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This book is the sixth in a series of lectures of the Séminaire Poincaré, which is
directed towards a large audience of physicists and of mathematicians.

The goal of this seminar is to provide up-to-date information about general
topics of great interest in physics. Both the theoretical and experimental aspects
are covered, with some historical background. Inspired by the Bourbaki seminar
in mathematics in its organization, hence nicknamed “Bourbaphi”, the Poincaré
Seminar is held twice a year at the Institut Henri Poincaré in Paris, with contri-
butions prepared in advance. Particular care is devoted to the pedagogical nature
of the presentations so as to fulfill the goal of being readable by a large audience
of scientists.

This volume contains the ninth such Seminar, held in 2006. It is devoted to
Relativity and Experiment.

This book starts with a detailed introduction to general relativity by T.
Damour. It includes a review of what may lie beyond by string theorist I. An-
toniadis, and collects up-to-date essays on the experimental tests of this theory.
General relativity is now a theory well confirmed by detailed experiments, includ-
ing the precise timing of the double pulsar J0737-3039 explained by M. Kramer,
member of the team which discovered it in 2003, and satellite missions such as
Gravity Probe B described by J. Mester. The search for detecting gravitational
waves is also very much under way as reviewed by J.Y. Vinet.

We hope that the continued publication of this series will serve the community
of physicists and mathematicians at professional or graduate student level.

We thank the Commissariat à l’Énergie Atomique (Division des Sciences
de la Matière) and the Daniel Iagolnitzer Foundation for sponsoring the Seminar.
Special thanks are due to Chantal Delongeas for the preparation of the manuscript.

Thibault Damour
Bertrand Duplantier
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General Relativity Today∗

Thibault Damour

Abstract. After recalling the conceptual foundations and the basic structure
of general relativity, we review some of its main modern developments (apart
from cosmology): (i) the post-Newtonian limit and weak-field tests in the
solar system, (ii) strong gravitational fields and black holes, (iii) strong-field
and radiative tests in binary pulsar observations, (iv) gravitational waves, (v)
general relativity and quantum theory.

1. Introduction

The theory of general relativity was developed by Einstein in work that extended
from 1907 to 1915. The starting point for Einstein’s thinking was the composition
of a review article in 1907 on what we today call the theory of special relativity.
Recall that the latter theory sprang from a new kinematics governing length and
time measurements that was proposed by Einstein in June of 1905 [1], [2], following
important pioneering work by Lorentz and Poincaré. The theory of special relativ-
ity essentially poses a new fundamental framework (in place of the one posed by
Galileo, Descartes, and Newton) for the formulation of physical laws: this frame-
work being the chrono-geometric space-time structure of Poincaré and Minkowski.
After 1905, it therefore seemed a natural task to formulate, reformulate, or mod-
ify the then known physical laws so that they fit within the framework of special
relativity. For Newton’s law of gravitation, this task was begun (before Einstein
had even supplied his conceptual crystallization in 1905) by Lorentz (1900) and
Poincaré (1905), and was pursued in the period from 1910 to 1915 by Max Abra-
ham, Gunnar Nordström and Gustav Mie (with these latter researchers developing
scalar relativistic theories of gravitation).

Meanwhile, in 1907, Einstein became aware that gravitational interactions
possessed particular characteristics that suggested the necessity of generalizing
the framework and structure of the 1905 theory of relativity. After many years of
intense intellectual effort, Einstein succeeded in constructing a generalized theory

∗Translated from the French by Eric Novak.



2 T. Damour

of relativity (or general relativity) that proposed a profound modification of the
chrono-geometric structure of the space-time of special relativity. In 1915, in place
of a simple, neutral arena, given a priori, independently of all material content,
space-time became a physical “field” (identified with the gravitational field). In
other words, it was now a dynamical entity, both influencing and influenced by
the distribution of mass-energy that it contains.

This radically new conception of the structure of space-time remained for a
long while on the margins of the development of physics. Twentieth century physics
discovered a great number of new physical laws and phenomena while working with
the space-time of special relativity as its fundamental framework, as well as im-
posing the respect of its symmetries (namely the Lorentz-Poincaré group). On the
other hand, the theory of general relativity seemed for a long time to be a the-
ory that was both poorly confirmed by experiment and without connection to the
extraordinary progress springing from application of quantum theory (along with
special relativity) to high-energy physics. This marginalization of general relativ-
ity no longer obtains. Today, general relativity has become one of the essential
players in cutting-edge science. Numerous high-precision experimental tests have
confirmed, in detail, the pertinence of this theory. General relativity has become
the favored tool for the description of the macroscopic universe, covering every-
thing from the big bang to black holes, including the solar system, neutron stars,
pulsars, and gravitational waves. Moreover, the search for a consistent description
of fundamental physics in its entirety has led to the exploration of theories that
unify, within a general quantum framework, the description of matter and all its
interactions (including gravity). These theories, which are still under construction
and are provisionally known as string theories, contain general relativity in a cen-
tral way but suggest that the fundamental structure of space-time-matter is even
richer than is suggested separately by quantum theory and general relativity.

2. Special Relativity

We begin our exposition of the theory of general relativity by recalling the chrono-
geometric structure of space-time in the theory of special relativity. The structure
of Poincaré-Minkowski space-time is given by a generalization of the Euclidean
geometric structure of ordinary space. The latter structure is summarized by the
formula L2 = (∆x)2 +(∆y)2+(∆z)2 (a consequence of the Pythagorean theorem),
expressing the square of the distance L between two points in space as a sum of
the squares of the differences of the (orthonormal) coordinates x, y, z that label
the points. The symmetry group of Euclidean geometry is the group of coordinate
transformations (x, y, z) → (x′, y′, z′) that leave the quadratic form L2 = (∆x)2 +
(∆y)2 + (∆z)2 invariant. (This group is generated by translations, rotations, and
“reversals” such as the transformation given by reflection in a mirror, for example:
x′ = −x, y′ = y, z′ = z.)
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The Poincaré-Minkowski space-time is defined as the ensemble of events (ide-
alizations of what happens at a particular point in space, at a particular moment in
time), together with the notion of a (squared) interval S2 defined between any two
events. An event is fixed by four coordinates, x, y, z, and t, where (x, y, z) are the
spatial coordinates of the point in space where the event in question “occurs,” and
where t fixes the instant when this event “occurs.” Another event will be described
(within the same reference frame) by four different coordinates, let us say x+∆x,
y + ∆y, z + ∆z, and t + ∆t. The points in space where these two events occur are
separated by a distance L given by the formula above, L2 = (∆x)2+(∆y)2+(∆z)2.
The moments in time when these two events occur are separated by a time interval
T given by T = ∆t. The squared interval S2 between these two events is given as
a function of these quantities, by definition, through the following generalization
of the Pythagorean theorem:

S2 = L2 − c2 T 2 = (∆x)2 + (∆y)2 + (∆z)2 − c2(∆t)2 , (1)

where c denotes the speed of light (or, more precisely, the maximum speed of signal
propagation).

Equation (1) defines the chrono-geometry of Poincaré-Minkowski space-time.
The symmetry group of this chrono-geometry is the group of coordinate transfor-
mations (x, y, z, t) → (x′, y′, z′, t′) that leave the quadratic form (1) of the interval
S invariant. We will show that this group is made up of linear transformations and
that it is generated by translations in space and time, spatial rotations, “boosts”
(meaning special Lorentz transformations), and reversals of space and time.

It is useful to replace the time coordinate t by the “light-time” x0 ≡ ct, and
to collectively denote the coordinates as xµ ≡ (x0, xi) where the Greek indices
µ, ν, . . . = 0, 1, 2, 3, and the Roman indices i, j, . . . = 1, 2, 3 (with x1 = x, x2 = y,
and x3 = z). Equation (1) is then written

S2 = ηµν ∆xµ ∆xν , (2)

where we have used the Einstein summation convention1 and where ηµν is a diago-
nal matrix whose only non-zero elements are η00 = −1 and η11 = η22 = η33 = +1.
The symmetry group of Poincaré-Minkowski space-time is therefore the ensemble
of Lorentz-Poincaré transformations,

x′µ = Λµ
ν xν + aµ , (3)

where ηαβ Λα
µ Λβ

ν = ηµν .
The chrono-geometry of Poincaré-Minkowski space-time can be visualized

by representing, around each point x in space-time, the locus of points that are
separated from the point x by a unit (squared) interval, in other words the ensemble
of points x′ such that S2

xx′ = ηµν(x′µ − xµ)(x′ν − xν) = +1. This locus is a one-
sheeted (unit) hyperboloid.

If we were within an ordinary Euclidean space, the ensemble of points x′

would trace out a (unit) sphere centered on x, and the “field” of these spheres

1Every repeated index is supposed to be summed over all of its possible values.
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centered on each point x would allow one to completely characterize the Euclidean
geometry of the space. Similarly, in the case of Poincaré-Minkowski space-time, the
“field” of unit hyperboloids centered on each point x is a visual characterization
of the geometry of this space-time. See Figure 1. This figure gives an idea of
the symmetry group of Poincaré-Minkowski space-time, and renders the rigid and
homogeneous nature of its geometry particularly clear.

Figure 1. Geometry of the “rigid” space-time of the theory of
special relativity. This geometry is visualized by representing,
around each point x in space-time, the locus of points separated
from the point x by a unit (squared) interval. The space-time
shown here has only three dimensions: one time dimension (rep-
resented vertically), x0 = ct, and two spatial dimensions (rep-
resented horizontally), x, y. We have also shown the ‘space-time
line’, or ‘world-line’, (moving from the bottom to the top of the
“space-time block,” or from the past towards the future) repre-
senting the history of a particle’s motion.

The essential idea in Einstein’s article of June 1905 was to impose the group of
transformations (3) as a symmetry group of the fundamental laws of physics (“the
principle of relativity”). This point of view proved to be extraordinarily fruitful,
since it led to the discovery of new laws and the prediction of new phenomena.
Let us mention some of these for the record: the relativistic dynamics of classical
particles, the dilation of lifetimes for relativistic particles, the relation E = mc2

between energy and inertial mass, Dirac’s relativistic theory of quantum spin 1
2

particles, the prediction of antimatter, the classification of particles by rest mass
and spin, the relation between spin and statistics, and the CPT theorem.

After these recollections on special relativity, let us discuss the special feature
of gravity which, in 1907, suggested to Einstein the need for a profound general-
ization of the chrono-geometric structure of space-time.
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3. The Principle of Equivalence

Einstein’s point of departure was a striking experimental fact: all bodies in an
external gravitational field fall with the same acceleration. This fact was pointed
out by Galileo in 1638. Through a remarkable combination of logical reasoning,
thought experiments, and real experiments performed on inclined planes,2 Galileo
was in fact the first to conceive of what we today call the “universality of free-fall”
or the “weak principle of equivalence.” Let us cite the conclusion that Galileo drew
from a hypothetical argument where he varied the ratio between the densities of the
freely falling bodies under consideration and the resistance of the medium through
which they fall: “Having observed this I came to the conclusion that in a medium
totally devoid of resistance all bodies would fall with the same speed” [3]. This
universality of free-fall was verified with more precision by Newton’s experiments
with pendulums, and was incorporated by him into his theory of gravitation (1687)
in the form of the identification of the inertial mass mi (appearing in the funda-
mental law of dynamics F = mi a) with the gravitational mass mg (appearing in
the gravitational force, Fg = Gmg m′

g/r2):

mi = mg . (4)

At the end of the nineteenth century, Baron Roland von Eötvös verified the
equivalence (4) between mi and mg with a precision on the order of 10−9, and
Einstein was aware of this high-precision verification. (At present, the equivalence
between mi and mg has been verified at the level of 10−12 [4].) The point that
struck Einstein was that, given the precision with which mi = mg was verified,
and given the equivalence between inertial mass and energy discovered by Einstein
in September of 1905 [2] (E = mi c2), one must conclude that all of the various
forms of energy that contribute to the inertial mass of a body (rest mass of the
elementary constituents, various binding energies, internal kinetic energy, etc.)
do contribute in a strictly identical way to the gravitational mass of this body,
meaning both to its capacity for reacting to an external gravitational field and to
its capacity to create a gravitational field.

In 1907, Einstein realized that the equivalence between mi and mg implicitly
contained a deeper equivalence between inertia and gravitation that had important
consequences for the notion of an inertial reference frame (which was a fundamen-
tal concept in the theory of special relativity). In an ingenious thought experiment,
Einstein imagined the behavior of rigid bodies and reference clocks within a freely
falling elevator. Because of the universality of free-fall, all of the objects in such a
“freely falling local reference frame” would appear not to be accelerating with re-
spect to it. Thus, with respect to such a reference frame, the exterior gravitational
field is “erased” (or “effaced”). Einstein therefore postulated what he called the
“principle of equivalence” between gravitation and inertia. This principle has two

2The experiment with falling bodies said to be performed from atop the Leaning Tower of Pisa
is a myth, although it aptly summarizes the essence of Galilean innovation.
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parts, that Einstein used in turns. The first part says that, for any external gravi-
tational field whatsoever, it is possible to locally “erase” the gravitational field by
using an appropriate freely falling local reference frame and that, because of this,
the non-gravitational physical laws apply within this local reference frame just as
they would in an inertial reference frame (free of gravity) in special relativity. The
second part of Einstein’s equivalence principle says that, by starting from an iner-
tial reference frame in special relativity (in the absence of any “true” gravitational
field), one can create an apparent gravitational field in a local reference frame, if
this reference frame is accelerated (be it in a straight line or through a rotation).

4. Gravitation and Space-Time Chrono-Geometry

Einstein was able (through an extraordinary intellectual journey that lasted eight
years) to construct a new theory of gravitation, based on a rich generalization of
the 1905 theory of relativity, starting just from the equivalence principle described
above. The first step in this journey consisted in understanding that the princi-
ple of equivalence would suggest a profound modification of the chrono-geometric
structure of Poincaré-Minkowski space-time recalled in Equation (1) above.

To illustrate, let Xα, α = 0, 1, 2, 3, be the space-time coordinates in a local,
freely-falling reference frame (or locally inertial reference frame). In such a ref-
erence frame, the laws of special relativity apply. In particular, the infinitesimal
space-time interval ds2 = dL2 − c2 dT 2 between two neighboring events within
such a reference frame Xα, X ′α = Xα + dXα (close to the center of this reference
frame) takes the form

ds2 = dL2 − c2 dT 2 = ηαβ dXα dXβ , (5)

where we recall that the repeated indices α and β are summed over all of their
values (α, β = 0, 1, 2, 3). We also know that in special relativity the local energy
and momentum densities and fluxes are collected into the ten components of the
energy-momentum tensor T αβ. (For example, the energy density per unit volume
is equal to T 00, in the reference frame described by coordinates Xα = (X0, X i),
i = 1, 2, 3.) The conservation of energy and momentum translates into the equation
∂β T αβ = 0, where ∂β = ∂/∂ Xβ.

The theory of special relativity tells us that we can change our locally iner-
tial reference frame (while remaining in the neighborhood of a space-time point
where one has “erased” gravity) through a Lorentz transformation, X ′α = Λα

β Xβ.
Under such a transformation, the infinitesimal interval ds2, Equation (5), remains
invariant and the ten components of the (symmetric) tensor T αβ are transformed
according to T ′αβ = Λα

γ Λβ
δ T γδ. On the other hand, when we pass from a locally

inertial reference frame (with coordinates Xα) to an extended non-inertial refer-
ence frame (with coordinates xµ; µ = 0, 1, 2, 3), the transformation connecting the
Xα to the xµ is no longer a linear transformation (like the Lorentz transforma-
tion) but becomes a non-linear transformation Xα = Xα(xµ) that can take any
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form whatsoever. Because of this, the value of the infinitesimal interval ds2, when
expressed in a general, extended reference frame, will take a more complicated
form than the very simple one given by Equation (5) that it had in a reference
frame that was locally in free-fall. In fact, by differentiating the non-linear func-
tions Xα = Xα(xµ) we obtain the relation dXα = ∂Xα/∂xµ dxµ. By substituting
this relation into (5) we then obtain

ds2 = gµν(xλ) dxµ dxν , (6)

where the indices µ, ν are summed over 0, 1, 2, 3 and where the ten functions
gµν(x) (symmetric over the indices µ and ν) of the four variables xλ are de-
fined, point by point (meaning that for each point xλ we consider a reference
frame that is locally freely falling at x, with local coordinates Xα

x ) by gµν(x) =
ηαβ ∂Xα

x (x)/∂xµ ∂Xβ
x (x)/∂xν . Because of the nonlinearity of the functions Xα(x),

the functions gµν(x) generally depend in a nontrivial way on the coordinates xλ.
The local chrono-geometry of space-time thus appears to be given, not by the

simple Minkowskian metric (2), with constant coefficients ηµν , but by a quadratic
metric of a much more general type, Equation (6), with coefficients gµν(x) that
vary from point to point. Such general metric spaces had been introduced and
studied by Gauss and Riemann in the nineteenth century (in the case where the
quadratic form (6) is positive definite). They carry the name Riemannian spaces
or curved spaces. (In the case of interest for Einstein’s theory, where the quadratic
form (6) is not positive definite, one speaks of a pseudo-Riemannian metric.)

We do not have the space here to explain in detail the various geometric
structures in a Riemannian space that are derivable from the data of the infini-
tesimal interval (6). Let us note simply that given Equation (6), which gives the
distance ds between two infinitesimally separated points, we are able, through
integration along a curve, to define the length of an arbitrary curve connecting
two widely separated points A and B: LAB =

∫ B

A ds. One can then define the
“straightest possible line” between two given points A and B to be the shortest
line, in other words the curve that minimizes (or, more generally, extremizes) the
integrated distance LAB. These straightest possible lines are called geodesic curves.
To give a simple example, the geodesics of a spherical surface (like the surface of
the Earth) are the great circles (with radius equal to the radius of the sphere).
If one mathematically writes the condition for a curve, as given by its parametric
representation xµ = xµ(s), where s is the length along the curve, to extremize
the total length LAB one finds that xµ(s) must satisfy the following second-order
differential equation:

d2 xλ

ds2
+ Γλ

µν(x)
dxµ

ds

dxν

ds
= 0 , (7)

where the quantities Γλ
µν , known as the Christoffel coefficients or connection co-

efficients, are calculated, at each point x, from the metric components gµν(x) by
the equation

Γλ
µν ≡ 1

2
gλσ(∂µ gνσ + ∂ν gµσ − ∂σ gµν) , (8)
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where gµν denotes the matrix inverse to gµν (gµσ gσν = δµ
ν where the Kronecker

symbol δµ
ν is equal to 1 when µ = ν and 0 otherwise) and where ∂µ ≡ ∂/∂xµ

denotes the partial derivative with respect to the coordinate xµ. To give a very
simple example: in the Poincaré-Minkowski space-time the components of the met-
ric are constant, gµν = ηµν (when we use an inertial reference frame). Because of
this, the connection coefficients (8) vanish in an inertial reference frame, and the
differential equation for geodesics reduces to d2 xλ/ds2 = 0, whose solutions are
ordinary straight lines: xλ(s) = aλ s+bλ. On the other hand, in a general “curved”
space-time (meaning one with components gµν that depend in an arbitrary way
on the point x) the geodesics cannot be globally represented by straight lines. One
can nevertheless show that it always remains possible, for any gµν(x) whatsoever,
to change coordinates xµ → Xα(x) in such a way that the connection coeffi-
cients Γα

βγ , in the new system of coordinates Xα, vanish locally, at a given point
Xα

0 (or even along an arbitrary curve). Such locally geodesic coordinate systems
realize Einstein’s equivalence principle mathematically: up to terms of second or-
der, the components gαβ(X) of a “curved” metric in locally geodesic coordinates
Xα (ds2 = gαβ(X) dXα dXβ) can be identified with the components of a “flat”
Poincaré-Minkowski metric: gαβ(X) = ηαβ +O((X −X0)2), where X0 is the point
around which we expand.

5. Einstein’s Equations: Elastic Space-Time

Having postulated that a consistent relativistic theory of the gravitational field
should include the consideration of a far-reaching generalization of the Poincaré-
Minkowski space-time, Equation (6), Einstein concluded that the same ten func-
tions gµν(x) should describe both the geometry of space-time as well as gravitation.
He therefore got down to the task of finding which equations must be satisfied by
the “geometric-gravitational field” gµν(x). He was guided in this search by three
principles. The first was the principle of general relativity, which asserts that in
the presence of a gravitational field one should be able to write the fundamental
laws of physics (including those governing the gravitational field itself) in the same
way in any coordinate system whatsoever. The second was that the “source” of
the gravitational field should be the energy-momentum tensor T µν . The third was
a principle of correspondence with earlier physics: in the limit where one neglects
gravitational effects, gµν(x) = ηµν should be a solution of the equations being
sought, and there should also be a so-called Newtonian limit where the new theory
reduces to Newton’s theory of gravity.

Note that the principle of general relativity (contrary to appearances and
contrary to what Einstein believed for several years) has a different physical sta-
tus than the principle of special relativity. The principle of special relativity was
a symmetry principle for the structure of space-time that asserted that physics
is the same in a particular class of reference frames, and therefore that certain
“corresponding” phenomena occur in exactly the same way in different reference
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frames (“active” transformations). On the other hand, the principle of general rel-
ativity is a principle of indifference: the phenomena do not (in general) take place
in the same way in different coordinate systems. However, none of these (extended)
coordinate systems enjoys any privileged status with respect to the others.

The principle asserting that the energy-momentum tensor T µν should be the
source of the gravitational field is founded on two ideas: the relations E = mi c2

and the weak principle of equivalence mi = mg show that, in the Newtonian limit,
the source of gravitation, the gravitational mass mg, is equal to the total energy
of the body considered, or in other words the integral over space of the energy
density T 00, up to the factor c−2. Therefore at least one of the components of the
tensor T µν must play the role of source for the gravitational field. However, since
the gravitational field is encoded, according to Einstein, by the ten components of
the metric gµν , it is natural to suppose that the source for gµν must also have ten
components, which is precisely the case for the (symmetric) tensor T µν .

In November of 1915, after many years of conceptually arduous work, Ein-
stein wrote the final form of the theory of general relativity [6]. Einstein’s equa-
tions are non-linear, second-order partial differential equations for the geometric-
gravitational field gµν , containing the energy-momentum tensor Tµν ≡ gµκ gνλ T κλ

on the right-hand side. They are written as follows:

Rµν − 1
2

R gµν =
8π G

c4
Tµν (9)

where G is the (Newtonian) gravitational constant, c is the speed of light, and
R ≡ gµν Rµν and the Ricci tensor Rµν are calculated as a function of the connec-
tion coefficients Γλ

µν (8) in the following way:

Rµν ≡ ∂α Γα
µν − ∂ν Γα

µα + Γα
βα Γβ

µν − Γα
βν Γβ

µα . (10)

One can show that, in a four-dimensional space-time, the three principles we
have described previously uniquely determine Einstein’s equations (9). It is nev-
ertheless remarkable that these equations may also be developed from points of
view that are completely different from the one taken by Einstein. For example,
in the 1960s various authors (in particular Feynman, Weinberg and Deser; see ref-
erences in [4]) showed that Einstein’s equations could be obtained from a purely
dynamical approach, founded on the consistency of interactions of a long-range
spin 2 field, without making any appeal, as Einstein had, to the geometric notions
coming from mathematical work on Riemannian spaces. Let us also note that if we
relax one of the principles described previously (as Einstein did in 1917) we can
find a generalization of Equation (9) in which one adds the term + Λ gµν to the
left-hand side, where Λ is the so-called cosmological constant. Such a modification
was proposed by Einstein in 1917 in order to be able to write down a globally ho-
mogeneous and stationary cosmological solution. Einstein rejected this additional
term after work by Friedmann (1922) showed the existence of expanding cosmolog-
ical solutions of general relativity and after the observational discovery (by Hubble
in 1929) of the expanding motion of galaxies within the universe. However, recent
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cosmological data have once again made this possibility fashionable, although in
the fundamental physics of today one tends to believe that a term of the type
Λ gµν should be considered as a particular physical contribution to the right-hand
side of Einstein’s equations (more precisely, as the stress-energy tensor of the vac-
uum, T V

µν = − c4

8πG Λ gµν), rather than as a universal geometric modification of the
left-hand side.

Let us now comment on the physical meaning of Einstein’s equations (9).
The essential new idea is that the chrono-geometric structure of space-time, Equa-
tion (6), in other words the structure that underlies all of the measurements that
one could locally make of duration, dT , and of distance, dL, (we recall that, lo-
cally, ds2 = dL2 − c2 dT 2) is no longer a rigid structure that is given a priori, once
and for all (as was the case for the structure of Poincaré-Minkowski space-time),
but instead has become a field, a dynamical or elastic structure, which is created
and/or deformed by the presence of an energy-momentum distribution. See Fig-
ure 2, which visualizes the “elastic” geometry of space-time in the theory of general
relativity by representing, around each point x, the locus of points (assumed to
be infinitesimally close to x) separated from x by a constant (squared) interval:
ds2 = ε2. As in the case of Poincaré-Minkowski space-time (Figure 1), one arrives
at a “field” of hyperboloids. However, this field of hyperboloids no longer has a
“rigid” and homogeneous structure.

Figure 2. “Elastic” space-time geometry in the theory of gen-
eral relativity. This geometry is visualized by representing, around
each space-time point x, the locus of points separated from x by
a given small positive (squared) interval.

The space-time field gµν(x) describes the variation from point to point of
the chrono-geometry as well as all gravitational effects. The simplest example of
space-time chrono-geometric elasticity is the effect that the proximity of a mass
has on the “local rate of flow for time.” In concrete terms, if you separate two
twins at birth, with one staying on the surface of the Earth and the other going to
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live on the peak of a very tall mountain (in other words farther from the Earth’s
center), and then reunite them after 100 years, the “highlander” will be older (will
have lived longer) than the twin who stayed on the valley floor. Everything takes
place as if time flows more slowly the closer one is to a given distribution of mass-
energy. In mathematical terms this effect is due to the fact that the coefficient
g00(x) of (dx0)2 in Equation (6) is deformed with respect to its value in special
relativity, gMinkowski

00 = η00 = −1, to become gEinstein
00 (x) � −1 + 2GM/c2r, where

M is the Earth’s mass (in our example) and r the distance to the center of the
Earth. In the example considered above of terrestrial twins the effect is extremely
small (a difference in the amount of time lived of about one second over 100
years), but the effect is real and has been verified many times using atomic clocks
(see the references in [4]). Let us mention that today this “Einstein effect” has
important practical repercussions, for example in aerial or maritime navigation,
for the piloting of automobiles, or even farm machinery, etc. In fact, the GPS
(Global Positioning System), which uses the data transmitted by a constellation
of atomic clocks on board satellites, incorporates the Einsteinian deformation of
space-time chrono-geometry into its software. The effect is only on the order of
one part in a billion, but if it were not taken into account, it would introduce an
unacceptably large error into the GPS, which would continually grow over time.
Indeed, GPS performance relies on the high stability of the orbiting atomic clocks,
a stability better than 10−13, or in other words 10,000 times greater than the
apparent change in frequency(∼ 10−9) due to the Einsteinian deformation of the
chrono-geometry.

6. The Weak-Field Limit and the Newtonian Limit

To understand the physical consequences of Einstein’s equations (9), it is useful
to begin by considering the limiting case of weak geometric-gravitational fields,
namely the case where gµν(x) = ηµν + hµν(x), with perturbations hµν(x) that are
very small with respect to unity: |hµν(x)| � 1. In this case, a simple calculation
(that we encourage the reader to perform) starting from Definitions (8) and (10)
above, leads to the following explicit form of Einstein’s equations (where we ignore
terms of order h2 and hT ):

� hµν − ∂µ ∂α hαν − ∂ν ∂α hαµ + ∂µν hα
α = −16 π G

c4
T̃µν , (11)

where � = ηµν ∂µν = ∆ − ∂2
0 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 − c−2 ∂2/∂t2 denotes

the “flat” d’Alembertian (or wave operator; xµ = (ct, x, y, z)), and where indices
in the upper position have been raised by the inverse ηµν of the flat metric ηµν

(numerically ηµν = ηµν , meaning that −η00 = η11 = η22 = η33 = +1). For
example ∂α hαν denotes ηαβ ∂α hβν and hα

α ≡ ηαβ hαβ = −h00 + h11 + h22 + h33.
The “source” T̃µν appearing on the right-hand side of (11) denotes the combination
T̃µν ≡ Tµν − 1

2 T α
α ηµν (when space-time is four-dimensional).
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The “linearized” approximation (11) of Einstein’s equations is analogous to
Maxwell’s equations

� Aµ − ∂µ ∂α Aα = −4π Jµ , (12)
connecting the electromagnetic four-potential Aµ ≡ ηµν Aν (where A0 = V ,
Ai = A, i = 1, 2, 3) to the four-current density Jµ ≡ ηµν Jν (where J0 = ρ is
the charge density and J i = J is the current density). Another analogy is that the
structure of the left-hand side of Maxwell’s equations implies that the “source” Jµ

appearing on the right-hand side must satisfy ∂µ Jµ = 0 (∂µ ≡ ηµν ∂ν), which ex-
presses the conservation of electric charge. Likewise, the structure of the left-hand
side of the linearized form of Einstein’s equations (11) implies that the “source”
Tµν = T̃µν − 1

2 T̃ α
α ηµν must satisfy ∂µ Tµν = 0, which expresses the conservation

of energy and momentum of matter. (The structure of the left-hand side of the
exact form of Einstein’s equations (9) implies that the source Tµν must satisfy
the more complicated equation ∂µ T µν + Γµ

σµ T σν + Γν
σµ T µσ = 0, where the terms

in ΓT can be interpreted as describing an exchange of energy and momentum
between matter and the gravitational field.) The major difference is that, in the
case of electromagnetism, the field Aµ and its source Jµ have a single space-time
index, while in the gravitational case the field hµν and its source T̃µν have two
space-time indices. We shall return later to this analogy/difference between Aµ

and hµν which suggests the existence of a certain relation between gravitation and
electromagnetism.

We recover the Newtonian theory of gravitation as the limiting case of Ein-
stein’s theory by assuming not only that the gravitational field is a weak defor-
mation of the flat Minkowski space-time (hµν � 1), but also that the field hµν

is slowly varying (∂0 hµν � ∂i hµν) and that its source Tµν is non-relativistic
(Tij � T0i � T00). Under these conditions Equation (11) leads to a Poisson-type
equation for the purely temporal component, h00, of the space-time field,

∆ h00 = −16 π G

c4
T̃00 = −8 π G

c4
(T00 + Tii) � −8 π G

c4
T00 , (13)

where ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplacian. Recall that, according to Laplace and

Poisson, Newton’s theory of gravity is summarized by saying that the gravitational
field is described by a single potential U(x), produced by the mass density ρ(x)
according to the Poisson equation ∆U = −4 π Gρ, that determines the accelera-
tion of a test particle placed in the exterior field U(x) according to the equation
d2 xi/dt2 = ∂i U(x) ≡ ∂U/∂xi. Because of the relation mi = mg = E/c2 one can
identify ρ = T 00/c2. We therefore find that (13) reproduces the Poisson equation
if h00 = + 2 U/c2. It therefore remains to verify that Einstein’s theory indeed
predicts that a non-relativistic test particle is accelerated by a space-time field
according to d2 xi/dt2 � 1

2 c2 ∂i h00. Einstein understood that this was a conse-
quence of the equivalence principle. In fact, as we discussed in Section 4 above,
the principle of equivalence states that the gravitational field is (locally) erased in
a locally inertial reference frame Xα (such that gαβ(X) = ηαβ + O((X − X0)2)).
In such a reference frame, the laws of special relativity apply at the point X0. In



General Relativity Today 13

particular an isolated (and electrically neutral) body must satisfy a principle of
inertia in this frame: its center of mass moves in a straight line at constant speed.
In other words it satisfies the equation of motion d2 Xα/ds2 = 0. By passing back
to an arbitrary (extended) coordinate system xµ, one verifies that this equation for
inertial motion transforms into the geodesic equation (7). Therefore (7) describes
falling bodies, such as they are observed in arbitrary extended reference frames (for
example a reference frame at rest with respect to the Earth or at rest with respect
to the center of mass of the solar system). From this one concludes that the rela-
tivistic analog of the Newtonian field of gravitational acceleration, g(x) = ∇U(x),
is gλ(x) ≡ −c2 Γλ

µν dxµ/ds dxν/ds. By considering a particle whose motion is slow
with respect to the speed of light (dxi/ds � dx0/ds � 1) one can easily verify that
gi(x) � −c2 Γi

00. Finally, by using the definition (8) of Γα
µν , and the hypothesis

of weak fields, one indeed verifies that gi(x) � 1
2 c2 ∂i h00, in perfect agreement

with the identification h00 = 2 U/c2 anticipated above. We encourage the reader
to personally verify this result, which contains the very essence of Einstein’s the-
ory: gravitational motion is no longer described as being due to a force, but is
identified with motion that is “as inertial as possible” within a space-time whose
chrono-geometry is deformed in the presence of a mass-energy distribution.

Finding the Newtonian theory as a limiting case of Einstein’s theory is obvi-
ously a necessity for seriously considering this new theory. But of course, from the
very beginning Einstein explored the observational consequences of general rela-
tivity that go beyond the Newtonian description of gravitation. We have already
mentioned one of these above: the fact that g00 = η00 + h00 � −1 + 2U(x)/c2

implies a distortion in the relative measurement of time in the neighborhood of
massive bodies. In 1907 (as soon as he had developed the principle of equivalence,
and long before he had obtained the field equations of general relativity) Einstein
had predicted the existence of such a distortion for measurements of time and
frequency in the presence of an external gravitational field. He realized that this
should have observable consequences for the frequency, as observed on Earth, of
the spectral rays emitted from the surface of the Sun. Specifically, a spectral ray of
(proper local) frequency ν0 emitted from a point x0 where the (stationary) gravita-
tional potential takes the value U(x0) and observed (via electromagnetic signals)
at a point x where the potential is U(x) should appear to have a frequency ν such
that

ν

ν0
=

√
g00(x0)
g00(x)

� 1 +
1
c2

[U(x) − U(x0)] . (14)

In the case where the point of emission x0 is in a gravitational potential well
deeper than the point of observation x (meaning that U(x0) > U(x)) one has
ν < ν0, in other words a reddening effect on frequencies. This effect, which was
predicted by Einstein in 1907, was unambiguously verified only in the 1960s, in
experiments by Pound and collaborators over a height of about twenty meters. The
most precise verification (at the level of ∼ 10−4) is due to Vessot and collaborators,
who compared a hydrogen maser, launched aboard a rocket that reached about
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10,000 km in altitude, to a clock of similar construction on the ground. Other
experiments compared the times shown on clocks placed aboard airplanes to clocks
remaining on the ground. (For references to these experiments see [4].) As we have
already mentioned, the “Einstein effect” (14) must be incorporated in a crucial
way into the software of satellite positioning systems such as the GPS.

In 1907, Einstein also pointed out that the equivalence principle would sug-
gest that light rays should be deflected by a gravitational field. Indeed, a general-
ization of the reasoning given above for the motion of particles in an external grav-
itational field, based on the principle of equivalence, shows that light must itself
follow a trajectory that is “as inertial as possible,” meaning a geodesic of the curved
space-time. Light rays must therefore satisfy the geodesic equation (7). (The only
difference from the geodesics followed by material particles is that the parameter
s in Equation (7) can no longer be taken equal to the “length” along the geodesic,
since a “light” geodesic must also satisfy the constraint gµν(x) dxµ dxν = 0, ensur-
ing that its speed is equal to c, when it is measured in a locally inertial reference
frame.) Starting from Equation (7) one can therefore calculate to what extent light
is deflected when it passes through the neighborhood of a large mass (such as the
Sun). One nevertheless soon realizes that in order to perform this calculation one
must know more than the component h00 of the gravitational field. The other com-
ponents of hµν , and in particular the spatial components hij , come into play in a
crucial way in this calculation. This is why it was only in November of 1915, after
having obtained the (essentially) final form of his theory, that Einstein could pre-
dict the total value of the deflection of light by the Sun. Starting from the linearized
form of Einstein’s equations (11) and continuing by making the “non-relativistic”
simplifications indicated above (Tij � T0i � T00, ∂0 h � ∂i h) it is easy to see
that the spatial component hij , like h00, can be written (after a helpful choice of
coordinates) in terms of the Newtonian potential U as hij(x) � + 2 U(x) δij/c2,
where δij takes the value 1 if i = j and 0 otherwise (i, j = 1, 2, 3). By inserting this
result, as well as the preceding result h00 = + 2 U/c2, into the geodesic equation
(7) for the motion of light, one finds (as Einstein did in 1915) that general relativ-
ity predicts that the Sun should deflect a ray of light by an angle θ = 4GM/(c2b)
where b is the impact parameter of the ray (meaning its minimum distance from
the Sun). As is well known, the confirmation of this effect in 1919 (with rather
weak precision) made the theory of general relativity and its creator famous.

7. The Post-Newtonian Approximation and Experimental
Confirmations in the Regime of Weak and Quasi-Stationary
Gravitational Fields

We have already pointed out some of the experimental confirmations of the theory
of general relativity. At present, the extreme precision of certain measurements of
time or frequency in the solar system necessitates a very careful account of the
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modifications brought by general relativity to the Newtonian description of space-
time. As a consequence, general relativity is used in a great number of situations,
from astronomical or geophysical research (such as very long range radio interfer-
ometry, radar tracking of the planets, and laser tracking of the Moon or artificial
satellites) to metrological, geodesic or other applications (such as the definition of
international atomic time, precision cartography, and the G.P.S.). To do this, the
so-called post-Newtonian approximation has been developed. This method involves
working in the Newtonian limit sketched above while keeping the terms of higher
order in the small parameter

ε ∼ v2

c2
∼ |hµν | ∼ |∂0 h/∂i h|2 ∼ |T 0i/T 00|2 ∼ |T ij/T 00| ,

where v denotes a characteristic speed for the elements in the system considered.
For all present applications of general relativity to the solar system it suffices

to include the first post-Newtonian approximation, in other words to keep the
relative corrections of order ε to the Newtonian predictions. Since the theory of
general relativity was poorly verified for a long time, one found it useful (as in the
pioneering work of A. Eddington, generalized in the 1960s by K. Nordtvedt and
C.M. Will) to study not only the precise predictions of the equations (9) defining
Einstein’s theory, but to also consider possible deviations from these predictions.
These possible deviations were parameterized by means of several non-dimensional
“post-Newtonian” parameters. Among these parameters, two play a key role: γ
and β. The parameter γ describes a possible deviation from general relativity that
comes into play starting at the linearized level, in other words one that modifies the
linearized approximation given above. More precisely, it is defined by writing that
the difference hij ≡ gij − δij between the spatial metric and the Euclidean metric
can take the value hij = 2γ U δij/c2 (in a suitable coordinate system), rather than
the value hGR

ij = 2 U δij/c2 that it takes in general relativity, thus differing by a
factor γ. Therefore, by definition γ takes the value 1 in general relativity, and γ−1
measures the possible deviation with respect to this theory. As for the parameter
β (or rather β − 1), it measures a possible deviation (with respect to general
relativity) in the value of h00 ≡ g00 − η00. The value of h00 in general relativity
is hGR

00 = 2 U/c2 − 2 U2/c4, where the first term (discussed above) reproduces the
Newtonian approximation (and cannot therefore be modified, as the idea is to
parameterize gravitational physics beyond Newtonian predictions) and where the
second term is obtained by solving Einstein’s equations (9) at the second order
of approximation. One then writes an h00 of a more general parameterized type,
h00 = 2 U/c2 − 2 β U2/c4, where, by definition, β takes the value 1 in general
relativity. Let us finally point out that the parameters γ − 1 and β − 1 completely
parameterize the post-Newtonian regime of the simplest theoretical alternatives
to general relativity, namely the tensor-scalar theories of gravitation. In these
theories, the gravitational interaction is carried by two fields at the same time: a
massless tensor (spin 2) field coupled to T µν, and a massless scalar (spin 0) field
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ϕ coupled to the trace T α
α . In this case the parameter −(γ − 1) plays the key role

of measuring the ratio between the scalar coupling and the tensor coupling.
All of the experiments performed to date within the solar system are com-

patible with the predictions of general relativity. When they are interpreted in
terms of the post-Newtonian (and “post-Einsteinian”) parameters γ−1 and β−1,
they lead to strong constraints on possible deviations from Einstein’s theory. We
make note of the following among tests performed in the solar system: the deflec-
tion of electromagnetic waves in the neighborhood of the Sun, the gravitational
delay (‘Shapiro effect’) of radar signals bounced from the Viking lander on Mars,
the global analysis of solar system dynamics (including the advance of planetary
perihelia), the sub-centimeter measurement of the Earth-Moon distance obtained
from laser signals bounced off of reflectors on the Moon’s surface, etc. At present
(October of 2006) the most precise test (that has been published) of general rel-
ativity was obtained in 2003 by measuring the ratio 1 + y ≡ f/f0 between the
frequency f0 of radio waves sent from Earth to the Cassini space probe and the
frequency f of coherent radio waves sent back (with the same local frequency)
from Cassini to Earth and compared (on Earth) to the emitted frequency f0. The
main contribution to the small quantity y is an effect equal, in general relativity,
to yGR = 8(GM/c3 b) db/dt (where b is, as before, the impact parameter) due to
the propagation of radio waves in the geometry of a space-time deformed by the
Sun: ds2 � −(1−2 U/c2) c2 dt2 +(1+2 U/c2)(dx2 +dy2 +dz2), where U = GM/r.
The maximum value of the frequency change predicted by general relativity was
only |yGR| � 2 × 10−10 for the best observations, but thanks to an excellent fre-
quency stability ∼ 10−14 (after correction for the perturbations caused by the solar
corona) and to a relatively large number of individual measurements spread over
18 days, this experiment was able to verify Einstein’s theory at the remarkable
level of ∼ 10−5 [7]. More precisely, when this experiment is interpreted in terms
of the post-Newtonian parameters γ − 1 and β − 1, it gives the following limit for
the parameter γ − 1 [7]

γ − 1 = (2.1 ± 2.3) × 10−5 . (15)

As for the best present-day limit on the parameter β − 1, it is smaller than 10−3

and comes from the non-observation, in the data from lasers bounced off of the
Moon, of any eventual polarization of the Moon’s orbit in the direction of the Sun
(‘Nordtvedt effect’; see [4] for references)

4(β − 1) − (γ − 1) = −0.0007± 0.0010 . (16)

Although the theory of general relativity is one of the best verified theories
in physics, scientists continue to design and plan new or increasingly precise tests
of the theory. This is the case in particular for the space mission Gravity Probe B
(launched by NASA in April of 2004) whose principal aim is to directly observe a
prediction of general relativity that states (intuitively speaking) that space is not
only “elastic,” but also “fluid.” In the nineteenth century Foucalt invented both
the gyroscope and his famous pendulum in order to render Newton’s absolute (and
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rigid) space directly observable. His experiments in fact showed that, for example,
a gyroscope on the surface of the Earth continued, despite the Earth’s rotation,
to align itself in a direction that is “fixed” with respect to the distant stars. How-
ever, in 1918, when Lense and Thirring analyzed some of the consequences of the
(linearized) Einstein equations (11), they found that general relativity predicts,
among other things, the following phenomenon: the rotation of the Earth (or any
other ball of matter) creates a particular deformation of the chrono-geometry of
space-time. This deformation is described by the “gravito-magnetic” components
h0i of the metric, and induces an effect analogous to the “rotation drag” effect
caused by a ball of matter turning in a fluid: the rotation of the Earth (minimally)
drags all of the space around it, causing it to continually “turn,” as a fluid would.3

This “rotation of space” translates, in an observable way, into a violation of the ef-
fects predicted by Newton and confirmed by Foucault’s experiments: in particular,
a gyroscope no longer aligns itself in a direction that is “fixed in absolute space,”
rather its axis of rotation is “dragged” by the rotating motion of the local space
where it is located. This effect is much too small to be visible in Foucault’s exper-
iments. Its observation by Gravity Probe B (see [8] and the contribution of John
Mester to this Poincaré seminar) is important for making Einstein’s revolutionary
notion of a fluid space-time tangible to the general public.

Up till now we have only discussed the regime of weak and slowly varying
gravitational fields. The theory of general relativity predicts the appearance of new
phenomena when the gravitational field becomes strong and/or rapidly varying.
(We shall not here discuss the cosmological aspects of relativistic gravitation.)

8. Strong Gravitational Fields and Black Holes

The regime of strong gravitational fields is encountered in the physics of gravita-
tionally condensed bodies. This term designates the final states of stellar evolution,
and in particular neutron stars and black holes. Recall that most of the life of a
star is spent slowly burning its nuclear fuel. This process causes the star to be
structured as a series of layers of differentiated nuclear structure, surrounding a
progressively denser core (an “onion-like” structure). When the initial mass of the
star is sufficiently large, this process ends into a catastrophic phenomenon: the
core, already much denser than ordinary matter, collapses in on itself under the
influence of its gravitational self-attraction. (This implosion of the central part of
the star is, in many cases, accompanied by an explosion of the outer layers of the
star—a supernova.) Depending on the quantity of mass that collapses with the
core of a star, this collapse can give rise to either a neutron star or a black hole.

A neutron star condenses a mass on the order of the mass of the Sun inside a
radius on the order of 10 km. The density in the interior of a neutron star (named

3Recent historical work (by Herbert Pfister) has in fact shown that this effect had already been
derived by Einstein within the framework of the provisory relativistic theory of gravity that he
started to develop in 1912 in collaboration with Marcel Grossmann.
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thus because neutrons dominate its nuclear composition) is more than 100 million
tons per cubic centimeter (1014 g/cm3)! It is about the same as the density in
the interior of atomic nuclei. What is important for our discussion is that the
deformation away from the Minkowski metric in the immediate neighborhood of
a neutron star, measured by h00 ∼ hii ∼ 2GM/c2R, where R is the radius of the
star, is no longer a small quantity, as it was in the solar system. In fact, while
h ∼ 2GM/c2R is on the order of 10−9 for the Earth and 10−6 for the Sun, one
finds that h ∼ 0.4 for a typical neutron star (M � 1.4 M�, R ∼ 10 km). One
thus concludes that it is no longer possible, as was the case in the solar system,
to study the structure and physics of neutron stars by using the post-Newtonian
approximation outlined above. One must consider the exact form of Einstein’s
equations (9), with all of their non-linear structure. Because of this, we expect
that observations concerning neutron stars will allow us to confirm (or refute) the
theory of general relativity in its strongly non-linear regime. We shall discuss such
tests below in relation to observations of binary pulsars.

A black hole is the result of a continued collapse, meaning that it does not stop
with the formation of an ultra-dense star (such as a neutron star). (The physical
concept of a black hole was introduced by J.R. Oppenheimer and H. Snyder in
1939. The global geometric structure of black holes was not understood until some
years later, thanks notably to the work of R. Penrose. For a historical review of
the idea of black holes see [9].) It is a particular structure of curved space-time
characterized by the existence of a boundary (called the “black hole surface” or
“horizon”) between an exterior region, from which it is possible to emit signals to
infinity, and an interior region (of space-time), within which any emitted signal
remains trapped. See Figure 3.

The cones shown in this figure are called “light cones.” They are defined as the
locus of points (infinitesimally close to x) such that ds2 = 0, with dx0 = cdt ≥ 0.
Each represents the beginning of the space-time history of a flash of light emitted
from a certain point in space-time. The cones whose vertices are located outside
of the horizon (the shaded zone) will evolve by spreading out to infinity, thus
representing the possibility for electromagnetic signals to reach infinity.

On the other hand, the cones whose vertices are located inside the horizon
(the grey zone) will evolve without ever succeeding in escaping the grey zone. It is
therefore impossible to emit an electromagnetic signal that reaches infinity from
the grey zone. The horizon, namely the boundary between the shaded zone and
the unshaded zone, is itself the history of a particular flash of light, emitted from
the center of the star over the course of its collapse, such that it asymptotically
stabilizes as a space-time cylinder. This space-time cylinder (the asymptotic hori-
zon) therefore represents the space-time history of a bubble of light that, viewed
locally, moves outward at the speed c, but which globally “runs in place.” This
remarkable behavior is a striking illustration of the “fluid” character of space-time
in Einstein’s theory. Indeed, one can compare the preceding situation with what
may take place around the open drain of an emptying sink: a wave may move along
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Figure 3. Schematic representation of the space-time for a black
hole created from the collapse of a spherical star. Each cone rep-
resents the space-time history of a flash of light emitted from a
point at a particular instant. (Such a “cone field” is obtained by
taking the limit ε2 = 0 from Figure 2, and keeping only the upper
part, in other words the part directed towards the future, of the
double cones obtained as limits of the hyperboloids of Figure 2.)
The interior of the black hole is shaded, its outer boundary be-
ing the “black hole surface” or “horizon.” The “inner boundary”
(shown in dark grey) of the interior region of the black hole is a
space-time singularity of the big-crunch type.

the water, away from the hole, all the while running in place with respect to the
sink because of the falling motion of the water in the direction of the drain.

Note that the temporal development of the interior region is limited, termi-
nating in a singularity (the dark grey surface) where the curvature becomes infinite
and where the classical description of space and time loses its meaning. This sin-
gularity is locally similar to the temporal inverse of a cosmological singularity of
the big bang type. This is called a big crunch. It is a space-time frontier, beyond
which space-time ceases to exist. The appearance of singularities associated with
regions of strong gravitational fields is a generic phenomenon in general relativity,
as shown by theorems of R. Penrose and S.W. Hawking.

Black holes have some remarkable properties. First, a uniqueness theorem
(due to W. Israel, B. Carter, D.C. Robinson, G. Bunting, and P.O. Mazur) asserts
that an isolated, stationary black hole (in Einstein-Maxwell theory) is completely
described by three parameters: its mass M , its angular momentum J , and its
electric charge Q. The exact solution (called the Kerr-Newman solution) of Ein-
stein’s equations (11) describing a black hole with parameters M, J, Q is explicitly
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known. We shall here content ourselves with writing the space-time geometry in
the simplest case of a black hole: the one in which J = Q = 0 and the black hole is
described only by its mass (a solution discovered by K. Schwarzschild in January
of 1916):

ds2 = −
(

1 − 2GM

c2r

)
c2 dt2 +

dr2

1 − 2GM
c2r

+ r2(dθ2 + sin2 θ dϕ2) . (17)

We see that the purely temporal component of the metric, g00 = −(1−2GM/c2r),
vanishes when the radial coordinate r takes the value r = rH ≡ 2GM/c2. Accord-
ing to the earlier equation (14), it would therefore seem that light emitted from an
arbitrary point on the sphere r0 = rH , when it is viewed by an observer located
anywhere in the exterior (in r > rH), would experience an infinite reddening of its
emission frequency (ν/ν0 = 0). In fact, the sphere rH = 2GM/c2 is the horizon of
the Schwarzschild black hole, and no particle (that is capable of emitting light) can
remain at rest when r = rH (nor, a fortiori, when r < rH). To study what happens
at the horizon (r = rH) or in the interior (r < rH) of a Schwarzschild black hole,
one must use other space-time coordinates than the coordinates (t, r, θ, ϕ) used
in Equation (17). The “big crunch” singularity in the interior of a Schwarzschild
black hole, in the coordinates of (17), is located at r = 0 (which does not describe,
as one might believe, a point in space, but rather an instant in time).

The space-time metric of a black hole space-time, such as Equation (17) in
the simple case J = Q = 0, allows one to study the influence of a black hole on
particles and fields in its neighborhood. One finds that a black hole is a gravi-
tational potential well that is so deep that any particle or wave that penetrates
the interior of the black hole (the region r < rH) will never be able to come out
again, and that the total energy of the particle or wave that “falls” into the black
hole ends up augmenting the total mass-energy M of the black hole. By studying
such black hole “accretion” processes with falling particles (following R. Penrose),
D. Christodoulou and R. Ruffini showed that a black hole is not only a poten-
tial well, but also a physical object possessing a significant free energy that it is
possible, in principle, to extract. Such black hole energetics is encapsulated in the
“mass formula” of Christodoulou and Ruffini (in units where c = 1)

M2 =
(

Mirr +
Q2

4 GMirr

)2

+
J2

4 G2M2
irr

, (18)

where Mirr denotes the irreducible mass of the black hole, a quantity that can only
grow, irreversibly. One deduces from (18) that a rotating (J �= 0) and/or charged
(Q �= 0) black hole possesses a free energy M −Mirr > 0 that can, in principle, be
extracted through processes that reduce its angular momentum and/or its electric
charge. Such black hole energy-extraction processes may lie at the origin of certain
ultra-energetic astrophysical phenomena (such as quasars or gamma ray bursts).
Let us note that, according to Equation (18), (rotating or charged) black holes
are the largest reservoirs of free energy in the Universe: in fact, 29% of their mass
energy can be stored in the form of rotational energy, and up to 50% can be stored
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in the form of electric energy. These percentages are much higher than the few
percent of nuclear binding energy that is at the origin of all the light emitted by
stars over their lifetimes. Even though there is not, at present, irrefutable proof
of the existence of black holes in the universe, an entire range of very strong
presumptive evidence lends credence to their existence. In particular, more than
a dozen X-ray emitting binary systems in our galaxy are most likely made up of
a black hole and an ordinary star. Moreover, the center of our galaxy seems to
contain a very compact concentration of mass ∼ 3 × 106M� that is probably a
black hole. (For a review of the observational data leading to these conclusions
see, for example, Section 7.6 of the recent book by N. Straumann [6].)

The fact that a quantity associated with a black hole, here the irreducible
mass Mirr, or, according to a more general result due to S.W. Hawking, the to-
tal area A of the surface of a black hole (A = 16 π G2M2

irr), can evolve only by
irreversibly growing is reminiscent of the second law of thermodynamics. This re-
sult led J.D. Bekenstein to interpret the horizon area, A, as being proportional to
the entropy of the black hole. Such a thermodynamic interpretation is reinforced
by the study of the growth of A under the influence of external perturbations, a
growth that one can in fact attribute to some local dissipative properties of the
black hole surface, notably a surface viscosity and an electrical resistivity equal to
377 ohm (as shown in work by T. Damour and R.L. Znajek). These “thermody-
namic” interpretations of black hole properties are based on simple analogies at
the level of classical physics, but a remarkable result by Hawking showed that they
have real content at the level of quantum physics. In 1974, Hawking discovered
that the presence of a horizon in a black hole space-time affected the definition of
a quantum particle, and caused a black hole to continuously emit a flux of par-
ticles having the characteristic spectrum (Planck spectrum) of thermal emission
at the temperature T = 4 � G∂M/∂A, where � is the reduced Planck constant.
By using the general thermodynamic relation connecting the temperature to the
energy E = M and the entropy S, T = ∂M/∂S, we see from Hawking’s result (in
conformity with Bekenstein’s ideas) that a black hole possesses an entropy S equal
(again with c = 1) to

S =
1
4

A

� G
. (19)

The Bekenstein-Hawking formula (19) suggests an unexpected, and perhaps pro-
found, connection between gravitation, thermodynamics, and quantum theory. See
Section 11 below.

9. Binary Pulsars and Experimental Confirmations in the Regime
of Strong and Radiating Gravitational Fields

Binary pulsars are binary systems made up of a pulsar (a rapidly spinning neutron
star) and a very dense companion star (either a neutron star or a white dwarf).
The first system of this type (called PSR B1913+16) was discovered by R.A. Hulse
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and J.H. Taylor in 1974 [10]. Today, a dozen are known. Some of these (including
the first-discovered PSR B1913+16) have revealed themselves to be remarkable
probes of relativistic gravitation and, in particular, of the regime of strong and/or
radiating gravitational fields. The reason for which a binary pulsar allows for the
probing of strong gravitational fields is that, as we have already indicated above,
the deformation of the space-time geometry in the neighborhood of a neutron star
is no longer a small quantity, as it is in the solar system. Rather, it is on the order
of unity: hµν ≡ gµν − ηµν ∼ 2GM/c2R ∼ 0.4. (We note that this value is only 2.5
times smaller than in the extreme case of a black hole, for which 2GM/c2R = 1.)
Moreover, the fact that the gravitational interaction propagates at the speed of
light (as indicated by the presence of the wave operator, � = ∆ − c−2∂2/∂t2 in
(11)) between the pulsar and its companion is found to play an observationally
significant role for certain binary pulsars.

Let us outline how the observational data from binary pulsars are used to
probe the regime of strong (hµν on the order of unity) and/or radiative (effects
propagating at the speed c) gravitational fields. (For more details on the observa-
tional data from binary pulsars and their use in probing relativistic gravitation,
see Michael Kramer’s contribution to this Poincaré seminar.) Essentially, a pulsar
plays the role of an extremely stable clock. Indeed, the “pulsar phenomenon” is
due to the rotation of a bundle of electromagnetic waves, created in the neigh-
borhood of the two magnetic poles of a strongly magnetized neutron star (with
a magnetic field on the order of 1012 Gauss, 1012 times the size of the terrestrial
magnetic field). Since the magnetic axis of a pulsar is not aligned with its axis
of rotation, the rapid rotation of the pulsar causes the (inner) magnetosphere as
a whole to rotate, and likewise the bundle of electromagnetic waves created near
the magnetic poles. The pulsar is therefore analogous to a lighthouse that sweeps
out space with two bundles (one per pole) of electromagnetic waves. Just as for a
lighthouse, one does not see the pulsar from Earth except when the bundle sweeps
the Earth, thus causing a flash of electromagnetic noise with each turn of the pul-
sar around itself (in some cases, one even sees a secondary flash, due to emission
from the second pole, after each half-turn). One can then measure the time of
arrival at Earth of (the center of) each flash of electromagnetic noise. The basic
observational data of a pulsar are thus made up of a regular, discrete sequence
of the arrival times at Earth of these flashes or “pulses.” This sequence is analo-
gous to the signal from a clock: tick, tick, tick, . . .. Observationally, one finds that
some pulsars (and in particular those that belong to binary systems) thus define
clocks of a stability comparable to the best atomic clocks [11]. In the case of a soli-
tary pulsar, the sequence of its arrival times is (in essence) a regular “arithmetic
sequence,” TN = aN + b, where N is an integer labeling the pulse considered,
and where a is equal to the period of rotation of the pulsar around itself. In the
case of a binary pulsar, the sequence of arrival times is a much richer signal, say
TN = aN + b + ∆N , where ∆N measures the deviation with respect to a regular
arithmetic sequence. This deviation (after the subtraction of effects not connected
to the orbital period of the pulsar) is due to a whole ensemble of physical effects
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connected to the orbital motion of the pulsar around its companion or, more pre-
cisely, around the center of mass of the binary system. Some of these effects could
be predicted by a purely Keplerian description of the motion of the pulsar in space,
and are analogous to the “Rœmer effect” that allowed Rœmer to determine, for
the first time, the speed of light from the arrival times at Earth of light signals
coming from Jupiter’s satellites (the light signals coming from a body moving in
orbit are “delayed” by the time taken by light to cross this orbit and arrive at
Earth). Other effects can only be predicted and calculated by using a relativistic
description, either of the orbital motion of the pulsar, or of the propagation of
electromagnetic signals between the pulsar and Earth. For example, the following
facts must be accounted for: (i) the “pulsar clock” moves at a large speed (on the
order of 300 km/s ∼ 10−3c) and is embedded in the varying gravitational potential
of the companion; (ii) the orbit of the pulsar is not a simple Keplerian ellipse, but
(in general relativity) a more complicated orbit that traces out a “rosette” around
the center of mass; (iii) the propagation of electromagnetic signals between the
pulsar and Earth takes place in a space-time that is curved by both the pulsar and
its companion, which leads to particular effects of relativistic delay; etc. Taking
relativistic effects in the theoretical description of arrival times for signals emitted
by binary pulsars into account thus leads one to write what is called a timing
formula. This timing formula (due to T. Damour and N. Deruelle) in essence al-
lows one to parameterize the sequence of arrival times, TN = aN + b + ∆N , in
other words to parameterize ∆N , as a function of a set of “phenomenological pa-
rameters” that include not only the so-called “Keplerian” parameters (such as the
orbital period P , the projection of the semi-major axis of the pulsar’s orbit along
the line of sight xA = aA sin i, and the eccentricity e), but also the post-Keplerian
parameters associated with the relativistic effects mentioned above. For example,
effect (i) discussed above is parameterized by a quantity denoted γT ; effect (ii) by
(among others) the quantities ω̇, Ṗ ; effect (iii) by the quantities r, s; etc.

The way in which observations of binary pulsars allow one to test relativistic
theories of gravity is therefore the following. A (least-squares) fit between the ob-
servational timing data, ∆obs

N , and the parameterized theoretical timing formula,
∆th

N (P, xA, e; γT , ω̇, Ṗ , r, s), allows for the determination of the observational values
of the Keplerian (P obs, xobs

A , eobs) and post-Keplerian (γobs
T , ω̇obs, Ṗ obs, robs, sobs)

parameters. The theory of general relativity predicts the value of each post-
Keplerian parameter as a function of the Keplerian parameters and the two masses
of the binary system (the mass mA of the pulsar and the mass mB of the com-
panion). For example, the theoretical value predicted by general relativity for the
parameter γT is γGR

T (mA, mB) = en−1(GMn/c3)2/3 mB(mA + 2 mB)/M2, where
e is the eccentricity, n = 2π/P the orbital frequency, and M ≡ mA + mB. We
thus see that, if one assumes that general relativity is correct, the observational
measurement of a post-Keplerian parameter, for example γobs

T , determines a curve
in the plane (mA, mB) of the two masses: γGR

T (mA, mB) = γobs
T , in our example.

The measurement of two post-Keplerian parameters thus gives two curves in the
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(mA, mB) plane and generically allows one to determine the values of the two
masses mA and mB, by considering the intersection of the two curves. We obtain
a test of general relativity as soon as one observationally measures three or more
post-Keplerian parameters: if the three (or more) curves all intersect at one point
in the plane of the two masses, the theory of general relativity is confirmed, but if
this is not the case the theory is refuted. At present, four distinct binary pulsars
have allowed one to test general relativity. These four “relativistic” binary pulsars
are: the first binary pulsar PSR B1913+16, the pulsar PSR B1534+12 (discovered
by A. Wolszczan in 1991), and two recently discovered pulsars: PSR J1141−6545
(discovered in 1999 by V.M. Kaspi et al., whose first timing results are due to
M. Bailes et al. in 2003), and PSR J0737−3039 (discovered in 2003 by M. Burgay
et al., whose first timing results are due to A.G. Lyne et al. and M. Kramer et
al.). With the exception of PSR J1141−6545, whose companion is a white dwarf,
the companions of the pulsars are neutron stars. In the case of PSR J0737−3039
the companion turns out to also be a pulsar that is visible from Earth.

In the system PSR B1913+16, three post-Keplerian parameters have been
measured (ω̇, γT , Ṗ ), which gives one test of the theory. In the system PSR J1141
-65, three post-Keplerian parameters have been measured (ω̇, γT , Ṗ ), which gives
one test of the theory. (The parameter s is also measured through scintillation
phenomena, but the use of this measurement for testing gravitation is more prob-
lematic.) In the system PSR B1534+12, five post-Keplerian parameters have been
measured, which gives three tests of the theory. In the system PSR J0737−3039,
six post-Keplerian parameters,4 which gives four tests of the theory. It is remark-
able that all of these tests have confirmed general relativity. See Figure 4 and,
for references and details, [4, 11, 12, 13], as well as the contribution by Michael
Kramer.

Note that, in Figure 4, some post-Keplerian parameters are measured with
such great precision that they in fact define very thin curves in the mA, mB plane.
On the other hand, some of them are only measured with a rough fractional pre-
cision and thus define “thick curves,” or “strips” in the plane of the masses (see,
for example, the strips associated with Ṗ , r and s in the case of PSR B1534+12).
In any case, the theory is confirmed when all of the strips (thick or thin) have
a non-empty common intersection. (One should also note that the strips repre-
sented in Figure 4 only use the “one sigma” error bars, in other words a 68% level
of confidence. Therefore, the fact that the Ṗ strip for PSR B1534+12 is a little bit
disjoint from the intersection of the other strips is not significant: a “two sigma”
figure would show excellent agreement between observation and general relativity.)

In view of the arguments presented above, all of the tests shown in Figure 4
confirm the validity of general relativity in the regime of strong gravitational fields
(hµν ∼ 1). Moreover, the four tests that use measurements of the parameter Ṗ (in

4In the case of PSR J0737−3039, one of the six measured parameters is the ratio xA/xB between
a Keplerian parameter of the pulsar and its analog for the companion, which turns out to also
be a pulsar.
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Figure 4. Tests of general relativity obtained from observations
of four binary pulsars. For each binary pulsar one has traced the
“curves,” in the plane of the two masses (mA = mass of the pul-
sar, mB = mass of the companion), defined by equating the the-
oretical expressions for the various post-Keplerian parameters, as
predicted by general relativity, to their observational value, deter-
mined through a least-squares fit to the parameterized theoretical
timing formula. Each “curve” is in fact a “strip,” whose thickness
is given by the (one sigma) precision with which the correspond-
ing post-Keplerian parameter is measured. For some parameters,
these strips are too thin to be visible. The grey zones would cor-
respond to a sine for the angle of inclination of the orbital plane
with respect to the plane of the sky that is greater than 1, and
are therefore physically excluded.

the four corresponding systems) are direct experimental confirmations of the fact
that the gravitational interaction propagates at the speed c between the companion
and the pulsar. In fact, Ṗ denotes the long-term variation 〈dP/dt〉 of the orbital
period. Detailed theoretical calculations of the motion of two gravitationally con-
densed objects in general relativity, that take into account the effects connected
to the propagation of the gravitational interaction at finite speed [14], have shown
that one of the observable effects of this propagation is a long-term decrease in
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the orbital period given by the formula

ṖGR(mA, mB) = −192 π

5
1 + 73

24 e2 + 37
96 e4

(1 − e2)7/2

(
GMn

c3

)5/3
mA mB

M2
.

The direct physical origin of this decrease in the orbital period lies in the modifi-
cation, produced by general relativity, of the usual Newtonian law of gravitational
attraction between two bodies, FNewton = GmA mB/r2

AB. In place of such a simple
law, general relativity predicts a more complicated force law that can be expanded
in the symbolic form

FEinstein =
GmA mB

r2
AB

(
1 +

v2

c2
+

v4

c4
+

v5

c5
+

v6

c6
+

v7

c7
+ · · ·

)
, (20)

where, for example, “v2/c2” represents a whole set of terms of order v2
A/c2, v2

B/c2,
vA vB/c2, or even GmA/c2 r or GmB/c2 r. Here vA denotes the speed of body A,
vB that of body B, and rAB the distance between the two bodies. The term of order
v5/c5 in Equation (20) is particularly important. This term is a direct consequence
of the finite-speed propagation of the gravitational interaction between A and B,
and its calculation shows that it contains a component that is opposed to the
relative speed vA − vB of the two bodies and that, consequently, slows down the
orbital motion of each body, causing it to evolve towards an orbit that lies closer
to its companion (and therefore has a shorter orbital period). This “braking”
term (which is correlated with the emission of gravitational waves), δFEinstein ∼
v5/c5 FNewton, leads to a long-term decrease in the orbital period ṖGR ∼ −(v/c)5 ∼
−10−12 that is very small, but whose reality has been verified with a fractional
precision of order 10−3 in PSR B1913+16 and of order 20% in PSR B1534+12
and PSR J1141−6545 [4, 11, 13].

To conclude this brief outline of the tests of relativistic gravitation by binary
pulsars, let us note that there is an analog, for the regime of strong gravitational
fields, of the formalism of parametrization for possible deviations from general
relativity mentioned in Section 6 in the framework of weak gravitational fields
(using the post-Newtonian parameters γ−1 and β−1). This analog is obtained by
considering a two-parameter family of relativistic theories of gravitation, assuming
that the gravitational interaction is propagated not only by a tensor field gµν but
also by a scalar field ϕ. Such a class of tensor-scalar theories of gravitation allows
for a description of possible deviations in both the solar system and in binary
pulsars. It also allows one to explicitly demonstrate that binary pulsars indeed
test the effects of strong fields that go beyond the tests of the weak fields of the
solar system by exhibiting classes of theories that are compatible with all of the
observations in the solar system but that are incompatible with the observations
of binary pulsars, see [4, 13].
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10. Gravitational Waves: Propagation, Generation, and Detection

As soon as he had finished constructing the theory of general relativity, Einstein
realized that it implied the existence of waves of geometric deformations of space-
time, or “gravitational waves” [15, 2]. Mathematically, these waves are analogs
(with the replacement Aµ → hµν) of electromagnetic waves, but conceptually
they signify something remarkable: they exemplify, in the purest possible way, the
“elastic” nature of space-time in general relativity. Before Einstein space-time was
a rigid structure, given a priori, which was not influenced by the material con-
tent of the Universe. After Einstein, a distribution of matter (or more generally
of mass-energy) that changes over the course of time, let us say for concreteness
a binary system of two neutron stars or two black holes, will not only deform
the chrono-geometry of the space-time in its immediate neighborhood, but this
deformation will propagate in every possible direction away from the system con-
sidered, and will travel out to infinity in the form of a wave whose oscillations
will reflect the temporal variations of the matter distribution. We therefore see
that the study of these gravitational waves poses three separate problems: that of
generation, that of propagation, and, finally, that of detection of such gravitational
radiation. These three problems are at present being actively studied, since it is
hoped that we will soon detect gravitational waves, and thus will be able to obtain
new information about the Universe [16]. We shall here content ourselves with an
elementary introduction to this field of research. For a more detailed introduction
to the detection of gravitational waves see the contribution by Jean-Yves Vinet to
this Poincaré seminar.

Let us first consider the simplest case of very weak gravitational waves, out-
side of their material sources. The geometry of such a space-time can be written,
as in Section 6, as gµν(x) = ηµν + hµν(x), where hµν � 1. At first order in h,
and outside of the source (namely in the domain where Tµν(x) = 0), the per-
turbation of the geometry, hµν(x), satisfies a homogeneous equation obtained by
replacing the right-hand side of Equation (11) with zero. It can be shown that
one can simplify this equation through a suitable choice of coordinate system. In
a transverse traceless (TT) coordinate system the only non-zero components of a
general gravitational wave are the spatial components hTT

ij , i, j = 1, 2, 3 (in other
words hTT

00 = 0 = hTT
0i ), and these components satisfy

� hTT
ij = 0 , ∂j hTT

ij = 0 , hTT
jj = 0 . (21)

The first equation in (21), where the wave operator � = ∆−c−2 ∂2
t appears, shows

that gravitational waves (like electromagnetic waves) propagate at the speed c. If
we consider for simplicity a monochromatic plane wave (hTT

ij = ζij exp(i k · x −
i ω t)+ complex conjugate, with ω = c |k|), the second equation in (21) shows
that the (complex) tensor ζij measuring the polarization of a gravitational wave
only has non-zero components in the plane orthogonal to the wave’s direction of
propagation: ζij kj = 0. Finally, the third equation in (21) shows that the polar-
ization tensor ζij has vanishing trace: ζjj = 0. More concretely, this means that
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if a gravitational wave propagates in the z-direction, its polarization is described

by a 2 × 2 matrix,
(

ζxx ζxy

ζyx ζyy

)
, which is symmetric and traceless. Such a polar-

ization matrix therefore only contains two independent (complex) components:
ζ+ ≡ ζxx = −ζyy, and ζ× ≡ ζxy = ζyx. This is the same number of independent
(complex) components that an electromagnetic wave has. Indeed, in a transverse
gauge, an electromagnetic wave only has spatial components AT

i that satisfy

� AT
i = 0 , ∂j AT

j = 0 . (22)

As in the case above, the first equation (22) means that an electromagnetic wave
propagates at the speed c, and the second equation shows that a monochromatic
plane electromagnetic wave (AT

i = ζi exp(i k · x − i ω t)+ c.c., ω = c |k|) is de-
scribed by a (complex) polarization vector ζi that is orthogonal to the direction
of propagation: ζj kj = 0. For a wave propagating in the z-direction such a vector
only has two independent (complex) components, ζx and ζy. It is indeed the same
number of components that a gravitational wave has, but we see that the two
quantities measuring the polarization of a gravitational wave, ζ+ = ζxx = −ζyy,
ζ× = ζxy = ζyx are mathematically quite different from the two quantities ζx, ζy

measuring the polarization of an electromagnetic wave. However, see Section 11
below.

We have here discussed the propagation of a gravitational wave in a back-
ground space-time described by the Minkowski metric ηµν . One can also consider
the propagation of a wave in a curved background space-time, namely by studying
solutions of Einstein’s equations (9) of the form gµν(x) = gB

µν(x) + hµν(x) where
hµν is not only small, but varies on temporal and spatial scales much shorter than
those of the background metric gB

µν(x). Such a study is necessary, for example, for
understanding the propagation of gravitational waves in the cosmological Universe.

The problem of generation consists in searching for the connection between
the tensorial amplitude hTT

ij of the gravitational radiation in the radiation zone
and the motion and structure of the source. If one considers the simplest case of
a source that is sufficiently diffuse that it only creates waves that are everywhere
weak (gµν−ηµν = hµν � 1), one can use the linearized approximation to Einstein’s
equations (9), namely Equations (11). One can solve Equations (11) by the same
technique that is used to solve Maxwell’s equations (12): one fixes the coordinate
system by imposing ∂α hαµ− 1

2 ∂µ hα
α = 0 (analogous to the Lorentz gauge condition

∂α Aα = 0), then one inverts the wave operator by using retarded potentials.
Finally, one must study the asymptotic form, at infinity, of the emitted wave, and
write it in the reduced form of a transverse and traceless amplitude hTT

ij satisfying
Equations (21) (analogous to a transverse electromagnetic wave AT

i satisfying
(22)). One then finds that, just as charge conservation implies that there is no
monopole type electro-magnetic radiation, but only dipole or higher orders of
polarity, the conservation of energy-momentum implies the absence of monopole
and dipole gravitational radiation. For a slowly varying source (v/c � 1), the
dominant gravitational radiation is of quadrupole type. It is given, in the radiation
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zone, by an expression of the form

hTT
ij (t, r, n) � 2G

c4 r

∂2

∂t2
[Iij(t − r/c)]TT . (23)

Here r denotes the distance to the center of mass of the source, Iij(t) ≡
∫

d3x c−2

T 00(t, x)
(
xixj − 1

3 x2δij
)

is the quadrupole moment of the mass-energy distribu-
tion, and the upper index TT denotes an algebraic projection operation for the
quadrupole tensor Iij (which is a 3×3 matrix) that only retains the part orthogo-
nal to the local direction of wave propagation ni ≡ xi/r with vanishing trace (ITT

ij

is therefore locally a (real) 2×2 symmetric, traceless matrix of the same type as ζij

above). Formula (23) (which was in essence obtained by Einstein in 1918 [15]) is
only the first approximation to an expansion in powers of v/c, where v designates
an internal speed characteristic of the source. The prospect of soon being able to
detect gravitational waves has motivated theorists to improve Formula (23): (i)
by describing the terms of higher order in v/c, up to a very high order, and (ii)
by using new approximation methods that allow one to treat sources containing
regions of strong gravitational fields (such as, for example, a binary system of two
black holes or two neutron stars). See below for the most recent results.

Finally, the problem of detection, of which the pioneer was Joseph Weber
in the 1960s, is at present giving rise to very active experimental research. The
principle behind any detector is that a gravitational wave of amplitude hTT

ij induces
a change in the distance L between two bodies on the order of δL ∼ hL during
its passage. One way of seeing this is to consider the action of a wave hTT

ij on
two free particles, at rest before the arrival of the wave at the positions xi

1 and
xi

2 respectively. As we have seen, each particle, in the presence of the wave, will
follow a geodesic motion in the geometry gµν = ηµν +hµν (with h00 = h0i = 0 and
hij = hTT

ij ). By writing out the geodesic equation, Equation (7), one finds that it
simply reduces (at first order in h) to d2xi/ds2 = 0. Therefore, particles that are
initially at rest (xi = const.) remain at rest in a transverse and traceless system
of coordinates! This does not however mean that the gravitational wave has no
observable effect. In fact, since the spatial geometry is perturbed by the passage of
the wave, gij(t, x) = δij + hTT

ij (t, x), one finds that the physical distance between
the two particles xi

1, xi
2 (which is observable, for example, by measuring the time

taken for light to make a round trip between the two particles) varies, during the
passage of the wave, according to L2 = (δij + hTT

ij )(xi
2 − xi

1)(x
j
2 − xj

1).
The problem of detecting a gravitational wave thus leads to the problem of

detecting a small relative displacement δL/L ∼ h. By using Formula (23), one finds
that the order of magnitude of h, for known or hoped for astrophysical sources (for
example, a very close system of two neutron stars or two black holes), situated at
distances such that one may hope to see several events per year (r � 600 million
light-years), is in fact extremely small: h � 10−22 for signals whose characteristic
frequency is around 100 Hertz. Several types of detectors have been developed
since the pioneering work of J. Weber [16]. At present, the detectors that should
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succeed in the near future at detecting amplitudes h ∼ δL/L ∼ 10−22 are large
interferometers, of the Michelson or Fabry-Pérot type, having arms that are many
kilometers in length into which a very powerful monochromatic laser beam is
injected. Such terrestrial interferometric detectors presently exist in the U.S.A.
(the LIGO detectors [17]), in Europe (the VIRGO [18] and GEO 600 [19] detectors)
and elsewhere (such as the TAMA detector in Japan). Moreover, the international
space project LISA [20], made up of an interferometer between satellites that are
several million kilometers apart, should allow one to detect low frequency (∼ one
hundredth or one thousandth of a Hertz) gravitational waves in a dozen years
or so. This collection of gravitational wave detectors promises to bring invaluable
information for astronomy by opening a new “window” on the Universe that is
much more transparent than the various electromagnetic (or neutrino) windows
that have so greatly expanded our knowledge of the Universe in the twentieth
century.

The extreme smallness of the expected gravitational signals has led a num-
ber of experimentalists to contribute, over many years, a wealth of ingenuity and
know-how in order to develop technology that is sufficiently precise and trustwor-
thy (see [17, 18, 19, 20]). To conclude, let us also mention how much concerted
theoretical effort has been made, both in calculating the general relativistic predic-
tions for gravitational waves emitted by certain sources, and in developing methods
adapted to the extraction of the gravitational signal from the background noise
in the detectors. For example, one of the most promising sources for terrestrial
detectors is the wave train for gravitational waves emitted by a system of two
black holes, and in particular the final (most intense) portion of this wave train,
which is emitted during the last few orbits of the system and the final coalescence
of the two black holes into a single, more massive black hole. We have seen above
(see Section 9) that the finite speed of propagation of the gravitational interaction
between the two bodies of a binary system gives rise to a progressive acceleration
of the orbital frequency, connected to the progressive approach of the two bodies
towards each other. Here we are speaking of the final stages in such a process,
where the two bodies are so close that they orbit around each other in a spiral
pattern that accelerates until they attain (for the final “stable” orbits) speeds that
become comparable to the speed of light, all the while remaining slightly slower. In
order to be able to determine, with a precision that is acceptable for the needs of
detection, the dynamics of such a binary black hole system in such a situation, as
well as the gravitational amplitude hTT

ij that it emits, it was necessary to develop a
whole ensemble of analytic techniques to a very high level of precision. For exam-
ple, it was necessary to calculate the expansion (20) of the force determining the
motion of the two bodies to a very high order and also to calculate the amplitude
hTT

ij of the gravitational radiation emitted to infinity with a precision going well
beyond the quadrupole approximation (23). These calculations are comparable in
complexity to high-order calculations in quantum field theory. Some of the tech-
niques developed for quantum field theory indeed proved to be extremely useful
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for these calculations in the (classical) theory of general relativity (such as certain
resummation methods and the mathematical use of analytic continuation in the
number of space-time dimensions). For an entryway into the literature of these
modern analytic methods, see [21], and for an early example of a result obtained
by such methods of direct interest for the physics of detection see Figure 5 [22],
which shows a component of the gravitational amplitude hTT

ij (t) emitted during
the final stages of evolution of a system of two black holes of equal mass. The
first oscillations shown in Figure 5 are emitted during the last quasi-circular orbits
(accelerated motion in a spiral of decreasing radius). The middle part of the signal
corresponds to a phase where, having moved past the last stable orbit, the two
black holes “fall” toward each other while spiraling rapidly. In fact, contrarily to
Newton’s theory, which predicts that two condensed bodies would be able to orbit
around each other with an orbit of arbitrarily small radius (basically up until the
point that the two bodies touch), Einstein’s theory predicts a modified law for the
force between the two bodies, Equation (20), whose analysis shows that it is so
attractive that it no longer allows for stable circular orbits when the distance be-
tween the two bodies becomes smaller than around 6 G(mA +mB)/c2. In the case
of two black holes, this distance is sufficiently larger than the black hole “radii”
(2 GmA/c2 and 2 GmB/c2) that one is still able to analytically treat the begin-
ning of the “spiraling plunge” of the two black holes towards each other. The final
oscillations in Figure 5 are emitted by the rotating (and initially highly deformed)
black hole formed from the merger of the two initial, separate black holes.

Up until quite recently the analytic predictions illustrated in Figure 5 con-
cerning the gravitational signal h(t) emitted by the spiraling plunge and merger
of two black holes remained conjectural, since they could be compared to neither
other theoretical predictions nor to observational data. Recently, worldwide efforts
made over three decades to attack the problem of the coalescence of two black holes
by numerically solving Einstein’s equations (9) have spectacularly begun to bear
fruit. Several groups have been able to numerically calculate the signal h(t) emit-
ted during the final orbits and merger of two black holes [23]. In essence, there
is good agreement between the analytical and numerical predictions. In order to
be able to detect the gravitational waves emitted by the coalescence of two black
holes, it will most likely be necessary to properly combine the information on the
structure of the signal h(t) obtained by the two types of methods, which are in
fact complementary.

11. General Relativity and Quantum Theory: From Supergravity
to String Theory

Up until now, we have discussed the classical theory of general relativity, neglecting
any quantum effects. What becomes of the theory in the quantum regime? This
apparently innocent question in fact opens up vast new prospects that are still
under construction. We will do nothing more here than to touch upon the subject,
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Figure 5. The gravitational amplitude h(t) emitted during the
final stages of evolution of a system of two equal-mass black holes.
The beginning of the signal (the left side of the figure), which
is sinusoidal, corresponds to an inspiral motion of two separate
black holes (with decreasing distance); the middle corresponds
to a rapid “inspiralling plunge” of the two black holes towards
each other; the end (at right) corresponds to the oscillations of
the final, rotating black hole formed from the merger of the two
initial black holes.

by pointing out to the reader some of the paths along which contemporary physics
has been led by the challenge of unifying general relativity and quantum theory.
For a more complete introduction to the various possibilities “beyond” general
relativity suggested within the framework of string theory (which is still under
construction) one should consult the contribution of Ignatios Antoniadis to this
Poincaré Seminar.

Let us recall that, from the very beginning of the quasi-definitive formulation
of quantum theory (1925–1930), the creators of quantum mechanics (Born, Heisen-
berg, Jordan; Dirac; Pauli; etc.) showed how to “quantize” not only systems with
several particles (such as an atom), but also fields, continuous dynamical systems
whose classical description implies a continuous distribution of energy and momen-
tum in space. In particular, they showed how to quantize (or in other words how to
formulate within a framework compatible with quantum theory) the electromag-
netic field Aµ, which, as we have recalled above, satisfies the Maxwell equations
(12) at the classical level. They nevertheless ran into difficulty due to the following
fact. In quantum theory, the physics of a system’s evolution is essentially contained
in the transition amplitudes A(f, i) between an initial state labelled by i and a final
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state labelled by f . These amplitudes A(f, i) are complex numbers. They satisfy
a “transitivity” property of the type

A(f, i) =
∑

n

A(f, n)A(n, i) , (24)

which contains a sum over all possible intermediate states, labelled by n (with
this sum becoming an integral when there is a continuum of intermediate possible
states). R. Feynman used Equation (24) as a point of departure for a new formu-
lation of quantum theory, by interpreting it as an analog of Huygens’ Principle:
if one thinks of A(f, i) as the amplitude, “at the point f ,” of a “wave” emitted
“from the point i,” Equation (24) states that this amplitude can be calculated by
considering the “wave” emitted from i as passing through all possible intermediate
“points” n (A(n, i)), while re-emitting “wavelets” starting from these intermediate
points (A(f, n)), which then superpose to form the total wave arriving at the “final
point f .”

Property (24) does not pose any problem in the quantum mechanics of dis-
crete systems (particle systems). It simply shows that the amplitude A(f, i) be-
haves like a wave, and therefore must satisfy a “wave equation” (which is indeed the
case for the Schrödinger equation describing the dependence of A(f, i) on the pa-
rameters determining the final configuration f). On the other hand, Property (24)
poses formidable problems when one applies it to the quantization of continuous
dynamical systems (fields). In fact, for such systems the “space” of intermediate
possible states is infinitely larger than in the case of the mechanics of discrete
systems. Roughly speaking, the intermediate possible states for a field can be de-
scribed as containing � = 1, 2, 3, . . . quantum excitations of the field, with each
quantum excitation (or pair of “virtual particles”) being described essentially by a
plane wave, ζ exp(i kµ xµ), where ζ measures the polarization of these virtual par-
ticles and kµ = ηµν kν , with k0 = ω and ki = k, their angular frequency and wave
vector, or (using the Planck-Einstein-de Broglie relations E = � ω, p = � k) their
energy-momentum pµ = � kµ. The quantum theory shows (basically because of
the uncertainty principle) that the four-frequencies (and four-momenta) pµ = � kµ

of the intermediate states cannot be constrained to satisfy the classical equation
ηµν pµ pν = −m2 (or in other words E2 = p2 + m2 ; we use c = 1 in this section).
As a consequence, the sum over intermediate states for a quantum field theory
has the following properties (among others): (i) when � = 1 (an intermediate state
containing only one pair of virtual particles, called a one-loop contribution), there
is an integral over a four-momentum pµ,

∫
d4p =

∫
dE

∫
dp; (ii) when � = 2 (two

pairs of virtual particles; a two-loop contribution), there is an integral over two
four-momenta pµ

1 , pµ
2 ,

∫
d4p1 d4p2; etc. The delicate point comes from the fact

that the energy-momentum of an intermediate state can take arbitrarily high val-
ues. This possibility is directly connected (through a Fourier transform) to the
fact that a field possesses an infinite number of degrees of freedom, corresponding
to configurations that vary over arbitrarily small time and length scales.
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The problems posed by the necessity of integrating over the infinite domain of
four-momenta of intermediate virtual particles (or in other words of accounting for
the fact that field configurations can vary over arbitrarily small scales) appeared
in the 1930s when the quantum theory of the electromagnetic field Aµ (called
quantum electrodynamics, or QED) was studied in detail. These problems imposed
themselves in the following form: when one calculates the transition amplitude for
given initial and final states (for example the collision of two light quanta, with
two photons entering and two photons leaving) by using (24), one finds a result
given in the form of a divergent integral, because of the integral (in the one-loop
approximation, � = 1) over the arbitrarily large energy-momentum describing
virtual electron-positron pairs appearing as possible intermediate states. Little
by little, theoretical physicists understood that the types of divergent integrals
appearing in QED were relatively benign and, after the second world war, they
developed a method (renormalization theory) that allowed one to unambiguously
isolate the infinite part of these integrals, and to subtract them by expressing
the amplitudes A(f, i) solely as a function of observable quantities [24] (work by
J. Schwinger, R. Feynman, F. Dyson etc.).

The preceding work led to the development of consistent quantum theories
not only for the electromagnetic field Aµ (QED), but also for generalizations of
electromagnetism (Yang-Mills theory or non-abelian gauge theory) that turned out
to provide excellent descriptions of the new interactions between elementary parti-
cles discovered in the twentieth century (the electroweak theory, partially unifying
electromagnetism and weak nuclear interactions, and quantum chromodynamics,
describing the strong nuclear interactions). All of these theories give rise to only
relatively benign divergences that can be “renormalized” and thus allowed one
to compute amplitudes A(f, i) corresponding to observable physical processes [24]
(notably, work by G. ’t Hooft and M. Veltman).

What happens when we use (24) to construct a “perturbative” quantum the-
ory of general relativity (namely one obtained by expanding in the number � of
virtual particle pairs appearing in the intermediate states)? The answer is that
the integrals over the four-momenta of intermediate virtual particles are not at
all of the benign type that allowed them to be renormalized in the simpler case
of electromagnetism. The source of this difference is not accidental, but is rather
connected with the basic physics of relativistic gravitation. Indeed, as we have
mentioned, the virtual particles have arbitrarily large energies E. Because of the
basic relations that led Einstein to develop general relativity, namely E = mi

and mi = mg, one deduces that these virtual particles correspond to arbitrarily
large gravitational masses mg. They will therefore end up creating intense grav-
itational effects that become more and more intense as the number � of virtual
particle pairs grows. These gravitational interactions that grow without limit with
energy and momentum correspond (by Fourier transform) to field configurations
concentrated in arbitrarily small space and time scales. One way of seeing why the
quantum gravitational field creates much more violent problems than the quantum
electromagnetic field is, quite simply, to go back to dimensional analysis. Simple
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considerations in fact show that the relative (non-dimensional) one-loop amplitude
A1 must be proportional to the product � G and must contain an integral

∫
d4k.

However, in 1900 Planck had noticed that (in units where c = 1) the dimensions
of � and G were such that the product � G had the dimensions of length (or time)
squared:

�P ≡
√

� G

c3
� 1.6 × 10−33 cm, tP ≡

√
� G

c5
� 5.4 × 10−44 s . (25)

One thus deduces that the integral
∫

d4k f(k) must have the dimensions of a
squared frequency, and therefore that A1 must (when k → ∞) be of the type,
A1 ∼ � G

∫
d4k/k2. Such an integral diverges quadratically with the upper limit

Λ of the integral (the cutoff frequency, such that |k| ≤ Λ), so that A1 ∼ � GΛ2 ∼
t2P Λ2. The extension of this dimensional analysis to the intermediate states with
several loops (� > 1) causes even more severe polynomial divergences to appear,
of a type such that the power of Λ that appears grows without limit with �.

In summary, the essential physical characteristics of gravitation (E = mi =
mg and the dimension of Newton’s constant G) imply the impossibility of gener-
alizing to the gravitational case the methods that allowed a satisfactory quantum
treatment of the other interactions (electromagnetic, weak, and strong). Several
paths have been explored to get out of this impasse. Some researchers tried to quan-
tize general relativity non-perturbatively, without using an expansion in interme-
diate states (24) (work by A. Ashtekar, L. Smolin, and others). Others have tried
to generalize general relativity by adding a fermionic field to Einstein’s (bosonic)
gravitational field gµν(x), the gravitino field ψµ(x). It is indeed remarkable that it
is possible to define a theory, known as supergravity, that generalizes the geomet-
ric invariance of general relativity in a profound way. After the 1974 discovery (by
J. Wess and B. Zumino) of a possible new global symmetry for interacting bosonic
and fermionic fields, supersymmetry (which is a sort of global rotation transform-
ing bosons to fermions and vice versa), D.Z. Freedman, P. van Nieuwenhuizen,
and S. Ferrara; and S. Deser and B. Zumino; showed that one could generalize
global supersymmetry to a local supersymmetry, meaning that it varies from point
to point in space-time. Local supersymmetry is a sort of fermionic generaliza-
tion (with anti-commuting parameters) of the geometric invariance at the base of
general relativity (the invariance under any change in coordinates). The general-
ization of Einstein’s theory of gravitation that admits such a local supersymmetry
is called supergravity theory. As we have mentioned, in four dimensions this theory
contains, in addition to the (commuting) bosonic field gµν(x), an (anti-commuting)
fermionic field ψµ(x) that is both a space-time vector (with index µ) and a spinor.
(It is a massless field of spin 3/2, intermediate between a massless spin 1 field like
Aµ and a massless spin 2 field like hµν = gµν −ηµν .) Supergravity was extended to
richer fermionic structures (with many gravitinos), and was formulated in space-
times having more than four dimensions. It is nevertheless remarkable that there
is a maximal dimension, equal to D = 11, admitting a theory of supergravity (the
maximal supergravity constructed by E. Cremmer, B. Julia, and J. Scherk). The
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initial hope underlying the construction of these supergravity theories was that
they would perhaps allow one to give meaning to the perturbative calculation (24)
of quantum amplitudes. Indeed, one finds for example that at one loop, � = 1, the
contributions coming from intermediate fermionic states have a sign opposite to
the bosonic contributions and (because of the supersymmetry, bosons ↔ fermions)
exactly cancel them. Unfortunately, although such cancellations exist for the low-
est orders of approximation, it appeared that this was probably not going to be the
case at all orders5. The fact that the gravitational interaction constant G has “a
bad dimension” remains true and creates non-renormalizable divergences starting
at a certain number of loops �.

Meanwhile, a third way of defining a consistent quantum theory of gravity
was developed, under the name of string theory. Initially formulated as models for
the strong interactions (in particular by G. Veneziano, M. Virasoro, P. Ramond,
A. Neveu, and J.H. Schwarz), the string theories were founded upon the quantiza-
tion of the relativistic dynamics of an extended object of one spatial dimension: a
“string.” This string could be closed in on itself, like a small rubber band (a closed
string), or it could have two ends (an open string). Note that the point of depar-
ture of string theory only includes the Poincaré-Minkowski space-time, in other
words the metric ηµν of Equation (2), and quantum theory (with the constant
� = h/2π). In particular, the only symmetry manifest in the classical dynamics of
a string is the Poincaré group (3). It is, however, remarkable that (as shown by
T. Yoneya, J. Scherk and J.H. Schwarz, in 1974) one of the quantum excitations
of a closed string reproduces, in a certain limit, all of the non-linear structure of
general relativity (see below). Among the other remarkable properties of string
theory [25], let us point out that it is the first physical theory to determine the
space-time dimension D. In fact, this theory is only consistent if D = 10, for the
versions allowing fermionic excitations (the purely bosonic string theory selects
D = 26). The fact that 10 > 4 does not mean that this theory has no relevance to
the real world. Indeed, it has been known since the 1930s (from work of T. Kaluza
and O. Klein) that a space-time of dimension D > 4 is compatible with experi-
ment if the supplementary (spatial) dimensions close in on themselves (meaning
they are compactified) on very small distance scales. The low-energy physics of
such a theory seems to take place in a four-dimensional space-time, but it contains
new (a priori massless) fields connected to the geometry of the additional com-
pactified dimensions. Moreover, recent work (due in particular to I. Antoniadis,
N. Arkani-Hamed, S. Dimopoulos, and G. Dvali) has suggested the possibility that
the additional dimensions are compactified on scales that are small with respect
to everyday life, but very large with respect to the Planck length. This possibility
opens up an entire phenomenological field dealing with the eventual observation

5Recent work by Z. Bern et al. and M. Green et al., has, however, suggested that such cancel-
lations take place at all orders for the case of maximal supergravity, dimensionally reduced to
D = 4 dimensions.
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of signals coming from string theory (see the contribution of I. Antoniadis to this
Poincaré seminar).

However, string theory’s most remarkable property is that it seems to avoid,
in a radical way, the problems of divergent (non-renormalizable) integrals that
have weighed down every direct attempt at perturbatively quantizing gravity. In
order to explain how string theory arrives at such a result, we must discuss some
elements of its formalism.

Recall that the classical dynamics of any system is obtained by minimizing a
functional of the time evolution of the system’s configuration, called the action (the
principle of least action). For example, the action for a particle of mass m, moving
in a Riemannian space-time (6), is proportional to the length of the line that it
traces in space-time: S = −m

∫
ds. This action is minimized when the particle

follows a geodesic, in other words when its equation of motion is given by (7). Ac-
cording to Y. Nambu and T. Goto, the action for a string is S = −T

∫∫
dA, where

the parameter T (analogous to m for the particle) is called the string tension, and
where

∫∫
dA is the area of the two-dimensional surface traced out by the evolution

of the string in the (D-dimensional) space-time in which it lives. In quantum the-
ory, the action functional serves (as shown by R. Feynman) to define the transition
amplitude (24). Basically, when one considers two intermediate configurations m
and n (in the sense of the right-hand side of (24)) that are close to each other,
the amplitude A(n, m) is proportional to exp(i S(n, m)/�), where S(n, m) is the
minimal classical action such that the system considered evolves from the configu-
ration labelled by n to that labelled by m. Generalizing the decomposition in (24)
by introducing an infinite number of intermediate configurations that lie close to
each other, one ends up (in a generalization of Huygens’ principle) expressing the
amplitude A(f, i) as a multiple sum over all of the “paths” (in the configuration
space of the system studied) connecting the initial state i to the final state f . Each
path contributes a term eiφ where the phase φ = S/� is proportional to the action
S corresponding to this “path”, or in other words to this possible evolution of the
system. In string theory, φ = −(T/�)

∫∫
dA. Since the phase is a non-dimensional

quantity, and
∫∫

dA has the dimension of an area, we see that the quantum theory
of strings brings in the quantity �/T , having the dimensions of a length squared,
at a fundamental level. More precisely, the fundamental length of string theory,
�s, is defined by

�2
s ≡ α′ ≡ �

2 π T
. (26)

This fundamental length plays a central role in string theory. Roughly speak-
ing, it defines the characteristic “size” of the quantum states of a string. If �s is
much smaller than the observational resolution with which one studies the string,
the string will look like a point-like particle, and its interactions will be described
by a quantum theory of relativistic particles, which is equivalent to a theory of
relativistic fields. It is precisely in this sense that general relativity emerges as a
limit of string theory. Since this is an important conceptual point for our story, let
us give some details about the emergence of general relativity from string theory.
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The action functional that is used in practice to quantize a string is not really
−T

∫∫
dA, but rather (as emphasized by A. Polyakov)

S

�
= − 1

4 π �2
s

∫∫
d2σ

√−γ γab ∂a Xµ ∂b Xν ηµν + · · · , (27)

where σa, a = 0, 1 are two coordinates that allow an event to be located on the
space-time surface (or ‘world-sheet’) traced out by the string within the ambient
space-time; γab is an auxiliary metric (d Σ2 = γab(σ) dσa dσb) defined on this
surface (with γab being its inverse, and γ its determinant); and Xµ(σa) defines
the embedding of the string in the ambient (flat) space-time. The dots indicate
additional terms, and in particular terms of fermionic type that were introduced
by P. Ramond, by A. Neveu and J.H. Schwarz, and by others. If one separates
the two coordinates σa = (σ0, σ1) into a temporal coordinate, τ ≡ σ0, and a
spatial coordinate, σ ≡ σ1, the configuration “at time τ” of the string is described
by the functions Xµ(τ, σ), where one can interpret σ as a curvilinear abscissa
describing the spatial extent of the string. If we consider a closed string, one that
is topologically equivalent to a circle, the function Xµ(τ, σ) must be periodic in σ.
One can show that (modulo the imposition of certain constraints) one can choose
the coordinates τ and σ on the string such that d Σ2 = −dτ2 + dσ2. Then, the
dynamical equations for the string (obtained by minimizing the action (27)) reduce
to the standard equation for waves on a string: −∂2Xµ/∂τ2 +∂2Xµ/∂σ2 = 0. The
general solution to this equation describes a superposition of waves travelling along
the string in both possible directions: Xµ = Xµ

L(τ +σ)+Xµ
R(τ −σ). If we consider

a closed string (one that is topologically equivalent to a circle), these two types
of wave are independent of each other. For an open string (with certain reflection
conditions at the endpoints of the string) these two types of waves are connected
to each other. Moreover, since the string has a finite length in both cases, one can
decompose the left- or right-moving waves Xµ

L(τ + σ) or Xµ
R(τ − σ) as a Fourier

series. For example, for a closed string one may write

Xµ(τ, σ) = Xµ
0 (τ) +

i√
2

�s

∞∑
n=1

(
aµ

n√
n

e−2in(τ−σ) +
ãµ

n√
n

e−2in(τ+σ)

)
+ h.c. (28)

Here Xµ
0 (τ) = xµ + 2 �2

s pµτ describes the motion of the string’s center of mass,
and the remainder describes the decomposition of the motion around the center
of mass into a discrete set of oscillatory modes. Like any vibrating string, a rel-
ativistic string can vibrate in its fundamental mode (n = 1) or in a “harmonic”
of the fundamental mode (for an integer n > 1). In the classical case the com-
plex coefficients aµ

n, ãµ
n represent the (complex) amplitudes of vibration for the

modes of oscillation at frequency n times the fundamental frequency. (with aµ
n

corresponding to a wave travelling to the right, while ãµ
n corresponds to a wave

travelling to the left.) When one quantizes the string dynamics the position of the
string Xµ(τ, σ) becomes an operator (acting in the space of quantum states of
the system), and because of this the quantities xµ, pµ, aµ

n and ãµ
n in (28) become

operators. The notation h.c. signifies that one must add the hermitian conjugates



General Relativity Today 39

of the oscillation terms, which will contain the operators (aµ
n)† and (ãµ

n)†. (The
notation † indicates hermitian conjugation, in other words the operator analog
of complex conjugation.) One then finds that the operators xµ and pµ describ-
ing the motion of the center of mass satisfy the usual commutation relations of a
relativistic particle, [xµ, pµ] = i � ηµν , and that the operators aµ

n and ãµ
n become

annihilation operators, like those that appear in the quantum theory of any vi-
brating system: [aµ

n, (aν
m)†] = � ηµν δnm, [ãµ

n, (ãν
m)†] = � ηµν δmn. In the case of an

open string, one only has one set of oscillators, let us say aµ
n. The discussion up

until now has neglected to mention that the oscillation amplitudes aµ
n, ãµ

n must
satisfy an infinite number of constraints (connected with the equation obtained by
minimizing (27) with respect to the auxiliary metric γab). One can satisfy these
by expressing two of the space-time components of the oscillators aµ

n, ãµ
n (for each

n) as a function of the other. Because of this, the physical states of the string
are described by oscillators ai

n, ãi
n where the index i only takes D − 2 values in

a space-time of dimension D. Forgetting this subtlety for the moment (which is
nevertheless crucial physically), let us conclude this discussion by summarizing the
spectrum of a quantum string, or in other words the ensemble of quantum states
of motion for a string.

For an open string, the ensemble of quantum states describes the states of
motion (the momenta pµ) of an infinite collection of relativistic particles, having
squared masses M2 = −ηµν pµ pν equal to (N − 1) m2

s, where N is a non-negative
integer and ms ≡ �/�s is the fundamental mass of string theory associated to
the fundamental length �s. For a closed string, one finds another “infinite tower”
of more and more massive particles, this time with M2 = 4(N − 1)m2

s. In both
cases the integer N is given, as a function of the string’s oscillation amplitudes
(travelling to the right), by

N =
∞∑

n=1

n ηµν(aµ
n)† aν

n . (29)

In the case of a closed string one must also satisfy the constraint N = Ñ where Ñ
is the operator obtained by replacing aµ

n by ãµ
n in (29).

The preceding result essentially states that the (quantized) internal energy
of an oscillating string defines the squared mass of the associated particle. The
presence of the additional term −1 in the formulae given above for M2 means that
the quantum state of minimum internal energy for a string, that is, the “vacuum”
state |0〉 where all oscillators are in their ground state, aµ

n | 0〉 = 0, corresponds
to a negative squared mass (M2 = −m2

s for the open string and M2 = −4 m2
s

for the closed string). This unusual quantum state (a tachyon) corresponds to an
instability of the theory of bosonic strings. It is absent from the more sophisti-
cated versions of string theory (“superstrings”) due to F. Gliozzi, J. Scherk, and
D. Olive, to M. Green and J.H. Schwarz, and to D. Gross and collaborators. Let
us concentrate on the other states (which are the only ones that have correspond-
ing states in superstring theory). One then finds that the first possible physical
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quantum states (such that N = 1) describe some massless particles. In relativis-
tic quantum theory it is known that any particle is the quantized excitation of a
corresponding field. Therefore the massless particles that appear in string theory
must correspond to long-range fields. To know which fields appear in this way one
must more closely examine which possible combinations of oscillator excitations
aµ
1 , aµ

2 , aµ
3 , . . ., appearing in Formula (29), can lead to N = 1. Because of the factor

n in (29) multiplying the harmonic contribution of order n to the mass squared,
only the oscillators of the fundamental mode n = 1 can give N = 1. One then
deduces that the internal quantum states of massless particles appearing in the
theory of open strings are described by a string oscillation state of the form

ζµ(aµ
1 )† | 0〉 . (30)

On the other hand, because of the constraint N = Ñ = 1, the internal quantum
states of the massless particles appearing in the theory of closed strings are de-
scribed by a state of excitation containing both a left-moving oscillation and a
right-moving oscillation:

ζµν(aµ
1 )† (ãν

1)† | 0〉 . (31)

In Equations (30) and (31) the state |0〉 denotes the ground state of all oscillators
(aµ

n | 0〉 = ãµ
n | 0〉 = 0).

The state (30) therefore describes a massless particle (with momentum sat-
isfying ηµν pµ pν = 0), possessing an “internal structure” described by a vector
polarization ζµ. Here we recognize exactly the definition of a photon, the quan-
tum state associated with a wave Aµ(x) = ζµ exp(i kλ xλ), where pµ = � kµ. The
theory of open strings therefore contains Maxwell’s theory. (One can also show
that, because of the constraints briefly mentioned above, the polarization ζµ must
be transverse, kµ ζµ = 0, and that it is only defined up to a gauge transforma-
tion: ζ′µ = ζµ + a kµ.) As for the state (31), this describes a massless particle
(ηµν pµ pν = 0), possessing an “internal structure” described by a tensor polariza-
tion ζµν . The plane wave associated with such a particle is therefore of the form
h̄µν(x) = ζµν exp(i kλ xλ), where pµ = � kµ. As in the case of the open string, one
can show that ζµν must be transverse, ζµν kν = 0 and that it is only defined up to
a gauge transformation, ζ′µν = ζµν + kµ aν + kν bµ. We here see the same type of
structure appear that we had in general relativity for plane waves. However, here
we have a structure that is richer than that of general relativity. Indeed, since the
state (31) is obtained by combining two independent states of oscillation, (aµ

1 )† and
(ãµ

1 )†, the polarization tensor ζµν is not constrained to be symmetric. Moreover
it is not constrained to have vanishing trace. Therefore, if we decompose ζµν into
its possible irreducible parts (a symmetric traceless part, a symmetric part with
trace, and an antisymmetric part) we find that the field h̄µν(x) associated with the
massless states of a closed string decomposes into: (i) a field hµν(x) (the graviton)
representing a weak gravitational wave in general relativity, (ii) a scalar field Φ(x)
(called the dilaton), and (iii) an antisymmetric tensor field Bµν(x) = −Bνµ(x)
subject to the gauge invariance B′

µν(x) = Bµν(x)+∂µ aν(x)−∂ν aµ(x). Moreover,
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when one studies the non-linear interactions between these various fields, as de-
scribed by the transition amplitudes A(f, i) in string theory, one can show that the
field hµν(x) truly represents a deformation of the flat geometry of the background
space-time in which the theory was initially formulated. Let us emphasize this
remarkable result. We started from a theory that studied the quantum dynamics
of a string in a rigid background space-time. This theory predicts that certain
quantum excitations of a string (that propagate at the speed of light) in fact rep-
resent waves of deformation of the space-time geometry. In intuitive terms, the
“elasticity” of space-time postulated by the theory of general relativity appears
here as being due to certain internal vibrations of an elastic object extended in
one spatial dimension.

Another suggestive consequence of string theory is the link suggested by the
comparison between (30) and (31). Roughly, Equation (31) states that the inter-
nal state of a closed string corresponding to a graviton is constructed by taking
the (tensor) product of the states corresponding to photons in the theory of open
strings. This unexpected link between Einstein’s gravitation (gµν) and Maxwell’s
theory (Aµ) translates, when we look at interactions in string theory, into remark-
able identities (due to H. Kawai, D.C. Lewellen, and S.-H.H. Tye) between the
transition amplitudes of open strings and those of closed strings. This affinity be-
tween electromagnetism, or rather Yang-Mills theory, and gravitation has recently
given rise to fascinating conjectures (due to A. Polyakov and J. Maldacena) con-
necting quantum Yang-Mills theory in flat space-time to quasi-classical limits of
string theory and gravitation in curved space-time. Einstein would certainly have
been interested to see how classical general relativity is used here to clarify the
limit of a quantum Yang-Mills theory.

Having explained the starting point of string theory, we can outline the intu-
itive reason for which this theory avoids the problems with divergent integrals that
appeared when one tried to directly quantize gravitation. We have seen that string
theory contains an infinite tower of particles whose masses grow with the degree
of excitation of the string’s internal oscillators. The gravitational field appears in
the limit that one considers the low energy interactions (E � ms) between the
massless states of the theory. In this limit the graviton (meaning the particle as-
sociated with the gravitational field) is treated as a “point-like” particle. When
we consider more complicated processes (at one loop, � = 1, see above), virtual
elementary gravitons could appear with arbitrarily high energy. It is these virtual
high-energy gravitons that are responsible for the divergences. However, in string
theory, when we consider any intermediate process whatsoever where high energies
appear, it must be remembered that this high intermediate energy can also be used
to excite the internal state of the virtual gravitons, and thus reveal that they are
“made” from an extended string. An analysis of this fact shows that string theory
introduces an effective truncation of the type E � ms on the energies of exchanged
virtual particles. In other words, the fact that there are no truly “point-like” par-
ticles in string theory, but only string excitations having a characteristic length
∼ �s, eliminates the problem of infinities connected to arbitrarily small length
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and time scales. Because of this, in string theory one can calculate the transition
amplitudes corresponding to a collision between two gravitons, and one finds that
the result is given by a finite integral [25].

Up until now we have only considered the starting point of string theory. This
is a complex theory that is still in a stage of rapid development. Let us briefly sketch
some other aspects of this theory that are relevant for this exposé centered around
relativistic gravitation. Let us first state that the more sophisticated versions of
string theory (superstrings) require the inclusion of fermionic oscillators bµ

n, b̃µ
n, in

addition to the bosonic oscillators aµ
n, ãµ

n introduced above. One then finds that
there are no particles of negative mass-squared, and that the space-time dimension
D must be equal to 10. One also finds that the massless states contain more states
than those indicated above. In fact, one finds that the fields corresponding to these
states describe the various possible theories of supergravity in D = 10. Recently
(in work by J. Polchinski) it has also been understood that string theory contains
not only the states of excitation of strings (in other words of objects extended
in one spatial direction), but also the states of excitation of objects extended
in p spatial directions, where the integer p can take other values than 1. For
example, p = 2 corresponds to a membrane. It even seems (according to C. Hull
and P. Townsend) that one should recognize that there is a sort of “democracy”
between several different values for p. An object extended in p spatial directions is
called a p-brane. In general, the masses of the quantum states of these p-branes are
very large, being parametrically higher than the characteristic mass ms. However,
one may also consider a limit where the mass of certain p-branes tends towards
zero. In this limit, the fields associated with these p-branes become long-range
fields. A surprising result (by E. Witten) is that, in this limit, the infinite tower
of states of certain p-branes (in particular for p = 0) corresponds exactly to the
infinite tower of states that appear when one considers the maximal supergravity
in D = 11 dimensions, with the eleventh (spatial) dimension compactified on a
circle (that is to say with a periodicity condition on x11). In other words, in a
certain limit, a theory of superstrings in D = 10 transforms into a theory that
lives in D = 11 dimensions! Because of this, many experts in string theory believe
that the true definition of string theory (which is still to be found) must start from
a theory (to be defined) in 11 dimensions (known as “M -theory”).

We have seen in Section 8 that one point of contact between relativistic grav-
itation and quantum theory is the phenomenon of thermal emission from black
holes discovered by S.W. Hawking. String theory has shed new light upon this
phenomenon, as well as on the concept of black hole “entropy.” The essential
question that the calculation of S.W. Hawking left in the shadows is: what is the
physical meaning of the quantity S defined by Equation (19)? In the thermo-
dynamic theory of ordinary bodies, the entropy of a system is interpreted, since
Boltzmann’s work, as the (natural) logarithm of the number of microscopic states
N having the same macroscopic characteristics (energy, volume, etc.) as the state
of the system under consideration: S = log N . Bekenstein had attempted to esti-
mate the number of microscopic internal states of a macroscopically defined black
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hole, and had argued for a result such that log N was on the order of magnitude
of A/� G, but his arguments remained indirect and did not allow a clear meaning
to be attributed to this counting of microscopic states. Work by A. Sen and by
A. Strominger and C. Vafa, as well as by C.G. Callan and J.M. Maldacena has,
for the first time, given examples of black holes whose microscopic description in
string theory is sufficiently precise to allow for the calculation (in certain limits) of
the number of internal quantum states, N . It is therefore quite satisfying to find a
final result for N whose logarithm is precisely equal to the expression (19). How-
ever, there do remain dark areas in the understanding of the quantum structure
of black holes. In particular, the string theory calculations allowing one to give a
precise statistical meaning to the entropy (19) deal with very special black holes
(known as extremal black holes, which have the maximal electric charge that a
black hole with a regular horizon can support). These black holes have a Hawking
temperature equal to zero, and therefore do not emit thermal radiation. They cor-
respond to stable states in the quantum theory. One would nevertheless also like to
understand the detailed internal quantum structure of unstable black holes, such
as the Schwarzschild black hole (17), which has a non-zero temperature, and which
therefore loses its mass little by little in the form of thermal radiation. What is the
final state to which this gradual process of black hole “evaporation” leads? Is it
the case that an initial pure quantum state radiates all of its initial mass to trans-
form itself entirely into incoherent thermal radiation? Or does a Schwarzschild
black hole transform itself, after having obtained a minimum size, into something
else? The answers to these questions remain open to a large extent, although it
has been argued that a Schwarzschild black hole transforms itself into a highly
massive quantum string state when its radius becomes on the order of �s [26].

We have seen previously that string theory contains general relativity in
a certain limit. At the same time, string theory is, strictly speaking, infinitely
richer than Einstein’s gravitation, for the graviton is nothing more than a partic-
ular quantum excitation of a string, among an infinite number of others. What
deviations from Einstein’s gravity are predicted by string theory? This question
remains open today because of our lack of comprehension about the connection
between string theory and the reality observed in our everyday environment (4-
dimensional space-time; electromagnetic, weak, and strong interactions; the spec-
trum of observed particles; . . .). We shall content ourselves here with outlining a
few possibilities. (See the contribution by I. Antoniadis for a discussion of other
possibilities.) First, let us state that if one considers collisions between gravitons
with energy-momentum k smaller than, but not negligible with respect to, the
characteristic string mass ms, the calculations of transition amplitudes in string
theory show that the usual Einstein equations (in the absence of matter) Rµν = 0
must be modified, by including corrections of order (k/ms)2. One finds that these
modified Einstein equations have the form (for bosonic string theory)

Rµν +
1
4

�2
s Rµαβγ R�αβγ

ν + · · · = 0 , (32)
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where

Rµ
�ναβ ≡ ∂α Γµ

νβ + Γµ
σα Γσ

νβ − ∂β Γµ
να − Γµ

σβ Γσ
να , (33)

denotes the “curvature tensor” of the metric gµν . (The quantity Rµν defined in
Section 5 that appears in Einstein’s equations in an essential way is a “trace” of
this tensor: Rµν = Rσ

�µσν .) As indicated by the dots in (32), the terms written are
no more than the two first terms of an infinite series in growing powers of �2

s ≡ α′.
Equation (32) shows how the fact that the string is not a point, but is rather
extended over a characteristic length ∼ �s, modifies the Einsteinian description of
gravity. The corrections to Einstein’s equation shown in (32) are nevertheless com-
pletely negligible in most applications of general relativity. In fact, it is expected
that �s is on the order of the Planck scale �p, Equation (25). More precisely, one
expects that �s is on the order of magnitude of 10−32 cm. (Nevertheless, this ques-
tion remains open, and it has been recently suggested that �s is much larger, and
perhaps on the order of 10−17 cm.)

If one assumes that �s is on the order of magnitude of 10−32 cm (and that
the extra dimensions are compactified on distance scales on the order of �s), the
only area of general relativistic applications where the modifications shown in (32)
should play an important role is in primordial cosmology. Indeed, close to the initial
singularity of the Big Bang (if it exists), the “curvature” Rµναβ becomes extremely
large. When it reaches values comparable to �−2

s the infinite series of corrections
in (32) begins to play a role comparable to the first term, discovered by Einstein.
Such a situation is also found in the interior of a black hole, when one gets very
close to the singularity (see Figure 3). Unfortunately, in such situations, one must
take the infinite series of terms in (32) into account, or in other words replace
Einstein’s description of gravitation in terms of a field (which corresponds to a
point-like (quantum) particle) by its exact stringy description. This is a difficult
problem that no one really knows how to attack today.

However, a priori string theory predicts more drastic low energy (k � ms)
modifications to general relativity than the corrections shown in (32). In fact,
we have seen in Equation (31) above that Einsteinian gravity does not appear
alone in string theory. It is always necessarily accompanied by other long-range
fields, in particular a scalar field Φ(x), the dilaton, and an antisymmetric tensor
Bµν(x). What role do these “partners” of the graviton play in observable reality?
This question does not yet have a clear answer. Moreover, if one recalls that
(super)string theory must live in a space-time of dimension D = 10, and that it
includes the D = 10 (and eventually the D = 11) theory of supergravity, there
are many other supplementary fields that add themselves to the ten components
of the usual metric tensor gµν (in D = 4). It is conceivable that all of these
supplementary fields (which are massless to first approximation in string theory)
acquire masses in our local universe that are large enough that they no longer
propagate observable effects over macroscopic scales. It remains possible, however,
that one or several of these fields remain (essentially) massless, and therefore can
propagate physical effects over distances that are large enough to be observable. It
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is therefore of interest to understand what physical effects are implied, for example,
by the dilaton Φ(x) or by Bµν(x). Concerning the latter, it is interesting to note
that (as emphasized by A. Connes, M. Douglas, and A. Schwartz), in a certain
limit, the presence of a background Bµν(x) has the effect of deforming the space-
time geometry in a “non-commutative” way. This means that, in a certain sense,
the space-time coordinates xµ cease to be simple real (commuting) numbers in
order to become non-commuting quantities: xµxν −xνxµ = εµν where εµν = −ενµ

is connected to a (uniform) background Bµν . To conclude, let us consider the
other obligatory partner of the graviton gµν(x), the dilaton Φ(x). This field plays
a central role in string theory. In fact, the average value of the dilaton (in the
vacuum) determines the string theory coupling constant, gs = eΦ. The value of
gs in turn determines (along with other fields) the physical coupling constants.
For example, the gravitational coupling constant is given by a formula of the type
� G = �2

s(g2
s + · · · ) where the dots denote correction terms (which can become

quite important if gs is not very small). Similarly, the fine structure constant, α =
e2/�c � 1/137, which determines the intensity of electromagnetic interactions is a
function of g2

s . Because of these relations between the physical coupling constants
and gs (and therefore the value of the dilaton; gs = eΦ), we see that if the dilaton
is massless (or in other words is long-range), its value Φ(x) at a space-time point x
will depend on the distribution of matter in the universe. For example, as is the case
with the gravitational field (for example g00(x) � −1+2GM/c2r), we expect that
the value of Φ(x) depends on the masses present around the point x, and should be
different at the Earth’s surface than it is at a higher altitude. One may also expect
that Φ(x) would be sensitive to the expansion of the universe and would vary over a
time scale comparable to the age of the universe. However, if Φ(x) varies over space
and/or time, one concludes from the relations shown above between gs = eΦ and
the physical coupling constants that the latter must also vary over space and/or
time. Therefore, for example, the value, here and now, of the fine structure constant
α could be slightly different from the value it had, long ago, in a very distant galaxy.
Such effects are accessible to detailed astronomical observations and, in fact, some
recent observations have suggested that the interaction constants were different
in distant galaxies. However, other experimental data (such as the fossil nuclear
reactor at Oklo and the isotopic composition of ancient terrestrial meteorites) put
very severe limits on any variability of the coupling “constants”. Let us finally
note that if the fine structure “constant” α, as well as other coupling “constants”,
varies with a massless field such as the dilaton Φ(x), then this implies a violation of
the basic postulate of general relativity: the principle of equivalence. In particular,
one can show that the universality of free fall is necessarily violated, meaning that
bodies with different nuclear composition would fall with different accelerations in
an external gravitational field. This gives an important motivation for testing the
principle of equivalence with greater precision. For example, the MICROSCOPE
space mission [27] (of the CNES) should soon test the universality of free fall to
the level of 10−15, and the STEP space project (Satellite Test of the Equivalence
Principle) [28] could reach the level 10−18.
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Another interesting phenomenological possibility is that the dilaton (and/or
other scalar fields of the same type, called moduli) acquires a non-zero mass that
is however very small with respect to the string mass scale ms. One could then
observe a modification of Newtonian gravitation over small distances (smaller than
a tenth of a millimeter). For a discussion of this theoretical possibility and of its
recent experimental tests see, respectively, the contributions by I. Antoniadis and
J. Mester to this Poincaré seminar.

12. Conclusion

For a long time general relativity was admired as a marvelous intellectual con-
struction, but it only played a marginal role in physics. Typical of the appraisal of
this theory is the comment by Max Born [29] made upon the fiftieth anniversary of
the annus mirabilis: “The foundations of general relativity seemed to me then, and
they still do today, to be the greatest feat of human thought concerning Nature,
the most astounding association of philosophical penetration, physical intuition,
and mathematical ability. However its connections to experiment were tenuous. It
seduced me like a great work of art that should be appreciated and admired from
a distance.”

Today, one century after the annus mirabilis, the situation is quite differ-
ent. General relativity plays a central role in a large domain of physics, including
everything from primordial cosmology and the physics of black holes to the obser-
vation of binary pulsars and the definition of international atomic time. It even has
everyday practical applications, via the satellite positioning systems (such as the
GPS and, soon, its European counterpart Galileo). Many ambitious (and costly)
experimental projects aim to test it (G.P.B., MICROSCOPE, STEP, . . .), or use
it as a tool for deciphering the distant universe (LIGO/VIRGO/GEO, LISA, . . .).
The time is therefore long-gone that its connection with experiment was tenu-
ous. Nevertheless, it is worth noting that the fascination with the structure and
physical implications of the theory evoked by Born remains intact. One of the
motivations for thinking that the theory of strings (and other extended objects)
holds the key to the problem of the unification of physics is its deep affinity with
general relativity. Indeed, while the attempts at “Grand Unification” made in the
1970s completely ignored the gravitational interaction, string theory necessarily
leads to Einstein’s fundamental concept of a dynamical space-time. At any rate, it
seems that one must more deeply understand the “generalized quantum geometry”
created through the interaction of strings and p-branes in order to completely for-
mulate this theory and to understand its hidden symmetries and physical implica-
tions. Einstein would no doubt appreciate seeing the key role played by symmetry
principles and gravity within modern physics.
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[15] A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation, Sitz.

Preuss. Akad. Wiss. (1916), p. 688 ; ibidem, Über Gravitationswellen (1918), p. 154.
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Beyond Einstein’s Gravity

Ignatios Antoniadis

Abstract. Despite the important experimental success of General Relativity,
there are several theoretical reasons indicating that gravitational phenomena
may change radically from the predictions of Einstein’s theory at very short
distances. A main motivation comes from studies of unifying all fundamental
forces in the framework of a consistent quantum theory, called string the-
ory. This theory introduces a new physical constant, the string length, under
which a new elementary structure shows up, changing drastically all physi-
cal laws of nature. In particular, lowering the string scale in the TeV region
provides a theoretical framework for solving the so-called mass hierarchy prob-
lem: the apparent weakness of gravity can then be accounted by the existence
of large internal dimensions, in the submillimeter region, and transverse to a
braneworld where our observed universe is confined. I review the main proper-
ties of this scenario and its implications for new gravitational phenomena that
can be observed at both particle colliders, and in non-accelerator experiments
searching for new short range forces at submillimeter distances. I also discuss
the warped metric case and possible localization of gravity in the presence of
infinite size extra dimensions that can modify Newton’s law at cosmological
distance scales.

1. Introduction

During the last few decades, physics beyond the Standard Model (SM) was guided
by the problem of mass hierarchy. This can be formulated as the question of why
gravity appears to us so weak compared to the other three known fundamental
interactions corresponding to the electromagnetic, weak and strong nuclear forces.
Indeed, gravitational interactions are suppressed by a very high energy scale, the
Planck mass MP ∼ 1019 GeV, associated to a length lP ∼ 10−35 m, where they
are expected to become important. In a quantum theory, the hierarchy implies a
severe fine tuning of the fundamental parameters in more than 30 decimal places
in order to keep the masses of elementary particles at their observed values. The
reason is that quantum radiative corrections to all masses generated by the Higgs
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vacuum expectation value (VEV) are proportional to the ultraviolet cutoff which
in the presence of gravity is fixed by the Planck mass. As a result, all masses are
“attracted” to become about 1016 times heavier than their observed values.

Besides compositeness, there are two main ideas that have been proposed and
studied extensively during the last years, corresponding to different approaches of
explaining the mass hierarchy problem. (1) Low energy supersymmetry with all su-
perparticle masses in the TeV region. Indeed, in the limit of exact supersymmetry,
quadratically divergent corrections to the Higgs self-energy are exactly cancelled,
while in the softly broken case, they are cutoff by the supersymmetry breaking
mass splittings. (2) TeV scale strings, in which quadratic divergences are cutoff
by the string scale and low energy supersymmetry is not needed. Both ideas are
experimentally testable at high-energy particle colliders and in particular at LHC.
Below, I discuss their implementation in string theory.

The appropriate and most convenient framework for low energy supersym-
metry and grand unification is the perturbative heterotic string. Indeed, in this
theory, gravity and gauge interactions have the same origin, as massless modes of
the closed heterotic string, and they are unified at the string scale Ms. As a result,
the Planck mass MP is predicted to be proportional to Ms:

MP = Ms/g , (1)

where g is the gauge coupling. In the simplest constructions all gauge couplings are
the same at the string scale, given by the four-dimensional (4d) string coupling, and
thus no grand unified group is needed for unification. In our conventions αGUT =
g2 � 0.04, leading to a discrepancy between the string and grand unification
scale MGUT by almost two orders of magnitude. Explaining this gap introduces
in general new parameters or a new scale, and the predictive power is essentially
lost. This is the main defect of this framework, which remains though an open and
interesting possibility.

The other idea can be naturally realized in the framework of type I string
theory with D-branes. Unlike in the heterotic string, gauge and gravitational inter-
actions have now different origin. The latter are described again by closed strings,
while the former emerge as excitations of open strings with endpoints confined on
D-branes [1]. This leads to a braneworld description of our universe, which should
be localized on a hypersurface, i.e. a membrane extended in p spatial dimensions,
called p-brane (see Fig. 1). Closed strings propagate in all nine dimensions of
string theory: in those extended along the p-brane, called parallel, as well as in
the transverse ones. On the contrary, open strings are attached on the p-brane.
Obviously, our p-brane world must have at least the three known dimensions of
space. But it may contain more: the extra d‖ = p−3 parallel dimensions must have
a finite size, in order to be unobservable at present energies, and can be as large as
TeV−1 ∼ 10−18 m [2]. On the other hand, transverse dimensions interact with us
only gravitationally and experimental bounds are much weaker: their size should
be less than about 0.1 mm [3]. In the following, I review the main properties and
experimental signatures of low string scale models [4, 5].



Beyond Einstein’s Gravity 53

open string

closed string

Extra dimension(s) perp. to the brane

M
in

ko
w

sk
i 3

+
1 

di
m

en
si

on
s

d     extra dimensions

||

3+d   dimensional brane//
3dimensional brane

Figure 1. In the type I string framework, our Universe contains,
besides the three known spatial dimensions (denoted by a single
black line), some extra dimensions (d‖ = p − 3) parallel to our
world p-brane (gray plane) where endpoints of open strings are
confined, as well as some transverse dimensions (enclosed space)
where only gravity described by closed strings can propagate.

2. Framework

In type I theory, the different origin of gauge and gravitational interactions implies
that the relation between the Planck and string scales is not linear as (1) of the
heterotic string. The requirement that string theory should be weakly coupled,
constrain the size of all parallel dimensions to be of order of the string length,
while transverse dimensions remain unrestricted. Assuming an isotropic transverse
space of n = 9 − p compact dimensions of common radius R⊥, one finds:

M2
P =

1
g4

M2+n
s Rn

⊥ , gs � g2 . (2)
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where gs is the string coupling. It follows that the type I string scale can be chosen
hierarchically smaller than the Planck mass [6, 4] at the expense of introducing
extra large transverse dimensions felt only by gravity, while keeping the string
coupling small [4]. The weakness of 4d gravity compared to gauge interactions
(ratio MW /MP ) is then attributed to the largeness of the transverse space R⊥
compared to the string length ls = M−1

s .
An important property of these models is that gravity becomes effectively

(4 + n)-dimensional with a strength comparable to those of gauge interactions at
the string scale. The first relation of Eq. (2) can be understood as a consequence
of the (4 + n)-dimensional Gauss law for gravity, with

M(4+n) = Ms/g4/2+n (3)

the effective scale of gravity in 4 + n dimensions. Taking Ms � 1 TeV, one finds a
size for the extra dimensions R⊥ varying from 108 km, 0.1 mm, down to a Fermi
for n = 1, 2, or 6 large dimensions, respectively. This shows that while n = 1
is excluded, n ≥ 2 is allowed by present experimental bounds on gravitational
forces [3, 7]. Thus, in these models, gravity appears to us very weak at macroscopic
scales because its intensity is spread in the “hidden” extra dimensions. At distances
shorter than R⊥, it should deviate from Newton’s law, which may be possible to
explore in laboratory experiments (see Fig. 2).

tungsten
fiber

mirror for
optical readout

detector
mass (Al)

source
mass disks
(Cu)
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Figure 2. Torsion pendulum that tested Newton’s law at 130 nm.
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3. Experimental implications in accelerators

The main experimental signal is gravitational radiation in the bulk from any phys-
ical process on the world-brane. In fact, the very existence of branes breaks trans-
lation invariance in the transverse dimensions and gravitons can be emitted from
the brane into the bulk. During a collision of center of mass energy

√
s, there are

∼ (
√

sR⊥)n KK excitations of gravitons with tiny masses, that can be emitted.
Each of these states looks from the 4d point of view as a massive, quasi-stable,
extremely weakly coupled (s/M2

P suppressed) particle that escapes from the de-
tector. The total effect is a missing-energy cross-section roughly of order:

(
√

sR⊥)n

M2
P

∼ 1
s

(√
s

Ms

)n+2

. (4)

Explicit computation of these effects leads to the bounds given in Table 1. However,
larger radii are allowed if one relaxes the assumption of isotropy, by taking for
instance two large dimensions with different radii.

Table 1. Limits on R⊥ in mm.

Experiment n = 2 n = 4 n = 6
Collider bounds

LEP 2 5 × 10−1 2 × 10−8 7 × 10−11

Tevatron 5 × 10−1 10−8 4 × 10−11

LHC 4 × 10−3 6 × 10−10 3 × 10−12

NLC 10−2 10−9 6 × 10−12

Present non-collider bounds
SN1987A 3 × 10−4 10−8 6 × 10−10

COMPTEL 5 × 10−5 - -

Fig. 3 shows the cross-section for graviton emission in the bulk, corresponding
to the process pp → jet+ graviton at LHC, together with the SM background [8].
For a given value of Ms, the cross-section for graviton emission decreases with
the number of large transverse dimensions, in contrast to the case of parallel di-
mensions. The reason is that gravity becomes weaker if there are more dimensions
because there is more space for the gravitational field to escape. There is a par-
ticular energy and angular distribution of the produced gravitons that arise from
the distribution in mass of KK states of spin-2. This can be contrasted to other
sources of missing energy and might be a smoking gun for the extra dimensional
nature of such a signal.

In Table 1, there are also included astrophysical and cosmological bounds.
Astrophysical bounds [9, 10] arise from the requirement that the radiation of gravi-
tons should not carry on too much of the gravitational binding energy released
during core collapse of supernovae. In fact, the measurements of Kamiokande and
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Figure 3. Missing energy cross-section due to graviton emis-
sion at LHC, as a function of the higher-dimensional gravity
scale M(4+n), for n extra dimensions, produced together with a
hadronic jet.

IMB for SN1987A suggest that the main channel is neutrino fluxes. The best cos-
mological bound [11] is obtained from requiring that decay of bulk gravitons to
photons do not generate a spike in the energy spectrum of the photon background
measured by the COMPTEL instrument. Bulk gravitons are expected to be pro-
duced just before nucleosynthesis due to thermal radiation from the brane. The
limits assume that the temperature was at most 1 MeV as nucleosynthesis begins,
and become stronger if temperature is increased.

At energies higher than the string scale, new spectacular phenomena are
expected to occur, related to string physics and quantum gravity effects, such as
possible micro-black hole production [12]. Particle accelerators would then become
the best tools for studying quantum gravity and string theory.
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4. Supersymmetry in the bulk and short range forces

Besides the spectacular predictions in accelerators, there are also modifications of
gravitation in the sub-millimeter range, which can be tested in “table-top” exper-
iments that measure gravity at short distances. There are three categories of such
predictions:
(i) Deviations from the Newton’s law 1/r2 behavior to 1/r2+n, which can be ob-
servable for n = 2 large transverse dimensions of sub-millimeter size. This case is
particularly attractive on theoretical grounds because of the logarithmic sensitiv-
ity of SM couplings on the size of transverse space [13], that allows to determine
the hierarchy [14].
(ii) New scalar forces in the sub-millimeter range, related to the mechanism of su-
persymmetry breaking, and mediated by light scalar fields ϕ with masses [15, 4]:

mϕ � m2
susy

MP
� 10−4 − 10−6 eV , (5)

for a supersymmetry breaking scale msusy � 1 − 10 TeV. They correspond to
Compton wavelengths of 1 mm to 10 µm. msusy can be either 1/R‖ if super-
symmetry is broken by compactification [15], or the string scale if it is broken
“maximally” on our world-brane [4]. A universal attractive scalar force is medi-
ated by the radion modulus ϕ ≡ MP lnR, with R the radius of the longitudinal
or transverse dimension(s). In the former case, the result (5) follows from the be-
havior of the vacuum energy density Λ ∼ 1/R4

‖ for large R‖ (up to logarithmic
corrections). In the latter, supersymmetry is broken primarily on the brane, and
thus its transmission to the bulk is gravitationally suppressed, leading to (5). For
n = 2, there may be an enhancement factor of the radion mass by lnR⊥Ms � 30
decreasing its wavelength by an order of magnitude [14].

The coupling of the radius modulus to matter relative to gravity can be easily
computed and is given by:

√
αϕ =

1
M

∂M

∂ϕ
; αϕ =

⎧⎨
⎩

∂ ln ΛQCD
∂ ln R � 1

3 for R‖

2n
n+2 = 1 − 1.5 for R⊥

(6)

where M denotes a generic physical mass. In the longitudinal case, the coupling
arises dominantly through the radius dependence of the QCD gauge coupling [15],
while in the case of transverse dimension, it can be deduced from the rescaling of
the metric which changes the string to the Einstein frame and depends slightly
on the bulk dimensionality (α = 1 − 1.5 for n = 2 − 6) [14]. Such a force can
be tested in microgravity experiments and should be contrasted with the change
of Newton’s law due the presence of extra dimensions that is observable only for
n = 2 [3, 7]. The resulting bounds from an analysis of the radion effects are [3]:

M∗ >∼ 3 − 4.5 TeV for n = 2 − 6 . (7)

In principle there can be other light moduli which couple with even larger strengths.
For example the dilaton, whose VEV determines the string coupling, if it does not
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Figure 4. Present limits on non-Newtonian forces at short dis-
tances (gray regions), as a function of their range λ and their
strength relative to gravity α. The limits are compared to new
forces mediated by the graviton in the case of two large extra
dimensions, and by the radion.

acquire large mass from some dynamical supersymmetric mechanism, can lead to
a force of strength 2000 times bigger than gravity [16].
(iii) Non universal repulsive forces much stronger than gravity, mediated by pos-
sible abelian gauge fields in the bulk [9, 17]. Such fields acquire tiny masses of the
order of M2

s /MP , as in (5), due to brane localized anomalies [17]. Although their
gauge coupling is infinitesimally small, gA ∼ Ms/MP � 10−16, it is still bigger
than the gravitational coupling E/MP for typical energies E ∼ 1 GeV, and the
strength of the new force would be 106 − 108 stronger than gravity. This is an
interesting region which will be soon explored in micro-gravity experiments (see
Fig. 4). Note that in this case supernova constraints impose that there should be
at least four large extra dimensions in the bulk [9].

In Fig. 4 we depict the actual information from previous, present and up-
coming experiments [7, 14]. The solid lines indicate the present limits from the
experiments indicated. The excluded regions lie above these solid lines. Measuring
gravitational strength forces at short distances is challenging. The dashed thick
lines give the expected sensitivity of the various experiments, which will improve
the actual limits by roughly two orders of magnitude, while the horizontal dashed
lines correspond to the theoretical predictions for the graviton in the case n = 2
and for the radion in the transverse case. These limits are compared to those ob-
tained from particle accelerator experiments in Table 1. Finally, in Figs. 5 and
6, we display recent improved bounds for new forces at very short distances by
focusing on the right hand side of Fig. 4, near the origin [7].
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Figure 5. Bounds on non-Newtonian forces in the range 6-20 µm
(see S. J. Smullin et al. in Ref. [7]).

5. Non-compact extra dimensions and localized gravity

There are several motivations to study localization of gravity in non-compact ex-
tra dimensions: (i) it avoids the problem of fixing the moduli associated to the
size of the compactification manifold; (ii) it provides a new approach to the mass
hierarchy problem; (iii) there are modifications of gravity at large distances that
may have interesting observational consequences. Two types of models have been
studied: warped metrics in curved space [18], and infinite size extra dimensions in
flat space [19]. The former, although largely inspired by stringy developments and
having used many string-theoretic techniques, have not yet a clear and calculable
string theory realization [20]. In any case, since curved space is always difficult
to handle in string theory, in the following we concentrate mainly on the latter,
formulated in flat space with gravity localized on a subspace of the bulk. It turns
out that these models of induced gravity have an interesting string theory real-
ization [21] that we describe below, after presenting first a brief overview of the
warped case [22].
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Figure 6. Bounds on non-Newtonian forces in the range around
200 nm (see R. S. Decca et al. in Ref. [7]). Curves 4 and 5 cor-
respond to Stanford and Colorado experiments, respectively, of
Fig. 5 (see also J C. Long and J. C. Price of Ref. [7]).

5.1. Warped spaces

In these models, space-time is a slice of anti de Sitter space (AdS) in d = 5
dimensions while our universe forms a four-dimensional (4d) flat boundary [18].
The corresponding line element is:

ds2 = e−2k|y|ηµνdxµdxν + dy2 ; Λ = −24M3k2 , (8)

where M, Λ are the 5d Planck mass and cosmological constant, respectively, and
the parameter k is the curvature of AdS5. The fifth coordinate y is restricted
on the interval [0, πrc]. Thus, this model requires two ‘branes’, a UV and an IR,
located at the two end-points of the interval, y = 0 and y = πrc, respectively. The
vanishing of the 4d cosmological constant requires to fine tune the two tensions:
T = −T ′ = 24M3k2. The 4d Planck mass is given by:

M2
P =

1
k

(1 − e−2πkrc)M3 . (9)
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Note that the IR brane can move to infinity by taking the limit rc → ∞,
while MP is kept finite and thus 4d gravity is always present on the brane. The
reason is that the internal volume remains finite in the non-compact limit along
the positive y axis. As a result, gravity is kept localized on the UV brane, while the
Newtonian potential gets corrections, 1/r +1/k2r3, which are identical with those
arising in the compact case of two flat extra dimensions. Using the experimental
limit k−1 <∼ 0.1 mm and the relation (9), one finds a bound for the 5d gravity
scale M >∼ 108 GeV, corresponding to a brane tension T >∼ 1 TeV. Notice that this
bound is not valid in the compact case of six extra dimensions, because their size
is in the fermi range and thus the 1/r3 deviations of Newton’s law are cut off at
shorter distances.

5.2. The induced gravity model

The dgp model and its generalizations are specified by a bulk Einstein-Hilbert
(eh) term and a four-dimensional eh term [19]:

M2+n

∫
M4+n

d4xdny
√

GR(4+n) + M2
P

∫
M4

d4x
√

gR(4) ; M2
P ≡ rn

c M2+n (10)

with M and MP the (possibly independent) respective Planck scales. The scale
M ≥ 1 TeV would be related to the short-distance scale below which uv quantum
gravity or stringy effects are important. The four-dimensional metric is the restric-
tion of the bulk metric gµν = Gµν | and we assume the world1 rigid, allowing the
gauge Giµ| = 0 with i ≥ 5. Finally, only intrinsic curvature terms are omitted but
no Gibbons–Hawking term is needed.

5.2.1. Co-dimension one. In the case of co-dimension one bulk (n = 1) and δ-
function localization, it is easy to see that rc is a crossover scale where gravity
changes behavior on the world. Indeed, by Fourier transform the quadratic part
of the action (10) with respect to the 4d position x, at the world position y = 0,
one obtains M2+n(p2−n + rn

c p2), where p is the 4d momentum. It follows that for
distances smaller than rc (large momenta), the first term becomes irrelevant and
the graviton propagator on the “brane” exhibits four-dimensional behavior (1/p2)
with Planck constant MP = M3rc. On the contrary, at large distances, the first
term becomes dominant and the graviton propagator acquires a five-dimensional
fall-off (1/p) with Planck constant M . Imposing rc to be larger than the size of
the universe, rc >∼ 1028 cm, one finds M <∼ 100 MeV, which seems to be in conflict
with experimental bounds. However, there were arguments that these bounds can
be evaded, even for values of the fundamental scale M−1 ∼ 1 mm that one may
need for suppressing the quantum corrections of the cosmological constant [19].

On the other hand, in the presence of non-zero brane thickness w, a new
crossover length-scale seems to appear, Rc ∼ (wrc)1/2 [23] or r

3/5
c w2/5 [24].

1We avoid calling M4 a brane because, as we will see below, gravity localizes on singularities
of the internal manifold, such as orbifold fixed points. Branes with localized matter can be
introduced independent of gravity localization.
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4d 5d

w Rc rc

↗ ↑
UV cutoff 5d or strong coupling

Below this scale, the theory acquires either again a five-dimensional behavior, or
a strong coupling regime. For rc ∼ 1028 cm, the new crossover scale is of order
Rc ∼ 10−4 − 10 m.

5.2.2. Higher co-dimension. The situation changes drastically for more than one
non-compact bulk dimension, n > 1, due to the ultraviolet properties of the higher-
dimensional theories. Indeed, from the action (10), the effective potential between
two test masses in four dimensions∫

[d3x] e−ip·x V (x) =
D(p)

1 + rn
c p2 D(p)

[
T̃µνT µν − 1

2 + n
T̃ µ

µ T ν
ν

]
(11)

D(p) =
∫

[dnq]
fw(q)

p2 + q2
(12)

is a function of the bulk graviton retarded Green’s function G(x, 0; 0, 0) =
∫
[d4p]

eip·xxD(p) evaluated for two points localized on the world (y = y′ = 0). The
integral (12) is uv-divergent for n > 1 unless there is a non-trivial brane thickness
profile fw(q) of width w. If the four-dimensional world has zero thickness, fw(q) ∼
1, the bulk graviton does not have a normalizable wave function. It therefore cannot
contribute to the induced potential, which always takes the form V (p) ∼ 1/p2 and
Newton’s law remains four-dimensional at all distances.

For a non-zero thickness w, there is only one crossover length scale, Rc:

Rc = w
(rc

w

)n
2

, (13)

above which one obtains a higher-dimensional behaviour [25]. Therefore the ef-
fective potential presents two regimes: (i) at short distances (w � r � Rc) the
gravitational interactions are mediated by the localized four-dimensional graviton
and Newton’s potential on the world is given by V (r) ∼ 1/r and, (ii) at large dis-
tances (r � Rc) the modes of the bulk graviton dominate, changing the potential.
Note that for n = 1 the expressions (11) and (12) are finite and unambiguously
give V (r) ∼ 1/r for r � rc. For a co-dimension bigger than 1, the precise behav-
ior for large-distance interactions depends crucially on the uv completion of the
theory.

4d higher d

Rc
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At this point we stress a fundamental difference with the finite extra dimensions
scenarios. In these cases Newton’s law gets higher-dimensional at distances smaller
than the characteristic size of the extra dimensions. This is precisely the opposite
of the case of infinite volume extra dimensions that we discuss here.

As mentioned above, for higher co-dimension, there is an interplay between
UV regularization and IR behavior of the theory. Indeed, several works in the
literature raised unitarity [26] and strong coupling problems [27] which depend
crucially on the uv completion of the theory. A unitary uv regularization for the
higher co-dimension version of the model has been proposed in [28]. It would be
interesting to address these questions in a precise string theory context. Actually,
using for UV cutoff on the “brane” the 4d Planck length w ∼ lP , one gets for
the crossover scale (13): Rc ∼ M−1(MP /M)n/2. Putting M >∼ 1 TeV leads to
Rc <∼ 108(n−2) cm. Imposing Rc >∼ 1028 cm, one then finds that the number of
extra dimensions must be at least six, n ≥ 6, which is realized nicely in string
theory and provides an additional motivation for studying possible string theory
realizations.

5.3. String theory realization

In the following, we explain how to realize the gravity induced model (10) with
n ≥ 6 as the low-energy effective action of string theory on a non-compact six-
dimensional manifold M6 [21]. We work in the context of N = 2 supergravities
in four dimensions but the mechanism for localizing gravity is independent of the
number of supersymmetries. Of course for N ≥ 3 supersymmetries, there is no
localization. We also start with the compact case and take the decompactification
limit. The localized properties are then encoded in the different volume depen-
dences.

In string perturbation, corrections to the four-dimensional Planck mass are
in general very restrictive. In the heterotic string, they vanish to all orders in
perturbation theory [29]; in type I theory, there are moduli-dependent corrections
generated by open strings [30], but they vanish when the manifold M6 is decom-
pactified; in type II theories, they are constant, independent of the moduli of the
manifold M6, and receive contributions only from tree and one-loop levels that
we describe below (at least for supersymmetric backgrounds) [21, 31]. Finally, in
the context of M-theory, one obtains a similar localized action of gravity kinetic
terms in five dimensions, corresponding to the strong coupling limit of type IIA
string [21].

The origin of the two eh terms in (10) can be traced back to the pertur-
bative corrections to the eight-derivative effective action of type II strings in ten
dimensions. These corrections include the tree-level and one-loop terms given by:

1
l8s

∫
M10

1
g2

s

R(10) − 1
l2s

∫
M10

(
2ζ(3)
g2

s

∓ 4ζ(2)
)

R ∧ R ∧ R ∧ R ∧ e ∧ e + · · · (14)

where φ is the dilaton field determining the string coupling gs = e〈φ〉, and the ±
sign corresponds to the type iia/b theory. On a direct product space-time M6×R

4,
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at the level of zero modes, the second term in (14) splits as:∫
M6

R ∧ R ∧ R ×
∫

M4

R(4) = χ

∫
M4

R(4) , (15)

where χ is the Euler number of the M6 compactification manifold. We thus obtain
the expressions for the Planck masses M and Mp:

M2 ∼ M2
s /g1/2

s ; M2
P ∼ χ(

c0

g2
s

+ c1)M2
s , (16)

with c0 = −2ζ(3) and c1 = ±4ζ(2) = ±2π2/3.
It is interesting that the appearance of the induced 4d localized term pre-

serves N = 2 supersymmetry and is independent of the localization mechanism of
matter fields (for instance on D-branes). Localization requires the internal space
M6 to have a non-zero Euler characteristic χ �= 0. Actually, in type iia/b com-
pactified on a Calabi-Yau manifold, χ counts the difference between the numbers
of N = 2 vector multiplets and hypermultiplets: χ = ±4(nV − nH) (where the
graviton multiplet counts as one vector). Moreover, in the non-compact limit, the
Euler number can in general split in different singular points of the internal space,
χ =

∑
I χI , giving rise to different localized terms at various points yI of the in-

ternal space. A number of conclusions (confirmed by string calculations in [21])
can be reached by looking closely at (14)-(16):

� Mp � M requires a large non-zero Euler characteristic for M6, and/or a
weak string coupling constant gs → 0.

� Since χ is a topological invariant the localized R(4) term coming from the
closed string sector is universal, independent of the background geometry and
dependent only on the internal topology. It is a matter of simple inspection to see
that if one wants to have a localized eh term in less than ten dimensions, namely
something linear in curvature, with non-compact internal space in all directions,
the only possible dimension is four (or five in the strong coupling M-theory limit).

� In order to find the width w of the localized term, one has to do a separate
analysis. On general grounds, using dimensional analysis in the limit MP → ∞,
one expects the effective width to vanish as a power of lP ≡ M−1

P : w ∼ lνP /lν−1
s

with ν > 0. The computation of ν for a general Calabi-Yau space, besides its tech-
nical difficulty, presents an additional important complication: from the expression
(16), lP ∼ gsls in the weak coupling limit. Thus, w vanishes in perturbation the-
ory and one has to perform a non-perturbative analysis to extract its behavior.
Alternatively, one can examine the case of orbifolds. In this limit, c0 = 0, lP ∼ ls,
and the hierarchy MP > M is achieved only in the limit of large χ. One then finds
that the width is given by the four-dimensional induced Planck mass

w � lP = ls χ−1/2 , (17)

and the power ν = 1.
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5.3.1. Summary of the results. Using w ∼ lP and the relations (16) in the weak
coupling limit (with c0 �= 0), the crossover radius of eq. (13) is given by the string
parameters (n = 6)

Rc =
r3
c

w2
∼ gs

l4s
l3P

� gs × 1032 cm , (18)

for Ms � 1 TeV. Because Rc has to be of cosmological size, the string coupling
can be relatively small, and the Euler number |χ| � g2

s lP ∼ g2
s × 1032 must be

very large. The hierarchy is obtained mainly thanks to the large value of χ, so
that lowering the bound on Rc lowers the value of χ. Our actual knowledge of
gravity at very large distances indicates [32] that Rc should be of the order of
the Hubble radius Rc � 1028 cm, which implies gs ≥ 10−4 and |χ| >∼ 1024. A
large Euler number implies only a large number of closed string massless particles
with no a-priori constraint on the observable gauge and matter sectors, which
can be introduced for instance on D3-branes placed at the position where gravity
localization occurs. All these particles are localized at the orbifold fixed points
(or where the Euler number is concentrated in the general case), and should have
sufficiently suppressed gravitational-type couplings, so that their presence with
such a huge multiplicity does not contradict observations. Note that these results
depend crucially on the scaling of the width w in terms of the Planck length:
w ∼ lνP , implying Rc ∼ 1/l2ν+1

P in string units. If there are models with ν > 1, the
required value of χ will be much lower, becoming O(1) for ν ≥ 3/2. In this case,
the hierarchy could be determined by tuning the string coupling to infinitesimal
values, gs ∼ 10−16.

The explicit string realization of localized induced gravity models offers a con-
sistent framework that allows to address a certain number of interesting physics
problems. In particular, the effective UV cutoff and the study of the gravity
force among matter sources localized on D-branes. It would be also interesting
to perform explicit model building and study in detail the phenomenological con-
sequences of these models and compare to other realizations of TeV strings with
compact dimensions.
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The Double Pulsar

Michael Kramer

Abstract. A new era in fundamental physics began with the discovery of pul-
sars 1967, the discovery of the first binary pulsar in 1974 and the first mil-
lisecond pulsar in 1982. Ever since, pulsars have been used as precise cosmic
clocks, taking us beyond the weak-field regime of the solar-system in the study
of theories of gravity. Their contribution is crucial as no test can be considered
to be complete without probing the strong-field realm of gravitational physics
by finding and timing pulsars. This is particularly highlighted by the discov-
ery of the first double pulsar system which was discovered by our team in
2003. The double pulsar is unique in that both neutron stars are detectable
as radio pulsars. This, combined with significantly higher mean orbital ve-
locities and accelerations when compared to other binary pulsars, suggested
that the system would become the best available testbed for general relativ-
ity and alternative theories of gravity in the strong-field regime. Indeed, this
has been achieved only three years after its discovery with four independent
strong-field tests of GR, more than has been obtained for any other system.
Use of the theory-independent mass ratio of the two stars makes these tests
uniquely different from all preceding studies. Our results confirm the validity
of GR at the 0.05% level, which is by far the best precision yet achieved for
the strong-field regime. Remarkably, the transverse velocity of the systems
center of mass is extremely small, a result which is important for future GR
tests and evolutionary studies.

1. Introduction

Rarely had the formulation of a single theory changed our view of the Universe
so dramatically as Einstein’s theory of general relativity (GR). Immediately after
its publication, scientists were considering ways of testing GR to experimentally
verify the revolutionary different effects that were predicted as deviations from
Newton’s theory of gravity which had ruled supreme for about three hundred years.
Already during World War I., British scientists were planning two expeditions to
test GR by observing a predicted bending of light around the Sun during a total
solar eclipse to be observed in 1919 in Brazil and Africa. The expeditions indeed
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took place, and Sir Arthur Eddington himself analysed photographic plates taken
during the eclipse that showed the apparent displacement of stars when they were
positioned behind the Sun. This bending of light near massive bodies confirmed one
of Einstein’s predictions and propelled him to immediate global stardom. Today,
85 years after these historic observations, physicists are still trying to put GR to
the test.

To date the theory of general relativity has passed all observational tests with
flying colours. Nevertheless, GR may indeed not be the last word in our under-
standing of gravitational physics, and it is important to experimentally confront
the theory with new observations to explore different aspects and/or achieve higher
precision. While some of the most stringent tests of GR are obtained by satellite
experiments in the solar system, these solar-system experiments are all made in
the weak-field gravitational regime. Tests of the strong-field limit, in particular
involving the radiative aspects of GR, need also to be tested. For instance, it is
possible to construct theories, which would pass all solar-system tests but would
show deviations from GR in the strong-field limit (see, e.g., [1]). Precision tests in
the strong-field regime are best achieved by observing radio pulsars.

One of the toughest tests ever has recently become possible by the discovery
of two pulsars which are found to be in a close, slowly decaying orbit that will
eventually lead to the destruction of these objects, predicted to happen in about
85 million years. This system is widely known simply as the double pulsar.

2. Pulsars

Pulsars are highly magnetised, rotating neutron stars which emit a narrow radio
beam along the magnetic dipole axis. As the magnetic axis is inclined to the
rotation axis, the pulsar acts like a cosmic light-house emitting a radio pulse that
can be detected once per rotation period when the beam is directed toward Earth.
For some very fast rotating pulsars, the so-called millisecond pulsars (see Sect. 5),
the stability of the pulse period is similar to that achieved by the best terrestrial
atomic clocks. Using these astrophysical clocks by accurately measuring the arrival
times of their pulses, a wide range of experiments is possible. For most of these
it is not necessarily important how the radio pulses are actually created. We will
consider some of the basic pulsar properties below.

Pulsars are born in supernova explosions of massive stars. Created in the
collapse of the stars’ core, neutron stars are the most compact objects next to black
holes. From timing measurements of binary pulsars (see Sect. 7), we determine the
masses of pulsars to be typically around 1.35±0.04M� [2] although this range has
been expanded recently from ∼ 1.2M� to 2.1M�. Modern calculations for different
equations of state produce results for the size of a neutron star which are quite
similar to the very first calculations by Oppenheimer & Volkov [3], i.e. a diameter
of about 20 km. Such sizes are consistent with independent estimates derived from
X-ray light-curves and luminosities of pulsars (e.g., [4]).
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Pulsars emit electromagnetic radiation and, in particular, magnetic dipole
radiation as they essentially represent rotating magnets. Assuming that this is the
dominant process of loss in rotational energy and hence responsible for the observed
increase in rotation period, P , described by Ṗ , we can equate the corresponding
energy output of the dipole to the loss rate in rotational energy. We obtain an
estimate for the magnetic field strength at the pulsar (equatorial) surface from

BS = 3.2 × 1019
√

PṖ Gauss, (1)

with P measured in s and Ṗ in s s−1. Millisecond pulsars (see Section 5) have lower
field strengths on the order of 108 to 1010 Gauss which appears to be a result of
their evolutionary history. These magnetic fields are consistent with values derived
from X-ray spectra of neutron stars where we observe cyclotron lines [5].

3. Pulsars as radio sources

The periodic beacon sent by the pulsar clock is usually rather weak, both because
the pulsar is distant and the size of the actual emission region is small. Estimates
range down to a few metres, resulting in brightness temperatures of up to 1037 K
[6]. Such values require a coherent emission mechanism which, despite almost 40
years of intensive research, is still unidentified. However, we seem to have some
basic understanding, in which the magnetised rotating neutron star induces an
electric quadrupole field which is strong enough to pull out charges from the stellar
surface (the electrical force exceeds the gravitational force by a factor of ∼ 1012!),
surrounding the pulsar with dense plasma. The magnetic field forces the plasma to
co-rotate with the pulsar like a rigid body. This co-rotating magnetosphere can only
extend up to a distance where the co-rotation velocity reaches the speed of light1.
This distance defines the so-called light cylinder which separates the magnetic
field lines into two distinct groups, i.e. open and closed field lines. Closed field
lines are those which close within the light cylinder, while open field lines would
close outside. The plasma on the closed field lines is trapped and will co-rotate
with the pulsar forever. In contrast, plasma on the open field lines can reach highly
relativistic velocities and can leave the magnetosphere, creating the observed radio
beam at a distance of a few tens to hundreds of km above the pulsar surface (see
Fig. 1).

Most pulsars are not strong enough to allow us a detection of their individual
radio pulses, so that in most cases only an integrated pulse shape can be observed.
If individual pulses are observable, they reflect the instantaneous plasma processes
in the pulsar magnetosphere at the moment when the beam is directed towards
Earth. The dynamics of these processes results in often seemingly random indi-
vidual pulses, in particular when viewed with high time resolution. Despite this

1Strictly speaking, the Alfvén velocity will determine the co-rotational properties of the
magnetosphere.
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Figure 1: A pulsar is a rotating, highly magnetised neutron star. A radio beam centred on
the magnetic axis is created in some distance to the pulsar. The tilt between the rotation
and magnetic axes makes the pulsar in effect a cosmic lighthouse when the beam sweeps
around in space.

variety displayed by the single pulses, the mean pulse shape computed by averag-
ing a few hundreds to few thousands of pulses is incredibly stable [7]. In contrast to
the snapshot provided by the individual pulses, the average pulse shape, or pulse
profile, can be considered as a long-exposure picture, revealing the global circum-
stances in the magnetosphere. These are mostly determined by geometrical factors
and the strong magnetic field, leading to very stable pulse profiles. Apart from a
distinct evolution with radio frequency, the same profiles are obtained, no matter
where and when the pulses used to compute the average have been observed.
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4. Evolution of Pulsars

As pulsars are powered by their rotational energy, their spin-frequency decreases
with time. The slow-down can be described by

ν̇ = −const. νn (2)

where the exponent, n, is known as the braking index. For magnetic dipole emission
as the main energy loss, we expect n = 3. Measuring a second spin-frequency
derivative, ν̈, one can obviously determine the braking index via

n = νν̈/ν̇2 (3)

so that the assumption of dipole braking can be tested. However, this is only
possible for the very youngest pulsars [8], whilst rotational instabilities known as
timing noise can mimic a significant but time-varying value of ν̈. These values
then reflect timing noise rather than regular spin-down, so that derived braking
indices are meaningless [9]. In total, only for five young pulsars could a braking
index be determined that appears to reflect the long-term spin-down behaviour.
With values ranging from n = 1.4 to n = 2.9 (e.g., [10]), the deviations from the
expected braking index are not too severe.

Integrating Eqn. 2, we can estimate the age of a pulsar from

τ =
P

(n − 1)Ṗ
=

P

2Ṗ
= − ν

2ν̇
(4)

where we have assumed a magnetic dipole braking index of n = 3. This quantity
known as the characteristic age is a valid estimate for the true age under the
assumption that the initial spin period is much smaller than the present period.
While it had been assumed in the past that pulsars are born with periods similar
to that estimated for the Crab pulsar, P0 = 19 ms [11], recent estimates suggest a
wide range of initial spin periods from 14 ms up to 140 ms [12].

We can describe the evolution of a pulsar in period, P , and slow-down, Ṗ , in
a logarithmic P -Ṗ -diagram as shown in Figure 2 where we plot all of the ∼ 1700
known pulsars for which P and Ṗ have been measured. Since the estimates for
both magnetic field (Eqn. 1) and characteristic age (Eqn. 4) depend only on P

and Ṗ , we can draw lines of constant magnetic field and constant characteristic
age. Accordingly, young pulsars should be located in the upper left area of Fig. 2.
Pulsars are generally considered to be young if their characteristic age is less than
100 kyr. Specifically, pulsars with characteristic ages of less than 10 kyr appear
in the cross-hatched area, whilst pulsars with ages between 10 and 100 kyr are
located in the hatched area. The latter pulsars are often compared to the Vela
pulsar if they match its spin-down luminosity, i.e. Ė > 1036 erg s−1. The spin-
down luminosity is simply given by the loss in rotational energy which can be
measured from the observed period and period derivative,

Ė = 4π2IṖP−3 erg s−1 (5)
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where a neutron star moment of inertia of I = 1045 g cm2 is assumed. Obvi-
ously, Ė represents the maximum energy output available for spin-powered pul-
sars across the whole electromagnetic spectrum. A line of a constant, Vela-like
Ė = 1036 erg s−1 is shown in Fig. 2 together with a line for Ė = 1033 erg s−1.

When pulsars age, they move into the central part of the P−Ṗ -diagram where
they spend most of their lifetime. Consequently, most known pulsars have spin
periods between 0.1 and 1.0 s with period derivatives of typically Ṗ = 10−15 s s−1.
Selection effects are only partly responsible for the limited number of pulsars
known with very long periods, the longest known period being 8.5 s [13]. The
dominant effect is due to the “death” of pulsars when their slow-down has reached
a critical state. This state seems to depend on a combination of P and Ṗ which
can be represented in the P − Ṗ -diagram as a pulsar death-line. To the right and
below this line (see Figure 2) the electric potential above the polar cap may not
be sufficient to produce the particle plasma that is responsible for the observed
radio emission. While this model can indeed explain the lack of pulsars beyond the
death-line, the truth may be more complicated as the position of the 8.5-sec pulsar
deep in the pulsar graveyard indicates. Nevertheless, it is clear that the normal life
of radio pulsars is limited and that they die eventually after tens to a hundred
million years. The position of a sub-set of about 100 pulsars located in the lower
left part of Fig. 2 cannot be explained by the above picture of normal pulsar life.
The evolution of these “millisecond pulsars” is different.

5. Formation of Millisecond Pulsars

The millisecond pulsars located in lower-left part of the P − Ṗ diagram are clearly
different from the majority of pulsars. Firstly, they exhibit much shorter pulse
periods. The first discovered millisecond pulsar, PSR B1937+21 [14], has a period
of only 1.56 ms and remained the pulsar with the shortest period known for more
than 20 years. Only recently, a millisecond pulsar, PSR J1748-2446ad, was dis-
covered which has a slightly shorter period of 1.40 ms [15]. Secondly, millisecond
pulsars also have very small period derivatives, Ṗ ∼< 10−18 s s−1, making them
much older (see Eqn. 4) than normal pulsars with ages up to ∼ 1010 yr. In the stan-
dard scenario, which finds its ultimate confirmation in the discovery of the double
pulsar, millisecond pulsars are recycled from a dead binary pulsar via an X-ray
binary accretion phase. The pulsars’ millisecond periods are obtained when mass
and thereby angular momentum is transferred from an evolving binary companion
while it overflows its Roche lobe (e.g., [16]).

Even though most ordinary stars are in binary systems, most pulsars do
not evolve into a millisecond pulsar. The birth of the pulsar usually disrupts the
system, preventing the access to a mass donor and explaining why most pulsars
are isolated. In the binary systems that survive the supernova explosion, the pulsar
will eventually cease to emit radio emission, before the system evolves into a X-
ray binary phase during which mass accretion onto the pulsar occurs. The pulsar
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Figure 2: The P − Ṗ–diagram for the known pulsar population. Lines of constant charac-
teristic age, surface magnetic field and spin-down luminosity are shown. Binary pulsars
are marked by a circle. The lower solid line represents the pulsar “death line” enclosing
the “pulsar graveyard” where pulsars are expected to switch off radio emission. The grey
area in the top right corner indicates the region where the surface magnetic field appears
to exceed the quantum critical field of 4.4 × 1013 Gauss. For such values, some theories
expect the quenching of radio emission in order to explain the radio-quiet “magnetars”
(i.e. Soft-gamma ray repeaters, SGRs, and Anomalous X-ray pulsars, AXPs). The upper
solid line is the “spin-up” line which is derived for the recycling process as the period
limit for millisecond pulsars.
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spins up and is recycled into a radio millisecond pulsar when P and Ṗ have been
altered such that the pulsar has crossed the death-line again in the other direction.
The final spin period of such a recycled pulsar depends on the mass of the binary
companion. A more massive companion evolves faster, limiting the duration of the
accretion process and hence the angular momentum transfer.

The majority of millisecond pulsars will have had a low-massive companion.
These systems evolve into low-mass X-ray binaries (LMXBs) and will result into
a fast-spinning millisecond pulsar with period of P ∼ 1 − 10 ms with a low-mass
white-dwarf companion. Systems with a more massive companion evolve into high-
mass X-ray binaries (HMXBs) which represent the progenitors for double neutron
star systems (DNSs). DNSs are rare since these systems need to survive a total
of two supernova explosions. If this happens, the millisecond pulsar is only mildly
recycled with a period of tens of millisecond.

The properties of millisecond pulsars and X-ray binaries are consistent with
the described picture. For instance, it is striking that ∼ 80% of all millisecond pul-
sars are in a binary orbit while this is true for only less than 1% of the non-recycled
population. For millisecond pulsars with a low-mass white dwarf companion the
orbit is nearly circular due to a circularisation of the orbit during the recycling
process. In case of DNS systems, the orbit is affected by the unpredictable nature
of the kick imparted onto the newly born neutron star in the asymmetric super-
nova explosion of the companion. If the system survives, the result is typically an
eccentric orbit with an orbital period of a few hours.

6. Pulsar Timing

The clock-like stability of pulsars means that through precise monitoring of pulsar
rotations we can study a rich variety of phenomena that affect the propagation
of their pulses. While the basic spin and astrometric parameters can be derived
for essentially all pulsars, millisecond pulsars are the most useful objects for more
exotic applications. Their pulse arrival times can be measured much more pre-
cisely than for normal pulsars (scaling essentially with the pulse period) and their
rotation is also much smoother, making them intrinsically better clocks. Specifi-
cally, they usually do not exhibit rotational instabilities such as ‘timing noise’ and
‘glitches’ known for normal pulsars.

The key quantity of interest is the time of arrival (TOA) of pulses at the
telescope. However, since individual pulses are usually too weak to be detected,
and since they also show a jitter in arrival time within a window given by the
extend of the pulse profile, it is the latter which is used for timing. The stability of
pulse profiles allows us to compare the observed profile with a high signal-to-noise
ratio template that is constructed from previous observations. The time-offset
between template and profile determines the TOA. Because we use pulse profiles
rather than individual pulses, the TOA is defined usually as the arrival time of
the nearest pulse to the mid-point of the observation. As the pulses have a certain
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width, the TOA refers to some fiducial point on the profile. Ideally, this point
coincides with the plane defined by the rotation and magnetic axes of the pulsar
and the line of sight to the observer which is defined geometrically and independent
of observing frequency or propagation effects.

The aim of pulsar timing is to count the number of neutron star rotations be-
tween two observations. Each TOA can therefore be assigned with a pulse number
N which depends on rotation frequency ν and TOA t as

N = N0 + ν(t0)(t − t0) +
1
2
ν̇(t − t0)2 +

1
6
ν̈(t − t0)3 + · · · (6)

where N0 is the pulse number at the reference epoch t0. If t0 coincides with the
arrival of a pulse and the pulsar spin-down (i.e. ν and ν̇) is known accurately, the
pulses should appear at integer values of N when observed in an inertial reference
frame. However, our observing frame is not inertial: we are using telescopes that
are located on a rotating Earth orbiting the Sun. Before analysing TOAs measured
with the observatory clock (topocentric arrival times), we need to transfer them
to the centre of mass of the Solar System (solar system barycentre, SSB). To a
very good approximation, the SSB is an inertial reference frame.

The time transformation also corrects for any relativistic time delay that
occurs due to the presence of masses in the Solar System. An additional advantage
of analysing these barycentric arrival times is that they can easily be combined
with other TOAs measured at different observatories at different times.

Given a minimal set of starting parameters, a least squares fit is needed to
match the measured arrival times to pulse numbers according to Equation (6). We
minimise the expression

χ2 =
∑

i

(
N(ti) − ni

σi

)2

(7)

where ni is the nearest integer to N(ti) and σi is the TOA uncertainty in units of
pulse period (turns).

The aim is to obtain a phase-coherent solution that accounts for every single
rotation of the pulsar between two observations. One starts off with a small set
of TOAs that were obtained sufficiently close in time so that the accumulated
uncertainties in the starting parameters do not exceed one pulse period. Gradually,
the data set is expanded, maintaining coherence in phase. When successful, post-fit
residuals expressed in pulse phase show a Gaussian distribution around zero with
a root mean square that is comparable to the TOA uncertainties (see Fig. 3). A
good test for the quality of the TOAs and their fit is provided by creating a new
set of mean residuals, each formed by averaging navg consecutive post-fit residuals.
The root mean square calculated from the new set should decrease with √

navg if
no systematics are present.

After starting with fits for only period and pulse reference phase over some
hours and days, longer time spans slowly require fits for parameters like spin
frequency derivative(s) and position. Incorrect or incomplete timing models cause
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Figure 3: (a) Timing residuals for the 1.19 s pulsar B1133+16. A fit of a perfect timing
model should result in randomly distributed residuals. (b) A parabolic increase in the

residuals is obtained if Ṗ is underestimated, here by 4 per cent. (c) An offset in position
(in this case a declination error of 1 arcmin) produces sinusoidal residuals with a period
of 1 yr. (d) The effect of neglecting the pulsar’s proper motion, in this case µT = 380
mas yr−1. In all plots we have set the reference epoch for period and position to the first
TOA at MJD 48000 to show the development of the amplitude of the various effects.
Note the different scales on each of the vertical axes.

systematic structures in the post-fit residuals identifying the parameter that needs
to be included or adjusted (see Figure 3). The precision of the parameters improves
with length of the data span and the frequency of observation, but also with orbital
coverage in the case of binary pulsars.

7. Binary Pulsars

Observations of pulsars in binary orbits show a periodic variation in pulse arrival
time. The timing model therefore needs to incorporate the additional motion of
the pulsar as it orbits the common centre of mass of the binary system. For non-
relativistic binary systems, the orbit can be described using Kepler’s laws. For a
number of binary systems however, the Keplerian description of the orbit is not
sufficient and relativistic corrections need to be applied.
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Kepler’s laws can be used to describe a binary system in terms of the five
Keplerian parameters, shown schematically in Figure 4. These five parameters are
required to refer the TOAs to the binary barycentre: (a) orbital period, Pb; (b)
projected semi-major orbital axis, ap sin i (see below); (c) orbital eccentricity, e;
(d) longitude of periastron, ω; (e) the epoch of periastron passage, T0.

For pulsars in close binary systems about white dwarfs, other neutron stars, or
perhaps eventually black holes, relativistic effects due to strong gravitational fields
and high orbital velocities produce observable signatures in the timing residuals.
Even though GR appears to be the best description of the strong-field regime
to date [17], alternative theories of gravity nevertheless should be considered and
tested against it. A straightforward means of comparison is to parameterise the
timing model in terms of the so-called ‘post-Keplerian’ (PK) parameters. For point
masses with negligible spin contributions, the PK parameters in each theory should
only be functions of the a priori unknown pulsar and companion mass, Mp and Mc,
and the easily measurable Keplerian parameters [18]. With the two masses as the
only free parameters, an observation of two PK parameters will already determine
the masses uniquely in the framework of the given theory. The measurement of a
third or more PK parameters then provides a consistency check for the assumed
theory.

The PK parameters are measured as additional parameters in a theory in-
dependent timing model which describes the pulse arrival times in a phenomeno-
logical way, using the Keplerian and PK parameters. The best timing model for
describing relativistic binary pulsars is the Damour-Deruelle (DD) timing model
[19, 20]. Applying this model to TOA measurements, the PK parameters are de-
termined. They take different forms in different theories of gravity. In general
relativity, the five most important PK parameters are given by (e.g., [18]):

ω̇ = 3T
2/3
�

(
Pb

2π

)−5/3 1
1 − e2

(Mp + Mc)2/3, (8)

γ = T
2/3
�

(
Pb

2π

)1/3

e
Mc(Mp + 2Mc)
(Mp + Mc)4/3

, (9)

Ṗb = −192π

5
T

5/3
�

(
Pb

2π

)−5/3 (
1 + 73

24e2 + 37
96e4

)
(1 − e2)7/2

MpMc

(Mp + Mc)1/3
, (10)

r = T�Mc, (11)

s = T
−1/3
�

(
Pb

2π

)−2/3

x
(Mp + Mc)2/3

Mc
, (12)

where the masses Mp and Mc of pulsar and companion, respectively, are expressed
in solar masses (M�). We define the constant T� = GM�/c3 = 4.925490947µs
where G denotes the Newtonian constant of gravity and c the speed of light. The
first PK parameter, ω̇, is the easiest to measure and describes the relativistic
advance of periastron. It provides an immediate measurement of the total mass
of the system, (Mp + Mc). The parameter γ denotes the amplitude of delays in
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Figure 4: Definition of the orbital elements in a Keplerian orbit and the angles relating
both the orbit and the pulsar to the observer’s coordinate system and line of sight. (a)
is drawn in the plane of the orbit; (b) shows the orbit inclined to the plane of the sky.
The closest approach of the pulsar to the centre of mass of the binary system marks
periastron, given by the longitude ω and a chosen epoch T0 of its passage. The distance
between centre of mass and periastron is given by ap(1 − e) where ap is the semi-major
axis of the orbital ellipse and e its eccentricity. (b) Usually, only the projection on the
plane of the sky, ap sin i, is measurable, where i is the orbital inclination defined as the
angle between the orbital plane and the plane of the sky. The true anomaly, AT, and
eccentric anomaly, E, are related to the mean anomaly by Kepler’s law. The orbital phase
of the pulsar Φ is measured relative to the ascending node. (c) The spatial orientation
of the pulsar’s spin-vector, S1, is given by the angles λ and η in the coordinate system
shown as defined by Damour and Taylor (1992). The angle Ωasc gives the longitude of
ascending node in the plane of the sky.

arrival times caused by the varying effects of the gravitational redshift and time
dilation (second order Doppler) as the pulsar moves in its elliptical orbit at varying
distances from the companion and with varying speeds. The decay of the orbit due
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to gravitational wave damping is expressed by the change in orbital period, Ṗb.
The other two parameters, r and s, are related to the Shapiro delay caused by
the gravitational field of the companion. These parameters are only measurable,
depending on timing precision, if the orbit is seen nearly edge-on.

The PK parameters listed above are those which have been measured in
binary systems to date. However, the list can be extended (see [18]) if the binary
system is extreme enough. We expect the double pulsar to be such a system where
never before measured PK parameters will be needed to describe the observations
adequately (see Section 10).

8. The double pulsar – a magnificent laboratory

Our team discovered the 22.8-ms pulsar J0737−3039 in April 2003 [21] in an
extension to the hugely successful Parkes Multi-beam survey [22]. It was soon found
to be a member of the most extreme relativistic binary system ever discovered: its
short orbital period (Pb = 2.4 hrs) is combined with a remarkably high value of
periastron advance (ω̇ = 16.9 deg yr−1, i.e. four times larger than for the Hulse-
Taylor pulsar PSR B1913+16). This large precession of the orbit was measurable
after only a few days of observations. The system parameters predict that the
two members of the binary system will coalesce on a short time scale of only
∼ 85 Myr. This boosts the hopes for detecting a merger of two neutron stars with
first-generation ground-based gravitational wave detectors by a factor of 5 to 10
compared to previous estimates based on only the double neutron stars B1534+12
and B1913+16 [21, 23].

In October 2003, we detected radio pulses from the second neutron star
[24]. The reason why signals from the 2.8-s pulsar companion (now called PSR
J0737−3039B, hereafter “B”) to the millisecond pulsar (now called PSR
J0737−3039A, hereafter “A”) had not been found earlier, became clear when it
was realized that B was only bright for two short parts of the orbit. For the re-
mainder of the orbit, the pulsar B is extremely weak and only detectable with
the most sensitive equipment. The detection of a young companion B around an
old millisecond pulsar A and their position in the P − Ṗ -diagram (see Figure 2)
confirms the evolution scenario proposed for recycled pulsars (see Section 5) and
provides a truly unique testbed for relativistic gravity and also plasma physics.

8.1. A laboratory for plasma physics

The double pulsar is not only a superb test-bed for relativistic gravity, but it
also provides an unprecedented opportunity to probe the workings of pulsars. The
pulse emission from B is strongly modulated with orbital phase, most probably as
a consequence of the penetration of the A’s wind into B’s magnetosphere. Figure 5
shows the pulse intensity for B as a function of pulse phase and orbital longitude
for three radio frequencies. The first burst of strong emission, centred near orbital
longitude 210 deg, covers about 13 min of the orbit, while the second burst, centred
near longitude 280 deg, is shorter and lasts only for about 8 min. This pattern is
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stable over successive orbits and obviously frequency independent over the range
probed. Deep integrations reveal other orbital phases, where B is visible but much
weaker than during the two main burst periods. The figure also shows that not only
does the pulse intensity change with orbital phase, but that the pulse shape changes
as well. At the start of the first burst the pulse has a strong trailing component
and a weaker leading component which dies out in the later phases of the burst.
In the second burst, there are two components of more equal amplitude. This
is the first time that profile changes are observed that clearly depend on orbital
phase. Decoding this pattern as the orbit precesses due to relativistic effects and
the system is viewed from different directions, offers a unique chance to probe the
magnetosphere. Indeed, as discussed later, the “light-curve” of B is changing with
time, probably due to the effects of geodetic precession.

Figure 5: Grey-scale images showing the pulse of PSR J0737–3039B as a function of
orbital phase at three observing frequencies (Lyne et al. 2004).

It is important to note that by simply seeing B functioning as a radio pulsar,
albeit with orbital phases of rather weak emission, confirms our ideas about the
location of the origin of radio emission: The fact that B is still emitting, despite the
loss of most of its magnetosphere due to A’s wind, indicates that the fundamental
processes producing radio emission are likely to occur close to the neutron star
surface – in accordance with emission heights determined for normal radio pulsars
(see Section 3).

The quenching or attenuation of B’s radio emission for most of its orbit is only
part of the interaction between A and B that is observed. For about 27 seconds
of the orbit, A’s emission is eclipsed when A is lined up behind B at superior
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conjunction (Fig. 6). At that moment, the pulses of A pass in about 30,000 km
distance to the surface of B. It appears that the magnetospheric transmission
for A’s emission is modulated during the rotation of B, depending on the relative
orientation of the spin-axis of B to A and our line-of-sight. Indeed, a modulation of
the light-curve inside the eclipse region consistent with B’s (full and half) rotation
period is observed [25] (Fig. 7).
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Figure 6: The pulsed flux density of A versus time (with respect to superior conjunction)
and orbital phase for (top three panels) the three eclipses in the 820-MHz observation and
(bottom panel) all three eclipses summed (McLaughlin et al. 2004b). In the individual
eclipse light curves, every 12 pulses have been averaged for an effective time resolution of
∼ 0.27 s. Every 100 pulses have been averaged to create the lower, composite light curve
for an effective time resolution of ∼ 2.3 s. Pulsed flux densities have been normalized
such that the pre-eclipse average flux density is unity.
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Figure 7: Cartoon (not to scale) showing the interaction between the relativistic wind of
A and the magnetosphere of B when the radio beam of B is pointing towards the Earth
(from McLaughlin et al. 2004b).

Perhaps even more exciting is the discovered evidence that A’s radiation has
some direct impact on the radiation pattern of B. Figure 8 shows a blow-up of B’s
emission at orbital phases where B is strongest. At the right orientation angles,
a drifting sub-pulse pattern emerges that coincides with the arrival times of A’s
pulses at B [26]. This is the first time pulsar emission is observed to be triggered
by some external force, and it is likely that this will help us to understand the
conditions and on-set of pulsar emission in general.

8.2. A laboratory for strong-field gravity

Since neutron stars are very compact massive objects, the double pulsar (and other
double neutron star systems) can be considered as almost ideal point sources for
testing theories of gravity in the strong-gravitational-field limit. Timing observa-
tions of PSR J0737−3039A/B have been undertaken using the 64-m Parkes radio
telescope in New South Wales, the 76-m Lovell radio telescope at Jodrell Bank
Observatory, UK, and the 100-m Green Bank Telescope in West Virginia, between
2003 April and 2006 January. A total of 131,416 pulse times-of-arrival (TOAs)
were measured for A while 507 TOAs were obtained for B using synthetic noise-
free profile templates which are different for different frequency bands and, for B,
functions of orbital phase and time. Pulsar and binary system parameters derived
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Figure 8: Observations of single pulses of B at 820 MHz for orbital phases 190–240 deg
(only 10% of the pulse period is shown). Drifting features are present through most of
these data, but are particularly obvious from orbital phases ∼ 200–210 deg which is
enlarged on the right. Single pulses of A can be seen in the background of the left figure,
where differential Doppler shifts from the orbital motion result in different apparent pulse
periods and hence drifting patterns. The expanded view on the right is overlayed with
dots marking the arrival of pulses of A at the centre of B, coinciding with the observed
drift pattern in B (McLaughlin et al. 2004a).

from these TOAs are listed in Table 1 at the end of this paper. Because of its nar-
rower and more stable pulse profile, TOAs from A have a much higher precision
than those from B and hence are used to determine the position, proper motion
and main orbital parameters of the system. For B, the only fitted parameters were
the pulse phase, the pulsar spin frequency, ν ≡ 1/P , its first time-derivative ν̇ and
the projected semi-major axis, xB ≡ (aB/c) sin i.

Previous observations of PSR J0737−3039A/B [21, 24] resulted in the mea-
surement of R and four PK parameters: the rate of periastron advance ω̇, the
gravitational redshift and time dilation parameter γ, and the Shapiro-delay pa-
rameters r and s. For the latest timing results [17] the measurement precision
for these parameters has increased dramatically. Also, we have now measured the
orbital decay, Ṗb, giving a total of five PK parameters for the system. Together
with the mass ratio R, the measurements provide four independent tests of GR,
more than for any other known system. The value of Ṗb, measured at the 1.4%
level after only 2.5 years of timing, corresponds to a shrinkage of the orbit at a
rate of 7 mm per day. One can display these tests elegantly in a “mass-mass”
diagram as shown in Figure 9. Measurement of the PK parameters gives curves
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on this diagram that are in general different for different theories of gravity but
which should intersect in a single point, i.e., at a pair of mass values, if the theory
is valid [18].

In addition to tests enabled by the PK parameters, the access to the orbit of
both neutron stars – by timing A and B – provides yet another constraint on grav-
itational theories that is qualitatively different from what has been possible with
previously known double neutron stars: using Kepler’s third law, the measurement
of the projected semi-major axes of both orbits yields the mass ratio,

R(MA, MB) ≡ MA/MB = xB/xA. (13)

For every realistic theory of gravity, we can expect R to follow this simple relation
[18], at least to 1PN order. Most importantly, the R value is not only theory-
independent, but also independent of strong-field (self-field) effects which is not
the case for the PK parameters. In other words, any combination of masses derived
from the PK parameters must be consistent with the mass ratio. The ability to
measure this quantity provides therefore an important and unique constraint. With
five PK parameters already available, this additional constraint also makes the
double pulsar the most overdetermined system to date where the most relativistic
effects can be studied in the strong-field limit.

Figure 9 shows that all measured constraints are consistent with GR. The
most precisely measured PK parameter currently available is the precession of
the longitude of periastron, ω̇. We can combine this with the theory-independent
mass ratio R to derive the masses given by the intersection region of their curves:
mA = 1.3381 ± 0.0007 M� and mB = 1.2489 ± 0.0007 M�. Assuming GR and
using these masses and the Keplerian parameters, we can predict values for the
remaining PK parameters. Table 2 at the end of this paper lists results for the
four independent tests that are currently available. The Shapiro delay (Figure 10)
gives the most precise test, with sobs/spred = 0.99987± 0.00050. This is by far the
best test of GR in the strong-field limit, having a higher precision than the test
based on the observed orbit decay in the PSR B1913+16 system with a 30-year
data span [30]. As for the PSR B1534+12 system [31], the PSR J0737−3039A/B
Shapiro-delay test is complementary to that of B1913+16 since it is not based on
predictions relating to emission of gravitational radiation from the system [32].
Most importantly, the four tests of GR presented here are qualitatively different
from all previous tests because they include one constraint (R) that is independent
of the assumed theory of gravity at the 1PN order. As a result, for any theory of
gravity, the intersection point is expected to lie on the mass ratio line in Figure 9.
GR also passes this additional constraint with the best precision so far.

8.2.1. A modification of the DD timing model. In order to study such possible
effects and the performance of the standard timing software TEMPO2 and its
implementation of the DD timing model, we have made detailed simulations. Pro-
ducing fake TOAs for a J0737−3039-like system, we varied the input parameter

2http://pulsar.princeton.edu/tempo/
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Figure 9: ‘Mass–mass’ diagram showing the observational constraints on the masses of
the neutron stars in the double pulsar system J0737–3039 (Kramer et al. 2006). The
shaded regions are those that are excluded by the Keplerian mass functions of the two
pulsars. Further constraints are shown as pairs of lines enclosing permitted regions as
given by the observed mass ratio and PK parameters as predicted by general relativity.
Inset is an enlarged view of the small square encompassing the intersection of these
constraints (see text).

as 0.9 ≤ s ≤ 1.0 and the assumed timing precision. For small TOA uncertain-
ties, we can always recover the original s value by fitting the DD-model using
TEMPO. However, comparing the standard TEMPO error estimates for s and r
with estimates obtained from studying a corresponding χ2 plane, the symmetric
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Figure 10: The effect of the Shapiro delay caused by the gravitational potential of B
seen in the timing residuals of A. (a) Observed timing residuals after a fit of all model
parameters given in Table 1 except the Shapiro-delay terms r and s which were set to
zero. (b) Residuals illustrating the full Shapiro delay, obtained by holding all parameters
to their values given in Table 1, except the Shapiro delay terms which were set to zero.
The line shows the predicted delay at the centre of the data span. In both cases, residuals
were averaged in 1◦ bins of longitude (Kramer et al. 2006).

error bars given by TEMPO do not always correspond to the true uncertain-
ties reflected by non-symmetric χ2-contours if the TOA uncertainty is too large.
This potential problem due to the non-linearity of the fitted parameters and cor-
relations of the Shapiro delay parameters with the Römer delay in the orbit is
well known. Hence, one usually explores an χ2-plane evenly sampled in

√
1 − s2

and r to obtain reliable values and error estimates (see, e.g., [34]). Increasing the
TOA uncertainties, numerical fits to the fake TOAs assuming a sin i very close
to unity (e.g., sin i = 0.99999 or i = 89.2) sometimes results in fits with s > 1
due to numerical uncertainties. In order to remedy this situation we developed a
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modification of the DD timing model following a suggestion by Thibault Damour
(priv. communication).

In the DD model, we fit for r and s which in GR becomes s = sin i where r is
identical with the companion mass apart from a constant factor, T� (see Eqns. 11
and 12). In the new model, called DDS (for DD-Shapiro, see [35]), we write

s = 1 − e−zs (14)

where zs replaces s as our new fit parameter. It follows that

zs = − ln(1 − s). (15)

The advantage becomes apparent when we compare this expression to the Shapiro
delay term, ∆s in the timing formula, in particular when comparing it to low-
eccentricity pulsars for which (e.g., [36])

∆s = −2r ln(1 − s sinΦ) (16)

where Φ is the orbital phase measured from the ascending node. At Φ = π/2, the
maximum delay is obtained

∆max
s = −2r ln(1 − s) (17)

which has obvious similarities to our definition of zs,

∆max
s = 2 r zs (18)

or
zs = ∆max

s /2r. (19)
Due to the nature of this simple transformation, a fit of the TOAs to the DD
and DDS models always produces the same results. In addition, however, at large
inclination angles the uncertainties on zs derived by TEMPO are still consistent
with those obtained from studies of corresponding χ2 hyperspheres, often removing
the need for the often computationally expensive calculation of the χ2 plane. Using
the DDS model, it is in particular impossible that numerical uncertainties lead to
fit results which in GR correspond to values sin i > 1.0. We are aware that the
DDS model therefore represents a restriction of the parameter space which may
be allowed by alternative theories of gravity.

The application of the DD and DDS model to the real TOAs produces con-
sistent results and verifies the previous findings that s is significantly lower than
the scintillation results which are consistent with our measurement only at the
3-σ level. Scintillation observations over the whole orbit have also been used to
deduce the system transverse velocity. Ransom et al. [37] derive a value of 141±8.5
km s−1 while Coles et al. [33] obtain 66± 15 km s−1 after considering the effect of
anisotropy in the scattering screen. Both of these values are in stark contrast to
the value of 10± 1 km s−1 (relative to the solar system barycentre) obtained from
pulsar timing (Table 1). We note that the scintillation-based velocity depends on
a number of assumptions about the properties of the effective scattering screen.
In contrast, the proper motion measurement has a clear and unambiguous timing
signature, although the transverse velocity itself scales with the pulsar distance.
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Even allowing that unmodeled effects of Earth motion could affect the published
scintillation velocities by about 30 km s−1, the dispersion-based distance would
need to be underestimated by a factor of several to make the velocities consistent.
We believe this is very unlikely, particularly as the tentative detection of a par-
allax gives us some confidence in the dispersion-based distance estimate. Hence,
our timing results for both inclination angle and transverse velocity are less sus-
ceptible to systematic errors and are therefore more secure than those based on
scintillation.

We have studied other possible effects affecting the timing results such as a
possible variation of the dispersion measure as a function of orbital phase. How-
ever, the non-detection of any such effect leads us to the conclusion that in contrast
unmodeled effects may have altered the scintillation results and the derived un-
certainties on the inclination angle. An exciting explanation for the discrepancy
may be that the emission of A suffers measurable refraction while propagating
through the magnetosphere of B. If that were indeed the case, we would have a
direct handle onto the magneto-ionic properties of B’s magnetosphere for the first
time, e.g., corresponding plasma densities in B’s magnetosphere would need to be
relatively large.
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Figure 11: The emission of B at 1390 MHz as a function of the orbital longitude (vertical
axis) and for the pulse phase range 0.18–0.27 (horizontal axis) as in Figure 5. Each panel
was obtained by adding all the data in the ∼ 3 months period indicated at the top of each
panel. The dashed lines represent the position of the periastron at the given epoch. A
change in the visibility pattern of B is clearly visible and most likely caused by geodetic
precession (Burgay et al. 2005).

The short eclipses in A’s emission already indicate that we are observing the
system almost completely edge-on. This is confirmed independently by measuring
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a Shapiro delay and inferring (in GR) that the inclination angle i is indeed close
to 90◦. Other methods using the variation of the pulsars’s intensity due to the
turbulent interstellar medium are available for an independent measurement of
the orbital orientation. Based on such scintillation observations of both pulsars
over the short time interval when A is close to superior conjunction, Coles et al.
[33] derived a value, the orbital inclination angle i, that is very close to 90◦, i.e.
they derive |i − 90◦| = 0◦.29 ± 0◦.14. In GR, the parameter s can be identified
with sin i where i is the inclination angle of the orbit. The value of s derived from
our timing observations (Table 1) corresponds to i = 88◦.69+0◦.50

−0◦.76. Comparing the
two methods, one notes that the scintillation results are based on correlating the
scintillation properties of A and B over the short time-span of the orbital motion
when they are in conjunction to the observer. In contrast, the measurement of
the inclination angle from timing measurements results from detecting significant
harmonic structure in the post-fit residuals after parts of the Shapiro delay are
absorbed in the fit for the Römer delay, i.e. the light travel time across the orbit.
As shown in Figure 10, these structures are present throughout the whole orbit, so
that the results from timing measurements may be expected to be more reliable.
However, as all TOAs are associated with uncertainties, we need to make sure
that a multi-parameter least-square fit of the DD model will reproduce the correct
value of the PK parameters s and r despite possible numerical effects.

8.2.2. Effects of geodetic precession. The measurement of the times-of-arrival
(TOAs) are obtained with a standard “template matching” procedure that in-
volves a cross-correlation of the observed pulse profile with high signal-to-noise
ratio template (e.g., [38]). Any change in the pulse profile could lead to systematic
variations in the measured TOAs. We performed detailed studies of the profiles of
A and B to investigate any possible profile changes with time as such as expected
from another effect predicted by GR.

In GR, the proper reference frame of a freely falling object suffers a precession
with respect to a distant observer, called geodetic precession. In a binary pulsar
system this geodetic precession leads to a relativistic spin-orbit coupling, analogous
to spin-orbit coupling in atomic physics [39]. As a consequence, both pulsar spins
precess about the total angular momentum, changing the relative orientation of
the pulsars to one another and toward Earth. Since the orbital angular momentum
is much larger than the pulsars’ angular momenta, the total angular momentum is
effectively represented by the orbital angular momentum. The precession rate [40]
depends on the period and the eccentricity of the orbit as well as the masses of A
and B. With the orbital parameters of the double pulsar, GR predicts precession
periods of only 75 yr for A and 71 yr for B.

Geodetic precession has a direct effect on the timing as it causes the polar
angles of the spins and hence the effects of aberration to change with time [18].
These changes modify the observed orbital parameters, like projected semi-major
axis and eccentricity, which differ from the intrinsic values by an aberration depen-
dent term, potentially allowing us to infer the system geometry (see Section 10).
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Figure 12: Pulse shapes of B in the two bright phases (see previous figure) as a function
of time, again in three month intervals. Again, a systematic change in the pulse profile
is clearly visible (Burgay et al. 2005).

Extracting the signature of these effects in the timing data is a goal for the years
to come. Other consequences of geodetic precession can be expected to be detected
much sooner and are directly relevant for the timing of A and B. These arise from
variations in the pulse shape due to changing cuts through the emission beam as
the pulsar spin axes precess. Moreover, geodetic precession also leads to a change in
the relative alignment of the pulsar magnetospheres, so that the visibility pattern
and even the profile of B should vary due to these changes as well.

Indeed, studies of the profile evolution of B [41] reveal a clear evolution of B’s
emission on orbital and secular time-scales. The light-curves of B (i.e. the visibility
of B versus orbital phase) undergo clear changes (Figure 11) while the profile
of B as observed in the bright orbital phases is clearly changing also with time
(Figure 12). These phenomena are probably caused by a changing magnetospheric
interaction due to geometry variations resulting from geodetic precession. In any
case, these changes require sophisticated timing analysis techniques.

For the timing of B, because of the orbital and secular dependence of its
pulse profile, different templates were used for different orbital phases and different
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Figure 13: Pulse profiles of A observed at three different epochs. Subtracting one profile
from the others does not reveal any significant changes as demonstrated in the two bottom
plots. Figure provided by Rob Ferdman & Ingrid Stairs.

epochs. A matrix of B templates was constructed, dividing the data set into 3-
month intervals in epoch and 5-minute intervals in orbital phase. The results for
the 29 orbital phase bins were studied, and it was noticed that, while the profile
changes dramatically and quickly during the two prominent bright phases, the
profile shape is simpler and more stable at orbital phases when the pulsar is weak.
In the final timing analysis for pulsar B, we therefore omitted data from the two
very bright orbital phases. We also used an unweighted fit to avoid biasing the fit
toward remaining brighter orbital phases.
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Since the overall precision of our tests of GR is currently limited by our ability
to measure xB and hence the mass ratio R ≡ mA/mB = xB/xA, we adopted the
following strategy to obtain the best possible accuracy for this parameter. We used
the whole TOA data set for B in order to measure B’s spin parameters P and Ṗ ,
given in Table 1 of the main paper. These parameters were then kept fixed for a
separate analysis of two concentrated 5-day observing sessions. On the timescale
of the long-term profile evolution of B, each 5-day session represents a single-epoch
experiment and hence requires only two sets of profile templates. The value of xB

obtained from a fit of this parameter only to the two 5-day sessions is presented
in Table 1 of the main paper.

The study of the profile evolution of A [42, 17] did not lead to the detection
of any profile change (see Figure 13). This present non-detection greatly simplifies
the timing of A but does not exclude the possibility that changes may happen
in the future. While the effects of geodetic precession could be small due to a
near alignment of pulsar A’s spin and the orbital momentum vector, the results
could also be explained by observing the system at a particular precession phase.
While this case appears to be relatively unlikely, it must not be excluded as such
a situation had indeed occurred for PSR B1913+16 [43]. Indeed, a modelling of
the results suggests that this present non-detection of profile changes is consistent
with a rather wide range of possible system geometries. One conclusion that can be
drawn is that the observations are inconsistent with the large profile changes that
had been predicted by some models [44]. Fortunately, independent information is
available that suggests that the alignment angle, and hence the impact of geodetic
precession, may indeed be very small. This information is derived from a study of
the evolution of the system based on the rather small transverse velocity of the
double pulsar.

8.3. Space-motion and evolution of the double pulsar

The timing results indicate that the space velocity of the double pulsar system is
surprisingly small. Based on the measured dispersion measure and a model for the
Galactic electron distribution [29], PSR J0737−3039A/B is estimated to be about
500 pc from the Earth. From the timing data we have measured a marginally sig-
nificant value for the annual parallax, 3 ± 2 mas, corresponding to a distance of
200 − 1000 pc (Table 1), which is consistent with the dispersion-based distance
that was also used for studies of detection rates in gravitational wave detectors
[21]. The observed proper motion of the system (Table 1) then implies a transverse
space velocity of only 10 km s−1 with a velocity vector parallel to the Galactic
plane. With this information, Stairs et al. (2006) [45] examined the history and
formation of this system, determining estimates of the pre-supernova companion
mass, orbital separation, supernova kick and misalignment angle between the pre-
and post-supernova orbital planes. One of the surprising results is that the pro-
genitor to the recently formed B was probably less than 2M�, lending credence
to suggestions that this object may not have formed in a normal core-collapse su-
pernova. They conclude that it therefore must be possible, in at least some cases,
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for low-mass helium stars to undergo Supernova explosions, and that there must
be a range of progenitor types that can produce double neutron star systems. The
relative frequency of the different types must depend on the initial mass function
and ranges of binary orbits. This will have implications for the number of double
neutron systems in the Galaxy, the retention of neutron stars in globular clus-
ters and for the apparent dearth of isolated mildly recycled pulsars ejected from
unbinding second SN explosions.

The study of the double pulsar evolution [45] also suggests that the kick ve-
locity was rather small and that the misalignment angle between the spin of pulsar
A and the total angular momentum vector (after the second supernova explosion)
is probably much less than 10◦. In this case, the expected impact of geodetic
precession on pulsar A’s profile is rather small, consistent with the present obser-
vational evidence. This makes us confident that high-precision timing observations
of A will continue for quite a while (in contrast to, for instance, the Hulse-Taylor
pulsar which may disappear as a radio source at about 2025 [43]). At the same
time, the small velocity of the double pulsar system is also extremely good news
for tests of alternative theories of gravity where the measurement of the orbital
decay is extremely useful.

9. Orbital decay measurement & Alternative theories of gravity

Because the measured uncertainty in Ṗb decreases approximately as T−2.5, where
T is the data span, we expect to improve our test of the radiative aspect of the
system to the 0.1% level or better in about five years’ time. For the PSR B1913+16
and PSR B1534+12 systems, the precision of the GR test based on the orbit-decay
rate is severely limited both by the uncertainty in the differential acceleration of
the Sun and the binary system in the Galactic gravitational potential and the
uncertainty in pulsar distance [46, 31]. For PSR J0737−3039A/B, both of these
corrections are very much smaller than for these other systems. Based on the mea-
sured dispersion measure and a model for the Galactic electron distribution [29],
PSR J0737−3039A/B is estimated to be about 500 pc from the Earth. From the
timing data we have measured a marginally significant value for the annual par-
allax, 3 ± 2 mas, corresponding to a distance of 200 − 1000 pc (Table 1), which
is consistent with the dispersion-based distance that was also used for studies of
detection rates in gravitational wave detectors [21]. The observed proper motion
of the system (Table 1) and differential acceleration in the Galactic potential [47]
then imply a kinematic correction to Ṗb at the 0.02% level or less. Independent
distance estimates also can be expected from measurements of the annual paral-
lax by Very Long Baseline Interferometry (VLBI) observations, allowing a secure
compensation for this already small effect. A measurement of Ṗb at the 0.02% level
or better will provide stringent tests for alternative theories of gravity as many
are, for instance, predicting a significant amount of gravitational dipole radiation.
Hence, a confirmation that the observations of the double pulsar are consistent
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with emission of gravitational quadrupole radiation to a very high level of preci-
sion promises to put limits on some scalar-tensor theories that will surpass even
the best current Solar-system tests [48].

Timing parameter PSR J0737−3039A PSR J0737−3039B

Right Ascension α 07h37m51s.24927(3) −
Declination δ −30◦39′40′′.7195(5) −
Proper motion in the RA direction (mas yr−1) −3.3(4) −
Proper motion in Declination (mas yr−1) 2.6(5) −
Parallax, π (mas) 3(2) −
Spin frequency ν (Hz) 44.054069392744(2) 0.36056035506(1)
Spin frequency derivative ν̇ (s−2) −3.4156(1) × 10−15 −0.116(1) × 10−15

Timing Epoch (MJD) 53156.0 53156.0
Dispersion measure DM (cm−3pc) 48.920(5) −
Orbital period Pb (day) 0.10225156248(5) −
Eccentricity e 0.0877775(9) −
Projected semi-major axis x = (a/c) sin i (s) 1.415032(1) 1.5161(16)
Longitude of periastron ω (deg) 87.0331(8) 87.0331 + 180.0
Epoch of periastron T0 (MJD) 53155.9074280(2) −
Advance of periastron ω̇ (deg/yr) 16.89947(68) [16.96(5)]
Gravitational redshift parameter γ (ms) 0.3856(26) −
Shapiro delay parameter s 0.99974(−39, +16) −
Shapiro delay parameter r (µs) 6.21(33) −
Orbital period derivative Ṗb −1.252(17) × 10−12 −
Timing data span (MJD) 52760 – 53736 52760 – 53736
RMS timing residual σ (µsec) 54 2169

Total proper motion (mas yr−1) 4.2(4)
Distance d(DM) (pc) ∼ 500
Distance d(π) (pc) 200 − 1000

Transverse velocity (d = 500 pc) (km s−1) 10(1)
Orbital inclination angle (deg) 88.69(-76,+50)
Mass function (M�) 0.29096571(87) 0.3579(11)
Mass ratio, R 1.0714(11)
Total system mass (M�) 2.58708(16)
Neutron star mass (m�) 1.3381(7) 1.2489(7)

Table 1: Parameters for PSR J0737−3039A (A) and PSR J0737−3039B (B) as mea-
sured by Kramer et al. (2006). The values were derived from pulse timing observations
using the DD and DDS models of the timing analysis program tempo [27] and the Jet
Propulsion Laboratory DE405 planetary ephemeris [28]. Estimated uncertainties, given
in parentheses after the values, refer to the least significant digit of the tabulated value
and are twice the formal 1-σ values given by tempo. The positional parameters are in
the DE405 reference frame which is close to that of the International Celestial Refer-
ence System. Pulsar spin frequencies ν ≡ 1/P are in barycentric dynamical time (TDB)
units at the timing epoch quoted in Modified Julian Days. The five Keplerian binary
parameters (Pb, e, ω, T0, and x) are derived for pulsar A. The first four of these (with an
offset of 180◦ added to ω) and the position parameters were assumed when fitting for B’s
parameters. Five post-Keplerian parameters have now been measured. An independent
fit of ω̇ for B yielded a value (shown in square brackets) that is consistent with the much
more precise result for A. The value derived for A was adopted in the final analysis. The
dispersion-based distance is based on a model for the interstellar electron density [29]
and has an uncertainty of order 20%.
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10. Future tests

In estimating the future improvements in the uncertainty of xB, and hence R and
our current precision for GR tests, we need to consider that geodetic precession
will lead to changes to the system geometry and hence to the aberration of the
rotating pulsar beam. The effects of aberration on pulsar timing are usually not
separately measurable but are absorbed into a redefinition of the Keplerian pa-
rameters. As a result, the observed projected sizes of the semi-major axes, xobs

A,B,
differ from the intrinsic sizes, xint

A,B by a factor (1 + εAA,B) which depends on the
orbital period, the pulse period and on the system geometry [18]. While aberration
should eventually become detectable in the timing, allowing the determination of
a further PK parameter, at present it leads to an undetermined deviation of xobs

from xint, where the latter is the relevant quantity for the mass ratio. The param-
eter εAA,B scales with pulse period and is therefore expected to be two orders of
magnitude smaller for A than for B. However, because of the high precision of the
A timing parameters, the derived value xobs

A may already be significantly affected
by aberration. This has (as yet) no consequences for the mass ratio R = xobs

B /xobs
A ,

as the uncertainty in R is dominated by the much less precise xobs
B . We can explore

the likely aberration corrections to xobs
B for various possible geometries. Using a

range of values given by studies of the double pulsar’s emission properties [49], we
estimate εAA ∼ 10−6 and εAB ∼ 10−4. The contribution of aberration therefore is
at least one order of magnitude smaller than our current timing precision. In the
future this effect may become important, possibly limiting the usefulness of R for
tests of GR. If the geometry cannot be independently determined, we could use
the observed deviations of R from the value expected within GR to determine εAB
and hence the geometry of B.

In the near and far future, the precision of all parameters will increase fur-
ther, because of the available longer time span and also the employment of better
instrumentation. In a few years, we should therefore be able to measure additional
PK parameters, including those which arise from a relativistic deformation of the
pulsar orbit and those which find their origin in aberration effects and their inter-
play with geodetic precession (see [18]). On secular time scales we will even achieve
a precision that will require us to consider post-Newtonian (PN) terms that go be-
yond the currently used description of the PK parameters. Indeed, the equations
for the PK parameters given earlier are only correct to lowest PN order. However,
higher-order corrections are expected to become important if timing precision is
sufficiently high. While this has not been the case in the past, the double pulsar
system may allow measurements of these effects in the future [24].

One such effect involves the GR prediction that, in contrast to Newtonian
physics, the neutron stars’ spins affect their orbital motion via spin-orbit coupling.
This effect would be visible most clearly as a contribution to the observed ω̇ in a
secular [40] and periodic fashion [50]. For the J0737−3039 system, the expected
contribution is about an order of magnitude larger than for PSR B1913+16, i.e. 2×
10−4 deg yr−1 (for A, assuming a geometry as determined for PSR B1913+16
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[43]). As the exact value depends on the pulsars’ moment of inertia, a potential
measurement of this effect allows the moment of inertia of a neutron star to be
determined for the first time [51]. To be successful requires the measurement of
at least two other parameters to a similar accuracy as ω̇. While this is a tough
challenge, e.g., due to the expected profile variations caused by geodetic precession,
the rewards of such a measurement and its impact on the study of the equation of
state of neutron stars make it worth trying.

11. Summary & Conclusions

With the measurement of five PK parameters and the unique information about
the mass ratio, the PSR J0737−3039 system provides a truly unique test-bed for
relativistic theories of gravity. So far, GR also passes this test with flying colours.
The precision of this test and the nature of the resulting constraints go beyond
what has been possible with other systems in the past. The test achieved so far
is, however, only the beginning of a study of relativistic phenomena that can be
investigated in great detail in this wonderful cosmic laboratory.

PK parameter Observed GR expectation Ratio

Ṗb 1.252(17) 1.24787(13) 1.003(14)
γ (ms) 0.3856(26) 0.38418(22) 1.0036(68)

s 0.99974(−39,+16) 0.99987(−48,+13) 0.99987(50)
r(µs) 6.21(33) 6.153(26) 1.009(55)

Table 2: Four independent tests of GR provided by the double pulsar as presented by
Kramer et al. (2006). The second column lists the observed PK parameters obtained by
fitting a DDS timing model to the data. The third column lists the values expected from
general relativity given the masses determined from the intersection point of the mass
ratio R and the periastron advance ω̇. The last column gives the ratio of the observed
to expected value for each test. Uncertainties refer to the last quoted digit and were
determined using Monte Carlo methods (see Supporting Online Material).
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Testing Einstein in Space:
The Gravity Probe B Relativity Mission

John Mester and the GP-B Collaboration

Abstract. The Gravity Probe B Relativity Mission was successfully launched
on April 20, 2004 from Vandenberg Air Force Base in California, a culmination
of 40 years of collaborative development at Stanford University and NASA.
The goal of the GP-B experiment is to perform precision tests of two indepen-
dent predictions of general relativity, the geodetic effect and frame dragging.
On-orbit cryogenic operations lasted 17.3 months, exceeding requirements.
Analysis of the science data is now in progress with a planned announcement
of results scheduled for December 2007.

1. Introduction

Our present theory of gravity, Einstein’s general relativity, is elegant, internally
consistent and (so far) in agreement with observation. Yet, despite recent advances,
the range of predictions tested and the precision to which experiments have tested
the theory remain limited [1]. In addition, general relativity resists quantization,
thwarting efforts to include the theory in a unified picture of the forces of nature.
Nearly all attempts at unifying gravitation with the Standard Model result in a
theory that differs form general relativity, and in particular, include additional
vector or scalar couplings that potentially violate the Equivalence Principle [2,3].

Space offers the opportunity for new tests of general relativity with improved
precision [4]. The use of drag compensation, first demonstrated in flight by the Dis-
cos instrument on the Triad mission [5], to reduce air drag, magnetic torque, and
radiation pressure disturbances enables a uniquely quiet environment for experi-
mentation, one not limited by seismic noise. In the following we describe a space
based fundamental physics experiment, the Gravity Probe B Relativity Mission.
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2. Gravity Probe B

The GP-B spacecraft was launched from Vandenberg Air Force Base on April 20,
2004 on a Boeing Delta II two-stage rocket. Although the operation plan included
a 30 day orbit trim procedure, the initial orbit injection was near perfect and
placed the vehicle within 100 meters of its target near the Earth’s poles.

The Gravity Probe B Relativity Mission is a space based experiment devel-
oped at Stanford University with oversight by the Marshall Space Flight Center
and funding from the NASA Office of Space Science. GP-B will test two predictions
of general relativity, the geodetic and frame dragging effects, by measuring the pre-
cession of gyroscopes in a 642 km high orbit around the earth. The philosophy of
the experiment is to reduce disturbances to levels at which general relativistic
effects should be manifest without large subtraction of Newtonian drifts.

The relativistic precession of a gyroscope in a circular orbit around the earth
is given by:

Ω̄ =
(

γ +
1
2

)
GM

c2R3
(R̄ × v̄) +

(
γ + 1 +

α1

4

) GI

2c2R3

[
3R̄

R2
· (ω̄e · R̄) − ω̄e

]
where R is the position and v the orbital velocity of the gyroscope, I, M , and
ω are the moment of inertia, mass and angular velocity of the earth, and G is
the gravitational constant. For generality we include the PPN parameters γ and
α1; in general relativity γ = 1 and α1 = 0. The first term describes the geodetic
precession, which arises from the curvature of spacetime due to the mass of the
earth. General Relativity predicts that the spin direction of the gyroscope will
change at the rate of 6.606 arcsec per year for a 642 km high, polar orbit. The
second term, frame dragging or Lense-Thirring effect, represents the precession due
to the dragging of the inertial frame by the rotation of the earth. General Relativity
predicts the rate of procession of a Gravity Probe B gyroscope to be 0.039 arc
sec per year (39 marcsec/yr). A polar orbit is chosen so the two precessions are
orthogonal and can therefore be distinguished. Figure 1 depicts the direction of
the two precessions.

3. Experimental System Overview

The small size of the relativity precessions requires that the experiment system
have extreme measurement precision and that all sources of error be controlled.
In order to achieve this requirement the experiment exploits the advantages of
a near zero-g orbit in space and a near zero temperature in the experimental
probe [6]. The experimental module consists of a helium dewar, which holds 2500
liters of superfluid helium, surrounding the experimental probe containing four
gyroscopes, a quartz block, and a star tracking telescope. The dewar was designed
to have an on-orbit helium lifetime of greater than 16.5 months. Actual on-orbit
lifetime was 17.3 months. During the experiment, the helium is maintained at a
temperature of 1.8 K by means of a porous plug venting system and the boil off



The Gravity Probe B Relativity Mission 103

642 kilometers 
(401 miles) 

Geodetic Effect 
6,606 milliarcseconds/year

(0.0018 degrees/year)

39 milliarcseconds/year
(0.000011 degrees/year)

Frame-dragging Effect 

Guide Star 
IM Pegasi 
(HR 8703) 

Figure 1. GP-B Concept

gas is used to power proportional thrusters used in drag free control. The thrusters
keep the space craft centered around a gyroscope in free fall to produce residual
accelerations at this gyroscope of less than 10−9g (g = 9.8m/s2). Three other
gyroscopes are mounted within a rigid quartz block assembly. The quartz block
provides precise positioning of the gyroscopes and the telescope, with cryogenic
temperatures increasing mechanical stability. A series of windows provides an open
line of sight out of the dewar. The star tracking telescope is used to point the
spacecraft towards a guide star, providing a distant inertial reference with which to
compare the gyro spin direction. The spacecraft rolls about the line of sight to the
guide star with a period of 77.5 seconds. This averages off axis accelerations (which
would contribute to Newtonian torques at the gyroscopes) to below 5×10−12g and
allows the gyroscope spin direction to be measured at roll frequency, eliminating
DC measurement complications.

4. Gyroscopes and Gyroscope Readout

At the heart of the gravity probe B mission are the gyroscopes. Figure 2 gives a
schematic, exploded view of a gyroscope. The gyroscope is comprised of a rotor,
3.8 cm in diameter, which spins freely within the spherical cavity of a quartz hous-
ing. Newtonian torques on the gyroscope are minimized by the drag free satellite
system and by controlling rotor sphericity and homogeneity. Rotors are fabricated
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Figure 2. GP-B Gyroscope

from fused quartz with density inhomogeneity of less than 2 parts per million and
are ground and lapped to achieve peak-to-valley asphericity of less than 25 nm.
The rotors are coated with a 1.25 micron thick uniform layer of niobium which
has a superconducting transition temperature of 9.2 K. The niobium coating en-
ables the rotor to be electrostatically suspended within the housing and provides
a means for sensing the gyroscope spin direction, discussed below. The housing for
the rotor, shown in two halves split by a parting plane, has 3 orthogonal pairs of
electrodes used to suspend and sense the position of the rotor. Once suspended,
the rotors are spun-up by directing helium gas through the spin up channel. The
helium gas is then pumped away to high vacuum to eliminate residual gas damping
of the rotor.

The housing electrodes also provide a means of sensing rotor charge. Since
the rotors are freely floating, charge can accumulate mainly due to cosmic ray,
solar and South Atlantic Anomaly protons. A charge control system incorporates
a UV fiber optic actuator that produces and controls photo electrons.

The gyroscope readout system must be capable of resolving changes in the
rotor spin direction of less than 1 marcsec without producing interaction torques
that could disturb that spin direction [7,8]. The low experimental operating tem-
perature allows the properties of superconductivity to be exploited, both as the
physical basis of the readout signal and in its detection. The readout signal is
based on the magnetic field produced by the London moment of a rotating super-
conductor. When the superconducting niobium coated rotor is spun up, it develops
a London magnetic moment aligned with its instantaneous spin axis. The London
moment produces an equivalent magnetic field just outside the rotor of magnitude:

BL = 1.14 × 10−7ωs Gauss
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where ωs is the spin angular velocity. The London field is measured using a DC
SQUID (superconducting quantum interference device) magnetometer. On the
parting plane between the two housing halves, there is a four turn superconduct-
ing loop that couples the London moment flux to the SQUID. The gyro spin axis
is aligned close to the spacecraft roll axis, which lies in the parting plane, so the
London moment produces a signal modulated at roll frequency. At a spin speed
at 80 hertz, the London field equals 5.7 × 10−5 Gauss. Therefore, to resolve 1
marcsec changes in spin direction a field sensitivity of 2.8 × 10−13 Gauss is re-
quired. The noise performance of Gravity Probe B SQUID readout system met
this requirement, as discussed in the next section.

Such low field levels also dictate the need for extensive magnetic shielding.
Ultra low DC fields of less than 10−7 Gauss, required to minimize flux trapping
in the rotor, are produced using the expanded superconducting lead shield tech-
nique [9]. This shield, coupled with additional internal superconducting shielding
surrounding each gyro, and an external cryoperm shield yield AC (roll frequency)
field attenuation at the gyroscopes of greater than 2 × 1012.

5. Telescope and Guide Star Selection

It is necessary to measure the spin direction of the gyroscopes relative to a distant
reference frame, one not affected by the mass or spin of the earth. Therefore, a
telescope is incorporated into the experimental module to track the position of a
guide star. The star tracking telescope is of the folded Schmidt-Casagranian type
with a 14.4 cm diameter aperture. It is constructed out of fused quartz and has an
overall physical length of 50 cm. Two focused images are formed on the edge of roof
prisms by splitting the incoming starlight with a beamsplitter. The edges of the
roof prisms are perpendicular, providing two axis readout. Each prism divides the
star image into two partial images whose intensities are determined using cryogenic
silicon photo detectors and cryogenic preamplifiers. The relative intensities of the
prism-split images determine the direction of the line of sight to the guide star.
Using this signal, the spacecraft attitude is controlled to point in the direction of
the guide star.

An important factor in reaching design measurement accuracy is the selec-
tion of the guide star to act as an adequate inertial reference. Uncertainties in
the proper motion of the guide star propagate directly as experimental error and
therefore the guide star proper motion needs to be known to high precision. Re-
view of candidate stars led to the selection of HR8703, which is an optical star of
5.69 magnitude and is also radio star. Observations by the Harvard Smithsonian
Astronomical Observatory using VLBI have establish sub 0.1 marssec/yr proper
motion uncertainties [10]. VLBI observations are continuing to further reduce these
uncertainties.

In parallel with space vehicle development activities, a mission operations
center (MOC) was commissioned at Stanford University. The MOC conducted
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command and control throughout mission lifetime. The Wallops Island IONet
provides communication with the TDRRS satellite communications network and
ground stations at Svalbard, Norway and Poker Flat, Alaska.

6. On-Orbit Operations and Performance

On-orbit operations for GP-B lasted 17.3 months, from launch until the liquid
helium cryogen was depleted. The first phase of the mission, Initial Operation and
Checkout (IOC) consisted of 4.3 months of experiment setup. This was followed by
11.6 months of science data collection, and 1.4 months of post-science calibrations.

During the IOC phase many operations were required to configure the exper-
iment for science. These included setting up the attitude and translation control
system and spinning up the gyros. Initial coarse attitude was achieved using mag-
netic sensors and star trackers to set the spacecraft roll to a convenient operating
period and to point the spacecraft to within the 60 arc-sec field of view of the
telescope. Once this was realized the signal form the telescope could be included
in the sensors array. Because direction to the guide star lies in the plane of the
spacecraft orbit, the star is eclipsed each time the vehicle travels behind the earth.
Therefore the star has to be re-acquired each orbit. After tuning of control param-
eters, typical drive-in times of less than 60 seconds were achieved. RMS pointing
noise was less than 200 marc-sec, pointing noise at roll frequency was ∼ 5 marc
sec.

Before gyro spin operations could proceed the gyro suspension system (GSS)
electronics were activated to levitate the gyro rotors within their housings. Typical
on-orbit RMS gyro position measurement noise was 0.45 nm. The control effort to
keep the gyros centered provides a measure of the gyro acceleration environment.
These signals were used as input to the translation control system enabling drag-
free operation. Despite the loss of 2 of the 16 helium proportional thrusters, drag
free performance met requirements, achieving cross track acceleration levels of
< 4 × 10−12g over the frequency range of 0.01 mHz to 0.1 Hz.

In order to reduce measurement noise and disturbance torques, gyro charge
and trapped magnetic flux had to be minimized. The trapped flux reduction proce-
dure consisted of heating the gyro rotors above the Nb superconducting transition
temperature and then carefully cooling down within the ultra-low field environ-
ment provided by the superconducting shield system. Both the ac attenuation and
dc magnetic field requirements were verified on orbit. On-orbit trapped flux levels
were determined and all four gyros met requirements with the following measured
values: gyro 1 – 3.0 microGauss, gyro 2 – 1.3 microGauss, gyro 3 – 0.8 microGauss,
gyro 4 – 0.2 microGauss.

Rotor charge was controlled throughout the mission using a system that
included the GSS sensing and UV fiber optic actuation mentioned above. After
initial levitation (from which the gyros acquired charges in the range of hundreds
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of milli-Volts), typical charging rates throughout the mission were 0.1 mV per day.
Several discharges were performed during the mission.

Gyro spin-up was accomplished by commanding a helium gas reservoir sys-
tem to flow helium through the spin up channels of each gyro. In order to keep
background pressures low (high pressure could interfere with gyro suspension), the
gyros were spun up one at a time and helium was exhausted to space through 15
cm diameter valves. Spun gyros would slow down during the spin-up of subsequent
gyros. Final gyro spin rates were in the range � 60 to 80 Hz, see table 1. After the
final spin-up the probe residual pressure was reduced to below 10−11 Torr using
a cryogenic bake-out procedure. This resulted in characteristic spindown period
that exceeded requirements. The final procedure of the IOC phase was the ad-

Spin rate Spindown period
(Hz) (years)

Gyro 1 79.4 15,800
Gyro 2 61.8 13,400
Gyro 3 82.1 7,000
Gyro 4 64.9 25,000

Table 1. Gyro spin rates and 1/e spindown periods

justment of the gyro spin axes to point within 10 arc-sec of the guide star line of
site. This is required to reduce cross track torques and readout system errors. Spin
axis alignment was accomplished by applying large voltages to the gyro housing
electrodes in a carefully controlled sequence. This procedure also yielded an initial
calibration of suspension system induced torques.

With the completion of experiment set-up, the mission entered science data
phase in August, 2004. One of the main activities during the science phase was
the measurement of the London moment signals from each gyro. A typical London
Moment data curve is shown in figure 3. The high frequency oscillation is due
to spacecraft roll, a 77.5 sec period. The broad envelope is due to guide star
aberration.

The transverse velocity of the spacecraft causes a shift in the perceived guide
star direction relative to the true, nearly inertially fixed location. The aberration
has two components, one at the spacecraft orbit frequency and one at the annual
frequency of the earth revolving around the sun. These well known amplitudes,
(5.1856 arc-sec orbital, 20.4958 arc-sec annual) provide an important tool to cali-
brate the gyro readout/telescope readout measurement scale factor. Further scale
factor calibration is provided by a commanded 60 marc-sec spacecraft dither.

After the 353 days, 6000 orbit science data phases the mission entered a post
calibration stage. During this period operations were conducted to purposely in-
crease disturbances as a means of characterizing systematic error. This included
pointing the spacecraft toward other guide stars to increase cross axis gyro torques
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Figure 3. Gyro London Moment readout signal

as well as varying GSS control parameters. This phase lasted 46 days until Sep-
tember 29, 2005 when the last of the helium cryogen boiled off.

7. Data Analysis

With the completion of cryogenic operations the mission has entered the data
analysis phase. The spacecraft communication and operations system recovered
> 99% of all the data taken during the mission. These 1.5 Terabytes of data
include the so called science data – the SQUID and Telescope readout signals – as
well as engineering data form over 700 onboard sensors. In addition to the nominal
data rate of 0.1 to 1 Hz, 200-2200 Hz “snapshot” data from key systems were also
recorded and down-linked.

8. Gyro Performance

All four gyroscopes exhibited performance more than a million times better than
the best inertial navigational gyros. That is, the Newtonian or disturbance drift
rates were more than one million times smaller than the best navigational gyros.
Indeed, the leading drift seen in the gyros, with no modeling, is that caused by
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General Relativity. These unmodeled, essentially raw measurements, agree with
Geodetic effect predictions to about the 1% level. To obtain a more precise Geo-
detic and frame dragging measurements the data analysis is focused on physical
torque modeling and on refining the telescope/SQUID scale factor determination.

It is anticipated that analysis will continue into late 2007. After the analysis
is completed, the separately measured proper motion of the guide star will be sub-
tracted from the gyroscope precession rate estimates to give the final experiment
result. The final results and release of data are scheduled for December 2007.
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Instruments for Gravitational Wave Astronomy
on Ground and in Space

Jean-Yves Vinet

Abstract. Gravitational Wave Astronomy progressively becomes this new win-
dow on the universe that we expected since tens of years. The technology has
now reached a point where large instruments meet a level of sensitivity rel-
evant for astrophysics. Depending on the sector of physics to be addressed,
i.e. depending on the frequency domain, ground or space instruments are re-
quired. Ground based antennas are already built in Europe, in Japan and in
the USA and begin to deliver science data. The ESA/NASA space mission
LISA is not yet definitively approved, but a number of teams endeavour to
successfully pass the coming project reviews. We review the general principles
of the optical detection of gravitational waves.

1. Introduction

More and more highly relativistic objects are directly seen in the Universe and even
in our Galaxy. These objects are mainly massive black holes and compact systems
involving neutron stars or stellar class black holes doomed to end in an inspiral
phase of variable time duration. Systems involving objects of stellar class (up to a
few tens of solar masses) on compact orbits emit gravitational waves (GW) roughly
in the acoustic band (from a few Hz to a few kHz), whereas more heavy systems,
and especially supermassive black holes are expected to cause gravitational events
of very low frequency (below 0.1 Hz). General Relativity simultaneously provides
models for these processes where strong gravity deeply differ from Newtonian
theory, and the right messenger (GW) for carrying the relevant information. For
uncoding this information, several types of GW antennas have been proposed in
the past, and a few of them survive under the form of large instruments or projects
on Earth or in space. The fact that the expected dimensionless amplitudes of GW
correspond to a space-time strain amplitude less than 10−22 is the cause of all
technological issues encountered during the R&D phase of all projects. At this
level, all possible environmental or instrumental noise sources must be carefully
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investigated, and solutions must be found in order to obtain a signal to noise
ratio consistent with the observational goals. For ground based instruments like
LIGO [1] and Virgo [2], the most challenging issues were the seismic insulation,
the vacuum system, the mirrors processing, the laser stabilization. The ultimate
residual fundamental noises are the shot noise and the thermal noise. For a space
mission like LISA [3], the main issues were the long optical links, the drag-free
operation and the rejection of the lasers frequency noise. This paper aims to point
out and briefly discuss the physics underlying some of the technical challenges of
this extreme metrology.

2. Gravitational Waves

2.1. GW emission

Gravitational waves (GW) are a consequence of Einstein’s General Relativity (GR)
as electromagnetic waves come from Maxwell’s Electrodynamics. In the framework
of Special Relativity, in a system of coordinates xλ, an electromagnetic wave is de-
scribed (in vacuum) by the vector field Aµ(xλ) (4-potential) obeying the Maxwell
equations. The wave propagates at velocity c, is transverse and has two polariza-
tion components. In GR, the gravitational state of spacetime is associated to its
geometry through the metric tensor gµν(xλ) obeying the Einstein equations. In
the case of a gravitational wave far from its source, in a freely falling reference
system, one can write:

gµν(t,x) = ηµν + hµν(t,x) (1)

where ηµν ≡ diag(1,−1,−1,−1) is the Minkowski tensor of the locally flat back-
ground spacetime (freely falling frame), and hµν a very small dimensionless tensor
field representing the GW amplitude. It can be shown that hµν can be eventually
reduced to only two independent functions h+, h× defining the polarization state
of the wave. Gravitational waves are emitted by distributions of matter/energy
having a time dependent quadrupole moment. In the transverse-traceless gauge,
at the first level of approximation, only the space components are significant and
have an expression analogous to a retarded potential [4]:

hjk(t, r) =
2G

c4

1
r

∂2
t [Ξjk(t − r/c)]TT (2)

(r ≡ x2) where the symbol TT refers to the projection on the transverse plane of
the symmetric traceless quadrupole tensor Ξ(t) defined by the volume integral:

Ξjk(t) =
∫

ρ(t,x)
[
xixj − 1

3
δjk x2

]
d3x

where ρ is the density of matter. Further levels of approximation have been deeply
investigated [5], but the preceding “quadrupole formula” gives an order of mag-
nitude. One immediately notes the extreme weakness of the coupling coefficient
G/c4 which is the cause of all technological challenges encountered on the way to
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GW astronomy. Only astrophysical events involving stars or black holes in nearly
relativistic velocity regime can cause amplitudes of GW larger than 10−25 in the
neighborhood of the Earth. The most promising candidates are final inspiralling
compact binaries. The frequency domain of the waves is determined by the masses
of the components of the binary. Stellar class binaries can end at 1 kHz whereas
Massive Black Holes can end at a small fraction of a Hz. The observation in-
struments must change according to the addressed domain of frequency. Existing
instruments have been designed for a sensitivity of about 10−23 at the middle of
the bandwidth, which seemed the best feasible at the time when the preliminar
R&D studies ended.

2.2. Physical signature of a GW

Being a perturbation of the geometry of spacetime, one can expect GW to pro-
duce distortions in some metrology experiments. We briefly recall the existence of
narrow band solid antennas, then focus on optical experiments.

2.2.1. GW and continuous media. The first experiment proposed by Weber [6]
rested on the idea that a GW could induce stresses in solids, and that on a suit-
ably isolated solid resonator, weakly dissipative for acoustic waves, one could de-
tect with some transducer system the resonances occurring when the GW signal
overlaps its acoustical bandwidth. This idea is supported by a general relativis-
tic extension of the linear elasticity theory [7]. A result is the modified tensor
elastodynamic equation:

ρËij − 1
2

[∂k∂jΘik + ∂k∂iΘjk] = −1
2

ρ ḧij . (3)

Where Eij (resp. Θij) is the classical strain (resp. stress) tensor, and ρ the density.
If we take the origin of coordinates at the center of mass, and if we assume a GW
wavelength much larger than the size of the resonator, this can be regarded as a
derivative of the following vector elastodynamic equation:

ρüi − ∂k Θik = −1
2

ρ ḧijxj (4)

where u is the displacement vector. The GW amplitude appears thus as a driving
internal (of tidal type) force acting on the resonator. After the controversial but
negative results of Weber, several groups nevertheless built hugely improved ver-
sions of the Weber antenna. These instruments called “bar antennas” have been
built in several countries [8, 9], and even larger resonators having spherical shapes
are planned [10]. As any resonator, bars have a very short bandwidth (up to a
few tens of Hz), so that reconstructing a waveform after a detected GW event is
problematic. This is why we focus on optical experiments which are intrinsically
wideband.
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2.2.2. GW and light. A more direct physical effect of GW is to modulate the
light distances between freely falling test masses. In vacuum, light is expected
to propagate along a null geodesic, which means that the invariant element of
spacetime ds2 ≡ gµνdxµdxν is identically zero along any optical path. With the
expression (1) of the metric tensor, one can suspect that the effective optical paths
of photons will be perturbed.
Detectors of size much smaller than the GW wavelength. The expected frequencies
of GW events for obvious reasons are much lower (at most a few kHz) than optical
frequencies. In this regime, the only effect of a GW on light is to perturb the flight
time of photons between two test masses (light distances). Consider a light path
lying in the (x, y) plane, either along the x (north) or the y (west) axis. Consider
on the other hand a GW propagating along a direction of unit vector w,

w =

⎛
⎝ sin θ cosφ

sin θ sin φ
cos θ

⎞
⎠ . (5)

If h+, h× are the two polarization components of the wave, the effect of the GW
is to create a phase modulation on the two beams:

Φnorth(t) =
2πL

λ

[
h+(t)(cos2 θ cos2 φ − sin2 φ) − h×(t) cos θ sin 2φ

]
, (6)

Φwest(t) =
2πL

λ

[
h+(t)(cos2 θ sin2 φ − cos2 φ) + h×(t) cos θ sin 2φ

]
. (7)

In an interferometric configuration, where the observable is a differential phase,
this gives:

∆Φ(t) =
4πL

λ

[
h+(t)

1 + cos2 θ

2
cos 2φ − h×(t) cos θ sin 2φ

]
(8)

where it can be seen that the interferometer acts like a transducer, converting the
gravitational signal into a phase and eventually into an electrical signal through
some photo detector.
Detectors of size comparable to the GW wavelength. In the case of very long
range optical paths (e.g. 5 Mkm in the case of LISA), one must take into account
the action of the GW during light propagation. If a light beam of fixed frequency
is emitted from spacecraft A and detected at spacecraft B, the nominal distance
AB being L and n the unit vector from A to B, the physical effect detected at
B is a frequency modulation. Let w be again the propagation unit vector of the
GW, and let us define two more unit vectors mutually orthogonal in the transverse
plane:

ϑ =
∂w
∂θ

, ϕ =
1

sin θ

∂w
∂φ

then the two directional functions

ξ+(θ, φ) = (ϑ.n)2 − (ϕ.n)2, ξ×(θ, φ) = 2(ϑ.n)(ϕ.n)
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then the function

H(t) = h+(t) ξ+(θ, φ) + h× ξ×(θ, φ). (9)

Now the observable is a relative frequency modulation, analogous to a Doppler
shift [11] given by:[

δν(t)
ν

]
A→B

=
H(t − w.xB) − H(t − w.xA − L)

2(1 − w.n)
(10)

where xA and xB are the positions of the two spacecraft. This is often called a
“two pulses” response because a short GW pulse would have this double effect on
a phasemeter at B.

3. Ground based detectors

3.1. General principles

3.1.1. Interferometers. A Michelson interferometer involves a splitter sharing a
laser light into two secondary beams that recombine on it after a reflection on
far mirrors, generating interferences on a photodetector. Such a device generates
a phase quantum (shot) noise due to the quantum nature of light detection and
characterized by the white power spectral density (PSD)

S(f) =
2�ω

PL

where λ ≡ 2πc/ω is the laser wavelength and PL its power. The quantum efficiency
of the photodetector has been taken equal to 1. If according to (8), the differential
phase induced by the GW is at most (single and optimal polarization, normal
incidence):

∆Φ(t) =
4πL

λ
h(t)

the result is that the ultimate, shot-noise limited sensitivity of a simple Michelson
having two orthogonal arms of length L is given by the white linear spectral density
(LSD):

S
1/2
h =

λ

4πL

√
2�ω

PL
. (11)

It is easily seen that even with large parameters (L = 3 km, PL = 20 W), the result
(∼ 4 10−21Hz−1/2) is far from the requirements. It is seen as well that increasing
these already big parameters is not so easy. Solutions have been proposed years
ago by R. Drever [12].
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Figure 1. Fabry-Perot cavity

3.1.2. Resonant Fabry-Perot cavities. The leading idea is to use the properties of
resonant cavities firstly for increasing the effective lengths of the arms, and sec-
ondly for increasing the effective power reaching the splitter. Consider a resonant
(Fabry-Perot) cavity of length L, having an input mirror of reflectivity r1, an end
mirror of reflectivity r2 (see Fig. 1). If a wave of amplitude Ain arrives at the input
M1 mirror, it is partially transmitted by M1 and partially reflected, the transmit-
ted part propagates to M2, is reflected, propagates back to M1 where it is partially
transmitted and partially reflected. The mirrors have some weak relative losses p
so that their transmission t and reflection r coefficients are related by the relative
power balance r2 + t2 = 1 − p. Moreover, there must be a π/2 phase lag between
the reflected part and the transmitted part, so that t and r being real numbers, we
use ir as the reflection and t as the transmission operator. One can write therefore
the steady state equation, assuming B as the intracavity amplitude:

B = t1 Ain − r1r2e2ikL B (12)

where λ is the wavelength and k ≡ 2π/λ. On the other hand, the reflected ampli-
tude is the sum of the directly reflected wave and the one partially transmitted
from inside the cavity:

Aref = ir1Ain + ir2t1B

all this put together gives the global reflectance of the cavity:

R = Aref/iAin =
r1 + (1 − p1)r2e2ikL

1 + r1r2e2ikL
.

Eq. (12) has the obvious solution

B =
t1

1 + r1r2e2ikL
Ain

which makes clear that a resonance occurs, giving a peak of stored power when
the round trip phase 2kL is an odd multiple of π. Instead of r1, r2, L, a new set of
relevant parameters are:

• The finesse F given by

F =
π
√

r1r2

1 − r1r2
. (13)
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• The free spectral range ∆ν or frequency gap between two successive reso-
nances:

∆ν =
c

2L
. (14)

• The linewidth δν defined by:

δν = ∆ν/F . (15)

One can show that in such a cavity tuned at resonance:
• The reflectance of the cavity as a whole is:

R0 = 1 − σ

where the coupling coefficient σ is

σ = pF/π (16)

p ≡ p1 + p2 being the total relative light power loss of the cavity (thermal-
ization, diffraction. . . ).

• The phase change of the reflected wave on a very tiny displacement δL of the
end mirror is

δΦ =
8F
λ

δL.

If we compare this to the phase change due to the same displacement without
input mirror (with only the end mirror)

δΦ =
4π

λ
δL,

we see that the cavity has an effect equivalent to S = 2F/π round trips. For
a finesse of 50, as currently planned, the result is equivalent, in terms of h,
to an arm of length Leff ∼ 100 km.

• If we compute the power Pstored stored at resonance we obtain as long as
σ � 1:

Pstored =
2F
π

Pinc

where Pinc is the power reaching the input mirror. Parameter S = 2F/π is
called surtension coefficient. It is equal to the effective number of round trips
in the cavity.

3.1.3. Recycling interferometers. These interesting properties of resonant cavities
are the basis of all optical GW antennas. On Fig. 2 one can see the principles of
Virgo (for instance). It can be shown that the optimal sensitivity of a shot noise
limited interferometer is reached when the extinction of the outgoing beam (to
photodetector) is a maximum. The whole Michelson section (the two arms plus
the splitter) act therefore as a virtual mirror, and adding one more mirror (the
recycler) builds a new cavity, called the recycling cavity: one may imagine that
the light almost totally reflected by the Michelson re-enters the interferometer. In
other words, the recycler carries out an impedance matching between the laser and
the Michelson. Starting from a 20 W laser, a first resonance increases to 1 kW the
power reaching the splitter. After splitting, 500 W are fed into the long cavities,
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Figure 2. Sketch of a recycling Fabry-Perot interferometer

and the power stored in these is about 15 kW. The finesse of the arm cavities
was fixed at F =50, increasing the effective length of the arms by a factor of
about 30 giving 90 effective km, and the surtension coefficient of the recycling
cavity at S = 50. The total gain factor with respect to a simple Michelson is
better than 200 according to (11), giving an LSD of h equivalent to shot noise of
about 2 10−23 Hz−1/2, consistent with the requirements. This spectral density is
not white any more however, because the transfer function from GW to detected
phase falls to zero when the GW frequency is larger than the linewidth of the long
cavities (or when the GW wavelength becomes shorter than the effective lengths
of the arms as well). The complete LSD of h equivalent to shot noise is:

S
1/2
h (f) =

λ

8FL

√
2�ω

PL

1√S
√

1 + 4(f/δν)
2

(17)

where one sees the effect of F for increasing the arm length, and of S for increasing
the laser power. Shot noise however is not the only fundamental limit to that kind
of metrology.

3.2. The insulation challenge

There is no way to distinguish GW action on the space between mirrors and spuri-
ous motion of these. At the level of about 10−20m · Hz−1/2, the causes of spurious
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motion are a number. In particular, there is no hope to reach the fundamental
limits without a very efficient insulation system.

3.2.1. Seismic insulation. The mirrors are suspended by thin wires in order to be
almost free in the horizontal plane for small motions (approximation of a free fall).
All optical antennas have therefore a more or less sophisticated filtering system.
The complexity of the filter depends on the fixed “wall” frequency i.e. the lower
frequency bound. For a wall at 50 Hz, classical acoustic filters as the LIGO’s work.
For pushing back the wall to 10 Hz, a more complex system was devised for Virgo.
It is well known that the oscillations y of a pendulum are related to those x of its
suspension point by a transfer function (TF) of the form

ỹ(f)
x̃(f)

=
1

1 − f2/f2
0

where f0 is the resonance frequency. There is thus an attenuation factor of f2
0/f2

for frequencies much larger than the resonance. The idea of a so-called “super-
attenuator” was to construct a chain of n pendulums able to oscillate with very
low resonance frequencies along all degrees of freedom (vertical and horizontal).
The global TF is approximately the product of all elementary TFs, or (f0/f)2n

assuming comparable resonance frequencies. The pendulums are essentially heavy
masses (∼ 100 kg) suspended by 1m long wires giving a resonance at about 0.5
Hz for the horizontal motion, and containing steel blades whose bending stiffness
has been reduced by magnets (negative spring) for the vertical motion. A global
attenuation factor of about 10−14 at 10 Hz is obtained this way. See on Fig. 3 the
details of a superattenuator.

3.2.2. Vacuum. Suppressing the refraction index fluctuations due to air pressure
fluctuations requires operating in an ultravacuum. The residual hydrogen pressure
must be lower than 10−9 mbar and 10−14 mbar for hydrocarbons. All the optical
system and the suspensions must therefore be installed in a high quality vacuum
system. The steel pipelines containing the cavities have 1.2 m diameter and are
3 km long. This represents an area of more than 20,000 m2. An important and
successful item in the R&D program was to find the thermal treatment of stainless
steel able to suppress the outgassing rate at the required level in order to avoid
operating with a continuous pumping. The external aspect of ground based de-
tectors is determined by this huge vacuum system (see the example of Virgo on
Fig. 4).

3.3. Fighting the thermal noise

The second fundamental limit in the sensitivity comes from the fact that the
optical system essentially reads the distance between the reflecting surfaces of two
mirrors (in each cavity). It is thus clear that any spurious motion of these surfaces
competes with the gravitational signal. Once unessential causes of motion (sound
waves, seismic vibrations. . . ) by the insulation system are eliminated there remain
sources of motion in the thermal random excitation inside all material elements
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Figure 3. Superattenuator developed at Pisa

of the system holding the mirrors. As seen above, the filtering chain suspending
the mirrors is a series of harmonic oscillators coupled with the mirror’s motions.
The mirrors themselves, that are thick (10 cm) and wide (35 cm diameter) silica
cylinders may be considered as solid resonators and have elastodynamic modes
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Figure 4. Global view of Virgo at Cascina (Italy)

disturbing their shapes and resulting in an apparent displacement. The resulting
noise in the readout system is called thermal noise. Three different sectors of
thermal noise can be distinguished:

• The thermal excitation of the pendulum chain suspending the mirror holder.
The corresponding spectral density fixes the wall frequency at 10 Hz

• The thermal excitation of the wires holding the mirrors from the last pen-
dulum stage. The resonances of these wires are called “violin modes”. These
resonances can be sharpened by using high Q materials and weldings. The
present trend is to use monolithic silica suspensions.

• The internal modes of the mirrors substrates give a PSD of noise with a low
frequency tail dominating all noises in the 100 Hz region.

The region of 100 Hz being very interesting from the astrophysics point of view, a
number of efforts have been spent for finding ways of reducing the mirrors thermal
noise. This is why we put a special emphasis on this particular sector of past and
current R&D efforts. Let us discuss the proposed ideas.

3.3.1. Cooling. The PSD of thermal noise is proportional to the temperature T ,
so that cooling is an obvious good idea. But the LSD is proportional to

√
T so

that in order to gain 1 order of magnitude in sensitivity, one must reach cryogenic
temperatures. Some R&D has been carried out by a Japanese team [13] in the
LCGT project.
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3.3.2. New materials. The PSD of thermal noise of any oscillator depends also on
its mechanical quality factor. The quality factor of a compound system is deter-
mined by the intrinsic mechanical dissipation rate in the used materials but also
by the way they are assembled. In the present situation, for instance in Virgo, the
mirrors are suspended by thin steel wires. More specifically it has been shown [14]
that the low frequency tail of the PSD of displacement equivalent to thermal noise
is:

Sx(f) =
4kBT

πf
φU (18)

where kB is the Boltzmann constant, φ a loss angle (inverse of a quality factor)
and U the strain energy stored in the solid substrate under a pressure distribution
having the profile of the readout optical beam and normalized to 1 N resulting
force. The second parameter to play with is the loss angle φ. It seems that it is
difficult to have loss angles less than 10−6 with synthetic silica. This is why it has
been proposed to use sapphire instead. Unfortunately sapphire has bad optical
properties, so that it could not be used for transmitting mirrors.

3.3.3. Alternative Beam geometries. The third parameter on which to act is U ,
which leads to look for beam profiles that decrease that (virtual) mirror strain. In
the current situation, the optical beams circulating in the interferometers are the
Gaussian beams emitted by standard lasers in which optical power is focused on
a small spot at the center of the mirror. A way of calculating U has been found
in [15] when total axisymmetry is assumed. A first approximation, valid if the hot
spot radius is small compared to the mirror size, and a Gaussian TEM00 mode of
parameter w, having thus an intensity profile of the form:

I(r) = exp
[−2r2/w2

]
is simply, regarding the mirror substrate as an semi-infinite medium:

U =
1 − σ2

2
√

πY w

where Y is the Young modulus of the substrate and σ its Poisson ratio. This
makes clear that it is desirable to increase parameter w. For larger values of w,
the assumption of a semi-infinite medium cannot be kept, and the dimensions of
the (cylindrical) substrate, its radius a and its thickness h must enter the model.
For summarizing the result, U is the sum of two contributions:

U = U0 + ∆U

that can be computed separately. Some notation must be recalled. The Jν(x) are
the ordinary Bessel functions and {ζk, k ∈ N

∗} the discrete family of all non-zero
solutions of J1(ζ) = 0. Let us note xk ≡ ζkh/a and qk ≡ exp(−2xk). If now the
intensity distribution in the readout beam is I(r), we can define its Fourier-Bessel
coefficients as:

pk =
2π

J2
0 (ζk)

∫ a

0

I(r)J0(ζkr/a) r dr
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and an auxiliary parameter ξ as

ξ =
∑
k>0

pkJ0(ζk)
ζ2
k

. (19)

Finally, U0 can be expressed as the following series:

U0 =
1 − σ2

πaY

∑
k>0

J2
0 (ζk)p2

k

ζk

1 − q2
k + 4qkxk

(1 − qk)2 − 4qkx2
k

(20)

and ∆U , using (19) as:

∆U =
a2

6πh3Y

[(
h

a

)4

+ 12σξ

(
h

a

)2

+ 72(1 − σ)ξ2

]
. (21)

At this point, all the thermal noise PSD amounts to compute the beam-profile
coefficients pk. For a TEM00 mode as above:

p
(0)
k,0 =

1
J2

0 (ζk)
exp

[
−ζkw2

8a2

]
.

A way of obtaining a more homogeneously distributed light power by using
special mirrors such that the cavity eigenmodes are “flat top” beams has been pro-
posed [16]. If we adopt a simple model in which the intensity is assumed constant
on a disk of radius b < a and zero outside, the corresponding profile coefficients
pk are:

pk,flat =
2aJ1(ζkb/a)
bζkJ2

0 (ζk)

For instance, with b = 11.3 cm, for a Virgo mirror (a = 17.5 cm, h = 10 cm) a
gain factor of about 3 could be achieved in the LSD with respect to the present
situation [17] . This kind of optical modes are however obtained in a Fabry-Perot
cavity by using non spherical mirrors. Some numerical and experimental R&D
studies have been carried out [18] to test the operation of such cavity a from the
point of view of optical stability under small misalignments.

Recently it has been proposed [19] to use high order TEM modes, to obtain
a more homogeneous power distribution. These modes at the same time allow a
better noise reduction and keep a spherical wavefront. The profile coefficients for
a Laguerre-Gauss mode LGn,m are:

p
(n)
k,m =

1
J2

0 (ζk)
exp

[
−ζkw2

8a2

]
Lm

(
ζkw2

8a2

)
Lm+n

(
ζkw2

8a2

)

where the Ln(x) are the Laguerre polynomials. For instance a LG(5)
5 mode with

w = 3.5 cm used as a readout beam for a mirror of diameter 2a = 35 cm and
thickness h = 10 cm (Virgo parameters) could achieve a gain of about 5 in sensi-
tivity with respect to the present situation in Virgo, without significant increase in
diffraction losses. An important point is that this allows to keep spherical mirrors.
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3.4. Issues in Optical technology

3.4.1. Technology. The shot-noise limited sensitivity of 2 · 10−23 Hz−1/2 that has
been shown above to be theoretically feasible relies on a good reflectance of the
Michelson subsystem, i.e. a reflectance allowing to get the required surtension
S ∼ 50 in the recycling cavity. It is easily seen that the maximum S is:

Smax =
1 − pr

1 − (1 − pr)(1 − ps)2(1 − σ)2

where pr, ps are the losses at the recycling mirror and at the splitter respectively,
whereas σ is the coupling rate of the cavities defined above (16). These losses are
dominated by the coupling rate (by a factor comparable to the finesse), so that a
rough estimate of the maximum gain is:

√
Smax =

1√
2σ

=
1√

4pF/π

For having S ≥ 50 with F = 50, the overall losses must therefore be less than
300 ppm. These losses involve not only thermalization of light, but also scattering
(roughness of the reflecting surfaces), diffraction (aberration) and misalignments,
so that this figure of 300 ppm is demanding. Scattering losses scale as 1/λ2. A
special synthetic silica has been developed specially for Virgo & LIGO in order to
make very low absorption substrates, a specific polishing protocole has been de-
fined with a manufacturer for obtaining superpolished surfaces. Then the polished
surface becomes reflecting after a coating process in which stacks of dielectric lay-
ers with alternative low and high refractive indices are deposited. The wavelength
of λ ∼ 1.064 µm is the best found compromise allowing powerful light sources
(Nd:YAG lasers) and low scattering losses (< 1 ppm). This coating process was
first developed for very small highly reflecting mirrors involved for instance in laser
gyros. Extension to large surfaces (∼ 35 cm) was a challenge. A specific facility
has been built at the IPN-Lyon, able to process large diameter samples in a clean
environment [20].

3.4.2. Simulation. It was and still is difficult to assess the optical requirements
without a numerical modelization of the interferometer. This is why a special code
has been developed [21]. The main point is to represent light propagation from
a given plane to a next one at a finite distance L. In the paraxial approximation
of wave optics, if we call A(x, y) the wave complex amplitude at abscissa z = 0,
coordinates (x, y) being defined in the transverse plane and B(x, y) the diffracted
amplitude at z = L is obtained from the Fresnel integral, provided the diffraction
angles are not too wide (paraxial):

B(x, y) =
∫

R2
KL(x − x′, y − y′)A(x′, y′) dx′ dy′ (22)
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where the function KL(x, y) is the diffraction kernel (λ is the wavelength and
k ≡ 2π/λ):

KL(x, y) = − i

λL
exp

[
ik

x2 + y2

2L

]
.

(22) being a convolution product, it can be expressed under the form of a Fourier
transform. If the Fourier coordinates that conjugate from (x, y) are denoted by
(p, q), we have:

B̃(p, q) = K̃L(p, q) × Ã(p, q)

The Fourier transform K̃L (propagator) has an explicit expression:

K̃L(p, q) = exp
[
−iL

p2 + q2

2k

]
.

The point is that reduced to Fourier transforms, the propagation problem can be
treated via Fast Fourier Transform algorithms which allows very efficient codes.
The way of propagating a wave amplitude is thus

• take the 2D-FFT of A(x, y)
• multiply by the propagator (it has been computed once for all)
• take the reciprocal 2D-FFT and get B(x, y).

This method is especially efficient in the case of resonant cavities. For instance,
consider the equation (12) for intracavity amplitude Aic(x, y) inside a cavity from
an incoming amplitude Ain(x, y). It can be generalized as:

Aic = M1,transAin + M1,ref .P .M2,ref .P .Aic (23)

where the linear operator P refers to the sequence detailed above and the Mi,ref,trans

to phase plates equivalent to the mirrors properties (geometry of the surface, trans-
mission chart). An explicit algebraic solution formally exists but provides no real-
istic computation scheme. A realistic method is to take an initial guess for Aic (for
instance the theoretical mode assuming perfect mirrors) and iterating (23) until
a given accuracy is met. This is the basic principle of DarkF, a code developed
within the Virgo collaboration after [21]. This method allows to treat imperfect
beams and imperfect mirrors. It is possible to import in the code measured maps
for all mirrors and give tilt angles, detunings in order to check the performances
of the resulting virtual interferometer versus the nominal estimations.

3.5. Planned spectral sensitivity

Owing to the preceding discussion, the overall spectral sensitivity is an envelope,
resulting at low frequency (< 50 Hz) from the pendulum thermal noise, in the
intermediate range around 100 Hz from the mirror’s internal thermal noise, and in
the upper part of the spectrum from shot noise. At the resonances of the suspension
wires, thin peaks appear. The foreseen sensitivity curve, after reduction of non-
essential noises has the shape summarized on Fig. 5.
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Figure 5. Nominal (theoretical) spectral sensitivity of Virgo

3.6. Frequency Stabilization

Frequency fluctuations of the source laser result in a specific noise on the detection
channel. If the random process δν(t) denotes these frequency fluctuations, the
corresponding phase fluctuations on the dark fringe are

δΦ(t) =
d

L

2πL

c
δν(t) (24)

where L is the mean length of the arms and d their difference. For a simple short
Michelson interferometer, it is easy to carefully tune the arm lengths to obtain
an arbitrarily low level of noise. For a long baseline interferometer with resonant
cavities, the effective length Leff = (2F/π) × L depends not only on the geomet-
rical length L of the arms, but also on the finesses of the cavities. These finesses
depend in turn on the reflection coefficients of the mirrors, so that the noise level
is eventually determined by the ability of technology to produce mirrors with very
close reflectivities, allowing to make as symmetrical cavities as possible. We have
seen that the phase shot noise LSD is

S
1/2
Φ (f) =

√
2�ω

SPL
.
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We can rewrite (24) in terms of LSD, by asking the frequency fluctuations to
produce a phase noise lower than the shot noise:

S
1/2
δν

νL
<

λ

4FL

F
∆F

√
2�ω

SPL

where ∆F represents the difference between the finesses of the North and West
cavities. With the same values as above, assuming SPL ∼1 kW reaching the split-
ter, a mean cavity finesse of S ∼ 50, this is:

S
1/2
δν <

10−8

∆F/F Hz · Hz−1/2

with a symmetry rate of 1% for the finesse, we obtain a requirement of

S
1/2
δν < 10−6 Hz · Hz−1/2.

This very strong requirement is satisfied by at least two stages of frequency control.
A first stage is a servo loop using error signals by comparison of the laser frequency
with a reference passive, very stable resonant cavity (long term stabilization). A
second stage is a servo loop on the common mode of the two long arms (short term
stabilization). The result is one the most stable oscillators in the present metrology
status. Obtaining at the same time an output power of about 20W is obtained via
the injection technique, in which the stabilized laser light enters a powerful slave
laser whose mode is locked on the master wave.

3.7. Data Analysis

The order of magnitude of the sensitivity likely makes a very poor signal to noise
ratio at least in the present generation of antennas. This is why special signal
processing techniques have been developed for extracting GW signature from the
dominant instrumental noise background. Expected signals are:

• short bursts (a few ms) possibly produced by supernova or exotic cosmic
string events

• permanent waves emitted by fast pulsars having some quadrupolar moment
• chirps emitted during the inspiral/merging/ringdown process of binary coa-

lescence

For the detection of binary black hole (BBH) coalescence, the common strategy
of all groups is to use the matched filtering technique. It is possible to accurately
describe the inspiral phase either by using the Parametrized Post Newtonian ap-
proach [5] or the Effective One Body method [22], or by numerical simulations.
The result provides families of templates (each corresponding to a point in the
parameter space). An example can be seen on Fig. 6 a BBH with 30 solar masses
each. The signal is assumed to enter the detection band at the date at which its
frequency is 20 Hz. The total duration is less than 2s. Detection amounts to look
for a correlation peak between the interferometer output and a bank of templates.
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Figure 6. Coalescence signal for two black holes of equal mass
(30 solar masses)

3.8. Present status

The two american LIGO instruments at Hanford (WA) and Livingston (LA) are
already operating at their nominal sensitivity. The size of the LIGO antennas is
4 km. At the Hanford site, one more antenna is installed in the same vacuum
pipe, with 2 km size. The French-Italian Virgo at Cascina (Italy) of size 3 km
comes at the end of its commissioning phase. The Virgo sensitivity is already
comparable to the american antennas at high frequency (see Fig. 7). A German-
British antenna GEO600 of size 600 m is operating since 2002 near Hannover. Its
sensitivity remains less than larger antennas (see Fig. 8), but alternative optical
designs could allow to reach a comparable sensitivity at the price of a reduced
bandwidth. A Japanese antenna of size 300 m, TAMA [24] is operating since 2003,
the best sensitivity being about 10−21Hz−1/2 (see Fig. 9).

4. The LISA mission

LISA is the present status of a very old idea initiated in the seventies and aiming
to receive and analyze very low frequency GW from sources involving massive
black holes. There is on Earth a “wall” at a few Hz that forbids, due to direct
Newtonian attraction of test mirrors by ground motions, going to lower frequencies.
The solution is therefore in space. LISA is an ambitious ESA/NASA joint mission
which consists of three spacecraft forming a triangle of 5 Mkm a side, in orbit
around the Sun 50 Mkm behind the Earth. The three spacecraft are optically
linked by six Nd:YAG laser beams. The GW signature is read on the six Doppler
data flows (beat note of the incoming light against the local oscillator). LISA
is expected to fly in 2014 if the project passes a review in 2008 against a few
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Figure 7. Compared sensitivities of LIGO and Virgo antennas
(LLO=LIGO Livingstone Observatory, LHO=LIGO Hanford Ob-
servatory, WSR=Weekly Science Run, C=Commissioning)

other fundamental physics missions, and if the technological demonstrator LISA-
Pathfinder is successful.

4.1. Orbital configuration

The stability of a large triangular formation on heliocentric orbits is not triv-
ial. It can be shown (e.g. [25]) that it is possible by combining slightly elliptical,
slightly inclined orbits. More specifically, let L be the inter-spacecraft distance
(L ∼ 5 109m) and R the radius (R ∼ 1.5 1011m) of the almost circular terrestrial
orbit. Let us define the small parameter α = L/2R ∼ 1/60. We can choose simul-
taneously for the orbit of spacecraft #1 an inclination angle of ε with respect to
ecliptic, and an eccentricity of e. The right choice is:

ε = arctan
[

α

1 + α/
√

3

]
and e =

√
1 +

2α√
3

+
4α2

3
− 1.
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Figure 8. GEO600 typical sensitivity (after[23])

Figure 9. TAMA300 typical sensitivity (after[24])
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In barycentric coordinates (centered on the Sun with (x, y) axes in the ecliptic and
fixed with respect to far stars), the motion of spacecraft #1 has the parametric
form: ⎧⎨

⎩
x = R(cosE1 − e) cos ε

y = R
√

1 − e2 sin E1

z = −R(cosE1 − e) sin ε
(25)

where E1(t) is the so-called eccentric anomaly implicitly defined by

E1 − e sin E1 = Ωt

where Ω ≡ 2π/(1 year). The orbits of spacecraft #2 and 3 are obtained by

• Shifting by 120 degrees the eccentric anomaly, so that

Ei − e sin Ei = Ωt − (i − 1)
2π

3
(i = 1, 2, 3)

• Rotating the semi-major axes by 120 degrees in the (x, y) plane, so that the
motions of all spacecraft are parametrized by:⎧⎨

⎩
Xi = xi cos θi − yi sin θi

Yi = xi sin θi + yi cos θi

Zi = zi

(26)

where θi ≡ (i−1)×2π/3, and where the (xi, yi, zi), i = 1, 2, 3 are parametrized
according (25) with the Ei.

The result is that the three spacecraft are located in a plane making an angle of 60
degrees with respect to ecliptic, with mutual distances constant at first order in α,
making a triangle rotating around its mass center with a 1 year period (see Fig. 10).
“At first order in α” means that a more accurate evaluation shows a deformation
of the triangle, and inter-spacecraft distances variable by about 100,000 km. It is
possible to reduce this “flexing” to less than 50,000 km by slightly increasing the
60 degrees angle [26].

4.2. Drag free operation

At the level of ∆L/L ∼ 10−22, meaning a ∆L ∼ 5 10−12m, it is clear that pertur-
bations caused by solar winds must be strongly rejected. It is therefore planned to
operate LISA under the drag free regime. This means that the spacecraft protect-
ing shell is served on an internal reference mass by a capacitor readout system. The
free falling reference mass plus the readout system form an accelerometer. This
kind of accelerometer has been imagined and successfully flown by the French ON-
ERA on several space missions [27], but here the targetted readout noise is about
3 10−15 m · s−2Hz−1/2 in a frequency range from 10−4 Hz to 10−1 Hz. The model
relevant for LISA has been developed following analogous principles. Controlling
the spacecraft position with respect to the test mass requires controlled forces.
These forces are applied by micro-thrusters. Two systems are being proposed and
will be tested in the “LISA Pathfinder” demonstration mission.
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Figure 10. Solid: Orbit of spacecraft #1. Dashed: Earth’s orbit (ecliptic)

4.3. Data flow

In a very simplified scheme, the LISA readout system involves six phasemeters,
each delivering its own data flow. If we call Ci(t) (i = 1, 2, 3) the instantaneous
frequencies aboard the three spacecraft , the apparent Doppler measurement on
board spacecraft #1 for light coming from spacecraft #2 is (counterclockwise)
according to (10):

V1 =
[
δν(t)

ν

]
2→1

=
H(t − w.x1) − H(t − w.x2 − L3)

2(1 − w.n3)
+ C1(t) − C2(t − L3) + s1(t)

(27)

(see Fig. 11) s1(t) accounts for the shot noise generated by the detection process
on board spacecraft #1. We take into account the fact that the triangle may be
not equilateral, so that we have to deal with three different lengths Li, i = 1, 2, 3.
The data flows V2, V3 can be obtained by cyclic permutation of the indices. For
the clockwise links, we get

U2 =
[
δν(t)

ν

]
1→2

=
H(t − w.x2 − L3) − H(t − w.x1)

2(1 + w.n3)
+ C1(t − L3) − C2(t) + s2(t).

(28)

The data flows U3, U1 are obtained by cyclic permutation of indices.
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It seems that the signal (∼ 10−22), due to the huge asymmetry between the
optical path of the long link (5 Mkm) and the local path (∼ 1 m) is largely domi-
nated by the frequency noises of the lasers (the Ci, ∼ 10−13 Hz−1/2 under closed
stabilization loop). Fortunately, the number of data flows allows some redundancy
leading to a dramatic reduction of the noise.

4.4. Time Delay Interferometry

We can define three delay operators Di via their action on any function of time f :

(Dif)(t) = f(t − Li).

If we consider the part of the Doppler data due to laser noise, we can write:

U1 = D2C3 − C1

U2 = D3C1 − C2

U3 = D1C2 − C3

V1 = C1 − D3C2

V2 = C2 − D1C3

V3 = C3 − D2C1.

(29)

It has been remarked that some combinations of the Ui, Vi give an identically zero
result, and can be regarded as noise canceling. Use of such noise canceling com-
binations was proposed by M. Tinto [28] and called “Time Delay Interferometry”
(TDI). The algebraic structure of TDI has been found and explained in [11]. The
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simplest example is found by considering the Ci, Ui, and the Vi as vectors C, U,
V and the delay operators Di as the components of a vector operator D. The sum
U + V has the algebraic signature of a curl:

U + V = D × C.

It is now clear that the “divergence” of U + V is identically zero, so that

D · (U + V) = 0 ⇒
3∑

i=1

DiUi +
3∑

i=1

DiVi = 0.

Each noise canceling (“silent”) combination y can thus be represented by a 6-tuple
Y = (pi, qi) of polynomials in the formal variables Di, acting on the data 6-tuple
U = (Vi, Ui):

y = 〈Y |U〉 =
3∑

i=1

(piVi + qiUi).

The basis of TDI is the set S of all silent Y . It has been shown [11] that S has the
algebraic structure of a first module of syzygies on the ring of formal polynomials.
This means that any element of S can be obtained by a linear combination whose
coefficients are polynomials in Di, of generators of S. A generating part of S has
been found by [28], containing:

ζ = (p,q) = (D1, D2, D3, D1, D2, D3)

with the new silent 6-tuple:

α = (1, D3, D1D3, 1, D1D2, D2)

plus its two successive circular permutations (of indices and of locations in the
sub-3-tuples):

β = (D1D2, 1, D1, D3, 1, D2D3)

γ = (D2, D2D3, 1, D1D3, D1, 1).

Any combination of α, β, γ applied to the data 6-tuple U is thus laser noise free.
It can be shown that the same combination is still sensitive to GW. Generator
ζ (often called “symmetric Sagnac”) strongly attenuates the GW signals at low
frequency. There is no hope however to suppress the shot noise nor the noise coming
from the accelerometer readout system, because those are purely local noises (not
transmitted to other spacecraft with some delay). The global sensitivity curve for
a typical TDI combination (“Michelson”) is shown on Fig. 12. It assumes one year
integration time for a permanent source, with a signal to residual noise ratio of 5,
and an average on the angular coordinates of the source. In reality, the situation
is more complex because there are six lasers, not three, and the propagation times
between two spacecraft are not reciprocal, due for instance to the Sagnac effect in
rotating frames, and are even variable in time due to the flexing effect. But the
preceding method remains valid in principle, up to improvements [29, 30].
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Figure 12. Mean spectral sensitivity of LISA for the “Michel-
son” TDI combination

4.5. Data analysis

Owing to the low frequency domain of sensitivity, the sampling frequency may be
taken at a fraction of a Hz, so that the flow of data down to Earth is consistent
with the bandwidth of the microwave link. A preprocessing by TDI generators is
necessary, which implies a good knowledge of the instantaneous inter-spacecraft
distances. Depending on the kind of source to be studied, several strategies may
be developed.

A major point is the existence of a foreground of GW noise generated by the
population of galactic compact binaries (involving neutron stars, white dwarfs,
black holes) whose orbital frequencies (times 2) fall within the detection band
of LISA. The GW amplitude resulting from all these monochromatic sources is
analogous to a stochastic background. These objects are a huge number (e.g. ∼ 108

white dwarf binaries, see [31]), All of these produce a so-called confusion noise the
spectral density of which is dominant at very low frequency (from 0.1 to 1 mHz).
For detecting a particular binary, it is possible to find optimal combinations of the
generators [32] and even combinations giving a zero result, allowing to selectively
suppress known sources [33, 32] for a “coronographic” operation of LISA.

The signals generated by or around black holes are of two types.

• Stellar class objects orbiting supermassive black holes have complex inspi-
ralling trajectories ending by a capture. The models for such events are called
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Figure 13. Orbital evolution of LISA after “LISACode”

Extreme Mass Ratio Inspirals (EMRI). The GW emitted during EMRI have
a complex frequency structure [34]. These models depend on a number of pa-
rameters making difficult a matched filtering approach. Moreover, situations
may happen in which several bodies are involved resulting in a perturbed pro-
cess escaping the “simple” model. Time-Frequency methods based on wavelet
transforms seem a relevant tool.

• Supermassive Binary Black Holes (SMBBH) are expected to inspiral on a long
time period. The final phase could be observed during several years of LISA
operation. A matched filtering approach is possible, and Time-Frequency
methods as well.

4.6. Simulators

The closest date of launch of the mission being 2014, the various algorithms build-
ing the Data Analysis System must be developed and tested with synthetic data.
Two data simulators have been coded in the United States and one in France:

• Synthetic LISA at the Jet Propulsion Laboratory (Pasadena, California) [35]
• The LISA Simulator at Montana U. [36]
• LISACode by LISA-France (APC, Observatoire de la Côte d’Azur) [37] (see

Fig. 13)

The simulators compute the orbital motion (26) of each spacecraft and the cor-
responding transfer function (27,28) for the GW signals. The GW amplitudes for
several kind of sources and angular locations are read from files and the result is
given in terms of TDI generators.
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5. Conclusion

The first generation of ground GW antennas is now beginning to deliver science
data. Technological improvements will probably be needed to achieve a better
sensitivity which could improve the rate of detected events. Ideas already exist for
improving the laser power and for reducing the thermal noise, which were the main
obstacles to overcome. The fate of the large space antenna LISA will depend on the
willing of the Relativistic Astrophysics community to continue the international
cooperation that began so long ago.

References

[1] http://www.ligo.caltech.edu

[2] http://wwwcascina.virgo.infn.it

[3] http://lisa.jpl.gov

[4] Kip S. Thorne, in 300 years of gravitation, Edited by S.W.Hawking and W. Israel,
Cambridge U.P. 1987.

[5] L. Blanchet, Phys. Rev. D 72 (2005), 044024.

[6] Joseph Weber, in Gravitation and Relativity, Edited by Chiu and Hoffmann, Ben-
jamin 1964.

[7] J.-Y. Vinet, Ann. Inst. Henri Poincaré, Vol. XXX n3 (1979) p. 251.
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