in a blossom of another plant which was 
selected systematically. This plant then produces seeds from which new plants are 
obtained, and then these plants can again be subject to artificial pollination. In the 
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years between 1854 and 1868, he used and observed over 25,000 plants of peas and 
recorded every single step of his experiments very accurately. From his notes he 
derived certain general laws about the inheritance of specific properties. In 1868, he 
became the abbot of the monks, and from then on he did not have time to act as a 
gardener and breeder. 

Although Mendel's experiments extended over a time interval of fourteen years, 
the essence of his findings can be condensed into three figures, 12.4 through 12.6. 
Figure 12.4 represents Mendel's results concerning the transfer of one specific 
property from the parents to their children. If one parent provides the genetic in-
formation that the child's property or trait should be an A, while the other parent 
provides a B, there are three possibilities concerning the property which the child 
will finally have. Either A or B could be a so-called “dominant property” which 
means that the child will have this property and the information from the other 
parent will be ignored. If neither A nor B are dominant, the child will have a prop-
erty C which is equal to neither A nor B. The property considered in Fig. 12.4 is the 
color of the blossoms of plants of peas; A is red, B is white and C might be pink. 

Genetic information
(e. g. color of the blossoms)

From one
parent

From the
other parent

Property
of the child

white
(White is dominating.)

red
(Red is dominating.)

combination color
(no dominance)

redwhite

 

Fig. 12.4     Consequences of genes from parents 

Fig. 12.5 shows how the genetic information from grandparents can influence a 
property of a grandchild. The assumption is made that both the mother and the 
father of the grandchild are children according to Fig. 12.4, i.e., that they both 
obtained different genetic properties from their parents; their actual properties, 
however, are not of interest. From the four genetic properties provided by the 
grandparents, only two can reach the grandchild, one coming from its mother and 
the other coming from its father. The selection is the result of a random process. 

As a result, the probability is the same for each of the four combinations which 
correspond to the four fields in Fig. 12.5. The probability that a property of the 
grandchild is determined by two A's or two B's is 25 % for each case, while the 
probability that the property is determined by one A and one B is 50 %. Whether  
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Fig. 12.5     Consequences of genes from grandparents 

these considerations correspond to reality can be checked by breeding many 
grandchildren from a given pair of grandparents and counting how many of these 
grandchildren have the property according to AA, BB or AB, respectively. The 
ratio of these numbers depends on whether or not one of the properties A or B is 
dominant. In the case of dominance, the property arising from AB is equal to 
either AA or BB. Let's assume that A is dominant; then AB generates the same 
property as AA. In this case, the number of grandchildren having this property 
will be, by a factor of three, greater than the number of grandchildren having the 
property according to BB. If, however, neither A nor B is dominant, there will be 
not only two, but three different properties, and the ratio of the numbers will be 
AA:BB:AB=1:1:2. All of these ratios were confirmed by Mendel's experiments. 

Mendel's findings can be illustrated by a single summary diagram which is 
given in Fig. 12.6. There are properties whose actual appearance in an individual 
is determined by two genetic factors, one coming from the mother and the other 
from the father. When a child is conceived, only one of the two factors which the 
father had obtained from his parents can be transferred to the child, and the same 
applies to the mother. The actual selection occurs at random. Fig. 12.6 shows the 
flow of the two genetic factors which determine a particular property of the indi-
vidual at the bottom. One of these two factors is represented by a white rectangle 
and the other one by a shaded rectangle. The diagram shows that these two factors  
must already have occurred in the set of the 16 factors associated with the eight 



322 12. Genetics 
 

great-grandparents. The remaining 14 factors became lost in dead ends and cannot 
appear again in later generations unless the couples considered do not have just 
one child each, but have larger numbers of children. 

 

Fig. 12.6     Flow of genetic information from generation to generation 

Though Gregor Mendel published all his results, no one showed any interest in 
them for many years and his findings had no effect for a long time. It took over 
thirty years, i.e., until about 1900, when his results became the starting point for 
further investigations. Mendel had used the term “factor” for genetic information 
concerning a specific property or trait. In 1909, the Dane Wilhelm Johannsen 
(1857-1927) replaced the word factor by the term “gene.” The Brit William Bate-
son (1861-1926) had introduced the name ”genetics” for the science of inheritance 
three years earlier; this term refers to the Greek word genetikos (creation or pro-
duction) which is also the origin of the word generation. At that time, the chemical 
nature of genes was still completely unknown. But it became rather clear, only a 
few years later, where to search for the genes. The most probable locations were in 
the so-called chromosomes which had been discovered in 1843; but their involve-
ment in inheritance was not confirmed until 1910. Using appropriate chemicals for 
dying, chromosomes can be made visible under a normal light microscope, but 
only in a certain phase of the cell division process. The name “chromosome” re-
fers to the two Greek words chroma for color and soma for body. The chemical 
structure of chromosomes was not found until 1940, but this knowledge was not 
required for the conclusion that genes must be associated with chromosomes. 
Again the corresponding experiments were done using the fruit fly, the most fa-
vored experimental object of geneticists which I mentioned earlier in connection 
with exposing eggs to X-rays. By performing extensive breeding experiments 
accompanied by careful observation of the chromosomes, it became clear that 
properties and traits are inherited via the chromosomes. 

The fact that genes must be contained in the molecules of desoxyribonucleic 
acid (DNA) was concluded from experiments which were performed by the 
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Canadian physician Oswald Avery (1877-1955) in 1944. However, he was not the 
discoverer of DNA, since it was discovered in 1869 by the Swiss biologist Frie-
drich Miescher (1844-1895) who called it “nucleic acid.” Avery wanted to find 
out by his experiments whether the genetic information is in the DNA or in the 
proteins which are contained in a great variety in the cells. In his experiments, he 
used two types of pneumococcal bacteria which were known to be the bacteria 
which cause pneumonia. One kind of pneumococcal bacteria is covered by a pro-
tective surface of slime which gives them a smooth appearance. This cover is 
missing in the other kind, making their appearance much rougher. From the bacte-
ria having the smooth cover, Avery extracted all the substances which were candi-
dates for carrying the genetic information and, one after the other, he inserted 
these substances in cultures of purely rough bacteria. He observed that only with 
the insertion of DNA and after a certain time, the culture which originally had 
contained only bacteria of the rough kind now also contained more and more bac-
teria of the smooth kind. This effect, however, could not be observed when an 
enzyme which was known to decompose the DNA molecules was inserted with 
the DNA. 

Once it had become clear that the genetic information is located within the 
DNA molecules, chemists began to analyze DNA in order to find its structure. It 
was not at all sufficient to determine which elements are contained and the quanti-
tative ratios between these elements. Instead, it was necessary to find the chemical 
structure showing which elements are connected via their valencies. Such struc-
tures can be represented as two-dimensional graphs (Fig. 12.2). DNA, however, is 
not a single substance but a huge variety of substances built according to a com-
mon structure principle. The forces which hold a molecule together depend on the 
relative locations of the atoms in three-dimensional space. The final clarification 
of the three dimensional structure of DNA was provided in 1953 by the English-
man Francis Crick (1916-2004) and the American James Watson (1928- ). The 
three-dimensional model they proposed was the result of their theoretical consid-
erations which were based on experimental results found by other scientists. I am 
convinced that the most important experimental contributions came from the Aus-
trian biochemist Erwin Chargaff (1905-2002). From 1935 until he retired, he was 
a professor at Columbia University in New York City. After Avery succeeded in 
confirming that genetic information is contained in the DNA molecules in 1944, 
Chargaff asked himself what kind of chemical analysis would provide more in-
sight into the chemical structure of this information. If the genetic information is 
contained in the DNA molecules of an individual, the molecules must differ both 
between species and between individuals within a species. And furthermore, the 
differences between two different species most probably would be greater than the 
difference between two individuals of the same species, since a dog differs from a 
human being much more than one human being differs from another. 
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Here, we should stop and think about the tremendous task Chargaff had decided 
to tackle. At first, a sufficient quantity of DNA had to be extracted from cells 
which contain hundreds of thousands of different kinds of molecules. In contrast 
to Avery, Chargaff could not restrict his analysis to bacteria, but had to analyze 
the DNA of a great variety of living creatures, and this required completely new 
methods. It is much easier to extract the DNA from bacteria than from cells of 
higher creatures where the DNA molecules are entangled with protein molecules, 
forming clusters which are located in the chromosomes in the cell nucleus. After 
having obtained a sufficient quantity of a certain DNA, he had to solve the even 
more difficult problem of finding the pattern of the chemical structure. Depending 
upon the actual species the DNA comes from, the number of atoms within one 
DNA molecule can lie in the range of millions or even billions. Such huge mole-
cules are always composed systematically of small structured building blocks. If 
you look again at Fig. 10.2 where you find the molecular structures of two kinds 
of alcohol, you'll easily see the principle on which these molecules are built. The 
backbone of such a molecule is a chain of links, each consisting of one atom of 
carbon and two atoms of hydrogen. By adding more such links to the chain, new 
types of alcohol can be obtained. 

The essence of Chargaff's findings, which he published in the years 1949 
through 1952, consists of the ratios between the four substances adenine, thymine, 
guanine and cytosine which he had found as building blocks of the DNA mole-
cules. Although such molecules contain more than these four building blocks, the 
others are not relevant with respect to genetic information. Perhaps you have read 
or heard that the four relevant substances are called bases. In chemistry, the com-
plementary concept to a base is an acid, and an aqueous solution of a substance 
can be basic or acidic. You also may have learned in high school that the test for 
finding out which of the two cases actually applies consists of dipping a piece of 
litmus paper into the liquid. In the case of an acid, the paper turns red; otherwise it 
turns blue. If, however, you ask a professional chemist for a definition of the 
base/acid pair, he presumably will not refer to the litmus test, but provide the 
definition which is illustrated in Fig. 12.7. When talking about atoms or mole-
cules, we quite naturally assume that they are electrically neutral particles, i.e., 
that the electrical charge of their electrons is compensated for by the positive 
charge of the same number of protons. But in chemistry, atoms and molecules are 
also of interest when they carry an electrical charge, i.e., when they contain more  
electrons than protons or vice versa. Atoms and molecules which are not electri-
cally neutral are called “ions.” There are four different ways a particle which 
originally is neutral can become an ion: we can either add or take away an electron 
or a proton. But which of the four possibilities can be realized depends on the 
structure of the original particle. For example, a proton can be taken away only 
from a molecule which originally contains at least one atom of hydrogen.  
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Acid
can dispense protons,
i. e. hydrogen nuclei

Base
can absorb protons,
i. e. hydrogen nuclei

Sulfuric acid
H2SO4 H SO4

Ammoniac
NH3NH4

+

C5H6N5
+

Adenine
C5H5N5

 

Fig. 12.7     Examples of acid/base pairs 

The definition given in Fig. 12.7 says that the base/acid pair is characterized by 
adding or taking away a proton. 

In reference to the four bases adenine, thymine, guanine and cytosine, Char-
gaff's findings can be condensed to the following four statements which today are 
called “Chargaff's rules”: 

1. The ratios between the bases differ from species to species. 
2. DNA samples from different tissues of an individual have the same base ratios. 
3. The base ratios of an individual are independent of his age, his alimentation 

and his environment. 
4. In all DNA molecules, the number of adenine molecules is the same as the 

number of thymine molecules and the number of guanine molecules is the 
same as the number of cytosine molecules. 

The first three rules are well suited to the assumption that the base ratios of a DNA 
molecule determine the genetic information of an individual. But at first glance, 
the fourth rule seems to contradict the idea that the DNA molecule could be 
viewed as a text, where the letters correspond to the four bases. It doesn't make 
much sense to assume a text written with an alphabet of four letters {a, t, g, c}, 
where each letter has a partner in the text which occurs exactly as often as the 
letter itself. Someone who is used to thinking in formal systems - I remind you of 
Chapter 4 - will nevertheless soon find ways to consider the DNA molecules as 
texts with letters from a given alphabet. Instead of the four bases, the pairs ade-
nine/thymine and guanine/cytosine could be taken as letters, and in this case, the 
ordering of the partners in a pair could be either relevant or irrelevant. If the order 
is irrelevant, the letters would be the two unordered sets {a, t} = {t, a} and {g, c} 
= {c, g}. If, however, the order is relevant, the letters would be the four tuples (a, 
t), (t, a), (g, c) and (c, g). 
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I had the privilege of getting to know Erwin Chargaff personally when he was 
quite old and, on the basis of our discussions and correspondence, I can say that he 
was an ingenious, wise and far-sighted person. I would have liked to have asked 
him why he himself did not consider the relationships among the four bases and 
the possible alphabets for genetic texts as I presented them above. Unfortunately, 
Chargaff died before I began thinking about this subject. 

As far as the solution of the alphabet problem is concerned, whether the DNA 
molecules are viewed as three-dimensional structures or as two-dimensional 
graphs in a plane is completely irrelevant. The problem is a logical and not a 
physical one which makes it possible to present the solution in the form of a 
graph. The need for adding a third dimension comes up only when considering 
how the logical structure is implemented physically. Therefore, I now shall  
present the logical solution. Based on this, it is rather easy to describe the corre-
sponding three-dimensional physical solution. 

It follows from the fact that the four bases occur in pairs that there must be 
forces which keep the partners within each pair together. In my design of  
Fig. 12.8, I chose a layout where the bridges between the partners of the pairs are 
represented by horizontal dashed lines. These bridges are called hydrogen bridges 
since, on one side, they end at hydrogen atoms. The dashed lines don't correspond 
to chemical valencies. You can easily check this by counting the continuous lines 
which end at the atoms. The sums you get always correspond to the number of 
valencies of the atom considered, e.g., 1 for a hydrogen atom, 2 for an oxygen 
atom and 4 for a carbon atom. Both the forces which belong to the valency con-
nections and those which belong to the hydrogen bridges can be explained by 
referring to the distribution of the electrons at different energy levels according to 
quantum theory. All forces, both those within a molecule and those between mole-
cules, are either attracting or repulsing electrical forces. The bigger the molecules, 
i.e., the more atoms they contain, the more the molecules affect each others 
shapes. Think of a molecule as being a group of people where each person corre-
sponds to an atom. Then, each valency connection can be viewed as an elastic 
rope between two persons. Furthermore, you should assume that each person has 
applied an individual body spray with a fragrance which some of the neighbors 
like and others don't. If two or more of such "molecules" get close to each other, 
they will try to optimize their shape in such a way that the distances between per-
sons who like each others fragrance will be minimized, while in the opposite case 
the distances will be maximized. Such deformations also occur in the case of huge 
molecules, although in that case there are no fragrances of body sprays, but only 
electrical forces. 

From each of the four bases in Fig. 12.8, a continuous line leaves the molecule 
and it is not shown where such lines end. If such a base is an isolated molecule, the 
corresponding line is connected to a hydrogen atom, but if the base is a building  
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Fig. 12.8     Chemical structure of base pairs with hydrogen bonds 

block of DNA, the line leads to the DNA backbone as shown in Fig. 12.9. The 
DNA molecules are chains which can be considered as ladders where each pair of 
complementary bases corresponds to a step whose ends are connected to its corre-
sponding side rail. In Fig. 12.9, I represented the steps as pairs of electrical connec-
tors such as you have seen at the ends of electrical extension cords. At each pair, 
the pins of one connector are plugged into their corresponding sockets. According 
to the hydrogen bridges shown in Fig. 12.8, the pairs G/C have three pins while the 
pairs A/T have only two pins. 

In contrast to a normal ladder, the two side rails in Fig. 12.9 have directions 
which oppose each other. These directions result from the unsymmetrical chemi-
cal structure of the building blocks of these side rails. The labels 3' and 5' result 
from the rules which organic chemists apply for identifying the atoms which are 
components of a cycle. The inverted comma indicates that the building blocks of  
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Fig. 12..9     Section of DNA corresponding to a piece of genetic information in text form 

the side rails contain two cycles, and that the numbers refer to the second cycle. 
The actual chemical structure of these building blocks is of no interest in the given 
context, but it might be interesting for you to know that they contain phosphor. 

For someone who knows Chargaff's rules and adds the assumption that genetic 
information is encoded as a linear text, the structure in Fig. 12.9 seems to be a 
straight forward conclusion. But I suppose that in 1950 the hypothesis of genetic 
information being encoded as a linear text was not at all trivial. Nowadays, the 
idea that each cell contains a "cook book" containing recipes which can be read by 
the cooks, who also are located in the cell, is common not only to scientists, but to 
most educated people. We can immediately see the analogy to computers and their 
stored programs. But between 1949 and 1952, when Chargaff was working at the 
analysis of DNA molecules, computer science as an academic discipline did not 
yet exist, although the computer had been invented. In those years, mathemati-
cians and engineers first began to realize that computers are good not only for 
crunching numbers, but for processing any kind of information. The specific way 
of thinking which has been introduced by computer scientists and which today is 
considered as basic as the elementary multiplication table, was not yet a part of the 
curriculum for educated people. While the concept of energy already had matured 
and it had the same meaning as today, the concept of information was still matur-
ing. The history of science shows us again and again that concepts and ideas 
which for us are quite evident were outside of any human thinking process in 
previous years. Think of the hurdle René Descartes had to overcome when he 
developed the concept of a coordinate system (see Fig. 3.2). 

While Chargaff and his assistants needed many years to find the results which 
could be condensed into the four rules, the two scientists Crick and Watson, who 
became famous as the discoverers of the DNA structure, needed only one year for 
"knocking together" their three-dimensional model of a DNA molecule on the 
basis of the experimental findings of others. By looking at their DNA model in 
reality or in a photo, you can assure yourself that the term “knocking together” is 



Inheritance and DNA 329
  

not far fetched at all, since it is a structure built out of wooden balls, wires, card-
board and sheet metal. The two scientists not only knew Chargaff's rules, but they 
also had gained access to photos which showed the results of X-ray analysis ex-
periments with DNA molecules. These photos were made by Rosalind Franklin 
(1920-1958), an English biochemist who successfully had crystallized DNA. It is 
the characteristic of crystals that the atoms or molecules they contain are regularly 
positioned in space. Since the distances between the particles in a crystal are in the 
same range as the wave lengths of X-rays, interference patterns can be obtained by 
sending X-rays through thin layers of crystals. From such interference patterns, it 
was possible to determine the lattice structure of the crystal. Franklin's images led 
to the conclusion that a DNA molecule looks like a twisted rope ladder. While the 
property of being twisted is not necessary for understanding the logical structure 
of DNA molecules (Fig. 12.9), the twisting is required in the physical structure, 
because otherwise the complementary partners of the base pairs would not face 
each other adequately and the hydrogen bridges would not result. 

Because the side rails have opposite directions, a question arises concerning the 
direction in which the text whose letters are the base pairs should be read. In refer-
ence to Fig. 12.9, we could arbitrarily determine one of the side rails, the upper or 
the lower one, but in reality, the two rails cannot be distinguished by referring to 
their positions. Thus, the only way to determine the direction for reading the se-
quence of base pairs is by looking at the text itself, since texts may contain  
sections which can be recognized as patterns, and these patterns determine a direc-
tion. Think of a sequence of digits which might be a phone number containing 
only the digits 0, 1 and 8, e.g., 0811801. If someone gave you this phone number 
on a slip of paper where he used straight vertical lines for the ones, the sequence 
would still look like a phone number even if you held the slip upside down. You 
could not know whether you should read the correct number 0811801 or the re-
verse number 1081180, unless you have additional information. This could be the 
restriction that a certain sequence will always be contained, while the correspond-
ing reverse sequence will always be prohibited. Assume that, in our example, the 
sequence 01 is required and its reverse 10 is prohibited. This will help you to 
decide whether you hold the slip in the right direction or upside down. At the time 
when the chemical structure of DNA molecules was discovered, it was only a 
hypothesis that each DNA molecule contains sequences which determine the di-
rection for reading its base sequence. This hypothesis could not be confirmed until 
successful methods were found for deciphering the actual base sequences. These 
methods were found about half a century after Crick and Watson published their 
paper on the three-dimensional DNA structure. Then the hypothesis concerning 
the determination of the reading direction could actually be confirmed. 

The structure proposed by Crick and Watson not only answered the question 
about how genetic information is encoded, but it also solved the problem of how 
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exact copies of DNA molecules could be made in the process of cell division. Fig. 
12.10 shows the scheme for doubling a DNA molecule. The chain in Fig. 12.9 can 
be viewed as a zipper which can be opened from either side. “Opening” in this 
case means that the hydrogen bridges are cut. If this opening process occurs while 
the molecule is floating in a liquid which contains DNA building blocks of all 
kinds and in great abundance, the bases of the opened zipper (grey, shaded blocks 
in Fig. 12.10) can replace their lost complementary partners by acquiring appro-
priate components (white blocks in Fig. 12.10). Obviously, the possibility of such 
a straight-forward procedure for doubling a DNA chain is the consequence of the 
very tricky structure of these molecules. Nevertheless, you should not forget that 
this tricky structure is only a helpful initial condition for this doubling process 
which would not occur unless a great variety of "clever agents" cooperate with 
perfect coordination. 

 

Fig. 12.10     Doubling a DNA molecule 

Try to imagine that the structures shown in Fig. 12.9 and 12.10 were not 
chemical structures of molecules, but mechanical structures being composed of 
blocks having dimensions in the range of meters. With this view, Fig. 12.10 could 
belong to a process which occurs in an assembly shop. From the left, an assembly 
line bringing the undivided grey structure enters the shop. This assembly line ends 
at the center of the shop, and from here two separate lines take over and lead to the 
right. At this point, there must be a workman who opens the connections to make 
sure that two separate halves can flow to the right. Additional workers have to 
stand at each of the two continuing lines, for they must connect the white blocks to 
the grey structure. In order to make sure that these workers always have a suffi-
cient supply of white blocks, other workers have to work in the background to 
produce such blocks and bring them to the lines. If this system were not only an 
analogy but a real assembly line, we would not wonder how it works because, of 
course, we could assume that all the workers had been very well trained for their 
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specific jobs. But since the process occurs in a biological cell and not in an assem-
bly application, it appears to me and presumably also to you to be like a miracle 
that all the necessary steps are performed accurately by "biochemical agents." If 
we consider the fact that the DNA molecules to be doubled can consist of chains 
of many millions of base pairs, the whole phenomenon becomes even more  
miraculous. 

In our analogy, we assigned all difficult tasks to well-trained workers, and in 
biochemistry these workers correspond to the so-called enzymes. In Renneberg’s 
book [RB], I found the following short introductory paragraph on the subject of 
enzymes:  

"Enzymes control almost all chemical reactions in living cells. Until now, 
over 3,000 different enzymes have been described in detail. It is suspected 
that up to 10,000 enzymes exist in nature. There are kinds of enzymes which 
occur in cells with only a few molecules, and others which occur in great 
numbers up to 100,000. All enzymes act as biological catalysts: they trans-
form substances into other products without being changed themselves, often 
in fractions of a second. The cells have diameters between a tenth and a 
thousandth of one millimeter, and within them, thousands of coordinated en-
zymatic reactions occur each second. This can work only if each enzyme is 
able to recognize, among thousands of different substances contained in the 
cell, exactly the one specific substance which it has to transform to its  
product." 

When I read this text, I immediately was reminded of the analogy between a cell 
and an assembly line, since this text addresses enzymes as if they were workmen 
or machine tools. 

The path which led to today's knowledge about enzymes began with the work 
of chemists who were interested in understanding the processes which transform 
fruit juices, flour paste and milk into alcohol, leaven or cheese. It had been known 
for a long time that something has to be added to the original substances in order 
to start the corresponding transforming processes. If the final product is to be 
alcohol or leaven, the substance to be added is yeast. Certain other organic sub-
stances are required for getting cheese from milk, for example a liquid from the 
stomach of calves. Regional particularities led to the well-known plenitude of 
different kinds of cheese. The Latin word for fermentation is “fermentum,” and 
this is the reason why the word “Ferment” was used in the German language since 
the 15th century for all the substances which are required for triggering those 
transforming processes. In 1878, the German Wilhelm Friedrich Kühne (1837-
1900), who was a professor of physiology at the University of Heidelberg, pro-
posed the word “Enzym” as a substitute for the former Ferment. Its origin is the 
Greek word “enzymon” which means yeast or leaven. Before the year 1897, it was 
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an open question whether fermentation required living cells or whether appropri-
ate non-living organic substances would be sufficient. This question was answered 
by the German chemist Eduard Buchner (1860-1917) who succeeded in triggering 
a fermentation process using an extract of yeast which didn't contain any cells and 
undoubtedly was not living. Today, more than one enzyme involved in fermenta-
tion is known. They have been isolated from different species and can be charac-
terized biochemically. 

In the text about enzymes which I cited above, enzymes are said to be biologi-
cal catalysts. Today, most people associate the word catalyst with a technical 
component in the exhaust emission system of automobiles. This component is 
required by law because the original exhaust gases are harmful both for human 
health and for the environment. The catalyst in the car’s catalytic converter trans-
forms the harmful gases into harmless products as they pass from the engine to the 
exhaust pipe. The term “catalyst” was introduced in 1835 by the Swede Berzelius 
whom I already mentioned as one of the fathers of organic chemistry. He discov-
ered that many reactions occur only if certain substances are present, although 
these substances are not consumed in the reaction. The Baltic chemist Wilhelm 
Ostwald (1853-1932) provided major contributions to a deeper understanding of 
the thermodynamic fundamentals of catalysis. He gave the following definition: 
“A catalyst is a substance which increases the speed of a chemical reaction with-
out being consumed or changed, and without changing the final thermodynamic 
equilibrium of the reaction.” This means that all such reactions would still occur 
without the presence of the catalyst, but that their speed would be much lower. 
The factor between the speeds with and without a catalyst can be in the range of 
billions. 

There are many “jobs for enzymes” within a cell, but there is also a need for 
substances which transport “information” from one location of an organism to 
another. If the organism is animal or human, these “messenger substances” are 
called “hormones”; they are produced within certain cells and then transported by 
the blood stream to other specific cells where they cause certain effects. Since 
hormones can have effects at many different locations in an organism, they are 
always involved in processes which result in basic changes of the whole organism. 
For example, think of puberty which is the transition of a human being from a 
child to a sexually mature adult. 

When reading a newspaper or a journal, you might sometimes be confronted 
with a foreign word from the area of biochemistry. For many years, I didn’t know 
why producers of detergents put hormones into their products, or why athletes 
take hormones to improve their performance. During my search for the answer to 
these questions, I also encountered the need to distinguish vitamins from enzymes 
and hormones. “Vitamins” is the summary name for a group of substances which 
chemically do not have much in common. They are defined to be indispensable for 
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animal and human organisms, but they cannot be synthesized by the organisms 
themselves, and therefore must be provided as components of food. 

Why do I tell you about enzymes, hormones and vitamins? One reason is that I 
want you to know what these words mean when you encounter them in printed 
texts or in television reports or discussions. But mainly, I want you to see quite 
clearly the complexity of a living organism which can live only if thousands or 
even billions of internal chemical reactions which occur every second are well 
coordinated. For me, the existence of life will stay a miracle, even though re-
searchers are still discovering more and more details of the underlying biochemi-
cal processes. 

You learned about the location and form of genetic information from my ex-
planation of the structure of DNA molecules. The next question we shall consider 
is how the genetic information provided by the mother and the father are com-
bined and become the genetic information of the child. The set of chromosomes 
contained in the nucleus of a cell of a human male is shown on the left side of  
Fig. 12.11. The cell considered might be a cell from any organ, e.g., a cell from 
the brain or the liver. Such a cell contains 46 chromosomes, half of which come 
from the mother and half of which come from the father. In the figure, two of the 
46 chromosomes are shaded grey, while the others are white. The white chromo-
somes are labeled with a number in the range 1 through 22, and since each of 
these numbers occurs twice, a letter is added to indicate the source of the chromo-
some: M stands for mother and F stands for father. Two chromosomes having the 
same number always have the same structure and contain information about the 
same properties. In Fig. 12.4, we considered a child which got the genetic infor-
mation “white blossoms” from one parent and “red blossoms” from the other 
parent. These two contradictory pieces of information must be located on two 
chromosomes having the same number which means that such pairs of chromo-
somes are contained not only in the cells of animal and human individuals, but 
also in plants. The grey shaded chromosomes in Fig. 12.11 are labeled not with a 
number, but with the letters X and Y. These two chromosomes determine the sex 
of the individual. The mother will always provide an X-chromosome while the 
father will provide either an X- or a Y-chromosome. If the chromosome which 
came from the father is an X, the child will be female; otherwise it will be male. 

Each of the 46 chromosomes on the left side of Fig. 12.11 contains a DNA 
molecule consisting of many base pairs. When we think of such molecules, we 
usually imagine them as straight lines; this leads to the views shown in Fig. 12.9 
and 12.10. But in reality, the DNA molecules are never stretched out, because 
otherwise they would not fit into the nucleus of a cell. They are extremely thin 
threads with lengths in the range between centimeters and meters. Since the di-
ameters of cells are less than 1 millimeter, the DNA molecules must be wound in 
coils - think of many meters of sewing thread which don’t need much space if they  
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Fig. 12.11     Duplicating a cell of a male person 

are wound on a small spool. In the case of DNA molecules, the spools are protein 
molecules. Thus, a chromosome not only contains a DNA chain, but also the pro-
tein molecules around which the DNA chain is wound. The whole ball is kept 
together by electrical forces because the DNA chain carries a negative charge 
while the proteins carry a positive charge. During the doubling process shown in 
Fig. 12.10, at least that section of the chain which is actually affected by the  
enzymes must stick out from the ball. At the end of the doubling process, the two 
identical copies of the chain still stick together at a certain point as if a drop of 
glue had been applied there. This situation is shown on the right side of Fig. 12.11. 
When the cell is divided, these connections are cut and each of the two partners 
goes to a different one of the two new cells. At the end of the cell division, there 
are two new cells, where each has 46 chromosomes and can be viewed as the cell 
on the left side of Fig. 12.11. 

The purpose of the cell divisions shown in Fig. 12.11 is growth of an organism or 
regeneration of tissue. In contrast, we now consider cell divisions associated with 
sexual reproduction. The top of Fig. 12.12 shows a cell which contains the same 
pairs of identical DNA chains as that on the right side of Fig. 12.11, but now the 
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pairs, which have the same number and differ only in their origin indicator M or F, 
are clustered. While the cell on the right side of Fig. 12.11 contains two grey and 44 
white pairs, the cell on top of Fig. 12.12 contains two grey pairs and 22 quartets. For 
these quartets to form, the original pairs must move to their corresponding partners 
having the same number, and once they reach each other, they must adjust them-
selves in order to form a well-structured package. This process can be observed 
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Fig. 12.12     Building a germ cell - a human sperm cell 
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under a microscope, but a physical or chemical explanation of this process has not 
yet been found. It seems as though the original pairs know exactly what they have to 
do. Since the chains which came from the same parent don’t differ, each quartet 
initially contains two pairs of identical DNA chains. But gradually, the four chains 
cross each other and this leads to an exchange of chain sections. At the end of this 
exchange process, the four DNA chains in a quartet are different, with a very high 
probability. We can conclude that the process which starts with the cell structure 
shown on the right side of Fig. 12.11 and ends with the structure shown under the 
top of Fig. 12.12 is very complex, because it takes about two weeks. Subsequently, 
the cell splits into two cells, each of which gets one grey pair and one half of each 
quartet. Thus, the two cells which result from this so-called reduction division differ 
significantly from the cell on the right side of Fig. 12.11 which contains two grey 
pairs and 44 white pairs, and where the partners in a pair are identical. In contrast to 
this, a cell which results from reduction division contains only one grey pair and 22 
white pairs, where the partners in a white pair differ with high probability. Each of 
these two cells splits again, i.e., its pairs are divided and their halves go to two new 
cells. Thus, each of the four cells at the bottom of Fig. 12.12 has 23 chromosomes, 
each of which contains one DNA chain. 

Each of these four cells is a male sperm cell which contains a selection of the 
genetic information which the man had obtained from his parents. While the cell 
at the top of Fig. 12.12 contains all the genetic information which he obtained 
from his parents and this information is clearly separated, the cells at the bottom 
contain only some of this information. This selected information is the result of 
the consecutive steps leading from the top to the bottom of the figure. This ran-
dom process of selection is so sophisticated that it is extremely unlikely that two 
cells might be found having two completely identical sets of genetic information 
within the huge set of sperm cells which are generated during the lifetime of this 
man. The process of producing eggs has essentially the same structure and differs 
only with respect to the “grey pairs.” If I had chosen a cell at the top of Fig.12.12 
which belongs to a women, it would contain two X-pairs instead of one X- and 
one Y-pair. There is, however, still another significant difference between men 
and women with respect to the production of germ cells. The production of male 
germ cells, i.e. sperm cells, begins with the end of puberty and lasts almost a life 
time, while the production of female germ cells, i.e., eggs, occurs only during the 
growth of the embryo and is finished when a girl is born. 

While almost nothing was known about genetic information in the past, many 
details have been discovered in the meantime. We not only know where genetic 
information is located, but we also know that this information is encoded in a text 
using an alphabet of four letters and how it is transferred from one generation to 
the next. Physicists and chemists have developed methods for analyzing DNA 
molecules in such depth that the sequences of base pairs can be deciphered even if 
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their length is in the range of hundreds of millions of base pairs. In this context, 
you should note that there is an important difference between the two verbs “to 
decipher” and “to decode.” If someone gives us his address in written form, it 
could be that we cannot decipher his handwriting which means that we cannot 
decide what sequence of letters he wrote. An absolutely different case is when 
someone gives us a clearly written sequence of letters which doesn’t contain any 
words we know. In this case, the text seems to be an arbitrary sequence of letters, 
although it might well be that there is a meaning behind it. We can decode it only 
if we know the rules for interpreting this sequence. The successful deciphering of 
long DNA chains is a great achievement, that’s for sure; but now, the scientists 
were confronted with the problem of decoding these sequences. What about the 
DNA chains in the cells of my brother-in-law? What do they have to do with his 
very special way of walking which he passed on to his son? 

If we get text which we cannot decode, it’s reasonable to ask someone who 
knows the decoding rules. However, the DNA text was not written for communi-
cating with scientists, but for transferring information within a cell. And who 
reads it there? The readers are specific enzymes! The DNA text should not be 
compared to a novel, but rather to a cookbook.  Many processes within a cell, 
except for the process of doubling the whole text, refer only to specific sections of 
the text. This is analogous to a cook who doesn’t read the entire cookbook, but 
reads only those recipes which are relevant to the actual meal he is preparing. In 
cells, the recipes which are encoded in DNA are used for the production of pro-
teins. Proteins are composed of so-called amino acids. There are 20 different 
amino acids and, with these as components, many thousands of different kinds of 
proteins can be built. The DNA text specifies which amino acids must be com-
bined in order to form a molecule of a certain protein, but the text does not say 
how the amino acids shall be produced. The text refers to the amino acids only by 
their name which requires that the “cooks,” i.e., the enzymes which build the pro-
tein, know how to interpret these names. Since there are only 20 amino acids 
which must have names, such a name requires only three letters from the alphabet 
of the four base pairs. Using this alphabet, 43=64 different words of length three, 
called triplets, can be formed, but from these 64 different triplets only 20 are re-
quired as the names of amino acids. The analysis of the processes in the cell and 
especially the synthesis of proteins has shown that some amino acids have more 
than one triplet name assigned to them, and that other triplets are not names at all, 
but are used to divide the DNA text into “phrases” and “paragraphs,” i.e., they 
correspond to punctuation marks such as commas, semicolons and periods. 

Soon after the connection between the DNA text and the production of proteins 
had been discovered, it became clear that this text does not consist only of recipes 
for producing proteins. In the case of humans, only approximately ten percent of 
the entire DNA information in a cell describes the composition of proteins. 
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A rather high percentage of the remaining sequences have been called, perhaps 
prematurely, “junk DNA,” i.e., litter or trash. We should never forget the compli-
cated processes which lead from a single cell to a grown up living creature, and 
which afterwards guarantee that this creature stays alive. Compared to the knowl-
edge which would allow us to say that we really have understood these processes, 
the knowledge we actually have, even though it is very impressive, is almost noth-
ing. My knowledge that triplets in a DNA chain are used as names of amino acids 
doesn’t help me at all to understand the fact that my nephew, although he was only 
five years old, already walked in the same distinctive manner as his father.  
Genetic Engineering 

How New Recipes Can Be Smuggled into Living Cells 
Genetic Engineering 

There is no definitive answer to the question of whether an English text which we 
appreciate as a beautiful poem should still be called a poem after nobody is around 
who can speak or read English. Thus, we should not call a DNA chain a descrip-
tion of a living creature without adding that a living cell is required for the DNA 
chain to make sense. Genetic engineering quite naturally starts from the assump-
tion that living cells do exist, and the question about where the first cells came 
from is not asked. At present, genetic engineering consists of changing the genetic 
information in cells by smuggling in additional sections of DNA chains. Let’s 
consider the analogy between a musician acquiring a new set of notes and a cell 
getting new DNA sections. It certainly is much easier to put a sheet of new music 
on a music stand than to insert a new section of DNA into a living cell. And while 
the composer who writes the new music knows exactly how the musician will 
interpret what he has written, a genetic engineer cannot know exactly how the cell 
and the organism to which it belongs will interpret the sequence of base pairs 
which he composed. The comparison becomes more realistic if we assume that the 
person who writes the new music knows only the formal look of notes, but has no 
idea how they are interpreted. This person could “compose” acceptable music only 
by copying sections of music from competent composers. Thus, genetic engineers 
actually don’t completely compose new sequences of base pairs, but copy and 
arrange “useful” sequences which they found in other cells. In the following para-
graphs, I shall explain the solutions to the two basic problems of genetic engineer-
ing: how sequences can be found which are worth “transplanting,” and how such 
sequences can be cut from one chain and inserted into another. 

At present, the DNA chains of a living object cannot be interpreted as a whole, 
and we cannot know whether this will ever be possible. Looking at the DNA chain 
of a single living object doesn’t tell us which sections of the chain determine par-
ticular properties. In order to try to find such associations, DNA chains of a great 
number of individuals of the same species were compared. Such comparisons 
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showed that long sections of the chains were absolutely identical while others 
differed strongly. By neglecting the so-called junk DNA and restricting the com-
parison to the recipes for protein production, causal relationships between some 
recipes and certain properties of the creatures could be detected. Because of the 
extreme lengths of the DNA chains, which lie in the range of millions of base 
pairs or even more, these comparisons can be done only by using computers. This 
led to the new profession of a bio-information scientist. Among other results, the 
connections between certain typical modifications of human genetic information 
and specific diseases could be confirmed. An example is a bleeding disorder dis-
ease which is characterized by a total or a partial absence of certain substances in 
the blood which cause clotting in order to close wounds. Persons having this dis-
ease are always in the danger of bleeding to death. This disease is caused by a 
deficiency on an X-chromosome unless it is dominated by a second healthy X-
chromosome. It is quite unlikely that girls or women have this disease, because 
they have two X-chromosomes, each coming from a different parent. They will 
have the disease only if both the mother and the father provided deficient X-
chromosomes. Thus, it is no wonder that the disease is almost exclusively found in 
male members of a family. 

Another example of a disease which could be related to a typical disorder 
within the DNA with absolute certainty, is the so-called Down’s syndrome. It is 
named after the English physician John Langdon-Down (1828-1896) who, in 
1866, was the first to describe this disease or disability. He called it “mongolism” 
because of the specific shape of the face and the almond-shaped eyes of the af-
fected persons which gives them a look that somehow reminds us of people from 
Mongolia. A comparison of the DNA of those having this syndrome with the 
DNA of other people showed that chromosome 21, or at least significant parts of 
it, occur three times in the case of Down-syndrome persons. Such a triplication 
can happen if the process which is represented in Fig. 12.12 doesn’t go as it 
should. There are many possible failures which might occur during the production 
of an egg or a sperm cell. Most of these will not cause the birth of a disabled or 
sick baby, but will cause the early death of the embryo. 

Quite naturally, the question of whether or not there is a connection between 
genetic information and the different kinds of cancer has been asked. Cancer is 
characterized by an uncontrolled cell division process. When I explained the ba-
sics of cell division for growth (Fig. 12.11), I didn’t mention that a cell cannot 
decide on its own when it begins its division. There must be a flow of information 
which triggers the division processes of all cells of the living object in order to 
guarantee that everything is well coordinated with respect to the life of the whole 
organism,. If this information flow is disturbed, the result might be cancer. Actu-
ally, specific DNA sections whose disorder could cause certain failures of the 
information flow have been identified. These DNA sections normally still have 
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their regular structure at the time of birth, but failures during the process of cell 
divisions could produce such dangerous deficiencies. 

Mankind does not yet know enough details to make all kinds of purposeful 
changes in human DNA chains without taking the risk of causing bad side effects, 
but we never know what the future might bring. A simple case - at least that’s 
what many biochemists believe - is the process of inserting just one recipe for the 
production of a protein into the cell of a living organism. At present, the species 
which are “enriched” by such insertions are not higher animals or humans, but are 
bacteria and plants. In most cases of inserting an additional section of a DNA 
chain into a bacterium, the purpose is to transform this bacterium into a “machine” 
which produces a certain kind of protein, e.g., a useful enzyme. Once such a ma-
chine has been “built,” this machine will immediately start to produce more ma-
chines of the same kind, and after a rather short time, the cell division process will 
have produced many millions of such machines. The species which has been used 
in this way as a machine for the production of a large variety of proteins is the 
bacterium escherichia coli. It occurs in high numbers in the intestines of higher 
animals and humans, and can be kept alive in culture mediums in the laboratory. 
The substances produced by such machines are not really new, but were produced 
previously by some living organisms; otherwise, the corresponding recipe would 
not have been known. Today, more and more substances which are produced in 
this way, but previously could be produced only by applying very complicated and 
expensive processes, are helpful in medicine. A typical example of such a sub-
stance is insulin which is required for our metabolism, but cannot be produced at 
all or not in the required quantities by diabetic patients. 

Genetic engineers were not the first who smuggled additional DNA chains into 
bacteria, for this was done by viruses from the very beginning. About a hundred 
years ago it was discovered that there are organisms which can cause diseases, but 
are much smaller than the known bacteria. These organisms are called viruses, and 
they differ significantly from bacteria, not only in size. They contain DNA chains, 
but don’t have the enzymes which are required for reproduction. Thus, viruses can 
be considered as “cookbooks” having a nice cover, but which must be brought into 
a “kitchen,” i.e., into a cell where enzymes can read the recipes and act corre-
spondingly. 

Bacteria don’t have a nucleus containing chromosomes. Their DNA molecules 
are closed rings which float in the cytoplasm. Scientists, who focused their re-
search on enzymes which deal with DNA chains, once discovered some special 
enzymes which don’t do anything except cutting DNA chains at specific se-
quences of base pairs, and other enzymes which just do the opposite, namely “glu-
ing” pieces of DNA chains together if their ends fit. Fig. 12.13 should remind you 
of someone who wants to glue two boards together in order to get a larger board. 
To do this, he will cut the profiles of the sides of the boards in such a way that 
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they fit together exactly. The enzymes cutting the DNA chains act accordingly, 
i.e., they don’t make straight cuts, but produce “profiles” which later can be de-
tected by the gluing enzymes. 

5'3'

3'5'
 

Fig. 12.13     Oblique cut through a DNA-chain 

Almost all known modifications of the genetic information of plants were 
sought for the purpose of increasing the harvest, and not of improving the quality 
of appearance or taste. An increase of the harvest could be reached by making the 
plants immune to certain agents. Such agents are not only bacteria or insects, but 
also certain chemicals which the farmer wants to spray over his fields in order to 
kill weeds or pests. Creating such an immunity requires that an organism be found 
which already has this immunity. Then, the DNA section causing this immunity 
can be searched and transplanted into the cells of the plant to be “improved.” It is 
also possible to enable the plant to produce certain proteins whose odor is disliked 
by specific insects and makes them lay their eggs elsewhere. The reason tomatoes 
begin to decay from their inside relatively early is the existence of a certain putre-
factive agent. Therefore, the genetic information of tomatoes could be expanded 
by the recipe for the production of an enzyme which neutralizes this agent. Of 
course, this was possible only because this recipe had been found previously in 
another organism. 
Genetic Fingerprints 

How to Provide Evidence Confirming “Who It Was” 
Genetic Fingerprints 

At the end of my short introduction to the basics of genetic engineering, I shall now 
briefly explain a genetic fingerprint and how it is obtained. No two human indi-
viduals have identical genetic information except for monozygotic twins. Of 
course, certain sections of the DNA chains must be absolutely identical, since a 
large variety of proteins have to be produced in each human organism in exactly 
the same way. There are two questions which can be answered with the help of 
genetic fingerprints. One question of interest arises when human cells are found 
somewhere, and we would like to know which person was the source of these cells. 
The other question arises when there is some indication that two persons may be 
related, and we would like to get clear evidence about this. This is especially the 
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case when there are doubts concerning fatherhood. Theoretically, the answer to the 
first question could be obtained by complete decipherment of the DNA, both from 
the cells found and from cells of all persons which come into question. But this 
really is only a purely theoretical possibility, since the DNA chains in a human cell 
consist of over three billion base pairs, and their decipherment would be much too 
laborious and expensive with respect to the actual purpose. Therefore, only certain 
characteristic properties of the DNA chains are compared which differ from indi-
vidual to individual, not with absolute certainty but with an extremely high prob-
ability. This is similar to the case of actual fingerprints where the possibility that 
two persons have the same fingerprints cannot be excluded with absolute certainty. 
When a certain blood relationship is to be confirmed or excluded, it is not the iden-
tity of the genetic information which must be checked, but the existence or absence 
of certain characteristic similarities that must be detected. 

Interestingly, only those sections of DNA which at present cannot be inter-
preted at all are used for genetic fingerprints. This means that the recipes for the 
production of proteins are not taken into account here, because only minor differ-
ences between individuals would be found anyway. Thus, the genetic fingerprint 
is based on an analysis of certain sections of the so-called junk DNA. Each of 
these sections is a multiple of a typical sequence of base pairs, e.g., four times the 
sequence GGACTAG. The numbers of multiples may differ between the corre-
sponding sections which the person got from his mother and his father. It is ex-
tremely unlikely that two individuals will have exactly the same combination of 
multiples of the different base pair sequences in all periodic sections considered.  

Before the analysis can be started, a great quantity of DNA chains must be pro-
vided. In many cases, only a few cells are available originally, and only one DNA 
chain is contained in each chromosome. Therefore the process of generating a 
genetic fingerprint always begins with a multiplication of DNA chains. This is 
done by successive doubling of the chains according to the scheme in Fig. 12.10, 
although now the process takes place in a laboratory and not in the cells of an 
organism. The enzymes which are required for this process can be extracted from 
specific bacteria. The chains which are multiplied and then analyzed are not the 
original molecules contained in the chromosomes, but only the specific periodic 
sections which I described above. These sections can be selected by the specific 
enzymes used; I cannot tell you any details about this because I don’t know them 
either. Thus, the multiplication process finally provides a mix of DNA chains, and 
the distribution of the lengths of these chains characterizes the individual person 
from whom the original cells came. This distribution of chain lengths can be made 
visible by forcing the chains to “race through a thicket” where their speeds depend 
upon their lengths. The shorter a chain is, the higher its speed will be; at the same 
time, the longer chains will stay behind. Some time after the race has been started, 
a snapshot can be taken which shows the actual positions of the different chains 
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along the race track. This picture is the genetic fingerprint which is specific for the 
individual considered. How can such a race be established? DNA chains, of 
course, are not sportsmen who can race through a thicket, but nevertheless they 
can be placed on a certain race track and forced to move forward. If the chains 
carry an electrical charge, which is the case for the DNA sections considered here, 
they can be placed in an electric field which lies between two electrodes and 
which pulls the chains from one electrode to the other. The thicket corresponds to 
a piece of moistened felt. The race can be stopped at any time by turning off the 
voltage between the two electrodes. By adding certain substances to the liquid in 
the felt, the actual positions of the DNA chains can be made visible and photo-
graphs can be taken. Since the purpose of this procedure is always the comparison 
between two or more genetic fingerprints, two or more parallel race tracks, each of 
which is assigned to the chain mix of a specific individual, are used. Then the 
patterns on the different tracks can easily be compared in order to see if they are 
identical or by how much they differ. 

Ordering huge molecules according to their lengths or their weights occurs not 
only in the process of generating a genetic fingerprint, but it is also required in 
organic and biochemistry for different purposes. If the molecules are floating in an 
appropriate liquid and are electrically neutral, i.e., if they don’t carry an electrical 
charge, then a field of gravity will cause a distribution where the heavier mole-
cules are closer to the bottom. But in many cases, the field of gravity of the earth 
is much too weak to cause the desired effect. Much stronger gravitational fields 
can be generated by using so-called ultracentrifuges at speeds up to 80,000 revolu-
tions per minute. Having a radius of 20 cm, they cause centrifugal forces which 
are greater than the forces of natural gravitation by a factor of one million. 

Besides nuclear power engineering, genetic engineering is the most controver-
sial technology today. Erwin Chargaff once said, “By abusing two kinds of nuclei, 
the nucleus of the atom and the nucleus of the living cell, mankind has crossed 
borders from which they should have shrunk back.” I hope that you, dear readers, 
can accept my abstinence concerning any questions about ethics. In this book, I 
want only to present and explain the findings which enabled us to develop today’s 
technologies, and there is no space remaining for any serious evaluation of all the 
activities which became possible by applying these technologies. 
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Chapter 13 
Why Engineers Are “Playing with Models” 

Before you began reading this book, you certainly did not doubt that mathematics, 
physics, chemistry and biology are different kinds of sciences. But I would not be 
surprised if you had doubts concerning the question of whether engineering itself 
is a science. Couldn’t it be that all the knowledge which is required for designing, 
producing and repairing technical products belongs either to the sciences 
mentioned above, or is a kind of “know-how” which lacks the characteristics of 
scientific findings? If technology really amounted to no more than many tricky 
applications of the findings presented in the previous chapters, I would have fin-
ished my manuscript at this point, because I already would have reached my goal. 
In the first chapter of this book, I said, “The purpose of this entire book is to pro-
vide the knowledge which leads the reader to believe that these products can be 
conceived and built.” If you are interested in the details of specific products, you 
still must ask a competent specialist. But he will enjoy giving you the necessary 
explanations only if he is not required to begin “at Adam and Eve,” i.e., if he need 
not first teach you all the fundamentals which are presented in this book. Now you 
should ask yourself whether or not there are technical products for which it is not 
obvious how the fundamental findings presented in the previous chapters could be 
used to conceive and build them. 

What Engineers Are Needed for 
Need for Eng ineers 

Certainly there are many technical products which can be explained easily on the 
basis of the knowledge previously presented here. Imagine that Socrates had been 
transferred into our time and now, for the first time in his life, he sees a bicycle or a 
steam engine. There would be no need to explain to him what the bicycle is good for 
and how it works, since he would immediately understand the purpose and the con-
struction of this system by just watching someone riding on it. In the case of the 
steam engine, he would need a brief explanation because the control of the flow of 
the steam is hidden. The fact that steam generates forces was already known to the 
ancient Greeks, for steam lifted the lid of the pot of boiling water cooking a hen in 
their kitchens in exactly the same way as it does today. The function of an engine 
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running on gasoline or diesel can also be explained to him since, at this point, he has 
already become familiar with the concept of energy, and he knows the fundamentals 
of mechanics and electro-magnetism. Thus, even an entire car would not seem mys-
terious to him, and he would have no problems understanding the ignition, the fuel 
injection pump, the headlights and the windshield wipers. But what he learned from 
the previous chapters would not give him the faintest idea about how an antilock 
braking system (ABS) or a global positioning system (GPS) could be built. Cer-
tainly, Socrates would be very confused when, all of a sudden while he is riding in 
the car with his friends, he hears the enjoyable voice of an invisible lady announcing 
that an intersection is coming in 1/4 of a mile, and adding the recommendation that 
the driver should prepare to turn right. Obviously, there are hidden technical con-
cepts which cannot be explained just by referring to the fundamentals of physics and 
chemistry. These hidden concepts are abstract system models which constitute the 
main results of engineering science. Teaching these models requires an effort which 
is comparable to that of teaching the basic findings of mathematics and natural sci-
ences. There are some system models which are applied in almost all areas of tech-
nology, while the use of other models is restricted to only one or a few specific 
areas. The models which I shall present in the following sections are so universal 
that they can be said to be part of “the native language of engineers.” Therefore, 
these models should be known to everyone who wants to understand how engineers 
see the world. 

When talking about the world of engineers, it seems reasonable to draw a line 
which marks the difference between engineers on one side and all other people 
being involved in creating technical products on the other side, e.g., architects, 
designers, craftsmen and artisans. Architects and designers sit in the middle be-
tween engineers and artists, since the main criterion for the quality of an archi-
tect’s or a designer’s product is esthetics, while this is of minor importance for 
the work of engineers. This is a consequence of the fact that most of the things 
engineers design and construct are invisible to the users of their products. A car 
engine is hidden under the hood, electronic circuits are hidden in the cabinet of a 
TV set and a concrete foundation is hidden under a building. Today, car bodies 
which are designed to please the tastes of the buyers are not designed by engi-
neers, but by designers having a specific education. It is an interesting fact that 
architects have no objection at all against transferring the responsibility for struc-
tural engineering to civil engineers. Engineering science is required whenever 
craftsmen or amateurs can no longer achieve acceptable results. At first thought, 
it seems that engineering is nothing but applied physics and mathematics. Cer-
tainly, engineers in the traditional fields often must solve problems of applied 
physics and applied mathematics. But there is a definition of the role of the engi-
neering professional which does not apply to the so-called “applied physicists” or 
“applied mathematicians:” 
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I found this definition in Meyer’s Encyclopedia [ME], and I cite it here because 
it exactly expresses my opinion of what engineering is all about. In this definition, 
natural sciences and engineering sciences are referred to as two sciences of com-
parable relevance. The activities of engineers can be classified into two com-
pletely different areas to be optimized. The first area concerns the products or 
systems and the processes of their implementation which must be optimized by 
applying special mathematics methods. The second area concerns the communica-
tions between the people involved in the processes, communications which must 
be optimized by applying appropriate concepts of abstraction and the correspond-
ing forms of standardized representations. Optimal communication is required 
since many of the products and systems are so complex that their planning, design 
and implementation require an extremely high degree of division of labor. The 
people involved cannot make optimal contributions unless each individual gets the 
complete information he needs in time for the specific performance he is expected 
to provide. The concepts of abstraction which are the basis for optimal communi-
cation are provided in the form of system models. Please note that the word 
“model” has at least three different meanings. In connection with figures 4.11 and 
4.12, a model meant a specific case of application of an abstract theory. A second 
meaning, however, is just the opposite, i.e., here a model is an abstract structure 
which can be applied to specific real structures. And a third meaning of the word 
model is used in the case of children playing with a model railroad; here, the word 
model means that real trains and tracks have been scaled down to one hundredth 
or less of their original size. It was the last meaning which caused me to speak of 
“engineers playing with models” in the title of this chapter although, of course, 
most of the system models engineers use are not scaled down copies of the real 
world. 

No engineers are needed for the design and implementation of systems if they 
are sufficiently simple; it may even be that people who have no special education 
in technology can get a system to work. But with the growing complexity of sys-
tems, engineers become indispensable. The complexity of a system is not deter-
mined merely by the number of its components, but by the heterogeneity of the 
interacting components. Once you understand the interaction of two gear wheels, 
you also understand the interaction of a thousand gear wheels. However, the sys-
tems considered here are composed not only of gear wheels, but of a huge variety 

It is the mission of the engineer to design and construct technical works 

on the basis of fundamental findings in natural sciences and engineering sciences, 

to consider economic and social implications, 

and to direct and supervise the implementation of the designed work. 



350 13. Engineers and Models
 

of interacting components. A transistor for an electronics engineer is just a simple 
component like a gear wheel in mechanics. Of course, physicists still can put a lot 
of effort into optimizing transistors for different purposes, and the electronics 
engineer greatly appreciates their efforts. But the engineer has to deal with 
systems containing many millions of transistors which must interact in a well-
coordinated way, and mastering such systems is not a problem of physics. Exam-
ples of “complex systems” are an automobile assembly plant, an aircraft for over 
500 passengers and a telephone switching system. 

In contrast to mathematical problems where a proposed solution must be either 
correct or incorrect, solutions of technical problems usually don’t allow such a 
definite judgment. In the field of technology, a proposed solution is only more or 
less appropriate. Engineers who plan and design technical systems have to move 
through a set of trade-offs which is characterized by the fact that the improvement 
of one property can be obtained only by degrading another property. 

When systems have very high complexity, it is generally quite unlikely for the 
first straight-forward design to constitute an acceptable solution. The situation of 
the engineer is similar to that of a pharmaceutical chemist who is developing a 
new medication. Both have to submit their new product to a large variety of ex-
periments in order to find out whether there are unacceptable side effects. Con-
sider unplanned resonance effects which might cause unacceptable noises in a car 
or a bus, or of unplanned electromagnetic radiation which might cause failures of 
nearby electronic devices. Certainly, engineers know a lot of tricks for reducing 
the probability of such bad effects, but before a system has been put into operation 
and intensively tested, they can never be sure whether all unacceptable effects 
have been eliminated. 

When a product with a completely new functionality is brought to market, the 
users are often expected to acquire an extensive amount of user know-how. On the 
other hand, the complexity the engineers had to cope with in designing the product 
was rather low. A good example which clearly shows this fact is the evolution of 
the automobile and particularly the necessity for shifting gears. In the early years 
of this technology, the gear shift was not synchronized, and this forced drivers to 
learn how to shift using a technique called double-clutching. The gear box had a 
rather simple structure which didn’t challenge the engineers. Today, cars are 
equipped with completely automatic transmission systems so that, in the drivers’ 
view, the problem of shifting gears has disappeared. The engineers, however, now 
have to deal with a complex system which has almost nothing in common with the 
simple gear box of the early years. 

In general, today’s engineers are confronted with a level of complexity which is 
far above that of a few decades ago. Therefore, the criterion which characterizes 
the difference between engineers on one side and applied mathematicians and 
applied physicists on the other side has become much more relevant than in the 
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past. This criterion is determined by the problem of mastering the complexity 
which results from the system requirements and the subsequent high degree of 
division of labor in the process of designing and building the system. Of course, 
there is still the need to provide engineering students with a deep knowledge of 
mathematics and physics, but among the additional subjects needed are methods 
for mastering complexity, methods which must have a greater share of the engi-
neering curriculum than they did in the old days. Engineering students soon be-
come aware that their later contributions to the design and implementation of 
complex systems will always be restricted to an extremely small fraction of the 
total effort required. Therefore, they can easily see how important it is that they 
learn, at the beginning of their education, how to communicate effectively with all 
other people involved in the technological process in order to understand their 
problems and decisions. Engineering professors should repeatedly emphasize that 
it is more important to have learned how to acquire an overall view of the whole 
system and how to let others participate with their own individual knowledge, than 
to be familiar with a huge number of methods for optimizing details. An engineer, 
after having obtained a good professional education, can be confident that he will 
always succeed in finding and understanding the appropriate optimizing methods 
whenever they are needed. 

In recent discussions concerning the updating of engineering curricula, I often 
heard it said that more emphasis should be put on making engineers better team 
players. A team is a group of people having a common task which requires that 
they communicate very closely. Usually, such a team consists of five to ten per-
sons who live together most of the day, and thus have the ability to talk to each 
other whenever they want. Soon after they join a team, they become very familiar 
with each other’s strengths and weaknesses. In contrast to this, the division of 
labor I mentioned above is quite different. The idea of having a group of five to 
ten people is absolutely unrealistic in the design of complex engineering systems. 
Here, sometimes many thousands of people with different backgrounds must work 
together in planned cooperation, although most of them will never meet and talk to 
each other. The “glue” which connects all these individuals to a single body must 
be their clear and unambiguous understanding of a common goal, and this under-
standing can be established only on the basis of appropriate documentation. There-
fore, the definition of representation standards must be considered one of the most 
relevant activities of engineering communities. The following statement, although 
a rough exaggeration, highlights the kind of engineering I am considering: “Only 
when he deals with technical drawings does an engineer really work as an engi-
neer; as long as he operates only with formulas, he is an applied mathematician.” 

Sometimes a grandma wonders why her grandson who is studying electrical en-
gineering cannot repair her broken TV set. She doesn’t know that there is a great 
difference between having learned the essential concepts of television systems and 
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the specific knowledge about how the system functions are distributed among the 
electronic components of the circuits of a specific brand of TV. It’s for the same 
reason that the president of an institute of technology should not expect a professor 
from the Department of Mechanical Engineering to be able to repair the president’s 
official car. 

At the end of my general considerations about engineering, I now cite a short 
paragraph from the essay “Considerations on Technology” by the Spanish phi-
losopher José Ortega y Gasset [OYG  2]:  

“You should realize the rather strange fact that technology is mostly 
anonymous, and that its creators don’t enjoy the personal reputa-
tions which are connected with other ingenious individuals. By 
definition, the engineer cannot reign or rule as the final authority. 
His role is gorgeous and adorable, but inevitably second rate.”  

In the writings of Ortega y Gasset, I found many surprising conclusions with 
which I could agree completely, but here I think the philosopher got on the wrong 
track. After all, as far as I am concerned, I can remember many occasions where 
my role was not second rate! 

A Look into the Toy Box of Engineers 
System Models 

There is such a great variety of technical products and systems surrounding us that 
I could easily fill many thick books with descriptions of the functions and struc-
tural details of all the devices which we encounter regularly and everywhere. 
Surely you are realistic enough not to expect me to present that kind of informa-
tion – especially, since you see that the major part of the book already lies behind 
you and that there are not many more pages left for technological subjects. I shall 
use these remaining pages to provide a virtual pair of glasses for seeing the world 
through the eyes of an engineer. In some texts, the Italian artist and scientist Leo-
nardo da Vinci (1452-1519) is said to be the first engineer. The authors base their 
conclusion on the many drawings of technical devices and systems left by da 
Vinci. Among those drawings is one which shows a system which can be consid-
ered a helicopter. In my view, da Vinci was more an inventor than an engineer. It 
is true that he had many innovative ideas, but he did not have the means to actu-
ally implement his designs. We recognize something as an engineering achieve-
ment only if it has been created and stands the test of reality in its implementation. 

Although it is impossible by just writing a few sentences to make you see the 
world through the eyes of an engineer, nevertheless, I can introduce you to some 
essentials of this kind of world view by presenting a single typical example. Some 
time ago, I was traveling with a group of friends through the Italian part of the 
Alps which is called Dolomites. When we reached the Passo Pordoj, a mountain 



System Models 353
  

pass, the bus stopped for a rest break of about one hour. The pass is located at an 
altitude of 2,239 meters, and from there a cableway leads up to a summit of ap-
proximately 3,000 meters. Standing in the cabin and hovering upwards with al-
most 60 other people, I heard some of my fellow passengers say that this really 
was an impressive engineering achievement. The cableway bridges the entire 
distance between the valley station and the mountain station without a single in-
termediate support. Later I got the information that the cable has a length of al-
most 1.5 kilometers. There are a tremendous number of problems which must be 
solved during the process of designing and constructing such a cableway, and 
these problems require the cooperation of engineers from different disciplines – 
civil, mechanical, and electrical engineering, and others. All of the people in-
volved have the same characteristic picture in their mind’s eye, a picture showing 
a rope suspended at both ends. 

An engineer who thinks about a technical system always sees many aspects 
which could guide his interest. The choice of a particular aspect determines the set 
of physical quantities which must be considered. We now choose the most illustra-
tive of all aspects concerning the cableway, the location of the components in 
space. That means that we now restrict our interest to the curve of a rope between 
its two fixed ends. There are only a few quantities which determine this curve, 
namely the coordinates of the two suspension points and the length of the rope. 
The considerations which finally lead to a formula describing the curve must start 
with the constraint that the forces at the ends of the rope must be directed 
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The horizontal components of the forces at the ends 
of the rope must compensate each other:

Fle, h = - Fri, h

The vertical components of the forces at 
the ends of the rope must compensate for 
the weight of the rope which is proportional 
to its length:

Weight of the rope = Fle, v + Fri, v

 

Fig. 13.1     Forces at the ends of the wire-rope of a cableway 



354 13. Engineers and Models
 

tangentially in the direction of the rope at these points. This means that the slope of 
the rope at each point determines the direction of the corresponding force. This is 
illustrated in Fig. 13.1. The forces caused by the weight of the rope must be verti-
cal, since gravity acts downward. From this it follows that the sum of the vertical 
components of the forces at the two suspension points must point upward and its 
total value must be equal to the weight of the rope. From the fact that the rope does 
not introduce any horizontal forces, it follows that the horizontal components of the 
forces at the two suspension points must compensate for each other, i.e., they must 
have the same values, but opposite directions. These considerations are sufficient 
for the deduction of the formula which describes the curve of the rope in the (h, v) 
coordinate system where h stands for horizontal and v for vertical. 

When I had the idea that the example of the cableway would be perfect to in-
troduce you to the way engineers think, I immediately remembered the formula 
which had been given to me by my math teacher in senior high school. Actually, I 
hadn’t encountered any problem which required the application of this formula 
during the entire 40 years of my professional life. You find this formula in the 
upper left corner of the diagram in Fig. 13.2. The curve which is described by this 
formula is called a “catenary.” I won’t guide you through the formal steps which 
lead to this formula because you wouldn’t learn much from its derivation. The  
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Fig. 13.2     Curve of the wire-rope of a cableway (Passo Pordoi in the Alps) 
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mathematical methods required for this derivation, namely differentiation and 
integration, were developed about 300 years ago and were discussed in Chapter 3. 
Before these methods became available, mathematicians assumed that the curve of 
a suspended rope is a parabola like that in Fig. 3.2. 

Once the correct formula of a catenary had been found, mathematicians began 
to explore this result in all directions. During this exploration, they realized an 
amazing structural similarity which is shown in Fig. 13.3. In the right column of 
the table you find equations describing properties of the two trigonometric func-
tions sin(x) and cos(x) which I introduced in connection with the graphic repre-
sentation of complex numbers in Fig. 2.15, and which occurred again in Euler’s 
formula in Fig. 3.22. To the left of the trigonometric functions, you find the so-
called hyperbolic functions, one of which describes the catenary. Because of the 
striking similarity, the hyperbolic functions were called sinh(x) and cosh(x) 
where the letter h refers to the Latin word hyperbolicus. This word should re-
mind you of one of the conic sections shown in Fig. 7.2. Both the trigonometric 
and the hyperbolic functions can be used to describe specific types of conic 
sections. In an (x, y) coordinate system, the two functions [x=cos(p), y=sin(p)] 
describe a circle with radius one, and the two functions [x=cosh(p), y=sinh(p)] 
describe one branch of the so-called unit-hyperbola. The letter p stands for “pa-
rameter.” The value of p is restricted to the interval 0≤p<2π in the case of the 
circle, while all values from the interval -∞<p<+∞ are required for the definition 
of the hyperbola. 
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Fig. 13.3     Structural similarity between the hyperbolic and trigonometric formulas 

Are you wondering why I take you with me on such excursions through the 
world of mathematics? I want you to see the world through the eyes of engineers, 
and a part of this view concerns how observed phenomena can be described by 
mathematical functions. We have to be aware that mathematical descriptions 
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apply only under certain idealistic assumptions. Thus, the formula which describes 
the curve of the suspended rope applies only if the rope is not elastic and its 
weight is equally distributed over its whole length. The formula given does not 
describe the curve of a rope carrying a cable car; the mathematical description of 
this situation is much more difficult. In reality, the rope is elastic and therefore its 
length depends on the distribution of the load. And the fact that the length varies 
with temperature must also be taken into account. 

The cableway is not only an appropriate example for showing you that engi-
neers always look for mathematical descriptions, but it also provides an illustrative 
example for showing that engineers always decompose the world into two parts. 
One part contains the object of their actual interest, and the other part is the rest of 
the world. The union of the two parts constitutes a “system” which consists of the 
system kernel and the environment. This demarcation characterizes the aspect 
under which the system is actually considered. The aspect determines the physical 
quantities which actually are of interest. Their time-dependent values result from 
the interaction between the system kernel and its environment. 

In the example of the cableway, the system kernel consists of only the rope, and 
this kernel is connected at two points with the environment. The environment not 
only introduces the coordinates of the two suspension points, but also the gravita-
tional field. The physical quantities which characterize this aspect of our cableway 
are represented in Fig. 13.4. Some quantities are determined by the kernel or the 
environment alone, while others are determined from the interaction between the 
two. The locations where the physical quantities can be observed are symbolized 
by rounded nodes, and the agents which provide or require these quantities are 
symbolized by rectangular nodes. By using a dashed borderline for the coupling 
agent, I wanted to indicate the fact that this agent is virtual and cannot be consid-
ered a real object which could be cut out and taken away as could be done with the 
rope and the mountains. Although the coupling node is virtual, it is still a required 
agent, because there is nothing else which could provide the curve of the rope and 
the forces at its ends. 

The diagram in Fig. 13.4 is an example of a so-called directed bipartite graph 
which you will encounter more often in the following sections. Such graphs are 
characterized by two types of nodes which can be connected by arrows, but only 
if the two connected nodes are of different types. Usually the two types of nodes 
are symbolized by rounded and rectangular shapes. Bipartite graphs are used in 
different interpretations. The graph in Fig. 13.4 must be interpreted as a so-
called composition model, and it is virtual because not all of its components are 
real objects. In such a composition model, the two types of nodes represent 
agents which must provide something, and containers into which the providers 
can put their results. An arrow leading from a container to an agent means that 
the connected agent requires the contents of the container for producing its 
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output, but it does not mean that the contents are necessarily consumed and the 
container left empty after the operation of the agent. It could be that the contents 
of a container are not matter or energy, but information which can be used just 
by reading it, and therefore not taking it away from the container. Fig. 13.4 
shows that the kernel and the environment provide something which is used by 
the coupling agent to produce the contents of the container at its output at the 
bottom of the figure. 
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Fig. 13.4     Virtual composition model of a cableway 

Real or virtual composition models are of great importance for an engineer do-
ing a good job. I want to emphasize this with Fig. 13.5. The only thing which is 
actually given is reality; everything else is models being thought about or repre-
sented on paper. The mathematical model is assigned to the composition model, 
i.e., a mathematical model can be conceived only after reality has been idealized 
and appropriately abstracted. Sometimes we forget that modeling reality always 
requires some kind of idealization. In the example of the cableway we assumed, 
without giving it much thought, that the curve of the rope can be described by a 
mathematical formula. Thus we assumed that the rope has only a length, but not a 
thickness. This idealization didn’t lead to an unacceptable discrepancy from real-
ity because, after all, we didn’t require that the formula describes reality with an 
accuracy of one millimeter. 

Graphic representations of structure models are a perfect basis for efficient 
communication among all people who in one way or another are interested in the 
system considered. It is possible to point to nodes or edges of the graphs and thus  
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Fig. 13.5     Central position of a structure model in the toolbox of engineers 

to ensure that everybody knows what is actually being discussed. And since the 
graphs can always be entirely overlooked, there is no danger of losing the connec-
tion between the details and the big picture. 

While graphic representations are made for human eyes, mathematical models 
can be turned over to computers. Mathematical models can be used for deriving 
dimensioning values, i.e., information about how long or thick a body should be 
made, what voltage should be chosen, etc. Dimensioning always concerns proper-
ties of components or powers of sets which already occur in the structure model. 
The transition from the model to reality is either an implementation, i.e., building 
the system according to the specifications from the model, or a validation, i.e., 
testing the predictions of the model against reality. 

Whenever a medical injury leads to a claim, a question concerning the liability 
of physicians or pharmaceutical companies must be determined. Similarly, a ques-
tion concerning the liability of engineers comes up in the case of claims in connec-
tion with damages and injuries caused by failures of technical systems. In 1998 a 
bad train accident occurred in northern Germany. It led to the deaths of over 100 
people and was caused by the tread ring of a wheel which failed to stand the stress 
while running over switches at a speed of more than 200 kilometers per hour and 
broke apart. In such cases, the questions which a judge asks his consultants about 
the design of the wheel can be characterized by referring to Fig. 13.5. Had reality 
been abstracted appropriately? Were the mathematical models consistent with the 
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structure models? Were the computations on the basis of the mathematical model 
correct? Were the consequences from the models correctly transferred into reality? 
Were the results sufficiently validated by experiments? 

We now shall consider a type of system which is called an “input-output-
system.” Systems of this type are characterized by providing something at their 
output which is produced from what they get at their input. Even the cableway 
system can be viewed as a system of this type since, at the mountain station exit, 
the system delivers people who are “produced” by adding potential energy to the 
people who enter the system through the entrance at the bottom station. The gen-
eral model of this type of system is shown in Fig. 13.6. Fig. 13.7 shows what the 
unions of input and output channels are in the case of a telephone system. 

Environment

System of the type
’input-output’

Material Accompanying
information

Union of output channels

Material Accompanying
information

Union of input channels

 

Fig. 13.6     Input-output system embedded in its environment 

In the top-most view of a system, the system kernel is seen as a so-called black 
box which hides the internal structure. In order to characterize more specific sys-
tem types, we have to look into the black box. Fig. 13.8 shows the general struc-
ture of a so-called closed-loop control system. This is one of the most important 
system models. It is applied not only for designing technical systems, but also for 
explaining processes in biological and sociological systems, i.e., processes in 
living creatures, in biotopes, in economics and in politics. 

A very simple example of an application of this model is controlling room tem-
perature by using a heating system. The controlled system consists not only of the 
furnace, but also of the room to be heated. The environment contains the people 
who expect to get a comfortable room temperature, but it also contains everything 
else besides the furnace which affects the room temperature. This includes the 
outside temperature determined by the weather, and the states of the doors and  
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Fig. 13.7     Telephone system as an example for Fig. 13.6 

windows which might be open or closed. Since the temperature normally is not 
exactly the same at every point in a room, the structure in Fig. 13.8 contains the two 
variables X and XO which both correspond to a temperature in this example. X corre-
sponds to the temperature measured by the controller, while XO corresponds to the 
temperature which is sensed by the people in the room and determines whether or 
not they feel comfortable. The controlling value Y determines the heat production of 
the furnace. The people in the room have access to a thermostat which allows them 
to express their wish concerning the desired temperature XT, for example, by turning 
a knob or by entering digits on a keypad. By comparing the two values X and XT, the 
controller can decide whether it must change the value Y in a certain direction or 
leave it alone. Besides the performance of the furnace, all effects which have an 
influence on the actual room temperature come from the environment and are cap-
tured by the variable N which refers to the word noise.   

The problem of designing a satisfactory controller for a given system to be con-
trolled is solved by using control theory, a subject which is taught in both the 
departments of mechanical and electrical engineering at a university. Since values  
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Fig. 13.8     Feedback control system with its environment 

of the noise N and the observed value XO cannot be captured mathematically, the 
behavior of the system to be controlled can be only roughly described mathemati-
cally. However, this does not apply to the controller, since all three values X, XT 
and Y which are required to express the behavior of the controller are measurable 
physical quantities, and the function Y = f(X, XT) can be expressed by a formula. 
Although the controlled system cannot be accurately described by a formula, it 
nevertheless is necessary to model this system component. In order to design an 
adequate controller, at least some rough information about the system’s response 
time is required. Everybody knows that the room temperature does not jump to the 
desired value at the moment the furnace is turned on. In this case the response 
time lies at best in the range of minutes. But there are other cases where the re-
sponse time of the controlled system is below one millisecond. It would be absurd 
to design a system where it takes a couple of minutes before the front wheels of a 
car respond to the turning of its steering wheel. 

Since the connection of the controlled system and the controller via the values 
X and Y constitutes a feedback loop, oscillations will occur if the response times of 
the controlled system and the controller do not correspond. Such oscillations can 
also occur in cases where the controller is not a technical system, but a human 
individual. I very well remember a boat cruise on the “Canal du Midi” in the 
South of France, a cruise I once took with some friends. There you are permitted 
to steer a boat without having a boat driver’s license. The agents who rent the 
boats to tourists are convinced that it is sufficient to submit their customers to a 
fifteen minute practice session, and then let them go on their own. In this example, 
the boat is the system to be controlled while the person sitting at the steering 
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wheel is both the controller and a part of the environment. Here, the controlled 
value X and the observed value XO are identical and correspond to the position of 
the boat relative to the sides of the canal. The target value XT is not a measurable 
physical quantity but comes from the vision of the boat’s pilot concerning where 
he wants the boat to go. The pilot, in the role of the controller, combines his ob-
served actual position of the boat with his vision about where it should be, and 
from this he determines the angle Y by which to turn the steering wheel. To this 
point, my description would also apply to steering a car, but there is a significant 
difference between a car and a boat. While a car responds almost immediately to 
the turning of the steering wheel, the boat doesn’t show any reaction at all for a 
few seconds. An inexperienced pilot will conclude from this that the angle by 
which he turned the wheel was not large enough, and he will continue turning the 
wheel. Only later will he realize that the steering angle was already much too 
large, because then the boat will turn abruptly by an angle which far exceeds the 
desired value. In response to this behavior of the boat, the pilot will become panic-
stricken and immediately turn the steering wheel in the opposite direction. But 
again this will not cause an immediate reaction of the boat. A couple of seconds 
later, the boat will swing in the opposite direction with an angle which again is 
much larger than desired. Of course, these training sessions are performed in a 
wide inner harbor where there is enough space between the boat and the edges of 
the basin. Otherwise, the boat would hit the banks or collide with other boats and 
cause a lot of damage. Usually it doesn’t take more than fifteen minutes before a 
person learns how to handle the steering wheel adequately in order to avoid all 
undesired moves of the boat. Then the cruise can begin. 

Human individuals are intelligent enough to draw far-reaching conclusions 
from the behavior of the technical systems they are using, i.e., they can learn from 
their experience. Ordinary technical controllers, however, are not built for learn-
ing; they work correctly only when the system to be controlled behaves according 
to the assumptions made by the engineers when designing the controller. Never-
theless, it is possible to build so-called adaptive controllers which can adapt their 
behavior to unexpected changes in the controlled system and the environment. The 
design of such controllers requires much more effort, and therefore they are not 
used in standard applications. 

Basically, a controller is nothing but an information processing system which 
gets information about measured values of physical quantities at its input. From 
these, by applying specific formulas, it computes the values which it provides as 
its outputs. How such information processing system can be designed and built 
will be explained in Chapter 14. 

Each physical quantity which appears in a composition model of a system must 
be classified according to whether its value domain is continuous or is a finite set. 
In the latter case, the values are discrete. An example of a quantity having a 
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continuous value domain is the temperature X to be controlled. While this is given 
by reality and cannot be changed by the designer of the system, the controlling 
value Y and the target value XT can be either continuous or discrete, depending on 
the design of the system. The domain of the controlling value could be restricted 
to the finite set {furnace on, furnace off}, but it also could correspond to the con-
tinuum of the positions of a valve determining the flow of heating oil. And if the 
target value XT corresponds to the position of a knob on a thermostat, the position 
of this knob could be continuously adjustable, or it could be restricted to a finite 
set of discrete angles. If the domains of all quantities occurring in a system are 
discrete, the system is said to be discrete. The simplest case of a discrete system is 
a sequential system. A sequential system is characterized by the fact that its opera-
tion is a sequence of steps where each step is associated with exactly one input 
element and one output element. Although you probably didn’t think about their 
being sequential systems, you certainly have often used systems of this type. Each 
machine selling soft drinks, candies, cigarettes or bus tickets is a sequential  
machine. 

Fig. 13.9 represents a graphical protocol describing the sequence of steps in the 
process of buying a bottle of Coke from a vending machine. I assumed that the 
price of a bottle of Coke is $1.20. When a potential buyer approaches the machine, 
he sees a prompt for choosing a type of beverage on the display of the machine. 
Coke can be chosen by pressing a certain button. Pressing this button leaves the 
output container empty and only changes the message on the display. Now the 
machine knows that Coke has been ordered and that no payment has yet been 
made. Therefore the display tells the customer that he must insert $1.20 to get a 
bottle of Coke. Now the customer inserts a one-dollar bill. As a consequence of 
this, the output container stays empty and the message displayed says that 20 cents 
remain to be paid. By inserting a quarter, the customer finally has paid more than 
the Coke costs, and this causes the machine not only to place a bottle of Coke in 
the output container, but also to return a nickel. The machine is now in the same 
state as it was before the whole process began. 

The graphical pattern of the protocol in Fig. 13.9 applies not only to this special 
case of a vending machine, but to all kinds of sequential machines. The actual 
specific case affects only the naming of the nodes with rounded borders. Each 
vertical column of such nodes corresponds to a certain type of information. The 
left column belongs to the input elements; in the next column to the right you find 
the column of the internal states of the machine; the two columns on the right side 
belong to the output elements with the right-most column assigned to the supplies, 
while the display messages are represented to the left. Supplies must not necessar-
ily be material objects like bottles, tickets or coins. A supply may also be a “pack-
age of energy” which is supplied when the machine says “Good morning” or 
“Your input is invalid.”  
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Fig. 13.9     Operation protocol of a beverage vending machine 

In mathematics it is common practice to use the letter x for the input variable and 
the letter y for the output variable in functional expressions of the form y=f(x). 
Therefore it is quite appropriate to use the letter X for the input elements and the 
letter Y for the output elements of a sequential machine. However, the behavior of a 
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sequential machine cannot be described by simply assigning a corresponding output 
element Y to each possible input element X, since the output does not depend en-
tirely on the actual input. The actual state S of the machine, i.e., the actual content of 
its memory, must also be taken into account. In the example of the beverage vending 
machine, memory is required for storing the information about which kind of bever-
age has been chosen and which payments have already been made. 

In order to describe the relationships between the elements occurring in the pro-
tocol in Fig. 13.9 in mathematical terms, we have to introduce three functions, the 
display function PD, the supply function PS and the state transition function T. The 
results of the display function and the supply function are output elements of the 
sequential machine. I used the letter P to symbolize these functions in reference to 
the words product, presentation and provision. The information which is displayed 
is completely determined by the state. This is expressed by the equation 

YD(n) = PD[S(n)]. 

The discrete variable n represents the sequence number which determines the row 
in the protocol (see Fig. 13.9). This variable n is analogous to the variable t which 
represents a point in time in formulas describing the behavior of continuous sys-
tems. Therefore, n can also be called the discrete time variable. The actual supply 
YS(n) depends on both the input element  X(n) and the actual state S(n): 

YS(n) = PS[S(n), X(n)]. 

The knowledge of what the actual state and the input element are is sufficient to 
predict what the next state will be: 

S(n+1) = T[S(n), X(n)]. 

The relationships which we just expressed by formulas are shown again in 
Fig. 13.10 in form of a composition model. This is a black box model, since it 
doesn’t provide any information about how the state S and the three functions PD, 
PS and T are implemented.  

S(n) S(n+1)

S(n+1) = T [ S(n), X(n) ]

YS(n) = PS [ S(n), X(n) ]

YD(n) = PD [ S(n) ]
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Fig. 13.10     Black-box model of a vending machine 
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We shall now consider this problem of implementing our beverage vending ma-
chine. As a starting point, we again need an appropriate system model. The model 
we are looking for can no longer be a black box model as shown in Fig. 13.10, but 
the model must now show the components within the black box. We shall begin 
with a model which consists of only two components whose internal composition 
will be considered later. Fig. 13.11 shows such a composition model having only 
two components, and this model represents an instruction execution system. In my 
comment concerning the model of a feedback-control system in Fig. 13.8, I said 
that this model applies not only to technical systems but to many systems outside of 
the world of technology. The same is true for the model shown in Fig. 13.11. 
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Fig. 13.11     Composition model of an instruction execution system 
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In an instruction execution system we always find a set of so-called operational 
agents. Each of these agents is able to perform specific single-step operations 
without knowing at which time each operation is to be performed, and to which 
goal his own operations and those of his fellow agents shall lead. Thus, the opera-
tional agents need someone to tell them when to execute which operation. As a 
first example, let’s make the absurd assumption that the musicians in an orchestra 
could not read musical notes and would not know anything about the piece of 
music which shall be played. But assume each of them would be a master of his 
instrument and could play any note at any intensity and length. These musicians 
need a conductor who at each point in time provides the information about which 
note must now be played, and at which intensity and length. This conductor would 
be the only one who knows the piece of music being played, and he would know 
which instruction he must give to each musician at every point in time, either from 
his memory or by looking at the score. Although the idea of such an orchestra is 
totally absurd, we need only to go a short step to find a real system which corre-
sponds exactly to this orchestra. Every former merry-go-round organ and every 
historic orchestrion which you may find at a museum operate exactly as described. 
Each individual instrument can produce its specific sound which can be turned on 
and off by controlling a valve or an electromagnetic switch. In most cases, the 
“score” is a long tape with holes at specific positions which correspond to specific 
valves. The system which “reads” this tape by unwinding it and forcing air 
through the holes corresponds to the conductor reading the score and giving in-
structions to the musicians. 

While there is no information flow back from the musicians to the conductor in 
this example of a conductor giving instructions to the musicians, there are other 
systems where the controlling agent requires some information which the opera-
tional agents must provide. Think of a grandpa sitting in a wheel chair and giving 
instructions to his two grandsons about where to drill holes in a living room wall 
for hanging paintings with heavy frames. Suppose he wants a hole at a position 
where the concrete wall doesn’t allow a hole to be drilled. In this case information 
will flow from the grandson who tried but didn’t succeed to his grandpa who gave 
the order. As a consequence, the grandpa will come up with an alternative position. 

While the controlling agent has to deal only with information, this must not be 
the case with the operational agents. Suppose the purpose of the system is the 
production of chocolate; in this case at least some of the operational agents must 
be able to handle matter and energy. All agents are restricted to handling informa-
tion only if the purpose of the system is pure information processing. 

Of course, at the beginning of the design of an instruction execution system, the 
purpose of the system is well known. But this purpose does not necessarily deter-
mine a specific sequence of design steps. The design process begins either with 
writing the “score,” or it begins with determining the set of operational agents and 
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the paths between them. In the case of our beverage vending machine, it is advis-
able to first design the so-called operational part, and later to decide the order in 
which the operational agents perform their specific operational steps. Fig. 13.12 
represents the result of my design efforts. I tried to come up with a rather  
symmetrical graphical structure, since this makes it easier to virtually to walk 
through and to keep it in mind. At the beginning of this chapter, I considered the 
difference between architects and engineers, and said that esthetics were of minor 
importance for the work of engineers. Now, I must slightly moderate my former 
statement because a good engineer will always try to make his drawings meet the 
esthetical expectations of the viewers. This applies especially to drawings which 
do not represent real objects drawn to scale, but to drawings which visualize ab-
stract functional relationships. The format of such drawings is totally open con-
cerning the form and size of the graphical symbols, and where they are located. It 
would have been easy for me to make a drawing with no graphical similarity to  
Fig. 13.12, but which still represents the same information concerning the exis-
tence of specific operational agents and their interconnections. When a good engi-
neer designs such a drawing, he is quite aware that the result of his efforts has a 
great influence on the quality of the communications among the people involved 
in the project. Drawings having a layout which has been optimized with respect to 
communication can easily be kept in mind, and everybody immediately knows 
what someone is talking about when he refers to certain positions on the drawing. 
The role of these drawings is comparable to that of maps which people refer to 
when they are planning a trip. 

Although the naming of the nodes provides a rough understanding of the struc-
ture shown in Fig. 13.12, it is still necessary for me to give a brief comment. The 
three nodes at the left represent the channels through which the user and the ma-
chine communicate. You may wonder why both the keys and the money channel 
not only have arrows leading into the machine, but also have arrows leading in the 
opposite direction. This indicates that the machine can block the keys and close 
the money channel. As long as no beverage has been selected, the insertion of 
money should not be possible, and once a beverage has been selected, the selec-
tion keys should be blocked. The only key which never will be blocked is the key 
for aborting the process. Pressing this key will cause the return of the previously-
paid money. The four small circles with checkered shading represent the channels 
through which the controlling agent sends its instructions to the corresponding 
operational agents. In the case of the “key stroke receiver and analyzer,” the corre-
sponding instruction channel is used for requesting the blockage of the keys being 
turned on or off. The four grey-shaded nodes represent the channels through 
which the corresponding operational agents can provide the information needed by 
the controlling agent for its decision about the instructions to be given next. Thus, 
the controlling agent must be informed when the abort key is pressed, and it must  
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Fig. 13.12     Network of operational agents in a vending machine 

know whether there is at least one bottle of the ordered beverage still available in 
the supply container. It needs information about whether there is still enough ca-
pacity in the money container for inserting additional coins, and whether the coins 
which are required for returning overpaid amounts are available. The channel in 
the middle of the drawing is used either by the key stroke receiver or by the 
money analyzer for sending the message that an event has occurred – either a key 
has been pressed or money has been inserted. The path which leads directly from 
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the money analyzer to the output container is used for returning a coin or a bill 
which has been classified as invalid. 

The diversity of the operational agents in Fig. 13.12 indicates that the imple-
mentation of such a system requires a high degree of division of labor. We can 
easily identify three subsystems which surely will be designed by different ex-
perts. One of these subsystems handles the money. Complete assemblies for this 
purpose are provided by specialized companies who don’t care what will be sold 
by the machine. The second subsystem is the bottle container with the correspond-
ing output mechanism. It is completely irrelevant to the designer of this subsystem 
how the process of selecting and paying the beverage is implemented. The third 
subsystem consists of the keyboard and the display; these are functional units 
which can be implemented by adaptation of universal components. Such aggre-
gates are required not only in vending machines, but in a wide range of electronic 
systems.  

A machine for selling bottled beverages certainly is not a technical system 
whose design and operation requires the mastering of a high complexity. I dis-
cussed this example only because it is well-suited for introducing the concept of 
sequential machines and the model of an instruction execution system. Although a 
lot of pertinent know-how is required for designing and implementing the subsys-
tems in Fig. 13.12, this know-how is not part of the fundamentals of engineering. 
When talking about know-how, we usually think of all the knowledge an expert 
accumulates over a long period of time. The source of this knowledge is not only 
his experience, but also the knowledge about solutions which have been found 
earlier by others who had to solve similar types of problems. 

Once the structure in Fig. 13.12 is found, this does not mean that the design 
process has been completed. Each component in the structure must now be classi-
fied according to whether it can be implemented by applying a well-known 
method, or whether the structuring process must be continued. The descent over a 
hierarchy of structures must be continued until finally all components are such that 
the expert designer can either take them off the shelf or immediately see which 
method he must apply for their implementation. The great variety of tasks which 
can be performed by technical systems leads to a corresponding variety of opera-
tional agents. Each such operational agent is a processor which receives matter, 
energy or information through its input channels and provides matter, energy or 
information at its output channels. There are two basic categories of processors 
depending upon whether or not they have a memory. The output of a processor 
with memory depends not only on what is actually provided at its input channels, 
but also on what has been provided there in the past. 

There are two types of operational agents which can be found in many systems, 
and they sometimes are mistaken for one another by non-experts. Therefore, I now 
shall consider these two types more closely. Agents of the one type are called 
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converters, and agents of the other type are called amplifiers. In both cases, the 
“substance” which flows through the input channel is of the same kind as that 
flowing through the output channel. This substance is either a specific kind of 
matter or of energy, or of information. Here, I must remind you of what I said in 
my comment about Fig. 12.1 where the difference between the purpose of a flow 
and what is really flowing is emphasized. Here we are interested only in the pur-
pose. For example, information flowing into an information representation con-
verter as energy in the form of an acoustic wave may leave the converter as matter 
in the form of text on paper. 

The table in Fig. 13.13 shows some examples of converters and amplifiers. It is 
quite natural to wish that an energy converter provides as much energy at its 
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Fig. 13.13     Examples of converters and amplifiers 
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output as it receives at its input. But this wish can never be completely fulfilled 
because a converting processor always consumes a fraction of the energy from its 
input in order to function, and therefore the energy coming out at any time will 
always be somewhat less than the energy coming in. The energy consumed by the 
converter will cause a rise of its temperature, and this will cause energy to be 
dissipated into the environment by radiation. However, this dissipated energy is 
not considered a regular flow through an output channel, but as an undesirable 
loss. In any case of a conversion, the form of the flowing substance at the output 
differs from the form at the input. There are special cases of energy conversions 
and of information conversions where the flowing substance can be expressed as a 
product of two factors. In these cases, the conversion consists of changing these 
factors such that the result of the product is left unchanged. Let’s consider the first 
example in Fig. 13.13 which describes the conversion performed by a gear. At the 
gear’s input, the engine provides a certain torque T which causes the axle to run at 
the rotational speed N. The product T∗N corresponds to the energy which enters 
the system per time unit. At the gear’s output, the torque differs from the input 
torque by a factor f and has the value f∗T. But since the product of torque and 
speed must be the same at both ends of the gear, the rotational speed of the axle 
must now have the value N/f. This value is approximate because of energy loss in 
the gears. 

The same situation exists in principle in the case of electrical transformers. Such 
transformers are based on the law of induction which is applied to convert the form 
of flowing electrical energy, electricity. Both at the input and at the output of such a 
transformer, the energy per time unit appears as a product of a voltage and a cur-
rent, both of which are time-dependent sine functions. If the amplitudes of these 
sine functions at the input are v and i, the corresponding amplitudes at the output 
are approximately f∗v and i/f. Thus, the product of the amplitudes is approximately 
the same at both ends of the transformer. This means that almost as much energy is 
leaving the transformer as is entering at its input. On its way from the generator in 
the power plant to the appliances in our home, electrical energy passes through a 
chain of transformers. The voltage at the generator’s output lies in the range of 
thousands of volts, while the voltage on the overhead power lines should be much 
higher in order to minimize the loss of energy. This loss occurs in the form of the 
cables getting warm because of their ohmic resistance, and the loss is proportional 
to the square of the value of the current. When a certain amount of energy must be 
transmitted, the current should be as low as possible, and this requires that the volt-
age be chosen as high as possible. The voltage on many overhead power lines is 
380,000 volts. Naturally the voltage at the power outlets in our homes must be 
much less, because otherwise we would live in danger of injury or death. In many 
countries the standard voltage for home appliances is either 110 or 220 volts. From 
these considerations, it follows that there must be at least two transformers on the 
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way from the power plant to our home, one for transforming the generator’s volt-
age to the much higher voltage of the overhead transmission line, and another one 
for transforming the high transmission voltage down to the voltage in our home. 
However, it would not be feasible to perform the second transformation in one step, 
and therefore the transformation downward is implemented by two transformers. 
First, the high voltage of the long distance transmission line is transformed down at 
an electrical substation to a medium voltage which is used to distribute the electric-
ity into smaller geographical regions such as neighborhoods, and then this medium 
voltage is transformed down to the voltage for our power outlets. This last trans-
formation step is performed by transformers which are located near our homes. 

In the two examples in Fig. 13.13 concerning information transmission, I as-
sumed that a stream of one megabyte per second is flowing through a converter. 
The term byte was introduced by IBM at about 1965 to denote an ordered set of 
eight bits. Long before, the term bit was introduced to denote one piece of binary 
information, i.e., for an element of a binary set such as {no, yes} or {0, 1}. In the 
first example, the converter converts only the coding, but leaves the number of 
binary channels unchanged. I assumed that the converter has eight binary channels 
on which all eight bits of a byte can appear at the same time, both at its input and 
at its output. The next byte is provided every one-millionth of a second. There are 
28=256 different combinations of eight bits, and each of these bytes can have its 
own specific meaning. In the example given, it is assumed that the purpose of the 
system is the transmission of these meanings and that the converter therefore shall 
not change the sequence of the meanings. Converting the coding indicates that the 
meaning which is associated with the byte arriving at the input gets a different 
byte assignment at the output.  

In the next example, the converter does not change the association between 
byte and meaning, but changes the number of binary channels. It is assumed that 
there are eight binary input channels on which one byte arrives every millionth of 
a second, and that the eight bits of this byte can appear only one after the other at 
the output, since there is only one binary channel coming out. 

Now we come to the examples of amplifiers in Fig. 13.13. In the case of con-
version, a quantity could be increased only by a certain factor if, at the same time, 
another quantity was decreased by the same factor. In the case of amplification, 
however, something is increased without having something else being decreased 
at the same time. Of course, this requires a specific view, since in general it is 
impossible for more matter or energy to be delivered at the output of a system than 
has been flowing into its input. What this specific view is can be best illustrated by 
an example which has nothing at all to do with the world of technology. Imagine 
that you went to a farmer’s fair where you won a piglet weighing only a few kilo-
grams. Since you live in a city, you certainly cannot care for feeding the piglet  
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yourself, and therefore you try to find a farmer to whom you can give the piglet 
for care. After about one year, you come back and pick up an adult pig. The farm 
obviously can be considered a weight amplifier since it got a low-weight piglet at 
its input and delivered a heavy pig at its output. Of course, no miracle occurred, 
since besides the input channel through which the piglet entered, the system had 
another input channel for the swill to feed the pig. In general, an amplifier always 
has two input channels, one for the substance to be amplified, and the other for the 
“food” which is required for the amplification. In the case of technical amplifiers, 
of course, the substance to be amplified is not the weight of animals, but the 
amount of formed energy or matter. A small amount of formed energy or matters 
enters at the input of such an amplifier. At the output, much more energy or mat-
ter, which has the same form as the energy or matter provided at the input, is de-
livered. The “food” which is required for the amplification is unformed energy or 
matter. In the case of hydraulic systems, the unformed energy is provided by a 
pump, and in the case of electrical systems, the unformed energy is provided by a 
direct voltage source. The examples given in Fig. 13.13 may help you to under-
stand what I mean by the terms “formed” and “unformed” energy or matter. 

A power steering system is similar to a set of gears, and therefore the two sys-
tems are well-suited to illustrate the difference between conversion and amplifica-
tion. In both cases, mechanical power flows into the system and is produced at its 
output as the product of a torque and a rotational speed. Before power steering, 
there were gears directly between the steering wheel and the front wheels of the 
vehicle. I very well remember that, in those days, bus and truck drivers had to 
apply very strong forces and needed more than one full turn of the steering wheel 
just to turn the front wheels of a bus or truck by a small angle. All of the energy 
required for turning the front wheels had to be provided by the driver. Nowadays, 
drivers themselves must provide only a small fraction of the required energy, with 
the rest taken from the engine or the battery. 

When they read or hear the word “amplifier,” most people immediately think of 
consumer electronics such as radios, TV sets or CD players. Each radio and TV 
set must contain at least one amplifier, since the antenna provides only a very 
small signal which is by far insufficient for feeding the loudspeaker or the moni-
tor. In these cases, the information is contained in the form of the time dependency 
of a voltage or a current. You’ll read more about the relationship between infor-
mation and its forms in Chapter 14. 

The last example in Fig. 13.13 shows that amplification is not restricted to en-
ergy, but can also be found concerning matter. In this example, “unformed matter” 
corresponds to the black powder, sometimes called “toner,” which is used in a 
printer to produce the letters and other patterns on paper. As long as this powder is 
held available in a container for future use, it is unformed, but when the letters and 
patterns appear on paper, the same powder has been given its form. 
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I have now spent a rather long time on the subject of conversion and amplifica-
tion. I did this for a particular reason. In all sciences including engineering sci-
ence, it is a common procedure to search for essential characteristics of different 
problems and systems, since this may lead to a unified language for talking about 
the problems and systems, even though the technological differences between 
them are extreme. If it is possible to talk about different problem fields using the 
same terms and concepts, it is very likely that the essence of a solution which has 
been found in one field can be transferred to another field. 

The beverage vending machine was introduced as an example of a sequential ma-
chine. In the view of engineers, most sequential machines are rather simple systems. 
Most of the more complex systems they have to deal with are not sequential ma-
chines, but are characterized by concurrency. In the case of concurrency, a system 
can be decomposed into subsystems of sequential machines, but their cooperation 
cannot be described by a protocol for sequential operation. When I began working 
on this book, I made a habit of analyzing my everyday contacts with technical sys-
tems by asking the question about whether or not they might be suitable for use as 
examples in this book. Once, on a long railroad trip, I used headphones to listen to 
some music and, lost in thought, I watched the rotation of the compact disc which I 
could see under the clear cover of my portable CD player. All of a sudden I became 
aware of the fact that I had never asked myself how the designers of this player had 
avoided the kind of whining noise which I had become used to from record players 
whose rotation speed varies significantly. Could they really control the rotation 
speed of the disc so precisely that the unavoidable speed variation was not audible, 
or did they apply other methods? Instead of trying to find out how today’s CD play-
ers are actually designed, I asked myself how I would solve this problem, and I 
came up with a straight-forward solution. Later, I was told that this really does cor-
respond to the solution used in today’s commercial systems. The basic idea is that 
the music must not be synchronous with the reading of the information from the 
disc. The generation of the sound is based on the constant frequency of a quartz-
controlled electronic oscillator which is not at all influenced by the varying speeds 
of any moving mechanical parts. The sound generator gets its input information 
from an electronic buffer memory which temporarily stores information from the 
disk which can be read at a constant rate. Of course, what is read from this buffer 
must be the same information as that which is stored on the disc. An agent is re-
quired to transfer the information step-by-step from the disk into the electronic 
buffer, and this transfer agent must make sure that there is always enough informa-
tion available in the buffer for the sound generator to read. The amount of buffered 
but not yet read information must not fall below a certain threshold. For a control 
system engineer, it is not a difficult problem to design and build a feedback control-
ler (see Fig. 13.8) which keeps the amount of buffered information approximately 
constant by making the disc run slightly faster or slower when needed. 
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Such a CD player cannot be modeled as a sequential machine, but must be con-
sidered a composition of two sequential machines. Both the subsystem which 
copies the information from the disc into the electronic buffer and the subsystem 
which reads from the buffer and generates the sound are sequential machines. 
They are coupled by using the same buffer memory, but their cooperation cannot 
be described in the form of a sequential operation protocol.  

I shall now present an example which at a first glance has nothing to do with 
the CD player considered, but soon you’ll see that the essence of this new example 
is exactly the same as in the case of the CD player. Imagine a speaker who realizes 
half an hour before he must give his speech that he forgot and left the text of his 
speech on his desk at home, 500 miles from where he actually is located. Fortu-
nately his secretary, who can type spoken text perfectly, has come with him. 
Therefore, the speaker calls his wife on the phone and asks her to read the speech 
into the phone so that his secretary can hear the speech and type it. The reading 
and typing begins about a quarter of an hour before he must step behind the 
speaker’s podium. This guarantees that at least the first page of his manuscript is 
available at the beginning of his speech. While he is giving his speech, the typing 
process in the background must run fast enough for providing the next page when-
ever the speaker needs it. Quite obviously, his wife’s reading speed will not be 
exactly the same as her husband’s talking speed. 

The CD player and the corresponding speaker system are good examples for in-
troducing the term steady state which plays a major role in the world of engineers. 
In both examples, a so-called start-up-phase is required, either for providing the 
first buffer content before the sound generation begins, or for providing the first 
page before the speech begins. At the end of this start-up-phase, the system is in a 
steady state which is characterized by a process which could continue indefinitely 
– the wife is reading, the secretary is typing and the husband is speaking. Once I 
visited a company which produces newsprint, and I was impressed by a huge 
machine which was about 120 meters long.  Chunks of wood were thrown in at 
one end, and paper 7.3 meters wide was wound onto a spool at a speed of ap-
proximately 25 meters per second at the other end. It is understandable that the 
company must try to keep this machine in operation 24 hours a day and seven 
days a week, because it is very complicated to start it up and get it into the steady 
state. While nothing changes at all in a system which is in a static state, changes 
happen all the time in a steady state, where only certain values which characterize 
the process stay constant. In the case of the newsprint machine, examples of such 
constant values are the weight of the wood which is thrown in every hour, the 
humidity and temperature of some intermediate products and the speed at which 
the paper comes out and is wound onto spools. 

Before powerful computers became available, many things which engineers 
would have liked to try couldn’t be tried because the effort required and the costs 
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were unaffordable. In those days, the only way to find out whether a system be-
haved as planned was to build the system. A convincing example of the progress 
in engineering is the design of cars with respect to safety. Engineers always 
wanted to design the bodies of cars so that, in the case of an accident, as much 
energy as possible is consumed by deforming the metal body, while not much 
energy remains for causing injuries to the passengers. Whether or not a body de-
sign met this requirement could be tested only by running a real car into a wall. 
Afterwards, the dummies which represented the passengers could be analyzed in 
order to see whether unacceptable damage had occurred. Today a model of the 
whole car and its passengers is described in form of a huge amount of data. This 
data is then fed into a computer which contains programs containing formulas 
necessary for describing the dynamics of the car and the dummies according to the 
laws of physics. Instead of doing experiments with real systems, the experiments 
are simulated. This is of great advantage.  The experiments are very cheap and 
many experiments with slightly modified data can be performed within a short 
period of time. Thus, much more useful results become available for optimizing 
the design than could be obtained from actual experiments. 

The requirements for some systems can be described only by referring to prob-
ability distributions. Consider a telephone switching system for a big city. The 
number of subscribers who initiate a call each hour because they want to talk to 
someone can be estimated only on the basis of past data. On the one hand, the 
phone company doesn’t want a high percentage of call attempts to be rejected 
because of the switch being overloaded. On the other hand, it is much too expen-
sive to build a system which will not send a busy signal even when half of the 
city’s population decides to call someone from the other half, all at the same time. 
Before the decision is made about how the system is finally designed, many load 
cases must be simulated on a computer. 
The Role of t he Sine F unctio n 

How the Sine Function Makes the Jobs of Engineers Easier 
The Role of t he Sine F unctio n 

When I introduced the two functions sin(x) and cos(x), I said that the cosine func-
tion has the same shape as the sine function and differs from it only by a shift to 
the left of π/2 on the x-axis. Whenever the position of the curve relative to the x-
axis is of no interest and only the shape of the curve is important, the curve is said 
to be a sine curve, although it would also be correct to call it a cosine curve. The 
title of this section is meant in this sense. 

You probably noticed in my discussion of mathematical considerations that there 
were only a couple of functions which were mentioned repeatedly. These are the 
functions which are of greatest importance for both physicists and engineers, namely 
the exponential function ex and the trigonometric function sin(x). The amazing con-
nection between these two functions was shown in Figures 3.22 and 13.3. The sine 
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function is of extremely high importance in various areas of physics and engineer-
ing, which at a first glance seem to have nothing at all in common. These areas are 
characterized by the terms rotation, spectrum, resonance and linearity. 

Wherever something is rotating, the sine function cannot be far away. This is an 
immediate consequence of the definition of this function (Fig. 2.15). You were 
previously introduced to the concepts of spectrum and resonance, as you can see 
in Figures 11.2 and 11.6. Resonance is the basis of broadcast systems like radio 
and television systems, since the effect of resonance can be used for amplifying or 
eliminating specific frequencies from the spectrum of an electromagnetic wave 
arriving at an antenna. When you tune your radio to a specific radio station, you 
are actually changing the resonant frequency of an electronic oscillator so that its 
frequency matches the transmission frequency of the radio station. 

Linearity is something which every engineer and physicist hopes to find in or-
der to avoid complicated computations. A linear relationship between two physi-
cal quantities means that doubling or tripling one quantity leads to the doubling or 
tripling of another quantity. Such a simple relationship is found not only in phys-
ics and engineering, but linearity is a quite common effect in everyday life. When 
we buy twice or three times as much cheese or meat as we bought yesterday, we 
are not at all surprised that we must pay twice or three times as much. Because of 
the fact that computations are so simple in the case of linearity, physicists and 
engineers are always looking for ways to introduce linearity, even in cases where 
the original problems are actually nonlinear. Now consider Fig. 13.14. Here, the 
relationship between x and y is obviously not at all linear because the curve de-
scribing the function y=f(x) is much different from that of a straight line. But we 
must ask whether it is necessary, under all circumstances, to take the entire curve 
into account. It could well be that actually the range of x of interest can be re-
stricted to values of x within the small interval shown. In this interval, the curve 
which describes the function y=f(x) can be approximated by a straight line near 
this point of operation. With this view, the values of Δy are proportional to the 
values of Δx, i.e., Δy=factor∗Δx, where the factor comes from the slope of the line. 

As long as linearity applies only to the relationship between x and y, the sine 
function does not come into play. Linearity will lead to the sine function only if it 
also applies to the derivatives of the function y=f(x). Fortunately, this is the case 
with many technological systems. A simple example is shown in Fig. 13.15. You 
always experience such a system when you are traveling in a car or a train. In such 
vehicles, there are rotating wheels which are attached to some kind of structural 
assembly and the car or train body containing the passengers is located above 
them. The block with the mass m represents all parts of the vehicle which can 
move up and down relative to the wheels. If this mass block were rigidly fixed to 
the wheel structural assembly, the slightest unevenness in the road or railway 
would be felt by the passengers as unpleasant bumps. Long ago, mechanical 
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Fig. 13.14     Linearization around a point of operation 

engineers found how the connection between the body and the wheel suspension 
must be designed so that unpleasant bumps are isolated from the passengers as 
much as possible. This goal is achieved by placing a spring and a damper in 
 

y(t)

s(t)

m + B (y-s-l0) = 0+ D
d(y-s)

dt
d2y
dt2

(s+l0)
d2y
dt2 m

D
m
B+ ds

dt
dy
dt + y = m

D
m
B+

Mass m

Damping force D
d(y-s)

dtB (y-s-l0)

Spring force

 

Fig. 13.15     Example of a linear mechanical system 
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between the wheel structural assembly and the body. Usually, a damper consists of 
a cylinder filled with an appropriate liquid wherein a piston can move back and 
forth. In order to enable this motion, the piston must have holes or valves through 
which the liquid can get from one side to the other. Such dampers are commonly 
called “shock absorbers.” 
The actual state of the vehicle is determined at a time t and at a position x. In the 
case of a moving vehicle, the values of the two variables t and x can be obtained 
from each other, so only the variable t is considered in Fig. 13.15. Now imagine 
that the mass block is moving upward, i.e., in positive y-direction. This will 
lengthen the spring and cause a force pulling downward on the mass block. The 
longer the spring is compared to the length in its stable state, the greater will be 
the pulling force. In the stable state neither the wheels nor the mass are moving. In 
this state the values of y and s stay constant over time and their difference (y-s) 
has the value l0. Thus, the force of the spring is proportional to (y-s)-l0. 

While there is a linear relationship between the force of the spring and the dis-
tance y, this does not apply to the damping force because the damping force does 
not depend on the actual position of the piston in the cylinder. The damping force 
is determined by the speed at which the piston moves through its liquid. This 
speed determines how fast the difference (y-s) changes over time, and thus corre-
sponds to the derivative d(y-s)/dt. The sum of the pulling force of the spring and 
the damping force determine the actual acceleration of the mass block, and this is 
expressed in form of the differential equation in Fig.13.15. The first version of the 
differential equation has a form which shows the combination of three forces, with 
their sum being zero. The second version, which is shaded grey, has a form which 
is more suitable for mathematical treatment. Only the function y(t) and its deriva-
tives occur on the left side of this second version, while the so-called stimulation 
function s(t) and its derivative occur on the right side. In this situation, the stimu-
lation is based upon the unevenness of the road or railway and the speed of the 
vehicle. 

Electrical engineers must also deal with such linear differential equations, since 
the voltage between the two terminals of a coil is proportional to the rate at which 
the current changes its value, and the current through a capacitor is proportional to 
the rate of change of the voltage between its two terminals. The proportionality 
factor is symbolized by the capital letter L in the case of coils, and by the capital 
letter C in the case of capacitors. Fig. 13.16 shows an electric circuit consisting of 
a coil, a capacitor and an ohmic resistor. The left side of the differential equation 
which describes the behavior of this circuit has exactly the same formal structure 
as that of the differential equation in Fig. 13.15: v1 corresponds to y, C to m, L to 
1/B and R to 1/D. 

Although electrical engineers are not afraid of being confronted with mathe-
matical problems, they naturally prefer not to be forced to solve differential 
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Fig. 13.16     Linear electric circuit which formally corresponds to the mechanical system in 
Fig. 13.15 

equations every day. In the early days of electrical engineering, it seemed as 
though alternating current (AC) systems - systems where both current and voltage 
change their values periodically over time according to sine functions – could be 
introduced only by forcing engineers to spend much of their time solving differen-
tial equations. Many of the components of AC circuits are coils and capacitors, 
and therefore the formulas describing the relationships between the currents and 
voltages in these circuits are differential equations. Then why did engineers want 
to introduce AC systems? It is because power plant generators, which have rotat-
ing magnetic fields, provide time dependent voltages and currents whose time 
dependency is described by sine functions. This time dependency is favorable for 
power transmission, since it allows the use of transformers – as I discussed in 
reference to transformers in connection with Fig. 13.13. 

Fortunately, the differential equations which describe AC systems are linear, 
and this is very helpful in this situation where the stimulation functions on the 
right sides of these equations are sine functions. Because of the linearity of the 
differential equation and the stimulation being a sine function, it follows that the 
steady-state solution of the differential equation is also a sine function which has 
the same frequency as the stimulation. Even though all of this was well known, it 
still required a genius to conclude that this situation is the basis for the existence 
of a method which avoids the painful conventional way of solving such differen-
tial equations.  

By playing around with such differential equations, the German mathematician 
and engineer Karl Steinmetz (1865-1923) came up with the idea that imaginary 
numbers must play a significant role in the solution of the problem. His goal was 
to find a method for computing voltages and currents in AC circuits consisting of 
resistors, coils and capacitors. He believed the method shouldn’t be formally dif-
ferent from the corresponding method for direct current (DC) circuits consisting of 
only resistors. He actually succeeded and found a method which has become a  
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Fig. 13.17    Examples showing the formal correspondence between linear circuits for 
direct and alternating currents and voltages 

fundamental subject in every electrical engineering curriculum. When Mr. 
Steinmetz presented his method to the German engineering community, no one at 
first realized the far reaching consequences of his results. The only people who 
showed any interest in him were government and police officials who were after 



The Role of the Sine Function 383
  

him because of his socialistic activities. He first escaped to Switzerland, and then 
finally emigrated to the United States where he called himself Charles P. Steinmetz 
and made major contributions to the success of the General Electric Company. 

I shall now explain his method for AC circuit analysis using Fig. 13.17. I think 
the simplicity of this method will surprise you, as it surprised me when I was first 
introduced to it. The upper left corner of the figure shows a circuit which is com-
posed of a voltage source and three other components, each with two connections. 
Each of these three components is assumed to be linear in that its voltage is ob-
tained by multiplying its current by a constant factor. With the voltage v0 being 
given, there are four unknown quantities, the two voltages v1 and v2 and the two 
currents i1 and i2. To the right of this circuit you see the four equations which de-
scribe the circuit. Solving this system of four equations provides the values for the 
four unknowns. This procedure was well-known before Mr. Steinmetz was born; it 
had been introduced by the German physicist Gustav Robert Kirchhoff (1824-
1887). But originally, it applied only to circuits where all the components are resis-
tors except for voltage sources. If a circuit is of this type, the standard symbols for 
voltage sources and resistors can be used; this is the case for the circuit diagram 
shown in the second row, just below the top circuit in the figure. Here, the voltage 
source is a battery. I chose the resistor values Za=50 Ω, Zb=60 Ω and Zc=300 Ω 
which led to the values shown for the voltages and currents. The Greek letter Ω 
(omega) was introduced previously as a substitute for V/A in Fig. 9.18. 

Now we consider the AC circuit in the third row of the figure. It has exactly the 
same structure as the circuit in Fig. 13.16. The voltage source is assumed to pro-
vide a sinusoidal voltage whose amplitude is 60 V and whose frequency is 50 Hz 
(50 cycles per second). The ohmic resistor has the same 60 Ω value as in the cir-
cuit above, but the values of Za and Zc now express the fact that the corresponding 
components are a coil and a capacitor, respectively. The physical unit for Za and 
Zc is still Ω, but their numbers are imaginary – the positive imaginary value 50i Ω 
indicates that the component is a coil, while the negative imaginary value -300i Ω 
indicates that the component is a capacitor. You’ll notice that in  
Fig. 13.17, the letter j is used instead of i as the symbol for the square root of -1. 
This is a consequence of the fact the letter i is used as the variable for electric 
current in electrical engineering. 

The Ω-values for coils and capacitors are not constant properties assigned to 
these components by their design, but are computed using certain other constant 
properties of the components and the frequency of the sinusoidal voltage source. 
A coil is described by the constant value L, the factor by which its voltage is ob-
tained from the rate of change of its current. Thus, the physical unit of L must be 
V/(A/s)=V∗s/A= Ω∗s. A capacitor is described by the constant value C, the factor 
by which its current is obtained from the rate of change of its voltage. Thus, the 
physical unit of C must be A/(V/s)=A∗s/V=s/Ω. From this it follows that the  
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Ω-values for coils and capacitors exist only in the case of a constant supply fre-
quency. This applies to all AC energy supply systems. This constant supply fre-
quency is 50 Hz in Europe, 60 Hz in the U.S., and 16 2/3 Hz or one third of 50 Hz 
in the German railroad system. 

In the box in the bottom section of Fig. 13.17, you find Mr. Steinmetz’s formu-
las for computing the Ω-values for coils and capacitors from the values of L, C 
and the frequency f. I really don’t expect you to be interested in these formulas; I 
present them only to show you how useful imaginary numbers can be. 

The numbers we get for the four unknowns when we solve the system of four 
equations, are all complex numbers. Electrical engineers are used to calling them 
“complex amplitudes,” which immediately leads to the question about how they 
should be interpreted. Mr. Steinmetz provided the required interpretation rules. 
Fig. 2.6 shows how complex numbers can be represented as points in a plane, and 
Fig. 2.15 illustrates the connection between complex numbers and the sine func-
tion. Since Charles Steinmetz knew all of this, it is no wonder that he represented 
complex voltages and currents as points in a “complex plane.” Fig. 13.18 shows 
such a plane with the points for v0, v1 and v2. The corresponding sine functions on 
the right side are obtained the same way the sine function in Fig. 2.15 was ob-
tained: it is assumed that the “complex arrows” rotate counterclockwise at the 
constant speed 2π∗f, and that the vertical coordinates of these arrows define the  
values of the sine functions. The time needed for one full rotation of an arrow is 
1/f which is 20 milliseconds when f is 50 Hz. In this interpretation, the length of 
an arrow corresponds to the amplitude of its corresponding sine function, and the 
angle determines the position of the sine function on the horizontal time axis.  
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Fig. 13.18     Interpretation of the complex voltage amplitudes from Fig. 13.17 
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Perhaps you noticed that there is a switch in the circuit of Fig. 13.16. As long as 
this switch is open, no current flows through the voltage source and the coil, and 
the capacitor which originally might have been charged becomes discharged by a 
current flowing through the resistor. Finally, the circuit will be in a state where the 
voltage v1 is zero and no current flows. In this state, neither the coil nor the ca-
pacitor contains any stored energy. Now look at Fig. 13.18. If we assume that the 
switch is closed at time t=0, it is impossible for the voltage v1 to jump to -36 volts 
and the voltage v2 to +36 volts while v0 is still zero. In reality, both v1 and v2 will 
still be zero immediately after the switch has been closed and they will have sig-
nificant non-zero values only after some time. Does this mean that Fig. 13.18 is 
wrong? No. It only means that t=0 cannot be the moment when the switch is 
closed. In sections above, I emphasized the difference between the startup phase 
and the steady state of a system, and this difference must be considered here.  
Fig. 13.18 shows the behavior of the circuit in its steady state which is reached 
when the start-up phase is over, i.e., when the switch has been closed for a long 
time before time t=0. The start-up phase begins when the switch is closed, and it is 
over when the time variations of all currents and voltages are sine functions. Ap-
plying the Steinmetz method is an easy way to get the steady-state behavior of an 
AC circuit, but this method doesn’t help at all to obtain information about tran-
sient processes. Fortunately, in 99 percent of cases, only the steady state is of 
interest, and therefore the painful task of computing the transient behavior of a 
circuit by actually solving differential equations is not required very often. 

I mentioned previously that sinusoidal voltages and currents result from rota-
tions within generators at power plants. The rotation in such a generator involves 
the rotation of a coil in a magnetic field and this, according to Faraday’s law of 
induction, causes a voltage between the ends of the coil. Thus, the two ends of the 
coil constitute the voltage source from which electrical energy is fed into the 
power transmission system. But it would be very difficult, if not impossible, to 
transfer large amounts of energy from the ends of a coil if these ends were rotat-
ing. Therefore, in modern generators, it’s the magnetic field which actually ro-
tates, and not the coil. Of course, there is still another coil which actually rotates. 
This coil is needed to create the rotating magnetic field. But the energy flowing 
into this rotating coil is only a small fraction of the energy flowing away from the 
static coil which sends energy to the power transmission system. 

It didn’t take long from the time the first generators were built until some engi-
neers got the idea that, instead of using only one static coil, they could use more 
coils. These coils are to be placed at different angles on the circumference of the 
generator. Thus, they invented the so-called three-phase-power systems, and this 
led to the typical configurations you see of the way high voltage transmission lines 
are hung on their towers (Fig. 13.19). Perhaps you didn’t realize that the number 
of transmission lines hanging from the insulators on these towers is, in most cases, 
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a multiple of 3. The electrical energy which you get from the outlets in your home 
is provided in form of a single sinusoidal voltage, and for this you need only two 
wires. But in a three-phase-power system, the energy is transmitted in the form of 
a triple set of sinusoidal voltages, and this requires three transmission lines which 
are labeled R, S and T. The tower in Fig. 13.19 carries two such three-phase sys-
tems. Voltages are present both between any two of the three lines, and between 
any one of the lines and the ground. The voltage between any two of the lines is 
higher than the voltage between a line and the ground by a factor of √3. Where 
does this factor come from? It follows from the geometry shown in Fig. 13.20 
which is similar to Fig. 13.18, since it also shows complex amplitudes in a com-
plex plane. The three sine functions in the grey shaded area on the right side of the 
figure represent the voltages between each one of the three lines R, S and T and 
the ground. The sum of these three sine functions is zero. The corresponding com-
plex amplitudes are represented as arrows on the left side. There is an angle of 120 
degrees between any two of these arrows. The arrows can also be viewed as illus-
trations of the positions of the three coils in a three-phase generator. There is a 
fourth arrow for (R-S) which corresponds to the voltage between the two lines R 
and S; it represents the difference between the two sine functions belonging to R 
and S. The factor by which the arrow for (R-S) is longer than any of the arrows for 
R, S and T can be obtained by applying the law of Pythagoras to one half of the 
grey-shaded equilateral triangle.  

Although the factor √3 plays a major role in three-phase systems, the factor √2 
is also of great importance in the world of sinusoidal voltages and currents. You 
might have obtained the impression from my comments that electrical engineers 
are primarily interested in the amplitudes of the sine functions. But actually, the  
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Fig. 13.20     Voltages or currents in a three-phase system 

amplitude values are not the main values of interest. In fact, the transmitted AC 
power is of much greater importance than the amplitudes. A sinusoidal current 
flowing through a resistor causes the resistor to get warm or hot. This means elec-
trical energy flowing into the resistor is being converted to thermal energy. It is 
now interesting to consider which equivalent constant (DC) current would cause 
the same amount of heating, i.e., what value of direct current would supply the 
same amount of power to the resistor as an alternating current with a particular 
amplitude. The value of a direct voltage or current, which produces the same 
power consumption as its corresponding AC voltage or current, is called the effec-
tive value or root-mean-square value of the AC signal. The root-mean-square 
value, abbreviated as the rms value, refers to the method of computing this value 
from the corresponding sine function. This method is illustrated in Fig. 13.21.  
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Fig. 13.21     Effective value of a sine function 
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The formula for electric power, power = voltage∗current, was given in Chapter 9. 
It was also pointed out there that the voltage across a resistor is proportional to the 
current flowing through it. Therefore the power, i.e., the energy per unit time, which 
is flowing into a resistor, is proportional to the square of its voltage or current. When 
we square a sine function with amplitude A and frequency f, we get a function 
which is the sum of A2/2 and a sine function with amplitude A2/2 and frequency 2f. 
The mean value of this resulting sine function is A2/2, and the square root of this, 
A/√2, is the effective or rms value of the sine function. Thus the effective value of a 
sine function is obtained by dividing the amplitude by √2. Now, I would like to note 
that the values of the voltages included in Fig. 13.19 are not amplitude values, but 
effective values. Electrical engineers normally use the effective values of AC quanti-
ties, and not the amplitude values. The table in Fig. 13.22 contains all four kinds of 
values which occur in a three-phase system. 
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Fig. 13.22     Amplitudes and effective values of a three-phase system 

Three-phase voltages and currents result from the specific design of the rotating 
generators in power plants. But rotation occurs not only at the source of the power 
transmission, but also at the load end where the power is consumed. Many devices 
that are large consumers of power are electric motors. Such motors are very com-
mon in factories. Motors can have a much simpler design if their power is pro-
vided by a three-phase system, and not by a single-phase system. Engineers 
always dreamed of using three-phase motors in electric locomotives, but with only 
one power line suspended above the track, it seemed impossible for this dream to 
ever become a reality. However, the development of modern semiconductor com-
ponents made it possible to transform the incoming one phase power system into a 
three-phase system. Thus, most electric locomotives today have three-phase elec-
tric motors. 



Chapter 14 
Everything becomes Digital – Really 
Everything? 

When Mrs. Miller complained, “In our area, cable TV service was converted to 
digital, and therefore we had to rent a converter box,” she probably believed that 
digital technology is something quite new which didn’t exist twenty years ago. 
And if I had asked her what she knows about digital systems, she might have 
answered, “That’s a kind of electronics with only zeros and ones.” Although this 
answer is actually correct with respect to over 99 percent of today’s digital sys-
tems, it’s not a correct definition, nevertheless. A digital system does not necessar-
ily need to be implemented electronically or to operate with zeros and ones. 

What Zeros and Ones Have to Do with Digital Systems 
Zeros and Ones 

The English word “digital” comes from the Latin word digitus which means both a 
finger and a toe. Therefore it is no wonder that this English word refers to the ele-
mentary symbols of the decimal number system. In the technological world, the 
word “digital” is used to indicate that information is transmitted or processed in the 
form of symbols. The ability to symbolize information exists only if the informa-
tional items are elements from a finite set. Examples of such sets are the three col-
ors red, yellow and green from traffic lights, the keys of a computer keyboard, the 
set of telephone subscribers and the floors which can be reached using an elevator. 

Technical systems which handle only informational items from finite sets have 
been in existence for hundreds of years. Before electronics became the standard 
technology for implementing computers, mechanical desk calculators containing 
over 10,000 precision parts were built. The most advanced of such machines could 
not only execute the four arithmetic operations addition, subtraction, multiplica-
tion and division, but they could even compute square roots. The operands which 
had to be keyed in were decimal numbers of finite length. Today, we find such 
machines only in museums. 

But even today, there is a certain kind of digital system which contains only 
mechanical parts. The mechanical pendulum clock is such a system. The pendu-
lum which periodically swings back and forth determines the points in time when 
the discrete state of the clock is changed. Many such clocks have a cycle time of 
one second, and twice within each period – at the moments when the pendulum 
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changes its direction – the state of the clock is changed. Since, after 12 hours, the 
clock reaches the state it had 12 hours earlier, it must pass sequentially through a 
total of 12∗60∗60∗2=86,400 different states. These states are defined by specific 
positions of the cogwheels within the clock. The number of different states gets 
even higher if we take into account that the mechanical energy source also passes 
through many different states. Such a state can be the spring force or the position 
of a weight. Although it seems as though these energy states would change con-
tinuously, this is not the case. The downward movement of the weight is a step-
wise movement, because energy is needed only for changing the positions of the 
cogwheels, and this happens only when the pendulum changes its direction. In the 
case of chiming clocks, additional energy, which is usually provided by a spring 
or by the downward movement of a second weight, is required. Thus, it is clear 
that a mechanical clock is a digital system. The first systems of this kind were 
built about 400 years ago. 

The counterpart of digital technology is analog technology which is used to 
transmit or process physical quantities with continuous time dependency. Consider 
the problem of transmitting spoken language over a long distance from one loca-
tion to another. The speaker produces continuous variations in air pressure which 
is converted by a microphone into an electrical current whose time variation is the 
same as the air pressure. The time dependent current flows to a distant loud-
speaker which uses electromagnetic forces to convert the current variation back 
into air pressure variations. The term “analog technology” refers to the fact that 
the time dependency of a physical quantity at the output of a converter is analo-
gous to the time dependency of a (usually different) physical quantity at the input. 
In the example of the long-distance audio system mentioned above, the current is 
used as an analog of the air pressure. Later, I shall introduce you to “tricks” which 
make it possible to apply digital methods to transmitting and processing informa-
tion which is originally continuous. 

The pair {continuous, discrete} which belongs to the world of mathematics cor-
responds to the pair {analog, digital} which belongs to the world of technology. 
The two pairs should not be confused, i.e., you should not use the word analog as 
a synonym for continuous or the word digital as a synonym for discrete. The Latin 
word discretus is used to characterize something as being easily distinguishable 
from anything else, and that’s exactly the characteristic of something which can be 
assigned a natural number. The opposite of the discrete world is the world of 
quantities which can change continuously. We are used to representing the varia-
tion of such quantities as continuous curves in appropriate coordinate systems, and 
we know that the points on such a curve cannot be mapped to natural numbers. 
Thus, the words discrete and continuous basically distinguish between natural and 
real numbers. In contrast to this, the words analog and digital distinguish between 
two methods of handling information in technical systems. 
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In technical systems, elements of a discrete world can be handled by assigning 
a so-called “technical symbol” to each of the original elements. The simplest tech-
nical symbols are binary. Each binary symbol represents a well-defined counter-
part situation. Think of a switch for turning the light in the living room on or off. 
Each of the two possible states – on or off – has exactly one counterpart in the 
switch position. Whenever engineers want to talk or write about binary symbols 
without considering an actual technical implementation, they refer to 0 and 1 as 
the two possibilities of a situation. That’s what Mrs. Miller meant when she de-
fined digital systems as systems dealing only with zeros and ones. Mrs. Miller’s 
definition is wrong because digital is not synonymous with binary.  But, of course, 
there must be a reason why almost all modern technical systems dealing with 
information use binary symbols exclusively. 

Railway control systems for setting the binary states of signals and track 
switches, and telephone switching systems for connecting two subscribers accord-
ing to the number dialed, are examples of binary systems from the early days of 
computing. An old telephone system contained both a digital subsystem and an 
analog subsystem; the sound was transmitted in analog form, while the creation of 
the electrical path connecting two subscribers was a digital task, since it required 
only that a specific set of switches be closed. 

In 1963 I attended in a lecture from which I expected to learn how to design tele-
phone switching systems. The lecturer was a department head in the state agency 
which owned and operated the German telephone system in those days. It might 
well be that the lecturer was a competent department head, but as a teacher he 
proved to be didactically incompetent, although he was very friendly to us students. 
He darkened the classroom and projected a slide showing a section of a switching 
circuit containing about 50 relays, each controlling two to three switches. To us, the 
wires which connected the contacts of the switches and the relay coils appeared to 
be drawn at random, but the lecturer moved along these wires with his pointer trying 
to explain which switch would be the next one to be opened or closed. It’s no won-
der that nobody learned anything from this lecture, and at least half of the students 
soon stopped looking at the screen and took a nap. When I was in this lecture, I 
didn’t yet know how the subject should be taught, but I knew from the very begin-
ning that the way this lecturer taught it was certainly not the right way. 

Today, the majority of digital systems are implemented using semiconductor 
switches, i.e., transistors, and the use of relays is restricted to very specific appli-
cations. Nevertheless, the principles and methods for designing binary systems 
have not really changed. Therefore, it is still reasonable to introduce the principles 
of binary technology by using relay circuits because these are much more illustra-
tive than the corresponding transistor circuits. The basic components of all binary 
systems are elementary logical circuits, the so-called logical gates. An example of 
such a gate is shown in Fig. 14.1. 
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Fig. 14.1     A logical gate using relays to implement the function “IF . . . THEN . . .” 

The physical quantities which are interpreted as binary symbols, are the volt-
ages at the points a, b and y relative to the horizontal wire at the bottom of the 
circuit. The value of the voltage at point y can obviously be either zero or V0, 
since either there is a vertical connection which brings the voltage V0 from the 
upper horizontal line to the point y, or such a connection does not exist and y does 
not get a non-zero voltage. The three rectangular symbols with a diagonal line 
running through them represent the coils of relays which consist of copper wires 
wound around iron cores. When a current passes through such a coil, it creates a 
magnetic field which produces a force. This force pulls the corresponding switch 
in the direction of the dashed arrow. Thus, when a current flows through a coil, the 
corresponding switch, which was originally open, will be closed, and vice-versa. 
Looking at a logical gate, we must always assume that the voltages at the input 
contacts of the gate are elements of the same binary set to which the output volt-
age belongs. Thus the set {0, V0}, which we found as the set of possible output 
voltages, is also assumed to be the set of possible input voltages. The relay follow-
ing the point y does not belong to the gate being discussed. It was added only in 
order to show that an output point of one gate can be used as an input point of 
another gate which follows the first one.  

The binary situation at y is completely determined by the binary situations at a 
and b. The functional relationship between (a, b) and y can be described by the 
table in the upper right corner of Fig. 14.1. Here, the set {0, 1} of binary symbols 
is substituted for the binary set of voltages {0, V0}. There is only one row in this 
table which has a zero in the y column. This row corresponds to the combination 
of the switch a being opened by a force and the switch b being left in its original 
open state. If you now go back and look again at Fig. 4.6, you’ll see that the 
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pattern from the table in Fig. 14.1 is exactly the same as the pattern in the table on 
the left side of Fig. 4.6 which describes the logical function “if a then b”. This is a 
consequence of the fact that the function of the circuit in Fig. 14.1 can be de-
scribed by the following statement: “If there is a force which opens the a-switch, 
then there must also be a force which closes the b-switch in order to bring the 
voltage V0 to the point y.” 

By appropriately connecting the switches of two relays, each of the functional 
patterns from Fig. 4.7 can be implemented. This simple relationship between  
logical functions and electrical circuits is the basis of all modern technical infor-
mation processing systems. I previously indicated the possibility of cascading 
logical gates where the outputs of one gate layer are used as inputs to the next gate 
layer. This was done by connecting an additional relay to the output y in Fig. 14.1. 
There is no limit to the number of gate layers. Thus it is possible to implement any 
required functional mapping of the type (y1,  y2, … , yn) = f (x1,  x2, … , xm) where 
xj and yk are binary symbols. Circuits which implement such functions don’t con-
tain a memory; they are called combinatorial circuits. However, more complex 
information processing systems must have a memory and cannot be implemented 
as a mere combinatorial circuit. Therefore, I’ll now show you how a binary mem-
ory cell can be implemented.  

Binary memory cells are often called flip-flops in reference to the sound of 
switches being moved back and forth between their two possible positions. The 
desired behavior of such a cell is described in Fig. 14.2. The actual content of the 
memory is either 0 or 1 and is displayed on the output line Q. The rising edges of 
the clock signal c(t) determine the points in time when a new binary value enters  
the memory. The value to be stored is obtained by sampling the binary input func-
tion D(t) in the grey-shaded time intervals. Within the sampling intervals, the 
value of D(t) is kept constant; outside of these intervals, the D-values are irrele-
vant. The input value D from the sampling interval does not become visible at the 
output Q before the falling edge of the clock appears. In the intervals between two 
such falling edges, the displayed value of Q never changes; this indicates that the 
cell really is a memory cell. 

The set of curves of binary functions c(t), D(t) and Q(t) as shown in Fig. 14.2 is 
not the only way to describe the behavior of the binary memory cell. The same 
behavior can also be described by a so-called state transition graph (Fig. 14.3). 
This is a graphical structure containing two types of nodes, rectangles and ovals, 
which are connected by arrows. The first example of this type of graph was pre-
sented in Fig. 6.5; further examples were introduced in Chapter 13. However, its 
structural type does not determine the interpretation of the graph. The graphs in 
Chapter 13 were interpreted as representations of systems composed of compo-
nents, while the graph in Fig. 6.5 was interpreted as the structure of a process. The 
state transition graph in Fig. 14.3 also represents a process, a sequential process  
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Fig. 14.2     Behavior of a clocked binary memory cell 

where each step is followed by a next one. The rectangular nodes represent the steps 
while the oval nodes represent the static states in between the steps. Each step corre-
sponds to a transition from one state to a different next state. In this case, the steps 
are associated with specific edges of the clock signal. The labels on the nodes of the 
graph in Fig. 14.3 should enable you to see the correspondence to Fig. 14.2.  

While the system specification in Fig. 14.2 doesn’t give us any hint about how 
we could implement the memory cell, the approach in Fig. 14.3 is a very good 
starting point for finding an implementation. The following considerations will 
lead us to the composition of the structure of the memory cell. Since all values 
occurring in the system should be binary, the states must be encoded as binary 
words, i.e., as sequences of bits. The six oval nodes in the graph in Fig. 14.3 cor-
respond to six different states. If the binary words assigned to these states all have 
the same length – which is a reasonable requirement – the words must have a 
length of at least three bits. You can see which words I assigned to the states, 
although I could have made quite different assignments. The only condition I had 
to observe was that the six words assigned had to be unique. But I decided to ob-
serve two additional conditions, (1) that the first bit of each word be equal to the 
displayed value Q of the actual content of the memory, and (2) that each state 
transition changes only one bit of the state code. The reason for this last condition 
will soon become clear. 
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Fig. 14.3     State transition graph of the binary memory cell in Fig. 14.2 

Fig. 14.4 illustrates the way to move from the state transition graph to an im-
plementing circuit. The different situations which must be considered are deter-
mined by the actual state (S1, S2, S3) and the actual values of the input variables (c, 
D). Such a situation is either stable or unstable, meaning that it will either last 
until the value of c is changed, or not last and cause a state transition. An example 
of a stable situation is the combination of the state 000 with c being 1. An example 
of an unstable situation is the combination of the state 000 with c being 0 since  
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Fig. 14.4     Function table corresponding to the state transition graph in Fig. 14.3 and its 
implementation 

this will cause a state transition from 000 to 100. The table in Fig. 14.4 shows all 
relevant situations which are defined by the state transition graph in Fig. 14.3. 
Whether or not a situation is stable can be deduced by comparing the actual state 
(S1, S2, S3) in the leftmost column with the next state (nS1, nS2, nS3) which can be 
found at the intersection of the row of the actual state and the column of the actual 
input values. If these two states differ, the situation considered is unstable. Only 
the grey-shaded cells of the table correspond to stable situations. The table defines 
a logical function (nS1, nS2, nS3) = f (c, D, S1, S2, S3) which can be implemented by 
a combinatorial circuit as shown in Fig. 14.4. By connecting the output (nS1, nS2, 
nS3) of this circuit to the corresponding input (S1, S2, S3) we get a feedback loop. 
Whenever a state transition occurs, each bit by which the actual state differs from 
the next state will cause a positive or a negative binary transition edge running 
from the right to the left. If two or more of such edges occurred at the same time, 
this would constitute a conflict with an unknown outcome. Because I wanted to 
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prohibit such conflicts, I encoded the states in Fig. 14.3 in such a way that two 
neighboring states differ by only one bit. 

When I specified the behavior of the binary memory cell in Fig. 14.2, I made 
sure that the output signal Q(t) never changes its value within a grey-shaded sam-
pling interval. This allows us to connect the output Q with the input D of the same 
memory cell or another memory cell of the same type. The simplest structure of 
connected memory cells is shown in Fig. 14.5. The output Qi of each memory cell 
which has a right neighbor is connected to the input Di+1 of this neighbor. This 
circuit is called a shifter since each clock pulse causes the actual content of the 
memory chain to be shifted one position to the right with the new content of the 
leftmost cell coming from outside. 
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Fig. 14.5     Shifter composed of binary memory cells 

The system in Fig. 14.5 is a simple special case of the general structure of the 
clocked sequential circuit shown in Fig. 14.6. All input values Di which are sam-
pled at the rising edge of the clock signal are generated by a combinatorial circuit 
from the external input values xk and the actual contents Qi of the memory cells. 
The same combinatorial circuit also provides the external outputs yj. Since the 
numbers of inputs, memory cells and outputs are finite, the function of the combi-
natorial circuit can be specified in the form of a function table. Efficient methods 
have been developed which lead from this table to an implementation of the speci-
fied function in form of a network of logical gates. Even the most complex binary 
information processing systems have the general structure shown in Fig. 14.6. 
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Fig. 14.6     General structure of a clocked sequential circuit 

However, you should bear in mind that in many of today’s systems, the number 
of logical gates and binary memory cells is much greater than one million. There-
fore, special methods for handling such complexity are required. 

Why Engineers Want to Digitize as much as Possible 
Advantages of Dig itizing 

If information from the discrete world is to be transmitted or processed, digital 
technology is the only choice. Correspondingly, until some decades ago, analog 
technology seemed to be the only way to transmit or process information from the 
continuous world, e.g., sound or temperature. But analog technology has an intrin-
sic deficiency which engineers have been unhappy about from the very beginning: 
there is no way to protect analog information against noise, since it is practically 
impossible to detect which part of the received information corresponds to the 
information provided at the input, and which undesirable part was added as noise 
along the way from the transmitter to the receiver. Think of a situation where you 
are listening to someone who called you on the phone, and assume that this person 
sounds to you as if he has a cold. In this case, you cannot know whether he really 
has a cold, or whether the particular sound you hear is the result of noise being 
superimposed on the sound of his voice in the telephone transmission system.  

Digital technology doesn’t have this deficiency. There are both simple and so-
phisticated methods for regenerating the original information from the information 
received. Remember that digital technology means that information is represented 
in form of symbols. You know from graphical symbols that they can still be rec-
ognized even when they are blurred or smeared over with dirt. If the transmitted 
information consists of sequences of only zeros and ones, e.g., low voltage repre-
senting the 0 and a higher voltage representing the 1, the receiver can still decide 
what sequence of zeros and ones entered the channel as long as the superimposed 
noise stays below a certain threshold. If, however, the noise exceeds this thresh-
old, the channel can be divided into shorter sections, each of which adds a noise 
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below the threshold. Regenerators can be inserted between the sections which 
receive the noisy information at the output of the preceding section and provide 
the regenerated information at the input of the next section. Thus it is possible to 
transmit binary sequences over very long distances even though the channel used 
is rather noisy. 

However, there are types of noise which cannot be compensated by the method 
just described. In these cases, an additional method must be applied. This method 
consists of adding sufficient redundancy to the original information in order to 
determine from the received information whether or not it corresponds to the in-
formation sent. Adding redundancy means that additional bits are appended at one 
end of the original binary sequence. If enough redundancy is added, it is even 
possible to reconstruct the original binary sequence from a sequence which has 
been detected as not being the original one. The possibility of detecting and possi-
bly correcting binary transmission errors is explained by referring to Fig. 14.7. 

28 detectable transmission errors

00 001 00 010 00 111. . .

01 111 01 000 01 101. . .

10 110 10 111 10 100. . .

11 100 11 101 11 010. . .

00 000

01 110

10 101

11 011

4

3

3

3

3

4

4 alternatives for the word sent

32 alternatives for the word received

 

Fig. 14.7     Redundancy as the basis of an error detecting and correcting system 

Assume that the original binary sequence to be transmitted consists of only two 
bits. In the figure, the four possible original sequences are printed using two bold 
digits. To each of these four original sequences, redundancy is added in the form of 
three more bits. These three bits are chosen such that the differences between pairs 
of the four new sequences of length five are maximized. On the left side of the 
figure, you see not only the four alternative sequences which can be sent, but you 
also see how many bits are different with respect to any two of the four sequences. 
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There are four pairs where the difference is only 3 bits, while the remaining two 
pairs differ in 4 bits. The number of bits by which two binary sequences of equal 
length differ is called the Hamming distance of the two sequences in honor of the 
American mathematician Richard W. Hamming (1915-1998).  

While the transmitter must select the sequence to be sent from the set of four 
sequences on the left side of Fig. 14.17, any of the 25=32 possible sequences of 
five bits may be received. If one of the four sequences from the original set is 
received, the probability is rather high that this sequence actually had been sent, 
but there is still a small probability that the received sequence resulted from a 
different input sequence where the differing bits were changed. If the received 
sequence does not correspond to any of the four input alternatives, the receiver 
knows with certainty that a transmission error has occurred. In this case, the re-
ceiver must decide how to react. Either the receiver asks the transmitter to send 
the same sequence again, or the receiver assumes that the sequence sent was the 
one which differs least from the received one. Both alternative reactions are well 
known from our human communication processes. When we have conversations 
via telephone, it sometimes happens that we hear a spoken word or sentence which 
we don’t understand. In such a case, we either guess what might have been said or 
we ask the partner at the other end to repeat what he just said. 

In Fig. 14.7, the so-called redundancy rate is 60 percent since three redundant 
bits are added to the two bits representing the non-redundant information. There 
are different methods for adding a certain percentage of redundancy to given bi-
nary sequences, and some of these methods are very sophisticated. What the re-
dundancy rate should be, and which method for finding the redundant bits should 
be chosen, depends strongly on the properties of the particular transmission chan-
nel. In the case of a space probe which takes pictures from the planet Mars or 
Jupiter and sends them back to us, much noise will be superimposed onto the 
signal before it reaches the antenna at the space center on earth. The information 
about the original pictures can be extracted from such a noisy signal only if a very 
high redundancy rate is used. Compared to this case, the noise on conventional 
communication channels on earth – e.g., using cables or point-to-point-radio – is 
quite low and can be compensated by redundancy rates in the range of 20 to 30 
percent. 

Having a way to compensate for the superimposed noise and to regenerate the 
original signal is one essential reason why engineers began to search for methods 
to represent continuous functions as binary sequences. However, there are two 
more reasons to prefer digital technology. If originally continuous information is 
transmitted as a stream of bits, information about discrete facts can be transmitted 
easily over the same channel by inserting additional bits into the stream. When 
your telephone rings, you quite naturally expect to see the number and possibly 
even the name of the caller on the telephone’s display. The number and name 



Advantages of Digitizing 401
  

represent digital information which is transmitted over the same channel used for 
transmitting the voice of the caller.  

The third reason for preferring digital technology for transmitting originally 
continuous information is the opportunity to get much higher utilization of the 
transmission capacities of the channels used. Similar to a pipe which has a maxi-
mum throughput measured in liters per second, an information channel has a 
maximum throughput measured in bits per second. This maximum throughput is 
called the channel’s capacity. The capacity says how much original information 
can be transmitted per unit time if the redundancy rate and the modulation, i.e., the 
conversion of the bit stream into a continuous signal at the channel input, are  
optimally chosen. It was the American mathematician Claude E. Shannon  
(1916-2001), an employee of AT&T Bell Labs who, in 1948, published his com-
munication theory which is based on the definition of the capacity of information 
transmission channels. 

Today, it seems to be quite natural to measure information in bits. A memory is 
said to have a capacity of so many million (Mega) or billion (Giga) bits, and a 
channel is said to have a capacity of so many thousand (kilo) or million (Mega) 
bits per second. Although we can symbolize elements of finite sets by finite se-
quences of binary symbols, it does not necessarily follow that the binary symbol is 
an adequate unit for measuring quantities of information. In fact, Shannon’s the-
ory does not refer to the binary representation of information at all. He was aware 
that information can be characterized by a specific probability. We may say that 
information is the difference between two states of knowledge. But how can we 
measure a state of knowledge? We have knowledge about a certain subject if we 
can answer questions concerning this subject. If we don’t know all there is to 
know about the subject, we nevertheless can guess what might be the correct an-
swer to a certain question, and our guess could be correct with a certain probabil-
ity. The value of this probability characterizes our actual knowledge about the 
corresponding subject. We now assume that someone tells us something about a 
particular subject. If we already know all he is telling us, the probability will not 
change. But, it is also possible that we actually receive new information, and this 
will cause the probability of making correct guesses to increase. There is a maxi-
mum amount of information we can receive, since the probability of making cor-
rect guesses cannot exceed the value 1.   

The concept of entropy was introduced in Chapter 10. There is a great formal 
resemblance between the concept of entropy and the concept of information. In 
both cases, pairs of states (S1, S2) are considered, with each state Si having a prob-
ability pi assigned to it. Here, the states are states of knowledge. In both cases, we 
are interested in finding a function f(S) such that the difference f(S2)-f(S1) is de-
termined by the two corresponding probabilities, i.e., f(S2)-f(S1) = F(p2, p1). In the 
case of entropy, we had the additional requirement that the function F must be 
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determined by the ratio of the two probabilities, i.e., F(p2, p1) = G(p2/p1), and this 
could be satisfied only by choosing the logarithm as the function G. Couldn’t it be 
that it makes sense to introduce the same requirement in our search for an ade-
quate formal definition of the quantity of information? I started this discussion 
with the statement that information is the difference between two states of knowl-
edge with each state being characterized by the probability of guessing a correct 
answer to a question concerning a particular subject. Wouldn’t it make sense for 
the information which transfers the state S1 to the state S2 to correspond to the 
result of the function logB(p2/p1)? The greater the ratio (p2/p1), the more informa-
tion is needed to change the state of knowledge from p1 to p2. Let’s consider the 
two situations, (p2, p1) = (1, 0.5) and (p2, p1) = (0.2, 0.1). In both situations the 
ratio (p2/p1) has the value 2. Is it reasonable to say that in both cases the same 
amount of information has been provided? The first situation corresponds to a 
question which has only two possible answers, yes or no. In the state S1 the person 
has no idea what the correct answer is, and a guess will be correct with a probabil-
ity of 50 percent. If this person is now told what the correct answer is, the prob-
ability of making a correct guess will rise to 1. The second situation corresponds 
to a question which has ten possible answers. Someone who has no idea what the 
right answer is will have to guess, and the probability that the guess is correct is 
10 percent. Now let us partition the set of ten possible answers into two sets, each 
containing five answers, and the question becomes which of the two sets contains 
the correct answer. This corresponds to the first situation, since now the question 
has only two possible answers. The answer will reduce the number of possible 
answers to the original question from ten to five, and the guess about which of the 
five answers left is the correct one will be correct with a probability of 20 percent. 
It really makes sense to say that a certain amount of information is required to 
halve the number of possible answers, and that this amount does not depend on 
how many answers we had originally. 

These ideas lead us to Shannon’s definition: “If the probability of guessing the 
correct answer to a given question is p, the amount of information provided by the 
correct answer is logB(1/p).” The base B of the logarithm can be chosen arbitrar-
ily. Usually the base 2 is chosen, and instead of writing log2, the two letters ld are 
used. The reason for preferring the base 2 lies in the fact that the implementation 
of digital systems is based on binary symbols. 

I have given you the three reasons engineers prefer digital technology. But we 
all know that goals are not automatically fulfilled. The goal of digitizing the 
transmission of continuous information can be fulfilled only if two conditions are 
satisfied. One condition requires that a method be found for converting a continu-
ous function into a sequence of bits. The second condition requires that digital 
technology is not more expensive than the analog technology which is to be re-
placed. With figures 14.1 and 14.4, I showed you that logical gates are the basic 
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components of today’s digital systems. Substituting digital technology for analog 
technology requires that we perform extremely complex information processing 
tasks. Typically, the number of gates needed for a satisfactory performance easily 
exceeds one million, and the reaction time of the gates must be in the range of 
billionths of a second or less. Gates implemented with relays as shown in Fig. 14.1 
are absolutely inappropriate as components of such systems because their reaction 
time is in the range of milliseconds. This is too long by a factor of one million, 
and relays are so big that a million of them would require the space of many huge 
cabinets. The space available comes from the requirement that the entire system 
must fit into the application such as a TV set or a cell phone. From this it follows 
that the substitution of digital technology for analog technology could begin only 
after the development of microelectronics had reached a sufficient stage. The 
driving forces behind the development of microelectronic components originally 
came from the computer systems industry, since such components were needed to 
build faster and more powerful computers. 

The first computers were built shortly before the beginning of the Second 
World War. It’s an amazing fact that mathematicians and engineers both in 
Europe and in the United States, at nearly the same time and without knowing 
each other, began to design and build their first computers. In the United States, it 
was the mathematician Howard H. Aiken (1900-1973) who, at Harvard Univer-
sity, developed a computer which later got the name Mark I. He did this between 
1939 and 1944. He used almost the same technology as the German civil engineer 
Konrad Zuse (1910-1995). This technology included electromechanical compo-
nents such as relays, electric motors and cog wheels used together with punched 
tapes for storing programs. Zuse’s first machine, which was finished in 1938, 
didn’t work well because of the lack of precision of its mechanical parts. His third 
machine, finished in 1941, was called the Z3. This machine is considered the 
world’s first fully-functional computer.  

In my comments about Fig. 14.1, I told you that switching electrical currents on 
and off can be done not only with relays, but also with electronic devices such as 
transistors. At first, the relays were replaced by electron tubes where a current 
flows from one electrode through a vacuum to a second electrode. This current can 
be interrupted by applying a negative voltage to a grid-shaped third electrode 
which is located between the other two electrodes. This negative voltage can stop 
the flow of electrons because of their negative charge. The use of electron tubes 
didn’t reduce the space required in comparison to relays, but the speed of opera-
tion was increased by factors of about one thousand. In 1947, the transistor was 
invented and it soon replaced the electron tube in most applications. In Chapter 
11, I told you that a transistor is a sandwich consisting of three layers of semicon-
ductor material. Today, most transistors are made of silicon. When a transistor is 
used as an individual component, the piece of silicon is enclosed in a small 
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container from which three wires connect the three layers to the external world. 
Around 1960, physicists began to implement more than one transistor on the same 
piece of silicon. These transistors could be connected together internally without 
using any wires. That’s the principle of integrated circuits, the so-called chips. 
Today, integrated circuits which contain many millions of transistors are made 
with a piece of silicon no bigger than a quarter. It was the availability of such 
powerful integrated circuits which finally made it possible to replace almost any 
analog technology by digital technology. 

From all the conditions which had to be satisfied before digital technology 
could be used for transmitting continuous information such as sound, there is only 
one left which we did not yet consider in detail. This condition requires a method 
for converting a continuous function into a sequence of bits. As early as 1933, the 
Russian mathematician Wladimir Kotelnikow (1908-2005) deduced a mathemati-
cal relationship which later was called the sampling theorem. Fifteen years later, 
in 1948, the American mathematician Claude E. Shannon – the same man who 
introduced the exact definition of the quantity of information – deduced the same 
sampling theorem, not knowing that it had been deduced 15 years earlier. For 
many years, the professional world was convinced that the sampling theorem was 
first deduced by Shannon, and therefore it was taught in engineering courses as 
“Shannon’s sampling theorem”. Since this theorem is of extreme relevance for 
today’s communication technology, I shall not present just the final result, but also 
guide you step by step along the path to showing how it was deduced. 

We start by assuming that a time-dependant physical quantity is given, and that 
its time dependency corresponds to a sine function whose cycle time or period T is 
known. But we don’t know the amplitude and the points in time when the function 
value is zero. We want to know the minimum number of measurements necessary 
to determine the missing information. A single measurement certainly will not be 
sufficient since we do not know where this measurement is located within one 
period of the sine function. Thus, the sampling point could accidentally be at the 
location of the maximum value, the amplitude, or it could also be very close to a 
zero point of the sine function which would mean that the measured value is only 
a small fraction of the amplitude. If a single measurement is not sufficient, it 
might be that two measurements are sufficient. The distance Δ between these two 
measurements should not be an integer multiple of half the cycle time, i.e., Δ ≠ 
n∗T/2, because otherwise we would get either two identical values or two values 
which differ only with respect to their signs. If, however, the sampling distance is 
made less than half the cycle time, the two measured values will be independent 
from each other. 

Fig. 14.8 shows an example. Here, the distance between the two sampling 
points is 0.3 T. In order to represent a sine function in the form of a mathematical 
formula, the position of the zero point on the x-axis must be determined. The fact  
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1.0

0.545 0.3

0.148 0.397

Sampled values: - 7.0 - 20.7

25

C1(x1) =  - 7 cos(2 x1)

x1 = t1/T

x2 = t2/T

0

0

     f(x1) = 25 sin(2 (x1 + 0.545))
             = S1(x1) + C1(x1)

S1(x1) = - 24 sin(2 x1)

     f(x2) = 25 sin(2 (x2 + 0.148))
             = S2(x2) + C2(x2)

C2(x2) = 20 cos(2 x2)

S2(x2) = 15 sin(2 x2)

 

Fig. 14.8     Sampling of a sine function 

that this position can be chosen arbitrarily is illustrated in Fig. 14.8 where the 
same sine curve is described by two different expressions, one for each of the two 
positions of the zero point on the x-axis. Once the position of the zero point on the 
x-axis has been determined, a sine curve can be described alternatively in the 
forms A∗sin(2π∗(x+x0))   or   [S∗sin(2π∗x) + C∗cos(2π∗x)]. In each case two 
values, either (A, x0) or (S, C), are required to characterize the actual sine func-
tion. The three numbers A, S and C are related by the law of Pythagoras: 
A²=S²+C². The two diagrams in Fig. 14.8 show two sampled functions, f(x1) and 
f(x2), and their corresponding sine and cosine functions characterized by (S1, C1) 
and (S2, C2), respectively. In Fig. 14.8, the value of the amplitude A is 25. Once 
the coordinates of the sampling points are given, the values of S and C can be 
easily computed. However, I shall omit the corresponding formulas. The coordi-
nates of the two sampling points are (x1, f(x1)) = (0, -7.0) and (0.3, -20.7) in the 
case of the upper diagram, and (x2, f(x2)) = (0.397, -7.0) and (0.697, -20.7) in the 
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case of the lower diagram. The corresponding sine and cosine values are (S1, C1) = 
(-24, -7) and (S2, C2) = (15, 20), respectively. 

Since we know that two sampling measurements are sufficient for deducing 
the amplitude and the time axis position of a sine function with known cycle 
time, we may guess that four sampling measurements will be sufficient for de-
ducing all missing information about a curve which is composed of two sine 
functions with known cycle times. Fig. 14.9 shows such a curve; the frequency 
ratio of its two components is f1:f2=1:1.2=5:6. The corresponding cycle lengths of 
the two components are 1 and 1/1.2, and these determine the value 5 of the cycle 
length of the sum. How can this be explained? The explanation must refer to the 
findings of Mr. Fourier who proved that any periodic function can be expressed 
as a sum of sine functions whose frequencies are integer multiples of the basic 
frequency Δf.  Δf is the reciprocal of the cycle length of the periodic function. In 
our example, Δf is 0.2, since the frequencies of the components are 5∗0.2 and 
6∗0.2, and from this it follows that the cycle length of the curve which corre-
sponds to the sum is 1/0.2 = 5.  

y = sin(x) + sin(1.2 x) = sin(5 0.2 x) + sin(6 0.2 x)

x
2

- 2

- 1

2

1

1 2 5

Cycle length = 1
0.2 = 5

 

Fig. 14.9     Periodic function resulting from adding two sine functions 

When sampling a single sine function, the two sampling points must be posi-
tioned in such a way that their distance is less than half the cycle length. From this 
we may conclude that the four sampling points which are required in the case of 
sampling a sum of two sine functions must be positioned in such a way that the 
distance between any two of them is less than one quarter of the cycle length.  
Fig. 14.9 shows one way to position the four sampling points. 
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For each frequency k f  the amplitudes Sk and Ck of a sine and
a cosine function must be determined. This requires two sampling values. 

Thus, the total number of required sampling values is

Within the bandwidth (including its two limits)
(kmax – kmin + 1) spectral frequencies can be placed at equal distance f.

The length of this interval is called the bandwidth.

The frequencies  f = k f  of the spectrum are restricted to the interval

If the function is sampled at equal distances within its cycle length,
the distance between two neighboring sampling locations is

The distance between two neighboring sampling locations must be
less than the reciprocal of the doubled bandwidth.

f fmax = kmax f . kmin f = fmin

The cycle length of the function to be sampled is 1
f

2  (kmax - kmin + 1).

bandwidth = fmax - fmin = (kmax - kmin) f

fmin fmaxf

=
f  [ 2  (kmax - kmin +1) ]

1
2  (bandwidth + f)

1

Assumptions:

The so-called sampling theorem says:

 

Fig. 14.10     Deduction of the sampling theorem 

From this point, we need only one more step to reach the universal sampling 
theorem which can be applied to a non-periodic function. Fig. 14.10 is obtained by 
generalizing the comments I made about Fig. 14.9. The five variables Δf, fmin, fmax, 
kmin and kmax, which are introduced in Fig. 14.10, have the values 0.2, 1.0, 1.2, 5 
and 6 in Fig. 14.9. In the example in Fig. 14.9, the bandwidth which is defined in 
Fig. 14.10 equals the basic frequency Δf, but this doesn’t correspond to reality. In 
reality, the signals to be sampled aren’t periodic at all. With a non-periodic func-
tion, the cycle length is infinite and Δf is zero, since it is the reciprocal value of 
the cycle length. Therefore, Δf doesn’t occur in the final version of the sampling 
theorem. The upper limit for the distance between two neighboring sampling 
points is determined only by the bandwidth. Thus, a continuous signal can be 
digitized only if its bandwidth is known and finite. This is the case for all signals 
of technical relevance. The bandwidth of acoustic signals such as voice or music is 
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determined by the lowest and highest frequencies a person can hear. The lowest 
frequency is approximately 20 Hz. Humans cannot produce tones of such low 
frequency, but organ pipes can if they are long enough. The highest frequencies 
humans can hear are in the range of 20,000 Hz, but only young people can hear 
such high tones. The maximum frequency a person can hear decreases with ad-
vancing age. The required frequency for sampling an acoustic signal with full 
bandwidth is 40,000 Hz, i.e., the distance between two neighboring sampling 
points is 25 microseconds. However, this high sampling frequency is required 
only for transmitting or storing music with the highest quality. Adequate speech 
quality can be obtained by assuming 4,000 Hz as the upper limit of the bandwidth. 
This corresponds to 8,000 sampling points per second. All kinds of continuous 
signals which are to be stored or transmitted by technical systems have been ana-
lyzed with respect to their bandwidth. In comparison to the bandwidth of sound 
signals, video signals have a much higher bandwidth; it is in the range of Mega-
hertz, i.e., millions of cycles per second. 

Sampling a continuous signal provides a sequence of numbers. Representing 
these in binary form (Fig. 4.4) completes the conversion of the continuous signal 
into a sequence of zeros and ones. The number of bits used for each sampling 
value is usually minimized experimentally. The number of bits is repeatedly re-
duced until the reverse conversion from the binary sequence back to the continu-
ous signal no longer provides an acceptable result.  

In order to avoid any unnecessary effort, many tricks are applied to reduce the 
number of bits which must be transmitted per unit time. In fact, it is possible to 
further reduce the bit stream which results from sampling. For example, a person 
speaking doesn’t speak continuously, but inserts short breaks between words and 
phrases. Such breaks need not be stored or transmitted using over 50,000 bits per 
second, but can be captured by specific binary sequences of much shorter length. 
Besides this simple case, there are many more ways that are used to reduce the 
length of a bit stream which is the result of sampling a continuous signal. All these 
methods are called “source oriented encoding,” since they use information about 
specific properties of the source generating the original continuous signal.  

A summary of all my explanations concerning possible ways to digitally trans-
mit continuous information is given in the system shown in Fig. 14.11. This figure 
shows all the components of a system which digitally transmits a continuous sig-
nal from a source to a sink. The analog-to-digital converter samples the continu-
ous signal provided by the source and encodes the samples as binary numbers. 
Thus the output of this converter is a stream of bits. Besides providing a continu-
ous signal, the source may also provide information about discrete facts such as 
the phone number of a caller. This information is inserted into the bit stream. The 
resulting bit stream then enters the source-oriented encoder which eliminates as 
much redundancy as possible. Next, the resulting reduced bit stream is converted 
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into a continuous signal which enters the transmission channel. When it reaches 
the exit of the channel, the signal will most likely have been distorted by noise, 
but the regenerator will nevertheless be able to extract the original binary se-
quence with a very high probability. This bit stream now has to be enriched again 
by the redundancy which had been eliminated on the left side. From the resulting 
bit stream, the bits which belong to the discrete information can be immediately 
interpreted by the sink, while the bits which correspond to the sampled values 
enter the digital-to-analog converter which generates the corresponding continu-
ous signal. 

Source

Continuous
signal

Analog to digital
converter

Eliminator
of redundancy

Digital to analog
converter

Adapter to
channel requirements

Continuous
signal at

channel entry
Channel

Continuous 
signal at

channel exit

Regenerator

Stream of
binary symbols

Stream of
binary symbols

Adder
of redundancy

Stream of
binary symbols

Stream of
binary symbols

Continuous
signal

Sink

 

Fig. 14.11     Structure of a system for digital transmission of continuous and discrete 
information 

Since a telephone is used both for sending and receiving information, all  
components shown in Fig. 14.11 except the channel must be contained in the tele-
phone. Without the tremendous progress in microelectronics which made it possi-
ble to integrate a million or more logical gates on a silicon wafer the size of a 
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quarter dollar, using digital technology to implement telephone systems would 
still be a utopian dream. In a CD-player, you find only the components from the 
right side of Fig. 14.11. The channel and the components on the left side are re-
placed by the system reading the compact disc. The bit stream which is stored on 
the CD contains not only the sampling information about the sound signal, but 
also the discrete information which appears on the display, i.e., the number of 
pieces of music and their corresponding playing times. 

While the system shown in Fig. 14.11 contains all the components required to 
explain the principal function of fixed-line or wired digital telephone systems, 
CD-players and digital broadcast systems such as radio and television, it is not 
sufficient to explain how cell phone systems work. In the case of broadcast sys-
tems, everyone is entitled to receive the broadcasted information such as radio and 
television programs. The selection of a specific program requires only that the 
receiver be tuned to the transmitter’s frequency. In the case of telephone systems, 
however, the person placing the call expects that the information sent is received 
only by the individual whose number was dialed. This can be guaranteed easily in 
the case of fixed-line or wired networks, where the signal flows only along the 
path which ends at the receiver. But in the case of mobile telephone systems, the 
signals are broadcast, and therefore they can be received by anyone who has the 
appropriate receiver. Thus, it is necessary to distinguish between receiving a sig-
nal and receiving the information contained in the signal. How can this be done? 

The overall area of a mobile telephone system is divided into so-called cells 
whose sizes depend on the local subscriber density, i.e., the number of subscribers 
per square mile. The diameters of the cells vary from some hundred meters in big 
cities up to kilometers in rural regions. The power of the electromagnetic waves 
radiated from the fixed antennas used must be such that the signals can be re-
ceived clearly even at the borders of the cell, but fade away before they reach cells 
at greater distances. Of course, waves can be received in cells which are just be-
yond the border of the cell where the antenna is located. To make sure that, even 
in this case, the corresponding senders can be distinguished, different transmission 
frequencies are used in adjacent cells. Thus, the receiving telephone can be ad-
justed to the frequency which is actually wanted. Perhaps you remember travelling 
in a car and listening to a radio program. If you experienced fading of the radio 
signal, you needed to change your radio to a different radio station carrying the 
same program. It is quite common for certain radio programs to be transmitted at 
different frequencies in different regions. While a radio program is transmitted 
without considering whether anybody is actually listening, this does not apply to 
mobile telephone signals. Therefore, the operation centers which control the 
transmitting and receiving antennas must always register which subscribers  
are actually making or receiving a call, and the cell in which they are presently 
located. 
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Since a great number of telephone conversations take place at the same time, it 
is impossible to assign an exclusive frequency to each subscriber. Nevertheless, 
subscribers using the same assigned frequency can still be technically separated. 
This is done by periodically dividing time into as many short intervals as there are 
subscribers to be separated. Thus, each subscriber of the group gets his own time 
slot. According to a standard actually used in Europe, eight subscribers are 
grouped together and get assigned two frequencies, one for receiving and another 
one for transmitting. The distance between the two frequencies is 45 Megahertz. 
The time slots have durations of half a millisecond, and each subscriber gets 250 
slots per second for receiving and another 250 slots for transmitting. The interval 
between the end of a slot for receiving and the beginning of the next slot for 
transmitting is one millisecond.  

Using different frequencies and time slots guarantees that different conversa-
tions don’t interfere, but this does not yet solve the problem of how to avoid hav-
ing someone build an appropriate receiver and listen in to the conversations by 
selecting the corresponding frequencies and time slots. Fortunately, the system 
uses digital technology where all information transmitted is a sequence of zeros 
and ones. This makes it possible to assign to each subscriber his own procedure 
for scrambling a binary sequence in such a way that the transmitted sequence 
cannot be unscrambled by someone who doesn’t know the individual procedure. 
The scrambling and unscrambling methods are individualized by using informa-
tion which is known only to the transmitter and the receiver. Each cell phone con-
tains a memory chip where individual information is stored.  This can be used 
only if the subscriber enters his personal identification number. 
Computer Har dware 

Computer Hardware: 
How Digital Systems Which Execute Programs Are Built 
Computer Har dware 

It’s certainly pointless to consider the question of what Socrates would find more 
miraculous: the mobile telephone or the computer. Today, people seem to be more 
impressed by the functionality of computers than by that of mobile phones, at least 
as long as these are used only for making phone calls. Of course, now there are 
more advanced mobile phones that incorporate some computer functions. Using a 
typical mobile phone doesn’t differ much from using a fixed-line telephone, and 
this makes the users forget the great differences between the implementations of 
the underlying systems, if they are even aware of these differences. The know-
how required for using a telephone is much less than the know-how required for 
using a computer. How much a potential computer user has to learn depends 
greatly on whether he wants to write new programs or use existing programs. 
Decades ago, I read the following appropriate characterization: “A computer is a 
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half-witted maid with extremely high job performance.” The high job performance 
is the consequence not only of the high speed of operation, but also because a 
computer doesn’t forget anything which was stored in the past, unless it is explic-
itly told to forget. When a new computer is brought into service, it “knows” only 
what has been stored in its memory in the process of its production, and this pri-
mary knowledge enables it to communicate with its environment. It can acquire 
additional information via the keyboard and possibly other input devices, and it 
can provide output information via its monitor and possibly other output devices. 
Although acoustic communication is possible – think of a Global Positioning 
System which talks to you with the voice of a friendly lady, or of a computer as-
sistant in a car which accepts acoustic commands from a disabled driver – this is 
not yet the standard form of communication between computers and humans. 
Today’s standard is communication via written text and graphics.  

Almost all of the fundamental findings on which the building of computers is 
based were presented in previous chapters of this book. Since a computer is a 
purely digital system, it can be implemented exclusively by applying the concepts 
introduced in figures 14.1 through 14.6. But before the process of designing a com-
puter can begin, we must ask what the function of a computer actually should be. It 
is quite evident what a computer is not expected to do, e.g., wallpaper the living 
room or prepare a Thanksgiving dinner. Its tasks should be exclusively informa-
tional, i.e., it should assist us in processing information. In the days when the first 
computers were built, the tasks the designers had in mind were only mathematical 
tasks, i.e., calculating new numbers from given numbers. The design of a computer 
is always guided by the model of an instruction execution system which is shown 
in Fig. 13.11. When this model is applied to computers, the controlling agent is 
given a very specific structure which I shall now develop. Let’s begin with Fig. 
14.12 which shows the graphical representation of a program. Although this pro-
gram cannot be executed by a computer because it refers to matter and energy and 
not to information, it nevertheless has the characteristic structural properties of any 
program. The graph in Fig. 14.12 belongs to the same class of graphs as the graph 
in Fig. 6.5 which shows the protocol for using a telephone system. The program in 
Fig. 14.12 is so simple that you’ll understand it without an explicit explanation. But 
what I want to point out is the fact that this program contains all three types of 
structural elements found in sequential programs. The grey rectangles represent 
three different activities which are to be executed one after the other in the de-
scribed order and from top to bottom. Each activity must be described as being 
elementary or structured. The first two grey activities are structured while the third 
one is elementary. The internal structures of the first two grey activities differ sig-
nificantly. The first one contains a distinction of cases which means that only one 
of the two activities represented by the rectangles within the grey activity will be 
executed. Which one will be executed is decided by the actual situation, and only 
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one of the two assigned conditions can be true. The structure of the second grey 
activity is a conditional repetition which requires that the activity in the loop be 
repeated until the exit condition of the loop is satisfied. 

Eat dinner

Prepare a special
“Aunt Mary dinner“

Prepare dinner

Aunt Mary
will be with us.

We shall be
alone.

Prepare a
conventional dinner

There is still a
next course.

There is
no next course.

Drink a digestif

Serve a course
and eat it

Drink a digestif

Program for Sunday evening

 

Fig. 14.12     Example of an imperative program 

The program in Fig. 14.12 is a so-called imperative program, i.e., a program 
consisting of instructions. All the text in the elementary rectangles can be inter-
preted as instructions. By looking at the program, we cannot predict how many 
instructions will actually be executed as steps in the execution of the entire pro-
gram. The only thing we know for sure is that, in any case, the last instruction will 
be executed exactly once. 
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The restriction that a sequential program be composed of only three types of 
structural patterns (the sequence, the distinction of cases and the repetition) makes 
it easy to convert the graphical form of the program into an equivalent text. But 
before I discuss this conversion, I shall stay with the graphical representation in 
my next discussions since it better illustrates the program. Of course, we now 
assume that the instructions no longer refer to matter or energy, but only to infor-
mation. Fig. 14.13 shows the structure of a system which is suited for executing 
such programs. There is the container for the program in the lower left. You may 
imagine that the drawing of the program graph is kept here, and it can be viewed 
by the controlling agent. The container underneath the controlling agent is labelled 
“program marking.” This is the information about how far the program execution 
has proceeded, and is nothing more than the identification of the small circle in the 
program graph which actually contains the token. When the execution of a pro-
gram is started, the token is placed in the circle at the top of the graph. Fig. 14.12 
shows the token in this position. Once the entire program has been executed, the 
token is located in the circle at the bottom of the program. If we compare the pro-
gram to the score of a conductor, the marking may be thought of as the position of 
the conductor’s finger which indicates the next note to be played. 

By having the program and its marking in different containers, this structure 
guarantees that the program cannot be changed, but only read. The controlling  
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instruction
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Ques-
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Fig. 14.13     System for the execution of imperative programs 
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agent, which reads the program, must not only give instructions to the operational 
agents, but in certain situations, it also must ask questions. The answers are re-
quired for distinguishing cases and for finishing repetitions, i.e., for deciding 
where the token should be placed next.  

In the structure on the left side of the dashed line in Fig. 14.13, the operational 
memory is strictly separated from the program container. The operational memory 
contains the data items to which the instructions and questions of the controlling agent 
refer. In the structure shown, the controlling agent cannot request changes in the pro-
gram by giving appropriate instructions. In fact, at the beginning of the computer era, 
nobody saw any reason to change a program after its execution had been started. But 
the Hungarian chemist and mathematician John von Neumann (1903-1957), who 
came to the United States in 1929 and remained there, soon had the brilliant idea to 
structure the system’s memory as it is shown on the right side of the dashed line in 
Fig. 14.13. The former operational memory, to which only the operational agents had 
access, is now reduced to so-called operational registers. However, there is still an-
other memory called main memory which the operational agents can access for reading 
and writing, and this memory is also used for storing the program. As before, the con-
trolling agent can only read from this memory and has no writing access. There is no 
longer a specific container reserved for storing the program, i.e., the program can be 
stored anywhere within the main memory. The memory cells from which the control-
ling agent actually must read are determined by the specific marking information. 

All nodes with curved borders are locations for information represented by bi-
nary sequences. The node represents either a channel, in which case information is 
flowing, or it represents a memory, in which case information is stored. How a 
binary sequence must be interpreted cannot be decided by just looking at it. The 
rule for interpretation follows from the actual situation, i.e., from the actual loca-
tion of the sequence to be interpreted, and concurrently from the contents of other 
cells. If you could look into the main memory, you would see billions of zeros and 
ones, but you would not know what they mean. But if the controlling agent looks 
into a main memory cell which is identified by the contents of the marking con-
tainer, the sequence read must be an instruction or a question. Which of these two 
it actually is can be determined by looking at the sequence itself. 

But why did John von Neumann suggest the structure on the right side of the 
dashed line in Fig. 14.13 in the first place? He was the first to realize that operational 
data could become program instructions. The binary form of the program which the 
machine requires for executing the instructions is not suitable for being read by hu-
mans. In the early years of the computer age, programmers had to punch the program 
instructions as patterns of holes in tapes which could be read by the machine. This 
required programmers to be familiar with the technical details of their computers. 
Computer engineers soon began to search for ways to eliminate this tight connection 
between programming and digital technology. 
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in programming language PA:

Compute the function f with the arguments from the cells
x1 through xk and store the result into the cell y.

y := f( x1, x2, x3,  . . .  xk )

ADD x1, x2, y

y := x1 + x2
Example

Instruction in
natural language

Instruction in
formal language

in programming language PB:
 

Fig. 14.14     Readable form of instructions of the type ”compute and store” 

Wouldn’t it be convenient if programmers could write instructions in a form il-
lustrated by the examples in Fig. 14.14? In this case, the instructions could be fed 
into the computer by typing them on a keyboard which provides a specific binary 
sequence for each of its keys at its output. A typewriter keyboard has a maximum 
of 60 keys, most of which stand for two symbols, lower and upper case letters. 
Thus, 120 different symbols must be encoded, and this can be done by using bi-
nary sequences containing 7 bits, since there are 27=128 different binary 
sequences of length 7. The chains of binary coded symbols provided by the key-
board cannot be interpreted directly by the machine according to the program-
mer’s intention. However, the machine can take these chains as input data to a 
program which converts them into a sequence of instructions, and these instruc-
tions can be executed by the machine. A program which tells the computer how to 
convert a sequence of binary coded symbols written by a programmer into a se-
quence of machine instructions is called a compiler. In the view of a compiler, the 
binary sequences which it provides as its output are still data. In order to enable 
the controlling agent to read this information and interpret it as a program, the 
operational agents which execute the compiling program must write their output 
data into the same memory from which the controlling agent is reading. 

There are two different types of machine instructions which can be distin-
guished by the controlling agent, operational instructions and branching instruc-
tions. Operational instructions are not interpreted by the controlling agent but are 
transferred to the operational agents for execution. The examples shown in  
Fig. 14.14 are of this type. In such an instruction, a memory location into which a 
new content is to be stored is identified. This new content is also specified in the 
instruction, either by providing it directly as a part of the instruction, or by speci-
fying an operation which provides the new content as its result. While the pro-
grammer may assign arbitrary names to the memory locations he is referring to, 
e.g., y, x1, radius or weight, the machine requires binary sequences as identi-
fiers for memory locations. For this purpose, the main memory is considered a 
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long chain of small memory cells which are enumerated, and a cell can be identi-
fied by providing the number which corresponds to its position in this enumera-
tion. In most cases, the size of such a memory cell is one byte, i.e., 8 bits. While 
the capacity of the main memories of early computers was in the range of a few 
thousand bytes, today’s computers have main memories with capacities usually 
exceeding one billion bytes. 

If an operational instruction identifies a function to be computed, a specific bi-
nary sequence must be interpreted by an operational agent as the function’s name. 
Simple functions such as addition can be implemented as combinatorial circuits, 
while more complex functions such as the square root require instruction execu-
tion systems of their own which are contained within the corresponding opera-
tional agents. Since a computer can contain only a finite number of operational 
agents, the number of different functions which can occur in operational instruc-
tions must also be finite. The selection of an appropriate set of functions is an 
important decision the computer designer has to make. The four arithmetic opera-
tions addition, subtraction, multiplication and division are selected in most cases. 
Other functions which are also required are the so-called logical functions. A 
logical function requires two bytes at its input and provides one byte at its output. 
The output byte is obtained by applying one of the logical functions from Fig. 4.7 
to each pair of corresponding bits of the input bytes. Another function which also 
doesn’t interpret the binary sequences is the shift function. This function takes an 
input byte and converts it into an output byte by shifting each bit one position to 
the left or to the right.  

Besides operational instructions, a program usually also contains branching in-
structions. Such an instruction is not transferred to an operational agent, but is 
executed by the controlling agent itself. The execution of a branching instruction 
means that the content of the program marking is changed as specified explicitly 
in the instruction. Since the program is a sequence of instructions, the instructions 
can be enumerated and the program marking is nothing but the number which 
corresponds to a specific position in this enumeration. Once an operational in-
struction has been executed, the next instruction to be executed is found by in-
creasing the program marking by one. Therefore, the operational instructions do 
not contain any explicit information about where the next instruction comes from. 
This does not allow any deviation from the strict sequence given by the order of 
the instructions in the memory. However, programs may contain distinction of 
cases and conditional repetitions (Fig. 14.12), and these require deviations from 
the sequence given by the order of the instructions in memory. It is the purpose of 
branching instructions to make such deviations possible. A branching instruction 
contains two kinds of information, namely the identification of a memory location 
where the binary state of the actual condition can be found, and the number of the 
instruction which is to be executed next in the case the condition is true. If the 
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condition is false, the program marker is increased by one which means that the 
next instruction will be the one at the position following the actual branching 
instruction in memory. Thus, a branching instruction can always be read: “If the 
content of the binary location c is 1, the number of the instruction to be executed 
next is n.” An unconditional branching instruction results if c identifies a location 
which always contains a 1.   

While computer hardware design necessarily must restrict the condition in 
branching instructions to the content of a binary memory cell, such a restriction is 
not acceptable with respect to writing reasonable programs. In a program, it must 
be possible to write “If the number in cell x is greater than 15 and less than 20, 
then get the next instruction from position n.” Converting such a conditional 
statement into an equivalent sequence of instructions executable by the machine 
can be performed by the compiler. The resulting sequence of instructions must 
request the computation of the expression (15-x)•(x-20)-1 since the result will be 
positive only if the given condition is satisfied. The location of the resulting sign 
in the memory corresponds to the location c which must be specified in the corre-
sponding branching instruction. 

As I mentioned, the inventors of the computer originally did not plan to build a 
machine for processing every kind of information; they only wanted to have a 
machine for calculating with numbers. It was not until a decade later that users of 
these machines became aware that any kind of information could be represented as 
a sequence of zeros and ones, and that any functional relationship between such 
binary sequences could be implemented by a computer program. Today, every-
body knows that a computer is a universal information processing system. It is 
evident that its performance strongly depends on how the information to be proc-
essed is represented by sequences of zeros and ones. This dependency was real-
ized by the first computer engineers who encoded only numbers. At the very 
beginning, the German inventor Konrad Zuse recognized and ingeniously solved a 
problem which at first was completely overlooked by inventors in the U.S. 
Mr. Zuse realized that there are two different kinds of applications which require 
different ways of encoding the numbers. One kind of application requires that the 
numbers be represented with absolute precision. A typical example for such an 
application is in the area of business and banking where the amounts of money 
must be represented to the last cent. In such applications it is always possible to 
determine how many positions on the right side of the decimal point are required. 
The corresponding numbers are called fixed point numbers. 

The situation is quite different when engineers or physicists deal with numbers. 
Their numbers, which always belong to physical quantities, can never be deter-
mined with absolute precision. Therefore, engineers and physicists are used to 
indicating the relative precision of their numbers by saying how many of the left-
most non-zero digits are relevant. Although the numbers might be represented 
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with more digits, the digits to the right of the relevant digits need not be taken into 
account. In the course of an engineering calculation, very high numbers and very 
small numbers may occur simultaneously, e.g. 3,72?,??? and 0.0000372?. By my 
using question marks instead of digits at the right of the first three non-zero digits, 
I indicated that only the first three highest-weighted digits are to be considered. At 
the beginning of performing an engineering calculation, the range of the numbers 
which will occur in the course of this calculation cannot be predicted. Therefore, a 
number representation must be found whose length is independent of the position 
of the decimal point, and depends only on the number of relevant digits. 

Mr. Zuse solved this problem by separating the number representation into two 
sections, one containing the information about the relevant digits, and the other 
containing the information about the position of the decimal point. The way to 
split up the information becomes obvious when the two numbers which I consid-
ered above as examples are written as follows: 372•104 and 372•10-7. In this case, 
the first section of the number representation contains the positive integer 372, and 
the second section contains the integer 4 or -7, respectively. The section which 
contains the relevant digits is called the mantissa, and the second section which 
identifies the position of the decimal point is called the exponent. Numbers which 
are represented in this way are called floating point numbers. Although the num-
bers in my examples are represented as decimal numbers and the exponent be-
longs to the base 10, you should be aware that in computers the numbers are rep-
resented as binary numbers and the base is 2. 

The principle of floating point representation is illustrated in Fig. 14.15. Here, 
the lengths of the mantissa and the exponent are naturally much shorter than the 
lengths actually used in computers. Typical lengths in computers are 24 bits for 
the mantissa and 8 bits for the exponent. In Fig. 14.15, the numbers are repre-
sented with a relative precision of three binary digits. The leftmost bit of the man-
tissa is needed for representing the sign. The table contains all numbers which 
result from varying the mantissa and the exponent in the intervals -8 ≤ m ≤ +7 and 
-4 ≤ exp ≤ +3. You will notice that some of the numbers occur in the table more 
than once. An example of such a number is 2 which can be represented as 1•21, 
2•20, or 4•2-1. In order to simplify the implementation of the arithmetic operators 
using combinatorial circuits, only one representation is selected for each number, 
and all others are excluded. In the table in Fig. 14.15, the excluded representations 
are shaded grey. From the three possible representations for the number 2, the 
form 4•2-1 is selected and the other two are excluded. 

Floating point representation has a characteristic effect on the distance between 
two adjacent numbers, as is illustrated at the top of Fig. 14.15. As long as the 
values of the numbers are small, the distances between two adjacent numbers are 
also small. But the distances increase with increasing values of the numbers. 
Arithmetic operations on pairs of floating point numbers will not necessarily result  
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10 2 3 4

Mantissa  m Exponent  exp

2021- 23 22

0 1 1 0 1 0 1

2021- 22

=m  2exp =  6  2 -3 = 6
8

3
4

- 4 0- 3 - 2 - 1 21 3

-1/2 - 8- 1 - 2 - 4 - 32- 16 - 64

- 7- 7/8 - 7/4 - 7/2 - 28- 14 - 56

- 3/8 - 6- 3/4 - 3/2 - 3 - 24- 12 - 48

- 5- 5/8 - 5/4 - 5/2 - 20- 10 - 40

- 1/4 - 4- 1/2 - 1 - 2 - 16- 8 - 32

- 3/8 - 6- 3/4 - 3/2 - 3 - 24- 12

- 1/4 - 4- 1/2 - 1 - 2 - 16- 8- 1/8

- 1/4 - 4- 1/2 - 1 - 2 - 8- 1/8

0 00 0 00 00

1/4 41/2 1 21/16 81/8

1/4 41/2 1 2 1681/8

3/8 63/4 3/2 3 24123/16

1/4 41/2 1 2 168 32

5/16 55/8 5/4 5/2 2010 40

3/2 243 6 123/8 483/4

7/4 287/2 7 147/16 567/8

m
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- 1
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Fig. 14.15     Illustrations of floating point numbers 

in numbers which can be represented exactly by a mantissa and an exponent in the 
given ranges. Let’s consider the product of the two numbers 0.75=6•2-3 and 3.5=7•2-1 
which both occur in the table in Fig. 14.15. Their product is 2.625, and this cannot be 
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found in the table, although it lies within the interval -64 ≤ x ≤ 56 which contains all 
numbers from the table. The consequence is that this number must be approximated 
before it can be represented by a mantissa and an exponent. The interval between two 
adjacent numbers from the table which contains the product is 2.5 ≤ 2.625 ≤ 3, and 
therefore the product is approximated by the number 2.5. 

If Mr. Zuse had not invented the concept of floating point numbers when de-
signing his first computer, this concept surely would have been invented by some-
one else within the next decade. Without it, programming engineering applications 
would be much more difficult. 
Computer Software 

Computer Software: 
How Programmers Can Tell Their Computers What They 
Expect Them to Do 
Computer Software 

What I told you up to this point was exclusively about the so-called computer 
hardware. When you once learned the meaning of the word hardware, it was most 
likely not in connection with computers, but in connection with things like pans, 
shovels, knives and hammers, which we buy at hardware stores. When the word 
hardware is used in connection with a computer, it refers to its material structure 
contributing to its weight. This would include metal, plastics, glass, etc. In con-
trast to this, the word software means encoded information which can be stored in 
the memory of a computer as sequences of zeros and ones, and which determine 
the computer’s behavior. The word software was created by computer scientists as 
a complement to the word hardware. When talking about the capability of com-
puters, one should always make clear whether the properties discussed are those 
determined by the hardware designers or those determined by the programmers. 
Every now and then, someone who had problems with handling a certain com-
puter application expected me to help him by demonstrating how to interact with 
the specific user interface of the given application. He would say, “Aren’t you 
teaching university courses in computer technology? Then certainly you know 
how to use this software for processing video clips. Please tell me what I must do 
in order to convert this rainy grey sky into a sunny blue one.” Those who were 
convinced that I would be able to help them were always very disappointed when I 
told them that I wasn’t familiar with this particular application of software, and I 
had no idea how to use it. It’s a consequence of the computer being a universal 
information processing machine that an infinite number of programs can be writ-
ten for it. Each of these turns the computer into a very specific system having its 
own individual behavior. In order to understand the hardware of a given computer, 
it’s sufficient to know the ideas implemented by the engineers who designed this 
specific machine. But if we want to understand the behavior of a system which is 
determined by specific software, we must find out what the programmers had in 
mind when they developed this software. 
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Until now, I have not presented a single program which actually could be exe-
cuted by a computer. The example shown in Fig. 14.12 looks like a computer 
program, but it contains instructions referring to matter and energy and therefore 
cannot be executed by a computer. When I was looking for a problem suitable for 
being presented in this book as a starting point for developing a programmed solu-
tion, I had to satisfy two conditions. First, the problem should be easy to describe, 
and second, it shouldn’t be so simple that almost everyone could immediately see 
how it could be solved using a sequence of computer instructions. I finally was 
convinced that the so-called SUDOKU puzzle satisfies both conditions. For those 
readers who are not familiar with this kind of puzzle, I shall now give a short 
explanation. SUDOKU has some resemblance to a crossword puzzle, but instead 
of filling the empty cells of rows and columns with the letters of words, cells must 
be filled with digits from the set 1 through 9. A SUDOKU problem is always 
given in the form of a square array containing 9×9 cells, with some of them empty 
and others containing digits. An example of a SUDOKU problem is shown in  
Fig. 14.16. Everything in grey which surrounds the 9×9 square does not belong to  
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Fig. 14.16     Data structure for the SUDOKU program 
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the original problem, but was added as a help for developing the program. The 
program we now are going to develop enables the computer to find a digit for each 
empty cell with the restriction that each row, each column and each of the nine 
3×3 subsquares contain all nine digits from 1 through 9. 

Each of the 9•9=81 cells may be identified using the coordinates x and y. In or-
der to have a simple way to identify each of the nine 3×3 subsquares, I introduced 
the additional coordinates xBasis and yBasis which are related to x and y according to 
the equations x = xBasis+xΔ and y = yBasis+yΔ. Using these coordinates, each cell, 
each row, each column and each subsquare can be identified by two numbers: a 
cell by (x, y), a row by (yBasis, yΔ), a column by (xBasis, xΔ) and a subsquare by 
(xBasis, yBasis). 

Making a computer solve a SUDOKU puzzle requires a program which is 
merely a formal description of our own solving process. For each empty cell we 
determine the set of digits which remain after we eliminated all digits already 
contained in the corresponding row, column or subsquare. This is formalized by 
associating a so-called possibility list to each of the 81 cells. Such a list is a se-
quence of nine bits, with each corresponding to one digit. The example shown in 
Fig. 14.16 indicates that only the digits 1, 2, 4 and 6 are left as possible entries for 
the selected cell, because the other digits from the set 1 through 9 already occur 
either in the corresponding row, namely 5, 8 and 9, column, namely 7, or sub-
square, namely 3.  

Before a program is written in a formal programming language, it should be 
written in natural language, because the program can be understood much easier in 
this form. If it contains logical errors, these can be detected much faster in natural 
language. My design of the SUDOKU program is shown in Fig. 14.17. While 
empty cells can be left empty when a SUDOKU puzzle is printed, cells in a com-
puter memory can never be empty, but must always contain some information. I 
could have decided to store the word “empty” in those memory cells which corre-
spond to the empty cells of the printed puzzle, but this would not have been an 
appropriate decision. Since each of the non-empty cells contains a decimal digit 
from the domain 1 through 9, the digit 0 (zero) was still available, and therefore I 
chose to use it for characterizing an empty cell. In the course of the program exe-
cution, the number of empty cells will hopefully decrease. In order to check 
whether such a decrease actually occurred, I introduced two memory cells which I 
called prevCEC and actualCEC. These abbreviations stand for previous and 
actual count of empty cells. Only if actualCEC is not yet zero, but less than 
prevCEC, does it make sense to execute the block of instructions in the loop. 
Otherwise, one of two possible situations occurs. Either the original problem 
square contained 81 empty cells, or the last execution of the block in the loop had 
been unsuccessful, i.e., actualCEC was not decreased. 
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actualCEC = 0   or
actualCEC = prevCEC

Print the actual content of the 9  9 cells
Termination

- Check the possibility lists of all cells containing a
  zero whether they already determine the non-zero  
  digit to be entered into the corresponding cell;
- Whenever such an entry is made,
  update all possibility lists concerned
  and decrease actualCEC by 1.

- Copy the value stored in actualCEC into prevCEC

Repeatable operation

Initialization

- Fill each of the 9  9  possibility lists with 9 ones;
- Enter the original problem into the 9  9 cells;  
  whenever a digit is entered, update the possibility   
  lists of all cells in the corresponding row, column and 
  subsquare;
- Write 0 into all empty cells and store their number 
  in actualCEC;
- Store the number 81 in prevCEC.

actualCEC > 0      and
actualCEC  prevCEC

 

Fig. 14.17     Program for straight-forward searching for a SUDOKU solution 

The most powerful part of the repeatable operation is determined by the instruc-
tion “Check the possibility lists of all cells containing a 0 to see if they specify the 
non-zero digit to be entered into the corresponding cell.” There are two possibilities 
for such a check being positive. The first case can be detected easily, since this case 
occurs when a possibility list contains eight 0’s and a single 1. In this case, the posi-
tion of the 1 determines the digit to be entered into the corresponding cell. The de-
tection of the second case requires a much greater effort, since this case occurs when 
a possibility list contains a 1 at a position where all other relevant possibility lists 
have a 0, either in the row, the column or the subsquare.  

Once I had developed the program in the form shown in Fig. 14.17, I had to 
choose a programming language. Many different formal languages have been 
developed for writing imperative programs, and the criteria for selecting one are in 
reference to their specific properties. I selected FORTRAN, although today’s 
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computer scientists believe this language is long outdated. It was introduced in 
1957 as the first high level programming language for engineering applications. It 
was developed by a team working at IBM under the leadership of John W. Backus 
(1924-2007). I didn’t want to spend a lot of time developing my program, and so I 
therefore selected FORTRAN in its least sophisticated form. I believe that learn-
ing how to read and understand programs written in this language is not too diffi-
cult, but I don‘t expect my readers to understand it. The program I ended up with 
has a length of three pages. Fig. 14.18 may give you an impression of the looks of 
such a program. Careful programmers enhance the readability of their programs 
by inserting co-called comments which are written in natural language and are not 
meant for being interpreted by the machine. In the program text in Fig. 14.18, 
comments are characterized by an exclamation mark (!) at the beginning of the 
line. 

! ************* Declaration section ************* !

INTEGER, DIMENSION (1:9, 1:9)      :: cell
LOGICAL, DIMENSION (1:9, 1:9, 1:9) :: possibiliy

INTEGER prevcec, actualcec
INTEGER position
INTEGER xbasis, ybasis, x1, y1, x2, y2, z

! ********* Initialization ********* !

  .
  .
  .

! ******* Repeatable operation ******* !

prevcec = actualcec
DO ybasis = 0, 6, 3
  DO y1 = ybasis+1, ybasis+3
    DO xbasis = 0, 6, 3
      DO x1 = xbasis+1, xbasis+3
        IF (cell(x1, y1) = 0) THEN
           . . .

 

Fig. 14.18     A section of the SUDOKU FORTRAN program 

Usually, a program begins with the so-called “data declaration section” where 
the programmer tells the machine how many memory cells are required, which 
names will be used to identify them and what kind of information will be written 
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into these cells. At first, the 9×9 cells are declared. The declaration says that each 
cell will be identified by two coordinates, each of which has a value from the 
domain 1 through 9. Thus, the term cell(2:7) identifies the cell in the second 
column and the seventh row which in Fig. 14.16 contains the digit 9. The word 
INTEGER tells the machine that the corresponding cells are used to store numbers 
of the integer type. The second declaration introduces the binary entries of the 
possibility lists. Each such entry is identified by the two coordinates of the corre-
sponding cell and the position of the bit within the list. Thus, the term possi-
bility(5:7:2) identifies the second position within the possibility list which 
belongs to the cell in the fifth column and the seventh row. In Fig. 14.16 this posi-
tion contains the binary symbol 1. The word LOGICAL indicates that each entry 
of a possibility list is a binary symbol from the set {0, 1} or {FALSE, TRUE}. 

The lower section of Fig. 14.18 shows the program text which corresponds to 
the beginning of the block in the loop in Fig. 14.17. The four lines which begin 
with the word DO together with the line following them represent the FORTRAN 
version of the English text, “For all cells of the 9×9 square which contain a zero 
do …”  

After having entered the program into my computer’s memory by typing it on 
the keyboard, I started the execution of the FORTRAN-compiler which converted 
my program text into a sequence of instructions which could be interpreted and 
executed by the machine. Our daily newspaper provided enough SUDOKU puz-
zles which I could use to check whether my program worked as I had planned. 
After the first examples were solved correctly, I had no doubts that the program 
would also handle all future examples to my satisfaction. But then, to my great 
surprise, it happened that a “solution” was printed with some of the 9×9 cells still 
containing 0’s. This forced me to conclude that, although my program wasn’t 
completely wrong, it didn’t cover all possible cases. Therefore, I had to find a way 
which would lead from the partial solution it had found to the final solution. I 
asked myself what I would do if I had to find the final solution myself, and I came 
up with the following method: I checked the possibility lists of the empty cells to 
find one which contains a minimum number of 1’s. I was lucky and found one 
with only two 1’s. I arbitrarily selected one of these 1’s and entered the corre-
sponding digit into the corresponding cell. Now, I considered the modified 9×9 
square as if it were an original SUDOKU puzzle, and used it as an input to my 
program. Since the digit I chose was not the correct one, the program ended with a 
result where a possibility list had no 1’s at all. This was an indication that this 
modified puzzle had no solution, and that I had better select the other alternative 
from the list with two 1’s. With this alternative, the program actually found the 
final solution. 

The principle of searching a solution by trial and error is a universal principle 
which can be applied to other problems as well as the SUDOKU problem. This is 
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a fundamental principle that was developed and programmed in the early days of 
computer science. The best way to introduce and explain this principle is to  
present a protocol of a trial and error process in a special graphical form  
(Fig. 14.19). This protocol illustrates the fact that a trial and error process contains 
a sequence of alternating steps leading forward and backward. The process begins 
in the upper left corner with the given problem P which is submitted to a program 
F, and then F tries to find a solution in a straight-forward way. In the case of our 
SUDOKU problem, this would be the program in Fig. 14.17. I assumed that this 
program does not find the final solution of the problem P, but only a partial solu-
tion pS. In our SUDOKU example, this partial solution would consist of a 9×9  
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Fig. 14.19     Protocol for searching for a solution by trying out alternatives 
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square which still contains some empty cells. The three A’s in the row underneath 
the node pS indicate that there are three alternatives which can be tried. The selec-
tion of the leftmost alternative leads to the new problem P1, which is now submit-
ted to the program F. Again this doesn’t provide a final solution, but gives the new 
partial solution pS1. I assumed that this partial solution leaves two alternatives 
open, and their selection provides the problems P1.1 and P1.2. But the program F 
cannot find solutions to either of these problems. From this it follows that the 
problem P1 has no solution and that now the next alternative for pS must be tried. 
This leads to the problem P2 to which the program F finds the solution S2. This is 
also a solution of the original problem P. But since it could be that the problem P 
has more than one correct solution, the third alternative for pS should also be tried. 
However, I assumed that S2 is the only solution of the problem P, i.e., that the 
problem P3 has no solution. From the fact that P3 cannot be solved, it does not 
necessarily follow that the partial solution pS has no further alternatives. Thus, 
this must be checked, and therefore the process path leads upwards again until it 
cuts the dashed line at the top. All possible alternatives have been tried only when 
the process path has returned to the top. 

The rectangular nodes in Fig. 14.19 represent activities. F represents the execu-
tion of a program for the straight-forward trial, and A represents the selection of 
an alternative and using it for determining the next problem. The circular nodes 
represent information that is given or produced. As long as the process path leads 
downward, the contents of the circular nodes along the way must be kept avail-
able, since they will be referred to on the way back. The information below the 
dashed line may not be deleted before the process path cuts a horizontal dashed 
line on its way upward. Each time the process path cuts a dashed line on its way 
downward, new information is added. On the way back, it’s deleted again. 

If you assume that the process described in Fig. 14.19 does not happen within a 
computer, but is performed by yourself sitting at a desk, you’ll soon realize that 
the alternation of the adding and deleting of information corresponds to adding 
and removing documents to and from a stack. Many information processing tasks 
require the use of such stacks. In programming languages, the instructions for 
adding and removing elements to and from a stack are PUSH(x) and POP, 
respectively (see Fig. 14.20). The element lying on the top of a stack is referred to 
by the word TOP. Only the information contained in the top element can actually 
be read or changed, not only in the case of a stack of paper documents, but also in 
the case of a stack in computer memory. In order to get access to an element 
somewhere below the top, all the elements lying above must first be removed. 

While the graph in Fig. 14.19 represents the protocol of a program’s execution, 
and not a program, the corresponding program is represented in Fig. 14.21. In 
order to check whether an execution of this program can lead to the protocol in 
Fig. 14.19, you follow the flow of the black token which sits in the top circle of  
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Fig. 14.20     The two elementary stack operations 

the diagram in Fig. 14.21 at the beginning. Whenever a branching decision is 
requested, the protocol in Fig. 14.19 provides the information about which direc-
tion to select. PUSH- and POP-operations must correspond to intersections of the 
process path and the horizontal dashed lines in Fig. 14.19. 

The SUDOKU example illustrates a certain type of problem and its solution in 
the form of a computer program. This type of problem is characterized by the fact 
that the corresponding programs are formal descriptions of the same methods a 
human being would apply if he had to solve the problem without using a com-
puter. But this is not the only type of problem which can be solved by computer 
programming. There are two other types of problems which can be solved using a 
computer. These are either problems which humans solve without applying any 
method at all, or they are problems which can be solved only by a coordinated 
effort of many programmers.  

When people first read or hear the term “artificial intelligence,” they usually 
think that this is a kind of intelligence which enables computers to solve problems 
which are too difficult for humans. But in fact, it’s just the other way around. 
Problems which a computer can solve by applying artificial intelligence methods 
are those which humans can solve easily without applying any method at all. All 
of these problems have to do with pattern recognition where the patterns may be 
either patterns in perceivable communication signals – acoustical or visual – or 
patterns in electrical signals and data structures. In their early childhood, humans 
learn to recognize many acoustical and visual patterns, not only spoken and writ-
ten words, but also the faces of relatives and friends, and the sound of speech 
associated with a certain person. Later they learn that there are accents, i.e., char-
acteristic words or ways of pronouncing words which depend on the region where 
a person grew up. In a computer, all such patterns can be represented as sequences 
of zeros and ones, but the patterns don’t provide any hints about how they could  
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Fig. 14.21     Trial and error program using a stack 

be detected by analyzing the corresponding binary sequences. As early as 1960, 
computer scientists began to search for methods which would enable a computer 
to recognize the kind of patterns described. They came up with many ideas, most 
of which proved to be useless, but every now and then an idea was born which 
actually could be successfully applied. Many useful ideas, which became the basis 
of artificial intelligence were developed in the past approximately fifty years. 
Today, there are programs which turn a computer into a typist, i.e., you can dictate 
words of a text into a machine which then types the words on paper like a human 
secretary would do. There are even programs for detecting characteristic patterns 
in human voices. Think of a case of blackmail where the police recorded a phone 
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call in which the blackmailer disguised his voice. When a suspect is questioned 
later, a computer can be used to tell how likely it is that the suspect and the 
blackmailer are the same person. 

My primary concern is to convince you that computers cannot provide mean-
ingful results when programmers cannot explain how the results were obtained. 
The less someone knows about the way a computer works, the more will he be 
inclined to believe that computers have superhuman powers. In order to sensitize 
you to this problem, I shall now tell you what happened to me about forty years 
ago. At that time, I was a research assistant at the Institute of Information Process-
ing Systems at the University of Karlsruhe. One day, a man came into my office 
and told me that he was an astrologer, and that he had developed a method based 
on the constellation of the planets to predict the six numbers of the Lotto game 
(see Fig. 5.2) one week in advance, before they were officially selected at random 
by the Lotto machine. The only problem remaining was that his method some-
times provided numbers which had to be added or subtracted in order to obtain the 
final numbers. As an example, he told me that last week his method provided the 
numbers {4, 9, 23, 33, 39, 41}, while the Lotto-machine selected the numbers {10, 
12, 19, 20, 42, 43} which could easily be obtained by combining his numbers as 
follows: {10=33-23, 12=41+4-33=39-23-4, 19=23-4, 20=33-9-4, 42=33+9, 
43=39+4}. He was convinced that our computer could easily find the right combi-
nations once the major task of deriving the six numbers from the constellation of 
the planets was done. It was quite clear to me, from the very beginning, that this 
gentleman had no idea about how a computer must be programmed before it can 
solve a given problem. But I didn’t want to humiliate him, and therefore I told him 
how much time and effort I would have to invest before our computer could go to 
work on his problem. I also told him that our institute would have to charge him 
for this. Of course, he said that he certainly hadn’t expected that my efforts would 
be free, and that it would be only a question of the amount he could afford. I 
named a price of 10,000 German Marks which corresponded to about 5,000 U.S. 
Dollars, since I was sure that this was far above what he had expected to pay. He 
said, “For heaven’s sake, that’s far too much. I had expected something in the 
range of 200 Marks.” This reaction showed me that the gentleman was not really 
deeply convinced about either his method or of the capabilities of our computer, 
since he could easily pay the sum I had requested after he had won one million 
Marks or so using our computer with his method. 

The execution of a program which provides the solution to a given problem corre-
sponds to the computation of a function with given input information. In analogy to 

      product =  multiplication (first factor, second factor) 

we may write 

      solution = execution(program, data). 
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This kind of computing requires that both the data and the program are given as 
formally described information. Although the programs for such kinds of prob-
lems may be very sophisticated, developing such a program is not really an engi-
neering task because the program can be developed by a single programmer and 
doesn’t require a division of labor. At the beginning of the computer age, all com-
puter programming tasks were of this type, and the computer design according to 
Fig. 14.13 is appropriate for such tasks.   

It was around the year 1960 when computer engineers had the idea that it 
would be useful to modify the design of computers so that running programs could 
be interrupted. From then on, the execution of a program could be interrupted by 
certain events. This means that the execution of the actual program was stopped 
and its continuation was postponed to a later point in time in order to execute a 
more urgent program first. We are all used to the fact that we might get inter-
rupted, no matter what we are doing. If, for example, the phone rings while we are 
eating our breakfast, we’ll most likely stop eating breakfast in order to answer the 
phone call. After the phone conversation is over, we’ll resume our breakfast. This, 
of course, requires that the situation on the breakfast table remains as it was when 
the phone began to ring. Correspondingly, the contents of the memory cells which 
were used by the interrupted program must still be available when the execution of 
the program is resumed. However, some of these cells will also be used by the 
program which is executed rather than the one that is interrupted. As an example, 
think of the cell which contains the actual program marking; necessarily, this cell 
is used by all programs. Therefore, when a program is interrupted, the contents of 
the cells to be shared must be “saved,” i.e., stored in cells of the main memory 
which were reserved for this purpose. Before the execution of the interrupted 
program can be resumed, these contents must be brought back into the cells from 
which they had been previously saved. There is no reason why the program which 
is executed, rather than the interrupted one, could not also be interrupted. There-
fore, the contents of the cells to be shared must be piled up in a stack. The top of 
this stack contains the information belonging to the program which was inter-
rupted most recently. The execution of this program will be resumed when the 
more urgent programs have terminated. 

Interrupts are triggered by events. In the example of being interrupted while we 
were eating breakfast, the interrupting event was the ringing of the phone. Inter-
rupting events can generally be classified into two different categories, since an 
event is either a synchronous consequence of the last activity of the interrupted 
process, or it is not such a consequence and its occurrence is asynchronous to the 
interrupted process. While it is possible to ignore an event of the second type, an 
event of the first type always requires a reaction. Obviously, the ringing of the 
phone which interrupts the process of eating breakfast is an asynchronous event 
which is independent of this process and could be ignored. But our eating breakfast 
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could also be interrupted by an event which we generate ourselves. Assume that 
you accidentally knock over your coffee cup and the coffee spills across the table. 
In this case, the event cannot be ignored, and requires an appropriate reaction. 

The same two categories of events also exist in the case of interrupting the exe-
cution of a computer program. In the course of executing a program, it can happen 
that an instruction requires a division where the denominator has the value zero. 
This is a synchronous event which cannot be ignored, since the execution cannot 
be continued as if the event had not occurred. The execution of the incorrect pro-
gram must be stopped and an appropriate reaction program must be executed in-
stead. An appropriate reaction would be to inform the user about the incorrect 
instruction. In contrast to synchronous events which are always triggered by in-
struction executions, asynchronous events are generated by the environment  
(Fig. 14.13) to attract the attention of the processor executing the programs. Al-
most any device which is connected to a computer can request an interrupt. For 
example, the keyboard attracts the attention of the processor whenever the “enter” 
key is pressed, or the printer may want to inform the system about the fact that it 
ran out of paper. For each different event, there must be an appropriate reaction 
program stored in the main memory. The execution of such a program can be 
started whenever the corresponding event triggers an interrupt. Each computer 
system contains an electronic clock which, as a component of the environment, 
can generate interrupt events. This clock can generate periodic events which cor-
respond to the chiming of a church clock, although the cycle time of the computer 
clock is not one hour, but can be set to very short values in the range of fractions 
of milliseconds. The computer clock can also be used as an alarm clock which 
forces the system to execute specific programs at preset times. 

The possibility of ignoring asynchronous interrupt requests requires that the 
computer system contains a dedicated memory cell which stores all information 
concerning interrupt requests. Whenever an interrupt request occurs, the system 
must look into this cell in order to determine whether it should accept or ignore 
the request. This corresponds to the situation where a department head says to his 
secretary, “This morning, I don’t want to be interrupted unless it’s the president or 
my wife.” 

The feature of interruptability is also a prerequisite for establishing communi-
cation networks for computers which exchange messages. The internet wouldn’t 
exist if the arrival of a message couldn’t cause the receiving computer to react by 
executing a specific program. Today’s computers can be interrupted over a thou-
sand times per second, since they can execute many millions of instructions per 
second. Thus, a computer can change the role it is playing many times every sec-
ond, and this gives its users the impression that the computer is simultaneously 
playing different roles. It’s appropriate to consider such a computer like a com-
pany with many employees who cooperate and communicate. In the first years of 
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the computer era, a computer always executed one program exclusively from its 
beginning to its end, and the user knew exactly which program was actually run-
ning and would provide the results. Today, a computer user can be compared to a 
manager having multiple telephone sets by which he can communicate almost 
simultaneously with different partners who may speak different languages. The 
windows on a computer monitor can be considered like telephone sets, with each 
connected to a different agent. 

The number of agents which act simultaneously within a modern computer may 
very well be greater than 100, and therefore it’s obvious that the programs which 
determine the behavior of these agents can no longer be developed by a single 
programmer. Today, there are software systems which consist of more than 
100,000,000 lines of program code, and to which more than 1,000 software devel-
opers have contributed. For example, consider today’s operating systems, or en-
terprise resource planning systems which support a variety of business activities 
within huge corporations. The effort required for developing such complex  
software systems easily exceeds 10,000 developer years, e.g., 2,500 developers 
working 4 years or 5,000 developers working 2 years. When you consider the 
following, it may give you an impression of the size of a software program which 
is running on your laptop computer. About 60 lines of program code can be 
printed on one side of a piece of letter-size paper. A package of 500 pieces of 
paper has a height of 5 cm. Thus, the printout of 200 million lines of code would 
require a paper stack having a height of about 333 meters, exceeding that of the 
Eiffel Tower in Paris. 

An Engineering Job Which Is Not Yet Adequately Done 
Computer Scie nce and Software Engineering 

Until now, I strictly refrained from expressing any personal opinions, but now I 
shall leave the field of proven facts and present a personal conviction which is 
definitely not shared by most of my professional colleagues. Those who know me 
well can tell you that, for over 30 years, I have been like a missionary who uses 
every occasion to present his sermon. I am convinced that basic problems con-
cerning the quality of software systems will not be solved unless the responsibility 
for software engineering is taken away from computer science and is established 
as its own discipline.  

In the world of software there are two kinds of problems which have practically 
nothing in common. On the one hand, there are the problems whose solutions can 
be obtained by computing the results of specific functions – like our SUDOKU 
example or a program which provides the printed version of spoken text. On the 
other hand, there is the problem of mastering the complexity of systems which 
consist of many sophisticated interacting components. These components are 
developed by different software developers who never get to know each other, and 
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who never communicate directly. Nevertheless, it must be guaranteed that the 
whole picture is never lost and that all parts interact as desired. From the very 
beginning of computer science as an academic discipline, its focus was directed 
towards problems of the first kind, and actually the new discipline succeeded in 
turning the originally amateurish way of programming into a serious professional 
activity based on logic and mathematics. Solving this kind of problem by develop-
ing a program which provides the result of a function requires that human concep-
tions are turned into appropriate formal descriptions, i.e., that human ideas are 
communicated to a machine. In contrast to this, mastering the complexity of huge 
software systems requires that individuals adequately communicate their concep-
tions to other individuals. For this kind of problem, formalisms are of no help. 
Although mastering the complexity of systems characterizes the jobs of engineers, 
mastering the complexity of software systems by using a high degree of division 
of labor isn’t even mentioned in computer science education. For decades, I stud-
ied computer science curricula at a large number of colleges and universities. I 
came to realize that, with few exceptions, the criteria which guided the teaching 
and research of the professors in computer science were not those of engineers, 
but of mathematicians. It is therefore no wonder that almost all methods proposed 
by these scientists as contributions to the problem of unmastered system complex-
ity completely missed the point. A few years ago, I experienced a situation which 
made it clear what the problem is. A professor who had been hired to teach 
courses in software engineering was talking to his assistants, and he emphasized 
that he was proud to be a scientist, and not an engineer. 

It is not reasonable to have professors in the same academic department who do 
not share a common view about problems and methods to solve them. The best 
example of a good solution is the peaceful coexistence of the physics department 
on one side, and the engineering departments on the other side. In most cases, it is 
quite clear which problems belong in which department. The professors in the 
physics department can easily accept that their physics courses for engineering 
students are considered a service within the engineering curriculum. A similar 
relation should be established between computer scientists and software engineers. 

Of course, most computer scientists are opposed to my recommendations. They 
fight for keeping the responsibility for software engineering within the computer 
science departments. Isn’t it great to have the reputation of being responsible for 
everything which somehow has to do with computers? But the consequences of 
this are deficiencies which cannot be overlooked. There is no other engineering 
discipline where the ratio between effort, time and money on one hand and the 
quality and mastery of the systems built on the other hand is as poor as in the area 
of software engineering. 

Software is not visible, and therefore, the general public does not yet realize 
that, long ago, software became a technology which is as important for our 
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civilization as steel and electricity. Most people believe that as long as they don’t 
touch a keyboard or view a computer monitor, software doesn’t play any role in 
their lives. They are not aware that almost no technical devices, not even their car 
or their microwave oven, would function correctly if the software hidden inside of 
these devices had any deficiencies. The computers which you actually can see 
represent less than two percent of all computers in operation. Telephone switching 
systems, filling equipment at a dairy, railroad signal and track switching control-
lers, fuel-saving engines in cars and airplane navigation systems are all based on 
software. The spreading of software throughout all technical areas makes it impos-
sible for any engineering discipline to keep its sovereignty unless the discipline of 
software engineering also gains its own sovereignty. To achieve this should be-
come a strategic goal of economics and politics.  



Concluding Remarks 

Surely you remember that, in Chapter 1, I asked the question about how someone 
who had died hundreds or thousands of years before our time would view today’s 
world. Considering this question led me to assume that the Greek philosopher 
Socrates would come and ask me for explanations about our technology-based 
world. This assumption was my guideline for both the selection of the subjects in 
this book and for my didactical efforts. Of course, I never really expected Socrates 
to show up one day in my study or lecture hall. But I am convinced that if my ex-
planations would have satisfied Socrates, then my readers also would appreciate 
these explanations. This conviction is based on historical reports about Socrates 
which say that he could easily detect whether a person who explained a difficult 
subject really had understood the subject himself. You may imagine how embar-
rassed his dialogue partners were when he pointed out to them that they did not 
know or understand what they were talking about. I hope that, after reading this 
book, you are in a state of knowledge which helps you to avoid such embarrass-
ments when you talk about technological subjects. 

Not only did the bad habit of using words or expressions without knowing ex-
actly what they mean exist at the time of Socrates, but also this bad habit is a phe-
nomenon of our time. In order to sensitize my students about this habit and help 
them to avoid it, I invented the following story: 

Socrates once became aware of the fact that many people around him often used 
the expression xyz, while he had no idea what that meant. (Here I am using xyz as a 
substitute for the words or expressions I actually used with my students, expres-
sions such as “object orientation”, “artificial intelligence”, “political correctness” or 
“social justice.”) Socrates knew that an acquaintance of his, named Polimaikes, of-
ten used this expression. Therefore, Socrates visited him and said, “My dear friend, 
people throughout all of Athens say that you are a wise and understanding man and, 
in particular, that you are an expert concerning xyz. I have no idea what xyz means 
and I would really like to know. Therefore, I would greatly appreciate if you would 
explain to me what xyz is.” Polimaikes felt very flattered by this request, and he 
immediately declared his readiness to provide his help. He offered to host Socrates 
in his home for several weeks, and to be available night and day for discussions un-
til Socrates came to know all there is to know about xyz. With great gratitude, Soc-
rates accepted this offer. After six weeks, Socrates said to Polimaikes, “My dear 
friend, you cannot imagine how thankful I am for everything you have done for me 
in the last few weeks. I lived like a prince in your house. The meals were the best I 
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ever had, and the wine was out of this world. You listened to all my questions with 
extreme patience, and answered them in great detail. Unfortunately, I am sorry to 
have to tell you that I still don’t know what xyz is. But there is one thing I now 
know for sure – that you don’t know either.”  

No wonder Socrates finally was sentenced to drink the cup of poison!  
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