
The Boost Graph Library

SiekFM.qk 11/9/01 10:55 AM Page i

The Boost Graph Library
User Guide and Reference Manual

Jeremy Siek
Lie-Quan Lee

Andrew Lumsdaine

Boston • San Francisco • New York • Toronto
Montreal • London • Munich • Paris • Madrid • Capetown

Sydney • Tokyo • Singapore • Mexico City

SiekFM.qk 11/9/01 10:55 AM Page iii

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special
sales. For more information, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data

Siek, Jeremy G.
The Boost graph library : user guide and reference manual/ Jeremy G. Siek,

Lie-Quan Lee, Andrew Lumsdaine
p. cm.

Includes bibliographical references and index.
ISBN 0-201-72914-8 (alk. paper)
1. C++ (Computer language). I. Lee, Lie-Quan. II. Lumsdaine,

Andrew. III. Title.

T385 .S515 2002
006.6—dc21

2001053553

Copyright © 2002 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent
of the publisher. Printed in the United States of America. Published simultane-
ously in Canada.

ISBN 0-201-72914-8
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—MA—0504030201
First printing, December 2001

SiekFM.qk 11/9/01 10:55 AM Page iv

To Richard and Elisabeth.
—J.G.S.

To Yun.
—L-Q.L.

To Wendy, Ben, Emily, and Bethany.
—A.L.

Contents

Foreword xiii

Preface xvii

I User Guide 1

1 Introduction 3
1.1 Some Graph Terminology. 3
1.2 Graph Concepts. 5

1.2.1 Vertex and Edge Descriptors. 5
1.2.2 Property Maps. 6
1.2.3 Graph Traversal. 7
1.2.4 Graph Construction and Modification. 9
1.2.5 Algorithm Visitors . 10

1.3 Graph Classes and Adaptors. 11
1.3.1 Graph Classes. 11
1.3.2 Graph Adaptors. 13

1.4 Generic Graph Algorithms. 13
1.4.1 The Topological Sort Generic Algorithm. 14
1.4.2 The Depth-First Search Generic Algorithm. 18

2 Generic Programming in C++ 19
2.1 Introduction. 19

2.1.1 Polymorphism in Object-Oriented Programming. 20
2.1.2 Polymorphism in Generic Programming. 21
2.1.3 Comparison of GP and OOP. 22

2.2 Generic Programming and the STL. 25
2.3 Concepts and Models. 27

2.3.1 Sets of Requirements. 28
2.3.2 Example: InputIterator. 28

vii

viii CONTENTS

2.4 Associated Types and Traits Classes. 30
2.4.1 Associated Types Needed in Function Template. 30
2.4.2 Typedefs Nested in Classes. 30
2.4.3 Definition of a Traits Class. 31
2.4.4 Partial Specialization. 32
2.4.5 Tag Dispatching . 33

2.5 Concept Checking. 34
2.5.1 Concept-Checking Classes. 35
2.5.2 Concept Archetypes. 36

2.6 The Boost Namespace. 37
2.6.1 Classes. 37
2.6.2 Koenig Lookup. 38

2.7 Named Function Parameters. 39

3 A BGL Tutorial 41
3.1 File Dependencies. 41
3.2 Graph Setup. 42
3.3 Compilation Order . 44

3.3.1 Topological Sort via DFS. 44
3.3.2 Marking Vertices using External Properties. 46
3.3.3 Accessing Adjacent Vertices. 46
3.3.4 Traversing All the Vertices. 47

3.4 Cyclic Dependencies. 48
3.5 Toward a Generic DFS: Visitors. 49
3.6 Graph Setup: Internal Properties. 52
3.7 Compilation Time. 54
3.8 A Generic Topological Sort and DFS. 55
3.9 Parallel Compilation Time. 57
3.10 Summary .59

4 Basic Graph Algorithms 61
4.1 Breadth-First Search. 61

4.1.1 Definitions . 61
4.1.2 Six Degrees of Kevin Bacon. 62

4.2 Depth-First Search. 67
4.2.1 Definitions . 67
4.2.2 Finding Loops in Program-Control-Flow Graphs. 69

5 Shortest-Path Problems 75
5.1 Definitions. .75
5.2 Internet Routing. 76

CONTENTS ix

5.3 Bellman–Ford and Distance Vector Routing. 77
5.4 Dijkstra and Link-State Routing. 81

6 Minimum-Spanning-Tree Problem 89
6.1 Definitions. .89
6.2 Telephone Network Planning. 89
6.3 Kruskal’s Algorithm . 91
6.4 Prim’s Algorithm . 94

7 Connected Components 97
7.1 Definitions. .97
7.2 Connected Components and Internet Connectivity. 98
7.3 Strongly Connected Components and Web Page Links. 102

8 Maximum Flow 105
8.1 Definitions. .105
8.2 Edge Connectivity. .106

9 Implicit Graphs: A Knight’s Tour 113
9.1 Knight’s Jumps as a Graph. .114
9.2 Backtracking Graph Search. .116
9.3 Warnsdorff’s Heuristic .117

10 Interfacing with Other Graph Libraries 119
10.1 Using BGL Topological Sort with a LEDA Graph. 120
10.2 Using BGL Topological Sort with a SGB Graph. 122
10.3 Implementing Graph Adaptors. .123

11 Performance Guidelines 127
11.1 Graph Class Comparisons. .127

11.1.1 The Results and Discussion. .128
11.2 Conclusion .132

II Reference Manual 135

12 BGL Concepts 137
12.1 Graph Traversal Concepts. .137

12.1.1 Undirected Graphs. .138
12.1.2 Graph .142
12.1.3 IncidenceGraph .143
12.1.4 BidirectionalGraph .145

x CONTENTS

12.1.5 AdjacencyGraph .146
12.1.6 VertexListGraph .147
12.1.7 EdgeListGraph .147
12.1.8 AdjacencyMatrix .148

12.2 Graph Modification Concepts. .150
12.2.1 VertexMutableGraph .152
12.2.2 EdgeMutableGraph .152
12.2.3 MutableIncidenceGraph .154
12.2.4 MutableBidirectionalGraph .154
12.2.5 MutableEdgeListGraph .155
12.2.6 PropertyGraph .155
12.2.7 VertexMutablePropertyGraph .156
12.2.8 EdgeMutablePropertyGraph .157

12.3 Visitor Concepts. .158
12.3.1 BFSVisitor .158
12.3.2 DFSVisitor .160
12.3.3 DijkstraVisitor .161
12.3.4 BellmanFordVisitor .162

13 BGL Algorithms 163
13.1 Overview .163
13.2 Basic Algorithms. .165

13.2.1 breadthfirst search. .165
13.2.2 breadthfirst visit .169
13.2.3 depthfirst search. .170
13.2.4 depthfirst visit .175
13.2.5 topological sort .176

13.3 Shortest-Path Algorithms. .177
13.3.1 dijkstra shortestpaths .177
13.3.2 bellmanford shortestpaths .182
13.3.3 johnsonall pairs shortestpaths .186

13.4 Minimum-Spanning-Tree Algorithms. .189
13.4.1 kruskalminimumspanningtree .189
13.4.2 prim minimumspanningtree .192

13.5 Static Connected Components. .195
13.5.1 connectedcomponents. .195
13.5.2 strongcomponents. .197

13.6 Incremental Connected Components. .201
13.6.1 initialize incrementalcomponents.203
13.6.2 incrementalcomponents. .203
13.6.3 samecomponent .204

CONTENTS xi

13.6.4 componentindex .204
13.7 Maximum-Flow Algorithms .205

13.7.1 edmundskarp maxflow .205
13.7.2 pushrelabel maxflow .209

14 BGL Classes 213
14.1 Graph Classes. .213

14.1.1 adjacencylist .213
14.1.2 adjacencymatrix .234

14.2 Auxiliary Classes. .242
14.2.1 graph traits .242
14.2.2 adjacencylist traits .245
14.2.3 adjacencymatrix traits .247
14.2.4 propertymap .248
14.2.5 property .249

14.3 Graph Adaptors. .251
14.3.1 edgelist .251
14.3.2 reversegraph .252
14.3.3 filtered graph .256
14.3.4 SGBGraphPointer. .262
14.3.5 LEDAGRAPH<V,E> .266
14.3.6 std::vector<EdgeList> .272

15 Property Map Library 277
15.1 Property Map Concepts. .278

15.1.1 ReadablePropertyMap .279
15.1.2 WritablePropertyMap .280
15.1.3 ReadWritePropertyMap .281
15.1.4 LvaluePropertyMap .281

15.2 Property Map Classes. .281
15.2.1 property traits .281
15.2.2 iterator propertymap .283
15.2.3 Property Tags. .285

15.3 Creating Your Own Property Maps. .285
15.3.1 Property Maps for Stanford GraphBase. 286
15.3.2 A Property Map Implemented withstd::map 287

16 Auxiliary Concepts, Classes, and Functions 289
16.1 Buffer .289
16.2 ColorValue .290
16.3 MultiPassInputIterator .291

xii CONTENTS

16.4 Monoid .291
16.5 mutablequeue .292
16.6 Disjoint Sets. .293

16.6.1 disjoint sets. .293
16.6.2 find with path halving .295
16.6.3 find with full path compression .295

16.7 tie .296
16.8 graph property iter range .297

Bibliography 299

Index 302

Foreword

When I first looked at this book, I felt envious. After all, what led me to the discovery
of generic programming was the desire to build a library like BGL. In 1984 I joined the
faculty of Polytechnic University in Brooklyn with some vague ideas about building libraries
of software components. Well, to tell you the truth that was my secondary interest—my real
interest at that time was to construct formal underpinnings of natural language, something
like Aristotle’s Organon, but more complete and formal. I was probably the only assistant
professor in any EE or CS department who meant to obtain tenure through careful study of
Aristotle’s Categories. Interestingly enough, the design of STL—in particular the underlying
ontology of objects—is based on my realization that the whole-part relation is a fundamental
relation that describes the real world and that it is not at all similar to the element-set relation
familiar to us from set theory. Real objects do not share parts: my leg is nobody else’s
leg. STL containers are like that: two containers do not share parts. There are operations
like std::list::splice that move parts from one container to another; they are similar to organ
transplant: my kidney is mine till it is spliced into somebody else.

In any case, I was firmly convinced that software components should be functional in
nature and based on John Backus’s FP system. The only novel intuition was that functions
should be associated with some axioms: for example, the “Russian peasant algorithm” that
allows one to compute thenth power inO(log n) steps is defined for any object that has an
associative binary operation defined on it. In other words, I believed that algorithms should be
associated with what we now call concepts (see§2.3of this book), but what I called structure
types and what type-theorists callmulti-sorted algebras.

It was my great luck that Polytechnic had a remarkable person on its faculty, Aaron Ker-
shenbaum, who combined deep knowledge of graph algorithms with an unusual desire to
implement them. Aaron saw potential in my attempts to decompose programs into simple
primitives, and spent a lot of time teaching me graph algorithms and working with me on
implementing them. He also showed me that there were some fundamental things that cannot
be done functionally without prohibitive change in the complexity. While it was often possi-
ble for me to implement linear time algorithms functionally without changing the asymptotic
complexity, it was impossible in practice to implement logarithmic time algorithms without
making them linear. In particular, Aaron explained to me why priority queues were so im-
portant for many graph algorithms (and he was well qualified to do so: Knuth in his Stanford

xiii

xiv FOREWORD

GraphBase book [22] attributes the discovery of how to apply binary heaps to Prim’s and
Dijkstra’s algorithms to Aaron).

It was a moment of great joy when we were able to produce Prim’s and Dijkstra’s algo-
rithms as two instances of the same generic—we called it “high-order” then—algorithm. It
is quite remarkable how close BGL code is to what we had (see, for example, a footnote to
§13.4.2). The following code in Scheme shows how the two algorithms were implemented in
terms of the same higher-order algorithm. The only difference is in how distance values are
combined: using addition for Dijkstra’s and by selecting the second operand for Prim’s.

(define dijkstra
(make−scan−based−algorithm−with−mark

make−heap−with−membership−and−values + <))

(define prim
(make−scan−based−algorithm−with−mark

make−heap−with−membership−and−values (lambda (x y) y) <))

It took me a long time—almost 10 years—to find a language in which this style of pro-
gramming could beeffectivelyrealized. I finally found C++, which enabled me to produce
something that people could use. Moreover, C++ greatly influenced my design by providing
a crisp C-based machine model. The features of C++ that enabled STL are templates and
overloading.

I often hear people attacking C++ overloading, and, as is true with most good mecha-
nisms, overloading can be misused. But it is an essential mechanism for the development
of useful abstractions. If we look at mathematics, it has been greatly driven by overloading.
Extensions of a notion of numbers from natural numbers to integers, to rational numbers, to
Gaussian integers, to p-adic numbers, etc, are examples of overloading. One can easily guess
things without knowing exact definitions. If I see an expression that uses both addition and
multiplication, I assume distributivity. If I see less-than and addition, I assume that ifa < b
thena + c < b + c (I seldom add uncountable cardinals). Overloading allows us to carry
knowledge from one type to another.

It is important to understand that one can write generic algorithms just with overloading,
without templates: it does, however, require a lot of typing. That is, for every class that satis-
fies, say, random access iterator requirements, one has to define all the relevant algorithms by
hand. It is tedious, but can be done (only signatures would need to be defined: the bodies will
be the same). It should be noted that generics in Ada require hand-instantiation and, therefore,
are not that helpful, since every algorithm needs to be instantiated by hand. Templates in C++
solve this problem by allowing one to define things once.

There are still things that are needed for generic programming that are not yet repre-
sentable in C++. Generic algorithms are algorithms that work on objects with similar inter-
faces. Not identical interfaces as in object-oriented programming, but similar. It is not just the
handling of binary methods (see§2.1.3) that causes the problem, it is the fact that interfaces
are described in terms of a single type (single-sorted algebra). If we look carefully at things

xv

like iterators we observe that they are describable only in terms of multiple types: iterator
type itself, value type and distance type. In other words, we need three types to define the
interfaces on one type. And there is no machinery in C++ to do that. The result of this is that
we cannot define what iterators are and, therefore, cannot really compile generic algorithms.
For example, if we define the reduce algorithm as:

template<class InputIterator, class BinaryOperationWithIdentity>
typename iteratortraits<InputIterator>::value type
reduce(InputIterator first, InputIterator last, BinaryOperationWithIdentity op)
{

typedef typename iteratortraits<InputIterator>::value type T;
if (first == last) return identity element(op);
T result = * first;
while (++ first != last) result = op(result, * first);
return result;
}

but instead of:++first != last we write: ++first<last, no compiler can detect the bug at
the point of definition. While the standard clearly states thatoperator< does not need to be
defined for Input Iterators, there is no way for the compiler to know it. Iterator requirements
are just words. We are trying to program with concepts (multi-sorted algebras) in a language
which has no support for them.

How hard would it be to extend C++ to really enable this style of programming? First, we
need to introduce concepts as a new interface facility. For example, we can define:

concept SemiRegular : Assignable, DefaultConstructible{};
concept Regular : SemiRegular, EqualityComparable{};
concept InputIterator : Regular, Incrementable{

SemiRegular valuetype;
Integral distancetype;
const valuetype& operator*();
};

value type(InputIterator)
reduce(InputIterator first, InputIterator last, BinaryOperationWithIdentity op)
(value type(InputIterator) == argument type(BinaryOperationWithIdentity))
{

if (first == last) return identity element(op);
value type(InputIterator) result = * first;
while (++ first != last) result = op(result, * first);
return result;
}

Generic functions are functions that take concepts as arguments and in addition to an
argument list have a list of type constraints. Now full type checking can be done at the point

xvi FOREWORD

of definition without looking at the points of call, and full type-checking can be done at the
points of call without looking at the body of the algorithm.

Sometimes we need multiple instances of the same concept. For example,

OutputIterator merge(InputIterator[1] first1, InputIterator[1] last1,
InputIterator[2] first2, InputIterator[2] last2,
OutputIterator result)

(bool operator<(value type(InputIterator[1]), value type(InputIterator[2])),
value type(InputIterator[1]) == value type(InputIterator[2]),
output type(OutputIterator) == value type(InputIterator[2]));

Note that this merge is not as powerful as the STL merge. It cannot merge a list offloats
and a vector ofdoubles into a deque ofints. STL algorithms will often do unexpected and, in
my opinion, undesirable type conversions. If someone needs to merge doubles and floats into
ints he or she should use an explicit function object for asymmetric comparison and a special
output iterator for conversion.

C++ provides two different abstraction mechanisms: object-orientedness and templates.
Object-orientedness allows for exact interface definition and for run-time dispatch. But it
cannot handle binary methods or multi-method dispatching, and its run-time binding is often
inefficient. Templates handle richer interfaces and are resolved at compile-time. They can,
however, cause a software engineering nightmare because of the lack of separation between
interfaces and implementation. For example, I recently tried compiling a 10-line STL-based
program using one of the most popular C++ compilers and ran away in shock after getting
several pages of incomprehensible error messages. And often one needs run-time dispatch,
which cannot be handled by templates. I do believe that introduction of concepts will unify
both approaches and resolve both sets of limitations. And after all, it is possible to represent
concepts as virtual tables which are extended by pointers to type descriptors: the virtual table
for input iterator contains not just pointers tooperator*andoperator++, but also pointers to the
actual type of the iterator, its value type and its distance type. And then one could introduce
pointers to concepts and references to concepts!

Generic programming is a relatively young subdiscipline of computer science. I am happy
to see that the small effort—started twenty years ago by Dave Musser, Deepak Kapur, Aaron
Kershenbaum and me—led to a new generation of libraries such as BGL and MTL. And I
have to congratulate Indiana University on acquiring one of the best generic programming
teams in the world. I am sure they will do other amazing things!

Alexander Stepanov
Palo Alto, California
September, 20011

1I would like to thank John Wilkinson, Mark Manasse, Marc Najork and Jeremy Siek for many valuable
suggestions.

Preface

The graph abstraction is a powerful problem-solving tool used to describe relationships be-
tween discrete objects. Many practical problems can be modeled in their essential form by
graphs. Such problems appear in many domains: Internet packet routing, telephone network
design, software build systems, Web search engines, molecular biology, automated road-trip
planning, scientific computing, and so on. The power of the graph abstraction arises from
the fact that the solution to a graph-theoretic problem can be used to solve problems in a
wide variety of domains. For example, the problem of solving a maze and the problem of
finding groups of Web pages that are mutually reachable can both be solved using depth-
first search, an important concept from graph theory. By concentrating on the essence of
these problems—the graph model describing discrete objects and the relationships between
them—graph theoreticians have created solutions to not just a handful of particular problems,
but to entire families of problems.

Now a question arises. If graph theory is generally and broadly applicable to arbitrary
problem domains, should not the software that implements graph algorithms be just as broadly
applicable? Graph theory would seem to be an ideal area for software reuse. However, up until
now the potential for reuse has been far from realized. Graph problems do not typically occur
in a pure graph-theoretic form, but rather, are embedded in larger domain-specific problems.
As a result, the data to be modeled as a graph are often not explicitly represented as a graph
but are instead encoded in some application-specific data structure. Even in the case where
the application data are explicitly represented as a graph, the particular graph representation
chosen by the programmer might not match the representation expected by a library that the
programmer wants to use. Moreover, different applications may place different time and
space requirements on the graph data structure.

This implies a serious problem for the graph library writer who wants to provide reusable
software, for it is impossible to anticipate every possible data structure that might be needed
and to write a different version of the graph algorithm specifically for each one. The current
state of affairs is that graph algorithms are written in terms of whatever data structure is
most convenient for the algorithm and users must convert their data structures to that format
in order to use the algorithm. This is an inefficient undertaking, consuming programmer
time and computational resources. Often, the cost is perceived not to be worthwhile, and the
programmer instead chooses to rewrite the algorithm in terms of his or her own data structure.

xvii

xviii PREFACE

This approach is also time consuming and error prone, and will tend to lead to sub-optimal
solutions since the application programmer may not be a graph algorithms expert.

Generic Programming

The Standard Template Library (STL) [40] was introduced in 1994 and was adopted shortly
thereafter into the C++ Standard. The STL was a library of interchangeable components for
solving many fundamental problems on sequences of elements. What set the STL apart from
libraries that came before it was that each STL algorithm could work with a wide variety
of sequential data structures: linked-lists, arrays, sets, and so on. The iterator abstraction
provided an interface between containers and algorithms and the C++ template mechanism
provided the needed flexibility to allow implementation without loss of efficiency. Each al-
gorithm in the STL is a function template parameterized by the types of iterators upon which
it operates. Any iterator that satisfies a minimal set of requirements can be used regardless
of the data structure traversed by the iterator. The systematic approach used in the STL to
construct abstractions and interchangeable components is calledgeneric programming.

Generic programming lends itself well to solving the reusability problem for graph li-
braries. With generic programming, graph algorithms can be made much more flexible, al-
lowing them to be easily used in a wide variety applications. Each graph algorithm is written
not in terms of a specific data structure, but instead to a graph abstraction that can be eas-
ily implemented by many different data structures. Writing generic graph algorithms has
the additional advantage of being more natural; the abstraction inherent in the pseudo-code
description of an algorithm is retained in the generic function.

The Boost Graph Library (BGL) is the first C++ graph library to apply the notions of
generic programming to the construction of graph algorithms.

Some BGL History

The Boost Graph Library began its life as the Generic Graph Component Library (GGCL),
a software project at theLab for Scientific Computing (LSC). The LSC, under the direction
of Professor Andrew Lumsdaine, was an interdisciplinary laboratory dedicated to research in
algorithms, software, tools, and run-time systems for high-performance computational sci-
ence and engineering2. Special emphasis was put on developing industrial-strength, high-
performance software using modern programming languages and techniques—most notably,
generic programming.

Soon after the Standard Template Library was released, work began at the LSC to apply
generic programming to scientific computing. The Matrix Template Library (MTL) was one

2The LSC has since evolved into the Open Systems Laboratory (OSL)http://www.osl.iu.edu. Although the
name and location have changed, the research agenda remains the same.

http://www.lsc.nd.edu

xix

of the first projects. Many of the lessons learned during construction of the MTL were applied
to the design and implementation of the GGCL.

An important class of linear algebra computations in scientific computing is that of sparse
matrix computations, an area where graph algorithms play an important role. As the LSC
was developing the sparse matrix capabilities of the MTL, the need for high-performance
reusable (and generic) graph algorithms became apparent. However, none of the graph li-
braries available at the time (LEDA, GTL, Stanford GraphBase) were written using the
generic programming style of the MTL and the STL, and hence did not fulfill the flexibil-
ity and high-performance requirements of the LSC. Other researchers were also expressing
interest in a generic C++ graph library. During a meeting with Bjarne Stroustrup we were
introduced to several individuals at AT&T who needed such a library. Other early work in
the area of generic graph algorithms included some codes written by Alexander Stepanov, as
well as Dietmar K̈uhl’s master’s thesis.

With this in mind, and motivated by homework assignments in his algorithms class,
Jeremy Siek began prototyping an interface and some graph classes in the spring of 1998.
Lie-Quan Lee then developed the first version of the GGCL, which became his master’s the-
sis project.

During the following year, the authors began collaborating with Alexander Stepanov and
Matthew Austern. During this time, Stepanov’s disjoint-sets-based connected components
implementation was added to the GGCL, and work began on providing concept documenta-
tion for the GGCL, similar to Austern’s STL documentation.

During this year the authors also became aware of Boost and were excited to find an
organization interested in creating high-quality, open source C++ libraries. Boost included
several people interested in generic graph algorithms, most notably Dietmar Kühl. Some
discussions about generic interfaces for graph structures resulted in a revision of the GGCL
which closely resembles the current Boost Graph Library interface.

On September 4, 2000, the GGCL passed the Boost formal review (managed by David
Abrahams) and became the Boost Graph Library. The first release of the BGL was September
27, 2000. The BGL is not a “frozen” library. It continues to grow as new algorithms are con-
tributed, and it continues to evolve to meet user’s needs. We encourage readers to participate
in the Boost group and help with extensions to the BGL.

What Is Boost?

Boost is an online community that encourages development and peer-review of free C++
libraries. The emphasis is on portable and high-quality libraries that work well with (and are
in the same spirit as) the C++ Standard Library. Members of the community submit proposals
(library designs and implementations) for review. The Boost community (led by a review
manager) then reviews the library, provides feedback to the contributors, and finally renders
a decision as to whether the library should be included in the Boost library collection. The

xx PREFACE

libraries are available at the Boost Web sitehttp://www.boost.org. In addition, the Boost mailing
list provides an important forum for discussing library plans and for organizing collaboration.

Obtaining and Installing the BGL Software

The Boost Graph Library is available as part of the Boost library collection, which can
be obtained in several different ways. The CD accompanying this book contains version
1.25.1 of the Boost library collection. In addition, releases of the Boost library collec-
tion can be obtained with your Web browser athttp://www.boost.org/boostall.zip for the Win-
dows zip archive of the latest release andhttp://www.boost.org/boostall.tar.gz for the Unix
archive of the latest release. The Boost libraries can also be downloaded via FTP at
ftp://boost.sourceforge.net/pub/boost/release/.

The zip archive of the Boost library collection can be unzipped by usingWinZip or other
similar tools. The Unix “tar ball” can be expanded using the following command:

gunzip −cd boostall. tar. gz | tar xvf −

Extracting the archive creates a directory whose name consists of the wordboostand a ver-
sion number. For example, extracting the Boost release 1.25.1 creates a directoryboost1 25 1.
Under this top directory, are two principal subdirectories:boostand libs. The subdirectory
boostcontains the header files for all the libraries in the collection. The subdirectorylibs
contains a separate subdirectory for each library in the collection. These subdirectories con-
tain library-specific source and documentation files. You can point your Web browser to
boost1 25 1/index.htmand navigate the whole Boost library collection.

All of the BGL header files are in the directoryboost/graph/. However, other Boost header
files are needed since BGL uses other Boost components. The HTML documentation is in
libs/graph/doc/and the source code for the examples is inlibs/graph/example/. Regression tests
for BGL are inlibs/graph/test/. The source files inlibs/graph/src/implement the Graphviz file
parsers and printers.

Except as described next, there are no compilation and build steps necessary to use BGL.
All that is required is that the Boost header file directory be added to your compiler’s in-
clude path. For example, using Windows 2000, if you have unzipped release 1.25.1 from
boostall.zip into the top level directory of your C drive, for Borland, GCC, and Metrowerks
compilers add’-Ic:/boost 1 25 1’ to the compiler command line, and for the Microsoft Vi-
sual C++ compiler add’/I ”c:/boost 1 25 1”’ . For IDEs, add’c:/boost 1 25 1’ (or whatever
you have renamed it to) to the include search paths using the appropriate dialog. Before
using the BGL interface to LEDA or Stanford GraphBase, LEDA or GraphBase must be
installed according to their installation instructions. To use theread graphviz() functions
(for reading AT&T Graphviz files), you must build and link to an additional library under
boost1 25 1/libs/graph/src.

The Boost Graph Library is written in ANSI Standard C++ and compiles with most C++
compilers. For an up-to-date summary of the compatibility with a particular compiler, see the

http://www.boost.org
http://www.boost.org/boost_all.zip
http://www.boost.org/boost_all.tar.gz
http://www.winzip.com

xxi

“Compiler Status” page at the Boost Web site,http://www.boost.org/status/compilerstatus.html.

How to Use This Book

This book is both a user guide and reference manual for the BGL. It is intended to allow the
reader to begin quickly using the BGL for real-life graph problems. This book should also be
interesting for programmers who wish to learn more about generic programming. Although
there are many books about how to use generic libraries (which in almost all cases means how
to use the STL or Standard Library), there is very little available about how actually to build
generic software. Yet, generic programming is a vitally important new paradigm for software
development. We hope that, by way of example, this book will show the reader how to do
(and not simply use) generic programming and to apply and extend the generic programming
paradigm beyond the basic container types and algorithms of the STL.

The third partner to the user guide and reference manual is the BGL code itself. The BGL
code is not simply academic and instructional. It is intended to be used.

For students learning about graph algorithms and data structures, BGL provides a compre-
hensive graph algorithm framework. The student can concentrate on learning the important
theory behind graph algorithms without becoming bogged down and distracted in too many
implementation details.

For practicing programmers, BGL provides high-quality implementations of graph data
structures and algorithms. Programmers will realize significant time saving from this relia-
bility. Time that would have otherwise been spent developing (and debugging) complicated
graph data structures and algorithms can now be spent in more productive pursuits. Moreover,
the flexible interface to the BGL will allow programmers to apply graph algorithms in settings
where a graph may only exist implicitly.

For the graph theoretician, this book makes a persuasive case for the use of generic pro-
gramming for implementing graph-theoretic algorithms. Algorithms written using the BGL
interface will have broad applicability and will be able to be reused in numerous settings.

We assume that the reader has a good grasp of C++. Since there are many sources where
the reader can learn about C++, we do not try to teach it here (see the references at the end
of the book—The C++ Programming Language, Special ed., by Bjarne Stroustrup [42] and
C++ Primer, 3rd ed., by Josee Lajoie and Stanley B. Lippman [25] are our recommenda-
tions). We also assume some familiarity with the STL (seeSTL Tutorial and Reference Guide
by David R. Musser, Gillmer J. Derge, and Atul Saini [34] and Generic Programming and
the STLby Matthew Austern [3]). We do, however, present some of the more advanced C++
features used to implement generic libraries in general and the BGL in particular.

Some necessary graph theory concepts are introduced here, but not in great detail. For
a detailed discussion of elementary graph theory seeIntroduction to Algorithmsby T. H.
Cormen, C. E. Leiserson, and R. L. Rivest [10].

http://www.boost.org/status/compiler_status.html

xxii PREFACE

Literate Programming

The program examples in this book are presented using the literate programming style devel-
oped by Donald Knuth. The literate programming style consists of writing source code and
documentation together in the same file. A tool then automatically converts the file into both
a pure source code file and into a documentation file with pretty-printed source code. The
literate programming style makes it easier to ensure that the code examples in the book really
compile and run and that they stay consistent with the text.

The source code for each example is broken up intoparts. Parts can include references
to other parts. For example, the following part labeled “Merge sort function definition” refers
to the parts labeled “Divide the range in half and sort each half” and “Merge the two halves”.
An example often starts with a part that provides an outline for the entire computation, which
is then followed by other parts that fill in the details. For example, the following function
template is a generic implementation of the merge sort algorithm [10]. There are two steps in
the algorithm, sorting each half of the range and then merging the two halves.

〈Merge sort function definitionxxiia 〉 ≡
template<typename RandomAccessIterator, typename Compare>
void mergesort(RandomAccessIterator first, RandomAccessIterator last, Compare cmp)
{

if (first + 1 < last) {
〈Divide the range in half and sort each halfxxiib〉
〈Merge the two halvesxxiic〉
}
}

Typically, the size of each part is limited to a few lines of code that carry out a specific task.
The names for the parts are chosen to convey the essence of the task.

〈 Divide the range in half and sort each halfxxiib 〉 ≡
RandomAccessIterator mid= first + (last − first)/ 2;
mergesort(first, mid, cmp);
mergesort(mid, last, cmp);

The std::inplacemerge() function does the main work of this algorithm, creating a single
sorted range out of two sorted subranges.

〈Merge the two halvesxxiic 〉 ≡
std::inplace merge(first, mid, last, cmp);

Parts are labeled with a descriptive name, along with the page number on which the part
is defined. If more than one part is defined on a page, the definitions are distinguished by a
letter.

xxiii

Sometimes a file name is used for the label of a part. This means that the part is written
out to a file. Many of the examples in the book are written out to files, and can be found in
the libs/graph/example/directory of the Boost distribution. The following example shows the
mergesort() function being output to a header file.

〈 “merge-sort.hpp”xxiii 〉 ≡
#ifndef MERGE SORT HPP
#define MERGESORT HPP

〈Merge sort function definitionxxiia〉

#endif // MERGE SORT HPP

The Electronic Reference

An electronic version of the book is included on the accompanying CD, in the filebgl-book.pdf.
The electronic version is searchable and is fully hyperlinked, making it a useful companion
for the printed version. The hyperlinks include all internal references such as the literate
programming “part” references as well as links to external Web pages.

Acknowledgments

We owe many debts of thanks to a number of individuals who both inspired and encouraged
us in developing the BGL and in writing this book.

A most profound thanks goes to Alexander Stepanov and David Musser for their pioneer-
ing work in generic programming, for their continued encouragement of our work, and for
contributions to the BGL. We especially thank David Musser for his careful proofreading of
this book. Matthew Austern’s work on documenting the concepts of the STL provided a foun-
dation for creating the concepts in the BGL. We thank Dietmar Kühl for his work on generic
graph algorithms and design patterns; especially for the property map abstraction. None of
this work would have been possible without the expressive power of Bjarne Stroustrup’s C++
language.

Dave Abrahams, Jens Maurer, Dietmar Kühl, Beman Dawes, Gary Powell, Greg Colvin
and the rest of the group at Boost provided valuable input to the BGL interface, numerous
suggestions for improvement, and proofreads of this book.

We also thank the following BGL users whose questions helped to motivate and improve
BGL (as well as this book): Gordon Woodhull, Dave Longhorn, Joel Phillips, Edward Luke,
and Stephen North.

Thanks to a number of individuals who reviewed the book during its development: Jan
Christiaan van Winkel, David Musser, Beman Dawes, and Jeffrey Squyres.

xxiv PREFACE

A great thanks to our editor Deborah Lafferty, Kim Mulcahy and Marcy Barnes, the pro-
duction coordinators, and the rest of the team at Addison Wesley. It was a pleasure to work
with them.

Our original work on the BGL was supported in part by NSF grant ACI-9982205. Parts
of the BGL were completed while the third author was on sabbatical at Lawrence Berkeley
National Laboratory (where the first two authors were occasional guests).

All of the graph drawing in this book were produced using the dot program from the
Graphvizpackage.

License

The BGL software is released under an open source “artistic” license. A copy of the BGL
license is included with the source code in the LICENSE file.

The BGL may be used freely for both commercial and noncommercial use. The main
restriction on BGL is that modified source code can only be redistributed if it is clearly marked
as a nonstandard version of BGL. The preferred method for the distribution of BGL, and for
submitting changes, is through the Boost Web site.

http://www.graphviz.org

Part I

User Guide

1

Chapter 1

Introduction

In this chapter, we provide a broad overview of some of the interfaces and components avail-
able in the BGL. We begin with a quick review of graph terminology using a network of
Internet routers as an example of a system that can be modeled as a graph. The generic inter-
faces that are defined by the BGL are introduced in§1.2 and we discuss the concrete graph
classes that implement these interfaces in§1.3. Finally, §1.4 gives a preview of the BGL
generic graph algorithms.

1.1 Some Graph Terminology

A graph model for a network of Internet routers is shown in Figure1.1. The circles (repre-
senting routers) are labeled A through F, and the connections between them are labeled with
the average transmission delay.

In the terminology of graph theory, each router in the example network is represented by
a vertexand each connection is represented by anedge1. A graphG consists of avertex set
V and anedge setE. Thus, we writeG = (V,E). The size of the vertex set (the number
of vertices in the graph) is expressed as|V | and the size of the edge set as|E|. An edge is
written as an ordered pair consisting of the vertices connected by the edge. The ordered pair
(u, v) indicates the edge that connects vertexu to vertexv.

The router network of Figure1.1can be expressed using set notation as follows:

V = {a, b, c, d, e}
E = {(a, b), (a, d), (b, d), (c, a), (c, e), (d, c), (d, e)}
G = (V,E)

A graph can be directed or undirected, meaning the edge set in the graph consists respec-
tively of directed or undirected edges. An edge of adirected graphis an ordered pair(u, v)

1Another popular name for vertex isnode, and another name for edge isarc.

3

4 CHAPTER 1. INTRODUCTION

a

b

1.2

d
4.5

1.8

c

0.4
e

3.3

2.6

5.2

Figure 1.1A network of Internet routers. The connections are labeled with the transmission
delay (in milliseconds).

with u as thesourcevertex andv as thetarget vertex. The directed edge(u, v) is distinct
from the edge(v, u). In anundirected graphan edge always connects the two vertices in both
directions, so the vertex ordering in an edge does not matter;(u, v) and(v, u) are the same
edge. An edge connecting a vertex to itself such as(u, u) is called aself-loopand is typically
not allowed in an undirected graph. Two or more edges that connect the same two vertices,
such as(u, v) and(u, v), are calledparallel edges. A graph that allows parallel edges is called
amultigraph.

If a graph contains an edge(u, v), then vertexv is said to beadjacentto vertexu. For
a directed graph, edge(u, v) is anout-edgeof vertexu and anin-edgeof vertexv. For an
undirected graph, edge(u, v) is said to beincident onthe verticesu andv. The adjacency set
for each vertex in the directed graph of Figure1.1follows.

Adjacent[a] = {b, d}
Adjacent[b] = {d}
Adjacent[c] = {a, e}
Adjacent[d] = {c, e}
Adjacent[e] = {}

The following are the out-edges for each vertex:

OutEdges[a] = {(a, b), (a, d)}
OutEdges[b] = {(b, d)}
OutEdges[c] = {(c, a), (c, e)}
OutEdges[d] = {(d, c), (d, e)}
OutEdges[e] = {}

1.2. GRAPH CONCEPTS 5

Similarly, the following are the in-edges for each vertex:

InEdges[a] = {(c, a)}
InEdges[b] = {(a, b)}
InEdges[c] = {(d, c)}
InEdges[d] = {(a, d), (b, d)}
InEdges[e] = {(c, e), (d, e)}

1.2 Graph Concepts

One of the primary responsibilities of a generic library is to define the interfaces that allow
algorithms to be written independently of any particular data structure. Note that byinterface
we do not merely mean a set of function prototypes. Instead, we mean a set of syntactic
requirements—things like function names and numbers of arguments—as well as semantic
requirements (executing the function must have certain effects) and time and space complexity
guarantees.

Using the terminology from the bookGeneric Programming and the STL[3], we use the
word conceptto refer to this richer notion of an interface. The STL defines a collection of
iteratorconcepts that provide a generic mechanism for traversing and accessing sequences
of objects. Similarly, the BGL defines a collection of concepts that specify how graphs can
be inspected and manipulated. In this section we give an overview of these concepts. The
examples in this section do not refer to specific graph types; they are written as function
templates with the graph as a template parameter. A generic function written using the BGL
interface can be applied to any of the BGL graph types—or even to new user-defined graph
types. In§1.3we will discuss the concrete graph classes that are provided in the BGL.

1.2.1 Vertex and Edge Descriptors

In the BGL, vertices and edges are manipulated through opaque handles calledvertex descrip-
torsandedge descriptors. Different graph types may use different types for their descriptors.
For example, some graph types may use integers, whereas other graphs may use pointers.
The descriptor types for a graph type are always accessible through thegraph traits class. The
motivation and use of traits classes are described in§2.4and thegraph traits class in particular
is discussed in§14.2.1.

Vertex descriptors have very basic functionality. By themselves they can only be default
constructed, copied, and compared for equality. Edge descriptors are similar, although they
also provide access to the associated source and target vertex. The following function tem-
plate2 shows an implementation a generic function that determines if an edge is a self-loop.

2For aesthetic reasons, we prefertypenameto the equivalentclassfor declaring template parameters.

http://www.sgi.com/tech/stl/Iterators.html

6 CHAPTER 1. INTRODUCTION

template<typename Graph>
bool is self loop(typename graphtraits<Graph>::edge descriptor e, const Graph& g)
{

typename graphtraits<Graph>::vertex descriptor u, v;
u = source(e, g);
v = target(e, g);
return u == v;
}

1.2.2 Property Maps

Graphs become useful as models for particular problem domains by associating objects and
quantities to vertices and edges. For example, in Figure1.1 each vertex has a name consist-
ing of a single character, and each edge has a transmission delay. In the BGL we refer to
attached objects or attached quantities asproperties. There are a wide variety of implementa-
tion techniques that can be used to associate a property with a vertex or edge. These include
properties as data members of a struct, separate arrays indexed by vertex or edge number,
hash tables, and so on. However, to write generic graph algorithms we need a uniform syntax
for accessing properties, regardless of how they are stored. This uniform syntax is defined by
the property map concepts.

A property map is an object that provides a mapping from a set of key objects to a set
of value objects. The property map concepts specify only three functions:get(pmap, key)
returns the value object for thekey, put(p map, key, value)assigns thevalue to the value object
associated with thekey, andp map[key]returns a reference to the value object. The following
example is a generic function that prints the name of a vertex given a name property map.

template<typename VertexDescriptor, typename VertexNameMap>
void print vertex name(VertexDescriptor v, VertexNameMap namemap)
{

std::cout << get(name map, v);
}

Similarly, the transmission delay of an edge can be printed using the following function:

template<typename Graph, typename TransDelayMap, typename VertexNameMap>
void print trans delay(typename graphtraits<Graph>::edge descriptor e,

const Graph& g, TransDelayMap delaymap, VertexNameMap namemap)
{

std::cout << " trans-delay(" << get(name map, source(e, g)) << " ,"
<< get(name map, target(e, g)) << ") = " << get(delay map, e);

}

Theprint vertexname() andprint trans delay() functions will be used in the next section.

1.2. GRAPH CONCEPTS 7

Property maps are discussed in detail in Chapter15, including techniques for creating
user-defined property maps. How to add properties into a graph and obtain the corresponding
property map is described in§3.6.

1.2.3 Graph Traversal

The graph abstraction consists of several different kinds of collections: the vertices and edges
for the graph and the out-edges, in-edges, and adjacent vertices for each vertex. Similar to
the STL, the BGL uses iterators to provide access to each of these collections. There are five
kinds of graph iterators, one for each kind of collection:

1. A vertex iteratoris used to traverse all the vertices of a graph. The value type of a
vertex iterator is a vertex descriptor.

2. An edge iteratoris used to traverse all the edges of a graph. The value type of this
iterator is an edge descriptor.

3. An out-edge iteratoris used to access all of the out-edges for a given vertexu. Its value
type is an edge descriptor. Each edge descriptor in this iterator range will haveu as the
source vertex and a vertex adjacent tou as the target vertex (regardless of whether the
graph is directed or undirected).

4. An in-edge iteratoris used to access the in-edges of a vertexv. Its value type is an edge
descriptor. Each edge descriptor in this iterator range will havev as the target vertex
and a vertex thatv is adjacent to as the source.

5. An adjacency iteratoris used to provide access to the vertices adjacent to a given vertex.
The value type of this iterator is a vertex descriptor.

Like descriptors, each graph type has its own iterator types that are accessible through
the graph traits class. For each of the above iterators, the BGL interface defines a function
that returns astd::pair of iterator objects: the first iterator points to the first object in the se-
quence and the second iterator points past the end of the sequence. For example, the following
function prints the names of all of the vertices in a graph:

template<typename Graph, typename VertexNameMap>
void print vertex names(const Graph& g, VertexNameMap namemap)
{

std::cout << " vertices(g) ={ " ;
typedef typename graphtraits<Graph>::vertex iterator iter t;
for (std::pair<iter t, iter t> p = vertices(g); p. first != p. second; ++ p. first) {

print vertex name(* p. first, name map); std::cout << ’ ’ ;
}
std::cout << " }" << std::endl;
}

8 CHAPTER 1. INTRODUCTION

Applying this function to a graph object that models the router network of Figure1.1would
produce the following output:

vertices(g) = { a b c d e}

The code below prints the transmission delay values that are attached to each of the edges
in the graph. In this function we use thetie() function (fromboost/tuple/tuple.hpp) to allow
direct assignment from astd::pair into two scalar variables—in this case,first andlast.

template<typename Graph, typename TransDelayMap, typename VertexNameMap>
void print trans delays(const Graph& g, TransDelayMap transdelay map,

VertexNameMap namemap)
{

typename graphtraits<Graph>::edge iterator first, last;
for (tie(first, last) = edges(g); first != last; ++ first) {

print trans delay(* first, g, trans delay map, name map);
std::cout << std::endl;
}
}

The output of this function for the graph of Figure1.1would be

trans−delay(a, b) = 1.2
trans−delay(a, d) = 4.5
trans−delay(b, d) = 1.8
trans−delay(c, a) = 2.6
trans−delay(c, e) = 5.2
trans−delay(d, c) = 0.4
trans−delay(d, e) = 3.3

In addition to thevertices() andedges() functions, there areout edges() , in edges() , and
adjacentvertices() functions. These functions take a vertex descriptor and graph object as
arguments and return a pair of iterators.

Most algorithms do not need to use all five types of traversal, and some graph types cannot
provide efficient versions of all iterator types. Care should be taken not to use concrete graph
types with algorithms that require operations not supported by that type. If you attempt to use
a graph type that does not provide a required operation, then a compile error will occur. The
compile error may even include some information to help you figure out which operation was
missing. See§2.5for more details.

The available operations for a particular graph type is given in the documentation for
that type. The “Model Of” section summarizes the provided operations by listing the con-
cepts satisfied by the graph type. The operations required by each algorithm are given in the
documentation for the algorithm by listing the concepts required of each parameter.

1.2. GRAPH CONCEPTS 9

1.2.4 Graph Construction and Modification

The BGL also defines interfaces for adding and removing vertices and edges from a graph.
In this section, we give a brief example of one way to create a graph that models the router
network of Figure1.1. First we will useadd vertex() to add the five nodes representing routers
to the graph, then we will useadd edge() to add edges representing connections between the
routers.

template<typename Graph, typename VertexNameMap, typename TransDelayMap>
void build router network(Graph& g, VertexNameMap namemap,

TransDelayMap delaymap)
{
〈Add routers to the network9a〉
〈Add connections to the network9b〉
}

Theadd vertex() function returns a vertex descriptor for the new vertex. We use this vertex
descriptor to assign a vertex name to the vertex in a name property map:

〈 Add routers to the network9a 〉 ≡
typename graphtraits<Graph>::vertex descriptor a, b, c, d, e;
a = add vertex(g); name map[a] = ’a’ ;
b = add vertex(g); name map[b] = ’b’ ;
c = add vertex(g); name map[c] = ’c’ ;
d = add vertex(g); name map[d] = ’d’ ;
e = add vertex(g); name map[e] = ’e’ ;

The add edge() function returns astd::pair, where the first member of the pair is an edge
descriptor for the new edge and the second is a Boolean flag that indicates whether an edge
was added (some graph types will not insert an edge if an edge with the same source and
target is already in the graph).

〈 Add connections to the network9b 〉 ≡
typename graphtraits<Graph>::edge descriptor ed;
bool inserted;

tie(ed, inserted) = add edge(a, b, g);
delay map[ed] = 1.2;
tie(ed, inserted) = add edge(a, d, g);
delay map[ed] = 4.5;
tie(ed, inserted) = add edge(b, d, g);
delay map[ed] = 1.8;
tie(ed, inserted) = add edge(c, a, g);
delay map[ed] = 2.6;
tie(ed, inserted) = add edge(c, e, g);
delay map[ed] = 5.2;

10 CHAPTER 1. INTRODUCTION

tie(ed, inserted) = add edge(d, c, g);
delay map[ed] = 0.4;
tie(ed, inserted) = add edge(d, e, g);
delay map[ed] = 3.3;

In some cases it is more efficient to add or remove multiple vertices or edges simulta-
neously instead of one at a time. The BGL interface includes functions for accomplishing
this.

1.2.5 Algorithm Visitors

Many of the algorithms of the STL have a function object parameter that provides a mecha-
nism for customizing the behavior of the algorithm to a particular application. For example,
thestd::sort() function contains a comparison parametercompare.

template<typename RandomAccessIterator, typename BinaryPredicate>
void sort(RandomAccessIterator first, RandomAccessIterator last,

BinaryPredicate compare)

Thecompareparameter is a function object (sometimes called a functor). Its use is illustrated
by the following example.

Consider the case of a program for maintaining an address book. Sorting an array of
addresses by the last name of the contact can be accomplished by callingstd::sort() with an
appropriate function object. An example of such a function object is the following:

struct comparelast name {
bool operator()(const addressinfo& x, const addressinfo& y) const {

return x. last name < y. last name;
}
};

Sorting the array of addresses is accomplished with a call tostd::sort() , passing in the cus-
tomized comparison function.

std::vector<addressinfo> addresses;
// . . .
comparelast name compare;
std::sort(addresses. begin(), addresses. end(), compare);

The BGL provides a mechanism similar to function objects for customizing the behav-
ior of graph algorithms. These objects are calledalgorithm visitors. The BGL visitor is a
multifunction object. Instead of just the singleoperator() of a function object, a BGL visitor
defines multiple functions that are invoked at certain definedevent pointswithin an algorithm
(the event points differ with each algorithm).

Despite the name, BGL visitors are somewhat different than the visitor pattern described
in the “Gang of Four” (GoF) Patterns Book [14]. A GoF visitor provides a mechanism for

1.3. GRAPH CLASSES AND ADAPTORS 11

performing new operations on an object structure without modifying the classes. Like the GoF
visitor, the purpose of the BGL visitor is to provide a mechanism for extension. However the
difference is that a BGL visitor extends algorithms, not object structures.

In the following example we print out the Internet routers from Figure1.1in breadth-first
order by extending thebreadthfirst search() function with a visitor. The visitor prints the
vertex name on thediscover vertexevent (see§4.1.1for a description of breadth-first search).

The visitor class is defined according to the interface described by theBFSVisitor concept.

template<typename VertexNameMap>
class bfsname printer

: public default bfs visitor { // inherit default (empty) event point actions
public:

bfs name printer(VertexNameMap nmap) : m name map(n map) { }
template<typename Vertex, typename Graph>
void discoververtex(Vertex u, const Graph&) const {

std::cout << get(m name map, u) << ’ ’ ;
}

private:
VertexNameMap mname map;
};

We then create a visitor object of typebfs nameprinter and pass it tobreadthfirst search() .
Thevisitor() function used here is part of the named-parameter technique that is described in
§2.7.

bfs name printer<VertexNameMap> vis(name map);
std::cout << " BFS vertex discover order:" ;
breadth first search(g, a, visitor(vis));
std::cout << std::endl;

The output is as follows:

BFS vertex discover order: a b d c e

The edges of the breadth-first search tree are depicted by the black lines in Figure1.2.

1.3 Graph Classes and Adaptors

The graph types provided by the BGL fall into two categories. The first is the graph classes
that are used to store a graph in memory. The second is graph adaptors that create a modified
view of a graph or that create a BGL graph interface based on some other type.

1.3.1 Graph Classes

The BGL contains two primary graph classes:adjacencylist andadjacencymatrix.

12 CHAPTER 1. INTRODUCTION

a

b

1.2

d
4.5

1.8

c

0.4
e

3.3

2.6

5.2

Figure 1.2The path taken during a breadth-first search.

The main BGL component for representing graphs is theadjacencylist. This class gen-
eralizes the traditional adjacency-list representation for a graph. The graph is represented
by a collection of vertices where, with each vertex, there is stored a collection of out-edges.
The actual implementation of the collection of vertices and edges can vary to meet particular
needs. Theadjacencylist class has several template parameters:EdgeList, VertexList, Directed,
VertexProperties, EdgeProperties, andGraphProperties.

• EdgeListandVertexList specify the classes used to store the vertex list and edge lists
for the graph. These parameters allow tradeoffs between traversal speed and inser-
tion/removal speed and tradeoffs in memory consumption. In addition, theEdgeList
parameter determines whether parallel edges may be inserted into the graph.

• Directedspecifies whether the graph is directed, undirected, or bidirectional. By con-
vention, a directed graph provides access to out-edges only, whereas a bidirectional
graph provides access to in-edges as well as out-edges.

• VertexProperties, EdgeProperties, andGraphPropertiesspecify the property types that are
attached to the vertices, edges, and to the graph itself.

Complete documentation for theadjacencylist class can be found in§14.1.1.
The BGL class for representing dense graphs (graphs where|E| ≈ |V |2) is the adja-

cencymatrix. In anadjacencymatrix, access to an arbitrary edge(u, v) is efficient (constant
time). Theadjacencymatrix can represent both directed and undirected graphs and provides
a mechanism for attaching properties to the vertices and edges. Complete documentation for
theadjacencymatrix class can be found in§14.1.2.

Note that although all of the examples in this book use relatively small graphs (to allow
drawings of the graphs to fit on a single page), the BGL graph classes are robust and space
efficient. They have been used to represent graphs with millions of vertices.

1.4. GENERIC GRAPH ALGORITHMS 13

1.3.2 Graph Adaptors

The BGL also includes a large number of graph adaptors. This first group of classes adapts
any BGL graph to provide new behavior.

• reversegraph is an adaptor that reverses the edge directions of a directed graph on the
fly, so that in-edges behave like out-edges, and vice versa.

• filtered graph is an adaptor that creates a view of a graph where two predicate function
objects control whether vertices and edges from the original graph appear in the adapted
graph, or whether they are hidden.

BGL also provides support for objects and data structures that are not BGL graph classes.
This support is provided via adaptor classes and overloaded functions. The following de-
scribes these interfaces.

• edgelist is an adaptor that creates a BGL graph out of an iterator range of edges.

• Stanford GraphBase is supported by overloaded functions in the header fileboost/-
graph/stanfordgraph.hpp. As a result of these overloaded functions, the GraphBase
typeGraph* satisfies the BGL graph interface.

• LEDA is a popular object-oriented package that includes graph data structures and
algorithms. Overloaded functions in the header fileboost/graph/ledagraph.hppallow
the LEDA graph typeGRAPH<vtype, etype> to satisfy the BGL graph interface.

• The STL composite typestd::vector< std::list<int> > is supported as a graph by over-
loaded functions in the header fileboost/graph/vectoras graph.hpp.

The BGL interface is described completely in the concept reference in Chapter12. Each graph
class implements some (or all) of these concepts. Theadjacencylist class can be considered
a canonical implementation (or model) of a BGL graph, as it illustrates all of the basic ideas
and interfaces of the BGL graphs.

1.4 Generic Graph Algorithms

The BGL graph algorithms are generic algorithms. As such, they are highly flexible in terms
of the types of graph data structures to which they can be applied and in terms of how the
algorithms can be customized to solve a wide range of problems. First, we look at using
the topological sort() function with two different graph types, and then we demonstrate the
power of the genericdepthfirst search() function by showing how it can be used to implement
topological sort() .

14 CHAPTER 1. INTRODUCTION

1.4.1 The Topological Sort Generic Algorithm

A topological ordering of a directed graph is an ordering of its vertices such that if there
is an edge(u, v) in the graph, then vertexu appears before vertexv in the ordering. The
BGL topological sort() function template takes two arguments: the graph to be ordered and
an output iterator. The algorithm writes vertices to the output iterator in reverse topological
order.

One use for topological orderings is for scheduling tasks. Figure1.3shows a graph where
the vertices are errands that need to be accomplished and where the edges indicate dependen-
cies between errands (e.g., getting cash at the ATM has to be done before buying groceries).
In the next two sections we show how to apply the BGL topological sort algorithm to this
problem. In each section a different type of graph representation will be used to demonstrate
the generic nature of the BGL function.

0: pick up kids from school

3: drop off kids at soccer practice

1: buy groceries (and snacks)

4: cook dinner

2: get cash at ATM

5: pick up kids from soccer

6: eat dinner

Figure 1.3 A graph representing scheduling dependencies between tasks. For now, an arbi-
trary vertex number is assigned to each task.

Using Topological Sort with a Vector of Lists

First we apply the topological sort to a graph built usingstd::vector<std::list<int>>. The
following is the outline of the program.

1.4. GENERIC GRAPH ALGORITHMS 15

〈 “topo-sort1.cpp”15a 〉 ≡
#include <deque> // to store the vertex ordering
#include <vector>
#include <list>
#include <iostream>
#include <boost/ graph/ vector as graph. hpp>
#include <boost/ graph/ topological sort. hpp>
int main()
{

using namespace boost;
〈Create labels for each of the tasks15b〉
〈Create the graph15c〉
〈Perform the topological sort and output the results16〉
return EXIT SUCCESS;
}

The vertices of the graph are represented using the integers from zero to six; storing the vertex
labels in an array is therefore a convenient choice.

〈 Create labels for each of the tasks15b 〉 ≡
const char* tasks[] = {

" pick up kids from school" ,
" buy groceries (and snacks)" ,
" get cash at ATM" ,
" drop off kids at soccer practice" ,
" cook dinner" ,
" pick up kids from soccer" ,
" eat dinner" };

const int n tasks = sizeof(tasks) / sizeof(char*);

The graph is realized as a vector of lists. Each vertex in the graph is associated with an
index location in the vector. The size of the vector is thus the number of vertices in the
graph. The list at that index location is used to represent the edges from that vertex to other
vertices in the graph. Each edge(u, v) is added to the graph by pushing the integer forv
onto theuth list. Figure1.4 shows the resulting data structure. Due to the functions defined
in boost/graph/vectoras graph.hpp the vector of lists satisfies the requirements of the BGL
VertexListGraph concept, and therefore can be used in thetopological sort() function.

〈 Create the graph15c 〉 ≡
std::vector< std::list<int> > g(n tasks);
g[0]. push back(3);
g[1]. push back(3);
g[1]. push back(4);
g[2]. push back(1);
g[3]. push back(5);

16 CHAPTER 1. INTRODUCTION

g[4]. push back(6);

g[5]. push back(6);

0 3

1 3

2 1

3 5

4 6

5 6

4

Figure 1.4A vector of lists representation of the task dependency graph.

Before we calltopological sort() we need to create a place to store the results. The BGL
algorithm for topological sort writes its output in reverse topological order (because it is more
efficient to implement it that way). Recovering the topological order requires reversing the
ordering computed by the algorithm. The following example usesstd::dequeas its output
data structure because it supports constant time insertion at the front, which will reverse the
ordering. In addition, callingtopological sort() requires one of two things: (1) supply a color
property map so that the algorithm can mark vertices to keep track of its progress through the
graph or (2) supply a mapping from vertices to integers so that the algorithm can create its
own color map with an array.

Since in this example the vertices are already integers, we just passidentity propertymap
in as the vertex index map. Thevertex index map() function is used to specify a named
parameter (see§2.7).

〈 Perform the topological sort and output the results16 〉 ≡
std::deque<int> topo order;

topological sort(g, std::front inserter(topo order),
vertex index map(identity property map()));

int n = 1;

for (std::deque<int>::iterator i = topo order. begin();
i != topo order. end(); ++ i, ++ n)

std::cout << tasks[* i] << std::endl;

1.4. GENERIC GRAPH ALGORITHMS 17

The output shows an order in which the tasks could be carried out.

get cash at ATM
buy groceries(and snacks)
cook dinner
pick up kids from school
drop off kids at soccer practice
pick up kids from soccer
eat dinner

Using Topological Sort with theadjacencylist Class

To demonstrate the flexibility of the generic algorithmtopological sort() we now change to
using an altogether different graph type: the BGLadjacencylist class template. Since the
topological sort() function is a function template, graph structures of arbitrary type can be
used. All that is required is that the type satisfies the concepts required by the algorithm.

The first two template parameters of theadjacencylist class determine the particular inter-
nal structure that will be used. The first argumentlistS specifies thatstd::list is used for each
out-edge list. The second argumentvecSspecifies thatstd::vectoris used as the backbone of
the adjacency list. This version of theadjacencylist class is similar in character to the vector
of lists used in the previous section.

〈 Create an adjacency list object17a 〉 ≡
adjacencylist<listS, vecS, directedS> g(n tasks);

The functionadd edge() provides the interface for inserting edges into anadjacencylist
(and all other graphs that support theEdgeMutableGraph concept). The vertex descriptor type
for adjacencylist is an integer whenstd::vectoris used for the backbone, which is why we can
use integers below to specify vertices. It is not always true for a given graph type that one can
use integers to specify vertices.

〈 Add edges to the adjacency list17b 〉 ≡
add edge(0, 3, g);
add edge(1, 3, g);
add edge(1, 4, g);
add edge(2, 1, g);
add edge(3, 5, g);
add edge(4, 6, g);
add edge(5, 6, g);

The rest of the program is similar to the previous example, except that theadjacencylist.hpp
header file is included instead ofvectoras graph.hpp. The following is the code for the pro-
gram, with two of the parts reused from the previous section.

18 CHAPTER 1. INTRODUCTION

〈 “topo-sort2.cpp”18 〉 ≡
#include <vector>
#include <deque>
#include <boost/ graph/ topological sort. hpp>
#include <boost/ graph/ adjacencylist. hpp>
int main()
{

using namespace boost;
〈Create labels for each of the tasks15b〉
〈Create an adjacency list object17a〉
〈Add edges to the adjacency list17b〉
〈Perform the topological sort and output the results16〉
return EXIT SUCCESS;
}

1.4.2 The Depth-First Search Generic Algorithm

The BGL implementation oftopological sort() is only a few lines long because it can be im-
plemented using thedepthfirst search() function (and, in fact, the topological sort algorithm
is typically presented this way in text books). The implementation consists ofdepthfirst -
search() used with a visitor that records the order in which vertices pass through the “finish
vertex” event of the depth-first search. The explanation for why this computes a topological
ordering is given in§3.3.

The following code creates an algorithm visitor class that records vertices as they pass
through the finish event point of a depth-first search. For added genericity, the vertex ordering
is recorded in an output iterator, allowing the user to choose from a variety of output methods.

template<typename OutputIterator>
class toposort visitor : public default dfs visitor { // inherit empty actions
public:

topo sort visitor(OutputIterator iter) : m iter(iter) { }
template<typename Vertex, typename Graph>
void finish vertex(Vertex u, const Graph&) { * m iter++ = u; }

private:
OutputIterator m iter;
};

Thus, topological sort() is implemented by invokingdepthfirst search() using the
topo sort visitor as a parameter.

template<typename Graph, typename OutputIterator>
void topologicalsort(Graph& g, OutputIterator result iter) {

topo sort visitor<OutputIterator> vis(result iter);
depth first search(g, visitor(vis));
}

Chapter 2

Generic Programming in C++

2.1 Introduction

Generic programming (GP) is a methodology for program design and implementation that
separates data structures and algorithms through the use of abstract requirement specifica-
tions. In C++, generic programming is characterized by the use of parametric polymorphism
through the use of templates, with an emphasis on efficiency.

Generic programming is the methodology that we used in the construction of the Boost
Graph Library. To understand the organization and structure of the BGL, the reader needs a
good understanding of generic programming. Because generic programming is a relatively
new methodology (at least in the C++ community), we give an introduction to generic pro-
gramming in this chapter. We also discuss the main techniques for generic programming in
C++, which rely heavily on templates. These techniques are not just a collection of tricks;
taken together, they form what one might consider a new sublanguage within C++.

The abstract requirement specifications in generic programming are similar to the older
notion of abstract data types (ADTs). To review, an abstract data type is a type specification.
It consists of a description of the applicable operations and gives the semantics of those oper-
ations, which often include preconditions, postconditions, and axioms (or invariants) [30]. A
classic example of an abstract data type is astackwith methods to implement push and pop.
There are numerous ways to implement a stack such as using a resizable array or a linked list,
but as long as the implementation meets the ADT specification, the implementation details
can be ignored by the user of a stack.

In generic programming, we take the notion of an ADT a step further. Instead of writing
down the specification for a single type, we describe a family of types that all have a com-
mon interface and semantic behavior. The set of requirements that describe the interface and
semantic behavior is referred to as aconcept. Algorithms constructed in the generic style are
then applicable toany type that satisfies the requirements of the algorithm. This ability to
use many different types with the same variable (or parameter of a function) is referred to as
polymorphism.

19

20 CHAPTER 2. GENERIC PROGRAMMING IN C++

2.1.1 Polymorphism in Object-Oriented Programming

In object-oriented programming (OOP), polymorphism is realized with virtual functions and
inheritance, which is calledsubtype polymorphism. The interface requirements of a concept
can be written as virtual functions in an abstract base class. The preconditions and invariants
become assertions when possible. Concrete classes inherit from the abstract base class and
provide the implementation of these functions. The concrete classes are said to besubtypes
(or derived classes) of the base class. Generic functions are written in terms of the abstract
base class and the function calls are dispatched at run-time based on the concrete type of the
object (via virtual function tables in C++). Anysubtypeof the abstract base class can be
interchanged and used in the generic function.

A classic example of a concept from mathematics is anAdditive Abelian Group, which
is a set of elements with an addition operator that obeys the associative law, has an inverse,
and has an identity element (zero) [45]. We can represent this concept in C++ by defining an
abstract base class as follows:

// The AdditiveAbelianGroup concept as an abstract base class:
class AdditiveAbelianGroup{
public:

virtual void add(AdditiveAbelianGroup* y) = 0;

virtual AdditiveAbelianGroup* inverse() = 0;

virtual AdditiveAbelianGroup* zero() = 0;

};

Using this abstract base class we can write a reusable function such assum() .

AdditiveAbelianGroup* sum(array<AdditiveAbelianGroup*> v)

{
AdditiveAbelianGroup* total = v[0] −>zero();
for (int i = 0; i < v. size(); ++ i)

total−>add(v[i]);
return total;
}

Thesum() function will work on any array as long as the element type derives fromAdditive-
AbelianGroup. Examples of such types would be real numbers and vectors.

class Real : public AdditiveAbelianGroup{
// . . .
};
class Vector : public AdditiveAbelianGroup{

// . . .
};

2.1. INTRODUCTION 21

2.1.2 Polymorphism in Generic Programming

In generic programming, polymorphism is realized through class or function templates. Tem-
plates provideparametric polymorphism. Below is sum() written as a function template.
The AdditiveAbelianGroupbase class is no longer needed, although by convention (and for
documentation purposes) we use the nameAdditiveAbelianGroupfor the template parameter.

template<typename AdditiveAbelianGroup>
AdditiveAbelianGroup sum(array<AdditiveAbelianGroup> v)

{
AdditiveAbelianGroup total= v[0]. zero();
for (int i = 0; i < v. size(); ++ i)

total. add(v[i]);
return total;
}

In C++ a concept is a set of requirements that a template argument must meet so that the
class template or function template can compile and execute properly.

Even though concepts exist only implicitly in generic programming, they are vitally im-
portant and must be carefully documented. Currently, such documentation is typically ac-
complished in the comments of the code or in books such asGeneric Programming and the
STL[3]. Consider again the example of anAdditiveAbelianGroup, but this time as a concept.

// concept AdditiveAbelianGroup
// valid expressions:
// x.add(y)
// y = x.inverse()
// y = x.zero()
// semantics:
// . . .

Concrete types that satisfy the requirements ofAdditiveAbelianGroup do not need to
inherit from a base class. The types of the template argument are substituted into the function
template during instantiation (at compile time). The termmodelis used to describe the rela-
tionship between concrete types and the concepts they satisfy. For example,RealandVector
model theAdditiveAbelianGroup concept.

struct Real { // no inheritance
// . . .
};
struct Vector { // no inheritance

// . . .
};

22 CHAPTER 2. GENERIC PROGRAMMING IN C++

2.1.3 Comparison of GP and OOP

So far, we have loosely described generic programming as “programming with templates”
and object-oriented programming as “programming with inheritance.” This is somewhat mis-
leading because the core semantics of these two methodologies are only indirectly related
to templates and inheritance. More formally, generic programming is based onparametric
polymorphism, while object-oriented programming is based onsubtype polymorphism. In
C++ these ideas are implemented with templates and inheritance, but other languages provide
different mechanisms. For example, the signatures extension in GNU C++ [4] provides an
alternate form of subtype polymorphism. Multimethods (in languages such as CLOS [21])
provide semantics closer to that of parametric polymorphism but with run-time dispatching
(compared to the compile-time dispatching of templates).

Nevertheless, since Standard C++ is our language choice, it is useful to compare GP and
OOP by comparing inheritance (and virtual functions) with templates in the context of C++.

Virtual Functions Are Slower than Function Templates

A virtual function call is slower than a call to a function template (which is the same speed
as a call to a normal function). A virtual function call includes an extra pointer dereference
to find the appropriate method in the virtual function table. By itself, this overhead may
not be significant. Significant slowdowns can result indirectly in compiled code, however,
because the indirection may prevent an optimizing compiler from inlining the function and
from applying subsequent optimizations to the surrounding code after inlining.

Of course the overall impact of the overhead is entirely dependent on the amount of work
done in the function—that is, how much the overhead will be amortized. For components at
the level of the STL iterators and containers, or at the level of graph iterators, function call
overhead is significant. Efficiency at this level is affected greatly by whether functions like
operator++() are inlined. For this reason, templates are the only choice for implementing
efficient, low-level, reusable components such as those you find in the STL or the BGL.

Run-time Dispatch versus Compile-time Dispatch

The run-time dispatch of virtual functions and inheritance is certainly one of the best features
of object-oriented programming. For certain kinds of components, run-time dispatching is an
absolute requirement; decisions need to be made based on information that is only available
at run time. When this is the case, virtual functions and inheritance are needed.

Templates do not offer run-time dispatching, but they do offer significant flexibility at
compile time. In fact, if the dispatching can be performaed at compile time, templates offer
more flexibility than inheritance because they do not require the template arguments types to
inherit from some base class (more about this later).

2.1. INTRODUCTION 23

Code Size: Virtual Functions Are Small, Templates Are Big

A common concern in template-based programs iscode bloat, which typically results from
naive use of templates. Carefully designed template components need not result in signifi-
cantly larger code size than their inheritance-based counterparts. The main technique in con-
trolling the code size is to separate out the functionality that depends on the template types
and the functionality that is independent of the template types. An example of how to do this
can be seen in the SGI STL implementation ofstd::list.

The Binary Method Problem

There is a serious problem that shows up when using subtyping (inheritance and virtual func-
tions) to express operations that work on two or more objects. This problem is known as
the binary method problem [8]. The classic example for this problem, which we illustrate
next, is a point class interface (a coordinate in a plane) that has anequal() member function.
This problem is particularly important for the BGL, since most of the types it defines (vertex
and edge desriptors and iterators) require anoperator==() much like a point classequal()
function.

The following abstract base class describes the interface for a point class.

class Point{
public:

virtual bool equal(const Point* p) const = 0;
};

Using this interface, a library writer could write a “generic” function that takes any class
derived fromPoint and print out whether the two objects are equal.

void print equal(const Point* a, const Point* b) {
std::cout << std::boolalpha<< a−>equal(b) << std::endl;
}

Now consider an implementation of a particular point class, say theColorPointclass. Suppose
that in our application the only point class we will be using is theColorPoint class. It is only
necessary to define equality between two color point objects, and not between a color point
and any other kind of point.

class ColorPoint : public Point{
public:

ColorPoint(float x, float y, std::string c) : x(x), y(y), color(c) { }
virtual bool equal(const ColorPoint* p) const
{ return color == p−>color && x == p−>x && y == p−>y; }

protected:
float x, y;
std::string color;
};

24 CHAPTER 2. GENERIC PROGRAMMING IN C++

However, when we try to use this class, we find out that theColorPoint::equal() function did
not override thePoint::equal() function. When trying to instantiate aColorPoint object we
get the following error.

error: object of abstract class type" ColorPoint" is not allowed:
pure virtual function " Point::equal" has no overrider

It turns out that by the contravariance subtyping rule, the parameter type in the derived classes
member function must be either the same type or a base class of the type as the parameter
in the base class. In the case of theColorPoint class, the parameter toequal() must bePoint,
not ColorPoint. However, making this change causes another problem. Inside theequal()
function, thePoint argument must be downcast to be able to check to determine if the data
members are equal. The insertion of this downcast means that it is no longer known at compile
time whether a program using theColorPoint class is type safe. An object of a different point
class could be passed to theequal() function in error, causing an exception at run time. The
following ColorPoint2 class changes the parameter of theequal() to Point and inserts the
downcast.

class ColorPoint2 : public Point{
public:

ColorPoint2(float x, float y, std::string s) : x(x), y(y), color(s) { }
virtual bool equal(const Point* p) const {

const ColorPoint2* cp = dynamic cast<const ColorPoint2*>(p);
return color == cp−>color && x == cp−>x && y == cp−>y;
}

protected:
float x, y;
std::string color;
};

Now suppose that we were using function templates instead of virtual functions to express
polymorphism. Then theprint equal() function could be written like this:

template<typename PointType>
void print equal2(const PointType* a, const PointType* b) {

std::cout << std::boolalpha<< a−>equal(b) << std::endl;
}

To use this function, the color point class does not need to inherit fromPoint, and the subtyping
issues are irrelevant. When theprint equal2() function is called with two objects of type
ColorPoint, thePointTypeparameter is substituted forColorPoint and the call toequal simply
resolves toColorPoint::equal() . Full compile-time type safety is therefore retained.

ColorPoint* a = new ColorPoint(0.0, 0.0, " blue");
ColorPoint* b = new ColorPoint(0.0, 0.0, " green");
print equal2(a, b);

2.2. GENERIC PROGRAMMING AND THE STL 25

Since the BGL is implemented in terms of function templates, we did not have to be concerned
with the binary method problem. If instead the BGL had been implemented with virtual
functions, the binary method problem would have been a constant source of trouble.

2.2 Generic Programming and the STL

The problem domain underlying the STL is that of basic algorithms for computer science
(e.g., array and list structures, searching and sorting algorithms—the kind of things you dealt
with in your data structure and algorithms classes). Now, there have been any number of
“foundational” library collections that have attempted to provide some kind of comprehensive
set of data structures and algorithms. What diffrerentiates the STL from the rest of these
efforts is generic programming (process and practice).

As described by Musser and Stepanov [35], the GP process as it is applied to a particular
problem domain consists of the following basic steps:

1. Identify useful and efficient algorithms

2. Find their generic representation (i.e., parameterize each algorithm such that it makes
the fewest possible requirements of the data on which it operates)

3. Derive a set of (minimal) requirements that allow these algorithms to run and to run
efficiently

4. Construct a framework based on classifications of requirements

This process is reflected in the structure and organization of the STL components.
In terms of programmingpractice, the minimization process and framework design imply

a structure where algorithms are expressed independently of any particular data types upon
which they might operate. Rather, algorithms are written to generic specifications that are
deduced from the algorithms’ needs.

For instance, algorithms typically need the abstract functionality of being able totraverse
through a data structure and toaccessits elements. If data structures provide a standard
interface for traversal and access, generic algorithms can be freely mixed and matched with
data structures (calledcontainersin the terminology of the STL).

The main facilitator in the separation of algorithms and containers in the STL is theiter-
ator (sometimes called ageneralized pointer). Iterators provide a mechanism for traversing
containers and accessing their elements. The interface between an algorithm and a container
is in terms of iterator requirements that must be met by the type of iterators exported by the
container. Generic algorithms are most flexible when they are written in terms of iterators and
do not rely on a particular container.

Iterators are classified into broad categories, some of which areInputIterator, ForwardIt-
erator, andRandomAccessIterator. Figure2.1 depicts the relationship between containers,
algorithms, and iterators.

http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/RandomAccessIterator.html

26 CHAPTER 2. GENERIC PROGRAMMING IN C++

Containers Algorithms
Iterators

Figure 2.1Separation of containers and algorithms using iterators.

The STL defines a set of requirements for each class of iterators. The requirements are
in the form of which operations (valid expressions) are defined for each iterator, and what
the meaning of the operation is. As an example of how these requirements are defined, a
sample from the requirements for the STL random-access iterator (which includes those of
the forward iterator) is listed in Table2.1. In the table, typeX is the iterator type,T is the
pointed-to type, andU is the type of a member ofT. The objectsa, b, andr are iterators,m is
a member ofT, andn is an integer.

expression return type note

a == b bool *a == *b
a != b bool !(a == b)
a< b bool b - a> 0
*a T& dereferencea
a–>m U& (*a).m
++r X& r == s→ ++r == ++s
– –r X& r == s→ – –r == – –s
r += n X& same as n of++r
a + n X { tmp = a; return tmp += n;}
b – a Distance (a< b) ? distance(a, b)

: – distance(b, a)
a[n] convertible toT *(a + n)

Table 2.1: A sample of the STL random-access iterator requirements.

Accumulate Example

For a concrete example of generic programming we will look at the algorithmaccumulate() ,
which successively applies a binary operator to an initial value and each element in a con-
tainer. A typical use ofaccumulate() would be to sum the elements of a container using the

2.3. CONCEPTS AND MODELS 27

addition operator. The following code shows how one could implement theaccumulate() al-
gorithm in C++. Thefirst andlastarguments are iterators that mark the beginning and passed-
the-end of the sequence. All of the arguments to the function are parameterized on type so that
the algorithm can be used with any container that models theInputIterator concept. Iterator
traversal uses the same notation as pointers; specifically,operator++() increments to the next
position. Several other ways to move iterators (especially random access iterators) are listed
in Table2.1. To access the container element under the iterator, one uses the dereference
operator,operator*() , or the subscript operator,operator[]() , to access at an offset from the
iterator.

template<typename InputIterator, typename T, typename BinaryOperator>
T accumulate(InputIterator first, InputIterator last, T init , BinaryOperator binaryop)
{

for (; first != last; ++ first)
init = binary op(init , * first);

return init ;
}

To demonstrate the flexibility that the iterator interface provides, we use theaccumulate()
function template with a vector and with a linked list (both from the STL).

// using accumulate with a vector
std::vector<double> x(10, 1.0);
double sum1;
sum1 = std::accumulate(x. begin(), x. end(), 0.0, std::plus<double>());

// using accumulate with a linked list
std::list<double> y;
double sum2;
// copy vector’s values into the list
std::copy(x. begin(), x. end(), std::back inserter(y));
sum2 = std::accumulate(y. begin(), y. end(), 0.0, std::plus<double>());
assert(sum1 == sum2); // they should be equal

2.3 Concepts and Models

The previous section showed an example of theRandomAccessIterator requirements. It also
showed howInputIterator was used as a requirement for theaccumulate() function and how
bothstd::list::iterator andstd::vector::iteratorcould be used with this function. In this section,
we define the terms that describe the relationships between sets of requirements, functions,
and types.

In the context of generic programming, the termconceptis used to describe the collection
of requirements that a template argument must meet for the function template or class tem-

http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/RandomAccessIterator.html
http://www.sgi.com/tech/stl/InputIterator.html

28 CHAPTER 2. GENERIC PROGRAMMING IN C++

plate to compile and operate properly. In the text, thesans-serif font is used to distinguish
concept names.

Examples of concept definitions can be found in the C++ Standard, many of which deal
with the requirements for iterators. In addition, Matthew Austern’s bookGeneric Program-
ming and the STL[3] and the SGI STL Web site provide comprehensive documentation on
the concepts used in the STL. These concepts are used heavily in the definition of the BGL
concepts. The SGI STL Web site is at the following URL:

http://www.sgi.com/tech/stl/

2.3.1 Sets of Requirements

The requirements for a concept consist of a set of valid expressions, associated types, invari-
ants, and complexity guarantees. A type that meets the set of requirements is said tomodel
the concept. A concept can extend the requirements of another concept, which is calledre-
finement.

Valid Expressions are C++ expressions that must compile successfully for the types in-
volved in the expression to be considered models of the concept.

Associated Typesare auxiliary types that have some relation to the typeT modeling the
concept. The requirements in a concept typically make statements about associated
types. For example, iterator requirements typically include an associated type called
the value type and the requirement that objects returned by the iterator’s dereference
operator must be of thevalue type. In C++ it is common to use a traits class to map
from the typeT to the associated types of the concept.

Invariants are run-time characteristics of types that must always be true. The invariants often
take the form of preconditions and postconditions. When a precondition is not fulfilled,
the behavior of the operation is, in general, undefined and can lead to a segmentation
fault. This is the case for the Boost Graph Library. Some libraries provide debugging
versions that use assertions or throw exceptions when a precondition is violated. A
future version of the Boost Graph Library may do this.

Complexity Guarantees are maximum limits on how long the execution of one of the valid
expressions will take, or how much of the various resources its computation will use.

2.3.2 Example: InputIterator

In this section, we take a closer look atInputIterator as an example of a concept. First,
the InputIterator concept is a refinement ofTrivialIterator which, in turn, is a refinement of
Assignable andEqualityComparable. Thus, theInputIterator meets all the requirements of a
TrivialIterator (which meets all of the requirements ofAssignable andEqualityComparable).

http://www.sgi.com/tech/stl
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/TrivialIterator.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/TrivialIterator.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html

2.3. CONCEPTS AND MODELS 29

The result is that a type that modelsInputIterator will have a dereference operator, it can be
copied and assigned, and it can be compared with other iterator objects using== and!= .

The InputIterator concept adds the requirement for pre-increment and post-increment op-
erators. These requirements are denoted by the followingvalid expressions. Objectsi and j
are instances of a typeT that modelsInputIterator.

i = j // assignment (from Assignable)
T i(j); // copy (from Assignable)
i == j // equality test (from EqualityComparable)
i != j // inequality test (from EqualityComparable)
* i // dereference (from TrivialIterator)
++i // pre-increment operator
i++ // post-increment operator

Thestd::iterator traits class provides access to theassociated typesof an iterator type. The
type of an object that is pointed to by an iterator type (call itX) can be determined via the
value typeof the traits class. The other associated types arereference, pointer, difference type,
anditerator category. Associated types and traits classes are discussed in more detail in§2.4.
In the following function template we show the use of theiterator traits class to obtain the
value typeof the iterator and dereference the iterator.

template<typename Iterator> void dereferenceexample(Iterator i)
{

typename iteratortraits<Iterator>::value type t;
t = * i;
}

As for complexity guarantees, all of theInputIterator operations are required to be con-
stant time. Some types thatmodel InputIterator are std::list<int>::iterator, double*, and
std::istreamiterator<char>.

The purpose of defining concepts becomes clear when considering the implementation of
generic algorithms. The implementation of thestd::for each() function follows. Inside the
function precisely four operations are applied to the iterator objectsfirst or last: comparison
using operator!=() , increment withoperator++() , dereference withoperator*() , and copy
construction. For this function to compile and operate properly the iterator arguments must
support at least these four operations. The conceptInputIterator includes these operations
(and not many more), so it is a reasonable choice for succinctly describing the requirements
of for each() .

template<typename InputIterator, typename Function>
Function for each(InputIterator first, InputIterator last, Function f)
{

for (; first != last; ++ first)
f (* first);

return f ;
}

http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/InputIterator.html

30 CHAPTER 2. GENERIC PROGRAMMING IN C++

2.4 Associated Types and Traits Classes

One of the most important techniques used in generic programming is the traits class, which
was introduced by Nathan Myers [36]. The traits class technique may seem somewhat un-
natural when first encountered (due to the syntax) but the essence of the idea is simple. It is
essential to learn how to use traits classes, for they are used regularly in generic libraries such
as the STL and the BGL.

2.4.1 Associated Types Needed in Function Template

A traits class is basically a way of determining information about a type that you would
otherwise know nothing about. For example, consider a genericsum() function:

template<typename Array>
X sum(const Array& v, int n)

{
X total = 0;

for (int i = 0; i < n; ++ i)
total += v[i];

return total;
}

From the point of view of this function template, not much is known about the template
typeArray. For instance, the type of the elements that are inside the array is not given. How-
ever, this information is necessary in order to declare the local variabletotal, which should
be the same type as the elements ofArray. TheX that is there now is just a placeholder that
needs to be replaced by something else to produce a correctsum() function.

2.4.2 Typedefs Nested in Classes

One way to access information out of a type is to use the scope operator:: to accesstypedefs
that are nested inside the class. For example, an array class might looks like the following:

class myarray {
public:

typedef double valuetype; // the type for elements in the array
double& operator[](int i) { m data[i]; };

private:
double* m data;
};

The type of the elements in the array can be accessed viamy array::value type. The generic
sum() function can be realized using this technique as follows (note that theX placeholders

2.4. ASSOCIATED TYPES AND TRAITS CLASSES 31

have been replaced withtypename Array::valuetype1):

template<typename Array>
typename Array::valuetype sum(const Array& v, int n)
{

typename Array::valuetype total = 0;
for (int i = 0; i < n; ++ i)

total += v[i];
return total;
}

In the sum() function above, the technique of using a nested typedef works as long as
Array is a class type that has such a nested typedef. However, there are important cases for
which having a nested typedef is neither practical nor possible. For instance, one might want
to use the genericsum() function with a class from a third party that did not provide the
required typedef. Or, one might want to use thesum() function with a built-in type such as
double *.

int n = 100;
double* x = new double[n];
sum(x, n);

In both of these cases, it is quite likely that the functional requirements of our desired use
are met; that is, theoperator[]() works withdouble*and with our imaginary third-party array.
The limitation to reuse is in how to communicate the type information from the classes we
want to use to thesum() function.

2.4.3 Definition of a Traits Class

The solution to this is atraits class, which is a class template whose sole purpose is to pro-
vide a mapping from a type to other types, functions, or constants. The language mechanism
that allows a class template to create a mapping istemplate specialization. The mapping is
accomplished by creating different versions of the traits class to handle specific type param-
eters. We will show how this works by creating anarray traits class that can be used in the
sum() function.

Thearray traits class will be templated on theArray type and will allow us to determine
the value type (the type of the element) of the array. The default (fully templated) case will
assume that the array is a class with a nested typedef such asmy array:

template<typename Array>
struct array traits {

typedef typename Array::valuetype valuetype;
};

1When the type on the left hand side of the:: scope operator somehow depends on a template argument then
use thetypenamekeyword in front of the type.

32 CHAPTER 2. GENERIC PROGRAMMING IN C++

We can then create a specialization of thearray traits template to handle when theArray
template argument is a built-in type likedouble*:

template<> struct array traits<double*> {
typedef double valuetype;
};

Third-party classes, sayjohns int array, can be similarly accommodated:

template<> struct array traits<johns int array> {
typedef int valuetype;
};

Thesum() function, written witharray traits class, is shown below. To access the type for the
total variable we extract thevalue typefrom array traits.

template<typename Array>
typename arraytraits<Array>::value type sum(const Array& v, int n)
{

typename arraytraits<Array>::value type total = 0;
for (int i = 0; i < n; ++ i)

total += v[i];
return total;
}

2.4.4 Partial Specialization

Writing a traits class for every pointer type is not practical or desirable. The following shows
how to use partial specialization to provide array traits for all pointer types. The C++ compiler
will attempt a pattern match between the template argument provided at the instantiation of
the traits class and all the specializations defined, picking the specialization that is the best
match. The partial specialization forT* will match whenever the type is a pointer. The
previous complete specializations fordouble*would still match first for that particular pointer
type.

template<typename T>
struct array traits<T*> {

typedef T valuetype;
};

Partial specialization can also be used to create a version ofarray traits for a third-party class
template.

template<typename T>
struct array traits< johns array<T> > {

typedef T valuetype;
};

2.4. ASSOCIATED TYPES AND TRAITS CLASSES 33

The most well-known use of a traits class is theiterator traits class used in the STL. The
BGL also uses traits classes such asgraph traits and theproperty traits classes. Typically, a
traits class is used with a particular concept or family of concepts. Theiterator traits class
is used with the family of iterator concepts. Thegraph traits class is used with the family of
BGL graph concepts.

2.4.5 Tag Dispatching

A technique that often goes hand in hand with traits classes istag dispatching, which is a way
of using function overloading to dispatch based on properties of a type. A good example of
this is the implementation of thestd::advance() function in the STL, which, in the default
case, increments an iterator n times. Depending on the kind of iterator, there are different
optimizations that can be applied in the implementation. If the iterator is random access, then
theadvance() function can simply be implemented withi += n and is very efficient; that is, it
is in constant time. If the iterator is bidirectional, then it may be the case that n is negative, so
we can decrement the iterator n times. The relation between external polymorphism and traits
classes is that the property to be exploited for dispatch (in this case, theiterator category) is
accessed through a traits class.

In the following example, theadvance() function uses theiterator traits class to determine
the iterator category. It then makes a call to the overloadedadvancedispatch() function. The
appropriateadvancedispatch() is selected by the compiler based on whatever type theitera-
tor categoryresolves to (one of the tag classes in the following code). Atag is simply a class
whose only purpose is to convey some property for use in tag dispatching. By convention, the
name of a tag class ends intag. We do not define a function overload for theforward iterator-
tag because that case is handled by the function overloaded forinput iterator tag.

struct input iterator tag {};
struct output iterator tag {};
struct forward iterator tag : public input iterator tag {};
struct bidirectional iterator tag : public forward iterator tag {};
struct randomaccessiterator tag : public bidirectional iterator tag {};

template<typename InputIterator, typename Distance>
void advancedispatch(InputIterator& i, Distance n, input iterator tag)
{ while (n−−) ++ i; }

template<typename BidirectionalIterator, typename Distance>
void advancedispatch(BidirectionalIterator& i, Distance n, bidirectional iterator tag)
{

if (n >= 0)
while (n−−) ++ i;

else
while (n++) −−i;

}

34 CHAPTER 2. GENERIC PROGRAMMING IN C++

template<typename RandomAccessIterator, typename Distance>
void advancedispatch(RandomAccessIterator& i, Distance n, random accessiterator tag)
{

i += n;
}
template<typename InputIterator, typename Distance>
void advance(InputIterator& i, Distance n)
{

typedef typename iteratortraits<InputIterator>::iterator category Cat;
advancedispatch(i, n, Cat());
}

The BGL graph traits class includes three categories:directedcategory, edgeparallel-
category, and traversal category. The tags for these categories can be used for dispatching
similarly to iterator category.

2.5 Concept Checking

An important aspect of using a generic library is using appropriate classes as template argu-
ments to algorithms (using classes that model the concepts specified by the requirements of
the algorithm). If an improper class is used, the compiler will emit error messages, but deci-
phering these messages can present a significant hurdle to the user of a template library [2, 41].
The compiler may produce literally pages of difficult-to-decipher error messages for even a
small error.

The following is an example of a typical mistake, where thestd::sort() function is applied
to an array of objects. In this case,operator<() is not implemented for the object typefoo,
which means thatfoo violates the requirements forLessThanComparable (as given in the
documentation forstd::sort()).

#include <algorithm>
class foo{ };
int main(int, char*[])
{

foo array of foo[10];
std::sort(array of foo, array of foo + 10);
return 0;
}

The resulting error message is difficult to understand and all but the most experienced
of C++ programmers would be hard pressed to deduce the actual programming error from
the error message. The error message does not mention the concept that was violated
(LessThanComparable) and it exposes many of the internal functions used instd::sort() .
In addition, the error message fails to indicate the line at which the error occurs—in this case,
the call tostd::sort() . The error looks like this:

http://www.sgi.com/tech/stl/sort.html
http://www.sgi.com/tech/stl/LessThanComparable.html
http://www.sgi.com/tech/stl/LessThanComparable.html

2.5. CONCEPT CHECKING 35

stl heap. h: In function void adjust heap<foo*, int, foo>(foo*, int, int, foo) :
stl heap. h:214: instantiated from make heap<foo*, foo, ptrdiff t>(foo*,

foo*, foo*, ptrdiff t*)
stl heap. h:225: instantiated from makeheap<foo*>(foo*, foo*)
stl algo. h:1562: instantiated from partial sort<foo*, foo>(foo*, foo*,

foo*, foo*)
stl algo. h:1574: instantiated from partialsort<foo*>(foo*, foo*, foo*)
stl algo. h:1279: instantiated from introsort loop<foo*, foo, int>(foo*,

foo*, foo*, int)
stl algo. h:1320: instantiated from here
stl heap. h:115: no match for foo & < foo &

2.5.1 Concept-Checking Classes

To overcome this problem we have developed a C++ idiom for up-front enforcement of con-
cept compliance, which we callconcept checking[39]. The supporting code for this id-
iom is available as the Boost Concept Checking Library (BCCL) [6]. For each concept, the
BCCL provides a concept-checking class, such as the following concept-checking class for
LessThanComparable. The required valid expressions for the concept are exercised in the
constraints() member function.

template<typename T>
struct LessThanComparableConcept{

void constraints() {
(bool)(a < b);
}
T a, b;
};

The concept-checking class is instantiated with the user’s template arguments at the beginning
of the generic algorithm using the BCCLfunction requires() .

#include <boost/ conceptcheck. hpp>
template<typename Iterator>
void safesort(Iterator first, Iterator last)
{

typedef typename std::iteratortraits<Iterator>::value type T;
function requires< LessThanComparableConcept<T> >();
// other requirements . . .
std::sort(first, last);
}

Now whensafesort() is misused the error message (listed below) is much more comprehen-
sible: the message is shorter, the point of error is indicated, the violated concept is listed, and
the internal functions of the algorithm are not exposed.

http://www.sgi.com/tech/stl/LessThanComparable.html

36 CHAPTER 2. GENERIC PROGRAMMING IN C++

boost/ conceptcheck. hpp: In method
void boost::LessThanComparableConcept<foo>::constraints() :

boost/ conceptcheck. hpp:31: instantiated from
boost::function requires<boost::LessThanComparableConcept<foo> >()

sort eg. cpp:11: instantiated from safesort<foo*>(foo*, foo*)
sort eg. cpp:21: instantiated from here

boost/ conceptcheck. hpp:260: no match for foo& < foo &

The Boost Graph Library uses concept checks to provide better error messages to users.
For each graph concept there is a corresponding concept-checking class defined in theboost/-
graph/graphconcepts.hppheader file. At the beginning of each BGL algorithm there are con-
cept checks for each of the parameters. Error messages originating fromgraph concepts.hpp
are a likely indication that one of the argument types given to an algorithm does not meet the
algorithm’s requirements for a concept.

2.5.2 Concept Archetypes

The complementary problem to concept checking is verifying whether the documented re-
quirements for a generic algorithm actually cover the algorithm’s implementation, a problem
we refer to asconcept covering. Typically, library implementors check for covering by man-
ual inspection, which of course is error prone. We have also developed a C++ idiom that
exploits the C++ compiler’s type checker [39] to automate this task. The code for concept
covering is also available as part of the Boost Concept Checking Library.

The BCCL provides anarchetype classfor each concept used in the Standard Library.
An archetype class provides a minimal implementation of a concept. To check whether a
concept covers an algorithm, the archetype class for the concept is instantiated and passed to
the algorithm.

The following example program attempts to verify that the requirements ofstd::sort()
are covered by an iterator that modelsRandomAccessIterator having a value type modeling
LessThanComparable.

#include <algorithm>
#include <boost/ conceptarchetype. hpp>
int main()
{

using namespace boost;
typedef lessthan comparablearchetype<> T;
random accessiterator archetype<T> ri ;
std::sort(ri , ri);
}

In fact, this program will not successfully compile because those concepts do not cover the
requirements thatstd::sort() makes of its template parameters. The resulting error message
indicates that the algorithm also requires that the value type beCopyConstructible.

http://www.sgi.com/tech/stl/RandomAccessIterator.html
http://www.sgi.com/tech/stl/LessThanComparable.html
http://www.sgi.com/tech/stl/CopyConstructible.html

2.6. THE BOOST NAMESPACE 37

null archetype(const null archetype<int> &) is private

Not only is the copy constructor needed, but the assignment operator is needed as well.
These requirements are summarized in theAssignable concept. The following code shows
the implementation of the archetype class forAssignable. The Base template parameter is
provided so that archetypes can be combined. For checkingstd::sort() , we would need to
combine the archetype classes forAssignable andLessThanComparable.

template<typename Base= null archetype<> >
class assignablearchetype : public Base{

typedef assignablearchetype self;
public:

assignablearchetype(const self&) { }
self& operator=(const self&) { return * this; }
};

The Boost Graph Library includes an archetype class for every graph concept in the header
file boost/graph/grapharchetypes.hpp. Test programs to verify the specification of each BGL
algorithm using the graph archetypes are located in thelibs/graph/test/directory.

2.6 The Boost Namespace

Like all other Boost libraries, every component of the BGL is defined in theboostnamespace
to avoid name clashes with other libraries or application programs. In this section we describe
how to access BGL classes and functions in theboostnamespace.

2.6.1 Classes

There are several ways to access BGL classes. The following code shows three ways to access
theadjacencylist class that is in theboostnamespace.

{ // Apply namespace prefix to access BGL classes
boost::adjacencylist<> g;
}
{ // Bring BGL class into current scope with using statement

using boost::adjacencylist;
adjacencylist<> g;
}
{ // Bring all Boost components into current scope

using namespace boost;
adjacencylist<> g;
}

For brevity and clarity of presentation, the example code in this book omits theboost::
prefix (that is, the code is presented as ifusing namespace boost;already appears in an enclos-

http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/LessThanComparable.html

38 CHAPTER 2. GENERIC PROGRAMMING IN C++

ing scope). For code using Boost libraries, we recommend using the explicitboost:: prefix in
header files, and either the namespace prefix or specificusingstatements in source files. We
caution against the blanketusing namespace boost;statement because this eliminates the pro-
tection against name clashes that is introduced by theboostnamespace. It is useful, however,
to write using statements in function scope because the danger of introducing name clashes
in such a limited scope is much reduced.

2.6.2 Koenig Lookup

Graph Operations

The BGL interface consists of overloaded functions defined for each graph type. For example,
thenum vertices() function has a single argument, the graph object, and returns the number of
vertices. This function is overloaded for each BGL graph class. Interestingly (and fortunately,
as we will see), overloaded functions may be called without qualifying the function name
with the namespace. Using a process calledKoenig lookupthe C++ compiler examines the
argument type and looks for overloaded functionsin the namespace of the argument type.2

The following example illustrates Koenig lookup. Consider the case of someone using
graph classes that are supplied by two different graph libraries. Each library has its own
namespace, inside of which is defined a graph class and anum vertices() function.

namespace libjack {
class graph{ /* . . . */ };
int num vertices(const graph&) { /* . . . */ }
}
namespace libjill {

class graph{ /* . . . */ };
int num vertices(const graph&) { /* . . . */ }
}

Suppose the user wants to apply some generic graph algorithm, sayboost::pail() , to both of
these graph types.

int main()
{

lib jack::graph g1;
boost::pail(g1);
lib jill::graph g2 ;
boost::pail(g2);
}

Inside of theboost::pail() there is a call tonum vertices() . The desired behavior in this
situation is that if a graph fromlib jack is used, thenlib jack::num vertices() gets called, but if

2Koenig lookup is named after its inventor, Andrew Koenig. It is sometimes called “argument dependent
lookup.”

2.7. NAMED FUNCTION PARAMETERS 39

the graph fromlib jill () is used, thenlib jill::num vertices() gets called.Koenig lookupis the
C++ language feature that provides this behavior. Provided the function call is not qualified
with a namespace, the C++ compiler will search the namespace of the arguments to find the
correct function to call.

namespace boost{
template<typename Graph>
void pail(Graph& g)
{

typename graphtraits<Graph>::vertices size type
N = num vertices(g); // Koenig lookup will resolve

// . . .
}
} // namespace boost

Graph Algorithms

The BGL graph algorithms differ from the graph operations in that they are function tem-
plates, not overloaded functions. Therefore, Koenig lookup doesnot apply to BGL graph
algorithms. As a result, BGL graph algorithms must be accessed using theboost:: namespace
prefix, or by using one of the other methods described in§2.6.1. For example, to call the
breadthfirst search() algorithm, theboost:: prefix is required, as shown:

boost::breadthfirst search(g, start, visitor(vis));

2.7 Named Function Parameters

Many BGL algorithms have long parameter lists to provide the maximum amount of flexi-
bility. However, in many situations this flexibility is not needed, and one would like to use
defaults for many of the parameters. For example, consider the following function template
having three parameters.

template<typename X, typename Y, typename Z>
void f(X x, Y y, Z z);

The user should be able to pass in zero or more arguments and the unspecified parameters
would use the defaults. The user might want to pass an argument for parametery but notx
or z. Some languages provide direct support for this with a feature callednamed parameters
(also sometimes calledkeyword parameters). Using named parameters, a label is used with
each argument to indicate to which parameter it is bound, replacing the normal convention
of binding arguments to parameters according to their order in the parameter list. If C++
supported named parameters, then one would be able to call functionf () in the following
way.

40 CHAPTER 2. GENERIC PROGRAMMING IN C++

int a;
int b;
f (z=b, x=a); // bind ’b’ to parameter ’z’, ’a’ to parameter ’x’

// and ’y’ gets its default argument

Of course, C++ does not support named parameters, but this feature can be approximated
using a little trickery. The BGL includes a class namedbgl namedparamsthat mimics named
parameters by allowing lists of parameters to be built up.3 The following code shows an ex-
ample of callingbellman ford shortestpaths() using the named parameter technique. Each
of the arguments is passed to a function whose name indicates to which parameter the argu-
ment should be bound. Note that named parameters are delimited by aperiod, not a comma.
bgl namedparams class is not explicitly referred to; it is created implicitly by the call to
weight map() , and then the argument list is extended by the calls todistancemap() andpre-
decessormap() .

bool r = boost::bellmanford shortestpaths(g, int(N),
boost::weightmap(weight).
distancemap(& distance[0]).
predecessormap(& parent[0]));

The order in which the arguments are provided is not important as long as each argument
is matched with the correct parameter function. The following is a call tobellman ford -
shortestpaths() that is equivalent to the one just shown.

bool r = boost::bellmanford shortestpaths(g, int(N),
boost::predecessormap(& parent[0]).
distancemap(& distance[0]).
weight map(weight));

3This is a generalization of idiom described in D&E [41].

Chapter 3

A BGL Tutorial

As discussed in the previous chapter,conceptsplay a central role in generic programming.
Concepts are the interface definitions that allow many different components to be used with
the same algorithm. The Boost Graph Library defines a large collection of concepts that cover
various aspects of working with a graph, such as traversing a graph or modifying its structure.
In this chapter we will introduce these concepts and also provide some motivation for the
choice of concepts in the BGL.

From the description of the generic programming process (see page19), concepts are
derived from the algorithms that are used to solve problems in particular domains. In this
chapter we examine the problem of tracking file dependencies in a build system. For each
subproblem, we examine generalizations that can be made to the solutions, with the goal of
increasing the reusability (the genericity) of the solution. The result, at the end of the chapter,
is a generic graph algorithm and its application to the file-dependency problem.

Along the way we will also cover some of the more mundane but necessary topics, such
as how to create a graph object and fill in the vertices and edges.

3.1 File Dependencies

A common use of the graph abstraction is to represent dependencies. One common type of
dependency that we programmers deal with on a routine basis is that of compilation depen-
dencies between files in programs that we write. Information about these dependencies is
used by programs such as make, or by IDEs such as Visual C++, to determine which files
must be recompiled to generate a new version of a program (or, in general, of some target)
after a change has been made to a source file.

Figure3.1shows a graph that has a vertex for each source file, object file, and library that
is used in thekillerapp program. An edge in the graph shows that a target depends on another
target in some way (such as a dependency due to inclusion of a header file in a source file, or
due to an object file being compiled from a source file).

41

42 CHAPTER 3. A BGL TUTORIAL

dax.h

bar.o foo.ozag.o

yow.hboz.h

zig.o

zow.hbar.cpp

libfoobar.a

foo.cppzig.cpp

libzigzag.a

zag.cpp

killerapp

Figure 3.1A graph representing file dependencies.

Answers to many of the questions that arise in creating a build system such as make can
be formulated in terms of the dependency graph. We might ask these questions:

• If all of the targets need to be made, in what order should that be accomplished?

• Are there any cycles in the dependencies? A dependency cycle is an error, and an
appropriate message should be emitted.

• How many steps are required to make all of the targets? How many steps are required
to make all of the targets if independent targets are made simultaneously in parallel
(using a network of workstations or a multiprocessor, for example)?

In the following sections these questions are posed in graph terms, and graph algorithms
are developed to provide solutions. The graph in Figure3.1 is used in all of the examples.

3.2 Graph Setup

Before addressing these questions directly, we must first find a way to represent the file-
dependency graph of Figure3.1 in memory. That is, we need to construct a BGL graph
object.

3.2. GRAPH SETUP 43

Deciding Which Graph Class To Use

There are several BGL graph classes from which to choose. Since BGL algorithms are
generic, they can also be used with any conforming user-defined graph class, but in this chap-
ter we will restrict our discussion to BGL graph classes. The principle BGL graph classes are
the adjacencylist andadjacencymatrix classes. Theadjacencylist class is a good choice for
most situations, particularly for representing sparse graphs. The file-dependencies graph has
only a few edges per vertex, so it is sparse. Theadjacencymatrix class is a good choice for
representing dense graphs, but a very bad choice for sparse graphs.

Theadjacencylist class is used exclusively in this chapter. However, most of what is pre-
sented here will also apply directly to theadjacencymatrix class because its interface is almost
identical to that of theadjacencylist class. Here we use the same variant ofadjacencylist as
was used in§1.4.1.

typedef adjacencylist<
listS, // Store out-edges of each vertex in a std::list
vecS, // Store vertex set in a std::vector
directedS // The file dependency graph is directed
> file dep graph;

Constructing a Graph Using Edge Iterators

In §1.2.4we showed how theadd vertex() andadd edge() functions can be used to create a
graph. Those functions add vertices and edges one at a time, but in many cases one would like
to add them all at once. To meet this need theadjacencylist graph class has a constructor that
takes two iterators that define a range of edges. The edge iterators can be anyInputIterator that
dereference to astd::pair of integers(i, j) that represent an edge in the graph. The two integers
i andj represent vertices where0 ≤ i < |V | and0 ≤ j < |V |. Then andm parameters
say how many vertices and edges will be in the graph. These parameters are optional, but
providing them improves the speed of graph construction. The graph properties parameter
p is attached to the graph object. The function prototype for the constructor that uses edge
iterators is as follows:

template<typename EdgeIterator>
adjacencylist(EdgeIterator first, EdgeIterator last,

verticessize type n = 0, edgessize type m = 0,
const GraphProperties& p = GraphProperties())

The following code demonstrates the use of the edge iterator constructor to create a graph.
Thestd::istreamiterator is used to make an input iterator that reads the edges in from the file.
The file contains the number of vertices in the graph, followed by pairs of numbers that specify
the edges. The second default-constructed input iterator is a placeholder for the end of the
input. Thestd::istreamiterator is passed directly into the constructor for the graph.

http://www.sgi.com/tech/stl/InputIterator.html

44 CHAPTER 3. A BGL TUTORIAL

std::ifstream file in(" makefile-dependencies.dat");
typedef graphtraits<file dep graph>::vertices size type sizetype;
size type n vertices;
file in >> n vertices; // read in number of vertices
std::istreamiterator<std::pair<size type, size type> > input begin(file in), input end;
file dep graph g(input begin, input end, n vertices);

Since the value type of thestd::istreamiterator is std::pair, an input operator needs to be de-
fined forstd::pair.

namespace std{
template<typename T>
std::istream& operator>>(std::istream& in, std::pair<T, T>& p) {

in >> p. first >> p. second;
return in;
}
}

3.3 Compilation Order

The first question that we address is that of specifying an order in which to build all of the
targets. The primary consideration here is ensuring that before building a given target, all the
targets that it depends on are already built. This is, in fact, the same problem as in§1.4.1,
scheduling a set of errands.

3.3.1 Topological Sort via DFS

As mentioned in§1.4.2, a topological ordering can be computed using a depth-first search
(DFS). To review, a DFS visits all of the vertices in a graph by starting at any vertex and then
choosing an edge to follow. At the next vertex another edge is chosen to follow. This pro-
cess continues until a dead end (a vertex with no out-edges that lead to a vertex not already
discovered) is reached. The algorithm then backtracks to the last discovered vertex that is
adjacent to a vertex that is not yet discovered. Once all vertices reachable from the starting
vertex are explored, one of the remaining unexplored vertices is chosen and the search contin-
ues from there. The edges traversed during each of these separate searches form adepth-first
tree; and all the searches form adepth-first forest. A depth-first forest for a given graph is not
unique; there are typically several valid DFS forests for a graph because the order in which
the adjacent vertices are visited is not specified. Each unique ordering creates a different DFS
tree.

Two useful metrics in a DFS are thediscover timeandfinish timeof a vertex. Imagine
that there is an integer counter that starts at zero. Every time a vertex is first visited, the value
of the counter is recorded as the discover time for that vertex and the value of the counter
is incremented. Likewise, once all of the vertices reachable from a given vertex have been

3.3. COMPILATION ORDER 45

visited, then that vertex is finished. The current value of the counter is recorded as the finish
time for that vertex and the counter is incremented. The discover time of a parent in a DFS
tree is always earlier than the discover time of a child. Similarly, the finish time of a parent
is always later than the finish time of a child. Figure3.2shows a depth-first search of the file
dependency graph, with the tree edges marked with black lines and with the vertices labeled
with their discover and finish times (written as discover/finish).

dax.h 1/14

bar.o 2/9 foo.o 10/11zag.o 12/13

yow.h 15/16boz.h 17/20

zig.o 18/19

zow.h 21/22bar.cpp 23/24

libfoobar.a 3/8

foo.cpp 25/26zig.cpp 27/28

libzigzag.a 4/7

zag.cpp 29/30

killerapp 5/6

Figure 3.2A depth-first search of the file dependency graph. The DFS tree is marked by the
black lines, and each vertex is labeled with its discover and finish time.

The relationship between topological ordering and DFS can be explained by considering
three different cases at the point in the DFS when an edge(u, v) is examined. For each case,
the finish time ofv is always earlier than the finish time ofu. Thus, the finish time is simply
the topological ordering (in reverse).

1. Vertexv is not yet discovered. This means thatv will become a descendant ofu and will
therefore end up with a finish time earlier thanu because DFS finishes all descendants
of u before finishingu.

2. Vertexv was discovered in an earlier DFS tree. Therefore, the finish time ofv must be
earlier than that ofu.

3. Vertexv was discovered earlier in the current DFS-tree. If this case occurs, the graph
contains a cycle and a topological ordering of the graph is not possible. Acycle is a
path of edges such that the first vertex and last vertex of the path are the same vertex.

46 CHAPTER 3. A BGL TUTORIAL

The main part of the depth first search is a recursive algorithm that calls itself on each
adjacent vertex. We will create a function namedtopo sort dfs() that will implement a depth-
first search modified to compute a topological ordering. This first version of the function will
be a straightforward, nongeneric function. In the following sections we will make modifica-
tions that will finally result in a generic algorithm.

The parameters totopo sort dfs() include the graph, the starting vertex, a pointer to an
array to record the topological order, and an array for recording which vertices have been
visited. Thetopo order pointer starts at the end of the array and then decrements to obtain the
topological ordering from the reverse topological ordering. Note thattopo order is passed by
reference so that the decrement made to it in each recursive call modifies the original object
(if topo order were instead passed by value, the decrement would happen instead to a copy of
the original object).

void
topo sort dfs(const file dep graph& g, vertex t u, vertex t*& topo order, int* mark)
{

mark[u] = 1; // 1 means visited, 0 means not yet visited
〈For each adjacent vertex, make recursive call47〉
*−−topo order = u;
}

Thevertex t type andedget types are the vertex and edge descriptors for thefile depgraph.

typedef graphtraits<file dep graph>::vertex descriptor vertext;
typedef graphtraits<file dep graph>::edge descriptor edget;

3.3.2 Marking Vertices using External Properties

Each vertex should be visited only once during the search. To record whether a vertex has
been visited, we can mark it by creating an array that stores the mark for each vertex. In
general, we use the termexternal property storageto refer to the technique of storing vertex
or edge properties (marks are one such property) in a data structure like an array or hash table
that is separate from the graph object (i.e., that isexternalto the graph). Property values are
looked up based on some key that can be easily obtained from a vertex or edge descriptor. In
this example, we use a version ofadjacencylist where the the vertex descriptors are integers
from zero tonum vertices(g) - 1. As a result, the vertex descriptors themselves can be used as
indexes into the mark array.

3.3.3 Accessing Adjacent Vertices

In the topo sort dfs() function we need to access all the vertices adjacent to the vertex u.
The BGL conceptAdjacencyGraph defines the interface for accessing adjacent vertices. The
function adjacentvertices() takes a vertex and graph object as arguments and returns a pair

3.3. COMPILATION ORDER 47

of iterators whose value type is a vertex descriptor. The first iterator points to the first ad-
jacent vertex, and the second iterator points past the end of the last adjacent vertex. The
adjacent vertices are not necessarily ordered in any way. The type of the iterators is theadja-
cencyiterator type obtained from thegraph traits class. The reference section foradjacencylist
(§14.1.1) reveals that the graph type we are using,adjacencylist, models theAdjacencyGraph
concept. We may therefore correctly use the functionadjacentvertices() with our file depen-
dency graph. The code for traversing the adjacent vertices intopo sort dfs() follows.

〈 For each adjacent vertex, make recursive call47 〉 ≡
graph traits<file dep graph>::adjacency iterator vi, vi end;
for (tie(vi, vi end) = adjacentvertices(u, g); vi != vi end; ++ vi)

if (mark[* vi] == 0)
topo sort dfs(g, * vi, topo order, mark);

3.3.4 Traversing All the Vertices

One way to ensure that an ordering is obtained for every vertex in the graph (and not just those
vertices reachable from a particular starting vertex) is to surround the call totopo sort dfs()
with a loop through every vertex in the graph. The interface for traversing all the vertices in a
graph is defined in theVertexListGraph concept. Thevertices() function takes a graph object
and returns a pair of vertex iterators. The loop through all the vertices and the creation of the
mark array is encapsulated in a function calledtopo sort() .

void toposort(const file dep graph& g, vertex t* topo order)
{

std::vector<int> mark(num vertices(g), 0);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

if (mark[* vi] == 0)
topo sort dfs(g, * vi, topo order, & mark[0]);

}

To make the output fromtopo sort() more user friendly, we will need to convert the vertex
integers to their associated target names. We have the list of target names stored in a file (in
the order that matches the vertex number) so we read in this file and store the names in an
array, which we will then use when printing the names of the vertices.

std::vector<std::string> name(num vertices(g));
std::ifstream namein(" makefile-target-names.dat");
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

name in >> name[* vi];

Now we create the order array to store the results and then apply the topological sort function.

48 CHAPTER 3. A BGL TUTORIAL

std::vector<vertex t> order(num vertices(g));
topo sort(g, & order[0] + num vertices(g));
for (int i = 0; i < num vertices(g); ++ i)

std::cout << name[order[i]] << std::endl;

The output is

zag. cpp
zig. cpp
foo. cpp
bar. cpp
zow. h
boz. h
zig. o
yow. h
dax. h
zag. o
foo. o
bar. o
libfoobar. a
libzigzag. a
killerapp

3.4 Cyclic Dependencies

One important assumption in the last section is that the file dependency graph does not have
any cycles. As stated in§3.3.1, a graph with cycles does not have a topological ordering. A
well-formed makefile will have no cycles, but errors do occur, and our build system should
be able to catch and report such errors.

Depth-first search can also be used for the problem of detecting cycles. If DFS is applied
to a graph that has a cycle, then one of the branches of a DFS tree will loop back on itself.
That is, there will be an edge from a vertex to one of its ancestors in the tree. This kind of edge
is called aback edge. This occurrence can be detected if we change how we mark vertices.
Instead of marking each vertex as visited or not visited, we use a three-way coloring scheme:
white means undiscovered, gray means discovered but still searching descendants, and black
means the vertex and all of its descendants have been discovered. Three-way coloring is
useful for several graph algorithms, so the header fileboost/graph/properties.hppdefines the
following enumerated type.

enum default color type { white color, gray color, black color };

A cycle in the graph is then identified by an adjacent vertex that is gray, meaning that an edge
is looping back to an ancestor. The following code is a version of DFS instrumented to detect
cycles.

3.5. TOWARD A GENERIC DFS: VISITORS 49

bool hascycle dfs(const file dep graph& g, vertex t u, default color type* color)
{

color[u] = gray color;
graph traits<file dep graph>::adjacency iterator vi, vi end;
for (tie(vi, vi end) = adjacentvertices(u, g); vi != vi end; ++ vi)

if (color[* vi] == white color)
if (has cycle dfs(g, * vi, color))

return true; // cycle detected, return immediately
else if (color[* vi] == gray color) // *vi is an ancestor!

return true;
color[u] = black color;
return false;
}

As with the topological sort, in thehas cycle() function the recursive DFS function call is
placed inside of a loop through all of the vertices so that we catch all of the DFS trees in the
graph.

bool hascycle(const file dep graph& g)
{

std::vector<default color type> color(num vertices(g), white color);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

if (color[* vi] == white color)
if (has cycle dfs(g, * vi, & color[0]))

return true;
return false;
}

3.5 Toward a Generic DFS: Visitors

At this point we have completed two functions,topo sort() andhas cycle() , each of which
is implemented using depth-first search, although in slightly different ways. However, the
fundamental similarities between the two functions provide an excellent opportunity for code
reuse. It would be much better if we had a single generic algorithm for depth-first search that
expresses the commonality betweentopo sort() andhas cycle() and then used parameters to
customize the DFS for each of the different problems.

The design of the STL gives us a hint for how to create a suitably parameterized DFS al-
gorithm. Many of the STL algorithms can be customized by providing a user-defined function
object. In the same way, we would like to parameterize DFS in such a way thattopo sort()
andhas cycle() can be realized by passing in a function object.

Unfortunately, the situation here is a little more complicated than in typical STL algo-
rithms. In particular, there are several different locations in the DFS algorithm where cus-
tomized actions must occur. For instance, thetopo sort() function records the ordering at the

50 CHAPTER 3. A BGL TUTORIAL

bottom of the recursive function, whereas thehas cycle() function needs to insert an operation
inside the loop that examines the adjacent vertices.

The solution to this problem is to use a function object with more than one callback
member function. Instead of a singleoperator() function, we use a class with several mem-
ber functions that are called at different locations (we refer to these places asevent points).
This kind of function object is called analgorithm visitor. The DFS visitor will have five
member functions:discoververtex() , tree edge() , back edge() , forward or crossedge() , and
finish vertex() . Also, instead of iterating over the adjacent vertices, we iterator over out-edges
to allows passing edge descriptors to the visitor functions and thereby provide more informa-
tion to the user-defined visitor. This code for a DFS function has a template parameter for a
visitor:

template<typename Visitor>
void dfs v1(const file dep graph& g, vertex t u, default color type* color, Visitor vis)
{

color[u] = gray color;
vis. discoververtex(u, g);
graph traits<file dep graph>::out edgeiterator ei, ei end;
for (tie(ei, ei end) = out edges(u, g); ei != ei end; ++ ei) {

if (color[target(* ei, g)] == white color) {
vis. tree edge(* ei, g);
dfs v1(g, target(* ei, g), color, vis);
} else if (color[target(* ei, g)] == gray color)

vis. back edge(* ei, g);
else

vis. forward or crossedge(* ei, g);
}
color[u] = black color;
vis. finish vertex(u, g);
}

template<typename Visitor>
void genericdfs v1(const file dep graph& g, Visitor vis)
{

std::vector<default color type> color(num vertices(g), white color);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi) {

if (color[* vi] == white color)
dfs v1(g, * vi, & color[0], vis);

}
}

The five member functions of the visitor provide the flexibility we need, but a user that
only wants to add one action should not have to write four empty member functions. This is
easily solved by creating a default visitor from which user-defined visitors can be derived.

3.5. TOWARD A GENERIC DFS: VISITORS 51

struct default dfs visitor {
template<typename V, typename G>
void discoververtex(V, const G&) { }

template<typename E, typename G>
void treeedge(E, const G&) { }

template<typename E, typename G>
void backedge(E, const G&) { }

template<typename E, typename G>
void forward or crossedge(E, const G&) { }

template<typename V, typename G>
void finish vertex(V, const G&) { }
};

To demonstrate that this generic DFS can solve our problems, we reimplement the
topo sort() andhas cycle() functions. First we need to create a visitor that records the topo-
logical ordering on the “finish vertex” event point. The code for this visitor follows.

struct topovisitor : public default dfs visitor {
topo visitor(vertex t*& order) : topo order(order) { }
void finish vertex(vertex t u, const file dep graph&) {

*−−topo order = u;
}
vertex t*& topo order;
};

Only two lines of code are required in the body oftopo sort() when implemented using
generic DFS. One line creates the visitor object and one line calls the generic DFS.

void toposort(const file dep graph& g, vertex t* topo order)
{

topo visitor vis(topo order);
generic dfs v1(g, vis);
}

To reimplement thehas cycle() function, we use a visitor that records that the graph has
a cycle whenever the back edge event point occurs.

struct cycledetector : public defaultdfs visitor {
cycle detector(bool& cycle) : has cycle(cycle) { }
void backedge(edget, const file dep graph&) {

has cycle = true;
}
bool& has cycle;
};

52 CHAPTER 3. A BGL TUTORIAL

The newhas cycle() function creates a cycle detector object and passes it to the generic DFS.

bool hascycle(const file dep graph& g)
{

bool hascycle = false;
cycle detector vis(has cycle);
generic dfs v1(g, vis);
return has cycle;
}

3.6 Graph Setup: Internal Properties

Before addressing the next question about file dependencies, we are going to take some time
out to switch to a different graph type. In the previous sections we used arrays to store
information such as vertex names. When vertex or edge properties have the same lifetime as
the graph object, it can be more convenient to have the properties somehow embedded in the
graph itself (we call theseinternal properties). If you were writing your own graph class you
might add data members for these properties to a vertex or edge struct.

The adjacencylist class has template parameters that allow arbitrary properties to be at-
tached to the vertices and edge: theVertexPropertiesandEdgePropertiesparameters. These
template parameters expect the argument types to be theproperty<Tag, T> class, whereTag
is a type that specifies the property andT gives the type of the property object. There are a
number of predefined property tags (see§15.2.3) such asvertexname t andedgeweight t. For
example, if you want to attach astd::string to each vertex to represent its name, then use the
following property type:

property<vertex name t, std::string>

If the predefined property tags do not meet your needs, you can create a new one. One way to
do this is to define an enumerated type namedvertexxxx t or edgexxx t that contains an enum
value with the same name minus thet and give the enum value a unique number. Then use
BOOSTINSTALL PROPERTYto create the required specializations of thepropertykind and
propertynum traits classes.1 In the next section we will be assigning a compile-time cost to
each vertex so that we can determine how long the total compile will take.

namespace boost{
enum vertexcompile cost t { vertex compile cost = 111 }; // a unique #
BOOST INSTALL PROPERTY(vertex, compile cost);
}

Thepropertyclass has an optional third parameter that can be used to nest multipleproperty
classes thereby attaching multiple properties to each vertex or edge. Here we create a new
typedef for the graph, this time adding two vertex properties and an edge property.

1Defining new property tags would be much simpler if more C++ compilers were standards conformant.

3.6. GRAPH SETUP: INTERNAL PROPERTIES 53

typedef adjacencylist<
listS, // Store out-edges of each vertex in a std::list
listS, // Store vertex set in a std::list
directedS, // The file dependency graph is directed
// vertex properties
property<vertex name t, std::string,

property<vertex compile cost t, float,
property<vertex distancet, float,

property<vertex color t, default color type> > > >,
// an edge property
property<edgeweight t, float>
> file dep graph2;

We have also changed the second template argument toadjacencylist from vecSto listS.
This has some important implications. If we were to remove a vertex from the graph it would
happen in constant time (withvecSthe vertex removal time is linear in the number of vertices
and edges). On the down side, the vertex descriptor type is no longer an integer, so storing
properties in arrays and using the vertex as an offset will no longer work. However, the
separate storage is no longer needed because we now have the vertex properties stored in the
graph.

In §1.2.2we introduced the notion of a property map. To review, a property map is an
object that can be used to map from a key (such as a vertex) to a value (such as a vertex
name). When properties have been specified for anadjacencylist (as we have just done),
property maps for these properties can be obtained using thePropertyGraph interface. The
following code shows an example of obtaining two property maps: one for vertex names and
another for compile time cost. Thepropertymap traits class provides the type of the property
map.

typedef propertymap<file dep graph2, vertex name t>::type namemap t;
typedef propertymap<file dep graph2, vertex compile cost t>::type

compile cost map t;
typedef propertymap<file dep graph2, vertex distancet>::type distancemap t;
typedef propertymap<file dep graph2, vertex color t>::type color map t;

Theget() function returns a property map object.

name map t name map = get(vertex name, g);
compile cost map t compile cost map = get(vertex compile cost, g);
distancemap t distancemap = get(vertex distance, g);
color map t color map = get(vertex color, g);

There will be another file containing the estimated compile time for each makefile target. We
read this file using astd::ifstreamand write the properties into the graph using the property
maps,namemap and compilecostmap. These property maps are models ofLvalueProper-
tyMap so they have anoperator[]() that maps from vertex descriptors to a reference to the
appriopriate vertex property object.

54 CHAPTER 3. A BGL TUTORIAL

std::ifstream namein(" makefile-target-names.dat");
std::ifstream compilecost in(" target-compile-costs.dat");
graph traits<file dep graph2>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi) {

name in >> name map[* vi];
compile cost in >> compile cost map[* vi];
}

In the following sections we will modify the topological sort and DFS functions to use the
property map interface to access vertex properties instead of hard-coding access with a pointer
to an array.

3.7 Compilation Time

The next questions we need to answer are, “How long will a compile take?” and “How
long will a compile take on a parallel computer?” The first question is easy to answer. We
simply sum the compile time for all the vertices in the graph. Just for fun, we will do this
computation using thestd::accumulatefunction. To use this function we need iterators that,
when dereferenced, yield the compile cost for the vertex. The vertex iterators of the graph do
not provide this capability. When dereferenced, they yield vertex descriptors. Instead, we use
thegraph property iter rangeclass (see§16.8) to generate the appropriate iterators.

graph property iter range<file dep graph2, vertex compile cost t>::iterator ci, ci end;
tie(ci, ci end) = get property iter range(g, vertex compile cost);
std::cout << " total (sequential) compile time:"

<< std::accumulate(ci, ci end, 0.0) << std::endl;

The output of the code sequence is

total (sequential) compile time: 21.3

Now suppose we have a parallel super computer with hundreds of processors. If there are
build targets that do not depend on each other, then they can be compiled at the same time
on different processors. How long will the compile take now? To answer this, we need to
determine the critical path through the file dependency graph. Or, to put it another way, we
need to find the longest path through the graph.

The black lines in Figure3.3 show the file dependency oflibfoobar.a. Suppose that we
have already determined whenbar.o and foo.o will finish compiling. Then the compile time
for libfoobar.a will be the larger of the times forbar.o andfoo.o plus the cost for linking them
together to form the library file.

Now that we know how to compute the “distance” for each vertex, in what order should
we go through the vertices? Certainly if there is an edge(u, v) in the graph, then we better
compute the distance foru beforev because computing the distance tov requires the distance
to u. This should sound familiar. We need to consider the vertices in topological order.

3.8. A GENERIC TOPOLOGICAL SORT AND DFS 55

dax.h

bar.o foo.ozag.o

yow.hboz.h

zig.o

zow.hbar.cpp

libfoobar.a

foo.cppzig.cpp

libzigzag.a

zag.cpp

killerapp

Figure 3.3Compile time contributions tolibfoobar.a.

3.8 A Generic Topological Sort and DFS

Due to the change in graph type (fromfile depgraph to file depgraph2) we can no longer use
the topo sort() function that we developed in§3.4. Not only does the graph type not match,
but also thecolor array used inside ofgenericdfs v1() relies on the fact that vertex descriptors
are integers (which is not true forfile depgraph2). These problems give us an opportunity to
create an even more generic version of topological sort and the underlying DFS. We will
parameterize thetopo sort() function in the following way.

• The specific typefile depgraph will be replaced by the template parameterGraph.
Merely changing to a template parameter does not help us unless there is a standard
interface shared by all the graph types that we wish to use with the algorithm. This is
where the BGL graph traversal concepts come in. Fortopo sort() we will need a graph
type that models theVertexListGraph andIncidenceGraph concepts.

• Using avertex t* for the ordering output is overly restrictive. A more generalized way
to output a sequence of elements is to use an output iterator, just as the algorithms in
the C++ Standard Library do. This gives the user much more options in terms of where
to store the results.

• We need to add a parameter for the color map. To make this as general as possible, we
only want to require what isessential. In this case, thetopo sort() function needs to be
able to map from a vertex descriptor to a marker object for that vertex. The Boost Prop-
erty Map Library (see Chapter15) defines a minimalistic interface for performing this

56 CHAPTER 3. A BGL TUTORIAL

mapping. Here we will use theLvaluePropertyMap interface. The internalcolor map
that we obtained from the graph in§3.6 implements theLvaluePropertyMap interface,
as does the color array we used in§3.3.4. A pointer to an array of color markers can be
used as a property map because there are function overloads inboost/propertymap.hpp
that adapt pointers to satisfy theLvaluePropertyMap interface.

The following is the implementation of our generictopo sort() . The topo visitor and
genericdfs v2() will be discussed next.

template<typename Graph, typename OutputIterator, typename ColorMap>
void toposort(const Graph& g, OutputIterator topoorder, ColorMap color)
{

topo visitor<OutputIterator> vis(topo order);
generic dfs v2(g, vis, color);
}

The topo visitor class is now a class template to accommodate the output iterator. Instead of
decrementing, we now increment the output iterator (decrementing an output iterator is not
allowed). To get the same reversal behavior as in the first version oftopo sort() , the user can
pass in a reverse iterator or something like a front insert iterator for a list.

template<typename OutputIterator>
struct topovisitor : public default dfs visitor {

topo visitor(OutputIterator& order) : topo order(order) { }
template<typename Graph>
void finish vertex(typename graphtraits<Graph>::vertex descriptor u, const Graph&)
{ * topo order++ = u; }

OutputIterator& topo order;
};

The generic DFS will change in a similar fashion, with the graph type and color map be-
coming parameterized. In addition, we do nota priori know the color type, so we must get the
color type by asking theColorMap for its value type (though theproperty traits class). Instead
of using constants such aswhite color, we use the color functions defined incolor traits.

template<typename Graph, typename Visitor, typename ColorMap>
void genericdfs v2(const Graph& g, Visitor vis, ColorMap color)
{

typedef colortraits<typename propertytraits<ColorMap>::value type> ColorT;
typename graphtraits<Graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

color[* vi] = ColorT::white();
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

if (color[* vi] == ColorT::white())
dfs v2(g, * vi, color, vis);

}

3.9. PARALLEL COMPILATION TIME 57

The logic from thedfs v1 will not need to change; however, there are a few small changes
required due to making the graph type parameterized. Instead of hard-codingvertex t as the
vertex descriptor type, we extract the appropriate vertex descriptor from the graph type using
graph traits. The fully generic DFS function follows. This function is essentially the same as
the BGLdepthfirst visit() .

template<typename Graph, typename ColorMap, typename Visitor>
void dfs v2(const Graph& g,

typename graphtraits<Graph>::vertex descriptor u,
ColorMap color, Visitor vis)
{

typedef typename propertytraits<ColorMap>::value type color type;
typedef colortraits<color type> ColorT;
color[u] = ColorT::gray();
vis. discoververtex(u, g);
typename graphtraits<Graph>::out edgeiterator ei, ei end;
for (tie(ei, ei end) = out edges(u, g); ei != ei end; ++ ei)

if (color[target(* ei, g)] == ColorT::white()) {
vis. tree edge(* ei, g);
dfs v2(g, target(* ei, g), color, vis);
} else if (color[target(* ei, g)] == ColorT::gray())

vis. back edge(* ei, g);
else

vis. forward or crossedge(* ei, g);
color[u] = ColorT::black();
vis. finish vertex(u, g);
}

The real BGLdepthfirst search() andtopological sort() functions are quite similar to the
generic functions that we developed in this section. We give a detailed example of using the
BGL depthfirst search() function in §4.2, and the documentation fordepthfirst search() is
in §13.2.3. The documentation fortopological sort() is in §13.2.5.

3.9 Parallel Compilation Time

Now that we have a generic topological sort and DFS, we are ready to solve the problem
of finding how long the compilation will take on a parallel computer. First, we perform a
topological sort, storing the results in thetopo order vector. We pass the reverse iterator of
the vector intotopo sort() so that we end up with the topological order (and not the reverse
topological order).

std::vector<vertex t> topo order(num vertices(g));
topo sort(g, topo order. rbegin(), color map);

58 CHAPTER 3. A BGL TUTORIAL

Before calculating the compile times we need to set up the distance map (which we are
using to store the compile time totals). For vertices that have no incoming edges (we call these
source vertices), we initialize their distance to zero because compilation of these makefile
targets can start right away. All other vertices are given a distance of infinity. We find the
source vertices by marking all vertices that have incoming edges.

graph traits<file dep graph2>::vertex iterator i, i end;
graph traits<file dep graph2>::adjacency iterator vi, vi end;

// find source vertices with zero in-degree by marking all vertices with incoming edges
for (tie(i, i end) = vertices(g); i != i end; ++ i)

color map[* i] = white color;
for (tie(i, i end) = vertices(g); i != i end; ++ i)

for (tie(vi, vi end) = adjacentvertices(* i, g); vi != vi end; ++ vi)
color map[* vi] = black color;

// initialize distances to zero, or for source vertices, to the compile cost
for (tie(i, i end) = vertices(g); i != i end; ++ i)

if (color map[* i] == white color)
distancemap[* i] = compile cost map[* i];

else
distancemap[* i] = 0;

Now we are ready to compute the distances. We go through all of the vertices stored
in topo order, and for each one we update the distance (total compile time) for each adjacent
vertex. What we are doing here is somewhat different than what was described earlier. Before,
we talked about each vertex looking “up” the graph to compute its distance. Here, we have
reformulated the computation so that instead we are pushing distances “down” the graph. The
reason for this change is that looking “up” the graph would require access to in-edges, which
our graph type does not provide.

std::vector<vertex t>::iterator ui ;
for (ui = topo order. begin(); ui != topo order. end(); ++ ui) {

vertex t u = * ui;
for (tie(vi, vi end) = adjacentvertices(u, g); vi != vi end; ++ vi)

if (distancemap[* vi] < distancemap[u] + compile cost map[* vi])
distancemap[* vi] = distancemap[u] + compile cost map[* vi];

}

The maximum distance value from among all the vertices will tell us the total parallel compile
time. Again we will usegraph property iter range to create property iterators over vertex
distances. Thestd::max element() function will do the work of locating the maximum.

graph property iter range<file dep graph2, vertex distancet>::iterator ci, ci end;
tie(ci, ci end) = get property iter range(g, vertex distance);
std::cout << " total (parallel) compile time:"

<< * std::max element(ci, ci end) << std::endl;

3.10. SUMMARY 59

The output is

total (parallel) compile time: 11.9

Figure3.4 shows two numbers for each makefile target: the compile cost for the target and
the time at which the target will finish compiling during a parallel compile.

dax.h [0, 0]

bar.o [1.5, 1.5] foo.o [2.8, 2.8]zag.o [8.7, 8.7]

yow.h [0, 0]boz.h [0, 0]

zig.o [3.6, 3.6]

zow.h [0, 0]bar.cpp [0, 0]

libfoobar.a [1.5, 4.3]

foo.cpp [0, 0]zig.cpp [0, 0]

libzigzag.a [1.1, 9.8]

zag.cpp [0, 0]

killerapp [2.1, 11.9]

Figure 3.4 For each vertex there are two numbers: compile cost and accumulated compile
time. The critical path consists of black lines.

3.10 Summary

In this chapter we have applied BGL to answer several questions that would come up in
constructing a software build system: In what order should targets be built? Are there any
cyclic dependencies? How long will compilation take? In answering these questions we
looked at topological ordering of a directed graph and how this can be computed via a depth-
first search.

To implement the solutions we used the BGLadjacencylist to represent the file depen-
dency graph. We wrote straightforward implementations of topological sort and cycle de-

60 CHAPTER 3. A BGL TUTORIAL

tection. We then identified common pieces of code and factored them out into a generic
implementation of depth-first search. We used algorithm visitors to parameterize the DFS
and then wrote specific visitors to implement the topological sort and the cycle detection.

We then looked at using a different variation of theadjacencylist class that allowed prop-
erties such as vertex name and compile cost to be attached to the vertices of the graph. We
then further generalized the generic DFS by parameterizing the graph type and the property
access method. The chapter finished with an application of the generic topological sort and
DFS to compute the time it would take to compile all the targets on a parallel computer.

Chapter 4

Basic Graph Algorithms

4.1 Breadth-First Search

Breadth-first search (BFS) is a fundamental technique for discovering information about a
graph that can be applied to many different problems. The BGL provides a generic imple-
mentation of BFS in thebreadthfirst search() algorithm. This function template is param-
eterized so that it can be used in many situations. In this section, we describe breadth-first
search and show how to use BFS to calculateBacon Numbers.

4.1.1 Definitions

Breadth-first search is a traversal through a graph that discovers all of the vertices reachable
from a given source vertex. The order in which the vertices are discovered is determined
by the distance from the source vertex to each vertex, with closer vertices being discovered
before more distant vertices.

One way to think of breadth-first search is that it expands like the wave that emanates from
a stone dropped into a pool of water. Vertices in the same “wave” are at the same distance
from the source vertex. Figure4.1 illustrates the application of BFS to a simple graph. The
BFS discovery order for the vertices in Figure4.1is {d}{f, g}{c, h, b, e}{a} (the vertices are
grouped according to their distance from the source vertexd).

When a vertexv is discovered, the edge(u, v) that led to its discovery is called atree
edge. All of the tree edges together form abreadth-first treewith the source vertex as the root
of the tree. Given a tree edge(u, v), vertexu is called thepredecessoror parentof v. The
tree edges in Figure4.1are indicated by the black lines, and non-tree edges are the gray lines.

The vertices in Figure4.1 are labeled with theirshortest-path distancefrom the source
vertexd. The shortest-path distanceδ(s, v) from some vertexs to vertexv is the the minimum
number of edges in any path connectings to v. A shortest pathis a path whose length is
equal toδ(s, v) (there can be more than one shortest path between two vertices). The main

61

62 CHAPTER 4. BASIC GRAPH ALGORITHMS

a/3 b/2

c/2

g/1 e/2

f/1

d/0

h/2

Figure 4.1Breadth-first search spreading through a graph. The BFS tree consists of the black
lines.

characteristic of breadth-first search is that vertices with smaller shortest-path distances are
discovered before vertices with larget distances.

Chapter5 presents shortest-path computations where the path length is determined by the
sum of weights assigned to edges in the path, not simply by the the number of edges in the
path.

4.1.2 Six Degrees of Kevin Bacon

An amusing application of breadth-first search comes up in the popular game “Six Degrees
of Kevin Bacon.” The idea of the game is to connect an actor1 to Kevin Bacon through a trail
of actors who appeared together in movies, and do so in less than six steps. For example,
Theodore Hesburgh (President Emeritus of the University of Notre Dame) was in the movie
Rudywith the actor Gerry Becker, who was in the movieSleeperswith Kevin Bacon. Why
Kevin Bacon? For some reason, the three students who invented the game, Mike Ginelli,
Craig Fass, and Brian Turtle, decided that Kevin Bacon was the center of the entertainment
world. Mathematicians play a similar game; they keep track of theirErdös numberwhich is
the number of co-authored publications that separate them from the famous Paul Erdös.

The “Six Degrees of Kevin Bacon” game is really a graph problem. The graph represent-
ing the problem can be modeled by assigning a vertex for each actor and creating an edge
between two vertices if the corresponding actors have appeared together in a movie. Since
the relationship between actors appearing together in a movie is symmetric, edges between
actors can be undirected, resulting in an undirected graph.

1We use the termactor generically to mean both actors and actresses.

4.1. BREADTH-FIRST SEARCH 63

The problem of finding a trail of actors to Kevin Bacon becomes a traditional graph
problem—that of finding apath between two vertices. Since we wish to find a path that
is shorter than six steps, ideally we would like to find theshortest pathbetween the vertices.
As mentioned in the previous section, breadth-first search can be used to find shortest paths.
Similar to the Erd̈os number, we will use the termBacon numberto mean the shortest path
length from a given actor to Kevin Bacon. In the following example we will show how to use
the BGLbreadthfirst search() function to calculate Bacon numbers for a collection of actors.

Input File and Graph Setup

For this example, we will use a small subset of the movies and actors from the Internet Movie
Data Base.2 The fileexample/kevinbacon.datcontains a list of actor pairs who appeared in the
same movie. As shown in the following excerpt, each line of the file contains an actor’s name,
a movie, and another actor that appeared in the movie. A semicolon is used as a separator.

Patrick Stewart; Prince of Egypt, The (1998); Steve Martin

Our first task will be to read in the file and create a graph from it. We use astd::ifstream to
input the file.

std::ifstream datafile(" ./kevin-bacon.dat");
if (! datafile) {

std::cerr << " No ./kevin-bacon.dat file" << std::endl;
return EXIT FAILURE ;
}

An adjacencylist is used to represent the graph, andundirectedSis used to indicate that it is
undirected. As in§3.6, to attach the actors’ names to the vertices and the movie names to the
edges, thepropertyclass is used to specify the addition of these vertex and edge properties.

typedef adjacencylist<vecS, vecS, undirectedS, property<vertex name t, std::string>,
property<edgename t, std::string> > Graph;

Graph g;

To access the properties, property map objects will need to be obtained from the graph. The
following code establishes these maps, which will be used later with vertex and edge descrip-
tors to access the associated vertex or edge name.

typedef propertymap<Graph, vertex name t>::type actor name map t;
actor name map t actor name = get(vertex name, g);
typedef propertymap<Graph, edgename t>::type moviename map t;
movie name map t connectingmovie = get(edgename, g);

The file is read one line at a time and parsed into a list of tokens separated by semicolons.
TheBoost Tokenizer Libraryis used to create a “virtual” container of tokens.

2TheInternet Movie DataBaseis used by the CS department at the University of Virginia to supply the graph
for theirOracle of Bacon.

http://www.boost.org/libs/tokenizer/index.htm
http://www.imdb.com
http://www.cs.virginia.edu/oracle/

64 CHAPTER 4. BASIC GRAPH ALGORITHMS

for (std::string line; std::getline(datafile, line);) {
char delimiters separator<char> sep(false, "" , " ;");
tokenizer<> line toks(line, sep);
tokenizer<>::iterator i = line toks. begin();
〈Get first actor name and add vertex to graph64〉
〈Store the movie name to a variable65a〉
〈Get second actor and add to graph65b〉
〈Add edge connecting the two actors to the graph65c〉
}

Each line of the input corresponds to an edge in the graph that is incident to the two vertices
specified by the names of two actors. The name of the movie is attached to the edge as a
property. One issue in creating the graph from this file format is that it is a stream of edges.
While it is therefore a straightforward matter to insert edges into the graph based on the input
stream, it is slightly less straightforward to insert vertices. The vertices appear only in the
context of the edges that connect them, and a given vertex can appear multiple times in the
input stream. To ensure that each vertex is only added once to the graph, a map from actor
names to their vertices is used. As vertices are added to the graph, subsequent appearances of
the same vertex (as part of a different edge) can be linked with the correct vertex already in
the graph. This mapping is readily accomplished usingstd::map.

typedef graphtraits<Graph>::vertex descriptor Vertex;
typedef std::map<std::string, Vertex> NameVertexMap;
NameVertexMap actors;

The first token of each line will be an actor’s name. If the actor is not already in the actor
map, a vertex is added to the graph, the name property of the vertex is set to the name of the
actor, and the vertex descriptor is recorded in the map. If the actor is already in the map, the
std::map::insert() function returns an iterator pointing to the location of the corresponding
vertex in the graph.

〈 Get first actor name and add vertex to graph64 〉 ≡
std::string actorsname = * i++;
NameVertexMap::iterator pos;
bool inserted;
Vertex u, v;
tie(pos, inserted) = actors. insert(std::makepair(actors name, Vertex()));
if (inserted) {

u = add vertex(g);
actor name[u] = actors name;
pos−>second= u;
} else

u = pos−>second;

The second token is the name of the movie, which is attached to the edge connecting the two

4.1. BREADTH-FIRST SEARCH 65

actors. However, the edge cannot be created until there is a vertex descriptor for both actors.
Therefore, the movie name is stored for later use.

〈 Store the movie name to a variable65a 〉 ≡
std::string moviename = * i++;

The third token is the second actor, and the same technique as above is used to insert the
correspoding vertex into the graph.

〈 Get second actor and add to graph65b 〉 ≡
tie(pos, inserted) = actors. insert(std::makepair(* i, Vertex()));
if (inserted) {

v = add vertex(g);
actor name[v] = * i;
pos−>second= v;
} else

v = pos−>second;

The final step is to add an edge connecting the two actors and to record the name of the
connecting movie. SincesetSis used for theEdgeListtype of theadjacencylist, parallel edges
in the input will not be inserted into the graph.

〈 Add edge connecting the two actors to the graph65c 〉 ≡
graph traits<Graph>::edge descriptor e;
tie(e, inserted) = add edge(u, v, g);
if (inserted)

connectingmovie[e] = movie name;

Computing Bacon Numbers with Breadth-First Search

With our approach of computing Bacon numbers using BFS, we compute Bacon numbers for
all actors in the graph and therefore require storage locations for those numbers. Since we are
using anadjacencylist with VertexList=vecS, the vertex descriptors are integers and will be in
the range[0, |V |). Therefore, the Bacon numbers can be stored in astd::vector, with the vertex
descriptor used as an index.

std::vector<int> bacon number(num vertices(g));

Now thebreadthfirst search() takes three arguments, the graph, the source vertex, and the
named parameters. The source vertex should be the vertex corresponding to Kevin Bacon,
which can be obtained from theactors name-to-vertex map. The Bacon number for Kevin
Bacon himself is, of course, zero.

Vertex src = actors[" Kevin Bacon"];
bacon number[src] = 0;

66 CHAPTER 4. BASIC GRAPH ALGORITHMS

To calculate the Bacon numbers, the distances along the shortest paths are recorded.
Specifically, when the BFS algorithm finds a tree edge(u, v), the distance forv can
be computed withd[v] ← d[u] + 1. To insert this action into the BFS, a visitor
class baconnumber recorder is defined that models theBFSVisitor concept and includes
the distance computation in thetree edge() event-point member function. The classba-
con number recorder is derived fromdefault bfs visitor to provide the default (empty) imple-
mentation of the remaining event-point member functions. The genericLvaluePropertyMap
interface is used to access the distance of a vertex to make the visitor more reusable.

template<typename DistanceMap>
class baconnumber recorder : public defaultbfs visitor {
public:

bacon number recorder(DistanceMap dist) : d(dist) { }

template<typename Edge, typename Graph>
void treeedge(Edge e, const Graph& g) const {

typename graphtraits<Graph>::vertex descriptor
u = source(e, g), v = target(e, g);

d[v] = d[u] + 1;
}

private:
DistanceMap d;
};

// Convenience function
template<typename DistanceMap>
bacon number recorder<DistanceMap>
record bacon number(DistanceMap d)
{

return bacon number recorder<DistanceMap>(d);
}

We are now ready to callbreadthfirst search() . The visitor argument is a named pa-
rameter, so the argument must be passed using thevisitor() function. Here a pointer to the
beginning of thebaconnumberarray is used as the distance map.

breadth first search(g, src, visitor(record bacon number(& bacon number[0])));

The Bacon number for each actor is output by looping through all the vertices in the graph
and looking up the corresponding Bacon number.

graph traits<Graph>::vertex iterator i, end;
for (tie(i, end) = vertices(g); i != end; ++ i) {

std::cout << actor name[* i] << " has a Bacon number of"
<< bacon number[* i] << std::endl;

}

4.2. DEPTH-FIRST SEARCH 67

Here are some excerpts from the output of the program.

William Shatner has a Bacon number of2
Denise Richards has a Bacon number of1
Kevin Bacon has a Bacon number of0
Patrick Stewart has a Bacon number of2
Steve Martin has a Bacon number of1
. . .

4.2 Depth-First Search

Depth-first search is a fundamental building block for many graph algorithms. The strongly
connected component algorithm (§13.5.2) and topological sort algorithm (§13.2.5) both rely
on depth-first search. Depth-first search is also useful on its own—for instance, it can be used
to compute reachability and to detect cycles in a graph (see§3.4).

This last capability makes DFS useful as part of an optimizing compiler that may need
to identify loops in the control-flow graph of a program. This section describes how to use
the depthfirst search() and depthfirst visit() functions by walking through an example of
detecting and determining the extent of loops in the control-flow graph.

4.2.1 Definitions

A depth-first search visits all the vertices in a graph exactly once. When choosing which
edge to explore next, DFS always chooses to go “deeper” into the graph (hence the name
”depth-first”). That is, DFS will pick the next adjacent undiscovered vertex until reaching
a vertex that has no undiscovered adjacent vertices. The algorithm will then backtrack to
the previous vertex and continue along any as-yet unexplored edges from that vertex. After
DFS has visited all the reachable vertices from a particular source vertex, it chooses one of
the remaining undiscovered vertices and continues the search. This process creates a set of
depth-first treesthat together form thedepth-first forest. Figure4.2shows DFS applied to an
undirected graph, with the edges labeled in the order they were explored.

Similar to BFS, the DFS algorithm marks vertices with colors to keep track of the progress
of the search through the graph. Initially all vertices are white. When a vertex is discovered,
it is made gray; after all descendants of the vertex have been discovered, it is made black.

A depth-first search assigns the edges of the graph into three categories: tree edges, back
edges, and forward or cross edges. Atree edgeis an edge in the depth-first search forest
constructed (implicitly or explicitly) by running DFS traversal over a graph. More specifically,
an edge(u, v) is a tree edge ifv was first discovered while exploring edge(u, v). During the
DFS, tree edges can be identified because vertexv of the examined edge will be colored white.
Vertexu is called thepredecessoror parentof vertexv in the search tree if edge(u, v) is a
tree edge. Aback edgeconnects a vertex to one of its ancestors in a search tree. This kind

68 CHAPTER 4. BASIC GRAPH ALGORITHMS

of edge is identified when the target vertexv of the examined edge is gray. Self loops are
considered to be back edges. Aforward edgeis a non-tree edge(u, v) that connects a vertex
u to a descendantv in a search tree. Across edgeis an edge that does not fall into the other
three categories. If the target vertexv of an examined edge is colored black, then it is either a
forward or cross edge (though we do not know which it is).

There are typically many valid depth-first forests for a given graph, and therefore many
different (and equally valid) ways to categorize the edges. One way to implement DFS is
to use first-in, last-out stack. DFS pushes its adjacenct vertices into a stack on processing a
vertex and pops one vertex up for next vertex to process. Another way to implement DFS is
to use recursive functions. The two approaches are conceptually equivalent.

One interesting property of depth-first search is that the discover and finish times for
each vertex form a parenthetical structure. If we output an open parenthesis when a vertex
is discovered and a close parenthesis when a vertex is finished, then the result is a properly
nested set of parentheses. Here we show the parenthetical structure for DFS applied to the
graph of Figure4.2. DFS is used as the kernel for several other graph algorithms, including
topological sort and two of the connected component algorithms. It can also be used to detect
cycles (see§3.4).

(a (c (f (g (d (b (e e) b) d) g)(h h) f) c) a) (i (j j) i)

a

b c

1

d

5

e

6 f

2

g

4 3

h

7

i

j

8

Figure 4.2 Depth-first search spreading through a graph. The DFS tree consists of the solid
lines. The edges are labeled in the order that they were added to the DFS tree.

4.2. DEPTH-FIRST SEARCH 69

4.2.2 Finding Loops in Program-Control-Flow Graphs

Our task for this section is to use DFS to find all the loops in a control-flow graph of a
program. Figure4.3 shows an example of a flow graph. Each box represents abasic block,
which is a maximal sequence of instructions with a single entry and exit point. If there is
an edge between two blocks, such as(B1, B6), thenB1 is apredecessorof B6 andB6 is a
successortoB1. A loop is defined as a set of blocks where all blocks are reachable from one
another along some path in the flow graph [32].

Entry

B1 B3

B6 B5

B8B7

Exit

Figure 4.3A control-flow graph for a program. Each box represents a basic block of instruc-
tions. The edge(B7, B1) is a back edge.

Finding the loops in the flow graph consists of two steps. The first is to find all the back
edges in the graph. Each back edge(u, v) identifies a loop, sincev is the ancestor ofu in the
DFS tree and adding(u, v) completes the loop. The vertexv is called theloop head. DFS is
used to identify the back edges of the flow graph. In Figure4.3, (B7, B1) is an example of a
back edge. The second step is to determine which vertices belong to each loop.

These two steps are combined in the function templatefind loops() . This function has
three parameters: theentry vertex, the graphg, and a container to store the vertices for each
loop. TheGraph type is required be a model ofBidirectionalGraph so that both the in-edges
and out-edges of the graph can be accessed in code partb. TheLoopstype is a container whose
elements are sets of vertices. The back edges from the first step are stored in theback edges
vector and thecolor map is used during the DFS to mark the algorithms progress.

70 CHAPTER 4. BASIC GRAPH ALGORITHMS

〈 Find loops function template70a 〉 ≡
template<typename Graph, typename Loops>
void find loops(

typename graphtraits<Graph>::vertex descriptor entry,
const Graph& g,
Loops& loops) // A container of sets of vertices
{

function requires< BidirectionalGraphConcept<Graph> >();
typedef typename graphtraits<Graph>::edge descriptor Edge;
typedef typename graphtraits<Graph>::vertex descriptor Vertex;
std::vector<Edge> back edges;
std::vector<default color type> color map(num vertices(g));
〈Find all back edges in the graph71a〉
〈Find all the vertices in each loop71b〉
}

For the first step aDFSVisitor, back edgerecorder, is created that will record the back
edges during a depth-first search. To make this class more reusable, the storage mechanism for
back edges is not given, but rather parameterized as anOutputIterator. Theback edgerecorder
inherits fromdefault dfs visitor to use default (empty) versions of event-point functions not
provided byback edgerecorder. Only theback edge() member function needs to be imple-
mented. The following is the code for theback edgerecorder class template and its object
generator function.

〈 Back-edge recorder class70b 〉 ≡
template<typename OutputIterator>
class backedgerecorder : public defaultdfs visitor {
public:

back edgerecorder(OutputIterator out) : m out(out) { }
template<typename Edge, typename Graph>
void backedge(Edge e, const Graph&) { * m out++ = e; }

private:
OutputIterator m out;
};
// object generator function
template<typename OutputIterator>
back edgerecorder<OutputIterator>
make back edgerecorder(OutputIterator out) {

return back edgerecorder<OutputIterator>(out);
}

We are now ready to call the DFS function. We choosedepthfirst visit() instead of
depthfirst search() because all the vertices in the flow graph are reachable from the entry
vertex. Theentry vertex is therefore passed in as the starting point of the DFS. The third

http://www.sgi.com/tech/stl/OutputIterator.html

4.2. DEPTH-FIRST SEARCH 71

argument is the visitor, which will be the back edge recorder. The argument tomakeback -
edgerecorder() needs to be an output iterator, thestd::back insert iterator adaptor is used to
store into theback edgesvector. The last parameter ofdepthfirst visit() is the color property
map that DFS will use to keep track of its progress through the graph. The color property
map is created from an iterator to thecolor mapvector (see§15.2.2).

〈 Find all back edges in the graph71a 〉 ≡
depth first visit(g, entry,

make back edgerecorder(std::back inserter(back edges)),
make iterator property map(color map. begin(), get(vertex index, g)));

For the second step of our loop detection process, we determine which vertices belong
to each loop. To accomplish this, for each of the back edges discovered in step one,com-
pute loop extent() is called to find all the vertices in the loop.

〈 Find all the vertices in each loop71b 〉 ≡
for (std::vector<Edge>::size type i = 0; i < back edges. size(); ++ i) {

loops. push back(typename Loops::valuetype());
computeloop extent(back edges[i], g, loops. back());
}

For a vertexv to belong to a loop indicated by a back edge(t, h), v must be reachable fromh
andt must be reachable fromv. Therefore, thecomputeloop extent() function will consist of
three steps: compute all the vertices reachable from the head, compute all the vertices from
which you can reach the tail, and intersect these two sets of vertices.

〈 Compute loop extent71c 〉 ≡
template<typename Graph, typename Set>
void computeloop extent(typename graphtraits<Graph>::edge descriptor backedge,

const Graph& g, Set& loop set)
{

function requires< BidirectionalGraphConcept<Graph> >();
typedef typename graphtraits<Graph>::vertex descriptor Vertex;
typedef colortraits<default color type> Color;

Vertex loophead, loop tail;
loop tail = source(back edge, g);
loop head = target(back edge, g);

〈Compute loop extent: reachable from head72〉
〈Compute loop extent: reachable to tail73a〉
〈Compute loop extent: intersect the reachable sets73b〉
}

72 CHAPTER 4. BASIC GRAPH ALGORITHMS

To compute which vertices are reachable from the head of the loop, we usedepthfirst visit()
again. In this case, a new visitor does not need to be defined, since we only need to know
which vertices were discovered, and this can be determined by examining the color property
map after running DFS. Vertices that are colored gray or black (but not white) were discovered
during DFS. The color properties are stored in a vectorreachablefrom head. Figure4.4shows
all the vertices reachable from blockB1.

〈 Compute loop extent: reachable from head72 〉 ≡
std::vector<default color type>

reachablefrom head(num vertices(g), Color::white());
depth first visit(g, loop head, default dfs visitor(),

make iterator property map(reachablefrom head. begin(),
get(vertex index, g)));

Entry

B1 B3

B6 B5

B8B7

Exit

Figure 4.4Vertices reachable from blockB1.

For the second step, we need to compute all the vertices from which blockB7 is reach-
able. This can be done by performing an “upstream” depth-first search. That is, instead
of exploring along the out-edges of each vertex, we explore along the in-edges. The BGL
depthfirst visit() function uses theout edges() function to access the next vertices to ex-
plore, however it can still be applied to this situation by using thereversegraph adaptor. This
adaptor takes aBidirectionalGraph and provides a view of the graph where the meanings of
out-edges and in-edges are swapped. The following code shows how this is done. Figure4.5

4.2. DEPTH-FIRST SEARCH 73

shows all the vertices from which blockB7 is reachable.

〈 Compute loop extent: reachable to tail73a 〉 ≡
std::vector<default color type> reachableto tail(num vertices(g));
reversegraph<Graph> reverseg(g);
depth first visit(reverseg, loop tail, default dfs visitor(),

make iterator property map(reachableto tail. begin(),
get(vertex index, g)));

Entry

B1 B3

B6 B5

B8B7

Exit

Figure 4.5Vertices from which blockB7 can be reached.

The last step in computing all the vertices in a loop is intersecting the two reachable sets.
We output a vertex to theloop set if it was reachable from the headand if the tail can be
reached from it.

〈 Compute loop extent: intersect the reachable sets73b 〉 ≡
typename graphtraits<Graph>::vertex iterator vi, vi end;

for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)
if (reachablefrom head[* vi] != Color::white()

&& reachableto tail[* vi] != Color::white())
loop set. insert(* vi);

74 CHAPTER 4. BASIC GRAPH ALGORITHMS

Chapter 5

Shortest-Path Problems

In this chapter we will solve some Internet packet-routing problems using shortest-paths al-
gorithms included in BGL. The first section explains the shortest-paths problem in general
and reviews some definitions. The second section gives a brief introduction to packet routing.
The third and four sections describe two commonly used packet-routing protocols and present
their implementations using BGL.

5.1 Definitions

A path is a sequence of vertices〈v0, v1, . . . , vk〉 in a graphG = (V,E) such that each of
the edges(vi, vi+1) is in the edge setE (each vertex is connected to the next vertex in the
sequence). In the shortest-path problem, each edge(u, v) is given a weightw(u, v). The
weight of a path(or path length), is the sum of the weights for each edge in the path:

w(p) =
k−1∑
i=0

w(vi, vi+1)

Theshortest-path weightfrom vertexu to v is the minimum of all possible path weights:

δ(u, v) =

{
min{w(p) : u v} if there is a path fromu to v

∞ otherwise.

A shortest pathis any path whose path weight is equal to the shortest-path weight. Figure5.1
shows an example of a shortest path.

Thesingle-pair shortest-path problemis to find a shortest path that connects a given pair
of vertices. Thesingle-source shortest-path problemis to find a shortest path from a source
vertex to every other vertex in the graph. The set of shortest paths emanating from the source
vertex is called ashortest-path tree. Theall-pairs shortest-path problemis to find a shortest
path from every vertex to every other vertex in the graph.

75

76 CHAPTER 5. SHORTEST-PATH PROBLEMS

a

b1.3

c

2.5 e

4.2

d
0.3

0.1

Figure 5.1The shortest path from vertexa to e is denoted by the black lines.

It turns out that there are no algorithms for solving the single-pair problem that are asymp-
totically faster than algorithms that solve the single-source problem. The BGL includes
two classical methods for solving the single-source problem: Dijkstra’s algorithm and the
Bellman–Ford algorithm. The BGL also includes Johnson’s algorithm for all-pairs shortest
paths.

Shortest-path algorithms have a wide variety of uses and are applied in many areas. One
important application of current interest is Internet packet routing. The protocols that control
how packets of information are transmitted through the Internet use shortest-path algorithms
to reduce the amount of time it takes for a packet to reach its destination.

5.2 Internet Routing

When a computer sends a message to another using the Internet Protocol (IP), the message
contents are put into apacket. Each packet, in addition to its message data (payload), includes
meta-data such as source and destination addresses, length of the data, sequence number,
and so on. If the message is large, the data are split into smaller parts, each of which is
packetized. The individual parts are given sequence numbers so that the original message can
be reassembled by the receiver.

If the destination address for the packet is outside of the local network, the packet will
be sent from the originating machine to an internetrouter. The router directs packets that it
receives to other routers based on itsrouting table, which is constructed based on arouting
protocol. After traveling from one router to the next (each step is called ahop), the packets
arrive at their destination. If the network is congested, some packets may be droppeden
route. Higher-level reliable protocols such as the Transmission Control Protocol (TCP) use
handshaking between sender and receiver so that dropped packets are retransmitted. The
Unix program traceroute (or the Windows(TM) program tracert) can be used to show the
route taken from your computer to other sites around the Internet.

The ultimate goal of a routing process is to deliver packets to their destinations as quickly
as possible. There are a number of factors that determine how long a packet takes to arrive
(e.g., the number of hops along the path, transmission delay within a router, transmission
delay between routers, network bandwidth). The routing protocol must choose the best paths
between routers; this information is stored in a routing table.

5.3. BELLMAN–FORD AND DISTANCE VECTOR ROUTING 77

The routing problem can be modeled as a graph by associating a vertex with each router
and an edge for each direct connection between two routers. Information such as delay and
bandwidth are attached to each edge. Figure5.2 shows a graph model for a simple router
network. The routing problem is now transformed into a shortest-paths graph problem.

A

B
5ms

C

1ms

D

1.3ms

E
3ms

10ms

F

2ms

0.4ms

H

6.3ms

1.3ms

G1.2ms

0.5ms

Figure 5.2 A set of Internet routers connected to one another, with the connections labeled
with the mean transmission delay.

5.3 Bellman–Ford and Distance Vector Routing

Some of the first Internet routing protocols, such as the Routing Information Protocol
(RIP) [19], used a distance-vector protocol. The basic idea behind RIP is for each router
to maintain an estimate of distance to all other routers and to periodically compare notes with
its neighbors. If a router learns of a shorter path to some destination from one of its neighbors,
it will update its distance record to that destination and change its routing table to send packets
to that destination via that neighbor. After enough time, the estimated distances maintained
in this distributed fashion by multiple routers are guaranteed to converge to the true distance,
therefore giving the routers accurate information about the best path.

The RIP is a distributed form of the Bellman–Ford shortest paths algorithm [5, 13]. The
principle step in the Bellman–Ford algorithm, callededge relaxation, corresponds to the no-

78 CHAPTER 5. SHORTEST-PATH PROBLEMS

tion of “comparing notes with your neighbor.” The relaxation operation applied to edge(u, v)
performs the following update:

d[v] = min(w(u, v) + d[u], d[v])

The Bellman–Ford algorithm loops through all of the edges in a graph, applying the relaxation
operation to each. The algorithm repeats this loop|V | times, after which it is guaranteed
that the distances to each vertex have been reduced to the minimum possible (unless there
is a negative cycle in the graph). If there is a negative cycle, then there will be edges in
the graph that were not properly minimized. That is, there will be edges(u, v) such that
w(u, v) + d[u] < d[v] wherew is weight andd is distance. To verify that all edges are
minimized, the algorithm loops over all of the edges in the graph a final time, returning true
if they are minimized, and returning false otherwise.

The BGL bellman ford shortestpaths() function implements the Bellman–Ford algo-
rithm. The following sections show how to use this function to solve the routing problem
depicted in Figure5.2. The following is the outline for the program.

〈 “bellman-ford-internet.cpp”78 〉 ≡
#include <iostream>
#include <boost/ array. hpp>
#include <boost/ graph/ edgelist. hpp>
#include <boost/ graph/ bellman ford shortestpaths. hpp>

int main()
{

using namespace boost;
〈Setup router network79a〉
〈Assign edge weights79b〉
〈Create vertex property storage80b〉
〈Call the Bellman–Ford algorithm80c〉
〈Output distances and parents81〉
return EXIT SUCCESS;
}

The first argument tobellman ford shortestpaths() is the graph object. The type of the
graph object must model theEdgeListGraph concept. Many of the BGL graph classes model
EdgeListGraph and can therefore be used with this algorithm. One such class is theedgelist
class template used here. Theedgelist class template is an adaptor that allows an iterator
range to be viewed as a graph. The value type of the iterator must be astd::pair pair of vertex
descriptors. The vertex descriptors can be of just about any type, although here integers are
used to allow indexing into arrays.

For this example, the edges are stored in aboost::array, where each edge is astd::pair.
Each vertex is given an ID number that is specified using anenum. The template parameters

5.3. BELLMAN–FORD AND DISTANCE VECTOR ROUTING 79

for edgelist are the iterator type, the iterator’s value type, and the iterator’s difference type.1

〈 Setup router network79a 〉 ≡
// ID numbers for the routers (vertices).
enum { A, B, C, D, E, F, G, H, n vertices};
const int n edges= 11;
typedef std::pair<int, int> Edge;

// The list of connections between routers stored in an array.
array<Edge, n edges> edges= { { Edge(A, B), Edge(A, C),

Edge(B, D), Edge(B, E), Edge(C, E), Edge(C, F), Edge(D, H),
Edge(D, E), Edge(E, H), Edge(F, G), Edge(G, H) } };

// Specify the graph type and declare a graph object
typedef edgelist<array<Edge, n edges>::iterator> Graph;
Graph g(edges. begin(), edges. end());

To communicate the edge weight (transmission delays) to the algorithm, an edge weight
property map that models theReadablePropertyMap concept must be provided. The default
for theweight map() parameter is the internal edge weight property map of the graph, which
is accessed via the callget(edgeweight, g). Since theedgelist class does not support user-
defined internal property maps, edge weights must be stored externally and a property map
argument must be explicitly passed to the function. Theedgelist class does provide an edge-
to-index property map, so the edge indices can be used as offsets into an array where the edge
properties. In this case the transmission delays are stored. The code below creates the array
of transmission delay values.

〈 Assign edge weights79b 〉 ≡
// The transmission delay values for each edge.
array<float, n edges> delay =
{ { 5.0, 1.0, 1.3, 3.0, 10.0, 2.0, 6.3, 0.4, 1.3, 1.2, 0.5 } };

Thedelayarray provides storage for the edge weights, but it does not provide the property
map interface required by the algorithm for mapping from edge descriptors to the weight
properties. The necessary property map interface is provided by theiterator propertymapclass
adaptor from the Boost Property Map Library. This class turns an iterator (such as the iterator
for the array of delay values) into anLvaluePropertyMap. The helper functionmake iterator -
propertymap() is a convenient mechanism for creating the adaptor. The first argument is the
iterator, the second argument is a mapping from edges to edge indices, and the third argument
is an object of the iterator’s value type, which is only needed for type deduction purposes. The
following is an example of calling themake iterator propertymap() function (the return value

1For compilers with a working version ofstd::iterator traits, the value type and difference type template
parameters foredgelist are not necessary because correct default parameters are provided.

80 CHAPTER 5. SHORTEST-PATH PROBLEMS

of the function is the created adaptor object, which is passed directly to the Bellman–Ford
function). Theget() function retrieves the edge index map from the graph object and is part
of thePropertyGraph interface.

〈 Create property map for delays80a 〉 ≡
make iterator property map(delay. begin(), get(edgeindex, g), delay[0])

Several properties are attached to vertices in the graph. As in Figure5.2, the vertices are
labeled with letters (their names). Distance labels are required to record the lengths of the
shortest paths. Finally, a predecessor mapparent is used to record the shortest-paths tree. For
each vertex in the graph, the predecessor map records the parent of that vertex with respect to
the shortest-paths tree. That is, each of the edges(parent[u],u) is an edge in the shortest-paths
tree.

Theedgelist class does not provide a way to attach properties to vertices (the vertices are
only integers). The properties are stored in separate arrays indexed by vertex number. The
distances are initialized to infinity and the parent of each vertex is initially set to itself.

〈 Create vertex property storage80b 〉 ≡
// Declare some storage for some “external” vertex properties.
char name[] = " ABCDEFGH" ;
array<int, n vertices> parent;
for (int i = 0; i < n vertices; ++ i)

parent[i] = i;
array<float, n vertices> distance;
distance. assign(std::numeric limits<float>::max());
// Specify A as the source vertex
distance[A] = 0;

Since the vertex descriptors of theedgelist graph are integers, pointers to the property
arrays qualify as property maps because the Boost Property Map Library includes specializa-
tions for built-in pointer types (see§15.2.1).

The following shows the call tobellman ford shortestpaths() . The shortest-path distances
are recorded in the distance vector and the parent of each vertex (with respect to the shortest-
paths tree) is recorded in the parent vector.

〈 Call the Bellman–Ford algorithm80c 〉 ≡
bool r = bellman ford shortestpaths(g, int(n vertices),

weight map(〈Create property map for delays80a〉).
distancemap(& distance[0]).
predecessormap(& parent[0]));

The program concludes by printing out the predecessors and distances for each router in
the network, or by notifying the user that there was a negative cycle in the network.

5.4. DIJKSTRA AND LINK-STATE ROUTING 81

〈 Output distances and parents81 〉 ≡
if (r)

for (int i = 0; i < n vertices; ++ i)
std::cout << name[i] << " : " << distance[i]
<< " " << name[parent[i]] << std::endl;

else
std::cout << " negative cycle" << std::endl;

Applied to the example input, the program output is as follows:

A: 0 A
B: 5 A
C: 1 A
D: 6.3 B
E: 6.7 D
F: 3 C
G: 4.2 F
H: 4.7 G

Thus, by working backward through the predecessors, we can see that the shortest path from
routerA to routerH is 〈A,C, F,G,H〉.

5.4 Dijkstra and Link-State Routing

By the early 1980’s there began to be concerns about the scalability of distance-vector routing.
Two particular aspects caused problems:

• In environments where the topology of the network changes frequently, distance-vector
routing would converge too slowly to maintain accurate distance information.

• Update messages contain distances to all nodes, so the message size grows with the
size of the entire network.

As a result of these problems,link-state routingwas developed [28, 37]. With link-state
routing each router stores a graph representing the topology of the entire network and com-
putes its routing table based on the graph using Dijkstra’s single-source shortest-paths algo-
rithm. To keep the graph up to date, routers share information about which links are “up” and
which are “down” (the link state). When connectivity changes are detected, the information
is “flooded” throughout the network in what is called alink-state advertisement.

Since only local information (neighbor connectivity) has to be shared, link-state routing
does not have the message-size problems of distance vector routing. Also, since each router
computes its own shortest paths, it takes much less time to react to changes in the network
and recalculate accurate routing tables. One disadvantage of link-state routing is that it places
more of a burden on each router in terms of computation and memory use. Even so, it has

82 CHAPTER 5. SHORTEST-PATH PROBLEMS

proved to be an effective protocol, and is now formalized in the Open Shortest Path First pro-
tocol (OSPF) [33], which is currently one of the preferred interior gateway routing protocols.

Dijkstra’s algorithm finds all the shortest paths from the source vertex to every other
vertex by iteratively growing the set of verticesS to which it knows the shortest path. At
each step of the algorithm, the vertex inV − S with the smallest distance label is added toS.
Then the out-edges of the vertex are relaxed using the same technique from the Bellman–Ford
algorithm,d[v] = min(w(u, v) + d[u], d[v]). The algorithm then loops back, processing the
next vertex inV − S with the lowest distance label. The algorithm finishes whenS contains
all vertices reachable from the source vertex.

In the rest of this section we will show how to use the BGLdijstra shortestpaths() func-
tion to solve the single-source shortest-paths problem for a network of routers and how this
information is used to compute a routing table. Figure5.3 shows the example network de-
scribed in RFC 1583. In the figure, RT stands for router, N stands for network (which is a
group of addresses treated as a single destination entity), and H stands for host.

To demonstrate Dijkstra’s algorithm, we will compute the shortest-path tree for router six.
The main steps of our program are as follows:

〈 “ospf-example.cpp”82 〉 ≡
#include <fstream> // for file I/O
#include <boost/ graph/ graphviz. hpp> // for read/write graphviz()
#include <boost/ graph/ dijkstra shortestpaths. hpp>
#include <boost/ lexical cast. hpp>
int main()
{

using namespace boost;
〈Read directed graph in from Graphviz dot file84a〉
〈Copy the directed graph, converting string labels to integer weights84b〉
〈Find router six 84c〉
〈Setup parent property map to record the shortest-paths tree85a〉
〈Run the Dijkstra algorithm85b〉
〈Set the color of the edges in the shortest-paths tree to black85c〉
〈Write the new graph to a Graphviz dot file85d〉
〈Write the routing table for router six87a〉
return EXIT SUCCESS;
}

The first step is to create the graph. The graph from Figure5.3is represented as a Graphviz
dot file. Since the graph is directed, we use theGraphvizDigraph type. For an undirected
graph we would use theGraphvizGraphtype. The Graphviz package provides tools that
automatically layout and draw graphs. It is available atwww.graphviz.org. Most of the graph
drawing in this book were created using Graphviz. The Graphviz tools use a special file
format for graphs, called dot files. BGL includes a parser for reading this file format into

http://www.graphviz.org

5.4. DIJKSTRA AND LINK-STATE ROUTING 83

RT1

N1

3

N3

1

RT2

N2

3

1

RT3

RT6

8

1

N4

2

RT4

RT5

8

1

8

7

RT7

6

N12

8

N13

8

N14

8

6

6

RT10

7

6

N6

1

2

N15

9

RT8

1

N7

4

RT9

N9

1

N11

3

5

1

N8

3

RT11

2

1

RT12

1

N10

2

H1

10

0

0

0

0

00

00

0

0

0

0

Figure 5.3 A directed graph representing a group of Internet routers using the same routing
protocol. The edges are weighted with the cost of transmission.

84 CHAPTER 5. SHORTEST-PATH PROBLEMS

a BGL graph. The parser can be accessed through theread graphviz() function defined in
boost/graph/graphviz.hpp.

〈 Read directed graph in from Graphviz dot file84a 〉 ≡
GraphvizDigraph gdot;
read graphviz(" figs/ospf-graph.dot" , g dot);

TheGraphvizDigraphtype stores the properties of vertices and edges as strings. Although
strings may be convenient for file I/O and display purposes, edge weights must be represented
as integers so that they can be easily manipulated inside of Dijkstra’s algorithm. Therefore,
g dot is copied to a new graph. Each edge in theGraphvizDigraphtype has a set of attributes
stored in astd::map<std::string, std::string>. The edge weights from Figure5.3are stored in
the “label” attribute of each edge. The label is converted to anint usingboost::lexical castand
then the edge is inserted into the new graph. Since theGraph type andGraphvizDigraphare
both based onadjacencylist with VertexList=vecS, the vertex descriptor types for both graph
are integers. The result ofsource(*ei, gdot) can thus be used directly in the call toadd edge()
on graphg.

〈 Copy the directed graph, converting string labels to integer weights84b 〉 ≡
typedef adjacencylist<vecS, vecS, directedS, no property,

property<edgeweight t, int> > Graph;
typedef graphtraits<Graph>::vertex descriptor vertexdescriptor;
Graph g(num vertices(g dot));
property map<GraphvizDigraph, edgeattribute t>::type

edgeattr map = get(edgeattribute, g dot);
graph traits<GraphvizDigraph>::edge iterator ei, ei end;
for (tie(ei, ei end) = edges(g dot); ei != ei end; ++ ei) {

int weight = lexical cast<int>(edgeattr map[* ei][" label"]);
property<edgeweight t, int> edgeproperty(weight);
add edge(source(* ei, g dot), target(* ei, g dot), edgeproperty, g);
}

To use router six as the source of the shortest-paths search, the vertex descriptor for router six
must be located. The program searches for the vertex with an attribute label of “RT6”.

〈 Find router six84c 〉 ≡
vertex descriptor routersix;
property map<GraphvizDigraph, vertex attribute t>::type

vertex attr map = get(vertex attribute, g dot);
graph traits<GraphvizDigraph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g dot); vi != vi end; ++ vi)

if (" RT6" == vertex attr map[* vi][" label"]) {
router six = * vi; break;
}

http://www.boost.org/libs/conversion/lexical_cast.htm

5.4. DIJKSTRA AND LINK-STATE ROUTING 85

Together, the shortest paths from router six to all other routers form a shortest paths tree. An
efficient way to represent such a tree is to record the parent of each node in the tree. Here we
will simply use astd::vectorto record the parents.

〈 Setup parent property map to record the shortest-paths tree85a 〉 ≡
std::vector<vertex descriptor> parent(num vertices(g));
// All vertices start out as there own parent
typedef graphtraits<Graph>::vertices size type sizetype;
for (size type p = 0; p < num vertices(g); ++ p)

parent[p] = p;

We are now ready to invoke Dijkstra’s algorithm. We pass in the parent array as the argument
to thepredecessormap() named parameter.

〈 Run the Dijkstra algorithm85b 〉 ≡
dijkstra shortestpaths(g, router six, predecessormap(& parent[0]));

To create a graphical display of the shortest-paths tree, a dot file is created with the tree edges
marked with black lines.

〈 Set the color of the edges in the shortest-paths tree to black85c 〉 ≡
graph traits<GraphvizDigraph>::edge descriptor e;
for (size type i = 0; i < num vertices(g); ++ i)

if (parent[i] != i) {
e = edge(parent[i], i, g dot). first;
edgeattr map[e][" color"] = " black" ;
}

Next the graph is written to a dot file. Figure5.4shows the computed shortest paths tree for
router six.

〈Write the new graph to a Graphviz dot file85d 〉 ≡
graph property<GraphvizDigraph, graph edgeattribute t>::type&

graph edgeattr map = get property(g dot, graph edgeattribute);
graph edgeattr map[" color"]= " grey" ;
write graphviz(" figs/ospf-sptree.dot" , g dot);

The last step is to compute the routing table for router six. The routing table has three
columns: the destination, the next hop that should be taken to get to the destination, and the
total cost to reach the destination. To populate the routing table, entries are created for each
destination in the network. The information for each entry can be created by following the
shortest path backward from the destination to router six using the parent map. A node that
is its own parent is skipped because the node is either router six or the node is not reachable
from router six.

86 CHAPTER 5. SHORTEST-PATH PROBLEMS

RT1

N1

3

N3

1

RT2

N2

3

1

RT3

RT6

8

1

N4

2

RT4

RT5

8

1

8

7

RT7

6

N12

8

N13

8

N14

8

6

6

RT10

7

6

N6

1

2

N15

9

RT8

1

N7

4

RT9

N9

1

N11

3

5

1

N8

3

RT11

2

1

RT12

1

N10

2

H1

10

0

0

0

0

00

00

0

0

0

0

Figure 5.4The shortest paths tree for router six.

5.4. DIJKSTRA AND LINK-STATE ROUTING 87

〈Write the routing table for router six87a 〉 ≡
std::ofstream rtable(" routing-table.dat");
rtable << " Dest Next Hop Total Cost" << std::endl;
for (tie(vi, vi end) = vertices(g dot); vi != vi end; ++ vi)

if (parent[* vi] != * vi) {
rtable << vertex attr map[* vi][" label"] << " " ;
〈Follow path backward to router six using parents87b〉
}

While following the path from each destination to router six, the edge weights are accumu-
lated into the totalpath cost. We also record the child of the current vertex because at loop
termination this is the vertex to use as the next hop.

〈 Follow path backward to router six using parents87b 〉 ≡
vertex descriptor v = * vi, child;
int path cost = 0;
property map<Graph, edgeweight t>::type
weight map = get(edgeweight, g);
do {

path cost += get(weight map, edge(parent[v], v, g). first);
child = v;
v = parent[v];
} while (v != parent[v]);
rtable << vertex attr map[child][" label"] << " " ;
rtable << path cost << std::endl;

The resulting routing table is as follows.

Dest Next Hop Total Cost
RT1 RT3 7
RT2 RT3 7
RT3 RT3 6
RT4 RT3 7
RT5 RT5 6
RT7 RT10 8
RT8 RT10 8
RT9 RT10 11
RT10 RT10 7
RT11 RT10 10
RT12 RT10 11
N1 RT3 10
N2 RT3 10
N3 RT3 7
N4 RT3 8
N6 RT10 8
N7 RT10 12

88 CHAPTER 5. SHORTEST-PATH PROBLEMS

N8 RT10 10
N9 RT10 11
N10 RT10 13
N12 RT10 10
N13 RT5 14
N14 RT5 14
N15 RT10 17
H1 RT10 21

Chapter 6

Minimum-Spanning-Tree Problem

The Boost Graph Library implements two classical algorithms for solving the minimum-
spanning-tree problem: Kruskal’s [23] and Prim’s [38]. The minimum-spanning-tree problem
shows up in many application domains such as telephone network planning, electronic circuit
layout, and data storage compression. In this chapter we apply the BGL algorithms to the
telephone network planning problem.

6.1 Definitions

Theminimum-spanning-tree problemis defined as follows. Given an undirected graphG =
(V,E), find an acyclic subset of the edgesT ⊆ E that connects all of the vertices in the graph
and whose total weight is minimized. The total weight is the sum of the weight of the edges
in T :

w(T) =
∑

(u,v)∈T

w(u, v).

An acyclic subset of edges that connects all the vertices in the graph is called aspanning tree.
A treeT with minimum total weight is aminimum spanning tree.

6.2 Telephone Network Planning

Suppose that you are responsible for setting up the telephone lines for a remote region. The
region consists of several towns and a network of roads. Setting up a telephone line requires
access for the trucks, and hence, a road alongside the route for the line. Your budget is quite
small, so building new roads is out of the question and the telephone lines will have to go
in along existing roads. Also, you would like to minimize the total length of wire required
to connect all the towns in the region. Since the region is sparsely populated, considerations
such as bandwidth are not important. Figure6.1 shows the network of roads connecting the

89

90 CHAPTER 6. MINIMUM-SPANNING-TREE PROBLEM

towns abstracted into a weighted graph. Our goal will be to find an optimal layout for the
telephone lines. First we will solve the problem using Kruskal’s algorithm, and then we will
solve it with Prim’s algorithm.

Nobel

McKellar

9

Parry Sound

3

Dunchurch

11

Magnetawan

30

Horseshoe Lake

10

20

Rosseau

8

Mactier

14

Bent River

8

Glen Orchard

9

Huntsville

30

12

Kearny

20

Sprucedale

20

13

Novar

8

Bracebridge

15

18

15

5

30

Figure 6.1A remote region of towns connected by roads. The lengths of the roads are labeled
in miles.

6.3. KRUSKAL’S ALGORITHM 91

6.3 Kruskal’s Algorithm

Kruskal’s algorithm starts with each vertex in a tree by itself and with no edges in the setT ,
which will become the minimum spanning tree. The algorithm then examines each edge in
the graph in order of increasing edge weight. If an edge connects two vertices in different
trees, the algorithm merges the two trees into a single tree and adds the edge toT . Once
all of the edges have been examined, the treeT will span the graph (assuming the graph is
connected) and the tree will be a minimum spanning tree.

Following is the outline of a program that applies thekruskal minimum spanning tree()
function to compute the best layout for the telephone lines.

〈 “kruskal-telephone.cpp”91a 〉 ≡
#include <iostream>
#include <fstream>
#include <boost/ lexical cast. hpp>
#include <boost/ graph/ graphviz. hpp>
#include <boost/ graph/ kruskal min spanning tree. hpp>

int main()
{

using namespace boost;
〈Read undirected graph in from Graphviz dot file91b〉
〈Copy the undirected graph, converting string labels to integer weights91c〉
〈Call Kruskal’s algorithm and store MST in a vector92a〉
〈Compute the weight of the spanning tree92b〉
〈Mark tree edges with black lines and output to a dot file92c〉
return EXIT SUCCESS;
}

The graph for Figure6.1 is stored in a Graphviz dot file so it is read into memory using the
read graphviz() function fromboost/graph/graphviz.hpp. TheGraphvizGraphtype is used since
this example uses an undirected graph.

〈 Read undirected graph in from Graphviz dot file91b 〉 ≡
GraphvizGraph gdot;
read graphviz(" figs/telephone-network.dot" , g dot);

As in §5.4, the edge labels need to be converted from strings to integers. This is acom-
plished by copying theGraphvizGraphto a new graph and by usinglexical castto perform the
string to integer conversion.

〈 Copy the undirected graph, converting string labels to integer weights91c 〉 ≡
typedef adjacencylist<vecS, vecS, undirectedS, no property,

property<edgeweight t, int> > Graph;

92 CHAPTER 6. MINIMUM-SPANNING-TREE PROBLEM

Graph g(num vertices(g dot));
property map<GraphvizGraph, edgeattribute t>::type

edgeattr map = get(edgeattribute, g dot);
graph traits<GraphvizGraph>::edge iterator ei, ei end;
for (tie(ei, ei end) = edges(g dot); ei != ei end; ++ ei) {

int weight = lexical cast<int>(edgeattr map[* ei][" label"]);
property<edgeweight t, int> edgeproperty(weight);
add edge(source(* ei, g dot), target(* ei, g dot), edgeproperty, g);
}

The call to Kruskal’s algorithm requires that the graph type used be both aVertexListGraph
and aEdgeListGraph. The “Model Of” section in the documentation foradjacencylist shows
that the selectedGraph type should work fine. To store the output of the algorithm (the
edges of the minimum spanning tree), we use astd::vector mstand applystd::back inserter()
to create an output iterator from it. There are a number of named parameters for Kruskal’s
algorithm; for this example, defaults are used for all of them. The weight map and vertex
index map are, by default, obtained from the graph (they are internal properties).edgeweight t
is declared as a property for theGraph type and the vertex index map is automatically there for
an adjacencylist with VertexList=vecS. The rank and predecessor maps (which are only used
internal to Kruskal’s algorithm) are by default created inside the algorithm.

〈 Call Kruskal’s algorithm and store MST in a vector92a 〉 ≡
std::vector<graph traits<Graph>::edge descriptor> mst;
kruskal minimum spanning tree(g, std::back inserter(mst));

When the call to the algorithm returns, the minimum spanning tree is now stored inmst. The
total weight of the tree is computed by summing the weights of the edges inmst. The total
edge weight computed for this minimum spanning tree is 145 miles.

〈 Compute the weight of the spanning tree92b 〉 ≡
property map<Graph, edgeweight t>::type weight = get(edgeweight, g);
int total weight = 0;
for (int e = 0; e < mst. size(); ++ e)

total weight += get(weight, mst[e]);
std::cout << " total weight: " << total weight << std::endl;

The tree edges are then colored black and the graph is saved to a dot file.

〈 Mark tree edges with black lines and output to a dot file92c 〉 ≡
typedef graphtraits<Graph>::vertex descriptor Vertex;
for (int i = 0; i < mst. size(); ++ i) {

Vertex u = source(mst[i], g), v = target(mst[i], g);
edgeattr map[edge(u, v, g dot). first][" color"] = " black" ;
}

6.3. KRUSKAL’S ALGORITHM 93

std::ofstream out(" figs/telephone-mst-kruskal.dot");
graph property<GraphvizGraph, graph edgeattribute t>::type&

graph edgeattr map = get property(g dot, graph edgeattribute);
graph edgeattr map[" color"]= " gray" ;
graph edgeattr map[" style"]= " bold" ;
write graphviz(out, g dot);

The resulting minimum spanning tree is shown in Figure6.2.

Nobel

McKellar

9

Parry Sound

3

Dunchurch

11

Magnetawan

30

Horseshoe Lake

10

20

Rosseau

8

Mactier

14

Bent River

8

Glen Orchard

9

Huntsville

30

12

Kearny

20

Sprucedale

20

13

Novar

8

Bracebridge

15

18

15

5

30

Figure 6.2 The minimum spanning tree, which is the optimal layout for the telephone lines,
is indicated by the black lines.

94 CHAPTER 6. MINIMUM-SPANNING-TREE PROBLEM

6.4 Prim’s Algorithm

Prim’s algorithm grows the minimum spanning tree one vertex at a time (instead of one edge
at a time, as in Kruskal’s algorithm). The basic idea of Prim’s algorithm is to add vertices to
the minimum spanning tree based on which of the remaining vertices shares an edge having
minimum weight with any of the vertices already in the tree. Prim’s algorithm is similar
to Dijkstra’s algorithm. (In fact, the BGL implementation of Prim’s algorithm is simply a
call to Dijkstra’s algorithm, with a special choice for the distance comparison and combine
functions.)

In this section, the BGLprim minimum spanning tree() algorithm is applied to the same
telephone network planning problem from Figure6.1. The main outline of the program is
similar to the use of Kruskal’s algorithm in the previous section, although there are some
differences in how Prim’s algorithm outputs the spanning tree edges.

〈 “prim-telephone.cpp”94 〉 ≡
#include <iostream>
#include <fstream>
#include <vector>
#include <boost/ lexical cast. hpp>
#include <boost/ graph/ graphviz. hpp>
#include <boost/ graph/ prim minimum spanning tree. hpp>
int main()
{

using namespace boost;
〈Read undirected graph in from Graphviz dot file91b〉
〈Copy the undirected graph, converting string labels to integer weights91c〉
〈Call Prim’s algorithm and record MST in predecessors95a〉
〈Calculate the weight of the spanning tree95b〉
〈Mark the tree edges and output to a dot file95c〉
return EXIT SUCCESS;
}

The first two steps, reading from the dot file and copying the graph, are the same as in
the previous section. In the call to Prim’s algorithm, the first parameter is the graph and the
second parameter is a predecessor map. The predecessor map records the minimum spanning
tree. For each vertexv in the graph,parent[v] is the parent ofv with respect to the minimum
spanning tree. Inside the algorithm,parent[v] may be assigned to multiple times, but the
last assignment is guaranteed to set the correct parent. A number of named parameters for
prim minimum spanning tree() can be used to fine-tune various aspects of the function, but
default values for all named parameters are used here. The edge weight and vertex index maps
internal to theGraph type are used, and the color and distance utility maps are constructed
inside of the algorithm. The root vertex defaults to*vertices(g).first, which is acceptable here
because the choice of the root for the minimum spanning tree is arbitrary.

6.4. PRIM’S ALGORITHM 95

〈 Call Prim’s algorithm and record MST in predecessors95a 〉 ≡
typedef graphtraits<Graph>::vertex descriptor Vertex;
std::vector<Vertex> parent(num vertices(g));
prim minimum spanning tree(g, & parent[0]);

With the minimum spanning tree recorded in theparent array, the total weight is calcu-
lated by looping through all the vertices in the graph and summing the weight of each edge
(parent[v], v). If parent[v] == vwe know that eitherv is the root of the tree or it was not in the
same connected component as the rest of the vertices, so in either case(parent[v], v) is not a
spanning tree edge and should be skipped. Again, the calculation for the graph of Figure6.1
results in a total edge weight of 145 miles.

〈 Calculate the weight of the spanning tree95b 〉 ≡
property map<Graph, edgeweight t>::type weight = get(edgeweight, g);
int total weight = 0;
for (int v = 0; v < num vertices(g); ++ v)

if (parent[v] != v)
total weight += get(weight, edge(parent[v], v, g). first);

std::cout << " total weight: " << total weight << std::endl;

For display purposes, the edges of the minimum spanning tree are marked with black lines and
then written to a dot file. The resulting minimum spanning tree is shown in Figure6.3. Note
that the tree here is slightly different than the one produced by Kruskal’s algorithm. Instead
of having an edge between Magnetawan and Kearny, there is an edge between Magnetawan
and Sprucedale. This highlights the fact that minimum spanning trees are not unique; there
can be more than one minimum spanning tree for a particular graph.

〈Mark the tree edges and output to a dot file95c 〉 ≡
for (int u = 0; u < num vertices(g); ++ u)

if (parent[u] != u)
edgeattr map[edge(parent[u], u, g dot). first][" color"] = " black" ;

std::ofstream out(" figs/telephone-mst-prim.dot");
graph property<GraphvizGraph, graph edgeattribute t>::type&

graph edgeattr map = get property(g dot, graph edgeattribute);
graph edgeattr map[" color"]= " gray" ;
write graphviz(out, g dot);

96 CHAPTER 6. MINIMUM-SPANNING-TREE PROBLEM

Nobel

McKellar

9

Parry Sound

3

Dunchurch

11

Magnetawan

30

Horseshoe Lake

10

20

Rosseau

8

Mactier

14

Bent River

8

Glen Orchard

9

Huntsville

30

12

Kearny

20

Sprucedale

20

13

Novar

8

Bracebridge

15

18

15

5

30

Figure 6.3 The minimum spanning tree, which is the optimal layout for the telephone lines,
is indicated by the black lines.

Chapter 7

Connected Components

One basic question about a network is which vertices are reachable from one another. For
example, a well designed Web site should have enough links between Web pages so that all
pages can be reached from the home page. In addition, it is often nice to have links going
back to the home page, or at least to the previous page in a sequence. In a directed graph,
groups of vertices that are mutually reachable are calledstrongly connected components. In an
undirected graph, groups of vertices that are reachable from one another are calledconnected
components.

A study of 200 million Web pages has shown that 56 million of the Web pages on the
Internet form one large strongly connected component [7]. The study also showed that when
viewed as an undirected graph, there are 150 million pages in one large connected component
and about 50 million pages that are disconnected from the large component (they reside in
much smaller connected components of their own).

The BGL provides two functions for computing all the connected components of a graph,
one for when the graph is unchanging (or if the connected components only need to be com-
puted once) and one for when the graph is growing. The BGL also implements Tarjan’s
algorithm for computing the strongly connected components of a graph in linear time.

In the following sections, we start with some definitions and then apply the BGL con-
nected components functions to World Wide Web networks.

7.1 Definitions

A path is a sequence of vertices where there is an edge connecting each vertex to the next
vertex in the path. If there exists a path from vertexu to w, then we say that vertexw is
reachablefrom vertexu. A connected componentis a group of vertices in an undirected
graph that are reachable from one another. Astrongly connected componentis a group of
vertices in a directed graph that are mutually reachable from one another. The reachable
relation for undirected graphs and the mutually reachable relation for directed graphs are

97

98 CHAPTER 7. CONNECTED COMPONENTS

equivalence relations: they are reflexive, symmetric, and transitive. The objects for which
an equivalence relationship is true form anequivalence class. A connected component is
therefore an equivalence class with respect to the reachable relation, and likewise a strongly
connected component is an equivalence class under the mutually reachable relation. As a
result, these two reachable relations partition the vertices of a graph into disjoint subsets.

7.2 Connected Components and Internet Connectivity

Computing the connected components of an undirected graph is a straightforward application
of depth-first search. The idea is to run DFS on the graph and mark all vertices in the same
DFS tree as belonging to the same connected component. The BGL implementation ofcon-
nectedcomponents() calls depthfirst search() with a special visitor object that labels each
discovered vertex with the current component and increments the current component at the
“start vertex” event point.

The steps to computing the connected components of the network shown in Figure7.1
are as follows: (1) read the network into memory, (2) represent it with a BGL graph, and
(3) call theconnectedcomponents() function. Each vertex in the graph is assigned an integer
denoting the component to which the vertex belongs. The following gives an outline of the
program.

〈 “cc-internet.cpp” 98a 〉 ≡
#include <fstream>
#include <vector>
#include <string>
#include <boost/ graph/ connectedcomponents. hpp>
#include <boost/ graph/ graphviz. hpp>

int main()
{

using namespace boost;
〈Read graph into memory98b〉
〈Create storage for component assignments100a〉
〈Call connected components function100b〉
〈Color vertices by component and write to a dot file100c〉
}

The graph of Figure7.1 is read in from the filecc-internet.dot, which is in Graphviz dot
format. TheGraphvizGraphtype was chosen (and notGraphvizDigraph) because the graph to
be represented is undirected.

〈 Read graph into memory98b 〉 ≡
GraphvizGraph g;
read graphviz(" figs/cc-internet.dot" , g);

7.2. CONNECTED COMPONENTS AND INTERNET CONNECTIVITY 99

engr-fe21.gw.nd.edu

shub-e27.gw.nd.edu

above-bbn-45Mbps.ord.above.net

radole.lcs.mit.edu

ihtfp.mit.edu

cambridge1-nbr2.bbnplanet.net

core1-ord1-oc48.ord2.above.net

chicago1-nbr1.bbnplanet.net

boston1-br1.bbnplanet.net

vabi1-gige-1-1.google.comalbnxg1.ip.tele.dk

nycmny1-cr1.bbnplanet.net

gw-dkuug.oeb.tdk.ne

teledk.bbnplanet.net

ccn-nerif35.Berkeley.EDU

rip.Berkeley.EDU

ccngw-ner-cc.Berkeley.EDU

helios.ee.lbl.gov

lilac-dmc.Berkeley.EDU

Figure 7.1A collection of Internet routers with edges denoting direct connections.

100 CHAPTER 7. CONNECTED COMPONENTS

A vector of sizenum vertices(g)is used to store the component integer assigned to each vertex
in the graph.

〈 Create storage for component assignments100a 〉 ≡
std::vector<int> component(num vertices(g));

The first argument in the call toconnectedcomponents() is the graph type, which must be a
model ofVertexListGraph and IncidenceGraph. TheGraphvizGraphtype is suitable since it
models these concepts. The second argument is a property map from vertices to component
numbers. The property map is constructed using theiterator propertymapadaptor, wrapping
an iterator to the begining of thecomponentvector. Theconnectedcomponents() returns the
total number of components found, and records the component assignment for each vertex
in thecomponentvector. Theconnectedcomponents() algorithm also has a color map named
parameter that is used for the depth-first search. Here the default is used; the algorithm creates
the color map internally and uses the vertex index map of the graph to index into the array.

〈 Call connected components function100b 〉 ≡
int num comp = connectedcomponents(g,

make iterator property map(component. begin(), get(vertex index, g)));

To visualize the results of the computation, colors are assigned to each vertex based on com-
ponent number. The graph is then written to a Graphviz dot file. Figure7.2shows the results.

〈 Color vertices by component and write to a dot file100c 〉 ≡
property map<GraphvizGraph, vertex attribute t>::type

vertex attr map = get(vertex attribute, g);
std::string color[] = { " white" , " gray" , " black" , " lightgray" };
graph traits<GraphvizGraph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi) {

vertex attr map[* vi][" color"] = color[component[* vi]];
vertex attr map[* vi][" style"] = " filled" ;
if (vertex attr map[* vi][" color"] == " black")

vertex attr map[* vi][" fontcolor"] = " white" ;
}
write graphviz(" figs/cc-internet-out.dot" , g);

7.2. CONNECTED COMPONENTS AND INTERNET CONNECTIVITY 101

engr-fe21.gw.nd.edu

shub-e27.gw.nd.edu

above-bbn-45Mbps.ord.above.net

radole.lcs.mit.edu

ihtfp.mit.edu

cambridge1-nbr2.bbnplanet.net

core1-ord1-oc48.ord2.above.net

chicago1-nbr1.bbnplanet.net

boston1-br1.bbnplanet.net

vabi1-gige-1-1.google.comalbnxg1.ip.tele.dk

nycmny1-cr1.bbnplanet.net

gw-dkuug.oeb.tdk.ne

teledk.bbnplanet.net

ccn-nerif35.Berkeley.EDU

rip.Berkeley.EDU

ccngw-ner-cc.Berkeley.EDU

helios.ee.lbl.gov

lilac-dmc.Berkeley.EDU

Figure 7.2The connected components.

102 CHAPTER 7. CONNECTED COMPONENTS

7.3 Strongly Connected Components and Web Page Links

Figure7.3shows a set of web pages connected by URL links which are represented abstractly
as a directed graph. Our goal for this section will be to compute the strongly connected
components of this graph.

www.boost.org

www.yahoogroups.com

sourceforge.netanubis.dkuug.dk

weather.yahoo.com

nytimes.com

www.boston.com

www.hp.comwww.lsc.nd.edu

www.lam-mpi.org

Figure 7.3A graph representing URL links between Web sites.

The outline of the program follows. First, the graph from the Graphviz dot file is read into
memory. The storage is then created for the component assignments that will be computed by
the algorithm. Thestrong components() algorithm is called and the results are used to color
the vertices of the graph by their strongly connected component.

〈 “scc.cpp” 102〉 ≡
#include <fstream>
#include <map>
#include <string>
#include <boost/ graph/ strong components. hpp>
#include <boost/ graph/ graphviz. hpp>

7.3. STRONGLY CONNECTED COMPONENTS AND WEB PAGE LINKS 103

int main()
{

using namespace boost;
〈Read directed graph into memory103a〉
〈Allocate storage for component assignments103b〉
〈Call strong components function103c〉
〈Color vertices by component number and write to a dot file104〉
return EXIT SUCCESS;
}

The graph is read from thescc.dotfile using theGraphvizDigraphtype (because the graph is
directed).

〈 Read directed graph into memory103a 〉 ≡
GraphvizDigraph g;
read graphviz(" figs/scc.dot" , g);

In the call tostrong components() , theassociativepropertymapadaptor is used to supply the
property map interface required by the function. This adaptor creates a property map out of
anAssociativeContainer such asstd::map. The choice ofstd::mapto implement the property
map is rather inefficient in this case but demonstrates the flexibility of the property map inter-
face. The vertex descriptor forGraphvizDigraphis an integer, so it has the required less-than
operator required ofstd::map.

〈 Allocate storage for component assignments103b 〉 ≡
typedef graphtraits<GraphvizDigraph>::vertex descriptor vertext;
std::map<vertex t, int> component;

The results of calling thestrong components() algorithm are placed in thecomponentar-
ray, assigning each vertex a component number. The component numbers are from zero to
num comp - 1. The graph passed to thestrong components() function must be a model of the
VertexListGraph andIncidenceGraph concepts—and indeed, theGraphvizDigraphmeets this
criteria. The second argument, the component map, must be aReadWritePropertyMap. There
are several more named parameters that can be specified, but they are all for utility property
maps that are only used internally. By default, the algorithm creates arrays for these property
maps and uses the vertex index property of the graph as an offset into them.

〈 Call strong components function103c 〉 ≡
int num comp = strong components(g, make assocproperty map(component));

The program finishes by coloring the vertices according to the component to which they
belong. The output is written to a dot file, which produces the graph in Figure7.4.

http://www.sgi.com/tech/stl/AssociativeContainer.html

104 CHAPTER 7. CONNECTED COMPONENTS

〈 Color vertices by component number and write to a dot file104〉 ≡
property map<GraphvizDigraph, vertex attribute t>::type

vertex attr map = get(vertex attribute, g);
std::string color[] = { " white" , " gray" , " black" , " lightgray" };
graph traits<GraphvizDigraph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi) {

vertex attr map[* vi][" color"] = color[component[* vi]];
vertex attr map[* vi][" style"] = " filled" ;
if (vertex attr map[* vi][" color"] == " black")

vertex attr map[* vi][" fontcolor"] = " white" ;
}
write graphviz(" figs/scc-out.dot" , g);

www.boost.org

www.yahoogroups.com

sourceforge.netanubis.dkuug.dk

weather.yahoo.com

nytimes.com

www.boston.com

www.hp.comwww.lsc.nd.edu

www.lam-mpi.org

Figure 7.4The strongly connected components.

Chapter 8

Maximum Flow

The maximum-flow problem is the problem of determining how much of some quantity (say,
water) can move through a network.

There is a long history of algorithms for solving the maximum-flow problem, with the
first algorithm due to Ford and Fulkerson [12]. The best general-purpose algorithm known to
date is the push-relabel algorithm of Goldberg [9, 16, 17] which is based on the notion of a
preflowintroduced by Karzanov [20].

The BGL contains two algorithms for computing maximum flows. The Edmunds–Karp
algorithm (a refinement of the original Ford–Fulkerson) and the push-relabel algorithm.

8.1 Definitions

A flow networkis a directed graphG = (V,E) with a sourcevertexs and asink vertext.
Each edge has a positive real-valuedcapacityand there is aflow functionf defined over every
vertex pair. The flow function must satisfy three contraints:

f(u, v) ≤ c(u, v) ∀ (u, v) ∈ V × V (Capacity constraint)

f(u, v) = −f(v, u) ∀ (u, v) ∈ V × V (Skew symmetry)∑
v∈V

f(u, v) = 0 ∀ u ∈ V − {s, t} (Flow conservation)

Theflowof the network is the net flow entering the sink vertext. Theresidual capacityof an
edge isr(u, v) = c(u, v) − f(u, v). The edges withr(u, v) > 0 are residual edgesEf that
induce the residual graphGf = (V,Ef). An edge withr(u, v) = 0 is saturated.

|f | =
∑
u∈V

f(u, t)

105

106 CHAPTER 8. MAXIMUM FLOW

The maximum-flow problem is to determine the maximum possible value for|f | and the
corresponding flow values for every vertex pair in the graph.

An important property of a flow network is that the maximum flow is related to the capac-
ity of the narrowest part of the network. According to the Max-Flow Min-Cut Theorem [12],
the maximum value of the flow from a source vertexs to a sink vertext in a flow network
equals the minimum capacity among all(S, T) cuts. An(S, T) cut is a separation of the
graph’s vertices into two setsS andT , wheres ∈ S andt ∈ T . Any edge with its source
vertex inS and its target vertex inT is aforward edgeof the cut, and any edge with its source
in T and target inS is a backward edgeof the cut. Thecapacity of a cutis the sum of the
capacities of the forward edges (backward edges are ignored). So if we look at the capacity
for all the cuts that separates andt, and select the cut with the minimum capacity, then its
capacity will equal the maximum flow of the network.

8.2 Edge Connectivity

Whether an engineer is designing a telephone network, an LAN for a large company, or the
router connections for the Internet backbone, an important consideration is how resilient the
network is to damage. For example, if a cable gets cut during a storm, are there other cables
through which the information can flow? In graph terminology, this is captured by theedge
connectivityof a graph, which is the minimum number of edges that can be cut to produce a
graph with two disconnected components (assuming the graph started as a single connected
component). We useα(G) to represent the edge connectivity of a graph. The set of edges in
the cut is called theminimum disconnecting set. The vertices of the graph are separated into
two components,S∗ andS∗, so we use the notation[S∗, S∗] for representing the minimum
cut. It turns out that calculating the edge connectivity of a graph can be reduced to a series of
maximum-flow problems. In this section we will take a look at the algorithm for computing
the edge connectivity of an undirected graph [27].

Letα(u, v) represent the minimum number of edges that can be cut to disconnect the two
verticesu andv from each other. If the two vertices are treated as source and sink, and the
capacity of every edge is set to one, then the minimum capacity cut (calculated by a maximum
flow algorithm) is the same as the cut with the minimum number of edges. Therefore, by
solving for the maximum flow we will also determine the minimum number of edges that
could be cut to disconnect the two vertices. Now, to find the edge connectivity of the whole
graph, a maximum-flow algorithm can be run on every pair of vertices. The minimum of all
these pair-wise min-cuts will be the min-cut for the graph.

Executing maximum flow for every pair of vertices is expensive, so it would be better to
reduce the number of pairs that need to be examined. This can be achieved by exploiting a
special property of the minimum disconnecting set[S∗, S∗]. Let p be a vertex of minimum
degree andδ be the minimum degree. Ifα(G) = δ, thenS∗ is justp. If α(G) ≤ δ− 1, then it
turns out that for any subset ofS∗, call it S, the set of all nonneighbor vertices to the vertices
in S has to be nonempty. This means that the minimum cut can be found by starting with

8.2. EDGE CONNECTIVITY 107

S = p, picking a vertexk from the set of nonneighbors ofS, calculatingα(p, k), and then
addingk to S. This process is repeated until the set of nonneighbors ofS is empty.

We implement the edge connectivity algorithm as a function template that uses the BGL
VertexListGraph interface. The function returns the edge connectivity of the graph, and the
edges in the disconnected set are written to the output iterator. The outline of the edge con-
nectivity function follows.

〈 Edge connectivity algorithm107a 〉 ≡
template<typename VertexListGraph, typename OutputIterator>
typename graphtraits<VertexListGraph>::degreesize type
edgeconnectivity(VertexListGraph& g, OutputIterator disconnectingset)
{
〈Type definitions107b〉
〈Variable declarations107c〉
〈Create a network-flow graph out of the undirected graph108a〉
〈Find minimum-degree vertex and compute neighbors ofS and nonneighbors ofS 109b〉
〈Main loop 110a〉
〈Compute forward edges of the cut[S∗, S∗] 110b〉
return c;
}

The first section of the implementation creates some type definitions to provide shorter
names for accessing types from the graph traits. A network-flow graph (a directed graph) is
created based on the undirected input graphg, so theadjacencylist graph class is used.

〈 Type definitions107b 〉 ≡
typedef typename graphtraits<VertexListGraph>::vertex descriptor vertexdescriptor;
typedef typename graphtraits<VertexListGraph>::degreesize type degreesize type;
typedef colortraits<default color type> Color;
typedef typename adjacencylist traits<vecS, vecS, directedS>::edge descriptor

edgedescriptor;
typedef adjacencylist<vecS, vecS, directedS, no property,

property<edgecapacity t, degreesize type,
property<edgeresidual capacity t, degreesize type,

property<edgereverset, edgedescriptor> > > > FlowGraph;

We usestd::setfor the setsS and neighbors ofS because uniqueness during insertion must
be ensured. The setsS∗ and nonneighbors ofS are represented withstd::vectorbecause we
know ahead of time that the inserted elements will be unique.

〈 Variable declarations107c 〉 ≡
vertex descriptor u, v, p, k;
edgedescriptor e1, e2;
bool inserted;

108 CHAPTER 8. MAXIMUM FLOW

typename graphtraits<VertexListGraph>::vertex iterator vi, vi end;
degreesize type delta, alpha star, alpha S k;
std::set<vertex descriptor> S, neighbor S;
std::vector<vertex descriptor> S star, nonneighbor S;
std::vector<default color type> color(num vertices(g));
std::vector<edgedescriptor> pred(num vertices(g));

The network flow graph is constructed based on the input graph. Each edge in the flow
graph has three properties—capacity, residual capacity, and reverse edge—which are accessed
through the property map objectscap, res cap, andrev edge, respectively.

〈 Create a network-flow graph out of the undirected graph108a 〉 ≡
FlowGraph flow g(num vertices(g));
typename propertymap<FlowGraph, edgecapacity t>::type

cap = get(edgecapacity, flow g);
typename propertymap<FlowGraph, edgeresidual capacity t>::type

res cap = get(edgeresidual capacity, flow g);
typename propertymap<FlowGraph, edgereverset>::type

rev edge = get(edgereverse, flow g);

typename graphtraits<VertexListGraph>::edge iterator ei, ei end;
for (tie(ei, ei end) = edges(g); ei != ei end; ++ ei) {

u = source(* ei, g), v = target(* ei, g);
tie(e1, inserted) = add edge(u, v, flow g);
cap[e1] = 1;
tie(e2, inserted) = add edge(v, u, flow g);
cap[e2] = 1;
rev edge[e1] = e2;
rev edge[e2] = e1;
}

In the main algorithm, several pieces of functionality are divided into separate functions.
The first is finding the minimum-degree vertex, which is implemented by looping through all
of the vertices in the graph and comparing their degree.

〈 Find minimum-degree vertex function108b 〉 ≡
template<typename Graph>
std::pair<typename graphtraits<Graph>::vertex descriptor,

typename graphtraits<Graph>::degreesize type>
min degreevertex(Graph& g)
{

typename graphtraits<Graph>::vertex descriptor p;
typedef typename graphtraits<Graph>::degreesize type sizetype;
size type delta= std::numeric limits<size type>::max();
typename graphtraits<Graph>::vertex iterator i, iend;

8.2. EDGE CONNECTIVITY 109

for (tie(i, iend) = vertices(g); i != iend; ++ i)
if (degree(* i, g) < delta) {

delta = degree(* i, g);
p = * i;
}

return std::makepair(p, delta);
}

We also need the ability to insert every neighbor of a vertex (and a set of vertices) into a
set, which can be done by examining theadjacentvertices() . We assume the output iterator is
similar to astd::insert iterator for a std::set.

〈 Output neighbors helper functions109a 〉 ≡
template<typename Graph, typename OutputIterator>
void neighbors(const Graph& g, typename graphtraits<Graph>::vertex descriptor u,

OutputIterator result)
{

typename graphtraits<Graph>::adjacency iterator ai, aend;
for (tie(ai, aend) = adjacentvertices(u, g); ai != aend; ++ ai)

* result++ = * ai;
}
template<typename Graph, typename VertexIterator, typename OutputIterator>
void neighbors(const Graph& g, VertexIterator first, VertexIterator last,

OutputIterator result)
{

for (; first != last; ++ first)
neighbors(g, * first, result);

}

The intitial step of the algorithm is to find the minimum-degree vertexp, setS = p, and
then calculate neighbors ofS and nonneighbors ofS. We usestd::setdifference() to compute
V − S (whereV is the vertex set of the graph).

〈 Find minimum-degree vertex and compute neighbors ofS and nonneighbors ofS 109b 〉 ≡
tie(p, delta) = min degreevertex(g);
S star. push back(p);
alpha star = delta;
S. insert(p);
neighbor S. insert(p);
neighbors(g, S. begin(), S. end(), std::inserter(neighbor S, neighbor S. begin()));
std::setdifference(vertices(g). first, vertices(g). second,

neighbor S. begin(), neighbor S. end(), std::back inserter(nonneighbor S));

The iterative portion of the algorithm is finished when nonneighbors ofS becomes empty.
In each step of the loop, the maximum flow betweenp and a nonneighbork is calculated using
the Edmunds–Karp algorithm (see§ 13.7.1). The vertices labeled (colored nonwhite) during

110 CHAPTER 8. MAXIMUM FLOW

the max-flow algorithm correspond to all the vertices on one side of the minimum cut. Thus,
if the size of the cut is the smallest so far, the labeled vertices are recorded inS∗, k is inserted
into S, and neighbors ofS and nonneighbors ofS are recomputed.

〈 Main loop110a 〉 ≡
while (! nonneighbor S. empty()) {

k = nonneighbor S. front();
alpha S k = edmundskarp max flow

(flow g, p, k, capacitymap(cap). residual capacitymap(res cap).
reverseedgemap(rev edge). color map(& color[0]). predecessormap(& pred[0]));

if (alpha S k < alpha star) {
alpha star = alpha S k;
S star. clear();
for (tie(vi, vi end) = vertices(flow g); vi != vi end; ++ vi)

if (color[* vi] != Color::white())
S star. push back(* vi);

}
S. insert(k);
neighbor S. insert(k);
neighbors(g, k, std::inserter(neighbor S, neighbor S. begin()));
nonneighbor S. clear();
std::setdifference(vertices(g). first, vertices(g). second,

neighbor S. begin(), neighbor S. end(), std::back inserter(nonneighbor S));
}

The last step is to find the edges in the cut, which are edges that have one vertex inS∗ and
the other vertex inS∗. These edges are written to the output iterator nameddisconnectingset,
and the number of edges in the cut is returned.

〈 Compute forward edges of the cut[S∗, S∗] 110b 〉 ≡
std::vector<bool> in S star(num vertices(g), false);
typename std::vector<vertex descriptor>::iterator si;
for (si = S star. begin(); si != S star. end(); ++ si)

in S star[* si] = true;
degreesize type c = 0;
for (si = S star. begin(); si != S star. end(); ++ si) {

typename graphtraits<VertexListGraph>::out edgeiterator ei, ei end;
for (tie(ei, ei end) = out edges(* si, g); ei != ei end; ++ ei)

if (! in S star[target(* ei, g)]) {
* disconnectingset++ = * ei;
++c;
}

}

Figure8.1shows the example graph to which the edge connectivity algorithm is applied.

8.2. EDGE CONNECTIVITY 111

A B

C

D

E
H

F

G

Figure 8.1Example graph for edge connectivity.

〈 “edge-connectivity.cpp”111〉 ≡
#include <algorithm>
#include <utility>
#include <boost/ graph/ edmundskarp max flow. hpp>
#include <boost/ graph/ push relabel max flow. hpp>
#include <boost/ graph/ adjacencylist. hpp>
#include <boost/ graph/ graphviz. hpp>

namespace boost{
〈Find minimum-degree vertex function108b〉
〈Output neighbors helper functions109a〉
〈Edge connectivity algorithm107a〉
}

int main()
{

using namespace boost;
GraphvizGraph g;
read graphviz(" figs/edge-connectivity.dot" , g);

typedef graphtraits<GraphvizGraph>::edge descriptor edgedescriptor;
typedef graphtraits<GraphvizGraph>::degreesize type degreesize type;
std::vector<edgedescriptor> disconnectingset;
degreesize type c = edgeconnectivity(g, std::back inserter(disconnectingset));

std::cout << " The edge connectivity is" << c << " ." << std::endl;

property map<GraphvizGraph, vertex attribute t>::type
attr map = get(vertex attribute, g);

112 CHAPTER 8. MAXIMUM FLOW

std::cout << " The disconnecting set is{" ;
for (std::vector<edgedescriptor>::iterator i = disconnectingset. begin();

i != disconnectingset. end(); ++ i)
std::cout << " (" << attr map[source(* i, g)][" label"] << " ,"
<< attr map[target(* i, g)][" label"] << ") " ;

std::cout << " }." << std::endl;
return EXIT SUCCESS;
}

The output from the example program is the following:

The edge connectivity is2.
The disconnecting set is{(D, E) (D, H) }.

Chapter 9

Implicit Graphs: A Knight’s Tour

The knight’s-tour problem is as follows: Find a path for a knight to touch all of the squares
of an n × n chessboard exactly once. The knight’s tour is an example of aHamiltonian
path—that is, a simple closed path that passes through each vertex of the graph exactly once
(where each square of the chessboard is treated as a vertex in the graph). The edges of the
graph are determined by the pattern in which a knight can jump (for example, up two and over
one). In this section, we will use a generic backtracking search algorithm to find the knight’s
tour. The backtracking algorithm is a brute-force algorithm and quite slow, so we also show
an improvement to the algorithm using Warnsdorff’s heuristic [46]. The Hamiltonian path
problem is NP-complete [15] (for large problem sizes it cannot be solved in a reasonable
amount of time). An example of a knight’s tour on a regular8 × 8 chessboard is shown in
Figure9.1.

0 1 2 3 4 5 6 7

0

1

2
3

4

5

6

7

Figure 9.1An example of a knight’s tour.

113

114 CHAPTER 9. IMPLICIT GRAPHS: A KNIGHT’S TOUR

One unique aspect of this example is that it does not use an explicit data structure (such
as theadjacencylist class) to represent the graph. Rather, animplicit graph structureknights-
tour graph is deduced from the allowable moves of a knight on a chessboard.

9.1 Knight’s Jumps as a Graph

Theknights tour graph will be a model ofAdjacencyGraph, so we need to implement aadja-
cent vertices() function that returns a pair of adjacency iterators. The adjacency iterator treats
each of the squares that are legal moves from the current position as adjacent vertices.

The pattern of the knight’s jumps are stored in an array, as follows.

typedef std::pair<int, int> Position;
Position knight jumps[8] = { Position(2, −1), Position(1, −2),

Position(−1, −2), Position(−2, −1), Position(−2, 1),
Position(−1, 2), Position(1, 2), Position(2, 1) };

The knight adjacencyiterator contains several data members: the current position on the
chessboardm pos, the current place in theknight jumps arraym i, and a pointer to the graph
m g. Incrementing the adjacency iterator (usingoperator++()) incrementsm i. The new po-
sition may be invalid (off the board), som i may need to be incremented further, which is
handled in thevalid position() member function. The first jump may also be invalid, so the
valid position() function is also called in the constructor of the adjacency iterator. A pointer
to the chessboard is needed so that its size can be accessed (chessboards of arbitrary size
may be used). When the adjacency iterator is dereferenced (operator*()) the current position
offset by the current jump vector is returned. The following code shows the implementation
of theknight adjacencyiterator. Theboost::forward iterator helper is used to automatically im-
plementoperator++(int)in terms ofoperator++() andoperator!=() in terms ofoperator==() .

struct knight adjacencyiterator
: public boost::forward iterator helper<

knight adjacencyiterator, Position, std::ptrdiff t, Position*, Position>
{

knight adjacencyiterator() { }
knight adjacencyiterator(int ii , Position p, const knightstour graph& g)

: m pos(p), m g(& g), m i(ii) { valid position(); }
Position operator*() const { return m pos + knight jumps[m i]; }
void operator++() { ++m i; valid position(); }
bool operator==(const knight adjacencyiterator& x) const { return m i == x. m i; }

protected:
void valid position();
Position m pos;
const knightstour graph* m g;
int m i;
};

9.1. KNIGHT’S JUMPS AS A GRAPH 115

In thevalid position() member function, the jump counter is incremented until a position is
found that is on the board, or until the end of the jump array is reached.

void knight adjacencyiterator::valid position() {
Position newpos = m pos + knight jumps[m i];
while (m i < 8 && (new pos. first < 0 | | new pos. second< 0

| | new pos. first >= m g−>m board size
| | new pos. second>= m g−>m board size)) {

++m i;
new pos = m pos + knight jumps[m i];
}
}

Theadjacentvertices() function is implemented by creating a pair of adjacency iterators
using0 for the beginning iterator’s jump position and8 for the past-the-end iterator’s jump
position.

std::pair<knights tour graph::adjacencyiterator, knights tour graph::adjacencyiterator>
adjacentvertices(knights tour graph::vertex descriptor v, const knightstour graph& g) {

typedef knightstour graph::adjacencyiterator Iter;
return std::makepair(Iter(0, v, g), Iter(8, v, g));
}

The knights tour graph class only contains the size of the chessboard (stored as a data
member) and the typedefs required of anAdjacencyGraph. Thenum vertices() function re-
turns the number of squares in the chessboard.

struct knights tour graph
{

typedef Position vertexdescriptor;
typedef std::pair<vertex descriptor, vertex descriptor> edgedescriptor;
typedef knightadjacencyiterator adjacencyiterator;
typedef void outedgeiterator;
typedef void inedgeiterator;
typedef void edgeiterator;
typedef void vertexiterator;
typedef int degreesize type;
typedef int verticessize type;
typedef int edgessize type;
typedef directedtag directedcategory;
typedef disallowparallel edgetag edgeparallel category;
typedef adjacencygraph tag traversalcategory;
knights tour graph(int n) : m board size(n) { }
int m board size;
};
int num vertices(const knightstour graph& g)
{ return g. m board size * g. m board size; }

116 CHAPTER 9. IMPLICIT GRAPHS: A KNIGHT’S TOUR

Now that the knight’s moves are mapped to the Boost graph interface, we can look at
some graph algorithms that can be used to solve the knight’s tour problem.

9.2 Backtracking Graph Search

The idea of a backtracking graph search is similar to a depth-first search in that a path is
explored until a dead end is reached. The backtracking graph search is different in that after a
dead end is reached, the algorithm backs up, unmarking the dead end path, before continuing
along a different path. In the following code, the backtracking search is implemented using a
stack (instead of the recursive method), and discovery time for each vertex is recorded using
a property map. The stack contains timestamp-vertex pairs so that the proper timestamp is
available after backtracking from a dead end. The search is completed once all of the vertices
have been visited, or when all possible paths have been exhausted.

Although the graph defined in the previous section was implicit (and represents the
knight’s move on a chessboard in particular), it nevertheless models a BGLGraph. The
backtracking algorithm is therefore implemented for aGraph, rather than only for aknights-
tour graph. The resulting algorithm is reusable for any graph data structure that models

Graph.

template<typename Graph, typename TimePropertyMap>
bool backtrackingsearch(Graph& g,

typename graphtraits<Graph>::vertex descriptor src, TimePropertyMap timemap)
{
〈Create the stack and initialize time stamp116〉
S. push(std::makepair(time stamp, src));
while (! S. empty()) {
〈Get vertex from top of stack, record time, and check for finish117a〉
〈Push all of the adjacent vertices onto the stack117b〉
〈If at dead end, rollback117c〉
} // while (!S.empty())
return false;
}

A std::stackis used to record the vertices that need to be explored. The timestamp of when
the vertex was pushed on to the stack is also recorded.

〈 Create the stack and initialize time stamp116〉 ≡
typedef typename graphtraits<Graph>::vertex descriptor Vertex;
typedef std::pair<int, Vertex> P;
std::stack<P> S;
int time stamp = 0;

The next step is to record the timestamp for the vertex at the top of the stack and check to see
if all the vertices in the graph have been recorded and thus the algorithm is finished.

9.3. WARNSDORFF’S HEURISTIC 117

〈 Get vertex from top of stack, record time, and check for finish117a 〉 ≡
Vertex x;
tie(time stamp, x) = S. top();
put(time map, x, time stamp);
// all vertices have been visited, success!
if (time stamp == num vertices(g) − 1)

return true;

Now all the adjacent vertices are scanned, and if an adjacent vertex has not yet been visited it
is added to the stack. No available adjacent vertices indicates a dead end.

〈 Push all of the adjacent vertices onto the stack117b 〉 ≡
bool deadend= true;
typename graphtraits<Graph>::adjacency iterator i, end;
for (tie(i, end) = adjacentvertices(x, g); i != end; ++ i)

if (get(time map, * i) == −1) {
S. push(std::makepair(time stamp + 1, * i));
deadend= false;
}

If the algorithm reaches a dead end, vertices are popped from the stack until a vertex is found
that has not yet been explored. As we roll back, the timestamps for each vertex are reset,
because it is possible that those vertices can be reached along a better path.

〈 If at dead end, rollback117c 〉 ≡
if (deadend) {

put(time map, x, −1);
S. pop();
tie(time stamp, x) = S. top();
while (get(time map, x) != −1) { // unwind stack to last unexplored vertex

put(time map, x, −1);
S. pop();
tie(time stamp, x) = S. top();
}
}

9.3 Warnsdorff’s Heuristic

Warnsdorff’s heuristic for choosing the next place to jump is to look ahead at each of the
possible jumps, and see how many jumps are possible from that square. We will call this
thenumber of successors. The square with the fewest number of successors is chosen as the
next move. The reason this heuristic helps is that it visits the most constrained vertices first,

118 CHAPTER 9. IMPLICIT GRAPHS: A KNIGHT’S TOUR

thereby avoiding some potential dead ends. The following function calculates the number of
successors of a vertex.

template<typename Vertex, typename Graph, typename TimePropertyMap>
int number of successors(Vertex x, Graph& g, TimePropertyMap timemap) {

int s x = 0;
typename graphtraits<Graph>::adjacency iterator i, end;
for (tie(i, end) = adjacentvertices(x, g); i != end; ++ i)

if (get(time map, * i) == −1)
++s x;

return s x;
}

To implement this algorithm, we start with the backtracking algorithm, but instead of
pushing the adjacent vertices onto the stack, we first order the vertices according to the num-
ber of successors. The ordering is accomplished by putting the adjacent vertices in a priority
queue. Once all of the adjacent vertices are in the queue, they are popped off the queue and
pushed onto the stack. An empty priority queue denotes a dead end.

template<typename Graph, typename TimePropertyMap>
bool warnsdorff(Graph& g, typename graphtraits<Graph>::vertex descriptor src,

TimePropertyMap timemap)
{
〈Create the stack and initialize time stamp116〉
S. push(std::makepair(time stamp, src));
while (! S. empty()) {
〈Get vertex from top of stack, record time, and check for finish117a〉
// Put adjacent vertices into a local priority queue
std::priority queue<P, std::vector<P>, comparefirst> Q;
typename graphtraits<Graph>::adjacency iterator i, end;
int num succ;
for (tie(i, end) = adjacentvertices(x, g); i != end; ++ i)

if (get(time map, * i) == −1) {
num succ = number of successors(* i, g, time map);
Q. push(std::makepair(num succ, * i));
}

bool deadend= Q. empty();
// move vertices from local priority queue to the stack
for (; ! Q. empty(); Q. pop()) {

tie(num succ, x) = Q. top();
S. push(std::makepair(time stamp + 1, x));
}
〈If at dead end, rollback117c〉
} // while (!S.empty())
return false;
}

Chapter 10

Interfacing with Other Graph
Libraries

Although the main goal of BGL is to aid the development of new applications and graph
algorithms, there are quite a few existing codes that can benefit from using BGL algorithms.
One way to use the BGL algorithms with existing graph data structures is to copy data from
the older graph format into a BGL graph, which is then used with the BGL algorithms. The
problem with this approach is that it can be inconvenient and expensive to perform this copy.
Another approach is to use the existing data structure directly by wrapping it with a BGL
interface.

The Adaptor pattern [14] is one mechanism for providing a new interface to an existing
class. This approach typically requires that the adapted object be contained inside a new class
that provides the desired interface. Containment is not required when wrapping a graph for
BGL because the BGL graph interface consists solely of free (global nonmember) functions.
With this kind of interface, instead of creating a new graph class, adapting an interface re-
quires only overloading of the free functions that make up the interface. In§10.3 we will
show in detail how this works.

The BGL includes overloads for the LEDA [29] GRAPH type, the Stanford Graph-
Base [22] Graph* type, and also for the STLstd::vector. LEDA is a popular object-oriented
library for combinatorial computing, including graph data structures and algorithms. The
Stanford GraphBase, by Donald Knuth, is a collection of graph data sets, graph generators,
and programs that run graph algorithms on these graphs.

In the following sections, we will show examples of using LEDA and SGB graph data
structures with BGL algorithms. We will then look at the implementation of the BGL adapting
functions for the LEDA graph, providing example for how to implement adaptors to other
graph libraries.

In §1.4.1 we demonstrated the flexibility of the BGL algorithms by applyingtopolog-
ical sort() to both a graph represented by a vector of lists,std::vector<std::list<int>>,
and also a graph represented by anboost::adjacencylist. We will continue that example—

119

120 CHAPTER 10. INTERFACING WITH OTHER GRAPH LIBRARIES

scheduling a set of interdependent tasks—in the following two sections, first using the LEDA
GRAPH type and then using an Stanford GraphBase (SGB)Graph type.

10.1 Using BGL Topological Sort with a LEDA Graph

The header fileboost/graph/ledagraph.hppcontains function overloads that adapt the LEDA
parameterizedGRAPH type to the BGL interface. The BGL interface for the LEDAGRAPH is
documented in§14.3.5. The LEDA–BGL interface was tested with LEDA version 4.1, one of
the last freely available versions of LEDA. In addition to including theleda graph.hppheader
file you must have LEDA installed, set the include and library paths of your compiler, and
link in the LEDA libraries. See the LEDA documentation for details.

The following is the outline for the task-scheduling program, this time using a LEDA
GRAPH to represent the task dependencies.

〈 “topo-sort-with-leda.cpp”120a 〉 ≡
#include <vector>
#include <string>
#include <iostream>
#include <boost/ graph/ topological sort. hpp>
#include <boost/ graph/ leda graph. hpp>
// Undefine macros from LEDA that conflict with the C++ Standard Library.
#undef string
#undef vector

int main()
{

using namespace boost;
〈Create a LEDA graph with vertices labeled by task120b〉
〈Add edges to the LEDA graph121a〉
〈Perform the topological sort on the LEDA graph121b〉
return EXIT SUCCESS;
}

The LEDA GRAPH class allows the user to attach objects to the vertices and edges of the
graph, so here we will attach the task names (in the form ofstd::string) to the vertices. We use
the usual BGLadd vertex() function to add vertices toleda g, and pass in the task names as
the property object to be attached to the vertex. We store the vertex descriptors returned from
add vertex() in a vector so that we have fast access to any vertex when adding the edges.

〈 Create a LEDA graph with vertices labeled by task120b 〉 ≡
typedef GRAPH<std::string, char> graph t;
graph t leda g;
typedef graphtraits<graph t>::vertex descriptor vertext;

10.1. USING BGL TOPOLOGICAL SORT WITH A LEDA GRAPH 121

std::vector<vertex t> vert(7);
vert[0] = add vertex(std::string(" pick up kids from school"), leda g);
vert[1] = add vertex(std::string(" buy groceries (and snacks)"), leda g);
vert[2] = add vertex(std::string(" get cash at ATM"), leda g);
vert[3] = add vertex(std::string(" drop off kids at soccer practice"), leda g);
vert[4] = add vertex(std::string(" cook dinner"), leda g);
vert[5] = add vertex(std::string(" pick up kids from soccer"), leda g);
vert[6] = add vertex(std::string(" eat dinner"), leda g);

The next step is adding edges to the graph. Again, we use the usual BGL function, in this
caseadd edge() .

〈 Add edges to the LEDA graph121a 〉 ≡
add edge(vert[0], vert[3], leda g);
add edge(vert[1], vert[3], leda g);
add edge(vert[1], vert[4], leda g);
add edge(vert[2], vert[1], leda g);
add edge(vert[3], vert[5], leda g);
add edge(vert[4], vert[6], leda g);
add edge(vert[5], vert[6], leda g);

Now that we have the graph constructed, we can make the call totopological sort() .
Again, because of the LEDA–BGL interface, the LEDAGRAPH can be used as-is with
the BGL function. We simple pass theleda g object into the algorithm. Thetopologi-
cal sort() requires a color property map to mark the vertices, so we use the LEDAnodearray
to map from vertices to colors. Themake leda nodepropertymap() function is also de-
fined in boost/graph/ledagraph.hpp, which creates an adaptor that satisfies theLvalueProp-
ertyMap concept in terms of anodearray. The reverse topological ordering is written into the
topo ordervector, which we then reverse. The ordering is then output. Theoperator[]() of the
LEDA GRAPH is used to access the task label for each vertex.

〈 Perform the topological sort on the LEDA graph121b 〉 ≡
std::vector<vertex t> topo order;
node array<default color type> color array(leda g);

topological sort(leda g, std::back inserter(topo order),
color map(make leda node property map(color array)));

std::reverse(topo order. begin(), topo order. end());
int n = 1;
for (std::vector<vertex t>::iterator i = topo order. begin();

i != topo order. end(); ++ i, ++ n)
std::cout << n << " : " << leda g[* i] << std::endl;

122 CHAPTER 10. INTERFACING WITH OTHER GRAPH LIBRARIES

10.2 Using BGL Topological Sort with a SGB Graph

The SGB defines aGraph struct that implements an adjacency-list style data-structure. The
overloaded functions inboost/graph/stanfordgraph.hppadapt the SGBGraphstruct to the BGL
interface. In addition to including thestanford graph.hppheader file, you must have the Stan-
ford GraphBase installed and you must apply the PROTOTYPES change file that is included
in the SGB distribution. The reason for this is that the original SGB header files did not de-
fine ANSI standard prototypes for the functions, which is required by a C++ compiler. When
compiling a program using the SGB–BGL interface, you will need to set up the include and
library paths to find the SGB, and you will need to link in the SGB library. The SGB–BGL
interface is documented in§14.3.4.

The following code shows the outline for a program that computes a topological ordering
for a set of interdependent tasks.

〈 “topo-sort-with-sgb.cpp”122a 〉 ≡
#include <vector>
#include <string>
#include <iostream>
#include <boost/ graph/ topological sort. hpp>
#include <boost/ graph/ stanford graph. hpp>

int main()
{

using namespace boost;
〈Create an SGB graph122b〉
〈Create labels for the tasks122c〉
〈Add edges to the SGB graph123a〉
〈Perform the topological sort on the SGB graph123b〉
gb recycle(sgb g);
return EXIT SUCCESS;
}

We create a SGB graph with a call to the SGB functiongb new graph() .

〈 Create an SGB graph122b 〉 ≡
const int n vertices = 7;
Graph* sgb g = gb new graph(n vertices);

Next we write down the labels for the tasks (the vertices) in the graph. It is easy to
go from an SGB vertex descriptor to an integer using thesgbvertex id map defined instan-
ford graph.hpp, so storing the labels in an array is convenient.

〈 Create labels for the tasks122c 〉 ≡
const char* tasks[] = {

10.3. IMPLEMENTING GRAPH ADAPTORS 123

" pick up kids from school" ,
" buy groceries (and snacks)" ,
" get cash at ATM" ,
" drop off kids at soccer practice" ,
" cook dinner" ,
" pick up kids from soccer" ,
" eat dinner" };

const int n tasks = sizeof(tasks) / sizeof(char*);

The SGB graph stores the vertices of the graph in an array, so we can access any vertex
by an offset into the array. Thegb new edgefunction takes twoVertex* arguments and an edge
weight (which we do not need).

〈 Add edges to the SGB graph123a 〉 ≡
gb new arc(sgb g−>vertices + 0, sgb g−>vertices + 3, 0);
gb new arc(sgb g−>vertices + 1, sgb g−>vertices + 3, 0);
gb new arc(sgb g−>vertices + 1, sgb g−>vertices + 4, 0);
gb new arc(sgb g−>vertices + 2, sgb g−>vertices + 1, 0);
gb new arc(sgb g−>vertices + 3, sgb g−>vertices + 5, 0);
gb new arc(sgb g−>vertices + 4, sgb g−>vertices + 6, 0);
gb new arc(sgb g−>vertices + 5, sgb g−>vertices + 6, 0);

Next we perform the topological sort. We pass the SGB graph as is into the algorithm.
This time instead of creating a color map we will let the algorithm create one for itself. How-
ever, to do this thetopological sort() function will need a mapping from vertices to integers.
The SGB–BGL interface provides this property map. The vertex to index property map is
obtained by the callget(vertexindex, sgbg.

〈 Perform the topological sort on the SGB graph123b 〉 ≡
typedef graphtraits<Graph*>::vertex descriptor vertext;
std::vector<vertex t> topo order;
topological sort(sgb g, std::back inserter(topo order),

vertex index map(get(vertex index, sgb g)));
int n = 1;
for (std::vector<vertex t>::reverse iterator i = topo order. rbegin();

i != topo order. rend(); ++ i, ++ n)
std::cout << n << " : " << tasks[get(vertex index, sgb g)[* i]] << std::endl;

10.3 Implementing Graph Adaptors

Implementing new adaptors for other graph libraries and data structures is not difficult. As
an example of how to create new adaptors, this section provides a detailed explanation of the
implementation of the BGL interface for the LEDAGRAPH.

124 CHAPTER 10. INTERFACING WITH OTHER GRAPH LIBRARIES

The first issue in creating the adaptor is which BGL concepts should be implemented.
The following concepts are straightforward to implement on top of LEDA:VertexListGraph,
BidirectionalGraph, VertexMutableGraph, andEdgeMutableGraph.

All types associated with a BGL graph class are accessed though thegraph traits class.
This traits class can be partially specialized for the LEDAGRAPHclass in the following way.
1 The node and edgetypes are the LEDA equivalent of vertex and edge descriptors. The
LEDA GRAPH is for directed graphs, so we choosedirectedtag for thedirectedcategory. The
LEDA GRAPH does not automatically prevent the insertion of parallel edges, so we choose
allow parallel edgetag for the edgeparallel category. The return type for the LEDA function
number of nodes() is int, so we choose that type for theverticessizetypeof the graph. The
tag type used for thetraversal categorymust reflect which traversal concepts the graph type
models. Therefore we create a tag class that inherits frombidirectional graph tag, adjacency-
graph tag, andvertex list graph tag. The iterator types will be described later in this section.

〈 Graph traits for LEDA graph124〉 ≡
namespace boost{

struct ledagraph traversal category :
public virtual bidirectional graph tag,
public virtual adjacencygraph tag,
public virtual vertex list graph tag { };

template<typename V, typename E>
struct graph traits< GRAPH<V, E> > {

typedef node vertexdescriptor;
typedef edge edgedescriptor;
typedef directedtag directedcategory;
typedef allowparallel edgetag edgeparallel category;
typedef int verticessize type;
typedef ledagraph traversal category traversalcategory;
〈Out-edge iterator type125c〉
// more iterator typedefs . . .
};
} // namespace boost

First we will write thesource() and target() functions of theIncidenceGraph concept,
which is part of theBidirectionalGraph concept. We use the LEDAGRAPH type for the
graph parameter, and usegraph traits to specify the edge parameter and the vertex return type.
Although the LEDA typesnode andedgecould be used, it is better practice to always use
graph traits. If there is a need to change the associated vertex or edge type, it will only need

1Some nonconformant compilers such as Visual C++ 6.0 do not support partial specialization. To access
associated types in this situation, the traits class must be fully specialized for particular vertex and edge types.
Alternatively a wrapper class containing the LEDA graph and required nested typedefs can be used.

10.3. IMPLEMENTING GRAPH ADAPTORS 125

to be done in one place, inside the specialization ofgraph traits, rather than throughout your
code. LEDA providessource() andtarget() functions, so we merely call them.

〈 Source and target for LEDA graph125a 〉 ≡
template<typename V, typename E>
typename graphtraits< GRAPH<V, E> >::vertex descriptor
source(typename graphtraits< GRAPH<V, E> >::edge descriptor e,

const GRAPH<V, E>& g)
{

return source(e);
}
// same for target . . .

The next function fromIncidenceGraph that we need to implement isout edges() . This
function returns a pair of out-edge iterators. Since LEDA does not use STL-style iterators they
need to be implemented. Implementing iterators that are compliant with the C++ standard
can be a difficult and tedious process. Fortunately, there is a convenient Boost utility for
implementing iterators, callediterator adaptor. The iterator adaptorclass allows the user to
create standard-conforming interators simply by providing policy classes. The following code
is the policy class for our out-edge iterator. In LEDA, the edge object itself is used like
an iterator. It has functionsSuccAdj Edge() andPred Adj Edge() to move to the next and
previous (successor and predecessor) edge.

〈 Out-edge iterator policies125b 〉 ≡
struct ledaout edgeiterator policies
{

template<typename Iter>
static void increment(Iter& i) { i. base() = Succ Adj Edge(i. base(), 0); }
template<typename Iter>
static void decrement(Iter& i) { i. base() = Pred Adj Edge(i. base(), 0); }
template<typename Iter>
static typename Iter::reference dereference(const Iter& i) { return i. base(); }
template<typename Iter>
static bool equal(const Iter& x, const Iter& y) { return x. base() == y. base(); }
};

The iterator adaptor is now used to fill in theout edgeiterator type. The first two template
parameters foriterator adaptorare the adapted type and the policy class. The following pa-
rameters specify the associated types of the iterator such as the value type and reference type.

〈 Out-edge iterator type125c 〉 ≡
typedef iteratoradaptor<edge, leda out edgeiterator policies,

edge, const edge&, const edge*, std::forward iterator tag, std::ptrdiff t
> out edgeiterator;

126 CHAPTER 10. INTERFACING WITH OTHER GRAPH LIBRARIES

With theout edgeiterator defined ingraph traits, we are ready to define theout edges() func-
tion. In the following definition, the return type should be a pair of out-edge iterators, so
we usestd::pair and thengraph traits to access the out-edge iterator types. In the body of
the function we construct the out-edge iterators by passing in the first adjacent edge for the
begin iterator, and 0 for the end iterator (which is used in LEDA as the end sentinel). The 0
argument toFirst Adj Edgetells LEDA we want out-edges (and not in-edges).

〈 Out-edges function for LEDA126a 〉 ≡
template<typename V, typename E>
std::pair<typename graphtraits< GRAPH<V, E> >::out edgeiterator,

typename graphtraits< GRAPH<V, E> >::out edgeiterator>
out edges(typename graphtraits< GRAPH<V, E> >::vertex descriptor u,

const GRAPH<V, E>& g)
{

typedef typename graphtraits< GRAPH<V, E> >::out edgeiterator Iter;
return std::makepair(Iter(First Adj Edge(u, 0)), Iter(0));
}

The rest of the iterator types and interface functions are constructed using the same tech-
niques. The complete code for the LEDA wrapper interface is inboost/graph/ledagraph.hpp.
In the following code we use the BGL concept checks to make sure that we have correctly
implemented the BGL interface. These checks do not test the run-time behavior of the imple-
mentation; that is tested intest/graph.cpp.

〈 “leda-concept-check.cpp”126b 〉 ≡
#include <boost/ graph/ graph concepts. hpp>
#include <boost/ graph/ leda graph. hpp>

int main()
{

typedef GRAPH<int, int> Graph;
function requires< VertexListGraphConcept<Graph> >();
function requires< BidirectionalGraphConcept<Graph> >();
function requires< VertexMutableGraphConcept<Graph> >();
function requires< EdgeMutableGraphConcept<Graph> >();
return EXIT SUCCESS;
}

Chapter 11

Performance Guidelines

In this chapter, we discuss the performance impact of various choices of the BGL graph
family adjacencylist. The purpose is to give BGL users some basic guidelines for which
graph types might be most efficient in different situations. We present a set of experiments
that shows the performance of different basic operations on several variations of the BGL
adjacencylist. Sparse and dense graphs are investigated, as well as the use of two different
compilers (Microsoft Visual C++ and GNU C++).

As a primary BGL graph component,adjacencylist allows users to control the actual data
structures used for internal graph data structures. Its first two template parameters,EdgeList
andVertexList, are used to select actual containers to represent the sequence of out-edges and
the sequence of vertices, respectively. Users can usevecS, listS, or setSfor EdgeListto choose
eitherstd::vector, std::list, or std::set. Users can specifyvecSor listS to choosestd::vectoror
std::list, respectively, for the backbone.

11.1 Graph Class Comparisons

The experiments compare the performance of several variations of theadjacencylist. The
experiments cover most of the basic graph operations: inserting and removing vertices and
edges and traversing the graph along the vertices, edges, and the out-edges of each vertex.
The experiments were performed with sparse and dense graphs with small size (100 vertices),
medium size (1,000 vertices), and large size (10,000 vertices). For a sparse graph, the number
of edges is ten times the number of vertices. For a dense graph, the total number of edge is
the square of the number of vertices.

The timing runs were performed on a Dell dual 733MHz CPU machine, with 512 MB
memory. The experiments were duplicated for two compilers: Microsoft Visual V++ 6.0 and
GNU C++ 2.95.3 under cygwin. The optimization flags were set for maximal speed for Visual
C++. The-O3 and-funroll-loops optimization flags were used with GNU C++. Note that the
adjacencylist implementation uses components from the STL, which are typically provided

127

128 CHAPTER 11. PERFORMANCE GUIDELINES

by the compiler.
The timer used was the portable POSIXclock() function, which is rather low resolu-

tion. Several of the tests would normally complete in less time than the minimum resolution.
Therefore, the experiments were executed in a loop until the elapsed time exceeded at least
100 times the minimum resolution. Each of these looped experiments was repeated three
times and the minimum time of the three was reported. We noticed a standard deviation of
approximately 10% in the timings.

The following gives the full graph type used for the experiments, along with the abbrevi-
ated graph names used in the results charts.

• vec

adjacencylist<vecS, vecS, directedS, property<vertex distancet, int>,
property<edgeweight t, int> >

• list

adjacencylist<listS, vecS, directedS, property<vertex distancet, int>,
property<edgeweight t, int> >

• set

adjacencylist<setS, vecS, directedS, property<vertex distancet, int>,
property<edgeweight t, int> >

• listlist

adjacencylist<listS, listS, directedS, property<vertex distancet, int>,
property<edgeweight t, int> >

11.1.1 The Results and Discussion

Adding Edges and Vertices For the first experiment, we make alternate calls to
add vertex() andadd edge() until the graph has|E| edges and|V | vertices. The results of
this experiment are shown in Figure11.1. The winner here is one of theadjacencylist classes
with VertexList=listSselector.

Adding Edges For this experiment, we add|E| edges to a graph that already has|V | ver-
tices. The results are shown in Figure11.2. The clear winner using Visual C++ isadja-
cencylist with VertexList=vecSselector, regardless of graph size and sparsity. Using GNU
C++,adjacencylist class withEdgeList=listSwins when graphs are sparse.

11.1. GRAPH CLASS COMPARISONS 129

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.1The timing results of the experiment adding edges and vertices.

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.2The timing results of the experiment adding edges.

130 CHAPTER 11. PERFORMANCE GUIDELINES

Removing Edges This experiment adds and removes|E| edges to graph with|V | vertices.
The results are shown in Figure11.3. The result here was not clear for graphs with small
number of vertices. However, it is clear thatadjacencylist with VertexList=setSselector is the
winner for large graphs.

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.3The timing results of the experiment removing edges.

Removing Vertices This experiment adds|V | vertices and|E| edges to a graph, and then
removes all the vertices. The results are shown in Figure11.4. The clear winner here islistlist,
which was designed with this operation in mind. Other variations ofadjacencylist perform
horribly on this operation because its implementation is not of constant time complexity.

Clearing Vertices This experiment adds|V | vertices and|E| edges to a graph, and then
clears and removes all the vertices. Theclear vertex() operation traverses the graph, removing
any edges the refer the vertex. The results are shown in Figure11.5. As the graph size gets
larger and larger, it is getting clearer thatadjacencylist with VertexList=vecSis the winner.

Vertex Set Traversal This experiment traverses through all the vertices in the graph, read-
ing an internal property value from each vertex. The results are shown in Figure11.6. There
was no clear winner here in the first three graph types. Vertex traversal was fast for those
graph classes because they have the sameVertexList=vecS. Vertex traversal was slower for
large graphs forlistlist because it usesVertexList=listS.

11.1. GRAPH CLASS COMPARISONS 131

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.4The timing results of the experiment removing vertices.

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.5The timing results of the experiment clearing vertices.

132 CHAPTER 11. PERFORMANCE GUIDELINES

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.6The timing results of the experiment traversing the vertex set.

Edge Set Traversal This experiment traverses through all the edges in the graph, reading
an internal property value from each edge. The results are shown in Figure11.7. The clear
winner here isadjacencylist with EdgeList=vecS.

Out-Edge Traversal This experiment traverses through the out-edges of every vertex in the
graph, reading an internal property from each vertex and from each out-edge. The results are
shown in Figure11.8. The clear winner here isadjacencylist with EdgeList=vecS.

11.2 Conclusion

Different combinations of choices have different tradeoffs between traversal speed and inser-
tion/removal speed. The following summarizes the results of our experiments.

• UsingvecSfor EdgeListgenerally provides efficient out-edge traversal.

• UsingvecSfor VertexListgenerally provides efficent vertex set traversal.

• Efficient removal of edges is supported bysetSfor EdgeList. In particular,std::setshould
be used for the sequence of out-edges.

• For efficient addition of edges,vecSor listS for EdgeListshould be used.

• If removing vertices is a common operation,listS for VertexListshould be used because
std::list as a backbone enables constant-time vertex removal.

11.2. CONCLUSION 133

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.7The timing results of the experiment traversing the edge set.

100 1000 10000
0

0.2

0.4

0.6

0.8

1
sparse, Visual C++

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

100 1000 10000

sparse, GNU C++

100 1000

dense, Visual C++

100 1000

dense, GNU C++

vec
list
set
listlist

Figure 11.8The timing results of the experiment traversing out-edges.

134 CHAPTER 11. PERFORMANCE GUIDELINES

• For clearing vertices,vecSfor VertexList is a good choice (the functionclear vertex()
can be used to remove all incident edges).

Part II

Reference Manual

135

Chapter 12

BGL Concepts

This chapter describes the fundamental interfaces (the fundamental concepts) for graphs in
the BGL. These concepts are organized into three categories: those providing mechanisms
for traversing a graph, those providing mechanisms for modifying a graph, and visitors for
accessing properties attached to vertices and edges.

Notation

The notation used in the requirements for all of the graph concepts is collected here.

G is a graph type.
g is an object of typeG.
e is an object of typegraph traits<G>::edge descriptor .
eiter is an object of typegraph traits<G>::out edgeiterator .
u,v are objects of typegraph traits<G>::vertex descriptor .
ep is an object of typeedgeproperty<G>::type .
vp is an object of typevertex property<G>::type .
PropertyTag A type used to specify a vertex or edge property.
ptag An object of typePropertyTag.
X is either the vertex or edge descriptor type forG.
x is a vertex or edge descriptor.
PMap is a type that models one of the property map concepts.
pmap is an object of typePMap.

12.1 Graph Traversal Concepts

The core of the Boost Graph Library is the interfaces, as represented by concepts, that define
how a graph can be examined and manipulated in a data structure neutral fashion. In fact, as
shown in Chapter, the BGL graph interface need not even be implemented using an explicit

137

138 CHAPTER 12. BGL CONCEPTS

data structure. For some problems it is more natural or more efficient to define a graph
implicitly based on certain functions.

The BGL graph interface does not appear as a single concept. Instead, it is factored into
smaller, distinct pieces. The purpose of a concept is to encapsulate the interface requirements
for algorithms. To maximize the reusability of an algorithm, it is important not to include
operations in its interface that are not actually required for correct operation of the algorithm.
By factoring the graph interface into smaller distinct concepts, we provide the graph algorithm
writer with a good selection from which to choose the minimal concept that provides the
functionality needed by the algorithm.

Figure 12.1 shows the refinement relations between the graph traversal concepts. Ta-
ble12.1gives a summary of the valid expressions and associated types for the graph traversal
concepts.

Graph

IncidenceGraph AdjacencyGraph EdgeListGraph AdjacencyMatrix VertexListGraph

BidirectionalGraph

Figure 12.1The graph concepts and refinement relationships.

12.1.1 Undirected Graphs

The interface that the BGL provides for accessing and manipulating undirected graphs is the
same as the interface for directed graphs. The interface is the same because of a certain
equivalence between undirected and directed graphs. That is, any undirected graph can be
represented as a directed graph where each undirected edge(u, v) is replaced by two directed
edges:(u, v) and(v, u). Such a directed graph is call thedirected versionof the undirected
graph. Figure12.2shows an undirected graph and the directed version of it. Note that for
every edge in the undirected graph, the directed graph has two edges. Thus, the BGL uses the
out edges() function (orin edges()) to access the incident edges in an undirected graph. Sim-
ilarly, the BGL usessource() andtarget() to access vertices. This may seem counterintuitive
at first. However, by recognizing the equivalence between undirected and directed graphs, the
BGL allows many algorithms to be applied to both directed and undirected graphs.

12.1. GRAPH TRAVERSAL CONCEPTS 139

Expression Return Type or Description
Graph
graph traits<G>::vertex descriptor The type of object used to identify vertices.
graph traits<G>::directed category Directed or undirected edges?
graph traits<G>::traversal category What kind of iterator traversal is supported?
graph traits<G>::edgeparallel category Allow insertion of parallel edges?

IncidenceGraph refinesGraph
graph traits<G>::edgedescriptor The type of object used to identify edges.
graph traits<G>::out edgeiterator Iterate through the out-edges.
graph traits<G>::degreesizetype The integer type for vertex degee.
out edges(v, g) std::pair<out edgeiterator, out edgeiterator>
source(e, g) vertexdescriptor
target(e, g) vertexdescriptor
out degree(v, g) degreesizetype

BidirectionalGraph refinesIncidenceGraph
graph traits<G>::in edgeiterator Iterate through the in-edges.
in edges(v, g) std::pair<in edgeiterator, in edgeiterator>
in degree(v, g) degreesizetype
degree(e, g) degreesizetype

AdjacencyGraph refinesGraph
graph traits<G>::adjacencyiterator Iterate through adjacent vertices.
adjacentvertices(v, g) std::pair<adjacencyiterator, -

adjacencyiterator>

VertexListGraph refinesGraph
graph traits<G>::vertex iterator Iterate through the graph’s vertex set.
graph traits<G>::verticessizetype The unsigned integer type for representing

the number of vertices.
num vertices(g) verticessizetype
vertices(g) std::pair<vertex iterator, vertexiterator>

EdgeListGraph refinesGraph
graph traits<G>::edgedescriptor The type of object used to identify edges.
graph traits<G>::edge iterator Iterate through the graph’s edge set.
graph traits<G>::edgessizetype The unsigned integer type for representing

the number of edges.
num edges(g) edgessizetype
edges(g) std::pair<edgeiterator, edgeiterator>
source(e, g) vertexdescriptor
target(e, g) vertexdescriptor

AdjacencyMatrix refinesGraph
edge(u, v, g) std::pair<edgedescriptor, bool>

Table 12.1: Summary of the graph traversal concepts.

140 CHAPTER 12. BGL CONCEPTS

A

B

D

C

E A

B

D

CE

Figure 12.2An undirected graph and its directed equivalent.

The following example demonstrates using theout edges() , source() , andtarget() with
an undirected graph. Even though edge directionality typically does not matter for undirected
graphs, when applying theout edges() function with a vertexu, the source vertex for the edge
descriptors will always beu and the target vertex will be a vertex adjacent tou. The converse
is true for thein edges() function.

template<typename UndirectedGraph> void undirectedgraph demo1() {
const int V = 3;
UndirectedGraph undigraph(V);
typename graphtraits<UndirectedGraph>::vertex descriptor zero, one, two;
typename graphtraits<UndirectedGraph>::out edgeiterator out, out end;
typename graphtraits<UndirectedGraph>::in edgeiterator in, in end;

zero = vertex(0, undigraph);
one = vertex(1, undigraph);
two = vertex(2, undigraph);
add edge(zero, one, undigraph);
add edge(zero, two, undigraph);
add edge(one, two, undigraph);

std::cout << " out˙edges(0):" ;
for (tie(out, out end) = out edges(zero, undigraph); out != out end; ++ out)

std::cout << * out;
std::cout << std::endl << " in˙edges(0):" ;
for (tie(in, in end) = in edges(zero, undigraph); in != in end; ++ in)

std::cout << * in;
std::cout << std::endl;
}

The output is

out edges(0) : (0, 1) (0, 2)
in edges(0) : (1, 0) (2, 0)

12.1. GRAPH TRAVERSAL CONCEPTS 141

Even though the interface is the same for undirected graphs, there are some behavioral
differences because edge equality is defined differently. In a directed graph, edge(u, v) is
never equal to edge(v, u), but in an undirected graph they may be equal. In an undirected
graph that does not allow parallel edges (it is not a multigraph),(u, v) is the same edge as
(v, u). However, in a multigraph the two edges may be different (because two edges(u, v)
may also be different).

In the following examples the edge equality test for(u, v) = (v, u) will return false for
the directed graph and true for the undirected graph. The difference also affects the meaning
of add edge() . In the directed graph example both edges(u, v) and(v, u) are added whereas
is the undirected graph example only one edge(u, v) is added. If(v, u) had also been added to
the undirected graph, we would have been adding a parallel edge betweenu andv (provided
the graph type allows parallel edges). The difference in edge equality also affects the attached
edge properties. In the directed graph, the edges(u, v) and(v, u) can have distinct weight
values, whereas in the undirected graph the weight of(u, v) is the same as the weight of(v, u)
because they are the same edge.

First is the example code for the directed graph:

template<typename DirectedGraph> void directedgraph demo() {
const int V = 2;
DirectedGraph digraph(V);
typename graphtraits<DirectedGraph>::vertex descriptor u, v;
typedef typename DirectedGraph::edgeproperty type Weight;
typename propertymap<DirectedGraph, edgeweight t>::type

weight = get(edgeweight, digraph);
typename graphtraits<DirectedGraph>::edge descriptor e1, e2;
bool found;

u = vertex(0, digraph);
v = vertex(1, digraph);
add edge(u, v, Weight(1.2), digraph);
add edge(v, u, Weight(2.4), digraph);
tie(e1, found) = edge(u, v, digraph);
tie(e2, found) = edge(v, u, digraph);
std::cout << " in a directed graph is" ;
std::cout << " (u,v) == (v,u) ? "

<< std::boolalpha<< (e1 == e2) << std::endl;
std::cout << " weight[(u,v)] = " << get(weight, e1) << std::endl;
std::cout << " weight[(v,u)] = " << get(weight, e2) << std::endl;
}

The output is

in a directed graph is(u, v) == (v, u) ? false
weight[(u, v)] = 1.2
weight[(v, u)] = 2.4

142 CHAPTER 12. BGL CONCEPTS

Next is the example code for the undirected graph:

template<typename UndirectedGraph> void undirectedgraph demo2()
{

const int V = 2;
UndirectedGraph undigraph(V);
typename graphtraits<UndirectedGraph>::vertex descriptor u, v;
typedef typename UndirectedGraph::edgeproperty type Weight;
typename propertymap<UndirectedGraph, edgeweight t>::type

weight = get(edgeweight, undigraph);
typename graphtraits<UndirectedGraph>::edge descriptor e1, e2;
bool found;

u = vertex(0, undigraph);
v = vertex(1, undigraph);
add edge(u, v, Weight(3.1), undigraph);
tie(e1, found) = edge(u, v, undigraph);
tie(e2, found) = edge(v, u, undigraph);
std::cout << " in an undirected graph is" ;
std::cout << " (u,v) == (v,u) ? "

<< std::boolalpha<< (e1 == e2) << std::endl;
std::cout << " weight[(u,v)] = " << get(weight, e1) << std::endl;
std::cout << " weight[(v,u)] = " << get(weight, e2) << std::endl;
}

The output is

in an undirected graph is(u, v) == (v, u) ? true
weight[(u, v)] = 3.1
weight[(v, u)] = 3.1

12.1.2 Graph

TheGraph concept defines the associated types that are common to all of the graph concepts.
These associated types are auxiliary types that play a part in many graph operations. Simi-
lar to the iterators of the STL, the associated types are accessed with a traits class—in this
case, thegraph traits class. The use of the traits class mechanism is one of the reasons BGL
algorithms are so flexible. For example, there is great variety in how graph data structures
identify vertices. An adjacency-list style implementation might use integers to represent ver-
tices, using the integer to offset to the appropriate out-edge list. An object-oriented graph
implementation might use pointers to heap allocated vertex objects. With thegraph traits
class, these differences are hidden by thevertexdescriptorassociated type. Whatever the un-
derlying type may be (integer, pointer, etc.), the graph algorithm can usegraph traits to obtain
the type and create objects.

12.1. GRAPH TRAVERSAL CONCEPTS 143

TheGraph concept itself does not include any functions (valid expressions). The require-
ments for various graph operations have been factored into a family of concepts,Incidence-
Graph, VertexListGraph, and so on.

One should note that a model ofGraph is not required to be a model ofAssignable or
CopyConstructible, so algorithms with aGraph interface should pass graph objects by refer-
ence or explicitly add theAssignable andCopyConstructible requirements.

Associated Types

graph traits<G>::vertex descriptor
A vertex descriptor corresponds to a unique vertex in an abstract graph instance. A vertex
descriptor must beDefaultConstructible, Assignable, andEqualityComparable.

graph traits<G>::directed category
The tags for this category aredirectedtag andundirectedtag.

graph traits<G>::edge parallel category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The two tags areallow parallel edgetag anddisallow parallel-
edgetag.

graph traits<G>::traversal category
This describes what kinds of iterator traversal the graph supports. The following traversal
tag classes are defined:

struct incidencegraph tag { };
struct adjacencygraph tag { };
struct bidirectional graph tag : public virtual incidencegraph tag { };
struct vertexlist graph tag { };
struct edgelist graph tag { };
struct adjacencymatrix tag { };

12.1.3 IncidenceGraph

The IncidenceGraph concept provides an interface for efficient access to the out-edges of
each vertex in the graph. The out-edges are accessed via out-edge iterators. Theout edges(v,
g) function, given some vertex descriptorv and graphg, returns a pair of out-edge iterators.
The first iterator points to the first out-edge of vertexv, and the second iterator points past
the end of the sequence of out-edges. Dereferencing an out-edge iterator returns an edge
descriptor. Incrementing an out-edge iterator moves to the next out-edge of the vertex. The
order in which the out-edges appear in the iteration is not specified (although particular graph
implementations may have a specified ordering).

http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/CopyConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/CopyConstructible.html
http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html

144 CHAPTER 12. BGL CONCEPTS

Refinement of

Graph

Associated Types

graph traits<G>::edge descriptor
An edge descriptor corresponds to a unique edge in the graph. An edge descriptor must
beDefaultConstructible, Assignable, andEqualityComparable.

graph traits<G>::out edgeiterator
An out-edge iterator for a vertexv provides access to the out-edges ofv. As such, the
value type of an out-edge iterator is the edge descriptor type of its graph. An out-edge
iterator must meet the requirements ofMultiPassInputIterator.

graph traits<G>::degreesize type
This is the unsigned integral type used to represent the number out-edges or incident
edges of a vertex.

Valid Expressions

source(e, g)
Return Type: vertexdescriptor
Semantics: Returns the vertex descriptor foru of the edge(u, v) represented bye.
Preconditions: e is a valid edge descriptor of graphg.

target(e, g)
Return Type: vertexdescriptor
Semantics: Returns the vertex descriptor forv of the edge(u, v) represented bye.
Preconditions: e is a valid edge descriptor of graphg.

out edges(v, g)
Return Type: std::pair<out edgeiterator, out edgeiterator>
Semantics: Returns an iterator range providing access to the out-edges (for directed

graphs) or incident edges (for undirected graphs) of vertexv. The vertex
v will show up as the source vertex in each of the out-edges. The ver-
tices to whichv is adjacent will be the target vertices for the out-edges
(regardless of whether the graph is directed or undirected).

Preconditions: v is a valid vertex descriptor of graphg.

out degree(v, g)
Return Type: degreesizetype
Semantics: Returns the number of out-edges (for directed graphs) or the number of

incident edges (for undirected graphs) of vertexv.
Preconditions: v is a valid vertex descriptor of graphg.

http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html

12.1. GRAPH TRAVERSAL CONCEPTS 145

Complexity Guarantees

The source() , target() , and out edges() functions must all be constant time. The
out degree() function must be linear in the number of out edges for the vertex.

12.1.4 BidirectionalGraph

The BidirectionalGraph concept refinesIncidenceGraph and adds the requirement for effi-
cient access to the in-edges of each vertex. This concept is separated fromIncidenceGraph
because providing efficient access to in-edges of a directed graph typically requires more stor-
age space, and many algorithms do not require access to in-edges. For undirected graphs this
is not an issue because no extra space is needed to provide access to in-edges.

Refinement of

IncidenceGraph

Associated Types

graph traits<G>::in edgeiterator
An in-edge iterator for a vertexv provides access to the in-edges ofv. As such, the value
type of an in-edge iterator is the edge descriptor type of its graph. An in-edge iterator
must meet the requirements ofMultiPassInputIterator.

Valid Expressions

in edges(v, g)
Return Type: std::pair<in edgeiterator, in edgeiterator>
Semantics: Returns an iterator range providing access to the in-edges (for directed

graphs) or incident edges (for undirected graphs) of vertexv. The vertex
v will show up as the target vertex in each of the in-edges. The vertices
adjacent tov will be the source vertices for the in-edges (regardless of
whether the graph is directed or undirected).

Preconditions: v is a valid vertex descriptor of graphg.

in degree(v, g)
Return Type: degreesizetype
Semantics: Returns the number of in-edges (for directed graphs) or the number of

incident edges (for undirected graphs) of vertexv.
Preconditions: v is a valid vertex descriptor of graphg.

146 CHAPTER 12. BGL CONCEPTS

degree(v, g)
Return Type: degreesizetype
Semantics: Returns the number of in-edges plus out-edges (for directed graphs) or

the number of incident edges (for undirected graphs) of vertexv.
Preconditions: v is a valid vertex descriptor of graphg.

Complexity Guarantees

The in edges() function is required to be constant time. Thein degree() function is required
to be linear in the number of in-edges.

12.1.5 AdjacencyGraph

TheAdjacencyGraph concept defines the interface for accessing adjacent vertices. Adjacent
vertices can also be accessed as the target vertex of an out-edge; however, for some algorithms
the out-edges are not needed, and it is more convenient to directly access the adjacent vertices.

Refinement of

Graph

Associated Types

graph traits<G>::adjacency iterator
An adjacency iterator for a vertexv provides access to the vertices adjacent tov. As
such, the value type of an adjacency iterator is the vertex descriptor type of its graph. An
adjacency iterator must meet the requirements ofMultiPassInputIterator.

Valid Expressions

adjacentvertices(v, g)
Return Type: std::pair<adjacencyiterator, adjacencyiterator>
Semantics: Returns an iterator range providing access to the vertices adjacent to

vertexv. More specifically, this range is equivalent to taking the target
vertex for every out-edge of vertexv.

Preconditions: v is a valid vertex descriptor of graphg.

Complexity Guarantees

Theadjacentvertices() function must return in constant time.

12.1. GRAPH TRAVERSAL CONCEPTS 147

12.1.6 VertexListGraph

TheVertexListGraph concept defines the requirements for efficient traversal of all the vertices
in the graph.

Refinement of

Graph

Associated Types

graph traits<G>::vertex iterator
A vertex iterator (obtained viavertices(g)) provides access to all of the vertices in a graph.
A vertex iterator type must meet the requirements ofMultiPassInputIterator. The value
type of the vertex iterator must be the vertex descriptor of the graph.

graph traits<G>::vertices size type
The unsigned integer type used to represent the number of vertices in the graph.

Valid Expressions

vertices(g)
Return Type: std::pair<vertex iterator, vertexiterator>
Semantics: Returns an iterator range providing access to all the vertices in graphg.

num vertices(g)
Return Type: verticessizetype
Semantics: Returns the number of vertices in the graphg.

Complexity Guarantees

Thevertices() function must return in constant time. Thenum vertices() function must return
in time linear to the number of vertices.

12.1.7 EdgeListGraph

TheEdgeListGraph concept refines theGraph concept and adds the requirement for efficient
access to all the edges in the graph.

Refinement of

Graph

http://www.sgi.com/tech/stl/MultiPassInputIterator.html

148 CHAPTER 12. BGL CONCEPTS

Associated Types

graph traits<G>::edge descriptor
An edge descriptor corresponds to a unique edge in the graph. An edge descriptor must
beDefaultConstructible, Assignable, andEqualityComparable.

graph traits<G>::edge iterator
An edge iterator (obtained viaedges(g)) provides access to all of the edges in a graph. An
edge iterator type must meet the requirements of anInputIterator. The value type of the
edge iterator must be the same as the edge descriptor of the graph.

graph traits<G>::edgessize type
This is the unsigned integer type used to represent the number of edges in the graph.

Valid Expressions

edges(g)
Return Type: std::pair<edgeiterator, edgeiterator>
Semantics: Returns an iterator range providing access to all the edges in the graph

g.

source(e, g)
Return Type: vertexdescriptor
Semantics: Returns the vertex descriptor foru of the edge(u, v) represented bye.
Preconditions: e is a valid edge descriptor of graphg.

target(e, g)
Return Type: vertexdescriptor
Semantics: Returns the vertex descriptor forv of the edge(u, v) represented bye.
Preconditions: e is a valid edge descriptor of graphg.

num edges(g)
Return Type: edgessizetype
Semantics: Returns the number of edges in the graphg.

Complexity Guarantees

The edges() , source() , and target() functions must all return in constant time. The
num edges() function must be linear time in the number of edges in the graph.

12.1.8 AdjacencyMatrix

The AdjacencyMatrix concept refinesGraph concept and adds the requirement for efficient
access to any edge in the graph given the source and target vertices.

http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/EqualityComparable.html
http://www.sgi.com/tech/stl/InputIterator.html

12.1. GRAPH TRAVERSAL CONCEPTS 149

Refinement of

Graph

Valid Expresions

edge(u, v, g)
Return type: std::pair<edgedescriptor, bool>
Semantics: Returns a pair consisting of a flag saying whether there exists an edge

betweenu andv in graphg, and consisting of the edge descriptor if the
edge was found.

Preconditions: u, v are valid vertex descriptors of graphg.

Complexity Guarantees

Theedge() function must be constant time.

150 CHAPTER 12. BGL CONCEPTS

Expression Return Type or Description
VertexMutableGraph refinesGraph
add vertex(g) vertexdescriptor
removevertex(v, g) void

EdgeMutableGraph refinesGraph
clear vertex(v, g) void
add edge(u, v, g) std::pair<edgedescriptor, bool>
removeedge(u, v, g) void
removeedge(e, g) void

MutableIncidenceGraph refinesIncidenceGraph andEdgeMutableGraph
removeedge(eiter, g) void
removeout edgeif(u, p, g) void

MutableBidirectionalGraph refinesMutableIncidenceGraph andBidirectionalGraph
removeedge(eiter, g) void
removeout edgeif(u, p, g) void

MutableEdgeListGraph refinesEdgeMutableGraph andEdgeListGraph
removeedgeif(p, g) void

PropertyGraph refinesGraph
propertymap<G, PropertyTag>::type Type for mutable vertex property map.
propertymap<G, PropertyTag>::const type Type for non-mutable property map.
get(ptag, g) Function to get a vertex property map object.
get(ptag, g, x) Get the property value for vertex or edgex.
put(ptag, g, x, v) Set the property value for vertex or edgex.

VertexMutablePropertyGraph refinesVertexMutableGraph andPropertyGraph
add vertex(vp, g) vertexdescriptor

EdgeMutablePropertyGraph refinesEdgeMutableGraph andPropertyGraph
add edge(u, v, ep, g) std::pair<edgedescriptor, bool>

Table 12.2: Summary of the graph modifying and property access concepts.

12.2 Graph Modification Concepts

This section describes the BGL interface for modifying a graph—that is, adding and remov-
ing vertices and edges and changing the value of properties attached to vertices and edges
in the graph. Like the graph-traversal concepts, the graph-modification concepts are factored
into many small concepts to provide algorithm writers with a good selection of concepts with
which to describe their requirements. Figure12.3shows the refinement relations between the
graph-modification concepts, and Table12.2 summarizes the valid expressions and associ-
ated types for each of concepts. Some of the concepts from Figure12.1also play a role in
Figure12.3, but all of the refinement relationships from Figure12.1have been omitted.

12.2. GRAPH MODIFICATION CONCEPTS 151

Graph

VertexMutableGraph

EdgeMutableGraph

PropertyGraph

IncidenceGraph MutableIncidenceGraph

BidirectionalGraph

MutableBidirectionalGraph

EdgeListGraph MutableEdgeListGraph

VertexMutablePropertyGraph

EdgeMutablePropertyGraph

Figure 12.3The graph-mutating concepts and refinement relationships.

152 CHAPTER 12. BGL CONCEPTS

12.2.1 VertexMutableGraph

A vertex mutable graph can be changed by adding or removing vertices. The memory man-
agement is the responsibility of the graph implementation. The graph user need only make
calls toadd vertex() andremovevertex() and the graph implementation does the rest.

Refinement of

Graph, DefaultConstructible

Valid Expressions

add vertex(g)
Return Type: vertexdescriptor
Semantics: Add a new vertex to the graph. Thevertexdescriptorfor the new vertex

is returned.

removevertex(u, g)
Return Type: void
Semantics: Removeu from the vertex set of the graph.
Preconditions: u is a valid vertex descriptor of graphg and there are no edges inci-

dent to vertexu. The functionclear vertex() can be used to remove all
incident edges.

Postconditions: num vertices(g)is one less;u no longer appears in the vertex set of the
graph and it is no longer a valid vertex descriptor.

Complexity Guarantees

• Vertex insertion is guaranteed to be amortized constant time.

• Vertex removal is at mostO(|E|+ |V |).

12.2.2 EdgeMutableGraph

A EdgeMutableGraph can be changed via the addition or removal of edges. Memory man-
agement is the responsibility of the graph implementation. The user of the graph need only
make calls toadd edge() , removeedge() , and so on, and the graph implementation does the
rest.

Refinement of

Graph

http://www.sgi.com/tech/stl/DefaultConstructible.html

12.2. GRAPH MODIFICATION CONCEPTS 153

Valid Expressions

add edge(u, v, g)
Return Type: std::pair<edgedescriptor, bool>
Semantics: Attempt to insert the edge(u, v) into the graph, returning the inserted

edge or a parallel edge and a flag that specifies whether an edge was
inserted. This operation must not invalidate vertex descriptors or vertex
iterators of the graph, though it may invalidate edge descriptors or edge
iterators. The order in which the new edge appears via the graph’s edge
iterators is not specified.

Preconditions: u andv are vertices in the graph.
Postconditions: (u, v) is in the edge set of the graph. The returned edge descriptor will

haveu in the source position andv in the target position. If the graph
allows parallel edges, then the returned flag is always true. If the graph
does not allow parallel edges and if(u, v) was already in the graph then
the returned flag is false. If(u, v) was not in the graph then the returned
flag is true.

removeedge(u, v, g)
Return Type: void
Semantics: Remove the edge(u, v) from the graph. If the graph allows parallel

edges this removes all occurances of(u, v).
Precondition: (u, v) is in the edge set of the graph.
Postcondition: (u, v) is no longer in the edge set of the graph.

removeedge(e, g)
Return Type: void
Semantics: Remove the edgee from the graph.
Precondition: e is an edge in the graph.
Postcondition: e is no longer in the edge set forg.

clear vertex(u, g)
Return Type: void
Semantics: Remove all edges to and from vertexu from the graph.
Precondition: u is a valid vertex descriptor ofg.
Postconditions: u does not appear as a source or target of any edge ing.

Complexity Guarantees

• Edge insertion must be either amortized constant time or it can beO(log |E||V |) if the
insertion also checks to prevent the addition of parallel edges.

• Edge removal is guaranteed to beO(|E|).

• Clearing a vertex is at mostO(|E|+ |V |).

154 CHAPTER 12. BGL CONCEPTS

12.2.3 MutableIncidenceGraph

This concept provides the ability to remove edges from the out-edge list of a vertex.

Refinement of

IncidenceGraph andEdgeMutableGraph

Valid Expressions

removeedge(eiter, g)
Return type: void
Semantics: Remove the edge pointed to byeiter from the graph, whereeiter is an

out-edge iterator for the graph.
Precondition: *eiter is an edge in the graph.
Postcondition: *eiter is no longer in the edge set forg.

removeout edgeif(u, p, g)
Return type: void
Semantics: Remove all the out-edges of vertexu for which the predicatep returns

true. This expression is only required when the graph also modelsInci-
denceGraph.

Preconditions: u is a valid vertex descriptors of graphg.
Postcondition: p returns false for all out-edges ofu and all the out-edges ofu for which

p was originally false are still in the graph.

Complexity Guarantees

• Theremoveedge() function is required to be constant time.

• Theremoveout edgeif () is linear time in the number of out-edges for the vertex.

12.2.4 MutableBidirectionalGraph

The MutableBidirectionalGraph concept defines the interface for removing edges from the
in-edge list of a vertex.

Refinement of

BidirectionalGraph andMutableIncidenceGraph

12.2. GRAPH MODIFICATION CONCEPTS 155

Valid Expressions

removein edgeif(v, p, g)
Return type: void
Semantics: Remove all the in-edges of vertexv for which p returns true.
Preconditions: v is a valid vertex descriptor of graphg.
Postcondition: p returns false for all in-edges ofv and all the in-edges ofv for whichp

was originally false are still in the graph.

Complexity Guarantees

• Theremovein edgeif () function is linear time in the number of in-edges for the vertex.

12.2.5 MutableEdgeListGraph

The MutableEdgeListGraph concept provides the ability to remove edges from the edge list
of a graph.

Refinement of

EdgeMutableGraph

Valid Expressions

removeedgeif(p, g)
Return type: void
Semantics: Remove all the edges from graphg for which p returns true.
Postcondition: p returns false for all edges in the graph and the graph still contains all

edges for whichp was originally false.

Complexity Guarantees

• The removeedgeif () function is required to be linear time in the number of edges in
the graph.

12.2.6 PropertyGraph

A PropertyGraph is a graph that has some property associated with each of the vertices or
edges in the graph. As a given graph may have several properties associated with each vertex
or edge, a tag is used to identity which property is being accessed. In the following require-
ments description,PropertyTagwill be the type of the tag, andtag will be an object of type
PropertyTag. The graph provides a function which returns a property map object.

156 CHAPTER 12. BGL CONCEPTS

Refinement of

Graph

Associated Types

property map<G, PropertyTag>::type
The type of the property map for the property specified byPropertyTag. This type must
be a mutableLvaluePropertyMap with a key type the same as the graph’s vertex or edge
descriptor type.

property map<G, PropertyTag>::const type
The type of the const property map for the property specified byPropertyTag. This type
must be an immutableLvaluePropertyMap with a key type the same as the graph’s vertex
or edge descriptor type.

Valid Expressions

get(ptag, g)
Return type: property map<G, PropertyTag>::type

if g is mutable andproperty map<G, PropertyTag>::const type
otherwise.

Semantics: Returns the property map for the property specified by thePropertyTag
type. The objectptag is only used to carry the type.

get(ptag, g, x)
Return type: property traits<PMap>::value type
Semantics: Returns the property value (specified by thePropertyTagtype) associ-

ated with objectx (a vertex or edge). The objectptag is only used to
carry the type. This function is equivalent to:get(get(ptag, g), x)

Complexity Guarantees

Theget() functions must be constant time.

12.2.7 VertexMutablePropertyGraph

A VertexMutablePropertyGraph is aVertexMutableGraph and aPropertyGraph with addition
functions for specifying property values when adding vertices to the graph.

Refinement of

VertexMutableGraph andPropertyGraph

12.2. GRAPH MODIFICATION CONCEPTS 157

Associated Types

vertex property<G>::type
The type of the vertex property object attached to each vertex.

Valid Expressions

add vertex(vp, g)
Return type: vertexdescriptor
Semantics: Add a new vertex to the graph and copyvp into the property object for

the new vertex. Thevertexdescriptorfor the new vertex is returned.

Complexity Guarantees

• add vertex() is guaranteed to be amortized constant time.

12.2.8 EdgeMutablePropertyGraph

An EdgeMutablePropertyGraph is anEdgeMutableGraph and aPropertyGraph with addition
functions for specifying property values when adding edges to the graph.

Refinement of

EdgeMutableGraph andPropertyGraph

Associated Types

edgeproperty<G>::type
The type of the edge property object attached to each edge.

Valid Expressions

add edge(u, v, ep, g)
Return type: std::pair<edgedescriptor, bool>
Semantics: Inserts the edge(u, v) into the graph, and copies objectepinto the prop-

erty plugin for that edge.
Preconditions: u, v are valid vertex descriptors of graphg.

Complexity Guarantees

• Edge insertion must be either amortized constant time or it can beO(log |E||V |) if the
insertion also checks to prevent the addition of parallel edges.

158 CHAPTER 12. BGL CONCEPTS

12.3 Visitor Concepts

The visitor concepts play a similar role in BGL as functors play in the STL. Functors provide
a mechanism for extending an algorithm—for customizing what is done at each step of the
algorithm. Visitors allow users to insert their own operations at various steps within a graph
algorithm. Unlike the STL algorithms, graph algorithms typically have multiple event points
where the user may want to insert a callback via a functor. Therefore, visitors do not have a
singleoperator() method like a functor, but instead have several methods that correspond to
the various event points. Each algorithm has a different set of event points. In this section we
define visitor concepts for the main BGL algorithms.

Like function objects in the STL, visitors are passed by value in the BGL algorithms. This
means that some care must be taken when storing state in visitor objects.

Notation

The notation used through this section is collected here.
V is a type that is a model of the visitor concept.
vis is an object of typeV.
G is a type that is a model of Graph.
g is an object of typeG.
e is an object of typegraph traits<G>::edge descriptor .
s, u are objects of typegraph traits<G>::vertex descriptor .

12.3.1 BFSVisitor

This concept defines the visitor interface forbreadthfirst search() . Users can define a class
with theBFSVisitor interface and pass an object of the class tobreadthfirst search() , thereby
augmenting the actions taken during the graph search.

Refinement of

CopyConstructible

Valid Expressions

vis.initialize vertex(u, g)
Return type: void
Semantics: This is invoked on every vertex of the graph before the start of the graph

search.

http://www.sgi.com/tech/stl/CopyConstructible.html

12.3. VISITOR CONCEPTS 159

vis.discoververtex(u, g)
Return type: void
Semantics: This function is invoked the first time the algorithm encounters vertex

u. All other vertices closer to the source vertex have been discovered,
and vertices further from the source have not yet been discovered.

vis.examineedge(e, g)
Return type: void
Semantics: This is invoked on every out-edge of each vertex after it is discovered.

vis.treeedge(e, g)
Return type: void
Semantics: If the edge being examined is a member of the search tree, then this

function is invoked. A call to this function is always preceded by a call
to theexamineedge() function.

vis.non tree edge(e, g)
Return type: void
Semantics: If the edge being examined is not a member of the search tree, then this

function is invoked. A call to this function is always preceded by a call
to theexamineedge() function. For directed graphs, such an edge must
be either a back or cross edge. For undirected graphs, such an edge is a
cross edges.

vis.graytarget(e, g)
Return type: void
Semantics: This function is called if the edge being examined is a cycle edge, and

if the target vertex is colored gray at the time of examination. A call to
this function is always preceded by a call to thecycleedge() function.
The color gray indicates that the vertex is currently in the queue.

vis.blacktarget(e, g)
Return type: void
Semantics: This function is called if the edge being examined is a cycle edge, and if

the target vertex is colored black at the time of examination. The call to
this function is always preceded by a call to thecycleedge() function.
The color black indicates that the vertex has already been removed from
the queue.

vis.finish vertex(u, g)
Return type: void
Semantics: This invoked on a vertex after all of its out-edges have been added to

the search tree and all of the adjacent vertices have been discovered (but
before their out-edges have been examined).

160 CHAPTER 12. BGL CONCEPTS

12.3.2 DFSVisitor

This concept defines the visitor interface fordepthfirst search() . Users can define a class
with theDFSVisitor interface and pass and object of the class todepthfirst search() , thereby
augmenting the actions taken during the graph search.

Refinement of

CopyConstructible

Valid Expressions

vis.initialize vertex(s, g)
Return type: void
Semantics: This is invoked on every vertex before the start of the search.

vis.startvertex(s, g)
Return type: void
Semantics: This is invoked on the source vertex once before the start of the search.

vis.discoververtex(u, g)
Return type: void
Semantics: This is invoked when a vertex is encountered for the first time.

vis.examineedge(e, g)
Return type: void
Semantics: This is invoked on every out-edge of each vertex after it is discovered.

vis.treeedge(e, g)
Return type: void
Semantics: This is invoked on each edge as it becomes a member of the edges that

form the search tree.

vis.backedge(e, g)
Return type: void
Semantics: This is invoked on the back edges in the graph. For an undirected graph

there is some ambiguity between tree edges and back edges since the
edge(u, v) and(v, u) are the same edge, but both thetree edge()and
back edge()functions will be invoked. One way to resolve this ambigu-
ity is to record the tree edges, and then disregard the back edges that
are already marked as tree edges. An easy way to record tree edges is
to record predecessors in thetree edge()function.

vis.forward or crossedge(e, g)
Return type: void
Semantics: This is invoked on forward or cross edges in the graph. In an undirected

graph this method is never called.

http://www.sgi.com/tech/stl/CopyConstructible.html

12.3. VISITOR CONCEPTS 161

vis.finish vertex(u, g)
Return type: void
Semantics: This is invoked on a vertex after all of its out-edges have been added

to the search tree and all of the adjacent vertices have been discovered
(but before their out-edges have been examined).

12.3.3 DijkstraVisitor

This concept defines the visitor interface fordijkstra shortestpaths() and related algorithms.
The user can create a class that matches this interface, and then pass objects of the class into
dijkstra shortestpaths() to augment the actions taken during the search.

Refinement of

CopyConstructible

Valid Expressions

vis.discoververtex(u, g)
Return type: void
Semantics: This is invoked when a vertex is encountered for the first time.

vis.examineedge(e, g)
Return type: void
Semantics: This is invoked on every out-edge of each vertex after it is discovered.

vis.edgerelaxed(e, g)
Return type: void
Semantics: Let(u, v) be the edgee, d be the distance map, andw the weight map.

Upon examination, ifd[u] + w(u, v) < d[v], then the edge is relaxed
(its distance is reduced), and this method is invoked.

vis.edgenot relaxed(e, g)
Return type: void
Semantics: Upon examination, if the edge is not relaxed (see above), then this

method is invoked.

vis.finish vertex(u, g)
Return type: void
Semantics: This is invoked on a vertex after all of its out-edges have been added

to the search tree and all of the adjacent vertices have been discovered
(but before their out-edges have been examined).

http://www.sgi.com/tech/stl/CopyConstructible.html

162 CHAPTER 12. BGL CONCEPTS

12.3.4 BellmanFordVisitor

This concept defines the visitor interface forbellman ford shortestpaths() . Users can define
a visitor class with theBellmanFordVisitor interface and pass and object of the visitor class
to thevisitor() parameter ofbellman ford shortestpaths() , thereby augmenting the actions
taken during the graph search.

Refinement of

CopyConstructible

Valid Expressions

vis.initialize vertex(s, g)
Return type: void
Semantics: This is invoked on every vertex before the start of the search.

vis.examineedge(e, g)
Return type: void
Semantics: This is invoked on every edge in the graphnum vertices(g)times.

vis.edgerelaxed(e, g)
Return type: void
Semantics: Let(u, v) be the edgee, d be the distance map, andw the weight map. If

d[u]+w(u, v) < d[v], then the edge is relaxed (its distance is reduced),
and this method is invoked.

edgenot relaxed(e, g)
Return type: void
Semantics: Upon examination, if the edge is not relaxed (see above), then this

method is invoked.

vis.edgeminimized(e, g)
Return type: void
Semantics: After thenum vertices(g)iterations through the edge set of the graph

is complete, one last iteration is made to test whether each edge was
minimized. If the edge is minimized then this function is invoked. An
edge(u, v) is minimized ifd[u] + w(u, v) ≥ d[v].

edgenot minimized(e, g)
Return type: void
Semantics: If the edge is not minimized, this function is invoked. This happens

when there is a negative cycle in the graph.

http://www.sgi.com/tech/stl/CopyConstructible.html

Chapter 13

BGL Algorithms

13.1 Overview

This chapter provides in-depth information about how to use all of the graph algorithms in
the Boost Graph Library.

The BGL generic algorithms are divided into the following categories:

1. Basic search algorithms

2. Shortest paths

3. Minimum spanning tree

4. Connected components

5. Maximum flow

6. Vertex ordering

All of the algorithms are implemented as function templates where the graph type is a
template parameter. This allows the function to be used with any graph type that models
the required concepts. The documentation for each algorithm will list the required graph
concepts, and the documentation for each graph class will list the concepts that the graph
models. By cross-referencing through the concepts one can determine which graph types can
be used with which algorithm.

In addition, the algorithms are sometimes parameterized with property maps, such as the
distance map for the shortest-path algorithms. The parameterized property maps give the user
control over how properties are stored and retrieved. The algorithms are also parameterized
on a visitor type, which allows the user to specify call-backs that will be invoked at certain
event points in the algorithm.

163

164 CHAPTER 13. BGL ALGORITHMS

Prototypes

The reference section for each algorithm starts with the function prototype. The template pa-
rameter names are suggestive of the purpose of the parameter, and sometimes of the concepts
required of the parameters. However, the precise requirements for each template parameter
are given in the parameters section.

The last parameter for many of the functions isbgl namedparams. This is to support
the named parameter technique described in§2.7 and also discussed here. If= all defaults
appears afterparams, then there are defaults for all of the named parameters and they can all
be omitted.

Description

In the description of the function we define the problem that the function solves, explain-
ing any graph terminology or ideas that are necessary to understand the problem. We then
describe the semantics of the function in terms of its effects on the parameters.

Where Defined

In this section we list the header file that must be included to use the function.

Parameters

Here we list all of the normal parameters (named parameters come in the next section) of the
function. The normal parameters arerequired(i.e., there are no defaults for these parameters).

Each parameter is categorized into one or more of the following categories:

IN parameters are read by the function; used to obtain information. The function does not
change or modify these parameters in any way.

OUT parameters are written to by the function. The results of the function are stored into
OUT parameters.

UTIL parameters are required by the algorithm to accomplish its task, however, the contents
of the objects used as UTIL parameters are typically not of interest to the user. UTIL
parameters are often read and written.

Named Parameters

As described in§2.7, the BGL uses a special technique to make it more convenient to deal
with functions that have large numbers of parameters, and where many of the parameters
have defaults. This section lists all of the named parameters for the function, using the same
categorization as for the normal parameters. In addition, the default is listed for each named
parameter.

13.2. BASIC ALGORITHMS 165

Preconditions

In this section we describe any preconditions for the function. Often this includes require-
ments on the state of the property map parameters.

Complexity

The time complexity for each algorithm is given in “big-O” notation.
The space complexity is never more thanO(|V |) unless otherwise specified.

Example

A simple example is shown to demonstrate how each algorithm is used.

13.2 Basic Algorithms

13.2.1 breadthfirst search

template<typename Graph, typename P, typename T, typename R>
void breadthfirst search(Graph& g,

typename graphtraits<Graph>::vertex descriptor s,
const bglnamedparams<P, T, R>& params)

Thebreadthfirst search() function performs a breadth-first traversal [31] of a directed or
undirected graph. A breadth-first traversal visits vertices that are closer to the source before
visiting vertices that are farther away. In this context, distance”s defined as the number of
edges in the shortest path from the source vertex. Thebreadthfirst search() function can be
used to compute the shortest path from the source to all reachable vertices and the resulting
shortest-path distances. For more definitions related to BFS and a detailed example, see§4.1.

BFS uses two data structures to implement the traversal: a color marker for each vertex
and a queue. White vertices are undiscovered, while gray vertices are discovered but are ad-
jacent to white vertices. Black vertices are discovered and are adjacent to only other black or
gray vertices. The algorithm proceeds by removing a vertexu from the queue and examining
each out-edge(u, v). If an adjacent vertexv is not already discovered, it is colored gray and
placed in the queue. After all of the out-edges are examined, vertexu is colored black and the
process is repeated. Pseudocode for the BFS algorithm is listed as follows. In the pseudocode
we show the algorithm computing predecessorsπ, discover timed, and finish timet. By
default, thebreadthfirst search() function does not compute these properties; however, there
are predefined visitors that can be used to do this.

BFS(G, s)
for each vertexu ∈ V [G] . initialize vertexu
color[u]←WHITE

166 CHAPTER 13. BGL ALGORITHMS

d[u]←∞
π[u]← u

color[s]← GRAY
d[s]← 0
ENQUEUE(Q, s) . discover vertexs
while (Q 6= ∅)
u← DEQUEUE(Q) . examine vertexu
for eachv ∈ Adj[u] . examine edge(u, v)

if (color[v] = WHITE) . (u, v) is a tree edge
color[v]← GRAY
d[v]← d[u] + 1
π[v]← u
ENQUEUE(Q, v) . discover vertexv

else . (u, v) is a non-tree edge
if (color[v] = GRAY)

... . (u, v) has a gray target
else

... . (u, v) has a black target
color[u]← BLACK . finish vertexu

return (d, π)

Thebreadthfirst search() function can be extended with user-defined actions that will be
called at certain event points. The actions must be provided in the form of a visitor object—
that is, an object whose type meets the requirements for aBFSVisitor. In the above pseu-
docode, the event points are labeled with triangles. By default, thebreadthfirst search()
function does not carry out any actions, not even recording distances or predecessors. How-
ever, these can be easily added by defining a visitor.

Where Defined

boost/graph/breadthfirst search.hpp

Parameters

IN: Graph& g
A directed or undirected graph. The graph type must be a model ofVertexListGraph
andIncidenceGraph.

IN: vertexdescriptor s
The source vertex where the search is started.

13.2. BASIC ALGORITHMS 167

Named Parameters

IN: visitor(BFSVisitor vis)
A visitor object that is invoked inside the algorithm at the event points specified by
theBFSVisitor concept.
Default: default bfs visitor

UTIL/OUT: color map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model ofReadWritePropertyMap, its key type must be
the graph’s vertex descriptor type, and the value type of the color map must model
ColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, |V |). This parameter is only
necessary when the default color property map is used. The typeVertexIndexMap
must be a model ofReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

UTIL: buffer(Buffer& Q)
The queue used to determine the order in which vertices will be discovered. If a FIFO
queue is used, then the traversal will be according to the usual BFS ordering. Other
types of queues can be used, but the traversal order will be different. For example
Dijkstra’s algorithm can be implemented using a priority queue. The typeBuffer must
be a model ofBuffer.
Default: boost::queue

Preconditions

The queue must be empty.

Complexity

The time complexity isO(|E|+ |V |). The worst-case space complexity isO(|V |).

Example

This example demonstrates using the BGL breadth-first-search algorithm on the graph from
Figure13.1. The program records the order in which breadth-first search discovers the ver-
tices in the graph. The source code for this example is inexample/bfs-example.cpp.

168 CHAPTER 13. BGL ALGORITHMS

r

s

v w

t

x

u

y

Figure 13.1A breadth-first search of a graph. The BFS tree edges are the solid black lines.

〈 BFS Time Visitor168a 〉 ≡
template<typename TimeMap>
class bfstime visitor : public default bfs visitor {

typedef typename propertytraits<TimeMap>::value type T;
public:

bfs time visitor(TimeMap tmap, T& t) : m timemap(tmap), m time(t) { }
template<typename Vertex, typename Graph>
void discoververtex(Vertex u, const Graph& g) const {

put(m timemap, u, m time++);
}
TimeMap m timemap;
T& m time;
};

〈 “bfs-example.cpp”168b 〉 ≡
#include <boost/ graph/ adjacencylist. hpp>
#include <boost/ graph/ breadth first search. hpp>
#include <boost/ pending/ indirect cmp. hpp>
#include <boost/ pending/ integer range. hpp>
using namespace boost;
〈BFS Time Visitor168a〉

int main()
{

using namespace boost;
// Select the graph type we wish to use
typedef adjacencylist<vecS, vecS, undirectedS> graph t;
// Set up the vertex IDs and names
enum { r, s, t, u, v, w, x, y, N };
const char* name = " rstuvwxy" ;
// Specify the edges in the graph

13.2. BASIC ALGORITHMS 169

typedef std::pair<int, int> E;
E edgearray[] = { E(r, s), E(r, v), E(s, w), E(w, r), E(w, t),

E(w, x), E(x, t), E(t, u), E(x, y), E(u, y) };
// Create the graph object
const int n edges= sizeof(edgearray)/ sizeof(E);
graph t g(edgearray, edgearray + n edges, N);

// Typedefs
typedef graphtraits<graph t>::vertex descriptor Vertex;
typedef graphtraits<graph t>::vertices size type Size;
typedef std::vector<Vertex>::iterator Piter;
typedef std::vector<Size>::iterator Iiter ;

// a vector to hold the discover time property for each vertex
std::vector<Size> dtime(num vertices(g));

Size time= 0;
bfs time visitor<Size*> vis(& dtime[0], time);
breadth first search(g, vertex(s, g), visitor(vis));

// Use std::sort to order the vertices by their discover time
std::vector<graph traits<graph t>::vertices size type> discoverorder(N);
integer range<int> range(0, N);
std::copy(range. begin(), range. end(), discoverorder. begin());
std::sort(discoverorder. begin(), discoverorder. end(),

indirect cmp<Iiter , std::less<Size> >(dtime. begin()));

std::cout << " order of discovery:" ;
for (int i = 0; i < N; ++ i)

std::cout << name[discoverorder[i]] << " " ;
std::cout << std::endl;
return EXIT SUCCESS;
}

The output is

order of discovery: s r w v t x u y

13.2.2 breadthfirst visit

template<typename IncidenceGraph, typename P, typename T, typename R>
void breadthfirst visit(IncidenceGraph& g,

typename graphtraits<IncidenceGraph>::vertex descriptor s,
const bglnamedparams<P, T, R>& params);

170 CHAPTER 13. BGL ALGORITHMS

This function is the same asbreadthfirst search() except that the color markers are not
initialized in the algorithm. The user is responsible for making sure the color for every vertex
is white before calling the algorithm. With this difference, the graph type is only required
to be anIncidenceGraph instead of aVertexListGraph. Also, this difference allows for more
flexibility in the color property map. For example, one could use a map that only implements
a partial function on the vertices, which could be more space efficient when the search only
reaches a small portion of the graph.

Parameters

IN: IncidenceGraph& g
A directed or undirected graph. The graph’s type must be a model ofIncidenceGraph.

IN: vertexdescriptor s
The source vertex where the search is started.

Named Parameters

IN: visitor(BFSVisitor vis)
A visitor object that is invoked inside the algorithm at the event points specified by
theBFSVisitor concept.
Default: bfs visitor<null visitor>

IN/UTIL/OUT: color map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
color of every vertex should be initialized to white before the call tobreadthfirst -
visit() . The typeColorMap must be a model ofReadWritePropertyMap and its key
type must be the graph’s vertex descriptor type and the value type of the color map
map must modelColorValue.
Default: get(vertexcolor, g)

UTIL: buffer(Buffer& Q)
The queue used to determine the order in which vertices will be discovered. If a FIFO
queue is used, then the traversal will be according to the usual BFS ordering. Other
types of queues can be used, but the traversal order will be different. For example,
Dijkstra’s algorithm can be implemented using a priority queue. The typeBuffer must
be a model ofBuffer.
Default: boost::queue

13.2.3 depthfirst search

template<typename Graph, typename P, typename T, typename R>
void depthfirst search(Graph& g, const bglnamedparams<P, T, R>& params)

13.2. BASIC ALGORITHMS 171

The depthfirst search() function performs a depth-first traversal of the vertices in a di-
rected or undirected graph. When possible, a depth-first traversal chooses a vertex adjacent to
the current vertex to visit next. If all adjacent vertices have already been discovered, or there
are no adjacent vertices, then the algorithm backtracks to the last vertex that had undiscov-
ered neighbors. Once all reachable vertices have been visited, the algorithm selects from any
remaining undiscovered vertices and continues the traversal. The algorithm finishes when all
vertices have been visited. Depth-first search is useful for categorizing edges in a graph, and
for imposing an ordering on the vertices.§4.2 describes the various properties of DFS and
walks through an example.

Similar to BFS, color markers are used to keep track of which vertices have been dis-
covered. White marks vertices that have yet to be discovered, gray marks a vertex that is
discovered but still has vertices adjacent to it that are undiscovered. A black vertex is a dis-
covered vertex that is not adjacent to any white vertices.

The depthfirst search() function invokes user-defined actions at certain event points
within the algorithm. This provides a mechanism for adapting the generic DFS algorithm
to the many situations in which it can be used. In the following pseudocode, the event points
for DFS are indicated by the triangles and labels on the right. The user-defined actions must
be provided in the form of a visitor object, that is, an object whose type meets the require-
ments for aDFSVisitor. In the pseudo-code we show the algorithm computing predecessors
π, discover timed and finish timet. By default, thedepthfirst search() function does not
compute these properties; however the user can define visitors to do this.

DFS(G)
for each vertexu ∈ V
color[u]←WHITE . initialize vertexu
π[u] = u

time← 0
for each vertexu ∈ V

if color[u] = WHITE
call DFS-VISIT(G, u) . start vertexu

return (π,d,f)

DFS-VISIT(G, u)
color[u]← GRAY . discover vertexu
d[u]← time← time+ 1
for eachv ∈ Adj[u]

if (color[v] = WHITE) . examine edge(u, v)
π[v] = u
call DFS-VISIT(G, v) . (u, v) is a tree edge

else if(color[v] = GRAY)
. . . . (u, v) is a back edge

172 CHAPTER 13. BGL ALGORITHMS

else if(color[v] = BLACK)
. . . . (u, v) is a cross or forward edge

color[u]← BLACK . finish vertexu
f [u]← time← time+ 1

Where Defined

boost/graph/depthfirst search.hpp

Parameters

IN: Graph& g
A directed or undirected graph. The graph’s type must be a model ofVertexListGraph
andIncidenceGraph.

Named Parameters

IN: visitor(DFSVisitor vis)
A visitor object that is invoked inside the algorithm at the event-points specified by
theDFSVisitor concept.

UTIL/OUT: color map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model ofReadWritePropertyMap. The color property
map must modelReadWritePropertyMap, its key type must be the graph’s vertex
descriptor type, and the value type of the color map must modelColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, |V |). This parameter is only
necessary when the default color property map is used. The typeVertexIndexMap
must be a model ofReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

Complexity

The time complexity isO(|E|+ |V |) and the space complexity isO(|V |).

13.2. BASIC ALGORITHMS 173

Example

This example shows DFS applied to the graph in Figure13.2. The source code for this exam-
ple is inexample/dfs-example.cpp.

u

v
x

y

w

z

Figure 13.2A depth-first search of a graph. The DFS forest edges are the solid black lines.

〈 DFS Discover/Finish Time Visitor173a 〉 ≡
template<typename TimeMap>
class dfstime visitor : public default dfs visitor {

typedef typename propertytraits<TimeMap>::value type T;
public:

dfs time visitor(TimeMap dmap, TimeMap fmap, T& t)
: m dtimemap(dmap), m ftimemap(fmap), m time(t) { }

template<typename Vertex, typename Graph>
void discoververtex(Vertex u, const Graph& g) const {

put(m dtimemap, u, m time++);
}
template<typename Vertex, typename Graph>
void finish vertex(Vertex u, const Graph& g) const {

put(m ftimemap, u, m time++);
}
TimeMap m dtimemap;
TimeMap m ftimemap;
T& m time;
};

〈 “dfs-example.cpp”173b 〉 ≡
#include <boost/ graph/ adjacencylist. hpp>

174 CHAPTER 13. BGL ALGORITHMS

#include <boost/ graph/ depth first search. hpp>
#include <boost/ pending/ integer range. hpp>
#include <boost/ pending/ indirect cmp. hpp>
using namespace boost;
〈DFS Discover/Finish Time Visitor173a〉

int main()
{

// Select the graph type we wish to use
typedef adjacencylist<vecS, vecS, directedS> graph t;
typedef graphtraits<graph t>::vertices size type sizetype;
// Set up the vertex names
enum { u, v, w, x, y, z, N };
char name[] = { ’u’ , ’v’ , ’w’ , ’x’ , ’y’ , ’z’ };
// Specify the edges in the graph
typedef std::pair<int, int> E;
E edgearray[] = { E(u, v), E(u, x), E(x, v), E(y, x),

E(v, y), E(w, y), E(w, z), E(z, z) };
graph t g(edgearray, edgearray + sizeof(edgearray)/ sizeof(E), N);

// Typedefs
typedef boost::graphtraits<graph t>::vertex descriptor Vertex;
typedef std::vector<Vertex>::iterator Piter;
typedef std::vector<size type>::iterator Iiter ;

// discover time and finish time properties
std::vector<size type> dtime(num vertices(g));
std::vector<size type> ftime(num vertices(g));
size type t = 0;
dfs time visitor<size type*> vis(& dtime[0], & ftime[0], t);

depth first search(g, visitor(vis));

// use std::sort to order the vertices by their discover time
std::vector<size type> discoverorder(N);
integer range<size type> r(0, N);
std::copy(r. begin(), r. end(), discoverorder. begin());
std::sort(discoverorder. begin(), discoverorder. end(),

indirect cmp<Iiter , std::less<size type> >(dtime. begin()));
std::cout << " order of discovery:" ;
for (int i = 0; i < N; ++ i)

std::cout << name[discoverorder[i]] << " " ;

std::vector<size type> finish order(N);
std::copy(r. begin(), r. end(), finish order. begin());
std::sort(finish order. begin(), finish order. end(),

13.2. BASIC ALGORITHMS 175

indirect cmp<Iiter , std::less<size type> >(ftime. begin()));
std::cout << std::endl << " order of finish: " ;
for (int i = 0; i < N; ++ i)

std::cout << name[finish order[i]] << " " ;
std::cout << std::endl;

return EXIT SUCCESS;
}

The output is

order of discovery: u v y x w z
order of finish: x y v u z w

13.2.4 depthfirst visit

template<typename IncidenceGraph, typename DFSVisitor, typename ColorMap>
void depthfirst visit(IncidenceGraph& G,

typename graphtraits<IncidenceGraph>::vertex descriptor s,
DFSVisitor vis, ColorMap color);

This function is the recursive part of the depth-first search. The main purpose of the
function is to implementdepthfirst search() , though sometimes it is useful on its own. See
the documentation fordepthfirst search() for more information.

Where Defined

boost/graph/depthfirst search.hpp

Parameters

IN: IncidenceGraph& g
A directed or undirected graph. The graph’s type must be a model ofIncidenceGraph.

IN: vertexdescriptor s
The source vertex from which to start the search.

IN: DFSVisitor visitor
A visitor object that is invoked inside the algorithm at the event points specified by
theDFSVisitor concept.

UTIL: ColorMap color
This is used by the algorithm to keep track of its progress through the graph. The type
ColorMap must be a model ofReadWritePropertyMap. The color property map must
model ReadWritePropertyMap, its key type must be the graph’s vertex descriptor
type, and the value type of the color map must modelColorValue.

176 CHAPTER 13. BGL ALGORITHMS

Complexity

The time complexity of this operation isO(|E|). The space complexity isO(|V |).

13.2.5 topological sort

template<typename Graph, typename OutputIterator,
typename P, typename T, typename R>

void topologicalsort(Graph& G, OutputIterator result,
const bglnamedparams<P, T, R>& params = all defaults)

The topological sort algorithm creates a linear ordering of the vertices such that if edge
(u, v) appears in the graph, thenu comes beforev in the ordering. The graph must be a
directed acyclic graph (DAG).

The reverse topological ordering is written to theresult output iterator, so you will need
to somehow reverse this to obtain the topological ordering. There are several ways this
can be accomplished. One is to create astd::vectorwith size |V | to store the output and
then use a reverse iterator from the vector for theresult iterator. Another option is to use a
back insert iterator with an empty vector, and then apply thestd::reverse() algorithm. Yet an-
other alternative is to use afront insert iterator with a container such as astd::list or std::deque.

The implementation consists mainly of a call to depth-first search [10]. In §1.4.1there is
an example of using topological sort to schedule tasks, and in Chapter3 topological sort is
used as an example of how to write a generic graph algorithm.

Where Defined

boost/graph/topologicalsort.hpp

Parameters

IN: Graph& g
A directed or undirected graph. The graph type must be a model ofVertexListGraph
andIncidenceGraph.

IN: OutputIterator result
The vertices are output to this iterator in reverse topological order. TheOutputIterator
type must accept vertex descriptors as output, and the iterator type must be a model
of OutputIterator.

Named Parameters

UTIL/OUT: color map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
type ColorMap must be a model ofReadWritePropertyMap. The color property

http://www.sgi.com/tech/stl/back_insert_iterator.html
http://www.sgi.com/tech/stl/reverse.html
http://www.sgi.com/tech/stl/front_insert_iterator.html
http://www.sgi.com/tech/stl/OutputIterator.html

13.3. SHORTEST-PATH ALGORITHMS 177

map must modelReadWritePropertyMap, its key type must be the graph’s vertex
descriptor type, and the value type of the color map must modelColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, |V |). This parameter is only
necessary when the default color property map is used. The typeVertexIndexMap
must be a model ofReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

IN: visitor(DFSVisitor vis)
A visitor object that is invoked inside the algorithm at the event points specified by
theDFSVisitor concept.

Complexity

The time complexity isO(|V |+ |E|) and the space complexity isO(|V |).

Example

See§1.4.1for an example of usingtoplogical sort() .

13.3 Shortest-Path Algorithms

13.3.1 dijkstra shortestpaths

template<typename Graph, typename P, typename T, typename R>
void dijkstra shortestpaths(const Graph& g,

typename graphtraits<Graph>::vertex descriptor s,
const bglnamedparams<P, T, R>& params)

Dijkstra’s algorithm [10, 11] solves the single-source shortest-paths problem on a
weighted, directed or undirected graph for the case where all edge weights are nonnegative.
Use the Bellman–Ford algorithm for the case when some edge weights are negative. Use
breadth-first search instead of Dijkstra’s algorithm when all edge weights are equal to one.
For the definition of the shortest-path problem, see§5.1.

There are two main options for obtaining output from thedijkstra shortestpaths() func-
tion. If you provide a distance property map through thedistancemap() parameter, then the
shortest distance from the source vertex to every other vertex in the graph will be recorded in

178 CHAPTER 13. BGL ALGORITHMS

the distance map. Also, you can record the shortest-paths tree in a predecessor map: For each
vertexu ∈ V , π[u] will be the predecessor ofu in the shortest-paths tree (unlessπ[u] = u, in
which caseu is either the source or a vertex unreachable from the source). In addition to these
two options, users can provide their own custom-made visitor that can take actions during any
of the algorithm’s event points.

Dijkstra’s algorithm finds all the shortest paths from the source vertex to every other
vertex by iteratively growing the set of verticesS to which it knows the shortest path. At each
step of the algorithm, the next vertex added toS is determined by a priority queue. The queue
contains the vertices inV − S prioritized by their distance label, which is the length of the
shortest path seen so far for each vertex.1 The vertexu at the top of the priority queue is then
added toS, and each of its out-edges is relaxed. If the distance tou plus the weight of the
out-edge(u, v) is less than the distance label forv, then the estimated distance for vertexv is
reduced. The algorithm then loops back, processing the next vertex at the top of the priority
queue. The algorithm finishes when the priority queue is empty.

The algorithm uses color markers (white, gray, and black) to keep track of which set each
vertex is in. Vertices colored black are inS. Vertices colored white or gray are inV − S.
White vertices have not yet been discovered and gray vertices are in the priority queue. By
default, the algorithm will allocate an array to store a color marker for each vertex in the
graph. You can provide your own storage and access for colors with thecolor map() named
parameter.

The following is the pseudocode for Dijkstra’s single-source shortest-paths algorithm.
Thew denotes edge weight,d the distance label, andπ the predecessor of each vertex that is
used to encode the shortest-paths tree.Q is a priority queue that supports the DECREASE-
KEY operation. The visitor event points for the algorithm are indicated by the triangles.

DIJKSTRA (G, s, w)
for each vertexu ∈ V . initialize vertexu
d[u]←∞
π[u]← u
color[u]←WHITE

color[s]← GRAY
d[s]← 0
INSERT(Q, s) . discover vertexs
while (Q 6= ∅)
u← EXTRACT-MIN(Q) . examine vertexu
S ← S ∪ {u}
for eachv ∈ Adj[u] . examine edge(u, v)

if (w(u, v) + d[u] < d[v])
d[v]← w(u, v) + d[u] . edge(u, v) relaxed

1The algorithm used here saves a little space by not putting allV − S vertices in the priority queue at once,
but instead only those vertices inV − S that are discovered and therefore have a distance less than infinity.

13.3. SHORTEST-PATH ALGORITHMS 179

π[v]← u
if (color[v] = WHITE)
color[v]← GRAY
INSERT(Q, v) . discover vertexv

else if(color[v] = GRAY)
DECREASE-KEY(Q, v, w(u, v) + d[u])

else
. . . . edge(u, v) not relaxed

color[u]← BLACK . finish vertexu
return (d, π)

Where Defined

boost/graph/dijkstrashortestpaths.hpp

Parameters

IN: const Graph& g
The graph object on which the algorithm will be applied. The typeGraph must be a
model ofVertexListGraph andIncidenceGraph.

IN: vertexdescriptor s
The source vertex. All distance will be calculated from this vertex, and the shortest-
paths tree will be rooted at this vertex.

Named Parameters

IN: weight map(WeightMap wmap)
The weight or “length” of each edge in the graph. The typeWeightMap must be a
model ofReadablePropertyMap. The edge descriptor type of the graph needs to be
usable as the key type for the weight map. The value type of the weight map must be
the same type as the value type of the distance map.
Default: get(edgeweight, g)

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, |V |). This is necessary for efficient
updates of the heap data structure when an edge is relaxed. The typeVertexIndexMap
must be a model ofReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

OUT: predecessormap(PredecessorMap pmap)
The predecessor map records the edges in the minimum spanning tree. Upon com-

180 CHAPTER 13. BGL ALGORITHMS

pletion of the algorithm, the edges(π[u], u) ∀u ∈ V are in the minimum spanning
tree. Ifπ[u] = u, thenu is either the source vertex or a vertex that is not reachable
from the source. ThePredecessorMaptype must be aReadWritePropertyMap with
key and vertex types the same as the vertex descriptor type of the graph.
Default: dummypropertymap

UTIL/OUT: distancemap(DistanceMap dmap)
The shortest-path weight from the source vertexs to each vertex in the graphg is
recorded in this property map. The shortest-path weight is the sum of the edge
weights along the shortest path. The typeDistanceMapmust be a model ofRead-
WritePropertyMap. The vertex descriptor type of the graph needs to be usable as the
key type of the distance map. The value type of the distance map is the element type
of aMonoid formed with thecombinefunction object and thezeroobject for the iden-
tity element. Also the distance value type must have aStrictWeakOrdering provided
by thecomparefunction object.
Default: an iterator propertymapcreated from astd::vectorof theWeightMap’s value
type of sizenum vertices(g)and using thei map for the index map.

IN: distancecombine(BinaryFunction combine)
A function object that is theMonoid operation for the distance value type. This func-
tion object combines distances to form the distance of a path.
Default: closedplus<D> whereD is the value type of the distance map.closedplus
is defined inboost/graph/relax.hpp.

IN: distancecompare(BinaryPredicaate compare)
A function object that defines aStrictWeakOrdering on the distance values. The
function object is used to determine which of two paths is shorter.
Default: std::less<D> whereD is the value type of the distance map.

IN: distanceinf(D inf)
The inf object must be the greatest value of anyD object. That is,compare(d, inf) ==
true for anyd != inf . The typeD is the value type of theDistanceMap.
Default: std::numeric limits<D>::max()

IN: distancezero(D zero)
The zerovalue must be the identity element for theMonoid formed by the distance
values and thecombine function object. The typeD is the value type of theDis-
tanceMap.
Default: D

UTIL/OUT: color map(ColorMap cmap)
This is used during the execution of the algorithm to mark the vertices. The vertices
start out white and become gray when they are inserted in the queue. They then turn
black when they are removed from the queue. At the end of the algorithm, vertices
reachable from the source vertex will have been colored black. All other vertices will

http://www.sgi.com/tech/stl/StrictWeakOrdering.html
http://www.sgi.com/tech/stl/StrictWeakOrdering.html

13.3. SHORTEST-PATH ALGORITHMS 181

still be white. The typeColorMap must be a model ofReadWritePropertyMap. A
vertex descriptor must be usable as the key type of the map, and the value type of the
map must be a model ofColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

OUT: visitor(Vis v)
Use this to specify actions that you would like to happen during certain event points
within the algorithm. The typeVis must be a model ofDijkstraVisitor.
Default: default dijkstra visitor

Complexity

The time complexity isO((|V |+ |E|) log |V |), or justO(|E| log |V |) if all vertices are reach-
able from the source.

Example

The source code for this example is inexample/dijkstra-example.cpp. The graph used for this
example is shown in Figure13.3. The edges in the shortest-paths tree use black lines.

typedef adjacencylist<listS, vecS, directedS,
no property, property<edgeweight t, int> > graph t;

typedef graphtraits<graph t>::vertex descriptor vertexdescriptor;
typedef std::pair<int, int> Edge;

const int num nodes = 5;
enum nodes{ A, B, C, D, E };
char name[] = " ABCDE" ;
Edge edgearray[] = { Edge(A, C), Edge(B, B), Edge(B, D), Edge(B, E),

Edge(C, B), Edge(C, D), Edge(D, E), Edge(E, A), Edge(E, B) };
int weights[] = { 1, 2, 1, 2, 7, 3, 1, 1, 1};
int num arcs = sizeof(edgearray)/ sizeof(Edge);
graph t g(edgearray, edgearray + num arcs, weights, num nodes);
std::vector<vertex descriptor> p(num vertices(g));
std::vector<int> d(num vertices(g));
vertex descriptor s= vertex(A, g);
dijkstra shortestpaths(g, s, predecessormap(& p[0]). distancemap(& d[0]));

std::cout << " distances and parents:" << std::endl;
graph traits<graph t>::vertex iterator vi, vend;
for(tie(vi, vend) = vertices(g); vi != vend; ++ vi) {

std::cout << " distance(" << name[* vi] << ") = " << d[* vi] << " , " ;
std::cout << " parent(" << name[* vi] << ") = " << name[p[* vi]] <<std::endl;
}
std::cout << std::endl;

182 CHAPTER 13. BGL ALGORITHMS

The output is

distances and parents:
distance(A) = 0, parent(A) = A
distance(B) = 6, parent(B) = E
distance(C) = 1, parent(C) = A
distance(D) = 4, parent(D) = C
distance(E) = 5, parent(E) = D

A

C

1

B
7

D3

2 1

E
2

1

1

1

Figure 13.3The graph used for the Dijkstra’s algorithm example.

13.3.2 bellman ford shortestpaths

template<typename EdgeListGraph, typename Size,
typename P, typename T, typename R>

bool bellman ford shortestpaths(EdgeListGraph& g, Size N,
const bglnamedparams<P, T, R>& params)

The Bellman–Ford algorithm [5, 13, 26, 10] solves the single-source shortest-paths prob-
lem for a graph with both positive and negative edge weights. For the definition of the
shortest-paths problem, see§5.1. If you only need to solve the shortest-paths problem for
positive edge weights, Dijkstra’s algorithm provides a more efficient alternative. If all the
edge weights are equal to one, breadth-first search provides an even more efficient alternative.

Before calling thebellman ford shortestpaths() function, the user must assign the source
vertex a distance of zero (or the identity element of theMonoid formed by the distance values
and thecombinefunction object) and all other vertices a distance of infinity (which must be
the greatest distance value according to the ordering defined by thecomparefunction object).

13.3. SHORTEST-PATH ALGORITHMS 183

Typically std::numeric limits<D>::max() is the right choice for infinity, whereD is the value
type of the distance map. The Bellman–Ford algorithm proceeds by looping through all of
the edges in the graph, applying the relaxation operation to each edge. In the following
pseudocode,v is a vertex adjacent tou,w maps edges to their weight, andd is a distance map
that records the length of the shortest path to each vertex seen so far.

RELAX(u, v, w, d)
if (w(u, v) + d[u] < d[v])

d[v]← w(u, v) + d[u]

The algorithm repeats this loop|V | times, after which it is guaranteed that the distances to
each vertex have been reduced to the minimum possible unless there is a negative cycle in the
graph. If there is a negative cycle, then there will be edges in the graph that were not properly
minimized. That is, there will be edges(u, v) such thatw(u, v) + d[u] < d[v]. The algorithm
loops over the edges in the graph one final time to check if all the edges were minimized,
returning true if they were and returning false otherwise.

There are two main options for obtaining output from thebellman ford shortestpaths()
function. If the user provides a distance property map through thedistancemap() parameter,
then the shortest distance from the source vertex to every other vertex in the graph will be
recorded in the distance map (provided the function returnstrue). The user can also record the
shortest-paths tree by providing a predecessor property map through thepredecessormap()
parameter. In addition to these two options, users can provide their own custom-made visitor
that can take actions during any of the algorithm’s event points (seeBellmanFordVisitor). If
you are only interested in some of the event points, derive your visitor fromdefault bellman-
visitor to provide empty versions of the remaining event points.

Where defined

boost/graph/bellmanford shortestpaths.hpp

Parameters

IN: EdgeListGraph& g
A directed or undirected graph whose type must be a model ofEdgeListGraph.

IN: Size N
The number of vertices in the graph. The typeSizemust be an integer type.

Named Parameters

IN: weight map(WeightMap w)
The weight (also know as “length” or “cost”) of each edge in the graph. The
WeightMap type must be a model ofReadablePropertyMap. The key type for this

184 CHAPTER 13. BGL ALGORITHMS

property map must be the edge descriptor of the graph. The value type for the weight
map the same as the distance map’s value type.
Default: get(edgeweight, g)

OUT: predecessormap(PredecessorMap pmap)The predecessor map records the edges in the
minimum spanning tree. Upon completion of the algorithm, the edges(p[u], u) for
all u ∈ V are in the minimum spanning tree. Ifp[u] = u thenu is either the source
vertex or a vertex that is not reachable from the source. ThePredecessorMaptype
must be aReadWritePropertyMap which key and vertex types the same as the vertex
descriptor type of the graph.
Default: dummypropertymap

UTIL/OUT: distancemap(DistanceMap dmap)
The shortest-path weight from the source vertexs to each vertex in the graphg is
recorded in this property map. The shortest-path weight is the sum of the edge
weights along the shortest path. The typeDistanceMapmust be a model ofRead-
WritePropertyMap. The key type of the distance map must be the vertex descriptor
type of the graph. The value type of the distance map is the element type of aMonoid
formed with thecombinefunction object and thezeroobject for the identity element.
Also the distance value type must have aStrictWeakOrdering provided by thecom-
pare function object.
Default: get(vertexdistance, g)

IN: visitor(BellmanFordVisitor v)
The visitor object, whose type must be a model ofBellmanFordVisitor. Thedefault-
bellman visitor is a model ofBellmanFordVisitor that does nothing at all of the event
points.
Default: default bellman visitor

IN: distancecombine(BinaryFunction combine)
This function object is theMonoid operation for the distance value type. This function
object combines distances to form the distance of a path.
Default: closedplus<D> whereD is the value type of the distance map.closedplus
is defined inboost/graph/relax.hpp.

IN: distancecompare(BinaryPredicate compare)
This function object defines an ordering on the distance values that corresponds with
the summary function. That is, the summary function always returns the argument
that is earlier in the ordering according to thecomparefunction.
Default: std::less<D> whereD is the value type of the distance map.

Complexity

The time complexity isO(|V ||E|).

http://www.sgi.com/tech/stl/StrictWeakOrdering.html

13.3. SHORTEST-PATH ALGORITHMS 185

Example

The source code for this example is inexample/bellman-example.cpp. The graph used in the
example is shown in Figure13.4.

u

y

-4 x

8

v

5

7

z

2
9 -3

-2

6

7

Figure 13.4The graph used for the example of the Bellman–Ford algorithm.

enum { u, v, x, y, z, N };
char name[] = { ’u’ , ’v’ , ’x’ , ’y’ , ’z’ };
typedef std::pair<int, int> E;
const int n edges= 10;
typedef boost::array<E, n edges> EdgeList;
EdgeList edgearray = {{ E(u, y), E(u, x), E(u, v), E(v, u),

E(x, y), E(x, v), E(y, v), E(y, z), E(z, u), E(z, x) }};
int weight[n edges] = { −4, 8, 5, −2, 9, −3, 7, 2, 6, 7 };

typedef adjacencylist<vecS, vecS, directedS,
no property, property<edgeweight t, int> > Graph;

Graph g(edgearray. begin(), edgearray. end(), N);
graph traits<Graph>::edge iterator ei, ei end;
int i = 0;
for (tie(ei, ei end) = edges(g); ei != ei end; ++ ei, ++ i)

get(edgeweight, g)[* ei] = weight[i];

186 CHAPTER 13. BGL ALGORITHMS

std::vector<int> distance(N, std::numeric limits<short>::max());
std::vector<std::sizet> parent(N);
for (i = 0; i < N; ++ i)

parent[i] = i;
distance[z] = 0;
bool r = bellman ford shortestpaths(g, int(N),

weight map(get(edgeweight, g)). distancemap(& distance[0]).
predecessormap(& parent[0]));

if (r)
for (i = 0; i < N; ++ i)

std::cout << name[i] << " : " << std::setw(3) << distance[i]
<< " " << name[parent[i]] << std::endl;

else
std::cout << " negative cycle" << std::endl;

The distance and predecessor for each vertex is

u: 2 v
v: 4 x
x: 7 z
y: −2 u
z: 0 z

13.3.3 johnson all pairs shortestpaths

template<typename Graph, typename DistanceMatrix,
typename P, typename T, typename R>

bool johnsonall pairs shortestpaths(Graph& g, DistanceMatrix& D,
const bglnamedparams<P, T, R>& params = all defaults)

This algorithm finds the shortest distance between every pair of vertices in the graph. The
algorithm returns false if there is a negative weight cycle in the graph and true otherwise. The
distance between each pair of vertices is stored in the distance matrixD. This is one of the
more time intensive graph algorithms, having a time complexity ofO(|V ||E| log |V |).

Where Defined

boost/graph/johnsonall pairs shortestpaths.hpp

Parameters

IN: const Graph& g
The graph object on which the algorithm will be applied. The typeGraph must be a
model ofVertexListGraph, IncidenceGraph, andEdgeListGraph.

13.3. SHORTEST-PATH ALGORITHMS 187

OUT: DistanceMatrix& D
The shortest path length from vertexu to v is stored inD[u][v] .

Named Parameters

IN: weight map(WeightMap wmap)
The weight or “length” of each edge in the graph. The typeWeightMap must be a
model of ReadablePropertyMap. The edge descriptor type of the graph needs to
be usable as the key type for the weight map. The value type for the map must be
Addable with the value type of the distance map.
Default: get(edgeweight, g)

UTIL: weight map2(WeightMap2 wmap2)
An auxiliary weight map. The typeWeightMap2must be a model ofReadWriteProp-
ertyMap. The edge descriptor type of the graph needs to be usable as the key type for
the weight map. The value type for the map must beAddable with the value type of
the distance map.
Default: get(edgeweight2, g)

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, |V |). This is necessary for efficient
updates of the heap data structure when an edge is relaxed. The typeVertexIndexMap
must be a model ofReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

UTIL/OUT: distancemap(DistanceMap dmap)
The shortest-path weight from the source vertexs to each vertex in the graphg is
recorded in this property map. The shortest-path weight is the sum of the edge
weights along the shortest path. The typeDistanceMapmust be a model ofRead-
WritePropertyMap. The vertex descriptor type of the graph needs to be usable as
the key type of the distance map. The value type of the distance map must be
LessThanComparable.
Default: an iterator propertymapcreated from astd::vectorof theWeightMap’s value
type of sizenum vertices(g)and using thei map for the index map.

IN: distancezero(D zero)
The identity element for theMonoid formed by the distance value type and the addi-
tion operator. The typeD must be the value type of theDistanceMap.
Default: D()

Complexity

The time complexity isO(|V ||E| log |V |).

http://www.sgi.com/tech/stl/LessThanComparable.html

188 CHAPTER 13. BGL ALGORITHMS

Example

Johnson’s algorithm for all-pairs shortest paths applied to the example graph from page 568 of
theIntroduction to Algorithms[10], also shown in Figure13.5. The resulting distance matrix
D[u][v] gives the shortest path from vertexu to v.

0

1

0

2

0

3

0

4

0

5

0

3

8

-4

17

4

2

-5

6

Figure 13.5The graph used for the Johnson’s algorithm example.

typedef adjacencylist<vecS, vecS, directedS, no property,
property<edgeweight t, int, property<edgeweight2 t, int> > > Graph;

const int V = 6;
typedef std::pair<int, int> Edge;
Edge edgearray[] =
{ Edge(0, 1), Edge(0, 2), Edge(0, 3), Edge(0, 4), Edge(0, 5),

Edge(1, 2), Edge(1, 5), Edge(1, 3), Edge(2, 4), Edge(2, 5),
Edge(3, 2), Edge(4, 3), Edge(4, 1), Edge(5, 4) };

const int E = sizeof(edgearray)/ sizeof(Edge);
Graph g(edgearray, edgearray + E, V);

property map<Graph, edgeweight t>::type
w = get(edgeweight, g);

int weights[] = { 0, 0, 0, 0, 0, 3, −4, 8, 1, 7, 4, −5, 2, 6 };
int* wp = weights;

13.4. MINIMUM-SPANNING-TREE ALGORITHMS 189

graph traits<Graph>::edge iterator e, e end;
for (boost::tie(e, e end) = edges(g); e != e end; ++ e)

w[* e] = * wp++;

std::vector<int> d(V, std::numeric limits<int>::max());
int D[V][V];
johnson all pairs shortestpaths(g, D, distancemap(& d[0]));

This is the resulting distance matrix:

0 1 2 3 4 5
0 0 0 -1 -5 0 -4
1 inf 0 1 -3 2 -4
2 inf 3 0 -4 1 -1
3 inf 7 4 0 5 3
4 inf 2 -1 -5 0 -2
5 inf 8 5 1 6 0

13.4 Minimum-Spanning-Tree Algorithms

13.4.1 kruskal minimum spanning tree

template<typename Graph, typename OutputIterator,
typename P, typename T, typename R>

void kruskal minimum spanning tree(Graph& g, OutputIterator spanningtree edges,
const bglnamedparams<P, T, R>& params = all defaults)

The kruskal minimum spanning tree() function finds a minimum spanning tree (MST)
in an undirected graph with weighted edges. An MST is a set of edges that connects all
the vertices in the graph where the total weight of the edges in the tree is minimized. The
kruskal minimum spanning tree() function outputs the edges of a MST to thespanning tree -
edgesoutput iterator using Kruskal’s algorithm [23, 10, 44, 18].

Kruskal’s algorithm starts with each vertex in a tree by itself, and with no edges in the
minimum spanning treeT . The algorithm then examines each edge in the graph in order
of increasing edge weight. If an edge connects two vertices in different trees, the algorithm
merges the two trees into a single tree and adds the edge toT . We use theunion by rank
andpath compressionheuristics to provide fast implementations of the disjoint set operations
(MAKE-SET, FIND-SET, and UNION-SET). The algorithm is as follows:

KRUSKAL-MST(G, w)
for each vertexu ∈ V

MAKE-SET(S, u)
T ← ∅

190 CHAPTER 13. BGL ALGORITHMS

for each(u, v) ∈ E in order of nondecreasing weight
if FIND-SET(S, u) 6= FIND-SET(S, v)

UNION-SET(S, u, v)
T ← T

⋃
{(u, v)}

return T

Where Defined

boost/graph/kruskalminimum spanning tree.hpp

Parameters

IN: const Graph& g
An undirected graph. The graph type must be a model ofVertexListGraph andEdge-
ListGraph.

IN: OutputIterator spanningtree edges
The edges of the minimum spanning tree are output to thisOutputIterator.

Named Parameters

IN: weight map(WeightMap wmap)
The weight or “length” of each edge in the graph. TheWeightMap type must be a
model ofReadablePropertyMap and its value type must beLessThanComparable.
The key type of this map needs to be the graph’s edge descriptor type.
Default: get(edgeweight, g)

UTIL: rank map(RankMap rmap)
The typeRankMapmust be a model ofReadWritePropertyMap. The vertex descriptor
type of the graph needs to be usable as the key type of the rank map. The value type
of the rank map must be an integer type.
Default: an iterator propertymap created from astd::vectorof the integers of size
num vertices(g)and using thei map for the index map.

UTIL: predecessormap(PredecessorMap pmap)
The typePredecessorMapmust be a model ofReadWritePropertyMap. The key type
value types of the predecessor map must be the vertex descriptor type of the graph.
Default: an iterator propertymap created from astd::vectorof vertex descriptors of
sizenum vertices(g)and using thei map for the index map.

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, |V |). This is only necessary if the
default is used for the rank or predecessor maps. The typeVertexIndexMapmust be a
model ofReadablePropertyMap. The value type of the map must be an integer type.

http://www.sgi.com/tech/stl/OutputIterator.html
http://www.sgi.com/tech/stl/LessThanComparable.html

13.4. MINIMUM-SPANNING-TREE ALGORITHMS 191

The vertex descriptor type of the graph needs to be usable as the key type of the map.
Default: get(vertexindex, g)

Complexity

The time complexity isO(|E| log |E|).

Example

The source code for this example is inexample/kruskal-example.cpp. Figure13.6shows the
graph used in this example.

0
2

4

3

1

Figure 13.6The graph used for the Kruskal’s algorithm example.

typedef adjacencylist<vecS, vecS, undirectedS,
no property, property<edgeweight t, int> > Graph;

typedef graphtraits<Graph>::edge descriptor Edge;
typedef graphtraits<Graph>::vertex descriptor Vertex;
typedef std::pair<int, int> E;

const int num nodes = 5;
E edgearray[] = { E(0, 2), E(1, 3), E(1, 4), E(2, 1), E(2, 3),

E(3, 4), E(4, 0), E(4, 1) };
int weights[] = { 1, 1, 2, 7, 3, 1, 1, 1};
int num edges= sizeof(edgearray)/ sizeof(E);
Graph g(edgearray, edgearray + num edges, weights, num nodes);
property map<Graph, edgeweight t>::type weight = get(edgeweight, g);
std::vector<Edge> spanning tree;

kruskal minimum spanning tree(g, std::back inserter(spanning tree));

std::cout << " Print the edges in the MST:" << std::endl;
for (std::vector<Edge>::iterator ei = spanning tree. begin();

ei != spanning tree. end(); ++ ei) {

192 CHAPTER 13. BGL ALGORITHMS

std::cout << source(* ei, g) << " ¡--¿ " << target(* ei, g)
<< " with weight of " << weight[* ei]
<< std::endl;

}

The output is

Print the edges in the MST:
0 <−−> 2 with weight of 1
3 <−−> 4 with weight of 1
4 <−−> 0 with weight of 1
1 <−−> 3 with weight of 1

13.4.2 prim minimum spanning tree

template<typename Graph, typename PredecessorMap,
typename P, typename T, typename R>

void prim minimum spanning tree(Graph& G, PredecessorMap pmap,
const bglnamedparams<P, T, R>& params = all defaults)

Theprim minimum spanning tree() function finds a minimum spanning tree (MST) in an
undirected graph with weighted edges. An MST is a set of edges that connects all the vertices
in the graph where the total weight of the edges in the tree is minimized. The minimum span-
ning tree is recorded in the predecessor map: for each vertexv ∈ V , π[v] will be the parent
of v in the computed minimum spanning tree. The implementation uses Prim’s algorithm to
compute the MST [38, 10, 44, 18].

The way Prim’s algorithm grows the minimum spanning tree, one vertex at a time, is very
similar to the way Dijkstra’s algorithm builds the shortest paths tree.2 At each step, Prim’s
algorithm chooses an edge to add to the minimum spanning tree. The edge is the shortest
edge that connects any of the vertices already in the tree to a vertex that is not in the tree. The
algorithm uses a priority queue to make this choice in an efficient manner. If vertexu is at
the top of the priority queue, then edge(π[u], u) is the next shortest edge and will be added
to the tree. The pseudocode for the algorithm is as follows:

PRIM-MST(G, r, w)
for each vertexu ∈ V . initialize vertexu
d[u]←∞
π[u]← u
color[u]←WHITE

color[r]← GRAY
d[r]← 0
2In fact, the BGL implementation of Prim’s algorithm is simply a call to Dijkstra’s algorithm with particular

arguments for thedistancecompare() anddistancecombine() parameters.

13.4. MINIMUM-SPANNING-TREE ALGORITHMS 193

INSERT(Q, r) . discover vertexr
while (Q 6= ∅)
u← EXTRACT-MIN(Q) . examine vertexu
for eachv ∈ Adj[u] . examining edge(u, v)

if (w(u, v) < d[v])
d[v]← w(u, v) . edge(u, v) relaxed
π[v]← u
if (color[v] = WHITE)
color[v]← GRAY
INSERT(Q, v) . discover vertexv

else if(color[v] = GRAY)
DECREASE-KEY(Q, v)

else
... . edge(u, v) is not relaxed

color[u]← BLACK . finishu
return (π)

Where Defined

boost/graph/primminimum spanning tree.hpp

Parameters

IN: const Graph& g
The graph object on which the algorithm will be applied. The typeGraph must be a
model ofVertexListGraph andIncidenceGraph.

OUT: PredecessorMap pmap
The predecessor map records the edges in the minimum spanning tree. Upon com-
pletion of the algorithm, the edges(π[u], u) ∀u ∈ V are in the minimum spanning
tree. Ifπ[u] = u, thenu is either the root of the tree or is a vertex that is not reachable
from the root. ThePredecessorMaptype must be aReadWritePropertyMap with key
and vertex types the same as the vertex descriptor type of the graph.

Named Parameters

IN: root vertex(vertexdescriptor r)
The vertex that will be the root of the minimum spanning tree. The choice of the root
vertex is arbitrary; it does not affect the ability of the algorithm to find a minimum
spanning tree.
Default: *vertices(g).first

194 CHAPTER 13. BGL ALGORITHMS

IN: weight map(WeightMap wmap)
The weight or “length” of each edge in the graph. The typeWeightMap must be a
model of ReadablePropertyMap. The edge descriptor type of the graph needs to
be usable as the key type for the weight map. The value type for the map must be
Addable with the value type of the distance map.
Default: get(edgeweight, g)

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, |V |). This is necessary for efficient
updates of the heap data structure when an edge is relaxed. The typeVertexIndexMap
must be a model ofReadablePropertyMap. The value type of the map must be an
integer type. The vertex descriptor type of the graph needs to be usable as the key
type of the map.
Default: get(vertexindex, g)

UTIL: distancemap(DistanceMap dmap)
The typeDistanceMapmust be a model ofReadWritePropertyMap. The vertex de-
scriptor type of the graph needs to be usable as the key type of the distance map. The
value type of the distance map must beLessThanComparable.
Default: an iterator propertymapcreated from astd::vectorof theWeightMap’s value
type of sizenum vertices(g)and using thei map for the index map.

UTIL/OUT: color map(ColorMap cmap)
This is used during the execution of the algorithm to mark the vertices. The vertices
start out white and become gray when they are inserted in the queue. They then turn
black when they are removed from the queue. At the end of the algorithm, vertices
reachable from the source vertex will have been colored black. All other vertices will
still be white. The typeColorMap must be a model ofReadWritePropertyMap. A
vertex descriptor must be usable as the key type of the map, and the value type of the
map must be a model ofColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

Complexity

The time complexity isO(|E| log |V |).

Example

The source code for this example is inexample/prim-example.cpp.

typedef adjacencylist<vecS, vecS, undirectedS,
property<vertex distancet, int>, property<edgeweight t, int> > Graph;

typedef std::pair<int, int> E;
const int num nodes = 5;

http://www.sgi.com/tech/stl/LessThanComparable.html

13.5. STATIC CONNECTED COMPONENTS 195

E edges[] = { E(0, 2), E(1, 1), E(1, 3), E(1, 4), E(2, 1), E(2, 3),
E(3, 4), E(4, 0) };

int weights[] = { 1, 2, 1, 2, 7, 3, 1, 1};
Graph g(num nodes, edges, edges+ sizeof(edges)/ sizeof(E), weights);
std::vector<graph traits<Graph>::vertex descriptor> p(num vertices(g));

prim minimum spanning tree(g, & p[0]);

for (std::sizet i = 0; i != p. size(); ++ i)
if (p[i] != i)

std::cout << " parent[" << i << "] = " << p[i] << std::endl;
else

std::cout << " parent[" << i << "] = no parent" << std::endl;

The output is

parent[0] = 0
parent[1] = 3
parent[2] = 0
parent[3] = 4
parent[4] = 0

13.5 Static Connected Components

13.5.1 connectedcomponents

template<typename Graph, typename ComponentMap,
typename P, typename T, typename R>

typename propertytraits<ComponentMap>::value type
connectedcomponents(const Graph& g, ComponentMap c,

const bglnamedparams<P, T, R>& params = all defaults)

The connectedcomponents() function compute the connected components of an undi-
rected graph using a DFS-based approach. Aconnected componentof an undirected graph is
a set of vertices that are all reachable from each other. If the connected components need to
be maintained while a graph is growing the disjoint-set based approach of functionincremen-
tal components() is faster. For static graphs this DFS-based approach is faster[10].

The output of the algorithm is recorded in the component property mapc, which will
contain numbers giving the component number assigned to each vertex. The total number of
components is the return value of the function.

Where Defined

boost/graph/connectedcomponents.hpp

196 CHAPTER 13. BGL ALGORITHMS

Parameters

IN: const Graph& g
An undirected graph. The graph type must be a model ofVertexListGraph andInci-
denceGraph.

OUT: ComponentMap c
The algorithm computes how many connected components are in the graph, and as-
signs each component an integer label. The algorithm then records which component
each vertex in the graph belongs to by recording the component number in the com-
ponent property map. TheComponentMaptype must be a model ofWritableProper-
tyMap. The value type must be theverticessizetypeof the graph. The key type must
be the graph’s vertex descriptor type.

Named Parameters

UTIL: color map(ColorMap color)
This is used by the algorithm to keep track of its progress through the graph. The
typeColorMap must be a model ofReadWritePropertyMap and its key type must be
the graph’s vertex descriptor type and the value type of the color map must model
ColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, N) whereN is the number of ver-
tices in the graph. This parameter is only necessary when the default color property
map is used. The typeVertexIndexMapmust be a model ofReadablePropertyMap.
The value type of the map must be an integer type. The vertex descriptor type of the
graph needs to be usable as the key type of the map.
Default: get(vertexindex, g)

Complexity

The time complexity for the strongly connected components algorithm isO(|V |+ |E|). The
time complexity for the connected components algorithm is alsoO(|V |+ |E|).

Example

Calculating the connected components of an undirected graph.

〈 “connected-components.cpp”196〉 ≡
#include <iostream>
#include <vector>

13.5. STATIC CONNECTED COMPONENTS 197

#include <boost/ graph/ connectedcomponents. hpp>
#include <boost/ graph/ adjacencylist. hpp>

int main()
{

using namespace boost;
typedef adjacencylist <vecS, vecS, undirectedS> Graph;
typedef graphtraits<Graph>::vertex descriptor Vertex;

const int N = 6;
Graph G(N);
add edge(0, 1, G);
add edge(1, 4, G);
add edge(4, 0, G);
add edge(2, 5, G);

std::vector<int> c(num vertices(G));
int num = connectedcomponents(G,

make iterator property map(c. begin(), get(vertex index, G)));

std::cout << std::endl;
std::vector<int>::iterator i ;
std::cout << " Total number of components:" << num << std::endl;
for (i = c. begin(); i != c. end(); ++ i)

std::cout << " Vertex " << i − c. begin()
<< " is in component" << * i << std::endl;

std::cout << std::endl;
return EXIT SUCCESS;
}

The output is

Total number of components:3
Vertex 0 is in component0
Vertex 1 is in component0
Vertex 2 is in component1
Vertex 3 is in component2
Vertex 4 is in component0
Vertex 5 is in component1

13.5.2 strong components

template<class Graph, class ComponentMap, class P, class T, class R>
typename propertytraits<ComponentMap>::value type
strong components(Graph& g, ComponentMap comp,

const bglnamedparams<P, T, R>& params = all defaults)

198 CHAPTER 13. BGL ALGORITHMS

The strong components() function computes the strongly connected components (SCC)
of a directed graph using Tarjan’s algorithm, which is based on depth-first search [43].

The output of the algorithm is recorded in the component property mapcomp, which will
contain numbers giving the component ID assigned to each vertex. The ID numbers will be
from zero to one less than the number of components in the graph. The number of components
is the return value of the function.

Where Defined

boost/graph/strongcomponents.hpp

Definitions

A strongly connected componentof a directed graphG = (V,E) is a maximal set of vertices
U ⊆ V , such that for every pair of verticesu andv in U , we have both a path fromu to v and
path fromv to u. That is to say thatu andv are reachable from each other.

The following is an informal description of Tarjan’s algorithm for computing strongly
connected components. It is basically a variation on depth-first search, with extra actions
being taken at the “discover vertex” and “finish vertex” event points. It may help to think of
the actions taken at the “discover vertex” event point as occuring “on the way down” a DFS
tree (from the root toward the leaves), and actions taken at the “finish vertex” event point as
occuring “on the way back up.”

Three things need to happen on the way down. For each vertexu visited, we record
the discover timed[u], push vertexu onto a auxiliary stack, and setroot[u] = u. The root
field will end up mapping each vertex to the topmost vertex in the same strongly connected
component. By settingroot[u] = u we are starting with each vertex in a component by itself.

Now to describe what happens on the way back up. Suppose we have just finished visiting
all of the vertices adjacent to some vertexu. We then scan each of the adjacent vertices again,
checking the root of each for which one has the earliest discover time, which we will call root
a. We then comparea with vertexu and consider the following cases:

1. If d[a] < d[u], then we know thata is really an ancestor ofu in the DFS tree and
therefore we have a cycle andu must be in an SCC witha. We then setroot[u] = a
and continue our way back up the DFS.

2. If a = u, then we know thatu must be the topmost vertex of a subtree that defines an
SCC. All of the vertices in this subtree are farther down on the stack than vertexu, so
we pop the vertices off of the stack until we reachu and mark each one as being in the
same component.

3. If d[a] > d[u] then the adjacent vertices are in different strongly connected components.
We continue our way back up the DFS.

13.5. STATIC CONNECTED COMPONENTS 199

Parameters

IN: const Graph& g
A directed graph. The graph type must be a model ofVertexListGraph andIncidence-
Graph.

OUT: ComponentMap comp
The algorithm computes how many connected components are in the graph, and as-
signs each component an integer label. The algorithm then records which component
each vertex in the graph belongs to by recording the component number in the com-
ponent property map. TheComponentMaptype must be a model ofWritableProp-
ertyMap. The value type shouch be an integer type, preferably the same as thever-
ticessizetypeof the graph. The key type must be the graph’s vertex descriptor type.

Named Parameters

UTIL: root map(RootMap rmap)
This is used by the algorithm to record the candidate root vertex for each vertex.
By the end of the algorithm, there is a single root vertex for each component and
get(r map, v)returns the root vertex for whichever component vertexv is a member.
The RootMapmust be aReadWritePropertyMap, where the key type and the value
type are the vertex descriptor type of the graph.
Default: an iterator propertymap created from astd::vectorof vertex descriptors of
sizenum vertices(g)and using thei map for the index map.

UTIL: discovertime(TimeMap tmap)
This is used by the algorithm to keep track of the DFS ordering of the vertices. The
TimeMap must be a model ofReadWritePropertyMap and its value type must be an
integer type. The key type must be the vertex descriptor type of the graph.
Default: an iterator propertymap created from astd::vector of integers with size
num vertices(g)and using thei map for the index map.

UTIL: color map(ColorMap cmap)
This is used by the algorithm to keep track of its progress through the graph. The
typeColorMap must be a model ofReadWritePropertyMap and its key type must be
the graph’s vertex descriptor type and the value type of the color map must model
ColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

IN: vertex index map(VertexIndexMap imap)
This maps each vertex to an integer in the range[0, N) whereN is the number of
vertices in the graph. This parameter is only necessary when a default is used for
one of the other named parameters. The typeVertexIndexMapmust be a model of
ReadablePropertyMap. The value type of the map must be an integer type. The

200 CHAPTER 13. BGL ALGORITHMS

vertex descriptor type of the graph needs to be usable as the key type of the map.
Default: get(vertexindex, g)

Complexity

The time complexity for the strongly connected components algorithm isO(|V |+ |E|).

See Also

connectedcomponents() andincremental components()

Example

Calculating the strongly connected components of a directed graph.

〈 “strong-components.cpp”200〉 ≡
#include <vector>
#include <iostream>
#include <boost/ graph/ strong components. hpp>
#include <boost/ graph/ adjacencylist. hpp>

int main()
{

using namespace boost;
typedef adjacencylist< vecS, vecS, directedS> Graph;
const int N = 6;
Graph G(N);
add edge(0, 1, G);
add edge(1, 1, G); add edge(1, 3, G); add edge(1, 4, G);
add edge(3, 4, G); add edge(3, 0, G);
add edge(4, 3, G);
add edge(5, 2, G);

std::vector<int> c(N);
int num = strong components(G,

make iterator property map(c. begin(), get(vertex index, G)));

std::cout << " Total number of components:" << num << std::endl;
std::vector<int>::iterator i ;
for (i = c. begin(); i != c. end(); ++ i)

std::cout << " Vertex " << i − c. begin()
<< " is in component" << * i << std::endl;

return EXIT SUCCESS;
}

The output is

13.6. INCREMENTAL CONNECTED COMPONENTS 201

Total number of components:3
Vertex 0 is in component0
Vertex 1 is in component0
Vertex 2 is in component1
Vertex 3 is in component0
Vertex 4 is in component0
Vertex 5 is in component2

13.6 Incremental Connected Components

This section describes a family of functions and classes that calculate the connected com-
ponents of an undirected graph. The algorithm used here is based on the disjoint-sets data
structure [10, 44], which is the best method for situations where the graph is growing (edges
are being added) and the connected components information needs to be updated repeatedly.
The disjoint-sets class is described in§16.6.

The following five operations are the primary functions that you will use to calculate and
maintain the connected components. The objects used here are a graphg, a disjoint-sets object
ds, and verticesu andv.

• initialize incremental components(g,ds)
Basic initialization of the disjoint-sets structure. Each vertex in the graphg is in its own
set.

• incremental components(g,ds)
The connected components are calculated based on the edges in the graphg and the
information is embedded inds.

• ds.find set(v)
Extracts the component information for vertexv from the disjoint-sets object.

• ds.union set(u,v)
Update the disjoint-sets object when edge(u, v) is added to the graph.

Complexity

The time complexity for the whole process isO(|V |+ |E|α(|E|, |V |)), where|E| is the total
number of edges in the graph (by the end of the process) and|V | is the number of vertices.α
is the inverse of Ackermann’s function, which has explosive recursively exponential growth.
Therefore, its inverse function growsvery slowly. For all practical purposes,α(m,n) ≤ 4,
which means the time complexity is only slightly larger thanO(|V |+ |E|).

202 CHAPTER 13. BGL ALGORITHMS

Example

Maintain the connected components of a graph while adding edges using the disjoint-sets
data structure. The full source code for this example can be found inexample/incremental-
components-eg.cpp.

// Create a graph
typedef adjacencylist <vecS, vecS, undirectedS> Graph;
typedef graphtraits<Graph>::vertex descriptor Vertex;
const int N = 6;
Graph G(N);
add edge(0, 1, G);
add edge(1, 4, G);
// create the disjoint-sets object, which requires rank and parent vertex properties
std::vector<Vertex> rank(num vertices(G));
std::vector<Vertex> parent(num vertices(G));
typedef std::vector<graph traits<Graph>::vertices size type>::iterator Rank;
typedef std::vector<Vertex>::iterator Parent;
disjoint sets<Rank, Parent> ds(rank. begin(), parent. begin());

// determine the connected components, storing the results in the disjoint-sets object
initialize incremental components(G, ds);
incremental components(G, ds);

// Add a couple more edges and update the disjoint-sets
graph traits<Graph>::edge descriptor e;
bool flag;
tie(e, flag) = add edge(4, 0, G);
ds. union set(4, 0);
tie(e, flag) = add edge(2, 5, G);
ds. union set(2, 5);

graph traits<Graph>::vertex iterator i, end;
for (tie(i, end) = vertices(G); i != end; ++ i)

std::cout << " representative[" << * i << "] = " <<
ds. find set(* i) << std::endl;;

std::cout << std::endl;

typedef componentindex<unsigned int> Components;
Components components(parent. begin(), parent. end());
for (Components::sizetype i = 0; i < components. size(); ++ i) {

std::cout << " component" << i << " contains: " ;
for (Components::valuetype::iterator j = components[i]. begin();

j != components[i]. end(); ++ j)
std::cout << * j << " " ;

std::cout << std::endl;
}

13.6. INCREMENTAL CONNECTED COMPONENTS 203

The output is

representative[0] = 1
representative[1] = 1
representative[2] = 5
representative[3] = 3
representative[4] = 1
representative[5] = 5

component0 contains: 4 1 0
component1 contains: 3
component2 contains: 5 2

Where Defined

All of the functions in this section are defined inboost/graph/incrementalcomponents.hpp.

13.6.1 initialize incremental components

template<typename VertexListGraph, typename DisjointSets>
void initialize incremental components(VertexListGraph& G, DisjointSets& ds)

This prepares the disjoint-sets data structure for the incremental connected components
algorithm by making each vertex in the undirected graph a member of its own component.

Complexity

The time complexity isO(|V |).

13.6.2 incremental components

template<typename EdgeListGraph, typename DisjointSets>
void incrementalcomponents(EdgeListGraph& g, DisjointSets& ds)

This function calculates the connected components of an undirected graph, embedding
the results in the disjoint-sets data structure.

Complexity

The time complexity isO(|E|).

204 CHAPTER 13. BGL ALGORITHMS

13.6.3 samecomponent

template<typename Vertex, typename DisjointSets>
bool samecomponent(Vertex u, Vertex v, DisjointSets& ds)

This function determines whetheru andv are in the same component.

Complexity

The time complexity isO(α(|E|, |V |)).

13.6.4 componentindex

componentindex<Index>

This class provide an STL container-like view for the components of the graph. Each
component is a container-like object, and thecomponentindex object provides access to the
component objects viaoperator[]. A componentindex object is initialized with the parents
property in the disjoint-sets calculated from theincremental components() function.

Template Parameters

Index The unsigned integer type used to count components.

Where Defined

boost/graph/incrementalcomponents.hpp

Associated Types

componentindex::value type
The type for a component object. The component type has the following members.

componentindex::size type
The type used for representing the number of components.

Member Functions

template<typename ComponentsContainer>
componentindex::componentindex(const ComponentsContainer& c)

Constructs thecomponentindex using the information from the components containerc,
which was the result of executingincremental components.

13.7. MAXIMUM-FLOW ALGORITHMS 205

template<typename ParentIterator>
componentindex::componentindex(ParentIterator first, ParentIterator last)

Constructs a component index from the “parents” computed by theincremen-
tal components() function.

value type componentindex::operator[](size type i) const
Returns theith component in the graph.

size type componentindex::size() const
Returns the number of components in the graph.

Associated Types of a Component

Thevalue typeof thecomponentindex is a component that has the following associated types.

value type::value type
The value type of a component object is a vertex ID.

value type::iterator
value type::constiterator

This iterator can be used to traverse all of the vertices in the component. This iterator
dereferences to give a vertex ID.

Member functions of a Component

The value typeof the componentindex is a component that has the following member func-
tions.

iterator begin() const
Returns an iterator pointing to the first vertex in the component.

iterator end() const
Returns an iterator pointing past the end of the last vertex in the component.

13.7 Maximum-Flow Algorithms

13.7.1 edmundskarp max flow

template<typename Graph, typename P, typename T, typename R>
typename detail::edgecapacityvalue<Graph, P, T, R>::type
edmundskarp max flow(Graph& g,

typename graphtraits<Graph>::vertex descriptor src,
typename graphtraits<Graph>::vertex descriptor sink,
const bglnamedparams<P, T, R>& params = all defaults)

206 CHAPTER 13. BGL ALGORITHMS

The push relabel flow() function calculates the maximum flow of a network (see Chap-
ter 8). The maximum flow is the return value of the function. The function also calculates
the flow valuesf(u, v) ∀(u, v) ∈ E, which are returned in the form of the residual capacity
r(u, v) = c(u, v)− f(u, v).

Where Defined

boost/graph/edmundskarp max flow.hpp

Parameters

IN: Graph& g
A directed graph. The graph’s type must be a model ofVertexListGraph and Inci-
denceGraph. For each edge(u, v) in the graph, the reverse edge(v, u) must also be
in the graph.

IN: vertexdescriptor src
The source vertex for the flow network graph.

IN: vertexdescriptor sink
The sink vertex for the flow network graph.

Named Parameters

IN: capacitymap(CapacityEdgeMap cap)
The edge-capacity property map. The type must be a model of a constantLvalue-
PropertyMap. The key type of the map must be the graph’s edge descriptor type.
Default: get(edgecapacity, g)

OUT: residual capacitymap(ResidualCapacityEdgeMap res)
The edge-residual-capacity property map. The type must be a model of a mutable
LvaluePropertyMap. The key type of the map must be the graph’s edge descriptor
type.
Default: get(edgeresidual capacity, g)

IN: reverseedgemap(ReverseEdgeMap rev)
An edge property map that maps every edge(u, v) in the graph to the reverse edge
(v, u). The map must be a model of constantLvaluePropertyMap. The key type of
the map must be the graph’s edge descriptor type.
Default: get(edgereverse, g)

UTIL: predecessormap(PredecessorMap pmap)
The predecessor map differs from the usual predecessor map in that the value type
is theedgedescriptortype instead ofvertexdescriptor. The key type for this prede-
cessor map is stillvertexdescriptor. Default: an iterator propertymapcreated from a

13.7. MAXIMUM-FLOW ALGORITHMS 207

std::vectorof edgedescriptorof sizenum vertices(g)and using thei map for the index
map.

UTIL: color map(ColorMap cmap)
This map is used for internal bookkeeping. The typeColorMap must be a model of
ReadWritePropertyMap. A vertex descriptor must be usable as the key type of the
map, and the value type of the map must be a model ofColorValue.
Default: an iterator propertymap created from astd::vectorof default color type of
sizenum vertices(g)and using thei map for the index map.

IN: vertex index map(VertexIndexMap indexmap)
This map is only needed if the default color map or default predecessor map is used.
Each vertex of the graph is mapped to an integer in the range[0, |V |). The map must
be a model of constantLvaluePropertyMap. The key type of the map must be the
graph’s vertex descriptor type.
Default: get(vertexindex, g)

Example

This reads in an example maximum-flow problem (a graph with edge capacities) from a file
in the DIMACS file format [1].

〈 “edmunds-karp-eg.cpp”207〉 ≡
#include <boost/ config. hpp>
#include <iostream>
#include <string>
#include <boost/ graph/ edmundskarp max flow. hpp>
#include <boost/ graph/ adjacencylist. hpp>
#include <boost/ graph/ read dimacs. hpp>
#include <boost/ graph/ graph utility . hpp>

int main()
{

using namespace boost;

typedef adjacencylist traits<vecS, vecS, directedS> Traits;
typedef adjacencylist<listS, vecS, directedS,

property<vertex name t, std::string>,
property<edgecapacity t, long,

property<edgeresidual capacity t, long,
property<edgereverset, Traits::edgedescriptor> > >

> Graph;

Graph g;

208 CHAPTER 13. BGL ALGORITHMS

property map<Graph, edgecapacity t>::type
capacity = get(edgecapacity, g);

property map<Graph, edgereverset>::type
rev = get(edgereverse, g);

property map<Graph, edgeresidual capacity t>::type
residual capacity = get(edgeresidual capacity, g);

Traits::vertex descriptor s, t;
read dimacsmax flow(g, capacity, rev, s, t);

long flow = edmundskarp max flow(g, s, t);

std::cout << " c The total flow:" << std::endl;
std::cout << " s " << flow << std::endl << std::endl;

std::cout << " c flow values:" << std::endl;
graph traits<Graph>::vertex iterator u iter, u end;
graph traits<Graph>::out edgeiterator ei, e end;
for (tie(u iter, u end) = vertices(g); u iter != u end; ++ u iter)

for (tie(ei, e end) = out edges(* u iter, g); ei != e end; ++ ei)
if (capacity[* ei] > 0)

std::cout << " f " << * u iter << " " << target(* ei, g) << " "
<< (capacity[* ei] − residual capacity[* ei]) << std::endl;

return EXIT SUCCESS;
}

The output is

c The total flow:
s 13

c flow values:
f 0 6 3
f 0 1 6
f 0 2 4
f 1 5 1
f 1 0 0
f 1 3 5
f 2 4 4
f 2 3 0
f 2 0 0
f 3 7 5
f 3 2 0
f 3 1 0
f 4 5 4
f 4 6 0

13.7. MAXIMUM-FLOW ALGORITHMS 209

f 5 4 0
f 5 7 5
f 6 7 3
f 6 4 0
f 7 6 0
f 7 5 0

13.7.2 push relabel max flow

template<typename Graph, typename P, typename T, typename R>
typename detail::edgecapacityvalue<Graph, P, T, R>::type
push relabel max flow(Graph& g,

typename graphtraits<Graph>::vertex descriptor src,
typename graphtraits<Graph>::vertex descriptor sink,
const bglnamedparams<P, T, R>& params)

The push relabel flow() function calculates the maximum flow of a network (see Chap-
ter 8). The maximum flow is the return value of the function. The function also calculates
the flow valuesf(u, v) ∀(u, v) ∈ E, which are returned in the form of the residual capacity
r(u, v) = c(u, v) − f(u, v). Figure13.7shows a network with edges labeled with flow and
capacity values.

A B
4/5

C

4/5

D

2/5

E
2/2

0/5
G

2/2
F

3/5
1/5

H1/1

0/5

3/4

Figure 13.7A flow network that has edges labeled with flow and capacity values.

There are several special requirements on the input graph and property map parameters
for this algorithm. First, the directed graphG = (V,E) that represents the network must be
augmented to include the reverse edge for every edge inE. That is, the input graph should
beGin = (V, {E

⋃
ET }). The ReverseEdgeMapargumentrev must map each edge in the

original graph to its reverse edge, that is(u, v)→ (v, u) ∀(u, v) ∈ E. TheCapacityEdgeMap
argumentcap must map each edge inE to a positive number, and each edge inET to 0.

210 CHAPTER 13. BGL ALGORITHMS

Another words, the capacity map should satisfy these constraints:c(u, v) > 0 andc(v, u) = 0
for each(u, v) ∈ E.

Where Defined

boost/graph/pushrelabel max flow.hpp

Parameters

IN: Graph& g
A directed graph. The graph’s type must be a model ofVertexListGraph and Inci-
denceGraph. For each edge(u, v) in the graph, the reverse edge(v, u) must also be
in the graph.

IN: vertexdescriptor src
The source vertex for the flow network graph.

IN: vertexdescriptor sink
The sink vertex for the flow network graph.

Named Parameters

IN: capacitymap(CapacityEdgeMap cap)
The edge capacity property map. The type must be a model of a constantLvalue-
PropertyMap. The key type of the map must be the graph’s edge descriptor type.
Default: get(edgecapacity, g)

OUT: residual capacitymap(ResidualCapacityEdgeMap res)
The edge residual capacity property map. The type must be a model of a mutable
LvaluePropertyMap. The key type of the map must be the graph’s edge descriptor
type.
Default: get(edgeresidual capacity, g)

IN: reverseedgemap(ReverseEdgeMap rev)
An edge property map that maps every edge(u, v) in the graph to the reverse edge
(v, u). The map must be a model of constantLvaluePropertyMap. The key type of
the map must be the graph’s edge descriptor type.
Default: get(edgereverse, g)

IN: vertex index map(VertexIndexMap indexmap)
This maps each vertex to an integer in the range[0, N) whereN is the number of
vertices in the graph. The map must be a model of constantLvaluePropertyMap. The
key type of the map must be the graph’s vertex descriptor type.
Default: get(vertexindex, g)

13.7. MAXIMUM-FLOW ALGORITHMS 211

Example

This reads in an example maximum-flow problem (a graph with edge capacities) from a file
in the DIMACS file format [1].

〈 “push-relabel-eg.cpp”211〉 ≡
#include <iostream>
#include <string>
#include <boost/ graph/ push relabel max flow. hpp>
#include <boost/ graph/ adjacencylist. hpp>
#include <boost/ graph/ read dimacs. hpp>
int main()
{

using namespace boost;
typedef adjacencylist traits<vecS, vecS, directedS> Traits;
typedef adjacencylist<vecS, vecS, directedS,

property<vertex name t, std::string>,
property<edgecapacity t, long,

property<edgeresidual capacity t, long,
property<edgereverset, Traits::edgedescriptor> > >

> Graph;
Graph g;

property map<Graph, edgecapacity t>::type
capacity = get(edgecapacity, g);

property map<Graph, edgeresidual capacity t>::type
residual capacity = get(edgeresidual capacity, g);

property map<Graph, edgereverset>::type
rev = get(edgereverse, g);

Traits::vertex descriptor s, t;
read dimacsmax flow(g, capacity, rev, s, t);

long flow = push relabel max flow(g, s, t);

std::cout << " c The total flow:" << std::endl;
std::cout << " s " << flow << std::endl << std::endl;
std::cout << " c flow values:" << std::endl;
graph traits<Graph>::vertex iterator u iter, u end;
graph traits<Graph>::out edgeiterator ei, e end;
for (tie(u iter, u end) = vertices(g); u iter != u end; ++ u iter)

for (tie(ei, e end) = out edges(* u iter, g); ei != e end; ++ ei)
if (capacity[* ei] > 0)

std::cout << " f " << * u iter << " " << target(* ei, g) << " "
<< (capacity[* ei] − residual capacity[* ei]) << std::endl;

return EXIT SUCCESS;
}

212 CHAPTER 13. BGL ALGORITHMS

The output is

c The total flow:
s 13

c flow values:
f 0 6 3
f 0 1 0
f 0 2 10
f 1 5 1
f 1 0 0
f 1 3 0
f 2 4 4
f 2 3 6
f 2 0 0
f 3 7 5
f 3 2 0
f 3 1 1
f 4 5 4
f 4 6 0
f 5 4 0
f 5 7 5
f 6 7 3
f 6 4 0
f 7 6 0
f 7 5 0

Chapter 14

BGL Classes

14.1 Graph Classes

14.1.1 adjacencylist

adjacencylist<EdgeList, VertexList, Directed,
VertexProperties, EdgeProperties, GraphProperties>

Theadjacencylist class implements the BGL graph interface using several different vari-
ations on the traditional adjacency-list graph structure.

An adjacency-list reprepresentation of a graph stores an out-edge sequence for each
vertex. For sparse graphs this saves space compared to an adjacency matrix because only
O(|V |+ |E|) memory is required, compared toO(|V |2). In addition, the out-edges for each
vertex can be accessed efficiently. Figure14.1 shows an adjacency-list representation of a
directed graph.

A

B

C F

D

E

A

B

C

D

E

F

E

D

A

A C

F C

Figure 14.1: Adjacency-list representation of a directed graph.

The template parameters of theadjacencylist class provide many configuration options so

213

214 CHAPTER 14. BGL CLASSES

that you can pick a version of the class that best meets your needs. TheVertexList template
parameter of theadjacencylist class controls what kind of container is used to represent the
sequence of vertices (the rectangle in Figure14.1). TheEdgeListtemplate parameter controls
what kind of container is used to represent the sequence of out-edges for each vertex (the
ovals in Figure14.1). The choices forEdgeListandVertexListaffect the memory consumption
of the graph and determine the efficiency for various graph operations. The possible choices
and tradeoffs are discussed in§14.1.1.

A

C F

B D

E

A

B

C

D

E

F

C F

C F

A B

E

D

A B

Figure 14.2: Adjacency-list representation of an undirected graph.

The Directed template parameter controls whether the graph is directed, undirected, or
directed with access to both the in-edges and out-edges (which we call bidirectional). The
bidirectional graph takes up twice the space (per edge) of a directed graph because each
edge will appear in both an out-edge and in-edge list. Figure14.2shows an adjacency-list
representation of an undirected graph, and Figure14.3shows a bidirectional representation
of a directed graph.

A

B

C F

D

E

C F

A C

E

D

A

AA

B

C

D

E

F

B

C

D

E

F

C F

B C

E

D

B

Figure 14.3: Bidirectional adjacency-list representation of a directed graph.

14.1. GRAPH CLASSES 215

Example

The graph in the following example is used to represent a family tree.

〈 “family-tree-eg.cpp”215〉 ≡
#include <iostream>
#include <vector>
#include <string>
#include <boost/ graph/ adjacencylist. hpp>
#include <boost/ tuple/ tuple. hpp>
enum family { Jeanie, Debbie, Rick, John, Amanda, Margaret, Benjamin, N };
int main()
{

using namespace boost;
const char* name[] = { " Jeanie" , " Debbie" , " Rick" , " John" , " Amanda" ,

" Margaret" , " Benjamin" };

adjacencylist<> g(N);
add edge(Jeanie, Debbie, g);
add edge(Jeanie, Rick, g);
add edge(Jeanie, John, g);
add edge(Debbie, Amanda, g);
add edge(Rick, Margaret, g);
add edge(John, Benjamin, g);

graph traits<adjacencylist<> >::vertex iterator i, end;
graph traits<adjacencylist<> >::adjacency iterator ai, a end;
property map<adjacencylist<>, vertex index t>::type

index map = get(vertex index, g);

for(tie(i, end) = vertices(g); i != end; ++ i) {
std::cout << name[get(index map, * i)];
tie(ai, a end) = adjacentvertices(* i, g);
if (ai == a end)

std::cout << " has no children" ;
else

std::cout << " is the parent of " ;
for (; ai != a end; ++ ai) {

std::cout << name[get(index map, * ai)];
if (boost::next(ai) != a end)

std::cout << " , " ;
}
std::cout << std::endl;
}
return EXIT SUCCESS;
}

216 CHAPTER 14. BGL CLASSES

The output is

Jeanie is the parent of Debbie, Rick, John
Debbie is the parent of Amanda
Rick is the parent of Margaret
John is the parent of Benjamin
Amanda has no children
Margaret has no children
Benjamin has no children

Template Parameters

EdgeList The selector for the container used to represent the edge-list for each of the
vertices.
Default: vecS

VertexList The selector for the container used to represent the vertex set of the graph.
Default: vecS

Directed A selector to choose whether the graph is directed, undirected, or directed
with bidirectional edge access (access to both out-edges and in-edges). The
options aredirectedS, undirectedS, andbidirectionalS.
Default: directedS

VertexProperties Specify internal vertex property storage.
Default: no property

EdgeProperties Specify internal edge property storage.
Default: no property

GraphProperties Specify property graph property storage.
Default: no property

Model Of

DefaultConstructible, CopyConstructible, Assignable, VertexListGraph, EdgeListGraph, Inci-
denceGraph, AdjacencyGraph, VertexMutableGraph, andEdgeMutableGraph.

Also, adjacencylist models BidirectionalGraph when Directed=bidirectionalS or Di-
rected=undirectedS, and it modelsVertexMutablePropertyGraph and EdgeMutableProperty-
Graph when the appropriate internal properties have been added.

Where Defined

boost/graph/adjacencylist.hpp

Associated Types

graph traits<adjacencylist>::vertex descriptor

http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/CopyConstructible.html
http://www.sgi.com/tech/stl/Assignable.html

14.1. GRAPH CLASSES 217

The type for the vertex descriptors associated with theadjacencylist.
(Required byGraph.)

graph traits<adjacencylist>::edge descriptor
The type for the edge descriptors associated with theadjacencylist.
(Required byGraph.)

graph traits<adjacencylist>::vertex iterator
The type for the iterators returned byvertices() .
(Required byVertexListGraph.)

graph traits<adjacencylist>::edge iterator
The type for the iterators returned byedges() .
(Required byEdgeListGraph.)

graph traits<adjacencylist>::out edgeiterator
The type for the iterators returned byout edges() .
(Required byIncidenceGraph.)

graph traits<adjacencylist>::in edgeiterator
This type is available for undirected and bidirectional adjacency lists, but not for directed.
The in edgeiterator is the iterator type returned by thein edges() function.
(Required byBidirectionalGraph.)

graph traits<adjacencylist>::adjacency iterator
The type for the iterators returned byadjacentvertices() .
(Required byAdjacencyGraph.)

graph traits<adjacencylist>::directed category
Provides information about whether the graph is directed (directedtag) or undirected
(undirectedtag).
(Required byGraph.)

graph traits<adjacencylist>::edge parallel category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The two tags areallow parallel edgetag anddisallow parallel-
edgetag. ThesetSandhash setSvariants disallow parallel edges while the others allow
parallel edges.
(Required byGraph.)

graph traits<adjacencylist>::traversal category
The traversal category reflects which kinds of iterators are supported by the graph class.
For adjacency list, this includes vertex, edge, out-edge, and adjacency iterators. The
in-edge iterator is also available for undirected and bidirectional but not for directed
adjacency lists.

graph traits<adjacencylist>::vertices size type

218 CHAPTER 14. BGL CLASSES

The type used for dealing with the number of vertices in the graph.
(Required byVertexListGraph.)

graph traits<adjacencylist>::edgessize type
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph traits<adjacencylist>::degreesize type
The type used for dealing with the number of out-edges of a vertex.
(Required byIncidenceGraph.)

property map<adjacencylist, PropertyTag>::type
property map<adjacencylist, PropertyTag>::const type

The map type for vertex or edge properties in the graph. The property is specified by
thePropertyTagtemplate argument, and must match one of the properties specified in the
VertexPropertiesor EdgePropertiesfor the graph.
(Required byPropertyGraph.)

Member Functions

adjacencylist(const GraphProperties& p = GraphProperties())
Default constructor. It creates an empty graph object with zero vertices and zero edges.
(Required byDefaultConstructible.)

adjacencylist(verticessize type n, const GraphProperties& p = GraphProperties())
Creates a graph object withn vertices and zero edges.

template<typename EdgeIterator>
adjacencylist(EdgeIterator first, EdgeIterator last,

verticessize type n, edgessize type m = 0,
const GraphProperties& p = GraphProperties())

Creates a graph object withn vertices andm edges, with the edges specified in the edge
list given by the range[first, last). If n or m is zero, then the number of vertices or
edges is deduced from the edge list. The value type of theEdgeIteratormust be astd::pair,
where the type in the pair is an integer type. The integers will correspond to vertices, and
they must all fall in the range of[0, n).

template<typename EdgeIterator, typename EdgePropertiesIterator>
adjacencylist(EdgeIterator first, EdgeIterator last, EdgePropertiesIterator epiter,

verticessize type n, edgessize type m = 0,
const GraphProperties& p = GraphProperties())

Creates a graph object withn vertices andm edges, with the edges specified in the edge
list given by the range[first, last). If n or m is zero, then the number of vertices or
edges is deduced from the edge list. The value type of theEdgeIteratormust be astd::pair,
where the type in the pair is an integer type. The integers will correspond to vertices, and

http://www.sgi.com/tech/stl/DefaultConstructible.html

14.1. GRAPH CLASSES 219

they must all fall in the range of[0, n). The value type of the ep iter should match the
EdgePropertiestemplate parameter.

Nonmember Functions

std::pair<vertex iterator, vertex iterator> vertices(const adjacencylist& g)
Returns an iterator range providing access to the vertex set of graphg.
(Required byVertexListGraph.)

std::pair<edgeiterator, edgeiterator> edges(const adjacencylist& g)
Returns an iterator range providing access to the edge set of graphg.
(Required byEdgeListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>
adjacentvertices(vertex descriptor v, const adjacencylist& g)

Returns an iterator range providing access to the vertices adjacent to vertexv in graphg.
(Required byAdjacencyGraph.)

std::pair<out edgeiterator, out edgeiterator>
out edges(vertex descriptor v, const adjacencylist& g)

Returns an iterator range providing access to the out-edges of vertexv in graphg. If the
graph is undirected, this iterator range provides access to all edge incident on vertexv.
(Required byIncidenceGraph.)

std::pair<in edgeiterator, in edgeiterator>
in edges(vertex descriptor v, const adjacencylist& g)

Returns an iterator range providing access to the in-edges of vertexv in graphg. This
operation is no available ifdirectedSwas specified for theDirectedtemplate parameter. It
is available forundirectedSandbidirectionalS.
(Required byBidirectionalGraph.)

vertex descriptor source(edgedescriptor e, const adjacencylist& g)
Returns the source vertex of edgee.
(Required byIncidenceGraph.)

vertex descriptor target(edgedescriptor e, const adjacencylist& g)
Returns the target vertex of edgee.
(Required byIncidenceGraph.)

degreesize type
out degree(vertex descriptor u, const adjacencylist& g)

Returns the number of edges leaving vertexu.
(Required byIncidenceGraph.)

degreesize type in degree(vertex descriptor u, const adjacencylist& g)

220 CHAPTER 14. BGL CLASSES

Returns the number of edges entering vertexu. This operation is only available ifbidirec-
tionalS was specified for theDirectedtemplate parameter.
(Required byBidirectionalGraph.)

verticessize type numvertices(const adjacencylist& g)
Returns the number of vertices in the graphg.
(Required byVertexListGraph.)

edgessize type numedges(const adjacencylist& g)
Returns the number of edges in the graphg. (Required byEdgeListGraph.)

vertex descriptor vertex(verticessize type n, const adjacencylist& g)
Returns thenth vertex in the graph’s vertex list.

std::pair<edgedescriptor, bool>
edge(vertex descriptor u, vertex descriptor v, const adjacencylist& g)

Returns the edge connecting vertexu to vertexv in graphg.
(Required byAdjacencyMatrix.)

std::pair<out edgeiterator, out edgeiterator>
edgerange(vertex descriptor u, vertex descriptor v, const adjacencylist& g)

Returns a pair of out-edge iterators that give the range for all the parallel edges fromu
to v. This function only works when theEdgeListfor theadjacencylist is a container that
sorts the out-edges according to target vertex, and allows for parallel edges. ThemultisetS
selector chooses such a container.

std::pair<edgedescriptor, bool>
add edge(vertex descriptor u, vertex descriptor v, adjacencylist& g)

Adds edge(u, v) to the graph and returns the edge descriptor for the new edge. For
graphs that do not allow parallel edges, if the edge is already in the graph, then a duplicate
will not be added and thebool flag will be false. Also, ifu andv are descriptors for the
same vertex (creating a self loop) and the graph is undirected, then the edge will not be
added and the flag will be false. When the flag is false, the edge descriptor is invalid and
any use of it is undefined.
The placement of the new edge in the out-edge list is in general unspecified, though or-
dering of the out-edge list can be accomplished through the choice ofEdgeList.
If the VertexListselector isvecS, and if either vertex descriptoru or v (which are integers)
has a value greater than the current number of vertices in the graph, the graph is enlarged
so that the number of vertices isstd::max(u,v) + 1.
If the EdgeListselector isvecS, then this operation will invalidate anyout edgeiterator for
vertexu. This also applies if theEdgeList is a user-defined container that invalidates its
iterators whenpush(container, x)is invoked (see§14.1.1). If the graph is also bidirectional,
then anyin edgeiterator for v is also invalidated. If instead the graph is undirected, then
anyout edgeiterator for v is also invalidated. If instead the graph is directed, thenadd -

14.1. GRAPH CLASSES 221

edge() also invalidates anyedgeiterator.
(Required byEdgeMutableGraph.)

std::pair<edgedescriptor, bool>
add edge(vertex descriptor u, vertex descriptor v, const EdgeProperties& p,

adjacencylist& g)
Adds edge(u, v) to the graph and attachesp as the value of the edge’s internal property
storage. Also see the previousadd edge() member function for more details.
(Required byEdgeMutablePropertyGraph.)

void removeedge(vertex descriptor u, vertex descriptor v, adjacencylist& g)
Removes the edge(u, v) from the graph.
This operation causes any outstanding edge descriptors or iterators that point to edge
(u, v) to become invalid. In addition, if theEdgeListselector isvecS, then this operation
will invalidate any iterators that point into the edge-list for vertexu and also for vertex
v in the undirected and bidirectional case. Also, for directed graphs this invalidates any
edgeiterator.
(Required byEdgeMutableGraph.)

void removeedge(edgedescriptor e, adjacencylist& g)
Removes the edgee from the graph. This differs from theremoveedge(u, v, g)function in
the case of a multigraph. Thisremoveedge(e, g)function removes a single edge, whereas
theremoveedge(u, v, g)function removes all edges(u, v).
This operation invalidates any outstanding edge descriptors and iterators for the same
edge pointed to by descriptore. In addition, this operation will invalidate any iterators
that point into the edge-list for thetarget(e, g). Also, for directed graphs this invalidates
anyedgeiterator for the graph.
(Required byEdgeMutableGraph.)

void removeedge(out edgeiterator iter, adjacencylist& g)
This has the same effect asremoveedge(*iter, g). The difference is that this function has
constant time complexity in the case of directed graphs, whereasremoveedge(e, g)has
time complexityO(|E|/|V |).
(Required byMutableIncidenceGraph.)

template<typename Predicate>
void removeout edgeif (vertex descriptor u, Predicate predicate, adjacencylist& g)

Removes all out-edges of vertexu from the graph that satisfy thepredicate. That is, if the
predicate returns true when applied to an edge descriptor, then the edge is removed.
The effect on descriptor and iterator stability is the same as that of invokingremoveedge()
on each of the removed edges.
(Required byMutableIncidenceGraph.)

222 CHAPTER 14. BGL CLASSES

template<typename Predicate>
void removein edgeif (vertex descriptor v, Predicate predicate, adjacencylist& g)

Removes all in-edges of vertexv from the graph that satisfy thepredicate. That is, if the
predicate returns true when applied to an edge descriptor, then the edge is removed.
The effect on descriptor and iterator stability is the same as that of invokingremoveedge()
on each of the removed edges.
(Required byMutableBidirectionalGraph.)

template<typename Predicate>
void removeedgeif (Predicate predicate, adjacencylist& g)

Removes all edges from the graph that satisfy thepredicate. That is, if the predicate
returns true when applied to an edge descriptor, then the edge is removed. The effect on
descriptor and iterator stability is the same as that of invokingremoveedge() on each of
the removed edges.
(Required byMutableEdgeListGraph.)

vertex descriptor addvertex(adjacencylist& g)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.
(Required byVertexMutableGraph.)

vertex descriptor addvertex(const VertexProperties& p, adjacencylist& g)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.
(Required byVertexMutablePropertyGraph.)

void clear vertex(vertex descriptor u, adjacencylist& g)
Removes all edges to and from vertexu. The vertex still appears in the vertex set of
the graph. The effect on descriptor and iterator stability is the same as that of invoking
removeedge() for all of the edges that haveu as the source or target.
(Required byEdgeMutableGraph.)

void clear out edges(vertex descriptor u, adjacencylist& g)
Removes all edges from vertexu. The vertex still appears in the vertex set of the graph.
The effect on descriptor and iterator stability is the same as that of invokingremoveedge()
for all of the edges that haveu as the source.
This operation is not applicable to undirected graphs (useclear vertex()instead).

void clear in edges(vertex descriptor u, adjacencylist& g)
Removes all edges to and from vertexu. The vertex still appears in the vertex set of
the graph. The effect on descriptor and iterator stability is the same as that of invoking
removeedge() for all of the edges that haveu as the source or target. This operation is
only applicable to bidirectional graphs.

void removevertex(vertex descriptor u, adjacencylist& g)

14.1. GRAPH CLASSES 223

Remove vertexu from the vertex set of the graph. It is assumed that there are no edges
to or from vertexu when it is removed. One way to make sure of this is to invoke
clear vertex() beforehand.
If the VertexList template parameter of theadjacencylist wasvecS, then all vertex descrip-
tors, edge descriptors, and iterators for the graph are invalidated by this operation. The
builtin vertex index t property for each vertex is renumbered so that after the operation
the vertex indices still form a contiguous range[0, |V |). If you are using external prop-
erty storage based on the built-in vertex index, then the external storage will need to be
adjusted. Another option is to not use the built-in vertex index, and instead use a prop-
erty to add your own vertex index property. If you need to make frequent use of the
removevertex() function, thelistS selector is a much better choice for theVertexList tem-
plate parameter.
(Required byVertexMutableGraph.)

template<typename PropertyTag>
property map<adjacencylist, PropertyTag>::type
get(PropertyTag, adjacencylist& g)

Returns a mutable property map object for the vertex property specified byPropertyTag.
ThePropertyTagmust match one of the properties specified in the graph’sVertexProperties
template argument.
(Required byPropertyGraph.)

template<typename PropertyTag>
property map<adjacencylist, PropertyTag>::const type
get(PropertyTag, const adjacencylist& g)

Returns a constant property map object for the vertex property specified byPropertyTag.
ThePropertyTagmust match one of the properties specified in the graph’sVertexProperties
template argument.
(Required byPropertyGraph.)

template<typename PropertyTag, typename X>
typename propertytraits<

typename propertymap<adjacencylist, PropertyTag>::const type
>::value type
get(PropertyTag, const adjacencylist& g, X x)

This returns the property value forx, which is either a vertex or edge descriptor.
(Required byPropertyGraph.)

template<typename PropertyTag, typename X, typename Value>
void put(PropertyTag, const adjacencylist& g, X x, const Value& value)

This sets the property value forx to value. x is either a vertex or edge descriptor.
Value must be convertible totypename propertytraits<propertymap<adjacencylist,
PropertyTag>::type>::value type
(Required byPropertyGraph.)

224 CHAPTER 14. BGL CLASSES

template<typename GraphProperties, typename GraphProperties>
typename propertyvalue<GraphProperties, GraphProperties>::type&
get property(adjacencylist& g, GraphProperties);

Returns the property specified byGraphPropertiesthat is attached to the graph objectg.
Thepropertyvalue traits class is defined inboost/pending/property.hpp.

template<typename GraphProperties, typename GraphProperties>
const typename propertyvalue<GraphProperties, GraphProperties>::type&
get property(const adjacencylist& g, GraphProperties);

Returns the property specified byGraphPropertiesthat is attached to the graph objectg.
Thepropertyvalue traits class is defined inboost/pending/property.hpp.

Choosing theEdgelistand VertexList

This section focuses on how to decide which version of theadjacencylist class to use in
different situations. Theadjacencylist is like a Swiss-army knife in that it can be configured in
many ways. The parameters that we will focus on in this section areEdgeListandVertexList,
which control the underlying data structures that will be used to represent the graph. The
choice ofEdgeListandVertexListaffects the time complexity of many of the graph operations
and the space complexity of the graph object.

BGL uses containers from theSTL such asstd::vector, std::list, andstd::setto represent
the set of vertices and the adjacency structure (out-edges and in-edges) of the graph. Several
selector types are used to specify the choice of container forEdgeListandVertexList:

• vecSselectsstd::vector.

• listS selectsstd::list.

• slistSselectsstd::slist.1

• setSselectsstd::set.

• hash setSselectsstd::hashset.2

Choosing theVertexList type

The VertexList parameter determines what kind of container will be used to represent the
vertex set, or two-dimensional structure of the graph. The container must modelSequence
or RandomAccessContainer. In general,listS is a good choice if you need to add and remove
vertices quickly. The price for this is extra space overhead compared to choosingvecS.

1Provided the implementation of STL that you use implementsstd::slist.
2Provided that the implementation of STL that you use implementsstd::hashset. The SGI STL is an exam-

ple of an implementation that does.

http://www.sgi.com/tech/stl
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/Slist.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/hash_set.html
http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/RandomAccessContainer.html

14.1. GRAPH CLASSES 225

Space Complexity Thestd::list has a higher per-vertex space overhead than thestd::vector,
storing two more pointers per vertex.

Time Complexity The choice ofVertexList affects the time complexity of the following
operations.

add vertex()
This operation is amortized constant time for bothvecSand listS (implemented with
push back()). However, when theVertexList type isvecS, the time for this operation is
occasionally large because the vector will be reallocated and the whole graph will be
copied.

removevertex()
This operation is constant time forlistS andO(|V | + |E|) for vecS. The large time com-
plexity for vecS is because the vertex descriptors (which in this case are indices that
correspond to the vertices’ place in the vertex list) must be adjusted in the out-edges for
the whole graph.

vertex()
This operation is constant time forvecSandO(|V |) for listS.

Choosing theEdgeListtype

TheEdgeListparameter determines what kind of container will be used to store the out-edges
(and possibly in-edges) for each vertex in the graph. The containers used for edge lists must
satisfy the requirements for eitherSequence or AssociativeContainer.

One of the first things to consider when choosing theEdgeList is whether you wantadja-
cencylist to enforce the absence of parallel edges in the graph (that is, enforce that the graph
does not become a multigraph). If you want this enforced, then use thesetSor hash setSse-
lectors. If you want to represent a multigraph, or know that you will not be inserting parallel
edges into the graph, then choose one of theSequence types:vecS, listS, or slistS. In addition,
you will want to take into account the differences in time and space complexity for the various
graph operations. We use|V | for the total number of vertices in the graph and|E| for the total
number of edges. Operations not discussed here are constant time.

Space Complexity The selection of theEdgeListaffects the amount of space overhead per
edge in the graph object. In the order of least space to most space, the selectors arevecS,
slistS, listS, hash setS, andsetS.

Time Complexity In the following description of the time complexity for various opera-
tions, we use|E||V | inside of the “big-O” notation to express the length of an out-edge list.

http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/AssociativeContainer.html
http://www.sgi.com/tech/stl/Sequence.html

226 CHAPTER 14. BGL CLASSES

Strictly speaking, this is not accurate because|E||V | merely gives the average number of edges
per vertex in a graph. The worst-case number of out-edges for a vertex is|V | (unless it is a
multigraph). For sparse graphs,|E||V | is typically much smaller than|V | and can be considered
a constant.

add edge()
When theEdgeList is a UniqueAssociativeContainer like std::set, the absence of parallel
edges is enforced when an edge is added. The extra lookup involved has time complexity
O(log |E||V |). The EdgeList types that modelSequence do not perform this check, and
therefore,add edge() is amortized constant time. This means that if you do not care
whether the graph has parallel edges, or know that the input to the graph does not
contain them, then it is better to use the sequence-basedEdgeList. Theadd edge() for the
sequence-basedEdgeList is implemented withpush front() or push back() . However,
for std::list andstd::slist, this operation will typically be faster than withstd::vectorwhich
occasionally reallocates and copies all elements.

removeedge()
For sequence-basedEdgeList types, this operation is implemented withstd::removeif () ,
which means the average time is|E||V | . For set-basedEdgeList types this is implemented

with theerase() member function, which has average timelog E
V .

edge()

The time complexity for this operation isO(|E||V |) when theEdgeList type is aSequence

and it isO(log(|E||V |)) when theEdgeListtype is anAssociativeContainer.

clear vertex()
For directed graphs with sequence-basedEdgeList types the time complexity is
O(|V |+ |E|), while for associative-container-basedEdgeListtypes the operation is faster,

with time complexityO(|V | log |E||V |). For undirected graphs this operation isO(|E|
2

|V |2) or

O(|E||V | log(|E||V |)).

removevertex()
The time complexity for this operation isO(|V |+ |E|) regardless of theEdgeListtype.

out edgeiterator::operator++()

This operation is constant time for all theEdgeListtypes. However, there is a significant
constant-factor time difference between the various types, which is important because
this operation is the workhorse of most graph algorithms. The speed of this operation in
order of fastest to slowest isvecS, slistS, listS, setS, hash setS.

http://www.sgi.com/tech/stl/UniqueAssociativeContainer.html
http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/AssociativeContainer.html

14.1. GRAPH CLASSES 227

in edgeiterator::operator++()

This operation is constant time and exhibits a similar speed ordering as the
out edgeiterator with respect to theEdgeListselection.

vertex iterator::operator++()

This operation is constant time and fast (same speed as incrementing a pointer). The
selection ofOneDdoes not affect the speed of this operation.

edgeiterator::operator++()

This operation is constant time and exhibits a similar speed ordering as the
out edgeiterator with respect to theEdgeList selection. Traversing through the whole
edge set isO(|V |+ |E|).

adjacencyiterator::operator++()

This operation is constant time and exhibits a similar speed ordering as the
out edgeiterator with respect to theEdgeListselection.

Iterator and Descriptor Stability/Invalidation

Some care must be taken when changing the structure of a graph (via adding or removing
edges). Depending on the type ofadjacencylist and on the operation, some of the iterator or
descriptor objects that point into the graph may become invalid. For example, the following
code will result in undefined (bad) behavior:

// VertexList=vecS
typedef adjacencylist<listS, vecS> Graph;
Graph G(N);
// Fill in the graph. . .

// Attempt to remove all the vertices. Wrong!
graph traits<Graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(G); vi != vi end; ++ vi)

removevertex(* vi, G);

// Another attempt to remove all the vertices. This is still wrong!
graph traits<Graph>::vertex iterator vi, vi end, next;
tie(vi, vi end) = vertices(G);
for (next = vi; vi != vi end; vi = next) {

++next;
removevertex(* vi, G);
}

The reason this is a problem is that we are invokingremovevertex() , which when used
with an adjacencylist whereVertexList=vecS, invalidates all iterators and descriptors for the
graph (such asvi andvi end), thereby causing trouble in subsequent iterations of the loop.

228 CHAPTER 14. BGL CLASSES

If we use a different kind ofadjacencylist, whereVertexList=listS, then the iterators are not
invalidated by callingremovevertexunless the iterator is pointing to the actual vertex that was
removed. The following code demonstrates this.

// VertexList=listS
typedef adjacencylist<listS, listS> Graph;
Graph G(N);
// Fill in the graph. . .

// Attempt to remove all the vertices. Wrong!
graph traits<Graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(G); vi != vi end; ++ vi)

removevertex(* vi, G);

// Remove all the vertices. This is OK.
graph traits<Graph>::vertex iterator vi, vi end, next;
tie(vi, vi end) = vertices(G);
for (next = vi; vi != vi end; vi = next) {

++next;
removevertex(* vi, G);
}

The safest and most efficient way to remove multiple edges from anadjacencylist is to use
theremoveedgeif () function.

The stability issue also affects vertex and edge descriptors. For example, suppose you
use vector of vertex descriptors to keep track of the parents (or predecessors) of vertices in
a shortest-paths tree (seeexample/dijkstra-example.cpp). You create the parent vector with a
call to dijkstra shortestpaths() , and then remove a vertex from the graph. Subsequently you
try to use the parent vector, but since all vertex descriptors have become invalid, the result is
incorrect.

std::vector<Vertex> parent(num vertices(G));
std::vector<Vertex> distance(num vertices(G));
dijkstra shortestpaths(G, s, distancemap(& distance[0]).

predecessormap(& parent[0]));
// The following is a bad idea! It invalidates vertex descriptors
// in the parent vector.
removevertex(s, G);
// The following will produce incorrect results
for(tie(vi, vend) = vertices(G); vi != vend; ++ vi)

std::cout << p[* vi] << " is the parent of " << * vi << std::endl;

Note that in this discussion iterator and descriptor invalidation is concerned with the inval-
idation of iterators and descriptors that arenot directly affectedby the operation. For example,
performingremoveedge(u, v, g)will always invalidate any edge descriptor for(u, v) or edge
iterator pointing to(u, v), regardless of the kind ofadjacencylist. In this discussion of iterator

14.1. GRAPH CLASSES 229

and descriptor invalidation, we are only concerned with the effect ofremoveedge(u, v, g)on
edge descriptors and iterators that point to other edges (not(u, v)).

In general, if you want your vertex and edge descriptors to be stable (never invalidated)
then uselistS or setSfor theVertexList andEdgeList template parameters ofadjacencylist. If
you are not as concerned about descriptor and iterator stability, and are more concerned about
memory consumption and graph traversal speed, usevecSfor the VertexList and/orEdgeList
template parameters.

Directed and Undirected Adjacency Lists

Theadjacencylist class can be used to represent both directed and undirected graphs, depend-
ing on the argument passed to theDirectedtemplate parameter. SelectingdirectedSor bidirec-
tionalS choose a directed graph, whereasundirectedSselects the representation for an undi-
rected graph. See§12.1.1for a description of the difference between directed and undirected
graphs in BGL. ThebidirectealSselector specifies that the graph will provide thein edges()
function as well as theout edges() function. This imposes twice as much space overhead per
edge, which is whyin edges() is optional.

Internal Properties

Properties can be attached to the vertices or edges of anadjacencylist graph via the property
interface. The template parametersVertexPropertiesandEdgePropertiesof the adjacencylist
class are meant to be filled by the property class, which is declared as follows.

template<typename PropertyTag, typename T,
typename NextProperty= no property>

struct property;

The PropertyTagis a type that simply identifies or gives a unique name to the property.
There are several predefined tags (see§15.2.3), and it is easy to add more. For convenience,
BGL also provides predefined objects of the tag types (in this case, enum values) for use as
arguments to functions that expect property tag objects (such asadjacencylist’s get() property
map functions.

The T parameter ofpropertyspecifies the type of the property values. TheNextProperty
parameter allowspropertytypes to be nested, so that an arbitrary number of properties can be
attached to the same graph.

The following code shows how a vertex and edge property type can be assembled and
used to create a graph type. We have attached a distance property with values of typefloat and
a name property with values of typestd::string to the vertices of the graph. We have attached
a weight property with values of typefloat to the edges of the graph.

typedef property<distancet, float,
property<name t, std::string> > VertexProperties;

typedef property<weight t, float> EdgeProperties;

230 CHAPTER 14. BGL CLASSES

typedef adjacencylist<mapS, vecS, undirectedS,
VertexProperties, EdgeProperties> Graph;

Graph g(num vertices); // construct a graph object

The property values can then be read from and written to using property maps. See§ 3.6
for a description of how to obtain property maps from a graph, and read all of Chapter15 for
how to use property maps.

Vertex Index Property

If the VertexList of the graph isvecS, then the graph has a built-in vertex index property ac-
cessed via thevertex index t property. The indices fall in the range[0, |V |) and are contiguous.
When a vertex is removed, the indices are adjusted so that they retain these properties. Some
care must be taken when using these indices to access external property storage, since the user
must remember to update the external storage to match the new vertex indices.

Custom Edge Properties

Creating your own property types and properties is easy; just define a tag class for your
new property. Here we define a tag class for capacity and flow properties, which we will be
attaching to the edges on the graph.

enum edgecapacity t { edgecapacity };
enum edgeflow t { edgeflow };
namespace boost{

BOOST INSTALL PROPERTY(edge, flow);
BOOST INSTALL PROPERTY(edge, capacity);
}

Now you can use your new property tag in the definition of properties just as you would
one of the built-in tags.

typedef property<capacity t, int> Cap;
typedef property<flow t, int, Cap> EdgeProperties;
typedef adjacencylist<vecS, vecS, no property, EdgeProperties> Graph;

Just as before, the property maps for these properties can be obtained from the graph via
theget() function.

property map<Graph, edgecapacity t>::type
capacity = get(edgecapacity, G);

property map<Graph, edgeflow t>::type
flow = get(edgeflow, G);

The fileedgeproperty.cppshows the complete source code for this example.

14.1. GRAPH CLASSES 231

Custom Vertex Properties

Attaching your own properties to vertices is just as easy as attaching properties to edges. Here
we want to attach people’s first names to the vertices in the graph.

enum vertexfirst name t { vertex first name };
namespace boost{

BOOST INSTALL PROPERTY(vertex, first name);
}

Now we can use the new tag in thepropertyclass, in the assembly of a graph type. The
following code shows creating the graph type, and then creating the graph object. We fill in
the edges and also assign names to the vertices. The edges will represent “who owes who.”

typedef property<vertex first name t, std::string> FirstNameProperty;
typedef adjacencylist<vecS, vecS, directedS,

FirstNameProperty> MyGraphType;

typedef pair<int, int> Pair;
Pair edgearray[11] = { Pair(0, 1), Pair(0, 2), Pair(0, 3),

Pair(0, 4), Pair(2, 0), Pair(3, 0),
Pair(2, 4), Pair(3, 1), Pair(3, 4),
Pair(4, 0), Pair(4, 1) };

MyGraphType G(5);
for (int i = 0; i < 11; ++ i)

add edge(G, edgearray[i]. first, edgearray[i]. second);

property map<MyGraphType, vertex first name t>::type
name = get(vertex first name, G);

put(name, 0, " Jeremy");
put(name, 1, " Rich");
put(name, 2, " Andrew");
put(name, 3, " Jeff");
name[4] = " Kinis" ; // you can use operator[] too

who oweswho(edges(G). first, edges(G). second, G);

The who oweswho() function written for this example was implemented in a generic
style. The input is templated so we do not know the actual graph type. To find out the type
of the property map for our first name property, we need to use thevertexpropertymap traits
class. Theconst typeis used because the graph parameter is const. Once we have the property
map type, we can deduce the value type of the property using theproperty traits class. In this
example, we know that the property’s value type will bestd::string, but written in this generic
fashion thewho oweswho() function could work with other property value types.

232 CHAPTER 14. BGL CLASSES

template<typename EdgeIter, typename Graph>
void who oweswho(EdgeIter first, EdgeIter last, const Graph& G)
{

// Access the propety acessor type for this graph
typedef typename vertexproperty map<Graph,

first name t>::const type NamePA;
NamePA name= get vertex property map(G, first name t());
typedef typename propertytraits<NamePA>::value type NameType;
NameType srcname, targ name;

while (first != last) {
src name = get(name, source(* first, G));
targ name = get(name, target(* first, G));
cout << src name << " owes "
<< targ name << " some money" << endl;
++first;
}
}

The output is

Jeremy owes Rich some money
Jeremy owes Andrew some money
Jeremy owes Jeff some money
Jeremy owes Kinis some money
Andrew owes Jeremy some money
Andrew owes Kinis some money
Jeff owes Jeremy some money
Jeff owes Rich some money
Jeff owes Kinis some money
Kinis owes Jeremy some money
Kinis owes Rich some money

The complete source code to this example is in the fileinterior propertymap.cpp.

Customizing the Adjacency List Storage

Theadjacencylist class is implemented using two kinds of containers. One type of container
holds all the vertices in the graph, and another type holds the out-edge list (and potentially
in-edge list) for each vertex. BGL provides selector classes that allow the user to choose
between several of the containers from the STL. It is also possible to use your own container
types. When customizing theVertexList, you need to define a container generator. When
customizing theEdgeListyou will need to define a container generator and the parallel edge
traits. The filecontainer gen.cpphas an example of how to use custom storage types.

14.1. GRAPH CLASSES 233

Container Generator

The adjacencylist class uses a traits class calledcontainer gen to map theEdgeListandVer-
texList selectors to the actual container types used for the graph storage. The default version
of the traits class follows, along with an example of how the class is specialized for thelistS
selector.

namespace boost{
template<typename Selector, typename ValueType>
struct containergen { };
template<typename ValueType>
struct containergen<listS, ValueType> {

typedef std::list<ValueType> type;
};
}

To use some other container of your choice, define a selector class and then specialize the
container gen for your selector.

struct customcontainerS { }; // your selector
namespace boost{

// the specialization for your selector
template<typename ValueType>
struct containergen<customcontainerS, ValueType> {

typedef customcontainer<ValueType> type;
};
}

There may also be situations when you want to use a container that has more template param-
eters than justValueType. For instance, you may want to supply the allocator type. One way
to do this is to hard-code in the extra parameters within the specialization ofcontainer gen.
However, if you want more flexibility, then you can add a template parameter to the selec-
tor class. In the following code we show how to create a selector that lets you specify the
allocator to be used with thestd::list.

template<typename Allocator> struct list with allocatorS {};
namespace boost{

template<typename Alloc, typename ValueType>
struct containergen<list with allocatorS<Alloc>, ValueType>
{

typedef typename Alloc::template rebind<ValueType>::other Allocator;
typedef std::list<ValueType, Allocator> type;
};
}
// now you can define a graph using std::list and a specific allocator
typedef adjacencylist< list with allocatorS< std::allocator<int> >,

vecS, directedS> MyGraph;

234 CHAPTER 14. BGL CLASSES

Parallel Edge Traits

In addition to specializing thecontainer gen class, one must also specialize theparal-
lel edgetraits class to specify whether the container type allows parallel edges (and is aSe-
quence) or if the container does not allow parallel edges (and is anAssociativeContainer).

template<typename StorageSelector>
struct parallel edgetraits { };
template<> struct parallel edgetraits<vecS> {

typedef allowparallel edgetag type;
};
template<> struct parallel edgetraits<setS> {

typedef disallowparallel edgetag type;
};
//. . .

Push and Erase for the Edge-List Container

One must also tell theadjacencylist how edges can be efficiently added and removed from the
edge-list container. This is accomplished by overloading thepush() anderase() functions for
the custom container type. Thepush() function must return an iterator pointing to the newly
inserted edge and a Boolean flag saying whether the edge was inserted. If you specifiedallow-
parallel edgetag for the parallel edgetraits then push() should always insert the edge and
returntrue. If you specifieddisallow parallel edgetag for theparallel edgetraits thenpush()
must return false and not insert the edge if the same edge is already in the container, and the
iterator returned should point to the already existing edge.

The following defaultpush() anderase() functions are already supplied for all STL con-
tainer types. The family ofpush dispatch() anderasedispatch() function overloads handles
the various ways that inserting and erasing can be done with standard containers.

template<typename Container, typename T>
std::pair<typename Container::iterator, bool>
push(Container& c, const T& v)
{

return push dispatch(c, v, container category(c));
}
template<typename Container, typename T>
void erase(Container& c, const T& x)
{

erasedispatch(c, x, container category(c));
}

14.1.2 adjacencymatrix

adjacencymatrix<Directed, VertexProperty, EdgeProperty, GraphProperty>

http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/Sequence.html
http://www.sgi.com/tech/stl/AssociativeContainer.html

14.1. GRAPH CLASSES 235

Theadjacencymatrix class implements the BGL graph interface using the traditional adja-
cency matrix storage format. For a graph with|V | vertices, a|V | × |V |matrix is used, where
each elementaij is a boolean flag that says whether there is an edge from vertexi to vertexj.
Figure14.4shows the adjacency-matrix representation of a graph.

A

B

C F

D

E 1

1

1

1

1

1

1

A

B

C

D

E

F

A B C D E F

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 00 0

Figure 14.4: Adjacency-matrix representation of a directed graph.

The advantage of this matrix format over the adjacency list is that edge insertion and
removal is constant time. There are several disadvantages. The first is that the amount of
memory used isO(|V |2) instead ofO(|V | + |E|) (where|E| is the number of edges). The
second is that operations that traverse all the out-edges of each vertex (such as breadth-first
search) run inO(|V |× |V |) time instead ofO(|V |+ |E|) time for the adjacency list. In short,
it is better to use theadjacencymatrix for dense graphs (where|E| ≈ |V |2) and it is better to
use theadjacencylist for sparse graphs (where|E| is much smaller than|V |2).

The adjacencymatrix class extends the traditional data structure by allowing objects to
be attached to vertices and edges via the the property template parameters. See§3.6 for an
explanation of how to use internal properties.

In the case of an undirected graph, theadjacencymatrix class does not use a full|V |× |V |
matrix but instead uses a lower triangle (the diagonal and below) since the matrix for an
undirected graph is symmetric. This reduces the storage to(|V | × |V |)/2. Figure14.5shows
an adjacency-matrix representation of an undirected graph.

Example

Creating the graph of Figure14.4.

enum { A, B, C, D, E, F, N };
const char* name = " ABCDEF" ;

typedef boost::adjacencymatrix<boost::directedS> Graph;
Graph g(N);
add edge(B, C, g);
add edge(B, F, g);

236 CHAPTER 14. BGL CLASSES

A

C F

B D

E

1

1

1

1

1

A

B

C

D

E

F

A B C D E F

0

0 0

0 0 0 0

0 0 0 0

0 00 0

0

Figure 14.5: Adjacency-matrix representation of an undirected graph.

add edge(C, A, g);
add edge(C, C, g);
add edge(D, E, g);
add edge(E, D, g);
add edge(F, A, g);

std::cout << " vertex set:" ;
boost::print vertices(g, name);
std::cout << std::endl;

std::cout << " edge set:" ;
boost::print edges(g, name);
std::cout << std::endl;

std::cout << " out-edges:" << std::endl;
boost::print graph(g, name);
std::cout << std::endl;

The output is

vertex set: A B C D E F

edge set:(B, C) (B, F) (C, A) (C, C) (D, E) (E, D) (F, A)

out−edges:
A −−>
B −−> C F
C −−> A C
D −−> E
E −−> D
F −−> A

Creating the graph of Figure14.5.

enum { A, B, C, D, E, F, N };
const char* name = " ABCDEF" ;

14.1. GRAPH CLASSES 237

typedef boost::adjacencymatrix<boost::undirectedS> UGraph;

UGraph ug(N);

add edge(B, C, ug);

add edge(B, F, ug);

add edge(C, A, ug);

add edge(D, E, ug);

add edge(F, A, ug);

std::cout << " vertex set:" ;

boost::print vertices(ug, name);

std::cout << std::endl;

std::cout << " edge set:" ;

boost::print edges(ug, name);

std::cout << std::endl;

std::cout << " incident edges:" << std::endl;

boost::print graph(ug, name);

std::cout << std::endl;

The output is

vertex set: A B C D E F

edge set:(C, A) (C, B) (E, D) (F, A) (F, B)

incident edges:

A <−−> C F

B <−−> C F

C <−−> A B

D <−−> E

E <−−> D

F <−−> A B

Where Defined

boost/graph/adjacencymatrix.hpp

238 CHAPTER 14. BGL CLASSES

Template Parameters

Directed A selector to choose whether the graph is directed or undirected. The op-
tions aredirectedSandundirectedS.
Default: directedS

VertexProperty specifies internal vertex property storage.
Default: no property

EdgeProperty specifies internal edge property storage.
Default: no property

GraphProperty specifies property storage for the graph object.
Default: no property

Model Of

VertexListGraph, EdgeListGraph, IncidenceGraph, AdjacencyGraph, AdjacencyMatrix, Ver-
texMutablePropertyGraph, andEdgeMutablePropertyGraph

Type Requirements

Property value types must beDefaultConstructible andCopyConstructible.

Associates Types

graph traits<adjacencymatrix>::vertex descriptor
The type for the vertex descriptors associated with theadjacencymatrix.
(Required byGraph.)

graph traits<adjacencymatrix>::edge descriptor
The type for the edge descriptors associated with theadjacencymatrix.
(Required byGraph.)

graph traits<adjacencymatrix>::vertex iterator
The type for the iterators returned byvertices() .
(Required byVertexListGraph.)

graph traits<adjacencymatrix>::edge iterator
The type for the iterators returned byedges() .
(Required byEdgeListGraph.)

graph traits<adjacencymatrix>::out edgeiterator
The type for the iterators returned byout edges() .
(Required byIncidenceGraph.)

graph traits<adjacencymatrix>::adjacency iterator
The type for the iterators returned byadjacentvertices() .
(Required byAdjacencyGraph.)

http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/CopyConstructible.html

14.1. GRAPH CLASSES 239

graph traits<adjacencymatrix>::directed category
Provides information about whether the graph is directed (directedtag) or undirected
(undirectedtag).
(Required byGraph.)

graph traits<adjacencymatrix>::edge parallel category
An adjacency matrix does not allow the insertion of parallel edges, so this type is always
disallow parallel edgetag.
(Required byGraph.)

graph traits<adjacencymatrix>::vertices size type
The type used for dealing with the number of vertices in the graph.
(Required byVertexListGraph.)

graph traits<adjacencymatrix>::edgessize type
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph traits<adjacencymatrix>::degreesize type
The type used for dealing with the number of out-edges of a vertex.
(Required byIncidenceGraph.)

property map<adjacencymatrix, PropertyTag>::type
property map<adjacencymatrix, PropertyTag>::const type

The map type for vertex or edge properties in the graph. The property is specified by
thePropertyTagtemplate argument, and must match one of the properties specified in the
VertexPropertyor EdgePropertyfor the graph.
(Required byPropertyGraph.)

Member Functions

adjacencymatrix(verticessize type n, const GraphProperty& p = GraphProperty())
Creates a graph object withn vertices and zero edges.

template<typename EdgeIterator>
adjacencymatrix(EdgeIterator first, EdgeIterator last, verticessize type n,

const GraphProperty& p = GraphProperty())
Creates a graph object withn vertices with the edges specified in the edge list given by
the range[first, last). The value type of theEdgeIteratormust be astd::pair, where the
type in the pair is an integer type. The integers will correspond to vertices, and they must
all fall in the range of[0, n).

template<typename EdgeIterator, typename EdgePropertyIterator>
adjacencymatrix(EdgeIterator first, EdgeIterator last, EdgePropertyIterator epiter,

verticessize type n, const GraphProperty& p = GraphProperty())
Creates a graph object withn vertices, with the edges specified in the edge list given

240 CHAPTER 14. BGL CLASSES

by the range[first, last) and with edge properties specified in the edge property list
specified byep iter. The value type of theEdgeIteratormust be astd::pair, where the type
in the pair is an integer type. The integers will correspond to vertices, and they must all
fall in the range of[0, n). Thevalue typeof theep iter should beEdgeProperty.

Nonmember Functions

std::pair<vertex iterator, vertex iterator> vertices(const adjacencymatrix& g)
Returns an iterator range providing access to the vertex set of graphg.
(Required byVertexListGraph.)

std::pair<edgeiterator, edgeiterator> edges(const adjacencymatrix& g)
Returns an iterator range providing access to the edge set of graphg.
(Required byEdgeListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>
adjacentvertices(vertex descriptor v, const adjacencymatrix& g)

Returns an iterator range providing access to the vertices adjacent to vertexv in graphg.
(Required byAdjacencyGraph.)

std::pair<out edgeiterator, out edgeiterator>
out edges(vertex descriptor v, const adjacencymatrix& g)

Returns an iterator range providing access to the out-edges of vertexv in graphg. If the
graph is undirected, this iterator range provides access to all edge incident on vertexv.
(Required byIncidenceGraph.)

vertex descriptor source(edgedescriptor e, const adjacencymatrix& g)
Returns the source vertex of edgee.
(Required byIncidenceGraph.)

vertex descriptor target(edgedescriptor e, const adjacencymatrix& g)
Returns the target vertex of edgee.
(Required byIncidenceGraph.)

degreesize type outdegree(vertex descriptor u, const adjacencymatrix& g)
Returns the number of edges leaving vertexu.
(Required byIncidenceGraph.)

verticessize type numvertices(const adjacencymatrix& g)
Returns the number of vertices in the graphg.
(Required byVertexListGraph.)

14.1. GRAPH CLASSES 241

edgessize type numedges(const adjacencymatrix& g)
Returns the number of edges in the graphg.
(Required byEdgeListGraph.)

vertex descriptor vertex(verticessize type n, const adjacencymatrix& g)
Returns thenth vertex in the graph’s vertex list.

std::pair<edgedescriptor, bool>
edge(vertex descriptor u, vertex descriptor v, const adjacencymatrix& g)

Returns the edge connecting vertexu to vertexv in graphg.
(Required byAdjacencyMatrix.)

std::pair<edgedescriptor, bool>
add edge(vertex descriptor u, vertex descriptor v, adjacencymatrix& g)

Adds edge(u, v) to the graph and returns the edge descriptor for the new edge. If the
edge is already in the graph then a duplicate will not be added and the Boolean flag will
be false.
This operation does not invalidate any of the graph’s iterators or descriptors.
(Required byEdgeMutableGraph.)

std::pair<edgedescriptor, bool>
add edge(vertex descriptor u, vertex descriptor v, const EdgeProperty& p,

adjacencymatrix& g)
Adds edge(u, v) to the graph and attachesp as the value of the edge’s internal property
storage. See the previousadd edge() member function for more details.

void removeedge(vertex descriptor u, vertex descriptor v, adjacencymatrix& g)
Removes the edge(u, v) from the graph.
(Required byEdgeMutableGraph.)

void removeedge(edgedescriptor e, adjacencymatrix& g)
Removes the edgee from the graph. This is equivalent to callingremoveedge(source(e, g),
target(e, g), g).
(Required byEdgeMutableGraph.)

void clear vertex(vertex descriptor u, adjacencymatrix& g)
Removes all edges to and from vertexu. The vertex still appears in the vertex set of
the graph. The affect on descriptor and iterator stability is the same as that of invoking
removeedge() for all of the edges that haveu as the source or target.
(Required byEdgeMutableGraph.)

242 CHAPTER 14. BGL CLASSES

template<typename Property>
property map<adjacencymatrix, Property>::type
get(Property, adjacencymatrix& g)

template<typename Property>
property map<adjacencymatrix, Property>::const type
get(Property, const adjacencymatrix& g)

Returns the property map object for the vertex property specified byProperty. TheProp-
erty must match one of the properties specified in the graph’sVertexPropertytemplate
argument.
(Required byPropertyGraph.)

template<typename Property, typename X>
typename propertytraits<

typenamae propertymap<adjacencymatrix, Property>::const type
>::value type
get(Property, const adjacencymatrix& g, X x)

This returns the property value forx, which is either a vertex or edge descriptor.
(Required byPropertyGraph.)

template<typename Property, typename X, typename Value>
void
put(Property, const adjacencymatrix& g, X x, const Value& value)

This sets the property value forx to value. x is either a vertex or edge descriptor.Value
must be convertible to the value type of the property map specified by thePropertytag.
(Required byPropertyGraph.)

template<typename GraphProperties, typename GraphProperty>
typename propertyvalue<GraphProperties, GraphProperty>::type&
get property(adjacencymatrix& g, GraphProperty);

Returns the property specified byGraphPropertythat is attached to the graph objectg.
Thepropertyvalue traits class is defined inboost/pending/property.hpp.

template<typename GraphProperties, typename GraphProperty>
const typename propertyvalue<GraphProperties, GraphProperty>::type&
get property(const adjacencymatrix& g, GraphProperty);

Returns the property specified byGraphPropertythat is attached to the graph objectg.
Thepropertyvalue traits class is defined inboost/pending/property.hpp.

14.2 Auxiliary Classes

14.2.1 graph traits

graph traits<Graph>

The graph traits class provides the mechanism for accessing theassociated typesof a

14.2. AUXILIARY CLASSES 243

graph type, as defined by the various BGL graph concepts (see§12.1). When you wish to use
one of the associated types of a graph, instantiate thegraph traits template with the graph type
and access the appropriate typedef. For example, to obtain thevertexdescriptortype for some
graph, do the following:

template<typename Graph> void my graph algorithm(Graph& g)
{

// Instantiate graph traits with the graph type.
typedef boost::graphtraits<Graph> Traits;
// Access the associated type.
typedef typename Traits::vertexdescriptor Vertex;
// . . .
}

The unspecialized (default) version of thegraph traits class template assumes that the
graph type provides nested typedefs for all of the associated types. This version is defined
here.

namespace boost{
template<typename Graph> struct graph traits {

typedef typename Graph::vertexdescriptor vertexdescriptor;
typedef typename Graph::edgedescriptor edgedescriptor;
typedef typename Graph::adjacencyiterator adjacencyiterator;
// . . .
};
} // namespace boost

Alternatively,graph traits can be specialized on the graph type. For example, the following
code specializesgraph traits for the Stanford GraphBaseGraph struct. The complete BGL
wrapper interface for SGB graph’s is inboost/graph/stanfordgraph.hpp.

namespace boost{
template<> struct graph traits<Graph*> {

// . . .
};
}

If the graph type is a class template, then thegraph traits class can be partially specialized.
This means there are still “free” template parameters. The following is the partial specializa-
tion of graph traits for the parameterized LEDAGRAPH type. The complete BGL wrapper
interface for the LEDAGRAPH is in boost/graph/ledagraph.hpp.

namespace boost{
template<typename vtype, typename etype>
struct graph traits< GRAPH<vtype, etype> > {

// . . .
};
}

244 CHAPTER 14. BGL CLASSES

Any particular graph concept will not require that all of the associated types be defined.
When implementing a graph class that fullfils one or more graph concepts, for associated
types that are not required by the concepts, it is all right to usevoid as the type (when using
nested typedefs inside the graph class), or to leave the typedef out of thegraph traits special-
ization for the graph class.

Category Tags

Thedirectedcategoryshould be a typedef for one of the following two types.

namespace boost{
struct directedtag { };
struct undirectedtag { };
}

Theedgeparallel categoryshould be a typedef for one of the following two types.

namespace boost{
struct allow parallel edgetag {};
struct disallowparallel edgetag {};
}

The traversal categoryshould be a typedef for one of the following classes, or a type that
inherits from one of these classes.

namespace boost{
struct incidencegraph tag { };
struct adjacencygraph tag { };
struct bidirectional graph tag :

public virtual incidencegraph tag { };
struct vertexlist graph tag :

public virtual incidencegraph tag,
public virtual adjacencygraph tag { };

struct edgelist graph tag { };
struct vertexand edgelist graph tag :

public virtual edgelist graph tag,
public virtual vertex list graph tag { };

struct adjacencymatrix tag { };
}

Template Parameters

Graph The graph type, a model ofGraph

Where Defined

boost/graph/graphtraits.hpp

14.2. AUXILIARY CLASSES 245

Members

graph traits::vertex descriptor
The type for the vertex descriptors associated with theGraph.

graph traits::edgedescriptor
The type for the edge descriptors associated with theGraph.

graph traits::vertex iterator
The type for the iterators returned byvertices() .

graph traits::edge iterator
The type for the iterators returned byedges() .

graph traits::out edgeiterator
The type for the iterators returned byout edges() .

graph traits::adjacencyiterator
The type for the iterators returned byadjacentvertices() .

graph traits::directed category
Reports whether the graph is directed or undirected.

graph traits::edgeparallel category
Reports whether the graph allows parallel edges to be inserted.

graph traits::traversal category
Reports what kind of traversal patterns are provided by the graph.

graph traits::verticessize type
The unsigned integer type used for dealing with the number of vertices in the graph.

graph traits::edgessize type
The unsigned integer type used for dealing with the number of edges in the graph.

graph traits::degreesize type
The unsigned integer type used for dealing with the number out edges for each vertex.

14.2.2 adjacencylist traits

adjacencylist traits<EdgeList, VertexList, Directed>

This class provides an alternate method for accessing some of the associated types of the
adjacencylist class. The main reason for this class is that sometimes one would like to create
graph properties whose values are vertex or edge descriptors. If you try to usegraph traits for
this you will run into a problem with mutually recursive types. To get around this problem,
the adjacencylist traits class is provided, which gives the user access to the vertex and edge
descriptor types without requiring the user to provide the property types for the graph.

246 CHAPTER 14. BGL CLASSES

template<typename EdgeList, typename VertexList, typename Directed>
struct adjacencylist traits {

typedef . . . vertex descriptor;
typedef . . . edgedescriptor;
typedef . . . directedcategory;
typedef . . . edgeparallel category;
};

Where Defined

boost/graph/adjacencylist.hpp

Template Parameters

EdgeList The selector type for the edge container implementation.
Default: vecS

VertexList The selector type for the vertex container implementation.
Default: vecS

Directed The selector type whether the graph is directed or undirected.
Default: directedS

Model Of

DefaultConstructible andAssignable

Members

adjacencylist traits::vertex descriptor
The type for the objects used to identify vertices in the graph.

adjacencylist traits::edgedescriptor
The type for the objects used to identify edges in the graph.

adjacencylist traits::directed category
This says whether the graph is undirected (undirectedtag) or directed (directedtag).

adjacencylist traits::edgeparallel category
This says whether the graph allows parallel edges to be inserted (allow parallel edgetag)
or if it automatically removes parallel edges (disallow parallel edgetag).

See Also

adjacencylist

http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html

14.2. AUXILIARY CLASSES 247

14.2.3 adjacencymatrix traits

adjacencymatrix traits<Directed>

This class provides an alternate method for accessing some of the associated types of
the adjacencymatrix class. The main reason for this class is that sometimes one would like
to create graph properties whose values are vertex or edge descriptors. If you try to use
graph traits for this, you will run into a problem with mutually recursive types. To get around
this problem, theadjacencymatrix traits class is provided, which gives the user access to the
vertex and edge descriptor types without requiring the user to provide the property types for
the graph.

template<typename Directed>
struct adjacencymatrix traits {

typedef . . . vertex descriptor;
typedef . . . edgedescriptor;
typedef . . . directedcategory;
typedef . . . edgeparallel category;
};

Where Defined

boost/graph/adjacencymatrix.hpp

Template Parameters

Directed Specifies whether the graph is directed or undirected.
Default: directedS

Model Of

DefaultConstructible andAssignable

Members

adjacencymatrix traits::vertex descriptor
The type for the objects used to identify vertices in the graph.

adjacencymatrix traits::edgedescriptor
The type for the objects used to identify edges in the graph.

adjacencymatrix traits::directed category
This says whether the graph is undirected (undirectedtag) or directed (directedtag).

http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Assignable.html

248 CHAPTER 14. BGL CLASSES

adjacencymatrix traits::edgeparallel category
An adjacency matrix does not allow the insertion of parallel edges, so this type isdisal-
low parallel edgetag.

See Also

adjacencymatrix

14.2.4 propertymap

property map<Graph, PropertyTag>

A traits class for accessing the type of an internal property map for a graph. A specializa-
tion of this traits class is required of types that model thePropertyGraph concept.

Example

The following example creates a graph with an internal property for vertex names, and then
accesses the vertex name property map type using thepropertymap traits class. The property
map object is obtained from the graph using theget() function.

〈 “property-map-traits-eg.cpp”248〉 ≡
#include <string>
#include <boost/ graph/ adjacencylist. hpp>
int main()
{

using namespace boost;
typedef adjacencylist<listS, listS, directedS,

property<vertex name t, std::string> > graph t;
graph t g;
graph traits<graph t>::vertex descriptor u = add vertex(g);
property map<graph t, vertex name t>::type

name map = get(vertex name, g);
name map[u] = " Joe" ;
std::cout << name map[u] << std::endl;
return EXIT SUCCESS;
}

The output is

Joe

Where Defined

boost/graph/properties.hpp

14.2. AUXILIARY CLASSES 249

Template Parameters

Graph The graph type, which must be a model ofPropertyGraph.
PropertyTag The tag class to specify which property.

Model Of

None.

Public Base Classes

None.

Associates Types

property map<Graph, PropertyTag>::type
The type for a mutable property map that accessing the internal property specified by the
PropertyTag.

property map<Graph, PropertyTag>::const type
The type for a constant property map that accessing the internal property specified by the
PropertyTag.

Member Functions

None.

Nonmember Functions

None.

14.2.5 property

property<PropertyTag, T, NextProperty>

This class can be used with theadjacencylist and theadjacencymatrix classes to specify
what kind of properties should be attached to the vertices and edges of the graph, and to the
graph object itself.

250 CHAPTER 14. BGL CLASSES

Template Parameters

PropertyTag A type to identify (give a unique name to) the property. There are several
predefined tags, and it is easy to add more. For convenience, BGL also
provides predefined objects of the tag types (in this case enum values) for
use as arguments to functions that expect property tag objects (such as
adjacencylist’s get() property map functions.

T This type specifies the type of the property values.
NextProperty This parameter allowspropertytypes to be nested, so that an arbitrary num-

ber of properties can be attached to the same graph.
Default: no property

Where Defined

boost/pending/property.hpp

Property Tags

The following property tags are defined inboost/graph/properties.hpp.

namespace boost{
enum edgename t { edgename };
enum edgeweight t { edgeweight };
enum edgeindex t { edgeindex };
enum edgecapacity t { edgecapacity };
enum edgeresidual capacity t { edgeresidual capacity };
enum edgereverset { edgereverse};
enum vertexname t { vertex name };
enum vertexdistancet { vertex distance};
enum vertexindex t { vertex index };
enum vertexcolor t { vertex color };
enum vertexdegreet { vertex degree};
enum vertexout degreet { vertex out degree};
enum vertexin degreet { vertex in degree};
enum vertexdiscovertime t { vertex discovertime };
enum vertexfinish time t { vertex finish time };
enum graphname t { graph name };

BOOST INSTALL PROPERTY(vertex, index);
BOOST INSTALL PROPERTY(edge, index);
// . . .
}

14.3. GRAPH ADAPTORS 251

14.3 Graph Adaptors

14.3.1 edgelist

edgelist<EdgeIterator, ValueType, DiffType>

Theedgelist class is an adaptor that turns a pair of edge iterators into a class that models
EdgeListGraph. Thevalue typeof the edge iterator must be astd::pair (or at least havefirst
andsecondmembers). Thefirst typeandsecondtypeof the pair must be the same and they will
be used for the graph’svertexdescriptor. TheValueTypeandDiffType template parameters are
only needed if your compiler does not support partial specialization. Otherwise they default
to the correct types.

Example

See§5.3for an example of usingedgelist.

Template Parameters

EdgeIterator a model ofInputIterator who’s value typemust be a pair of vertex descrip-
tors.

ValueType is thevalue typeof theEdgeIterator.
Default: std::iterator traits<EdgeIterator>::value type

DiffType is thedifference typeof theEdgeIterator.
Default: std::iterator traits<EdgeIterator>::difference type

Model Of

EdgeListGraph

Where Defined

boost/graph/edgelist.hpp

Associated Types

graph traits<edgelist>::vertex descriptor
This is the type for vertex descriptors associated with theedgelist. This will be the same
type as thefirst typeof thestd::pair that is the value type of theEdgeIterator.

graph traits<edgelist>::edge descriptor
The type for the edge descriptors associated with theedgelist.

http://www.sgi.com/tech/stl/InputIterator.html

252 CHAPTER 14. BGL CLASSES

graph traits<edgelist>::edge iterator
The type for the iterators returned byedges() . The iterator category of theedgeiterator
will be the same as that of theEdgeIterator.

Member Functions

edgelist(EdgeIterator first, EdgeIterator last)
Creates a graph object withn vertices and with the edges specified in the edge list given
by the range[first, last).

Nonmember Functions

std::pair<edgeiterator, edgeiterator> edges(const edgelist& g)
Returns an iterator range providing access to the edge set of graphg.

vertex descriptor source(edgedescriptor e, const edgelist& g)
Returns the source vertex of edgee.

vertex descriptor target(edgedescriptor e, const edgelist& g)
Returns the target vertex of edgee.

14.3.2 reversegraph

reversegraph<BidirectionalGraph>

Thereversegraph adaptor flips the in-edges and out-edges of aBidirectionalGraph, effec-
tively transposing the graph. The construction of thereversegraph is constant time, providing
a highly efficient way to obtain a transposed-view of a graph.

Example

The example is fromexamples/reversegraph.cpp.

typedef adjacencylist<vecS, vecS, bidirectionalS> Graph;

Graph G(5);
add edge(0, 2, G);
add edge(1, 1, G);
add edge(1, 3, G);
add edge(1, 4, G);
add edge(2, 1, G);
add edge(2, 3, G);
add edge(2, 4, G);

14.3. GRAPH ADAPTORS 253

add edge(3, 1, G);
add edge(3, 4, G);
add edge(4, 0, G);
add edge(4, 1, G);

std::cout << " original graph:" << std::endl;
print graph(G, get(vertex index, G));

std::cout << std::endl << " reversed graph:" << std::endl;
print graph(make reversegraph(G), get(vertex index, G));

The output is

original graph:
0 −−> 2
1 −−> 1 3 4
2 −−> 1 3 4
3 −−> 1 4
4 −−> 0 1

reversed graph:
0 −−> 4
1 −−> 1 2 3 4
2 −−> 0
3 −−> 1 2
4 −−> 1 2 3

Template Parameters

BidirGraph The graph type to be adapted.

Model Of

BidirectionalGraph and optionallyVertexListGraph andPropertyGraph

Where Defined

boost/graph/reversegraph.hpp

Associated Types

graph traits<reversegraph>::vertex descriptor
The type for the vertex descriptors associated with thereversegraph.

graph traits<reversegraph>::edge descriptor
The type for the edge descriptors associated with thereversegraph.

254 CHAPTER 14. BGL CLASSES

graph traits<reversegraph>::vertex iterator
The type for the iterators returned byvertices() .

graph traits<reversegraph>::edge iterator
The type for the iterators returned byedges() .

graph traits<reversegraph>::out edgeiterator
The type for the iterators returned byout edges() .

graph traits<reversegraph>::adjacency iterator
The type for the iterators returned byadjacentvertices() .

graph traits<reversegraph>::directed category
Provides information about whether the graph is directed (directedtag) or undirected
(undirectedtag).

graph traits<reversegraph>::edge parallel category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The two tags areallow parallel edgetag and disallow -
parallel edgetag. ThesetSandhash setSvariants disallow parallel edges while the others
allow parallel edges.

graph traits<reversegraph>::vertices size type
The type used for dealing with the number of vertices in the graph.

graph traits<reversegraph>::edge size type
The type used for dealing with the number of edges in the graph.

graph traits<reversegraph>::degreesize type
The type used for dealing with the number of edges incident to a vertex in the graph.

property map<reversegraph, Property>::type
property map<reversegraph, Property>::const type

The property map type for vertex or edge properties in the graph. The specific property
is specified by theProperty template argument, and must match one of the properties
specified in theVertexPropertyor EdgePropertyfor the graph.

Member Functions

reversegraph(BidirectionalGraph& g)
Constructor. Creates a reversed (transposed) view of the graphg.

Nonmember Functions

template<class BidirectionalGraph>
reversegraph<BidirectionalGraph> make reversegraph(BidirectionalGraph& g)

Helper function for creating areversegraph.

14.3. GRAPH ADAPTORS 255

std::pair<vertex iterator, vertex iterator> vertices(const reversegraph& g)
Returns an iterator range providing access to the vertex set of graphg.

std::pair<out edgeiterator, out edgeiterator>
out edges(vertex descriptor v, const reversegraph& g)

Returns an iterator range providing access to the out-edges of vertexv in graphg. These
out-edges correspond to the in-edges of the adapted graph.

std::pair<in edgeiterator, in edgeiterator>
in edges(vertex descriptor v, const reversegraph& g)

Returns an iterator range providing access to the in-edges of vertexv in graphg. These
in-edges correspond to the out-edges of the adapted graph.

std::pair<adjacencyiterator, adjacency iterator>
adjacentvertices(vertex descriptor v, const reversegraph& g)

Returns an iterator range providing access to the adjacent vertices of vertexv in graphg.

vertex descriptor source(edgedescriptor e, const reversegraph& g)
Returns the source vertex of edgee.

vertex descriptor target(edgedescriptor e, const reversegraph& g)
Returns the target vertex of edgee.

degreesize type outdegree(vertex descriptor u, const reversegraph& g)
Returns the number of edges leaving vertexu.

degreesize type in degree(vertex descriptor u, const reversegraph& g)
Returns the number of edges entering vertexu. This operation is only available ifbidirec-
tionalS was specified for theDirectedtemplate parameter.

verticessize type numvertices(const reversegraph& g)
Returns the number of vertices in the graphg.

vertex descriptor vertex(verticessize type n, const reversegraph& g)
Returns thenth vertex in the graph’s vertex list.

std::pair<edgedescriptor, bool>
edge(vertex descriptor u, vertex descriptor v, const reversegraph& g)

Returns the edge connecting vertexu to vertexv in graphg.

256 CHAPTER 14. BGL CLASSES

template<class Property>
property map<reversegraph, Property>::type
get(Property, reversegraph& g)

template<class Property>
property map<reversegraph, Tag>::const type
get(Property, const reversegraph& g)

Returns the property map object for the vertex property specified byProperty. TheProp-
erty must match one of the properties specified in the graph’sVertexPropertytemplate
argument.

template<class Property, class X>
typename propertytraits<property map<reversegraph, Property>::const type>::value type
get(Property, const reversegraph& g, X x)

This returns the property value forx, which is either a vertex or an edge descriptor.

template<class Property, class X, class Value>
void
put(Property, const reversegraph& g, X x, const Value& value)

This sets the property value forx to value. x is either a vertex or edge descriptor.
Value must be convertible totypename propertytraits<propertymap<reversegraph,
Property>::type>::value type.

template<class GraphProperties, class GraphProperty>
typename propertyvalue<GraphProperties, GraphProperty>::type&
get property(reversegraph& g, GraphProperty);

This returns the property specified byGraphPropertythat is attached to the graph object
g. Thepropertyvalue traits class is defined inboost/pending/property.hpp.

template<class GraphProperties, class GraphProperty>
const typename propertyvalue<GraphProperties, GraphProperty>::type&
get property(const reversegraph& g, GraphProperty);

This returns the property specified byGraphPropertythat is attached to the graph object
g. Thepropertyvalue traits class is defined inboost/pending/property.hpp.

14.3.3 filtered graph

filtered graph<Graph, EdgePredicate, VertexPredicate>

Thefiltered graph class template is an adaptor that creates a filtered view of a graph. The
edge and vertex predicate function objects determine which vertices and edges of the original
graph will show up in the filtered graph. Any vertex for which the vertex predicate returns
false and any edge for which the edge predicate returns false will appear to be removed from
the graph. Thefiltered graph class does not create a copy of the original graph, but uses a
reference to the original graph. The lifetime of the original graph must extend past any use
of the filtered graph. The filtered graph does not change the structure of the original graph,

14.3. GRAPH ADAPTORS 257

though vertex and edge properties of the original graph can be changed through property maps
of the filtered graph.

Example

The following function object is an example of a predicate that filters out edges whose weight
is not positive.

template<typename EdgeWeightMap>
struct positiveedgeweight {

positiveedgeweight() { }
positiveedgeweight(EdgeWeightMap weight) : m weight(weight) { }
template<typename Edge>
bool operator()(const Edge& e) const {

return 0 < get(m weight, e);
}
EdgeWeightMap mweight;
};

This example uses thefiltered graph with the abovepositiveedgeweight predicate to create a
filtered view of a small graph. The edges(A,C), (C,E), and(E,C) all have zero weight
and therefore do not appear in the filtered graph.

typedef adjacencylist<vecS, vecS, directedS,
no property, property<edgeweight t, int> > Graph;

typedef propertymap<Graph, edgeweight t>::type EdgeWeightMap;

enum { A, B, C, D, E, N };
const char* name = " ABCDE" ;
Graph g(N);
add edge(A, B, 2, g);
add edge(A, C, 0, g);
add edge(C, D, 1, g);
add edge(C, E, 0, g);
add edge(D, B, 3, g);
add edge(E, C, 0, g);

positiveedgeweight<EdgeWeightMap> filter(get(edgeweight, g));
filtered graph<Graph, positiveedgeweight<EdgeWeightMap> >

fg(g, filter);

std::cout << " filtered edge set:" ;
print edges(fg, name);

std::cout << " filtered out-edges:" << std::endl;
print graph(fg, name);

The output is

258 CHAPTER 14. BGL CLASSES

filtered edge set:(A, B) (C, D) (D, B)
filtered out−edges:
A −−> B
B −−>
C −−> D
D −−> B
E −−>

Where Defined

boost/graph/filteredgraph.hpp

Template Parameters

Graph The graph type to be adapted.
EdgePredicate A function object that selects which edges from the original graph will

appear in the filtered graph. The function object must modelPredicate.
The argument type for the function object must be the edge descriptor type
of the graph. Also, the predicate must beDefaultConstructible.

VertexPredicate A function object that selects which vertices from the original graph will
appear in the filtered graph. The function object must modelPredicate.
The argument type for the function object must be the vertex descriptor
type of the graph. Also, the predicate must beDefaultConstructible.
Default: keepall

Model Of

The concepts thatfiltered graph<Graph,EP,VP> models depends on theGraph type. If Graph
models any one ofVertexListGraph,EdgeListGraph, IncidenceGraph, BidirectionalGraph, Ad-
jacencyGraph, andPropertyGraph then so doesfiltered graph<Graph,EP,VP>.

Associated Types

graph traits<filtered graph>::vertex descriptor
The type for the vertex descriptors associated with thefiltered graph.
(Required byGraph.)

graph traits<filtered graph>::edge descriptor
The type for the edge descriptors associated with thefiltered graph.
(Required byGraph.)

graph traits<filtered graph>::vertex iterator
The type for the iterators returned byvertices() . The vertex iterator is the same type as

http://www.sgi.com/tech/stl/Predicate.html
http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.sgi.com/tech/stl/Predicate.html
http://www.sgi.com/tech/stl/DefaultConstructible.html

14.3. GRAPH ADAPTORS 259

the vertex iterator of the adapted graph.
(Required byVertexListGraph.)

graph traits<filtered graph>::edge iterator
The type for the iterators returned byedges() . This iterator modelsMultiPassInputItera-
tor.
(Required byEdgeListGraph.)

graph traits<filtered graph>::out edgeiterator
The type for the iterators returned byout edges() . This iterator modelsMultiPassInputIt-
erator.
(Required byIncidenceGraph.)

graph traits<filtered graph>::in edgeiterator
The type for the iterators returned byin edges() . This iterator modelsMultiPassInputIter-
ator.
(Required byBidirectionalGraph.)

graph traits<filtered graph>::adjacency iterator
The type for the iterators returned byadjacentvertices() . This iterator models the same
concept as the out-edge iterator.
(Required byAdjacencyGraph.)

graph traits<filtered graph>::directed category
Provides information about whether the graph is directed (directedtag) or undirected
(undirectedtag), which will be the same as the adapted graph.
(Required byGraph.)

graph traits<filtered graph>::edge parallel category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). This will be the same as the adapted graph type.
(Required byGraph.)

graph traits<filtered graph>::vertices size type
The type used for dealing with the number of vertices in the graph.
(Required byVertexListGraph.)

graph traits<filtered graph>::edgessize type
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph traits<filtered graph>::degreesize type
The type used for dealing with the number of out-edges of a vertex.
(Required byIncidenceGraph.)

260 CHAPTER 14. BGL CLASSES

property map<filtered graph, PropertyTag>::type
property map<filtered graph, PropertyTag>::const type

The map type for vertex or edge properties in the graph. The property map types for the
filtered graph are the same as those for the original graph.
(Required byPropertyGraph.)

Member Functions

filtered graph(Graph& g, EdgePredicate ep)
Construct a filtered-edge view of the graphg based on the predicateep.

filtered graph(Graph& g, EdgePredicate ep, VertexPredicate vp)
Construct a filtered view of the graphg based on the edge predicateep and the vertex
predicatevp.

Nonmember Functions

The functionality supported byfiltered graph depends on the underlyingGraph type. For ex-
ample, if theGraph type does not supportin edges() , then neither doesfiltered graph. Here we
list all the possible functions thatfiltered graph could support, given aGraph type that mod-
elsVertexListGraph, EdgeListGraph, IncidenceGraph, BidirectionalGraph, AdjacencyGraph,
PropertyGraph, andBidirectionalGraph.

std::pair<vertex iterator, vertex iterator> vertices(const filteredgraph& g)
Returns an iterator range providing access to the vertex set of graphg.
(Required byVertexListGraph.)

std::pair<edgeiterator, edgeiterator> edges(const filteredgraph& g)
Returns an iterator range providing access to the edge set of graphg.
(Required byEdgeListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>
adjacentvertices(vertex descriptor v, const filteredgraph& g)

Returns an iterator range providing access to the vertices adjacent to vertexv in graphg.
(Required byAdjacencyGraph.)

std::pair<out edgeiterator, out edgeiterator>
out edges(vertex descriptor v, const filteredgraph& g)

Returns an iterator range providing access to the out-edges of vertexv in graphg. If the
graph is undirected, this iterator range provides access to all edge incident on vertexv.
(Required byIncidenceGraph.)

14.3. GRAPH ADAPTORS 261

vertex descriptor source(edgedescriptor e, const filteredgraph& g)
Returns the source vertex of edgee.
(Required byIncidenceGraph.)

vertex descriptor target(edgedescriptor e, const filteredgraph& g)
Returns the target vertex of edgee.
(Required byIncidenceGraph.)

degreesize type outdegree(vertex descriptor u, const filteredgraph& g)
Returns the number of edges leaving vertexu.
(Required byIncidenceGraph.)

verticessize type numvertices(const filteredgraph& g)
Returns the number of vertices in the underlying graphg.
(Required byVertexListGraph.)

edgessize type numedges(const filteredgraph& g)
Returns the number of edges in the graphg. (Required byEdgeListGraph.)

template<typename Property>
property map<filtered graph, Property>::type
get(Property, filtered graph& g)

template<typename Property>
property map<filtered graph, Property>::const type
get(Property, const filteredgraph& g)

Returns the property map object for the vertex property specified byProperty. TheProp-
erty must match one of the properties specified in the graph’sVertexPropertytemplate
argument.
(Required byPropertyGraph.)

template<typename Property, typename X>
typename propertytraits<

typenamae propertymap<filtered graph, Property>::const type
>::value type
get(Property, const filteredgraph& g, X x)

This returns the property value forx, which is either a vertex or an edge descriptor.
(Required byPropertyGraph.)

template<typename Property, typename X, typename Value>
void
put(Property, const filteredgraph& g, X x, const Value& value)

This sets the property value forx to value. x is either a vertex or an edge descriptor.Value
must be convertible to

262 CHAPTER 14. BGL CLASSES

property traits<
property map<filtered graph, Property>::type

>::value type.
(Required byPropertyGraph.)

14.3.4 SGBGraphPointer

Graph*

The BGL headerboost/graph/stanfordgraph.hppadapts a Stanford GraphBase (SGB) [22]
Graph pointer into a BGL-compatible graph. Note that a graph adaptor class is not used;
SGB’s Graph* itself becomes a model of several BGL graph concepts (see the following
“Model Of” section) through the definition of several function overloads.

Make sure to apply the PROTOTYPES change file to your installation of SGB so that the
SGB headers conform to ANSI C (and hence will compile with a C++ compiler).

Thanks to Andreas Scherer for help with the implementation and documentation of this
SGBGraph* adaptor.

Example

Seeexample/milesspan.cpp, example/girth.cpp, andexample/rogetcomponents.cpp.

Template Parameters

None.

Model Of

VertexListGraph, IncidenceGraph, AdjacencyGraph, andPropertyGraph. The set of property
tags that can be used with the SGB graph is described in “Vertex and Edge Properties” later
in this section.

Where Defined

boost/graph/stanfordgraph.hpp

Associated Types

graph traits<Graph*>::vertex descriptor
The type for the vertex descriptors associated with the SGBGraph*. We use the type
Vertex* as the vertex descriptor (whereVertex is a typedef ingb graph.h.
(Required byGraph.)

14.3. GRAPH ADAPTORS 263

graph traits<Graph*>::edge descriptor
The type for the edge descriptors associated with the SGBGraph*. The type used is the
boost::sgbedgetype. In addition to supporting all the required operations of a BGL edge
descriptor, theboost::sgbedgeclass has this constructor:
sgbedge::sgbedge(Arc* arc, Vertex* source).
(Required byIncidenceGraph.)

graph traits<Graph*>::vertex iterator
The type for the iterators returned byvertices() . This iterator modelsRandomAccessIt-
erator.
(Required byVertexListGraph.)

graph traits<Graph*>::out edgeiterator
The type for the iterators returned byout edges() . If EdgeList=vecSthen this iterator
modelsMultiPassInputIterator.
(Required byIncidenceGraph.)

graph traits<Graph*>::adjacency iterator
The type for the iterators returned byadjacentvertices() . This iterator models the same
concept as the out-edge iterator.
(Required byAdjacencyGraph.)

graph traits<Graph*>::directed category
Provides information about whether the graph is directed or undirected. An SGBGraph*
is directed so this type isdirectedtag.
(Required byGraph.)

graph traits<Graph*>::edge parallel category
This describes whether the graph class allows the insertion of parallel edges (edges with
the same source and target). The SGBGraph* does not prevent addition of parallel edges,
so this type isallow parallel edgetag.
(Required byGraph.)

graph traits<Graph*>::traversal category
An SGB Graph* provides traversal of the vertex set, out edges, and adjacent vertices.
Therefore the traversal category tag is defined as follows:
struct sgbtraversal tag :

public virtual vertex list graph tag,
public virtual incidencegraph tag,
public virtual adjacencygraph tag { };

(Required byGraph.)

graph traits<Graph*>::vertices size type
The type used for dealing with the number of vertices in the graph.
(Required byVertexListGraph.)

http://www.sgi.com/tech/stl/RandomAccessIterator.html
http://www.sgi.com/tech/stl/RandomAccessIterator.html
http://www.sgi.com/tech/stl/MultiPassInputIterator.html

264 CHAPTER 14. BGL CLASSES

graph traits<Graph*>::edgessize type
The type used for dealing with the number of edges in the graph.
(Required byEdgeListGraph.)

graph traits<Graph*>::degreesize type
The type used for dealing with the number of out-edges of a vertex.
(Required byIncidenceGraph.)

property map<Graph*, PropertyTag>::type
property map<Graph*, PropertyTag>::const type

The map type for vertex or edge properties in the graph. The property is specified by the
PropertyTagtemplate argument, and must be one of the tags described in the “Vertex and
Edge Properties” section below.
(Required byPropertyGraph.)

Member Functions

None.

Nonmember Functions

std::pair<vertex iterator, vertex iterator> vertices(const Graph* g)
Returns an iterator range providing access to the vertex set of graphg.
(Required byVertexListGraph.)

std::pair<edgeiterator, edgeiterator> edges(const Graph* g)
Returns an iterator range providing access to the edge set of graphg.
(Required byEdgeListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>
adjacentvertices(vertex descriptor v, const Graph* g)

Returns an iterator range providing access to the vertices adjacent to vertexv in graphg.
(Required byAdjacencyGraph.)

std::pair<out edgeiterator, out edgeiterator>
out edges(vertex descriptor v, const Graph* g)

Returns an iterator range providing access to the out-edges of vertexv in graphg. If the
graph is undirected, this iterator range provides access to all edge incident on vertexv.
(Required byIncidenceGraph.)

vertex descriptor source(edgedescriptor e, const Graph* g)
Returns the source vertex of edgee.
(Required byIncidenceGraph.)

14.3. GRAPH ADAPTORS 265

vertex descriptor target(edgedescriptor e, const Graph* g)
Returns the target vertex of edgee.
(Required byIncidenceGraph.)

degreesize type outdegree(vertex descriptor u, const Graph* g)
Returns the number of edges leaving vertexu.
(Required byIncidenceGraph.)

verticessize type numvertices(const Graph* g)
Returns the number of vertices in the graphg.
(Required byVertexListGraph.)

edgessize type numedges(const Graph* g)
Returns the number of edges in the graphg.
(Required byEdgeListGraph.)

vertex descriptor vertex(verticessize type n, const Graph* g)
Returns thenth vertex in the graph’s vertex list.

template<typename PropertyTag>
property map<Graph*, PropertyTag>::type
get(PropertyTag, Graph* g)

template<typename PropertyTag>
property map<Graph*, PropertyTag>::const type
get(PropertyTag, const Graph* g)

Returns the property map object for the vertex property specified byPropertyTag.
(Required byPropertyGraph.)

template<typename PropertyTag, typename X>
typename propertytraits<

typename propertymap<Graph*, PropertyTag>::const type
>::value type
get(PropertyTag, const Graph* g, X x)

This returns the property value forx, which is either a vertex or an edge descriptor.
(Required byPropertyGraph.)

template<typename PropertyTag, typename X, typename Value>
void
put(PropertyTag, const Graph* g, X x, const Value& value)

This sets the property value forx to value. x is either a vertex or an edge descriptor.Value
must be convertible to the value type of the property corresponding to thePropertyTag.
(Required byPropertyGraph.)

266 CHAPTER 14. BGL CLASSES

Vertex and Edge Properties

The SGBVertexandArc structures provide “utility” fields for storing extra information. We
provide BGL wrappers that provide access to these fields through property maps. In addition,
vertex index and edge length maps are provided. A property map object can be obtained from
a SGBGraph* using theget() function described in the previous section and the property
map type can be obtained through thepropertymap traits class.

The following list of property tags can be used to specify which utility field you would
like a property map for.

// vertex property tags
template<typename T> u property;
template<typename T> v property;
template<typename T> w property;
template<typename T> x property;
template<typename T> y property;
template<typename T> z property;

// edge property tags
template<typename T> a property;
template<typename T> b property;

The template parameterT for these tags is limited to the types in theutil union declared
in the SGB headergb graph.h, which areVertex*, Arc* , Graph*, char*, andlong. The property
maps for the utility fields are models ofLvaluePropertyMap.

The property map for vertex indices can be obtained using thevertex index t tag, and this
property map is aReadablePropertyMap. A property map for edge lengths can be obtained
using theedgelength t tag, and this property map is aLvaluePropertyMap whose value type
is long.

14.3.5 LEDAGRAPH<V,E>

GRAPH<V, E>
The LEDA GRAPH class template can be used directly as a BGL graph due to some

function overloads defined inboost/graph/ledagraph.hpp.
The implementation of the BGL interface for the LEDAGRAPH class is discussed in

§10.3as an example of how to write BGL adaptors for non-BGL graph classes.

Example

〈 “leda-graph-eg.cpp”266〉 ≡
#include <boost/ graph/ leda graph. hpp>
#include <iostream>

14.3. GRAPH ADAPTORS 267

#undef string // LEDA macro!
int main() {

using namespace boost;
typedef GRAPH<std::string, int> graph t;
graph t g;
g. new node(" Philoctetes");
g. new node(" Heracles");
g. new node(" Alcmena");
g. new node(" Eurystheus");
g. new node(" Amphitryon");
typedef propertymap<graph t, vertex all t>::type NodeMap;
NodeMap nodename map = get(vertex all, g);
graph traits<graph t>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

std::cout << node name map[* vi] << std::endl;
return EXIT SUCCESS;
}

The output is

Philoctetes
Heracles
Alcmena
Eurystheus
Amphitryon

Template Parameters

V The type of object attached to each vertex in the LEDA graph.
E The type of object attached to each edge in the LEDA graph.

Model Of

VertexListGraph, BidirectionalGraph, and AdjacencyGraph. Also, VertexMutableProperty-
Graph andEdgeMutablePropertyGraph for the property tagsvertexall t andedgeall t which
provide access to theV andE objects in the LEDA graph. TheGRAPH type is also aProperty-
Graph for vertex index t andedgeindex t, which provide access to the ID numbers that LEDA
assigns to each node.

Where Defined

boost/graph/ledagraph.hpp

268 CHAPTER 14. BGL CLASSES

Associated Types

graph traits<GRAPH>::vertex descriptor
The type for the vertex descriptors associated with theGRAPH. The type used is thenode
type from LEDA.
(Required byGraph.)

graph traits<GRAPH>::edge descriptor
The type for the edge descriptors associated with theGRAPH. The type used is theedge
type from LEDA.
(Required byGraph.)

graph traits<GRAPH>::vertex iterator
The type for the iterators returned byvertices() . (Required byVertexListGraph.)

graph traits<GRAPH>::out edgeiterator
The type for the iterators returned byout edges() .
(Required byIncidenceGraph.)

graph traits<GRAPH>::in edgeiterator
The in edgeiterator is the iterator type returned by thein edges() function.
(Required byBidirectionalGraph.)

graph traits<GRAPH>::adjacency iterator
The type for the iterators returned byadjacentvertices() .
(Required byAdjacencyGraph.)

graph traits<GRAPH>::directed category
The LEDA GRAPH type is for directed graphs (directedtag).
(Required byGraph.)

graph traits<GRAPH>::edge parallel category
The LEDA GRAPH type allows parallel edges to be inserted (allow parallel edgetag).
(Required byGraph.)

graph traits<GRAPH>::traversal category
This graph type provides vertex iterators, out-edge and in-edge iterators, and adjacency
iterators. The traversal-category tag type is as follows.
struct ledagraph traversal category :

public virtual bidirectional graph tag,
public virtual adjacencygraph tag,
public virtual vertex list graph tag { };

(Required byGraph.)

graph traits<GRAPH>::vertices size type
This type is for representing the number of vertices in the graph, which in this case isint.
(Required byVertexListGraph.)

14.3. GRAPH ADAPTORS 269

graph traits<GRAPH>::edgessize type
This type is for representing the number of edges in the graph, which in this case isint.
(Required byEdgeListGraph.)

graph traits<GRAPH>::degreesize type
The type used for representing the number of out-edges of a vertex. In this case the type
is int.
(Required byIncidenceGraph.)

property map<GRAPH, PropertyTag>::type
property map<GRAPH, PropertyTag>::const type

The map type for vertex or edge properties in the graph. The specific property is specified
by the PropertyTag template argument, and must be eithervertex index t, edgeindex t,
vertexall t, or edgeall t. The two “all” tags are for accessing theV andE objects in the
LEDA graph. Thevertex index t andedgeindex t tags provides access to the ID numbers
that LEDA assigns to each node and edge.
(Required byPropertyGraph.)

Member Functions

No additional member functions (especially since that would require modifying LEDA source
code).

Nonmember Functions

std::pair<vertex iterator, vertex iterator> vertices(const GRAPH& g)
Returns an iterator range providing access to the vertex set of graphg.
(Required byVertexListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>
adjacentvertices(vertex descriptor v, const GRAPH& g)

Returns an iterator range providing access to the vertices adjacent to vertexv in graphg.
(Required byAdjacencyGraph.)

std::pair<out edgeiterator, out edgeiterator>
out edges(vertex descriptor v, const GRAPH& g)

Returns an iterator range providing access to the out-edges of vertexv in graphg. If the
graph is undirected, this iterator range provides access to all edge incident on vertexv.
(Required byIncidenceGraph.)

std::pair<in edgeiterator, in edgeiterator>
in edges(vertex descriptor v, const GRAPH& g)

Returns an iterator range providing access to the in-edges of vertexv in graphg. This
operation is no available ifdirectedSwas specified for theDirectedtemplate parameter. It
is available forundirectedSandbidirectionalS.

270 CHAPTER 14. BGL CLASSES

(Required byBidirectionalGraph.)

vertex descriptor source(edgedescriptor e, const GRAPH& g)
Returns the source vertex of edgee.
(Required byIncidenceGraph.)

vertex descriptor target(edgedescriptor e, const GRAPH& g)
Returns the target vertex of edgee.
(Required byIncidenceGraph.)

degreesize type outdegree(vertex descriptor u, const GRAPH& g)
Returns the number of edges leaving vertexu.
(Required byIncidenceGraph.)

degreesize type in degree(vertex descriptor u, const GRAPH& g)
Returns the number of edges entering vertexu. This operation is only available ifbidirec-
tionalS was specified for theDirectedtemplate parameter.
(Required byBidirectionalGraph.)

verticessize type numvertices(const GRAPH& g)
Returns the number of vertices in the graphg.
(Required byVertexListGraph.)

edgessize type numedges(const GRAPH& g)
Returns the number of edges in the graphg.
(Required byEdgeListGraph.)

std::pair<edgedescriptor, bool>
add edge(vertex descriptor u, vertex descriptor v, GRAPH& g)

Adds edge(u, v) to the graph and returns the edge descriptor for the new edge. For this
graph type thebool flag will always be false.
(Required byEdgeMutableGraph.)

std::pair<edgedescriptor, bool>
add edge(vertex descriptor u, vertex descriptor v, const E& ep, GRAPH& g)

Adds edge(u, v) to the graph and attachesepas the value of the edge’s internal property
storage.
(Required byEdgeMutablePropertyGraph.)

void removeedge(vertex descriptor u, vertex descriptor v, GRAPH& g)
Removes the edge(u, v) from the graph.
(Required byEdgeMutableGraph.)

14.3. GRAPH ADAPTORS 271

void removeedge(edgedescriptor e, GRAPH& g)
Removes the edgee from the graph. This differs from theremoveedge(u, v, g)function in
the case of a multigraph. Thisremoveedge(e, g)function removes a single edge, whereas
theremoveedge(u, v, g)function removes all edges(u, v).
(Required byEdgeMutableGraph.)

vertex descriptor addvertex(GRAPH& g)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.
(Required byVertexMutableGraph.)

vertex descriptor addvertex(const VertexProperties& p, GRAPH& g)
Adds a vertex to the graph and returns the vertex descriptor for the new vertex.
(Required byVertexMutablePropertyGraph.)

void clear vertex(vertex descriptor u, GRAPH& g)
Removes all edges to and from vertexu. The vertex still appears in the vertex set of the
graph.
(Required byEdgeMutableGraph.)

void removevertex(vertex descriptor u, GRAPH& g)
Remove vertexu from the vertex set of the graph.
(Required byVertexMutableGraph.)

template<typename PropertyTag>
property map<GRAPH, PropertyTag>::type
get(PropertyTag, GRAPH& g)

Returns a mutable property map object for the vertex property specified byPropertyTag.
(Required byPropertyGraph.)

template<typename PropertyTag>
property map<GRAPH, PropertyTag>::const type
get(PropertyTag, const GRAPH& g)

Returns a constant property map object for the vertex property specified byPropertyTag.
(Required byPropertyGraph.)

template<typename PropertyTag, typename X>
typename propertytraits<

typenamae propertymap<GRAPH, PropertyTag>::const type
>::value type
get(PropertyTag, const GRAPH& g, X x)

This returns the property value forx, which is either a vertex or an edge descriptor.
(Required byPropertyGraph.)

272 CHAPTER 14. BGL CLASSES

template<typename PropertyTag, typename X, typename Value>
void
put(PropertyTag, const GRAPH& g, X x, const Value& value)

This sets the property value forx to value. x is either a vertex or an edge descriptor.
(Required byPropertyGraph.)

14.3.6 std::vector<EdgeList>

std::vector<EdgeList>

The function overloads inboost/graph/vectoras graph.hppmake it possible to treat types
such asstd::vector<std::list<int>> like a graph.

Example

In this example we construct a graph using container classes from the Standard Library and
use the BGLprint graph() function (which is written in terms of the BGL graph interface) to
output the graph.

〈 “vector-as-graph.cpp”272〉 ≡
#include <vector>
#include <list>
#include <boost/ graph/ vector as graph. hpp>
#include <boost/ graph/ graph utility . hpp>

int main() {
enum { r, s, t, u, v, w, x, y, N };
char name[] = " rstuvwxy" ;
typedef std::vector< std::list<int> > Graph;
Graph g(N);
g[r]. push back(v);
g[s]. push back(r); g[s]. push back(r); g[s]. push back(w);
g[t]. push back(x);
g[u]. push back(t);
g[w]. push back(t); g[w]. push back(x);
g[x]. push back(y);
g[y]. push back(u);
boost::print graph(g, name);
return 0;
}

The output is

r −−> v
s −−> r r w
t −−> x

14.3. GRAPH ADAPTORS 273

u −−> t
v −−>
w −−> t x
x −−> y
y −−> u

Where Defined

boost/graph/vectoras graph.hpp

Template Parameters

EdgeList A Container whosevalue type is convertible to thesizetype of std::vector
(so that it can be used as a vertex descriptor).

Model Of

VertexListGraph, IncidenceGraph, AdjacencyGraph,

Associates Types

graph traits<std::vector>::vertex descriptor
The type for the vertex descriptors associated with the graph.
(Required byGraph.)

graph traits<std::vector>::edge descriptor
The type for the edge descriptors associated with the graph.
(Required byGraph.)

graph traits<std::vector>::vertex iterator
The type for the iterators returned byvertices() .
(Required byVertexListGraph.)

graph traits<std::vector>::out edgeiterator
The type for the iterators returned byout edges() .
(Required byIncidenceGraph.)

graph traits<std::vector>::adjacency iterator
The type for the iterators returned byadjacentvertices() .
(Required byAdjacencyGraph.)

graph traits<std::vector>::directed category
This graph type is for directed graphs, so the category type isdirectedtag.
(Required byGraph.)

http://www.sgi.com/tech/stl/Container.html

274 CHAPTER 14. BGL CLASSES

graph traits<std::vector>::edge parallel category
This graph type allows parallel edges, so the category type isallow parallel edgetag.
(Required byGraph.)

graph traits<std::vector>::vertices size type
This type is for representing the number of vertices in the graph.
(Required byVertexListGraph.)

graph traits<std::vector>::degreesize type
This type is for representing the number of out-edges of a vertex.
(Required byIncidenceGraph.)

Member Functions

No additional member functions.

Nonmember Functions

std::pair<vertex iterator, vertex iterator>
vertices(const std::vector& g)

Returns an iterator range providing access to the vertex set of graphg.
(Required byVertexListGraph.)

std::pair<adjacencyiterator, adjacencyiterator>
adjacentvertices(vertex descriptor v, const std::vector& g)

Returns an iterator range providing access to the vertices adjacent to vertexv in graphg.
(Required byAdjacencyGraph.)

std::pair<out edgeiterator, out edgeiterator>
out edges(vertex descriptor v, const std::vector& g)

Returns an iterator range providing access to the out-edges of vertexv in graphg. If the
graph is undirected, this iterator range provides access to all edge incident on vertexv.
(Required byIncidenceGraph.)

vertex descriptor
source(edgedescriptor e, const std::vector& g)

Returns the source vertex of edgee.
(Required byIncidenceGraph.)

vertex descriptor
target(edgedescriptor e, const std::vector& g)

Returns the target vertex of edgee.
(Required byIncidenceGraph.)

degreesize type
out degree(vertex descriptor u, const std::vector& g)

Returns the number of edges leaving vertexu.

14.3. GRAPH ADAPTORS 275

(Required byIncidenceGraph.)

verticessize type numvertices(const std::vector& g)
Returns the number of vertices in the graphg.
(Required byVertexListGraph.)

276 CHAPTER 14. BGL CLASSES

Chapter 15

Property Map Library

Most graph algorithms require access to various properties associated with the vertices and
edges of a graph. For example, problem data such as the length or capacity of an edge may be
needed by the algorithms, as well as auxiliary data flags such as color, to indicate whether a
vertex has been visited. There are many possibilities for how these properties can be stored in
memory, ranging from members of vertex and edge objects, to arrays indexed by some index,
to properties that are computed when needed. To insulate generic algorithms from the details
of the underlying property representation, theproperty map1 abstraction is introduced.

Several categories of property accessors provide different access capabilities:

readable The associated property data can only be read. The data is returned by-value. Many
property maps defining the problem input (such as edge weight) can be defined as
readable property maps.

writeable The associated property can only be written to. The parent array used to record
the paths in a breadth-first search tree is an example of a property map that would be
defined writeable.

read/write The associated property can both be written and read. The distance property
use in Dijkstra’s shortest-paths algorithm would need to provide both read and write
capabilities.

lvalue The associated property is actually represented in memory and it is possible to get a
reference to it. The property maps in the lvalue category also support the requirements
for read/write property maps.

There is a tag struct for each of the categories of property maps.

namespace boost{
1In previous papers describing BGL, the property accessor concept was namedDecorator. In Dietmar K̈uhl’s

Masters thesis [24], property accessors are called data accessors.

277

278 CHAPTER 15. PROPERTY MAP LIBRARY

struct readableproperty map tag { };
struct writable property map tag { };
struct readwrite property map tag :

public readableproperty map tag,
public writable property map tag { };

struct lvalue property map tag :
public read write property map tag { };

}

Similar to theiterator traits class of the STL, there is aproperty traits class that can be used
to deduce the types associated with a property map type: the key and value types, and the
property map category. There is a specialization ofproperty traits so that pointers can be used
as property map objects.

namespace boost{
template<typename PropertyMap>
struct propertytraits {

typedef typename PropertyMap::keytype keytype;
typedef typename PropertyMap::valuetype valuetype;
typedef typename PropertyMap::reference reference;
typedef typename PropertyMap::category category;

};
// specialization for using pointers as property maps
template<typename T>
struct propertytraits<T*> {

typedef T valuetype;
typedef T& reference;
typedef std::ptrdiff t key type;
typedef lvalueproperty map tag category;
};
template<typename T>
struct propertytraits<const T*> {

typedef T valuetype;
typedef const T& reference;
typedef std::ptrdiff t key type;
typedef lvalueproperty map tag category;
};
}

15.1 Property Map Concepts

The property map interface consists of a set of concepts that define a general-purpose mech-
anism for mapping key objects to corresponding value objects, thereby hiding the details of
how the mapping is implemented from algorithms that use property maps. The property map
requirements are purposefully vague on the type of the key and value objects to allow for

15.1. PROPERTY MAP CONCEPTS 279

the utmost flexibility. Since the property map operations are global functions, it is possible
to overload the map functions such that nearly arbitrary property map types and key types
can be used. The interface for property maps consists of three functions:get() , put() , and
operator[]. The following concrete example shows how the three functions could be used to
access the addresses associated with various people.

template<typename AddressMap>
void foo(AddressMap address)
{

typedef typename boost::propertytraits<AddressMap>::value type valuetype;
typedef typename boost::propertytraits<AddressMap>::key type keytype;

value type oldaddress, new address;
key type fred = " Fred" ;
old address= get(address, fred);
new address= " 384 Fitzpatrick Street"
put(address, fred, new address);

key type joe = " Joe" ;
value type& joes address= address[joe];
joes address= " 325 Cushing Avenue" ;
}

For each property map object there is a set ofvalid keysfor which the mapping to value
objects is defined. Invoking a property map function on aninvalid key results in undefined
behavior. The property map concepts do not specify how this set of valid keys is created or
modified. A function that uses a property map must specify the expected set of valid keys in
its preconditions.

Notation

The notation used in the following sections is summarized here.
PMap is the type of a property map.
pmap is a property map object of typePMap.
key is an object of typeproperty traits<PMap>::key type.
val is an object of typeproperty traits<PMap>::value type.

15.1.1 ReadablePropertyMap

A ReadablePropertyMap provides read-access to the value object associated with a given key
via a call to theget() function. Theget() function returns a copy of the value object.

Refinement of

CopyConstructible

http://www.sgi.com/tech/stl/CopyConstructible.html

280 CHAPTER 15. PROPERTY MAP LIBRARY

Associated Types

property traits<PMap>::value type
The type of the property.

property traits<PMap>::reference
A type that is convertible to the value type.

property traits<PMap>::key type
The type of the key object used to look up the property. The property map may be
templated on the key type, in which case this typedef can bevoid.

property traits<PMap>::category
The category of the property: a type convertible toreadablepropertymap tag.

Valid Expressions

get(pmap, key)
Return Type: reference
Semantics: lookup the property of the object associated withkey.

15.1.2 WritablePropertyMap

A WritablePropertyMap has the capability of setting the value object associated with the given
key object via theput() function.

Refinement of

CopyConstructible

Associated Types

property traits<PA>::value type
The type of the property.

property traits<PA>::key type
The type of the key object used to look up the property. The property map may be
templated on the key type, in which case this typedef can bevoid.

property traits<PA>::category
The category of the property: a type convertible towritable propertymap tag.

http://www.sgi.com/tech/stl/CopyConstructible.html

15.2. PROPERTY MAP CLASSES 281

Valid Expressions

put(pmap, key, val)
Return Type: void
Semantics: assignval to the property associated withkey.

15.1.3 ReadWritePropertyMap

TheReadWritePropertyMap concept refines theReadablePropertyMap andWritableProper-
tyMap concepts. It also add s the requirement thatproperty traits<PA>::category be a type
convertible toread write propertymap tag.

15.1.4 LvaluePropertyMap

An LvaluePropertyMap provides access to a reference to a property object (instead of a copy
of the object as inget()). An LvaluePropertyMap can bemutableor immutable. The mutable
LvaluePropertyMap returns a reference whereas the nonmutable returns a const reference.

Refinement of

ReadablePropertyMap for immutable andReadWritePropertyMap for mutable.

Associated Types

property traits<PMap>::reference
The reference type, which must be a reference or const reference to the value type of the
property map.

property traits<PMap>::category
The category of the property: a type convertible tolvalue propertymap tag.

Valid Expressions

• Access Property Value
pmap[key]
Return Type: reference
Semantics: obtain a reference to the property identified bykey.

15.2 Property Map Classes

15.2.1 property traits

property traits<PropertyMap>

282 CHAPTER 15. PROPERTY MAP LIBRARY

The property traits class provides the mechanism for accessing theassociated typesof a
property map. The unspecialized (default) version of theproperty traits class assumes that the
property map provides typedefs for all of the associated types.

namespace boost{
template<typename PA>
struct propertytraits {

typedef typename PA::keytype keytype;
typedef typename PA::valuetype valuetype;
typedef typename PA::reference reference;
typedef typename PA::category category;
};
} // namespace boost

The categorytypedef should be a typedef for one of the following types, or a type that
inherits from one of the following types.

namespace boost{
struct readableproperty map tag { };
struct writable property map tag { };
struct readwrite property map tag : readableproperty map tag,

writable property map tag { };
struct lvalue property map tag : read write property map tag { };
} // namespace boost

Often it is handy to use a pointer as a property map object, where thekey typeis an integer
offset from the pointer. The following specialization ofproperty traits and overloads of the
map functions are provided to accommodate this.

namespace boost{
template<typename T> struct propertytraits<T*> {

typedef std::ptrdiff t key type;
typedef T valuetype;
typedef valuetype& reference;
typedef lvalueproperty map tag category;
};

template<typename T>
void put(T* pa, std::ptrdiff t k, const T& val) { pa[k] = val; }

template<typename T>
const T& get(const T* pa, std::ptrdiff t k) { return pa[k]; }

template<typename T>
T& at(T* pa, std::ptrdiff t k) { return pa[k]; }
} // namespace boost

15.2. PROPERTY MAP CLASSES 283

Template Parameters

PropertyMap A property map type.

Defined in

boost/propertymap.hpp

Members

property traits::key type
The type of the key object used to look up the property.

property traits::value type
The type of the property.

property traits::reference
The reference to the value type.

property traits::category
The category tag of the property map.

15.2.2 iterator propertymap

iterator property map<Iterator, IndexMap, T, R>

This is an adaptor that wraps a type that modelsRandomAccessIterator to create anLval-
uePropertyMap. This adaptor is often useful for creating a property map out of an array,
where the key is an integer offset into the array, and the array contains the value objects.
When the key type is an integer, then just useidentity propertymap for theIndexMap template
parameter. Otherwise, you need to provide a property map that converts from the key type to
an integer. For example, a graph may have an internal property forvertex index t that can be
obtained using thepropertymap traits class.

Example

The following example demonstrates creating a property map out of an array.

〈 “iterator-property-map-eg.cpp”283〉 ≡
#include <iostream>
#include <boost/ property map. hpp>

int main()
{

using namespace boost;

http://www.sgi.com/tech/stl/RandomAccessIterator.html

284 CHAPTER 15. PROPERTY MAP LIBRARY

double x[] = { 0.2, 4.5, 3.2 };
iterator property map<double*, identity property map> pmap(x);
std::cout << " x[1] = " << get(pmap, 1) << std::endl;
put(pmap, 0, 1.7);
std::cout << " x[0] = " << pmap[0] << std::endl;
return 0;
}

The output is

x[1] = 4.5
x[0] = 1.7

Where Defined

boost/graph/propertymap.hpp

Template Parameters

Iterator The iterator type being adapted. It must be a model ofRandomAccessIter-
ator.

IndexMap A property map that converts the key type to an integer offset. It must be a
model ofReadablePropertyMap.

T The value type of the iterator.
Default: typename std::iteratortraits<Iterator>::value type

R The reference type of the iterator.
Default: typename std::iteratortraits<Iterator>::reference

Model Of

LvaluePropertyMap

Associates Types

All the types required byLvaluePropertyMap.

Member Functions

iterator property map(Iterator iter = Iterator(),
IndexMap index map = IndexMap())

Constructor.

template<typename Key>
reference operator[](Key k) const;

Returns*(iter + get(index map, k)).

http://www.sgi.com/tech/stl/RandomAccessIterator.html
http://www.sgi.com/tech/stl/RandomAccessIterator.html

15.3. CREATING YOUR OWN PROPERTY MAPS 285

Nonmember Functions

template<typename Iterator, typename IndexMap>
iterator property map<Iterator, IndexMap,

typename std::iteratortraits<Iterator>::value type,
typename std::iteratortraits<Iterator>::reference>

make iterator property map(Iterator iter, IndexMap index map)
Create an iterator property map.

15.2.3 Property Tags

namespace boost{
enum vertexindex t { vertex index = 1};
enum edgeindex t { edgeindex = 2};
enum edgename t { edgename = 3 };
enum edgeweight t { edgeweight = 4 };
enum vertexname t { vertex name = 5 };
enum graphname t { graph name = 6 };
enum vertexdistancet { vertex distance = 7};
enum vertexcolor t { vertex color = 8 };
enum vertexdegreet { vertex degree= 9 };
enum vertexin degreet { vertex in degree= 10 };
enum vertexout degreet { vertex out degree= 11 };
enum vertexdiscovertime t { vertex discovertime = 12 };
enum vertexfinish time t { vertex finish time = 13 };
}

namespace boost{
BOOST INSTALL PROPERTY(vertex, index);
BOOST INSTALL PROPERTY(edge, index);
BOOST INSTALL PROPERTY(edge, nane);
. . .
}

15.3 Creating Your Own Property Maps

The main purpose of the property map interface is to introduce flexibility into generic algo-
rithms. It allows properties to be stored in lots of different ways while presenting a common
interface to the algorithms. The following section contains an example of using property maps
to adapt to a third-party library the Stanford GraphBase (SGB) (see§14.3.4). After that we
look at implementing a property map using thestd::map.

286 CHAPTER 15. PROPERTY MAP LIBRARY

15.3.1 Property Maps for Stanford GraphBase

The BGL adaptor for Stanford GraphBase includes property maps to access the various fields
of theVertexandArc structures used in the SGB. In this section we will describe one part of
the implementation of the SGB adaptor as an example of how to implement property maps.

The SGB uses the followingVertexstruct to store information about vertices in the graph.
Thearcspointer is a linked-list for the out-edges of the vertex. Thenamefield and the “utility”
fields u throughz are properties of the vertex (util is a union that allows various different
things to be stored in the vertex). This section will describe how to create a property map for
accessing thenamefield.

typedef struct vertexstruct {
struct arc struct* arcs;

char* name;

util u , v, w, x, y, z;

} Vertex;

The main idea in the implementation of this property map is to define the property map
functionsoperator[]() , get() , andput() in terms of access to the struct data member. The
job is made easier by theput get helperclass which implementsput() andget() in terms of
operator[]. Therefore, onlyoperator[] needs to be implemented. In addition, the associated
types required of a property map must be defined.

Following is the implementation ofsgbvertexnamemap. We use the classput get helper
(defined inboost/propertymap.hpp) to simplify creating this property map. We implement
operator[]() andput get helper implementsput() andget() . The first type argument to the
put get helperclass template is the return type foroperator[], which in this case ischar*. The
second argument is the property map type itself. Thereferencetype only needs to be an actual
reference if the property map is to be anLvaluePropertyMap. In this case we are creating a
ReadablePropertyMap. The SGB adaptor usesVertex* for thevertexdescriptorof the graph, so
that will be thekey typeof the property map.

class sgbvertex name map

: public put get helper<char*, sgb vertex name map>

{
public:

typedef boost::readableproperty map tag category;

typedef char* value type;

typedef char* reference;

typedef Vertex* key type;

reference operator[](Vertex* v) const { return v−>name; }
};

15.3. CREATING YOUR OWN PROPERTY MAPS 287

15.3.2 A Property Map Implemented withstd::map

In the previous example, the property map object did not need to contain any state, for the
value object could be obtained directly through the key. This is not always the case. Often
times the key is used to lookup the value object in some auxiliary datastructure. An obvious
candidate for such a datastructure is thestd::map. A property map that usesstd::mapas its
implementation will need to store a pointer to this associative container. The following code
implements this property map. We have made the container type a template parameter so that
the property map can be used with other containers such as ahash map. The concept that
describes this kind of container is namedUniquePairAssociativeContainer.

template<typename UniquePairAssociativeContainer>
class associativeproperty map

: public put get helper<
typename UniquePairAssociativeContainer::valuetype::secondtype&,
associativeproperty map<UniquePairAssociativeContainer> >

{
typedef UniquePairAssociativeContainer C;

public:
typedef typename C::keytype keytype;
typedef typename C::valuetype::secondtype valuetype;
typedef valuetype& reference;
typedef lvalueproperty map tag category;
associativeproperty map() : m c(0) { }
associativeproperty map(C& c) : m c(& c) { }
reference operator[](const keytype& k) const {

return (* m c)[k];
}

private:
C* m c;
};

http://www.sgi.com/tech/stl/Uniquediscretionary {-}{}{}Pairdiscretionary {-}{}{}Associativediscretionary {-}{}{}Container.html

288 CHAPTER 15. PROPERTY MAP LIBRARY

Chapter 16

Auxiliary Concepts, Classes, and
Functions

16.1 Buffer

A buffer is something in which items can be put and removed. TheBuffer concept has very
few requirements. It does not require any particular ordering of how the items are stored or in
what order they will appear when removed. however, there is typically some sort of ordering
policy.

Notation

B is a type that modelsBuffer.
T is the value type ofB.
t is an object of typeT.

Requirements

For a type to model the Buffer concept it must have the following members.

B::value type
The type of object stored in the buffer. The value type must beAssignable.

B::size type
An unsigned integer type for representing the number of objects in the buffer.

b.push(t)
Insertst into the buffer.b.size() will be incremented by one.

b.pop()
Removes an object from the Buffer, the same object as would be returned byb.top().

289

http://www.sgi.com/tech/stl/Assignable.html

290 CHAPTER 16. AUXILIARY CONCEPTS, CLASSES, AND FUNCTIONS

b.size() will be decremented by one.
Precondition:b.empty() is false.

b.top() Returns a reference (or const reference) to some object in the buffer.
Precondition:b.empty() is false.

b.size()
Returns the number of objects in the buffer.
Invariant:

b. size() >= 0
.

b.empty()
Return type isbool, and the result value is equivalent tob.size() == 0.

Complexity Guarantees

• push() , pop() , andsize() must be at most linear time complexity in the size of the
buffer.

• top() andempty() must be amortized constant time.

Models

std::stack, boost::mutablequeue, boost::queue, andboost::priority queue.

16.2 ColorValue

This concept describes the requirements for the type used for color values. Many of the
BGL algorithms uses color property maps to mark the progress of the algorithm through the
graph. The color value type must beEqualityComparable and also thecolor traits class must
be specialized forT, such that the following functions are defined.T is the type that is a model
of ColorValue.

color traits<T>::white()
Return Type: T
Semantics: Returns an object that represents the color white.

color traits<T>::gray()
Return Type: T
Semantics: Returns an object that represents the color gray.

color traits<T>::black()
Return Type: T
Semantics: Returns an object that represents the color black.

http://www.sgi.com/tech/stl/EqualityComparable.html

16.3. MULTIPASSINPUTITERATOR 291

16.3 MultiPassInputIterator

This concept is a refinement ofInputIterator, adding the requirements that the iterator can be
used to make multiple passes through a range, and that ifit1 == it2 andit1 is dereferenceable
then *++it1 == *++it2 . The MultiPassInputIterator is similar to theForwardIterator. The
only difference is that aForwardIterator requires thereferencetype to bevalue type&, whereas
MultiPassInputIterator is like InputIterator in that thereferencetype merely has to be con-
vertible tovalue type.

16.4 Monoid

A Monoid is a concept that describes a simple kind of algebraic system. It consists of a
set of elementsS, a binary operation, and an identity element. The C++ representation of a
monoid consists of a function object that implements the binary operation, a set of objects
that represent the elements ofS, and an object that represents the identity element.

Refinement of

The element type must be a model ofAssignable andCopyConstructible. The function object
type must be a model ofBinaryFunction.

Valid Expressions

The typeX is the element type. The objectsa, b, andc are objects of typeX that represent
elements of the setS. The objecti is an object of typeX that satisfies the following proper-
ties for the identity element. The objectop is a function object that implements the monoid
operation.

op(a, b)
Return Type: X
Semantics: See below.

a == b
Return Type: bool
Semantics: Returns true ifa andb represent the same element ofS.

a != b
Return Type: bool
Semantics: Returns true ifa andb do not represent the same element ofS.

Invariants

• Closure
The result ofop(a, b)is also an element ofS.

http://www.sgi.com/tech/stl/Inputdiscretionary {-}{}{}Iterator.html
http://www.sgi.com/tech/stl/Forwarddiscretionary {-}{}{}Iterator.html
http://www.sgi.com/tech/stl/Forwarddiscretionary {-}{}{}Iterator.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/CopyConstructible.html
http://www.sgi.com/tech/stl/BinaryFunction.html

292 CHAPTER 16. AUXILIARY CONCEPTS, CLASSES, AND FUNCTIONS

• Associativity
op(op(a, b), c) == op(a, op(b, c))

• Definition of Identity Element
op(a, i) == a

16.5 mutablequeue

mutable queue<IndexedType, Container, Compare, ID>

This adaptor provides a special kind of priority queue (implemented on a heap) that has an
update operation. This allows the ordering of the items to change. After the ordering criteria
for item x changes, one must call theQ.update(x). In order to efficiently findx in the queue,
a functor must be provided to mapx to a unique ID, which themutablequeuewill then use
to map to the location of the item in the heap. The IDs generated must be between 0 and N,
where N is the value passed to the constructor ofmutablequeue.

Template Parameters

IndexedType If ID is not supplied, then there must be anindex(t) function defined (where
t is an object of typeIndexedType) that returns some integer type.

Container A model of RandomAccessContainer. The value type of the container
must be the same type asIndexedType.
Default: std::vector<IndexedType>

Compare A model ofBinaryPredicate that will takeIndexedTypeas arguments.
Default: std::less<typename Container::valuetype>

ID A model ofReadablePropertyMap that will takeIndexedTypeas a key type,
and who’s value type is some integer type.
Default: identity propertymap

Members

value type
The same type asIndexedType.

size type
The type used to represent the size of the queue.

mutable queue(size type n, const Compare& c, const ID& id = ID ())
Constructor. Space is reserved forn items.

template<class InputIterator>
mutable queue(InputIterator first, InputIterator last, const Compare& c,

const ID& id = ID ())

http://www.sgi.com/tech/stl/RandomAccessContainer.html
http://www.sgi.com/tech/stl/BinaryPredicate.html

16.6. DISJOINT SETS 293

Constructor. The default containerstd::vector is filled with the object from the range
[first, last).

bool empty() const
Returns whether the queue is empty.

void pop()
Removes the top item from the queue.

value type& top()
Returns a reference to the top item of the queue.

value type& front()
Another name fortop() .

void push(const valuetype& x)
Inserts a copy of the objectx into the queue.

void update(const valuetype& x)
The “value” of an item has changed and the heap ordering should be updated. This
method assumes that there is an old itemy in the heap withindex(y) == index(x)and thatx
is the new value for the item.

16.6 Disjoint Sets

16.6.1 disjoint sets

disjoint sets<RankMap, ParentMap, FindCompress>

This class provides disjoint sets operations, sometimes called a union-find data structure.
A disjoint-sets data structure maintains a collectionS = S1, S2, . . . , Sk of disjoint sets. Each
set is identified by arepresentativethat is some member of of the set. Sets are represented
by rooted trees, which are encoded in theParentMapproperty map. Two heuristics:union by
rank andpath compressionare used to speed up the operations.

294 CHAPTER 16. AUXILIARY CONCEPTS, CLASSES, AND FUNCTIONS

Template Parameters

RankMap must be a model ofReadWritePropertyMap with an integer value type and
a key type equal to the set’s element type.

ParentMap must be a model ofReadWritePropertyMap and the key and value type the
same as the set’s element type.

FindCompress should be one of the find function objects discussed later in this section.
Default: find with full path compression

Example

A typical usage pattern fordisjoint setscan be seen in thekruskal minimum spanning tree()
algorithm. In this example, we calllink () instead ofunion set() becauseu andv were ob-
tained fromfind set() and therefore are already the representatives for their sets.

. . .
disjoint sets<RankMap, ParentMap, FindCompress> dsets(rank, p);

for (ui = vertices(G). first; ui != vertices(G). second; ++ ui)
dsets. make set(* ui);

. . .
while (! Q. empty()) {

e = Q. front();
Q. pop();
u = dsets. find set(source(e));
v = dsets. find set(target(e));
if (u != v) {

* out++ = e;
dsets. link (u, v);
}
}

Members

disjoint sets(RankMap r, ParentMap p)
Constructor.

disjoint sets(const disjoint sets& x)
Copy constructor.

template<typename Element>
void makeset(Element x)

Creates a singleton set containing Elementx.

16.6. DISJOINT SETS 295

template<typename Element>
void link(Element x, Element y)

Union the two setsrepresentedby elementx andy.

template<typename Element>
void union set(Element x, Element y)

Union the two sets thatcontainelementsx andy. This is equivalent tolink(find set(x),-
find set(y)).

template<typename Element>
Element find set(Element x)

Return the representative for the set containing elementx.

template<typename ElementIterator>
std::sizet count sets(ElementIterator first, ElementIterator last)

Returns the number of disjoint sets.

template<typename ElementIterator>
void compresssets(ElementIterator first, ElementIterator last)

Flatten the parents tree so that the parent of every element is its representative.

Complexity

The time complexity isO(mα(m,n)), whereα is the inverse Ackermann’s function,m is the
number of disjoint-set operations (makeset() , find set() , andlink ()) andn is the number of
elements. Theα function grows very slowly, much more slowly than thelog function.

16.6.2 find with path halving

find with path halving<ParentMap>

This functor finds the representative vertex for the same component as the elementx, and
at the same time compresses the tree using path-halving.

Element operator()(ParentMap p, Element x)

16.6.3 find with full path compression

find with full path compression<ParentMap>

This functor finds the representative vertex for the same component as the elementx, and
at the same time compresses the tree using full path compression.

Element operator()(ParentMap p, Element x)

296 CHAPTER 16. AUXILIARY CONCEPTS, CLASSES, AND FUNCTIONS

16.7 tie

template<typename T1, typename T2>
tuple<T1, T2> tie(T1& a, T2& b);

This is a function from theBoost Tuple Libraryby Jaakko J̈arvi that makes it more con-
venient to work with functions that return pairs (or tuples in general). The effect of thetie()

function allows the assignment of the two values of the pair to two separate variables.

Where Defined

boost/tuple/tuple.hpp

Example

An example of using thetie() function with thevertices() function, which returns a pair of
typestd::pair<vertex iterator, vertexiterator>. The pair of iterators is assigned to the iterator
variablesi andend.

graph traits<graph t>::vertex iterator i, end;
for(tie(i, end) = vertices(g); i != end; ++ i)

// . . .

Here is another example that usestie() for handling operaitons withstd::set.

#include <set>
#include <algorithm>
#include <iostream>
#include <boost/ tuple/ tuple. hpp>

int main()
{

typedef std::set<int> SetT;
SetT::iterator i, end;
bool inserted;
int vals[5] = { 5, 2, 4, 9, 1 };
SetT s(vals, vals + 5);
int new vals[2] = { 3, 9 };
for (int k = 0; k < 2; ++ k) {

// Using tie() with a return value of pair<iterator, bool>
boost::tie(i, inserted) = s. insert(new vals[k]);
if (! inserted) std::cout << * i << " was already in the set." << std::endl;
else std::cout<< * i << " successfully inserted." << std::endl;
}
return EXIT SUCCESS;
}

http://www.boost.org/libs/tuple/doc/tuple_users_guide.html

16.8. GRAPH PROPERTYITER RANGE 297

The output is

3 successfully inserted.
9 was already in the set.

16.8 graph property iter range

graph property iter range<Graph, PropertyTag>

This class generates a begin/end pair of iterators that provide access to a vertex property
across all the vertices in the graph or and edge property across all the edges in the graph.

Example

This example loops through all of the vertices in the graph assigning strings into the name
property. It then loops through again printing the names to standard out.

〈 “graph-property-iter-eg.cpp”297〉 ≡
#include <boost/ graph/ adjacencylist. hpp>
#include <boost/ graph/ property iter range. hpp>

int main()
{

using namespace boost;
typedef adjacencylist<listS, vecS, directedS,

property<vertex name t, std::string> > graph t;
graph t g(3);

const char* vertex names[] = { " Kubrick" , " Clark" , " Hal" };
int i = 0;
graph property iter range<graph t, vertex name t>::iterator v, v end;
for (tie(v, v end) = get property iter range(g, vertex name);

v != v end; ++ v, ++ i)
* v = vertex names[i];

tie(v, v end) = get property iter range(g, vertex name);
std::copy(v, v end, std::ostreamiterator<std::string>(std::cout, " "));
std::cout << std::endl;
return 0;
}

The output is

Kubrick Clark Hal

298 CHAPTER 16. AUXILIARY CONCEPTS, CLASSES, AND FUNCTIONS

Where Defined

boost/graph/propertyiter range.hpp

Template Parameters

Graph The graph type must be a model ofPropertyGraph.
PropertyTag The tag specifies which vertex or edge property to be accessed.

Associated Types

graph property iter range::iterator
A mutable iterator whose value type is the property specified by the property tag.

graph property iter range::const iterator
A constant iterator whose value type is the property specified by the property tag.

graph property iter range::type
The typestd::pair<iterator, iterator> .

graph property iter range::const type
The typestd::pair<cosnt iterator, const iterator> .

Member Functions

None.

Nonmember Functions

template<typename Graph, typename Tag>
typename graphproperty iter range<Graph, Tag>::type
get property iter range(Graph& graph, const Tag& tag)

Returns a pair of mutable iterators that provide access to the property specified by the
tag. The iterator range over all the vertices or all the edges of the graph.

template<typename Graph, typename Tag>
typename graphproperty iter range<Graph, Tag>::const type
get property iter range(const Graph& graph, const Tag& tag)

Returns a pair of constant iterators that provide access to the property specified by the
tag. The iterator range over all the vertices or all the edges of the graph.

Bibliography

[1] Dimacs implementation file format. http://dimacs.rutgers.edu/Challenges/.

[2] A. Alexandrescu. Better template error messages.C/C++ Users Journal, March 1999.

[3] M. H. Austern. Generic Programming and the STL. Professional computing series.
Addison-Wesley, 1999.

[4] G. Baumgartner and V. F. Russo. Signatures: A language extension for improving
type abstraction and subtype polymorphism in C++.Software–Practice and Experience,
25(8):863–889, August 1995.

[5] R. Bellman. On a routing problem.Quarterly of Applied Mathematics, 16(1):87–90,
1958.

[6] Boost.Boost C++ Libraries. http://www.boost.org/ .

[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,
and J. Wiener. Graph structure in the web. In9th World Wide Web Conference, 2000.

[8] K. B. Bruce, L. Cardelli, G. Castagna, the Hopkins Objects Group, G. T. Leavens, and
B. Pierce. On binary methods.Theory and Practice of Object Systems, 1:221–242,
1995.

[9] B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the
maximum flow problem. Technical report, Stanford University, 1994.

[10] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. McGraw-Hill,
1990.

[11] E. Dijkstra. A note on two problems in connexion with graphs.Numerische Mathematik,
1:269–271, 1959.

[12] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.Can. Journal of
Mathematics, pages 399–404, 1956.

[13] L. R. Ford and D. R. Fulkerson.Flows in networks. Princeton University Press, 1962.

299

300 BIBLIOGRAPHY

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing. Addison-Welsey, 1995.

[15] M. Garey and D. Johnson.Computers and Intractibility: A Guide to the Theory of
NPCompleteness. W.H. Freeman, New York, 1979.

[16] A. V. Goldberg. A new max-flow algorithm. Technical Report MIT/LCS/TM-291, MIT,
1985.

[17] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, 1988.

[18] R. Graham and P. Hell. On the history of the minimum spanning tree problem.Annals
of the History of Computing, 7(1):43–57, 1985.

[19] C. Hedrick. Routing information protocol. Internet Requests For Comments (RFC)
1058, June 1988.

[20] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows.
Sov. Math. Dokl., 1974.

[21] S. E. Keene.Object-Oriented Programming in Common LISP: A Programmer’ s Guide
to CLOS. Addison-Wesley, 1989.

[22] D. E. Knuth. Stanford GraphBase: a platform for combinatorial computing. ACM
Press, 1994.

[23] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. InProceedings of the American Mathematical Sofiety, volume 7, pages 48–50,
1956.

[24] D. Kühl. Design patterns for the implementation of graph algorithms. Master’s thesis,
Technische Universität Berlin, July 1996.

[25] J. Lajoie and S. B. Lippman.C++ Primer. Addison Wesley, 3rd edition, 1998.

[26] E. L. Lawler. Combinatorial Opimization: Networks and Matroids. Holt, Rinehart, and
Winston, 1976.

[27] D. Matula. Determing edge connectivity ino(mn). In Sumposium on Foundations of
Computer Science, pages 249–251, 1987.

[28] J. McQuillan. The new routing algorithm for the arpanet.IEEE Transactions on Com-
munications, May 1980.

[29] K. Mehlhorn and S. N̈aher.The LEDA Platform of Combinatorial and Geometric Com-
puting. Cambridge University Press, 1999.

BIBLIOGRAPHY 301

[30] B. Meyer. Object-oriented Software Construction. Prentice Hall International Series in
Computer Science. Prentice Hall, 1988.

[31] E. Moore. The shortest path through a maze. InInternational Symposium on the Theory
of Switching, pages 285–292. Harvard University Press, 1959.

[32] R. Morgan.Building an Optimizing Compiler. Butterworth-Heinemann, 1998.

[33] J. Moy. Rfc 1583: Ospf version 2. Network Working Group Request for Comment,
March 1994.

[34] D. R. Musser, G. J. Derge, and A. Saini.STL tutorial and Reference Guide. Addison-
Wesley, 2nd edition, 2001.

[35] D. R. Musser and A. A. Stepanov. A library of generic algorithms in ada. InUsing Ada
(1987 International Ada Conference), pages 216–225, New York, NY, Dec. 1987. ACM
SIGAda.

[36] N. C. Myers. Traits: a new and useful template technique.C++ Report, June 1995.

[37] R. Perlman. Fault-tolerant broadcast of routing information.Computer Networks, De-
cember 1983.

[38] R. Prim. Shortest connection networks and some generalizations.Bell System Technical
Journal, 36:1389–1401, 1957.

[39] J. Siek and A. Lumsdaine. Concept checking: Binding parametric polymorphism in
C++. InFirst Workshop on C++ Template Programming, Erfurt, Germany, October 10
2000.

[40] A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report
X3J16/94-0095, WG21/N0482, ISO Programming Language C++ Project, May 1994.

[41] B. Stroustrup.Design and Evolution of C++. Addison-Wesley, 1994.

[42] B. Stroustrup. The C++ Programming Language. Addison Wesley, special edition,
2000.

[43] R. Tarjan. Depth-first search and linear graph algorithms.SIAM Journal on Computing,
1(2):146–160, 1972.

[44] R. E. Tarjan.Data Structures and Network Algorithms. Society for Industrial and Ap-
plied Mathematics, 1983.

[45] B. L. van der Waerden.Algebra. Frederick Ungar Publishing, 1970.

[46] H. C. Warnsdorff. Des roesselsprungs einfachste und allgemeinste loesung.Schmalka-
lden, 1823.

303

Index

, (comma), 40
. (period), 40
; (semicolon), 73

A

abstract data types (ADTs), 19
accumulate function, 26–27
Adaptor(s)

basic description of, 13–14
implementing, 123–126
pattern, 119

add_edge function, 9, 17, 43, 84, 121,
152–153, 226

EdgeMutablePropertyGraph concept and,
157

performance guidelines and, 128
undirected graphs and, 141

AdditiveAbelianGroup class, 20–21
add_vertex function, 9, 43, 120, 152, 157,

128, 225
AdjacencyGraph interface, 46–47, 114, 115,

146–149
adjacency_graph_tag function, 124
adjacency_iterator function, 47, 146
adjacency_list class, 11–12, 13

Bacon numbers and, 63, 65
basic description of, 43
boost namespace and, 37–39

compilation order and, 37, 46
implicit graphs and, 114
interfacing with other graph libraries and,

119
internal properties and, 52–53
maximum flow and, 107
minimum-spanning-tree problem and, 92
performance guidelines and, 127, 128,

130, 132
shortest-path problems and, 84
template parameters, 52
using topological sort with, 17–18

adjacency_list.hpp, 17, 216, 246
adjacency_matrix class, 11–12, 43

associated types, 238–239
basic description of, 234–242
member functions, 239–240
nonmember functions, 240–242
template parameters, 238
type requirements, 238

adjacency_matrix.hpp, 237
adjacency_vertices() class

implicit graphs and, 114, 115
maximum flow and, 109

adjacent iterators, 7
adjacent_vertices function, 46–47, 146
ADTs (abstract data types), 19
advance_dispatch function, 33

SiekINDEX.fm Page 303 Friday, November 9, 2001 3:02 PM

304

INDEX

advance function, 33
Algorithms

. See also

 Algorithms (listed by
name)

basic description of, 13–18, 61–74
generic, 13–18
Koenig lookup and, 39

Algorithms (listed by name)

. See also

Algorithms

bellman_ford_shortest_paths algorithm,
40, 76–82, 162, 182–186

breadth_first_search algorithm, 11, 39,
61–67, 158–159, 165–169

depth_first_search algorithm, 13, 18,
44–46, 57, 67–75, 98, 160–161,
170–175

Dijkstra’s shortest-path algorithm, 76,
81–88, 161, 179–181, 277

Edmunds-Karp algorithm, 105, 109
Ford-Fulkerson algorithm, 105
Kruskal’s algorithm, 90–93, 95, 189–192
Prim’s algorithm, 89, 90, 94–96
push-relabel algorithm, 105

allow_parallel_edge_tag function,
124

ANSI C, 262
archetype class, 36
array_traits class, 31–33
array traits, for pointer types, 32–33
Array type, 30
Assignable concept, 37, 28–29, 143
Associated types, 28–34, 143, 205

adjacency_list class, 216–217
adjacency_matrix class, 238–239
edge_list class, 251–252
filtered graph class, 258–260
graph_property_iter_range class, 298
iterator_property_map class, 284
LEDA Graph class, 268–269

property_map class, 249
reverse_graph class, 253–254

associative_property_map adaptor, 103
Austern, Matthew, 28

B

back_edge function, 50, 67, 160
back_edge_recorder class, 70
back_edges vector, 71
backward edge, 106
Bacon, Kevin, 62–67
bacon_number array, 66
bacon_number_recorder, 66
Bacon numbers

basic description of, 61–67
graph setup and, 63–65
input files and, 63–65

bar.o, 54
Base

classes, 20, 21
parameter, 37

basic block, 69
BCCL (Boost Concept Checking Library),

35, 36
bellman_ford.cpp, 185–186
bellman_ford_shortest_paths algorithm, 40,

162
basic description of, 76–82, 182–186
named parameters, 184
parameters, 183
time complexity and, 185

BellmanFordVisitor interface, 161–162
BFS (breadth-first search), 11, 39

. See also

breadth_first_search algorithm

Bacon numbers and, 65–67
basic description of, 61–67
visitor concepts and, 158–159

bfs_name_printer function, 11

SiekINDEX.fm Page 304 Friday, November 9, 2001 3:02 PM

INDEX

305

BFSVisitor interface, 66, 158–159
bgl_named_params class, 40
BidirectionalGraph concept, 69, 72, 124,

145–146
bidirectional_graph_tag function, 124
Binary method problem, 23–24
boost::array, 78
Boost Concept Checking Library (BCCL),

35, 36
boost::forward_iterator_helper, 114
BOOST_INSTALL_PROPERTY, 52
Boost namespace

adjacency_list class and, 37–38
basic description of, 37–39

boost:: prefix, 37–38
Boost Property Map Library, 55–56, 79, 80
Boost Tokenizer Library, 63
breadth-first search (BFS), 11, 39

. See also

breadth_first_search algorithm

Bacon numbers and, 65–67
basic description of, 61–67
visitor concepts and, 158–159

breadth_first_search algorithm, 11, 39

. See
also

 breadth-first search (BFS)
Bacon numbers and, 65–67
basic description of, 61–67, 165–169
named parameters, 167
parameters, 166
preconditions, 167
visitor concepts and, 158–159

Breadth-first tree, 61

C

C++ (high-level language)
associated types and, 28
binary method problem and, 23–24
code bloat and, 23
concept checking and, 34–37

expressions, 28
generic programming in, 19–59
GNU, 127, 128
Koenig lookup and, 38–39
Monoid concept and, 291
named parameters and, 39–40
object-oriented programming and, 22–25
Standard, 22, 28, 55, 125
valid expressions and, 28

capacity_map parameter, 206
cap object, 108
cc-internet.dot, 98
Chessboard, Knight’s tour problem for,

113–118
Class(es)

. See also

 Classes (listed by name)
abstract, 20
archetype, 36
auxiliary, 242–251, 289–298
basic description of, 13–14, 213–275
base, 20, 21
comparisons, 127–132
concept-checking, 35–36
nesting, 52
selecting, 43–44
typedefs nested in, 30–31

Classes (listed by name)

. See also

adjacency_list class

AdditiveAbelianGroup class, 20–21
adjacency_matrix class, 11–12, 43,

234–242
adjacency_vertices class, 109, 114, 115
archetype class, 36
array_traits class, 31–33
back_edge_recorder class, 70
bgl_named_params class, 40
ColorPoint class, 23–24
ColorPoint2 class, 24
color_traits class, 56, 290

SiekINDEX.fm Page 305 Friday, November 9, 2001 3:02 PM

306

INDEX

Classes,

continued

edge_list class, 78–79
equivalence class, 98
filtered_graph class, 256–262
GRAPH class, 120, 123–126
graph_property_iter_range class, 58,

297–298
graph_traits class, 5–7, 33–34, 47, 57,

125–126, 142–148, 242–245
iterator_adaptor class, 125
iterator_property_map class, 79, 283–285
iterator_traits class, 29, 33, 278
johns_int_array class, 32
knights_tour_graph class, 114–117
make_iterator_property_map class, 79
parallel_edge_traits class, 234
Point class, 24
property class, 52–53, 63, 231
property_kind class, 52
property_map class, 53, 156, 248–249
property_num class, 52
property_traits class, 33, 56, 231, 278,

282
put_get_helper class, 286
sgb_vertex_id_map class, 122
sgb_vertex_name_map class, 286
std::iterator_traits class, 29

clear_vertex function, 134, 153, 226
clock function, 128
Code.

See also

 Source code files
“bloat,” 23
size, 23

Color
array, 55
connected components and, 100, 102–104
maps, 55–56, 69, 100, 167–181, 196,

199, 207
markers, 56

three-way, 48
types, accessing, 56

ColorMap, 56, 175, 176–177, 181
color_map parameter, 56, 69, 167, 170, 172,

176, 178, 180–181, 196, 199, 207
ColorPoint class, 23–24
ColorPoint2 class, 24
color_traits class, 56, 290
ColorValue concept, 175, 177, 290
Comma, 40
compare function, 183
Compilation

. See also

 Compilers
dispatch of virtual functions during, 22
order, 44–48
time, 22, 54–55, 57–59

compile_cost_map, 53
Compilers

. See also

 Compilation
Koenig lookup and, 38–39
partial specialization and, 32–33

Complexity, time
adjacency_list class and, 225–227
basic description of, 165
bellman_ford_shortest_paths function

and, 185
breadth_first_search function and, 167
connected_components function and, 196
depth_first_search function and, 172
depth_first_visit function and, 176
dijkstra_shortest_paths function and, 181
disjoint_sets class and, 295
incremental components and, 202, 203,

204
johnson_all_pairs_shortest_paths

function and, 188
kruskal_minimum_spanning_tree

function and, 191
prim_minimum_spanning tree function

and, 194

SiekINDEX.fm Page 306 Friday, November 9, 2001 3:02 PM

INDEX

307

strong_components function and, 200
topological_sort function and, 177

Complexity guarantees, 28, 145–148,
152–157

Component array, 103
component_index function, 204–206
Components, connected

basic description of, 97–104
static, 195–201
strongly, 97, 102–104
incremental, 201–205
Internet connectivity and, 98–101
Web page links and, 102–104

Component vector, 100
compute_loop_extent function, 71
Concept(s)

archetypes, 36–37
auxiliary, 289–298
checking, 34–37
covering, 36–37
definitions, 27–28
generic programming, 27–29
graph modification, 150–157
graph traversal, 137–150
notation for, 137
property map, 278–281
refinement of, 28, 138
use of the term, 19
visitor, 158–160

Connected components
basic description of, 97–104
static, 195–201
strongly, 97, 102–104
incremental, 201–205
Internet connectivity and, 98–101
Web page links and, 102–104

connected_components function, 98, 100,
195–197

connected_components.hpp, 196
Constructors, 43–44
container_gen.cpp, 232, 233
Containers

basic description of, 25
hash_map container, 187

CopyConstructible, 36, 143
Cross edge, 68
Cut, capacity of, 106
cycle_edge function, 159
Cycle(s)

. See also

 Cyclic dependencies
basic description of, 45
detector objects, 51
makefiles and, 48
visitors and, 51–52

Cyclic dependencies, 42, 48–49

. See also

Cycles

D

Data structures, traversal through, 25
default_bfs_visitor, 66, 70
DefaultConstructible, 143
degree_size_type function, 144, 146
Delay array, 79
Dependencies

cyclic, 42, 48–49
file, 41–42, 54–55

Depth-first forest, 44, 67
Depth-first search (DFS)

. See also

depth_first_search algorithm

basic description of, 67–74
connected components and, 98
cyclic dependencies and, 48–49
generic, 49–52
topological sorts and, 55–57
upstream, 72

depth_first_search algorithm, 13, 18,
57

SiekINDEX.fm Page 307 Friday, November 9, 2001 3:02 PM

308

INDEX

Depth-first search (DFS)
basic description of, 67–75, 170–175
connected components and, 98
topological sort and, 44–46
named parameters, 172
parameters, 172
time complexity and, 172
topological sort and, 44–46
visitor concepts and, 160–161

Depth-first tree, 44, 67
depth_first_visit function, 57, 67, 70, 72

basic description of, 175–176
parameters, 175
time complexity and, 176

Descriptors, 5–6, 144, 148, 227–229
DFS (depth-first search)

. See also

depth_first_search algorithm

basic description of, 67–74
connected components and, 98
cyclic dependencies and, 48–49
generic, 49–52
topological sorts and, 55–57
upstream, 72

DFSVisitor interface, 160–161
dfs_vl, 57
difference_type, 29
DiffType parameter, 251
dijkstra.cpp, 227
Dijkstra’s shortest-path algorithm, 76, 161,

277
basic description of, 81–88, 179–181
named parameters, 179
parameters, 179
time complexity and, 181

DIMACS file format, 207, 211
directed_category function, 34, 124, 244
Directed parameter, 12, 214, 238, 246
directed_tag function, 124

Directed version, 138
disconnecting_set iterator, 110
discover_time parameter, 44–45, 199
discover_vertex function, 50
distance_combine parameter, 184
distance_compare parameter, 184
distance_map parameter, 40, 183, 184, 187,

194
distance_zero parameter, 188
ds.find_set function, 201–205
ds.union_set function, 201–205

E

Edge(s)
adding, 128–129
backward, 106
connectivity, 106–112
cross, 68
descriptors, 5–6, 144, 148
forward, 68, 106
iterators, 7, 43–44, 148, 251
parallel, 4
relaxation, 77–78
removing, 130
residual capacity of, 105, 206
saturated, 105

edge_descriptor, 144, 148
edge function, 149, 226
edge_iterator, 148
EdgeIterator parameter, 251
edge_length_t tag, 266
edge_list class, 78–79
EdgeListGraph interface, 78, 92, 147–148
edge_list.hpp, 251
EdgeList parameter, 12
edge_list template, 78–79
EdgeList type, 65, 127, 132
EdgeMutableGraph concept, 124, 152, 154

SiekINDEX.fm Page 308 Friday, November 9, 2001 3:02 PM

INDEX

309

EdgeMutablePropertyGraph concept, 157
edge_parallel_category function, 34, 124,

244
EdgeProperties parameter, 12, 52
EdgeProperty parameter, 238
edges function, 8, 147
edges_size_type, 148–149
edge type, 124
edge_weight_t tag, 52, 92
edge_xxx_t tag, 52
Edmunds-Karp algorithm, 105, 109
edmunds_karp_max_flow function,

206–209
empty function, 290
entry vertex, 70
enum, 78
equal function, 23–24
EqualityComparable, 28–29, 143
equivalence class, 98
Equivalence relations, 98
erase_dispatch function, 234
erase function, 234
Errors, concept checking and, 34–37
Erdös, Paul, 62
Erdös number, 62
Event points, 50
examine_edge function, 159

F

f function, 40
File dependencies

basic description of, 41–42
compilation time and, 54–55

file_dep_graph function, 55
file_dep_graph2 function, 55
filtered_graph adaptor, 13
filtered_graph class, 256–262
find_loops function, 69

find_with_full_path_compression function,
295

find_with_path_halving function, 295
Finish time, 44–45
finish_vertex function, 50
First_Adj_Edge, 126
first argument, 27
first variable, 8
Flow functions, 105

. See also

Maximum-flow algorithms

Flow networks, 105

. See also

Maximum-flow algorithms

foo.o, 54
Ford, L. R., 105
Ford-Fulkerson algorithm, 105
for_each function, 29
Forward edge, 68, 106
ForwardIterator, 25–26
forward_iterator_tag function, 33
forward_or_cross_edge function, 50
Fulkerson, D. R., 105
Function(s)

. See also

 Functions (listed by
name)

auxiliary, 289–298
objects, user-defined, 49
preconditions for, 165
prototypes, 43, 164
virtual, function templates and,

comparison of, 22
Functions (listed by name)

. See also

Functions(s)

add_edge function, 9, 17, 43, 84, 121,
128, 141, 152–153, 157, 226

add_vertex function, 9, 43, 120, 152, 157,
128, 225

adjacency_graph_tag function, 124
adjacency_iterator function, 47, 146
adjacent_vertices function, 46–47, 146

SiekINDEX.fm Page 309 Friday, November 9, 2001 3:02 PM

310

INDEX

Functions,

continued

advance_dispatch function, 33
advance function, 33
allow_parallel_edge_tag function, 124
back_edge function, 50, 67, 160
bfs_name_printer function, 11
bidirectional_graph_tag function, 124
clear_vertex function, 134, 153, 226
clock function, 128
compare function, 183
component_index function, 204–206
compute_loop_extent function, 71
connected_components function, 98, 100,

195–197
cycle_edge function, 159
degree_size_type function, 144, 146
depth_first_visit function, 57, 67, 70, 72,

175–176
directed_category function, 34, 124, 244
directed_tag function, 124
discover_vertex function, 50
ds.find_set function, 201–205
ds.union_set function, 201–205
edge function, 149, 226
edge_parallel_category function, 34, 124,

244
edges function, 8, 147
edmunds_karp_max_flow function,

206–209
empty function, 290
equal function, 23–24
erase_dispatch function, 234
erase function, 234
examine_edge function, 159
f function, 40
file_dep_graph function, 55
file_dep_graph2 function, 55
find_loops function, 69

find_with_full_path_compression
function, 295

find_with_path_halving function, 295
finish_vertex function, 50
for_each function, 29
forward_iterator_tag function, 33
forward_or_cross_edge function, 50
function_requires function, 35
gb_new_edge function, 123
generic_dfs_vl function, 55
get function, 6, 79–80, 156, 248, 266,

279, 286
has_cycle function, 49–52
identity_property_map function, 16
in_edges function, 8
incremental_components function, 195,

199
insert function, 64
johnson_all_pairs_shortest_paths

function, 186–188
kruskal_minimum_spanning_tree

function, 91–93, 189–192
link function, 294
make_back_edge_recorder function, 71
max_element function, 58
num_edges function, 149
num_vertices function, 38–39, 46, 115,

147, 162
operator function, 50, 158
out_degree function, 144, 145
out_edges function, 8, 72, 125, 126, 138,

140, 143–145
prim_minimum_spanning_tree function,

94–96, 192–195
print_equal function, 24
print_equal2 function, 24
print_graph function, 272
print_trans_delay function, 6

SiekINDEX.fm Page 310 Friday, November 9, 2001 3:02 PM

INDEX

311

print_vertex_name function, 6
push_dispatch function, 234
push function, 234, 290
push_relabel_flow function, 206
push_relabel_max_flow function,

209–212
put function, 279, 280, 286
read_graphviz function, 84, 91
remove_edge function, 152–153, 226,

228
remove_edge_if function, 227
remove_in_edge_if function, 155
remove_out_edge_if function, 154
remove_vertex function, 152, 225, 226
safe_sort function, 35
size function, 290
sort function, 10, 34
source function, 124, 125, 138, 140, 145,

147
std::accumulate function, 54
std::advance function, 33
std::back_inserter function, 92
std::for_each function, 29
strong_components function, 102–103,

198–201
Succ_Adj_Edge function, 125
sum function, 20, 21, 30, 31, 32
target function, 124, 125, 138, 140, 145,

149
tie function, 8, 296
top function, 290
topological_sort function, 13, 14–18,

44–46, 57, 119, 120–123, 176–177
topo_sort_dfs function, 46–47
topo_sort function, 47, 49, 51, 55–58
traversal_category function, 34, 124, 244
tree_edge function, 50, 160
union_set function, 294

valid_position function, 114–115
vertex function, 225
vertex_index_map function, 16, 187, 191,

194, 196, 199, 207
vertex_list_graph_tag function, 124
vertices function, 8, 47, 296
vertices_size_type function, 124
visitor function, 11, 66
who_owes_who function, 231

function_requires function, 35

G

“Gang of Four” (GoF) Patterns Book, 10–11
gb_new_edge function, 123
g_dot, 84
Generalized pointers, 25

. See also

 Iterators
generic_dfs_vl function, 55
Generic programming (GP)

boost namespace and, 37–39
concepts, 27–29, 34–37
in C++, 19–59
Koenig lookup and, 38–39
models, 27–29
named parameters and, 39–40
object-oriented programming and,

comparison of, 22–25
the STL and, 25–27

get function, 6, 79–80, 156, 248, 266, 279,
286

GNU C++, 127, 128

. See also

 C++
(high-level language)

Goldberg, A. V., 105
GP (generic programming).

See

 Generic
programming (GP)

Graph(s)
adaptors, 13–14, 119, 123–126
directed, 3–4
implicit, 113–118

SiekINDEX.fm Page 311 Friday, November 9, 2001 3:02 PM

312

INDEX

Graph(s),

continued

internal properties for, 52–54, 229–230
libraries, interfacing with, 119–126
modification, 9–10, 150–157
search, backtracking, 116–116
setup, 42–44, 52–54, 63–65
terminology, 3–4
traversal, 7–8, 24, 124, 137–150, 244
undirected, 4, 138–142

graph_archetypes.hpp, 37
GRAPH class, 120, 123–126
Graph concept, 142–153
graph_concepts.hpp, 35
graph.cpp, 126
Graph parameter, 55
GraphProperties parameter, 12
graph_property_iter_range class, 58, 297–298
GraphProperty parameter, 238
graph_traits class, 5–7, 33–34, 47, 57,

125–126, 142–148
basic description of, 242–245
category tags, 244
template parameters, 244

graph_traits.hpp, 244–245
Graph type, 69, 84, 94, 119–120
GraphvizDigraph, 82, 84, 103
GraphvizGraph type, 82, 91, 98, 100
graphviz.hpp, 84, 91
Graphviz.org, 83
Guarantees, complexity, 28, 145–148,

152–157
Guidelines, performance

basic description of, 127–134
graph class comparisons and, 127–132

H

Hamlitonian path, 113–114
has_cycle function, 49–52

hash_map container, 187
Heuristics

path compression, 190, 293
union by rank, 189–190, 293

Hop, use of the term, 76
.hpp files

adjacency_list.hpp, 17, 216, 246
adjacency_matrix.hpp, 237
connected_components.hpp, 196
edge_list.hpp, 251
graph_archetypes.hpp, 37
graph_concepts.hpp, 35
graph_traits.hpp, 244–245
graphviz.hpp, 84, 91
johnson_all_pairs_shortest_path.hpp, 186
kruskal_minimum_spanning_tree.hpp,

190
leda_graph.hpp, 120–121, 126, 243,

266
prim_minimum_spanning_tree.hpp, 193
properties.hpp, 48–49, 248, 250
property.hpp, 256
property_iter_range.hpp, 298
property_map.hpp, 56, 283
push_relabel_max_flow.hpp, 209
reverse_graph.hpp, 253
stanford_graph.hpp, 13, 122, 243
strong_components.hpp, 198
vector_as_graph.hpp, 15, 17, 272

I

identity_property_map function, 16
Implicit graphs

backtracking graph search and,
116–117

basic description of, 113–118
Warnsdorff’s heuristic and, 117–118

in_degree, 145

SiekINDEX.fm Page 312 Friday, November 9, 2001 3:02 PM

INDEX

313

In-edge(s)
basic description of, 4–5
BidirectionalGraph concept and, 145–146
iterators, 7–8
undirected graphs and, 138, 140

in_edges function, 8
IncidenceGraph concept, 143–145, 154
incremental_components.cpp, 202
incremental_components function, 195, 199
InputIterator, 25–26, 28–29
insert function, 64
Interface, use of the term, 5
interior_property_map.cpp, 232
Internet

. See also

 Routers; Routing
connectivity, connected components and,

98–101
Movie Database, 63

Internet Protocol (IP), 76
Invariants, 28
IP (Internet Protocol), 76
iterator_adaptor class, 125
iterator_category type, 29, 33
iterator_property_map adaptor, 100
iterator_property_map class, 79, 283–285
Iterators

adjacency_list and, 227–229
basic description of, 25
categories of, 25–27
constructing graphs using, 43–44

iterator_traits class, 29, 33, 278

J

johns_int_array class, 32
johnson_all_pairs_shortest_path.hpp, 186
johnson_all_pairs_shortest_paths function

basic description of, 186–187
named parameters, 187–188
parameters, 187

K

Karzanov, A. V., 105
Keyword parameters, 39–40
Killerapp programs, 41
knights_adjacency_iterator, 115
knights_tour_graph class, 114–117
Knight’s tour problem, 113–118
Knuth, Donald, 119
Koenig lookup, 38–39
Kruskal, J. B., 89, 90, 94, 95
kruskal.cpp, 191
kruskal_minimum_spanning_tree function

basic description of, 91–93, 189–192
named parameters, 190–191
parameters, 190
time complexity and, 191

kruskal_minimum_spanning_tree.hpp, 190
Kruskal’s algorithm, 90–93, 95, 189–192

L

last argument, 27
last variable, 8
LEDA graphs, 119–121, 123–126

basic description of, 13
graph adaptors and, 13
templates for, 266–272

leda_g, 120
leda_graph.hpp, 120–121, 126, 243, 266
LessThanComparable interface, 34, 36, 37
lexical_cast, 91
libfoobar.a, 54–55
lib_jack, 38
lib_jill, 39
link function, 294
Link-state advertisement, 81
Lists, vectors of, using topological sorts

with, 14–17
listS argument, 17, 53, 132, 233

SiekINDEX.fm Page 313 Friday, November 9, 2001 3:02 PM

314

INDEX

Loop(s)
basic description of, 69
finding, in program-control-flow graphs,

69–73
head, 69
self-, 4
termination, 87

loop_set, 73
LvaluePropertyMap interface, 53, 56, 66,

79

M

make_back_edge_recorder function, 71
Makefiles, 48, 59
make_iterator_property_map class, 79
make_leda_node_property_map, 121
max_element function, 58
Max-Flow Min-Cut Theorem, 106
Maximum-flow algorithms

basic description of, 105–112,
206–213

edge connectivity and, 106–112
miles_span.cpp, 262
Minimum diconnected set, 106
Minimum-spanning-tree problem

basic description of, 89–96, 189–195
Kruskal’s algorithm and, 91–93
Prim’s algorithm and, 94–96

Model, use of the term, 21, 28
MultiPassInputIterator, 146
Musser, D. R., 25
MutableBidirectionalGraph concept,

154–155
MutableEdgeListGraph concept, 155
MutableIncidenceGraph concept, 154
my_array, 30–31
Myers, Nathan, 30

N

Named parameters

. See also

 Parameters
basic description of, 39–40, 164
bellman_ford_shortest_paths function,

184
breadth_first_search function, 167
breadth_first_visit function, 170
connected_components function,

196
depth_first_search function, 172
dijkstra_shortest_paths function,

179–181
edmunds_karp_max_flow function,

206–207
johnson_all_pairs_shortest_paths

function, 187–188
kruskal_minimum_spanning_tree

function, 190–191
prim_minimum_spanning tree function,

194
push_relabel_max_flow function,

210–211
strong_components function,

199–200
topological_sort function, 176–177

name_map, 53
Namespaces

boost namespace, 37–39
Koenig lookup and, 38–39

Nesting classes, 52
NextProperty parameter, 229
node_array, 121
node type, 124
Notation, 137
num_edges function, 149
num_vertices function, 38–39, 46, 115, 147,

162

SiekINDEX.fm Page 314 Friday, November 9, 2001 3:02 PM

INDEX

315

O

OOP (object-oriented programming)
generic programming and, comparison

of, 22–25
Graph concept and, 142
polymorphism and, 19–21

operator function, 50, 158
OSPF (Open Shortest Path First) protocol,

82 out_degree function, 144, 145
Out-edge(s)

adaptors, 125
basic description of, 4–5
iterators, 7–8, 126, 144
traversal, 132

out_edge_adaptor, 125
out_edge_iterator, 126, 144
out_edges function, 8, 72, 125, 126

complexity guarantees and, 145
IncidenceGraph concept and, 143–144
undirected graphs and, 138, 140

P

Packets, basic description of, 76
Parallel compilation time, 57–59

. See also

Compilation

parallel_edge_traits class, 234
Parameters

. See also

 Named parameters;
Parameters (listed by name); Template
parameters

adjacency_list class, 216
adjacency_list_traits class, 246
adjacency_matrix class, 238
adjacency_matrix_traits class, 247
basic description of, 39–40, 164
bellman_ford_shortest_paths function,

183
breadth_first_search function, 166

breadth_first_visit function, 170
connected_components function, 196
depth_first_search function, 172
depth_first_visit function, 175
dijkstra_shortest_paths function, 179
disjoint_sets class, 294
edge_list class, 251
edmunds_karp_max_flow function,

206
filtered graph class, 258
graph_property_iter_range class, 298
graph_traits class, 244
iterator_property_map class, 284
johnson_all_pairs_shortest_paths

function, 187
kruskal_minimum_spanning_tree

function, 190
LEDA Graph class template, 267
mutable_queue adaptor, 292
prim_minimum_spanning tree function,

193
property class, 250
property_map class, 249
property_traits class, 283
push_relabel_max_flow function, 210
reverse_graph class, 253
strong_components function, 199
topological_sort function, 176

Parameters (listed by name)

. See also

Parameters

Base parameter, 37
capacity_map parameter, 206
color_map parameter, 56, 69, 167, 170,

172, 176, 178, 180–181, 196, 199,
207

DiffType parameter, 251
Directed parameter, 12, 214, 238, 246

SiekINDEX.fm Page 315 Friday, November 9, 2001 3:02 PM

316

INDEX

Parameters,

continued

discover_time parameter, 44–45, 199
distance_combine parameter, 184
distance_compare parameter, 184
distance_map parameter, 40, 183, 184,

187, 194
distance_zero parameter, 188
EdgeIterator parameter, 251
EdgeList parameter, 12
EdgeProperties parameter, 12, 52
EdgeProperty parameter, 238
Graph parameter, 55
GraphProperties parameter, 12
GraphProperty parameter, 238
NextProperty parameter, 229
predecessor_map parameter, 85, 183,

184, 190, 207
residual_capacity_map parameter,

206
reverse_edge_map parameter, 207
root_vertex parameter, 194
topo_sort_visitor parameter, 18
ValueType parameter, 251
VertexProperties parameter, 12, 52
VertexProperty parameter, 238
visitor parameter, 162, 184
weight_map parameter, 79, 184, 187,

194
Parent(s)

array, 95
basic description of, 61, 67
maps, 85
minimum-spanning-tree problem and,

94–95
shortest-path problems and, 80

Parsers, 82–84
Partial specialization, providing array traits

for pointer types with, 32–33

Path(s)

. See also

 Shortest-path problems
basic description of, 75, 97
Hamlitonian, 113–114
compression heuristics, 190, 293

path_cost, 87
Performance guidelines

basic description of, 127–134
graph class comparisons and,

127–132
Period (.), 40
Point class, 24
Pointer types, 29, 32–33
Polymorphism

basic description of, 19, 20, 21
parametric, 21, 22
subtype, 20, 22

pop function, 290
POSIX, 128
Pred_Adj_Edge function, 125
predecessor_map parameter, 85, 183, 184,

190, 207
Predecessors, basic description of, 61
Prim, R., 89
prim.cpp, 195
prim_minimum_spanning_tree function

basic description of, 94–96, 192–195
named parameters, 194
parameters, 193
time complexity and, 194

prim_minimum_spanning_tree.hpp,
 193

Prim’s algorithm, 89, 90, 94–96
print_equal function, 24
print_equal2 function, 24
print_graph function, 272
print_trans_delay function, 6
print_vertex_name function, 6
Program-control-flow graphs, 69–73

SiekINDEX.fm Page 316 Friday, November 9, 2001 3:02 PM

INDEX

317

Properties

. See also

 Property maps;
Property tags

basic description of, 5
custom, 230
external storage of, 46
internal, 52–54, 229–230
marking vertices using, 46

properties.hpp, 48–49, 248, 250
property class, 52–53, 63, 231
PropertyGraph interface, 53, 155–156
property.hpp, 256
property_iter_range.hpp, 298
property_kind class, 52
Property map(s), 53, 103

basic description of, 6–7
classes, 281–285
concepts, 278–281
creating your own, 283–287
implemented with std::map, 287
library, 277–288
objects, 63–64
for the Stanford GraphBase, 285, 286

property_map class, 53, 156, 248–249
property_map.hpp, 56, 283
property_num class, 52
Property tags, 52, 155–156, 250, 285
property_traits class, 33, 56, 231, 278, 282
Prototypes, 43, 122, 164, 262
PROTOTYPES change file, 122, 262
push_dispatch function, 234
push function, 234, 290
push-relabel algorithm, 105
push_relabel_flow function, 206
push_relabel_max_flow function,

209–212
push_relabel_max_flow.hpp, 209
put function, 279, 280, 286
put_get_helper class, 286

R

RandomAccessIterator, 25–26, 27, 36
rank_map, 190
reachable_from_head vector, 72
read_graphviz function, 84, 91
ReadWritePropertyMap, 103 Real model,

21
reference type, 29
Refinement, of concepts, 28, 138
remove_edge function, 152–153, 226, 228
remove_edge_if function, 227
remove_in_edge_if function, 155
remove_out_edge_if function, 154
remove_vertex function, 152, 225, 226
res_cap object, 108
Residual capacity, of edges, 105, 206
residual_capacity_map parameter, 206
rev_edge object, 108
reverse_edge_map parameter, 207
reverse_graph adaptor, 13, 72
reverse_graph.cpp, 252–253
reverse_graph.hpp, 253
RIP (Routing Information Protocol), 76
roget_components.cpp, 262
root_map, 199
root_vertex parameter, 194
Routers

. See also

 Routing
basic description of, 76
shortest-path problems and, 76–77

Routing

. See also

 Routers
distance vector, 77–81
link-state, 81–88
protocols, 76
tables, 76, 85–88

Routing Information Protocol (RIP), 76
Run-time

behavior, testing, 126
dispatch, of virtual functions, 22

SiekINDEX.fm Page 317 Friday, November 9, 2001 3:02 PM

318

INDEX

S

safe_sort function, 35
Saturated edges, 105
Scherer, Andreas, 262
Self-loops, 4
Semicolon (;), 73
setS argument, 65, 127, 132 SGB (Stanford

GraphBase), 119, 120, 122–123,
262–266

sgb_vertex_id_map class, 122
sgb_vertex_name_map class, 286
SGI STL Web site, 28
Shortest path

. See also

 Paths; Shortest-path
problems

distance, 61
tree, 75
use of the term, 61, 63
weight, 75

Shortest-path problems

. See also

 Paths;
Shortest path

basic description of, 61, 63, 75–88,
177–189

definitions, 75–76
Internet routing and, 76–77
single-pair, 75
single-source, 75

sink vertices, 105
“Six Degrees of Kevin Bacon” game, 62–67
size function, 290
sort function, 10, 34
Source code files

bellman_ford.cpp, 185–186
container_gen.cpp, 232, 233
dijkstra.cpp, 227
graph.cpp, 126
incremental_components.cpp, 202
interior_property_map.cpp, 232
kruskal.cpp, 191

miles_span.cpp, 262
prim.cpp, 195
reverse_graph.cpp, 252–253
roget_components.cpp, 262

source function, 124, 125
complexity guarantees and, 145
EdgeListGraph concept and, 147
undirected graphs and, 138, 140

Source vertex, 105
Spanning tree

basic description of, 89
minimum-, problems, 89–96, 189–195

spanning_tree_edges iterator, 189
Specialization, partial, providing array traits

for pointer types with, 32–33
Stack, basic description of, 19
Stanford GraphBase (SGB), 119, 120,

122–123, 262–266
stanford_graph.hpp, 13, 122, 243
std::accumulate function, 54
std::advance function, 33
std::back_inserter function, 92
std::back_insert_iterator, 71
std::deque, 16
std::for_each function, 29
std::insert_iterator, 109
std::istream_iterator, 43
std::iterator_traits class, 29
std::list, 17, 23, 27, 127
std::map, 64, 84, 103
std::pair, 7–9, 43

AdjacencyGraph concept and, 146
AdjacencyMatrix concept and, 148–149
IncidenceGraph concept and, 144
interfacing with other graph libraries and,

126
shortest-path problems and, 78

std::set, 107, 109, 127, 132

SiekINDEX.fm Page 318 Friday, November 9, 2001 3:02 PM

INDEX

319

std::sort, 36, 37
std::vector, 17, 27, 65, 85, 92, 107, 127
Stepanov, A. A., 25
STL (Standard Template Library)

generic programming and, 22–23, 25–27
graph class comparisons and, 127
Graph concept and, 142
graph traversal and, 7
iterator_traits class, 29, 33, 278
traits class and, 33
visitors and, 10–11, 49
Web site, 28

strong_components function
basic description of, 102–103, 198–201
named parameters, 199–200
parameters, 199
time complexity and, 200

strong_components.hpp, 198
Succ_Adj_Edge function, 125
Successors, number of, 117–118
sum function, 20, 21, 30, 31, 32

T

Tags

. See also

 Tags (listed by name)
basic description of, 155
dispatching, 33–34
property, 52, 155–156, 250, 285

Tags (listed by name)

. See also

 Tags
edge_length_t tag, 266
edge_weight_t tag, 52, 92
edge_xxx_t tag, 52
vertex_index_t tag, 223, 230, 266, 283
vertex_name_t tag, 52

target function, 124, 125
complexity guarantees and, 145
EdgeListGraph concept and, 149
undirected graphs and, 138, 140

TCP (Transmission Control Protocol), 76

Telephone lines, computing the best layout
for, 90–96

Template(s)

. See also

 STL (Standard
Template Library); Template
parameters

concept checking and, 34–37
for LEDA graphs, 266–272
polymorphism and, 21
size of, 23
specialization, 31
third-party, 32
traits class, 31–32
virtual functions and, comparison of, 22
visitors and, 50–51

Template parameters

. See also

 Templates
adjacency_list_traits class, 246
adjacency_matrix class, 238
adjacency_matrix_traits class, 247
disjoint_sets class, 294
edge_list class, 251
filtered_graph class, 258
graph_property_iter_range class, 298
iterator_property_map class, 284
LEDA Graph class, 267
mutable_queue adaptor, 292
property class, 250
property_map class, 249
property_traits class, 283
reverse_graph class, 253

Testing
with graph class comparisons,

127–132
run-time behavior, 126

tie function, 8, 296
Time

. See also

 Time complexity
compilation, 22, 54–55, 57–59
discover, of vertices, 44–45
finish, 44–45

SiekINDEX.fm Page 319 Friday, November 9, 2001 3:02 PM

320

INDEX

Time complexity
adjacency_list class and, 225–227
basic description of, 165
bellman_ford_shortest_paths function

and, 185
breadth_first_search function and, 167
connected_components function and, 196
depth_first_search function and, 172
depth_first_visit function and, 176
dijkstra_shortest_paths function and, 181
disjoint_sets class and, 295
incremental components and, 202, 203, 204
johnson_all_pairs_shortest_paths

function and, 188
kruskal_minimum_spanning_tree

function and, 191
prim_minimum_spanning tree function

and, 194
strong_components function and, 200
topological_sort function and, 177

Timestamps, 116–117
Timing runs, 127–128
Tokens, 63
top function, 290
Topological sort

. See also

 topological_sort
function

adjacency_list class and, 17
basic description of, 13–18, 176–177
via depth-first search, 18, 44–46
generic, 55–57
used with a vector of lists, 14–17

topological_sort function, 13, 14–18, 57

.
See also

 Topological sort
basic description of, 176–177
depth_first search algorithm and, 18,

44–46
interfacing with other graph libraries and,

119, 120–123

named parameters, 176–177
parameters, 176

topo_order, 46, 57–58, 121
topo_sort_dfs function, 46–47
topo_sort function, 47, 49, 51, 55–58
topo_sort_visitor parameter, 18
topo_visitor, 56
tracert, 76
Traits class

associated types and, 30–34
definition of, 31–32
Graph concept and, 142
internal properties and, 52
most well-known use of, 33
partial specialization and, 32–33
requirements and, 28

Transmission Control Protocol (TCP), 76
Traversal, 7–8, 24, 124, 137–150, 244
traversal_category function, 34, 124, 244
tree_edge function, 50, 160
Tree edges, 61, 67
TrivialIterator, 28–29
Typedefs, nested in classes, 30–31

U

Undirected graphs, 4, 138–142
undirectedS argument, 63
Union by rank heuristics, 189–190, 293
union_set function, 294
User-defined objects, 49

V

Valid expressions, 28, 29
valid_position function, 114–115
value_type, 28, 29, 31
ValueType parameter, 251
vecS argument, 17, 53, 127
vector_as_graph.hpp, 15, 17, 272

SiekINDEX.fm Page 320 Friday, November 9, 2001 3:02 PM

INDEX

321

Vector model, 21
vertex_descriptor, 142, 144, 148
vertex function, 225
VertexGraph interface, 107
vertex_index_map function, 16, 187, 191,

194, 196, 199, 207
vertex_index_t tag, 223, 230, 266, 283
VertexList, 12, 127, 132, 134, 224–225, 230
VertexListGraph concept, 92, 124, 143, 147
vertex_list_graph_tag function, 124
VertexMutableGraph concept, 152
VertexMutablePropertyGraph concept,

156–157
vertex_name_t tag, 52
VertexProperties parameter, 12, 52
vertex_property, 157
VertexProperty parameter, 238
VertextMutableGraph, 124
vertex.t, 57
vertex_xxx_t, 52
Vertices

accessing, 46–47
adding, 128–129
adjacent, 4, 46–47
basic description of, 3
clearing, 130, 134, 153
discover time of, 44–45
finish time of, 44–45
marking, using external properties, 46

names of, storing, 52, 53
sets of, basic description of, 3
source, 4
target, 4
traversing, 47–48, 130–132

vertices function, 8, 47, 296
vertices_size_type function, 124
Virtual functions

compile-time dispatch of, 22
run-time dispatch of, 22
size of, 22

Visitor(s), 10–11, 50
basic description of, 49–52
concepts, 158–160

visitor function, 11, 66
visitor parameter, 162, 184
Visual C++ (Microsoft), 41, 127, 128

W

Warnsdorff’s heuristic, 113, 117–118
Web page(s)

connected components and, 97, 102–104
links, connected components and,

102–104
well-designed, 97

weight_map parameter, 79, 184, 187, 194
WeightMap type, 190
white_color constant, 56
who_owes_who function, 231

SiekINDEX.fm Page 321 Friday, November 9, 2001 3:02 PM

	Foreword
	Preface
	I User Guide
	Introduction
	Some Graph Terminology
	Graph Concepts
	Vertex and Edge Descriptors
	Property Maps
	Graph Traversal
	Graph Construction and Modification
	Algorithm Visitors

	Graph Classes and Adaptors
	Graph Classes
	Graph Adaptors

	Generic Graph Algorithms
	The Topological Sort Generic Algorithm
	The Depth-First Search Generic Algorithm

	Generic Programming in C++
	Introduction
	Polymorphism in Object-Oriented Programming
	Polymorphism in Generic Programming
	Comparison of GP and OOP

	Generic Programming and the STL
	Concepts and Models
	Sets of Requirements
	Example: InputIterator

	Associated Types and Traits Classes
	Associated Types Needed in Function Template
	Typedefs Nested in Classes
	Definition of a Traits Class
	Partial Specialization
	Tag Dispatching

	Concept Checking
	Concept-Checking Classes
	Concept Archetypes

	The Boost Namespace
	Classes
	Koenig Lookup

	Named Function Parameters

	A BGL Tutorial
	File Dependencies
	Graph Setup
	Compilation Order
	Topological Sort via DFS
	Marking Vertices using External Properties
	Accessing Adjacent Vertices
	Traversing All the Vertices

	Cyclic Dependencies
	Toward a Generic DFS: Visitors
	Graph Setup: Internal Properties
	Compilation Time
	A Generic Topological Sort and DFS
	Parallel Compilation Time
	Summary

	Basic Graph Algorithms
	Breadth-First Search
	Definitions
	Six Degrees of Kevin Bacon

	Depth-First Search
	Definitions
	Finding Loops in Program-Control-Flow Graphs

	Shortest-Path Problems
	Definitions
	Internet Routing
	Bellman--Ford and Distance Vector Routing
	Dijkstra and Link-State Routing

	Minimum-Spanning-Tree Problem
	Definitions
	Telephone Network Planning
	Kruskal's Algorithm
	Prim's Algorithm

	Connected Components
	Definitions
	Connected Components and Internet Connectivity
	Strongly Connected Components and Web Page Links

	Maximum Flow
	Definitions
	Edge Connectivity

	Implicit Graphs: A Knight's Tour
	Knight's Jumps as a Graph
	Backtracking Graph Search
	Warnsdorff's Heuristic

	Interfacing with Other Graph Libraries
	Using BGL Topological Sort with a LEDA Graph
	Using BGL Topological Sort with a SGB Graph
	Implementing Graph Adaptors

	Performance Guidelines
	Graph Class Comparisons
	The Results and Discussion

	Conclusion

	II Reference Manual
	BGL Concepts
	Graph Traversal Concepts
	Undirected Graphs
	Graph
	IncidenceGraph
	BidirectionalGraph
	AdjacencyGraph
	VertexListGraph
	EdgeListGraph
	AdjacencyMatrix

	Graph Modification Concepts
	VertexMutableGraph
	EdgeMutableGraph
	MutableIncidenceGraph
	MutableBidirectionalGraph
	MutableEdgeListGraph
	PropertyGraph
	VertexMutablePropertyGraph
	EdgeMutablePropertyGraph

	Visitor Concepts
	BFSVisitor
	DFSVisitor
	DijkstraVisitor
	BellmanFordVisitor

	BGL Algorithms
	Overview
	Basic Algorithms
	breadth_first_search
	breadth_first_visit
	depth_first_search
	depth_first_visit
	topological_sort

	Shortest-Path Algorithms
	dijkstra_shortest_paths
	bellman_ford_shortest_paths
	johnson_all_pairs_shortest_paths

	Minimum-Spanning-Tree Algorithms
	kruskal_minimum_spanning_tree
	prim_minimum_spanning_tree

	Static Connected Components
	connected_components
	strong_components

	Incremental Connected Components
	initialize_incremental_components
	incremental_components
	same_component
	component_index

	Maximum-Flow Algorithms
	edmunds_karp_max_flow
	push_relabel_max_flow

	BGL Classes
	Graph Classes
	adjacency_list
	adjacency_matrix

	Auxiliary Classes
	graph_traits
	adjacency_list_traits
	adjacency_matrix_traits
	property_map
	property

	Graph Adaptors
	edge_list
	reverse_graph
	filtered_graph
	SGB Graph Pointer
	LEDA GRAPH<V,E>
	std::vector<EdgeList>

	Property Map Library
	Property Map Concepts
	ReadablePropertyMap
	WritablePropertyMap
	ReadWritePropertyMap
	LvaluePropertyMap

	Property Map Classes
	property_traits
	iterator_property_map
	Property Tags

	Creating Your Own Property Maps
	Property Maps for Stanford GraphBase
	A Property Map Implemented with std::map

	Auxiliary Concepts, Classes, and Functions
	Buffer
	ColorValue
	MultiPassInputIterator
	Monoid
	mutable_queue
	Disjoint Sets
	disjoint_sets
	find_with_path_halving
	find_with_full_path_compression

	tie
	graph_property_iter_range

	Bibliography
	Index

