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Chapter 1

Preface

This book aims to convert the noble art of constructing an entire function with
prescribed asymptotic behavior to a handicraft.

For this you should just consider the limit set that describes the asymptotic
behavior of the entire function, i.e., you should consider the set Ulp, o] of subhar-
monic functions (that is, {v is subharmonic : v(re’®) < orf}) and pick out the
subset U which characterizes its asymptotic properties.

How to do it? The properties of limit sets are listed in Section 3. All the
standard growth characteristics are expressed in terms of limit sets in Sections
3.2, 3.3, 5.7. Examples of construction are to be found in Sections 5.4-6.3. So you
can use this book as a reference book for construction of entire functions.

Of course, you need some terms. All the terms that we use in this book are
listed on pages 249-253.

If you want to study the theory, I recommend that you solve the exercises
that are in the text. Most of them are trivial. However, I recommend that you do
all of them by the moment that they appear trivial to you.

A few words about the history of this book. It arose from a course of lectures
that I gave at Kharkov University in 1977. After some time, under pressure and
with active help of Prof. I.V. Ostrovskii, a rotaprint edition (Edition of KhGU)of
this course appeared: the first part in 1978, the second one in 1982. Mathematical
Reviews did not notice this fact.

Since that time lots of new and important results have been obtained. Some
of them were presented in Chapter 3 of the review [GLO].

In 1994, when I started to work in the Bar-Ilan University and obtained a
personal computer, my first wish was to study typing on it in English. This was
the first impulse for translating this course into English (there are no more than
five copies of this book in the world, I believe, one of them being mine). I continued
this project while working in Bar-Ilan (1994-2006) but there was not much time
for this. And now I have finished.
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Chapter 2

Auxiliary Information.
Subharmonic Functions

2.1 Semicontinuous functions

2.1.1. Let x € R™ be a point in an m-dimensional Euclidean space, E a Borel set
and f(z) a function on E such that f(z) # co.
Set
M(f,z,e) :=sup{f(a') : |z —2'| <e, o' € E} (2.1.1.1)
The function

f*(a) = lim M(f, 2,¢)

is called the upper semicontinuous regularization of the function f(x).
In the case of a finite jump, the regularization “raises” the values of the func-
tion. However, there is no influence on f*(z), if f(x) tends to —oco “continuously”.

Proposition 2.1.1.1 (Regularization Properties) The following properties hold:

(rgl) f@) < f(2);
(rg2) (af)(x) = af*(z);
(rg3) (f)* (@) = f*(2);
(1 + fo)"(2) < fi(2) + f5(2);
(rg4) (max(f1, f2))"(x) < max(f7, f3)(@);

(min(fy, f2))"(2) < min(f7, f3)(@).

These properties are obvious corollaries of the definition of f*(z).
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Exercise 2.1.1.1 Prove them.

2.1.2 The function f(z) is called upper semicontinuous at a point x if f*(z) =
f(z). We denote the class of upper semicontinuous functions on E by CT(FE). The
function f(x) is called lower semicontinuous if —f(x) is upper semicontinuous
(notation f € C~(E)).

Examples of semicontinuous functions are given by

Proposition 2.1.2.1 (Semicontinuity of Characteristic Functions of Sets) Let G C
R™ be an open set. Then its characteristic function xg is lower semicontinuous
i R™. Let F be a closed set, then xp is upper semicontinuous.

The proof is obvious.
Exercise 2.1.2.1 Prove this.
Proposition 2.1.2.2 (Connection with Continuity) If f € CT N C~, then f is
continuous.

The assertion follows from the equalities

f(z) = lirsnj(l)lp{f(x’) d =2 <ely—(=f)(x) = lirsn_}(r)lf{f(x’) -2 < e}

Proposition 2.1.2.3 (C*-Properties) The following holds:

(CT 1) feCH(E)=af e CT(E), fora>0
(C* 2) fi,fa € CT = f1 4 fa,max(fi, fo), min(f1, ) € CT.

These properties follow from the properties of regularization (Proposition
2.1.1.1).

Exercise 2.1.2.2 Prove them.
Let G be an open set. Set G4 :={z € G : f(x) < A}.

Theorem 2.1.2.4 (First Criterion of Semicontinuity) One has f € C* if and only
if G is open for all A € R.

Proof. Let f(x) = f*(z), = € G. Then {f(z) < A} = {f*(x) < A} =
{M(f,x,e) < A} for all sufficiently small €. Thus the neighborhood of  V; , :=
{z' : |x — 2’| < e} is contained in G 4.

Conversely, since the set G 4 is open for A = f(xg) + J, we have f*(zg) <
f(xo)+9 for any § > 0, hence for § = 0. With property (rgl) of Proposition 2.1.1.1
this gives f*(zo) = f(z0). O

Let F be a closed set. Set F4 := {x € F : f(x) > A}. An obvious corollary
of the previous theorem is
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Corollary 2.1.2.5 One has f € Ct if and only if F4 is closed for all A.

Exercise 2.1.2.3 Prove the corollary.
We denote compact sets by K. Set M(f, K) =sup{f(z):z € K}.

Theorem 2.1.2.6 (Weierstrass) Let K C R™ be a compact set and f € CT(K).
Then there exists xog € Ksuch that f(xo) = M(f, K).

Le., f attains its supremum on any compact set.

Proof. Set K,,:={zxe K : f(z) > M(f,K)—1/n}.
The K, are closed by Corollary 2.1.2.5, nonempty by definition of M (f, K).
Their intersection is nonempty and is equal to the set

Knax ={z € K : f(x) > M(f,K)}.

It means that there exists x¢ in K such that f(zo) > M(f, K).
The opposite inequality holds for any z in K. O
Exercise 2.1.2.4 Why?

The following theorem shows that the functional M (f, K) is continuous with
respect to monotonic convergence of semicontinuous functions.

Proposition 2.1.2.7 (Continuity from the right of M (f, K')) Let f,, € CT(K), f, |
fLn=123....

Then M(f,, K) | M(f, K).
Proof. Tt is clear that lim M(f,, K) := M exists.

Set K, := {z € K : f,(x) > M}. The intersection of the closed nonempty
sets K, is nonempty and has the following form: NK,, = {z : f(z) > M}. So

M(f,K) = M.
The opposite inequality is obvious. O

Exercise 2.1.2.5 Why?
In the same way one proves

Proposition 2.1.2.8 (Commutativity of inf and M(-)) Let
{fa € C1(K), a € (0;00)}
be an arbitrarily decreasing family of semicontinuous functions. Then

inf M(fo, K) = M(inf f,, K).



6 Chapter 2. Auxiliary Information. Subharmonic Functions

Exercise 2.1.2.6 Prove this proposition.

Theorem 2.1.2.9 (Second Criterion of Semicontinuity) f € Ct(K) iff there exists
a sequence fp, of continuous functions such that f, | f.

Sufficiency. Let f, € CH(K), fn | f.Set KX :={x € K : f,(z) > A}. This is a
sequence of nonempty closed sets. If the set K4 := {x : f(x) > A} is nonempty,
then K4 is closed because K2 = KA. Hence f € CT(K) by Corollary 2.1.2.5.

Necessity. Set fn(x,y) = f(y) — nlz —y|.
This sequence of functions has the following properties:

a) it decreases monotonically in n and

lim f,(x,y) =

n—oo

{f(ac), for x = y;

—o0, for x # y;

b) for any fixed n the functions f,, are continuous in z uniformly with respect
to y, because |fr(z,y) — fo(2’,y)| < nlz —2'|;

¢) fn are upper semicontinuous in y.

Proposition 2.1.2.7 and c) imply that
Tim My (fl, ), K) = My(lim_foe,9), K).

b) implies that the functions f,(x) := My(fn(z,y), K) are continuous, and
a) implies that they decrease monotonically to f(x). O

2.1.3 We will consider a family of upper semicontinuous functions:{f; : ¢t € T C
(0,00)}. It is easy to prove

Proposition 2.1.3.1 f; € CT = in% fi(z) e CT.
te

Exercise 2.1.3.1 Prove this proposition.
Set fr(z) := sup fi(x). The function fr is not, generally speaking, upper
teT

semicontinuous even if T" is countable and f; are continuous. It is not possible to

replace sup in the definition of fr by sup, where T} is a countable set. However,
teT teTy
the following theorem holds:

Theorem 2.1.3.2 (Choquet’s Lemma) There exists a countable set Ty C T such
that

(sup fi)*(z) = (supfe)*(x).

teTy teT
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Proof. Let {z,} be a countable set that is dense in R™ and ¢; | 0. Then the balls
Ky ={z: |z —z,| <e;}

cover every point € R™ infinitely many times.
Renumbering we obtain a sequence {Kj : | € N}. For any [ there exists, by

definition of sup, such a point xy € K; that
K;

s;pf:p(x) < fr(zo)+1/2L. (2.1.3.1)

By definition of sup there exists ¢; such that
T

fr(xo) < fo,(w0) +1/21.
Thus
fr(wo) < sup{f,(z) : x € K;} +1/2L. (2.1.3.2)

The inequalities (2.1.3.1) and (2.1.3.2) imply that for any [ there exists #; such
that

sup{fr(z): z € K} <sup{fy,(x):z € K;} +1/I. (2.1.3.3)
Now set Tp = {#;}. Evidently, fr,(z) < fr(z) and thus
fr, (@) < fr(2). (2.1.3.4)

Let us prove the opposite inequality.
Let x € R™. Choose a subsequence { K}, } that tends to . From (2.1.3.3) we

obtain
fr(z) <limsup sup fr(z')

j—00 :D/EKL].

< limsup sup ftlj (") (2.1.3.5)

j—o0 x/EKlj

<limsup sup fr,(2') = I1, ().

j—00 :D,EKL].

(2.1.3.4) and (2.1.3.5) imply the assertion of the theorem. O

2.2 Measures and integrals

2.2.1 Let G be an open set in R™ and o(G) a o-algebra of Borel sets containing
all the compact sets K C G.

Let © be a countably additive nonnegative function on ¢(G), which is finite
on all K C G. We will call it a measure or a mass distribution.

Let Go(ut) be the largest open set for which u is zero. (It is the union of all
the open sets G’ such that u(G') =0.)

The set supp p := G\Go(u) is called the support of u. It is closed in G.

We say that u is concentrated on E € o(G) if p(G\E) = 0.
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Theorem 2.2.1.1 (Support) The support of a measure u is the smallest closed set
on which the measure | is concentrated.

Exercise 2.2.1.1 Prove this.
A measure p can be concentrated on a non-closed set E and then ' € supp u.

Example 2.2.1.1 Let E be a countable set dense in G. Then supp ¢ = G and, of
course, F # G.

The set of all measures on G will be denoted by M(G).

The measure pp(E) := p(ENF) is called the restriction of p onto F € o(G).
It is easy to see that pp is concentrated on F' and suppu C F.

A countably additive function v on o(G) that is finite for all K C G is called
a charge. We consider only real charges.

Example 2.2.1.2 v := g — pa, p1,pu2 € M(G).
The set of all charges will be denoted M?.

Theorem 2.2.1.2 (Jordan decomposition) Let v € M%(G). Then there exist two
sets GT, G~ such that

a) G=GTUG™, GTNG~ =g
b) ()20f0rECG+, ()<Of07"ECG_.

One can find the proof in [Ha, Ch. VI Sec. 29]

The measures v+ := vg+ and v~ := vg-, where vg+, vg- are restrictions

of v to GT,G~, are called the positive and negative, respectively, variations of v.
The measure |v| := vy + v_ is called the full variation of v or just a variation.

Theorem 2.2.1.3 (Variations) The following holds:

vT(E)= sup v(E'); v (E)= inf v(E'); v=v"+v".
E'CE E'CE

The proof is easy enough.

Exercise 2.2.1.2 Prove this.

Example 2.2.1.3 Let w( ) be a locally summable function with respect to the
Lebesgue measure. Set v(E) := [, ¢ p ¥(x)dr. Then

:/E1/)+(a;)dx, v /w )dx; |v|(E /le

YT (z) = max(0,(x)); ¥~ (x) = —min(0,¢(x)). (2.2.1.1)

where
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2.2.2 The function f(z), * € G is called a Borel function if the set E4 := {f(x) >
A} belongs to o(G) for any A € R.

Let K € G be a compact set and f a Borel function. Then the Lebesgue-
Stieltjes integrals of the form [, f*du, [ f~dp with respect to a measure p €
M(G) are defined, and [}, fdu := [, frdu— [} f~dp is defined if at least one of
the terms is finite.

We say that a property holds p-almost everywhere on E if the set Ey of z
for which it does not hold satisfies the condition u(Ey) = 0.

We will denote all the compact sets in G as K (sometimes with indexes).
The following theorems hold:

Theorem 2.2.2.1 (Lebesgue) Let {f,, n € N} be a sequence of Borel functions
on K and g(z) > 0 a function on K that is summable with respect to p (i.e., its
integral is finite), |fn(x)| < g(x) for x in K, and f, — [ when n — oc.

Then lim [} fodp = [, fdp.

Theorem 2.2.2.2 (B. Levy) Let f,, | f whenn — oo, and f be a summable function
on K.

Then lim [} fodp = [, fdp.

Theorem 2.2.2.3 (Fatou’s Lemma) Let f,(z) < const < oo for xz in K.
Then limsup [, fndp < [, limsup fndp.

The proofs can be found in [Ha, Ch. V, Sec. 27].
Let L(x) be the space of functions that are summable with respect to u. We
say that f,, — f in L(u) if f,, f € L(u) and

1 — £ :=/|fn—f|<x>dwo

Theorem 2.2.2.4 (Uniqueness in L(u)) Let f,, — f in L(u) and

[ uvdu = [ gudn

for any 1 continuous on supp p. Then ||g — f|| = 0.
For the proof see, e.g., [H6, Th. 1.2.5].

2.2.3 Let ¢(x) be a Borel function on G. The set supp ¢ := {z: ¢(z) # 0} is
called the support of ¢(x). A function ¢ is called finite in G if supp ¢ € G.

We say that a sequence p,, € M converges weakly to p € M if the condition
[ ¢dp, — [ ¢du holds for any continuous function ¢.

We will not show the integration domain, because it is always supp ¢.

The weak (it is called also C*-) convergence will be denoted as —.
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Theorem 2.2.3.1 (C*-limits) If yi,, — p, then for E € o(G) the following assertions
hold:

limsup pn, (E) < p(E);

lim inf ,un(g) > ,u(LO?);

where E is the interior of E, E is the closure of E.

Proof. Let xz be the characteristic function of the set E. It is upper semicontin-
uous. Thus there exists a decreasing sequence ¢, of continuous functions finite in
G that converges to xz as m — oo. Then we have

fin(E) = / Xgdtin < / P .

Passing to the limit as n — co we obtain

lim sup p,, (E) < /apmdu.

n—oo

Passing to the limit as m — oo we obtain by Theorem 2.2.2.2

lim sup fi, (E) < / xgdp = p(E).

The proof for F is analogous. O

Theorem 2.2.3.2 (Helly) Let {uo : o € A} be a family of measures uniformly
bounded on any compact set K C G, i.e., 3C = C(K) : po(K) < C(K), for
K € G. Then this family is weakly compact, i.e., there exists a sequence
{aj : aj € A} and a measure i such that po, = p.

The proof can be found in [Ha].
A set E is called squarable with respect to measure p (p-squarable) if u(0F) = 0.
Theorem 2.2.3.3. (Squarable Ring) The following holds:
sqrl) if Eq, Es are p-squarable, the sets E1NEy, E1UEs, F1\Ey are p-squarable;
sqr2)  for any couple: an open set G and a compact set K C G there exists a

w-squarable set E such that K C E C G.

Proof. The assertion sqrl) follows from

0(Ey U Ey) | JO(Er N Ey) | JO(E\E2) C 0E; UOE,.
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Let us prove sqr2). Let Ky := {x : Jy € K : |x — y| < t} be a t-neighborhood
of the K. It is clear that for all the small ¢t we have K € K; € G. The function
a(t) := u(Ky) is monotonic on ¢ and thus has no more than a countable set of
jumps.

Let t be a point of continuity of a(t). Then

pn(0K;) < li_I%[N(KtJre) - N(the)] =0.

Thus it is possible to set E := K for this ¢. O

A family ® of sets is called a dense ring if the following conditions hold:
dI‘l) \V/Fl,FQ cedb— F UF27F1 NFs e CI),
dr2) VK,G: KeGIFed: K CF CG.

The previous theorem shows that the class of y-squarable sets is a dense ring.
The following theorem shows how one can extend a measure from a dense ring to
the Borel algebra.
Let @ be a dense ring and A(F), F' € ® a function of a set which satisfies
the conditions:
Al) monotonicity on ®: Fy C Fo = A(F1) < A(Fy);
A2) addztzmty on ®: A(Flqu) S A(F1)+A(F2) and A(Flqu) = A(F1)+A(F2)
ifFNFK=9g
A3) continuity on ®: VF € & and ¢ > 0 there exists a compact set K and

an open set G D K such that VF' € ® : K C F' C G the inequality
|A(F) — A(F")| < € holds.

Theorem 2.2.3.4 (N. Bourbaki) There exists a measure p such that
w(F)=A(F), VF€®
iff the conditions A1)-A3) hold.

Theorem 2.2.3.5 (Uniqueness of Measure) Under the conditions Al)-A3) the
measure is defined uniquely by the formulae:

w(K)=inf{A(F): Fe®, FD>K}; (2.2.3.1)
w(G) =sup{A(F): F e ®, FCG}; (2.2.3.2)
w(E) =sup{u(K): K C E} =inf{u(G) : G D E}, (2.2.3.3)

and every F' € ® s p-squarable.

For the proof see [Bo, Ch. 4, Sec 3, it. 10]. The squarability follows from
(2.2.3.3).

The following theorem connects the convergence of measures on any dense
ring and on the ring of sets squarable with respect to the limit measure.
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Theorem 2.2.3.6 (Set-convergences) If u,(F) — p(F) for all F in a dense ring
D, then p,(E) — p(E) for any p-squarable set E.

Proof. Suppose % #* .
Let € > 0. By (2.2.3.3) one can find a compact set K such that

o

W(K) +e> p(E) = p(E). (2.2.3.4)

One can also find an open set G such that

(@) — € < u(B) = p(E). (2.2.3.5)

By property dr2) of a dense ring one can find F, F’ € ® such that

KCcFCcECECECF CG.
Thus pn(F) < pn(E) < pn(F') and hence
W(F) < lim i (B) < T pun(E) < u(F) (2.2.3.6)

n—oo

From (2.2.3.4) and (2.2.3.5) we obtain 0 < u(F’) — u(F) < u(G) — p(K) < 2¢ for
arbitrarily small e. Thus from (2.2.3.6) we obtain

lim i, (E) = lm pin(E) = p(E). (2.2.3.7)

That is to say that p,(E) — u(E).

IfE = @, then p(E) = 0 by the definition of a squarable set. One can show
in the same way that p,(E) — 0. O

Now we connect the weak convergence to the convergence on squarable sets.

Theorem 2.2.3.7 (Set- and C*-convergences) The conditions
Lin — 14 (2.2.3.8)

and pun(E) — pw(E) on p-squarable sets E are equivalent.

Proof. Sufficiency of (2.2.3.8) follows from Theorem 2.2.3.1.
Exercise 2.2.3.1 Prove this.

Let us prove necessity.

For any compact set one can find a u-squarable F such that K C E. Hence
pn(K) < p(E) + 1 := C(K) when n is big enough.

By Helly’s theorem (Theorem 2.2.3.2) there exists a measure p’ and a sub-
sequence [y, % 4. By the proved sufficiency, p/(E) = u(E) on a dense ring
of the squarable sets. Thus ' = p by Uniqueness Theorem 2.2.3.5. And thus
Lin — 1. O
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Denote by

45(G) = {g(GﬂE) if GNE + 2,

ifGNE=9
the restriction of p on the set E.
Corollary 2.2.3.8 Let j1,, — pu and E be a squarable set for . Then (un)p — (1) k.

Indeed, if E is a squarable set for p it is a squarable set for pug. So Theo-
rem 2.2.3.7 implies the corollary.

2.2.4 Let o(R™* x R™2) be the o-algebra of all the Borel sets, ®; C o(R™?), i =
1,2, be dense rings, ® := &; ® Py C o(R™ x R™2) be a ring generated by all the
sets of form Fy X Fy, F; € ®;.

Theorem 2.2.4.1 (Product of Rings) If ®;, i = 1,2 are dense rings, then &1 @ Oy

18 a dense ring; if they consist of squarable sets, then ® consists of squarable sets.

Proof. Let K C G C R™ x R™2. For every point € K one can (evidently) find
Fy x F5 such that © C F} X F5 C G. One can find a finite covering and obtain a
finite union F' of sets of such form. Thus F € ®; ® &3 and F C G.

The second assertion follows from the formula
8(F1 X Fg) = (8F1 X FQ) @] (Fl X 6F2) O

Let p; be a measure on o(R™), i = 1,2, and p := p; ® pe the product of
measures, i.e., a measure on o(R™ x R™2) such that u(E7 X Es) = 1 (F1)pz(E2)
for all E; € o(R™), i =1,2.

Theorem 2.2.4.2 (Product of Measures) A measure p1 ® ps is uniquely defined by
its values on ®1 Q Po.

The assertion follows from Theorem 2.2.4.1 and Uniqueness Theorem 2.2.3.5.

Theorem 2.2.4.3 (Fubini) Let f(x1,22) be a Borel function on R™ x R™2. Then

f(z1,22) (1 @ p2)(dzidre) = /Ml(dﬁﬂl) / f(x1, 22) p2(dx2)

R™1 xR™2 R™1 R™2
= /ﬂz(d@) / f (1, 22)pa (dy),
R™2 R™1

(2.2.4.1)

if at least one of the parts of (2.2.4.1) is well defined.
The proof can be found in [Ha, Ch. VII, Sec. 36].
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2.3 Distributions

2.3.1 Let us consider the set D(G) of all infinitely differentiable functions (), = €
G CR™.
It is a linear space because for any constants ¢y, co,

©1, 02 € D(G) = c1p1 + ca2 € D(Q). (D1)
It is a topological space with convergence defined by

a) suppy, C K € R™
for some compact K
©n A @< and (D2)
b) ¢, — ¢ uniformly on K
with all their derivatives.

We consider some examples of functions ¢ € D. Set

T 1
a(ty = {¢6 T forte (=151, (2.3.1.1)
0, for t € (—1;1).
Evidently a(|z]) € D(R™) and suppa C {z : |z| < 1}.
Exercise 2.3.1.1 Check this.
Let us find C' such that
1
/a(|x|)dm :om/ at)t™ tdt =1 (2.3.1.2)
0
where o,, is the area of the unit sphere {|z| = 1}. Set
as(z) = " (%) . (2.3.1.3)

For any ¢ we have a. € D and suppa. C {z: |z| < e}.
Let ¥(y),y € K C G be a Lebesgue summable function. Consider the func-
tion

%uw:/ww%@—w@. (2.3.1.4)
K

The function belongs to D(G) for e small enough and its support is contained in
the e-neighborhood of K.

2.3.2 Let f(x), v € G C R™ be a locally summable function in G. The formula

wwwzjfww@m%wepm> (23.2.1)
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defines a linear continuous functional on D, i.e., one that satisfies the conditions
(fs cr1 + caa) = c1({f, 1) + c2(f, p2); (D'1)

D
(n = @) = (f.on) = (f, ). (D2)

However, (2.3.2.1) does not exhaust all the linear continuous functionals as
we will see further. An arbitrarily linear continuous functional on D(G) is called a
Schwartz distribution and the linear topological space of the functionals is denoted
as D'(G).

Following are some examples of functionals that do not have the form of
(2.3.2.1):

(05, 0) == @(x). (2.3.2.2)
This distribution is called the Dirac delta-function. Further,
(60, 0) 1= (~1)"™ (z). (2.3.2.3)

This distribution is called the nth derivative of the Dirac delta-function.

Exercise 2.3.2.1 Check that the functionals (2.3.2.2) and (2.3.2.3) are both dis-
tributions.

A distribution of the form (2.3.2.1) is called regular-.

Theorem 2.3.2.1 (Du Bois Reymond) If two locally summable functions f1 and fo
define the same distribution, then they coincide almost everywhere.

For the proof see, e.g., [H6, Thm. 2.1.6].

Note that the converse assertion is obvious.

A distribution p is called positive if {1, p) > 0 for any ¢ € D(G) such that
o(x) > 0 for all x € R™. We shall write this as u > 0 in D'.

Example 2.3.2.1 Let u(E) be a measure in G. Then the distribution

) = [ ploulds) (2.3.2.4)
is positive.
This formula represents all the positive distributions as one can see from

Theorem 2.3.2.2 (Positive Distributions) Let o > 0 in D(G). Then there exists a
unique measure w(E) such that the distribution p is given by (2.3.2.4).

For the proof see, e.g., [H6, Thm. 2.1.7].

2.3.3 Let us consider operations on distributions.

A product of a distribution f by an infinitely differentiable function a(z) is
defined by

(af @) = (f, ap). (2.3.3.1)
It is well defined because ap € D too.
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A sum of distributions f; and fs is defined by

(fi+ f2.0) == {f1.0) + {f2,0), (2.3.3.2)

and the partial derivative a%k is defined by the equality

0
axk

(—fr0) = {f,—5—9) (2.3.3.3)

axk
These definitions look reasonable because of the following

Theorem 2.3.3.1 (Operations on Distributions) The sum of regular distributions
corresponds to the sum of the functions; the product of a reqular distribution by an
infinitely differentiable function corresponds to the product of the functions; the
derivative of a regular distribution that is generated by a differentiable function
corresponds to the derivative of that function.

Proof. We have, for example,
- [ t@la@e@ld = [la@ @@ = (@f).0).
For the sum we have
(R)+ (2 9) = 1) + () = [ Pla)ota)dn + [ (o)et
~ [17@) + fa@e@ds = ((f + f2). ).

Let f(x) have the derivative a%k f. Then

0 0
<87xkf7<ﬂ>-—<f7—87m<ﬁ>
0
:/f(ac17x27...,xm) [—6—5% ($1,$2,...,$m):| dxidxsa, ..., dz,

= /dxl, coydrp_1dxgyy, ..., dTy,

0
X /f(a:l,xz, ceey Tyn) [—8—3% (z1,29,... ,xm)} dzy,.
Now we shall integrate by parts and all the substitution will vanish, because ¢ is

finite. So we obtain 9
o) = [ 5o f@@s

That is to say the derivative of the distribution corresponds to the function deriva-
tive. g
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2.3.4 We say that a sequence of distributions f,, converges to a distribution f if

(fns0) = ({f, ) Yo € D(G). (2.3.4.1)

Theorem 2.3.4.1 (Completeness of D’) If the sequence of numbers {fn, ) has a
limit for every ¢ € D(G), then this functional is a linear continuous functional on
D(Q), i.e., a distribution.

For the proof see, e.g., [H6, Thm. 2.1.8].

Differentiation is continuous with respect to convergence of distributions.

Theorem 2. 3 4.2 (Continuity of Differential Operators) If f,, — f in D(G), then
aibk fn 3:Ek

Proof. Set in (2.3.4.1) ¢ := —%gp. Then

0 0 0 0
<axkfm<p> <fm = > - <f,—axk<p> - <axkf,<p>- O

The following theorem shows that the D’-convergence is the weakest of the
convergences considered earlier.

Theorem 2.3.4.3 (Connection between Convergences) Let f, be a sequence of
Lebesgue summable functions on domain G such that at least one of the following
conditions holds:

Cuvrl) f, — f uniformly on any compact set K € G and f is a locally summable
function;

Cnvr2) f, — f on any K € G, satisfying the conditions of the Lebesgue theorem
(Theorem 2.2.2.1);

Cnvr3) f, | f monotonically and f is a locally summable function.

Then fn, — f in D'(G).

Proof. All the assertions are corollaries of Section 2.2.2 on passing to the limit
under an integral.
Let us prove, for example, Cnvr3). Let f,, | f. Then

(fnrp) = /fn dm—/fn x)dm—/fn(ac)go*(x)dac (2.3.4.2)

where ¢ and ¢~ are defined in (2.2.1.1).
Both last integrals in (2.3.4.2) have a limit by the B. Levy theorem (Theo-
rem 2.2.2.2), and thus

T (o) = [ Fa)et @do— [ @l @)de = [ ot = (1.)

(2.3.4.3)
(2.3.4.3) means that f, — fin D'. O
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Exercise 2.3.4.1 Prove Cnvr 1) and 2).

Theorem 2.3.4.4 (D’ and C* convergences) Let pu,, v be measures in G. The con-
ditions i, — p in D' (G) and p, — p are equivalent.

It is clear that the first condition is necessary for the second one. The suffi-
ciency holds, because every continuous function can be approximated with func-
tions that belong to D. For more details see, e.g., [H6, Thm. 2.1.9].

Let a.(x) be defined as in (2.3.1.3).For any f € D'(D) we can consider the
function fe(z) := (f, ac(x + @)). It is called a regularization of the distribution f.

Theorem 2.3.4.5.(Properties of Regularizations) The following holds:

regl) fe(x) is an infinitely differentiable function in any K @ D for sufficiently
small €;

reg2) fe(xr) — f in D' (D) ase ] 0;

regd) if fn— [ in D'(D), (fn)e — fe uniformly with all its derivatives on any
compact set in D.

The property regl) follows from the formula

0 0

The property reg2) follows from the assertion

pe(z) = / b(y)are(z + y)dy — é(x) in D(D)

ase ] 0.
For the proof of reg3) see [H5, Theorems 2.1.8, 4.1.5].

Let us note the following assertion;

Theorem 2.3.4.6 (Continuity (e, e)) The function
(f,¢) : D'(G) x D(G) — R

18 continuous in the appropriate topology.

Le., fn — fin D'(G) and ¢; — ¢ in D(G) imply (fn, d;) — (f, d).
For the proof see [H6, Theorem 2.1.8].

2.3.5 Let G; C G. Then D'(G) C D'(G1), because every functional on D(G) can
be considered as a functional on D(Gq).

A distribution f € D'(G) considered as a distribution in D’(G1) is called the
restriction of f to G1 and is denoted f |g, .
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Theorem 2.3.5.1 (Sewing Theorem) Let G, C R™ be a family of domains and in
every of them let there be a distribution f, € D(G.), such that:
If Goy NGy, # D, the equality

for 1GaynGay= Jor 1GayNGa, (2.3.5.1)

holds. Then there exists one and only one distribution f € D'(G) where G = |JGq
such that f |, = fa-

In particular, it means that every distribution is defined uniquely by its
restriction to a neighborhood of every point.

Let D(Sgr) be a space of infinitely differentiable functions on the sphere Sg :=
{z : |z| = R}. The corresponding distribution space is denoted as D’(Sg). The
sewing theorem holds for this space in the following form:

Theorem 2.3.5.2 (D’ on Sphere) Let a family of domains Q4 cover Sr and in
every of them let there be a distribution fo € D(Qy), such that:
If Qo N Qy, # D, the equality

for 190,090, = fos 00,00, (2.3.5.2)

holds. Then there exists one and only one distribution f € D'(Sg) such that
f |ch: fa-

2.3.6 Let 5 5
L:= Xj: 6—%%(3:)8—% +q(z) (2.3.6.1)

be a differential operator of second order with infinitely differentiable coefficients
aim q.

We will consider only three types of differential operators: a one-dimensional
operator with constant coefficients,the Laplace operator and the so-called spherical
operator (see Section 2.4).

For all these operators we have the following assertion which follows from
the general theory (see, e.g., [Ho, Theorem 11.1.1]):

Theorem 2.3.6.1 (Regularity of Generalized Solution) If the equation Lu =0 has
a solution v € D'(G), then u is a regular distribution and can be realized as an
infinitely differentiable function.

A distribution that satisfies the equation
Lu =4, inD'(G), (2.3.6.2)

where 6, is a Dirac delta function (see (2.3.2.2)), is called a fundamental solution
of L at the point y.
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Every differential operator that we are going to consider has a fundamental
solution (see, e.g., [H6, Theorem 10.2.1]).

A restriction of the equation (2.3.6.2) to the domain G, := G\y is a homo-
geneous equation Lu = 0 in D'(G,). Thus we have

Theorem 2.3.6.2 (Regularity of Fundamental Solution) The fundamental solution
is an infinitely differentiable function outside the point y.

2.3.7 We will need further also the Fourier coefficients for the distribution on the
circle.

Let D(S') be a set of all infinitely differentiable functions on the unit circle
S1. The set of all linear continuous functionals over D(S*) with the corresponding
topology (see 2.3.2) is the corresponding space of distributions D’(S!) for which
all the previous properties of distributions holds.

The functions {e?*?, k= 0,+1,42,...} belong to D(S'). The Fourier coef-
ficients of v € D'(S) are defined by

v(k) := (v, e k?), (2.3.7.1)

The inverse operator is defined by
1 o0

o) =5 > v(R)g,e™), (2.3.7.2)

k=—o0

and the series converges, in any case, for those v that are finite derivatives of
summable functions, because Fourier coefficients of g decrease faster then every
power of x.

The convolution of distribution v € D’'(S!) and g € D(S?!) is defined by

vxg(o) = (v,g9(¢ —o)). (2.3.7.3.)

This is a function from D(S?1).
The convolution of distributions vy, vy € D'(S?) is defined by

(V1 *x V2, g) =11 * (12 % g). (2.3.7.4)
In spite of the view it is commutative and

vy x va(k) = D1(k) - Do (k).

Exercise 2.3.7.1 Count the Fourier coefficients of the functions
G(re'®) = log |1 — re'?| (2.3.7.5)
for r > 1, r = 1,r < 1; the function defined by

cos p(p) :=cospp, —m < ¢ <7, p€ (0,00) (2.3.7.6)
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and 27-periodically extended; the function
dsinpg, p € N (2.3.7.7)

where ¢ is the 27-periodical extension of the function f(®) =0, ¢ €]0,27).

Exercise 2.3.7.2 Set

‘ p—1 k ik
Py_q(re'®) =R A , peEN. (2.3.7.8)
k=1
Prove that for every distribution v :
(Py—1(re’®) xv)(p) = 0. (2.3.7.9)

The same for the function
Gp(re'®) := G(re'?) + P,(re'?)

for r < 1.

2.4 Harmonic functions

2.4.1 We will denote as A the Laplace operator in R™:

o o

A e =
Tt g

.: 2
Oxy
We introduce in R™ the spherical coordinate system by the formulae:
x1 = rsinggsin ¢ ...sin ¢, _o;
To = 7 COS P Sin ¢P1 . .. SN Ppy—2;

T3 = T COS 1 SN Pg . . . SN Py, —2;

Ty = T COS P2,

where
0<¢po<2m 0<¢;<m j=1m—2; 0<r <oo.
Passing to the coordinates (7, ¢, ¢1,. .., ¢m—2) in the Laplace operator we
obtain

1 0 0 1
A= —rml 4 Ao
pm—1 6rr or + r2= %
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The operator Ago is called spherical, and has the form

T &

=0

0
; 0y

:1 |
mm

where
m—2 m—2
= H sin’ qu; HZ' = H Sin2 (bj; Hm,Q = 1.
j=1 j=i+1

In particular, for m = 2, i.e., for the polar coordinates,

100 10
~ror or r2 g2’

A distribution H € D'(G) is called harmonic if it satisfies the equation AH = 0.
The next theorem follows from Theorem 2.3.6.1.

Theorem 2.4.1.1 (Smoothness of harmonic functions) Any harmonic distribution
1s equivalent to an infinitely differentiable function.

This function, of course, satisfies the same equation and is a harmonic func-
tion in the ordinary sense. A direct proof can be found, e.g., in [Ro, Ch. 1, §2
(1.2.5), p. 60].

Let f(2), z = x+1y be a holomorphic function in a domain G C C. Then the
functions w(z,y) := Rf(2) and v(z,y) := Sf(2z) are harmonic in G. In particular,
the functions r™ cosny and r” sinng where r = |z|, ¢ = arg z are harmonic.

Set

2—m
m(::{ﬁﬂ , form =3, (2.4.1.1)

log |z], for m = 2.

(We will often denote points of the plane as z.)
It is easy to check that &, (x) is a harmonic function for |z| # 0.
Set
0 - {(m 2)om, form >3;
e 27 for m = 2,

where o, is the surface area of the unit sphere in R™.

Theorem 2.4.1.2 (Fundamental Solution) The function &, (v — y) satisfies in
D'(R™) the equation'
Apém(z —y) = 0,0(x —y), (2.4.1.2)

where §(x) is the Dirac 0-function (see 2.3.2).

1€y, is slightly different from the fundamental solution (see, (2.3.6.2)), but this is traditional in
Potential Theory
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Proof. Let us prove the equality (2.4.1.2) for y = 0. Suppose ¢ € D(R™) and
suppop C K € R™. We have

(A&, @) = /Sm(x)Aqb(x)dm = eh_r% Em(z)Ad(x)dx.
jol>e

Transforming this integral by the Green formula and using the fact that ¢ is finite
we obtain

/5 Aqﬁdz_/AS /S—d—/qb
|z|>e |z|>e |z|=€ |z|=€

where ds is an element of surface area and a% is the differentiation in the direction
of the external normal.
Use the harmonicity of &,,. Then the first integral is equal to zero. Further

we have
9 0
/ Em ds- ( o (ra )ds)

|z|=¢€ |z0|=1

= O(e), for e = 0.

=€
For the third term we have

m -2
[ 6%z =" 2ent [ ora)ds = [o(0) + o)) (m — 2o,
on em—1
|z|=€ |z0]|=1
Thus we obtain (A&, ¢) = ¢(0)6,,, and this proves (2.4.1.2) for y = 0.
It is clear that by changing ¢(z) for ¢(z+y) we obtain (2.4.1.2) in the general
case. g

We will consider now a domain Q with a Lipschitz boundary (Lipschitz do-
main). It means that every part of 92 can be represented in some local coordinates
(v,2"), v € R, 2’ € R™~! in the form z = f(2'), where f is a Lipschitz function,
ie.,

£ (1) = fl@2)| < Mo} — a5
where M depends only on the whole 992 and does not depend on this local part.

Let G(z,y,Q) be the Green function of a Lipschitz domain €.

It is known (see, e.g., [V], Ch. V, §28]) that the Green function has the
following properties:

G(z,y,Q) <0, for (z,y) € QA x Q; G(x,y,) =0 for (z,y) € 2 x99  (gl)
G(z,y,8) = G(y, 2, 0); (82)
G(z,y,8) —=Em(z —y) = H(z,y), (g3)

where H is harmonic on x and on y within ;

—G(z,y,) < —G(z,y,8) for Q1 C Q. (g4)
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From (g3) follows
Theorem 2.4.1.3 (Green Function) The equality

AG(xz,y,Q) = 0,,0(x —y), (2.4.1.3)
holds in D'(2).

Let f(z) be a continuous function on 9. It is known (see, e.g., [V], Ch. V,
§29]) that the function

H(z, f): /f G(z,y,Q)ds, (2.4.1.4)

is the only harmonic function that coincides with f on 9f2.
The unique solution of the Poisson equation

Au = p, U|8Q =f

for a continuous function p is given by the formula

u(zx, f,p) /f G(z,y,Q)dsy + 6., /G (z,y, Q)p(y)dy. (2.4.1.5)

Let D be an arbitrarily open domain.We can define a G(z,y, D) in the fol-
lowing way. Consider a sequence (1, of a Lipschitz domain such that €, T D.
The sequence of the corresponding Green functions G(z,y, £2,,) monotonically de-
creases. If it is bounded from below in some point, it is bounded everywhere while
x # y (as it follows from Theorem 2.4.1.7). It can be shown that the limit exists for
any domain, the boundary of which has positive capacity (see 2.5 and references
there). We will mainly use the Green function for the Lipschitz domains.

Let G(z,y, Ko r) be the Green function of the ball K, r := {|r — a| < R}.

Theorem 2.4.1.4 (Green Function for a Ball)

2—m ly—allz—y; gl 2—m
—|r — — (s , orm > 3,
G((E’ Y, Ka,R) = {1 | ‘yC|*Z‘R ( R ) ; : 2
8 [C=all=—C; al orm==2
where Y p i =a+ (y— (Rz/ ly — ) is the inversion of y relative to the sphere

{lz —a| = R}.
For the proof see, e.g., [Br, Ch. 6, §3].

Theorem 2.4.1.5 (Poisson Integral) Let H be a harmonic function in K, r and
continuous in its closure. Then

— |z —af?
H(z) = K 2.4.1.
(2) O'mR / |x i ———dsy, * € K(a,R). ( 6)

|z—a|=R
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In particular, for m = 2,

2
1
H(a+re"?) = — /H(a + Re™)
2m
0
This theorem follows from (2.4.1.4).

Theorem 2.4.1.6 (Mean Value) Let H be harmonic in G C R™. Then

1
H(w)= b / H(y)ds,, (2.4.1.7)
|z—a|=R

where © € G and R is taken such that K(x,R) € G.

We must only set a := x in (2.4.1.6). We can rewrite (2.4.1.7) in the form

1
H(z) = p— H(z + Ry)ds,.
lyl=1

R2 _ T2
R2 — 2Rr cos(¢ — ¥)

+ r2 .

Theorem 2.4.1.7 (Harnack) Suppose the family {H,), o € A} of harmonic func-
tions in G satisfies the conditions

H,(z) < C(K), forx e K; (Harl)
Ho(zg) > B > —o0, forxg e K (Har2)

for every compact K € G and C(K), B are constants not depending on «.

Then the family is precompact in the uniform topology, i.e., there exists such
a sequence Hy_, and a function H harmonic in the interior of K and continuous
in K such that Hy, — H uniformly in every K.

One can prove by using (2.4.1.6) that | grad H,| are bounded on every com-
pact set by a constant not depending on «. Thus the family is uniformly continuous
and thus it is precompact by the Ascoli theorem.

For details see, e.g., [Br, Supplement, §7].

Theorem 2.4.1.8 (Uniform and D’-convergences) Suppose the sequence H,, sat-
isfies the conditions of the Harnack theorem and converges to a function H in
D'(G). Then H, converges to H uniformly on every compact set K € G.

Of course, H is harmonic in G.

Proof. By the Harnack theorem the family is precompact. Thus we must only prove
the uniqueness of H. Suppose there exist two subsequences such that H} — H*
and H? — H? uniformly on every compact K € G.

By Connection between Convergences (Theorem 2.3.4.3) Hl — H! and
H? — H? in D'. Hence, H' = H? in D'(G). By the De Bois Raimond theorem
(Theorem 2.3.2.1) H! = H? almost everywhere and hence everywhere because
these functions are continuous. g
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Let D be a domain with a smooth boundary 0D and let F' C 0D. Set

oG
w(z, F, D) :z/aT(x,y)dsy.
y
F

It is called a harmonic measure of F' with respect to D. A harmonic measure can
be defined for an arbitrary domain D by a limit process similar to the one we had
for the Green function. In this case the formula (2.4.1.4) has the form

H(Imf) = f(y)dw(a:,y,D)
!

However we can not assert that H(x, f) coincides with f in any point = € 9D.
We can only consider it as an operator that maps a function defined on 0D to a
harmonic function in D.

By (2.4.1.3) we obtain

Theorem 2.4.1.9 (Two Constants Theorem) Let H be harmonic in D and satisfy
the conditions

H(x) < Ay for x € F; H(x) < Ay for x € 0D\ F
where A1 and As are constants. Then
H(z) < Ajw(z, F,D) + Asw(x,0D\F, D) for x € D.
Let y; r be the inversion from Green Function for a Ball (Theorem 2.4.1.4).

Set y* := yg 1, i.e., the inversion relative to a unit sphere with the center in the
origin. Let G* := {y* : y € G} be the inversion of a domain G.

Theorem 2.4.1.10 (Kelvin’s Transformation) If H is harmonic in G, then
H*(y) = [y*""H(y") (2.4.1.8)
is harmonic in G*.

For the proof you must honestly compute Laplacian of H*. “The computation
is straightforward but tedious” ([He, Thm. 2.24]). It is not so tedious if you use
the spherical coordinate system.

Exercise 2.4.1.1 Do this.

2.4.2 Denote as Sy := {2° : [2°| = 1} the unit sphere with center in the origin.
A function Y,(z%), 2% € Q C S is called a spherical function of degree p if it
satisfies the equation

AgoY 4+ p(p+m —2)Y =0. (2.4.2.1)

For m = 2, (2.4.2.1) gets the form
Y"(0) + p*Y(0) =0, ie., Y(0) = acosph+ bsin ph.

Spherical functions are obtained if we solve the equation AH = 0 by the change
H(x) = |z|PY (2).
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Theorem 2.4.2.1 (Sphericality and Harmonicity) The function Y,(z°) is spherical
in a domain Q0 C Sy if and only if the functions H(x) = |z|PY,(z°) and H*(z) =
|z| =P~ +2Y,(2°) are harmonic in the cone

Con(Q) :={z=rz’:2°€Q, 0<r<oc}. (2.4.2.2)

Ifp=k, k>0, k€Z, and only in this case, Yi(x°) is spherical on the whole Sy,
H(z) is a homogeneous harmonic polynomial of degree k and H* is harmonic in
R™\0.

For the proof see, e.g., [Ax, Ch. 5]

The spherical functions of an integer degree k form a finite-dimension space
of dimension
2k+m —2)(k+m —3)!
(m — 2)!k! '

dim(m, k) = (

In particular, d(2, k) = 2 for any k.
For different k the spherical functions Yy, (z") are orthogonal on S;. In partic-
ular, for m = 2, it means the orthogonality of the trigonometric functions system.

Theorem 2.4.2.2 (Expansion of a Harmonic Function) Let H(x) be a harmonic
function in the ball Kr = {|z| < R}. There exists an orthonormal system of
spherical functions Y (2°), k= 0,00, depending on H such that

H(z) = chYk(xo)|x|k, for |z| < R. (2.4.2.3)
k=0

For any such system we have

1
e = 2 /H(Rxo)Yk(xo)dszo. (2.4.2.4)
S1

For the proof see, e.g., [Ax, Ch. 10], [TT, Ch. 4, §10].

Theorem 2.4.2.3 (Liouville) Let H be harmonic in R™ and suppose

liminf R™% max H(z) < oo (2.4.2.5)

R—oo |x|=R

holds. Then H is a polynomial of a degree q < p.

Proof. We can suppose H(0) = 0 because H(x) — H(0) is harmonic and also
satisfies (2.4.2.5). Let R,, — oo be a sequence for which

R, * ‘ n‘na}%c H(z) < const < 0. (2.4.2.6)
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From (2.4.2.4) we obtain

x| < AgR~* / \H(R2")|dsa, (2.4.2.7)
S1

where Aj, = maxg, |Y;(2?)].
From the mean value property (Theorem 2.4.1.6)

/ H(Rz%)ds,, = H(0)o, = 0.

S
Thus
/ |H(Rx®)|dsz, = 2 / HT(R2)ds,, < 20, max H(z). (2.4.2.8)
S1 S1
From (2.4.2.8) and (2.4.2.7) we have
lek| < 24kR *ay, max H(z). (2.4.2.9)

Set R := R, and k > p. Passing to the limit when n — oo, we obtain ¢ = 0
for k¥ > p. Then (2.4.2.3.) implies that H is a harmonic polynomial of degree
q<p. L

2.5 Potentials and capacities

2.5.1 Let G(x,y.D) be the Green function of a Lipschitz domain D. We will sup-
pose it is extended as zero outside of D.

(x, p, D) := —/G(%uD)u(dy)

is called the Green potential of u relative to D. The domain of integration will
always be R™.

Theorem 2.5.1.1 (Green Potential Properties) The following holds:

GPol) I(x, u, D) is lower semicontinuous;

GPo2) it is summable over any (m — 1)-dimensional hyperplane or smooth hyper-
surface;

GPo3) All(e,u, D) = —0,,u in D' (D);
GPo4) the reciprocity law holds:

[ s, Dipa(o) = [ 1o, oz, Dy ().



2.5. Potentials and capacities 29

GPo5) semicontinuity in p: if pu, — p in D'(R™), then

lim inf II(z, p,, D) > I(z, u, D).
GPo6) continuity in p in D' if i, — p, then (e, py,, D) — II(e, u, D) in D'(R™)
and in D'(Sg), where Sg is the sphere {|z| = R}.

Proof. Let us prove GPol). Let N > 0. Set Gn(z,y) := max(G(z,y),—N), a
truncation of the function G(z,y).

The functions G are continuous in R™ x R™ and Gn(z,y) | G(z,y) for
every (x,y) when N — oco. Set

My (o0, D) =~ [ Gv(ay. D)p(dy).

The functions Iy are continuous and Iy (x, e) 7 II(x, ) by the B. Levy theorem
(Theorem 2.2.2.2). Then Iy (z, ®) is lower semicontinuous by the Second Criterion
of semicontinuity (Theorem 2.1.2.9).
Let us prove GPo5). From Theorem 2.3.4.4 (D’ and C* convergences)
lim y(z, g, D) = Un(z, u, D).

n—oo

Further II(z, p,, D) > Iy (z, pn, D), hence

liminf I1(z, y, D) > Uy (z, u, D).
Passing to the limit while N — oo, we obtain GPo5).
The assertion GPo2) follows from the local summability of the function
|#|2>~™ that can be checked directly.
Let us prove GPo3). For ¢ € D(D) we have

(AT 6) == (I, Ag) = — / u(dy) / G(z,y, D) Ad(x)dz

. / (AsG(e.y, D), $)u(dy) = / o(y)uldy)
- _9m</f“a ¢>u

since
<A:6G(.v Y, D)7 ¢> = 0m¢(y)

by Theorem 2.4.1.3. The property GPo4) follows from the symmetry of G(z,y, o)
(property (g2)).

Let us prove GPo6). Note that integral [ |z|™ 'dz converges locally in R™
and in R™~!. From this one can obtain by some simple estimates that functions
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= [ G(x,y, D)¢(x)dzx while ¢ € D(R™) and O(y) := [ G(v,y, D)0(x)ds,
while # € D(Sg) are continuous on y € R™.
Now we have

(L(o, ptn, D), ) = / (y)yan (dy) — / U(y)u(dy) = (T(e, 1, D), ).

Thus the first assertion in GPo6) is proved. The second one can be proved in the
same way. O

Set v := 1 —pa, and let I(z, v, D) := II(z, p1, D)—1I(z, pu2, D) be a potential
of this charge. Consider the boundary problem of the form

Au = puy — po, in D'(D), ulop = f, (2.5.1.2)
where f is a continuous function.

Theorem 2.5.1.2 (Solution of Poisson Equation) The solution of the boundary prob-
lem (2.5.1.2) is given by the formula

uw(z) = H(zx, f) — 6, TI(z, v, D),

where H(z, f) is the harmonic function from (2.4.1.4).

Proof. Since II(z, v, D)|sp = 0, the function u(z) satisfies the boundary condition.
Using GPo3) we obtain

Au=AH — [0, 'AL = pg — po. O

(. ) /Ix—ylm 2

is called a Newton potential. It is the Green potential for D = R™. The potential

A potential of the form

Mz, ) =~ [ logle = Clutdc)
is called logarithmic.
2.5.2 Let K € D. The quantity
cap (K, D) := sup pu(K) (2.5.2.1)

where the supremum is taken over all mass distributions g for which the following
conditions are satisfied:

II(x, p, D) <1, (2.5.2.2)
supppu C K, (2.5.2.3)

is called the Green capacity of the compact set K relative to the domain D.
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Theorem 2.5.2.1 (Properties of capg) For cap the following properties hold:

capGl)  monotonicity with respect to K: K1 C Ko implies capg(K1,D) <
capi(Ka, D).

capG2)  monotonicity with respect to D: K € D1 C Dy implies cap (K, D1) >
capg (K, D2)

capG3)  subadditivity with respect to K :

capo (K1 U Ky, D) < cap (K1, D) + cap (K2, D).

Proof. The set of all mass distributions that satisfy (2.5.2.2) for K = K is not
less than the analogous set for K = K5. Thus capG1) holds.

By the Green function property (g3) (see §2.4.1) —G(z,y,D1) < —G(x,y,D3).
Thus the set of all u that satisfy (2.5.2.2) for D = D; is wider than for D = Ds.
Hence capG2) holds.

Let supppu € K; U Ko and let w1, us be the restrictions of u to K, Ko
respectively.

If p satisfies (2.5.2.2) for K := K; U Ky then puq, ue satisfy (2.5.2.2) for
K := K, K5 respectively.

From the inequality

p(K1 U Kz) < p(Ky) + p(K2)
we obtain that
(K1 U Ks) < capg (K1, D) + cap (K2, D)
for any p with supp p C K1 U Ks. Thus capG3) holds.
The equivalent definition of the Green capacity is given by

Theorem 2.5.2.2 (Dual Property) The following holds:

cap (K, D) = [inf sup II(x, j1, D)]~* (2.5.2.4)
K xeD

where the infimum is taken over all mass distributions p such that p(K) = 1.

For the proof see, e.g., [La, Ch. 2, §4 it. 18]. For D = R™, m > 3, the Green
capacity is called Wiener capacity (cap,,(X)). It has the following properties in
addition to those of the Green capacity:

capW1) invariance with respect to translations and rotations, i.e.,

cap,, (V (K +x0)) = cap,, (K),

where VK and K + xg are the rotation and the translation of K respectively.

The presence of these properties brings the notion of capacity closer to the
notion of measure. Thus it is natural to extend the capacity to the Borel algebra
of sets.
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The Wiener capacity of an open set is defined as
cap,, (D) := Slll(p cap,,, (K),

where the supremum is taken over all compact K € D.
The outer and inner capacity of any set E can be defined by the equalities

cap,,(E) := f cap,,(D); cap, (E):= IS{térgEcapm(K).

A set E is called capacible if cap,,(E) = cap (E).
Theorem 2.5.2.3 (Choquet) Every set E belonging to the Borel ring is capacible.
For the proof see, e.g., [La, Ch2, Thm. 2.8].

Sets which have “small size” are sets of zero capacity. We emphasize the
following properties of these sets:
capZl) If cap,,(E?) =0, j =1,2,.... then cap,,(U°E’) = 0;
capZ2) Having the property of zero capacity does not depend on the type of
capacity: Green, Wiener or logarithmic capacity that we define below.

Example 2.5.2.1 Using Theorem 2.5.2.2 we obtain that any point has zero capac-
ity, because for every mass distribution concentrated in the point the potential is
equal to infinity. The same holds for any set of zero m — 2 Hausdorff measure (see
2.5.4).

Example 2.5.2.2 Any (m — 1)-hyperplane or smooth hypersurface has positive
capacity, because the potential with masses uniformly distributed over the surface
is bounded.

The Wiener 2-capacity can be defined naturally only for sets with diameter
less then 1, because the logarithmic potential is positive only when this condition
holds.

Instead, one can use the logarithmic capacity which is defined by the formulae
cap,(K) := exp[—cap,(K)] (2.5.2.5)
for K C {|z] <1} and
cap,(K) :=t 'cap,(tK)
for any other bounded K, where ¢ is chosen in such a way that tK C {|z| < 1}.
One can check that this definition is correct, i.e., it does not depend on t.

2.5.3

Theorem 2.5.3.1 (Balayage; sweeping) Let D be a domain such that 0D € R™,
and supp 4 € D. Then there exists a mass distribution py, such that for m > 3, or
for m = 2 and for D which is a bounded domain, the following holds:

ball) II(x,us) < I(z,p) for x € D;
bal2) TI(z,up) = I(z, u) for z ¢ D;
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bal3) supp us C OD;
bald)  u(9D) = (D).
If m = 2 and the domain is unbounded, a potential of the form

fi(z, ) o=~ [ log 1~ 2/¢[u(dc)
satisfies all the properties.

Proof. We will prove this theorem when 9D is smooth enough. For y € D,z €
R™\ D the function |z — y|?>~™ is a harmonic function of y on D.

Since |z — y|>=™ — 0 as y — 0o we can apply the Poisson formula (2.4.1.4)
even if D is unbounded. Thus

m _m O0G
|z -y = /aD |z — /[ W(y, y')dsy (2.5.3.1)
Y

where G is the Green function of D. From this we have

Cm o G
/ |z —ylP " u(dy) = / |z — o[> " dsy (/ 5 Wy )u(dy)> :
D 8D D 0Ny

The inner integral is nonnegative, because ‘g—g > 0 for ' € D. Let us denote

i (dy’) = (/D %(y,y’)u(dy)> dsyr.

Then we obtain the properties bal2) and bal3).
The potential II(x, i) is harmonic in D. Thus the function
u(z) == Iz, ) — (=, p)
is a subharmonic function (see Theorem 2.6.4.1). Every subharmonic function

satisfies the mazimum principle (see Theorem 2.6.1.2), i.e.,

u(z) < sup u(y) = 0.
yeoD

Thus the property ball) is fulfilled. To prove bal4) we can write the identity
oG
/ pun(dy') = / wldy) |5 = (y.y')dy'.
oG G aG Oy

The inner integral is equal to 1 identically, because the function = 1, y € G is
harmonic. Thus bal4) is true.

Consider now the special case when m = 2, and D is an unbounded domain.
Since log |[1—2/(| — 0 when ( — oo, we obtain an equality like (2.5.3.1). Repeating
the previous reasoning we obtain the last assertion for D with a smooth boundary.

Exercise 2.5.3.1 Check this in detail. O

For the general case see [La, Ch. 4, §1]; [Ca, Ch. 3, Thm. 4].
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Pay attention that the swept potential II(z, ) is also a solution of the
Dirichlet problem in the domain D and the boundary function f(x) = I(z, ) in
the following sense:

Theorem 2.5.3.2 (Wiener) The equality bal2) holds in the points x € 0D which
can be reached by the top of a cone placed outside D. For m = 2 it can fail only
for isolated points.

For the proof see [He], [La, Ch. 4, §1, Thm. 4.3.].
The points of D where the equality bal2) does not hold are called irregular.

Theorem 2.5.3.3 (Kellogg’s Lemma) The set of all the irregular points of dD has
zero capacity.

For the proof see, e.g., [He], [La, Ch. 4, §2, it. 10].
One can often compute the capacity using the following

Theorem 2.5.3.4 (Equilibrium distribution) For any compact K with cap,, (K) > 0
there exists a mass distribution Ax such that the following holds:
eql) Il(xz,\) =1, = € D\E, cap,,(E) =0;
eq2) supp Ag C 0K;
eq3) Ax (0K) = cap,, (K).
For the proof see [He], [La, Ch. 2, §1, it. 3, Thm. 2.3].

Let us note that the set E in the previous theorem is a set of irregular points.
The mass distribution \g is called equilibrium distribution, and the corre-
sponding potential is called equilibrium potential.

2.5.4 Let h(z), x > 0 be a positive continuous, monotonically increasing function
which satisfies the condition h(0) = 0. Let {K5} be a family of balls such that
their diameters d; := d(K5) are no bigger then €. Let us denote

my(E,€) = inf Y h(%d(Kj?)),

where the infimum is taken over all coverings of the set £ by the families {/}.
The quantity
mp(E) = lir% mp(E,€)

is called h-Hausdorff measure [Ca, Ch. II].
Theorem 2.5.4.1 (Properties of my) The following properties hold:

hl) monotonicity:
E, C By = mp(E1) < mp(Es);

h2) countable additivity:

mp(UE;) = th(Ej); E,NE, =@, fori#j; E; € c(R™).
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We will quote two conditions (necessary and sufficient) that connect the h-

measure to the capacity (see, [La, Ch. 3, §4, it. 9, 10].

Theorem 2.5.4.2 Let capE = 0. Then my(E) =0 for all h such that

/ hlr) dr < oo.

Tm—l

0

Theorem 2.5.4.3 Let h(r) = r™~2 for m > 3 and h(r) = (log1/r)~! for m = 2. If
the h-measure of a set E is finite, then cap,,(E) = 0.

Side by side with the Hausdorff measure the Carleson measure (see, [Ca,
Ch. II], is often considered. It is defined by

mf (E) == inf Y h(0.5d;),

where the infimum is taken over all coverings of the set £/ with balls of radii 0.5d;.
The inequality m$ (E) < my,(E) obviously holds. Let 3 —mesc E be the Carleson
measure for h = 7. The following assertion connects the 3 — mes¢ to capacity.

Theorem 2.5.4.4 The following inequalities hold:

B — mesc E < N(m)(cap,,(E))* ™2, form >3, 3>m—2;
0 — mesc(F) < 18cap;(FE), form =2, >0,

where N depends only on the dimension of the space.
For the proof see [La, Ch. IIL,§4, it. 10, Cor. 2].
2.5.5 Now we will formulate an analog of the Luzin theorem for potentials.

Theorem 2.5.5.1 Let supp u = K and let the potential TI(x, ) be bounded on K.
Then for any 6 > 0 there exists a compact set K' C K such that p(K\K’) < ¢
and the potential T(x, ') of the measure ' := p |i (the restriction of p to K) is
continuous.

For the proof see, e.g., [La, Ch. 3, §2, it. 3, Thm. 3.6].

Let us prove the following assertion:

Theorem 2.5.5.2 Let capK > 0. Then for arbitrarily small € > O there exists a
measure p such that supp p C K, the potential I1(x, ) is continuous and p(K) >
cap(K) —e.

Proof. Consider the equilibrium distribution A on K. Its potential is bounded
by Theorem 2.5.3.4. By Theorem 2.5.5.1 we can find a mass distribution p such
that II(x, 1) is continuous, supp u C K and pu(K) > Ag(K)—e=cap(K)—e. O
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2.6 Subharmonic functions

2.6.1 Let u(x), x € D C R™ be a measurable function bounded from above which
can be —oo on a set of no more than zero measure.
Let us denote as
1
Mz, ru) = 7/ u(y)dsy (2.6.1.1)
Sm,T

Omrm—1

the mean value of u(x) on the sphere Sy, :={y: |y — x| =7}.
The function M (z,r,u) is defined if S, , C D, but it can be —oo a priori.
A function u(x) is called subharmonic if it is upper semicontinuous, Z —oo,
and for any x € D there exists € = ¢(z) such that the inequality

u(z) < M(x,r,u) (2.6.1.2)

holds for all r < e.
The class of functions subharmonic in D will be denoted as SH (D).

Example 2.6.1.1 The function
u(z) == —|z|>~™ x € R™
belongs to SH(R™) for m > 3, and the function
u(z) :=log|z|, z € R?

is subharmonic in R2.

Example 2.6.1.2 Let f(z) be a holomorphic function in a plane domain D. Then
log |£(2)| € SH(D).

Example 2.6.1.3 Let f = f(z1,22,...,2,) be a holomorphic function of z =
(#1,- .+, 2n). Then u(z1,y1,...,Tn,yn) := log|f(xz1 +iy1,. .., Tn +iyy,)| is subhar-
monic in every pair (z;,y;), and, as we can see later, in all the variables.

Example 2.6.1.4 Every harmonic function is subharmonic, as follows from Theo-
rem 2.4.1.6. (Mean Value).

Theorem 2.6.1.1 (Elementary Properties) The following holds:
shl) if u € SH(D), then Cu € SH(D) for any constant C > 0;
sh2) if uy,ue € SH(D), then uy + ug, max|uy,us] € SH(D);

sh3) suppose u, € SH(D), n=1,2,..., and the sequence converges to u mono-
tonically decreasing or uniformly on every compact set in D. Then u €

SH(D);
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sh4) suppose u(zx,y) € SH(D1) for all y € Dy, and be upper semicontinuous in
D1 X Do. Let p be a measure in Do such that u(D3) < co. Then the function
uw(z) = [u(z,y)u(dy) is subharmonic in Dy.

shb) let V € SO(m) be an orthogonal transformation of the space R™ and u €
SH(R™). Then u(Ve) € SH(R™).

All the assertions follow directly from the definition of subharmonic functions,
properties of semicontinuous functions and properties of the Lebesgue integral. For
a detailed proof see, e.g., [HK, Ch. 2].

Theorem 2.6.1.2 (Maximum Principle) Let v € SH(D), G C R™ and u(z) #
const. Then the inequality

u(z) < sup limsup u(y), x € D
z'€dD y—ax',yeD

holds.

I.e., the maximum is not attained inside the domain.
The assertion follows from (2.6.1.2) and the upper semicontinuity of u(x).
For details see [HK, Ch. 2].

[e]
Let K € D be a compact set with nonempty interior K, and let f, be a
decreasing sequence of functions continuous in K that tends to u € SH(D). Such
a sequence exists by Theorem 2.1.2.9. (The second criterion of semicontinuity).

Consider a sequence {H (x,u,)} of functions which are harmonic in K and
H |sx= fn- The sequence converges monotonically to a function H(z) harmonic
[e]

in K by Theorem 2.3.4.3. (Connection between convergences), Theorem 2.4.1.8.
(Uniform and D’-convergences) and Theorem 2.6.1.2. The limit depends only on u
as one can see, i.e., it does not depend on the sequence f,,. This harmonic function
H(x) := H(z,u, K) is called the least harmonic majorant of u in K.

This name is justified because of the following

Theorem 2.6.1.3. (Least Harmonic Majorant) Let u € SH(D). Then for any K €
D, u(z) < H(z,u,K), v € K. If h(z) is harmonic in K and satisfies the condition
h(z) > u(z), z € IO(, then H(z,u, K) < h(z), = € IO(

For the proof see [HK, Ch. 3].

2.6.2 Let us study properties of the mean values of subharmonic functions. Let
Mz, r.u) be defined by (2.6.1.1) and N (z,7,u) by

1
N = —— [ utgay,

x,r

where wy, is the volume of the ball Ky ;.
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Theorem 2.6.2.1 (Properties of Mean Values) The following holds:
mel) M(z,r,u) and N (z,r,u) non-decreases in v monotonically;
me2) u(z) < N(z,0) < M(z,e);

me3) lim, o M(z,r,u) = lim_o N (z,7,u) = u(x).

Proof. For simplicity let us prove mel) for m = 2. We have

1 27 .
M(zo, |2|,u) = o /o u(zo + zem)dd).

Since u(z, ¢) := u(zo+ ze'?) is a family of subharmonic functions that satisfies the
condition sh4) of Theorem 2.6.1.1, M(zo, |2|,u) is subharmonic in z on any Ko .
By Maximum Principle (Theorem 2.6.1.2) we have

M(ZOaThu) = glaXM(z(h |Z|7u) < glaXM(Z()a |Z|,’LL) = M(207T2au)

0,71 0,72

for r1 < ro.
Monotonicity of N'(z,r,u) follows from the equality

1
N(z,r,u) = m/ s™ I M(x, rs.u)ds (2.6.2.1)
0

and monotonicity of M(x,r,u).

The property me2) follows now from the definition of a subharmonic function
and (2.6.2.1).

Let us prove me3). Let M (u,z,r) be defined by (2.1.1.1). We have

M(z,ru) < M(u,z,r7) and M(u,z,7) — u(z)
because of upper semicontinuity of u(x). Thus me2) implies me3). O

It is clear from me2) that a subharmonic function is locally summable. From
me3) we have the corollary

Theorem 2.6.2.2 (Uniqueness of subharmonic function) If u,v € SH(D) and u =
v almost everywhere, then u = v.

Let a(t) be defined by the equality (2.3.1.1), a(z) by (2.3.1.3). For a Borel
set I let
E:={z:FyeF:|x—y|<e}

This is the e-extension of F; this is, of course, an open set. For an open set D we

set
D¢ = U E-.
E<CD
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This is the maximal set such that its e-extension is a subset of D. One can see
that D™¢ is not empty for small € and D™¢ T D when € | 0. Therefore for any
D, @ D there exists € such that D; €@ D~°¢.

For u € SH(D) set

ue(x) := /u(ac—i—y)ae(y)dy (2.6.2.2)

which is defined in D¢,
Theorem 2.6.2.3 (Smooth Approximation) The following holds:

apl)  wu. is an infinitely differentiable subharmonic function in any open set D1 C
D~¢;
ap2)  uc | u(z) while € | 0 for all z € D.

Proof. The property apl) follows from sh4) (Theorem 2.6.1.1) and the following
equality that one can obtain from (2.6.2.2):

ue(z) = /u(y)ae(x —y)dy. (2.6.2.3)

Exercise 2.6.2.1 Prove this.
Let us prove ap2). From (2.6.2.2) we obtain

ue(x) :/0 a(s)s™ P M(z, es, u)ds. (2.6.2.4)

It follows from the property mel) (Theorem 2.6.2.1) that ue, < u., while €¢; < €.
Now we pass to the limit in (2.6.2.4). Using me3) we have M(x,es,u) | u(x). We
can pass to the limit under the integral because of Theorem 2.2.2.2. Thus

leig)lue(x) = /o a(s)s™ tu(x)ds = u(x). O

Theorem 2.6.2.4 (Symmetry of u.) If u(x) depends only on |x| then u. depends
only on |x|.

Proof. Let V € SO(m) be a rotation of R™. Then
u (V) = /u(y)oze(Vx —y)dy.
Set y = V3’ and change the variables. We obtain
ulVa) = [ ulVy)adVia - )iy

Since @ = a.(|z]) and v = u(|z|), ae(Vy) = a.(y) and u(Vy) = u(y). Thus
ue(Va) = uc(z) for any V and thus uc(z) = uc(|z|). O
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2.6.3 Since a subharmonic function is locally summable and defined uniquely by its
values almost everywhere,every u € SH (D) corresponds to a (unique) distribution

(u, @) == /u(x)¢(x)dx, peD.

Theorem 2.6.3.1 (Necessary Differential Condition for Subharmonicity) If u €
SH(D), then Au is a positive distribution in D'(D).

Proof. Suppose to begin that u(x) has second continuous derivatives. By using
(2.4.1.5) and (2.4.1.6) we can represent u(x) in the form

u(z) =M(x,r,u)+/K G(z,y, Kzr) Au(y)dy, (2.6.3.1)

where G is negative for all r. Suppose Au(x) < 0. Then it is negative in K,
for some r. Thus the integral in (2.6.3.1) is positive and we obtain that u(z) —
M(x,r,u) > 0. This contradicts the subharmonicity of u(x).

Now suppose u(z) is an arbitrarily subharmonic function. Then Aue(z) > 0
for every © € D when € is small enough.For each x there is a neighborhood D, such
that every u. defines a distribution from D’(D,). Hence Au.(x) defines a positive
distribution from D’(D,). Passing to the limit in u. when € | 0 we obtain in
D'(D,) a distribution that is defined by function u(z). Since the Laplace operator
is continuous in any D’ (Theorem 2.3.4.2), Au > 0 in D'(D,). From Theorem
2.3.5.1 we obtain that Aw is a positive distribution in D’'(D). O

The distribution Au can be realized as a measure by Theorem 2.3.2.2. The
measure (6,,) ' Au is called the Riesz measure of the subharmonic function u.

Theorem 2.6.3.2 (Subharmonicity and Convexity) Let u(|z|) be subharmonic in x
on Ko r. Then u(r) is convex with respect to —r>=™ for m > 3 and with respect
to logr for m = 2.

Proof. By Theorem 2.6.2.4, u.(x) depends on |z| only, i.e., ue(z) = u.(|z]), and
the function u.(r) is smooth. Passing to the spherical coordinates we obtain

L0 rm_lgue(r) > 0.

At = rm=1 g or =

By changing variables, r = e¥ for m = 2 or r = (—U)ﬁfor m > 3, we obtain
[ue(r(v)]” >0, i.e., ue(r(v)) is convex in v.

Passing to the limit on ¢ | 0 we obtain that u(r(v)) is convex too, as a
monotonic limit of convex functions. g

2.6.4 Now we will consider the connection between subharmonicity and potentials.
Theorem 2.6.4.1 (Subharmonicity of —II) —II(z,u, D) € SH(D)
It is because of GPol) and GPo3) (Theorem 2.5.1.1).
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The following theorem is inverse to Theorem 2.6.3.1.

Theorem 2.6.4.2 (Sufficient Differential Condition of Subharmonicity) Let Au €
D'(D) be a positive distribution. Then there exists u; € SH(D) that realizes u.

Proof. Set pu = 0,'Au. Let Q1 € Q € D and I(z,uq) be the Newtonian (or
logarithmic) potential of i |q. By GPo5) (Theorem 2.5.1.1) the sum H := u+IIisa
harmonic distribution in D’ (). Hence there exists a “natural” harmonic function
H, that realizes H (Theorem 2.4.1.1). Thus the function u; := Hy —II € SH()
and realizes v in D'(2). Since Q and §; can be chosen such that a neighborhood
of any x € D belongs to {21, the assertion holds for D. O

By the way, we showed in this theorem that every subharmonic function can
be represented inside its domain of subharmonicity as a difference of a harmonic
function and a Newton potential. Thus all the smooth properties of a subhar-
monic function depend on the smooth properties of the potential only because
any harmonic function is infinitely differentiable.

The following representation determines the harmonic function completely.

Theorem 2.6.4.3 (F. Riesz representation) Let u € SH(D) and let K be a compact
Lipschitz subdomain of D. Then

U((E) = H((E, Uu, K) - H(£C7/Lu, K)
where ., is the Riesz measure of u and H(x,u, K) the least subharmonic majorant.

Proof. We can prove as above that the function H(x) := w(x) + II(z, p, K) is

harmonic in K. Since H(x) > u(x) we have H(z) > H(z,u, K). So we need the
reverse inequality.
Let us write the same equality for u. that is smooth.

ue := H(x,u.) — I(z, po, , K).
Passing to the limit as € | 0 we obtain
u(z) = H(z,u, K) — lilrgl_[(:c,uue,K),
and the potentials converge because other summands converge. By Gpob)
lifgl_[(a:, o, K) > (2, paoy, K).
Hence H(z) < H(z,u, K). O

2.6.5 In this item we will consider subharmonic functions in the ball K := Ko r
which are harmonic in some neighborhood of the origin and write u € SH(R).
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Set
M (r,u) := max{u(x) : |z| = r},
/J“(Tv u) = /J“u(KT)7
M(ru) = M(0,r,u),
N(r,u) := A(m) /T plt, v) dt, where A(m)=max(1l,m —2). (2.6.5.1)
0

tm—l

Theorem 2.6.5.1 (Jensen-Privalov) For u € SH(R),

M(r,u) —u(0) = N(r,u), for 0 <r <R. (2.6.5.2)
Proof. By Theorem 2.6.4.3 we have
1 r? —|z|?
u(r) = — u(y) ————ds, + G(z,y, K, )u(dy
) OmT Jyy|=r ) lz—ylm " J, ( Pildy)

For z = 0 we obtain

) — [y (5= — =) pldt,u) + M(r,u), for m > 3;
u(0) = =
— [ log T pu(dt, u) + M(r,u), for m = 2.

Integrating by parts gives

—ul(t, u)(tm%—rm—z) 6 +(m —2) T‘;,f“l)dt for m > 3;

u(0) = M(r,u) = {

p(t,u)log = |0—|—fr“tudt for m = 2.

(2.6.5.3)

We have pu(t,u) = 0 for small ¢ because of harmonicity of u(x). Thus (2.6.5.3)
implies (2.6.5.2). O

Theorem 2.6.5.2 (Convexity of M(r,u) and M(r,u)) These functions increase
monotonically and are convex with respect to logr for m = 2 and —r?>~™ for
m > 3.

Proof. Consider the case m = 2. Set M(z) := max, u(ze'?). One can see that
M(r) = M(r,u).

Let u be a continuous subharmonic function. Then M(z) is subharmonic
(Theorem 2.6.1.1, sh5) and continuous because the family {uy(z) := u(ze'?)} is
uniformly continuous. The function M(z) depends only on |z|. Thus it is convex
with respect to logr by Theorem 2.6.3.2.

Let u(z) be an arbitrarily subharmonic function and . | u while € | 0. Then
M(r,ue) | M(r,u) by Proposition 2.1.2.7 and is convex with respect to logr by
sh3), Theorem 2.6.1.1.

If m > 3 you should consider the function M (x) := maxy|—, u(V,z) where
Vy is a rotation of R™ transferring x into y.

The convexity of M(r,u) is proved analogously.
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Exercise 2.6.5.1 Prove it.

The monotonicity of M (r,u) follows from the Maximum Principle (Theo-
rem 2.6.1.2). The monotonicity of M(r,u) was proved in Theorem 2.6.2.1. O

The following classical assertion is a direct corollary of Theorem 2.6.5.2.

Theorem 2.6.5.3 (Three Circles Theorem of Hadamard) Let f(z) be a holomorphic
function in the disc Kr and let My (r) be its mazimum on the circle {|z| = r}.
Then

My(r) < ([]\/./'f(rl)]IOgTz[]Wf(m)]k)g;)logH
for0<ry <r<ry<R.

For the proof you should write down the condition of convexity with re-
spect to logr of the function log M (r) which is the maximum of the subharmonic
function log | f(2)] .

Exercise 2.6.5.2 Do this.
For details see [PS, Part I, Sec. III, Ch. 6, Problem 304].

2.7 Sequences of subharmonic functions

2.7.1 We will formulate the following analogue for the Montel theorem of normal
families of holomorphic functions.
The family
{to, . € A} C SH(D) (2.7.1.1)

is called precompact in D'(D) if, for any sequence {a,, n =1,2,...} C A, there
exists a subsequence an,, j =1,2,...and afunction u € SH(D) such that us,, —
u in D' (D).

Example 2.7.1.1 u, :=log|z — «|, |a| < 1 form a precompact family.

Example 2.7.1.2 u, := log|fs| where {f4} is a family of holomorphic functions
bounded in a domain D form a precompact family.

A criterion of precompactness is given by

Theorem 2.7.1.1 (Precompactness in D) A family (2.7.1.1) is precompact iff the
following conditions hold:

compl) for any compact set K C D a constant C(K) exists such that
uq(z) < C(K) (2.7.1.2)

foralla € A and x € K;
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comp?2) there exists a compact set K1 € D such that

inf4 max{uq(x) : z € K1} > —oc. (2.7.1.3)
aE

For the proof see [H6, Thm. 4.1.9].

Theorem 2.7.1.2 Let u,, — u in D'(Kg). Then u, — u in D'(S;) for any r < R.

Proof. We have p,, — p. Let us choose R; such that r < Ry < R. Then
un(a:) = H(Iv Un, KRI) - H('Tv Hn s KRI)

by the F. Riesz theorem (Theorem 2.6.4.3).

Now, we have II(z, pn, Kr,) — II(x, u, Kg,) in D'(R1) by GPo6), Theorem
2.5.1.1. Thus H(z, upn, Kgr,) — H(z,u, Kg,) in D'(Ry).

By Theorem 2.4.1.8, H(x,un, Kr,) — H(x,u, Kg,) uniformly on any com-
pact set in Kg,, in particular, on S,. Hence H(z,un, Kg,) — H(z,u,Kg,) in
D'(Sy). Also Il(x, pn, Kg,) — (2, u, Kg,) in D'(S;) by GPo6), Theorem 2.5.1.1.
Hence, u, — w in D'(S;). O

We say that a sequence f,, of locally summable functions converges in Lioc
to a locally summable function f if for any z € D there exists a neighborhood
V 3 z such that [}, [fn — fldz — 0.

Theorem 2.7.1.3 (Compactness in Li,.) Under conditions of Theorem 2.7.1.1 the
family (2.7.1.1) is precompact in Lioc.

For the proof see [H6, Thm. 4.1.9].
Theorem 2.7.1.4 Let u,, — u in D'(Kg). Then u,f — u* in D'(KR).
This is because u (x) < M, z € K, for all compact sets K € Kg.

2.7.2 The following theorem shows that a subharmonic function is much more
“flexible” than a harmonic or analytic function.

Theorem 2.7.2.1 Let D @ R™ be a Lipschitz domain and let uw € SH(D) satisfy
the condition u(x) < C for x € D. Then for any closed domain D1 € D there
exists a function u(zx) := u(x, D1) such that:

extl) w(z) =a(x) for x € Dy;

ext2) a(x) =C forx € dD;

ext3) @€ SH(D) and is harmonic in D\Dy;

extd) wu(z) <a(zx) for x € D.

The function @ is defined uniquely.
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Proof. We can suppose without loss of generality that C' = 0, because we can
consider the function v — C.

Let u(z) be continuous in D;. Consider a harmonic function H(z) which is
zero on 0D and u(x) on dD;1. We have H(z) > u(z) for z € D\D; because of
Theorem 2.6.1.3. Set

H D\ Dq;
ﬂ(ﬁ) _ (I)v T e \ 1y
u(z), x€ Dj.
The function @(z) is subharmonic in D. For « ¢ 9Dy it is obvious, and for x € 9D,
it follows from
u(z) = u(x) < M(z,r,u) < M(z,r,u)
for r small enough.

It is easy to check that all the assertions of the theorem are fulfilled for the

function .

Exercise 2.7.1.1 Check this.
Let u(z) be an arbitrarily subharmonic function. Consider the family u. of
smooth subharmonic functions that converges to u(z) decreasing monotonically

in a neighborhood of D;. The sequence (u.) converges monotonically to a subhar-
monic function that has all the properties extl)-ext4). O

Theorem 2.7.2.2 (Continuity of &) Let u, — u in D'(D) and u,(z) < 0 in D.
Then for any K € D with a smooth boundary 0K u, (e, K) — u(e, K) in D'(D).

For proving, we need the following auxiliary statement:

Theorem 2.7.2.3 Let u, — w in D'(D). Then for any smooth surface S € D and
any function g(x) continuous in a neighborhood of S the assertion

/un(x)g(x)dsx —>/u(m)g(m)dsw (2.7.2.1)
5 5
holds.

Proof. Since u, — u in D'(D) also the Riesz measures of the functions converge.
Hence pn(K) < C(K) for some K > S. Thus, for the sequence of potentials
I(z, wy ), we have

/SH(a:,un)g(x)dsz :/,un(dy)/ g(a)ds,

s |z —ym=2

The inner integral is a continuous function of y as can be seen by simple
estimates. Thus the assertion (2.7.2.1) holds for potentials. Now, one can represent
U, in the form

un(z) = Hn(z) — (2, tn)
in K. The sequence H, convergences in D’ and, hence, uniformly on S. Thus
(2.7.2.1) holds for every u,,. O
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Proof of Theorem 2.7.2.2. Let ¢ € D(D) and supp ¢ C K. Then

(tn, @) = (un, ¢) = (u, ¢) = (i, §).
Let x € D\K. Then

~ oG
@) = [ 5@ (s,

By Theorem 2.7.2.3, u,(x) — a(z) for x € D\ K. The sequence 1, is precompact

in D'(D). Thus every limit ug of the 1, coincides with @(z) in K and in D\K.
Hence, ug = @ in D'(D). O

2.7.3 The property sh2), Theorem 2.6.1.1, shows that the maximum of any finite
number of subharmonic functions is a subharmonic function too. However, it is
not so if the number is not finite.

Example 2.7.3.1 Set u,(z) = tlog|z|, n = 1,2.... The functions u,, € SH(K).

—n
Taking the supremum in n we obtain
0, for z #£ 0;

n —oo for z =0.

u(z) =: supuy(z) = {

The function is not semicontinuous, thus it is not subharmonic. However, it differs
from a subharmonic function on a set of zero capacity. The following theorem
shows that this holds in general.

Theorem 2.7.3.1 (H. Cartan) Let a family {uo, € SH(D), a € A} be bounded
from above and u(x) := supye 4 Ua(x). Then u* € SH(D) and the set E = {x :
u*(x) > u(x)} is a zero capacity set.

For proving this theorem we need an auxiliary assertion
Theorem 2.7.3.2 Let II(x, un, D) be a monotonically decreasing sequence of Green
potentials and supp u, C K € D. Then there exists a measure pu such that the

imequality
lim 11z, tn, D) = (x, o, D)

holds for all x € D with equality outside some set of zero capacity.

Proof. The sequence II(x, un,, D) converges monotonically and thus in D’ (The-
orem 2.3.4.3). Then p,, — p in D’ (Theorem 2.2.4.2.) and thus in C*- topology
(Theorem 2.3.4.4). By GPo5) (Theorem 2.5.1.1) we have

lim 1(z, jin, D) > 1l(z, , D).

Suppose that the strict inequality holds on some set E of a positive capacity. By
Theorem 2.5.2.3 one can find a compact set K C E such that cap(K) > 0. Then
there exists a measure v concentrated on E such that its potential II(z,v, D) is
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continuous (Theorem 2.5.5.2). Thus we have
/H(a:,u,D)V(dx) </ lim TI(z, pin, D)v(dz) = lim [ II(z, pn, D)v(dz),

lim [ O(x,v, D)u,(dz) = /H(a:,y, D)u(dx) = /H(J:,,u,D)V(dm).
The equalities use Theorem 2.2.2.2 (B. Levy), reciprocity law (GPo4), Theorem
2.5.1.1, C"*-convergence of u, and once more the reciprocity law, respectively. So
we have a contradiction. g

Proof of Theorem 2.7.3.1. Suppose that u,(z) T u(z). We can suppose also that
u, < 0. For any domain G € D the sequence @,(x) — u(x) for x € G (see
Theorem 2.7.2.1), because u,(x) = U, (z) for x € G. Since a,, = (x, i, D) for
x € D, u(x) = U(x, 1, D) = u(x) for x € G and coincides with lim, . t, ()
outside some set F¢ of zero capacity. Consider a sequence of domains G,, that
exhaust D. Then u(x) = lim, . u,(z) outside the set E := US>, Eg, which has
zero capacity by capZl) (see item 2.5.2).

Now let {u,, n =1,2...} be a general countable set that satisfies the condi-
tions of the theorem. Then the sequence v, := max{ux : k =1,2...,n} € SH(D)
and v,, T u. Applying the previous reasoning we obtain the assertion of the theorem
also in this case.

Let {uq, @ € A} be an arbitrary set satisfying the condition of the theorem.
By Theorem 2.1.3.2 (Choquet’s Lemma) one can find a countable set Ag C A such
that

(Supua)* = (Sup uoz)*'
Ao A

Since sup 4, Ua < SUP4 U, We have

E = {ac : (supug)* > supua} C Ey := {x :(supug)* > supua}.
A A Ao Ao

Thus cap (E) <cap (Ey) = 0. O
Corollary of Theorem 2.7.3.1 is

Theorem 2.7.3.3 (H. Cartan +) Let {u, ¢t € (0;00)} C SH(D) be a bounded from
above family, and v := limsup,_, . u;. Then v* € SH(D) and the set E := {x :
v*(z) > v(x)} has zero capacity.

Proof. Set uy, 1= sup;s,, ut, By = {z: (un)* > un}, E :=UE,. Since cap(E,) =
0, capE = 0 too.
Let x ¢ E. Then

v(z) = lim supu(x) = lm (uy,)*(z).
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The function

v* = lim (up)*(x)
n—oo
is the upper semicontinuous regularization of v(z) for all z € D. O

In spite of Example 2.7.3.1 we have

Theorem 2.7.3.4 (Sigurdsson’s Lemma) [Si] Let S C SH(D) be compact in D'.
Then
v(x) :=sup{u(x) : u € S}

1S upper semicontinuous
and, hence, subharmonic.

Proof. Note that

ue(x) = (u, oz — o))
(see (2.6.2.3), (2.3.2.1)); and it is continuous in (u, z) with respect to the product
topology on (SH(D)ND') x R™ (Theorem 2.3.4.6).

Let o € D,a € R and assume that v(zg) < a. We have to prove that there
exists a neighborhood X of zg such that

v(z) <a, v €X. (2.7.3.1)

We choose § > 0 such that v(zg) < a—6. If u® € SH(D) and e is chosen sufficiently
small, then

u®(wg) < ul(wo) <a—0d
by Theorem 2.6.2.3 (Smooth Approximation).

Since u.(x) is continuous, there exists an open neighborhood Uy of u° in
SH(D) and an open neighborhood Xy of g such that

u(r) < a—9, uely, ze X
The property ap2) (Theorem 2.6.2.3) implies
u(z) <a—9, uely e X (2.7.3.2)

Since u? is arbitrary and S is compact, there exists a finite covering Uy, Us, ..., Uy,
of S and open neighborhoods X7, X», ..., X,, of 2o such that (2.7.3.2) holds for all
(v,2):uelU;, veX;, j=1,...,n. Set X :=N;X;. Then (2.7.3.1) holds. O

2.7.4 Now we are going to connect D’-convergence to convergence outside a zero
capacity set, the so-called quasi-everywhere convergence.

Theorem 2.7.4.1 (D’ and Quasi-everywhere Convergence) Let u,, u € SH(D)
and u, — u in D'(D). Then u(x) = lmsup,,_, ., un(z) quasi-everywhere and
u(z) = (imsup,,_, o, un(x))* everywhere in D.
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For the proof we need the following assertion in the spirit Theorem 2.7.3.2.

Theorem 2.7.4.2 Let p,, — p in D'(D) and supp pu,, C K € D. Then
liminf II(z, w,, D) > II(x, D)

n—oo

with equality quasi-everywhere.

Proof. The inequality was in GPo5), Theorem 2.5.1.1.
Suppose the set
E :={z: liminf (x, pn, D) > (z, p, D)
has a positive capacity. By Theorem 2.5.2.3 one can find a compact set K C E

such that cap(K) > 0. By Theorem 2.5.5.2 one can find a measure v concentrated
on K with continuous potential. As in the proof of Theorem 2.7.3.2 we have

/H(a:,u,D)V(dJU) < /liminf (z, pn, D)v(dz) < liminf/H(aj,un,D)V(dx)

n—oo n—o0

= lim inf/H(a:, v, D)y, (dx) = /H(aj, v, D)u(dz) = /H(a:, w, D)v(dzx).
The second inequality uses Theorem 2.2.2.3 (Fatou’s Lemma). The equalities use
the reciprocity law (GPo4), Theorem 2.5.1.1, C*-convergence of p,, and once more
the reciprocity law, respectively. So we have a contradiction. g

Proof of Theorem 2.7.4.1. Let D; € D. Then the sequence u,, is bounded in D1
by Theorem 2.7.1.1. We can assume that u,(z) < 0 for z € D;.

For any domain G € D; the sequence @, (x, G) — u(x) in D’'(D;) by Theorem
2.7.2.2. We also have the equality @, = —II(z, fin, D1). Thus i, — i in D'(Dy).
By Theorem 2.7.4.2, liminf,, o II(z, fin, D1) = II(z, i, D1) quasi-everywhere in
Dy. Hence

limsup u,, = u (2.7.4.1)
quasi-everywhere in G because u,(x) = U, (x) for € G.

Consider a sequence of domains Gy, that exhaust D. Then (2.7.4.1) holds out-
side a set E,, of zero capacity and (2.7.4.1) holds in D outside the set E := U2 E,
which has zero capacity by capZl) (see item 2.5.2), i.e., quasi-everywhere. O

2.7.5 Now we connect the convergence of subharmonic functions in D’ to the
convergence relative to the Carleson measure (see 2.5.4).

We say that a sequence of functions w,, converges to a function u relative to
the a-Carleson measure if the sets E,, := {z : |uy(z) — u(z)] > €} possess the
property

a —mesc B, — 0. (2.7.5.1)
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Theorem 2.7.5.1 (D’ and a-mesc Convergences) Let u,,u € SH(D) and u, — u
in D'(D). Then for an every a > 0 and every domain G € D u,, — u relative to
the (o + m — 2)-Carleson measure.

For proving this theorem we need some auxiliary definitions and assertions.
Let 1+ be a measure in R™. We will call a point x € R™ («, ’, €)-normal with
respect to the measure u, (o < o) if the inequality

fa(t) i= (K py) < €@ gotm=2
holds for all t < e.
Theorem 2.7.5.2 In any («, o, €)-normal point the following inequality holds:

—/ log |z — ¢| — logeldue < Ce™ | form = 2;

K .

/ |z —y>~™ — € ™]du, < Ce*= for m > 3;
Kot

while C = C(a, m) depends on o and m only.

Proof. Let us consider the case m = 2. We have

€ C €
log ——du¢ = / log —dpu.(t).
i, e = e a0

z,€

Integrating by parts we obtain

€ € € pz(t)
log ——d :lofzt€+/ dt
/K B g Ha(1) [o o

’ ¢ ]_ ’
<e“ / o ldt = =@,
0 (0%
Let us consider the case m > 3. We have

[ e yPm =@, = [ = (o)
Kw,t 0

—m —m € ‘ Hax 3

= (2™ — 7™ e () |6 +(m — 2)/0 tm(—Q) dt
—2 [€ -2 ,

<= / pe-lgp = N2 ama’, 0
€ 0 «

Theorem 2.7.5.3 (Ahlfors-Landkof Lemma) Let a set E C R™ be covered by balls
with bounded radii such that every point is a center of a ball. Then there exists an at
most countable subcovering of the same set with mazimal multiplicity cr = cr(m).

Le., every point of E is covered no more than cr times. Let us note that
cr(2) = 6.
For the proof see [La, Ch. III, §4, Lem. 3.2].
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Theorem 2.7.5.4 Let K @ D. The set E := E(a,d’ €, 1) of points that belong to
K and are not («, &, €)-normal with respect to p satisfies the condition

(a+m—2) —mesc E < cr(m)e® u(K°) (2.7.5.2)
where K€ is the 2e-extension of K.
Proof. Let x € E. Then there exists ¢, such that
fig(tg) > 22,
Thus every point of E is covered by a ball K, ; . By the Ahlfors-Landkof lemma

(Theorem 2.7.5.3) one can find a no more than cr(m)-multiple subcovering
{Kxj,txj }. Then we have

Zta+m 2 < er(m)e® p(K°).

By definition of the Carleson measure we obtain (2.7.5.2). O

Theorem 2.7.5.5 Let p, — p in D'(R™) and supp p,, C K @ R™. Then for every
a >0 and G @ R™, I(x, upn) — I(x,u) relative to the (a + m — 2)-Carleson
measure.

Proof. Let m = 2. Set

log|z = (|, for|z—(|>¢
loge |Z_C| =
loge, for |z — (| <e.

This function is continuous for (z,¢) € K x K.
Set vy, := pn, — p. Then we have

- / log |2 — Clun(dC) + / log |z — Clu(dC) = — / log |2 — Clva(d)

= —/log€|z—C|Vn(d<)—/ [log |z — (| — log €], (dC).

z,€

The function log, |z—(| is continuous in ¢ uniformly over z € K. Thus the sequence

ML(2) = [ log |2 = Clon(dc)
converges uniformly to zero on K. Suppose now that

2 ¢ Ela,d e, n) U E(a,d €, i),
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i.e., it is an («, o/, €)- normal point for p and p,. By Theorem 2.7.5.2 we have
/ llog |2 — ¢| — log v (dC) < 20
Kz,e
Thus for sufficiently large n > ng(e),

Tz, ) — Tz, )] = \ [ 1081z = Cluntac) ~ [ 1051z - <|u<d<>] <5=4(0

while z ¢ E(a, /e, u) U E(a, €, up) := Ep(e).
By Theorem 2.7.5.3 the Carleson measure of E,(¢) satisfies the inequality

a — mesg En(€) < er(m)e [u(K) + pn (K)] < Ce® = ()

where C'= C(K) does not depend on n because pi,(K) are bounded uniformly.
Hence, for any ¢ > 0 the set

(€)= {=: [T(z, pta) — TL(z, )| > 6(6)}

satisfies the condition
a —mesc E) (€) < v(e) (2.7.5.3)

while n > ng = ng(e).
Let us show that II(z, u,) — II(z, u) relative to o — mesc on K. Let o, dp

be arbitrarily small. One can find € such that d(e) < do,v(e) < 0. One can find
ng = no(€) such that (2.7.5.3) is fulfilled. Now the set

En5 = {Z : |H(Zwu'n) - H(Z7/1“)| > 50}

is contained in EJ (€). Thus o — mes¢ Ey, 5, < 7o and this implies the convergence
relative to a — mes¢. An analogous reasoning works for m > 3. g

Proof of Theorem 2.7.5.1. Let u, — u in D’. One can assume that u,, u are
potentials on any compact set (Theorem 2.7.2.2). Hence, by Theorem 2.7.5.5 it
converges relative (« +m — 2) — mesc. O

2.8 Scale of growth. Growth characteristics
of subharmonic functions

2.8.1 Let A be a class of nondecreasing functions a(r), r € (0,00) such that
a(r) > 0 and a(r) — oo when r — oo. The quantity

. loga(r)
=1
pla] = lim sup og

(2.8.1.1)

is called the order of a(r).
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Suppose p := p[a] < co. The number

ola] := limsup @ (2.8.1.2)

r—oo T

is called the type number.
If o[a] = 0, we say a(r) has minimal type. If 0 < ola] < oo, a(r) has normal
type. If ofa] = oo, it has mazimal type.

Example 2.8.1.1 Set a(r) := oor”°. Then pla] = po, ola] = oy.
Example 2.8.1.2 Set a(r) := (logr)~!r?°. Then pla] = po, ola] = 0.
Example 2.8.1.3 Set a(r) := (logr)r*e. Then pla] = po, ola] = .

Theorem 2.8.1.1 (Convergence Exponent) The following equality holds:

pla] = inf{A : /OO ar(:)ffr < oo}. (2.8.1.3)

If the integral converges for X\ = pla], a(r) has minimal type.

Exercise 2.8.1.1 Prove this.
For the proof see, e.g., [HK, §4.2].

Example 2.8.1.4 Let r;, j = 1,2,... be a nondecreasing sequence of positive
numbers. Let us concentrate the unit mass in every point r; and define a mass
distribution

n(E) := {the number points of the sequence {r;} in E}, E C R.
Then
Cdn =1
/0 = > s (2.8.1.4)
1

The infimum of A\ for which the series in (2.8.1.4) converges is usually called
the convergence exponent for the sequence {r;} [PS, Part I, Sec. 1, Ch. III, §2].
Integrating by parts one can transform the integral in (2.8.1.4) to an integral
of the form (2.8.1.3) where a(r) = n((—oo,r)). Theorem 2.8.1.1 shows that the
convergence exponent coincides with the order of this a(r).

A function p(r) is called a prozimate order with respect to order p if
p(r) >0,
lim, o p(r) = p,
p(r) has a continuous derivative on (0, c0),

lim, oo 7 logrp’(r) = 0.
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Two proximate orders p1(r) and p2(r) are called equivalent, if

logr

pl(T)—pg(T)zo( ! ) (2.8.1.5)

For a € A set
a(r)

ola, p(r)] := limsup o)

T—00

(2.8.1.6)

It is called a type number with respect to a proximate order p(r). It is clear that
this type number is the same for equivalent proximate orders.

Theorem 2.8.1.2 (Proper Proximate Order) Let a € A and pla] = p < co. Then
there exists a proximate order p(r) such that

0 < gla, p(r)] < 0. (2.8.1.7)

For the proof see [Le, Ch. 1, Sec. 12, Thm. 16].

If a proximate order satisfies the condition (2.8.1.7), we will call it the proper
proximate order of a(r) (p.p.o.). The function 7*(") inherits a lot of useful proper-
ties of the power function r*.

Theorem 2.8.1.3 (Properties of P.O) The following holds:

ppol) the function V(r) := rP(") increases monotonically for sufficiently large
values of r.

ppo2) forq<p+1,

/T tPO=a g ~ L(T)H_q
1 pt+l—gq

and for g > p+1,

e e} r)+1—
/ tP(t)*th ~ Tp();
r q—p—1
as r — oo.
ppo3) the function L(r) := r*(")=F satisfies the condition
Vo >0, L(kr)/L(r) — 1

when r — oo uniformly for k € [%, d].

Exercise 2.8.1.2 Prove these properties.

For the proof see, e.g., [Le, Ch. 2, Sec. 12]. The following assertion allows us
to replace any p.o. with a smooth one.

Theorem 2.8.1.4 (Smooth P.O) Let p(r) be an arbitrary p.o. There exists an in-
finitely differentiable equivalent p.o. p1(r) such that

" logrpP (r) >0, k=1,2,... (2.8.1.8)

when r — 0.
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Proof. Let a. be defined by (2.3.1.3). Set € := 0.5, po(z) := p(e®) and

x

po1(x) := po(n) + [po(n + 1) — po(n)] / ao.5(t +0.5)dt

n

for x € [n,n + 1). The function po;(z) is continuous and infinitely differentiable
due to properties of a. and poi(n) = po(n) for n = 1,2,.... By property po3) of
p.o. we have

1
REL max |yepo(y) — 0
n  y€ln,n+1]

(n+1)|po(n+ 1) — po(n)| <

as n — oo. Thus

Jmax |y -po” ()] < const-(n +1)|po(n +1) — po(n)] — 0
ye(n,n

as 1n — OQ.

So p1(r) := poi(logr) is a p.o. that satisfies (2.8.1.8). Let us show that it is
equivalent to p(r). Indeed

lpo(x) — pox(z)| =

T , @
/n oly) ~ pou ()"

+1 1
< a - po’ - o log =o| -],
< cnax [y po'(y)l +ly - por (y)[[log = = =0 (x)

when z € [n,n+ 1] and n — oo. O
We will further need (in 2.9.3) the following assertion.

Theorem 2.8.1.5. (A.A. Gol'dberg) Let p(r) — p be a p.o., and let f(t) be a
function that is locally summable on (0,00) and such that

lim tPHOf(t) = Jim PV f(t) = 0 (2.8.1.9)

for some 0 < 6,y < 1.
Then

lim (") / ’ (rt)PT £ (t)dt = / “y f(t)dt,

T o o (2.8.1.10)
lim (") / (rt)?T) f(t)dt = / P f(t)dt

for any ¢ > 0 and any x € (0,00).
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Proof. Set

It will be enough to prove that

lim I(r) = /Ootpf(t)dt (2.8.1.11)

r—00 0

because both functions

folta) e {f(t), for ¢ € (0, ),

o for ¢ € [z, 00)

and foo(t,z) := f(t) — fo(t,x) also satisfy the condition of the theorem.
Let us represent the integral as the following sum:

00 (rt)p(rt)
I(r) = / O F @t = 17,0+ T, ) + Ts(r,0), (2.8.1.12)

where -
< (rt)etr

I(r,e) ;:/_1 O .
et rt)Prt)

Ly(r,€) == / (W)J(T) F(t)dt,
o rt p(’r‘t)

L(r,e) = / (TZ(T) Ft)dt.

We can represent I5(r, €) in the form

Lo(r,e) = / 6 LL((’:))  f(t)dt.

By ppo3) (Theorem 2.8.1.3),
1
lim I5(r€) :/ tf f(t)dt. (2.8.1.13)
Let us estimate the “tails”. From (2.8.1.9) we have
[f(®) < CtP?
for 0 < t < e where C does not depend on € and

[f(O] < Ct i
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for t > ¢~1. We have

€ (Tt)p(rt)

hr el <€ o1 TP t00dt = CJi(re)
and
limsup |[1(r,€)| < C lim Jyi(r,¢). (2.8.1.14)

Let us calculate the last limit.We perform the change x = tr:

Ji(r,e) = pP(r)+pto—1 /er 1=P@)=(p+8) g

C

Now we use ppo2) for ¢ = p+ ¢ and ppo3):

(er)p(er)—(p+5)+l
im
1—0r— rP(T)*(P+5)+1
1-5 1-5
_ € lim L(er) _c°
1—0r—cc L(r) 1-6

lim Jy(r,€) =

Substituting in (2.8.1.14) we obtain

1-5
limsup |11 (r, €)| < Cf - (2.8.1.15)
Analogously one can obtain
!
limsup |I5(r,e)| < C—. (2.8.1.16)
r—00 "y
Using (2.8.1.13), (2.8.1.15) and (2.8.1.16) one can pass to the limit in (2.8.1.12)
as r — 00, then let € — 0 and obtain (2.8.1.11). O
2.8.2 Let
u(x) :=up(x) — ua(x) (2.8.2.1)

where ui,us € SH(R™), u1(0) > —o0, u2(0) =0 and p1 1= fy,, H2 := iy, are
concentrated on disjoint sets.

Let m = 2, uj(z) := log|f;(2)|, j = 1,2 where f;(z), j = 1,2 are en-
tire functions. Then the function u(z) = log|f(z)|, where f(2) := f1(2)/f2(z), is
meromorphic. The condition for masses means that f; and f; have no common
zeros, u2(0) = 0 corresponds to f2(0) =1 and u1(0) > —oo means f;(0) # 0.

The class of such functions is denoted as §SH (R™). In spite of the standard-
ization conditions the representation (2.8.2.1) is not unique. However for any pair
of representations u; — ug and u} — ub,

uj(z) —uj(z) = Hj(x), j=1,2 (2.8.2.2)

where H; are harmonic and H>(0) = 0.
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Really, from the equality w1 — us = u} — uh we obtain u; — pe = pf — pb.
Using Theorem 2.2.1.2 (Jordan decomposition) we obtain pq = pf, pz = pb. Thus
(2.8.2.2) holds. Obviously H2(0) = 0.

Set

T(r,u) = — / - max(uy, ug)(ry)dy (2.8.2.3)

Om
where o, is the surface square of the unit sphere. It is called the Nevanlinna
characteristic of u € 6SH(R™).

The Nevanlinna characteristic does not depend on the representation (2.8.2.1).
Indeed,

/ max(uy, uz) (ry)dy = / (1 — uz)* (ry) — un(ry)dy
ly|=1

ly|=1

_ /ly|_1[<ug —uh) T (ry) — ub(ry) + Ha(rz)]dy
- /|y|_1[max<u’1, ub)(ry) + Ha(ra))dy

_ /|y|_1 max(u), u) (ry)dy + Ha(0)

_ /Iyl_lmax(u'hulz)(?”y)dy

Note also that the class 6SH(R™) is linear.
Actually, let v € §SH(R™). Then Au € 6SH(R™) for A > 0. The function
—u € 0SH(R™), since

—u(z) = [uz(z) — u1(0)] — [u1(z) — u1(0)].

Let us show that u; + ug € §SH(R™) if u,v € §SH(R™).

Set v := v, + v,, where v,, v, are the corresponding charges. By Theorem
2.2.1.2 (Jordan decomposition) v = v — v, where v+, v~ are measures concen-
trated on disjoint sets.

Let u; be a subharmonic function in R™ the mass distribution of which
coincides with v.2 Then ug := u; — (u + v) is a subharmonic function with the
mass distribution v~. Hence u(x) + v(x) = [u1(z) — uz2(0)] — [uz(x) — u2(0)].

Theorem 2.8.2.1 (Properties T'(r,u)) The following holds:

t1) T(r,u) increases monotonically and is convex with respect to —r™=2 for m =
2 and with respect to logr for m = 2.

2We will give the construction of such a function for the case of finite order (item 2.9.2), but it
is possible actually always, see, for example, [HK, Thm. 4.1]
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t2) Foruw e SH(R™), (i.e., u2 =0)

T(r,u) = L /| - ut (ry)dy.

t3) T(r,u)=T(r,—u) —u1(0).
t4) T(r,u+u') <T(r,u)+T(r,u), T(r, u) = XT(r,u) for A > 0.

Proof. Since v(x) := max(u1,uz)(x) is subharmonic, t1) follows from Theorem
2.6.5.2 (Convexity of M (r,u) and M(r,u)).

The property t2) is obvious, t3) follows from the equality —u(x) = ua(z) —
[ur(z) — w1 (0)] = ua(0).

The properties t4) follow from the properties of maximum and t3). O

Set prlu] := pla] (see, (2.8.1.1)) where a(r) := T'(r,u). It is called the order
of u(x) with respect to T'(r).

Theorem 2.8.2.2 (pp-property) For ui,us € 6SH(R™) the following inequality
holds:
priur + ug] < max(prlui], prluz]). (2.8.2.4)

Equality in (2.8.2.4) is attained if prui] # prlus].

Proof. Set u := uj + us. From t3) and t4)
T(ryu) <T(ryur)+ T(r,uz) + O(1) < 2max[T(r,u1), T (r,uz)] + O(1).

From the definition of pr we obtain (2.8.2.4).
Suppose, for example, pr[ui] > prlus]. Let us show that prlu] = prlui].

From the equality u; = u+ (—uz) we obtain prlui] < max(prlu], prus] If prlu]

prlui], then from the previous inequality we would have the contradiction pr[u]

<
<
pr[ua]- O

Let us define or[u] by (2.8.1.2) while p := prlu]. Set also op[u, p(r)]
ola, p(r)] (see (2.8.1.6)), where a(r) := T'(r,u).

The characteristics pru], or[u], orlu, p(r)] are defined for u € §SH(R™).
For the class of subharmonic functions we have the inclusion SH(R™) C §SH(R™)
and, of course, all these characteristics can be applied to a subharmonic function.
However, for the class SH(R™) the standard characteristic of growth is M (r,u)
that we can not apply to a J-subharmonic function v € 6SH(R™). Thus for
u € SH(R™) we define new characteristics pau], onmlu], oamlu, p(r)] in the same
way by replacing T'(r, u) for M (r,u). The following theorem shows that there is not
a big difference between characteristics with respect to T'and M for v € SH(R™).
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Theorem 2.8.2.3 (' and M-characteristics) Let u € SH(R™) and p(r)(— p) any
p.o. Then

pMT1)  prlu] and ppr[u] are finite simultaneously and pru] = parfu] := plu]
pMT2)  there exists A := A(p,m) such that

Aowlu, p(r)] < orlu, p(r)] < oarlu, p(r)]-

In particular, the last property means that the types with respect to T'(r)
and M (r) for the same p.o. are minimal, normal or maximal at the same time.

Proof. From t2), Theorem 2.8.2.1 we have T'(r,u) < M(r,u) for v € SH(R™).
Thus prlu] < par[u], proving the second part of pMT2).

Let H(x) be the least harmonic majorant of u(z) in the ball Kog. By the
Poisson formula (Theorem 2.4.1.5) and Theorem 2.6.1.3,

2 2
M(R,U)SM(R,H)ZHIELX; udesy
|z|=R 0m2R ly|=2R |(E — ylm
2m72
< / lu(2Ry)|ds, (2.8.2.5)
Im  Jjy|=1

= 22T (2R, u) + T(2R, —u)] = 2" 2[2T (2R, u) — u(0)].
From here one can obtain prlu] > pas[u] . The left side of pMT2) with A(p, m) :=
2-,~™m+2 follows from the properties of p.o. O

Exercise 2.8.2.1 Prove the first inequality from pMT?2).

2.8.3 Let p be a mass distribution (measure) in R™ (u € M(R™)). The charac-
teristic

plp] = pla] —m +2
for a(r) := u(K,) (see (2.8.1.1)) is called the convergence exponent of u, and

Alp) = olal

for the same a (see (2.8.1.2)) is called the upper density of p.
The least integer number p for which the integral

/OO ) g, (2.8.3.1)

tpt+m

converges is called the genus of p and is denoted p[u].
Theorem 2.8.3.1 (Convergence Exponent and Genus) The following holds:

cegl) plu] < plp] < plu] +1,
ceg2)  for plu) = plu] + 1, Alu] =0.
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Proof. From Theorem 2.8.1.1 (Convergence Exponent) we have p[u]+1+m—2 <
plu] + m. Thus p[u] < plu] + 1. The same theorem implies plp] + m —2+1 >
p[p] + m — 1. Thus p[p] < plu], and cegl) is proved.

Let p(p) = p[p] + 1. Then the integral (2.8.3.1) converges for p[u] = p[u] — 1.
We use the inequality

Y nlt) ¥ dt () .
/r tp[u]+m71dt > M(T)/r tP[uHmfldt e — (plp] + m —2)™".

Since the left side of the inequality tends to zero we obtain

Alp) = lim G =0. O

r—oo pplul+m—2

Set

Alp, p(r)] == ola, p(r) +m — 2], (2.8.3.2)

where a(r) := p(r) (see (2.8.1.6)). It is clear that p(r) +m — 2 is also a p.o. Set as
in (2.6.5.1),

N(r, 1) == A(m) / fal)

tm—l

where A(m) = max(1,m — 2). Set also

pn[u] = pla], An[u, p(r)] = ola, p(r)],
where a(r) := N(r,u). This is the N-order of p and the N-type of u with respect
to p.o. p(r).
Theorem 2.8.3.2 (N-order and Convergence Exponent) The following holds:
Ncel) pn[u] and plu] are finite simultaneously and pn[u] = plul,
Nce2) for p > 0 there exists such A; == A;(p,m), j =1,2, that

AvAlp, p(r)] < Anlp, p(r)] < A2A[p, p(r)].

Proof. We have the inequality

N@rp) > A(m) / ’”ti(f)l dt > A(m)u(r) / rﬁfffl > A(m)B(m) (2’; )(;)2,

where B(m) :=1— 22" for m > 3 and B(2) := log 2.

From here one can obtain the inequality p[u] > pn[p] and the left side of
Nce2) for A;(p,m) := A(m)B(m)2~°. For proving the opposite inequalities we
use the 'Hospital Rule (slightly improved):

p(r)r

N N’ 1
lim sup (r. 1) < lim sup (r, 1) = limsup ==
oo TP T ot (M) e D p(r) +rlogrp (1)) p

Thus py[p] < p[p] and the right side of Nce2) holds. O

2—m

Aly).
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We shall denote as 6 M (R™) the set of charges (signed measures) of the form
V= p1 — pg where pq, o € M(R™). Let us remember that |v| € M(R™) is the
full variation of v (see 2.2.1).

Theorem 2.8.3.3 (Jensen) Let u := u3 —uz € 6SHR™) and v := p1 — p2 be a
corresponding charge. Then

J1)  pllv]] < max(p[u ], plpa]) < plul,

J2) Allv], p(r)] < Alp, p(r)]+Alpz, p(r)] < Aoz [u, p(r)] for some A := A(p,m).

Proof. We can suppose without loss of generality that «(0) = 0 because the func-
tion u(z) — u(0) has the same order and the same number type if p > 0. We apply
the Jensen-Privalov formula (Theorem 2.6.5.1) to the functions u;, us and obtain

N(r,puy) < M(r,uj) < T(r,u).

Thus N(r, [v|) < N(r, 1)+ N(r, p2) < 27 (r, u). From here one can obtain J1) and
J2) for pn[|v|] and An([|v], p(r)]. However, we can delete the subscript N because
of Theorem 2.8.3.2. O

2.9 The representation theorem of
subharmonic functions in R"™

2.9.1 Set

—Llog(22 —2zcosy+1), form =2,
2 Log( 7D (2.9.1.1)

m—

(22 —2zcosy+ 1)~ 27, form>3.

H(z,cosvy,m) := {

The function H(z,cosy,m) is holomorphic on z in the disk {|z| < 1}. It can be
represented there in the form

o m—2
H(z,cosy,m) = ch 7 (cosy)2" (2.9.1.2)
k=0

where every coefficient C,’f(O)7 k=0,1,... is a polynomial of degree k.

1
Such polynomials are called the Gegenbauer polynomials. Note that C7 (e)
are the Legendre polynomials and

0 0, for k=0,
Ck()‘) =

% cos(karccos \), for k> 1,

i.e., they are proportional to the Chebyshev polynomials.
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Thus for m = 2 we have the equality

1 — cosk
5 log(2? — 2zcosy + 1) = ; CObk Tk

that can be checked directly.

Let x € R™. Set 2V := z/|z|. Then the scalar product (z°,4°) is equal to
cos~y where v is the angle between x and y.

Let &y, (z) be defined by (2.4.1.1). For m > 3 the function &,,(z — y) is the
Green function for R™. One can see that it is represented in the form

G(z,y,R™) := Em(z —y) = —|y[* "™ H(|z|/lyl, cos v, m)

where cosy = (2%, 1°).
For m = 2 the function —H (|z|/|y|,cos~,2) plays the same role. Thus we
will denote it as G(z,y, R?).

Theorem 2.9.1.1 (Expansion of G(x,y,R™)) The following holds:

m 0 m—=2 x k
G(z,y,R™) == C,* (cosv)|y|]|€+|m2, (2.9.1.3)
=0
for |z| < |y|, and the functions
m—2 |l‘|k
Dk(l’,y) = Ck 2 (COS’Y)W (2914)

are homogeneous harmonic functions in x and harmonic in y for y # 0.

Proof. The expansion (2.9.1.3) follows from (2.9.1.2). The function G(zz,y, R™)
is harmonic for || < |y| and, hence, for any real 0 < z < 1. Hence, for any
¥ € D(K,) while r := 0.5]y| the function g(z) := (G(ze,y,R™), Ayp) = 0 for
z € (0,1). The function g is holomorphic for all complex z € {|z| < 1} because
G(zz,y,R™) is holomorphic. Thus g(z) = 0, i.e., all its coefficients are zero.

From the expansion (2.9.1.3) we can see that the coefficients of G(zz,y,R™)
are Dy(x,y). Hence, (Dy(e,y), Ayp) = 0 for every ¢ € D(K,). Thus Dy(e,y) is a
harmonic distribution. By Theorem 2.4.1.1 it is an ordinary harmonic function for
|z| < O.5|y2|.

C, % (cosv) is a polynomial of degree k with respect to (2°,y"). Thus
Dy (z,y) is a homogeneous polynomial of x and is harmonic for all z.

Let us prove the harmonicity in y.

By Theorem 2.4.1.10 the function Dy (y*,2%)|y|>~™ (* stands for inversion)
is harmonic in y. We have

Di(y*, )yl ~™ = lyl* " Di(y/Iyl*,2°) = Di(a°, y). O
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Set

p
H(z,cosvy,m,p) = H(z,cosvy, m ch > (cosv)z". (2.9.1.5)
k=0

Theorem 2.9.1.2 The following holds:
[H (2, cos y,m, p)| < Ai(m, p)|z|?+! (2.9.1.6)
for|z] <1/2, and
|H (2, 0087, m, p)| < As(m, p)|:I7 (29.1.7)

for|z| > 2, —m <argz <.
The factor |z|P should be replaced by log |z| if m =2, p=0.

Proof. Consider the function ¢(z) := H(z,cos~y, m,p)z~P~L. It is holomorphic in
the disk {|z] < 1/2}. We apply the maximum principle and obtain (2.9.1.6) where
Ar(m,p) = 2771 nax |o(z )l

For proving (2.9.1.7) we consider the function 1 (z) := H(z,cosvy, m,p)z"P that is
holomorphic in the domain D := {z: |z| > 2, —7 < argz < 7} and continuous in
its closure. Applying the maximum principle we obtain (2.9.1.7) where

Az(m, p) = 2" max [¢(z)]. O
Set
Gp(x,y,m) := —|y[>"™H(|z|/|y|, cosy,m,p)

where cosy = (2°,4°).

Note the equality

P
GP(Imya m) = G(I7yaRm) + ZDk(Imy)
k=0

Exercise 2.9.1.1 Check this using (2.9.1.3), (2.9.1.4) and (2.9.1.5).

It looks like a Green function for R™ but it tends more quickly to zero at
infinity and generally speaking it is not negative.
For m = 2 it can be represented in the form

Gp(2,(,2) =1log|E(z/C, )]
where E(z/¢,p) is the primary Weierstrass factor:

wisn = (15w |2 () 1 ()]

We will call it the primary kernel analogously to the primary factor.
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Theorem 2.9.1.3 (Estimate of Primary Kernel) The following holds:

|I|P+1
|Gp(@,y,m)| < A(map)W (2.9.1.8)
for |z] < 2|y],
|[”
|Gp(@,y,m)| < A(map)W (2.9.1.9)
for |y| < 2|z|, and
s |z|?
Gp(z,y,m) < A(m,p) min (|y|p+m1’ =2 (2.9.1.10)

for all x,y € R™, where A(m,p) does not depend on x,y.

For m =2, p=0 we have Gp(#,¢,2) < A(2,0)log(1 + I%')

Proof. The inequality (2.9.1.8) follows directly from (2.9.1.6) and (2.9.1.9) follows
from (2.9.1.7). By the condition 2 < |z|/]y| (2.9.1.10) follows from (2.9.1.9).

Suppose 1/2 < |z|/|y| < 2. Since all the summands in (2.9.1.5) are bounded
from below, for 1/2 < z < 2 we have

2-m . |z[P+! |z [P
Gp(x,y,m) < Al(map)|y| < A(m7p) nun |y|p+m717 |y|p+m72
also under these conditions.
The case m = 2, p = 0 is obvious. O

2.9.2 Let p € M(R™). We suppose below that its support does not contain the
origin.

We will say that the integral [, f(2,y)u(dy) converges uniformly on x € D
if

sup — 0

xeD

/ [z, y)u(dy)
ly|>R

when R — oo.
Hence, the integral is permitted to be equal to infinity for some finite x.
Let p have genus p (see, 2.8.3). Set

(xz, u,p) := - Gp(z,y, m)u(dy). (2.9.2.1)

It is called the canonical potential.
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In particular, let m = 2 and p := n be a zero distribution, i.e., it has unit
masses concentrated on a discrete point set {z; : j =1,2,...}. Then

s z
(z,n,p) =log |[[ E (;m)
j=1 J

where
= z
1= ()
=1 ’

is the canonical Weierstrass product.

Theorem 2.9.2.1 (Brelot-Weierstrass) The canonical potential (2.9.2.1) converges
uniformly on any bounded domain. It is a subharmonic function with p as its Riesz
measure.

Proof. Let |x| < Ry and |y| > R. From the estimate of the primary kernel
(Theorem 2.9.1.3) we have

] [ Guteymiutan)| < Aompla® [l )
ly|>R ly|>R

— A(m, p)Ja|P+! /R £P=m L (d).

Integrating by part we obtain

/OO t_p_m+l,u,(dt) — M + (p+m _ 1) /Oo :u(t) dt.

R Rp+m— 1 R tp+m

The last integral converges since the genus of y is p. Hence, both summands tend
to zero when R — oco. Thus

sup
|z|<Ro

/ Gp(z,y, m)u(dy)’ —0
ly|>R

while Ry is fixed and R — oo, i.e., the canonical potential converges uniformly on
any bounded domain.
Let us represent the canonical potential for R > Ry in the form

p

i) = [ G B + [ Y Diwputay)

ly|<R _o
+ [ Gulyomutay)
ly|>R

The first summand is a potential, hence a subharmonic function and its Riesz
measure coincide with p. The other summands are harmonic for |z| < Rp. O
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The following proposition estimates the growth of the canonical potential in
terms of its masses.

Theorem 2.9.2.2 (Estimation of Canonical Potential) The following inequality
holds:

M(r, (e, 1, p)) < A UOOO ‘;gfg ml;;(jmz Vir + :‘nﬁ’“{} (2.9.2.2)

where A := A(m,p) does not depend on r and p.

Proof. From (2.9.1.10),

Pt ||
H(Iv ,U,p) S A(map) " min |y|p+m71 Y |y|p+m72 U(dy)

Set r :=|z|, t := |y|. Then we have

Sl rp+1 rP

The integral on the right side of (2.9.2.3) can be represented in the form

TP o pptl
/ prmozh(dt) + / prs Y ICLOL
0 r
Integrating every integral by parts we obtain

TooyP o pptl w(r)

< (p+m—1)/ooomin (1,i> r u(t)dt + p(r)

t/) tptm—1 pm—1 .

After the change t = r7 we obtain (2.9.2.2) where the new A(m,p) is equal to
A(m,p)(p+m —1). O

Theorem 2.9.2.3 (Brelot-Borel) The order of the canonical potential is equal to
the convergence exponent of its mass distribution, i.e.,

plI(e, 1, p)] = plul,

if the genus of p is equal to p.

Proof. First assume p[u] < p+ 1. Let us choose A such that plu] < A < p+ 1.
For some constant C' that does not depend on ¢ we have u(t) < CtMm=2,
Actually, u(t)/t**™=2 — 0, because A > p[u]. Since pu(t) = 0 for small ¢, this

function is bounded and we can take its lower bound as C.
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Now we have

p(rr) min(1,771)

Fnm) = s pime1 S Cr* P~ min(1,1/7) (2.9.2.4)
T
for all 7 € (0, 00).
We also have
lim f(r,7)=0 (2.9.2.5)

because of A > p[u].

Let us divide (2.9.2.2) by * and pass to the upper limit. By Fatou’s lemma
(Theorem 2.2.2.3)

o M(r,Ti(e, 1, p)) /°° - —
1 AN P pn, 1 T)dr 41 = 0.
1£ﬁj£p Y < A(m,p) | 17{25031) f(r,m)dr + lffljgp PAFm—1
(2:9.2.6)
Hence,
A= plli(s, 1, p)]. (2.92.7)

Since this holds for any A > p[u], we have pl[u] > p[II(e, i, p)] under the
assumption A < p[u] + 1.

Let p[p] = p[u] + 1. By Theorem 2.8.3.1, A[u] = 0. Hence, pu(t)t P~m+1 < C
and

fr,7) = Oﬂquzglmin(l,r_l) < Cmin(1,1/7).

The function min(1,1/7) is not summable on (0, 00). Therefore we will act in a
slightly different way. From Theorem 2.9.2.2 we have

r—00 ’f‘p+l r—00

1
lim sup M < A(m,p) {/ lim sup f(r, T)dT:l
0

+ A(m, p) {lim sup/ () dt + + lim sup ulr)

r—00 tptm r—00 rptm
The first integral is equal to zero because A[u] = 0. The second addend vanishes
since the integral converges. Thus we have p 4+ 1 = p[u] > p[II(e, i, p)].

The reverse inequality holds for any subharmonic function in R™ by the
Jensen theorem (Theorem 2.8.3.3). O

2.9.3 Let us denote as 0SH(p) the class of functions v € §SH(R™) for which
prlu] < p.
Theorem 2.9.3.1 (Brelot-Hadamard) Let u = u; —us € SH (p), and let p1,p2 be
the genuses of the mass distributions pi; := ., j = 1,2. Suppose supp[py — po] N
{0} = 2.
Then the following equality holds:
u(x) = Iz, p1, p1) — Iz, pa, p2) + Po(x)

where ®q(x) is a harmonic polynomial of degree q < p.
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Proof. The function v(z) := u(z) — II(z, u1,p1) + I(z, g2, p2) is harmonic by the
Brelot-Weierstrass theorem (Theorem 2.9.2.1). We also have the inequality

prlv] < max(prlu], pr[II(e, p1, p1)], prli(e, u2, p2)]) (2.9.3.1)
by Theorem 2.8.2.2 (pp-properties). The property pMT1) (Theorem 2.8.2.3) im-
plies

pr((e, 1, p;)] = par[ll(e, pj, ps)] == p[IL(e, pj, p5)l G =1,2.
The Brelot-Borel theorem (Theorem 2.9.2.3) implies

pllL(e, pj, pj)] = plusl, j=1,2.

The Jensen theorem (Theorem 2.8.3.3) implies

max(plual, plpa]) < prlul.

From (2.9.3.1) we have
prlv] < prlu] < p.

Since v is subharmonic, pr[v] = pa(v] := p[v] by Theorem 2.8.2.3, and p[v] < p.
Therefore
. M(r,v)
lim

r—oo PTE

=0

for arbitrarily small € > 0.
By the Liouville theorem (Theorem 2.4.2.3) v(z) is a harmonic polynomial
of degree ¢ < p + ¢, and thus v(x) = &4 (z) for ¢ < p. O

For a non-integer p the Brelot-Hadamard theorem allows us to connect the
growth of functions and masses more tightly than in the Jensen theorem.

Theorem 2.9.3.2 (Sharpening of Jensen) Let p > 0 and be non-integer, u = u; —
uz € 6SH(R™) with prlu] = p, and let v, = pu1 — pe2 the corresponding charge.
Then

pJ1)  plva] = max(plpal, plpo]) = p.

pJ2)  Avor[u,p(r)] < Alvw, p(r)] < Alur, p(r)] + Alug, p(r)] < Asor[u, p(r)],
where A; = A;(m, p) and p(r) is an arbitrarily proximate order such that
p(r) — p when r — oo.

For proving this theorem we need

Theorem 2.9.3.3 Let II(z, p, p) be a canonical potential with non-integer plu] :=
[p], and let p(r)(— p) be a prozimate order. Then

olll(e, 11, p), p(r)] < A(m, p,p)Alp, p(r)]. (2.9.3.2)
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Proof. We can suppose without loss of generality that Alu, p(r)] < co. By this

condition and since u(t) =0, 0 < t < ¢ for some ¢ > 0, we have the inequality
#(t)tfp(t)fm+2 <C

for all ¢ € (0, 00) and some C > 0 that does not depend on ¢. Set

() = /OO wu(rt) min(l,l/t)dt.

o/r rp(r)+m—2 thrmfl

By Theorem 2.9.2.2 we have

M(r,I1
oMo, 1, p), p(r)] = lim sup 1" pg')’“’p) < A(m,p)limsup I(r).  (2.9.3.3)
r—00 rP\r r—00
Let us choose r. such that
p(re)
§1>17P€ (TE) (T6)+m 2 — A[lu’ p( )] +

For such r we have

I(r) = 0 u(rt) (rt)Prt) min(1, 1/t) i@t
o/r (rt)p(rt)+m=2 pp(r) tp+1

< su
< C/TSE’g (,r,t)p(’rt)JrTI’L72

1/e )
+ sup / -o-dt 4+ sup / Loodt
e<t<1/e € 1/e<t<oo 1/e

p(rt) 1,1/t _ 1/e >
<c// S mmtiﬂ/)dt+<A[u,p<r>]+e>/ "'d”C/l/ et

w(rt) /6 (rt)Pt) min(1, 1/t) it

/v rp(r) tp+1

The function in(1,1/1)
min(1,
f(t) = Tl
satisfies the conditions of Gol'dberg’s theorem (Theorem 2.8.1.5) with p+1—p <
0<land0<~<p+1—p. Passing to the limit we have

limsup I(r) < C / t2=Pdt + (A, p(r)] + €)

T—00

1/e 0o
X / tP7P~  min(1,1/t)dt + C/ PP 4L,
€ 1/e
Passing to the limit as € — 0 we obtain with the help of (2.9.3.3)

ollL(e, 11, p), p(r)] < A(m, p)A[p, p(r)] / T lmin(1,1/0d. O
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Proof of Theorem 2.9.3.2. The inequality p[v,] < p and the last inequality in
pJ2) follow from the Jensen theorem (Theorem 2.8.3.3). Let us prove the reverse
inequality and the left side.

Since p is non-integer, ¢ < p in the Brelot-Hadamard theorem (Theorem
2.9.3.1). Hence M (r,®,) = o(r*) and

T(T, u) < T(Tv H(O, Nlﬂp)) + T(T, H(.7 /1“27p)) + O(Tp)'

Thus
pT [u] < max(p[H(o, #17]))]7 p[H(O, /Jva])v
oru, p(r)] < max(or(l(e, u1,p), p(r)], or [I1(e, p2, pl, p(r)))-
From Theorem 2.9.3.3 we obtain
prlu] < max(plp], plpe]);
oru, p(r)] < A(m, p, p) max(Alus, p(r)], Alpz, p(r)]
= A(m, p,p)AJv], p(r)].

We can set A := A~!(m, p,p) and obtain the left side of pJ2). O

2.9.4 Let u € 6SH(R™) and p := prlu] be an integer number. We can always
represent the function v in the form

u(z) = U(z, v, p) + D, (x) (2.9.4.1)

where ®,(z) is a harmonic polynomial of degree at most p. Actually, such a rep-
resentation can be obtained from Theorem 2.9.3.1 by addition and subtraction of
terms of the form

where p; < kj < p. All ®; (z) of such a kind are harmonic polynomials of degree
at most p. Set

e (z,v,p—1) = /| o, Gp-i(z,y,m)v(dy), (2.9.4.2)
e (2, v, p) := /| o Gz, y,m)v(dy), (2.9.4.3)
or(x,v, p) = /| o D,(x,y)v(dy). (2.9.4.4)

In particular, for m = 2,

Sr(z,v,p) == % /<<Rs% (z>p v(dQ). (2.9.4.4a)
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Let Y,(x) be the homogeneous polynomial of degree p from the polynomial ®, in
(2.9.4.1). Set also
dr(z,u,p) = 0r(z,v,p) + Y,(2),

M = r ) )
(r, ) IIZI}IEl)iw (ry, u, p)| (2.9.4.5)

Aslu, p] := limsup M (r, §)r =P,

T—00

The functions dg(z, v, p) are homogeneous polynomials that are determined com-
pletely by their values on the unit sphere. Thus, by the Harnack theorem (Theorem
2.4.1.7) we have

Theorem 2.9.4.1 Aj[u, p(r)] < oo if and only if the family Sp(x,u, p)RP~PF) R >
0 is precompact in D' (R™).

Let p be an integer number and p(r) — p be a p.o. Set
Qfu, p(r)] = max(As[u, p(r)], Allvul, p(r)].

Theorem 2.9.4.2 (Brelot-Lindel6f) The following holds:
Ar1Qu, p(r)] < orlu, p(r)] < A2Qu, p(r)],
where A; 1= Aj(m, p).
For proving this theorem we will first study the function IIZ and ITZ. Set
T(r,\,>) = T(r, 112" (e, v, p)),
T(r,\, <) :=T(r, 11X (e,v,p — 1)).
Theorem 2.9.4.3 (Estimate of T'(e,>,T'(e, <)) The following holds:

T(r\>) < A (/m pl(rt) min(L, ) ), WT)) , (2.9.4.6)
A

rm—2 tp+m—1 Tm—l

T(r\ <)< A </A v|(rt) min(l’t—l)dt>
0

Tm72 tp+mf2

+A(IVI(M) Fmin(l ¢ |”|(T)>, (2.9.4.7)

rm—2 N tp+m—2 Tm—l

where A := A(m, p).

Proof. Let v = g — pa. Then |v| = ug + p2. We have
N (z,v,p— 1) =12 (2, 1, p — 1) — T (2, p2, p — 1). (2.9.4.8)
Since I (0, pi2, p — 1) = 0, we have (see t3),t4), Theorem 2.8.2.1)
T(r,TTE (0, v,p— 1)) < T(r, 1% (0, 1, p — 1)) + T(r, 1% (e, 2, p — 1)).  (2.9.4.9)
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Set
II; := H§(07M17p — ].)7 Iy = H?(‘aﬂ%/’ - ]‘)

Let us estimate, for example, T'(r,II1). The masses of the canonical potential
I1; are concentrated in Kg. Applying Theorem 2.9.2.2 (Estimation of Canonical
Potential) for p = p — 1 we obtain

T(r, 1) < M(r, Hl)

pa(rt) min(1,¢71) pi(R) [ min(1,t71) ( )
< A/ pm— 2 tp+m 2 dt + A Tm72 R tp+m72 dt + -1

Set R := rA. Then we obtain the inequality (2.9.4.7) for v := p;. Analogously one
can do the same for v := uy. The inequality (2.9.4.9) allows us to pass to the limit
in (2.9.4.7) in the general case.

Set II; := I1%(e, ju1, p). Applying (2.9.2.2) for p = p we obtain

dt + “’1(7"1).
rm-

> pa(rt) min(1,¢7)
T(r, Hl) S M(T, Hl) S A T‘m72 tp+m71

In the same way we obtain (2.9.4.6). O

Set

o[s, p(r)] := limsup

r—00 rP 7)

o[l«, p(r)] := limsup

T—00

Theorem 2.9.4.4 Let v := py — po € OM(p) and p an integer number. Then for
any p.o. p(r) — p,

max(o[IT>, p(r)], o[Il<, p(r)]) < AA[V], p(r)]

where A := A(m, p).

Proof. From (2.9.4.6) we have

TR (o) = T 1> < 4 [ 00 e M0,

rm— 2 tp+m rm—l

Now we repeat the reasoning of Theorem 2.9.3.3 for u := |v| and p := p. We will
obtain

oL ()] < A&l )] [ T,
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For the other case we have from (2.9.4.7),
T(r, ]I (e, v,p—1)) = T(T,1,<)

1 e}
|I/| ’f‘t |I/|( ) —p—m—+1 —1
<A/ o 2 tP+m pdt+ AT ().

We divide this inequality by 7°(") and pass to the upper limit while 7 — oo.
The first summand of the right side gives

AR[v], p(r)] / dt

by the reasoning of Theorem 2.9.3.3.
The second one can be computed directly, yielding

Al ptr)] [,
1

Combining all these inequalities we obtain the assertion of the theorem. [

Proof of Theorem 2.9.4.2. Let us represent u(z) in the form
u(ry) =02 (ry, vy, p — 1) + L (ry, vu, p) + 8- (ry, u, p) + o(r’™1)  (2.9.4.10)

where |y| = 1.
Then we have

T(r,u) < T(r, I (o, v, p — 1)) + T(r,1IZ (e, vy, p)) + M (r,8) + o(r”~1).

Let us divide this by 7?(") and pass to the upper limit. By Theorem 2.9.4.4 we
obtain

orfu, p(r)] < Amax(A[[v], p(r)], As[u, p(r)]) = A2Q[u, p(r)]
where As = A(m, p). Let us write (2.9.4.11) in the form
67‘(71ya Uu, p) = U(Ty) - 1_J:T< (T‘y, Vi, P — 1) - 1_J:T> (T‘y, Vu, p) + O(Tpil)‘
We obtain
T(r,0:(e,u,p)) < T(r,u) + T(r, L (o, vu, p— 1)) + T(r, 1% (o, 14, p) + 0(r* ).
Since dr(e,u, p) is harmonic and homogeneous, we have by (2.8.2.5)
M(r,6r) < 2™ 'T(2r,65) = 2™ '"TPT(r,6R).
Therefore we obtain the inequality
As[u, p(r)] < or[u, p(r)] + 2AA[V], p(r)].
By the Jensen theorem (Theorem 2.8.3.3) we have
Qu, p(r)] < Ay o[, p(r)]
for some A; = Ai(m, p). O



Chapter 3

Asymptotic Behavior
of Subharmonic Functions
of Finite Order

3.1 Limit sets

3.1.1 Let {V; : t € (0,00)} be a family of rotations of R™ that form a one-
parametric group, i.e.,
ViVi, = Vit Vi = 1, (3.1.1.0)

where [ is the identity map.
The family of linear transformations

P, =tV (3.1.1.1)

is also a one-parametric group.
In particular, for m = 2 the general form of the rotations is

Viz = zexp(iylogt),

where 7 is real.

The orbit {P;z : t € (0,00)} of every point z # 0 is a logarithmic spiral if
v # 0 and a ray if vy = 0.

For m > 3 and V; = I, t € (0,00) the orbit of every point = # 0 is a ray
from the origin. For other V, it is a spiral connecting the origin to infinity.

It is clear that only one orbit {Pz : t € (0,00)} passes through every z # 0.
The behavior of every point y(t) := P,z is completely determined by a system of
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differential equations with constant coeflicients:

d d
— = I 4 4 = — —
dty ( +V )ya V di Vi |t_1

with the initial condition of y(1) = x.

3.1.2 Let u € SH(p) and o[u, p(r)] < oo for some p.o. p(r) — p. We will write
u € SH(R™, p, p(r)) or shorter, uw € SH(p(r)).
For w € SH(p(r)) set

ug(x) = u(Pox)t ="M, (3.1.2.1)

We will denote this transformation as (e);.

Theorem 3.1.2.1 (Existence of Limit Set) The following holds:
elsl)  w € SH(p(r)) for any t € (0, 00),
els2)  the family {u.} is precompact at infinity.

Le., for any sequence ¢, — oo there exists a subsequence ¢y, — oo and a
function v € SH(R™) such that g, — v in D'(R™) (see Section 2.7.1).

Proof. The functions wu; are subharmonic by shl) and sh5), Theorem 2.6.1.1. (El-
ementary Properties), and

M (r,ug) = M(rt,u)t="®.

Now we have

_ . M(rt,u) . (rt)Pt) _
onfut, p(r)] =t~ lim sup W e % = anfu, p(r))t"~",
because -
t)P\" L(rt
i (rri(r) =t lim, L((rr)) =t (3.1.2.2)

(see, ppo3), Theorem 2.8.1.3 (Properties of P.O)). Therefore elsl) is proved.
Let us check the conditions of Theorem 2.7.1.1 (Compactness in D). We
have

, e M(rt,u) . (rt)r®
fizsup Mryue) = limsup Toe - I —m

=omlu,p(r)r?.  (3.1.2.3)

Thus, the family is bounded from above on every compact set and

lim u;(0) = lim w(0)t="® = 0.

t—o0 t—o0

Therefore u:(0) are bounded from below for large ¢. O
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We will call the set of all functions v from Theorem 3.1.2.1 the limit set of
the function u(z) with respect to V4 and denote it by Fr[u, p(r), Ve, R™] or shortly

The limit set does not depend on values of the subharmonic function on a
bounded set, hence, it is a characteristic of asymptotic behavior.

Set

Ulp,o] :={ve SHR™): M(r,v) <or”, r € [0,00); v(0) =0},

Ulp] := U Ulp, o] (3.1.2.4)
o>0
and
v (z) ==t~ v(Px), t € (0,00). (3.1.2.4a)

Let us emphasize that the transformation (e)[y coincides with (e); from (3.1.2.1)
for p(r) = p and satisfies the condition

(®)ier) = (@) )17 (3.1.2.4b)

Theorem 3.1.2.2 (Properties of Fr) The following holds:
fr1) Frlu] is a connected compact set;
fr2) Friu] C Ulp, o], for o > oplul;
fr3) (Frlu])p = Frlu], t € (0,00). ILe., v € Fru] implies vy € Frlu];
frd) if p1(r) and p(r) are equivalent (see (2.8.1.5)), then
Fr[u, pl(T)a .] = P‘I‘[u’ p(?"), .]'
We need the following assertion.

Theorem 3.1.2.3 (Continuity u;) The functions

ug, vpg : (0,00) x D'(R™) — D'(R™)

are continuous in the natural topology.

Proof. For any ¥ € D(R™) consider
(wist) i= [wile)ote)ds = [ ulo)ity/ormOdy = (u,v(s, 1)

where ) (y, 1) := ¢(y/t)tm O,
The function v (e, t) is continuous in ¢ in D(R™). By Theorem 2.3.4.6 (Con-
tinuity (e, e)) (u, (e, t)) is continuous in (u,t). O



78 Chapter 3. Asymptotic Behavior of Subharmonic Functions of Finite Order

Proof of Theorem 3.1.2.2. Let us denote as clos{e} the closure in D’-topology.

The set Fn := clos{u; : t > N} D Fr[u] is compact in D’-topology. Indeed,
let t; — ¢ and ¢ < oo; then wu;; — uy because of Theorem 3.1.2.3. If £; — oo and
ug, — v, then v € Frlu] by its definition, hence, v € Fi. Since Fr[u] = N¥_, Fi,
it is compact.

Let us prove the connectedness. Suppose Fr[u] is not connected. Then it can
be written as a union of two disjoint nonempty closed sets F' and F?2. Let V!, V2
be disjoint open neighborhoods of F', F? respectively in D'(R™). Since F!, F?
are nonempty there exist sequences {s;},{t;} such that s; <t;, s; — o0, us, €
V!, w,, € V2. Since the mapping u; : (0, 00) — D'(R™) is continuous, by Theorem
3.1.2.3 its image is connected. Thus there exists a sequence {p;} with s; < p; <t;
such that u,, ¢ V1 U V2. This sequence has a subsequence that converges to a
function v € Fru] and v ¢ F' U F2. This is a contradiction. Hence, Frlu] is
connected and frl) is proved.

Set

Y(r) == limsup M (r, u).
This function is convex with respect to —r2~™ for m > 3 and with respect to logr
for m = 2 and hence continuous.

Indeed, M (]x|, ut) are subharmonic (see Theorem 2.6.5.2 (Convexity M (e, u)
and M(r,u)). By Theorem 2.7.3.3 (H.Cartan +) the function ¥*(|x|) is subhar-
monic and ¥ (|z|) = ¥*(|z|) quasi-everywhere. However, if ¢ (|z|) < ¥*(|z|) at some
point, the same inequality holds on a sphere which has a positive capacity (see
Example 2.5.2.2). Hence, ¥(|x|) = 9*(|z|) everywhere, and 1 (|x|) is subharmonic.
Thus t(r) is convex with respect to —r2=™ for m > 3 and with respect to logr
for m = 2 by Theorem 2.6.3.2 (Subharmonicity and Convexity).

One can also see that for u € SH(R™),
M(ryue) < M(r+ €,u),

where (o), is defined by (2.6.2.3).

Let v € Fru] and us; — v in D'(R™). By property reg3), Theorem 2.3.4.5
(ut;)e — v uniformly on any compact set. Thus

ve(z) = jlirgo(utj)e < litmsu)p M|z, (ut)e)
<limsup M (|z| + €, u) = ¥(|z| + ¢€). (3.1.2.5)

t—00)

If € | 0, then v | v by Theorem 2.6.2.3 and ¢ (r+¢€) — 9 (r) because of continuity.
Passing to the limit in (3.1.2.5) and using (3.1.2.3) we obtain

v(z) < oplu, p(r)]|=|?. (3.1.2.6)
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Since u(0) < u(0) we have u(0)t~*®) < (u;)(0). Let us pass to the limit as

t :=t; — co. We obtain v.(0) > 0. Passing to the limit as € | 0 we have
v(0) > 0. (3.1.2.7)

The inequalities (3.1.2.6) and (3.1.2.7) imply fr2).
One can check the equality

(tT)p(tT)
By using properties of p.o. we have
(tT)p(tT)

tlirgo tr(t)rp -
(compare (3.1.2.2)).
Let v € Fru] and u;; — v. Set t := t;, 7 :=t in (3.1.2.8) and pass to the
limit. Then
’U[t] = D/ — hm ut].t.
J—00

Thus vy € Frlu]. The property £3) is proved.
Let us prove f4).We have

u(Pr)  w(Px) ) -pt)) gt w(PrT)
O BTIO = < (1+o(1)
as t — oo because of (2.8.1.5).
This implies f4).
Exercise 3.1.2.1 Check this in detail. g

We can consider the limit sets as a mapping u — Fr[u]. The following theorem
describes some properties of this mapping.
Set

Ulp] := U Ulp, o] (3.1.2.9)

where Ulp, o] is defined by (3.1.2.4).

Let X,Y be subsets of a cone (i.e., a subset of a linear space that is closed
with respect to sum and multiplication by a positive number). The set U|[p] is such
a cone. Set

X+Y ={z=x+y:zeX,yeY}h XX ={z=X :2€X}. (3.1.2.10)

Theorem 3.1.2.4 (Properties of u — Fr[u]) The following holds:
frul)  Fr{us + ua] C Fr[ui] + Frlusg],
fru2) Fr[Au] = A\Fr[u].



80 Chapter 3. Asymptotic Behavior of Subharmonic Functions of Finite Order

Proof. Let v € Fru; +uz]. Then there exists t; — oo such that (u1 +u2):; — v in
D’. We can find a subsequence t;, such that (ul)tjk_ — o1 and (ug)tjk_ — v9. Then
v = v1 + v9. The property frul) has been proved.

The property fru2) is proved analogically. U

3.1.3 We will write up € M(R™, p(r)) or shortly, u € M(p(r)) if p € M(R™) (see
2.8.3) and Alu, p(r)] < 0o (see 2.8.3.2).
Let us define a distribution u; for u € M(p(r)) by

G, 0) i= 00 [ (P (o) (3.13.1)
for ¢ € D(R™).
It is positive. Hence, it defines uniquely a measure p;.
Theorem 3.1.3.1 (Explicit form of y;) For any E € o(R™) the following holds:
pi(E) = t=PO-m+2 (P E). (3.1.3.2)
Proof. It is enough to prove the assertion for some dense ring (see Theorem
2.2.3.5), for example, for all compact sets.
Let xx be a characteristic function of a compact set K and let ¢ | xx

be a monotonically converging sequence of functions that belong to D(R™) (see
Theorems 2.1.2.1, 2.1.2.9 and 2.3.4.4). Then

[ oc@matdn) =702 [ (P (),
Since QSE(Pt_lﬂf) l XPtK(I)7

) = [ e @) =072 [ e(a)ulda) =672 (PuE). O

Theorem 3.1.3.2 (Existence of u-Limit Set) The following holds:
melsl) u, € M(p(r)) for any t € (0,00);
mels2) the family {p:} is precompact in infinity.

Le., for any sequence t;, — oo there exists a subsequence t;;, — oo and a
measure v € M(R™) such that e, — v in D'(R™) (see Section 2.7.1).

Proof. We have

it (T) _ /L(T‘t)t_p(t)_m+2.
Thus
. pe(r) pu(rt) (rt)*"”
llﬁs;jp A2 hirisip (rt)P(rt)+m=2 gp(t)+m—2pp(r)
= tr=PO=(m=2) N[y 5(r)]. (3.1.3.3)

Therefore mels1) holds.
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We also have

lim sup 1o (r) = Alp, p(r)]r? 72,

t—o0

Thus p, satisfies the assumption of the Helly theorem (Theorem 2.2.3.2). Using
also Theorem 2.3.4.4 we obtain mels2). O

We will call the set of all measures v from Theorem 3.1.2.1 the limit set of
the mass distribution p with respect to Vo and denote it Fr{u, p(r), Ve, R™] or

shortly, Fr[u].
Set
Mip, Al == {v:v(r) < ArPT™ 2 Vr > 0}, (3.1.3.4)
M{p] == | Mip, 4],
A>0
and
vy (E) =t """ y(PE) (3.1.3.5)

for £ € o(R™).
Theorem 3.1.3.3 (Properties of Fr(u]) The following holds:

frm1l) Frlu] is connected and compact;
fm2) B[] C M[A, g, for A > Al p(r)];
fm3)  (Fe[u)y = Frl), t € (0, 00).

Proof. We will only prove frm2) because frm1) and frm3) are proved word by word
as in Theorem 3.1.2.2.

Suppose t, — oo and p, — v € Fr[u]. Let us choose ' > r such that the
open ball K, is squarable with respect to v. It is possible because of Theorem
2.2.3.3, sqr2). By Theorems 2.2.3.7 and 2.3.4.4, p, (r') — v(r’). Thus (compare
with (3.1.2.3))

v(r') = lim_puy, (') < limsup (') = Alpa, p(r)] ()72,

t—o0

Choosing ' | r we obtain
lim v(r') = v(r)

r'—r

because (2.2.3.3). Thus frm?2) holds. O
The following assertion is a “copy” of Theorem 3.1.2.4.

Theorem 3.1.3.4 (Properties of y — Fr[u]) The following holds:
frmul) Fr(p + po] C Friu] + Frius],
frmu2) Fr[Au] = AFr[y].

)

The proof is also a “copy” and we omit it.

Exercise 3.1.3.1 Prove Theorem 3.1.3.4
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3.1.4 We are going to study the class U[p] and obtain for it “non-asymptotic”
analogies of Theorem 2.8.3.3 (Jensen), 2.9.2.3 (Brelot-Borel), 2.9.3.1 (Brelot-Ha-
damard)

Theorem 3.1.4.1 (*Jensen) Let v € Ulp]. Then its Riesz measure v, € M|p].

Proof. As in Theorem 2.8.3.2 we have an inequality

vo(r) < A(m)N(2r, ). (3.1.4.1)

Tm72 —

Since v(0) = 0 we have (Theorem 2.6.5.1. (Jensen-Privalov))

N(2r,v,) = M(2r,v) < M(2r,v) < 2°0r?. (3.1.4.2)
Substituting (3.1.4.2) in (3.1.4.1) we obtain v, € M|[p, A] for some A. Thus v, €
Mp]. O

Let p be non-integer and v € M|p]. Consider the canonical potential II(z,v,p)
where p := [p] (see (2.9.2.1)). Let us emphasize that the support of v may contain
the origin but v(0) = 0, i.e., there is no concentrated mass in the origin. Thus we
must also check its convergence in the origin.

Theorem 3.1.4.2 (*Brelot-Borel) Let p be non-integer and let v € M|p]. Then
II(x,v,p) converges and belongs to Ulp].

Proof. Using (2.9.1.9) we have

Al (dt
<Al [ 200 G4y

| [ Gulemmiay)
ly|<2|z|

Let us estimate the integral in (3.1.4.3). Integrating by parts we obtain

2l=| v v 2|z| v
k@y:A (dt) _ u)ﬁm+@+m—%4 (t)dt

{ptm—2 {ptm—2 tp+m—1"
Since v € M[p, A] for some A,
I<(I) S A(ma p’p)A|x|P—P.

Substituting this in (3.1.4.3) we obtain

‘/ Gp(x,y,m)v(dy)| < A(m, p,p)Alx|?. (3.1.4.4)
lyl<2|=|
Analogously, using (2.9.1.8) we obtain
/ Gp(z,y,m)dv(dy)| < A(m, p,p)Alz|”. (3.1.4.5)
lz|<2]y|
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In particular, these estimates show that II(z, v, p) exists. Now using (2.9.1.10) we
have also

o p N 2|z| p ||PH1 |z [P
< t) mi .
/;<|y|<2z p(x,y7m)u( y) —= (m7p) /w‘ V( )mln (tp+m—17 tp+m—2>

The latter integral can also be easily estimated by AA(m, p, p)|x|?. Thus we have

/ GP(I7yvm)V(dy) S A(map7 p)|I|P
Ll <ly<2la|

Therefore by (3.1.4.5) and (3.1.4.4) we obtain M (r,II) < or? for some o.
Since G, (0,y,m) =0 for all y#0 and the integral converges, II(0,v,p)=0. O

We will need an assertion that looks like the Liouville theorem (Theorem
2.4.2.3).

Theorem 3.1.4.3 (*Liouville) Let H be a harmonic function in R™ and H € Ulp].
Then H = 0 if p is non-integer and H is a homogeneous polynomial of degree p if
p =D 15 integer.

In particular, for m = 2 we have H (re'?) = rPR(ce'??).

Proof. Like in the proof of the Liouville theorem we obtain the inequality (2.4.2.9)
and
lex] < AR IHE)I(% H(z) < AcRP™*

for some o > 0.
If k > p, we will pass to the limit when R — oo and obtain ¢ = 0. If k < p,
we will do that when R — 0 and obtain ¢; = 0. O

The following theorem can be considered as an analogy of the Brelot-Hada-
mard theorem (Theorem 2.9.3.1):

Theorem 3.1.4.4 (*Hadamard) Let p be non-integer and v € U|p|. Then
v(x) = I(x, vy, p) (3.1.4.6)
for p=p].

Proof. Consider the function H(x) := v(z) — II(z, v, p). It is harmonic.We also
have by(2.8.2.5)

M(r,H) < A(m)T(r,H) < A(m)[T(r,v) + T(r,11)] < or’

for some o.
Hence, H(z) = 0 by Theorem 3.1.4.3. O
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Let us consider the case of integer p. Let v € M|p] for an integer p = p. Set

M (z,v,p) ::/<1 Gp_1(z,y,m)v(dy), (3.1.4.7)
IIs (z, v, p) ::/>1 Gp(z,y,m)v(dy). (3.1.4.8)

Both potentials converge and belong to Ulp].
Theorem 3.1.4.5 (**Hadamard) Let p be integer and let v € Ulp]. Then

v=Hy(z) + Hc(z,v,p) + s (x,v, p), (3.1.4.9)
where H, is a homogeneous harmonic polynomial of degree p.

The proof is exactly the same as in the *Hadamard theorem, but we use the
second case of Theorem 3.1.4.3. We also note that the polynomial may be equal
to zero identically.

Exercise 3.1.4.1 Check this in detail.

Let as check that v from (3.1.4.9) has the following property that is analogous
to Theorem 2.9.4.2.

Theorem 3.1.4.6 (*Lindelof) Let p be integer and let v € Ulp]. Then

lim D,(x,y)u(dy) = Hy(x). (3.1.4.10)

e—0
e<|y|<1

Proof. Consider the function

Ik _vidy) for m > 2;

g2
* lyl<e
Ve ) = viz) + 3.1.4.11
o W - [ loglz —ylv(dy), for m = 2. ( )
lyl<e
It is subharmonic with supp vN{0} = &. We represent this function as in (2.9.4.10)
in the form

vi (@) = L (2, vf, p) + T (2,7, p) + Py (a0, 07) + 0 (2, 07, p).

In this representation we can pass to the limit as € — 0 in the left side and in all
the summands except perhaps the last two from the right side.

Exercise 3.1.4.2 Check this, using that all the integrals converge for v € M(p, A)
and showing that the integral in (3.1.4.11) tends to zero.

The last two summands form a harmonic polynomial, the limit of which is
also a harmonic polynomial. Comparing the limit with the representation (3.1.4.9),
we obtain that P;_, (e, v}) tends to zero and 41 (z, v, p) tends to H,(z). O
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Theorem 3.1.4.7 (**Liouville) Ifv € Ulp] satisfies inequality v(z) < 0 for z € R™,
then v(z) = 0.

Otherwise it contradicts subharmonicity in 0.

3.1.5 Let us study the connection between Fr{u] and Fr{u,].
Note the following properties of the transformations (e); and (e)(;.

Theorem 3.1.5.0 (Connection between u; and 1) One has

()t = puys (o) = Hogy- (3.1.5.0)

Proof. By the F. Riesz theorem (Theorem 2.6.4.3) and Theorem 2.5.1.1, GPo03)
we have for any 1) € D(R™),

(Hus V) = O (Au, ) = O (u, Arp).

Using the definition (3.1.3.1), we obtain

(1)t ) = (), O((Py) Loyt PO =m42,

Thus
()1, V) = O (u, A[p((P) " Lo)] )t =P —m+2,

Since the Laplace operator is invariant with respect to V; for any ¢ we have
Al ((P) " e)] = t2[AY]((P)e).
Thus we obtain

(1)t ) = Ot PO (u, [AQ)((P) o))
= O (u(Pro)t "D Ap) = O, (g, AY) = (pru, ). O

Exercise 3.1.5.1 Do this for (e)(.
We begin from the case of a non-integer p.

Theorem 3.1.5.1 (Connection between Fr’s for non-integer p) Let u € U(p(r))
and (i, be its Riesz measure. Then

Fr(p,] = {v, : v € Frlu]}, (3.1.5.1)
Fr(u] = {l(e,v,p) : v € Fr[u,]}. (3.1.5.2)

Proof. Let v € Fr[u,]. There exists t,, — oo such that (uy)y, — v in D'. We can

n

find a subsequence t;, such that uy — v € Fr[u]. Thus ()¢ — v, and therefore
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v = v,. Hence, Fru,] C {v, : v € Fru]}. Analogously we can prove that every
vy € Fr(p,] and hence (3.1.5.1) holds.

Let v € Fr{u,]. We find a sequence t,, — oo such that (uy):, — v in D'. We
find a subsequence #;, such that u; — v € Frlu] and v, = v. By the *Hadamard
theorem (Theorem 3.1.4.4) v = II(e, v, p). Hence, {II(e,v,p) : v € Fr[u,]} C Fr[u].
And vice versa, since Fr[u] C Ul[p] (Theorem 3.1.2.2, fr2)), every v € Frlu] is
represented as II(e, v, p) and v, € Fr[u| by (3.1.5.1). O

Let p be integer and u € U(p(r)). Let us consider the precompact family of
homogeneous polynomials &;(x, u, p)t?~?*) from Theorem 2.9.4.1. For every t,, —

oo we can find a subsequence ¢, such that the pair (6y (e, u, Pyt PP (t)er,)
tends to a pair (H,,v) where H, is a homogeneous harmonic polynomial of de-
gree p. We denote the set of all such pairs as (H,Fr)[u]. Every v € Ulp] can be
represented in the form (3.1.4.7). Thus for every v the polynomial HY := H, is
determined.

Theorem 3.1.5.2 (Connection between Fr’s for integer p) Let u € U(p(r)). Then

(H,Fr)[u] = {(H",vy) : v € Fr[u]}, (3.1.5.3)

Frju] = {v:=H, + U (o,v,p) + U (o,v,p) : (H,,v) € (H,Fr)[u]}. (3.1.5.4)
The proof is clear.

3.1.6 Up to now we supposed that the family of rotations V, was fixed. Now we
take in consideration that it can vary and use the notation Fr{u, V4].

Theorem 3.1.6.1 (Dependence of Fr on V,) Let Fr(u,V,] and Fr[u, W,] be limit
sets of u with respect to rotation families Vo and W, accordingly. Then for any
v € Fr{u, V] there exist a rotation VV and w¥ € Fr[u, W,| such that

v(z) =w’ (V')
for all x € R™.

Proof. Let v € Fru,V,] and let ¢, — oo be a sequence such that
t;p(tn)u(tn‘/;".) — .

Since the family V; is obviously precompact there exists a subsequence (for which
we keep the same notation), and a rotation V¥ such that Wtzl‘/}” — V¥ and

w € Frlu, W,] such that t;p(t")u(thtno) — w.
Now we have
v(e) =D — limt;p(t")u(tnv;no)
=D —limt,"tu(t, W, W, 'V, e)

n

=w(V"e). O
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3.2 Indicators

3.2.1 Let u € SH(p(r)) and let Fr[u] be the limit set. Set

sup{v(x) : v € Fr[u]}, (3.2.1.1)
inf{v(z) : v € Frlu]}. (3.2.1.2)

x,u)

= =
~ =

x,u)
These functionals reflect the asymptotic behavior of v along curves of the form
lgo :={x =tV;z" : t € (0,00)} (3.2.1.3)

and are called indicator of growth of u and lower indicator respectively.

Of course, the indicators depend on p(r) and V;, but we will only note that
if necessary.

Theorem 3.2.1.1 (Properties of Indicators) The following holds:
hl) h is upper semicontinuous, h is subharmonic;

h2) they are semiadditive and positively homogeneous, i.e.,

h(x,u1 + u2) < h(z,u1) + h(z,us); (3.2.1.4)
h(x,u1 + uz) > h(z,u1) + h(x, uz); (3.2.1.5)
h,h(z,Cu) = Ch,h(z,u), C > 0; (3.2.1.6)
h3) invariance:
h, by (z,u) = h, h(z,u). (3.2.1.7)

Proof. Semicontinuity of h follows from Theorem 2.1.2.8 (Commutativity of inf
and M(.). Semicontinuity and subharmonicity of h follow from Theorem 2.7.3.4
(Sigurdsson’s Lemma). The properties h2) follow from properties of infimum and
supremum. The invariance follows from invariance of Fr{u] (Theorem 3.1.2.2, {r3)).

O

Set
2%(z) := P H(x) (3.2.1.8)

where P; is defined by (3.1.1.1).

This is an intersection of the orbit of P; that passes through a point x with
the unit sphere.

ItV =1,
2%(z) = x/|x| == 2°. (3.2.1.9)
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Theorem 3.2.1.2 (Homogeneity h, 1) One has
h,h(z,e) = |z|’h, h(z°(x), o) (3.2.1.10)

Thus the indicators are determined uniquely by their values on the unit
sphere, i.e., they are “functions of direction”. In particular, they are homogeneous
for V; = I:

h,h(x,e) = |z|°h, h(z°, e). (3.2.1.11)
The proof of (3.2.1.10) follows from h3), Theorem 3.2.1.1 if we set t := |z|; x :=
Pl
3.2.2 In this item we will suppose that V; = I and study the indicator.

Let Ago be as defined in Section 2.4.1. Its coefficients depend on a choice of
the spherical coordinate system. However, one has

Theorem 3.2.2.1 Let ¥(y) have continuous second derivatives on the unit sphere
S1. Then the differential form Agot(y)dy is invariant with respect to the choice
of spherical coordinate system.

Proof. Let ¢(x) be a smooth function in R™. Then A¢(x)dx is invariant with
respect to the choice of an orthogonal system because A (the Laplace operator)
and an element of volume are invariant. Set ¢(x) = 1 (y), where y := 20 = z/|z|.
Then

Agdr = Agotp(y)dy r™3dr.

Since 7 is invariant with respect to rotations of the coordinate system, A ot (y)dy
is invariant with respect to the choice of a spherical coordinate system. O

Note that for m = 2 this theorem is obvious because

d2

deo?

and it does not depend on translations with respect to 6.
We define the operator Agzo on f € D'(S7) by

<Amofa ¢> = <f7 Amow>ﬂ (NS D(Sl)

in a fixed spherical coordinate system.
The definition is correct. Indeed, suppose in a fixed system

Ago = (3.2.2.1)

suppy C Si\{0; =0;7:7=1,2,...,m—2}. (3.2.2.2)

Then all the coefficients of Ao are infinitely differentiable and Agotp(y) € D(S1).
By Theorem 3.2.2.1 we obtain that the condition of Theorem 2.3.5.2 (D’ on Sphere)
are fulfilled.

Note that for m = 2 the operator Ago is realized by the formula (3.2.2.1) on
functions of the form f = f(e'), i.e., on 27-periodic functions.
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Theorem 3.2.2.2 (Subsphericality of Indicator) One has
[Ago + p(p+m —2)]h(y,u) :=s>0 (3.2.2.3)
in D'(S7).
Le., s is a measure on 5.

Proof. Tt is sufficient to prove this locally, in any spherical system. Let R(r) be
finite, infinitely differentiable and nonnegative in (0; 00) and let ¢» € D(S7) be non-
negative and satisfy (3.2.2.2). Set ¢(x) := R(|z|)1(2°). Using the subharmonicity
of h(z,u) (hl), Theorem 3.2.1.1 and (3.2.2.2), we have

0< /h(x,u)quS(x)dx

= Tph(yvu) |: —rm—l_ —+ —Am0:| w(y)rm_ldyd’r,
/(y,r)eslx(o;oo) rm—1 9y o 2

Transforming the last integral we obtain

/ h(z, w) Ad(x)dz = /O Oorp[ L 87"’”_181{(7")} 7 [ by, w)i(y)dy

rm=1 Jr or S

+ / Tp_Qrm_lR(r)dr/ h(y, u) Agot(y)dy. (3.2.2.4)
0 S1
Integrating by parts in the first summand we obtain

/ T”{ L 67””_161?(7")} rm_ldr:/ R(r)p(p4+m — 2)rPT™m =3y,
0 0

rm=19r or

(3.2.2.5)

Substituting (3.2.2.5) into (3.2.2.4), we have

0< [ RO [ G u)Bes + plp +m - D))y,
0 S1
Since R(r) is an arbitrarily nonnegative function,
[ B+ plo+m—2Ji)dy > 0
1
for arbitrary . O

We will call an upper semicontinuous function which satisfies (3.2.2.3) a p-
subspherical one. Now we are going to study properties of these functions.

3.2.3 We consider the case m = 2. A p-subspherical function for m = 2 is called
p-trigonometrically convex (p-t.c.). We will obtain for such a function a represen-
tation like in Theorems 3.1.4.4, 3.1.4.5.(*,** Hadamard). Set

2
T, :

_ 2
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Let us find a fundamental solution of this operator. Let p be non-integer. Let
us denote as cos p(¢) the periodic continuation of cos p¢ from the interval (—, 7).

Theorem 3.2.3.1 (Fundamental Solution of 7),) One has

Spsinny PO =) = 6(9) in D(S) .

Proof. Let f € D(S1). We have

27 2m—e
/0 5 p(o w4 o fldo = lim [ cosp(o = w4 g6 (3:231)

Integrating by parts we obtain
2m—e
[ cosplo-mls 1o

2m—e
=cosp(¢—m) f'(9)|." “+psinp(¢—7) F(¢)|77+ / f(@)T,cosp(¢—m)de.

However, T, cos p(¢ —m) = 0 for ¢ € (¢,2m —¢). Thus the limit in (3.2.3.1) is equal
to f(0)2psinmp. O

Let s be a measure on the circle S7. Set
27
Mo.s) = [ &@pl0— v~ msldv).
0

Theorem 3.2.3.2 One has
T,XI(¢,s) = (2psinmp) s(e) in D'(S1).
The proof is the same as GPo3) in Theorem 2.5.1.1.

Theorem 3.2.3.3 (Representation of p-t.c.f for a non-integer p) Let h be p-t.c. on
Sy for non-integer p and let s :=T,h. Then

1

hg) = 2psinmp

(¢, s).

The proof is like in Theorem 3.1.4.4 (*Hadamard).
3.2.4 We will suppose in this item that V; = I, m = 2, p is integer.
Theorem 3.2.4.1 (Condition on s) Let p be integer, h be p-t.c. and T,h = s. Then

/% e?s(dp) = 0. (3.2.4.1)
0
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Proof. We have for f € D(51) :
(s, f) = (Tph, f) = (b, T, f).
Since €*? € D(S1) for integer p and T,e?*? = 0, we have for f := e'?,
(s,€*) = (h, T,e"*) = 0. O

Let us denote the periodic continuation of the function f(¢) := ¢ from the
interval [0, 27) to (—o0,00) as ¢.

Theorem 3.2.4.2 (Generalized Fundamental Solution for T,) One has
T, [—iésinmb} =4(¢) — L cos PP
2mp T
in D'(S1).
Proof. Let ¢ € (¢,2m — €). Then
quzg sin pp = 2p cos po
because ¢ = ¢ when ¢ € (e,2m — €). We have also
(¢sin p@)’ = sin pé + ¢p cos po.
Thus

27 B 2m—e
(Tsinpe. )= [ dsinpo T, 10 = lim [ sipo 1,50

Integrating by parts we obtain
2m—e
[ ésinps T,pdo = osinpof (6)7 ~ £(6)lsinpo + opeos pof2™

2T —e€
[ Tiesinpolf(o)ds.

Passing to the limit as € — 0 and taking in account that f is periodic and contin-
uous we obtain

27
(T, 3sinpe]. f) = ~2mpf (0)+2p | cos pof(@)ao
= —2mpf(0) + 2p{cos pe, f). O

Set
(g, 5) := / (& — ) sin p(¢ — ) s(dp).

0
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Theorem 3.2.4.3 One has
T,Il(e,s) = —27p s in D'(S))
for s that satisfies (3.2.4.1).

Proof. Using Theorem 3.2.4.2 we obtain

R 1 2w
(Tyitto.5). £y = (5. f) = = ([ cosplo = vt £).
The last integral is zero because of Theorem 3.2.4.1. g

Theorem 3.2.4.4 (Representation of p-t.c.f. for an integer p) Let h be a p-t.c.f.for
an integer p and T,h := s. Then

h(¢) = Ree'® + f[(¢, s)

for some complex constant c.

Proof. The function H(¢) := h(¢) — II(¢, s) satisfies the equation T,H = 0 in
D'(S1) because of Theorem 3.2.4.3 and it is real. Thus H(¢) = Rce'?. O

3.2.5 The class T'C,, of p-t.c.functions has a number of properties of subharmonic
functions.
The function cos p¢ is continuous and qg sin p¢ is continuous for integer p.
Therefore any p-t.c.f is continuous as follows from Theorem 3.2.3.3 and 3.2.4.4.
Set

1
£(6) = 5 sinplo].
For any interval I := (a, ) € (—m,7) this function satisfies the equality
T,E=9¢

in D' (a, 3), where § is the Dirac function in zero.

Let G1(¢, ¢) be the Green function of T, for the interval I. By definition it
must be symmetric with respect to ¢, and have the form

1
Gr(p,0) == % sin p|¢ — | + Ay cos p¢ cos pip + By sin pg sin pih, (3.2.5.1)

where Ay, By are chosen such that Gj(¢,) is equal to zero on 9{I x I}. An
explicit form of Gy is given by

sin p(B—3) sin p(1p—a) .

Gilou) =, e R
’ sin p(B—1) sin p(¢—a)

st p(A—a) ,  for ¢ <.
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The following assertion is analogous to the Riesz theorem (Theorem 2.6.4.3):

Theorem 3.2.5.1 (Representation on I) Let h € TC, and let I be an interval of
length mesI < w/p. Then

B
h(9) = V(6 h) — / G1(6.1)s(dv),

where Y, (¢, h) is the only solution of the boundary problem:
T,Y =0, Y(a) =h(a), Y(B) = h(B) (3.2.5.2)
and s :=T,h.

Proof. Set
5
(. s) = / G1(6,)s(di).

One can check as in Theorem 3.2.3.2 that T,II; = —s in D’(I). Then the function
Yo() := h(¢) + 11 (6, s)
satisfies the conditions (3.2.5.2). O
The explicit form of Y,(¢) is

h(a)sin p(5 — ¢) + h(B) sin p(¢ — @)

)= sin (7 — 9)
Since II7(¢) > 0 we have

Theorem 3.2.5.2 (p-Trigonometric Majorant) Suppose h € TC, and Y,(¢) is the
solution of (3.2.5.2). Then

(3.2.5.3)

W) <Y,(9), ol

if B—a<m/p.
This inequality can be written in the symmetric form
h{a)sinp(B — @) + h(¢)sinp(a — B) + h(B)sinp(¢ —a) >0 (3.2.5.4)

for max(a, ¢, 3) — min(a, ¢, 8) < 7/p. It is called the fundamental relation of
indicator.

Theorem 3.2.5.3 (Subharmonicity and p-t.c.) A function h(¢) € TC, iff the func-

tion u(re'®) := h(g)rf is subharmonic in R2.

Proof. Sufficiency follows from Theorem 3.2.2.2. Let us prove necessity. The func-
tion wy(2) := r?sin p|¢| is subharmonic. Actually, it is harmonic for ¢ # 0, r # 0
and can be represented in the form

u1(z) = max(r” sin ¢, —r” sin ¢)
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in a neighborhood of the line ¢ = 0. Hence, it is subharmonic because of sh2),
Theorem 2.6.1.1 (Elementary Properties).

The function us(z) := rPIl;(¢, s) is subharmonic because of sh5) and sh4),
Theorem 2.6.1.1. The function r?Y,(¢) is harmonic for » > 0. This can be checked
directly. Hence, u(z) is subharmonic for r > 0 because of Theorem 3.2.5.1. By
Theorem 2.6.2.2 u(z) is also subharmonic for » = 0, because it is, obviously,
continuous at z = 0. g

Theorem 3.2.5.4 (Elementary Properties of p-t.c.Functions) One has
tel)  IfheTC,, then Ah € TC, for A > 0;
tCQ) If hi,ho € TCp, then hy + hs, max(hl, hg) S TCP

These properties follow from Theorem 3.2.5.3 and properties of subharmonic
functions.

Exercise 3.2.5.1 Prove Theorem 3.2.5.4.

Similarly to (usual) convexity, p-t.convexity of functions implies several an-
alytic properties.

Theorem 3.2.5.5 Let h € TC,; then there exist right (h',) and left (h') derivatives
and they coincide everywhere except, maybe, for a countable set of points.

Proof. Tt is enough to prove these properties for the potential

B
(g) == / sin pl — ¥s(d),

because of (3.2.5.1) and Theorem 3.2.5.1.
We will prove that

$—0 3

Iy (¢) = p / cos p(¢ — ¥)s(dy) + pu() — p / cosp(¢ — ¥)s(dy);  (3.2.5.5)
«@ »+0
¢—0 B

1(6) = p [ cosplo—0)s(dv) = puté) — p [ cosp(o—v)s(av), (325.0)
a ¢+0

where p(¢) is the measure, concentrated in the point ¢.
We have for A > 0:

¢
Mg+ &) ~Tl6) _f sinplo 8= vl =singls — ]

. . s(d)

87

d+A

+SinApAM(¢)+/...+/B...

#+0 d+A




3.2. Indicators 95

Let us estimate the second integral. We have

oA . -

/ sinp|¢ + A — @Q —sinpl¢ — ¢ s(d) < %[S@HA) —s(¢+0)] =o(1)
¢+0
when A — 40.

Passing to the limit, we obtain (3.2.5.5). The equality (3.2.5.6) is obtained
in the same way when A < 0.

Since y1(¢) # 0 at most in a countable set, for all the other points IT', (¢) =
I (). O

3.2.6 Now we consider the case m > 3. We will obtain for the p-subspherical
function a representation like for the p-trigonometrically convex functions.

Theorem 3.2.6.1 (Subharmonicity and Subsphericality) Let h be subspherical in a
neighborhood of y € S1. Then the function u(x) := h(y)r?, x = ry is subharmonic
in the corresponding neighborhood of the ray x =ry : 0 < r < co.

Proof. Let f € D'(R™\ 0). We can represent it in the form f := f(rz), = € 51
where f(ex) € D'(0,00) for any =.
Then

(u, Af) = 70 / w(rz) A f (ra)r™ L drda
S

0 S
— i 1 ﬁ m—lg m—1
= //u(mj) 15" ﬁrf(TI)T drdx

0 Sy
i 1 m—1
+ u(rx) T—2Awo flrz)r™ tdrdx.
0 S

Integrating by parts in the first integral, we obtain

/p(p +m — 2)pPtm=3 /h(a:)f(rx)drdm.
0 S1
Set
Sy i=Ago +p(p+m—2). (3.2.6.1)
Together with the second summand we obtain
(u, f) = / /h(x)Spf(rx)dx rPrm=3dr > 0
0 1

if f(rz) > 0. O
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Note that the Riesz measure for such u has the form
p(r™ tdrdz) = P 3 dryy (dx),

where vy, is a positive measure on S, that is equal to S,h in D’'(S7).
For a non-integer p set

oo
/Gp T,TY,m r”+m_3d7“,
0

where G, is the primary kernel and x,y € 5;.

Theorem 3.2.6.2 For non-integer p and any p-subspherical function h one has

0) = [ Efawmdn).
S1
Proof. Set in (3.1.4.6) v := r?h(z). It is clear that v € U[p]. We have

rPh(x //G (rac, ty, m)tP ™3 dty, (dx).

Now we make the change ¢’ := ¢/r and use the homogeneity of G, (rz,ty,m). O

Exercise 3.2.6.1 Show that £,(x,y) is a fundamental solution of the operator S,,.

For an integer p = p set

E(x,y) =

o—_

oo
Gp—1(z,ry)rPtm= 3dr—|—/Gp (@, ry)rrtm= 3dr.
1

Exercise 3.2.6.2 Prove the next

Theorem 3.2.6.3 For any integer p = p and any p-subspherical function h one has

mw=nm+/amww@>
S1

where Y, is some p-spherical function.
For any p-spherical function Y,

/Y(a:)yh(dy) =0.
S1

3.2.7 We return to the general case when x € R™, V; is a one-parametric group,
p(r) is a proximate order and u € SH(p(r)). The following theorem represents
indicators in a form of limits in the usual topology.
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Theorem 3.2.7.1 (Classic Indicators) One has

h(z,u) = sup[limsup us, " (x) = [lim sup us(z)]* (3.2.7.1)

T tj—o0 t—o0
where * can be deleted outside a set of zero capacity, and

h(z,u) = il%f[lim sup ug; " (), (3.2.7.2)

tj—o00
where T is the set of all the sequences that tend to infinity.
Proof. Let us prove (3.2.7.1). Set
h(z,u,{t;}) := limsup uy, (x). (3.2.7.3)

t;—00
Let v € Fr[u] and us; — v in D’. Then
h*(z,u,{t;}) = v(z) (3.2.7.4)
by Theorem 2.7.3.3. (H. Cartan+). Thus
sgp h*(z,u,{t;}) > h(z,u). (3.2.7.5)

Let € > 0 be arbitrarily small, and ¢; := t;(z) be a sequence such that
h*(z,u,{t;}) > sup h*(z,u, {t;}) — e
T

We can find a subsequence {t;} (we keep the same notation for it) and v € Fr|u]
such that u;; — v in D’. From (3.2.7.4) we obtain

h(z,u) > v(z) > s%p h*(x,u,{t;}) — e

Thus the reverse inequality to (3.2.7.5) holds. Therefore
h(z,u) = sup h*(z,u, {t;}).
T
Let us prove the second equality in (3.2.7.1). Since
sup h(z,u, {t;}) = limsup u(x)
T t—o0

we have
h(x,u) > [limsup u]*(z). (3.2.7.6)
t—o0
Let us prove the opposite inequality. Let v € Fr[u]. There exists a sequence t; — 00
such that u;, — v in D'(R™). By (3.2.7.4)

limsup u¢]* > h*(z,u,{t;}) = v(z).

t—o0
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Since it holds for every v € Fr[u] we have the reverse inequality to (3.2.7.6). Hence,
(3.2.7.1) is proved completely.
Let us prove (3.2.7.2). From (3.2.7.4) we have

irTlf h*(x,u,{t;}) < v(x)
for all v € Fr[u]. Therefore

i%f h*(z,u,{t;}) < h(z,u). (3.2.7.7)

Let us prove the opposite inequality. Let {t;} be any sequence that tends to
oo. Let us find a subsequence {t;/} such that u;, — v in D'(R™). Then

h(z,u,{t;}) > limsup uy , ().

j'—o00
Taking * from the two sides of this inequality and using Theorem 2.7.3.3, we obtain

h*(z,u, {t;}) > limsupu,]"(z) = v(x) > h(z, u).

j'—0o0

This implies the reverse inequality to (3.2.7.7). Hence (3.2.7.2) holds. O

Corollary 3.2.7.2 If all the functions (3.2.7.3) are upper semicontinuous, then

h(z,u) = limsup us(z), h(x,u) = litm inf ug(z).

t—o0o

Proof. We have h*(z,u,{t;}) = h(z, u, {t;}) and thus
h(z,u) = sup[limsup uy,|(z) = litm inf ug(z),
T tj—o00 —o0

h(z,u) = ir%f[lim sup ug;)(x) = litm inf ug(x). O

tj—o00

Theorem 3.2.7.3 (Indicators of Harmonic Function) Let v € SH(p(r)) be har-
monic for all the large |y| in a “cone” of the form

Coqg:={y=PRx:2€Q, te(0;00)}

where Q C S1. Then

h(z,u) = limsup us(z) (3.2.7.8)
t—o0
and
h(z,u) = litm inf us () (3.2.7.9)

for x € Cogq.
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Proof. The harmonicity of u in Coq implies [u]e(x) = w(z) for large ¢ and
sufficiently small € when x € Cogq.

The family [u]. is uniformly continuous by reg3), Theorem 2.3.4.5 (Proper-
ties of Regularizations). Thus the function (3.2.7.5) is continuous. Therefore we
can use Corollary 3.2.7.2. g

Theorem 3.2.7.4 (Indicator for m = 2) Let u € SH(R?). Then
h(z,u) = lim sup us(x). (3.2.7.10)

t—o0o
Le., the star in (3.2.7.1) can be deleted.

Proof. Let as denote as hi(z,u) the right part of (3.2.7.10). The “homogeneity”
of the indicator (3.2.1.10) and also of hq(z,u) implies the following property: if
the inequality hi(z,u) < h(z.u) holds for some zg, it holds on the whole orbit

z2={Piz: 0 <t < oo}

that has a positive capacity in R?. This contradicts Theorem 3.2.7.1. g

3.3 Densities

3.3.1 In the sequel G is an open set, K is a compact set and E a bounded Borel
set. Let u € M(p(r)) and Fr[u] := Fru, p(r), Vi, R™] be the limit set of u. Set

A(G, ) = sup{u(G) : v € Frfu]};
A(E,p) == inf{A(G, ) : G D E};
A(K, p) := inf{y(K) : v € Frlu]};
A(B, 1) = sup{A(K) : K C E}.

The quality A(E, 1), (A(E, p)) is called the upper (lower) density of p relative to
the proximate order p(r) and the family V;.
Theorem 3.3.1.1 (Properties of Densities) The following properties hold:
dens1) ifE =g, then A(E,e) = A(E, e) = 0;
dens2) VE, A(E,e) < A(E,e);
dens3) monotomczty A, A(Eq,0) <A, A(Ey, ) for By C Es;
)

densd) generalized semi-additivity' with respect to a set:

Z(El U EQ, .) + A(El n lag7 .)
A(El U EQ, .) + Z(El N lag7 .)

1See Exercise 3.3.1.1
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densb) continuity from the right and from the left.
E,TE = A(E,,e) 1 A(E,e); K, | K = A(K,,e) | A(K,e),

(3.3.1.3)
E, | E = A(Ep,e) | A(E,0); G, TG = A(Gn, ) T A(G,0);
(3.3.1.4)
dens6) semi-additivity and positive homogeneity with respect to , i.e.,
A(E, 1 + pa) < A(E, 1) + A(E, p2); (3.3.1.5)
A(E, p1 + p2) > A(E, 1) + A(E, p2); (3.3.1.6)
A, A(B, M) = AA,AA(E, 1) (3.3.1.7)

for X >0;

dens7) invariance with respect to the map (e)[y (see, 3.1.2.4a), i.c.,

t=P~mt2A A(P,E, o) = A, A(E, o).

Proof of Theorem 3.3.1.1. The property densl) holds because the empty set is
open by definition. The properties dens2) and dens3) hold because of the mono-
tonicity of v.

Let us prove dens4). Since v is a measure we have

v(G1 UG, p) + v(Gh N Ge, p) = v(Gr, 1) + v(Ga, 1)
for any G1 D E7 and G5 D Fs.
From this we obtain
v(G1 UG, p) +v(K1 N Ko, pu) <v(Gr,p) +v(Ga, ) (3.3.1.8)

for K1 C F1 and Ky C Es.

The right side of (3.3.1.8) is no larger than A(Gy, e) + A(G1, ). Now we can
take supremum over v € Fru in the first summand of the left side and infimum in
the second summand. Thus we obtain

Z(Gl U Ga, .) + A(Kl N Ko, 0) < Z(Gl, O) + Z(Gl, 0). (3.3.1.9)
Since A(E, o) and A(E, e) are monotonic with respect to E,
1nf{Z(G1 U Go, O) :G1 D Ey, G2 D E2} = Z(El U E27.)

and
sup{é([(l n KQ, .) K C E17 Ky C EQ} = A(El U Eg)

Thus we obtain the first inequality in dens4) from (3.3.1.9). The second one can
be obtained analogously?.

2Exercise 3.3.1.2
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Let us prove densb). For arbitrary G D K there exists ng such that K,, C G
for n > ng. According to dens3),

Hence, o . _
A(K,e) < lim A(K,,e) < A(G,e).

Taking infimum over all G O K, we obtain the second assertion in (3.3.1.3).

For G,, T G we have the equality
lim A(G,,e) =supA(G,,e) = A(G, ) (3.3.1.10)

because one can change the order of taking the supremum on n and on v € Fr[u].
Let E, | E and let € be arbitrarily small. One can find G,, D E,, such that
A(Gp,0) < A(E,,e) +e.
Since G :=|J;° G» D E we have
A(Gp,0) — e <A(E,, o) <A(E,o) <A(G, o).
Using (3.3.1.10), we obtain
A(E,e) — lim A(E,,e)<e.

n—oo

Since € is arbitrarily small,

A(E,e) < lim A(E,,e)

n—oo

and hence the first assertion in (3.3.1.3) holds.
The assertion (3.3.1.4) can be proved analogously.?
Let us prove dens6). One has

A(G, 1 + p2) = sup{v(G) : v € Frlps + pal}
Since
Frius + po] C Friu] + Frlus]

(see frmul), Theorem 3.1.3.4 (Properties of u +— Fr[u])) one can continue the
previous equality as

< sup{v(G) : v € Fr{u] + Frluo]}

= sup{v(G) : v € Fr[u1]} +sup{v(G) : v € Fr[uz]} = A(G, 1) + A(G, pz).
Passing to the infimum over G O E, we obtain (3.3.1.5). The assertions (3.3.1.6)
and (3.3.1.7) can be proved analogously.*

The properties dens7) follow from the invariance of Fr[u] (see frm3), Theorem
3.1.3.3. (Properties of Fr[u])). O

3See Exercise 3.3.1.3
4See Exercise 3.3.1.4
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Exercise 3.3.1.1 Prove the subadditivity of A(E,e) :
A(E1UEy, 0) < A(Ey,0) + A(Es, o)
and the superadditivity of A(E,e) :
A(E1UE; ) > A(E,e) + A(E;, )
from Theorem 3.3.1.1.
Exercise 3.3.1.2 Prove (3.3.1.2).
Exercise 3.3.1.3 Prove (3.3.1.4).
Exercise 3.3.1.4 Prove (3.3.1.6) and (3.3.1.7).
Set for I C (0,00) and Q C Sy,
Coq(I):={x=Py:yeQ, tel}.
Also set I; := (0,1t).
Theorem 3.3.1.2 (Cone’s Densities) One has
A, A(Coq(I;)) = tPT™2A, A(Coq(I1)).

We obtain this from dens7), Theorem 3.3.1.1, taking E := Coq(I1).

Exercise 3.3.1.5 Show that for m = 2,8, = {|z| = 1},Q = {z =€ : ¢ € (0, )}
Coq(I}) is a sector of radius ¢ corresponding to the arc («, 3) on the unit circle.

3.3.2 Let §(E) be a monotonic function of E € R™. A set E is called §-squarable if

;1&1})5 (K) = égféd(G) (3.3.2.1)

Example 3.3.2.1 Let §(E) be a measure. Then (3.3.2.1) implies §(0F) = 0, i.e.,
E is d-squarable in the sense of Section 2.2.3.

Exercise 3.3.2.2 Prove the next

Theorem 3.3.2.1 If A(OE) = 0, then E is A-squarable. If E is A-squarable, then
A(OFE) = 0.

Set
Ei:={z:3yeF:|z—y|l <t}

This is a t-extension of E.
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A family of sets A; is said to be dense in a family A if for each set Fs € A,
and an arbitrarily small € > 0 there exists a set E; € A; such that

Ei1AE; = (El \Eg) U (EQ \El) C (aEg)e. (3322)

Exercise 3.3.2.3 Prove
Theorem 3.3.2.2 The relation “to be dense in” is reflexive and transitive.
Le., Ay is dense in A;, and

{A; is dense in Az} A { Az is dense in A3} = {A; is dense in A3}. (3.3.2.3)

There are lots of squarable sets.

Theorem 3.3.2.3 For any monotonic §(E) the class of §-squarable sets is dense in
the class of all the subsets of R™.

Proof. For any E C R™ set

E(t):=FEU (0F);. (3.3.24)
One can check that
EAE(t1) C (OE)4, (3.3.2.5)
and 3
E(t1) C E(t2) (3.3.2.6)
for t1 < ts.

The function f(t) := §(E(t)) is monotonic. Hence, its set of continuity points
has a concentration point at ¢ = 0.

Suppose € > 0 is arbitrarily small, and ¢y < € is a continuity point for f(t).
From (3.3.2.6) we have

i E@l)< s < i < 1l B(L)).
tHht%Ee S(E) < Kbcugto I(K) < GIDnEftO I(GQ) < tiltgrl+€ I(E(t))

Hence, E;, is 6-squarable. From (3.3.2.5) we have

EAE(t) C (DE).. O

Set
——cl

A"(E) =limsup py(E); A(E) = liminf e (E).

t—o0

These are classic densities determined without D’-topology. They are monotonic.
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The following assertion connects these densities to A and A.

Theorem 3.3.2.4 (Classic Densities) For any Zd—squamble set B,

cl

A (E) = sup{v(E) : v € Fr[u]} = A(E, u). (3.3.2.7)
For any ACl-squamble set B,
AYE) =inf{v(E): v € Fr[u]} = A(E, ). (3.3.2.7)
The theorem follows obviously from the following assertion.

Theorem 3.3.2.5 One has

sup A (K) < sup v(E) < A(E) < inf A°(G); (3.3.2.8)
KCE vEFr GDE

cl < i < < i cl ) 3.9
;térgé (K) < inf v(E) <A(E) < inf AY(G) (3.3.2.9)

Proof. Let us prove, for example, (3.3.2.9). Let us choose any G and K such that
K C E C G. We can find a sequence t; — oo such that

lim 1., (G) = A(G).
J—00

Choose a subsequence t;, such that p;, — v in D' for some v € Fr.
Using Theorems 2.3.4.4.(D’and C*) and 2.2.3.1.(C*-limits), we obtain

v(G) < liminf iy, (G) = A%(G). (3.3.2.10)
By the same theorems

AY(K) < limsup pe, (K) < v(K). (3.3.2.11)
From (3.3.2.10) and (3.3.2.11) we obtain

AYNK) <v(E) <v(G) < AYG) (3.3.2.12)

because of monotonicity of ¥(E). Taking supremum over all K C E and infimum
over all G D E, we obtain (3.3.2.9). O

Exercise 3.3.2.4 Prove (3.3.2.8).

Corollary 3.3.2.6 The following holds:

ANKL) = DKy, ) = PP 2A(Ky, ), t > 0, (3.3.2.13)
ANK) = A(Ky, p) = tPT™2A (K, 1), t > 0. (3.3.2.13")
where Ky = {x : |z| < t} is the ball.

Proof. The right equalities follow from Theorem 3.3.1.2 with Q := S;. The left
equalities hold at least for one ¢ because of Theorem 3.3.2.4 and hence for all t. [
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3.3.3 Let us note generally speaking that values of A and A on the sets Coq/(I;)
do not determine their values even on the sets Coq(I) for I = (t1,t2). However
the following assertion holds.

Theorem 3.3.3.1 (Existence of Density) Let ® be a dense ring (see, 2.2.3) on Si.
Then the conditions

A(Coq(1I;)) = A(Coq(I})) (3.3.3.1)

for Q@ € @ and some ¢ determine uniquely a measure A(2) on Si. Fru] consists
of one single measure v and

v(Coq(I})) =t 2A(Q) (3.3.3.2)

for all the t € (0,00).

To prove this we need an assertion that is valuable by itself. Set
A(Q) := A(Coq(1)); A(R) := A(Coq(I)) for Q € 5. (3.3.3.3)

We will call them angular densities because for m = 2 and V; = I, Q determines
an angle in the plane.
Let Q€ denote an open set in S; and Q% a closed one.

Theorem 3.3.3.2 (Angular Densities) One has

A@Q) = inf AQY); A(Q) = Q?E’QA(QK)' (3.3.3.4)

Proof. We need to prove two assertions:

Ve > 0 3Q° : A(QY)
Ve > 0 30K . A(QF)

(Q) + ¢ (3.3.3.5)

<A
> AQ) — e (3.3.3.6)

Let us prove (3.3.3.5). Set

Q%) := Coq(I14c) U{|z| < €}

This is an open set that contains Coq(f1). One can show the following:

Exercise 3.3.3.1 For every open set G O Cogq(I;) there exists e > 0 and Q¢ C S,
such that Q%(e) C G.

We will show
A(QC%(e)) < A(QY) + 0(1) (3.3.3.7)

uniformly with respect to Q¢ C S; while € — 0.
We have from Exercise 3.3.1.1,

A(Q%(e)) < A(Coq(I1se)) + A({|z] < €}). (3.3.3.8)
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The property dens7), Theorem 3.3.1.1, gives
A(Cona (Iire)) = A(Cona (1) (1 + €)™ 2.

Since A(Coga (I1)) < A({]x| < 1}) we have

A(Coqe (I11¢)) = A(Coqa (I1)) + o(1) (3.3.3.9)
uniformly with respect to Q¢ C S; as € — 0.
By dens7) we also have

A({|z] < €}) = A({|z| < 1})e?T™ 2 = o(1). (3.3.3.10)

From (3.3.3.10), (3.3.3.9) and (3.3.3.8) we obtain (3.3.3.7). Hence (3.3.3.5) is
proved.
Let us prove (3.3.3.6). Set

QK(E) = Coqr (I1_¢) \ {|z] < €}

where T is the closure of I.
One can show the following:

Exercise 3.3.3.2 For any compact K C Coq(I1) there exist Qf C Q and € > 0
such that K C Q% (e) C Coq(I1).

From the definition of A(Q)) and the monotonicity we obtain (3.3.3.6). O

Proof of Theorem 3.3.3.1. Suppose (3.3.3.1) holds. The property dens7), Theorem
3.3.1.1, implies (3.3.3.1) for all the ¢ € (0,00). Set A(Q) := A(Q) = A(Q) for
Q € ®. Let us prove that A satisfies the conditions A1)-A3) from Section 2.2.3.
The conditions Al) and A2) follow from dens3) and dens4), Theorem 3.3.1.1,
Exercise 3.3.1.1.

Let us prove A3). By Theorem 3.3.3.2 for arbitrary Q € ® and ¢ > 0 we
can choose Q¢ D Q such that A(Q) > A(QY) —¢ and QF C Q such that
A(Q) < A(QF) +e.

Suppose Q' € ® satisfies the condition QX ¢ Q' € QF. Then

A =AQ) <AQE) <AQ)+e=A(Q) + ¢

and
A(Q) —e=A(Q) —e < AQF) < AQ) = A(QY),

implying A3). O



Chapter 4

Structure of Limit Sets

4.1 Dynamical systems

4.1.1 The most complete and effective description of an arbitrary limit set can be
done in terms of dynamical systems (see, [An]).
A family of the form

T :M— M, teR,

on a compact metric space (M,d) with a metric d(e,e) is a dynamical system
(T*, M) if it satisfies the condition

THT =T'oT", t,7 €R

and the map (t,m) — T%m is continuous with respect to (¢,m), for all ¢t € R,
m € M.

Let m,m’ € M, and ¢,s > 0. An (¢, s)-chain from m to m’ is a finite sequence
mo = m,mu,...,m, = m', satisfying the conditions d(T"m;,mj;1) < €, j =
0,1,...,n —1, for some t; > s.

A dynamical system (7', M) is called chain recurrent (see, [HS]), if for an
arbitrarily small € > 0 and an arbitrarily large s > 0 there exists an (e, s)-chain in
M from m to m.

Theorem 4.1.1.1 (Properties of Chain Recurrence) Let (T*, M) be a dynamical
system on a compact set. Then the following conditions are equivalent:

crl) M is connected and (T, M) is chain recurrent;

cr2)  for every open proper U C M satisfying
T'U CU, —oco<t<0, (4.1.1.1)

the boundary OU contains a nonempty T -invariant subset of M;
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cr3)  for every closed proper K C M satisfying
T'K C K, t>0, (4.1.1.2)

the boundary OK contains a nonempty T®-invariant subset of M;

crd) there does not exist any open proper V.C M satisfying T™ closV C V' for
some T > 0;

crb)  for any small € > 0, large s > 0, and every pair of points m, m’ there exists
an (e, s)-chain from m to m'.

Proof. The conditions cr2) and cr3) are equivalent. Let us prove, for example,
cr2)= cr3). Set U := M \ K. It is open. Applying to (4.1.1.2) T~* and, using
the invariance of M, we obtain (4.1.1.1) for U. Hence OU contains a nonempty
invariant subset of M. Since 0K = U we obtain cr2).

Let us prove the implication crl)=-cr3). Let K C M be closed, proper and
satisfy (4.1.1.2). Since M is proper 0K is nonempty.

Let W denote the interior of K in M. The continuity of T" and (4.1.1.2) imply

T'W c W (4.1.1.3)

for t > 0. Indeed, T*W C K. It must be open. Thus it cannot contain any point
of 0K, since else it would contain some neighborhood of this point, contradicting
the definition of 0K.

Suppose that 0K does not contain any nonempty T-invariant set. Let us
show that there exists s > 0 such that

TK C W. (4.1.1.4)

For any m € OK there exists t = t(m) such that T%m € W. There exists a
neighborhood V,, of m in 0K that passes to W under T*™)-action because of
continuity of T%m on m.

We also have TV, € W for t > t(m) because of (4.1.1.3). Since 0K is
compact we can cover it by a finite number of neighborhoods and obtain s such
that

T50K C W. (4.1.1.5)

(4.1.1.5) and (4.1.1.3) give (4.1.1.4).

Set € := 0.5d(0K,T*K). From (4.1.1.2) we see that T*K C T*K for t > s.
Therefore there does not exist any (e, s)-chain from a small neighborhood of a
point m € 0K to itself. This contradicts the chain recurrence of M.

Let us prove cr3)=>cr4). Assume that there exists an open proper V.C M
satisfying T7 closV C V for some 7 > 0.

We will construct K that does not satisfy cr3). Set W := |J T*V and
0<t<r

K :=closW.
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Then
T°W c W,V¥s > 0. (4.1.1.6)

Indeed, let s =kt + ¢, s’ € [0,7), k € Z. Then

W= J 1"V (4.1.1.7)
telo,7]

Since T7V C V we have T**k™V C TV for ¢ > 0. From (4.1.1.7) we obtain

rw= |J rmtve | rtv= | TV
te(0,7] te(0,7] t'els’, 7+s']
= U TV U U TV = Wi U Ws.
te[s’,7) te[r,7+s’]

Further we have W7 C W by definition. W5 can be represented in the form

Wy = U THV.
te(0,s’]

Since
THV =TTV and TV cVv

by the assumption we get:
Wy Cc Wy C WL

This implies (4.1.1.6). The same holds for K because of continuity of T, i.e., K
satisfies (4.1.1.2).

Let us prove the equality

K= |J T'dosV. (4.1.1.8)

0<t<t

Denote as K’ the right side of (4.1.1.8).

The set K is closed because of compactness of [0, 7]. Indeed, let the sequence
{T%v;:j=1,2,...} € T%(clos V) converge to w. Choose a subsequence t;, —
s € [0,7]. Then

vi= khlgo Vj, = khjgo T bkw =T *w.
Since closV is closed, v € closV. Thus w = T®v for some s € [0,7] and some
veclosV, ie, we K'.
Now, W C K’ because

T'W C closT'V = T! clos V.

Hence,
K :=closW CclosK' = K.
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We also have
(T'V C WVt €[0,7]) = (closT'V = T"'closV C closW = K, Vt € [0,7]).

Hence, K’ C K. Therefore K = K’ i.e., (4.1.1.8) holds.
From (4.1.1.8) and 77 clos V' C V we obtain T7 clos W C W. Hence TT0K C
W. This and 0K N W = & imply

TTOK NOK = @. (4.1.1.9)

To obtain a contradiction and complete the proof of cr3) = cr4) we have
to show that K is a proper subset, because both cases: 0K = @ and 0K # @ will
contradict cr3).

Since V is proper TV is proper for any t € (—o0,o0). Otherwise T*V = M
implies V = T—tM = M, which is a contradiction.

Since V' is a neighborhood of the compact set T7 closV we can find o > 0
such that T o T closV C V for t € [0, ). Then T closV C T~"V for t € [0,q].

By iteration of this inclusion we obtain 77! closV C T—77V for any integer
j. When ja > 7 it follows that K C T~77V. The last set is proper because we
mentioned already that T*V is proper for any ¢t € (—oo, 00). Hence K is proper.

So K satisfies the conditions of cr3) but 0K does not contain a nonempty
T*-invariant set. This contradiction proves the implication cr3) = cr4).

Let us prove crd) = crb). Let € > 0 be small and s > 0 be large. Let V
denote the set of all m’ € M such that there exists an (e, s)-chain from m to
m/. This set is open and closed. Indeed, let m’ € V. There exists an (e, s)-chain
m = mg,...,Mp_1, My, = m’ from m to m’. Choose ¢; < ¢ — d(my, mp_1) and
consider the closed neighborhood W := {m” : d(m’,m”) < e;}. Then for any
m'” € W the chain m = mq,...,mpu—_1,m, = m’ is an (¢, s)-chain from m to m”.
Hence, with every point, V' contains its closed neighborhood. Therefore it is open
and closed. Therefore it is a connected component of M.

We also have T°m € V because for that case n = 1,mg = m,m; = T°m.
Hence T® closV C V. If V' does not coincide with the whole M the latter contra-
dicts crd). Hence V = M.

Finally, let us prove cr5) = crl). If M is a union of two nonempty disjoint
sets A and B, then both of them are open and closed. Since M is compact, the
distance € between A and B is positive . Hence every (e/2, s)-chain starting at a
point of A remains in A, contradicting crb).

Since for every point m € M the set V from the proof of crd)=— crb)
coincides with M, crl) holds. O

Theorem 4.1.1.2 Let T® be chain recurrent on My, € A. Then T® is chain
recurrent on M = J,c 4 Ma-

This is because every (e, s)-chain from m to m’ in M, is also (e, s)-chain in M.
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4.1.2 Here we prove two auxiliary assertions that will be used further.

Theorem 4.1.2.1 Let T'® be chain recurrent on a connected compact M and let {g;}
be a sequence in M. Then there exist sequences {a,} and {w,} of real numbers
and a sequence {p,} in M having {q;} as a subsequence, such that

Q, — —00; Wy, — 00 (4.1.2.1)

and
AT py, T* ' pys1) — 0 (4.1.2.2)

as v — 0.
Proof. In addition to {a,}, {w,} and {p,} we define, by induction, a sequence

{€,} of positive real numbers, tending to zero, and an increasing sequence {v;} of
positive integers, such that {p,,} = {¢;} and

d(T“"p,, T *1p,11) < €,v=1,2,.... (4.1.2.3)

We start by setting oy = —1,¢; = 1,v1 = 1,w; = 5 and p; = ¢1. Assume
now that oy, €,,w, and p, have been chosen for v =1,2,...,v;. Set

a=a, —1, e=€,/2, w=w,,. (4.1.2.4)

By Theorem 4.1.1.1, cr5) there exists a sequence ro := Tq;,71,...,"m = T%qj41

such that d(T%*rg,rk41) < € for k = 0,1,...,m — 1, where t; > w. Now we set
Vig1 =vj+m+1l.Forv=v;+k+1, k=0,1,..., m—1, weset a, = —t1/2,w, =
tk/2,py = Ttk/2rk, and finally, for v = v; 1 weset o, = v, €, = €,w, = w+1,p, =
qj+1-

Let us check that with this setting the properties (4.1.2.1) hold . Since w,,,, =
wy, +1 we have w,;, — oo as j — oo. From {; > w = w,,; we obtain o, — —o0
and w, — oo. Hence (4.1.2.1) holds.

One can see from (4.1.2.4) that €, = ¢,,/2 — 0. To prove (4.1.2.2) it is
enough to check (4.1.2.3). For k = 0 we have

py =T 2rg = T/ ¥wg; — T2ty

Hence,
Taypy — Twpyj — TOJUJ-ij X
Thus
d(T*"ip,,;, T p,) =0 (4.1.2.5)
for this case.
For £k =1,...,m — 2 and the corresponding v we have

T p, = T™/? o T™/ 2y, = Ty,
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and
/l Ay 4 T—t 2 Tt 2
1pD+1 k 1/ o k 1/ ,rk-‘r Tk+1

Hence,
AT py, T* ' pyy1) = d(T*rg,rhs1) < € = €, (4.1.2.6)

Finally, for the last link of the chain we obtain

k=m-1,v=vi+m, v+1=vj41, ap,,, =,

v — al/,' J— —_—
T« +1pl/+1 =T J+1pyj+1 - Taqj+l =Tm-

Thus (4.1.2.6) holds for ¥ = m — 1. Hence, (4.1.2.3) also holds. Therefore (4.1.2.2)
holds. O

Lemma 4.1.2.2 Let p,q € M and d(pk,qr) — 0 as k — oco. Then there exists a
sequence {7y 1 0o} such that

Ad(T7pr, T"qi) — 0 (4.1.2.7)

uniformly with respect to T € [—Vi+1,Vk)-

Proof. Let [—v,~] be a fixed segment. Then d(T" py, T"qx) — 0 uniformly in this
segment.

Indeed, suppose there exist sequences 7;, k; such that d(T7py,, T qr,) > € >
0. Choosing a subsequence we can assume that 7; — 7 € [=7,7], pr, = p € M
and g, — ¢ = p. Using continuity of 77m on (7,m) and continuity of d(e,e) in
both arguments we obtain 0 = d(p,p) > € > 0. This is impossible.

Denote

e(y, k) == max d(T"pr, T qr).
TE[=7]

This function increases monotonically in v and tends to zero for any v as k — oo.

Choose 1, such that e(n, k) < 1/nfor k > 1. Set yip41 :=n for l,, <k < l41.
One can see that €(ygx4+1,%k) — 0 as k — oo. Since

max d(TTpk)a Tqu:) < 6(7k+17 k)a
TE[—Vr+1,7k]

{k} satisfies (4.1.2.7). O

4.1.3 We connect the property of being chain recurrent with other well-known
characteristics of dynamical systems ([AGL]).

A point my € M is called non-wandering (see [An]) if for any neighborhood
O of mg and arbitrarily large number s € R there exists m € O and t > s such
that T'm € O.
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This means that the “returns” take place to an arbitrarily small neighborhood
of the point mg. We shall denote as Q(7®) the set of non-wandering points. It is
a closed invariant subset of M.

The set A C M is called an attractor if it satisfies the following conditions:
attrl) for any neighborhood O O A there exists a neighborhood @', AC O’ C O

such that 7?0’ € O t € R, where T¢©’ is the image of O;

attr2) there exists a neighborhood O D> A such that T%m — A when t — oo for
me 0.

Theorem 4.1.3.1 If Q(T*) = M, then (T*, M) is chain recurrent; if (T'*, M) has

an attractor A £ M, it is not chain recurrent.

Proof. The property Q(T®) = M obviously implies the chain recurrence for m =
1.Suppose there exists an attractor A # M. Take a point mg that does not belong
to A and choose a neighborhood O D> A such that d(mg,clos Q) = 2¢ > 0. This
is possible because an attractor is closed. Let O’ be chosen by attrl) and s be
such that T*m € O'. Then there does not exist any (e, s)-chain from a small
neighborhood of my itself. By definition (7%, M) is not chain recurrent. O

Let us give examples of dynamical systems on connected compacts that are
chain recurrent.

Theorem 4.1.3.2 Let M be a connected compact and let T* (—oo < t < 00) be the
identity map. Then (T®, M) is chain recurrent.

This theorem, of course, is trivial. However, if M consists of a single point
this dynamical system determines an important class of subharmonic and entire
functions of completely regular growth (see [Le, Ch. III]).

Let m € M. Set

C(m) = clos{T"'m : —co < t < o0}. (4.1.3.1)
It is closed, connected and invariant.
Exercise 4.1.3.1 Prove this.
Let us denote as 2(m) the set of all limits of the form

Q(m) :={m' € M : (3ty — oo)(m’ = lim T"*m}. (4.1.3.2)

k—oo

This is a limit set as t — oo. It is the “tangle” at the end of the curve. Denote by
A(m) the analogous set for t — —oc.

Exercise 4.1.3.2 Prove that A(m) and Q(m) are invariant.
Theorem 4.1.3.3 (T'*,C(m)) is chain recurrent iff

A(m) N Qm) £ 2. (4.1.3.3)
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Proof. Suppose B := A(m)N§(m) = @. Then Q(m) is an attractor and (7', C(m))
is not chain recurrent by Theorem 4.1.3.1.
Suppose B # &. We will use cr2) from Theorem 4.1.1.1.
Let U be an open proper subset of C(m) satisfying (4.1.1.1). Consider two
cases:
i) B contains a point of U. Thus U contains a sequence of form T%m, t; — oo.
From (4.1.1.1) we obtain that U contains T%m for all ¢ € (—o00,00). Thus
U D C(m) and closU = C(m). Set K = C(m) \ U. One can show that K
satisfies (4.1.1.2)(see the beginning of proof of Theorem 4.1.1.1). Hence K
contains the set
K*:=(T'K (4.1.3.4)
>0
that is invariant (Exercise 4.1.3.3).
Therefore K* C K C closU \U = dU. By cr2) (T%,C(m)) is chain recurrent.
ii) B contains no point of U. Then B C A(m) C 9U. By cr2) (T*,C(m)) is
chain recurrent. O

Exercise 4.1.3.3 Let U satisfy (4.1.1.1) and K := M \ U. Prove that K* from
(4.1.3.4) is invariant.

4.1.4 The connectedness of M is a necessary condition for a dynamical system to
be chain recurrent.

Let M be a subset of a linear space. The set M is called polygonally connected
if every pair of points my, mo can be connected by a polygonal path.

Of course, polygonal connectedness implies connectedness and even arcwise
connectedness.

Theorem 4.1.4.1 Let (T, M) be a dynamical system such that M is a polygonally

connected set. Then (T®, M) is chain recurrent.

Proof. Let U be an open proper subset of M, satisfying (4.1.1.1). We choose
my € U and ms in an invariant subset K* of K := M \ U. Then there exists a
polygonal path from m; to msy :

me = (j + 1= 0)mj + (0 — j)mj,,, for 0 € [5,j +1],

3 / i
7=0,1,...,1=1; my:=mq, m; :=mao.

Now M is invariant, so for each ¢ the continuous path 6 — Tmg lies in M.

If t € (—o0,0) its initial point T%m; belongs to U and its endpoint Tmy
belongs to K* C K.

For each t € (—00,0) we set

0(t) ;= min[f € [0;1] : T'my € K].
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Then 6(t) > 0, T*mg) € OU and (4.1.1.1) implies that ¢ — 6(t) is a decreasing
function. Hence the limit
f(—o0) := lim 0(t)

t——o0
exists and is positive.
Set m3 := Mg(_sc). We claim that A(ms) C OU (
Theorem 4.1.3.3). If §(—o0) € (4,5 + 1] for some j € [0
t that is near to —oo, and

A(+) is a set defined before
,1] then 6(t) € (4,7 + 1] for

T'ms = T'mg(s + (0(t) — 0(—00))T*m]; + (0(—00) — 0(t))T"m] ;.

The first term in the right-hand side lies in QU. The set M is compact and
invariant so the other terms tend to zero as t — —oo. Hence A(mg) C 0U.

Thus OU contains this invariant subset and (T'°, M) is chain recurrent by
cr2), Theorem 4.1.1.1. O

‘We have the obvious

Corollary 4.1.4.2 Let (T*, M) be a dynamical system such that M is a compact
convex set. Then (T®, M) is chain recurrent.

This is because the polygonal path can be taken as a line segment connecting
every pair of points.

4.1.5 Let Ulp, o] be a set of subharmonic functions defined in (3.1.2.4). It is in-
variant with respect to the transformation (e)}; defined in (3.1.2.4a).
Set (subindex!)
Ttv = U[et]. (4.1.5.1)

Since (e)[y has the property (3.1.2.4b)
Tt_;,_q-’U = (Tt o 1-'7-)’07 Vt, 7€ R. (4152)

By Theorem 3.1.2.3, T, is continuous in the appropriate topology and hence
(T,,Ulp, 0]) is a dynamical system.

Theorem 4.1.5.1 (Universality of Ulp, o]) Let (T*, M) be a chain recurrent dy-
namical system on a compact set M. Then for any p,o there exists U C Ulp, o]
and a homeomorphism imb : M +— U such that imb oT" = T, oimb, ¢ € (—00,00).

Le., any dynamical system can be imbedded in (Ts, U|p, o]).

This plot is developed in [Az(2008)].

It is sufficient to prove the theorem by supposition P;x = tx because
(TE,U[p,0]) is a dynamical system for any P, and

imb : (Ts, Ulp, 0]) — (1.7, U[p, o)
where imb : u(z) — T_;TFu(z) is also a homeomorphism of dynamical systems.

Exercise 4.1.5.1 Consider Theorem 3.1.6.1 from this point of view.
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We need some auxiliary definitions and results. Let us denote as M (S™~1)
the set of measures v with bounded full variation on the unit sphere S™~!. Intro-
duce the metric d(v,0) := Var v and consider the set

K:={v:v>0, d0) <1},

i.e., the intersection of the cone of positive measures with the unit ball.
The following assertion is a corollary of Keller’s theorem (see, e.g., [BP,
Thm. 3.1, p. 100]).

Theorem 4.1.5.2 (Imbedding) Every metric compact set can be homeomorphically
imbedded to K.

Thus we can assume below that for any m € M there exists a positive

measure
Y(e,m) =Y (dz’,m) € K

such that
(Y(e,m1) =Y (e,m2)) = (m1 = ms) (4.1.5.3)
and Y (e, m) is continuous with respect to the metrics.
We also introduce a new coordinate system. For z := e¥2? € R™ \ 0 set

Pol(z) = (y, 2°). This formula gives a one-to-one map from R™\ 0 onto the cylinder
Cyl := (—00,00) x §™~1. Thus, for any (y,z°) € Cyl, Pol ' (y,2°) = e¥a”.

For m = 2 this is a common cylinder.
4.1.6

Proof of Theorem 4.1.5.1. We consider separately the cases of integer and non-
integer p.

Let p be non-integer and o > 0. For any v € U|p, o], one has the representa-
tion of Theorem 3.1.4.4 (*Hadamard),

v(x) = (x, @, p) (4.1.6.1)

where € M[p, A] and A depends only on ¢ (Theorem 2.8.3.3).
Vice versa, every u € M[p, A] generates v by (4.1.6.1) and

vy (2) = W(z, ppg, p)-
Let us “transplant” p in Cyl. For p that has a dense f,(rz"), we set
v(dy @ dz®) := f(e’2")e "DV (dy @ da?),
i.e., the density f, of v is defined by
Fula®,y) = fu(eva®)elr=2m,
Respectively,
fu(@®,7) = f,(2° logr)rrt2.

We can extend this equality for all u € M|p, A] by using a limit process in D’
topology.
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Exercise 4.1.6.3 Do that using, for example, Theorem 2.3.4.5 (Properties of Reg-
ularization).

We can also define v as a distribution in D'(Cyl). Namely, for ¢ € D(Cyl)
we set
(20, 7)== (Pol 1 (2%, log r))r—P~m+2

and

(v, ) == /1/)*(x0,r)u(dx0 @ rm™Ldr).

Exercise 4.1.6.4 Check that this definition gives the same v.

The transformation Pz = (2°,tr), r2® € R™ \ 0 passes to
PoloP; o Pol ™ (2°, y) = (2, y + log ).
Thus Te-p gives a transformation S, v defined by

Stfu(x07 y) = fu(‘roa Y+ t)
for densities or by
(S} i= [ 0la®y — (e © dy) (41.62)

for distributions (v € D(Cyl).)
Exercise 4.1.6.5 Check the equivalence.
From p € M[p, A] we obtain

/ e(p+m—2)y5t1/(dy ® dwo) <A, teR. (4.1.6.3)

y<0

Exercise 4.1.6.6 Check this.

Let X (t) be a positive function satisfying the condition
/ X(t)dt = 1

and such that the linear hull of its translations are dense in L!(—o0,00). We can
choose, for example, the function

2
. . . . . . . — s
because its Fourier transformation does not vanish in R (it is e~ 7).
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Exercise 4.1.6.7 Check these properties.

Let us define v(e,m) by

(v(e,m), ) := / (2, y) (p/Y(dm07Tytm)X(t)dt) dy. (4.1.6.4)
(z0,y)eCyl —00

Now we check the property
Srv(e,m) =v(e,TTm).

Using (4.1.6.2), we obtain

(S;v(e,m) /@/J 0, y) p/Y(dacO,Ty+T*tm)X(t)dt dy

— [ (o [ Vit T @)X 0t ) dy

= (v(e,m), T™m).

We also check the condition (4.1.6.3).

/e”yStV(dy@dac /X dt/e”y )pdy / Y (d2®, TV tm,

y<0 y<0 Sm—1

<supY(S™ 1 T™m) /X t)dt <1,
TER

since Y(e,0) € K.

Now we should “transplant” v back to R™ \ 0 such that S; passes to (e)r.
Define p(e,m) by

(n(o,m), ") == (v(e,m), ), (4.1.6.5)
where ¢*(rz?) € D(R™ \ 0) and
() =y (ehal)e” T € D(Cyl).
Then
(e, ¥7) = (1), T-+¢%) = (v, S=79) = (S7v, ).

The condition u(e,m) € M|p,o] is also satisfied.
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Exercise 4.1.6.8 Check these properties.

Now we use (4.1.6.1) to transplant the dynamical system to Ul[p,o]. This
completes a construction of a homomorphism (7%, M) — (T, U[p, o]).

Let us check that it is an imbedding, i.e., we must check the one-to-one corre-
spondence. One-to-one correspondence of v(e,m) and u(e,m) is known (Theorem
3.1.4.4). One-to-one correspondence of p(e,m) and v(e, m) can be also checked
easily.

Exercise 4.1.6.9 Check this in detail.

So we should check the one-to-one correspondence of v(e,m) and Y (e, m).
Suppose
v(e,my) = v(e,ma).

Then
(v(e,m1), ) = (v(e,m2),9) Vb € D(Cyl).

In particular, set

¢($Ovy) = ¢(IO)R(y)7 ¢ € D(Sm_l)7 R e D(_OO7 OO)

Then
(v(e,m1), /R dy/ (Y (o, TY"'my), @) gm—1 X (t)dt (4.1.6.6)
— (v(oma).0) = [ Ry dy/ (¥ (0, TV 'ms), @) s
where
V) dsnsi= [ oY ()
Set o

Fi(y) = (Y (o, Tm;), p)gm-1, j =1,2.
From (4.1.6.6) we obtain for the convolutions
(F1+ X)(y) = (F2 + X)(y), y € (—00,00).

Thus
Fi(y) = F2(y), y € (—00,00)

because of the property of X.
Hence
Y(o,7%my) =Y (0, TYm3), y € (—00,00).
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In particular, for y = 0 we have
Y(e,m1) =Y (e, mo).

Hence m; = mg because of (4.1.5.3), and this completes the proof of one-to-one
correspondence.

Consider the case of an integer p. For this case we can use v € Ulp, o] of the
form

U(I) = 1_[< (Iv 122 p) + H>(I7 122 p)
instead of (4.1.6.1).

Exercise 4.1.6.10 Check this.

4.1.7 The most simple set satisfying the conditions of Theorem 4.1.3.3 is the set
that is generated by a function v € Ulp] that has the property

UlteP] = Vpt], t € (0, 00)

for some P.
Then
Tirpv =Ty, t € (—00,00),

i.e., the dynamical system T, is periodic with the period P on the set

Clv)={Tw:0<t< P}

Theorem 4.1.7.1 (Periodic Limit Set) For all P > 0,p > 0,0 > 0, there exists
v € Ulp, o] such that the dynamical system (To,C(v)) is periodic with the period P.

Proof. Suppose p is non-integer. Let us take u € M|p, A] such that the canonical
potential II(z, u, [p]) belongs to U|p, o]. This is possible because of Theorem 3.1.4.2
(*Brelot-Borel).

Denote as u% the restriction of y on the spherical ring {z : 1 < |z| < ef}
and set

pp = Z Trpp-

k=—o00

We have pp € Mlp, A] and

Tirpup = T( Z Tkr1ypip) = Tipp.

k=—o0

Then v :=II(x, pup, [p]) € Ulp, o] and Ty pv = Tyv because of (3.1.5.0).
For an integer p we use the function

U(I) = H<(I,ﬂp,p)+n>(ﬁﬂ,ﬂp,p)- O
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4.2 Subharmonic function with prescribed limit set

4.2.1 The following two theorems describe structure of limit sets in terms of dy-
namical systems.

Theorem 4.2.1.1 (Necessity) Letu € SH(R™, p, p(r)). Then the dynamical system
(T,, Fr[u, ]) is chain recurrent.

The chain recurrence is also sufficient.

Theorem 4.2.1.2 (Sufficiency) Let U be a compact connected and Te-invariant sub-
set of Ulp, o] for some o > 0, such that the dynamical system (Te,U) is chain re-
current. Then for any prozimate order p(r) — p there exists u € SH(R™, p, p(r))
such that

Fr(u, p(r), V;,R™] = U.

Proof of Theorem 4.2.1.1. We need the curve us, ¢ > 1, and Fr[u, e] to be con-
tained in a common metric space X. Thus we set
X :={ve SHR™) :sup M (r,v)r *~' <sup M(r,u)r "'}
r>1 r>1
We want to use Theorem 4.1.1.1 cr 2). Let U be an open proper subset of Fr[u, e]
satisfying (4.1.1.1) and let F' be a T,-invariant subset of K := Fr[u,e]\ U.

Such F exists. Indeed, K is closed and T3 K C K for ¢t > 0 (see proof of The-
orem 4.1.1.1, cr2)<=-cr3)). Thus Q(K) C K where (o) was defined in (4.1.3.2).
The set Q(K) is invariant with respect to T} (see Exercise 4.1.3.1). So the set of
such sets F' is not empty.

If F intersects QU at a point v, then A(v) C FNOU. Since A(v) is invariant
(Exercise 4.1.3.2) OU contains a nonempty T,-invariant set. So we obtain the
assertion of the theorem using Theorem 4.1.1.1, cr2).

Suppose F' does not intersect OU. Let Uy be an open set in X such that

Up NFr[u,e] = U, closUy N Frlu,e] = closU (4.2.1.1)

(see Exercise 4.2.1.1). Since closUp N F' = & we can take a sequence of open
neighborhoods Uy, U, ... of F in X such that all sets closU;, 7 =1,2,... do not
intersect closUp and U; | F.

By definition of Fr{u, e] we can find intervals a; < ¢ < b; with a; — oo such
that uee; € OU;, up; € OUp, and et & closUp U closUj for a; <t < b;. We can
pass to a subsequence and assume that

Uea; — W € F. (4.2.1.2)
Let us use the identity

p)p(e) (4.2.1.3)

Ugtta; = (Ue“j)e‘ p(et+a_i)
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By (4.2.1.2), (4.2.1.3) and the property (3.1.2.2) of a proximate order we obtain
Ugita; — Tyw € F

uniformly for any bounded set of ¢. Thus b; — a; — oo.

Passing to a subsequence we may assume that u_;, — v € Fr[u,e] N 0Uy =
OU. Since u t+v; — Ty and u e+, ¢ Uy when a; —b; < t < 0 we obtain that
Ty ¢ U when t < 0.

Hence the whole backward orbit {Tiv : ¢ < 0} lies in U, which must therefore
contain the T,-invariant set A(v). O

Exercise 4.2.1.1 Prove that the set

Uy = U {w e X : dist(v,w) < dist(v, K)/2}
velU

satisfies the conditions (4.2.1.1).
Proof. We have
UyoDU = UoﬂFI‘[U,O] D UﬂFr[u,o] =U.

Thus
Up NFr[u,e] D U. (4.2.1.4)

From (4.2.1.4) we have
clos Uy N Fr[u, o] = clos Uy N clos Fr[u, ] = clos(Uy N Fr[u, e]) D closU. (4.2.1.5)

Finally (4.2.1.4) A (4.2.1.5) = (4.2.1.1). O

4.2.2 To prove Theorem 4.2.1.2 we need some preparation. Theorems of the next
Sections form the basis of the construction that we will use in the proof.

Let 8 be an infinitely differentiable function on R such that 0 < g(z) <
1, B(z) =0 for x <0 and B(x) =1 for x > 1. We can set, for example,

5w) =4 [ aly+ Dy
where « is taken from (2.3.1.1) and

A= / a(y + 1)dy.
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Suppose that the sequences {ry, o, k =0,1,...} satisfy the following conditions:

ro=1; 1 <TRok < Tht1/0k+1 < Tht1, K=1,2,..., (4.2.2.1)
op 1 00y — KL (4.2.2.2)
Ok+1TkOk

Set

ot o (Lot Yy (- ogr logasjorn) Y,

log(oxry) — log(rk/ok) Ok17k41) — 10g(rhs1/ok11)
( logr —log(ri/o1) )

log(o171) — log(r1/01)

Yo(r) =

The sequence {¢}, k = 0,1,... forms a partition of unity with the following
properties:

Theorem 4.2.2.1 (Partition of Unity) One has

Zwk =1 (prtul)

k=0
supp ¥k C (Tk/0k; Tk+10k+1); (prtu2)
Yrp(r) =1, forr € (rgok, re+1/0k+1); (prtu3)
supp ¢ Nsupp ¢, = & for |k —1] > 1; (prtud)
klim max ¢y, (r)r = klim max 1y (r)r? = 0. (prtub)

Moreover

max |1y, (r)7], max [ (r)r] < (prtu6)

where 7y, can be made to tend to zero arbitrarily fast by choosing the sequences

{ox} and {ry}.

Proof. Set

B ::ﬂ( logr — log(ry /o) )

log(ogry) — log(ry/ox)

The functions G (r) and Bk+1(r) vanish for r < rp /oy because G(x) = 0 for z < 0,
and both of them are equal to 1 for r > ory because 3(z) = 1 for > 1. Hence,
(prtu2) holds.

One has for any r € (0, 00),

n

D e =1=Bpia(r).

k=0

As mentioned, B,,4+1(r) = 0 for n such that 7,41 /041 > r. Thus (prtul) holds.
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Counting derivatives of 1y, we have:

max |ryy (r)] <
T

[(log(oxr) —log(re/ok)) ™" + (108(0k17k+1) —l0g(rri1/ors1)) " | max|F|().

Thus we can take the right side of the inequality as i and regulate its vanishing
by choice of the ratio in (4.2.2.2). The same holds for r2¢” (r). Hence (prtu5) and
(prtu6) are proved.

Exercise 4.2.2.1 Check (prtud). O

4.2.3 Now we construct a function which is of zero type but has a “maximal
possible” mass density.

Theorem 4.2.3.1 (Maximal Mass Density Function) Let p(r) — p, p > 0 be a
smooth prozimate order (i.e., having properties (2.8.1.8)), and let y(r), r € [0,00),
satisfy the conditions: y(r) > 0 and v(r) — 0, as 7 — 0.

Then there exists an infinitely differentiable subharmonic function ®(x) such
that
A®(z) > ~(x)|x]P) 2 (4.2.3.1)

and
(@) — 0 (4.2.3.2)
D ast — oo.

To prove Theorem 4.2.3.1 we need an elementary lemma.

Theorem 4.2.3.2 (Convex Majorization) Let a(s), s € [sg,00) be a function such
that a(s) — —oo as s — oo. Then there exists an infinitely differentiable, convex
function k(s) such that:

k1) k(s) > a(s);
k2) k(s) | —o0 as s — oo;
k3) kM (s) — 0 for allmn=1,2,....

S
S

Proof. Set
a*(s) :=sup{a(t) : t > s}.

Then a*(s) | —oo as s — 0.

Set by := —a*(sp) and denote as s(b), b € [by,+00) the function inverse
to the function —a*(s). Let us construct a convex function that majorates s(b)
and tends to infinity monotonically with all its derivatives. It can be done in the
following way.
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First we construct a piecewise linear convex function. Set
51(b) :=s0+ 1+ ap(b—bo), b€ [bo,bo + 1],

and choose ag such that the inequality s1(b) > s(b) holds for b € [bg, by + 1].
For this we choose

b) — 50— 1
o> sup B 7s—l
belbobo+1] 0 —bo

Since s(b) — so — 1 < 0 the right side is finite.
For all the following intervals we set

Sl(b) = Sl(bo +]) + Oéj(b — by —j), be [bo + 4,00+ 7+ 1],
where a; > a;_1 and satisfies the condition

b) — b j
a; > sup 51(b) — s1( o_+J)
be [bo-+3,bo+j+1] b—bo—J

To obtain a smooth function, set

s2(b) := /a(b —x)s1(x)dx, (4.2.3.3)

where a(x) is defined by (2.3.1.1). Then s5(b) is infinitely differentiable, monotonic
and convex.

Exercise 4.2.3.1 Check this.

Set
k(s) := —s5 (), (4.2.3.4)
where s; *(s) is the inverse function to so. One can check that k(s) satisfies the
properties k1), k2), k3). O

Exercise 4.2.3.2 Check that k(s) satisfies k1), k2), k3).

Proof of Theorem 4.2.3.1. We are going to show that ® can be taken in the form
B(x) = ceFlloalel) |pe(lz) (4.2.3.5)

where ¢ and k(s) will be chosen later.

Note that ®(x) = ®(|z|) depends only on r = |z| and pass to the variable
s :=logr2. Then for ¢(s) := ®(e*/?) we have

0 0 2
d — pl-m m—1 k(logr?),.p(r)
Ad(z) =r o gt T

2 _
(aa * mfﬁ) $(s) > eme ™ min¢"(s), ¢'(s)].  (4.2.3.6)
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Let us chose k as in Theorem 4.2.3.2 with a(s) := logy(r) = logv(e2). Now we
estimate the derivatives from below.

By k3) and k1), k/(s) — 0 and k(s) > a(s). Also sp’(e2) — 0 and p(e3) — p by
properties of proximate order (Theorem 2.8.1.4). Thus we can chose ¢ such that

(s) > Lelorrted)tia(ed), (4.2.3.7)
m
Differentiating once again, we obtain

S

8"(s) = 8(s) | K'(5) + =50 (e

2
130+ 3] 4 K00+ 50 + g (e)

From here we obtain by choosing c:

¢"(s) > %ebwe%%ﬂ(e%). (4.2.3.8)
Using (4.2.3.6), (4.2.3.7) and (4.2.3.8) we obtain:

Ad(s) > elogv(e%)+%p(e%).

Returning to the variable r we obtain (4.2.3.1). Correctness of (4.2.3.2) can be
checked directly using k2) and properties of the proximate order (Theorem 2.8.1.3).

Exercise 4.2.3.3 Check this. O

4.2.4 We have already approximated distributions and subharmonic functions by
infinitely differentiable functions (Theorems 2.3.4.5 and 2.6.2.3). Now we need to
make more precise this approximation. Namely, we are going to make it uniform
with respect to v € Ulp, o]. We will denote

ol

l._
0 = @10 (Oma) - Pa)i (4.2.4.1)
where [ = (I1,la, ..., lm), [I| =11 +1lo+ -+ L.
Set for v € Ulp, 0]
Rov(x) == /ae(x —y)v(y)dy (4.2.4.2)

where o is taken from (2.3.1.3).

We have changed the notation from 2.3.1 and 2.6.2 because a subindex of v
was already engaged for t.

For a fixed 0 < § < 0.5, set

Str(8) :={z: 8 < |z| <51} (4.2.4.3)
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Theorem 4.2.4.1 (Estimation of R.) Let v € Ulp,o]. Then
R1. for a fized g € D(R™ \ 0) with suppg C Str(d),

|(Rev —v,9)| <o(l,9)2067

where o(1,g) — 0 as € — 0;

R2. the inequality
|0'Rev(z)] < A(m)oe U=mt1 g —ll+r,

with A(m) depending only on m, holds for e < |z|/2.
Proof. One has
(Rev, g) = (v, Reg).
Thus
(Rev —v,9) = (v, Reg = g)-
Exercise 4.2.4.1 Check (4.2.4.6) and (4.2.4.7).

Now
(0 g~ 9)| < max|Reg ~gl(@) [ |ol(a)d.
Str(8)
The first factor is o(1) because g is smooth. For the second one we have
/ [v|(z)dz < 2 / vt (z)dr < 20677,
Str(s) Str(d)
This and (4.2.4.8) imply R1).

Differentiating the equality

Roo(x) = Cp, / emal|z — yl/)o(y)dy,

we have

0 Ret(a)] < Cone™ " o 0ol [ oo~y
{lyl<e}

Suppose |z| = 1. Then for 0 < ¢ < 0.5, we have

[v|(x — y)dy < [v|(x) <2 vt (z)dz
/ / /

lyl<e 1—e<|z|<1+4e 1—e<|z|<1+4e€
<om2-2e0(1+¢€)” <o,,60¢€

127

(4.2.4.4)

(4.2.4.5)

(4.2.4.6)

(4.2.4.7)

(4.2.4.8)

(4.2.4.9)
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where oy, is the square of the unit sphere. Hence for |z| =1

10'Rev(z)] < A(m)oe IH-m+1 (4.2.4.10)
with

A(m) = 60, max [0'a(Jy])]
Set t = |z|. Apply the inequality (4.2.4.10) to v := vy (y) with y := x/|z|. Then

|0' Revpy (y)] < A(m)oe =m+1,
Computing the derivatives, we obtain
O'Revyy(z) = t PO Rev ()| oty

Thus one has R2. 0

4.2.5 In this section we describe the main part of a construction that will be used
in the proof of Theorem 4.2.1.2.

Let {v; € Ulp,o], j =1,2,...} and {¢;, j = 1,2...} be the partition of
unity from Theorem 4.2.2.1. Let us chose €; | 0 such that the condition

yie; " — 00 (4.2.5.1)
holds for ; taken from Theorem 4.2.2.1, (prtu 6). Set

v(x|t) : Z% (v (= (4.2.5.2)

where (-) is defined by (3.1.2.4a).
One can see that v(z|t) € Ulp, 30] for all .

Exercise 4.2.5.1 Show this, using properties of {¢;} and invariance of U|p, o] with
respect to (+)pg-

We can consider v(z|t) as a curve (a pseudo-trajectory) in Ulp, 30].
Set

z) =) () Re; (v)) (@)D 7. (4.2.5.3)
7=0

where R, is defined by (4.2.4.2).
It is an infinitely differentiable function in R™.

Theorem 4.2.5.1 (Construction) One has
up — v(e|t) — 0 (4.2.5.4)

in D'(R™), and
Au(z) = f(x) + y(z)|z|r(=D—2 (4.2.5.5)
with f(z) > 0 and y(z) = o(1) as |z| — .
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Let us note that the function u(z) is “almost-subharmonic” and can be made
subharmonic by summing with the function ® from Theorem 4.2.3.1.

Exercise 4.2.5.2 Prove this.
So we have

Theorem 4.2.5.2 (Pseudo-Trajectory Asymptotics) For any v(z|t) of the form
(4.2.5.2) there exists an infinitely differentiable function uw € SH(p(r)) that satis-
fies (4.2.5.4).

Proof of Theorem 4.2.5.1. One has
ij (HaD) (R, (1)) (w)a(a, ),

where e (tlal)—
ta|pteh—r
a(z,t) = tP(t)—p

For any 0 < 0 < 0.5 and = € Str(d), a(z,t) — 1 uniformly in |z|as t — oco. This
follows from Theorem 2.8.1.3, ppo3).

Exercise 4.2.5.3 Check this in detail.
We have

ur(z) —v(alt) = Y[y (te)(Re, (0))ig(@)ale, ) =i () (v;)ig (@), (4.2.5.6)
7=0

and there are no more than three summands in the sum for sufficiently large
t = t(9) because of Theorem 4.2.2.1, prtud. Let us estimate every summand. One
has

bj(,t) := [v;(t]) (R e] () (w)alz,t) = ;1) () ()]
= [W5(tlz]) = 5 (O](Re; (05)))mala, ) + 1 () (Re, (v;)) g (@) alx, ) — 1]
+¢J( N(Re; (i) () = (v7) g ()]

= (a1 +az + a3)(z,t
Let us estimate (b;(e,t), g) for every g € D(R™ \ 0).
We can assume that supp g C Str(d). Set

M =
(9) ,hax gl (x).

‘We have

ar(o.00.9) < Mlg) max [0l [ 1R (o))
Str(d)
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One can check that
|(Re, (v5))[g|(z)dx < 30077,
Str(s)

Exercise 4.2.5.4 Check this using (4.2.4.9) and the invariance of U|p, o] with
respect to (@) (see (3.1.2.4)).

Hence
(a1 (e, 1), 9)| < Ci(9);- (4.2.5.7)

Let us estimate ag(x,t). We have

{aa(e,t), 9) < maxla(z,t) = 1¢;(1)M(g)306™7 = Ca(g)o(1) (4.2.5.8)
where o(1) — 0 as t — oo.
For estimating as(x,t), we use Theorem 4.2.4.1 (Estimation of R.), (4.2.4.4):

[{as(e,1), 9)| < ole;,9)206 " (4.2.5.9)

where o(e;,9) — 0 as j — oo.
Hence (4.2.5.7), (4.2.5.8) and (4.5.5.9) imply

(bj(e,1),9) — 0 (4.2.5.10)

ast — oo and j — o0.

Suppose, for a large fixed ¢, the sum (4.2.5.6) contains b;(x, t) for j = j(t),j =
j(t)+1 and j = j(t) + 2. This implies that j(t) — oo as t — oo.

Since

(ur(e) —v(e[t), g) = (bjcr) (1), 9) + (bj(t)+1(®: 1), 9) + (bj(r)+2(%: 1), 9)

we obtain from (4.2.5.10) that (u;(e) — v(e[t),g) — 0 as t — oo for any g €
D(R™ \ 0). This is (4.2.5.4).
Let us prove (4.2.5.5). We have

Au = Z[A(Rejvj)(x)wj(x)|$|P(\f€\)—P + Z al(Rerj)(x)anwj(x)ak|x|(P\z\)—P]7
j=0 l,m.k
(4.2.5.11)
where [, m, k are multi-indexes that satisfy the condition: in any summand there
are derivatives in the same variable, the derivatives of ¢; and |x|?(*D=* have no
more than second order and the derivatives of R¢,v;(z) have no more than first
order.

Exercise 4.2.5.5 Check this.
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As usual, the derivative of zero order is the function itself. For any = €
Str(d), the outside sum contains no more then three summands. First we consider
only the terms in the square brackets. The first term is nonnegative because of
subharmonicity of R ;v; and non-negativity of all the other factors. Set

f(z) = Z [A(Rejvj)(:c)wj(a:)|a:|p(‘f”‘)_p > 0. (4.5.2.12)
Jj=0°
Using Theorem 4.2.4.1, R2) we obtain
0" (Re,v7)(@)| < A(m)oe; 17 |l (4.2.5.13)

for [I|=0or |I| = 1.
From Theorem 4.2.2.1, prtu6), and inequality |0,

z|| <1 we obtain
1075 ((21) < [0 (1) < kel (1.2.5.14)

for =1,2.
’ |nI|Jsing’ properties of the smooth proximate order (Theorem 2.8.1.4), one can
obtain
|91 P =0 = (|l D= IRy (14 0(1)), (4.2.5.15)
as |z| — oo.
Exercise 4.2.5.6 Check in detail (4.2.5.13), (4.2.5.14) and (4.2.5.15).
Thus, for every term of the inner sum, we have
108 (Rey0) ()0t ()" ] 0D )
< Alm)orye; 1T o el
< BjlalP=h=2, (4.2.5.16)

where ; — 0 because of the condition (4.2.5.1).

Recall that for every large = the outside sum contains no more than three
summands, say, j = j(x),7 = j(x) + 1 and j = j(x) + 2. Thus j(z) — oo as
|x| — oo. Hence (4.2.5.12) and (4.2.5.16) imply (4.2.5.5). O

4.2.6

Proof of Theorem 4.2.1.2. Let v(e|t) have the form (4.2.5.2). We denote as Q(v)
a set of the D’-limits of the form

w:= lim v(e|ty).
tr—00

We are going to construct some v(e|t) for which
Qv) =U, (4.2.6.1)

and at the next step to use Theorem 4.2.5.2 to obtain a subharmonic function
with the same limit set.



132 Chapter 4. Structure of Limit Sets

First we describe the construction of the function wv(e|t). Let {ry,tx, k& =

1,2,...} be an alternating sequence rg = 1, 1, < tj < 1541 such that

Let us chose in U a countable, dense set {g;} and form from it a sequence {wy}

such that every element g; is repeated infinitely often. For example,

w1 = g1,W2 ‘= g1, W3 ‘= §2,W4 1= g1, W5 1= §2,We ‘= g3,... .

Set
Gk = (W) /1] = T—10g ¢, Wk
in the notation (4.1.5.1).
Now we use that (T, U) is chain recurrent. Set

Tk4+1

ag :=log —; wi :=log
k lk

and find, by Theorem 4.1.2.1, a sequence {v;} D {qr} such that the condition

(4.1.2.1) holds, i.e.,
kavk - Tak+1vk+1 —0

as k — oo.
Set in Theorem 4.1.2.3

Pk = Tak+1vk)+17 qk ‘= kavk)
and find 7, such that the condition

TT o kavk - T‘r o Ta Vg1 — 0

k41

holds uniformly for 7 € [—yg+1, Vi]-

Set
. i
o :=min [e7*, 4/ —|.
Tk

These oy, satisfy the conditions (4.2.2.1) and (4.2.2.2).
Exercise 4.2.6.1 Check this.

(4.2.6.2)

(4.2.6.3)

We define v(e|t) by (4.2.5.2) with described v; and with ¢, from Theorem

4.2.2.1, corresponding to the chosen r; and ¢;. Let us prove (4.2.6.1).

Consider for fixed k the following three cases.
1. t € [rkok, "1/ 0k+1);
2.t € [Pg1/0k41,Tht1);
3. t € [rg,ri0L).
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For the first case we have

v(e[t) = (V&) 1t/t,) = Tog(t/t) Vk-

For the second one

v(e[t) = Vi () (Vk)t/6) + Vi1 () (Vk41) [t /4 4)
= (k) 1t/t0) + kit Okt /6010) — (OB /8-

We transform the expression in the square brackets

(Uk+1)[t/tk+1] = ﬂog(t/tk+1)vk+1 = Tog(t/ry41) © ﬂog(rk+1/tk+1)vk+1

= rflog(t/rk_H) © Tak+1vk+1-

For the second term, we obtain

(k) ie/t] = Tog(t/rasr) © Lo Vk-

Exercise 4.2.6.2 Check this.
Setting 7 := log(t/rg+1), we have
1}(0|t) = ('Uk)[t/tk] + ¢k+1(t)[T~,- o Tak+11}k+1 — T, o0 kavk], (4.2.6.4)

where 7 € [—logokt1,0) C [—Yk+1,7k]. For the third case, set 7 := log(t/ry).
Then

v(e|t) = (Vr)e/ee) + U ()[Tr 0 Toy_ k-1 — T 0 T vp], (4.2.6.5)

where 7 € [0,log o) C [—Vk, Vk—1]-

Let ty — oo be an arbitrary sequence. Choosing a subsequence, we may
suppose that there exist the limits (”k(tw))[tw/tmm] —v* e U and v(e|tn) — Voo-

Choosing a subsequence, we may suppose that ¢y satisfies either 1 or 2 or 3
For case 1, we obtain at once v, = v* € U.

For case 2, from (4.2.6.4), (4.2.6.2) and Theorem 4.1.1.3 we obtain that the
superfluous addends tend to zero, and hence v, € U.

The same holds for case 3. Hence Q(v) C U.

Further, for ¢t = t5, we have v(e|t) = wy. The sequence {wy} contains the set
{g,} that is dense in U. Thus Q(v) D U. Thus equality (4.2.6.1) has been proved.

As already said, the application of Theorem 4.2.5.2 concludes the proof. [
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4.3 Further properties of limit sets

4.3.1 Let as mark the following property of the pseudo-trajectory v(e|t) defined
in (4.2.5.2):

Theorem 4.3.1.1 One has
Trv(ele’) —v(e]etT) — 0 (4.3.1.1)
as t — oo uniformly with respect to T € [a,b] for any [a,b] C (—o0, 00).

Proof. Using the definition of (e); (see (3.1.2.1)) and (4.2.5.4), the remainder in
(4.3.1.1) can be represented in the form

b(t,T,0) :=Trv(ele’) —v(o|e"™T) = T\ (uet) — uert~ + 0(1)
where o(1) — 0 uniformly with respect to 7 € [a, b] for any [a,b] C (—o0, c0).
Exercise 4.3.1.1 Check this in detail.

Then we obtain
b(t,T,) = Ugrsr [ep(ef)*p(et#) —1]4o0(1) =0

uniformly in the same sense due to precompactness of the family {u.:} and prop-
erties of the proximate order.

Exercise 4.3.1.2 Check this in detail. O

The property (4.3.1.1) shows that the pseudo-trajectory v(e|t) behaves
asymptotically like the dynamical system T,. Thus a pseudo-trajectory with this
property is called an asymptotically dynamical pseudo-trajectory with dynamical
asymptotics To (a.d.p.t.).

Theorem 4.2.5.1 shows that for any a.d.p.t. of the form (4.2.5.2) there exists
u € SH(p(r)) that satisfies the condition

Uet — v(ole’) — 0 (4.3.1.2)

as t — oo.

The following assertion shows that we can suppose v(e|e) to be an arbitrary,
in some sense, a.d.p.t.

We call a pseudo-trajectory w(e|e) piecewise continuous if the property

w(e|t +h) —w(e|t) — 0 (4.3.1.3)

as h — 0 holds for all ¢ except perhaps a countable set without points of conden-
sation.
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Let U C Ulp, o] for some o > 0. A pseudo-trajectory w(e|e) is called w-dense
in U if Q(w) =U (see (4.1.3.2)), i.e.,

{veUlpl: (3t; > o) v="D —limw(e|e")} =U. (4.3.1.4)

We have proved already that v(e|e) defined by (4.2.5.2) has this property
(see (4.2.6.1)).

Now we consider again the dynamical system (T,,U) where U C Ulp, o] for
some o > 0 and T} is defined by (4.2.1.1).

Theorem 4.3.1.2 (A.D.P.T. and Chain Recurrence) (T,,U) is chain recurrent iff
there exists an a.d.p.t. that is piecewise continuous and w-dense in U.

Necessity has been proved already, because the pseudo-trajectory (4.2.6.2)
possesses this property. Sufficiency will be proved later.
The claim of piecewise continuity can be justified by

Theorem 4.3.1.3 For anyu € SH(p(r)) there exists a piecewise continuous pseudo-
trajectory w(e|e) such that
uy —w(elt) — 0 (4.3.1.5)

ast — oo.
Of course, w(e|e) is a.d.p.t.

Exercise 4.3.1.2 Check this.

4.3.2
Proof of Theorem 4.3.1.3. Let {t,} be any sequence such that

ty — 00, tpt1/tn — 1, (4.3.2.1)

for example, t,, = n.
There exists a sequence {v,} C Frlu] such that

ug, — vy — 0. (4.3.2.2)

Set
w(e|t) := vy, for t, <t <tpi1. (4.3.2.3)

This is a piecewise continuous function.
Let us prove that
us — w(e|t) — 0. (4.3.2.4)

Assume the opposite; i.e., there exists a sequence {t}.} such that it is not true. We
can suppose that

Uy — wi € Fr[u], u}(.|t;€) — wo € FI‘[’U,]7 w1 # ws. (4325)
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Let us find a sequence {ny} such that t,, <t} <t,,+1 . Then
tng /U — 1. (4.3.2.6)
From (4.3.2.5), (4.3.2.3) and (4.3.2.2) we have
ut,, — wa. (4.3.2.7)
Then we have, using properties of (e); and the proximate order,
gy, = (ut,, )ity /1,1 (1 + 0(0g(t/tn,)) — w2 (4.3.2.8)

because of (4.3.2.6) and the continuity of ug) on (u,t).
However (4.3.2.8) contradicts (4.3.2.5). Thus (4.3.2.4) holds. O

4.3.3 Now we will prepare the proof of Theorem 4.3.1.2.
Let {vk, £k =1,2,...} C Ulp,o] for some o be a sequence of functions and
{re, k=1,2,...},{tr k=1,2,...} be two sequences such that

0<ry <tp <rit1, k=1,2,... (4.3.3.1)
and
klim tp /T = klirn Trt1/te = 00. (4.3.3.2)
Set
w*(et) := (Vi )t/e,, for t € [r, mr11) (4.3.3.3)
where k =1,2,....

Theorem 4.3.3.1 Let w(ele) C U be an arbitrary w-dense a.d.p.t. and {p;, j =
1,2,...} C U an arbitrary sequence. Then there exists a sequence {vy, k =
1,2,...}D> {pj, j = 1,2,...} and sequences {ry, k = 1,2,...} and {tx, k =
1,2,...} satisfying (4.3.3.1) and (4.3.3.2) such that for w*(e|e) determined by
(4.3.3.3) the condition

w*(et) —w(e|t) — 0 (4.3.3.4)

as t — oo is fulfilled.

This proposition shows that any w-dense a.d.p.t. is equivalent to one con-
structed of long pieces of trajectories of the dynamical system T,.

Proof of Theorem 4.3.3.1. We can take sequences {e; | 0, j = 1,2,...} and
{bj T 00, j =1,2,...} and choose a sequence {7;, j = 1,2,...} such that the
inequalities
d(Trp; — Trw(e|T;)) < €/2 (4.3.3.5)
and
d(Trw(e|t) —w(e|eTt)) < €;/2, t > T; (4.3.3.6)

are fulfilled uniformly with respect to 7 € [b;_f17 b3].
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Indeed, w(e|e) is w-dense in U, and hence we can find 7, — oo such that
Pn, — w(e|7,) — 0.
Set in Lemma 4.1.2.2,

Pn = Pn, qn ‘= w(.|7—n)a Yn = 210gbj‘
Then for any €; we can find 7; := 7,, such that (4.3.3.5) holds uniformly with
respect to T € [bj__f17 b3].

The inequality (4.3.3.6) holds, because w(e|e) is asymptotically dynamical
(see (4.3.1.1)).

We can also suppose without loss of generality that 7; > Tj,lbﬁ_l7 i.e., that
the sequence {7;} is rather thin.

The inequality (4.3.3.5) shows that for intervals of ¢ that are determined by
the inequality bj_fl <t/r; < b? our pseudo-trajectory is already close to some
trajectories.

Now we divide the spaces between such intervals into equal parts in the
logarithmic scale such that their logarithmic lengths would be between logb; and
logbjy1, so that they tend to infinity.

To this end, set

[log Tj+1 — log Tj:|
n; = | ——————
b
where [-] means the entire part, and
1
v = (T [7) 7
It is clear that b; < v; < b?. As centers of new intervals we take the points
Tjl = Tj’y?l, 1=0,1,...,n;.
Thus 750 = 7; and 7, = 7j41. The ends of the intervals are 7;;/v; and 7;,;7;.
Now we complete the sequence {p;} by the values of the pseudo-trajectory w(e|t)
in the centers of the intervals, i.e., we set
pj=w(e|rjy), I=1,...,n; — 1

For t € (151/v;,75.7;), L =1,...,n; — 1 we have

d((pjyl)t/ijl — w(o|t)) < €j/2 (4.3.3.7)
because of (4.3.3.6).
For [ =0 and | = n; we set accordingly

Pj0 = Pj; Pjn; ‘= Pj+1-
Using (4.3.3.5) and (4.3.3.6) we have an inequality like (4.3.3.7) for | = 0,1 = n;
but with €; instead of €;/2.

We complete the proof, re-denoting all the centers 7;; as tj, all the ends as
rr and all the p;; as vy. O
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4.3.4

Proof of sufficiency in Theorem 4.3.1.2. A direct corollary of the previous Theo-
rem 4.3.3.1 is

w*(e|ry —0) — w*(e|rg) — 0 (4.3.4.1)
as k — oo.

Really, w*(e|e) is an a.d.p.t.

Exercise 4.3.4.1 Check this as in Theorem 4.3.1.1 using that w(e|e) is asymptot-
ically dynamical.

For 7 € [—¢,0] and ¢t = r, we have uniformly on T,

Trw*(oft) —w*(o]t) = Tr(Vk)r, st — (Vkt1)ry /e, — 0.

Setting 7 = 0 we obtain (4.3.4.1).

Let V C U be an arbitrary open set, € > 0 arbitrarily small and s > 0
arbitrarily large. We show that there exists an (e, s)-chain from V to V.

Choose s; such that

i. for 7, > s1, d(w*(e|ry — 0),w*(e|ry)) < e. This is possible by virtue of
(4.3.4.1).
ii. w(e|s1) € V. This is possible because w(e|e) is w -dense.
iii. d(w*(e|t), w(e|t)) < d(w(e|s1),0V) for t > s;. This is possible because of
Theorem 4.3.3.1.

Choose s2 > s1 such that w(e|sy) € V. This is possible because w(e|e) is
w-dense. Then the pseudo-trajectory w*(e|et) for s; < ef < sg is an (e, s)-chain
connecting w*(e|s1) and w*(e|sy) that belong to V.

Exercise 4.3.4.2 Check this in detail.
Hence (T,,U) is chain recurrent.

4.3.5 We will prove one more existence theorem that is a corollary of Theorem
4.2.1.2.

Theorem 4.3.5.1 Let A C Ulp] be a compact connected and To-invariant subset of
Ulp]. Then for any prozimate order p(r) — p there exists u € SH(R™, p, p(r))
such that

h(z,u) = sup{v(z) : v € A}, (4.3.5.1)
h(z,u) = inf{v(z) : v € A}. (4.3.5.2)

Proof. Let U := ConvA be the convex hull of A. It is linearly connected and hence
polygonally connected (see 4.1.4). By Theorem 4.1.4.1 it is chain recurrent and by
Theorem 4.2.1.2 for any proximate order p(r) — p there exists u € SH(R™, p, p(r))
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such that
Frlu, p(r), V4, R™] = U.

Since every v € U can be represented in the form v = av; 4+ (1 — a)ve for 0 < a <
1, v1,v2 € A we obtain (4.3.5.1) and (4.3.5.2) from Theorem 3.2.1.1 (Properties
of Indicators), h2).

Exercise 4.3.5.1 Check this.

4.3.6 In applications we need the following

Theorem 4.3.6.1 Let p € P C R™ and let P be a connected closed set. Let Up :=
{v(z,p) : p € P C R™} be a family of functions with parameter p such that for
every p € P, v(e,p) € Ulp] and satisfy the condition (4.1.3.3). Then there exists
u € SH(p(r)) such that Friu] = Up.

This is a direct corollary of Theorems 4.1.1.2, 4.1.3.3 and 4.2.1.2.

Exercise 4.3.6.1 Explain this in detail.

4.3.7 In the next three sections we return to the periodic limit sets (see Theo-
rem 4.1.7.1). We show that the limit set Fr[u, p(r), Ve, R™] of every subharmonic
function u € SH(p(r),R™), p(r) — p for non-integer p can be approximated in
some sense by periodic limit sets ([Gi], [GLO, Ch. 3, §2, Thm. 10]).
Here we give some definitions. Let X,, C U[p],n = 1,2,... be a sequence of
compact sets. We say that X,, converges to a compact setY C Ulp], i.e.,
D — lim X, =Y (4.3.7.1)

n—oo

if the following two conditions hold:

convergl) Vz, € X,, n=1,2,... 3z, € X;,,,j=1,2,... and y € Y such that
D' — lim z,, =y;

j—o0
converg2) Vye€Y 3z, € X,, n=1,2,..., such that , — y.

On every compact set K in D’-topology one can introduce a metric d(e,e)
such that the topology generated by this metric is equivalent to D’-topology (see,
e.g., [AG(1982)]).

Denote by

X.:={y € K :3x € X such that d(y,z) < €}

the e-neighborhood of X.
Let X,Y be two compact sets. Set

d(X,Y):=inf{e: X CY,,Y C X.}.
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Exercise 4.3.7.1 Prove the assertion
(4.3.7.1) < {d(X,,Y) — 0}. (4.3.7.2)

We prove the following

Theorem 4.3.7.1 (Approximation by Periodic Limit Sets) Let u € SH(p(r),R™),
p(r) — p for non-integer p. Then for every V, there exists a sequence u, €
SH(p(r),R™) with periodic limit sets Fr[uy, p(r), Va,R™] such that Fr[u,,e] —
Friu,e].

This theorem is a corollary of the following
Theorem 4.3.7.2 Let € M(p(r),R™), p(r) — p for non-integer p. Then for

every Vo there exists a sequence u, € SH(p(r),R™) with periodic limit sets
Fr(pn, p(r), Ve,R™] such that Frlu,, ] — Fr[u, e].

Proof of Theorem 4.3.7.1. The canonical potential u(z) :=II(x,u,p) (see (2.9.2.1))
of a measure u € M(p(r), R™) belongs to SH(p(r),R™) by Theorem 2.9.3.3 and
has a limit set

Fr[uv.] = {H(O7I/,p) S Fr[lu'u]}

by Theorem 3.1.4.4 (*Hadamard). The potentials u,(z) := II(z, iy, p) have peri-
odic limit sets
Fr(u,, o] = {Il(e,v,p) : v € Frlu,,]}

by Theorem 3.1.5.0. Let us prove that
Friu,,e] =: X, —» Y := Fr[u, o).

If v,, € Fr[uy, o] then from the corresponding sequence of v, := v,,, € Fr[u,, o] we
can find a subsequence v, and v € Fr[u, o] such that v, — v (by Theorem 2.2.3.2
(Helly)). Tt is easy to check, using Theorem 3.1.4.3 (*Liouville), that v* = D’ —
lim II(e,v,;) exists and coincides with v = II(e,v,p) € Fr[u, o].

J—00
So the condition convergl) is verified. In the same way one can check con-
verg2). O
Exercise 4.3.7.2 Prove this in detail.
4.3.8 Now we are going to prove Theorem 4.3.7.2. We begin from
Proposition 4.3.8.1 For any u € M(p(r),e) there exists i € M(p, ) such that
Fr(ji. p, o] = Fr[js, p(r), o]. (4.3.8.0)

In other words we can suppose further that p(r) = p.
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Proof. Set L(r) = r*(")~° and
f(dz) = L™Y(|z|)pu(dx). (4.3.8.1)

Using properties of proximate order (Section 2.8.1., pol)—pod)), it is easy to check
that

[L=Y(r)] = L™ (r)o(1) and [L(r)]' = L(r)o(1), as — 0. (4.3.8.2)

Exercise 4.3.8.1 Prove this.
Let us show that i € M([p, A] for some A. Indeed

R R
R’i(ri)ﬂ = Ripimw/ /Z(El:)) - Rp+Z(r2)L(r)|§ +pr7m+2/#(7“)([71)/d7“.
0 0

We suppose that p(r) = 0 in some neighborhood of zero. Using (4.3.8.2) we obtain
further for the last expression,

R
JW(R)R—P() 4 Rp-m+2 / () (L="Y)o(1)dr.
0

Using the I’Hospital rule, we obtain

R—oo

R
lim R~P~™m+2 / w(r) (L= (r))o(1/r)dr = (—p —m +2) Jim_ w(RYR™"o(1/R).
0

Thus
A(R)

s < lmsup p(R)(LH(R)[1 + o(1/R)] = Al p(r)] < oc.

R—oo

lim sup
R—o0

Let us note that s = L(t)/i). This implies equality (4.3.8.0) because L(t) — 1 as
t — oo.

Exercise 4.3.8.2. Prove this in detail. 0
Proof of Theorem 4.3.7.2. As we already said we can also suppose that p € M|p].
Let v € Fr[u]. We can suppose that

v({|z] =1}) =0. (4.3.8.2a)

Otherwise we can find 7 such that v ({|z] = 1}) = 0 and if v, — v, and are
periodic, then (v,)[ /- are also periodic and (v, )1 /-] — V-
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Let r, — oo be such that u..; — v. By passing to subsequences we can
make 7,41 /70 > Th.
Denote K, := {x : r,, < |x| < rpt1}. Set for every E C K,

,un|E = /L(E)

and continue it periodically with the period P, = ry41/7, by the equality
tn(PYE) = P u(E), k= +1,42,.... (4.3.8.3)
Since every X € R™ can be represented in the form
X= |J {(XnPK,},

k=—c0

we can define .
pin (X) = Z pn({X N P K }).
k=—c0

It is easy to check that p, is periodic with period P, and p, € Mlp, A] with A
independent of n.

Exercise 4.3.8.3 Check this.
Let us prove that

Fr[y] = lim Frlu,]. (4.3.8.4)
Check the condition convergl). Let v, € Fr{u,,] and suppose D' — lim v, = v.
J—00

Let us prove that v € Fr{y].
Since Fr{ju,,] is a periodic limit set,
Un; = (l“"j)[fj]‘
Take k; such that

/. . Dkj
T =TiP € [T Tny41)-

From periodicity p,, we obtain
Vn; = (Hn, )(ry)-
Passing to a subsequence if necessary, we can consider three cases:
. . / o . / —0-
i) lim 7;/rp; =00, lim 7}/ry, 41 =0;
J—00 J—00
ii) lim 7//r,, =7; 1 <7 < oo; In this case we have also lim 7/ /7,41 = 0.
jHOO J*)OO
iii) lim 7//rp;41=7; 0 <7 <1; In this case we have also lim 7//r,; = occ.
J—00 j—o0

Consider the case i). Let ¢ € D(R™ \ O). Then supp ¢(z/7}) C (rn;,7n;+1)
for j > jo. It is easy to see that, for j > jo,

((pn, )ir> @) = (Hapr; )-
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Exercise 4.3.8.4 Check this.
Since ppr) — v € Fr[u] by definition the condition convergl) holds for the
case 1).

Consider the case ii). Recall that O ¢ supp ¢. Then there exists 1 < ¢ < 0o
such that

suppé C {z : |z| € (1/¢,¢)}.
Define
pe(x) == P(x/t)(1/)".
Represent 77 in the form

/

Th = eiTry, where e; = T
7 J J J ,r,nj T
The condition ii) means that
ej — 1. (4.3.8.4a)
Compute
<I/j’ ¢> = <(/J“TL])[TJ/]7¢> = </J“Tbj7 ((¢T)€j )Tnj >
Note that

supp ¢ C {z : |z| € (7/¢,7¢)}.
We can increase ¢ so that 1 € (7/c, T¢).
Consider the following partition of unity. Choose the functions n, € D(R™),
k=1,2,3 so that
m(t) +m2(t) +ns(t) = 1
fort > 1 and

suppm C {z:|z] <1—¢€},
suppne C {z : |z] € (1 — 26,1+ 2¢)},
suppns C {z : |z| > 1+ €},

where € is an arbitrary number, satisfying
T/e<1l—2e<1+2e<Tec
Represent ¢, in the form
¢r =1 + P2 + Y3, where ¢ = ¢rne, k=1,2,3.

In this notation

3
V]7 Z ,LLnJ, wk €jTn; > (4385)
k=1
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Choose j. such that for j > j. the following inclusions hold:

supp(¥1)e;r,, C {a: [z] € (rn,7/c,rn, (1= €))};
supp(wg)ejrnj CH{a |zl € (I —e)rn,,mn,(1+€)};
supp(@[}g)ejrnj CH{a: |zl € (L+€)ry,,Trn, }-

Thus for 3 we have
Gt (0)esr,) = [ €57, un(lal (7, i, )
= [ () (il (e, ntde) = i (), )

Since u[rnj]zlw and (¥3)e, KA 13 we have (see Theorem 2.3.4.6)
jIEEOana (V3)ejrn,) = (Vs 13). (4.3.8.6)
Consider the addend with ;. Because of periodicity p,; we have
(knys (V1)esr,, ) = ((kny )i 15 (V1)ejra, )
Transforming the RHS we obtain
(1)) s (V1) egrn,) = by (W0, s, -

Since P, = rnj+1/ Ty, the following inclusion holds for j > j. :

-
Supp(wl)P"jejT"j CH{z s fa] € (Po,ra, c’ Py, (1—€))}

= {w:fal € (a1 -y a1 (1= )} C o fa] € (rny 7,0}
Thus
bty (1), Ve, ) = (s (1) ey, ) = ity () ey, ) = (it 1 (60)ey ).
Hence
i (o, (91)ey ) = (9 91) (438.7)

J

because ¢; — 1 and ppy., A (see Theorem 2.3.4.6).
From (4.3.8.5), (4.3.8.6) and (4.3.8.7) we obtain

Jim (15, 6) = (v, 01+ ) + Tim e, ((2)eyr, )
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Let us estimate the last limit. We have
jIEEOana (V2)e;ra, ) = ((tin, )esra, 1> P2)-
Define
Ei(e):={x:|z| € (1 —2¢,1)}; Ea(e) :={x : |z| € [1,1 + 2¢)}.
Suppose ¢ is chosen so that
v(0EL) =0, k=1,2. (4.3.8.7a)

Recall that v satisfies the condition (4.3.8.2a), hence E, F are v-squarable and
hence (see Theorem 2.2.3.7)

nlLII;O ,u[rn] (Ek(e)) = I/(Ek(e)), k= 1, 2.

Define
Cyp = max{¢(z) : x € R™}.

Then for j > je,
[{(kem, Diejra, 1 Y2d] < Coplhim, )iejrn, 1 (E1(€) U Ea(e))
= Co((pn )ie;ra, ) (E1(€)) + (bim, )ie, 1 (B2 (€))-

By definition
(Nnj)[Ejrnj](E2(€)) = M[ejrnj](E2(6))'
Because of (4.3.8.4a) we obtain

Jin e, ) (B2 (€)) = v(E2).

Exercise 4.3.8.5 Check in detail.
To compute the limit of the first addend we use periodicity of i, :

fin; (E1(€)) = P, P tin; (Po; E1(€)) = (pn; ) 1P, 1 (E1(€)),
where
T, PnyEr(€) = {x: x| € (rp;4+1(1 — 2€), 70, 41) }-
Thus
(Vs (L (€) = (1 Vi, o (1 (6))
= (tn)ie;rn, 11 (E1(€) = Hiejry 1) (B (€))-

From this we obtain

Lim (pn; )ie,r, 1 (E1(€)) = v(E1(€)).

J—00
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Therefore
T [{(n, e, 1 023 < Car(Er(€) U () (43.8.3)

Because of (4.3.8.2a) we have
v({z:|z] € (1 —-2¢142¢)}) =0 (4.3.8.9)

as € — 0 over the set of e satisfying (4.3.8.7a). From (4.3.8.8) and (4.3.8.9) we
obtain

lim <(ﬂnj)[eﬂ"j],¢2> =0 (4.3.8.10)

J—00

and
(v,1hs) — 0 (4.3.8.11)

when € — 0. Hence if € — 0 satisfying (4.3.8.7a) we have
jli{go@/j, ¢) — (V7] 0)
= li_ff(l)[% 1+ P3) +jlifglo<(ﬂnj)[ejrnj], o) — (v, 1 + Y2 + 3)]
= l%[jlilgo«#nj)[ejrnj], a) — (v, 42)] = 0.
The last equality holds because every addend tends to zero.
The case iii) can be considered in an analogous way.

Exercise 4.3.8.6 Consider it.

Thus the condition convergl) was checked. 0

4.3.9 Now we should check the condition converg2). We need

Lemma 4.3.9.1 Let u € M|p|, v € Fr[u] and r, — 00, n=1,2,... be a sequence
such that
D' — lim plry] = vo. (4.3.9.1)

n—oo
Then passing if necessary to a subsequence, we can find {rn} such that for arbi-
trarily v € Fr[u] a sequence t; — oo exists such that

D' — lim pltj] =v (4.3.9.2)

Jj—o0
and for every n we can find t; € [ry, rpi1].

Proof. Note that if the assertion of the lemma is satisfied for the sequence {r,, n =
1,2,...} it is satisfied for every subsequence of {r,, n=1,2,...}.

Let M be a countable set that is dense in Fr[u]. Since reduction D’-topology
on M|p| is metrizable, it is sufficient to prove that we can choose a subsequence
r,, for which assertion of the lemma is satisfied for all v € M. We can do it using
a diagonal process.
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Let 7 — oo be an arbitrary sequence such that

D' — lim H[ro] = Vo

n—oo
and let a sequence tjl satisfy the condition

D' — lim B = V1.
j—oo’ 1

Omitting in the sequence {r0} the ends of the segments [r0, 0 ] that do not con-
tain elements {t;} we obtain a subsequence {r}}. Continuing in such a way we ob-
tain a subsequence {r;'} satisfying (4.3.9.1) and the sequences {t;}, {t3},..., {t]*},
j=1,2... satisfying

D' — lim By =w, 1=1,2,...m. (4.3.9.3)

J]—0 J
Taking a diagonal sequence {r"'}, n =1,2,... we observe that it is a subsequence
of every subsequence {r™} and hence satisfies the assertion of the lemma. 0

Proof of converg2). We can suppose that {r,} from the construction of u, with
periodic limit sets satisfies the assertion of Lemma 4.3.9.1. Let v € Fr[u] and
pt; — v under condition ¢; € [Fr, Tnt1]. We should consider as in the proof of
convergl) three cases i), ii) and iii). But all these cases were already considered
and hence it was proved that

Vn = (bn)r, — V.

Exercise 4.3.9.1 Check this. O

4.4 Subharmonic curves.
Curves with prescribed limit sets

4.4.1 In this paragraph we consider subharmonic functions v € SH(p(r)) in the
plane of finite type with respect to some proximity order p(r) — p.

The pair v = (ui,u2), ui,uz € SH(p(r)) is called a subharmonic curve
(which for brevity we will refer to simply as a curve).
The family

(w)e == ((u1)e, (u2):)
is precompact in the topology of convergence in D’-topology on every component.
The set of all limits

Fr{u] := {v = (v1,v2) : It; = co,v =D" — lim uy,}
jmoo

is called the limit set of the curve w.

Actually this set describes coordinated asymptotic behavior of pairs of sub-
harmonic functions.
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Theorem 4.4.1.1 Fr[u] is closed, connected, invariant with respect to (@) (see
3.1.2.4a) and is contained in the set

Ulp, o] :={v = (v1,v2) : v (2) < 0p)2]%,v,(0) =0,n=1,2.}

where o := (01,02)

Exercise 4.4.1.1 Prove this by using Theorem 3.1.2.2.

Let us define o > 0 as 0, > 0, n =1,2. Set

Ulpl = |J Ulp, ).

We will write U C Ulp] if U C Ulp, o] for some o.

Since (T,,U|p]) is a dynamical system we have two theorems analogous to
Theorems 4.2.1.1 and 4.2.1.2.

Exercise 4.4.1.2 Formulate and prove these theorems.

All the other assertions and definitions of Sections 4.2,4.3 can be repeated
for subharmonic curves.

Let U C Ulp]. Set
U':={0 3" : (v,0") e U}.
This is a projection of U. Set for v/ € U’,
U’ :={": (") eU}.
This is the fibre over v'.

Theorem 4.4.1.2 Let U € Ulp| be closed and invariant and assume that every
fiber U" (V') is convex. Let U' = Fru'] for some v’ € U(p(r)). Then there exists
u” € U(p(r)) such that Fr(v',u") =U.

We construct a pseudo -trajectory asymptotics in the form (4.2.5.2) replacing
u with v and v with v. We can directly check that this curve satisfies the assertion
of the theorem.

Exercise 4.4.1.3 Check this.

Theorem 4.4.1.3 (Concordance Theorem) Let u € U(p(r)) and v° € Fr[u], and
suppose v € Ulp] has the property

lim T,v= lim T,v=7.

T——00 T—400



4.4. Subharmonic curves. Curves with prescribed limit sets 149

Then there exists a function w € U(p(r)) such that the limit set of the curve
u = (u,w) Frju] = (Fru],C(v)) and for every sequence t, — oo such that

lim wy, =v,
n—oo

lim u;, = (v°,v). (4.4.1.3.)
For proving this theorem we should use a.d.p.t. (4.2.5.2). If v; = v" we replace
v; by vj = (v°,v). If v; # v° we replace v; by v; = (v;,0).

Exercise 4.4.1.3 Do that and exploit Theorem 4.3.1.2 and Theorem 4.2.1.2.

Corollary 4.4.1.4 Under conditions of Theorem 4.4.1.3, if lim w., = Trv, then

lim u, = T2,

n—oo

We should apply T to (4.4.1.3) and use its continuity in D’-topology. O
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Applications to Entire Functions

5.1 Growth characteristics of entire functions

5.1.1 Let f(z) be an entire function. The function u(z) := log |f(z)| is subharmonic
in R?(= C). Hence the scale of growth subharmonic functions considered in Section
2.8 is transferred completely to entire functions. We will mark passing to entire
function by changing index u for index f. For example,

M(Tv f) = M(Tv log |f|),T(T, f) = T(T, 10g|f|)

If u(z) :=log|f(2)| has order p[u] = p, then f(z) has order p[f] := p and so on.
We will write f € A(p,p(r)) and say “f is an entire function of order p

and normal type with respect to prozimate order p(r)” if log|f| is a subharmonic

function of order p and normal type with respect to the same proximate order.

Shortly, if log | f| € SH(p, p(r),R?), then f € A(p, p(r)).

Exercise 5.1.1.1 Give definitions of

T(r, f), M(r,f), pr(fl; pulf], or(f.p(r)], oumlf, p(r)]

and reformulate all the assertions of Section 2.8 in terms of entire and meromorphic
functions.

5.1.2 A divisor of zeros of an entire function can be represented as an integer mass
distribution n on a discrete set {z;} C C. The multiplicity of a zero z; is the mass
concentrated at the point z;.

The notation for characteristics of the behavior of zeros will mimic that of
the behavior of masses, replacing p for n. For example, n(K,),n(r) is the number
of zeros (with multiplicities) in the disk K., p[n] is the convergence exponent, A[n]
is the upper density and so on.
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Exercise 5.1.1.2 Give definitions of N(r,n), pn[n], An[n], p[n].

5.1.3 The limit set Fr[f] of an entire function f € A(p, p(r)) is defined as the limit
set of the subharmonic function u(z) := log|f(z)| € SH(p, p(r),R?) (see Section
3.1), ie.,

Fr(f] := Fr[log|f]]. (5.1.3.1)

It possesses, of course, all the properties described in Chapters 3, 4 but it is not
clear now if there exists an entire function with prescribed limit set, i.e., whether
the subharmonic function in Theorem 4.2.1.2 can be chosen to be log |f(z)| where
f € A(p, p(r)). It turns out that this is possible and we prove this in Section 5.3.

As it was mentioned in 3.1.1 the general form of V, for the case of the plane is
V}Z _ Zei'ylogt’

where 7 is real.

The limit set Fr[n] of a divisor n is the limit set of the corresponding mass
distribution n (see 3.1.3).

Of course generally speaking n; (see (3.1.3.2)) is not an integer mass distri-
bution.

Exercise 5.1.3.1 Give a complete definition of Fr[f] and Fr[n], and reformulate
all the theorems of Sections 3.1.2, 3.1.3 in terms of entire functions and their zeros.

The connection between Fr[f] and Fr[n] is preserved completely (see Section
3.1.5).

Exercise 5.1.3.2 Reformulate the theorems of Section 3.1.5 for entire functions.

5.1.4 Let f = f1/f2 be a meromorphic function, where fi, fo have no common

zeros. If f2(0) =1, f1(0) # 0 and f1, f2 € A(p, p(r)), then u := log | f1]| —log| f2| €
0SH(p, p(r)), and we write f € Mer(p, p(r)) and say “f is a meromorphic function
of order p and normal type with respect to the proximate order p(r)”. For f €
Mer(p, p(r)) we use the following characteristics: T'(r, f), pr[f], or[f, p(r)]. The
charge of log | f| consists of integer positive and negative masses.

5.2 D’-topology and topology of exceptional sets

5.2.1 Let a—mes be the Carleson measure defined in Section 2.5.4. Set for C' C R?,

a —mesC := limsup[o — mes(C' N Kg)|R™“. (5.2.1.1)

R—oo

It is called the relative Carleson a-measure.
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Theorem 5.2.1.1 (Properties of the Relative Carleson Measure) One has
rCml) If C is bounded a — mesC = 0;
rCm?2) a —mes(C; NCy) < a—mesC; + o — mesCo,

i.e., the relative Carleson measure is sub-additive;

rCm3) ChL CCy :>04—H1—GS(01) Sa—m—esC’Q,

i.e., the relative Carleson measure is monotonic with respect to sets;

rCm4) a1 > ag = a1 —mesC < ag — mesC,

i.e., the relative Carleson measure is monotonic with respect to .

Exercise 5.2.1.1 Prove this.

A set C' C R? for which o —mesC = 0 is called a C§ — set. If a — mesC = 0
for all a > 0, C is called a C§ — set.

Let us recall that if uy,us € SH (p,p(r),R?), then u=wu; —us € 5SH (p,p(r),R?)
(see Section 2.8.2).

Theorem 5.2.1.2 (D’-topology and Exceptional sets) Let u € §SH (p, p(r),R?). In
order that
T (5.2.1.2)

in D' ast — oo it is sufficient that
u(z)|2] 71 — 0 (5.2.1.3)

as z — oo outside some C3-set.
If (5.2.1.2) holds, then (5.2.1.3) holds outside some C{-set.

5.2.2 To prove Theorem 5.2.1.2 we need some auxiliary assertions. Recall that dz
is an element of area following the notation of the previous chapters.

Proposition 5.2.2.1 Let u € SH(p, p(r),R?), and ngR :=C2 N Kg. Then

/ lul(2)dz = o( RAR+2) (5.2.2.1)

2
CO,R
as R — oo.

Proof. Suppose (5.2.2.1) does not hold. Then there exists a sequence R; — o0
such that
. —p(R;)—2
Jim R, P(Bj) / u|(2)dz = A > 0. (5.2.2.2)

C2
0,R;
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Consider the following family of §-subharmonic functions:
u;(Q) = Ry " u(CRy). (5.2.2.2a)

It can be represented as a difference u; = u; ; — u2 ; of subharmonic functions of
the same form.

Thus it is precompact in Ljo. (Theorem 2.7.1.3). Let us choose a convergent
subsequence for which we keep the same notation. Its limit v is a locally summable
function.

Now let x; be the characteristic functions of the sets
—1 2
E_] = R] CO,R]"
Since mes E; — 0 it is possible to choose a sequence (for which we keep the same

notation) such that x; — 0 almost everywhere. We will also suppose that R; are
the same for x; and u;. Thus

[ 6©uit) = 0-0©ldc = [ hsQus(@)ldc —o.
i< i<t
By change of variables z = R;( we obtain that
B [l = [ (@ (ola o
Cin, i<

Hence the limit in (5.2.2.2) is equal to zero. Contradiction. O

Proposition 5.2.2.2 Under condition (5.2.1.2) the set
C = {z: u2)|l2| "D > ¢}
is a CQ-set for arbitrary .
Proof. Assume the contrary; that is , o > 0 such that
o —mesC = 25 > 0. (5.2.2.3)

One can see that for some n > 0,

limsup(a — mes K,g)R™* < 6/2. (5.2.2.4)

R—o0

Exercise 5.2.2.1 Check this.



5.2. D’-topology and topology of exceptional sets 155
(5.2.2.3) and (5.2.2.4) imply that there exists a sequence R; — oo such that

lim o —mes[CN (KR, \ Kyg,)|R;* > 25-

Rj—o00 J

Set
Ej:=R;'CN(Kg, \ Kyr,).

It is clear that E; C K; \ K, and for sufficiently large j,

a—mes E; > 6. (5.2.2.5)

Set u; as in (5.2.2.2a). We claim that for large j and ¢ € Ej,

[us1(6) = S lcle- (5.2.2.6)
Indeed,
ul(R;€) _ |ul(2) €

We used here properties of the proximate order and the equivalence

ZZRjCEOﬂ(KRj\KnRj)<:>CEEj.

Exercise 5.2.2.2 Check this in detail.

Now we will show that the condition (5.2.1.2) contradicts (5.2.2.6). Since u €
dSH (p, p(r),R?) it is a difference of uy,us € SH(p, p(r),R?). The corresponding
sequences u1 ; and ug ; are precompact in D' and there exist subsequences (with
the same notation) that converge to v and ve, respectively.

By Theorem 2.7.5.1 these sequences converge to v; and vy with respect to
a—mes on K\ K. Since u; — 0 in D', it follows that v; = ve. Thus u; — 0 with
respect to a—mes on K\ K,,. However, this contradicts (5.2.2.5) and (5.2.2.6). O

Proposition 5.2.2.3 Let {C;}{° be a sequence of C§-sets. There ezists a sequence
R; — oo such that the set

C = D{C] n (KRj+1 \KR])} (5227)

=1

is a C§-set.
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Proof. Choose ¢; | 0 and o | 0. Set Rg := 1. Suppose R;_1 was already chosen.
Take R; such that
a; —mes[C N Kpg, ] <e;RY (5.2.2.8)

for R > R;.
It is possible because of property rC1) Theorem 5.2.1.1. We can also increase
R; so that
Q5 — mes[C’j N KR] < GjRaj (5229)

and
aj — meS[Cj+1 N KR] < EjRaj (52210)

for R > R;.

It is possible because C; and Cj1; are C§-sets.

Let us estimate a;; —mes[CNKRg] for R; < R < Rj1. From (5.2.2.8), (5.2.2.9)
and (5.2.2.10) we obtain

a; —mes[C' N Kgr| < 3¢, RY. (5.2.2.11)
Let o > 0 be arbitrarily small. Find o; < o. For R;11 > R > R; we have
a—mes[C N KRR < aj —mes[C N Kg|R™% < 3¢;.
Hence o — mesC = 0. O

5.2.3
Proof of Theorem 5.2.1.2. Let ¢ € D(C) and supp ¢ C K. Then for any € > 0,

T(t) = / (2 un(2)dz = / + / S(2)un(2)dz = Ji(t) + To(t). (5.2.3.1)
K.

Kr\Ke

We have for J; (see 2.8.2.3):
| 2] (t) < Imlix |p(2)] x const/T(r, lug|)rdr < const T'(e, |ug|)e?. (5.2.3.2)

Further (see Theorem 2.8.2.1)

T(r, |us|) < 2T(r,us) + O PD) < 2[T(r,uy ) + T(r, ugs)] + Ot P®)
< 2[M (ryun ) + M(r, ug,)] + O(t=PM). (5.2.3.3)

Using (5.2.3.2), (5.2.3.3) and (3.1.2.3) we obtain

limsup |J2(t)| < const e’ 2. (5.2.3.4)
t—o0
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Exercise 5.2.3.1 Check this using the change of variable z = ¢(.

To estimate J (t) write

EAGIES const( / u(2)|dz + / |u(z>|dz)t‘ﬂ“>—2 = Jia(t) + Jia(t),
f{t\cg,Rt Cg,Rt
i (5.2.3.5)
where K; := {z: et < |z| < Rt}.
The summand J; 1 is o(1) as ¢ — oo by (5.2.1.3).

Exercise 5.2.3.2 Check this using the properties of the proximate order (Theorem
2.8.1.3, ppo3).

The summand J; 2 is o(1) by Theorem 5.2.2.1. Thus

lim sup |.J(t)| < const e’ 2

t—o0

for any e. Hence it is equal to zero and the sufficiency of (5.2.1.3) has been proved.
Let us prove sufficiency of (5.2.1.2). Let ¢; | 0. By Theorem 5.2.2.2 we choose
a C§-set C; outside which |u(z)||z| 702D < ¢;.
We construct the set C' by (5.2.2.7). Outside C we have (5.2.1.3). And by
Theorem 5.2.2.3 it is a C-set. O

5.3 Asymptotic approximation of
subharmonic functions

5.3.1 One of the widely applied methods of constructing entire functions with a
prescribed asymptotic behavior is the following: First construct a subharmonic
function behaving asymptotically as the logarithm of modulus of the entire func-
tion,and then approximate it in some sense by the logarithm of modulus of entire
function such that the asymptotic is preserved.

Various queries about the a precision of the approximation and about the
metric in which it was implemented generated a spectrum of theorems of such
kind that we will demonstrate.

Historically the first theorems of this kind were proved for concrete functions,
the masses of which were concentrated on sufficiently smooth curves (in particular,
on lines, see, e.g., [BM, Ev, Kj, Ar], ...)

In such cases the approximation was very precise and exceptional sets where
the approximation failed were small and determined.

The first general case was proved in [Az(1969)]. Next it was developed in
[Yu(1982)], and vastly improved in [Yu(1985)]. It is the following
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Theorem 5.3.1.1 (Yulmukhametov) Let v € SH(p). Then there exists an entire
function f such that for every a > p,

|lu(z) —log[f(2)|| < Calog ||

for z ¢ E,, where E, is an exceptional set that can be covered by discs D, ., 1=
{2z : |z — zj| <r;} satisfying the condition

Z r; =0o(R’™), R — oc.

|z;|>R
This theorem is precise in the following sense: If
||z] =log|f(2)[| = o(log |z]), z = o0, z ¢ E,

then for every covering of E by discs D, ,, and every € > 0

Z T 2R1767 R — o0,

‘Zj|<R

i.e., in any case this sum is not even bounded.

However it is necessary to remark that the construction from [Yu(1985)]
“rigidly” fastens zeros of the entire function, whereas the construction of
[Az(1969)] and [Yu(1982)] gives some possibilities to move them, which is
needed in some constructions.

Let us also mention that such approximation generates an approximation of
a plurisubharmonic function by the logarithm of the modulus of an entire function
in C? (see [Yu(1996))).

It is also useful to approximate subharmonic functions in an integral metric,
for example LP, as was done in [GG].

Set
o= ( | " st

Denote by Q(r,u) a function that satisfies the conditions:
1) if w is of finite order, then Q(r,u) = O(logr);
2) if w is of infinite order, then Q(r,u) = O(logr + log 1, (r)).

1/p

Theorem 5.3.1.2 (Girnyk, Gol'dberg) For every subharmonic function in C u there
exists an entire function f such that ||[u(re”) —log|f|(re" )|, = Q(r,u).

This theorem also considers functions of infinite order. In this case, it is
possible to replace p,(r) by T(r,u) or M(r,u) in Q(r,u) outside an exceptional
set E C R of finite measure. This theorem is also unimprovable for subharmonic



5.3. Asymptotic approximation of subharmonic functions 159

functions of finite order, because, for example, u = %log |z| gives, as it is possible
to prove: . ‘
L llure) g fl(re),
T—00 logr
However it was found [LS], [LM] that the remainder term O(log|z|) that
was regarded the best possible is not precise and in some “regular” cases can be
replaced with O(1) outside a bigger (but still “small”) set .
Set, for £ C C:

> 0.

END
A(FE) := limsup w.

Theorem 5.3.1.3 (Lyubarskii, Malinnikova) Let u be a subharmonic function in C
with W, satisfying the conditions: u,(C) = oo and there exists « >0, ¢ > 1, Ry >
0 such that

tu(Dogr \ Do,r) > a

for all R > Ry.
Then there exists an entire function f such that for every e > 0,
u(z) —log | f(2)|| < Ce
for z € C\ E. with A(E,) < e.

So if u, has no “Hadamard’s gaps” such approximation is possible.
In this book we restrict ourself to a weaker and simply proved theorem that
is sufficient for our aim

Theorem 5.3.1.4 (Approximation Theorem) For every u € SH(p, p(r)) there ex-
ists an entire function f such that

D' — tlim (u—log|f])e = 0.

Nevertheless this theorem has an important

Corollary 5.3.1.5 For every uw € SH(p, p(r)) there exists an entire function f such
that

5.3.2 Now we prove Theorem 5.3.1.4. We can suppose, because of Theorem 3.1.6.1
(Dependence Fr on V), that in the definition of (e); (see 3.1.2.1) V; =1

We prove this theorem for the case non-integer p. For proving this theorem
we need

Lemma 5.3.2.1 Letu € 65H (p, p(r)), for p non-integer, and v is its charge. Then
ug — 0 iff vy = 0 in D as t — oo.
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Proof. Sufficiency. Suppose u; := (u1): — (u2)¢ /> 0. There exists a subsequence
t; — oo and subharmonic functions v; and v, such that

uy, = (u1)e, — (u2)e, — v1 —vg :==v #0. (5.3.2.1)

Applying to (5.3.2.1) the continuity of A in D’ and using the conditions of the
theorem, we obtain

1
vy, — —Av =0.
/ 2w

Hence v is harmonic. Since v1,v2 € Ulp,] also v € U[p] (see Theorem 2.8.2.1, £3),
t4) and Theorem 2.8.2.3).

Exercise 5.3.2.1 Prove this in detail.

By Theorem 3.1.4.3 we obtain v = 0. Contradiction.
Necessity. Since the Laplace operator is continuous in D’-topology, the asser-
tion u; — 0 implies vy := %Aut — 0. O

Now we describe a construction of the zero distribution of the future entire
function. Let u € SH(p) and p be its mass distribution. Set

Rjp1 = R;(j+1)*" (5.3.2.2)

where £ :=min(p — [p], [p] + 1 — p).
Let us divide all the plane by circles of the form Sg, := {|z| = R;} such that
Rji1/Rj — oo and pu(Sg,) = 0.

Exercise 5.3.2.2 Prove that it is possible.

Choose a sequence §; | 0. Divide every annulus K; := {z: R; < |z| < Rj;1}
by circles Sg; ,, for

14+6,\"
Rj,n::( + J) Rj, n=0,1,2,...,n;,

1-4;
where
. log Rj%—jl
n; = @ ,
and by rays

Lk ;:z:argz:k5j, k:O7177[27T/5]]

They divide all the plane into sectors K , . We can choose d; in such a way that
(0K n k) = 0 because pu(Kjn k) is a monotonic function of ¢; and has only a
countable set of jumps.

Exercise 5.3.2.3 Explain this in detail.
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Choose a point z;,,k in every sector K, and concentrate all the mass of
the sector at this point. In other words we consider a new mass distribution f that
has masses concentrated in the points z; , x and fi(2;.5. 1) = p(Kjn k)

The next lemma shows that i is close to pu.

Lemma 5.3.2.2 One has
frg — py — 0

m D ast — oo.

Proof. Assume the contrary, i.e., fi — u¢ 7 0. Choose a sequence t; — oo such
that fi;, — » and py, — v, v, € M|p|, v # 0. Then there exists a disc K, », :=
{z : |z — 20| < 1o} such that v(K,, r,) # V(K .r,). We can assume that this disc
does not contain zero since for all the v € M[p] the condition v(K,) < Ar?,Vr >0
is fulfilled.

Suppose, for example,
V(KZO7TO) > ﬁ(Kzo,ro)' (5323)
Set a 1= V(K 4y 1) — V(K zy.r) > 0. Choose € such that
V(K 2g,r0) < V(Kag,r0—e) +a/3. (5.3.2.4)

This is possible because the countable additivity of © implies lirTn V(K ) =
r'Tr

V(K ).

Consider now the sets ;K. r,, t15;, ro—e. For sufficiently large t; they are
contained in the union of the annuluses K U Kj,11.

As j; — oo the diameters of all the sectors K, », are o(Rj,) uniformly.
Thus they are o(t;). Hence for such ¢;’s we can find a union I'; of sectors covering
t1 K, r,—e that does not intersect the circle of t; K r,.

We have (I';) = pu(I';) by definition of ji. Using the monotonicity of mea-
sures, we obtain p(t; K ro—e) < (81K, r, ), Whence

Mty (Kzoﬂ’o—é) < :&’tl (Kzoﬁ’o)'

Passing to the limit as [ — oo and using Theorems 2.2.3.1 and 2.3.4.4, we obtain
V(K 2y rg—e) < D(Kg ). Using (5.3.2.4), we obtain v(K,,r,) — 1/3[V(K.yr) —
U(K zy.10)] < (K 2,r) and hence v(K g r,) < (K4 r), that contradicts (5.3.2.3).
Since v and U are symmetric in this reasoning the lemma is proved. 0

Let us finish the proof of Theorem 5.3.1.4 for non-integer p.
We construct a distribution n with integer masses concentrated at points
Zjk,n- Set
n(2jkn) = [(2],k,n)]
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and estimate the growth of the difference

op:=p—mn

that is also a mass distribution concentrated at the same points.
Since
op(zjem) <1

it is sufficient to count the number of points in the disc Kg.
The number of points in the annulus {R; < |z| < R} is found from (5.3.2.2),

—1+5j>}12—wlog£

Sl < 12| < 7)) < o (

1 4+ 1
< const x% = const x (5 + 1)*log(j + 1).
j

The mass of the disc Ki is estimated by the inequality

Ou(Kgr) < const x Ti(k + 1)*log(k + 1) = o(n®) = o(R°) (5.3.2.5)
k=0

for any € > 0 because R > R,,_1 = ((n — 1)})*/*.
Exercise 5.3.2.4 Check this in detail.

The estimate (5.3.2.5) shows that
Sy — 0 (5.3.2.6)

as t — oo.
Lemma 5.3.2.2 and (5.3.2.6) imply that

He — Ny — 0. (5327)

Set
ul(z) = H(&n,p)
(see (2.9.2.1)) where II is a canonical potential. This is a subharmonic function

in the plane with integral masses. Thus it is the logarithm of the modulus of the
entire function

F(2) =1 E(=/2i00)-

(5.3.2.7) implies by Lemma 5.3.2.1 that u; — (u1): — 0 and this is the assertion of
Theorem 5.3.1.4 for non-integer p. g
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5.4 Lower indicator of A.A. Gol'dberg.
Description of lower indicator
Description of the pair: indicator-lower indicator

5.4.1 Now we consider the lower indicator. For an entire function of finite order p
and normal type it can be defined in one of the following ways:

hy (o, f) = sup{ hmmf log|f(rei¢)|r*p(r)}, (5.4.1.1)

et —o0,ret

where C is the set of Cy-sets (see [Le, Ch. II, § 1]), i.e., the sets that can be covered
by a union of discs Ks,(z;) := {2 : |z — z;| < J;} such that

hm—Zé

|z;]<R

The exclusion of Cy-sets is necessary because we must exclude from our
consideration some neighborhoods of roots of f(z) where log|f(z)| is near —oo.
Similarly, define

ho(d, f):i= sup { hmlnf log | f(rei®)|r=""}, (5.4.1.2)
E(¢)€E T—0 rEE(P)

where £ is the set of Ey-sets (see [Le, Ch. ITI]), i.e., sets E C (0, oo] satisfying the
condition
Rlim mes{E N (0, R)} R~ = 0.

The definition (5.4.1.1) was introduced by A.A. Gol’dberg (see [Go(1967)]). We
will use the definition (3.2.1.2)
(o, f) = inf{v(e’®) : v € Fr[f]}. (5.4.1.3)

It was proved in [AP, Thm. 1] that the definitions (5.4.1.1), (5.4.1.2) and (5.4.1.3)
coincide.

Let us note that (5.4.1.3) uses the definition (3.2.1.2) only on the circle
{|z| = 1}. However, it is easy to check, by using Theorem 3.2.1.2 that for h(z) =
|z|°h(arg z) properties h1) and h2), Theorem 3.2.1.1, are preserved.

Exercise 5.4.1.1 Check this.
We are going to prove

Theorem 5.4.1.1 Let g(¢) be a 2m-periodic function that is either semicontinuous

from above or = —oo and p(r) — p be an arbitrary approzimate order. Then there
exists an entire function f € A(p, p(r)) such that
h(¢, f) = g(®) (5.4.1.4)

for all ¢ € [0,27).
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5.4.2 We will use the following assertion that is a corollary of Theorem 4.3.5.1 and
Corollary 5.3.1.5:

Theorem 5.4.2.1 Let A C Ulp] be a compact, connected and Te-invariant subset.

Then for any proximate order p(r) — p there exists f € A(p, p(r)) such that
h(o, f) = sup{v(e’®) : v € A}, (5.4.2.1)
h(o, f) = inf{v(e’®) : v € A}. (5.4.2.2)

Exercise 5.4.2.1 Prove Theorem 5.4.2.1.

For the sake of clarity let us restrict ourselves to non-integer p. We will
construct a set A such that

inf{v(e’) : v € A} = g(o).

Denote

p k

z
H(z,p):=log|l — 2|+ R E 7P o],
k=1

v(z, K,\) == =X+ K|z —1], A, K > 0.

Note the following properties of these functions:

a) ‘Zr_nlilnzs d0H(z,p)|z| " — 0,as § — 0;

b) dH(z,p)|z|7" < AJ, for all z € C, where A depends only on p;
1

K\ < —=. 4.2,
c) |Z,?32§5K7(Z’ A S -5 (5.4.2.3)

Exercise 5.4.2.2 Prove properties a), b), ¢).

Let us note that H(1,p) = —oco. Consider the family:
Ao = {vo.+(2) := H(ze 7,p)777: 0 € [0,27), 7 € (0,00)} UO.

This family is contained in Ulp] because of b) and closed in D’-topology. It is
also Te-invariant, hence, satisfies the conditions of Theorem 5.4.2.1. For every
& € [0,27) there exists 6p(= ¢), and 7o(= 1) such that vg, -, (e’?) = H(1,p) = —oc0
Hence

inf{v(e’®) :v € A} = —00. (5.4.2.4)

For the general case this construction will be improved, cutting the “trunk” of the
function H(ze=%, p).
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Take § small enough so that the following conditions hold:

SH(z,p)|z|~* > —%, for |z — 1] > 4, (5.4.2.5)
1
dH(z,p) > -7 for |z — 1] =4, (5.4.2.6)
1
< —. 4.2
§ < 5K (5.4.2.7)
Then
d0H(z,p) > v(z, K, \), for|]z — 1| = 4. (5.4.2.8)
Denote
W (2, K,6,2) = max{d0H (z,p),v(z, K,\)}, for|z—1| <, (5.4.2.9)
dH(z,p), for |z — 1| > 6.
Lemma 5.4.2.2 The following holds:
aw) The function W(z, K, d, A) is subharmonic in C;
bw) supp puw € {|z — 1| < d};
cw) sup W(z,e,0,\)|z|* < AJ, (5.4.2.10)

zeC

where A depends only on p.

Proof. For |z — 1| < 6, W is subharmonic as the maximum of two subharmonic
functions. For |z — 1| > ¢ it is harmonic even in the neighborhood of the circle
|z — 1| = 4, because of inequality (5.4.2.8). So aw) and bw) hold. The assertion
cw) follows from b) and c) (5.4.2.3) above.

Now we get to the proof of (5.4.1.4). Let g,, | g be a sequence of continuously
differentiable functions that converges to ¢ monotonically. This is possible, because
¢ is semicontinuous from above.

Exercise 5.4.2.3 Prove that Theorem 2.1.2.9 and the Weierstrass theorem of ap-
proximation of every periodic function by trigonometrical polynomials imply the
last assertion.

We write
M, = mgxg:[(qb)

where as usual a™ = max(a,0). Set
Vo, (2) = W(Zefio,Kn7 On, My, + 1 — g,(0)) + (M, + 1)|2/7,
where 6,, is chosen small and K, is chosen large. Set z = 7e'®. It is clear that

Vo (€'?) = gn(9) (5.4.2.11)
for all Ky, .
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We can choose K, so large and d,, so small that
V(2 Kny M +1—g(0))|2]7" > gn(¢)

for |z — 1| < é,, because g, has bounded derivative.

After that we can make §,, smaller so that for |z — 1| > 4, the inequality
(5.4.2.8) would hold.

Exercise 5.4.2.4 Estimate exactly K, and d,, via the derivative of g,.

Then
V9,n(2)[2]77 > gn(9)

for all z = re'®. Thus ' ,
min Ue7n(T€Z¢)T_p = gn(em)7

and the minimum is attained for 7 = 1,60 = ¢.
Let us note that from (5.4.2.10) we have

supsup vg,n(2)|z| 7" < Adp + M,, +1 < A+ M; + 1.
6 zeC

Consider now the family of functions
Ao :=A{vgp(zr)|r|7?:0€0;2m), n=1,2,...,7 € (0;00)}.

It is contained in Ulp,o] for 0 = A+ M; + 1 and is Te-invariant. Let A be its
closure in D’. Let us show that

g(¢) = inf{v(e'®) : v € A}. (5.4.2.12)
Indeed, for every sequence v; € Ay

vj(e") = inf g,.(¢) = 9(¢).
Let v € A. By Theorem 2.7.4.1 (D’ and Quasi-everywhere Convergence)

v(z) = (D' — jlgglo v;)(2) = (limsupv;)*(z).

J—00

Hence )

v(e'?) > g(¢).
However, the infimum is attained for every ¢ on the sequence vy, (z) because of
(5.4.2.11). Hence (5.4.2.12) holds and Theorem 5.4.1.4 is proved. O

5.4.3 Now we describe the pair: indicator-lower indicator. Let h be a 27-periodic,
p-trigonometrically convex function (p-t.c.f) and let g be a 27-periodic upper semi-
continuous function. Further they are indicator and lower indicator of an entire
function, and hence must satisfy the condition

h(¢) = g(), ¢ € [0,2m). (5.4.3.1)
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An interval (a,b) C [0,27) is called a mazimal interval of p-trigonometricity of
the function h if
h(¢) = Acospo + Bsinpep, ¢ € (a,b) (5.4.3.2)

for some constants A, B, and h has no such representation on any larger interval
(a’,b') D (a,b).

A function h is said to be strictly p-t.c.f. if it is a p-t.c.f. and is not p-
trigonometrical on any interval.

If the function h is a strictly p-t.c.f., then h and g (satisfying other pre-
vious bounds) could be an indicator and lower indicator of an entire function
f € A(p(r)). However this is not so if the function h has an interval of trigono-
metricity.

Recall, for example, the famous M. Cartwright Theorem [Le, Ch. IV, §2,
Thm. 6]: if an indicator of an entire function is trigonometrical on an interval
(a,b) with b—a > 7/p, then the function is a CRG -function on this interval, i.e.,

h(¢) = g(), ¢ € (a,b). (5.4.3.3)

Let us formulate all the necessary conditions of such kind. Let (a, b) be a max-
imal interval of p-trigonometricity of the function h. The M. Cartwright theorem
can be formulated as the implication

(b—a>r/p) = (5.4.3.3). (5.4.3.4)

The following implications are also necessary:

(3o € (a,b) : h(do) = g(¢o)) = (5.4.3.3), (5.4.3.5)
(h(a) = g(a) AN (a) = h_(a)) = (5.4.3.3), (5.4.3.6a)
(h(b) = g(b) A I, (b) = I (b)) = (5.4.3.3), (5.4.3.6b)

where b/, (a) and h/_(b) are the right and left derivatives of the function h at the
points a and b.

(b—a=m/pAhl(a)=h_ (a)) = (5.4.3.3), (5.4.3.7a)
(b—a=m/pAh_(b)=h_(b) = (5.4.3.3), (5.4.3.7b)
(ggaifg W = 0) = (5.4.3.3), (5.4.3.8a)
(ggbing W = 0) = (5.4.3.3). (5.4.3.8D)

Now we shall give an exact formulation. The functions h and g are said to
be concordant if at least one of the following conditions holds:

1. h is strictly p-t.c.;

2. for each (a,b) that is a maximal interval of p-trigonometricity of the function
h the implications (5.4.3.4)—(5.4.3.8b) are satisfied.
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Theorem 5.4.3.1 Let 0 < p < oo, h(9) be a 2w-periodic, p-t.c.f., g(¢) be an upper
semicontinuous, 2m-periodic function, h(¢) > g(¢) for all ¢, and h £ g.

A function f € A(p(r)) which simultaneously satisfies the identity hy =
h,h; = g with an arbitrary prozimate order p(r) — p exists if and only if the
functions h and g are concordant.

5.4.4

Proof of necessity. Note that implication (5.4.3.4) is a corollary of (5.4.3.6a) or
(5.4.3.6b), because every p-trigonometrical function is continuous and has contin-
uous derivative in (a,b). Recall that (e); was defined by (3.1.2.4a).

From properties of the limit set Fr[f] (Theorem 3.1.2.2, fr2), {r3)) and the
definition of indicators ((3.1.2.1), (3.1.2.2)) we can obtain for every function v €
Fr(f] the inequality

v(Te'®) < 7°h(¢), ¢ € [0,27), 7 > 0. (5.4.4.1)
Since h(¢) is p-trigonometrical for ¢ € (a,b), the function
H(re'®) := rPh(e)
is harmonic in the angle
[(a,b) := {re’ : ¢ € (a,b), r € (0,00)},

whence the function v — H is subharmonic and nonpositive in I'(a, b). By virtue
of the maximum principle, either v < H in I'(a,b) or v = H in I'(a,b) for each
v € Fr[f]. Note that the condition v = H in I'(a,b) implies v = H in I'[a, b] for
the closed interval because of the upper semicontinuity of v.

Let us prove (5.4.3.5). For every v € Fr[f] we have v(re/®0) — H(re'®) = 0
whence by the maximum principle v = H in I'(a,b). Hence (5.4.3.3) holds.

Let us prove (5.4.3.6a). Assume the contrary:h(a) = g(a) A 1/, (a) = h'_(a)
holds, but there exists ¢o € (a,b) such that h(¢o) > g(¢o). Then there exists
v € Fr[f] such that

9(d0) < v(€'™) < h(eo)

whence
v(te'®) < 7°h(¢) € T'(a,b). (5.4.4.2)

Without loss of generality, we can assume that v(z) > —oo, otherwise we can
replace v with max(v, —C) for a large positive constant C' > 0.
We choose 0 < 71 < 75 and to every function

W;(re'?) := vp,, (re" ) —r’h(¢p + a), j=1,2,y=b—a, re’® €(0,7)

we apply the following lemma due to A.E. Eremenko and M.L. Sodin [So] (see also
[PW, Ho):
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Lemma 5.4.4.1 (E.S.) Let W be a subharmonic nonpositive function inside the
angle T(0,7), v > 0. Then the following implication is valid,

i¢
(hmsup W(; ) = O) =W =0.

¢—0
If the condition of this theorem is not satisfied for

W*(re'®) = max vj,(re’)
TE[T1,72]
it would be possible to insert a p-t.c.function between h(¢) — (¢ — a) (for a small
€) and v(e’?). However, such a function does not exist, because of the negative
jump of the derivative. So it will be a contradiction. See further for details.
From Lemma 5.4.4.1 we get

h() — vir) (')

lim inf =a; >0
¢—a+0 qb —a
and likewise ”
h(®) — v, (e*
lim inf M = ag > 0.

¢—a+0 qb —a
So a A > 0 can be chosen such that a + A < b and the inequalities

H(1je'?) — v}, 1(e'?) > atf (¢ —a), j=1,2, (5.4.4.3)
where a := 1/2min(a1, az), hold for all ¢ € [a,a + A].
We write ‘ ‘
8:= min ](H(Teﬂaw) — v(relatA)y)
TE|T1,T2

which is positive because of (5.4.4.2).
Let us choose € > 0 small enough to

e < min(a, B(12)PATY) (5.4.4.4)
and let us consider the p-trigonometrical function
he(6) == p~ (' (a) — ) sin p(¢ — a) + h(a) cos p(6 — a), & € (a,b)
that coincides with
h(¢) = p~'h(a)sin p(¢ — a) + h(a) cos p(¢ — a), ¢ € (a,b)

in the point ¢ = a but has a tangent that is lower than the tangent of h.
Further

h(¢) — he(d) = ptesinp(p — a) < e(¢p — a), ¢ € [a,a+ Al. (5.4.4.5)
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Combining (5.4.4.3)—(5.4.4.5) we obtain

U[Tj](ei¢) < 1;°h(¢p) — a(¢p — a) < 7;°h(¢) — (¢ — a) (5.4.4.6)
Sijh€(¢)7 ¢€ [a7a’+A]a j:1527
v(1e?) < Ph(a+ A) +7PeA - 3 (5.4.4.7)

<7’h(a+ A), T € [, 7]

We write .
G:={re": ¢ €laa+ A, 7€ m,ml} (5.4.4.8)

It follows from (5.4.4.6), (5.4.4.7) that
v(re'?) < r’he(¢), re'” € 0G,

where G is the boundary of the domain G. Since the functions v(re’®) and r*h.(¢)
are subharmonic in G, by virtue of the maximum principle we have

v(re'?) < rPh(¢), re'® € G. (5.4.4.9)
Let us consider the function
Hy(re'®) := rPhy(¢), re'® € T(a — A,a + A)

where
h ¢ ) ¢ €la— Aa aj,
(o) {10 Ge@=n
h€(¢)7 ¢ € [CL, a+ A)
The function H; is continuous in I'(a — A, a + A) and subharmonic in the angles
I'(a — A,a) and T'(a,a + A). Let us prove that it is subharmonic at the point
z = €' Let M(z, R,v) be the mean value of v over the circle {¢ : | — 2| = R}

(see (2.6.1.1)). Taking into consideration (5.4.4.9) and subharmonicity of v (see
(2.6.1.1)), for all small R we have

M(e" R, Hy) > M(e', R,v) > v(e'®) = Hy(e').

Hence H; is subharmonic for z = e@. Since H; is homogeneous, i.e., Hi(kz) =
k’le (Z),

M(ke™ kR, Hy) = kP M(e'*, R, Hy) > k" Hy (') = Hy(ke').

So H; is subharmonic on the ray {z = ke’ : k € (0,00)} and hence in the angle
I'(a — A,a + A). Thus hi(¢) is a p-t.cf. for ¢ € (a — A,a + A). However, by
construction

()(a) = I_(a) = W, (a) = (o), + € = (1) (a) + €

and this contradicts the fact that hy is p-t.c.f.
Concordance of the implication (5.4.3.6a) is proved.
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5.4.5 Here we continue the proof of necessity. Pass to the proof of necessity of
the condition (5.4.3.7a). Assume the contrary. Then there exists v € Fr[f] and
éo € [a,b] such that g(¢g) < v(e?®) < h(¢o), whence by virtue of the maximum
principle, v(re'®) < 7°h(¢) for T€!® € T'(a,b). Actually v(re’®) < 7Ph(¢) every-
where and on the circle we have strict inequality. If v(re!®) = H(re') forat >0,
then vj,j(e'*) = h(a), and it will suffice to repeat the arguments used in proving
(5.4.3.6a) with v[;) instead of v.

Exercise 5.4.5.1 Do that.

So it is sufficient to examine the case v(re®) < H(7e'*), T > 0. Denote
T(¢) == '(a)p™ ' sin p(¢ — a) + h(a) cos p(¢ — a).
This is a p-trigonometrical function, the graph of which is tangent to the graph of

h(¢) at the point a.

There are two possibilities for 7'(¢) on some small interval ¢ € (a—-,a), v >
0 : either T'(¢) < h(¢) or T(¢p) = h(¢).

Inequality T'(¢) > h(¢) contradicts p-t.convexity at the point a. The equality
on the sequence of points ¢; — a — 0 contradicts the maximum principle for p-
t.c.functions.

Exercise 5.4.5.2 Why is it?

If T(¢) = h(¢),¢ € (a —~,a), then h is p-trigonometrical on the interval
(a—7,b) D (a,b) that was already considered in the case (5.4.3.4) (M. Cartwright’s
Theorem).

So we assume T'(¢) < h(d), ¢ € (a — 7, a). We set

hi(¢) == h(¢) —=T(¢), ¢ € (a —,a),
vy (re'?) == v(re'®) — rPT(¢), re'® € I'(a — 7,b).
Then hy(¢) =0 for ¢ € [a,b], hi(¢) > 0 for ¢ € (a —y,a) and h'(a) = 0.
The function vy(e!®) < 0,¢ € [a,b). Let us analyze the behavior of the
function v (€*?) at the point b. Either v;(e®) < 0 or v1(e®*) = 0 but

lim sup vy (e!®)(b— ¢) "L < —C
¢—b—0
for some C' > 0 by Lemma 5.4.4.1 (E.S.).
From the other side v;(e?) is strictly negative also in some left (say, (a —
A, a)) neighborhood of a because of upper semicontinuity. In any case vy () can
be majorated on the interval (a — A, b) by the function

he := —Asin(p — €)(b — ¢)

-~

with sufficiently small A.

A point of intersection of the graph of h, with the axis 0, ¢ can be regulated
by € and can be chosen so close to the point a that the graph of h. also intersects
the graph of hq(¢), at some point 6y < a because hq(a) = hi(a) = 0.
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Exercise 5.4.5.3 Make the precise proof with all the estimates.
Let the parameters A, ¢, 6y be fixed as above. Denote
S = {re : ¢ € (0,b),0 <r < 1}.

Then H,(re'?) := rP=¢h.(¢) is harmonic in the sector S and satisfies the inequality
H.(re'?) > vy (re’®) on 0S. Hence H,(re'®) > vy (re’®) on S. Thus

v(re'®) < H(re'®) + H(re'?), re'® € S. (5.4.5.1)
Let M(r,v) be the mean value of the function on the circle {¢ : |[(] = r} (see
2.6.1.1). Using (5.4.5.1) we have
b
M(r,v) < /[H(rem) + H(re')]de¢ + / H(re'*)de
0o [0,2m)\ (80,b)
<dir? —dor”™¢, dq, d2 > 0.
So we get M(r,v) < 0 = v(0) for sufficiently small > 0 which contradicts the
subharmonicity of the function v at zero.
5.4.6 Now we complete proof of necessity, proving (5.4.3.8a,b). Assume the con-
trary: suppose
h(¢

. )—9(9) _
};glalilg W =0 (5461)

but there exists a ¢g € (a, b) such that h(¢g) > g(¢o). Then there exists a function
v € Fr[f] such that ‘
9(¢0) < v(e™) < h(go). (5.4.6.2)
Then the function vy (rei?) := v(re'?) — H(re'?) is subharmonic and nonpositive
in I'(a, b). By virtue of the maximum principle v1 (re’®) < 0, re'® € I'(a, b).
From (5.4.6.1) we obtain

_ (it io
0 — liminf %) —9(2) > fiming (@) = 0(€) e 2 (€0)
¢—at0 P —a $¢—a-+0 ¢ —a $p—at+0 ¢ —a

whence, recollecting that v (e'®) < 0, we get

i¢
lim sup v (e’?)

=0.
¢—a+0 ¢ —a

Applying Lemma 5.4.4.1 (E.S.) to the function
W(re'®) = vy (re’®*), re’ € 1(0,7), y=b—a

we get v1 = 0 in I'(a, b) which leads to a contradiction. The implication (5.4.3.8b) is

proved in the same way. So the proof of necessity in Theorem 5.4.3.1 is completed.

O

We do not include here the proof of sufficiency and refer the readers to the
original paper [Po(1992)].
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5.5 Asymptotic extremal problems.
Semiadditive integral

5.5.1 Suppose some class of entire functions is determined by asymptotic behavior
of their zeros, and we want to know what is the restriction on asymptotic behavior
of functions: for example, to estimate the indicator of such a function. The first
example of such a problem was considered by B.Ya. Levin in [Le, Ch. IV, §1,
Example]. A developed theory of such estimates was constructed in the papers
of A.A. Gol'dberg [Go(1962)] and his pupils [Kon], [KF]. We consider this theory
from the point of view of limit sets.

Let M @ M(p) (see (3.1.3.4)) be a convex set of measures which is closed in
D' and is invariant with respect to the transformation (e); (see (3.1.3.1), (3.1.3.2))
and let A(M) be a class of entire functions f for which Fr[ns] C M. We suppose p
is non-integer. Recall that canonical potential II(z, v, p) is defined by: (see (2.9.2.1))

II(z,v,p) == /GP(Z/C)I/(CZC)7
C

where v is a measure and

Pk
z
Gp(z) :=log|l — z| + %Z -
k=1
Theorem 5.5.1.1 [AP] The relation
h(¢, f) = sup{II(e’®,v,p) : v € M} (5.5.1.1)

is valid. There exists f € A(M) for which the equality holds in (5.5.1.1) for all ¢.

Proof. We should only prove that there exists an entire function with such indi-
cator. Consider the set

A= {TI(e",v,p) : v € M}.

It is a convex set contained in U[p]. Thus there exists a subharmonic (see Corollary
4.1.4.2) and hence entire (see Corollary 5.3.1.5) function f such that Fr[f] = A.
By Theorem 5.4.2.1, (5.5.1.1) holds. O

For some M it is possible to compute the supremum in (5.5.1.1) and thus to
obtain explicit precise estimates of indicators in the respective class A(M). As an
example, we shall present an estimate given by A.A. Gol'dberg.

We recall that the upper density of zeros of an entire function f € A(p) is
defined by the equality

Alng] := limsup ny(r)

r—00 T
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where ny is the distribution of zeros of the function f, and denote

d o i -
K(t,¢) == — thGp (e ‘lﬁ/t)} (5.5.1.2)
where a® := max(a,0), a~ := min(a, 0). This function is piecewise continuous.

Corollary 5.5.1.2 [Go(1962)] Let the distribution of zeros ny of a function f be
concentrated on the positive ray, and let Alng] < A < co. Then

(o, f) < A / K (t,6)dt, & € [0,27) (5.5.1.3)
0

and there exists a function from the same class for which equality is attained for

all ¢.

Proof of Corollary 5.5.1.2. We exploit Theorem 5.5.1.1. The class of functions f
satisfying the assumption of the corollary coincides with the class of f for which

Fr[ns] Cc M = {v e M(p) : suppv C [0,00] Av(r) < Arf}. (5.5.1.4)

Exercise 5.5.1.1 Show this by using Corollary 3.3.2.6.
Thus

(e, v,p) = / Gp(e? [t)u(dt) < / Gy (e /t)(dh).
0 0

Integrating by parts we obtain

(e, v,p) < —/V(t)[%G;r(ew/t)]*dt.
0
By (5.5.1.4) we get (5.5.1.3). O

We write
M, (r) := max{G,(re'®) : ¢ € [0,27)}.

In the same way one can prove

Corollary 5.5.1.3 [Go(1962), Thm. 4.1] Let distribution of zeros of the function
f € A(p) satisfy only the condition Alng] < A < co. Then
ho, f) < Ap / ML (10 dt, & € [0, 27) (5.5.1.5)
0

and there exists a function from the same class for which equality is attained for
all ¢.
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Exercise 5.5.1.2 Prove this corollary exploiting

M:={ve M) :v(r) <Ar”, Vr > 0}.

5.5.2 To be able to obtain explicit estimates for more diverse classes of entire
functions defined by a restriction on the density of zeros, Gol’dberg introduced an
integral with respect to a nonadditive measure and obtained estimates for indica-
tors in terms of a one-dimensional integral (along a circumference) with respect
to such a measure ([Go(1962)]. Gol’dberg initially constructed the integral sum of
a special form. The construction presented here is based on the Levin—Matsaev—
Ostrovskii theorem (see [Go(1962), Thm. 2.10]). Fainberg (1983) developed this
approach using a two-dimensional integral. This made it possible to extend signif-
icantly the set of classes of entire functions for which the estimate expressed by a
nonadditive integral is precise. We shall present these results after the necessary
definitions.

Let §(X) be a nonnegative monotonic function of X C C, the function being
finite on bounded sets and §(&) = 0. For a given family of sets X' := { X} we denote
by N(d, X) the class of countable-additive measures p defined by the relation

N(GX) ={p: p(X)<d(X), X € X}.

For a Borel function f > 0 we define the quantity

(x) [ fds = sup{/fdu pe N(M)},

called an (X)-integral with respect to a nonnegative measure 6. For a Borel set
E C C we set

) [ pas =) [ s1zas

where I is an indicator of the set F, i.e.,

1, ifzeFE;
I :: b) )
£(2) {o it » ¢ E.

This integral possesses a number of natural properties: it is monotonic with respect
to f and § and the family X, positively homogeneous and semi-additive with
respect to the function f and 4. If § is a measure, if X’ is a Borel ring, and if f
is a measurable function, then (X)-integral coincides with the Lebesgue-Stieltjes
integral.

Exercise 5.5.2.1 Check these properties.
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Let 6(©) be a nonadditive measure on the unit circle T, defined initially on
the family of all open sets © C T. It can be naturally extended to all closed sets
OF using the equality

5(0F) :=inf{6(©): © > 607}
Let xo be a set of open sets containing the set T. We write

D,o:={z= te’ 0<t<re?e O}, x, ={Dreo:7r>0, © € xo}.

The subscripts © and z at x indicate that the families under consideration are
located either on T or on the plane, respectively.

Let us define a nonadditive measure d, on . by the equalities

5Z(DT)@) = Tp5(9)7 Dh@ € Xz-

Now the integral (x) [ G} (€?/¢)ds, is defined.
Recall that the classical angular upper density of zeros of an entire function
f € A(p) is defined by the equality (compare (3.3.2.7))

ZCl[nf, O] := limsupny¢(Dyo)r ’.

r—00

Consider the class of entire functions A° (4, xe) defined by the equality
A%(8,xe) == {f : A%y, 0] < 5(6), YO € xol (5.5.2.1)
for a given non-additive measure 6(©) and a family xe.

Theorem 5.5.2.1 [Fa] Let 6(©) satisfy the condition

0(0) =4(0), VO € xo (5.5.2.2)
(the dash means the closure of a set). Then
ho, f) < (Xz)/G;f(e”/C)déz. (5.5.2.3)

There exists a function f € A5, xeo) such that equality in (5.5.2.7) is attained
for all ¢ € [0,2m) simultaneously.

Proof. Let us note the following: If we replace in this theorem A [nf, ©] with its
D’ counterpart A(Cog(I1)) (see Theorem 3.3.1.2) and consider the corresponding
class of entire functions A(J, xe), the assertion of the theorem holds without con-
ditions (5.1.5.6). You should only apply Theorem 5.5.1.1 with the corresponding
M. The condition (5.5.2.7) is exploited only for replacing “D’” quantities by the
classic ones using results of Sections 3.3.2. O

Exercise 5.5.2.2 Prove this theorem in detail.

It is also worth noting that every family yeo can be replaced by a family xg
that is dense in e (see 3.2.2) and such that for xg (5.5.2.6) already holds (see
Theorem 3.3.2.3).
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5.6 Entire functions of completely regular growth.
Levin-Pfluger Theorem. Balashov’s theory

5.6.1 The most famous definition of a function of completely reqular growth (CRG-
function) is the following:
A function f € A(p(r)) is a function of completely regular growth, if the
limit
Tim ) log | £(2)], 7 := |2

exists when z — oo uniformly outside some C}-set (see Section 5.2.1.)

Actually, it is equivalent to all other definitions of the functions of completely
regular growth in the plane (compare [Le, Ch. III], [P£(1938)], [P£(1939)]).

By A.A. Gol'dberg ([Go(1967)]) this definition was reduced to the following:

A function f € A(p(r)) is a function of completely regular growth, if
hy(¢) = hs(0), V¢ € [0,27).

Because of the formulae (3.2.1.1), (3.2.1.2) (see also Section 3.2.7) we have
the following

Theorem 5.6.1.1 A function f € A(p(r)) is a function of completely regular growth
(CRG-function) iff Fr[f] consists of only one subharmonic function h(z).

Because of (3.2.1.11) the function h(z) has the form
h(z) = rPh(e'). (5.6.1.1)

The function h(¢) := h(e'®) is p-trigonometrically convex and it was studied in
Sections 3.2.3, 3.2.4, 3.2.5.

5.6.2 The initial definition of regular zero distribution [Le, Ch. II, §1] is the fol-
lowing:

Let n be a zero distribution (divisor, or mass distribution) of convergence ex-
ponent p; := p[n] (see Section 2.8.3), and let p; > [p1]. Let p1(r) — p1 be a proper
proximate order of n(r) (see Theorem 2.8.1.2). It means that n € M(p(r)), p(r) —
p1 (see Section 3.1.3).

The initial definition of reqular zero distribution for p; being non-integer is:

A zero distribution n is regular if the limit

tim MWD gy

r—o00 tP1L (t)

exists for all & > [ except perhaps for a countable set on the circle.

IFor the definition of Co(a,p)(1t), see Exercise 3.3.1.5.
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By using results of Section 3.3, one can prove

Theorem 5.6.2.1 The zero distribution n is reqular iff Fr[n] consists of only one
MEASUTE Vyeg .

Exercise 5.6.2.1 Prove this exploiting Theorems 3.3.3.1 and 3.3.2.4.

Recall that for f € A(p(r)), p(r) — p we have ny € M(p(r)), p(r) — p (see
Theorem 2.9.3.2). Now we can formulate

Theorem 5.6.2.2 (Levin-Pfluger) [Le, Ch. II, Ch. III] An entire function f €
A(p(r)), p(r) — p of non-integer order p is of completely regular growth func-
tion iff its zero distribution is regular.

After Theorems 5.6.1.1, 5.6.2.1 this theorem is a direct corollary of Theo-
rem 3.1.5.1.

5.6.3 Consider now the case of integer p. In general, this case differs from the case
of non-integer p. For example, Theorem 2.9.4.2 (Brelot-Lindel6f) implies that

(f € Ap(r)), p(r) = p) == ny € M(p(r)), p(r) — p

iff the family of polynomials (2.9.4.4a) is compact.
To describe the regularity of zero distribution for the case of integer p we

assume that the limit
Rlim dr(z,v,p) := R[0oc2”] (5.6.3.1)

exists, where

Ooo = ngnoo / |77 cosarg (n(d¢) + i / || 77 sinarg {n(d(¢)
ICI<R ICI<R

Now a zero distribution n € M(p(r)), p(r) — p with integer p is called
reqular if Frn| consists of only one measure vyeg as in Theorem 5.6.2.1 and the
limit (5.6.3.1) exists.

Under this definition Theorem 5.6.2.2 still holds, because the set (H, Fr)[log|f]]
from Theorem 3.1.5.2 consists of only one element (R[002”], Vreg)-
Note also

Proposition 5.6.3.1 The measure vreg has the form
Vreg(drde) = prfdr @ A(de)

where A is a measure of bounded variation on the unit circle.

This assertion is a corollary of invariance of Fr[n], Theorem 3.1.3.3, frm3).
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5.6.4 In the papers [Bal(1973), Bal(1976)] functions of completely regular growth
along curves of reqular rotation were considered. A curve of reqular rotation is a
curve that is described by the equation

z = te!(VMlogtte) (< < o

for a fixed ¢.
If v(t) = ~, then this curve is a logarithmic spiral. In the general case y(t) is
a differentiable function such that

Y(t) = 7.ty (t) = 0, t — oo.
To describe this theory in terms of limit sets we consider the transformation

P, = tei’y(t) log t’

uy(2) = u(Pyz)t=P®.
The following theorem is similar to Theorem 3.1.2.1.
Proposition 5.6.4.1 (Existence of spiral Limit Set) The following holds:
esls 1) u; € SH(p(r)) for all t € (0, 00);
esls 2) the family {u.} is precompact at infinity.
The set of all limits D" — lim wu;; does not depend on 7(t) but only on the

J—00

constant ~y since
lim (y(t) — ) logt = Jim tv'(t) = 0.
—00

t—o0

So it is the same as that for
Pt — tei’ylogit7

i.e., the case that was already considered in the general theory.
In particular (3.2.1.8) for this case has the form

20(z) = el(-7logT+9), (5.6.4.1)
Hence, from Theorem 3.2.1.2 the indicator (see (3.2.1.1)) has the form
h(re'®) = rPh(—ylogr + @), z = re'?,

where h(¢) is a p-trigonometrically convex 27-periodic function (see Section 3.2.3).
All other assertions of Levin-Pfluger theory can be obtained analogously from
other general assertions as it was done in the previous sections.
Theorem 3.1.6.1 connects limit sets for every ~.

Exercise 5.6.4.1 Formulate and prove Balashov’s analogy of the Levin-Pluger
Theorem 5.6.2.2 and Theorem 3.1.6.1 for m = 2.

For other generalizations of the Levin-Pfluger theory see [AD] and [Az(2007)].
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5.7 General characteristics of growth of entire functions

5.7.1 A functional F(u) acting in the unit circle and defined on subharmonic
functions u € SH(p(r)) is called a growth characteristic if the following conditions
are fulfilled:

1. continuity:

Fluj) — F(u), (5.7.1.1)
if u; — wu uniformly on compacts (of course, for continuous functions u) or if
uj | us

2. positive homogeneity:

F(eu) = cF(r, u); (5.7.1.2)

for every constant ¢ > 0.
Here we shall list some widely used functionals that satisfy these conditions:

Hy(u) = u(e'?); (5.7.1.3)

1 27 -
T(u) = — [ ut(e)dg; (5.7.1.4)

27T0/

M (u) == max{u(e’®) : |¢| < a}; (5.7.1.5)

M (u) :== My (u); (5.7.1.6)
B

Top (1) ;:/u(ew)dqs; (5.7.1.7)
o

I(u,g) = /1L(ei¢’)g(<;5)d<;57 g € L'[0,27). (5.7.1.8)
0

Exercise 5.7.1.1 Check properties 1 and 2 for these functionals.

Let a(t) and a.(¢) be the “hats” defined by the equalities (2.3.1.1)—(2.3.1.3)
and let R.u be defined by (2.3.1.4).
This averaging has the following properties.

Proposition 5.7.1.1

1. if u is subharmonic, then R.u is subharmonic;

2. Reu | w as € | 0 for every subharmonic function;

3. if uj — uwin D' and uj,u are locally summable functions, Reu; — Reu
uniformly on every compact set.
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Exercise 5.7.1.2 Prove this using Theorem 2.3.4.5, 2.6.2.3.

Now we can define the asymptotic characteristics of growth of entire function

fe Alp(r)) :

Flf] = lgn lim sup F(Ru.(e)), (5.7.1.9)
F[f] := lim lim inf F(Rcu(e)), (5.7.1.10)

e—0 t—oo

where u = log | f| and (e); is defined by (3.1.2.1).
Proposition 5.7.1.2 For F(u) defined by (5.7.1.3)

Flf] = hy(d); Elf] = hy(0).

For other functionals from the list (5.7.1.4)—(5.7.1.8) one may replace R.u by u
and omit lim.

e—0

Exercise 5.7.1.3 Prove this.

The following assertion connects the asymptotic growth characteristics with
limit sets.

Theorem 5.7.1.3 The relations

F(f] = sup{F(v) : v € Fr[f]},
Flf] = mf{F(v) : v € Fr[f]}

are true.

Proof. Let v € Fr[f] and us; — v in D'. Then Rcus; — Rcv uniformly on every
compact set. Hence
lim F(Reuy;) = F(Rev).

t;—o00

Passing to the limit as € — 0 we obtain

lim lim F(Reug,) = F(v).

e—0t;—o00

Choosing a sequence that corresponds to lim sup or lim inf we obtain the assertion
of the theorem. O

Applying this theorem to the functional (5.7.1.3) we obtain the RHS’s of
(3.2.1.1), (3.2.1.2) and hence another definition for the indicator and lower indi-
cator.

5.7.2 A family of growth characteristics xa := {Fa(r,e) : a € A} is called total if
the equation
Fa(v1) = Fo(ve), ¥r >0, a € A (5.7.2.1)

implies v1 = vy for v1,ve € Ulp] (see 3.1.2.4).



182 Chapter 5. Applications to Entire Functions

Here are some examples of the total families:

xu = {Hg(u(e) : ¢ € [0,27)}; (5.7.2.2)
x1 = {lapu):a,B€[0,2m)}; (5.7.2.3)
XFo = {ck(u) = I(u,gx) : k € Z}; (5.7.2.4)
where
go =1, g :=cosko; g_ =sinkeo, k € N. (5.7.2.5)

It is easy to deduce from Theorem 5.6.1.1

Theorem 5.7.2.1 Let a family {F, (o) : « € A} be a total family of characteristics.
An entire function f is a CRG-function iff

Falfl = EL S (5.7.2.6)

Exercise 5.7.2.1 Check this.

5.7.3 Let us consider a total family of characteristics of the form

xv = {I(u,): ¢ € U}, (5.7.3.1)

where W is a set which is complete in L'[0, 2]. For instance, such are the families
x7 and X po-

Theorem 5.7.3.1 [Po(1985)] Let f € A(p(r)). The following assertions are equiva-
lent:

a) F(fgl = Ff]+ Flg].VF € xu.
b) Flfg] = F[f] + Flg|,VF € xw, for all entire functions g € A(p(r)).
¢) [ is a GRG-function.

Proof of sufficiency of assertion ¢). Let us prove ¢) = a) and ¢) = b). Using
Theorem 5.7.1.3 we obtain for every characteristic F

Flfg] = sup{F(w) : w € Fr[fg]}. (5.7.3.2)
Because of Theorem 3.1.2.4 frul),
Fr[fg] C Fr[f] + Fr[g].

Since f is a CRG-function, Fr[f] consists of only one subharmonic function vyeg
(see Theorem 5.6.1.1) and it is easy to check that in this case we have equality

Fr[fg] = Ureg 1 Fr[g]

Exercise 5.7.3.1 Check this.
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Since F(vreg + vg) = F (Vreg) + F(vg), we obtain
F1fg] = F(vreg) + sup{F(vy) : vy € Frlg]} = F[f] + Flg].

So ¢) = a) was proved. In the same way one can prove ¢) = b). O

Exercise 5.7.3.2 Prove this.

In the proof of sufficiency for c) of a) and b) we can suppose that 1) belong
to the space D(T) of infinitely differentiable functions on the unit circle T because
D(T) is complete in L]0, 27]. We prove now sufficiency of b) in Theorem 5.7.3.1.

We recall that (see (3.1.2.4a))

vy (2) = v(t2)t v € U[p)
to distinguish it from (e); that we define as
wy(2) = u(tz)t="® w e SH(p(r)).

The main constructive element for the proof sufficiency of b) in Theorem
5.7.3.11s

Lemma 5.7.3.2 Let )" € D(S). There exists v € Ul[p] with the following properties:

'D/ — }gr(l) v[t] = D/ - tlirgo v[t] = f), (5.7.3.3)
(v (e),4°) > (v(e™),4°) fort € (0,00),t # 1, (5.7.3.4)
(@), 4%) > (v(e™),4"). (5.7.3.5)

Proof of Lemma 5.7.3.2. Let ¥ be represented by Fourier series
Vo) = % + ;(an cosnb + by, sinnh)

Since ¢° # 0 there exists ap # 0 or b, # 0. Suppose there exists aj # 0. In the
proof we will consider three cases:

1. k=0;
2. k#0NE <p;
3.k>p+ 1

The number p is supposed non-integer and p = [p].
Consider the case ag # 0, ag > 0. Set
Y(x) = log(—e~ " 4 C), a0 > 0,C > 1,
v(z) = |z[Pe?1o8 12D = exp(plog r + ¥ (logr)). (5.7.3.6)
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Applying the Laplace operator, we obtain:

1 8 d 22 % peiie
Av = ETETEU(T) =€ 2 @Bp () (5737)

= exp((p — 2)x +¥(2)) [(p +¥'(2))* + ¢"(2)] , = logr.
Since
Y/ (x) = asgnrexp(—alz|) — 0, ¥ (z) = —a?sgnxexp(—alz|) — 0

as x — +00, it is possible to choose a such that the expression (5.7.3.7) is positive.
So v(z) is subharmonic.

It is easy to check that all the assertions of the lemma are satisfied and
0(z) = b|z|? where b(> 0) is a constant.

Exercise 5.7.3.3 Check this.

If ap = —]ag| < 0, consider the function
’UO(Z) = lOg|Z|, |Z| 2 13
0, lz| < 1;

it is subharmonic and ‘
(0(€"),4°) = agt ™" log™ t. (5.7.3.8)

Since the RHS of (5.7.3.8) is minimized for t, = e” , the function

v(z) = vgo,l](z)
satisfies the assertions of the lemma with © = tligr)loo v =0
Now let ag = 0, ar # 0,0 < k < p. We will search for a function v of the form
2
v(re'?) = /Gp(rei(d’*o))(l — sgn ay, cos k6)do. (5.7.3.9)
0

This is the convolution G, (re’) * g of the primary kernel (see Section 2.9.1)

p
Gp(z) =log|l — z| + %Z 2" /n
n=1
with a positive function g(6) := (1 — sgnay cos k) on the circle. So it is subhar-

monic. Recall that the cos-Fourier coefficients of the function G,(re®) are (see
Exercise 2.3.7.2).

N 0 =0,1,...
Gp(m,r) =1 =Sl G <, (5.7.3.10)
(I/m)r™, m=p+1,...
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and
log m=20
Gp(m,r) =< Lem —p=m), m=1,...,p ifr>1 (5.7.3.11)
(1/m)r™, m=p+1,...

All the sin-Fourier coefficients are equal to zero. The Fourier coefficients of the
function g are 1 and — sgnay.
Using well-known properties of Fourier coefficients, we obtain for 0 < k < p,

R 0, t<1,
”m(O):{m 1> 1

[

. 0, t <1,
Oy (k) = {_1 th—t=* sgna t>1
ko te =4

0, t<1,
—1/k(t*=P —t=*=P)|az| t>1.

(v (e™), 9°) = {
The function ¢ — (v;(e®), %) tends to zero when ¢ — 0,00 and has its only
minimum at the point
1/k
by = (Hk> _
p—k

Thus vj(4,)-1) satisfies the conditions of the lemma with v = 0.
For k > p + 1 we should take the same g and then

(1/k)tF=Play|, t<1,

(v (™), 4% = {_(l/k,)tkp|ak| t>1.

So the corresponding function t — (v;(e®®),°) obtains its minimum at the point
to = 1 and the function v satisfies the assertions of the lemma with ¥ = 0. O

Exercise 5.7.3.4 Prove the lemma for the case by, # 0.

Lemma 5.7.3.3 Let v € Ulp] with the condition

/ . _ AT _ 5
D — fim g = D' = Jim vy = 5

fulfilled, and let w € SH(p(r)) with some v° € Fr[u]. Then there exists w° €
SH(p(r)) such that
Fr(uw’] = {vy) : t € (0,00)} U (5.7.3.12)

and the following condition holds:
1. If the sequence tlim wy) = vy for some t € (0,00) and the sequence uy,
n—00
converges in D' as t, — oo, then lim wuy, = vﬁ].
n—oo

For the proof see Corollary 4.4.1.4.
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Lemma 5.7.3.4 Let w € SH(p(r)), 1 € D(S). Then the following holds:

iniptle.v) = gin, 0 )

limsup(w, ) = max (v,1).

t—o0
Exercise 5.7.3.5 Prove this exploiting completeness of Fr.

Proof of sufficiency of b) in Theorem 5.7.3.1. In assumption b) we should prove
that f is a CRG-function, i.e., by Theorem 5.6.1.1 its Fr[f] consists of only one
function. Since log|f| € SH(p(r)) and because of Theorem 5.3.1.4 (Approxima-
tion) it is enough to prove the corresponding theorem for subharmonic functions.
Suppose

Flu+ w] = Flu] + Flw],VF € xw (5.7.3.13)

for all w € SH(p(r). We exploit Lemma 5.7.3.4 and write (5.7.3.13) in the form:

min  (v,1) = min (v,¥) + min (v,9),Vy € U.
UEFr[u+v]< 1/)> vEFru< 1/)> UEFrw< 1/)> d)
Suppose the contrary, i.e., u is not a CRG-function and Fru does not consist

of only one vyin € Ulp]. Then there exists v° # vpyin. The family yy is total;
therefore there exists ¢° € ¥ such that (v9,9°) # (Vmin, ¥°) and hence

(UOJ/)O> > <Uminaw0>- (57314)

Using Lemma 5.7.3.2, construct for the function 4° a function v € U[p] satisfying
the conditions (5.7.3.3), (5.7.3.4) and (5.7.3.5). Apply Lemma 5.7.3.3 to construct
a function w? satisfying (5.7.3.12) and the condition 1. Under conditions of the
theorem,
. 0 . 0 . 0
, = , ,Y). 5.7.3.15

werttitun V) = BRI B ) (5:7.8.15)
Let v € Fr(u +w°) be the function on which the minimum of LRH in (5.7.3.15) is
attained. Using (5.7.3.4), (5.7.3.5) and (5.7.3.12), we can rewrite (5.7.3.15) in the
form

(7, 9%) = min (w,4°) + (v, 47). (5.7.3.16)

Since v € Fr(u +w?%),y = D’ — lim (u + w");,. Passing to subsequences, we can
suppose that the sequences {u;, } and {w] } have limits. Since Fruw” has the form
(5.7.3.12), there are two possible cases : w) — vy, t € (0,00) and w) — ©.
Consider the first case. Because of condition 1 from Lemma 5.7.3.3, u;, — vft]
and v = vﬁ] + wpy. Substituting this in (5.7.3.15), we obtain
<Uﬁf]aw0> — min <UJ7¢)0> = <’U71/}0> - <U[t]7¢0>-

weFru
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This equality leads to a contradiction because for ¢ = 1 it contradicts (5.7.3.14)
and for ¢ # 1 it contradicts (5.7.3.4).
Consider the second case, when w — o. Denote v* = lim u, and rewrite

(5.7.3.15) in the form

<U2a ¢O> - wrélglu<wa 1/]0> = <U7¢0> - <1~}7 ¢O>

The last equality contradicts (5.7.3.5). O

Sufficiency of condition a) of Theorem 5.7.3.1 can be proved using the Lem-
mas 5.7.3.3, 5.7.3.4 and a variation of Lemma 5.7.3.2.

Lemma 5.7.3.2" Let)° € D(S). There exists v € U|p] with the following properties:

'D/ — }gr(l) v[t] = D/ - tlirgo v[t] = f), (5.7.3.3/)
(vpg(€),4%) < (v(e™), %) for t € (0,00),t # 1, (5.7.3.4')
(@(e"), %) < (v(e™),y0). (5.7.3.5')

Exercise 5.7.3.6 Prove this lemma and sufficiency of a) in Theorem 5.7.3.1.

5.7.4 In this section we consider the question of summing the asymptotic charac-
teristics connected with the functional (5.7.1.3), i.e., indicator and lower indicator.
Recall that f € A(p(r)) is completely regular on the ray {argz = ¢} (f € Areg,0) if

hi(d) = hy(9). (5.7.4.0)

We are going to prove the following assertions:

Theorem 5.7.4.1 Let f € Ayeg, . Then for every g € A(p(r)),

hyg(9) = hs(@) + hg(d), (5.7.4.1)
hyo(9) = by (9) + hy(9). (5.7.4.2)

Theorem 5.7.4.2 Suppose the equality (5.7.4.1) holds for every g € A(p(r)). Then
f € Areg,dw

Let us note that the assertion of Theorem 5.7.4.2 holds also if the equality
(5.7.4.1) fulfilled for some sequence ¢,, — ¢, because the indicator is a continuous
function (see Section 3.2.5). So if the equality (5.7.4.1) holds for the set ® of ¢
that is dense in [0, 27) (or the set

e :={e": ¢ c D} (5.7.4.3)

is dense on the unit circle), then f € A,z o for all ¢, i.e., f is a CRG-function.
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On the other hand, the following assertion holds

Theorem 5.7.4.3 If the set © of 6 is not dense in [0, 27), there exists f € Aveg9,0 €
O that is not a CRG-function.

The situation with a lower indicator is analogous, but in another topology.
A set F is called non-rarefied at a point zg if for every function v subharmonic

in a neighborhood of zy the following holds:

v(z0) = limsup wv(z) = limsup v(z).
2€E,z—z0,2#20 z€E,z—zo

A set is rarefied if it is not non-rarefied.
Note that if h¢(¢) = —oo, then h; (¢) = —oo for every g € A(p(r)). It is
obvious that f ¢ Areg ¢-

The next theorems were proved in [GPS].
Theorem 5.7.4.4 Let (5.7.4.2) be fulfilled for ¢ € E for all g € A(p(r)) and e'¥ be
non-rarefied at the point €®. Then f € Ayeg,o-

Theorem 5.7.4.5 Let Ey be a set such that eFo is rarefied at all points of the unit
circle. Then there exists f € A(p(r)) for which (5.7.4.2) is fulfilled for all ¢ € Ey
and all g € A(p(r)), but f & Areg,g for all ¢ and h;(¢) > —o0, V.

Let us note that Ey can be dense in [0,27) and E from Theorem 5.7.4.4 can
even be of zero measure.

The proof of Theorems 5.7.4.4 and 5.7.4.5 is based on the following assertion
that gives a criterion for (5.7.4.2) in terms of limit sets Fr(f].

Theorem 5.7.4.6 Let f € A(p(r)) and hy(¢) > —oo. The condition (5.7.4.2) holds
for every g € A(p(r)), such that hg(¢) > —oo iff

li?Linv(tei¢) = h(¢) (5.7.4.4)
for all v € Fr[f].

An analogous criterion holds for (5.7.4.1).
Theorem 5.7.4.7 Let f € A(p(r)). Then (5.7.4.1) holds for every g € A(p(r)), iff

lim sup v(te'®) = h (), (5.7.4.5)

t—1

for all v € Fr[f].

Corollary 5.7.4.8 The equality (5.7.4.5) implies f € Areg o
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Actually, for every v € Fr[f] we have, using semicontinuity of subharmonic

functions and the definition (3.2.1.1) of the indicator,

hs(6) = limsupv(te'?) < v(€*?) < hy(9)
for all v € Fr[f]. So Fr[f] consists of functions v that coincide at the point e
and hence on the ray {re!® : r € (0,00)}.

Note also that the set e'¥ for which (5.7.4.1) holds is closed and Theorem
5.7.4.4 means that the set where (5.7.4.2) holds is thinly closed, i.e., closed in thin
topology (see [Br, §6]).

Therefore if €% is a limit point of e'¥ in the euclidian (respectively, thin)
topology, then (5.7.4.1) ((5.7.4.2), respectively) is also a sufficient condition for
completely regular growth at ¢.

5.7.5 The main constructive element for proving Theorem 5.7.4.6 is

Lemma 5.7.5.1 Let ¢ > 0,tp > 0 and ¢o € [0,27) be fized. Then there exists
v € Ulp] with the following properties:

D' — lim vy =D’ — lim vy =0, (5.7.5.1)
t—0 t—o0

v(e'?) < vy (e°), t € (0,1) U (1,00), (5.7.5.2)
—00 < v(e') < —¢, (5.7.5.3)

and the inequality ‘ ‘
v (€77°) — v(e'°) < €/2 (5.7.5.4)

mmplies

te [1/t07t0]. (5755)

The last condition means that the function ¥ (£) := vp(¢'°) can be less than
(1) 4+ €/2 only in a neighborhood of ¢ = 1.

Proof. Set

ze*“i’o

§|'—‘

p
w(z) := max(log |1 — ze~ |, =N Z
N > 0,p=[p]. (5.7.5.6)

It is obvious that w is subharmonic, with masses v, concentrated in a neighbor-
hood of the point e*?°. Thus v,, € M|p] (see (3.1.3.4)) and

T DT _
D }E%(Vw)m D tli}rglo(l/w)[t] 0.
Hence (see Theorem 3.1.4.2) w € Ulp], and (see (3.1.5.0))

'D/ — tlgl(l) w[t] = 'D/ - tlirgo w[t] =0. (5.7.5.7)
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Let us capitalize on the behavior of wy) on the ray {argz = ¢o}:

)t”t". (5.7.5.8)

S|

P
Wiy (e790) == y(t) = (max(log [1—t|,—N)+ %Z
n=1

It is possible to prove directly the following properties of 1 (t).

i) outside interval (1—e= N, 14+e=N), (t) = G,(t)t~*; where G,, is the Primary
Kernel (see Section 2.9.1) and inside this interval the first summand is —NV;

ii) (t) > 0 for ¢t > ¢; where t; is a zero of the equation G,(t) = 0, ¥ (t) decreases
monotonically on the interval (0,1 — e~") and increases monotonically on
the interval (1 — eV, t).

Exercise 5.7.5.1 Prove this.

Now set ty := 1 — e~ and v(z) := Dwy,(z), where D is a constant. This
function satisfies the conditions (5.7.5.1) and (5.7.5.2) of the lemma and vy (e'%°)
has only one negative minimum for ¢ = 1. Thus it is possible to take D sufficiently
large to satisfy the conditions (5.7.5.3) and (5.7.5.4) for fixed € and to. O

Exercise 5.7.5.2 Prove this in detail.

In the proof of Theorem 5.7.4.6 we also use Lemma 5.7.3.3. We can prove all
the assertions for subharmonic functions from SH(p(r)).

Proof of Theorem 5.7.4.6. Necessity. We should prove that if the equality
h(e™ u 4 w) = h(e' u) + h(e, w) (5.7.5.9)
holds for a fixed uw € SH(p(r)), ¢o and every w € SH(p(r)), then
lim ilnfv(tew) = h(e', u) (5.7.5.10)
for all v € Fru. Assume that h(e’®,u) > —oco and h(e’®°,w) > —oo. Suppose the

contrary, i.e., there exists v € Fru such that

lign ilnf 00 (te'?0) > h(e'0 u). (5.7.5.11)

The inequality (5.7.5.11) implies that there exists € > 0 and o > 0 such that for
every t € [1/to, to] the inequality

00 (te?0) > (e u) + e (5.7.5.11a)

holds. Let us construct by Lemma 5.7.5.1 for these €,tg, ¢ a function v and by
Lemma 5.7.3.3 for the functions u,v° and the already found v a function w®. Let
us show that for w® the equality (5.7.5.9) does not hold.
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Compute h(e'?,w). From (3.2.1.2)
h(e'®,w°) = min{0, inf{v (e’ : t € (0,00)}}.

The inequalities (5.7.5.3) imply that 0 can be omitted and (5.7.5.2) implies that
the infimum is attained at ¢t = 1, i.e.,

h(e0 W) = v(e'0). (5.7.5.12)
Find v¢ € Fr(u + w") such that h(e?®, u +w°) > v¢(e'0) — ¢/3. Let t,, — oo and
(u+w®), — v¢ in D'. Passing to subsequences we can assume that u;, and w?ﬂ
also converge. Consider two cases. The first, when

D' —limw;) =y, t € (0,00). (5.7.5.13)

By Lemma 5733 limutn = ’UBS] and hence ’UE = hm(’u}o —+ u)tn = ’U[t] —+ ’Uﬁ] If
t ¢ [l/to,to], then by (5754)

v (€77°) > v(e'°) + €/2 = h(e'°, w°) + €/2. (5.7.5.14)
In this case we have
(e u4w’) > v(e'®) — /3 > vy + vﬁ] —¢/3. (5.7.5.14a)
Using (5.7.5.14a), we obtain
h(e' u+w®) > h(e, w’) + h(e'?, u) + €/6. (5.7.5.15)
If t € [1/to, to], then from (5.7.5.11) we have
(e u+w®) > h(e' w’) + h(e'®, u) + 2¢/3. (5.7.5.16)

So the case (5.7.5.13) is settled.
Let D’ —limw) = 0. In this case we have

(e u+w®) > v(e') — €/3 > h(e',u) — e + € — €/3 = h(e'?, u) — € + 2¢/3.
Using (5.7.5.12) and (5.7.5.3) we obtain
h(e™ u+w®) > h(e' u) + h(e'®, w’) 4 2¢/3.

So we proved in any case that (5.7.5.9) does not hold if (5.7.5.10) does not hold.

Let us prove sufficiency in Theorem 5.7.4.6. We prove it for subharmonic
functions. Let u € SH(p(r)) and for every v € Fru (5.7.5.10) holds. Let us show
that for all w € SH(p(r)) (5.7.5.9) holds. It is sufficient to prove that

h(e™ u +w) < h(e'°, u) + h(e'0, w) (5.7.5.17)
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holds since the inverse inequality holds for every w € SH(p(r)) (see (3.2.1.5)). Let
us begin by noting that for every v? € Frw there exist v € Fr(u+w) and v* € Fru
such that
v =o' 402 (5.7.5.18)

Indeed, let ¢, — oo be a sequence such that w;, — v2. We can suppose, in choosing
a subsequence, that u;, — v! and (u+ w);, — v. Then (5.7.5.18) holds.

Let € be arbitrarily small. Choose v? € Frw such that v2(e?) < h(e', w) +¢
holds. From upper semicontinuity of v? we have

lim sup v%(e'?) < h(e!®°, w) + e. (5.7.5.19)
t—1

Let v! € Fru and v € Fr(u + w) satisfy (5.7.5.18). Then we have
h(e'°,u+w) < (" +07)y (') = vfy(e'°) + viy ("), V.

Hence . ) )
h(e u+w) < lign i{lf v[lt] (€%°) 4 lim sup vft] (e'?0).
- t—1

Using (5.7.5.10) and (5.7.5.19) we obtain
h(e" u+w) < h(e',u) + h(e'™,w) + .

This proves the inverse inequality and hence the equality (5.7.5.9), because € is
arbitrarily small. O

5.7.6 Now we are going to prove Theorem 5.7.4.4. We need the following assertion
from Potential Theory.

Lemma 5.7.6.1 Let E be a set that is non-rarefied at the point e'?°. Let E' be a
set in C, such that Ye'® € E and Y6 > 0 there exists a point z' € E' on the ray
{argz = ¢} such that |2’ —e'®| < 5. Then E’ is also non-rarefied at the point e'%°.

Proof. We can suppose without loss of generality that £’ has no intersection with
some neighborhood of zero. Denote by P(z) the map z — e?2'8_ It is easy to see
that for all pairs 21,25 € E’ the inequality |P(z]) — P(z})] < A|z] — 24| holds for
some constant A. Thus the logarithmic capacity (2.5.2.5) satisfies ([La, Ch. II, § 4,
it. 11, 15]).

cap; (M) < Acap,(M’) (5.7.6.1)

where M/ € E',M = P(M’). Now we exploit the following properties of non-
rarefied sets. First, if F is non-rarefied at a point zg, then there exists a compact
set that is non-rarefied at zo ([La, Ch. V, §1, it. 5, § 3, it. 9]). Second, for a compact
set K that is non-rarefied at zg,

ad n

where K, ;== KN {z:¢"™ < |z — 2| <q"}, 0<g< 1.



5.7. General characteristics of growth of entire functions 193

Using the inequality (5.7.6.1), we obtain that divergence of the series (5.7.6.2)
for a compact K C E implies divergence for K/ C E’ where K = P(K'), i.e., E’
is non-rarefied at the point P(e’?0) = ei%o, a

Proof of Theorem 5.7.4.4. Let e(¢p) — 0 as ¢ — ¢ and let v € Fru. Suppose
(5.7.5.9) holds for ¢'® € E. By Theorem 5.7.4.6 the equality (5.7.5.10) holds. Thus
VA >0, 32’ = 2'(e'®, A) such that

|2/ — | < Ayarg 2 = ¢, v(2') < h(e'®) + €(¢). (5.7.6.3)
Set
U U e 1/n).
peEn=1
By (5.7.6.3) and upper semicontinuity of h(e?) we obtain
limsup  v(2') < h(e). (5.7.6.4)

z/'—el?0, 2/€E’
Since E’ is non-rarefied, by Lemma 5.7.6.1 the upper limit of v coincides with

v(e’®) and hence v(e??) < h(e'?0). The inverse inequality holds always. Thus
v(e'?0) = h(e'?0), Vv € Fru. Hence h(e!®0) = h(e'?). O

5.7.7 Now we are going to prove Theorem 5.7.4.5. Before this we need to describe
a construction and prove some auxiliary assertions.

Let Bj :=={z:T9 < |z| < T}, j =0,£1,+2,... where T > 1 is a fixed
number. Denote Lp, = {z : e!8* € ¢Fo}. Recall that 0 is a set rarefied at
every point of the unit circle. Let @ be the set of rational numbers on the interval

(1,7). Set
Sq=1{z:12| € Q},
T7Sq == {217 : z € Sg},
Aj:=Lp,NTISq, j=0,+1,+2,....

Lemma 5.7.7.1 There exists v € Ulp] such that
v(z) = —00 (5.7.7.1)

for z € Ag and
wy(e) =0, Ye C C\ By. (5.7.7.2)

Proof. The set E is rarefied at every point, hence it is polar ([Br, Ch. 7, §4]).
Thus the set {z : |z| = r} N Lg, is polar (see [Br, Ch. 3, §2]). A countable union of
polar sets is polar ([Br, Ch. 3, §2]). Thus Ay is polar. Hence there exists a positive
measure g concentrated on By for which the potential v(z) := [ Gp(z/¢)p(dC)
is equal to —oco on Ay (see [Br, Ch. 4, §6, Applications]). It is easy to see that
w € M(p) and hence v € Ulp] (see Theorem 3.1.4.2). O
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Lemma 5.7.7.2 There exists w € Ulp] such that the following conditions are ful-
filled:
w(z)=—00, z€ A:=U2 A w(T2) =T w(z). (5.7.7.3)

J=—00

Proof. Set for every E € C\ 0,

j=+00
v(E):= > T"u,(T7E U By) (5.7.7.4)

j=—o0

(compare Theorem 4.1.7.1). We have v € M(p). Set

wl2) = [ Gle/Ouidan), ¢ =€+ i
This w satisfies (5.7.7.3). O
Exercise 5.7.7.1 Prove this using Theorem 4.1.7.1.

Lemma 5.7.7.3 Let w be a subharmonic function in C. Denote
m(¢) := max{w(re’) : r € [1,T]}.

Then there exists a constant C' > —oo such that m(¢) > C V¢.

Proof. If not, there exists a sequence ¢, that we can assume to converge to
oo such that m(¢,) — —oo. By upper semicontinuity of w we have w(z) =
—00, ze~¥= ¢ [1,T]. Thus w(z) = —oo because the capacity of the segment in
the plane is positive and hence it is not polar for some subharmonic function. [

Recall that for v € U[p] (see (4.1.3.1))

C(v) := D" — clos{vy : 0 < t < oo}, (5.7.7.5)
Q) :={v' € Ulp] : Bty — o0)(v' = kli)n;o Vlta] 1 (5.7.7.6)
Aw) :={v' € Ulp]: B, — 0)(v' = k]Ln;O v[tk]}. (5.7.7.7)

By Theorems 4.1.3.3 and 4.2.1.2, if
A(v) N Q(v) # 2, (5.7.7.8)
there exists u € SH(p(r)) such that

Fru = C(v). (5.7.7.9)
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Lemma 5.7.7.4 There exists v* € Ulp] such that the following holds:

A') = Q(vY), (5.7.7.10)
inf{v(e’?) : v € C(v')} = lilgl)ilnfv(tem) =0, Yo € C(vh), Ve € ¢'Po, (5.7.7.11)
sup{v(e’®) : v € C(v')} # inf{v(e’?) : v € C(v!)}. (5.7.7.12.)

Proof. Let w(z) be constructed by Lemma 5.7.7.2. Set
v(2) == w(z) + Dlog™ 2|z|.
The condition (5.7.7.3) implies
Aw) = Uw) = {wyy - t € [1,T]}

because it is a Periodic Limit Set (see Theorem 4.1.7.1).
Since (log™ 2|z])y — 0, t — 0, t — oo, the function v satisfies the condition

Aw) = Qv) = {wy : t € [1,T]}.
By Theorem 2.1.7.4 for the function v! := v we have
A') = Q') = {w[t] :t e [1,T]}.

Note that v!(2) = 0 for z € A and since A is dense in Lg, (5.7.7.11) holds.
Choosing D sufficiently large it is possible (using Lemma 5.7.7.3) to find on every
ray {argz = ¢} a point z4 where v!(z,) > 0. Hence sup{v(e’®) : v € C(v!)} > 0.
Because of (5.7.7.11) and upper semicontinuity of inf{v(e!?) : v € C(v!)} it is zero
for every €. Thus (5.7.7.12) holds. O

Proof of Theorem 5.7.4.5. Let us construct by Theorems 4.1.3.3 and 4.2.1.2 a
function u € SH(p(r) such that Fru = C(v!) where v! is taken from Lemma
5.7.7.4. It does not belong to Ayeg,¢ for any ¢. The equality (5.7.5.9) holds for
every ¢ € Ey because of (5.7.7.11) by Theorem 5.7.4.6. O

5.7.8 The proof of Theorem 5.7.4.1 is a copy of the proof of sufficiency of asser-
tion ¢) in Theorem 5.7.3.1.

Exercise 5.7.8.1 Prove Theorem 5.7.4.1.

Now we are going to prove Theorem 5.7.4.7 which implies (as it was shown
in Corollary 5.7.4.8) Theorem 5.7.4.2.
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The main constructive element of the proof of necessity is

Lemma 5.7.8.1 Let ¢ > 0,tp > 0 and ¢o € [0,27) be fized. Then there exists
v € Ulp] with the following properties:

T DT _
D }E}I(l) vy =D tli>rgo vy =0, (5.7.8.1)
v(e") > vy (e%°), t € (0,1) N (1, 00), (5.7.8.2)

and the inequality ' '
vy (€770) — v(e) > —¢/2 (5.7.8.3)

implies

t € [to, 1/0]. (5.7.8.4)
The last condition means that the function ¥(t) := vy (e’*) can be more

than (1) — €/2 only in a neighborhood of ¢ = 1.
Proof. Consider the function

w(z) :=log™ |2|. (5.7.8.5)
It is subharmonic and satisfies (5.7.8.1). Since the function

Y(t) == wyy (e0) =t=Plogtt

has its only strict maximum in the point ¢y > 1, the function

v(z) := w(z/tmax)
has all the properties (5.7.8.1)—(5.7.8.4). O

After this lemma all the proof of Theorem 5.7.4.6 can be repeated with
minimal changes.

Exercise 5.7.8.2 Prove Theorem 5.7.4.7.

5.7.9 Now we are going to prove Theorem 5.7.4.3. Let us prove the following

Lemma 5.7.9.1 Let © be a closed subset of [0,27). Then for every o > 0 there
exists a 2mw-periodic p-trigonometrically convex function h(¢p) such that

h(¢) =0 (5.7.9.1)

for ¢ € © and
h(¢) > o (5.7.9.2)

for ¢ ¢ ©.
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Proof. We can suppose that 0 € ©, otherwise we can shift it a little. The set
[0,27)\ © is open and it can be represented as the union of non-intersecting open
intervals. If length of an interval is < 7m/p we can construct a p-trigonometrical
function that is equal to o on the ends of the interval. It is greater than ¢ in all inner
points of the interval because f(¢) = o is a strictly p-trigonometrical function.
If the length of the interval is greater than m/p, for example (—1/2,1/2) with
I > m/2p, we cover it by intersecting intervals of length less then 7/p, construct
hi(¢) as before for every interval I and set h(¢) = max hi(¢). Tt is obvious that

h(®) is greater than o and it is p-trigonometrically convex. O
Theorem 5.7.4.3 is a corollary of Lemma 5.7.9.1 and the following

Theorem 5.7.9.2 Let hy and he be two p-trigonometrically convez functions. Then
there exists a function f € A(p(r)) such that

hy(¢) = max(h1(9), h2(9)), hy(¢) = min(hi(e), ha(4)).

Proof. Consider the set
U:={v(z) =cr’hi(¢) + (1 —c)rPha(¢p) : 0 < e < 1}. (5.7.9.3)

It consists of invariant subharmonic functions and is contained in U[p] and satisfies
the condition of Theorem 4.1.4.1. Hence (Theorems 4.2.1.2, Corollary 5.3.1.5) there
exists a function f € A(p(r)) such that

Frf="U. (5.7.9.4)

By formulae (3.2.1.1), (3.2.1.2) we obtain the assertion of the theorem, using
(5.7.9.3). O

Exercise 5.7.9.1 Prove Theorem 5.7.4.3.

5.7.10 The family of characteristics {F,, o € A} is called independent if for every
subset A’ C A (or subset in some class of subsets, for example, measurable or
closed) there exists a function f = far € A(p(r)) such that

Ealfl=

e} [f]’ OéGAI7

[f], ac A\ A.

Fa
Fa
It means that for every pointed subset of characteristics there exists a function
that has regular growth with respect to this subset of characteristics and is not of

regular growth with respect to all other characteristics.

Theorem 5.7.4.3 can be considered as an assertion of independence of the
family (5.7.2.2).
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Theorem 5.7.10.1 The family xr, (5.7.2.4) is independent.
TLe., for every A C Z there exists f € A(p(r) such that

21T .
1mrwWA log | (re')gi(6)dep

T—00

exists for all k£ € A and does not exist for k € Z \ A. To begin we prove

Lemma 5.7.10.2 There exist two p-trigonometrically convex functions hy and hs
for which

2m 2m

h1(¢)gr(¢)d¢ = ha(@)gr(9)de, k € A, (5.7.10.1)

0 0

27 27
A m@%mw¢A ho(6)g ($)do, k € T\ A. (5.7.10.2)

Proof. Let g(¢) € C? be a function, the Fourier coefficients of which with indices
k € A are equal to zero. We can represent it as a difference of p-trigonometrically
convex functions in the following way. Suppose for simplicity that p is non-integer.
Then take T,g = ¢" 4+ p?g and consider

gy L m_ T oV (D)dos

0 1= o [ G0 — v = m(T0) (@)
1 m__

(o) = 5o [ @0 — = m(T0) (0)de,

By Theorem 3.2.3.3 these functions are p trigonometrically convex and hy —ho = g.
Hence (5.7.10.11), (5.7.10.12) holds. O

Proof of Theorem 5.7.10.1. We consider a function f € A(p(r)) with the limit
set U = {v(z) = er’hi(p) + (1 — ¢)rPha(¢p) : 0 < ¢ < 1 } with hy, hy from the

conditions of lemma, and we exploit Theorem 5.7.1.3. O

Exercise 5.7.10.1 Do this in detail.
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5.8 A generalization of the Valiron-Titchmarsh
theorem

5.8.1 The point of departure on this topic is the following

Theorem VT [Va, Ti] Let f € A(p), p < 1 have its zeros on the negative ray. If
the limit

lim r~*log|f(r)]

exists, then the limit
lim r~*n(r)

r—00

exists.

The latter means that f is a CRG-function.

The general problem is the following. Let p be any non-integer number, f €
A(p(r)), and suppose all zeros of f lie on a finite system of rays

Kg, :={z=7e":0<r <oo,¢c8} (5.8.1.1)

where _
Syi={e:j=1,2,...,m}. (5.8.1.2)

We write ny € Mg, .
Let n; be a zero distribution on the ray {argz = 6,} and all the limits
lim r™Pn;(r) := A; (5.8.1.3)
r—00
exist. In such a case we write ny € Mieg,s, .-
Let Kg be one more system of rays

S={e":k=1,2,...,n} (5.8.1.4)

Some v, can coincide with some ¢;. Suppose that f has regular growth on this
system, i.e., _
hy(¢) = hy(9), '? € S. (5.8.1.5)

In such a case we write f € Ayeg,s.

The problem is, what is the connection between S and S so that the impli-
cation (f € Ayeg,5) = (nf € Myeg,s,) holds.

This problem can be reformulated in another way. For ny € M,eg, s, if ny €
Mg, it is necessary and sufficient that f is a CRG-function, because existence of
an angle density is equivalent to existence of all the limits. So the problem can be
reformulated in the form: what is the connection between S and S, so that the
implication (f € Ayeg,5) = (f is CRG-function) holds.
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We write ,
G(t,v,p) == Gp(e"")e ", p=p] (5.8.1.6)

where G, is the Primary Kernel:

P
Gp(z) =log|1 — 2| —|—§R2zk/l€.

k=1
Set

Glsnp)i= [ Gty ple

This is the Fourier transformation of G(¢,7, p). It can be computed (see, e.g,[Oz,
Lem. 3));
- meos(m+y)(p +is
G(s,,p) =TT LN H T
(p+is)sinm(p +is)

Consider the matrix
G(s, 51— S) = ||G(s,6; — ¥n, ). (5.8.1.7)
We are going to prove (see [Az(1998)])
Theorem 5.8.1.1 The implication
{f € Areg,s} N{nj € Mg, } = {f is a CRG-function}
holds iff X
rank G(s,S; —S) =m, Vs € (—o0,0). (5.8.1.8)
As a corollary we obtain the following ([De])
Theorem 5.8.1.2 (Delange) Suppose that S1 and S consist of one ray, i.e.,
S; = {1}, § = {e"}.
The implication (5.8.1.5) holds iff
0 — 1 # (1— (2k+1)/2p)m, k=1,2,.... (5.8.1.9)

5.8.2 A Fourier transformation for distribution v on the real axes is a distribution
in the standard space &’ (see [HG, vol. 1, Ch. 7, §7.1]). For a locally bounded
measure whose variation is “not very quickly” growing, it can be defined by

oo

(Fv)(s) := lim eitsefﬁy(dt)

€—
—00
where the right side is understood in the sense of distributions.
For example, if v(dt) := e'*°'dt, we have Fuv(s) = &(s — sg) where § is the
Dirac function.
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Exercise 5.8.2.1 Check this.

For distribution and a summable function one can define a convolution for
which the property F(f *v)(s) = Ff(s)Fv(s) holds.

Proof of Theorem 5.8.1.1. Since f € Mg, the limit set Frn is concentrated on
Kg,. So every v € Fr[f] can be represented in the form (see Theorem 3.1.5.1):

j=m

/Gp z/re% ), (dr) (5.8.2.1)
0

Jj=1

where p; is concentrated on the ray {arg( = 6;} and belongs to Ul[p|. After
changing variables,
e el =,

we obtain from (5.8.2.1)

I
3

j %)
vl (te'?) = / Gt—r1,0—0;, p)u]l (dr) (5.8.2.1a)

j=1

where
e’ ps(dr) := pj(dr), vl (te'?) := v(|z|e’®)e P17, (5.8.2.2)

The equality (5.8.2.1a) can be written as

]:m

L(te!?) = o.¢—0;,p) x pi](t) (5.8.2.3)
j:l

where * stands for convolution. Then f € A,y 5 with ny € Mg,, iff every pair
v1, vy € Fr[f] satisfies the condition

v1(2) = v2(2), 2 € Kg. (5.8.2.4)

Denote by 1, 2 ; the restriction of g, pty, to the ray {argz = 6;}. Set v; :=
p1; — p2,; Using (5.8.2.3) we can rewrite (5.8.2.4) in the form

I
3

[G(e,pr —05,p) xvj](t) =0,k =1,2,...,n. (5.8.2.5)
1

J

Applying Fourier transforms we obtain a system of linear equations:

Il
3

J
[G(o, e —05,p0) - 7}](t) =0,k =1,2,...,n. (5.8.2.6)

<.
Il
—
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Suppose now that rank G(s, S—S;) = m for every s € R. The system (5.8.2.6)

has only the trivial solution for every s. Thus ﬁjl(s) =0, for j =1,2,...,m.
This implies V}(t) =0forj=1,2,...,mand v; =0 for j = 1,2,...,m. Thus
Hoy = fhug, 1€., (by (5.8.2.3)) Fr[f] consists of one function v € U[p]. Thus f is a

CRG-function.

Conversely, suppose that rank G(s, S — S1) < m for some sp.

Then there exists a nontrivial solution (by,...,b,,) that satisfies the corre-
sponding system. We obtain that {#jb;d(s — s0), j = 1,2...,m} is a solution of
(5.8.2.6) for all s € R and hence

vj(dt) = bse’**odt, j=1,2,...,m.

Since V]l have bounded densities dz/]1 /dt, we can find a constant C' such that
sup{|du}/dt| 0<t<oo, j=1,2...,m} <C.
Set
pi ;(dt) = Cdt + v (dt); py; = Cdt. (5.8.2.7)

Both of these are measures. Now we pass to m1,;j, me; via (5.8.2.2). It is easy to
check that my j, ma; € M(p).

Exercise 5.8.2.2 Check this.

Consider p1,us € M(p) which are defined uniquely by their restrictions
1,5, 2,5 respectively on Kg, . Set

on(z) = / G2/ Cpn (dedn); va(2) = / G2/ Opa(dedn); ¢ = € +in.
C C

It is easy to check that the equality
vi(z) = va(z), z € Kg (5.8.2.8)
holds.

Exercise 5.8.2.3 Check this.

Since p1 and pgo are finite sums of trigonometrical functions, for v; and wve
the condition (4.1.3.3) is satisfied. Thus by Theorem 4.3.6.1 there exists a function
f € A(p(r)) for which

Fr(f] = |J Clevi+(1—c)va).

0<c<1

Since for v € C(cv1 + (1 — ¢)vz) (5.8.2.8) also holds, the same holds for v € Fr[f]
and this function is not a CRG-function. O



Chapter 6

Application to the
Completeness of Exponential
Systems in Convex Domains

and the Multiplicator Problem

The completeness of exponential systems in convex domains is intimately con-
nected to the multiplicator problem. Considering a special form of exponent sys-
tem is related to the study of special subharmonic functions that determine the
periodic limit set, the so-called automorphic subharmonic functions. The next
Sections 6.1, 6.2 are devoted to these problems.

6.1 The multiplicator problem

6.1.1 Let ® € A(p(r)) and let H(¢) be a p-trigonometrically convex function. A
function g € A(p(r)) is called an H-multiplicator of ® if the indicator hye of the
product g® satisfies the inequality

hge(¢) < H(¢), V9.

In some questions (see Section 6.3) we need to determine whether a given function
® has a multiplicator. We shall study this problem in terms of the limit set of
®. Define H(z) := rPH(¢), z = re'®. Let v € Ulp] (see (3.1.2.4)). Consider the
function

m(z,v,H) := H(z) —v(z).
As will be proved in Corollary 6.1.9.3, the maximal subharmonic minorant of
m(z,v, H) exists and is continuous. The maximal subharmonic minorant of m
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(m.s.m.) belonging to U[p] will be denoted by Gy v, while the domain of definition
of the operator Gy will be denoted by Dg. Though m(0,e,e) = 0, the m.s.m. of
m can differ from zero (as was remarked by A.E. Eremenko and M.L. Sodin), but
if the m.s.m. of m equals zero at zero, then it belongs to Ulp].

Exercise 6.1.1.0 Prove this.

Exercise 6.1.1.1 Consider the function

w(z) = {|z|log|z|, if 2] < 1;

lz| — 1, if |z] > 1.

It is subharmonic and belongs to U[1]. Show that the maximal subharmonic mi-
norant of K|z| — w(z) is different from zero in 0 for every K > 0.

Theorem 6.1.1.1 ([AG(1992)]) ® € A(p(r)) has an H-multiplicator iff

Fr[®] C Dy. (6.1.1.1)

Proof of necessity. Let g be a multiplicator of @, i.e.,

hgo(¢) < H(9) (6.1.1.2)

and let v € Fr[®]. We can choose vy € Frig®] and v, € Frlg] such that vye =
v + vy (see Theorem 3.1.2.4, frul)).

Exercise 6.1.1.2 Prove this directly.

By definition of indicator (3.2.1.1) and (6.1.1.2) we have vy0(z) < H(z) or
vg(2) < m(z,v,H). Since vy € Ulp], v € Dg. O

For proving sufficiency we need the following

Theorem 6.1.1.2 The operator Gy is

1. upper semicontinuous in the D'-topology, 6.1.1.5, i.e.,
(vj = v) A(Grv; — w) = (w € Up]) A (w(z) < Gr(z),z € C);

2. invariant: (Grv)y = Guvy; (see (3.1.2.4a) for Py = tI);
3. concave:

(Vv1,v2 € Dy, c€[0;1]) = (ve:=cv1 + (1 — ¢)va € Dg)

and
Gr(ve) > cGr(vi) + (1 — )G (v2).
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Proof. Let us prove 1). Suppose v; € U[p] — v and Ggv; — w. Then
Grv; < H(z) —v;(2), z € C. (6.1.1.3)
Applying (e), from (2.6.2.2) and Theorem 2.3.4.5, reg 3), we obtain
we < (H)e(2) — (v)e(2), 2z € Cwe(0)>0.
Passing to the limit as € | 0 we obtain by Theorem 2.6.2.3, ap2)
w(z) < H(z) —v(z) =m(z, H,v),z € C.

Since 0 < w(0) < m(0,H,v) = 0 we have w(0) = 0 and, hence, w € U[p]. Thus
v € Di and w(z) < Gpo(z).
Let us prove 2). Since H(z) is invariant with respect to (e)p,

(Gu)g < H(z) —vy-

Hence,
(Gv)ig(2) < (G(vp))(2), (6.1.1.4)

because G (v ) is the maximal subharmonic minorant. We can replace v with vy /¢
and obtain (Gupy /)11 (2) < Gu(z). Applying (e)(y to the two sides of the inequality,
we obtain Gup /4(2) < (Gu(2))1/4- Now we can replace 1/t with ¢ and obtain the
reverse inequality to (6.1.1.4), which, together with (6.1.1.4), proves 2).

3). Let v1,v2 € Dy and ¢ € [0;1]. One has

Gui(z) < H(z) —vi(2), i=1,2, Vz.

Then
[cGv1 4+ (1 — ¢)Gus](2) < H(z) — [ev1 + (1 — ¢)va](2).
Thus
[cGv1 + (1 — ¢)Gua](2) < Glevr + (1 — ¢)va](2). O

Proof of sufficiency in Theorem 6.1.1.1. Assume that Fr[®] C Dy and consider
the set
U = {(v/,0") : 0" < Gv',v" € Fr[]}. (6.1.1.5)

Then U is nonempty, because of (6.1.1.1), closed, because of Theorem 6.1.1.2, 1),
and invariant, because of Theorem 6.1.1.2, 2).

Every fiber U” = {v" : v" < Gv'} is convex because of Theorem 6.1.1.2, 3).
By Theorem 4.4.1.2 there exists u” € U(p(r)) such that for the curve u := (v/, u”),

Fru] = U. (6.1.1.6)

By Theorem 5.3.1.4 (Approximation Theorem) the function u” can be re-
placed with log |g|, where g € A(p(r)), retaining the property (6.1.1.6).
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Let us prove that g is an H-multiplicator of ®. Indeed, set II := g®. It is
enough to prove that for every vp € FrII],

vn(z) < H(z). (6.1.1.7)

Note that every v has the form v = vy + v, where (v,vy) € U. Thus, because
of definitions (6.1.1.5) and (6.1.1.6), v satisfies (6.1.1.7). O

Let us note that the pair (v, Ggv) € U because of closeness of U. Hence the
following assertion holds.

Proposition 6.1.1.3 Fvery ® € A(p) that satisfies (6.1.1.1) has a multiplicator
g € A(p) such that
v+ Ggv € Fr[g?]. (6.1.1.8)
Exercise 6.1.1.3 Check this in detail.
Although v € U[p] is in general an upper semicontinuous function, we need
Theorem 6.1.1.4 The function Gyv(z), v € Ulp], is a continuous function that is

harmonic outside the set E = {z: Ggv(z) = m(z,v,H)}.

Proof. Ggv(z) is continuous because of Corollary 6.1.9.3. If Gyv(z9) < v(zp) and if
Grv(2) is not harmonic in a neighborhood of zg, we can make sweeping of masses
from a small disc {|z — 20| < €} (see Theorem 2.7.2.1). The obtained subharmonic
function will be greater than Gyv(z), contradicting maximality. O

6.1.2 Suppose that some H-multiplicator g = g(z, ®, H) of the function & is found.
We examine the function II = g®. The structure of its limit set is described by
the following statement:

Proposition 6.1.2.1 Every vry € Fr[g®] can be written as vip = v + wy, where
v € Fr[®] and w1 € Ulp] with the condition

wi(z) < Gu(z),Vz € C, (6.1.2.1)
and, conversely, for every v € Fr[®] there exists a vy, vy(z) < Guu(z), such that

v+ vy € Fr[g®].

Exercise 6.1.2.1 Prove this the same way as in Exercise 6.1.1.2.

An H-multiplicator G of the function ® will be called ideally complementing
if it satisfies the condition

Fr(G®] = {vn = v+ Gyv : v € Fr[]}.
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If a multiplicator is ideally complementing, then equality is achieved in (6.1.2.1)
for all v € Fr[®]. This make the multiplicator optimal in another respect. Recall
that an entire function f is of minimal type with respect to a proximate order
p(r), p(r) — pif (see (2.8.1.6))

o := limsuplog M (r, f)r_p(r) =0.

r—00

Proposition 6.1.2.2 Let G = G(e,®, H) be an ideally complementing H-multipli-
cator of a function ®. Then each H-multiplicator of the function Il = G® is of
minimal type.

This proposition is proved in Section 6.1.3.

A function ® is said to be ideally complementable if for each H the condition
(6.1.1.1) implies that ® has an ideally complementing multiplicator. For instance,
if @ is a function of completely regular growth (see Section 5.6) then it is ideally
complementable.

Exercise 6.1.2.2 Prove this.

Theorem 6.1.2.3 FEvery function with periodic limit set is ideally complementable.

This theorem is proved in Section 6.1.6.

Let C' C R! be an [-dimensional connected compact and let {h(¢,c) : ¢ € C}

be a set of p-t.c. functions that is continuous with respect to ¢ € C. For example,
c € 10,1] and h(,c) = chi(¢) + (1 — c)h2(¢). The set

Uind := {v(re'®s) = r’h(¢,c) : c € C} (6.1.2.2)
is the limit set of an entire function.
Exercise 6.1.2.3 Prove this using Theorem 4.3.6.1.

Such a set is called a set of indicators. Entire functions with such limit sets
can be also considered as a generalization of CRG-functions.

Theorem 6.1.2.4 FEvery function ® whose limit set is a set of indicators is ideally
complementable.

This theorem is proved in Section 6.1.7.

The existence of an ideally complementing H-multiplicator depends, of
course, both on ® € A(p(r)) (or, more precisely, on its limit set Fr[®]) and on H.

Theorem 6.1.2.5 Let ® and H be such that the condition (6.1.1.1) is satisfied.
The function ® has an ideally complementing H-multiplicator if and only if the
operator Gy is continuous on Frd.

This theorem is proved in Section 6.1.6.
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Now we formulate a sufficient condition for continuity of the operator Gp.
We shall say that the mazimum principle for U|p] is valid in the domain G, (which
is, generally speaking, unbounded), if the conditions w € Ulp], w(z) =0 for z ¢ G
imply w(z) = 0.

Let us denote by H,, a region of harmonicity of w € Ulp], i.e., a region where
the conditions “w is harmonic in G” and “G D H,,” imply G = H,,.

We remark that H,, is a connected component of the open set on which w is
harmonic. Generally it is not unique.

The image of U € Ulp] will be denoted by GyU, while its closure in the
D’-topology will be denoted by closGyU.

Theorem 6.1.2.6 Suppose for every w € clos GgU and every H,, the maximum
principle for Ulp] holds. Then G is continuous on U.

This theorem is proved in Section 6.1.5.

In Section 6.1.8 we will construct an example of & and H such that the
operator Gy is not continuous on Fr[®]. This is also an example of the function
that has no ideally complementing multiplicator.

6.1.3

Proof of Proposition 6.1.2.2. Let g be an ideally complementing multiplicator of
the function Il = G®. We write

0(z) = (9GP)(2). (6.1.3.1)
Let vy € Fr[g]. Let us choose t; — oo such that:
(1oglgl)s, — vy; (og [1T]);, — vn € Fr{IT); (log6]),, — v € Fr(d].
It follows from (6.1.3.1) that vg = vy +vrr. Since g is a multiplicator of II, we have
vg(2) = vg(2) + vn(z) < H(z). (6.1.3.2)

Since G is an ideally complementing multiplicator, v;; = v+ Ggv. So for all z € C
(6.1.3.2) implies

(vg + Guv)(2) < (H —v)(2).
Since Ggv is the maximal subharmonic minorant, vg(z) < 0 and hence v4(z) = 0.
Thus (see (3.2.1.1)) we have hy(¢) = 0 and therefore

09 = max hy(¢) =0. 0

6.1.4 In order to prove Theorem 6.1.2.6 we need a number of auxiliary statements.

Lemma 6.1.4.1 Let the mazimum principle be valid in G for Ulp] and for some
continuous functions wy,w € Ulp| satisfy:

a) w is harmonic in G,

b) wi(z) = w(z) outside of G.
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Then
wy(2) <w(z), z € G. (6.1.4.1)

Proof. We set
- (wl - UJ)+(Z), LAS Ga
wo(z) = {07 z ¢ G.

This function is continuous in C and, evidently, subharmonic both in G and in
C\ G. Since wy(z) > 0, the inequality for the mean values

2w
/wo(z + ere'®)do, z € G,

0

1
0=wp(z) < o

implies the subharmonicity on 0G. Since G satisfies the maximum principle for
Ulp|, we have wy = 0, which is equivalent to (6.1.4.1). O

Now we shall dwell on some properties of maximal subharmonic minorants
and, in particular, of w = Ggv. Let

E,:={z€C:Ggyv(z) =m(z,v,H)}. (6.1.4.2)

We remark that m(z,v, H) is a §-subharmonic function in C whose charge will be
denoted by v(e,v), its positive and negative parts will be denoted by v and v~.

Let us denote by pg the measure of H(z). It is decomposed into the product
of measures (see Section 3.2 and Proposition 5.6.3.1)

pr = Ag @ prtdr, (6.1.4.3)

where Ay is the measure on the unit circle and pr?~'dr is the measure on the
ray. It is obvious that
vt (e,v) < pp(e). (6.1.4.4)

We shall denote the mass distribution of w € Ulp] by fiy.

The modulus of continuity of w (if w is continuous) will be denoted by
ww(z,h), z€ C, h>0.

The following lemma lists various properties of w € GgU, U C U[p] which
will be useful in the sequel:

Lemma 6.1.4.2 Let w € GgU. Then
1. w € Ulp, o] where

4 - 2°[max{H (e'?) : ¢ € [0,27]} + 201],
max{v(z)|z| 7 :2€ C,ve U}

(2

01
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2. the charge restriction v(e,v)|g, to E, is nonnegative, i.e.,
v(e,0)lp, = v (e,0)lE,;

3. outside E, the function w is harmonic, i.e.,

twleve, = 0;
4. the measure [, is bounded from above by vT (e, v), i.e.,

pw < v (0, 0);
5. Gy U is equicontinuous on each compact set, i.e.,

wu(z,h) < C(R,0,p)Vhlog(1/h), |z| <R,
where C(R, o, p) is independent of w € GyU.

Proof. Let us prove property 1. We have

27 27

27
< %|:TP/H+(€i¢)d¢+/U+(T€i¢)d¢—|—/1}(T€i¢)d¢:|.
0 0 0

Since v(0) = 0, we have
2m 2m
/v_(rem)d(b < /v+ (re'?)dg.
0 0

Therefore
T(r,w) < [max{H (") : ¢ € [0,26¢]} + 201]r".

It is known (see Theorem 2.8.2.3, (2.8.2.5)) that M (r) < 4T'(2r). So we conclude
that
w(z) < 4-2°[max{H(e'?; ¢ € [0,2n]} + 201]|2|" = o|2|".

Let us prove property 2. To this end we shall use the following theorem (Grishin’s
Lemma) [Gr].

Theorem A.F.G Let g be a nonnegative 6-subharmonic function, and let vy be its
charge. Then the restriction vy4|g to the set E = {z: g(z) = 0} is a measure.

Applying this theorem to the function g := m(z,v, H) — Gyv(z), we get
v(e,0)|E, = pwlp,, (6.1.4.5)

hence, we obtain property 2.
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Let us prove property 3. Since w and v are upper semicontinuous, and H is
continuous (see Theorem 3.2.5.5), the set {z : (w +v)(z) — H(z) < 0} is open.

Let us take a neighborhood of an arbitrary point of this set and replace the
function w within it with the Poisson integral constructed using this function,
i.e., let us sweep out the mass from this neighborhood. The subharmonic function
obtained would be strictly greater than the initial one, if the latter were not
harmonic. This means that the initial w was not the maximal minorant. We have
arrived at a contradiction, which proves property 3.

Property 4 immediately follows from property 3 and (6.1.4.5).

In order to prove property 5 we shall need an auxiliary statement which will
be stated as a number of lemmas. Let

1 R%2— |22

be the Poisson kernel in the disc Kr = {z: |2| < R}.
Below, C's with indices will denote constants.

Lemma 6.1.4.3 In the disc K/, we have
| gradz P(Z7 ¢7 R)| < Cl(R)a

where C1(R) depends only on R.

Exercise 6.1.4.1 Prove this.

We shall introduce the notation for the Green function for the Laplace oper-
ator in the disc Kg:
R? —(z
R(z =)
The disc {¢ : |¢ — z| < t} will be denoted by K ;.

G(z,(, R) == log

Lemma 6.1.4.4 Let z € Kp/s \ Kq,\/ﬁ' Then for a small h,

|grad, G(z,¢,7)| < Ca(R)/Vh.

Exercise 6.1.4.2 Prove this.
Let us write u(z,t) = u(K, ).

Lemma 6.1.4.5 For z € Kg/3,0 <t < R/10, we have

2074 (27 t) < 03(Ua R)t
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Proof. Applying Theorem 2.6.5.1 (Jensen-Privalov) to the function H(z), we ob-
tain
My = max{H (e : ¢ € [0;2n]} = Au(T)/p

where T is the unit circle.

Now
2]+t
w(z,t) < Ag(T) / P dr < pP? My RP™'t < oC(p)RP™'t
|z]—t
where C(p) is a constant depending only on p. This proves the lemma. O

Lemma 6.1.4.6 Let h < 1 and suppose that a monotonic function u(t) satisfies the
condition
u(t) < ct. (6.1.4.6)

Then
Vh

/ log(1/6)u(dt) < (3/2)ev/hlog h.
0

Exercise 6.1.4.3 Prove this by integrating by parts and using (6.1.4.6).
Lemma 6.1.4.7 Let 2 € K and ¢ € Kr. Then
|log |(R* — ¢z/R|| < Cu(R).

Exercise 6.1.4.4 Prove this.

Now we pass to the proof of assertion 5 from Lemma 6.1.4.2. According to
the F. Riesz theorem (Theorem 2.6.4.3) we rep