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Chapter 1

Preface

This book aims to convert the noble art of constructing an entire function with
prescribed asymptotic behavior to a handicraft.

For this you should just consider the limit set that describes the asymptotic
behavior of the entire function, i.e., you should consider the set U [ρ, σ] of subhar-
monic functions (that is, {v is subharmonic : v(reiφ) ≤ σrρ}) and pick out the
subset U which characterizes its asymptotic properties.

How to do it? The properties of limit sets are listed in Section 3. All the
standard growth characteristics are expressed in terms of limit sets in Sections
3.2, 3.3, 5.7. Examples of construction are to be found in Sections 5.4–6.3. So you
can use this book as a reference book for construction of entire functions.

Of course, you need some terms. All the terms that we use in this book are
listed on pages 249–253.

If you want to study the theory, I recommend that you solve the exercises
that are in the text. Most of them are trivial. However, I recommend that you do
all of them by the moment that they appear trivial to you.

A few words about the history of this book. It arose from a course of lectures
that I gave at Kharkov University in 1977. After some time, under pressure and
with active help of Prof. I.V. Ostrovskii, a rotaprint edition (Edition of KhGU)of
this course appeared: the first part in 1978, the second one in 1982. Mathematical
Reviews did not notice this fact.

Since that time lots of new and important results have been obtained. Some
of them were presented in Chapter 3 of the review [GLO].

In 1994, when I started to work in the Bar-Ilan University and obtained a
personal computer, my first wish was to study typing on it in English. This was
the first impulse for translating this course into English (there are no more than
five copies of this book in the world, I believe, one of them being mine). I continued
this project while working in Bar-Ilan (1994–2006) but there was not much time
for this. And now I have finished.
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Chapter 2

Auxiliary Information.
Subharmonic Functions

2.1 Semicontinuous functions

2.1.1. Let x ∈ Rm be a point in an m-dimensional Euclidean space, E a Borel set
and f(x) a function on E such that f(x) �= ∞.

Set
M(f, x, ε) := sup{f(x′) : |x− x′| < ε, x′ ∈ E} (2.1.1.1)

The function
f∗(x) := lim

ε→0
M(f, x, ε)

is called the upper semicontinuous regularization of the function f(x).
In the case of a finite jump, the regularization “raises” the values of the func-

tion. However, there is no influence on f∗(x), if f(x) tends to −∞ “continuously”.

Proposition 2.1.1.1 (Regularization Properties) The following properties hold:

(rg1) f(x) ≤ f∗(x);

(rg2) (αf)∗(x) = αf∗(x);

(rg3) (f∗)∗(x) = f∗(x);

(rg4)
(f1 + f2)∗(x) ≤ f∗1 (x) + f∗2 (x);

(max(f1, f2))∗(x) ≤ max(f∗1 , f
∗
2 )(x);

(min(f1, f2))∗(x) ≤ min(f∗1 , f
∗
2 )(x).

These properties are obvious corollaries of the definition of f∗(x).
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Exercise 2.1.1.1 Prove them.

2.1.2 The function f(x) is called upper semicontinuous at a point x if f∗(x) =
f(x). We denote the class of upper semicontinuous functions on E by C+(E). The
function f(x) is called lower semicontinuous if −f(x) is upper semicontinuous
(notation f ∈ C−(E)).

Examples of semicontinuous functions are given by

Proposition 2.1.2.1 (Semicontinuity of Characteristic Functions of Sets) Let G ⊂
Rm be an open set. Then its characteristic function χG is lower semicontinuous
in Rm. Let F be a closed set, then χF is upper semicontinuous.

The proof is obvious.

Exercise 2.1.2.1 Prove this.

Proposition 2.1.2.2 (Connection with Continuity) If f ∈ C+ ∩ C−, then f is
continuous.

The assertion follows from the equalities

f∗(x) = lim sup
ε→0

{f(x′) : |x− x′| < ε}; −(−f)∗(x) = lim inf
ε→0

{f(x′) : |x− x′| < ε}.

Proposition 2.1.2.3 (C+-Properties) The following holds:

(C+ 1) f ∈ C+(E) ⇒ αf ∈ C+(E), for α ≥ 0

(C+ 2) f1, f2 ∈ C+ ⇒ f1 + f2,max(f1, f2),min(f1, f2) ∈ C+.

These properties follow from the properties of regularization (Proposition
2.1.1.1).

Exercise 2.1.2.2 Prove them.

Let G be an open set. Set GA := {x ∈ G : f(x) < A}.

Theorem 2.1.2.4 (First Criterion of Semicontinuity) One has f ∈ C+ if and only
if GA is open for all A ∈ R.

Proof. Let f(x) = f∗(x), x ∈ G. Then {f(x) < A} =⇒ {f∗(x) < A} =⇒
{M(f, x, ε) < A} for all sufficiently small ε. Thus the neighborhood of x Vε,x :=
{x′ : |x− x′| < ε} is contained in GA.

Conversely, since the set GA is open for A = f(x0) + δ, we have f∗(x0) ≤
f(x0)+δ for any δ > 0, hence for δ = 0. With property (rg1) of Proposition 2.1.1.1
this gives f∗(x0) = f(x0). �

Let F be a closed set. Set FA := {x ∈ F : f(x) ≥ A}. An obvious corollary
of the previous theorem is
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Corollary 2.1.2.5 One has f ∈ C+ if and only if FA is closed for all A.

Exercise 2.1.2.3 Prove the corollary.

We denote compact sets by K. Set M(f,K) = sup{f(x) : x ∈ K}.

Theorem 2.1.2.6 (Weierstrass) Let K ⊂ Rm be a compact set and f ∈ C+(K).
Then there exists x0 ∈ Ksuch that f(x0) = M(f,K).

I.e., f attains its supremum on any compact set.

Proof. Set Kn := {x ∈ K : f(x) ≥ M(f,K) − 1/n}.
The Kn are closed by Corollary 2.1.2.5, nonempty by definition of M(f,K).

Their intersection is nonempty and is equal to the set

Kmax := {x ∈ K : f(x) ≥ M(f,K)}.

It means that there exists x0 in K such that f(x0) ≥ M(f,K).
The opposite inequality holds for any x in K. �

Exercise 2.1.2.4 Why?

The following theorem shows that the functional M(f,K) is continuous with
respect to monotonic convergence of semicontinuous functions.

Proposition 2.1.2.7 (Continuity from the right of M(f,K)) Let fn ∈ C+(K), fn ↓
f, n = 1, 2, 3 . . . .

Then M(fn,K) ↓ M(f,K).

Proof. It is clear that lim
n→∞M(fn,K) := M exists.

Set Kn := {x ∈ K : fn(x) ≥ M}. The intersection of the closed nonempty
sets Kn is nonempty and has the following form:

⋂
n
Kn = {x : f(x) ≥ M}. So

M(f,K) ≥ M .
The opposite inequality is obvious. �

Exercise 2.1.2.5 Why?

In the same way one proves

Proposition 2.1.2.8 (Commutativity of inf and M(·)) Let

{fα ∈ C+(K), α ∈ (0; ∞)}
be an arbitrarily decreasing family of semicontinuous functions. Then

inf
α
M(fα,K) = M(inf

α
fα,K).
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Exercise 2.1.2.6 Prove this proposition.

Theorem 2.1.2.9 (Second Criterion of Semicontinuity) f ∈ C+(K) iff there exists
a sequence fn of continuous functions such that fn ↓ f .

Sufficiency. Let fn ∈ C+(K), fn ↓ f .Set KA
n := {x ∈ K : fn(x) ≥ A}. This is a

sequence of nonempty closed sets. If the set KA := {x : f(x) ≥ A} is nonempty,
then KA is closed because

⋂
n
KA

n = KA. Hence f ∈ C+(K) by Corollary 2.1.2.5.

Necessity. Set fn(x, y) := f(y) − n|x− y|.
This sequence of functions has the following properties:

a) it decreases monotonically in n and

lim
n→∞ fn(x, y) =

{
f(x), for x = y;
−∞, for x �= y;

b) for any fixed n the functions fn are continuous in x uniformly with respect
to y, because |fn(x, y) − fn(x′, y)| ≤ n|x− x′|;

c) fn are upper semicontinuous in y.

Proposition 2.1.2.7 and c) imply that

lim
n→∞My(fn(x, y),K) = My( lim

n→∞ fn(x, y),K).

b) implies that the functions fn(x) := My(fn(x, y),K) are continuous, and
a) implies that they decrease monotonically to f(x). �

2.1.3 We will consider a family of upper semicontinuous functions:{ft : t ∈ T ⊂
(0,∞)}. It is easy to prove

Proposition 2.1.3.1 ft ∈ C+ =⇒ inf
t∈T

ft(x) ∈ C+.

Exercise 2.1.3.1 Prove this proposition.

Set fT (x) := sup
t∈T

ft(x). The function fT is not, generally speaking, upper

semicontinuous even if T is countable and ft are continuous. It is not possible to
replace sup

t∈T
in the definition of fT by sup

t∈T0

, where T0 is a countable set. However,

the following theorem holds:

Theorem 2.1.3.2 (Choquet’s Lemma) There exists a countable set T0 ⊂ T such
that

(sup
t∈T0

ft)∗(x) = (sup
t∈T

ft)∗(x).
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Proof. Let {xn} be a countable set that is dense in Rm and εj ↓ 0. Then the balls

Kn,j := {x : |x− xn| < εj}
cover every point x ∈ Rm infinitely many times.

Renumbering we obtain a sequence {Kl : l ∈ N}. For any l there exists, by
definition of sup

Kl

, such a point x0 ∈ Kl that

sup
Kl

fT (x) ≤ fT (x0) + 1/2l. (2.1.3.1)

By definition of sup
T

there exists tl such that

fT (x0) < ftl
(x0) + 1/2l.

Thus
fT (x0) < sup{ftl

(x) : x ∈ Kl} + 1/2l. (2.1.3.2)

The inequalities (2.1.3.1) and (2.1.3.2) imply that for any l there exists tl such
that

sup{fT (x) : x ∈ Kl} ≤ sup{ftl
(x) : x ∈ Kl} + 1/l. (2.1.3.3)

Now set T0 = {tl}. Evidently, fT0(x) ≤ fT (x) and thus

f∗T0
(x) ≤ f∗T (x). (2.1.3.4)

Let us prove the opposite inequality.
Let x ∈ Rm. Choose a subsequence {Klj } that tends to x. From (2.1.3.3) we

obtain
f∗T (x) ≤ lim sup

j→∞
sup

x′∈Klj

fT (x′)

≤ lim sup
j→∞

sup
x′∈Klj

ftlj
(x′)

≤ lim sup
j→∞

sup
x′∈Klj

fT0(x
′) = f∗T0

(x).

(2.1.3.5)

(2.1.3.4) and (2.1.3.5) imply the assertion of the theorem. �

2.2 Measures and integrals

2.2.1 Let G be an open set in Rm and σ(G) a σ-algebra of Borel sets containing
all the compact sets K ⊂ G.

Let μ be a countably additive nonnegative function on σ(G), which is finite
on all K ⊂ G. We will call it a measure or a mass distribution.

Let G0(μ) be the largest open set for which μ is zero. (It is the union of all
the open sets G′ such that μ(G′) = 0.)

The set suppμ := G\G0(μ) is called the support of μ. It is closed in G.
We say that μ is concentrated on E ∈ σ(G) if μ(G\E) = 0.
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Theorem 2.2.1.1 (Support) The support of a measure μ is the smallest closed set
on which the measure μ is concentrated.

Exercise 2.2.1.1 Prove this.

A measure μ can be concentrated on a non-closed set E and then E � supp μ.

Example 2.2.1.1 Let E be a countable set dense in G. Then supp μ = G and, of
course, E �= G.

The set of all measures on G will be denoted by M(G).
The measure μF (E) := μ(E∩F ) is called the restriction of μ onto F ∈ σ(G).

It is easy to see that μF is concentrated on F and suppμ ⊂ F .
A countably additive function ν on σ(G) that is finite for all K ⊂ G is called

a charge. We consider only real charges.

Example 2.2.1.2 ν := μ1 − μ2, μ1, μ2 ∈ M(G).

The set of all charges will be denoted Md.

Theorem 2.2.1.2 (Jordan decomposition) Let ν ∈ Md(G). Then there exist two
sets G+, G− such that

a) G = G+ ∪G−, G+ ∩G− = ∅;
b) ν(E) ≥ 0 for E ⊂ G+; ν(E) ≤ 0 for E ⊂ G−.

One can find the proof in [Ha, Ch. VI Sec. 29]
The measures ν+ := νG+ and ν− := νG− , where νG+ , νG− are restrictions

of ν to G+, G−, are called the positive and negative, respectively, variations of ν.
The measure |ν| := ν+ + ν− is called the full variation of ν or just a variation.

Theorem 2.2.1.3 (Variations) The following holds:

ν+(E) = sup
E′⊂E

ν(E′); ν−(E) = inf
E′⊂E

ν(E′); ν = ν+ + ν−.

The proof is easy enough.

Exercise 2.2.1.2 Prove this.

Example 2.2.1.3 Let ψ(x) be a locally summable function with respect to the
Lebesgue measure. Set ν(E) :=

∫
E ψ(x)dx. Then

ν+(E) =
∫

E

ψ+(x)dx, ν−(E) =
∫

E

ψ−(x)dx; |ν|(E) =
∫

E

|ψ|(x)dx,

where
ψ+(x) = max(0, ψ(x)); ψ−(x) = − min(0, ψ(x)). (2.2.1.1)
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2.2.2 The function f(x), x ∈ G is called a Borel function if the set EA := {f(x) >
A} belongs to σ(G) for any A ∈ R.

Let K � G be a compact set and f a Borel function. Then the Lebesgue-
Stieltjes integrals of the form

∫
K f+dμ,

∫
K f−dμ with respect to a measure μ ∈

M(G) are defined, and
∫

K
fdμ :=

∫
K
f+dμ− ∫

K
f−dμ is defined if at least one of

the terms is finite.
We say that a property holds μ-almost everywhere on E if the set E0 of x

for which it does not hold satisfies the condition μ(E0) = 0.
We will denote all the compact sets in G as K (sometimes with indexes).

The following theorems hold:

Theorem 2.2.2.1 (Lebesgue) Let {fn, n ∈ N} be a sequence of Borel functions
on K and g(x) ≥ 0 a function on K that is summable with respect to μ (i.e., its
integral is finite), |fn(x)| ≤ g(x) for x in K, and fn → f when n → ∞.

Then lim
n→∞

∫
K fndμ =

∫
K fdμ.

Theorem 2.2.2.2 (B. Levy) Let fn ↓ f when n → ∞, and f be a summable function
on K.

Then lim
n→∞

∫
K fndμ =

∫
K fdμ.

Theorem 2.2.2.3 (Fatou’s Lemma) Let fn(x) ≤ const < ∞ for x in K.
Then lim sup

n→∞

∫
K fndμ ≤ ∫

K lim sup
n→∞

fndμ.

The proofs can be found in [Ha, Ch. V, Sec. 27].
Let L(μ) be the space of functions that are summable with respect to μ. We

say that fn → f in L(μ) if fn, f ∈ L(μ) and

‖fn − f‖ :=
∫

|fn − f |(x)dμ → 0

Theorem 2.2.2.4 (Uniqueness in L(μ)) Let fn → f in L(μ) and∫
fnψdμ →

∫
gψdμ

for any ψ continuous on suppμ. Then ‖g − f‖ = 0.

For the proof see, e.g., [Hö, Th. 1.2.5].

2.2.3 Let φ(x) be a Borel function on G. The set supp φ := {x : φ(x) �= 0} is
called the support of φ(x). A function φ is called finite in G if supp φ � G.

We say that a sequence μn ∈ M converges weakly to μ ∈ M if the condition∫
φdμn → ∫

φdμ holds for any continuous function φ.
We will not show the integration domain, because it is always suppφ.
The weak (it is called also C∗-) convergence will be denoted as ∗→.
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Theorem 2.2.3.1 (C∗-limits) If μn
∗→ μ, then for E ∈ σ(G) the following assertions

hold:
lim sup

n→∞
μn(E) ≤ μ(E);

lim inf
n→∞ μn(

◦
E) ≥ μ(

◦
E);

where
◦
E is the interior of E, E is the closure of E.

Proof. Let χE be the characteristic function of the set E. It is upper semicontin-
uous. Thus there exists a decreasing sequence ϕm of continuous functions finite in
G that converges to χE as m → ∞. Then we have

μn(E) =
∫
χEdμn ≤

∫
ϕmdμn.

Passing to the limit as n → ∞ we obtain

lim sup
n→∞

μn(E) ≤
∫
ϕmdμ.

Passing to the limit as m → ∞ we obtain by Theorem 2.2.2.2

lim sup
n→∞

μn(E) ≤
∫
χEdμ = μ(E).

The proof for
◦
E is analogous. �

Theorem 2.2.3.2 (Helly) Let {μα : α ∈ A} be a family of measures uniformly
bounded on any compact set K ⊂ G, i.e., ∃C = C(K) : μα(K) ≤ C(K), for
K � G. Then this family is weakly compact, i.e., there exists a sequence
{αj : αj ∈ A} and a measure μ such that μαj

∗→ μ.

The proof can be found in [Ha].

A set E is called squarable with respect to measure μ (μ-squarable) if μ(∂E) = 0.

Theorem 2.2.3.3. (Squarable Ring) The following holds:

sqr1) if E1, E2 are μ-squarable, the sets E1 ∩E2, E1 ∪E2, E1\E2 are μ-squarable;

sqr2) for any couple: an open set G and a compact set K ⊂ G there exists a
μ-squarable set E such that K ⊂ E ⊂ G.

Proof. The assertion sqr1) follows from

∂(E1 ∪ E2)
⋃
∂(E1 ∩ E2)

⋃
∂(E1\E2) ⊂ ∂E1 ∪ ∂E2.
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Let us prove sqr2). Let Kt := {x : ∃y ∈ K : |x− y| < t} be a t-neighborhood
of the K. It is clear that for all the small t we have K � Kt � G. The function
a(t) := μ(Kt) is monotonic on t and thus has no more than a countable set of
jumps.

Let t be a point of continuity of a(t). Then

μ(∂Kt) ≤ lim
ε→0

[μ(Kt+ε) − μ(Kt−ε)] = 0.

Thus it is possible to set E := Kt for this t. �

A family Φ of sets is called a dense ring if the following conditions hold:

dr1) ∀F1, F2 ∈ Φ =⇒ F1 ∪ F2, F1 ∩ F2 ∈ Φ;

dr2) ∀K,G : K � G ∃F ∈ Φ : K ⊂ F ⊂ G.

The previous theorem shows that the class of μ-squarable sets is a dense ring.
The following theorem shows how one can extend a measure from a dense ring to
the Borel algebra.

Let Φ be a dense ring and Δ(F ), F ∈ Φ a function of a set which satisfies
the conditions:

Δ1) monotonicity on Φ: F1 ⊂ F2 =⇒ Δ(F1) ≤ Δ(F2);

Δ2) additivity on Φ: Δ(F1∪F2) ≤ Δ(F1)+Δ(F2) and Δ(F1∪F2) = Δ(F1)+Δ(F2)
if F1 ∩ F2 = ∅

Δ3) continuity on Φ: ∀F ∈ Φ and ε > 0 there exists a compact set K and
an open set G ⊃ K such that ∀F ′ ∈ Φ : K ⊂ F ′ ⊂ G the inequality
|Δ(F ) − Δ(F ′)| < ε holds.

Theorem 2.2.3.4 (N. Bourbaki) There exists a measure μ such that

μ(F ) = Δ(F ), ∀F ∈ Φ

iff the conditions Δ1)–Δ3) hold.

Theorem 2.2.3.5 (Uniqueness of Measure) Under the conditions Δ1)–Δ3) the
measure is defined uniquely by the formulae:

μ(K) = inf{Δ(F ) : F ∈ Φ, F ⊃ K}; (2.2.3.1)
μ(G) = sup{Δ(F ) : F ∈ Φ, F ⊂ G}; (2.2.3.2)
μ(E) = sup{μ(K) : K ⊂ E} = inf{μ(G) : G ⊃ E}, (2.2.3.3)

and every F ∈ Φ is μ-squarable.

For the proof see [Bo, Ch. 4, Sec 3, it. 10]. The squarability follows from
(2.2.3.3).

The following theorem connects the convergence of measures on any dense
ring and on the ring of sets squarable with respect to the limit measure.
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Theorem 2.2.3.6 (Set-convergences) If μn(F ) → μ(F ) for all F in a dense ring
Φ, then μn(E) → μ(E) for any μ-squarable set E.

Proof. Suppose
◦
E �= ∅.

Let ε > 0. By (2.2.3.3) one can find a compact set K such that

μ(K) + ε ≥ μ(
◦
E) = μ(E). (2.2.3.4)

One can also find an open set G such that

μ(G) − ε ≤ μ(E) = μ(E). (2.2.3.5)

By property dr2) of a dense ring one can find F, F ′ ∈ Φ such that

K ⊂ F ⊂
◦
E ⊂ E ⊂ E ⊂ F ′ ⊂ G.

Thus μn(F ) ≤ μn(E) ≤ μn(F ′) and hence

μ(F ) ≤ lim
n→∞

μn(E) ≤ lim
n→∞μn(E) ≤ μ(F ′). (2.2.3.6)

From (2.2.3.4) and (2.2.3.5) we obtain 0 ≤ μ(F ′) − μ(F ) ≤ μ(G) − μ(K) ≤ 2ε for
arbitrarily small ε. Thus from (2.2.3.6) we obtain

lim
n→∞

μn(E) = lim
n→∞μn(E) = μ(E). (2.2.3.7)

That is to say that μn(E) → μ(E).

If
◦
E = ∅, then μ(E) = 0 by the definition of a squarable set. One can show

in the same way that μn(E) → 0. �
Now we connect the weak convergence to the convergence on squarable sets.

Theorem 2.2.3.7 (Set- and C*-convergences) The conditions

μn
∗→ μ (2.2.3.8)

and μn(E) → μ(E) on μ-squarable sets E are equivalent.

Proof. Sufficiency of (2.2.3.8) follows from Theorem 2.2.3.1.

Exercise 2.2.3.1 Prove this.

Let us prove necessity.
For any compact set one can find a μ-squarable E such that K ⊂ E. Hence

μn(K) ≤ μ(E) + 1 := C(K) when n is big enough.
By Helly’s theorem (Theorem 2.2.3.2) there exists a measure μ′ and a sub-

sequence μnj

∗→ μ′. By the proved sufficiency, μ′(E) = μ(E) on a dense ring
of the squarable sets. Thus μ′ = μ by Uniqueness Theorem 2.2.3.5. And thus
μn

∗→ μ. �
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Denote by

μE(G) :=

{
μ(G ∩ E) if G ∩ E �= ∅,

0 if G ∩ E = ∅

the restriction of μ on the set E.

Corollary 2.2.3.8 Let μn
∗→ μ and E be a squarable set for μ. Then (μn)E

∗→ (μ)E.

Indeed, if E is a squarable set for μ it is a squarable set for μE . So Theo-
rem 2.2.3.7 implies the corollary.

2.2.4 Let σ(Rm1 × Rm2) be the σ-algebra of all the Borel sets, Φi ⊂ σ(Rmi), i =
1, 2, be dense rings, Φ := Φ1 ⊗ Φ2 ⊂ σ(Rm1 × Rm2) be a ring generated by all the
sets of form F1 × F2, Fi ∈ Φi.

Theorem 2.2.4.1 (Product of Rings) If Φi, i = 1, 2 are dense rings, then Φ1 ⊗ Φ2

is a dense ring; if they consist of squarable sets, then Φ consists of squarable sets.

Proof. Let K ⊂ G ⊂ Rm1 × Rm2 . For every point x ∈ K one can (evidently) find
F1 × F2 such that x ⊂ F1 × F2 ⊂ G. One can find a finite covering and obtain a
finite union F of sets of such form. Thus F ∈ Φ1 ⊗ Φ2 and F ⊂ G.

The second assertion follows from the formula

∂(F1 × F2) = (∂F1 × F2) ∪ (F1 × ∂F2). �

Let μi be a measure on σ(Rmi), i = 1, 2, and μ := μ1 ⊗ μ2 the product of
measures, i.e., a measure on σ(Rm1 × Rm2) such that μ(E1 ×E2) = μ1(E1)μ2(E2)
for all Ei ∈ σ(Rmi), i = 1, 2.

Theorem 2.2.4.2 (Product of Measures) A measure μ1 ⊗μ2 is uniquely defined by
its values on Φ1 ⊗ Φ2.

The assertion follows from Theorem 2.2.4.1 and Uniqueness Theorem 2.2.3.5.

Theorem 2.2.4.3 (Fubini) Let f(x1, x2) be a Borel function on Rm1 × Rm2 . Then∫
Rm1×Rm2

f(x1, x2)(μ1 ⊗ μ2)(dx1dx2) =
∫

Rm1

μ1(dx1)
∫

Rm2

f(x1, x2)μ2(dx2)

=
∫

Rm2

μ2(dx2)
∫

Rm1

f(x1, x2)μ1(dx1),

(2.2.4.1)

if at least one of the parts of (2.2.4.1) is well defined.

The proof can be found in [Ha, Ch. VII, Sec. 36].
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2.3 Distributions

2.3.1 Let us consider the set D(G) of all infinitely differentiable functions ϕ(x), x ∈
G ⊂ Rm.

It is a linear space because for any constants c1, c2,

ϕ1, ϕ2 ∈ D(G) =⇒ c1ϕ1 + c2ϕ2 ∈ D(G). (D1)

It is a topological space with convergence defined by

ϕn
D→ ϕ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a) suppϕn ⊂ K � Rm

for some compact K
and
b) ϕn → ϕ uniformly on K

with all their derivatives.

(D2)

We consider some examples of functions ϕ ∈ D. Set

α(t) =

{
Ce

− 1
1−t2 , for t ∈ (−1; 1),

0, for t ∈ (−1; 1).
(2.3.1.1)

Evidently α(|x|) ∈ D(Rm) and suppα ⊂ {x : |x| ≤ 1}.

Exercise 2.3.1.1 Check this.

Let us find C such that∫
α(|x|)dx = σm

∫ 1

0

α(t)tm−1dt = 1 (2.3.1.2)

where σm is the area of the unit sphere {|x| = 1}. Set

αε(x) := ε−mα

( |x|
ε

)
. (2.3.1.3)

For any ε we have αε ∈ D and suppαε ⊂ {x : |x| ≤ ε}.
Let ψ(y), y ∈ K ⊂ G be a Lebesgue summable function. Consider the func-

tion
ψε(x) :=

∫
K

ψ(y)αε(x− y)dy. (2.3.1.4)

The function belongs to D(G) for ε small enough and its support is contained in
the ε-neighborhood of K.

2.3.2 Let f(x), x ∈ G ⊂ Rm be a locally summable function in G. The formula

〈f, ϕ〉 :=
∫
f(y)ϕ(y)dy, ϕ ∈ D(G) (2.3.2.1)
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defines a linear continuous functional on D, i.e., one that satisfies the conditions

〈f, c1ϕ1 + c2ϕ2〉 = c1〈f, ϕ1〉 + c2〈f, ϕ2〉; (D′1)

(ϕn
D→ ϕ) =⇒ 〈f, ϕn〉 → 〈f, ϕ〉. (D′2)

However, (2.3.2.1) does not exhaust all the linear continuous functionals as
we will see further. An arbitrarily linear continuous functional on D(G) is called a
Schwartz distribution and the linear topological space of the functionals is denoted
as D′(G).

Following are some examples of functionals that do not have the form of
(2.3.2.1):

〈δx, ϕ〉 := ϕ(x). (2.3.2.2)

This distribution is called the Dirac delta-function. Further,

〈δ(n)
x , ϕ〉 := (−1)nϕ(n)(x). (2.3.2.3)

This distribution is called the nth derivative of the Dirac delta-function.

Exercise 2.3.2.1 Check that the functionals (2.3.2.2) and (2.3.2.3) are both dis-
tributions.

A distribution of the form (2.3.2.1) is called regular.

Theorem 2.3.2.1 (Du Bois Reymond) If two locally summable functions f1 and f2
define the same distribution, then they coincide almost everywhere.

For the proof see, e.g., [Hö, Thm. 2.1.6].
Note that the converse assertion is obvious.
A distribution μ is called positive if 〈μ, ϕ〉 ≥ 0 for any ϕ ∈ D(G) such that

ϕ(x) ≥ 0 for all x ∈ Rm. We shall write this as μ > 0 in D′.
Example 2.3.2.1 Let μ(E) be a measure in G. Then the distribution

〈μ, ϕ〉 :=
∫
ϕ(x)μ(dx) (2.3.2.4)

is positive.

This formula represents all the positive distributions as one can see from

Theorem 2.3.2.2 (Positive Distributions) Let μ > 0 in D(G). Then there exists a
unique measure μ(E) such that the distribution μ is given by (2.3.2.4).

For the proof see, e.g., [Hö, Thm. 2.1.7].

2.3.3 Let us consider operations on distributions.
A product of a distribution f by an infinitely differentiable function α(x) is

defined by
〈αf, ϕ〉 := 〈f, αϕ〉. (2.3.3.1)

It is well defined because αϕ ∈ D too.
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A sum of distributions f1 and f2 is defined by

〈f1 + f2, ϕ〉 := 〈f1, ϕ〉 + 〈f2, ϕ〉, (2.3.3.2)

and the partial derivative ∂
∂xk

is defined by the equality

〈 ∂

∂xk
f, ϕ〉 := 〈f,− ∂

∂xk
ϕ〉. (2.3.3.3)

These definitions look reasonable because of the following

Theorem 2.3.3.1 (Operations on Distributions) The sum of regular distributions
corresponds to the sum of the functions; the product of a regular distribution by an
infinitely differentiable function corresponds to the product of the functions; the
derivative of a regular distribution that is generated by a differentiable function
corresponds to the derivative of that function.

Proof. We have, for example,

〈α · (f), ϕ〉 :=
∫
f(x)[α(x)ϕ(x)]dx =

∫
[α(x)f(x)]ϕ(x)dx := 〈(αf), ϕ〉.

For the sum we have

〈(f1) + (f2), ϕ〉 := 〈f1, ϕ〉 + 〈f2, ϕ〉 =
∫
f1(x)ϕ(x)dx +

∫
f2(x)ϕ(x)dx

=
∫

[f1(x) + f2(x)]ϕ(x)dx = 〈(f1 + f2), ϕ〉.

Let f(x) have the derivative ∂
∂xk

f . Then

〈 ∂

∂xk
f, ϕ〉 : = 〈f,− ∂

∂xk
ϕ〉

=
∫
f(x1, x2, . . . , xm)

[
− ∂

∂xk
ϕ(x1, x2, . . . , xm)

]
dx1dx2, . . . , dxm

=
∫
dx1, . . . , dxk−1dxk+1, . . . , dxm

×
∫
f(x1, x2, . . . , xm)

[
− ∂

∂xk
ϕ(x1, x2, . . . , xm)

]
dxk.

Now we shall integrate by parts and all the substitution will vanish, because ϕ is
finite. So we obtain

〈 ∂

∂xk
f, ϕ〉 =

∫
∂

∂xk
f(x)ϕ(x)dx.

That is to say the derivative of the distribution corresponds to the function deriva-
tive. �
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2.3.4 We say that a sequence of distributions fn converges to a distribution f if

〈fn, ϕ〉 → 〈f, ϕ〉 ∀ϕ ∈ D(G). (2.3.4.1)

Theorem 2.3.4.1 (Completeness of D′) If the sequence of numbers 〈fn, ϕ〉 has a
limit for every ϕ ∈ D(G), then this functional is a linear continuous functional on
D(G), i.e., a distribution.

For the proof see, e.g., [Hö, Thm. 2.1.8].
Differentiation is continuous with respect to convergence of distributions.

Theorem 2.3.4.2 (Continuity of Differential Operators) If fn → f in D(G), then
∂

∂xk
fn → ∂

∂xk
f .

Proof. Set in (2.3.4.1) ϕ := − ∂
∂xk

ϕ. Then〈
∂

∂xk
fn, ϕ

〉
=
〈
fn,− ∂

∂xk
ϕ

〉
→

〈
f,− ∂

∂xk
ϕ

〉
=
〈

∂

∂xk
f, ϕ

〉
. �

The following theorem shows that the D′-convergence is the weakest of the
convergences considered earlier.

Theorem 2.3.4.3 (Connection between Convergences) Let fn be a sequence of
Lebesgue summable functions on domain G such that at least one of the following
conditions holds:

Cnvr1) fn → f uniformly on any compact set K � G and f is a locally summable
function;

Cnvr2) fn → f on any K � G, satisfying the conditions of the Lebesgue theorem
(Theorem 2.2.2.1);

Cnvr3) fn ↓ f monotonically and f is a locally summable function.

Then fn → f in D′(G).

Proof. All the assertions are corollaries of Section 2.2.2 on passing to the limit
under an integral.

Let us prove, for example, Cnvr3). Let fn ↓ f . Then

〈fn, ϕ〉 =
∫
fn(x)ϕ(x)dx =

∫
fn(x)ϕ+(x)dx −

∫
fn(x)ϕ−(x)dx (2.3.4.2)

where ϕ+ and ϕ− are defined in (2.2.1.1).
Both last integrals in (2.3.4.2) have a limit by the B. Levy theorem (Theo-

rem 2.2.2.2), and thus

lim
n→∞〈fn, ϕ〉 =

∫
f(x)ϕ+(x)dx −

∫
f(x)ϕ−(x)dx =

∫
f(x)ϕ(x)dx = 〈f, ϕ〉.

(2.3.4.3)
(2.3.4.3) means that fn → f in D′. �
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Exercise 2.3.4.1 Prove Cnvr 1) and 2).

Theorem 2.3.4.4 (D′ and C∗ convergences) Let μn, μ be measures in G. The con-
ditions μn → μ in D′(G) and μn

∗→ μ are equivalent.

It is clear that the first condition is necessary for the second one. The suffi-
ciency holds, because every continuous function can be approximated with func-
tions that belong to D. For more details see, e.g., [Hö, Thm. 2.1.9].

Let αε(x) be defined as in (2.3.1.3).For any f ∈ D′(D) we can consider the
function fε(x) := 〈f, αε(x+ •)〉. It is called a regularization of the distribution f .

Theorem 2.3.4.5.(Properties of Regularizations) The following holds:

reg1) fε(x) is an infinitely differentiable function in any K � D for sufficiently
small ε;

reg2) fε(x) → f in D′(D) as ε ↓ 0;

reg3) if fn → f in D′(D), (fn)ε → fε uniformly with all its derivatives on any
compact set in D.

The property reg1) follows from the formula

∂

∂xj
fε =

〈
f,

∂

∂xj
αε(x+ •)

〉
.

The property reg2) follows from the assertion

φε(x) :=
∫
φ(y)αε(x+ y)dy → φ(x) in D(D)

as ε ↓ 0.

For the proof of reg3) see [Hö, Theorems 2.1.8, 4.1.5].

Let us note the following assertion;

Theorem 2.3.4.6 (Continuity 〈•, •〉) The function

〈f, φ〉 : D′(G) × D(G) �→ R

is continuous in the appropriate topology.

I.e., fn → f in D′(G) and φj → φ in D(G) imply 〈fn, φj〉 → 〈f, φ〉.
For the proof see [Hö, Theorem 2.1.8].

2.3.5 Let G1 ⊂ G. Then D′(G) ⊂ D′(G1), because every functional on D(G) can
be considered as a functional on D(G1).

A distribution f ∈ D′(G) considered as a distribution in D′(G1) is called the
restriction of f to G1 and is denoted f |G1 .
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Theorem 2.3.5.1 (Sewing Theorem) Let Gα ⊂ Rm be a family of domains and in
every of them let there be a distribution fα ∈ D(Gα), such that:

If Gα1 ∩Gα2 �= ∅, the equality

fα1 |Gα1∩Gα2
= fα2 |Gα1∩Gα2

(2.3.5.1)

holds. Then there exists one and only one distribution f ∈ D′(G) where G =
⋃
α
Gα

such that f |Gα= fα.

In particular, it means that every distribution is defined uniquely by its
restriction to a neighborhood of every point.

Let D(SR) be a space of infinitely differentiable functions on the sphere SR :=
{x : |x| = R}. The corresponding distribution space is denoted as D′(SR). The
sewing theorem holds for this space in the following form:

Theorem 2.3.5.2 (D′ on Sphere) Let a family of domains Ωα cover SR and in
every of them let there be a distribution fα ∈ D(Ωα), such that:

If Ωα1 ∩ Ωα2 �= ∅, the equality

fα1 |Ωα1∩Ωα2
= fα2 |Ωα1∩Ωα2

(2.3.5.2)

holds. Then there exists one and only one distribution f ∈ D′(SR) such that
f |Ωα= fα.

2.3.6 Let
L :=

∑
i,j

∂

∂xi
ai,j(x)

∂

∂xj
+ q(x) (2.3.6.1)

be a differential operator of second order with infinitely differentiable coefficients
ai,j , q.

We will consider only three types of differential operators: a one-dimensional
operator with constant coefficients,the Laplace operator and the so-called spherical
operator (see Section 2.4).

For all these operators we have the following assertion which follows from
the general theory (see, e.g., [Hö, Theorem 11.1.1]):

Theorem 2.3.6.1 (Regularity of Generalized Solution) If the equation Lu = 0 has
a solution u ∈ D′(G), then u is a regular distribution and can be realized as an
infinitely differentiable function.

A distribution that satisfies the equation

Lu = δy in D′(G), (2.3.6.2)

where δy is a Dirac delta function (see (2.3.2.2)), is called a fundamental solution
of L at the point y.
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Every differential operator that we are going to consider has a fundamental
solution (see, e.g., [Hö, Theorem 10.2.1]).

A restriction of the equation (2.3.6.2) to the domain Gy := G\y is a homo-
geneous equation Lu = 0 in D′(Gy). Thus we have

Theorem 2.3.6.2 (Regularity of Fundamental Solution) The fundamental solution
is an infinitely differentiable function outside the point y.

2.3.7 We will need further also the Fourier coefficients for the distribution on the
circle.

Let D(S1) be a set of all infinitely differentiable functions on the unit circle
S1. The set of all linear continuous functionals over D(S1) with the corresponding
topology (see 2.3.2) is the corresponding space of distributions D′(S1) for which
all the previous properties of distributions holds.

The functions {eikφ, k = 0,±1,±2, . . .} belong to D(S1). The Fourier coef-
ficients of ν ∈ D′(S1) are defined by

ν̂(k) := 〈ν, e−ikφ〉. (2.3.7.1)

The inverse operator is defined by

〈ν, g〉 =
1
2π

∞∑
k=−∞

ν̂(k)〈g, eikφ〉, (2.3.7.2)

and the series converges, in any case, for those ν that are finite derivatives of
summable functions, because Fourier coefficients of g decrease faster then every
power of x.

The convolution of distribution ν ∈ D′(S1) and g ∈ D(S1) is defined by

ν ∗ g(φ) = 〈ν, g(φ− •)〉. (2.3.7.3.)

This is a function from D(S1).
The convolution of distributions ν1, ν2 ∈ D′(S1) is defined by

〈ν1 ∗ ν2, g〉 = ν1 ∗ (ν2 ∗ g). (2.3.7.4)

In spite of the view it is commutative and

ν̂1 ∗ ν2(k) = ν̂1(k) · ν̂2(k).

Exercise 2.3.7.1 Count the Fourier coefficients of the functions

G(reiφ) = log |1 − reiφ| (2.3.7.5)

for r > 1, r = 1, r < 1; the function defined by

c̃os ρ(φ) := cos ρφ, −π < φ < π, ρ ∈ (0,∞) (2.3.7.6)
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and 2π-periodically extended; the function

φ̃ sin pφ, p ∈ N (2.3.7.7)

where φ̃ is the 2π-periodical extension of the function f(φ) = φ, φ ∈ [0, 2π).

Exercise 2.3.7.2 Set

Pp−1(reiφ) := �
{

p−1∑
k=1

rkeikφ

k

}
, p ∈ N. (2.3.7.8)

Prove that for every distribution ν :

(Pp−1( ̂rei•) ∗ ν)(p) = 0. (2.3.7.9)

The same for the function

Gp(reiφ) := G(reiφ) + Pp(reiφ)

for r < 1.

2.4 Harmonic functions

2.4.1 We will denote as Δ the Laplace operator in Rm:

Δ :=
∂2

∂x2
1

+ · · · +
∂2

∂x2
m

.

We introduce in Rm the spherical coordinate system by the formulae:

x1 = r sinφ0 sinφ1 . . . sinφm−2;
x2 = r cosφ0 sinφ1 . . . sinφm−2;
x3 = r cosφ1 sinφ2 . . . sinφm−2;
. . . . . . . . . . . .

xk = r cosφk−2 sinφk−1 . . . sinφm−2;
. . . . . . . . . . . .

xm = r cosφm−2,

where
0 < φ0 ≤ 2π; 0 ≤ φj < π, j = 1,m− 2; 0 < r < ∞.

Passing to the coordinates (r, φ0, φ1, . . . , φm−2) in the Laplace operator we
obtain

Δ =
1

rm−1

∂

∂r
rm−1 ∂

∂r
+

1
r2

Δx0 .
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The operator Δx0 is called spherical, and has the form

Δx0 :=
m−2∑
i=0

1
Π

∂

∂φi

Π
Πi

∂

∂φi
,

where

Π :=
m−2∏
j=1

sinj φj ; Πi :=
m−2∏

j=i+1

sin2 φj ; Πm−2 := 1.

In particular, for m = 2, i.e., for the polar coordinates,

Δ =
1
r

∂

∂r
r
∂

∂r
+

1
r2

∂2

∂φ2
.

A distribution H ∈ D′(G) is called harmonic if it satisfies the equation ΔH = 0.
The next theorem follows from Theorem 2.3.6.1.

Theorem 2.4.1.1 (Smoothness of harmonic functions) Any harmonic distribution
is equivalent to an infinitely differentiable function.

This function, of course, satisfies the same equation and is a harmonic func-
tion in the ordinary sense. A direct proof can be found, e.g., in [Ro, Ch. 1, § 2
(1.2.5), p. 60].

Let f(z), z = x+ ıy be a holomorphic function in a domain G ⊂ C. Then the
functions u(x, y) := �f(z) and v(x, y) := �f(z) are harmonic in G. In particular,
the functions rn cosnϕ and rn sinnϕ where r = |z|, ϕ = arg z are harmonic.

Set

Em(x) :=

{
−|x|2−m, for m ≥ 3,
log |z|, for m = 2.

(2.4.1.1)

(We will often denote points of the plane as z.)
It is easy to check that Em(x) is a harmonic function for |x| �= 0.
Set

θm :=

{
(m− 2)σm, for m ≥ 3;
2π, for m = 2,

where σm is the surface area of the unit sphere in Rm.

Theorem 2.4.1.2 (Fundamental Solution) The function Em(x − y) satisfies in
D′(Rm) the equation1

ΔxEm(x− y) = θmδ(x− y), (2.4.1.2)

where δ(x) is the Dirac δ-function (see 2.3.2).

1Em is slightly different from the fundamental solution (see, (2.3.6.2)), but this is traditional in
Potential Theory
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Proof. Let us prove the equality (2.4.1.2) for y = 0. Suppose φ ∈ D(Rm) and
suppφ ⊂ K � Rm. We have

〈ΔEm, φ〉 :=
∫

Em(x)Δφ(x)dx = lim
ε→0

∫
|x|≥ε

Em(x)Δφ(x)dx.

Transforming this integral by the Green formula and using the fact that φ is finite
we obtain∫
|x|≥ε

Em(x)Δφ(x)dx =
∫

|x|≥ε

ΔEm(x)φ(x)dx +
∫

|x|=ε

Em
∂φ

∂n
ds−

∫
|x|=ε

φ
∂Em

∂n
ds,

where ds is an element of surface area and ∂
∂n is the differentiation in the direction

of the external normal.
Use the harmonicity of Em. Then the first integral is equal to zero. Further

we have ∫
|x|=ε

Em
∂φ

∂n
ds = ε

( ∫
|x0|=1

∂

∂r
φ(rx0)ds

)∣∣∣∣
r=ε

= O(ε), for ε → 0.

For the third term we have∫
|x|=ε

φ
∂Em

∂n
ds =

m− 2
εm−1

εm−1

∫
|x0|=1

φ(rx0)ds = [φ(0) + o(1)](m− 2)σm.

Thus we obtain 〈ΔEm, φ〉 = φ(0)θm, and this proves (2.4.1.2) for y = 0.
It is clear that by changing φ(x) for φ(x+y) we obtain (2.4.1.2) in the general

case. �
We will consider now a domain Ω with a Lipschitz boundary (Lipschitz do-

main). It means that every part of ∂Ω can be represented in some local coordinates
(x, x′), x ∈ R, x′ ∈ Rm−1 in the form x = f(x′), where f is a Lipschitz function,
i.e.,

|f(x′1) − f(x′2)| ≤ M∂Ω|x′1 − x′2|
where M depends only on the whole ∂Ω and does not depend on this local part.

Let G(x, y,Ω) be the Green function of a Lipschitz domain Ω.
It is known (see, e.g., [Vl, Ch. V, §28]) that the Green function has the

following properties:

G(x, y,Ω) < 0, for (x, y) ∈ Ω × Ω; G(x, y,Ω) = 0 for (x, y) ∈ Ω × ∂Ω; (g1)
G(x, y, •) = G(y, x, •); (g2)

G(x, y, •) − Em(x− y) = H(x, y), (g3)

where H is harmonic on x and on y within Ω;

−G(x, y,Ω1) ≤ −G(x, y,Ω2) for Ω1 ⊂ Ω2. (g4)
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From (g3) follows

Theorem 2.4.1.3 (Green Function) The equality

ΔxG(x, y,Ω) = θmδ(x− y), (2.4.1.3)

holds in D′(Ω).

Let f(x) be a continuous function on ∂Ω. It is known (see, e.g., [Vl, Ch. V,
§ 29]) that the function

H(x, f) :=
∫
∂Ω

f(y)
∂

∂n
G(x, y,Ω)dsy (2.4.1.4)

is the only harmonic function that coincides with f on ∂Ω.
The unique solution of the Poisson equation

Δu = p, u|∂Ω = f

for a continuous function p is given by the formula

u(x, f, p) :=
∫

∂Ω

f(y)
∂

∂ny
G(x, y,Ω)dsy + θ−1

m

∫
Ω

G(x, y,Ω)p(y)dy. (2.4.1.5)

Let D be an arbitrarily open domain.We can define a G(x, y,D) in the fol-
lowing way. Consider a sequence Ωn of a Lipschitz domain such that Ωn ↑ D.
The sequence of the corresponding Green functions G(x, y,Ωn) monotonically de-
creases. If it is bounded from below in some point, it is bounded everywhere while
x �= y (as it follows from Theorem 2.4.1.7). It can be shown that the limit exists for
any domain, the boundary of which has positive capacity (see 2.5 and references
there). We will mainly use the Green function for the Lipschitz domains.

Let G(x, y,Ka,R) be the Green function of the ball Ka,R := {|x− a| < R}.

Theorem 2.4.1.4 (Green Function for a Ball)

G(x, y,Ka,R) =

{
−|x− y|2−m − ( |y−a||x−y∗a,R|

R )2−m, for m ≥ 3,
log |ζ−z|R

|ζ−a||z−ζ∗a.R| for m = 2,

where y∗a.R := a+(y− a)
(
R2

/ |y − a|2) is the inversion of y relative to the sphere
{|x− a| = R}.

For the proof see, e.g., [Br, Ch. 6, § 3].

Theorem 2.4.1.5 (Poisson Integral) Let H be a harmonic function in Ka,R and
continuous in its closure. Then

H(x) =
1

σmR

∫
|x−a|=R

H(y)
R2 − |x− a|2

|x− y|m dsy, x ∈ K(a,R). (2.4.1.6)
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In particular, for m = 2,

H(a+ reıφ) =
1
2π

2π∫
0

H(a+Reıψ)
R2 − r2

R2 − 2Rr cos(φ− ψ) + r2
dψ.

This theorem follows from (2.4.1.4).

Theorem 2.4.1.6 (Mean Value) Let H be harmonic in G ⊂ Rm. Then

H(x) =
1

σmRm−1

∫
|x−a|=R

H(y)dsy, (2.4.1.7)

where x ∈ G and R is taken such that K(x,R) � G.

We must only set a := x in (2.4.1.6). We can rewrite (2.4.1.7) in the form

H(x) =
1
σm

∫
|y|=1

H(x+Ry)dsy.

Theorem 2.4.1.7 (Harnack) Suppose the family {Hα), α ∈ A} of harmonic func-
tions in G satisfies the conditions

Hα(x) ≤ C(K), for x ∈ K; (Har1)
Hα(x0) ≥ B > −∞, for x0 ∈ K (Har2)

for every compact K � G and C(K), B are constants not depending on α.
Then the family is precompact in the uniform topology, i.e., there exists such

a sequence Hαn , and a function H harmonic in the interior of K and continuous
in K such that Hαn → H uniformly in every K.

One can prove by using (2.4.1.6) that | gradHα| are bounded on every com-
pact set by a constant not depending on α. Thus the family is uniformly continuous
and thus it is precompact by the Ascoli theorem.

For details see, e.g., [Br, Supplement, § 7].

Theorem 2.4.1.8 (Uniform and D′-convergences) Suppose the sequence Hn sat-
isfies the conditions of the Harnack theorem and converges to a function H in
D′(G). Then Hn converges to H uniformly on every compact set K � G.

Of course, H is harmonic in G.

Proof. By the Harnack theorem the family is precompact. Thus we must only prove
the uniqueness of H . Suppose there exist two subsequences such that H1

k → H1

and H2
k → H2 uniformly on every compact K � G.

By Connection between Convergences (Theorem 2.3.4.3) H1
k → H1 and

H2
k → H2 in D′. Hence, H1 = H2 in D′(G). By the De Bois Raimond theorem

(Theorem 2.3.2.1) H1 = H2 almost everywhere and hence everywhere because
these functions are continuous. �
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Let D be a domain with a smooth boundary ∂D and let F ⊂ ∂D. Set

ω(x, F,D) :=
∫
F

∂G

∂ny
(x, y)dsy .

It is called a harmonic measure of F with respect to D. A harmonic measure can
be defined for an arbitrary domain D by a limit process similar to the one we had
for the Green function. In this case the formula (2.4.1.4) has the form

H(x, f) :=
∫

∂D

f(y)dω(x, y,D).

However we can not assert that H(x, f) coincides with f in any point x ∈ ∂D.
We can only consider it as an operator that maps a function defined on ∂D to a
harmonic function in D.

By (2.4.1.3) we obtain

Theorem 2.4.1.9 (Two Constants Theorem) Let H be harmonic in D and satisfy
the conditions

H(x) ≤ A1 for x ∈ F ;H(x) ≤ A2 for x ∈ ∂D\F
where A1 and A2 are constants. Then

H(x) ≤ A1ω(x, F,D) +A2ω(x, ∂D\F,D) for x ∈ D.

Let y∗a,R be the inversion from Green Function for a Ball (Theorem 2.4.1.4).
Set y∗ := y∗0,1, i.e., the inversion relative to a unit sphere with the center in the
origin. Let G∗ := {y∗ : y ∈ G} be the inversion of a domain G.

Theorem 2.4.1.10 (Kelvin’s Transformation) If H is harmonic in G, then

H∗(y) := |y|2−mH(y∗) (2.4.1.8)

is harmonic in G∗.

For the proof you must honestly compute Laplacian ofH∗. “The computation
is straightforward but tedious” ([He, Thm. 2.24]). It is not so tedious if you use
the spherical coordinate system.

Exercise 2.4.1.1 Do this.

2.4.2 Denote as S1 := {x0 : |x0| = 1} the unit sphere with center in the origin.
A function Yρ(x0), x0 ∈ Ω ⊂ S1 is called a spherical function of degree ρ if it
satisfies the equation

Δx0Y + ρ(ρ+m− 2)Y = 0. (2.4.2.1)
For m = 2, (2.4.2.1) gets the form

Y ′′(θ) + ρ2Y (θ) = 0, i.e., Y (θ) = a cos ρθ + b sin ρθ.

Spherical functions are obtained if we solve the equation ΔH = 0 by the change
H(x) = |x|ρY (x0).
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Theorem 2.4.2.1 (Sphericality and Harmonicity) The function Yρ(x0) is spherical
in a domain Ω ⊂ S1 if and only if the functions H(x) = |x|ρYρ(x0) and H∗(x) =
|x|−ρ−m+2Yρ(x0) are harmonic in the cone

Con(Ω) := {x = rx0 : x0 ∈ Ω, 0 < r < ∞}. (2.4.2.2)

If ρ = k, k ≥ 0, k ∈ Z, and only in this case, Yk(x0) is spherical on the whole S1,
H(x) is a homogeneous harmonic polynomial of degree k and H∗ is harmonic in
Rm\0.

For the proof see, e.g., [Ax, Ch. 5]
The spherical functions of an integer degree k form a finite-dimension space

of dimension

dim(m, k) =
(2k +m− 2)(k +m− 3)!

(m− 2)!k!
.

In particular, d(2, k) = 2 for any k.
For different k the spherical functions Yk(x0) are orthogonal on S1. In partic-

ular, for m = 2, it means the orthogonality of the trigonometric functions system.

Theorem 2.4.2.2 (Expansion of a Harmonic Function) Let H(x) be a harmonic
function in the ball KR := {|x| < R}. There exists an orthonormal system of
spherical functions Yk(x0), k = 0,∞, depending on H such that

H(x) =
∞∑

k=0

ckYk(x0)|x|k, for |x| < R. (2.4.2.3)

For any such system we have

ck =
1
Rk

∫
S1

H(Rx0)Yk(x0)dsx0 . (2.4.2.4)

For the proof see, e.g., [Ax, Ch. 10], [TT, Ch. 4, § 10].

Theorem 2.4.2.3 (Liouville) Let H be harmonic in Rm and suppose

lim inf
R→∞

R−ρ max
|x|=R

H(x) < ∞ (2.4.2.5)

holds. Then H is a polynomial of a degree q ≤ ρ.

Proof. We can suppose H(0) = 0 because H(x) − H(0) is harmonic and also
satisfies (2.4.2.5). Let Rn → ∞ be a sequence for which

R−ρ
n max

|x|=Rn

H(x) ≤ const < ∞. (2.4.2.6)
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From (2.4.2.4) we obtain

|ck| ≤ AkR
−k

∫
S1

|H(Rx0)|dsx0 , (2.4.2.7)

where Ak = maxS1 |Yk(x0)|.
From the mean value property (Theorem 2.4.1.6)∫

S1

H(Rx0)dsx0 = H(0)σm = 0.

Thus ∫
S1

|H(Rx0)|dsx0 = 2
∫
S1

H+(Rx0)dsx0 ≤ 2σm max
|x|=R

H(x). (2.4.2.8)

From (2.4.2.8) and (2.4.2.7) we have

|ck| ≤ 2AkR
−kσm max

|x|=R
H(x). (2.4.2.9)

Set R := Rn and k > ρ. Passing to the limit when n → ∞, we obtain ck = 0
for k > ρ. Then (2.4.2.3.) implies that H is a harmonic polynomial of degree
q ≤ ρ. �

2.5 Potentials and capacities

2.5.1 Let G(x, y.D) be the Green function of a Lipschitz domain D. We will sup-
pose it is extended as zero outside of D.

Π(x, μ,D) := −
∫
G(x, y,D)μ(dy)

is called the Green potential of μ relative to D. The domain of integration will
always be Rm.

Theorem 2.5.1.1 (Green Potential Properties) The following holds:

GPo1) Π(x, μ,D) is lower semicontinuous;

GPo2) it is summable over any (m− 1)-dimensional hyperplane or smooth hyper-
surface;

GPo3) ΔΠ(•, μ,D) = −θmμ in D′(D);

GPo4) the reciprocity law holds:∫
Π(x, μ1, D)μ2(dx) =

∫
Π(x, μ2, D)μ1(dx).
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GPo5) semicontinuity in μ: if μn → μ in D′(Rm), then

lim inf
n→∞ Π(x, μn, D) ≥ Π(x, μ,D).

GPo6) continuity in μ in D′: if μn → μ, then Π(•, μn, D) → Π(•, μ,D) in D′(Rm)
and in D′(SR), where SR is the sphere {|x| = R}.

Proof. Let us prove GPo1). Let N > 0. Set GN (x, y) := max(G(x, y),−N), a
truncation of the function G(x, y).

The functions GN are continuous in Rm × Rm and GN (x, y) ↓ G(x, y) for
every (x, y) when N → ∞. Set

ΠN (x, μ,D) := −
∫
GN (x, y,D)μ(dy).

The functions ΠN are continuous and ΠN (x, •) ↑ Π(x, •) by the B. Levy theorem
(Theorem 2.2.2.2). Then ΠN (x, •) is lower semicontinuous by the Second Criterion
of semicontinuity (Theorem 2.1.2.9).

Let us prove GPo5). From Theorem 2.3.4.4 (D′ and C∗ convergences)

lim
n→∞ΠN (x, μn, D) = ΠN (x, μ,D).

Further Π(x, μn, D) ≥ ΠN (x, μn, D), hence

lim inf
n→∞ Π(x, μn, D) ≥ ΠN (x, μ,D).

Passing to the limit while N → ∞, we obtain GPo5).
The assertion GPo2) follows from the local summability of the function

|x|2−m that can be checked directly.
Let us prove GPo3). For φ ∈ D(D) we have

〈ΔΠ, φ〉 := 〈Π,Δφ〉 = −
∫
μ(dy)

∫
G(x, y,D)Δφ(x)dx

= −
∫

〈ΔxG(•, y,D), φ〉μ(dy) = −θm

∫
φ(y)μ(dy)

= −θm〈μ, φ〉,
since

〈ΔxG(•, y,D), φ〉 = θmφ(y)

by Theorem 2.4.1.3. The property GPo4) follows from the symmetry of G(x, y, •)
(property (g2)).

Let us prove GPo6). Note that integral
∫ |x|m−1dx converges locally in Rm

and in Rm−1. From this one can obtain by some simple estimates that functions
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Ψ(y) :=
∫
G(x, y,D)ψ(x)dx while ψ ∈ D(Rm) and Θ(y) :=

∫
SR
G(x, y,D)θ(x)dsx

while θ ∈ D(SR) are continuous on y ∈ Rm.
Now we have

〈Π(•, μn, D), ψ〉 =
∫

Ψ(y)μn(dy) →
∫

Ψ(y)μ(dy) = 〈Π(•, μ,D), ψ〉.

Thus the first assertion in GPo6) is proved. The second one can be proved in the
same way. �

Set ν := μ1−μ2, and let Π(x, ν,D) := Π(x, μ1, D)−Π(x, μ2, D) be a potential
of this charge. Consider the boundary problem of the form

Δu = μ1 − μ2, in D′(D), u|∂D = f, (2.5.1.2)

where f is a continuous function.

Theorem 2.5.1.2 (Solution of Poisson Equation) The solution of the boundary prob-
lem (2.5.1.2) is given by the formula

u(x) = H(x, f) − θ−1
m Π(x, ν,D),

where H(x, f) is the harmonic function from (2.4.1.4).

Proof. Since Π(x, ν,D)|∂D = 0, the function u(x) satisfies the boundary condition.
Using GPo3) we obtain

Δu = ΔH − [θm]−1ΔΠ = μ1 − μ2. �

A potential of the form

Π(x, μ) :=
∫

μ(dy)
|x− y|m−2

is called a Newton potential. It is the Green potential for D = Rm. The potential

Π(z, μ) = −
∫

log |z − ζ|μ(dζ)

is called logarithmic.

2.5.2 Let K � D. The quantity

capG(K,D) := supμ(K) (2.5.2.1)

where the supremum is taken over all mass distributions μ for which the following
conditions are satisfied:

Π(x, μ,D) ≤ 1, (2.5.2.2)
suppμ ⊂ K, (2.5.2.3)

is called the Green capacity of the compact set K relative to the domain D.
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Theorem 2.5.2.1 (Properties of capG) For capG the following properties hold:

capG1) monotonicity with respect to K: K1 ⊂ K2 implies capG(K1, D) ≤
capG(K2, D).

capG2) monotonicity with respect to D: K � D1 ⊂ D2 implies capG(K,D1) ≥
capG(K,D2)

capG3) subadditivity with respect to K:

capG(K1 ∪K2, D) ≤ capG(K1, D) + capG(K2, D).

Proof. The set of all mass distributions that satisfy (2.5.2.2) for K = K1 is not
less than the analogous set for K = K2. Thus capG1) holds.

By the Green function property (g3) (see § 2.4.1) −G(x,y,D1)≤−G(x,y,D2).
Thus the set of all μ that satisfy (2.5.2.2) for D = D1 is wider than for D = D2.
Hence capG2) holds.

Let suppμ ⊂ K1 ∪ K2 and let μ1, μ2 be the restrictions of μ to K1,K2

respectively.
If μ satisfies (2.5.2.2) for K := K1 ∪ K2 then μ1, μ2 satisfy (2.5.2.2) for

K := K1,K2 respectively.
From the inequality

μ(K1 ∪K2) ≤ μ(K1) + μ(K2)

we obtain that

μ(K1 ∪K2) ≤ capG(K1, D) + capG(K2, D)

for any μ with suppμ ⊂ K1 ∪K2. Thus capG3) holds.

The equivalent definition of the Green capacity is given by

Theorem 2.5.2.2 (Dual Property) The following holds:

capG(K,D) = [inf
μ

sup
x∈D

Π(x, μ,D)]−1 (2.5.2.4)

where the infimum is taken over all mass distributions μ such that μ(K) = 1.

For the proof see, e.g., [La, Ch. 2, § 4 it. 18]. For D = Rm, m ≥ 3, the Green
capacity is called Wiener capacity (capm(K)). It has the following properties in
addition to those of the Green capacity:

capW1) invariance with respect to translations and rotations, i.e.,

capm(V (K + x0)) = capm(K),

where VK and K + x0 are the rotation and the translation of K respectively.
The presence of these properties brings the notion of capacity closer to the

notion of measure. Thus it is natural to extend the capacity to the Borel algebra
of sets.
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The Wiener capacity of an open set is defined as

capm(D) := sup
K

capm(K),

where the supremum is taken over all compact K � D.
The outer and inner capacity of any set E can be defined by the equalities

capm(E) := inf
D⊃E

capm(D); cap
m

(E) := sup
K⊂E

capm(K).

A set E is called capacible if capm(E) = cap
m

(E).

Theorem 2.5.2.3 (Choquet) Every set E belonging to the Borel ring is capacible.

For the proof see, e.g., [La, Ch2, Thm. 2.8].
Sets which have “small size” are sets of zero capacity. We emphasize the

following properties of these sets:
capZ1) If capm(Ej) = 0, j = 1, 2, . . . . then capm(∪∞1 Ej) = 0;
capZ2) Having the property of zero capacity does not depend on the type of

capacity: Green, Wiener or logarithmic capacity that we define below.

Example 2.5.2.1 Using Theorem 2.5.2.2 we obtain that any point has zero capac-
ity, because for every mass distribution concentrated in the point the potential is
equal to infinity. The same holds for any set of zero m− 2 Hausdorff measure (see
2.5.4).

Example 2.5.2.2 Any (m − 1)-hyperplane or smooth hypersurface has positive
capacity, because the potential with masses uniformly distributed over the surface
is bounded.

The Wiener 2-capacity can be defined naturally only for sets with diameter
less then 1, because the logarithmic potential is positive only when this condition
holds.

Instead, one can use the logarithmic capacity which is defined by the formulae

capl(K) := exp[−cap2(K)] (2.5.2.5)

for K ⊂ {|z| < 1} and
capl(K) := t−1capl(tK)

for any other bounded K, where t is chosen in such a way that tK ⊂ {|z| < 1}.
One can check that this definition is correct, i.e., it does not depend on t.

2.5.3

Theorem 2.5.3.1 (Balayage; sweeping) Let D be a domain such that ∂D � Rm,
and suppμ � D. Then there exists a mass distribution μb such that for m ≥ 3, or
for m = 2 and for D which is a bounded domain, the following holds:
bal1) Π(x, μb) < Π(x, μ) for x ∈ D;
bal2) Π(x, μb) = Π(x, μ) for x /∈ D;
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bal3) suppμb ⊂ ∂D;
bal4) μb(∂D) = μ(D).
If m = 2 and the domain is unbounded, a potential of the form

Π̂(z, μ) := −
∫

log |1 − z/ζ|μ(dζ)

satisfies all the properties.

Proof. We will prove this theorem when ∂D is smooth enough. For y ∈ D,x ∈
Rm\D the function |x− y|2−m is a harmonic function of y on D.

Since |x − y|2−m → 0 as y → ∞ we can apply the Poisson formula (2.4.1.4)
even if D is unbounded. Thus

|x− y|2−m =
∫

∂D

|x− y′|2−m ∂G

∂ny′
(y, y′)dsy′ (2.5.3.1)

where G is the Green function of D. From this we have∫
D

|x− y|2−mμ(dy) =
∫

∂D

|x− y′|2−mdsy′

(∫
D

∂G

∂ny′
(y, y′)μ(dy)

)
.

The inner integral is nonnegative, because ∂G
∂n > 0 for y′ ∈ ∂D. Let us denote

μb(dy′) :=
(∫

D

∂G

∂n
(y, y′)μ(dy)

)
dsy′ .

Then we obtain the properties bal2) and bal3).
The potential Π(x, μb) is harmonic in D. Thus the function

u(x) := Π(x, μb) − Π(x, μ)

is a subharmonic function (see Theorem 2.6.4.1). Every subharmonic function
satisfies the maximum principle (see Theorem 2.6.1.2), i.e.,

u(x) < sup
y∈∂D

u(y) = 0.

Thus the property bal1) is fulfilled. To prove bal4) we can write the identity∫
∂G

μb(dy′) =
∫

G

μ(dy)
∫

∂G

∂G

∂ny′
(y, y′)dy′.

The inner integral is equal to 1 identically, because the function ≡ 1, y ∈ G is
harmonic. Thus bal4) is true.

Consider now the special case when m = 2, and D is an unbounded domain.
Since log |1−z/ζ| → 0 when ζ → ∞, we obtain an equality like (2.5.3.1). Repeating
the previous reasoning we obtain the last assertion for D with a smooth boundary.

Exercise 2.5.3.1 Check this in detail. �

For the general case see [La, Ch. 4, § 1]; [Ca, Ch. 3, Thm. 4].
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Pay attention that the swept potential Π(x, μb) is also a solution of the
Dirichlet problem in the domain D and the boundary function f(x) = Π(x, μ) in
the following sense:

Theorem 2.5.3.2 (Wiener) The equality bal2) holds in the points x ∈ ∂D which
can be reached by the top of a cone placed outside D. For m = 2 it can fail only
for isolated points.

For the proof see [He], [La, Ch. 4, § 1, Thm. 4.3.].

The points of ∂D where the equality bal2) does not hold are called irregular.

Theorem 2.5.3.3 (Kellogg’s Lemma) The set of all the irregular points of ∂D has
zero capacity.

For the proof see, e.g., [He], [La, Ch. 4, § 2, it. 10].
One can often compute the capacity using the following

Theorem 2.5.3.4 (Equilibrium distribution) For any compact K with capm(K) > 0
there exists a mass distribution λK such that the following holds:

eq1) Π(x, λ) = 1, x ∈ D\E, capm(E) = 0;

eq2) suppλK ⊂ ∂K;

eq3) λK(∂K) = capm(K).

For the proof see [He], [La, Ch. 2, § 1, it. 3, Thm. 2.3].

Let us note that the set E in the previous theorem is a set of irregular points.
The mass distribution λK is called equilibrium distribution, and the corre-

sponding potential is called equilibrium potential.

2.5.4 Let h(x), x ≥ 0 be a positive continuous, monotonically increasing function
which satisfies the condition h(0) = 0. Let {Kε

j} be a family of balls such that
their diameters dj := d(Kε

j ) are no bigger then ε. Let us denote

mh(E, ε) := inf
∑

h

(
1
2
d(Kε

j )
)
,

where the infimum is taken over all coverings of the set E by the families {Kε
j}.

The quantity
mh(E) := lim

ε→0
mh(E, ε)

is called h-Hausdorff measure [Ca, Ch. II].

Theorem 2.5.4.1 (Properties of mh) The following properties hold:

h1) monotonicity:
E1 ⊂ E2 =⇒ mh(E1) ≤ mh(E2);

h2) countable additivity:

mh(∪Ej) =
∑

mh(Ej); Ej ∩Ei = ∅, for i �= j; Ej ∈ σ(Rm).
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We will quote two conditions (necessary and sufficient) that connect the h-
measure to the capacity (see, [La, Ch. 3, § 4, it. 9, 10].

Theorem 2.5.4.2 Let capE = 0. Then mh(E) = 0 for all h such that∫
0

h(r)
rm−1

dr < ∞.

Theorem 2.5.4.3 Let h(r) = rm−2 for m ≥ 3 and h(r) = (log 1/r)−1 for m = 2. If
the h-measure of a set E is finite, then capm(E) = 0.

Side by side with the Hausdorff measure the Carleson measure (see, [Ca,
Ch. II], is often considered. It is defined by

mC
h (E) := inf

∑
h(0.5dj),

where the infimum is taken over all coverings of the set E with balls of radii 0.5dj .
The inequality mC

h (E) ≤ mh(E) obviously holds. Let β− mesC E be the Carleson
measure for h = rβ . The following assertion connects the β − mesC to capacity.

Theorem 2.5.4.4 The following inequalities hold:

β − mesC E ≤ N(m)(capm(E))β/m−2, for m ≥ 3, β > m− 2;
β − mesC(E) ≤ 18capl(E), for m = 2, β > 0,

where N depends only on the dimension of the space.

For the proof see [La, Ch. III,§ 4, it. 10, Cor. 2].

2.5.5 Now we will formulate an analog of the Luzin theorem for potentials.

Theorem 2.5.5.1 Let suppμ = K and let the potential Π(x, μ) be bounded on K.
Then for any δ > 0 there exists a compact set K ′ ⊂ K such that μ(K\K ′) < δ
and the potential Π(x, μ′) of the measure μ′ := μ |K (the restriction of μ to K) is
continuous.

For the proof see, e.g., [La, Ch. 3, § 2, it. 3, Thm. 3.6].

Let us prove the following assertion:

Theorem 2.5.5.2 Let capK > 0. Then for arbitrarily small ε > 0 there exists a
measure μ such that suppμ ⊂ K, the potential Π(x, μ) is continuous and μ(K) >
cap(K) − ε.

Proof. Consider the equilibrium distribution λK on K. Its potential is bounded
by Theorem 2.5.3.4. By Theorem 2.5.5.1 we can find a mass distribution μ such
that Π(x, μ) is continuous, suppμ ⊂ K and μ(K) > λK(K)− ε = cap(K)− ε. �
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2.6 Subharmonic functions

2.6.1 Let u(x), x ∈ D ⊂ Rm be a measurable function bounded from above which
can be −∞ on a set of no more than zero measure.

Let us denote as

M(x, r, u) :=
1

σmrm−1

∫
Sx,r

u(y)dsy (2.6.1.1)

the mean value of u(x) on the sphere Sx,r := {y : |y − x| = r}.
The function M(x, r, u) is defined if Sx,r ⊂ D, but it can be −∞ a priori.
A function u(x) is called subharmonic if it is upper semicontinuous, �≡ −∞,

and for any x ∈ D there exists ε = ε(x) such that the inequality

u(x) ≤ M(x, r, u) (2.6.1.2)

holds for all r < ε.
The class of functions subharmonic in D will be denoted as SH(D).

Example 2.6.1.1 The function

u(x) := −|x|2−m, x ∈ Rm

belongs to SH(Rm) for m ≥ 3, and the function

u(z) := log |z|, z ∈ R2

is subharmonic in R2.

Example 2.6.1.2 Let f(z) be a holomorphic function in a plane domain D. Then
log |f(z)| ∈ SH(D).

Example 2.6.1.3 Let f = f(z1, z2, . . . , zn) be a holomorphic function of z =
(z1, . . . , zn). Then u(x1, y1, . . . , xn, yn) := log |f(x1 + iy1, . . . , xn + iyn)| is subhar-
monic in every pair (xj , yj), and, as we can see later, in all the variables.

Example 2.6.1.4 Every harmonic function is subharmonic, as follows from Theo-
rem 2.4.1.6. (Mean Value).

Theorem 2.6.1.1 (Elementary Properties) The following holds:

sh1) if u ∈ SH(D), then Cu ∈ SH(D) for any constant C ≥ 0;

sh2) if u1, u2 ∈ SH(D), then u1 + u2, max[u1, u2] ∈ SH(D);

sh3) suppose un ∈ SH(D), n = 1, 2, . . . , and the sequence converges to u mono-
tonically decreasing or uniformly on every compact set in D. Then u ∈
SH(D);
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sh4) suppose u(x, y) ∈ SH(D1) for all y ∈ D2, and be upper semicontinuous in
D1 ×D2. Let μ be a measure in D2 such that μ(D2) < ∞. Then the function
u(x) :=

∫
u(x, y)μ(dy) is subharmonic in D1.

sh5) let V ∈ SO(m) be an orthogonal transformation of the space Rm and u ∈
SH(Rm). Then u(V •) ∈ SH(Rm).

All the assertions follow directly from the definition of subharmonic functions,
properties of semicontinuous functions and properties of the Lebesgue integral. For
a detailed proof see, e.g., [HK, Ch. 2].

Theorem 2.6.1.2 (Maximum Principle) Let u ∈ SH(D), G ⊂ Rm and u(x) �≡
const. Then the inequality

u(x) < sup
x′∈∂D

lim sup
y→x′,y∈D

u(y), x ∈ D

holds.

I.e., the maximum is not attained inside the domain.
The assertion follows from (2.6.1.2) and the upper semicontinuity of u(x).

For details see [HK, Ch. 2].

Let K � D be a compact set with nonempty interior
◦
K, and let fn be a

decreasing sequence of functions continuous in K that tends to u ∈ SH(D). Such
a sequence exists by Theorem 2.1.2.9. (The second criterion of semicontinuity).

Consider a sequence {H(x, un)} of functions which are harmonic in
◦
K and

H |∂K= fn. The sequence converges monotonically to a function H(x) harmonic

in
◦
K by Theorem 2.3.4.3. (Connection between convergences), Theorem 2.4.1.8.

(Uniform and D′-convergences) and Theorem 2.6.1.2. The limit depends only on u
as one can see, i.e., it does not depend on the sequence fn. This harmonic function
H(x) := H(x, u,K) is called the least harmonic majorant of u in K.

This name is justified because of the following

Theorem 2.6.1.3. (Least Harmonic Majorant) Let u ∈ SH(D). Then for any K �
D, u(x) ≤ H(x, u,K), x ∈ K. If h(x) is harmonic in

◦
K and satisfies the condition

h(x) ≥ u(x), x ∈
◦
K, then H(x, u,K) ≤ h(x), x ∈

◦
K.

For the proof see [HK, Ch. 3].

2.6.2 Let us study properties of the mean values of subharmonic functions. Let
M(x, r.u) be defined by (2.6.1.1) and N (x, r, u) by

N (x, r, u) :=
1

ωmrm

∫
Kx,r

u(y)dy,

where ωm is the volume of the ball K0,1.
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Theorem 2.6.2.1 (Properties of Mean Values) The following holds:
me1) M(x, r, u) and N (x, r, u) non-decreases in r monotonically;
me2) u(x) ≤ N (x, •) ≤ M(x, •);
me3) limr→0 M(x, r, u) = limr→0 N (x, r, u) = u(x).

Proof. For simplicity let us prove me1) for m = 2. We have

M(z0, |z|, u) =
1
2π

∫ 2π

0

u(z0 + zeiφ)dφ.

Since u(z, φ) := u(z0 +zeiφ) is a family of subharmonic functions that satisfies the
condition sh4) of Theorem 2.6.1.1, M(z0, |z|, u) is subharmonic in z on any K0,r.
By Maximum Principle (Theorem 2.6.1.2) we have

M(z0, r1, u) = max
S0,r1

M(z0, |z|, u) ≤ max
S0,r2

M(z0, |z|, u) = M(z0, r2, u)

for r1 < r2.
Monotonicity of N (x, r, u) follows from the equality

N (x, r, u) = m

∫ 1

0

sm−1M(x, rs.u)ds (2.6.2.1)

and monotonicity of M(x, r, u).
The property me2) follows now from the definition of a subharmonic function

and (2.6.2.1).
Let us prove me3). Let M(u, x, r) be defined by (2.1.1.1). We have

M(x, r, u) ≤ M(u, x, r) and M(u, x, r) → u(x)

because of upper semicontinuity of u(x). Thus me2) implies me3). �

It is clear from me2) that a subharmonic function is locally summable. From
me3) we have the corollary

Theorem 2.6.2.2 (Uniqueness of subharmonic function) If u, v ∈ SH(D) and u =
v almost everywhere, then u ≡ v.

Let α(t) be defined by the equality (2.3.1.1), αε(x) by (2.3.1.3). For a Borel
set E let

Eε := {x : ∃y ∈ E : |x− y| < ε}.
This is the ε-extension of E; this is, of course, an open set. For an open set D we
set

D−ε :=
⋃

Eε⊂D

Eε.
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This is the maximal set such that its ε-extension is a subset of D. One can see
that D−ε is not empty for small ε and D−ε ↑ D when ε ↓ 0. Therefore for any
D1 � D there exists ε such that D1 � D−ε.

For u ∈ SH(D) set

uε(x) :=
∫
u(x+ y)αε(y)dy (2.6.2.2)

which is defined in D−ε.

Theorem 2.6.2.3 (Smooth Approximation) The following holds:

ap1) uε is an infinitely differentiable subharmonic function in any open set D1 ⊂
D−ε;

ap2) uε ↓ u(x) while ε ↓ 0 for all x ∈ D.

Proof. The property ap1) follows from sh4) (Theorem 2.6.1.1) and the following
equality that one can obtain from (2.6.2.2):

uε(x) =
∫
u(y)αε(x − y)dy. (2.6.2.3)

Exercise 2.6.2.1 Prove this.

Let us prove ap2). From (2.6.2.2) we obtain

uε(x) =
∫ 1

0

α(s)sm−1M(x, εs, u)ds. (2.6.2.4)

It follows from the property me1) (Theorem 2.6.2.1) that uε1 ≤ uε2 while ε1 < ε2.
Now we pass to the limit in (2.6.2.4). Using me3) we have M(x, εs, u) ↓ u(x). We
can pass to the limit under the integral because of Theorem 2.2.2.2. Thus

lim
ε↓0

uε(x) =
∫ 1

0

α(s)sm−1u(x)ds = u(x). �

Theorem 2.6.2.4 (Symmetry of uε) If u(x) depends only on |x| then uε depends
only on |x|.

Proof. Let V ∈ SO(m) be a rotation of Rm. Then

uε(V x) =
∫
u(y)αε(V x− y)dy.

Set y = V y′ and change the variables. We obtain

uε(V x) =
∫
u(V y′)αε(V (x− y′))dy.

Since αε = αε(|x|) and u = u(|x|), αε(V y) = αε(y) and u(V y) = u(y). Thus
uε(V x) = uε(x) for any V and thus uε(x) = uε(|x|). �
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2.6.3 Since a subharmonic function is locally summable and defined uniquely by its
values almost everywhere,every u ∈ SH(D) corresponds to a (unique) distribution

〈u, φ〉 :=
∫
u(x)φ(x)dx, φ ∈ D′.

Theorem 2.6.3.1 (Necessary Differential Condition for Subharmonicity) If u ∈
SH(D), then Δu is a positive distribution in D′(D).

Proof. Suppose to begin that u(x) has second continuous derivatives. By using
(2.4.1.5) and (2.4.1.6) we can represent u(x) in the form

u(x) = M(x, r, u) +
∫

Kx,r

G(x, y,Kx,r)Δu(y)dy, (2.6.3.1)

where G is negative for all r. Suppose Δu(x) < 0. Then it is negative in Kx,r

for some r. Thus the integral in (2.6.3.1) is positive and we obtain that u(x) −
M(x, r, u) > 0. This contradicts the subharmonicity of u(x).

Now suppose u(x) is an arbitrarily subharmonic function. Then Δuε(x) ≥ 0
for every x ∈ D when ε is small enough.For each x there is a neighborhoodDx such
that every uε defines a distribution from D′(Dx). Hence Δuε(x) defines a positive
distribution from D′(Dx). Passing to the limit in uε when ε ↓ 0 we obtain in
D′(Dx) a distribution that is defined by function u(x). Since the Laplace operator
is continuous in any D′ (Theorem 2.3.4.2), Δu > 0 in D′(Dx). From Theorem
2.3.5.1 we obtain that Δu is a positive distribution in D′(D). �

The distribution Δu can be realized as a measure by Theorem 2.3.2.2. The
measure (θm)−1Δu is called the Riesz measure of the subharmonic function u.

Theorem 2.6.3.2 (Subharmonicity and Convexity) Let u(|x|) be subharmonic in x
on K0,R. Then u(r) is convex with respect to −r2−m for m ≥ 3 and with respect
to log r for m = 2.

Proof. By Theorem 2.6.2.4, uε(x) depends on |x| only, i.e., uε(x) = uε(|x|), and
the function uε(r) is smooth. Passing to the spherical coordinates we obtain

Δuε =
1

rm−1

∂

∂r
rm−1 ∂

∂r
uε(r) ≥ 0.

By changing variables, r = ev for m = 2 or r = (−v) 1
2−m for m ≥ 3, we obtain

[uε(r(v)]′′ ≥ 0, i.e., uε(r(v)) is convex in v.
Passing to the limit on ε ↓ 0 we obtain that u(r(v)) is convex too, as a

monotonic limit of convex functions. �

2.6.4 Now we will consider the connection between subharmonicity and potentials.

Theorem 2.6.4.1 (Subharmonicity of −Π) −Π(x, μ,D) ∈ SH(D)

It is because of GPo1) and GPo3) (Theorem 2.5.1.1).
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The following theorem is inverse to Theorem 2.6.3.1.

Theorem 2.6.4.2 (Sufficient Differential Condition of Subharmonicity) Let Δu ∈
D′(D) be a positive distribution. Then there exists u1 ∈ SH(D) that realizes u.

Proof. Set μ := θ−1
m Δu. Let Ω1 � Ω � D and Π(x, μΩ) be the Newtonian (or

logarithmic) potential of μ |Ω. By GPo5) (Theorem 2.5.1.1) the sumH := u+Π is a
harmonic distribution in D′(Ω1). Hence there exists a “natural” harmonic function
H1 that realizes H (Theorem 2.4.1.1). Thus the function u1 := H1 − Π ∈ SH(Ω1)
and realizes u in D′(Ω). Since Ω and Ω1 can be chosen such that a neighborhood
of any x ∈ D belongs to Ω1, the assertion holds for D. �

By the way, we showed in this theorem that every subharmonic function can
be represented inside its domain of subharmonicity as a difference of a harmonic
function and a Newton potential. Thus all the smooth properties of a subhar-
monic function depend on the smooth properties of the potential only because
any harmonic function is infinitely differentiable.

The following representation determines the harmonic function completely.

Theorem 2.6.4.3 (F. Riesz representation) Let u ∈ SH(D) and let K be a compact
Lipschitz subdomain of D. Then

u(x) = H(x, u,K) − Π(x, μu,K)

where μu is the Riesz measure of u and H(x, u,K) the least subharmonic majorant.

Proof. We can prove as above that the function H(x) := u(x) + Π(x, μu,K) is

harmonic in
◦
K. Since H(x) ≥ u(x) we have H(x) ≥ H(x, u,K). So we need the

reverse inequality.
Let us write the same equality for uε that is smooth.

uε := H(x, uε) − Π(x, μuε ,K).

Passing to the limit as ε ↓ 0 we obtain

u(x) = H(x, u,K) − lim
ε↓0

Π(x, μuε ,K),

and the potentials converge because other summands converge. By Gpo5)

lim
ε↓0

Π(x, μuε ,K) ≥ Π(x, μu,K).

Hence H(x) ≤ H(x, u,K). �

2.6.5 In this item we will consider subharmonic functions in the ball KR := K0,R

which are harmonic in some neighborhood of the origin and write u ∈ SH(R).
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Set

M(r, u) := max{u(x) : |x| = r},
μ(r, u) := μu(Kr),

M(r, u) := M(0, r, u),

N(r, u) := A(m)
∫ r

0

μ(t, u)
tm−1

dt, where A(m) = max(1,m− 2). (2.6.5.1)

Theorem 2.6.5.1 (Jensen-Privalov) For u ∈ SH(R),

M(r, u) − u(0) = N(r, u), for 0 < r < R. (2.6.5.2)

Proof. By Theorem 2.6.4.3 we have

u(x) =
1
σmr

∫
|y|=r

u(y)
r2 − |x|2
|x− y|m dsy +

∫
Kr

G(x, y,Kr)μ(dy).

For x = 0 we obtain

u(0) =

{
− ∫ r

0

(
1

tm−2 − 1
rm−2

)
μ(dt, u) + M(r, u), for m ≥ 3;

− ∫ r

0
log r

tμ(dt, u) + M(r, u), for m = 2.

Integrating by parts gives

u(0) − M(r, u) =

{
−μ(t, u)

(
1

tm−2 − 1
rm−2

) |r0 +(m− 2)
∫ r

0
μ(t,u)
tm−1 dt, for m ≥ 3;

−μ(t, u) log r
t |r0 +

∫ r

0
μ(t,u)

t dt, for m = 2.
(2.6.5.3)

We have μ(t, u) = 0 for small t because of harmonicity of u(x). Thus (2.6.5.3)
implies (2.6.5.2). �

Theorem 2.6.5.2 (Convexity of M(r, u) and M(r, u)) These functions increase
monotonically and are convex with respect to log r for m = 2 and −r2−m for
m ≥ 3.

Proof. Consider the case m = 2. Set M(z) := maxφ u(zeiφ). One can see that
M(r) = M(r, u).

Let u be a continuous subharmonic function. Then M(z) is subharmonic
(Theorem 2.6.1.1, sh5) and continuous because the family {uφ(z) := u(zeiφ)} is
uniformly continuous. The function M(z) depends only on |z|. Thus it is convex
with respect to log r by Theorem 2.6.3.2.

Let u(z) be an arbitrarily subharmonic function and uε ↓ u while ε ↓ 0. Then
M(r, uε) ↓ M(r, u) by Proposition 2.1.2.7 and is convex with respect to log r by
sh3), Theorem 2.6.1.1.

If m ≥ 3 you should consider the function M(x) := max|y|=|x| u(Vyx) where
Vy is a rotation of Rm transferring x into y.

The convexity of M(r, u) is proved analogously.
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Exercise 2.6.5.1 Prove it.

The monotonicity of M(r, u) follows from the Maximum Principle (Theo-
rem 2.6.1.2). The monotonicity of M(r, u) was proved in Theorem 2.6.2.1. �

The following classical assertion is a direct corollary of Theorem 2.6.5.2.

Theorem 2.6.5.3 (Three Circles Theorem of Hadamard) Let f(z) be a holomorphic
function in the disc KR and let Mf (r) be its maximum on the circle {|z| = r}.
Then

Mf(r) ≤ ([Mf (r1)]log
r2
r [Mf (r2)]

log r
r1 )

1
log r2

r1

for 0 < r1 ≤ r ≤ r2 < R.

For the proof you should write down the condition of convexity with re-
spect to log r of the function logMf (r) which is the maximum of the subharmonic
function log |f(z)| .

Exercise 2.6.5.2 Do this.

For details see [PS, Part I, Sec. III, Ch. 6, Problem 304].

2.7 Sequences of subharmonic functions

2.7.1 We will formulate the following analogue for the Montel theorem of normal
families of holomorphic functions.

The family
{uα, α ∈ A} ⊂ SH(D) (2.7.1.1)

is called precompact in D′(D) if, for any sequence {αn, n = 1, 2, . . .} ⊂ A, there
exists a subsequence αnj , j = 1, 2, . . . and a function u ∈ SH(D) such that uαnj

→
u in D′(D).

Example 2.7.1.1 uα := log |z − α|, |α| < 1 form a precompact family.

Example 2.7.1.2 uα := log |fα| where {fα} is a family of holomorphic functions
bounded in a domain D form a precompact family.

A criterion of precompactness is given by

Theorem 2.7.1.1 (Precompactness in D′) A family (2.7.1.1) is precompact iff the
following conditions hold:

comp1) for any compact set K ⊂ D a constant C(K) exists such that

uα(x) ≤ C(K) (2.7.1.2)

for all α ∈ A and x ∈ K;
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comp2) there exists a compact set K1 � D such that

inf
α∈A

max{uα(x) : x ∈ K1} > −∞. (2.7.1.3)

For the proof see [Hö, Thm. 4.1.9].

Theorem 2.7.1.2 Let un → u in D′(KR). Then un → u in D′(Sr) for any r < R.

Proof. We have μn → μ. Let us choose R1 such that r < R1 < R. Then

un(x) = H(x, un,KR1) − Π(x, μn,KR1)

by the F. Riesz theorem (Theorem 2.6.4.3).
Now, we have Π(x, μn,KR1) → Π(x, μ,KR1) in D′(R1) by GPo6), Theorem

2.5.1.1. Thus H(x, un,KR1) → H(x, u,KR1) in D′(R1).
By Theorem 2.4.1.8, H(x, un,KR1) → H(x, u,KR1) uniformly on any com-

pact set in KR1 , in particular, on Sr. Hence H(x, un,KR1) → H(x, u,KR1) in
D′(Sr). Also Π(x, μn,KR1) → Π(x, μ,KR1) in D′(Sr) by GPo6), Theorem 2.5.1.1.
Hence, un → u in D′(Sr). �

We say that a sequence fn of locally summable functions converges in Lloc

to a locally summable function f if for any x ∈ D there exists a neighborhood
V � x such that

∫
V |fn − f |dx → 0.

Theorem 2.7.1.3 (Compactness in Lloc) Under conditions of Theorem 2.7.1.1 the
family (2.7.1.1) is precompact in Lloc.

For the proof see [Hö, Thm. 4.1.9].

Theorem 2.7.1.4 Let un → u in D′(KR). Then u+
n → u+ in D′(KR).

This is because u+
n (x) ≤ M, x ∈ K, for all compact sets K � KR.

2.7.2 The following theorem shows that a subharmonic function is much more
“flexible” than a harmonic or analytic function.

Theorem 2.7.2.1 Let D � Rm be a Lipschitz domain and let u ∈ SH(D) satisfy
the condition u(x) < C for x ∈ D. Then for any closed domain D1 � D there
exists a function ũ(x) := ũ(x,D1) such that:

ext1) u(x) = ũ(x) for x ∈ D1;
ext2) ũ(x) = C for x ∈ ∂D;
ext3) ũ ∈ SH(D) and is harmonic in D\D1;
ext4) u(x) ≤ ũ(x) for x ∈ D.

The function ũ is defined uniquely.
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Proof. We can suppose without loss of generality that C = 0, because we can
consider the function u− C.

Let u(x) be continuous in D1. Consider a harmonic function H(x) which is
zero on ∂D and u(x) on ∂D1. We have H(x) ≥ u(x) for x ∈ D\D1 because of
Theorem 2.6.1.3. Set

ũ(x) =

{
H(x), x ∈ D\D1;
u(x), x ∈ D1.

The function ũ(x) is subharmonic in D. For x /∈ ∂D1 it is obvious, and for x ∈ ∂D1

it follows from
u(x) = ũ(x) ≤ M(x, r, u) ≤ M(x, r, ũ)

for r small enough.
It is easy to check that all the assertions of the theorem are fulfilled for the

function ũ.

Exercise 2.7.1.1 Check this.

Let u(x) be an arbitrarily subharmonic function. Consider the family uε of
smooth subharmonic functions that converges to u(x) decreasing monotonically
in a neighborhood of D1. The sequence (̃uε) converges monotonically to a subhar-
monic function that has all the properties ext1)–ext4). �

Theorem 2.7.2.2 (Continuity of •̃) Let un → u in D′(D) and un(x) < 0 in D.
Then for any K � D with a smooth boundary ∂K ũn(•,K) → ũ(•,K) in D′(D).

For proving, we need the following auxiliary statement:

Theorem 2.7.2.3 Let un → u in D′(D). Then for any smooth surface S � D and
any function g(x) continuous in a neighborhood of S the assertion∫

S

un(x)g(x)dsx →
∫

S

u(x)g(x)dsx (2.7.2.1)

holds.

Proof. Since un → u in D′(D) also the Riesz measures of the functions converge.
Hence μn(K) ≤ C(K) for some K � S. Thus, for the sequence of potentials
Π(x, μn), we have∫

S

Π(x, μn)g(x)dsx =
∫
μn(dy)

∫
S

g(x)dsx

|x− y|m−2
.

The inner integral is a continuous function of y as can be seen by simple
estimates. Thus the assertion (2.7.2.1) holds for potentials. Now, one can represent
un in the form

un(x) = Hn(x) − Π(x, μn)

in K. The sequence Hn convergences in D′ and, hence, uniformly on S. Thus
(2.7.2.1) holds for every un. �
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Proof of Theorem 2.7.2.2. Let φ ∈ D(D) and suppφ ⊂
◦
K. Then

〈ũn, φ〉 = 〈un, φ〉 → 〈u, φ〉 = 〈ũ, φ〉.
Let x ∈ D\K. Then

ũn(x) =
∫

∂K

∂G

∂ny
(x, y)un(y)dsy.

By Theorem 2.7.2.3, ũn(x) → ũ(x) for x ∈ D\K. The sequence ũn is precompact

in D′(D). Thus every limit u0 of the ũn coincides with ũ(x) in
◦
K and in D\K.

Hence, u0 ≡ ũ in D′(D). �

2.7.3 The property sh2), Theorem 2.6.1.1, shows that the maximum of any finite
number of subharmonic functions is a subharmonic function too. However, it is
not so if the number is not finite.

Example 2.7.3.1 Set un(z) = 1
n log |z|, n = 1, 2 . . . . The functions un ∈ SH(K1).

Taking the supremum in n we obtain

u(z) =: sup
n
un(z) =

{
0, for z �= 0;
−∞ for z = 0.

The function is not semicontinuous, thus it is not subharmonic. However, it differs
from a subharmonic function on a set of zero capacity. The following theorem
shows that this holds in general.

Theorem 2.7.3.1 (H. Cartan) Let a family {uα ∈ SH(D), α ∈ A} be bounded
from above and u(x) := supα∈A uα(x). Then u∗ ∈ SH(D) and the set E := {x :
u∗(x) > u(x)} is a zero capacity set.

For proving this theorem we need an auxiliary assertion

Theorem 2.7.3.2 Let Π(x, μn, D) be a monotonically decreasing sequence of Green
potentials and suppμn ⊂ K � D. Then there exists a measure μ such that the
inequality

lim
n→∞Π(x, μn, D) ≥ Π(x, μ,D)

holds for all x ∈ D with equality outside some set of zero capacity.

Proof. The sequence Π(x, μn, D) converges monotonically and thus in D′ (The-
orem 2.3.4.3). Then μn → μ in D′ (Theorem 2.2.4.2.) and thus in C∗- topology
(Theorem 2.3.4.4). By GPo5) (Theorem 2.5.1.1) we have

lim
n→∞Π(x, μn, D) ≥ Π(x, μ,D).

Suppose that the strict inequality holds on some set E of a positive capacity. By
Theorem 2.5.2.3 one can find a compact set K ⊂ E such that cap(K) > 0. Then
there exists a measure ν concentrated on E such that its potential Π(x, ν,D) is
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continuous (Theorem 2.5.5.2). Thus we have∫
Π(x, μ,D)ν(dx) <

∫
lim

n→∞Π(x, μn, D)ν(dx) = lim
n→∞

∫
Π(x, μn, D)ν(dx),

lim
n→∞

∫
Π(x, ν,D)μn(dx) =

∫
Π(x, ν,D)μ(dx) =

∫
Π(x, μ,D)ν(dx).

The equalities use Theorem 2.2.2.2 (B. Levy), reciprocity law (GPo4), Theorem
2.5.1.1, C∗-convergence of μn and once more the reciprocity law, respectively. So
we have a contradiction. �

Proof of Theorem 2.7.3.1. Suppose that un(x) ↑ u(x). We can suppose also that
un < 0. For any domain G � D the sequence ũn(x) → u(x) for x ∈ G (see
Theorem 2.7.2.1), because un(x) = ũn(x) for x ∈ G. Since ũn = Π(x, μ̃n, D) for
x ∈ D, ũ(x) = Π(x, μ̃,D) = u(x) for x ∈ G and coincides with limn→∞ un(x)
outside some set EG of zero capacity. Consider a sequence of domains Gn that
exhaust D. Then u(x) = limn→∞ un(x) outside the set E := ∪∞n=1EGn which has
zero capacity by capZ1) (see item 2.5.2).

Now let {un, n = 1, 2 . . .} be a general countable set that satisfies the condi-
tions of the theorem. Then the sequence vn := max{uk : k = 1, 2 . . . , n} ∈ SH(D)
and vn ↑ u. Applying the previous reasoning we obtain the assertion of the theorem
also in this case.

Let {uα, α ∈ A} be an arbitrary set satisfying the condition of the theorem.
By Theorem 2.1.3.2 (Choquet’s Lemma) one can find a countable set A0 ⊂ A such
that

(sup
A0

uα)∗ = (sup
A
uα)∗.

Since supA0
uα ≤ supA uα, we have

E :=
{
x : (sup

A
uα)∗ > sup

A
uα

} ⊂ E0 :=
{
x : (sup

A0

uα)∗ > sup
A0

uα

}
.

Thus cap (E) ≤cap (E0) = 0. �

Corollary of Theorem 2.7.3.1 is

Theorem 2.7.3.3 (H. Cartan +) Let {ut, t ∈ (0; ∞)} ⊂ SH(D) be a bounded from
above family, and v := lim supt→∞ ut. Then v∗ ∈ SH(D) and the set E := {x :
v∗(x) > v(x)} has zero capacity.

Proof. Set un := supt≥n ut, En := {x : (un)∗ > un}, E := ∪En. Since cap(En) =
0, capE = 0 too.

Let x /∈ E. Then

v(x) = lim
n→∞ sup

t≥n
ut(x) = lim

n→∞(un)∗(x).
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The function
v∗ := lim

n→∞(un)∗(x)

is the upper semicontinuous regularization of v(x) for all x ∈ D. �

In spite of Example 2.7.3.1 we have

Theorem 2.7.3.4 (Sigurdsson’s Lemma) [Si] Let S ⊂ SH(D) be compact in D′.
Then

v(x) := sup{u(x) : u ∈ S}
is upper semicontinuous

and, hence, subharmonic.

Proof. Note that
uε(x) = 〈u, α(x − •)〉

(see (2.6.2.3), (2.3.2.1)); and it is continuous in (u, x) with respect to the product
topology on (SH(D) ∩ D′) × Rm (Theorem 2.3.4.6).

Let x0 ∈ D, a ∈ R and assume that v(x0) < a. We have to prove that there
exists a neighborhood X of x0 such that

v(x) < a, x ∈ X. (2.7.3.1)

We choose δ > 0 such that v(x0) < a−δ. If u0 ∈ SH(D) and ε is chosen sufficiently
small, then

u0(x0) ≤ u0
ε(x0) < a− δ

by Theorem 2.6.2.3 (Smooth Approximation).
Since uε(x) is continuous, there exists an open neighborhood U0 of u0 in

SH(D) and an open neighborhood X0 of x0 such that

uε(x) < a− δ, u ∈ U0, x ∈ X0.

The property ap2) (Theorem 2.6.2.3) implies

u(x) < a− δ, u ∈ U0, x ∈ X0. (2.7.3.2)

Since u0 is arbitrary and S is compact, there exists a finite covering U1, U2, . . . , Un

of S and open neighborhoods X1, X2, . . . , Xn of x0 such that (2.7.3.2) holds for all
(u, x) : u ∈ Uj , x ∈ Xj , j = 1, . . . , n. Set X := ∩jXj . Then (2.7.3.1) holds. �

2.7.4 Now we are going to connect D′-convergence to convergence outside a zero
capacity set, the so-called quasi-everywhere convergence.

Theorem 2.7.4.1 (D′ and Quasi-everywhere Convergence) Let un, u ∈ SH(D)
and un → u in D′(D). Then u(x) = lim supn→∞ un(x) quasi-everywhere and
u(x) = (lim supn→∞ un(x))∗ everywhere in D.
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For the proof we need the following assertion in the spirit Theorem 2.7.3.2.

Theorem 2.7.4.2 Let μn → μ in D′(D) and suppμn ⊂ K � D. Then

lim inf
n→∞ Π(x, μn, D) ≥ Π(μ,D)

with equality quasi-everywhere.

Proof. The inequality was in GPo5), Theorem 2.5.1.1.
Suppose the set

E := {x : lim inf
n→∞ Π(x, μn, D) > Π(x, μ,D)

has a positive capacity. By Theorem 2.5.2.3 one can find a compact set K ⊂ E
such that cap(K) > 0. By Theorem 2.5.5.2 one can find a measure ν concentrated
on K with continuous potential. As in the proof of Theorem 2.7.3.2 we have∫

Π(x, μ,D)ν(dx) <
∫

lim inf
n→∞ Π(x, μn, D)ν(dx) ≤ lim inf

n→∞

∫
Π(x, μn, D)ν(dx)

= lim inf
n→∞

∫
Π(x, ν,D)μn(dx) =

∫
Π(x, ν,D)μ(dx) =

∫
Π(x, μ,D)ν(dx).

The second inequality uses Theorem 2.2.2.3 (Fatou’s Lemma). The equalities use
the reciprocity law (GPo4), Theorem 2.5.1.1, C∗-convergence of μn and once more
the reciprocity law, respectively. So we have a contradiction. �

Proof of Theorem 2.7.4.1. Let D1 � D. Then the sequence un is bounded in D1

by Theorem 2.7.1.1. We can assume that un(x) < 0 for x ∈ D1.
For any domainG � D1 the sequence ũn(x,G) → u(x) in D′(D1) by Theorem

2.7.2.2. We also have the equality ũn = −Π(x, μ̃n, D1). Thus μ̃n → μ̃ in D′(D1).
By Theorem 2.7.4.2, lim infn→∞ Π(x, μ̃n, D1) = Π(x, μ̃,D1) quasi-everywhere in
D1. Hence

lim sup
n→∞

un = u (2.7.4.1)

quasi-everywhere in G because un(x) = ũn(x) for x ∈ G.
Consider a sequence of domains Gn that exhaust D. Then (2.7.4.1) holds out-

side a set En of zero capacity and (2.7.4.1) holds in D outside the set E := ∪∞n=1En

which has zero capacity by capZ1) (see item 2.5.2), i.e., quasi-everywhere. �

2.7.5 Now we connect the convergence of subharmonic functions in D′ to the
convergence relative to the Carleson measure (see 2.5.4).

We say that a sequence of functions un converges to a function u relative to
the α-Carleson measure if the sets En := {x : |un(x) − u(x)| > ε} possess the
property

α− mesC En → 0. (2.7.5.1)
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Theorem 2.7.5.1 (D′ and α-mesC Convergences) Let un, u ∈ SH(D) and un → u
in D′(D). Then for an every α > 0 and every domain G � D un → u relative to
the (α +m− 2)-Carleson measure.

For proving this theorem we need some auxiliary definitions and assertions.
Let μ be a measure in Rm. We will call a point x ∈ Rm (α, α′, ε)-normal with

respect to the measure μ, (α < α′) if the inequality

μx(t) := μ(Kx,t) < ε−α′tα+m−2

holds for all t < ε.

Theorem 2.7.5.2 In any (α, α′, ε)-normal point the following inequality holds:

−
∫

Kz,ε

[log |z − ζ| − log ε]dμζ ≤ Cεα−α′ , for m = 2;∫
Kx,t

[|x− y|2−m − ε2−m]dμy ≤ Cεα−α′ , for m ≥ 3;

while C = C(α,m) depends on α and m only.

Proof. Let us consider the case m = 2. We have∫
Kz,ε

log
ε

|z − ζ|dμζ =
∫ ε

0

log
ε

t
dμz(t).

Integrating by parts we obtain∫
Kz,ε

log
ε

|z − ζ|dμζ = log
ε

t
μz(t) |ε0 +

∫ ε

0

μz(t)
t

dt

≤ ε−α′
∫ ε

0

tα−1dt =
1
α
εα−α′ .

Let us consider the case m ≥ 3. We have∫
Kx,t

[|x− y|2−m − ε2−m]dμy =
∫ ε

0

(t2−m − ε2−m)dμx(t)

= (t2−m − ε2−m)μx(t) |ε0 +(m− 2)
∫ ε

0

μx(t)
tm−2

dt

≤ m− 2
εα′

∫ ε

0

tα−1dt =
m− 2
α

εα−α′ . �

Theorem 2.7.5.3 (Ahlfors-Landkof Lemma) Let a set E ⊂ Rm be covered by balls
with bounded radii such that every point is a center of a ball. Then there exists an at
most countable subcovering of the same set with maximal multiplicity cr = cr(m).

I.e., every point of E is covered no more than cr times. Let us note that
cr(2) = 6.

For the proof see [La, Ch. III, § 4, Lem. 3.2].
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Theorem 2.7.5.4 Let K � D. The set E := E(α, α′, ε, μ) of points that belong to
K and are not (α, α′, ε)-normal with respect to μ satisfies the condition

(α +m− 2) − mesC E ≤ cr(m)εα
′
μ(Kε) (2.7.5.2)

where Kε is the 2ε-extension of K.

Proof. Let x ∈ E. Then there exists tx such that

μx(tx) ≥ tα+m−2
x ε−α′ .

Thus every point of E is covered by a ball Kx,tx . By the Ahlfors-Landkof lemma
(Theorem 2.7.5.3) one can find a no more than cr(m)-multiple subcovering
{Kxj,txj

}. Then we have ∑
j

tα+m−2
xj

≤ cr(m)εα
′
μ(Kε).

By definition of the Carleson measure we obtain (2.7.5.2). �

Theorem 2.7.5.5 Let μn → μ in D′(Rm) and suppμn ⊂ K � Rm. Then for every
α > 0 and G � Rm, Π(x, μn) → Π(x, μ) relative to the (α + m − 2)-Carleson
measure.

Proof. Let m = 2. Set

logε |z − ζ| =

{
log |z − ζ|, for |z − ζ| > ε,

log ε, for |z − ζ| ≤ ε.

This function is continuous for (z, ζ) ∈ K ×K.
Set νn := μn − μ. Then we have

−
∫

log |z − ζ|μn(dζ) +
∫

log |z − ζ|μ(dζ) = −
∫

log |z − ζ|νn(dζ)

= −
∫

logε |z − ζ|νn(dζ) −
∫

Kz,ε

[log |z − ζ| − log ε]νn(dζ).

The function logε |z−ζ| is continuous in ζ uniformly over z ∈ K. Thus the sequence

Πε(z) :=
∫

logε |z − ζ|νn(dζ)

converges uniformly to zero on K. Suppose now that

z /∈ E(α, α′, ε, μ) ∪ E(α, α′, ε, μn),
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i.e., it is an (α, α′, ε)- normal point for μ and μn. By Theorem 2.7.5.2 we have∫
Kz,ε

[log |z − ζ| − log ε]νn(dζ) < 2Cεα−α′ .

Thus for sufficiently large n > n0(ε),

|Π(z, μn) − Π(z, μ)| =
∣∣∣∣∫ log |z − ζ|μn(dζ) −

∫
log |z − ζ|μ(dζ)

∣∣∣∣ < δ = δ(ε)

while z /∈ E(α, α′, ε, μ) ∪E(α, α′, ε, μn) := En(ε).
By Theorem 2.7.5.3 the Carleson measure of En(ε) satisfies the inequality

α− mesC En(ε) ≤ cr(m)εα
′
[μ(K) + μn(K)] ≤ Cεα

′
:= γ(ε)

where C = C(K) does not depend on n because μn(K) are bounded uniformly.
Hence, for any ε > 0 the set

E′n(ε) := {z : |Π(z, μn) − Π(z, μ)| > δ(ε)}
satisfies the condition

α− mesC E
′
n(ε) ≤ γ(ε) (2.7.5.3)

while n > n0 = n0(ε).
Let us show that Π(z, μn) → Π(z, μ) relative to α − mesC on K. Let γ0, δ0

be arbitrarily small. One can find ε such that δ(ε) < δ0, γ(ε) < γ0. One can find
n0 = n0(ε) such that (2.7.5.3) is fulfilled. Now the set

En,δ0 := {z : |Π(z, μn) − Π(z, μ)| > δ0}
is contained in E′n(ε). Thus α− mesC En,δ0 < γ0 and this implies the convergence
relative to α− mesC . An analogous reasoning works for m ≥ 3. �

Proof of Theorem 2.7.5.1. Let un → u in D′. One can assume that un, u are
potentials on any compact set (Theorem 2.7.2.2). Hence, by Theorem 2.7.5.5 it
converges relative (α+m− 2) − mesC . �

2.8 Scale of growth. Growth characteristics

of subharmonic functions

2.8.1 Let A be a class of nondecreasing functions a(r), r ∈ (0,∞) such that
a(r) ≥ 0 and a(r) → ∞ when r → ∞. The quantity

ρ[a] := lim sup
r→∞

log a(r)
log r

(2.8.1.1)

is called the order of a(r).
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Suppose ρ := ρ[a] < ∞. The number

σ[a] := lim sup
r→∞

a(r)
rρ

(2.8.1.2)

is called the type number.
If σ[a] = 0, we say a(r) has minimal type. If 0 < σ[a] < ∞, a(r) has normal

type. If σ[a] = ∞, it has maximal type.

Example 2.8.1.1 Set a(r) := σ0r
ρ0 . Then ρ[a] = ρ0, σ[a] = σ0.

Example 2.8.1.2 Set a(r) := (log r)−1rρ0 . Then ρ[a] = ρ0, σ[a] = 0.

Example 2.8.1.3 Set a(r) := (log r)rρ0 . Then ρ[a] = ρ0, σ[a] = ∞.

Theorem 2.8.1.1 (Convergence Exponent) The following equality holds:

ρ[a] = inf
{
λ :

∫ ∞ a(r)dr
rλ+1

< ∞
}
. (2.8.1.3)

If the integral converges for λ = ρ[a], a(r) has minimal type.

Exercise 2.8.1.1 Prove this.

For the proof see, e.g., [HK, § 4.2].

Example 2.8.1.4 Let rj , j = 1, 2, . . . be a nondecreasing sequence of positive
numbers. Let us concentrate the unit mass in every point rj and define a mass
distribution

n(E) := {the number points of the sequence {rj} in E}, E ⊂ R.

Then ∫ ∞

0

dn

rλ
=

∞∑
1

1
rλ
j

. (2.8.1.4)

The infimum of λ for which the series in (2.8.1.4) converges is usually called
the convergence exponent for the sequence {rj} [PS, Part I, Sec. 1, Ch. III, § 2].
Integrating by parts one can transform the integral in (2.8.1.4) to an integral
of the form (2.8.1.3) where a(r) = n((−∞, r)). Theorem 2.8.1.1 shows that the
convergence exponent coincides with the order of this a(r).

A function ρ(r) is called a proximate order with respect to order ρ if

po1) ρ(r) ≥ 0,

po2) limr→∞ ρ(r) = ρ,

po3) ρ(r) has a continuous derivative on (0,∞),

po4) limr→∞ r log rρ′(r) = 0.
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Two proximate orders ρ1(r) and ρ2(r) are called equivalent, if

ρ1(r) − ρ2(r) = o

(
1

log r

)
. (2.8.1.5)

For a ∈ A set

σ[a, ρ(r)] := lim sup
r→∞

a(r)
rρ(r)

. (2.8.1.6)

It is called a type number with respect to a proximate order ρ(r). It is clear that
this type number is the same for equivalent proximate orders.

Theorem 2.8.1.2 (Proper Proximate Order) Let a ∈ A and ρ[a] = ρ < ∞. Then
there exists a proximate order ρ(r) such that

0 < σ[a, ρ(r)] < ∞. (2.8.1.7)

For the proof see [Le, Ch. 1, Sec. 12, Thm. 16].
If a proximate order satisfies the condition (2.8.1.7), we will call it the proper

proximate order of a(r) (p.p.o.). The function rρ(r) inherits a lot of useful proper-
ties of the power function rρ.

Theorem 2.8.1.3 (Properties of P.O) The following holds:

ppo1) the function V (r) := rρ(r) increases monotonically for sufficiently large
values of r.

ppo2) for q < ρ+ 1, ∫ r

1

tρ(t)−qdt ∼ rρ(r)+1−q

ρ+ 1 − q

and for q > ρ+ 1, ∫ ∞

r

tρ(t)−qdt ∼ rρ(r)+1−q

q − ρ− 1
as r → ∞.

ppo3) the function L(r) := rρ(r)−ρ satisfies the condition

∀δ > 0, L(kr)/L(r) → 1

when r → ∞ uniformly for k ∈ [1δ , δ].

Exercise 2.8.1.2 Prove these properties.

For the proof see, e.g., [Le, Ch. 2, Sec. 12]. The following assertion allows us
to replace any p.o. with a smooth one.

Theorem 2.8.1.4 (Smooth P.O) Let ρ(r) be an arbitrary p.o. There exists an in-
finitely differentiable equivalent p.o. ρ1(r) such that

rk log rρ(k)
1 (r) → 0, k = 1, 2, . . . (2.8.1.8)

when r → ∞.
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Proof. Let αε be defined by (2.3.1.3). Set ε := 0.5, po(x) := ρ(ex) and

po1(x) := po(n) + [po(n+ 1) − po(n)]
∫ x

n

α0.5(t+ 0.5)dt

for x ∈ [n, n + 1). The function po1(x) is continuous and infinitely differentiable
due to properties of αε and po1(n) = po(n) for n = 1, 2, . . . . By property po3) of
p.o. we have

(n+ 1)|po(n+ 1) − po(n)| ≤ n+ 1
n

max
y∈[n,n+1]

|y · po′(y)| → 0

as n → ∞. Thus

max
y∈[n,n+1]

|y · po(k)
1 (y)| ≤ const ·(n+ 1)|po(n+ 1) − po(n)| → 0

as n → ∞.
So ρ1(r) := po1(log r) is a p.o. that satisfies (2.8.1.8). Let us show that it is

equivalent to ρ(r). Indeed

|po(x) − po1(x)| =
∣∣∣∣∫ x

n

[po(y) − po1(y)]′y
dy

y

∣∣∣∣
≤ max

y∈[n,n+1]
[|y · po′(y)| + |y · po′1(y)|] log

n+ 1
n

= o

(
1
x

)
,

when x ∈ [n, n+ 1] and n → ∞. �

We will further need (in 2.9.3) the following assertion.

Theorem 2.8.1.5. (A.A. Gol′dberg) Let ρ(r) → ρ be a p.o., and let f(t) be a
function that is locally summable on (0,∞) and such that

lim
t→0

tρ+δf(t) = lim
t→∞ t

ρ+1+γf(t) = 0 (2.8.1.9)

for some 0 < δ, γ < 1.
Then

lim
r→∞ r

−ρ(r)

∫ x

cr−1
(rt)ρ(rt)f(t)dt =

∫ x

0

tρf(t)dt,

lim
r→∞ r

−ρ(r)

∫ ∞

x

(rt)ρ(rt)f(t)dt =
∫ ∞

x

tρf(t)dt
(2.8.1.10)

for any c > 0 and any x ∈ (0,∞).
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Proof. Set

I(r) :=
∫ ∞

cr−1

(rt)ρ(rt)

rρ(r)
f(t)dt.

It will be enough to prove that

lim
r→∞ I(r) =

∫ ∞

0

tρf(t)dt (2.8.1.11)

because both functions

f0(t, x) :=

{
f(t), for t ∈ (0, x),
0 for t ∈ [x,∞)

and f∞(t, x) := f(t) − f0(t, x) also satisfy the condition of the theorem.
Let us represent the integral as the following sum:

I(r) :=
∫ ∞

cr−1

(rt)ρ(rt)

rρ(r)
f(t)dt = I1(r, ε) + I2(r, ε) + I3(r, ε), (2.8.1.12)

where

I1(r, ε) :=
∫ ε

cr−1

(rt)ρ(rt)

rρ(r)
f(t)dt,

I2(r, ε) :=
∫ ε−1

ε

(rt)ρ(rt)

rρ(r)
f(t)dt,

I3(r, ε) :=
∫ ∞

ε−1

(rt)ρ(rt)

rρ(r)
f(t)dt.

We can represent I2(r, ε) in the form

I2(r, ε) =
∫ ε−1

ε

L(rt)
L(r)

tρf(t)dt.

By ppo3) (Theorem 2.8.1.3),

lim
r→∞ I2(r, ε) =

∫ ε−1

ε

tρf(t)dt. (2.8.1.13)

Let us estimate the “tails”. From (2.8.1.9) we have

|f(t)| ≤ Ct−ρ−δ

for 0 < t ≤ ε where C does not depend on ε and

|f(t)| ≤ Ct−ρ−1−γ
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for t ≥ ε−1. We have

|I1(r, ε)| ≤ C

∫ ε

cr−1

(rt)ρ(rt)

rρ(r)
t−ρ−δdt := CJ1(r, ε)

and
lim sup

r→∞
|I1(r, ε)| ≤ C lim

r→∞J1(r, ε). (2.8.1.14)

Let us calculate the last limit.We perform the change x = tr:

J1(r, ε) = r−ρ(r)+ρ+δ−1

∫ εr

c

t−ρ(x)−(ρ+δ)dx.

Now we use ppo2) for q = ρ+ δ and ppo3):

lim
r→∞J1(r, ε) =

1
1 − δ

lim
r→∞

(εr)ρ(εr)−(ρ+δ)+1

rρ(r)−(ρ+δ)+1

=
ε1−δ

1 − δ
lim

r→∞
L(εr)
L(r)

=
ε1−δ

1 − δ
.

Substituting in (2.8.1.14) we obtain

lim sup
r→∞

|I1(r, ε)| ≤ C
ε1−δ

1 − δ
. (2.8.1.15)

Analogously one can obtain

lim sup
r→∞

|I3(r, ε)| ≤ C
εγ

γ
. (2.8.1.16)

Using (2.8.1.13), (2.8.1.15) and (2.8.1.16) one can pass to the limit in (2.8.1.12)
as r → ∞, then let ε → 0 and obtain (2.8.1.11). �

2.8.2 Let
u(x) := u1(x) − u2(x) (2.8.2.1)

where u1, u2 ∈ SH(Rm), u1(0) > −∞, u2(0) = 0 and μ1 := μu1 , μ2 := μu2 are
concentrated on disjoint sets.

Let m = 2, uj(z) := log |fj(z)|, j = 1, 2 where fj(z), j = 1, 2 are en-
tire functions. Then the function u(z) = log |f(z)|, where f(z) := f1(z)/f2(z), is
meromorphic. The condition for masses means that f1 and f2 have no common
zeros, u2(0) = 0 corresponds to f2(0) = 1 and u1(0) > −∞ means f1(0) �= 0.

The class of such functions is denoted as δSH(Rm). In spite of the standard-
ization conditions the representation (2.8.2.1) is not unique. However for any pair
of representations u1 − u2 and u′1 − u′2,

uj(x) − u′j(x) = Hj(x), j = 1, 2 (2.8.2.2)

where Hj are harmonic and H2(0) = 0.
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Really, from the equality u1 − u2 = u′1 − u′2 we obtain μ1 − μ2 = μ′1 − μ′2.
Using Theorem 2.2.1.2 (Jordan decomposition) we obtain μ1 = μ′1, μ2 = μ′2. Thus
(2.8.2.2) holds. Obviously H2(0) = 0.

Set

T (r, u) :=
1
σm

∫
|y|=1

max(u1, u2)(ry)dy (2.8.2.3)

where σm is the surface square of the unit sphere. It is called the Nevanlinna
characteristic of u ∈ δSH(Rm).

The Nevanlinna characteristic does not depend on the representation (2.8.2.1).
Indeed,∫

|y|=1

max(u1, u2)(ry)dy =
∫
|y|=1

[(u1 − u2)+(ry) − u2(ry)]dy

=
∫
|y|=1

[(u′1 − u′2)
+(ry) − u′2(ry) +H2(rx)]dy

=
∫
|y|=1

[max(u′1, u
′
2)(ry) +H2(rx)]dy

=
∫
|y|=1

max(u′1, u
′
2)(ry)dy +H2(0)

=
∫
|y|=1

max(u′1, u
′
2)(ry)dy.

Note also that the class δSH(Rm) is linear.
Actually, let u ∈ δSH(Rm). Then λu ∈ δSH(Rm) for λ > 0. The function

−u ∈ δSH(Rm), since

−u(x) = [u2(x) − u1(0)] − [u1(x) − u1(0)].

Let us show that u1 + u2 ∈ δSH(Rm) if u, v ∈ δSH(Rm).
Set ν := νu + νv, where νu, νv are the corresponding charges. By Theorem

2.2.1.2 (Jordan decomposition) ν = ν+ − ν−, where ν+, ν− are measures concen-
trated on disjoint sets.

Let u1 be a subharmonic function in Rm the mass distribution of which
coincides with ν+.2 Then u2 := u1 − (u + v) is a subharmonic function with the
mass distribution ν−. Hence u(x) + v(x) = [u1(x) − u2(0)] − [u2(x) − u2(0)].

Theorem 2.8.2.1 (Properties T (r, u)) The following holds:

t1) T (r, u) increases monotonically and is convex with respect to −rm−2 for m =
2 and with respect to log r for m = 2.

2We will give the construction of such a function for the case of finite order (item 2.9.2), but it
is possible actually always, see, for example, [HK, Thm. 4.1]
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t2) For u ∈ SH(Rm), (i.e., u2 ≡ 0)

T (r, u) =
1
σm

∫
|y|=1

u+(ry)dy.

t3) T (r, u) = T (r,−u) − u1(0).
t4) T (r, u+ u′) ≤ T (r, u) + T (r, u′), T (r, λu) = λT (r, u) for λ > 0.

Proof. Since v(x) := max(u1, u2)(x) is subharmonic, t1) follows from Theorem
2.6.5.2 (Convexity of M(r, u) and M(r, u)).

The property t2) is obvious, t3) follows from the equality −u(x) = u2(x) −
[u1(x) − u1(0)] − u1(0).

The properties t4) follow from the properties of maximum and t3). �

Set ρT [u] := ρ[a] (see, (2.8.1.1)) where a(r) := T (r, u). It is called the order
of u(x) with respect to T (r).

Theorem 2.8.2.2 (ρT -property) For u1, u2 ∈ δSH(Rm) the following inequality
holds:

ρT [u1 + u2] ≤ max(ρT [u1], ρT [u2]). (2.8.2.4)

Equality in (2.8.2.4) is attained if ρT [u1] �= ρT [u2].

Proof. Set u := u1 + u2. From t3) and t4)

T (r, u) ≤ T (r, u1) + T (r, u2) +O(1) ≤ 2 max[T (r, u1), T (r, u2)] +O(1).

From the definition of ρT we obtain (2.8.2.4).
Suppose, for example, ρT [u1] > ρT [u2]. Let us show that ρT [u] = ρT [u1].

From the equality u1 = u+(−u2) we obtain ρT [u1] ≤ max(ρT [u], ρT [u2] If ρT [u] <
ρT [u1], then from the previous inequality we would have the contradiction ρT [u1] <
ρT [u1]. �

Let us define σT [u] by (2.8.1.2) while ρ := ρT [u]. Set also σT [u, ρ(r)] :=
σ[a, ρ(r)] (see (2.8.1.6)), where a(r) := T (r, u).

The characteristics ρT [u], σT [u], σT [u, ρ(r)] are defined for u ∈ δSH(Rm).
For the class of subharmonic functions we have the inclusion SH(Rm) ⊂ δSH(Rm)
and, of course, all these characteristics can be applied to a subharmonic function.
However, for the class SH(Rm) the standard characteristic of growth is M(r, u)
that we can not apply to a δ-subharmonic function u ∈ δSH(Rm). Thus for
u ∈ SH(Rm) we define new characteristics ρM [u], σM [u], σM [u, ρ(r)] in the same
way by replacing T (r, u) forM(r, u). The following theorem shows that there is not
a big difference between characteristics with respect to T and M for u ∈ SH(Rm).
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Theorem 2.8.2.3 (T and M -characteristics) Let u ∈ SH(Rm) and ρ(r)(→ ρ) any
p.o. Then

ρMT1) ρT [u] and ρM [u] are finite simultaneously and ρT [u] = ρM [u] := ρ[u]
ρMT2) there exists A := A(ρ,m) such that

AσM [u, ρ(r)] ≤ σT [u, ρ(r)] ≤ σM [u, ρ(r)].

In particular, the last property means that the types with respect to T (r)
and M(r) for the same p.o. are minimal, normal or maximal at the same time.

Proof. From t2), Theorem 2.8.2.1 we have T (r, u) ≤ M(r, u) for u ∈ SH(Rm).
Thus ρT [u] ≤ ρM [u], proving the second part of ρMT2).

Let H(x) be the least harmonic majorant of u(x) in the ball K2R. By the
Poisson formula (Theorem 2.4.1.5) and Theorem 2.6.1.3,

M(R, u) ≤ M(R,H) = max
|x|=R

1
σm2R

∫
|y|=2R

u(y)
(4R2 − |x|2)

|x− y|m dsy

≤ 2m−2

σm

∫
|y|=1

|u(2Ry)|dsy (2.8.2.5)

= 2m−2[T (2R, u) + T (2R,−u)] = 2m−2[2T (2R, u) − u(0)].

From here one can obtain ρT [u] ≥ ρM [u] . The left side of ρMT2) with A(ρ,m) :=
2−ρ−m+2 follows from the properties of p.o. �

Exercise 2.8.2.1 Prove the first inequality from ρMT2).

2.8.3 Let μ be a mass distribution (measure) in Rm (μ ∈ M(Rm)). The charac-
teristic

ρ[μ] := ρ[a] −m+ 2

for a(r) := μ(Kr) (see (2.8.1.1)) is called the convergence exponent of μ, and

Δ̄[μ] := σ[a]

for the same a (see (2.8.1.2)) is called the upper density of μ.
The least integer number p for which the integral∫ ∞ μ(t)

tp+m
dt (2.8.3.1)

converges is called the genus of μ and is denoted p[μ].

Theorem 2.8.3.1 (Convergence Exponent and Genus) The following holds:

ceg1) p[μ] ≤ ρ[μ] ≤ p[μ] + 1,

ceg2) for ρ[μ] = p[μ] + 1, Δ̄[μ] = 0.
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Proof. From Theorem 2.8.1.1 (Convergence Exponent) we have ρ[μ]+1+m−2 ≤
p[μ] + m. Thus ρ[μ] ≤ p[μ] + 1. The same theorem implies ρ[μ] + m − 2 + 1 ≥
p[μ] +m− 1. Thus p[μ] ≤ ρ[μ], and ceg1) is proved.

Let ρ(μ) = p[μ] + 1. Then the integral (2.8.3.1) converges for p[μ] = ρ[μ] − 1.
We use the inequality∫ ∞

r

μ(t)
tρ[μ]+m−1

dt ≥ μ(r)
∫ ∞

r

dt

tρ[μ]+m−1
dt =

μ(r)
rρ[μ]+m−2

(ρ[μ] +m− 2)−1.

Since the left side of the inequality tends to zero we obtain

Δ̄[μ] = lim
r→∞

μ(r)
rρ[μ]+m−2

= 0. �

Set
Δ̄[μ, ρ(r)] := σ[a, ρ(r) +m− 2], (2.8.3.2)

where a(r) := μ(r) (see (2.8.1.6)). It is clear that ρ(r) +m− 2 is also a p.o. Set as
in (2.6.5.1),

N(r, μ) := A(m)
∫ r

0

μ(t)
tm−1

dt,

where A(m) = max(1,m− 2). Set also

ρN [μ] := ρ[a], Δ̄N [μ, ρ(r)] := σ[a, ρ(r)],

where a(r) := N(r, μ). This is the N-order of μ and the N-type of μ with respect
to p.o. ρ(r).

Theorem 2.8.3.2 (N -order and Convergence Exponent) The following holds:

Nce1) ρN [μ] and ρ[μ] are finite simultaneously and ρN [μ] = ρ[μ],

Nce2) for ρ > 0 there exists such Aj := Aj(ρ,m), j = 1, 2, that

A1Δ̄[μ, ρ(r)] ≤ Δ̄N [μ, ρ(r)] ≤ A2Δ̄[μ, ρ(r)].

Proof. We have the inequality

N(2r, μ) ≥ A(m)
∫ 2r

r

μ(t)
tm−1

dt ≥ A(m)μ(r)
∫ 2r

r

dt

tm−1
≥ A(m)B(m)

μ(r)
(2r)m−2

,

where B(m) := 1 − 22−m for m ≥ 3 and B(2) := log 2.
From here one can obtain the inequality ρ[μ] ≥ ρN [μ] and the left side of

Nce2) for A1(ρ,m) := A(m)B(m)2−ρ. For proving the opposite inequalities we
use the l’Hôspital Rule (slightly improved):

lim sup
r→∞

N(r, μ)
rρ(r)

≤ lim sup
r→∞

N ′(r, μ)
(rρ(r))′

= lim sup
r→∞

μ(r)r2−m

rρ(r)[ρ(r) + r log rρ′(r)]
=

1
ρ
Δ̄[μ].

Thus ρN [μ] ≤ ρ[μ] and the right side of Nce2) holds. �
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We shall denote as δM(Rm) the set of charges (signed measures) of the form
ν := μ1 − μ2 where μ1, μ2 ∈ M(Rm). Let us remember that |ν| ∈ M(Rm) is the
full variation of ν (see 2.2.1).

Theorem 2.8.3.3 (Jensen) Let u := u1 − u2 ∈ δSH(Rm) and ν := μ1 − μ2 be a
corresponding charge. Then

J1) ρ[|ν|] ≤ max(ρ[μ1], ρ[μ2]) ≤ ρ[u],

J2) Δ̄[|ν|, ρ(r)] ≤ Δ̄[μ1, ρ(r)]+Δ̄[μ2, ρ(r)] ≤ AσT [u, ρ(r)] for some A := A(ρ,m).

Proof. We can suppose without loss of generality that u(0) = 0 because the func-
tion u(x) −u(0) has the same order and the same number type if ρ > 0. We apply
the Jensen-Privalov formula (Theorem 2.6.5.1) to the functions u1, u2 and obtain

N(r, μj) ≤ M(r, uj) ≤ T (r, u).

Thus N(r, |ν|) ≤ N(r, μ1)+N(r, μ2) ≤ 2T (r, u). From here one can obtain J1) and
J2) for ρN [|ν|] and Δ̄N [|ν|, ρ(r)]. However, we can delete the subscript N because
of Theorem 2.8.3.2. �

2.9 The representation theorem of

subharmonic functions in Rm

2.9.1 Set

H(z, cosγ,m) :=

{
− 1

2 log(z2 − 2z cos γ + 1), for m = 2,

(z2 − 2z cos γ + 1)−
m−2

2 , for m ≥ 3.
(2.9.1.1)

The function H(z, cosγ,m) is holomorphic on z in the disk {|z| < 1}. It can be
represented there in the form

H(z, cosγ,m) =
∞∑

k=0

C
m−2

2
k (cos γ)zk (2.9.1.2)

where every coefficient Cβ
k (•), k = 0, 1, . . . is a polynomial of degree k.

Such polynomials are called the Gegenbauer polynomials. Note that C
1
2
k (•)

are the Legendre polynomials and

C0
k(λ) =

{
0, for k = 0,
1
k cos(k arccosλ), for k ≥ 1,

i.e., they are proportional to the Chebyshev polynomials.
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Thus for m = 2 we have the equality

−1
2

log(z2 − 2z cos γ + 1) =
∞∑

k=1

cos kγ
k

zk

that can be checked directly.
Let x ∈ Rm. Set x0 := x/|x|. Then the scalar product (x0, y0) is equal to

cosγ where γ is the angle between x and y.
Let Em(x) be defined by (2.4.1.1). For m ≥ 3 the function Em(x − y) is the

Green function for Rm. One can see that it is represented in the form

G(x, y,Rm) := Em(x− y) = −|y|2−mH(|x|/|y|, cos γ,m)

where cos γ = (x0, y0).
For m = 2 the function −H(|x|/|y|, cosγ, 2) plays the same role. Thus we

will denote it as G(x, y,R2).

Theorem 2.9.1.1 (Expansion of G(x, y,Rm)) The following holds:

G(x, y,Rm) = −
∞∑

k=0

C
m−2

2
k (cos γ)

|x|k
|y|k+m−2

, (2.9.1.3)

for |x| < |y|, and the functions

Dk(x, y) := C
m−2

2
k (cos γ)

|x|k
|y|k+m−2

(2.9.1.4)

are homogeneous harmonic functions in x and harmonic in y for y �= 0.

Proof. The expansion (2.9.1.3) follows from (2.9.1.2). The function G(zx, y,Rm)
is harmonic for |x| < |y| and, hence, for any real 0 ≤ z < 1. Hence, for any
ψ ∈ D(Kr) while r := 0.5|y| the function g(z) := 〈G(z•, y,Rm),Δψ〉 = 0 for
z ∈ (0, 1). The function g is holomorphic for all complex z ∈ {|z| < 1} because
G(zx, y,Rm) is holomorphic. Thus g(z) ≡ 0, i.e., all its coefficients are zero.

From the expansion (2.9.1.3) we can see that the coefficients of G(zx, y,Rm)
are Dk(x, y). Hence, 〈Dk(•, y),Δψ〉 = 0 for every ψ ∈ D(Kr). Thus Dk(•, y) is a
harmonic distribution. By Theorem 2.4.1.1 it is an ordinary harmonic function for
|x| < 0.5|y|.

C
m−2

2
k (cos γ) is a polynomial of degree k with respect to (x0, y0). Thus

Dk(x, y) is a homogeneous polynomial of x and is harmonic for all x.
Let us prove the harmonicity in y.
By Theorem 2.4.1.10 the function Dk(y∗, x0)|y|2−m (∗ stands for inversion)

is harmonic in y. We have

Dk(y∗, x0)|y|2−m = |y|2−mDk(y/|y|2, x0) = Dk(x0, y). �
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Set

H(z, cosγ,m, p) = H(z, cos γ,m) −
p∑

k=0

C
m−2

2
k (cos γ)zk. (2.9.1.5)

Theorem 2.9.1.2 The following holds:

|H(z, cosγ,m, p)| ≤ A1(m, p)|z|p+1 (2.9.1.6)

for |z| ≤ 1/2, and
|H(z, cos γ,m, p)| ≤ A2(m, p)|z|p (2.9.1.7)

for |z| ≥ 2, −π < arg z ≤ π.
The factor |z|p should be replaced by log |z| if m = 2, p = 0.

Proof. Consider the function φ(z) := H(z, cosγ,m, p)z−p−1. It is holomorphic in
the disk {|z| ≤ 1/2}. We apply the maximum principle and obtain (2.9.1.6) where

A1(m, p) = 2p+1 max
|z|=1/2

|φ(z)|.

For proving (2.9.1.7) we consider the function ψ(z) := H(z, cosγ,m, p)z−p that is
holomorphic in the domain D := {z : |z| ≥ 2, −π < arg z ≤ π} and continuous in
its closure. Applying the maximum principle we obtain (2.9.1.7) where

A2(m, p) = 2p max
z∈∂D

|ψ(z)|. �

Set
Gp(x, y,m) := −|y|2−mH(|x|/|y|, cos γ,m, p)

where cos γ = (x0, y0).
Note the equality

Gp(x, y,m) = G(x, y,Rm) +
p∑

k=0

Dk(x, y).

Exercise 2.9.1.1 Check this using (2.9.1.3), (2.9.1.4) and (2.9.1.5).

It looks like a Green function for Rm but it tends more quickly to zero at
infinity and generally speaking it is not negative.

For m = 2 it can be represented in the form

Gp(z, ζ, 2) = log |E(z/ζ, p)|
where E(z/ζ, p) is the primary Weierstrass factor:

E(z/ζ, p) :=
(

1 − z

ζ

)
exp

[(
z

ζ

)
+

1
2

(
z

ζ

)2

+ · · · +
1
p

(
z

ζ

)p
]
.

We will call it the primary kernel analogously to the primary factor.
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Theorem 2.9.1.3 (Estimate of Primary Kernel) The following holds:

|Gp(x, y,m)| ≤ A(m, p)
|x|p+1

|y|p+m−1
(2.9.1.8)

for |x| < 2|y|,
|Gp(x, y,m)| ≤ A(m, p)

|x|p
|y|p+m−2

(2.9.1.9)

for |y| < 2|x|, and

Gp(x, y,m) ≤ A(m, p)min
( |x|p+1

|y|p+m−1
,

|x|p
|y|p+m−2

)
(2.9.1.10)

for all x, y ∈ Rm, where A(m, p) does not depend on x, y.

For m = 2, p = 0 we have Gp(z, ζ, 2) ≤ A(2, 0) log(1 + |z|
|ζ|).

Proof. The inequality (2.9.1.8) follows directly from (2.9.1.6) and (2.9.1.9) follows
from (2.9.1.7). By the condition 2 ≤ |x|/|y| (2.9.1.10) follows from (2.9.1.9).

Suppose 1/2 ≤ |x|/|y| ≤ 2. Since all the summands in (2.9.1.5) are bounded
from below, for 1/2 ≤ z ≤ 2 we have

Gp(x, y,m) ≤ A1(m, p)|y|2−m ≤ A(m, p)min
( |x|p+1

|y|p+m−1
,

|x|p
|y|p+m−2

)
also under these conditions.

The case m = 2, p = 0 is obvious. �

2.9.2 Let μ ∈ M(Rm). We suppose below that its support does not contain the
origin.

We will say that the integral
∫

Rm f(x, y)μ(dy) converges uniformly on x ∈ D
if

sup
x∈D

∣∣∣∣∣
∫
|y|>R

f(x, y)μ(dy)

∣∣∣∣∣ → 0

when R → ∞.
Hence, the integral is permitted to be equal to infinity for some finite x.
Let μ have genus p (see, 2.8.3). Set

Π(x, μ, p) :=
∫

Rm

Gp(x, y,m)μ(dy). (2.9.2.1)

It is called the canonical potential.
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In particular, let m = 2 and μ := n be a zero distribution, i.e., it has unit
masses concentrated on a discrete point set {zj : j = 1, 2, . . . }. Then

Π(z, n, p) = log

∣∣∣∣∣∣
∞∏

j=1

E

(
z

zj
, p

)∣∣∣∣∣∣
where ∞∏

j=1

E

(
z

zj
, p

)
is the canonical Weierstrass product.

Theorem 2.9.2.1 (Brelot-Weierstrass) The canonical potential (2.9.2.1) converges
uniformly on any bounded domain. It is a subharmonic function with μ as its Riesz
measure.

Proof. Let |x| < R0 and |y| > R. From the estimate of the primary kernel
(Theorem 2.9.1.3) we have∣∣∣∣∫|y|>R

Gp(x, y,m)μ(dy)
∣∣∣∣ ≤ A(m, p)|x|p+1

∫
|y|>R

|y|−p−m+1μ(dy)

= A(m, p)|x|p+1

∫ ∞

R

t−p−m+1μ(dt).

Integrating by part we obtain∫ ∞

R

t−p−m+1μ(dt) =
μ(R)

Rp+m−1
+ (p+m− 1)

∫ ∞

R

μ(t)
tp+m

dt.

The last integral converges since the genus of μ is p. Hence, both summands tend
to zero when R → ∞. Thus

sup
|x|<R0

∣∣∣∣∫|y|>R

Gp(x, y,m)μ(dy)
∣∣∣∣ → 0

while R0 is fixed and R → ∞, i.e., the canonical potential converges uniformly on
any bounded domain.

Let us represent the canonical potential for R > R0 in the form

Π(x, μ, p) =
∫
|y|<R

G(x, y,Rm)μ(dy) +
∫
|y|<R

p∑
k=0

Dk(x, y)μ(dy)

+
∫
|y|>R

Gp(x, y,m)μ(dy).

The first summand is a potential, hence a subharmonic function and its Riesz
measure coincide with μ. The other summands are harmonic for |x| < R0. �
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The following proposition estimates the growth of the canonical potential in
terms of its masses.

Theorem 2.9.2.2 (Estimation of Canonical Potential) The following inequality
holds:

M(r,Π(•, μ, p)) ≤ A

[∫ ∞

0

μ(rτ)
rm−2

min(1, τ−1)
τp+m−1

dτ +
μ(r)
rm−1

]
(2.9.2.2)

where A := A(m, p) does not depend on r and μ.

Proof. From (2.9.1.10),

Π(x, μ, p) ≤ A(m, p)
∫

Rm

min
( |x|p+1

|y|p+m−1
,

|x|p
|y|p+m−2

)
μ(dy).

Set r := |x|, t := |y|. Then we have

M(r,Π(•, μ, p)) ≤ A

∫ ∞

0

min
(

rp+1

tp+m−1
,

rp

tp+m−2

)
μ(dt). (2.9.2.3)

The integral on the right side of (2.9.2.3) can be represented in the form∫ r

0

rp

tp+m−2
μ(dt) +

∫ ∞

r

rp+1

tp+m−1
μ(dt).

Integrating every integral by parts we obtain

(p+m− 2)
∫ r

0

rp

tp+m−1
μ(t)dt+ (p+m− 1)

∫ ∞

r

rp+1

tp+m
μ(t)dt+

μ(r)
rm−1

≤ (p+m− 1)
∫ ∞

0

min
(
1,
r

t

) rp

tp+m−1
μ(t)dt +

μ(r)
rm−1

.

After the change t = rτ we obtain (2.9.2.2) where the new A(m, p) is equal to
A(m, p)(p+m− 1). �

Theorem 2.9.2.3 (Brelot-Borel) The order of the canonical potential is equal to
the convergence exponent of its mass distribution, i.e.,

ρ[Π(•, μ, p)] = ρ[μ],

if the genus of μ is equal to p.

Proof. First assume ρ[μ] < p+ 1. Let us choose λ such that ρ[μ] < λ < p+ 1.
For some constant C that does not depend on t we have μ(t) ≤ Ctλ+m−2.
Actually, μ(t)/tλ+m−2 → 0, because λ > ρ[μ]. Since μ(t) = 0 for small t, this

function is bounded and we can take its lower bound as C.
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Now we have

f(r, τ) :=
μ(rτ)
rλ+m−2

min(1, τ−1)
τp+m−1

≤ Cτλ−p−1 min(1, 1/τ) (2.9.2.4)

for all τ ∈ (0,∞).
We also have

lim
r→∞ f(r, τ) = 0 (2.9.2.5)

because of λ > ρ[μ].
Let us divide (2.9.2.2) by rλ and pass to the upper limit. By Fatou’s lemma

(Theorem 2.2.2.3)

lim sup
r→∞

M(r,Π(•, μ, p))
rλ

≤ A(m, p)
[∫ ∞

0

lim sup
r→∞

f(r, τ)dτ + lim sup
r→∞

μ(r)
rλ+m−1

]
= 0.

(2.9.2.6)
Hence,

λ ≥ ρ[Π(•, μ, p)]. (2.9.2.7)

Since this holds for any λ > ρ[μ], we have ρ[μ] ≥ ρ[Π(•, μ, p)] under the
assumption λ < p[μ] + 1.

Let ρ[μ] = p[μ] + 1. By Theorem 2.8.3.1, Δ̄[μ] = 0. Hence, μ(t)t−p−m+1 ≤ C
and

f(r, τ) :=
μ(rτ)

(rτ)p+m−1
min(1, τ−1) ≤ Cmin(1, 1/τ).

The function min(1, 1/τ) is not summable on (0,∞). Therefore we will act in a
slightly different way. From Theorem 2.9.2.2 we have

lim sup
r→∞

M(r,Π(•, μ, p))
rp+1

≤ A(m, p)
[∫ 1

0

lim sup
r→∞

f(r, τ)dτ
]

+A(m, p)
[
lim sup

r→∞

∫ ∞

r

μ(t)
tp+m

dt+ + lim sup
r→∞

μ(r)
rp+m

]
.

The first integral is equal to zero because Δ̄[μ] = 0. The second addend vanishes
since the integral converges. Thus we have p+ 1 = ρ[μ] ≥ ρ[Π(•, μ, p)].

The reverse inequality holds for any subharmonic function in Rm by the
Jensen theorem (Theorem 2.8.3.3). �

2.9.3 Let us denote as δSH(ρ) the class of functions u ∈ δSH(Rm) for which
ρT [u] ≤ ρ.

Theorem 2.9.3.1 (Brelot-Hadamard) Let u = u1 − u2 ∈ δSH(ρ), and let p1, p2 be
the genuses of the mass distributions μj := μuj , j = 1, 2. Suppose supp[μ1 −μ2] ∩
{0} = ∅.

Then the following equality holds:

u(x) = Π(x, μ1, p1) − Π(x, μ2, p2) + Φq(x)

where Φq(x) is a harmonic polynomial of degree q ≤ ρ.
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Proof. The function v(x) := u(x) − Π(x, μ1, p1) + Π(x, μ2, p2) is harmonic by the
Brelot-Weierstrass theorem (Theorem 2.9.2.1). We also have the inequality

ρT [v] ≤ max(ρT [u], ρT [Π(•, μ1, p1)], ρT [Π(•, μ2, p2)]) (2.9.3.1)

by Theorem 2.8.2.2 (ρT -properties). The property ρMT1) (Theorem 2.8.2.3) im-
plies

ρT [Π(•, μj , pj)] = ρM [Π(•, μj , pj)] := ρ[Π(•, μj , pj)], j = 1, 2.

The Brelot-Borel theorem (Theorem 2.9.2.3) implies

ρ[Π(•, μj , pj)] = ρ[μj ], j = 1, 2.

The Jensen theorem (Theorem 2.8.3.3) implies

max(ρ[μ1], ρ[μ2]) ≤ ρT [u].

From (2.9.3.1) we have
ρT [v] ≤ ρT [u] ≤ ρ.

Since v is subharmonic, ρT [v] = ρM [v] := ρ[v] by Theorem 2.8.2.3, and ρ[v] ≤ ρ.
Therefore

lim
r→∞

M(r, v)
rρ+ε

= 0

for arbitrarily small ε > 0.
By the Liouville theorem (Theorem 2.4.2.3) v(x) is a harmonic polynomial

of degree q ≤ ρ+ ε, and thus v(x) = Φq(x) for q ≤ ρ. �

For a non-integer ρ the Brelot-Hadamard theorem allows us to connect the
growth of functions and masses more tightly than in the Jensen theorem.

Theorem 2.9.3.2 (Sharpening of Jensen) Let ρ > 0 and be non-integer, u = u1 −
u2 ∈ δSH(Rm) with ρT [u] = ρ, and let νu = μ1 − μ2 the corresponding charge.
Then

pJ1) ρ[νu] = max(ρ[μ1], ρ[μ2]) = ρ,

pJ2) A1σT [u, ρ(r)] ≤ Δ̄[νu, ρ(r)] ≤ Δ̄[μ1, ρ(r)] + Δ̄[μ2, ρ(r)] ≤ A2σT [u, ρ(r)],
where Aj = Aj(m, ρ) and ρ(r) is an arbitrarily proximate order such that
ρ(r) → ρ when r → ∞.

For proving this theorem we need

Theorem 2.9.3.3 Let Π(x, μ, p) be a canonical potential with non-integer ρ[μ] :=
[ρ], and let ρ(r)(→ ρ) be a proximate order. Then

σ[Π(•, μ, p), ρ(r)] ≤ A(m, ρ, p)Δ̄[μ, ρ(r)]. (2.9.3.2)
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Proof. We can suppose without loss of generality that Δ̄[μ, ρ(r)] < ∞. By this
condition and since μ(t) = 0, 0 < t < c for some c > 0, we have the inequality

μ(t)t−ρ(t)−m+2 ≤ C

for all t ∈ (0,∞) and some C > 0 that does not depend on t. Set

I(r) :=
∫ ∞

c/r

μ(rt)
rρ(r)+m−2

min(1, 1/t)
tp+m−1

dt.

By Theorem 2.9.2.2 we have

σ[Π(•, μ, p), ρ(r)] = lim sup
r→∞

M(r,Π(•, μ, p)
rρ(r)

≤ A(m, p) lim sup
r→∞

I(r). (2.9.3.3)

Let us choose rε such that

sup
r>rε

μ(rε)
(rε)ρ(rε)+m−2

≤ Δ̄[μ, ρ(r)] + ε.

For such r we have

I(r) =
∫ ∞

c/r

μ(rt)
(rt)ρ(rt)+m−2

(rt)ρ(rt)

rρ(r)

min(1, 1/t)
tp+1

dt

≤ sup
c/r≤t≤ε

μ(rt)
(rt)ρ(rt)+m−2

∫ ε

c/r

(rt)ρ(rt)

rρ(r)

min(1, 1/t)
tp+1

dt

+ sup
ε≤t≤1/ε

· · ·
∫ 1/ε

ε

· · · dt+ sup
1/ε≤t≤∞

· · ·
∫ ∞

1/ε

. . . dt

≤ C

∫ ε

c/r

(rt)ρ(rt)

rρ(r)

min(1, 1/t)
tp+1

dt+ (Δ̄[μ, ρ(r)] + ε)
∫ 1/ε

ε

· · ·dt+ C

∫ ∞

1/ε

· · · dt.

The function

f(t) :=
min(1, 1/t)

tp+1

satisfies the conditions of Gol′dberg’s theorem (Theorem 2.8.1.5) with p+1 − ρ <
δ < 1 and 0 < γ < p+ 1 − ρ. Passing to the limit we have

lim sup
r→∞

I(r) ≤ C

∫ ε

0

tρ−pdt+ (Δ̄[μ, ρ(r)] + ε)

×
∫ 1/ε

ε

tρ−p−1 min(1, 1/t)dt+ C

∫ ∞

1/ε

tρ−p−2dt.

Passing to the limit as ε → 0 we obtain with the help of (2.9.3.3)

σ[Π(•, μ, p), ρ(r)] ≤ A(m, p)Δ̄[μ, ρ(r)]
∫ ∞

0

tρ−p−1 min(1, 1/t)dt. �
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Proof of Theorem 2.9.3.2. The inequality ρ[νu] ≤ ρ and the last inequality in
pJ2) follow from the Jensen theorem (Theorem 2.8.3.3). Let us prove the reverse
inequality and the left side.

Since ρ is non-integer, q < ρ in the Brelot-Hadamard theorem (Theorem
2.9.3.1). Hence M(r,Φq) = o(rρ) and

T (r, u) ≤ T (r,Π(•, μ1, p)) + T (r,Π(•, μ2, p)) + o(rρ).

Thus

ρT [u] ≤ max(ρ[Π(•, μ1, p)], ρ[Π(•, μ2, p]),
σT [u, ρ(r)] ≤ max(σT [Π(•, μ1, p), ρ(r)], σT [Π(•, μ2, p], ρ(r)]).

From Theorem 2.9.3.3 we obtain

ρT [u] ≤ max(ρ[μ1], ρ[μ2]);
σT [u, ρ(r)] ≤ A(m, ρ, p)max(Δ̄[μ1, ρ(r)], Δ̄[μ2, ρ(r)]

= A(m, ρ, p)Δ̄[|ν|, ρ(r)].
We can set A1 := A−1(m, ρ, p) and obtain the left side of pJ2). �

2.9.4 Let u ∈ δSH(Rm) and ρ := ρT [u] be an integer number. We can always
represent the function u in the form

u(x) = Π(x, ν, ρ) + Φρ(x) (2.9.4.1)

where Φρ(x) is a harmonic polynomial of degree at most ρ. Actually, such a rep-
resentation can be obtained from Theorem 2.9.3.1 by addition and subtraction of
terms of the form

Φkj (x) :=
∫

Rm

Dkj (x, y)μj(dy), j = 1, 2

where pj < kj ≤ ρ. All Φkj (x) of such a kind are harmonic polynomials of degree
at most ρ. Set

ΠR
<(x, ν, ρ− 1) :=

∫
|y|<R

Gρ−1(x, y,m)ν(dy), (2.9.4.2)

ΠR
>(x, ν, ρ) :=

∫
|y|≥R

Gρ(x, y,m)ν(dy), (2.9.4.3)

δR(x, ν, ρ) :=
∫
|y|<R

Dρ(x, y)ν(dy). (2.9.4.4)

In particular, for m = 2,

δR(z, ν, ρ) :=
1
ρ

∫
|ζ|<R

�
(
z

ζ

)ρ

ν(dζ). (2.9.4.4a)



72 Chapter 2. Auxiliary Information. Subharmonic Functions

Let Yρ(x) be the homogeneous polynomial of degree ρ from the polynomial Φρ in
(2.9.4.1). Set also

δR(x, u, ρ) := δR(x, ν, ρ) + Yρ(x),
M(r, δ) := max

|y|=1
|δr(ry, u, ρ)|,

Δ̄δ[u, ρ] := lim sup
r→∞

M(r, δ)r−ρ(r).

(2.9.4.5)

The functions δR(x, ν, ρ) are homogeneous polynomials that are determined com-
pletely by their values on the unit sphere. Thus, by the Harnack theorem (Theorem
2.4.1.7) we have

Theorem 2.9.4.1 Δ̄δ[u, ρ(r)] < ∞ if and only if the family δR(x, u, ρ)Rρ−ρ(R), R >
0 is precompact in D′(Rm).

Let ρ be an integer number and ρ(r) → ρ be a p.o. Set

Ω[u, ρ(r)] := max(Δ̄δ[u, ρ(r)], Δ̄[|νu|, ρ(r)].

Theorem 2.9.4.2 (Brelot-Lindelöf) The following holds:

A1Ω[u, ρ(r)] ≤ σT [u, ρ(r)] ≤ A2Ω[u, ρ(r)],

where Aj := Aj(m, ρ).

For proving this theorem we will first study the function ΠR
< and ΠR

>. Set

T (r, λ,>) := T (r,Πλr
> (•, ν, ρ)),

T (r, λ,<) := T (r,Πλr
< (•, ν, ρ− 1)).

Theorem 2.9.4.3 (Estimate of T (•, >, T (•, <)) The following holds:

T (r, λ,>) ≤ A

(∫ ∞

λ

|ν|(rt)
rm−2

min(1, t−1)
tρ+m−1

dt+
|ν|(r)
rm−1

)
, (2.9.4.6)

T (r, λ,<) ≤ A

(∫ λ

0

|ν|(rt)
rm−2

min(1, t−1)
tρ+m−2

dt

)

+A

( |ν|(rλ)
rm−2

∫ ∞

λ

min(1, t−1)
tρ+m−2

dt+
|ν|(r)
rm−1

)
, (2.9.4.7)

where A := A(m, ρ).

Proof. Let ν = μ1 − μ2. Then |ν| = μ1 + μ2. We have

ΠR
<(x, ν, ρ− 1) = ΠR

<(x, μ1, ρ− 1) − ΠR
<(x, μ2, ρ− 1). (2.9.4.8)

Since ΠR
<(0, μ2, ρ− 1) = 0, we have (see t3),t4), Theorem 2.8.2.1)

T (r,ΠR
<(•, ν, ρ− 1)) ≤ T (r,ΠR

<(•, μ1, ρ− 1)) + T (r,ΠR
<(•, μ2, ρ− 1)). (2.9.4.9)
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Set
Π1 := ΠR

<(•, μ1, ρ− 1), Π2 := ΠR
<(•, μ2, ρ− 1).

Let us estimate, for example, T (r,Π1). The masses of the canonical potential
Π1 are concentrated in KR. Applying Theorem 2.9.2.2 (Estimation of Canonical
Potential) for p = ρ− 1 we obtain

T (r,Π1) ≤ M(r,Π1)

≤ A

∫ R
r

0

μ1(rt)
rm−2

min(1, t−1)
tρ+m−2

dt+A
μ1(R)
rm−2

∫ ∞

R
r

min(1, t−1)
tρ+m−2

dt+
μ1(r)
rm−1

.

Set R := rλ. Then we obtain the inequality (2.9.4.7) for ν := μ1. Analogously one
can do the same for ν := μ2. The inequality (2.9.4.9) allows us to pass to the limit
in (2.9.4.7) in the general case.

Set Π1 := ΠR
>(•, μ1, ρ). Applying (2.9.2.2) for p = ρ we obtain

T (r,Π1) ≤ M(r,Π1) ≤
∫ ∞

R
r

μ1(rt)
rm−2

min(1, t−1)
tρ+m−1

dt+
μ1(r)
rm−1

.

In the same way we obtain (2.9.4.6). �

Set

σ[Π>, ρ(r)] := lim sup
r→∞

T (r,Πr
>(•, ν, ρ))
rρ(r)

,

σ[Π<, ρ(r)] := lim sup
r→∞

T (r,Πr
<(•, ν, ρ))
rρ(r)

.

Theorem 2.9.4.4 Let ν := μ1 − μ2 ∈ δM(ρ) and ρ an integer number. Then for
any p.o. ρ(r) → ρ,

max(σ[Π>, ρ(r)], σ[Π<, ρ(r)]) ≤ AΔ̄[|ν|, ρ(r)]

where A := A(m, ρ).

Proof. From (2.9.4.6) we have

T (r,Πr
>(•, ν, ρ)) = T (r, 1, >) ≤ A

∫ ∞

1

|ν|(rt)
rm−2

1
tρ+m

dt+
|ν|(r)
rm−1

.

Now we repeat the reasoning of Theorem 2.9.3.3 for μ := |ν| and p := ρ. We will
obtain

σ[Π>, ρ(r)] ≤ AΔ̄[|ν|, ρ(r)]
∫ ∞

1

t−2dt.
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For the other case we have from (2.9.4.7),

T (r,Πr
<(•, ν, ρ− 1)) = T (r, 1, <)

≤ A

∫ 1

0

|ν|(rt)
rm−2

1
tρ+m−1

dt+A
|ν|(r)
rm−2

(∫ ∞

1

t−ρ−m+1dt+ r−1

)
.

We divide this inequality by rρ(r) and pass to the upper limit while r → ∞.
The first summand of the right side gives

AΔ̄[|ν|, ρ(r)]
∫ 1

0

dt

by the reasoning of Theorem 2.9.3.3.
The second one can be computed directly, yielding

AΔ̄[|ν|, ρ(r)]
∫ ∞

1

t−ρ−m+1dt.

Combining all these inequalities we obtain the assertion of the theorem. �

Proof of Theorem 2.9.4.2. Let us represent u(x) in the form

u(ry) = Πr
<(ry, νu, ρ− 1) + Πr

>(ry, νu, ρ) + δr(ry, u, ρ) + o(rρ−1) (2.9.4.10)

where |y| = 1.
Then we have

T (r, u) ≤ T (r,Πr
<(•, νu, ρ− 1)) + T (r,Πr

>(•, νu, ρ)) +M(r, δ) + o(rρ−1).

Let us divide this by rρ(r) and pass to the upper limit. By Theorem 2.9.4.4 we
obtain

σT [u, ρ(r)] ≤ Amax(Δ̄[|ν|, ρ(r)], Δ̄δ [u, ρ(r)]) = A2Ω[u, ρ(r)]

where A2 = A(m, ρ). Let us write (2.9.4.11) in the form

δr(ry, u, ρ) = u(ry) − Πr
<(ry, νu, ρ− 1) − Πr

>(ry, νu, ρ) + o(rρ−1).

We obtain

T (r, δr(•, u, ρ)) ≤ T (r, u) + T (r,Πr
<(•, νu, ρ− 1)) + T (r,Πr

>(•, νu, ρ) + o(rρ−1).

Since δR(•, u, ρ) is harmonic and homogeneous, we have by (2.8.2.5)

M(r, δR) ≤ 2m−1T (2r, δR) = 2m−1+ρT (r, δR).

Therefore we obtain the inequality

Δ̄δ[u, ρ(r)] ≤ σT [u, ρ(r)] + 2AΔ̄[|ν|, ρ(r)].
By the Jensen theorem (Theorem 2.8.3.3) we have

Ω[u, ρ(r)] ≤ A−1
1 σT [u, ρ(r)]

for some A1 = A1(m, ρ). �



Chapter 3

Asymptotic Behavior
of Subharmonic Functions
of Finite Order

3.1 Limit sets

3.1.1 Let {Vt : t ∈ (0,∞)} be a family of rotations of Rm that form a one-
parametric group, i.e.,

Vt1Vt2 = Vt1t2 , V1 = I, (3.1.1.0)

where I is the identity map.
The family of linear transformations

Pt := tVt (3.1.1.1)

is also a one-parametric group.
In particular, for m = 2 the general form of the rotations is

Vtz = z exp(iγ log t),

where γ is real.
The orbit {Ptz : t ∈ (0,∞)} of every point z �= 0 is a logarithmic spiral if

γ �= 0 and a ray if γ = 0.
For m ≥ 3 and Vt ≡ I, t ∈ (0,∞) the orbit of every point x �= 0 is a ray

from the origin. For other V• it is a spiral connecting the origin to infinity.
It is clear that only one orbit {Ptx : t ∈ (0,∞)} passes through every x �= 0.

The behavior of every point y(t) := Ptx is completely determined by a system of
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differential equations with constant coefficients:

d

dt
y = (I + V ′)y, V ′ :=

d

dt
Vt |t=1

with the initial condition of y(1) = x.

3.1.2 Let u ∈ SH(ρ) and σM [u, ρ(r)] < ∞ for some p.o. ρ(r) → ρ. We will write
u ∈ SH(Rm, ρ, ρ(r)) or shorter, u ∈ SH(ρ(r)).

For u ∈ SH(ρ(r)) set

ut(x) := u(Ptx)t−ρ(t). (3.1.2.1)

We will denote this transformation as (•)t.

Theorem 3.1.2.1 (Existence of Limit Set) The following holds:

els1) ut ∈ SH(ρ(r)) for any t ∈ (0,∞),

els2) the family {ut} is precompact at infinity.

I.e., for any sequence tk → ∞ there exists a subsequence tkj → ∞ and a
function v ∈ SH(Rm) such that utkj

→ v in D′(Rm) (see Section 2.7.1).

Proof. The functions ut are subharmonic by sh1) and sh5), Theorem 2.6.1.1. (El-
ementary Properties), and

M(r, ut) = M(rt, u)t−ρ(t).

Now we have

σM [ut, ρ(r)] = t−ρ(t) lim sup
r→∞

M(rt, u)
(rt)ρ(rt)

· lim
r→∞

(rt)ρ(rt)

rρ(r)
= σM [u, ρ(r)]tρ−ρ(t),

because

lim
r→∞

(rt)ρ(rt)

rρ(r)
= tρ lim

r→∞
L(rt)
L(r)

= tρ (3.1.2.2)

(see, ppo3), Theorem 2.8.1.3 (Properties of P.O)). Therefore els1) is proved.
Let us check the conditions of Theorem 2.7.1.1 (Compactness in D′). We

have

lim sup
t→∞

M(r, ut) = lim sup
t→∞

M(rt, u)
(rt)ρ(rt)

· lim
t→∞

(rt)ρ(rt)

tρ(t)
= σM [u, ρ(r)]rρ. (3.1.2.3)

Thus, the family is bounded from above on every compact set and

lim
t→∞ut(0) = lim

t→∞u(0)t−ρ(t) = 0.

Therefore ut(0) are bounded from below for large t. �
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We will call the set of all functions v from Theorem 3.1.2.1 the limit set of
the function u(x) with respect to V• and denote it by Fr[u, ρ(r), V•,Rm] or shortly
Fr[u].

The limit set does not depend on values of the subharmonic function on a
bounded set, hence, it is a characteristic of asymptotic behavior.

Set

U [ρ, σ] := {v ∈ SH(Rm) : M(r, v) ≤ σrρ, r ∈ [0,∞); v(0) = 0},

U [ρ] :=
⋃
σ>0

U [ρ, σ] (3.1.2.4)

and
v[t](x) := t−ρv(Ptx), t ∈ (0,∞). (3.1.2.4a)

Let us emphasize that the transformation (•)[t] coincides with (•)t from (3.1.2.1)
for ρ(r) ≡ ρ and satisfies the condition

(•)[tτ ] = ((•)[t])[τ ] (3.1.2.4b)

Theorem 3.1.2.2 (Properties of Fr) The following holds:

fr1) Fr[u] is a connected compact set;

fr2) Fr[u] ⊂ U [ρ, σ], for σ ≥ σM [u];

fr3) (Fr[u])[t] = Fr[u], t ∈ (0,∞). I.e., v ∈ Fr[u] implies v[t] ∈ Fr[u];

fr4) if ρ1(r) and ρ(r) are equivalent (see (2.8.1.5)), then

Fr[u, ρ1(r), •] = Fr[u, ρ(r), •].

We need the following assertion.

Theorem 3.1.2.3 (Continuity ut) The functions

ut, v[t] : (0,∞) × D′(Rm) �→ D′(Rm)

are continuous in the natural topology.

Proof. For any ψ ∈ D(Rm) consider

〈ut, ψ〉 :=
∫
ut(x)ψ(x)dx =

∫
u(y)ψ(y/t)tm−ρ(t)dy := 〈u, ψ(•, t)〉,

where ψ(y, t) := ψ(y/t)tm−ρ(t).
The function ψ(•, t) is continuous in t in D(Rm). By Theorem 2.3.4.6 (Con-

tinuity 〈•, •〉) 〈u, ψ(•, t)〉 is continuous in (u, t). �
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Proof of Theorem 3.1.2.2. Let us denote as clos{•} the closure in D′-topology.
The set FN := clos{ut : t ≥ N} ⊃ Fr[u] is compact in D′-topology. Indeed,

let tj → t and t < ∞; then utj → ut because of Theorem 3.1.2.3. If tj → ∞ and
utj → v, then v ∈ Fr[u] by its definition, hence, v ∈ FN . Since Fr[u] = ∩∞N=1FN ,
it is compact.

Let us prove the connectedness. Suppose Fr[u] is not connected. Then it can
be written as a union of two disjoint nonempty closed sets F 1 and F 2. Let V 1, V 2

be disjoint open neighborhoods of F 1, F 2 respectively in D′(Rm). Since F 1, F 2

are nonempty there exist sequences {sj}, {tj} such that sj < tj , sj → ∞, usj ∈
V 1, utj ∈ V 2. Since the mapping ut : (0,∞) �→ D′(Rm) is continuous, by Theorem
3.1.2.3 its image is connected. Thus there exists a sequence {pj} with sj < pj < tj
such that upj /∈ V 1 ∪ V 2. This sequence has a subsequence that converges to a
function v ∈ Fr[u] and v /∈ F 1 ∪ F 2. This is a contradiction. Hence, Fr[u] is
connected and fr1) is proved.

Set
ψ(r) := lim sup

r→∞
M(r, ut).

This function is convex with respect to −r2−m for m ≥ 3 and with respect to log r
for m = 2 and hence continuous.

Indeed, M(|x|, ut) are subharmonic (see Theorem 2.6.5.2 (Convexity M(•, u)
and M(r, u)). By Theorem 2.7.3.3 (H.Cartan +) the function ψ∗(|x|) is subhar-
monic and ψ(|x|) = ψ∗(|x|) quasi-everywhere. However, if ψ(|x|) < ψ∗(|x|) at some
point, the same inequality holds on a sphere which has a positive capacity (see
Example 2.5.2.2). Hence, ψ(|x|) = ψ∗(|x|) everywhere, and ψ(|x|) is subharmonic.
Thus ψ(r) is convex with respect to −r2−m for m ≥ 3 and with respect to log r
for m = 2 by Theorem 2.6.3.2 (Subharmonicity and Convexity).

One can also see that for u ∈ SH(Rm),

M(r, uε) ≤ M(r + ε, u),

where (•)ε is defined by (2.6.2.3).
Let v ∈ Fr[u] and utj → v in D′(Rm). By property reg3), Theorem 2.3.4.5

(utj )ε → vε uniformly on any compact set. Thus

vε(x) = lim
j→∞

(utj )ε ≤ lim sup
t→∞)

M(|x|, (ut)ε)

≤ lim sup
t→∞)

M(|x| + ε, ut) = ψ(|x| + ε). (3.1.2.5)

If ε ↓ 0, then vε ↓ v by Theorem 2.6.2.3 and ψ(r+ ε) → ψ(r) because of continuity.
Passing to the limit in (3.1.2.5) and using (3.1.2.3) we obtain

v(x) ≤ σM [u, ρ(r)]|x|ρ. (3.1.2.6)
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Since u(0) ≤ uε(0) we have u(0)t−ρ(t) ≤ (ut)ε(0). Let us pass to the limit as
t := tj → ∞. We obtain vε(0) ≥ 0. Passing to the limit as ε ↓ 0 we have

v(0) ≥ 0. (3.1.2.7)

The inequalities (3.1.2.6) and (3.1.2.7) imply fr2).
One can check the equality

(ut)[τ ] = utτ · (tτ)ρ(tτ)

tρ(t)τρ
. (3.1.2.8)

By using properties of p.o. we have

lim
t→∞

(tτ)ρ(tτ)

tρ(t)τρ
= 1

(compare (3.1.2.2)).
Let v ∈ Fr[u] and utj → v. Set t := tj , τ := t in (3.1.2.8) and pass to the

limit. Then
v[t] = D′ − lim

j→∞
utjt.

Thus v[t] ∈ Fr[u]. The property f3) is proved.
Let us prove f4).We have

u(Ptx)
tρ1(t)

=
u(Ptx)
tρ(t)

× e(ρ1(t)−ρ(t)) log t =
u(Ptx)
tρ(t)

× (1 + o(1))

as t → ∞ because of (2.8.1.5).
This implies f4).

Exercise 3.1.2.1 Check this in detail. �

We can consider the limit sets as a mapping u �→ Fr[u]. The following theorem
describes some properties of this mapping.

Set
U [ρ] :=

⋃
σ>0

U [ρ, σ] (3.1.2.9)

where U [ρ, σ] is defined by (3.1.2.4).
Let X,Y be subsets of a cone (i.e., a subset of a linear space that is closed

with respect to sum and multiplication by a positive number). The set U [ρ] is such
a cone. Set

X + Y := {z = x+ y : x ∈ X, y ∈ Y }; λX := {z = λx : x ∈ X}. (3.1.2.10)

Theorem 3.1.2.4 (Properties of u �→ Fr[u]) The following holds:

fru1) Fr[u1 + u2] ⊂ Fr[u1] + Fr[u2],

fru2) Fr[λu] = λFr[u].
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Proof. Let v ∈ Fr[u1 +u2]. Then there exists tj → ∞ such that (u1 +u2)tj → v in
D′. We can find a subsequence t

jk
such that (u1)tjk

→ v1 and (u2)tjk
→ v2. Then

v = v1 + v2. The property fru1) has been proved.
The property fru2) is proved analogically. �

3.1.3 We will write μ ∈ M(Rm, ρ(r)) or shortly, μ ∈ M(ρ(r)) if μ ∈ M(Rm) (see
2.8.3) and Δ̄[μ, ρ(r)] < ∞ (see 2.8.3.2).

Let us define a distribution μt for μ ∈ M(ρ(r)) by

〈μt, φ〉 := t−ρ(t)−m+2

∫
φ(P−1

t x)μ(dx) (3.1.3.1)

for φ ∈ D(Rm).
It is positive. Hence, it defines uniquely a measure μt.

Theorem 3.1.3.1 (Explicit form of μt) For any E ∈ σ(Rm) the following holds:

μt(E) = t−ρ(t)−m+2μ(PtE). (3.1.3.2)

Proof. It is enough to prove the assertion for some dense ring (see Theorem
2.2.3.5), for example, for all compact sets.

Let χK be a characteristic function of a compact set K and let φε ↓ χK

be a monotonically converging sequence of functions that belong to D(Rm) (see
Theorems 2.1.2.1, 2.1.2.9 and 2.3.4.4). Then∫

φε(x)μt(dx) = t−ρ(t)−m+2

∫
φε(P−1

t x)μ(dx).

Since φε(P−1
t x) ↓ χPtK(x),

μt(K)=
∫
χK(x)μt(dx)= t−ρ(t)−m+2

∫
χPtK(x)μ(dx)= t−ρ(t)−m+2μ(PtK). �

Theorem 3.1.3.2 (Existence of μ-Limit Set) The following holds:
mels1) μt ∈ M(ρ(r)) for any t ∈ (0,∞);
mels2) the family {μt} is precompact in infinity.

I.e., for any sequence tk → ∞ there exists a subsequence tkj → ∞ and a
measure ν ∈ M(Rm) such that μtkj

→ ν in D′(Rm) (see Section 2.7.1).

Proof. We have
μt(r) = μ(rt)t−ρ(t)−m+2.

Thus

lim sup
r→∞

μt(r)
rρ(r)+m−2

= lim sup
r→∞

μ(rt)
(rt)ρ(rt)+m−2

(rt)ρ(rt)

tρ(t)+m−2rρ(r)

= tρ−ρ(t)−(m−2)Δ̄[μ, ρ(r)]. (3.1.3.3)

Therefore mels1) holds.
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We also have
lim sup

t→∞
μt(r) = Δ̄[μ, ρ(r)]rρ+m−2.

Thus μt satisfies the assumption of the Helly theorem (Theorem 2.2.3.2). Using
also Theorem 2.3.4.4 we obtain mels2). �

We will call the set of all measures ν from Theorem 3.1.2.1 the limit set of
the mass distribution μ with respect to V• and denote it Fr[μ, ρ(r), V•,Rm] or
shortly, Fr[μ].

Set
M[ρ,Δ] := {ν : ν(r) ≤ Δrρ+m−2, ∀r > 0}. (3.1.3.4)

M[ρ] :=
⋃

Δ>0

M[ρ,Δ],

and
ν[t](E) := t−ρ−m+2ν(PtE) (3.1.3.5)

for E ∈ σ(Rm).

Theorem 3.1.3.3 (Properties of Fr[μ]) The following holds:

frm1) Fr[μ] is connected and compact;

frm2) Fr[μ] ⊂ M[Δ, ρ], for Δ ≥ Δ̄[μ, ρ(r)];

frm3) (Fr[μ])[t] = Fr[μ], t ∈ (0,∞).

Proof. We will only prove frm2) because frm1) and frm3) are proved word by word
as in Theorem 3.1.2.2.

Suppose tn → ∞ and μtn → ν ∈ Fr[μ]. Let us choose r′ > r such that the
open ball Kr′ is squarable with respect to ν. It is possible because of Theorem
2.2.3.3, sqr2). By Theorems 2.2.3.7 and 2.3.4.4, μtn(r′) → ν(r′). Thus (compare
with (3.1.2.3))

ν(r′) = lim
tn→∞

μtn(r′) ≤ lim sup
t→∞

μt(r′) = Δ̄[μ, ρ(r)](r′)ρ+m−2.

Choosing r′ ↓ r we obtain
lim
r′→r

ν(r′) = ν(r)

because (2.2.3.3). Thus frm2) holds. �
The following assertion is a “copy” of Theorem 3.1.2.4.

Theorem 3.1.3.4 (Properties of μ �→ Fr[μ]) The following holds:

frmu1) Fr[μ1 + μ2] ⊂ Fr[μ1] + Fr[μ2],

frmu2) Fr[λμ] = λFr[μ].

The proof is also a “copy” and we omit it.

Exercise 3.1.3.1 Prove Theorem 3.1.3.4
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3.1.4 We are going to study the class U [ρ] and obtain for it “non-asymptotic”
analogies of Theorem 2.8.3.3 (Jensen), 2.9.2.3 (Brelot-Borel), 2.9.3.1 (Brelot-Ha-
damard)

Theorem 3.1.4.1 (*Jensen) Let v ∈ U [ρ]. Then its Riesz measure νv ∈ M[ρ].

Proof. As in Theorem 2.8.3.2 we have an inequality

νv(r)
rm−2

≤ A(m)N(2r, νv). (3.1.4.1)

Since v(0) = 0 we have (Theorem 2.6.5.1. (Jensen-Privalov))

N(2r, νv) = M(2r, v) ≤ M(2r, v) ≤ 2ρσrρ. (3.1.4.2)

Substituting (3.1.4.2) in (3.1.4.1) we obtain νv ∈ M[ρ,Δ] for some Δ. Thus νv ∈
M[ρ]. �

Let ρ be non-integer and ν∈M[ρ]. Consider the canonical potential Π(x,ν,p)
where p := [ρ] (see (2.9.2.1)). Let us emphasize that the support of ν may contain
the origin but ν(0) = 0, i.e., there is no concentrated mass in the origin. Thus we
must also check its convergence in the origin.

Theorem 3.1.4.2 (*Brelot-Borel) Let ρ be non-integer and let ν ∈ M[ρ]. Then
Π(x, ν, p) converges and belongs to U [ρ].

Proof. Using (2.9.1.9) we have∣∣∣∣∣
∫
|y|<2|x|

Gp(x, y,m)ν(dy)

∣∣∣∣∣ ≤ A(m, p)|x|p
∫ 2|x|

0

ν(dt)
tp+m−2

. (3.1.4.3)

Let us estimate the integral in (3.1.4.3). Integrating by parts we obtain

I<(x) :=
∫ 2|x|

0

ν(dt)
tp+m−2

=
ν(t)

tp+m−2
|2|x|0 + (p+m− 2)

∫ 2|x|

0

ν(t)dt
tp+m−1

.

Since ν ∈ M[ρ,Δ] for some Δ,

I<(x) ≤ A(m, ρ, p)Δ|x|ρ−p.

Substituting this in (3.1.4.3) we obtain∣∣∣∣∣
∫
|y|<2|x|

Gp(x, y,m)ν(dy)

∣∣∣∣∣ ≤ A(m, ρ, p)Δ|x|ρ. (3.1.4.4)

Analogously, using (2.9.1.8) we obtain∣∣∣∣∣
∫
|x|<2|y|

Gp(x, y,m)dν(dy)

∣∣∣∣∣ ≤ A(m, ρ, p)Δ|x|ρ. (3.1.4.5)
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In particular, these estimates show that Π(x, ν, p) exists. Now using (2.9.1.10) we
have also∫

|x|
2 ≤|y|≤2|x|

Gp(x, y,m)ν(dy) ≤ A(m, p)
∫ 2|x|

|x|
2

ν(dt)min
( |x|p+1

tp+m−1
,

|x|p
tp+m−2

)
.

The latter integral can also be easily estimated by ΔA(m, p, ρ)|x|ρ. Thus we have∫
|x|
2 ≤|y|≤2|x|

Gp(x, y,m)ν(dy) ≤ A(m, p, ρ)|x|ρ.

Therefore by (3.1.4.5) and (3.1.4.4) we obtain M(r,Π) ≤ σrρ for some σ.
Since Gp(0,y,m)=0 for all y �=0 and the integral converges, Π(0,ν,p)=0. �

We will need an assertion that looks like the Liouville theorem (Theorem
2.4.2.3).

Theorem 3.1.4.3 (*Liouville) Let H be a harmonic function in Rm and H ∈ U [ρ].
Then H ≡ 0 if ρ is non-integer and H is a homogeneous polynomial of degree p if
ρ = p is integer.

In particular, for m = 2 we have H(reiφ) = rp�(ceipφ).

Proof. Like in the proof of the Liouville theorem we obtain the inequality (2.4.2.9)
and

|ck| ≤ AR−k max
|x|=R

H(x) ≤ AσRρ−k

for some σ > 0.
If k > ρ, we will pass to the limit when R → ∞ and obtain ck = 0. If k < ρ,

we will do that when R → 0 and obtain ck = 0. �

The following theorem can be considered as an analogy of the Brelot-Hada-
mard theorem (Theorem 2.9.3.1):

Theorem 3.1.4.4 (*Hadamard) Let ρ be non-integer and v ∈ U [ρ]. Then

v(x) = Π(x, νv, p) (3.1.4.6)

for p = [ρ].

Proof. Consider the function H(x) := v(x) − Π(x, νv, p). It is harmonic.We also
have by(2.8.2.5)

M(r,H) ≤ A(m)T (r,H) ≤ A(m)[T (r, v) + T (r,Π)] ≤ σrρ

for some σ.
Hence, H(x) ≡ 0 by Theorem 3.1.4.3. �
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Let us consider the case of integer ρ. Let ν ∈ M[ρ] for an integer ρ = p. Set

Π<(x, ν, ρ) :=
∫
|y|<1

Gp−1(x, y,m)ν(dy), (3.1.4.7)

Π>(x, ν, ρ) :=
∫
|y|≥1

Gp(x, y,m)ν(dy). (3.1.4.8)

Both potentials converge and belong to U [ρ].

Theorem 3.1.4.5 (**Hadamard) Let ρ be integer and let v ∈ U [ρ]. Then

v = Hρ(x) + Π<(x, ν, ρ) + Π>(x, ν, ρ), (3.1.4.9)

where Hρ is a homogeneous harmonic polynomial of degree ρ.

The proof is exactly the same as in the *Hadamard theorem, but we use the
second case of Theorem 3.1.4.3. We also note that the polynomial may be equal
to zero identically.

Exercise 3.1.4.1 Check this in detail.

Let as check that ν from (3.1.4.9) has the following property that is analogous
to Theorem 2.9.4.2.

Theorem 3.1.4.6 (*Lindelöf) Let ρ be integer and let v ∈ U [ρ]. Then

lim
ε→0

∫
ε≤|y|<1

Dρ(x, y)μ(dy) = Hρ(x). (3.1.4.10)

Proof. Consider the function

v∗ε (x) := v(x) +

⎧⎪⎨⎪⎩
∫

|y|<ε

ν(dy)
|x−y|m−2 for m > 2;

− ∫
|y|<ε

log |x− y|ν(dy), for m = 2.
(3.1.4.11)

It is subharmonic with supp ν∩{0} = ∅. We represent this function as in (2.9.4.10)
in the form

v∗ε (x) = Π1
<(x, ν∗ε , ρ) + Π1

>(x, ν∗ε , ρ) + P ∗ρ−1(x, v
∗
ε ) + δ1(x, v∗ε , ρ).

In this representation we can pass to the limit as ε → 0 in the left side and in all
the summands except perhaps the last two from the right side.

Exercise 3.1.4.2 Check this, using that all the integrals converge for ν ∈ M(ρ,Δ)
and showing that the integral in (3.1.4.11) tends to zero.

The last two summands form a harmonic polynomial, the limit of which is
also a harmonic polynomial. Comparing the limit with the representation (3.1.4.9),
we obtain that P ∗ρ−1(•, v∗ε ) tends to zero and δ1(x, v∗ε , ρ) tends to Hρ(x). �
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Theorem 3.1.4.7 (**Liouville) If v ∈ U [ρ] satisfies inequality v(x) ≤ 0 for z ∈ Rm,
then v(x) ≡ 0.

Otherwise it contradicts subharmonicity in 0.

3.1.5 Let us study the connection between Fr[u] and Fr[μu].
Note the following properties of the transformations (•)t and (•)[t].

Theorem 3.1.5.0 (Connection between ut and μt) One has

(μu)t = μut ; (μv)[t] = μv[t] . (3.1.5.0)

Proof. By the F. Riesz theorem (Theorem 2.6.4.3) and Theorem 2.5.1.1, GPo3)
we have for any ψ ∈ D(Rm),

〈μu, ψ〉 = θm〈Δu, ψ〉 = θm〈u,Δψ〉.

Using the definition (3.1.3.1), we obtain

〈(μu)t, ψ〉 = 〈(μu)t, ψ((Pt)−1•)〉t−ρ(t)−m+2.

Thus
〈(μu)t, ψ〉 = θm〈u,Δ[ψ((Pt)−1•)]〉t−ρ(t)−m+2.

Since the Laplace operator is invariant with respect to Vt for any t we have

Δ[ψ((Pt)−1•)] = t−2[Δψ]((Pt)−1•).

Thus we obtain

〈(μu)t, ψ〉 = θmt
−ρ(t)−m〈u, [Δψ]((Pt)−1•)〉

= θm〈u(Pt•)t−ρ(t),Δψ〉 = θm〈ut,Δψ〉 = 〈μut , ψ〉. �

Exercise 3.1.5.1 Do this for (•)[t].

We begin from the case of a non-integer ρ.

Theorem 3.1.5.1 (Connection between Fr’s for non-integer ρ) Let u ∈ U(ρ(r))
and μu be its Riesz measure. Then

Fr[μu] = {νv : v ∈ Fr[u]}, (3.1.5.1)
Fr[u] = {Π(•, ν, p) : ν ∈ Fr[μu]}. (3.1.5.2)

Proof. Let ν ∈ Fr[μu]. There exists tn → ∞ such that (μu)tn → ν in D′. We can
find a subsequence t′n such that ut′n → v ∈ Fr[u]. Thus (μu)t′n → νv and therefore
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ν = νv. Hence, Fr[μu] ⊂ {νv : v ∈ Fr[u]}. Analogously we can prove that every
νv ∈ Fr[μu] and hence (3.1.5.1) holds.

Let ν ∈ Fr[μu]. We find a sequence tn → ∞ such that (μu)tn → ν in D′. We
find a subsequence t′n such that ut′n → v ∈ Fr[u] and νv = ν. By the *Hadamard
theorem (Theorem 3.1.4.4) v = Π(•, ν, p). Hence, {Π(•, ν, p) : ν ∈ Fr[μu]} ⊂ Fr[u].
And vice versa, since Fr[u] ⊂ U [ρ] (Theorem 3.1.2.2, fr2)), every v ∈ Fr[u] is
represented as Π(•, νv, p) and νv ∈ Fr[μ] by (3.1.5.1). �

Let ρ be integer and u ∈ U(ρ(r)). Let us consider the precompact family of
homogeneous polynomials δt(x, u, ρ)tρ−ρ(t) from Theorem 2.9.4.1. For every tn →
∞ we can find a subsequence t′n such that the pair (δt′n(•, u, ρ)t′nρ−ρ(t′n)

, (μu)t′n)
tends to a pair (Hν , ν) where Hν is a homogeneous harmonic polynomial of de-
gree p. We denote the set of all such pairs as (H,Fr)[u]. Every v ∈ U [ρ] can be
represented in the form (3.1.4.7). Thus for every v the polynomial Hv := Hp is
determined.

Theorem 3.1.5.2 (Connection between Fr’s for integer ρ) Let u ∈ U(ρ(r)). Then

(H,Fr)[u] = {(Hv, νv) : v ∈ Fr[u]}, (3.1.5.3)

Fr[u] = {v := Hν + Π<(•, ν, ρ) + Π>(•, ν, ρ) : (Hν , ν) ∈ (H,Fr)[u]}. (3.1.5.4)

The proof is clear.

3.1.6 Up to now we supposed that the family of rotations V• was fixed. Now we
take in consideration that it can vary and use the notation Fr[u, V•].

Theorem 3.1.6.1 (Dependence of Fr on V•) Let Fr[u, V•] and Fr[u,W•] be limit
sets of u with respect to rotation families V• and W• accordingly. Then for any
v ∈ Fr[u, V•] there exist a rotation V v and wv ∈ Fr[u,W•] such that

v(x) = wv(V vx)

for all x ∈ Rm.

Proof. Let v ∈ Fr[u, V•] and let tn → ∞ be a sequence such that

t−ρ(tn)
n u(tnVtn•) → v.

Since the family Vt is obviously precompact there exists a subsequence (for which
we keep the same notation), and a rotation V v such that W−1

tn
Vtn → V v and

w ∈ Fr[u,W•] such that t−ρ(tn)
n u(tnWtn •) → w.

Now we have

v(•) = D′ − lim t−ρ(tn)
n u(tnVtn•)

= D′ − lim t−ρ(tn)
n u(tnWtnW

−1
tn
Vtn •)

= w(V v•). �
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3.2 Indicators

3.2.1 Let u ∈ SH(ρ(r)) and let Fr[u] be the limit set. Set

h(x, u) := sup{v(x) : v ∈ Fr[u]}, (3.2.1.1)
h(x, u) := inf{v(x) : v ∈ Fr[u]}. (3.2.1.2)

These functionals reflect the asymptotic behavior of u along curves of the form

lx0 := {x = tVtx
0 : t ∈ (0,∞)} (3.2.1.3)

and are called indicator of growth of u and lower indicator respectively.
Of course, the indicators depend on ρ(r) and Vt, but we will only note that

if necessary.

Theorem 3.2.1.1 (Properties of Indicators) The following holds:

h1) h is upper semicontinuous, h is subharmonic;

h2) they are semiadditive and positively homogeneous, i.e.,

h(x, u1 + u2) ≤ h(x, u1) + h(x, u2); (3.2.1.4)
h(x, u1 + u2) ≥ h(x, u1) + h(x, u2); (3.2.1.5)
h, h(x,Cu) = Ch, h(x, u), C ≥ 0; (3.2.1.6)

h3) invariance:
h, h[t](x, u) = h, h(x, u). (3.2.1.7)

Proof. Semicontinuity of h follows from Theorem 2.1.2.8 (Commutativity of inf
and M(.). Semicontinuity and subharmonicity of h follow from Theorem 2.7.3.4
(Sigurdsson’s Lemma). The properties h2) follow from properties of infimum and
supremum. The invariance follows from invariance of Fr[u] (Theorem 3.1.2.2, fr3)).

�

Set
x0(x) := P−1

|x| (x) (3.2.1.8)

where Pt is defined by (3.1.1.1).
This is an intersection of the orbit of Pt that passes through a point x with

the unit sphere.
If Vt ≡ I,

x0(x) = x/|x| := x0. (3.2.1.9)
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Theorem 3.2.1.2 (Homogeneity h, h) One has

h, h(x, •) = |x|ρh, h(x0(x), •) (3.2.1.10)

Thus the indicators are determined uniquely by their values on the unit
sphere, i.e., they are “functions of direction”. In particular, they are homogeneous
for Vt ≡ I:

h, h(x, •) = |x|ρh, h(x0, •). (3.2.1.11)

The proof of (3.2.1.10) follows from h3), Theorem 3.2.1.1 if we set t := |x|; x :=
P−1

t x.

3.2.2 In this item we will suppose that Vt ≡ I and study the indicator.
Let Δx0 be as defined in Section 2.4.1. Its coefficients depend on a choice of

the spherical coordinate system. However, one has

Theorem 3.2.2.1 Let ψ(y) have continuous second derivatives on the unit sphere
S1. Then the differential form Δx0ψ(y)dy is invariant with respect to the choice
of spherical coordinate system.

Proof. Let φ(x) be a smooth function in Rm. Then Δφ(x)dx is invariant with
respect to the choice of an orthogonal system because Δ (the Laplace operator)
and an element of volume are invariant. Set φ(x) = ψ(y), where y := x0 = x/|x|.
Then

Δφdx = Δx0ψ(y)dy rm−3dr.

Since r is invariant with respect to rotations of the coordinate system, Δx0ψ(y)dy
is invariant with respect to the choice of a spherical coordinate system. �

Note that for m = 2 this theorem is obvious because

Δx0 =
d2

dθ2
(3.2.2.1)

and it does not depend on translations with respect to θ.
We define the operator Δx0 on f ∈ D′(S1) by

〈Δx0f, ψ〉 := 〈f,Δx0ψ〉, ψ ∈ D(S1)

in a fixed spherical coordinate system.
The definition is correct. Indeed, suppose in a fixed system

suppψ ⊂ S1\{θj = 0;π : j = 1, 2, . . . ,m− 2}. (3.2.2.2)

Then all the coefficients of Δx0 are infinitely differentiable and Δx0ψ(y) ∈ D(S1).
By Theorem 3.2.2.1 we obtain that the condition of Theorem 2.3.5.2 (D′ on Sphere)
are fulfilled.

Note that for m = 2 the operator Δx0 is realized by the formula (3.2.2.1) on
functions of the form f = f(eiθ), i.e., on 2π-periodic functions.
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Theorem 3.2.2.2 (Subsphericality of Indicator) One has

[Δx0 + ρ(ρ+m− 2)]h(y, u) := s > 0 (3.2.2.3)

in D′(S1).

I.e., s is a measure on S1.

Proof. It is sufficient to prove this locally, in any spherical system. Let R(r) be
finite, infinitely differentiable and nonnegative in (0; ∞) and let ψ ∈ D(S1) be non-
negative and satisfy (3.2.2.2). Set φ(x) := R(|x|)ψ(x0). Using the subharmonicity
of h(x, u) (h1), Theorem 3.2.1.1 and (3.2.2.2), we have

0 ≤
∫
h(x, u)Δφ(x)dx

=
∫

(y,r)∈S1×(0;∞)

rρh(y, u)
[

1
rm−1

∂

∂r
rm−1 ∂

∂r
+

1
r2

Δx0

]
ψ(y)rm−1dydr.

Transforming the last integral we obtain∫
h(x, u)Δφ(x)dx =

∫ ∞

0

rρ

[
1

rm−1

∂

∂r
rm−1 ∂

∂r
R(r)

]
rm−1dr

∫
S1

h(y, u)ψ(y)dy

+
∫ ∞

0

rρ−2rm−1R(r)dr
∫

S1

h(y, u)Δx0ψ(y)dy. (3.2.2.4)

Integrating by parts in the first summand we obtain∫ ∞

0

rρ

[
1

rm−1

∂

∂r
rm−1 ∂

∂r
R(r)

]
rm−1dr =

∫ ∞

0

R(r)ρ(ρ+m− 2)rρ+m−3dr.

(3.2.2.5)
Substituting (3.2.2.5) into (3.2.2.4), we have

0 ≤
∫ ∞

0

rρ+m−3R(r)dr
∫

S1

h(y, u)[Δx0 + ρ(ρ+m− 2)]ψ(y)dy.

Since R(r) is an arbitrarily nonnegative function,∫
S1

h(y, u)[Δx0 + ρ(ρ+m− 2)]ψ(y)dy ≥ 0

for arbitrary ψ. �
We will call an upper semicontinuous function which satisfies (3.2.2.3) a ρ-

subspherical one. Now we are going to study properties of these functions.

3.2.3 We consider the case m = 2. A ρ-subspherical function for m = 2 is called
ρ-trigonometrically convex (ρ-t.c.). We will obtain for such a function a represen-
tation like in Theorems 3.1.4.4, 3.1.4.5.(*,** Hadamard). Set

Tρ :=
d2

dφ2
+ ρ2.
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Let us find a fundamental solution of this operator. Let ρ be non-integer. Let
us denote as c̃os ρ(φ) the periodic continuation of cos ρφ from the interval (−π, π).

Theorem 3.2.3.1 (Fundamental Solution of Tρ) One has

1
2ρ sinπρ

Tρc̃os ρ(φ− π) = δ(φ) in D′(S1) .

Proof. Let f ∈ D(S1). We have∫ 2π

0

c̃os ρ(φ − π)[f ′′ + ρ2f ]dφ = lim
ε→0

∫ 2π−ε

ε

cos ρ(φ− π)[f ′′ + ρ2f ]dφ. (3.2.3.1)

Integrating by parts we obtain∫ 2π−ε

ε

cosρ(φ−π)[f ′′+ρ2f ]dφ

=cosρ(φ−π) f ′(φ)|2π−ε
ε +ρsinρ(φ−π) f(φ)|2π−ε

ε +
∫ 2π−ε

ε

f(φ)Tρcosρ(φ−π)dφ.

However, Tρ cos ρ(φ−π) = 0 for φ ∈ (ε, 2π− ε). Thus the limit in (3.2.3.1) is equal
to f(0)2ρ sinπρ. �

Let s be a measure on the circle S1. Set

Π(φ, s) :=
∫ 2π

0

c̃os ρ(φ− ψ − π)s(dψ).

Theorem 3.2.3.2 One has

TρΠ(φ, s) = (2ρ sinπρ) s(•) in D′(S1).

The proof is the same as GPo3) in Theorem 2.5.1.1.

Theorem 3.2.3.3 (Representation of ρ-t.c.f for a non-integer ρ) Let h be ρ-t.c. on
S1 for non-integer ρ and let s := Tρh. Then

h(φ) =
1

2ρ sinπρ
Π(φ, s).

The proof is like in Theorem 3.1.4.4 (*Hadamard).

3.2.4 We will suppose in this item that Vt = I,m = 2, ρ is integer.

Theorem 3.2.4.1 (Condition on s) Let ρ be integer, h be ρ-t.c. and Tρh = s. Then∫ 2π

0

eiρφs(dφ) = 0. (3.2.4.1)
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Proof. We have for f ∈ D(S1) :

〈s, f〉 = 〈Tρh, f〉 = 〈h, Tρf〉.
Since eiρφ ∈ D(S1) for integer ρ and Tρe

iρφ = 0, we have for f := eiρφ,

〈s, eiρ•〉 = 〈h, Tρe
iρ•〉 = 0. �

Let us denote the periodic continuation of the function f(φ) := φ from the
interval [0, 2π) to (−∞,∞) as φ̃.

Theorem 3.2.4.2 (Generalized Fundamental Solution for Tρ) One has

Tρ

[
− 1

2πρ
φ̃ sin ρφ

]
= δ(φ) − 1

π
cos ρφ

in D′(S1).

Proof. Let φ ∈ (ε, 2π − ε). Then

Tρφ̃ sin ρφ = 2ρ cosρφ

because φ̃ = φ when φ ∈ (ε, 2π − ε). We have also

(φ sin ρφ)′ = sin ρφ+ φρ cos ρφ.

Thus

〈Tρ•̃ sin ρ•, f〉 =
∫ 2π

0

φ̃ sin ρφ Tρfdφ = lim
ε→0

∫ 2π−ε

ε

φ sin ρφ Tρfdφ.

Integrating by parts we obtain∫ 2π−ε

ε

φ sin ρφ Tρfdφ = φ sin ρφf ′(φ)|2π−ε
ε − f(φ)[sin ρφ+ φρ cos ρφ|2π−ε

ε

+
∫ 2π−ε

ε

Tρ[φ sin ρφ]f(φ)dφ.

Passing to the limit as ε → 0 and taking in account that f is periodic and contin-
uous we obtain

〈Tρ[•̃ sin ρ•], f〉 = −2πρf(0) + 2ρ
∫ 2π

0

cos ρφf(φ)dφ

= −2πρf(0) + 2ρ〈cos ρ•, f〉. �

Set

Π̂(φ, s) :=
∫ 2π

0

˜(φ − ψ) sin ρ(φ− ψ)s(dψ).
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Theorem 3.2.4.3 One has

TρΠ̂(•, s) = −2πρ s in D′(S1)

for s that satisfies (3.2.4.1).

Proof. Using Theorem 3.2.4.2 we obtain

〈TρΠ̂(•, s), f〉 = 〈s, f〉 − 1
π

〈∫ 2π

0

cos ρ(• − ψ)s(dψ), f
〉
.

The last integral is zero because of Theorem 3.2.4.1. �

Theorem 3.2.4.4 (Representation of ρ-t.c.f. for an integer ρ) Let h be a ρ-t.c.f.for
an integer ρ and Tρh := s. Then

h(φ) = �ceiφ + Π̂(φ, s)

for some complex constant c.

Proof. The function H(φ) := h(φ) − Π̂(φ, s) satisfies the equation TρH = 0 in
D′(S1) because of Theorem 3.2.4.3 and it is real. Thus H(φ) = �ceiφ. �

3.2.5 The class TCρ of ρ-t.c.functions has a number of properties of subharmonic
functions.

The function c̃os ρφ is continuous and φ̃ sin ρφ is continuous for integer ρ.
Therefore any ρ-t.c.f is continuous as follows from Theorem 3.2.3.3 and 3.2.4.4.

Set
E(φ) :=

1
2ρ

sin ρ|φ|.

For any interval I := (α, β) � (−π, π) this function satisfies the equality

TρE = δ

in D′(α, β), where δ is the Dirac function in zero.
Let GI(ψ, φ) be the Green function of Tρ for the interval I. By definition it

must be symmetric with respect to φ, ψ and have the form

GI(φ, ψ) :=
1
2ρ

sin ρ|φ− ψ| +AI cos ρφ cos ρψ +BI sin ρφ sin ρψ, (3.2.5.1)

where AI , BI are chosen such that GI(φ, ψ) is equal to zero on ∂{I × I}. An
explicit form of GI is given by

GI(φ, ψ) =

⎧⎨⎩
sin ρ(β−φ) sin ρ(ψ−α)

ρ sin ρ(β−α) , for ψ < φ;
sin ρ(β−ψ) sin ρ(φ−α)

ρ sin ρ(β−α) , for φ < ψ.
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The following assertion is analogous to the Riesz theorem (Theorem 2.6.4.3):

Theorem 3.2.5.1 (Representation on I) Let h ∈ TCρ and let I be an interval of
length mes I < π/ρ. Then

h(φ) = Yρ(φ, h) −
β∫

α

GI(φ, ψ)s(dψ),

where Yρ(φ, h) is the only solution of the boundary problem:

TρY = 0, Y (α) = h(α), Y (β) = h(β) (3.2.5.2)

and s := Tρh.

Proof. Set

ΠI(φ, s) :=

β∫
α

GI(φ, ψ)s(dψ).

One can check as in Theorem 3.2.3.2 that TρΠI = −s in D′(I). Then the function

Yρ(φ) := h(φ) + ΠI(φ, s)

satisfies the conditions (3.2.5.2). �
The explicit form of Yρ(φ) is

Yρ(φ) =
h(α) sin ρ(β − φ) + h(β) sin ρ(φ − α)

sinρ(β − φ)
. (3.2.5.3)

Since ΠI(φ) ≥ 0 we have

Theorem 3.2.5.2 (ρ-Trigonometric Majorant) Suppose h ∈ TCρ and Yρ(φ) is the
solution of (3.2.5.2). Then

h(φ) ≤ Yρ(φ), φ ∈ I

if β − α < π/ρ.

This inequality can be written in the symmetric form

h(α) sin ρ(β − φ) + h(φ) sin ρ(α− β) + h(β) sin ρ(φ− α) ≥ 0 (3.2.5.4)

for max(α, φ, β) − min(α, φ, β) < π/ρ. It is called the fundamental relation of
indicator.

Theorem 3.2.5.3 (Subharmonicity and ρ-t.c.) A function h(φ) ∈ TCρ iff the func-
tion u(reiφ) := h(φ)rρ is subharmonic in R2.

Proof. Sufficiency follows from Theorem 3.2.2.2. Let us prove necessity. The func-
tion u1(z) := rρ sin ρ|φ| is subharmonic. Actually, it is harmonic for φ �= 0, r �= 0
and can be represented in the form

u1(z) = max(rρ sinφ,−rρ sinφ)
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in a neighborhood of the line φ = 0. Hence, it is subharmonic because of sh2),
Theorem 2.6.1.1 (Elementary Properties).

The function u2(z) := rρΠI(φ, s) is subharmonic because of sh5) and sh4),
Theorem 2.6.1.1. The function rρYρ(φ) is harmonic for r > 0. This can be checked
directly. Hence, u(z) is subharmonic for r > 0 because of Theorem 3.2.5.1. By
Theorem 2.6.2.2 u(z) is also subharmonic for r = 0, because it is, obviously,
continuous at z = 0. �

Theorem 3.2.5.4 (Elementary Properties of ρ-t.c.Functions) One has
tc1) If h ∈ TCρ, then Ah ∈ TCρ for A > 0;
tc2) If h1, h2 ∈ TCρ, then h1 + h2, max(h1, h2) ∈ TCρ.

These properties follow from Theorem 3.2.5.3 and properties of subharmonic
functions.

Exercise 3.2.5.1 Prove Theorem 3.2.5.4.

Similarly to (usual) convexity, ρ-t.convexity of functions implies several an-
alytic properties.

Theorem 3.2.5.5 Let h ∈ TCρ; then there exist right (h′+) and left (h′−) derivatives
and they coincide everywhere except, maybe, for a countable set of points.

Proof. It is enough to prove these properties for the potential

Π(φ) :=
∫ β

α

sin ρ|φ− ψ|s(dψ),

because of (3.2.5.1) and Theorem 3.2.5.1.
We will prove that

Π′+(φ) = ρ

φ−0∫
α

cos ρ(φ − ψ)s(dψ) + ρμ(φ) − ρ

β∫
φ+0

cos ρ(φ− ψ)s(dψ); (3.2.5.5)

Π′−(φ) = ρ

φ−0∫
α

cos ρ(φ − ψ)s(dψ) − ρμ(φ) − ρ

β∫
φ+0

cos ρ(φ− ψ)s(dψ), (3.2.5.6)

where μ(φ) is the measure, concentrated in the point φ.
We have for Δ > 0:

Π(φ+ Δ) − Π(φ)
Δ

=

φ−0∫
α

sin ρ|φ+ Δ − ψ| − sin ρ|φ− ψ|
Δ

s(dψ)

+
sin ρΔ

Δ
μ(φ) +

φ+Δ∫
φ+0

· · · +

β∫
φ+Δ

· · · .
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Let us estimate the second integral.We have
φ+Δ∫

φ+0

∣∣∣∣sin ρ|φ+ Δ − ψ| − sin ρ|φ− ψ|
Δ

∣∣∣∣ s(dψ) ≤ 2 sin ρΔ
Δ

[s(φ+Δ)− s(φ+0)] = o(1)

when Δ → +0.
Passing to the limit, we obtain (3.2.5.5). The equality (3.2.5.6) is obtained

in the same way when Δ < 0.
Since μ(φ) �= 0 at most in a countable set, for all the other points Π′+(φ) =

Π′−(φ). �

3.2.6 Now we consider the case m ≥ 3. We will obtain for the ρ-subspherical
function a representation like for the ρ-trigonometrically convex functions.

Theorem 3.2.6.1 (Subharmonicity and Subsphericality) Let h be subspherical in a
neighborhood of y ∈ S1. Then the function u(x) := h(y)rρ, x = ry is subharmonic
in the corresponding neighborhood of the ray x = ry : 0 < r < ∞.

Proof. Let f ∈ D′(Rm \ 0). We can represent it in the form f := f(rx), x ∈ S1

where f(•x) ∈ D′(0,∞) for any x.
Then

〈u,Δf〉 =

∞∫
0

∫
S1

u(rx)Δf(rx)rm−1drdx

=

∞∫
0

∫
S1

u(rx)
1

rm−1

∂

∂r
rm−1 ∂

∂r
f(rx)rm−1drdx

+

∞∫
0

∫
S1

u(rx)
1
r2

Δx0f(rx)rm−1drdx.

Integrating by parts in the first integral, we obtain
∞∫
0

ρ(ρ+m− 2)rρ+m−3

∫
S1

h(x)f(rx)drdx.

Set
Sρ := Δx0 + ρ(ρ+m− 2). (3.2.6.1)

Together with the second summand we obtain

〈u, f〉 =

∞∫
0

⎡⎣∫
S1

h(x)Sρf(rx)dx

⎤⎦ rρ+m−3dr > 0

if f(rx) ≥ 0. �
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Note that the Riesz measure for such u has the form

μ(rm−1drdx) = rρ+m−3drνh(dx),

where νh is a positive measure on S1, that is equal to Sρh in D′(S1).
For a non-integer ρ set

Eρ(x, y) :=

∞∫
0

Gp(x, ry,m)rρ+m−3dr,

where Gp is the primary kernel and x, y ∈ S1.

Theorem 3.2.6.2 For non-integer ρ and any ρ-subspherical function h one has

h(x) =
∫
S1

Eρ(x, y)νh(dy).

Proof. Set in (3.1.4.6) v := rρh(x). It is clear that v ∈ U [ρ]. We have

rρh(x) =
∫
S1

∞∫
0

Gp(rx, ty,m)tρ+m−3dtνh(dx).

Now we make the change t′ := t/r and use the homogeneity of Gp(rx, ty,m). �

Exercise 3.2.6.1 Show that Eρ(x, y) is a fundamental solution of the operator Sρ.

For an integer ρ = p set

E ′ρ(x, y) :=

1∫
0

Gp−1(x, ry)rρ+m−3dr +

∞∫
1

Gp(x, ry)rρ+m−3dr.

Exercise 3.2.6.2 Prove the next

Theorem 3.2.6.3 For any integer ρ = p and any ρ-subspherical function h one has

h(x) = Yp(x) +
∫
S1

E ′ρ(x, y)νh(dy)

where Yp is some p-spherical function.
For any p-spherical function Y ,∫

S1

Y (x)νh(dy) = 0.

3.2.7 We return to the general case when x ∈ Rm, Vt is a one-parametric group,
ρ(r) is a proximate order and u ∈ SH(ρ(r)). The following theorem represents
indicators in a form of limits in the usual topology.
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Theorem 3.2.7.1 (Classic Indicators) One has

h(x, u) = sup
T

[lim sup
tj→∞

utj ]
∗(x) = [lim sup

t→∞
ut(x)]∗ (3.2.7.1)

where ∗ can be deleted outside a set of zero capacity, and

h(x, u) = inf
T

[lim sup
tj→∞

utj ]
∗(x), (3.2.7.2)

where T is the set of all the sequences that tend to infinity.

Proof. Let us prove (3.2.7.1). Set

h(x, u, {tj}) := lim sup
tj→∞

utj (x). (3.2.7.3)

Let v ∈ Fr[u] and utj → v in D′. Then

h∗(x, u, {tj}) = v(x) (3.2.7.4)

by Theorem 2.7.3.3. (H. Cartan+). Thus

sup
T
h∗(x, u, {tj}) ≥ h(x, u). (3.2.7.5)

Let ε > 0 be arbitrarily small, and tj := tj(x) be a sequence such that

h∗(x, u, {tj}) ≥ sup
T
h∗(x, u, {tj}) − ε.

We can find a subsequence {tj} (we keep the same notation for it) and v ∈ Fr[u]
such that utj → v in D′. From (3.2.7.4) we obtain

h(x, u) ≥ v(x) ≥ sup
T
h∗(x, u, {tj}) − ε.

Thus the reverse inequality to (3.2.7.5) holds. Therefore

h(x, u) = sup
T
h∗(x, u, {tj}).

Let us prove the second equality in (3.2.7.1). Since

sup
T
h(x, u, {tj}) = lim sup

t→∞
ut(x)

we have
h(x, u) ≥ [lim sup

t→∞
ut]∗(x). (3.2.7.6)

Let us prove the opposite inequality. Let v ∈ Fr[u]. There exists a sequence tj → ∞
such that utj → v in D′(Rm). By (3.2.7.4)

[lim sup
t→∞

ut]∗ ≥ h∗(x, u, {tj}) = v(x).
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Since it holds for every v ∈ Fr[u] we have the reverse inequality to (3.2.7.6). Hence,
(3.2.7.1) is proved completely.

Let us prove (3.2.7.2). From (3.2.7.4) we have

inf
T
h∗(x, u, {tj}) ≤ v(x)

for all v ∈ Fr[u]. Therefore

inf
T
h∗(x, u, {tj}) ≤ h(x, u). (3.2.7.7)

Let us prove the opposite inequality. Let {tj} be any sequence that tends to
∞. Let us find a subsequence {tj′} such that utj′ → v in D′(Rm). Then

h(x, u, {tj}) ≥ lim sup
j′→∞

utj′ (x).

Taking ∗ from the two sides of this inequality and using Theorem 2.7.3.3, we obtain

h∗(x, u, {tj}) ≥ [lim sup
j′→∞

utj′ ]
∗(x) = v(x) ≥ h(x, u).

This implies the reverse inequality to (3.2.7.7). Hence (3.2.7.2) holds. �

Corollary 3.2.7.2 If all the functions (3.2.7.3) are upper semicontinuous, then

h(x, u) = lim sup
t→∞

ut(x), h(x, u) = lim inf
t→∞ ut(x).

Proof. We have h∗(x, u, {tj}) = h(x, u, {tj}) and thus

h(x, u) = sup
T

[lim sup
tj→∞

utj ](x) = lim inf
t→∞ ut(x),

h(x, u) = inf
T

[lim sup
tj→∞

utj ](x) = lim inf
t→∞ ut(x). �

Theorem 3.2.7.3 (Indicators of Harmonic Function) Let u ∈ SH(ρ(r)) be har-
monic for all the large |y| in a “cone” of the form

CoΩ := {y = Ptx : x ∈ Ω, t ∈ (0; ∞)}
where Ω ⊂ S1. Then

h(x, u) = lim sup
t→∞

ut(x) (3.2.7.8)

and
h(x, u) = lim inf

t→∞ ut(x) (3.2.7.9)

for x ∈ CoΩ.
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Proof. The harmonicity of u in CoΩ implies [ut]ε(x) = ut(x) for large t and
sufficiently small ε when x ∈ CoΩ.

The family [ut]ε is uniformly continuous by reg3), Theorem 2.3.4.5 (Proper-
ties of Regularizations). Thus the function (3.2.7.5) is continuous. Therefore we
can use Corollary 3.2.7.2. �

Theorem 3.2.7.4 (Indicator for m = 2) Let u ∈ SH(R2). Then

h(z, u) = lim sup
t→∞

ut(x). (3.2.7.10)

I.e., the star in (3.2.7.1) can be deleted.

Proof. Let as denote as h1(z, u) the right part of (3.2.7.10). The “homogeneity”
of the indicator (3.2.1.10) and also of h1(z, u) implies the following property: if
the inequality h1(z, u) < h(z.u) holds for some z0, it holds on the whole orbit

z = {Ptz0 : 0 < t < ∞}
that has a positive capacity in R2. This contradicts Theorem 3.2.7.1. �

3.3 Densities

3.3.1 In the sequel G is an open set, K is a compact set and E a bounded Borel
set. Let μ ∈ M(ρ(r)) and Fr[μ] := Fr[μ, ρ(r), Vt,R

m] be the limit set of μ. Set

Δ(G,μ) := sup{ν(G) : ν ∈ Fr[μ]};

Δ(E, μ) := inf{Δ(G,μ) : G ⊃ E};
Δ(K,μ) := inf{ν(K) : ν ∈ Fr[μ]};
Δ(E, μ) := sup{Δ(K) : K ⊂ E}.

The quality Δ(E, μ), (Δ(E, μ)) is called the upper (lower) density of μ relative to
the proximate order ρ(r) and the family Vt.

Theorem 3.3.1.1 (Properties of Densities) The following properties hold:

dens1) if E = ∅, then Δ(E, •) = Δ(E, •) = 0;

dens2) ∀E, Δ(E, •) ≤ Δ(E, •);

dens3) monotonicity: Δ,Δ(E1, •) ≤ Δ,Δ(E2, •) for E1 ⊂ E2;
dens4) generalized semi-additivity1 with respect to a set:

Δ(E1 ∪ E2, •) + Δ(E1 ∩ E2, •) ≤ Δ(E1, •) + Δ(E2, •), (3.3.1.1)

Δ(E1 ∪ E2, •) + Δ(E1 ∩ E2, •) ≥ Δ(E1, •) + Δ(E2, •); (3.3.1.2)

1See Exercise 3.3.1.1
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dens5) continuity from the right and from the left.

En ↑ E =⇒ Δ(En, •) ↑ Δ(E, •); Kn ↓ K =⇒ Δ(Kn, •) ↓ Δ(K, •),
(3.3.1.3)

En ↓ E =⇒ Δ(En, •) ↓ Δ(E, •); Gn ↑ G =⇒ Δ(Gn, •) ↑ Δ(G, •);
(3.3.1.4)

dens6) semi-additivity and positive homogeneity with respect to μ, i.e.,

Δ(E, μ1 + μ2) ≤ Δ(E, μ1) + Δ(E, μ2); (3.3.1.5)
Δ(E, μ1 + μ2) ≥ Δ(E, μ1) + Δ(E, μ2); (3.3.1.6)

Δ,Δ(E, λμ) = λΔ, λΔ(E, μ) (3.3.1.7)

for λ ≥ 0;

dens7) invariance with respect to the map (•)[t] (see, 3.1.2.4a), i.e.,

t−ρ−m+2Δ,Δ(PtE, •) = Δ,Δ(E, •).

Proof of Theorem 3.3.1.1. The property dens1) holds because the empty set is
open by definition. The properties dens2) and dens3) hold because of the mono-
tonicity of ν.

Let us prove dens4). Since ν is a measure we have

ν(G1 ∪G2, μ) + ν(G1 ∩G2, μ) = ν(G1, μ) + ν(G2, μ)

for any G1 ⊃ E1 and G2 ⊃ E2.
From this we obtain

ν(G1 ∪G2, μ) + ν(K1 ∩K2, μ) ≤ ν(G1, μ) + ν(G2, μ) (3.3.1.8)

for K1 ⊂ E1 and K2 ⊂ E2.
The right side of (3.3.1.8) is no larger than Δ(G1, •)+Δ(G1, •). Now we can

take supremum over ν ∈ Frμ in the first summand of the left side and infimum in
the second summand. Thus we obtain

Δ(G1 ∪G2, •) + Δ(K1 ∩K2, •) ≤ Δ(G1, •) + Δ(G1, •). (3.3.1.9)

Since Δ(E, •) and Δ(E, •) are monotonic with respect to E,

inf{Δ(G1 ∪G2, •) : G1 ⊃ E1, G2 ⊃ E2} = Δ(E1 ∪E2, •)

and
sup{Δ(K1 ∩K2, •) : K1 ⊂ E1, K2 ⊂ E2} = Δ(E1 ∪ E2).

Thus we obtain the first inequality in dens4) from (3.3.1.9). The second one can
be obtained analogously2.
2Exercise 3.3.1.2
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Let us prove dens5). For arbitrary G ⊃ K there exists n0 such that Kn ⊂ G
for n > n0. According to dens3),

Δ(K, •) ≤ Δ(Kn, •) ≤ Δ(G, •).

Hence,
Δ(K, •) ≤ lim

n→∞Δ(Kn, •) ≤ Δ(G, •).

Taking infimum over all G ⊃ K, we obtain the second assertion in (3.3.1.3).
For Gn ↑ G we have the equality

lim
n→∞Δ(Gn, •) = sup

n
Δ(Gn, •) = Δ(G, •) (3.3.1.10)

because one can change the order of taking the supremum on n and on ν ∈ Fr[μ].
Let En ↑ E and let ε be arbitrarily small. One can find Gn ⊃ En such that

Δ(Gn, •) ≤ Δ(En, •) + ε.

Since G :=
⋃∞

1 Gn ⊃ E we have

Δ(Gn, •) − ε ≤ Δ(En, •) ≤ Δ(E, •) ≤ Δ(G, •).

Using (3.3.1.10), we obtain

Δ(E, •) − lim
n→∞Δ(En, •) ≤ ε.

Since ε is arbitrarily small,

Δ(E, •) ≤ lim
n→∞Δ(En, •)

and hence the first assertion in (3.3.1.3) holds.
The assertion (3.3.1.4) can be proved analogously.3

Let us prove dens6). One has

Δ(G,μ1 + μ2) = sup{ν(G) : ν ∈ Fr[μ1 + μ2]}.
Since

Fr[μ1 + μ2] ⊂ Fr[μ1] + Fr[μ2]

(see frmu1), Theorem 3.1.3.4 (Properties of μ �→ Fr[μ])) one can continue the
previous equality as

≤ sup{ν(G) : ν ∈ Fr[μ1] + Fr[μ2]}
= sup{ν(G) : ν ∈ Fr[μ1]} + sup{ν(G) : ν ∈ Fr[μ2]} = Δ(G,μ1) + Δ(G,μ2).

Passing to the infimum over G ⊃ E, we obtain (3.3.1.5). The assertions (3.3.1.6)
and (3.3.1.7) can be proved analogously.4

The properties dens7) follow from the invariance of Fr[μ] (see frm3), Theorem
3.1.3.3. (Properties of Fr[μ])). �
3See Exercise 3.3.1.3
4See Exercise 3.3.1.4
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Exercise 3.3.1.1 Prove the subadditivity of Δ(E, •) :

Δ(E1 ∪ E2, •) ≤ Δ(E1, •) + Δ(E2, •)

and the superadditivity of Δ(E, •) :

Δ(E1 ∪ E2, •) ≥ Δ(E1, •) + Δ(E2, •)

from Theorem 3.3.1.1.

Exercise 3.3.1.2 Prove (3.3.1.2).

Exercise 3.3.1.3 Prove (3.3.1.4).

Exercise 3.3.1.4 Prove (3.3.1.6) and (3.3.1.7).

Set for I ⊂ (0,∞) and Ω ⊂ S1,

CoΩ(I) := {x = Pty : y ∈ Ω, t ∈ I}.
Also set It := (0, t).

Theorem 3.3.1.2 (Cone’s Densities) One has

Δ,Δ(CoΩ(It)) = tρ+m−2Δ,Δ(CoΩ(I1)).

We obtain this from dens7), Theorem 3.3.1.1, taking E := CoΩ(I1).

Exercise 3.3.1.5 Show that for m = 2, S1 = {|z| = 1},Ω = {z = eiφ : φ ∈ (α, β)}
CoΩ(It) is a sector of radius t corresponding to the arc (α, β) on the unit circle.

3.3.2 Let δ(E) be a monotonic function of E ∈ Rm. A set E is called δ-squarable if

sup
K⊂E

δ(K) = inf
G⊃E

δ(G). (3.3.2.1)

Example 3.3.2.1 Let δ(E) be a measure. Then (3.3.2.1) implies δ(∂E) = 0, i.e.,
E is δ-squarable in the sense of Section 2.2.3.

Exercise 3.3.2.2 Prove the next

Theorem 3.3.2.1 If Δ(∂E) = 0, then E is Δ-squarable. If E is Δ-squarable, then
Δ(∂E) = 0.

Set
Et := {x : ∃y ∈ E : |x− y| < t}.

This is a t-extension of E.
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A family of sets A1 is said to be dense in a family A2 if for each set E2 ∈ A2

and an arbitrarily small ε > 0 there exists a set E1 ∈ A1 such that

E1ΔE2 := (E1 \ E2) ∪ (E2 \ E1) ⊂ (∂E2)ε. (3.3.2.2)

Exercise 3.3.2.3 Prove

Theorem 3.3.2.2 The relation “to be dense in” is reflexive and transitive.

I.e., A1 is dense in A1, and

{A1 is dense in A2} ∧ {A2 is dense in A3} =⇒ {A1 is dense in A3}. (3.3.2.3)

There are lots of squarable sets.

Theorem 3.3.2.3 For any monotonic δ(E) the class of δ-squarable sets is dense in
the class of all the subsets of Rm.

Proof. For any E ⊂ Rm set

E(t) := E ∪ (∂E)t. (3.3.2.4)

One can check that
EΔE(t1) ⊂ (∂E)t2 (3.3.2.5)

and
E(t1) ⊂

◦
E(t2) (3.3.2.6)

for t1 < t2.

The function f(t) := δ(
◦
E(t)) is monotonic. Hence, its set of continuity points

has a concentration point at t = 0.
Suppose ε > 0 is arbitrarily small, and t0 < ε is a continuity point for f(t).

From (3.3.2.6) we have

lim
t→t0−ε

δ(E(t)) ≤ sup
K⊂Et0

δ(K) ≤ inf
G⊃Et0

δ(G) ≤ lim
t→t0+ε

δ(
◦
E(t)).

Hence, Et0 is δ-squarable. From (3.3.2.5) we have

EΔE(t0) ⊂ (∂E)ε. �

Set
Δ

cl
(E) = lim sup

t→∞
μt(E); Δcl(E) = lim inf

t→∞ μt(E).

These are classic densities determined without D′-topology. They are monotonic.
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The following assertion connects these densities to Δ and Δ.

Theorem 3.3.2.4 (Classic Densities) For any Δ
cl
-squarable set E,

Δ
cl
(E) = sup{ν(E) : ν ∈ Fr[μ]} = Δ(E, μ). (3.3.2.7)

For any Δcl-squarable set E,

Δcl(E) = inf{ν(E) : ν ∈ Fr[μ]} = Δ(E, μ). (3.3.2.7′)

The theorem follows obviously from the following assertion.

Theorem 3.3.2.5 One has

sup
K⊂E

Δ
cl
(K) ≤ sup

ν∈Fr
ν(E) ≤ Δ(E) ≤ inf

G⊃E
Δ

cl
(G); (3.3.2.8)

sup
K⊂E

Δcl(K) ≤ inf
ν∈Fr

ν(E) ≤ Δ(E) ≤ inf
G⊃E

Δcl(G). (3.3.2.9)

Proof. Let us prove, for example, (3.3.2.9). Let us choose any G and K such that
K ⊂ E ⊂ G. We can find a sequence tj → ∞ such that

lim
j→∞

μtj (G) = Δcl(G).

Choose a subsequence tjn such that μtjn
→ ν in D′ for some ν ∈ Fr.

Using Theorems 2.3.4.4.(D′and C*) and 2.2.3.1.(C*-limits), we obtain

ν(G) ≤ lim inf
n→∞ μtjn

(G) = Δcl(G). (3.3.2.10)

By the same theorems

Δcl(K) ≤ lim sup
n→∞

μtjn
(K) ≤ ν(K). (3.3.2.11)

From (3.3.2.10) and (3.3.2.11) we obtain

Δcl(K) ≤ ν(E) ≤ ν(G) ≤ Δcl(G) (3.3.2.12)

because of monotonicity of ν(E). Taking supremum over all K ⊂ E and infimum
over all G ⊃ E, we obtain (3.3.2.9). �

Exercise 3.3.2.4 Prove (3.3.2.8).

Corollary 3.3.2.6 The following holds:

Δ
cl
(Kt) = Δ(Kt, μ) = tρ+m−2Δ(K1, μ), t ≥ 0, (3.3.2.13)

Δcl(Kt) = Δ(Kt, μ) = tρ+m−2Δ(K1, μ), t ≥ 0. (3.3.2.13′)

where Kt = {x : |x| < t} is the ball.

Proof. The right equalities follow from Theorem 3.3.1.2 with Ω := S1. The left
equalities hold at least for one t because of Theorem 3.3.2.4 and hence for all t. �
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3.3.3 Let us note generally speaking that values of Δ and Δ on the sets CoΩ(It)
do not determine their values even on the sets CoΩ(I) for I = (t1, t2). However
the following assertion holds.

Theorem 3.3.3.1 (Existence of Density) Let Φ be a dense ring (see, 2.2.3) on S1.
Then the conditions

Δ(CoΩ(It)) = Δ(CoΩ(It)) (3.3.3.1)

for Ω ∈ Φ and some t determine uniquely a measure Δ(Ω) on S1. Fr[μ] consists
of one single measure ν and

ν(CoΩ(It)) = tρ+m−2Δ(Ω) (3.3.3.2)

for all the t ∈ (0,∞).

To prove this we need an assertion that is valuable by itself. Set

Δ(Ω) := Δ(CoΩ(I1)); Δ(Ω) := Δ(CoΩ(I1)) for Ω ∈ S1. (3.3.3.3)

We will call them angular densities because for m = 2 and Vt ≡ I, Ω determines
an angle in the plane.

Let ΩG denote an open set in S1 and ΩK a closed one.

Theorem 3.3.3.2 (Angular Densities) One has

Δ(Ω) = inf
ΩG⊃Ω

Δ(ΩG); Δ(Ω) = sup
ΩK⊂Ω

Δ(ΩK). (3.3.3.4)

Proof. We need to prove two assertions:

∀ε > 0 ∃ΩG : Δ(ΩG) < Δ(Ω) + ε; (3.3.3.5)

∀ε > 0 ∃ΩK : Δ(ΩK) > Δ(Ω) − ε. (3.3.3.6)

Let us prove (3.3.3.5). Set

ΩG(ε) := CoΩ(I1+ε) ∪ {|x| < ε}.

This is an open set that contains CoΩ(I1). One can show the following:

Exercise 3.3.3.1 For every open set G ⊃ CoΩ(I1) there exists ε > 0 and ΩG ⊂ S1

such that ΩG(ε) ⊂ G.

We will show
Δ(ΩG(ε)) < Δ(ΩG) + o(1) (3.3.3.7)

uniformly with respect to ΩG ⊂ S1 while ε → 0.
We have from Exercise 3.3.1.1,

Δ(ΩG(ε)) ≤ Δ(CoΩ(I1+ε)) + Δ({|x| < ε}). (3.3.3.8)
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The property dens7), Theorem 3.3.1.1, gives

Δ(CoΩG(I1+ε)) = Δ(CoΩG(I1))(1 + ε)ρ+m−2.

Since Δ(CoΩG(I1)) ≤ Δ({|x| < 1}) we have

Δ(CoΩG(I1+ε)) = Δ(CoΩG(I1)) + o(1) (3.3.3.9)

uniformly with respect to ΩG ⊂ S1 as ε → 0.
By dens7) we also have

Δ({|x| < ε}) = Δ({|x| < 1})ερ+m−2 = o(1). (3.3.3.10)

From (3.3.3.10), (3.3.3.9) and (3.3.3.8) we obtain (3.3.3.7). Hence (3.3.3.5) is
proved.

Let us prove (3.3.3.6). Set

ΩK(ε) := CoΩK (Ī1−ε) \ {|x| < ε}

where Ī is the closure of I.
One can show the following:

Exercise 3.3.3.2 For any compact K ⊂ CoΩ(I1) there exist ΩK ⊂ Ω and ε > 0
such that K ⊂ ΩK(ε) ⊂ CoΩ(I1).

From the definition of Δ(Ω) and the monotonicity we obtain (3.3.3.6). �

Proof of Theorem 3.3.3.1. Suppose (3.3.3.1) holds. The property dens7), Theorem
3.3.1.1, implies (3.3.3.1) for all the t ∈ (0,∞). Set Δ(Ω) := Δ(Ω) = Δ(Ω) for
Ω ∈ Φ. Let us prove that Δ satisfies the conditions Δ1)–Δ3) from Section 2.2.3.
The conditions Δ1) and Δ2) follow from dens3) and dens4), Theorem 3.3.1.1,
Exercise 3.3.1.1.

Let us prove Δ3). By Theorem 3.3.3.2 for arbitrary Ω ∈ Φ and ε > 0 we
can choose ΩG ⊃ Ω such that Δ(Ω) > Δ(ΩG) − ε and ΩK ⊂ Ω such that
Δ(Ω) < Δ(ΩK) + ε.

Suppose Ω′ ∈ Φ satisfies the condition ΩK ⊂ Ω′ ⊂ ΩG. Then

Δ(Ω′) = Δ(Ω′) ≤ Δ(ΩG) ≤ Δ(Ω) + ε = Δ(Ω) + ε

and
Δ(Ω) − ε = Δ(Ω) − ε ≤ Δ(ΩK) ≤ Δ(Ω′) = Δ(Ω′),

implying Δ3). �



Chapter 4

Structure of Limit Sets

4.1 Dynamical systems

4.1.1 The most complete and effective description of an arbitrary limit set can be
done in terms of dynamical systems (see, [An]).

A family of the form

T t : M �→ M, t ∈ R,

on a compact metric space (M,d) with a metric d(•, •) is a dynamical system
(T •,M) if it satisfies the condition

T t+τ = T t ◦ T τ , t, τ ∈ R

and the map (t,m) �→ T tm is continuous with respect to (t,m), for all t ∈ R,
m ∈ M .

Let m,m′ ∈ M , and ε, s > 0. An (ε, s)-chain from m to m′ is a finite sequence
m0 = m,m1, . . . ,mn = m′, satisfying the conditions d(T tjmj ,mj+1) < ε, j =
0, 1, . . . , n− 1, for some tj ≥ s.

A dynamical system (T •,M) is called chain recurrent (see, [HS]), if for an
arbitrarily small ε > 0 and an arbitrarily large s > 0 there exists an (ε, s)-chain in
M from m to m.

Theorem 4.1.1.1 (Properties of Chain Recurrence) Let (T •,M) be a dynamical
system on a compact set. Then the following conditions are equivalent:

cr1) M is connected and (T •,M) is chain recurrent;

cr2) for every open proper U ⊂ M satisfying

T tU ⊂ U, −∞ < t < 0, (4.1.1.1)

the boundary ∂U contains a nonempty T •-invariant subset of M ;
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cr3) for every closed proper K ⊂ M satisfying

T tK ⊂ K, t ≥ 0, (4.1.1.2)

the boundary ∂K contains a nonempty T •-invariant subset of M ;

cr4) there does not exist any open proper V ⊂ M satisfying T τ closV ⊂ V for
some τ > 0;

cr5) for any small ε > 0, large s > 0, and every pair of points m,m′ there exists
an (ε, s)-chain from m to m′.

Proof. The conditions cr2) and cr3) are equivalent. Let us prove, for example,
cr2)=⇒ cr3). Set U := M \ K. It is open. Applying to (4.1.1.2) T−t and, using
the invariance of M , we obtain (4.1.1.1) for U . Hence ∂U contains a nonempty
invariant subset of M . Since ∂K = ∂U we obtain cr2).

Let us prove the implication cr1)=⇒cr3). Let K ⊂ M be closed, proper and
satisfy (4.1.1.2). Since M is proper ∂K is nonempty.

Let W denote the interior of K in M . The continuity of T and (4.1.1.2) imply

T tW ⊂ W (4.1.1.3)

for t ≥ 0. Indeed, T tW ⊂ K. It must be open. Thus it cannot contain any point
of ∂K, since else it would contain some neighborhood of this point, contradicting
the definition of ∂K.

Suppose that ∂K does not contain any nonempty T -invariant set. Let us
show that there exists s > 0 such that

T sK ⊂ W. (4.1.1.4)

For any m ∈ ∂K there exists t = t(m) such that T tm ∈ W . There exists a
neighborhood Vm of m in ∂K that passes to W under T t(m)-action because of
continuity of T tm on m.

We also have T tVm ⊂ W for t > t(m) because of (4.1.1.3). Since ∂K is
compact we can cover it by a finite number of neighborhoods and obtain s such
that

T s∂K ⊂ W. (4.1.1.5)

(4.1.1.5) and (4.1.1.3) give (4.1.1.4).
Set ε := 0.5d(∂K, T sK). From (4.1.1.2) we see that T tK ⊂ T sK for t > s.

Therefore there does not exist any (ε, s)-chain from a small neighborhood of a
point m ∈ ∂K to itself. This contradicts the chain recurrence of M .

Let us prove cr3)=⇒cr4). Assume that there exists an open proper V ⊂ M
satisfying T τ closV ⊂ V for some τ > 0.

We will construct K that does not satisfy cr3). Set W :=
⋃

0≤t≤τ

T tV and

K := closW .
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Then
T sW ⊂ W, ∀s ≥ 0. (4.1.1.6)

Indeed, let s = kτ + s′, s′ ∈ [0, τ), k ∈ Z. Then

T sW =
⋃

t∈[0,τ ]

T t+sV. (4.1.1.7)

Since T τV ⊂ V we have T t+kτV ⊂ T tV for t > 0. From (4.1.1.7) we obtain

T sW =
⋃

t∈[0,τ ]

T t+s′+kτV ⊂
⋃

t∈[0,τ ]

T t+s′V =
⋃

t′∈[s′,τ+s′]

T t′V

=
⋃

t∈[s′,τ ]

T tV ∪
⋃

t∈[τ,τ+s′]

T tV := W1 ∪W2.

Further we have W1 ⊂ W by definition. W2 can be represented in the form

W2 =
⋃

t∈[0,s′]

T t+τV.

Since
T t+τV = T tT τV and T τV ⊂ V

by the assumption we get:
W2 ⊂ W1 ⊂ W.

This implies (4.1.1.6). The same holds for K because of continuity of T t, i.e., K
satisfies (4.1.1.2).

Let us prove the equality

K =
⋃

0≤t≤τ

T t closV. (4.1.1.8)

Denote as K ′ the right side of (4.1.1.8).
The set K ′ is closed because of compactness of [0, τ ]. Indeed, let the sequence

{T tjvj : j = 1, 2, . . . } ∈ T tj(closV ) converge to w. Choose a subsequence tjk
→

s ∈ [0, τ ]. Then
v := lim

k→∞
vjk

= lim
k→∞

T−tjkw = T−sw.

Since closV is closed, v ∈ closV . Thus w = T sv for some s ∈ [0, τ ] and some
v ∈ closV , i.e., w ∈ K ′.

Now, W ⊂ K ′ because

T tV ⊂ closT tV = T t closV.

Hence,
K := closW ⊂ closK ′ = K ′.
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We also have

(T tV ⊂ W ∀t ∈ [0, τ ]) =⇒ (closT tV = T t closV ⊂ closW = K, ∀t ∈ [0, τ ]).

Hence, K ′ ⊂ K. Therefore K = K ′, i.e., (4.1.1.8) holds.
From (4.1.1.8) and T τ closV ⊂ V we obtain T τ closW ⊂ W . Hence T τ∂K ⊂

W . This and ∂K ∩W = ∅ imply

T τ∂K ∩ ∂K = ∅. (4.1.1.9)

To obtain a contradiction and complete the proof of cr3) =⇒ cr4) we have
to show that K is a proper subset, because both cases: ∂K = ∅ and ∂K �= ∅ will
contradict cr3).

Since V is proper T tV is proper for any t ∈ (−∞,∞). Otherwise T tV = M
implies V = T−tM = M , which is a contradiction.

Since V is a neighborhood of the compact set T τ closV we can find α > 0
such that T t ◦ T τ closV ⊂ V for t ∈ [0, α]. Then T t closV ⊂ T−τV for t ∈ [0, α].

By iteration of this inclusion we obtain T jt closV ⊂ T−jτV for any integer
j. When jα > τ it follows that K ⊂ T−jτV . The last set is proper because we
mentioned already that T tV is proper for any t ∈ (−∞,∞). Hence K is proper.

So K satisfies the conditions of cr3) but ∂K does not contain a nonempty
T •-invariant set. This contradiction proves the implication cr3) =⇒ cr4).

Let us prove cr4) =⇒ cr5). Let ε > 0 be small and s > 0 be large. Let V
denote the set of all m′ ∈ M such that there exists an (ε, s)-chain from m to
m′. This set is open and closed. Indeed, let m′ ∈ V . There exists an (ε, s)-chain
m = m0, . . . ,mn−1,mn = m′ from m to m′. Choose ε1 < ε − d(mn,mn−1) and
consider the closed neighborhood W := {m′′ : d(m′,m′′) ≤ ε1}. Then for any
m′′ ∈ W the chain m = m0, . . . ,mn−1,mn = m′′ is an (ε, s)-chain from m to m′′.
Hence, with every point, V contains its closed neighborhood. Therefore it is open
and closed. Therefore it is a connected component of M .

We also have T sm ∈ V because for that case n = 1,m0 = m,m1 = T sm.
Hence T s closV ⊂ V . If V does not coincide with the whole M the latter contra-
dicts cr4). Hence V = M .

Finally, let us prove cr5) =⇒ cr1). If M is a union of two nonempty disjoint
sets A and B, then both of them are open and closed. Since M is compact, the
distance ε between A and B is positive . Hence every (ε/2, s)-chain starting at a
point of A remains in A, contradicting cr5).

Since for every point m ∈ M the set V from the proof of cr4)=⇒ cr5)
coincides with M , cr1) holds. �

Theorem 4.1.1.2 Let T • be chain recurrent on Mα, α ∈ A. Then T • is chain
recurrent on M =

⋃
α∈AMα.

This is because every (ε, s)-chain from m to m′ in Mα is also (ε, s)-chain in M .
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4.1.2 Here we prove two auxiliary assertions that will be used further.

Theorem 4.1.2.1 Let T • be chain recurrent on a connected compact M and let {qj}
be a sequence in M . Then there exist sequences {αν} and {ων} of real numbers
and a sequence {pν} in M having {qj} as a subsequence, such that

αν → −∞; ων → ∞ (4.1.2.1)

and
d(Tωνpν , T

αν+1pν+1) → 0 (4.1.2.2)

as ν → ∞.

Proof. In addition to {αν}, {ων} and {pν} we define, by induction, a sequence
{εν} of positive real numbers, tending to zero, and an increasing sequence {νj} of
positive integers, such that {pνj } = {qj} and

d(Tωνpν , T
αν+1pν+1) < εν , ν = 1, 2, . . . . (4.1.2.3)

We start by setting α1 = −1, ε1 = 1, ν1 = 1, ω1 = 5 and p1 = q1. Assume
now that αν , εν , ων and pν have been chosen for ν = 1, 2, . . . , νj . Set

α = ανj − 1, ε = ενj/2, ω = ωνj . (4.1.2.4)

By Theorem 4.1.1.1, cr5) there exists a sequence r0 := Tωqj , r1, . . . , rm := Tαqj+1

such that d(T tkrk, rk+1) < ε for k = 0, 1, . . . ,m − 1, where tk ≥ ω. Now we set
νj+1 = νj +m+1. For ν = νj +k+1, k = 0, 1, . . . ,m−1, we set αν = −tk/2, ων =
tk/2, pν = T tk/2rk, and finally, for ν = νj+1 we set αν = α, εν = ε, ων = ω+1, pν =
qj+1.

Let us check that with this setting the properties (4.1.2.1) hold . Since ωνj+1 =
ωνj + 1 we have ωνj → ∞ as j → ∞. From tk ≥ ω = ωνj we obtain αν → −∞
and ων → ∞. Hence (4.1.2.1) holds.

One can see from (4.1.2.4) that εν = ενj/2 → 0. To prove (4.1.2.2) it is
enough to check (4.1.2.3). For k = 0 we have

pν = T t0/2r0 = T (t0/2)+ωqj = T (t0/2)+ωpνj .

Hence,
Tανpν = Tωpνj = Tωνj pνj .

Thus
d(Tωνj pνj , T

ανpν) = 0 (4.1.2.5)

for this case.
For k = 1, . . . ,m− 2 and the corresponding ν we have

Tωνpν = T tk/2 ◦ T tk/2rk = T tkrk
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and
Tαν+1pν+1 = T−tk+1/2 ◦ T tk+1/2rk+1 = rk+1.

Hence,
d(Tωνpν , T

αν+1pν+1) = d(T tkrk, rk+1) < ε = εν . (4.1.2.6)

Finally, for the last link of the chain we obtain

k = m− 1, ν = νj +m, ν + 1 = νj+1, ανj+1 = α,

Tαν+1pν+1 = Tανj+1pνj+1 = Tαqj+1 = rm.

Thus (4.1.2.6) holds for k = m− 1. Hence, (4.1.2.3) also holds. Therefore (4.1.2.2)
holds. �

Lemma 4.1.2.2 Let pk, qk ∈ M and d(pk, qk) → 0 as k → ∞. Then there exists a
sequence {γk ↑ ∞} such that

d(T τpk, T
τqk) → 0 (4.1.2.7)

uniformly with respect to τ ∈ [−γk+1, γk].

Proof. Let [−γ, γ] be a fixed segment. Then d(T τpk, T
τqk) → 0 uniformly in this

segment.
Indeed, suppose there exist sequences τj , kj such that d(T τjpkj , T

τjqkj ) ≥ ε >
0. Choosing a subsequence we can assume that τj → τ ∈ [−γ, γ], pkj → p ∈ M
and qkj → q = p. Using continuity of T τm on (τ,m) and continuity of d(•, •) in
both arguments we obtain 0 = d(p, p) ≥ ε > 0. This is impossible.

Denote
ε(γ, k) := max

τ∈[−γ,γ]
d(T τpk, T

τqk).

This function increases monotonically in γ and tends to zero for any γ as k → ∞.
Choose ln such that ε(n, k) ≤ 1/n for k ≥ ln. Set γk+1 := n for ln < k ≤ ln+1.

One can see that ε(γk+1, k) → 0 as k → ∞. Since

max
τ∈[−γk+1,γk]

d(T τpk, T
τqk) ≤ ε(γk+1, k),

{γk} satisfies (4.1.2.7). �

4.1.3 We connect the property of being chain recurrent with other well-known
characteristics of dynamical systems ([AGL]).

A point m0 ∈ M is called non-wandering (see [An]) if for any neighborhood
O of m0 and arbitrarily large number s ∈ R there exists m ∈ O and t ≥ s such
that T tm ∈ O.
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This means that the “returns” take place to an arbitrarily small neighborhood
of the point m0. We shall denote as Ω(T •) the set of non-wandering points. It is
a closed invariant subset of M .

The set A ⊂ M is called an attractor if it satisfies the following conditions:

attr1) for any neighborhood O ⊃ A there exists a neighborhood O′, A ⊂ O′ ⊂ O
such that T tO′ ⊂ O t ∈ R, where T tO′ is the image of O′;

attr2) there exists a neighborhood O ⊃ A such that T tm → A when t → ∞ for
m ∈ O.

Theorem 4.1.3.1 If Ω(T •) = M, then (T •,M) is chain recurrent; if (T •,M) has
an attractor A �= M , it is not chain recurrent.

Proof. The property Ω(T •) = M obviously implies the chain recurrence for m =
1.Suppose there exists an attractor A �= M . Take a point m0 that does not belong
to A and choose a neighborhood O ⊃ A such that d(m0, clos O) = 2ε > 0. This
is possible because an attractor is closed. Let O′ be chosen by attr1) and s be
such that T sm ∈ O′. Then there does not exist any (ε, s)-chain from a small
neighborhood of m0 itself. By definition (T t,M) is not chain recurrent. �

Let us give examples of dynamical systems on connected compacts that are
chain recurrent.

Theorem 4.1.3.2 Let M be a connected compact and let T t (−∞ < t < ∞) be the
identity map. Then (T •,M) is chain recurrent.

This theorem, of course, is trivial. However, if M consists of a single point
this dynamical system determines an important class of subharmonic and entire
functions of completely regular growth (see [Le, Ch. III]).

Let m ∈ M . Set

C(m) := clos{T tm : −∞ < t < ∞}. (4.1.3.1)

It is closed, connected and invariant.

Exercise 4.1.3.1 Prove this.

Let us denote as Ω(m) the set of all limits of the form

Ω(m) := {m′ ∈ M : (∃tk → ∞)(m′ = lim
k→∞

T tkm}. (4.1.3.2)

This is a limit set as t → ∞. It is the “tangle” at the end of the curve. Denote by
A(m) the analogous set for t → −∞.

Exercise 4.1.3.2 Prove that A(m) and Ω(m) are invariant.

Theorem 4.1.3.3 (T •,C(m)) is chain recurrent iff

A(m) ∩ Ω(m) �= ∅. (4.1.3.3)
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Proof. Suppose B := A(m)∩Ω(m) = ∅. Then Ω(m) is an attractor and (T •,C(m))
is not chain recurrent by Theorem 4.1.3.1.

Suppose B �= ∅. We will use cr2) from Theorem 4.1.1.1.
Let U be an open proper subset of C(m) satisfying (4.1.1.1). Consider two

cases:

i) B contains a point of U . Thus U contains a sequence of form T tkm, tk → ∞.
From (4.1.1.1) we obtain that U contains T tm for all t ∈ (−∞,∞). Thus
U ⊃ C(m) and closU = C(m). Set K = C(m) \ U . One can show that K
satisfies (4.1.1.2)(see the beginning of proof of Theorem 4.1.1.1). Hence K
contains the set

K∗ :=
⋂
t≥0

T tK (4.1.3.4)

that is invariant (Exercise 4.1.3.3).
Therefore K∗ ⊂ K ⊂ closU \U = ∂U . By cr2) (T t,C(m)) is chain recurrent.

ii) B contains no point of U . Then B ⊂ A(m) ⊂ ∂U . By cr2) (T •,C(m)) is
chain recurrent. �

Exercise 4.1.3.3 Let U satisfy (4.1.1.1) and K := M \ U . Prove that K∗ from
(4.1.3.4) is invariant.

4.1.4 The connectedness of M is a necessary condition for a dynamical system to
be chain recurrent.

Let M be a subset of a linear space. The set M is called polygonally connected
if every pair of points m1,m2 can be connected by a polygonal path.

Of course, polygonal connectedness implies connectedness and even arcwise
connectedness.

Theorem 4.1.4.1 Let (T •,M) be a dynamical system such that M is a polygonally
connected set. Then (T •,M) is chain recurrent.

Proof. Let U be an open proper subset of M , satisfying (4.1.1.1). We choose
m1 ∈ U and m2 in an invariant subset K∗ of K := M \ U . Then there exists a
polygonal path from m1 to m2 :

mθ := (j + 1 − θ)m′j + (θ − j)m′j+1, for θ ∈ [j, j + 1],

j = 0, 1, . . . , l − 1; m′0 := m1, m
′
l := m2.

Now M is invariant, so for each t the continuous path θ �→ T tmθ lies in M .
If t ∈ (−∞, 0) its initial point T tm1 belongs to U and its endpoint T tm2

belongs to K∗ ⊂ K.
For each t ∈ (−∞, 0) we set

θ(t) := min[θ ∈ [0; l] : T tmθ ∈ K].
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Then θ(t) > 0, T tmθ(t) ∈ ∂U and (4.1.1.1) implies that t �→ θ(t) is a decreasing
function. Hence the limit

θ(−∞) := lim
t→−∞ θ(t)

exists and is positive.
Set m3 := mθ(−∞). We claim that A(m3) ⊂ ∂U (A(·) is a set defined before

Theorem 4.1.3.3). If θ(−∞) ∈ (j, j + 1] for some j ∈ [0, l] then θ(t) ∈ (j, j + 1] for
t that is near to −∞, and

T tm3 = T tmθ(t) + (θ(t) − θ(−∞))T tm′j + (θ(−∞) − θ(t))T tm′j+1.

The first term in the right-hand side lies in ∂U . The set M is compact and
invariant so the other terms tend to zero as t → −∞. Hence A(m3) ⊂ ∂U .

Thus ∂U contains this invariant subset and (T •,M) is chain recurrent by
cr2), Theorem 4.1.1.1. �

We have the obvious

Corollary 4.1.4.2 Let (T •,M) be a dynamical system such that M is a compact
convex set. Then (T •,M) is chain recurrent.

This is because the polygonal path can be taken as a line segment connecting
every pair of points.

4.1.5 Let U [ρ, σ] be a set of subharmonic functions defined in (3.1.2.4). It is in-
variant with respect to the transformation (•)[t] defined in (3.1.2.4a).

Set (subindex!)
Ttv := v[et]. (4.1.5.1)

Since (•)[t] has the property (3.1.2.4b)

Tt+τv = (Tt ◦ Tτ )v, ∀t, τ ∈ R. (4.1.5.2)

By Theorem 3.1.2.3, T• is continuous in the appropriate topology and hence
(T•, U [ρ, σ]) is a dynamical system.

Theorem 4.1.5.1 (Universality of U [ρ, σ]) Let (T •,M) be a chain recurrent dy-
namical system on a compact set M . Then for any ρ, σ there exists U ⊂ U [ρ, σ]
and a homeomorphism imb : M �→ U such that imb ◦T t = Tt ◦ imb, t ∈ (−∞,∞).

I.e., any dynamical system can be imbedded in (T•, U [ρ, σ]).
This plot is developed in [Az(2008)].
It is sufficient to prove the theorem by supposition Ptx = tx because

(TP
• , U [ρ, σ]) is a dynamical system for any Pt and

imb : (T•, U [ρ, σ]) �→ (TP
• , U [ρ, σ])

where imb : u(x) �→ T−tT
P
t u(x) is also a homeomorphism of dynamical systems.

Exercise 4.1.5.1 Consider Theorem 3.1.6.1 from this point of view.



116 Chapter 4. Structure of Limit Sets

We need some auxiliary definitions and results. Let us denote as M(Sm−1)
the set of measures ν with bounded full variation on the unit sphere Sm−1. Intro-
duce the metric d(ν, 0) := Var ν and consider the set

K := {ν : ν > 0, d(ν, 0) ≤ 1},
i.e., the intersection of the cone of positive measures with the unit ball.

The following assertion is a corollary of Keller’s theorem (see, e.g., [BP,
Thm. 3.1, p. 100]).

Theorem 4.1.5.2 (Imbedding) Every metric compact set can be homeomorphically
imbedded to K.

Thus we can assume below that for any m ∈ M there exists a positive
measure

Y (•,m) = Y (dx0,m) ∈ K

such that
(Y (•,m1) = Y (•,m2)) =⇒ (m1 = m2) (4.1.5.3)

and Y (•,m) is continuous with respect to the metrics.
We also introduce a new coordinate system. For x := eyx0 ∈ Rm \ 0 set

Pol(x) = (y, x0). This formula gives a one-to-one map from Rm\0 onto the cylinder
Cyl := (−∞,∞) × Sm−1. Thus, for any (y, x0) ∈ Cyl, Pol−1(y, x0) = eyx0.

For m = 2 this is a common cylinder.

4.1.6

Proof of Theorem 4.1.5.1. We consider separately the cases of integer and non-
integer ρ.

Let ρ be non-integer and σ > 0. For any v ∈ U [ρ, σ], one has the representa-
tion of Theorem 3.1.4.4 (*Hadamard),

v(x) = Π(x, μ, ρ) (4.1.6.1)

where μ ∈ M[ρ,Δ] and Δ depends only on σ (Theorem 2.8.3.3).
Vice versa, every μ ∈ M[ρ,Δ] generates v by (4.1.6.1) and

v[t](x) = Π(x, μ[t], ρ).

Let us “transplant” μ in Cyl. For μ that has a dense fμ(rx0), we set

ν(dy ⊗ dx0) := fμ(eyx0)e(−ρ−2)y(dy ⊗ dx0),

i.e., the density fν of ν is defined by

fν(x0, y) := fμ(eyx0)e(−ρ−2)y.

Respectively,
fμ(x0, r) = fν(x0, log r)rρ+2.

We can extend this equality for all μ ∈ M[ρ,Δ] by using a limit process in D′
topology.
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Exercise 4.1.6.3 Do that using, for example, Theorem 2.3.4.5 (Properties of Reg-
ularization).

We can also define ν as a distribution in D′(Cyl). Namely, for ψ ∈ D(Cyl)
we set

ψ∗(x0, r) := ψ(Pol−1(x0, log r))r−ρ−m+2

and
〈ν, ψ〉 :=

∫
ψ∗(x0, r)μ(dx0 ⊗ rm−1dr).

Exercise 4.1.6.4 Check that this definition gives the same ν.

The transformation Ptx = (x0, tr), rx0 ∈ Rm \ 0 passes to

Pol◦Pt ◦ Pol−1(x0, y) = (x0, y + log t).

Thus Teτμ gives a transformation Sτν defined by

Stfν(x0, y) := fν(x0, y + t)

for densities or by

〈Stν, ψ〉 :=
∫
ψ(x0, y − t)ν(dx0 ⊗ dy) (4.1.6.2)

for distributions (ψ ∈ D(Cyl).)

Exercise 4.1.6.5 Check the equivalence.

From μ ∈ M[ρ,Δ] we obtain∫
y≤0

e(ρ+m−2)yStν(dy ⊗ dx0) ≤ Δ, t ∈ R. (4.1.6.3)

Exercise 4.1.6.6 Check this.

Let X(t) be a positive function satisfying the condition

∞∫
−∞

X(t)dt = 1

and such that the linear hull of its translations are dense in L1(−∞,∞). We can
choose, for example, the function

X(t) :=
1√
2π
e−

t2
2

because its Fourier transformation does not vanish in R (it is e−
s2
2 ).
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Exercise 4.1.6.7 Check these properties.

Let us define ν(•,m) by

〈ν(•,m), ψ〉 :=
∫

(x0,y)∈Cyl

ψ(x0, y)

⎛⎝ρ ∞∫
−∞

Y (dx0, T y−tm)X(t)dt

⎞⎠ dy. (4.1.6.4)

Now we check the property

Sτν(•,m) = ν(•, T τm).

Using (4.1.6.2), we obtain

〈Sτν(•,m), ψ〉 =
∫
ψ(x0, y)

⎛⎝ρ ∞∫
−∞

Y (dx0, T y+τ−tm)X(t)dt

⎞⎠ dy

=
∫
ψ(x0, y)

⎛⎝ρ ∞∫
−∞

Y (dx0, T y−t(T τm))X(t)dt

⎞⎠ dy

= 〈ν(•,m), T τm〉.

We also check the condition (4.1.6.3).

∫
y≤0

eρyStν(dy ⊗ dx0) =

∞∫
−∞

X(t)dt
∫

y≤0

eρy)ρdy
∫

Sm−1

Y (dx0, T y+τ−tm

≤ sup
τ∈R

Y (Sm−1, T τm)

∞∫
−∞

X(t)dt ≤ 1,

since Y (•, •) ∈ K.
Now we should “transplant” ν back to Rm \ 0 such that Sτ passes to (•)[eτ ].

Define μ(•,m) by
〈μ(•,m), ψ∗〉 := 〈ν(•,m), ψ〉, (4.1.6.5)

where ψ∗(rx0) ∈ D(Rm \ 0) and

ψ(x0, y) := ψ∗(eyx0)e−(ρ−m+2)y ∈ D(Cyl).

Then

〈(μ)[eτ ], ψ
∗〉 = 〈(μ), T−τψ

∗〉 = 〈ν, S−τψ〉 = 〈Sτν, ψ〉.

The condition μ(•,m) ∈ M[ρ, σ] is also satisfied.
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Exercise 4.1.6.8 Check these properties.

Now we use (4.1.6.1) to transplant the dynamical system to U [ρ, σ]. This
completes a construction of a homomorphism (T t,M) �→ (Tt, U [ρ, σ]).

Let us check that it is an imbedding, i.e., we must check the one-to-one corre-
spondence. One-to-one correspondence of v(•,m) and μ(•,m) is known (Theorem
3.1.4.4). One-to-one correspondence of μ(•,m) and ν(•,m) can be also checked
easily.

Exercise 4.1.6.9 Check this in detail.

So we should check the one-to-one correspondence of ν(•,m) and Y (•,m).
Suppose

ν(•,m1) = ν(•,m2).

Then
〈ν(•,m1), ψ〉 = 〈ν(•,m2), ψ〉 ∀ψ ∈ D(Cyl).

In particular, set

ψ(x0, y) = φ(x0)R(y), φ ∈ D(Sm−1), R ∈ D(−∞,∞).

Then

〈ν(•,m1), ψ〉 =
∫
R(y)dy

∞∫
−∞

〈Y (•, T y−tm1), φ〉Sm−1X(t)dt (4.1.6.6)

= 〈ν(•,m2), ψ〉 =
∫
R(y)dy

∞∫
−∞

〈Y (•, T y−tm2), φ〉Sm−1

where
〈Y (•), φ〉Sm−1 :=

∫
Sm−1

φ(x0)Y (dx0).

Set
Fj(y) := 〈Y (•, T ymj), φ〉Sm−1 , j = 1, 2.

From (4.1.6.6) we obtain for the convolutions

(F1 ∗X)(y) ≡ (F2 ∗X)(y), y ∈ (−∞,∞).

Thus
F1(y) ≡ F2(y), y ∈ (−∞,∞)

because of the property of X .
Hence

Y (•, T ym1) ≡ Y (•, T ym2), y ∈ (−∞,∞).
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In particular, for y = 0 we have

Y (•,m1) = Y (•,m2).

Hence m1 = m2 because of (4.1.5.3), and this completes the proof of one-to-one
correspondence.

Consider the case of an integer ρ. For this case we can use v ∈ U [ρ, σ] of the
form

v(x) = Π<(x, μ, ρ) + Π>(x, μ, ρ)

instead of (4.1.6.1).
�

Exercise 4.1.6.10 Check this.

4.1.7 The most simple set satisfying the conditions of Theorem 4.1.3.3 is the set
that is generated by a function v ∈ U [ρ] that has the property

v[teP ] = v[t], t ∈ (0,∞)

for some P .
Then

Tt+P v = Ttv, t ∈ (−∞,∞),

i.e., the dynamical system T• is periodic with the period P on the set

C(v) = {Ttv : 0 ≤ t ≤ P}.

Theorem 4.1.7.1 (Periodic Limit Set) For all P > 0, ρ > 0, σ > 0, there exists
v ∈ U [ρ, σ] such that the dynamical system (T•,C(v)) is periodic with the period P .

Proof. Suppose ρ is non-integer. Let us take μ ∈ M[ρ,Δ] such that the canonical
potential Π(x, μ, [ρ]) belongs to U [ρ, σ]. This is possible because of Theorem 3.1.4.2
(*Brelot-Borel).

Denote as μ∗P the restriction of μ on the spherical ring {x : 1 < |x| < eP }
and set

μP :=
∞∑

k=−∞
TkPμ

∗
P .

We have μP ∈ M[ρ,Δ] and

Tt+PμP = Tt(
∞∑

k=−∞
T(k+1)Pμ

∗
P ) = TtμP .

Then v := Π(x, μP , [ρ]) ∈ U [ρ, σ] and Tt+P v = Ttv because of (3.1.5.0).
For an integer ρ we use the function

v(x) := Π<(x, μP , ρ) + Π>(x, μP , ρ). �
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4.2 Subharmonic function with prescribed limit set

4.2.1 The following two theorems describe structure of limit sets in terms of dy-
namical systems.

Theorem 4.2.1.1 (Necessity) Let u ∈ SH(Rm, ρ, ρ(r)). Then the dynamical system
(T•,Fr[u, •]) is chain recurrent.

The chain recurrence is also sufficient.

Theorem 4.2.1.2 (Sufficiency) Let U be a compact connected and T•-invariant sub-
set of U [ρ, σ] for some σ > 0, such that the dynamical system (T•, U) is chain re-
current. Then for any proximate order ρ(r) → ρ there exists u ∈ SH(Rm, ρ, ρ(r))
such that

Fr[u, ρ(r), Vt,R
m] = U.

Proof of Theorem 4.2.1.1. We need the curve ut, t ≥ 1, and Fr[u, •] to be con-
tained in a common metric space X . Thus we set

X := {v ∈ SH(Rm) : sup
r≥1

M(r, v)r−ρ−1 ≤ sup
r≥1

M(r, u)r−ρ−1}.

We want to use Theorem 4.1.1.1 cr 2). Let U be an open proper subset of Fr[u, •]
satisfying (4.1.1.1) and let F be a T•-invariant subset of K := Fr[u, •] \ U .

Such F exists. Indeed, K is closed and TtK ⊂ K for t > 0 (see proof of The-
orem 4.1.1.1, cr2)⇐⇒cr3)). Thus Ω(K) ⊂ K where Ω(•) was defined in (4.1.3.2).
The set Ω(K) is invariant with respect to Tt (see Exercise 4.1.3.1). So the set of
such sets F is not empty.

If F intersects ∂U at a point v, then A(v) ⊂ F ∩ ∂U . Since A(v) is invariant
(Exercise 4.1.3.2) ∂U contains a nonempty T•-invariant set. So we obtain the
assertion of the theorem using Theorem 4.1.1.1, cr2).

Suppose F does not intersect ∂U . Let U0 be an open set in X such that

U0 ∩ Fr[u, •] = U, closU0 ∩ Fr[u, •] = closU (4.2.1.1)

(see Exercise 4.2.1.1). Since closU0 ∩ F = ∅ we can take a sequence of open
neighborhoods U1, U2, . . . of F in X such that all sets closUj, j = 1, 2, . . . do not
intersect closU0 and Uj ↓ F .

By definition of Fr[u, •] we can find intervals aj ≤ t ≤ bj with aj → ∞ such
that ueaj ∈ ∂Uj, uebj ∈ ∂U0, and uet �∈ closU0 ∪ closUj for aj < t < bj . We can
pass to a subsequence and assume that

ueaj → w ∈ F. (4.2.1.2)

Let us use the identity

uet+aj = (ueaj )et

ρ(et)ρ(eaj )
ρ(et+aj )

. (4.2.1.3)
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By (4.2.1.2), (4.2.1.3) and the property (3.1.2.2) of a proximate order we obtain

uet+aj → Ttw ∈ F

uniformly for any bounded set of t. Thus bj − aj → ∞.
Passing to a subsequence we may assume that uebj → v ∈ Fr[u, •] ∩ ∂U0 =

∂U . Since uet+bj → Ttv and uet+bj /∈ U0 when aj − bj < t < 0 we obtain that
Ttv /∈ U when t < 0.

Hence the whole backward orbit {Ttv : t < 0} lies in ∂U , which must therefore
contain the T•-invariant set A(v). �

Exercise 4.2.1.1 Prove that the set

U0 :=
⋃

v∈U

{w ∈ X : dist(v, w) < dist(v,K)/2}

satisfies the conditions (4.2.1.1).

Proof. We have

U0 ⊃ U =⇒ U0 ∩ Fr[u, •] ⊃ U ∩ Fr[u, •] = U.

Thus
U0 ∩ Fr[u, •] ⊃ U. (4.2.1.4)

From (4.2.1.4) we have

closU0 ∩ Fr[u, •] = closU0 ∩ closFr[u, •] = clos(U0 ∩ Fr[u, •]) ⊃ closU. (4.2.1.5)

Finally (4.2.1.4) ∧ (4.2.1.5) =⇒ (4.2.1.1). �

4.2.2 To prove Theorem 4.2.1.2 we need some preparation. Theorems of the next
Sections form the basis of the construction that we will use in the proof.

Let β be an infinitely differentiable function on R such that 0 ≤ β(x) ≤
1, β(x) = 0 for x ≤ 0 and β(x) = 1 for x ≥ 1. We can set, for example,

β(x) := A

x∫
−∞

α(y + 1)dy

where α is taken from (2.3.1.1) and

A =

∞∫
−∞

α(y + 1)dy.
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Suppose that the sequences {rk, σk, k = 0, 1, . . . } satisfy the following conditions:

r0 = 1; rk < rkσk < rk+1/σk+1 < rk+1, k = 1, 2, . . . , (4.2.2.1)

σk ↑ ∞;
rk+1

σk+1rkσk
↑ ∞. (4.2.2.2)

Set

ψk(r) := β

(
log r − log(rk/σk)

log(σkrk) − log(rk/σk)

)
− β

(
log r − log(rk+1/σk+1)

log(σk+1rk+1) − log(rk+1/σk+1)

)
,

ψ0(r) := 1 − β

(
log r − log(r1/σ1)

log(σ1r1) − log(r1/σ1)

)
.

The sequence {ψk}, k = 0, 1, . . . forms a partition of unity with the following
properties:

Theorem 4.2.2.1 (Partition of Unity) One has

∞∑
k=0

ψk = 1; (prtu1)

suppψk ⊂ (rk/σk, rk+1σk+1); (prtu2)
ψk(r) = 1, for r ∈ (rkσk, rk+1/σk+1); (prtu3)
suppψk ∩ suppψl = ∅ for |k − l| > 1; (prtu4)

lim
k→∞

max
r
ψ′k(r)r = lim

k→∞
max

r
ψ′′k (r)r2 = 0. (prtu5)

Moreover
max

r
|ψ′k(r)r|,max

r
|ψ′′k (r)r2 | ≤ γk (prtu6)

where γk can be made to tend to zero arbitrarily fast by choosing the sequences
{σk} and {rk}.

Proof. Set

βk(r) := β

(
log r − log(rk/σk)

log(σkrk) − log(rk/σk)

)
.

The functions βk(r) and βk+1(r) vanish for r < rk/σk because β(x) = 0 for x ≤ 0,
and both of them are equal to 1 for r ≥ σkrk because β(x) = 1 for x ≥ 1. Hence,
(prtu2) holds.

One has for any r ∈ (0,∞),

n∑
k=0

ψk = 1 − βn+1(r).

As mentioned, βn+1(r) = 0 for n such that rn+1/σn+1 > r. Thus (prtu1) holds.
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Counting derivatives of ψk, we have:

max
r

|rψ′k(r)| ≤
[
(log(σkrk) − log(rk/σk))−1 + (log(σk+1rk+1) − log(rk+1/σk+1))−1

]
max

x
|β′|(x).

Thus we can take the right side of the inequality as γk and regulate its vanishing
by choice of the ratio in (4.2.2.2). The same holds for r2ψ′′(r). Hence (prtu5) and
(prtu6) are proved.

Exercise 4.2.2.1 Check (prtu4). �

4.2.3 Now we construct a function which is of zero type but has a “maximal
possible” mass density.

Theorem 4.2.3.1 (Maximal Mass Density Function) Let ρ(r) → ρ, ρ > 0 be a
smooth proximate order (i.e., having properties (2.8.1.8)), and let γ(r), r ∈ [0,∞),
satisfy the conditions: γ(r) > 0 and γ(r) → 0, as r → ∞.

Then there exists an infinitely differentiable subharmonic function Φ(x) such
that

ΔΦ(x) ≥ γ(x)|x|ρ(r)−2 (4.2.3.1)

and
(Φ)t → 0 (4.2.3.2)

in D′ as t → ∞.

To prove Theorem 4.2.3.1 we need an elementary lemma.

Theorem 4.2.3.2 (Convex Majorization) Let a(s), s ∈ [s0,∞) be a function such
that a(s) → −∞ as s → ∞. Then there exists an infinitely differentiable, convex
function k(s) such that:

k1) k(s) ≥ a(s);

k2) k(s) ↓ −∞ as s → ∞;

k3) k(n)(s) → 0 for all n = 1, 2, . . . .

Proof. Set
a∗(s) := sup{a(t) : t ≥ s}.

Then a∗(s) ↓ −∞ as s → ∞.
Set b0 := −a∗(s0) and denote as s(b), b ∈ [b0,+∞) the function inverse

to the function −a∗(s). Let us construct a convex function that majorates s(b)
and tends to infinity monotonically with all its derivatives. It can be done in the
following way.
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First we construct a piecewise linear convex function. Set

s1(b) := s0 + 1 + α0(b − b0), b ∈ [b0, b0 + 1],

and choose α0 such that the inequality s1(b) > s(b) holds for b ∈ [b0, b0 + 1].
For this we choose

α0 ≥ sup
b∈[b0,b0+1]

s(b) − s0 − 1
b− b0

.

Since s(b) − s0 − 1 < 0 the right side is finite.
For all the following intervals we set

s1(b) := s1(b0 + j) + αj(b − b0 − j), b ∈ [b0 + j, b0 + j + 1],

where αj ≥ αj−1 and satisfies the condition

αj ≥ sup
b∈[b0+j,b0+j+1]

s1(b) − s1(b0 + j)
b− b0 − j

.

To obtain a smooth function, set

s2(b) :=
∫
α(b − x)s1(x)dx, (4.2.3.3)

where α(x) is defined by (2.3.1.1). Then s2(b) is infinitely differentiable, monotonic
and convex.

Exercise 4.2.3.1 Check this.

Set
k(s) := −s−1

2 (s), (4.2.3.4)

where s−1
2 (s) is the inverse function to s2. One can check that k(s) satisfies the

properties k1), k2), k3). �

Exercise 4.2.3.2 Check that k(s) satisfies k1), k2), k3).

Proof of Theorem 4.2.3.1. We are going to show that Φ can be taken in the form

Φ(x) := cek(log |x|2)|x|ρ(|x|) (4.2.3.5)

where c and k(s) will be chosen later.
Note that Φ(x) = Φ(|x|) depends only on r = |x| and pass to the variable

s := log r2. Then for φ(s) := Φ(es/2) we have

ΔΦ(x) = r1−m ∂

∂r
rm−1 ∂

∂r
cek(log r2)rρ(r)

= ce−s

(
∂2

∂s2
+
m− 2

2
∂

∂s

)
φ(s) ≥ cme−s min[φ′′(s), φ′(s)]. (4.2.3.6)
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Let us chose k as in Theorem 4.2.3.2 with a(s) := log γ(r) = log γ(e
s
2 ). Now we

estimate the derivatives from below.

φ′(s) = φ(s)
[
k′(s) +

1
4
sρ′(e

s
2 ) +

1
2
ρ(e

s
2 )
]
.

By k3) and k1), k′(s) → 0 and k(s) ≥ a(s). Also sρ′(e
s
2 ) → 0 and ρ(e

s
2 ) → ρ by

properties of proximate order (Theorem 2.8.1.4). Thus we can chose c such that

φ′(s) >
1
m
elog γ(e

s
2 )+ s

2 ρ(e
s
2 ). (4.2.3.7)

Differentiating once again, we obtain

φ′′(s) = φ(s)
[
k′(s) +

1
4
sρ′(e

s
2 ) +

1
2
ρ(e

s
2 )
]2

+
[
k′′(s) +

1
2
ρ′(e

s
2 ) +

1
8
sρ′′(e

s
2 )
]
.

From here we obtain by choosing c:

φ′′(s) >
1
m
elog γ(e

s
2 )+ s

2 ρ(e
s
2 ). (4.2.3.8)

Using (4.2.3.6), (4.2.3.7) and (4.2.3.8) we obtain:

ΔΦ(s) > elog γ(e
s
2 )+ s

2 ρ(e
s
2 ).

Returning to the variable r we obtain (4.2.3.1). Correctness of (4.2.3.2) can be
checked directly using k2) and properties of the proximate order (Theorem 2.8.1.3).

Exercise 4.2.3.3 Check this. �

4.2.4 We have already approximated distributions and subharmonic functions by
infinitely differentiable functions (Theorems 2.3.4.5 and 2.6.2.3). Now we need to
make more precise this approximation. Namely, we are going to make it uniform
with respect to v ∈ U [ρ, σ]. We will denote

∂l :=
∂|l|

(∂x1)l1(∂x2)l2 · · · (∂xm)lm
(4.2.4.1)

where l = (l1, l2, . . . , lm), |l| = l1 + l2 + · · · + lm.
Set for v ∈ U [ρ, σ]

Rεv(x) :=
∫
αε(x− y)v(y)dy (4.2.4.2)

where αε is taken from (2.3.1.3).
We have changed the notation from 2.3.1 and 2.6.2 because a subindex of v

was already engaged for t.
For a fixed 0 < δ ≤ 0.5, set

Str(δ) := {x : δ ≤ |x| ≤ δ−1}. (4.2.4.3)
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Theorem 4.2.4.1 (Estimation of Rε) Let v ∈ U [ρ, σ]. Then

R1. for a fixed g ∈ D(Rm \ 0) with supp g ⊂ Str(δ),

|〈Rεv − v, g〉| ≤ o(1, g)2σδ−ρ (4.2.4.4)

where o(1, g) → 0 as ε → 0;

R2. the inequality
|∂lRεv(x)| ≤ A(m)σε−|l|−m+1|x|−|l|+ρ, (4.2.4.5)

with A(m) depending only on m, holds for ε < |x|/2.

Proof. One has
〈Rεv, g〉 = 〈v,Rεg〉. (4.2.4.6)

Thus
〈Rεv − v, g〉 = 〈v,Rεg − g〉. (4.2.4.7)

Exercise 4.2.4.1 Check (4.2.4.6) and (4.2.4.7).

Now
|〈v,Rεg − g〉| ≤ max

Str(δ)
|Rεg − g|(x)

∫
Str(δ)

|v|(x)dx. (4.2.4.8)

The first factor is o(1) because g is smooth. For the second one we have∫
Str(δ)

|v|(x)dx ≤ 2
∫

Str(δ)

v+(x)dx ≤ 2σδ−ρ. (4.2.4.9)

This and (4.2.4.8) imply R1).
Differentiating the equality

Rεv(x) := Cm

∫
ε−mα(|x − y|/ε)v(y)dy,

we have

|∂lRεv(x)| ≤ Cmε
−|l|−m max

{|y|<ε}
|∂lα(|y|)|

∫
{|y|<ε}

|v(x− y)|dy.

Suppose |x| = 1. Then for 0 < ε ≤ 0.5, we have∫
|y|<ε

|v|(x − y)dy ≤
∫

1−ε<|x|<1+ε

|v|(x) ≤ 2
∫

1−ε<|x|<1+ε

v+(x)dx

≤ σm2 · 2εσ(1 + ε)ρ ≤ σm6σε
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where σm is the square of the unit sphere. Hence for |x| = 1

|∂lRεv(x)| ≤ A(m)σε−|l|−m+1 (4.2.4.10)

with
A(m) = 6σm max

y∈Rm
|∂lα(|y|)|.

Set t = |x|. Apply the inequality (4.2.4.10) to v := v[t](y) with y := x/|x|. Then

|∂lRεv[t](y)| ≤ A(m)σε−|l|−m+1.

Computing the derivatives, we obtain

∂lRεv[t](x) = t−ρt|l|∂lRεv(x)|x=ty .

Thus one has R2. �

4.2.5 In this section we describe the main part of a construction that will be used
in the proof of Theorem 4.2.1.2.

Let {vj ∈ U [ρ, σ], j = 1, 2, . . .} and {ψj , j = 1, 2 . . . } be the partition of
unity from Theorem 4.2.2.1. Let us chose εj ↓ 0 such that the condition

γjε
−m
j → ∞ (4.2.5.1)

holds for γj taken from Theorem 4.2.2.1, (prtu 6). Set

v(x|t) :=
∞∑

j=0

ψj(t)(vj)[t](x), (4.2.5.2)

where (·)[t] is defined by (3.1.2.4a).
One can see that v(x|t) ∈ U [ρ, 3σ] for all t.

Exercise 4.2.5.1 Show this, using properties of {ψj} and invariance of U [ρ, σ] with
respect to (·)[t].

We can consider v(x|t) as a curve (a pseudo-trajectory) in U [ρ, 3σ].
Set

u(x) :=
∞∑

j=0

ψj(|x|)Rεj (vj)(x)|x|ρ(|x|)−ρ. (4.2.5.3)

where Rε is defined by (4.2.4.2).
It is an infinitely differentiable function in Rm.

Theorem 4.2.5.1 (Construction) One has

ut − v(•|t) → 0 (4.2.5.4)

in D′(Rm), and
Δu(x) = f(x) + γ(x)|x|ρ(|x|)−2 (4.2.5.5)

with f(x) ≥ 0 and γ(x) = o(1) as |x| → ∞.
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Let us note that the function u(x) is “almost-subharmonic” and can be made
subharmonic by summing with the function Φ from Theorem 4.2.3.1.

Exercise 4.2.5.2 Prove this.

So we have

Theorem 4.2.5.2 (Pseudo-Trajectory Asymptotics) For any v(x|t) of the form
(4.2.5.2) there exists an infinitely differentiable function u ∈ SH(ρ(r)) that satis-
fies (4.2.5.4).

Proof of Theorem 4.2.5.1. One has

ut(x) :=
∞∑

j=0

ψj(t|x|)(Rεj (vj))[t](x)a(x, t),

where

a(x, t) :=
|tx|ρ(t|x|)−ρ

tρ(t)−ρ
.

For any 0 < δ < 0.5 and x ∈ Str(δ), a(x, t) → 1 uniformly in |x|as t → ∞. This
follows from Theorem 2.8.1.3, ppo3).

Exercise 4.2.5.3 Check this in detail.

We have

ut(x) − v(x|t) =
∞∑

j=0

[ψj(t|x|)(Rεj (vj))[t](x)a(x, t) − ψj(t)(vj)[t](x)], (4.2.5.6)

and there are no more than three summands in the sum for sufficiently large
t = t(δ) because of Theorem 4.2.2.1, prtu4. Let us estimate every summand. One
has

bj(x, t) := [ψj(t|x|)(Rεj (vj))[t](x)a(x, t) − ψj(t)(vj)[t](x)]
= [ψj(t|x|) − ψj(t)](Rεj (vj)))[t]a(x, t) + ψj(t)(Rεj (vj))[t](x)[a(x, t) − 1]

+ ψj(t)[(Rεj (vj))[t](x) − (vj)[t](x)]
:= (a1 + a2 + a3)(x, t).

Let us estimate 〈bj(•, t), g〉 for every g ∈ D(Rm \ 0).
We can assume that supp g ⊂ Str(δ). Set

M(g) := max
x∈Str(δ)

|g|(x).

We have

|〈a1(•, t), g〉| ≤ M(g) max
r∈(0,∞)

|rψ′j(r)|δ−1

∫
Str(δ)

|(Rεj (vj))[t]|(x)dx.
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One can check that ∫
Str(δ)

|(Rεj (vj))[t]|(x)dx ≤ 3σδ−ρ.

Exercise 4.2.5.4 Check this using (4.2.4.9) and the invariance of U [ρ, σ] with
respect to (•)[t] (see (3.1.2.4)).

Hence
|〈a1(•, t), g〉| ≤ C1(g)γj . (4.2.5.7)

Let us estimate a2(x, t). We have

〈a2(•, t), g〉 ≤ max
Str(δ)

|a(x, t) − 1|ψj(t)M(g)3σδ−ρ = C2(g)o(1) (4.2.5.8)

where o(1) → 0 as t → ∞.
For estimating a3(x, t), we use Theorem 4.2.4.1 (Estimation of Rε), (4.2.4.4):

|〈a3(•, t), g〉| ≤ o(εj , g)2σδ−ρ (4.2.5.9)

where o(εj , g) → 0 as j → ∞.
Hence (4.2.5.7), (4.2.5.8) and (4.5.5.9) imply

〈bj(•, t), g〉 → 0 (4.2.5.10)

as t → ∞ and j → ∞.
Suppose, for a large fixed t, the sum (4.2.5.6) contains bj(x, t) for j = j(t), j =

j(t) + 1 and j = j(t) + 2. This implies that j(t) → ∞ as t → ∞.
Since

〈ut(•) − v(•|t), g〉 = 〈bj(t)(•, t), g〉 + 〈bj(t)+1(•, t), g〉 + 〈bj(t)+2(•, t), g〉

we obtain from (4.2.5.10) that 〈ut(•) − v(•|t), g〉 → 0 as t → ∞ for any g ∈
D(Rm \ 0). This is (4.2.5.4).

Let us prove (4.2.5.5). We have

Δu =
∞∑

j=0

[Δ(Rεjvj)(x)ψj(x)|x|ρ(|x|)−ρ +
∑
l,m.k

∂l(Rεjvj)(x)∂nψj(x)∂k|x|(ρ|x|)−ρ],

(4.2.5.11)
where l,m, k are multi-indexes that satisfy the condition: in any summand there
are derivatives in the same variable, the derivatives of ψj and |x|ρ(|x|)−ρ have no
more than second order and the derivatives of Rεjvj(x) have no more than first
order.

Exercise 4.2.5.5 Check this.
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As usual, the derivative of zero order is the function itself. For any x ∈
Str(δ), the outside sum contains no more then three summands. First we consider
only the terms in the square brackets. The first term is nonnegative because of
subharmonicity of Rεjvj and non-negativity of all the other factors. Set

f(x) :=
∑

j=0∞
[Δ(Rεjvj)(x)ψj(x)|x|ρ(|x|)−ρ ≥ 0. (4.5.2.12)

Using Theorem 4.2.4.1, R2) we obtain

|∂l(Rεjvj)(x)| ≤ A(m)σε−|l|−m+1
j |x|−|l|+ρ (4.2.5.13)

for |l| = 0 or |l| = 1.
From Theorem 4.2.2.1, prtu6), and inequality |∂xi |x|| ≤ 1 we obtain

|∂nψj(|x|) ≤ |ψ(n)(r)||r=|x| ≤ γj |x|−|n| (4.2.5.14)

for |n| = 1, 2.
Using properties of the smooth proximate order (Theorem 2.8.1.4), one can

obtain
|∂|k||x|ρ(|x|)−ρ| = (|x|ρ(|x|)−ρ−|k|)|r=|x|(1 + o(1)), (4.2.5.15)

as |x| → ∞.

Exercise 4.2.5.6 Check in detail (4.2.5.13), (4.2.5.14) and (4.2.5.15).

Thus, for every term of the inner sum, we have

|∂l(Rεjvj)(x)∂nψj(x)∂k|x|ρ(|x|)−ρ|
≤ A(m)σγjε

−|l|−m+1
j |x|−2+ρ|x|ρ(|x|)−ρ

≤ βj |x|ρ(|x|)−2, (4.2.5.16)

where βj → 0 because of the condition (4.2.5.1).
Recall that for every large x the outside sum contains no more than three

summands, say, j = j(x), j = j(x) + 1 and j = j(x) + 2. Thus j(x) → ∞ as
|x| → ∞. Hence (4.2.5.12) and (4.2.5.16) imply (4.2.5.5). �

4.2.6

Proof of Theorem 4.2.1.2. Let v(•|t) have the form (4.2.5.2). We denote as Ω(v)
a set of the D′-limits of the form

w := lim
tk→∞

v(•|tk).

We are going to construct some v(•|t) for which

Ω(v) = U, (4.2.6.1)

and at the next step to use Theorem 4.2.5.2 to obtain a subharmonic function
with the same limit set.
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First we describe the construction of the function v(•|t). Let {rk, tk, k =
1, 2, . . .} be an alternating sequence r0 = 1, rk < tk < rk+1 such that

lim
k→∞

tk
rk

= lim
k→∞

rk+1

tk
= ∞.

Let us chose in U a countable, dense set {gj} and form from it a sequence {wk}
such that every element gj is repeated infinitely often. For example,

w1 := g1, w2 := g1, w3 := g2, w4 := g1, w5 := g2, w6 := g3, . . . .

Set
qk := (wk)[1/tk] = T− log tk

wk

in the notation (4.1.5.1).
Now we use that (T•, U) is chain recurrent. Set

αk := log
rk
tk

; ωk := log
rk+1

tk

and find, by Theorem 4.1.2.1, a sequence {vj} ⊃ {qk} such that the condition
(4.1.2.1) holds, i.e.,

Tωk
vk − Tαk+1vk+1 → 0 (4.2.6.2)

as k → ∞.
Set in Theorem 4.1.2.3

pk := Tαk+1vk+1, qk := Tωk
vk

and find γk such that the condition

Tτ ◦ Tωk
vk − Tτ ◦ Tαk+1vk+1 → 0 (4.2.6.3)

holds uniformly for τ ∈ [−γk+1, γk].
Set

σk := min
[
eγk ,

√
tk
rk

]
.

These σk satisfy the conditions (4.2.2.1) and (4.2.2.2).

Exercise 4.2.6.1 Check this.

We define v(•|t) by (4.2.5.2) with described vj and with ψj from Theorem
4.2.2.1, corresponding to the chosen rj and σj . Let us prove (4.2.6.1).

Consider for fixed k the following three cases.

1. t ∈ [rkσk, rk+1/σk+1);

2. t ∈ [rk+1/σk+1, rk+1);

3. t ∈ [rk, rkσk).
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For the first case we have

v(•|t) = (vk)[t/tk] = Tlog(t/tk)vk.

For the second one

v(•|t) = ψk(t)(vk)[t/tk] + ψk+1(t)(vk+1)[t/tk+1]

= (vk)[t/tk] + ψk+1(t)[(vk+1)[t/tk+1] − (vk)[t/tk].

We transform the expression in the square brackets

(vk+1)[t/tk+1] = Tlog(t/tk+1)vk+1 = Tlog(t/rk+1) ◦ Tlog(rk+1/tk+1)vk+1

= Tlog(t/rk+1) ◦ Tαk+1vk+1.

For the second term, we obtain

(vk)[t/tk] = Tlog(t/rk+1) ◦ Tωk
vk.

Exercise 4.2.6.2 Check this.

Setting τ := log(t/rk+1), we have

v(•|t) = (vk)[t/tk] + ψk+1(t)[Tτ ◦ Tαk+1vk+1 − Tτ ◦ Tωk
vk], (4.2.6.4)

where τ ∈ [− logσk+1, 0) ⊂ [−γk+1, γk]. For the third case, set τ := log(t/rk).
Then

v(•|t) = (vk)[t/tk] + ψk(t)[Tτ ◦ Tωk−1vk−1 − Tτ ◦ Tαk
vk], (4.2.6.5)

where τ ∈ [0, logσk) ⊂ [−γk, γk−1].
Let tN → ∞ be an arbitrary sequence. Choosing a subsequence, we may

suppose that there exist the limits (vk(tN ))[tN /tk(tN )] → v∗ ∈ U and v(•|tN ) → v∞.
Choosing a subsequence, we may suppose that tN satisfies either 1 or 2 or 3

For case 1, we obtain at once v∞ = v∗ ∈ U .
For case 2, from (4.2.6.4), (4.2.6.2) and Theorem 4.1.1.3 we obtain that the

superfluous addends tend to zero, and hence v∞ ∈ U .
The same holds for case 3. Hence Ω(v) ⊂ U .
Further, for t = tk, we have v(•|t) = wk. The sequence {wk} contains the set

{gj} that is dense in U. Thus Ω(v) ⊃ U . Thus equality (4.2.6.1) has been proved.
As already said, the application of Theorem 4.2.5.2 concludes the proof. �
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4.3 Further properties of limit sets

4.3.1 Let as mark the following property of the pseudo-trajectory v(•|t) defined
in (4.2.5.2):

Theorem 4.3.1.1 One has

Tτv(•|et) − v(•|et+τ ) → 0 (4.3.1.1)

as t → ∞ uniformly with respect to τ ∈ [a, b] for any [a, b] ⊂ (−∞,∞).

Proof. Using the definition of (•)t (see (3.1.2.1)) and (4.2.5.4), the remainder in
(4.3.1.1) can be represented in the form

b(t, τ, •) := Tτv(•|et) − v(•|et+τ ) = Tτ (uet) − uet+τ + o(1)

where o(1) → 0 uniformly with respect to τ ∈ [a, b] for any [a, b] ⊂ (−∞,∞).

Exercise 4.3.1.1 Check this in detail.

Then we obtain

b(t, τ, •) = uet+τ [eρ(et)−ρ(et+τ ) − 1] + o(1) → 0

uniformly in the same sense due to precompactness of the family {uet} and prop-
erties of the proximate order.

Exercise 4.3.1.2 Check this in detail. �

The property (4.3.1.1) shows that the pseudo-trajectory v(•|t) behaves
asymptotically like the dynamical system T•. Thus a pseudo-trajectory with this
property is called an asymptotically dynamical pseudo-trajectory with dynamical
asymptotics T• (a.d.p.t.).

Theorem 4.2.5.1 shows that for any a.d.p.t. of the form (4.2.5.2) there exists
u ∈ SH(ρ(r)) that satisfies the condition

uet − v(•|et) → 0 (4.3.1.2)

as t → ∞.
The following assertion shows that we can suppose v(•|•) to be an arbitrary,

in some sense, a.d.p.t.
We call a pseudo-trajectory w(•|•) piecewise continuous if the property

w(•|t+ h) − w(•|t) → 0 (4.3.1.3)

as h → 0 holds for all t except perhaps a countable set without points of conden-
sation.
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Let U ⊂ U [ρ, σ] for some σ > 0. A pseudo-trajectory w(•|•) is called ω-dense
in U if Ω(w) = U (see (4.1.3.2)), i.e.,

{v ∈ U [ρ] : (∃tj → ∞) v = D′ − limw(•|etj )} = U. (4.3.1.4)

We have proved already that v(•|•) defined by (4.2.5.2) has this property
(see (4.2.6.1)).

Now we consider again the dynamical system (T•, U) where U ⊂ U [ρ, σ] for
some σ > 0 and Tt is defined by (4.2.1.1).

Theorem 4.3.1.2 (A.D.P.T. and Chain Recurrence) (T•, U) is chain recurrent iff
there exists an a.d.p.t. that is piecewise continuous and ω-dense in U .

Necessity has been proved already, because the pseudo-trajectory (4.2.6.2)
possesses this property. Sufficiency will be proved later.

The claim of piecewise continuity can be justified by

Theorem 4.3.1.3 For any u ∈ SH(ρ(r)) there exists a piecewise continuous pseudo-
trajectory w(•|•) such that

ut − w(•|t) → 0 (4.3.1.5)

as t → ∞.

Of course, w(•|•) is a.d.p.t.

Exercise 4.3.1.2 Check this.

4.3.2

Proof of Theorem 4.3.1.3. Let {tn} be any sequence such that

tn → ∞, tn+1/tn → 1, (4.3.2.1)

for example, tn = n.
There exists a sequence {vn} ⊂ Fr[u] such that

utn − vn → 0. (4.3.2.2)

Set
w(•|t) := vn, for tn < t ≤ tn+1. (4.3.2.3)

This is a piecewise continuous function.
Let us prove that

ut − w(•|t) → 0. (4.3.2.4)

Assume the opposite; i.e., there exists a sequence {t′k} such that it is not true. We
can suppose that

ut′k → w1 ∈ Fr[u], w(•|t′k) → w2 ∈ Fr[u], w1 �= w2. (4.3.2.5)
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Let us find a sequence {nk} such that tnk
< t′k < tnk+1 . Then

tnk
/t′k → 1. (4.3.2.6)

From (4.3.2.5), (4.3.2.3) and (4.3.2.2) we have

utnk
→ w2. (4.3.2.7)

Then we have, using properties of (•)t and the proximate order,

ut′
k

= (utnk
)[t′k/tnk

](1 + o(log(t′k/tnk
)) → w2 (4.3.2.8)

because of (4.3.2.6) and the continuity of u[t] on (u, t).
However (4.3.2.8) contradicts (4.3.2.5). Thus (4.3.2.4) holds. �

4.3.3 Now we will prepare the proof of Theorem 4.3.1.2.
Let {vk, k = 1, 2, . . . } ⊂ U [ρ, σ] for some σ be a sequence of functions and

{rk, k = 1, 2, . . . }, {tk k = 1, 2, . . .} be two sequences such that

0 < rk < tk < rk+1, k = 1, 2, . . . (4.3.3.1)

and
lim

k→∞
tk/rk = lim

k→∞
rk+1/tk = ∞. (4.3.3.2)

Set
w∗(•|t) := (vk)t/tk

, for t ∈ [rk, rk+1) (4.3.3.3)

where k = 1, 2, . . . .

Theorem 4.3.3.1 Let w(•|•) ⊂ U be an arbitrary ω-dense a.d.p.t. and {pj, j =
1, 2, . . .} ⊂ U an arbitrary sequence. Then there exists a sequence {vk, k =
1, 2, . . .}⊃ {pj, j = 1, 2, . . .} and sequences {rk, k = 1, 2, . . .} and {tk, k =
1, 2, . . .} satisfying (4.3.3.1) and (4.3.3.2) such that for w∗(•|•) determined by
(4.3.3.3) the condition

w∗(•|t) − w(•|t) → 0 (4.3.3.4)

as t → ∞ is fulfilled.

This proposition shows that any ω-dense a.d.p.t. is equivalent to one con-
structed of long pieces of trajectories of the dynamical system T•.

Proof of Theorem 4.3.3.1. We can take sequences {εj ↓ 0, j = 1, 2, . . .} and
{bj ↑ ∞, j = 1, 2, . . . } and choose a sequence {τj , j = 1, 2, . . . } such that the
inequalities

d(Tτpj − Tτw(•|τj)) < εj/2 (4.3.3.5)

and
d(Tτw(•|t) − w(•|eτ t)) < εj/2, t > τj (4.3.3.6)

are fulfilled uniformly with respect to τ ∈ [b−2
j+1, b

2
j ].
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Indeed, w(•|•) is ω-dense in U , and hence we can find τn → ∞ such that

pn − w(•|τn) → 0.

Set in Lemma 4.1.2.2,

pn := pn, qn := w(•|τn), γn := 2 log bj .

Then for any εj we can find τj := τnj such that (4.3.3.5) holds uniformly with
respect to τ ∈ [b−2

j+1, b
2
j ].

The inequality (4.3.3.6) holds, because w(•|•) is asymptotically dynamical
(see (4.3.1.1)).

We can also suppose without loss of generality that τj > τj−1b
2
j−1, i.e., that

the sequence {τj} is rather thin.
The inequality (4.3.3.5) shows that for intervals of t that are determined by

the inequality b−2
j+1 ≤ t/τj ≤ b2j our pseudo-trajectory is already close to some

trajectories.
Now we divide the spaces between such intervals into equal parts in the

logarithmic scale such that their logarithmic lengths would be between log bj and
log bj+1, so that they tend to infinity.

To this end, set

nj :=
[
log τj+1 − log τj

bj

]
where [·] means the entire part, and

γj := (τj+1/τj)
1

2nj .

It is clear that bj < γj < b2j . As centers of new intervals we take the points

τj,l := τjγ
2l
j , l = 0, 1, . . . , nj .

Thus τj,0 = τj and τj,nj = τj+1. The ends of the intervals are τj,l/γj and τj,lγj .
Now we complete the sequence {pj} by the values of the pseudo-trajectory w(•|t)
in the centers of the intervals, i.e., we set

pj,l := w(•|τj,l), l = 1, . . . , nj − 1

For t ∈ (τj,l/γj, τj,lγj), l = 1, . . . , nj − 1 we have

d((pj,l)t/τj,l
− w(•|t)) < εj/2 (4.3.3.7)

because of (4.3.3.6).
For l = 0 and l = nj we set accordingly

pj,0 := pj ; pj,nj := pj+1.

Using (4.3.3.5) and (4.3.3.6) we have an inequality like (4.3.3.7) for l = 0, l = nj

but with εj instead of εj/2.
We complete the proof, re-denoting all the centers τj,l as tk, all the ends as

rk and all the pj,l as vk. �
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4.3.4

Proof of sufficiency in Theorem 4.3.1.2. A direct corollary of the previous Theo-
rem 4.3.3.1 is

w∗(•|rk − 0) − w∗(•|rk) → 0 (4.3.4.1)

as k → ∞.
Really, w∗(•|•) is an a.d.p.t.

Exercise 4.3.4.1 Check this as in Theorem 4.3.1.1 using that w(•|•) is asymptot-
ically dynamical.

For τ ∈ [−ε, 0] and t = rk we have uniformly on τ ,

Tτw
∗(•|t) − w∗(•|t) = Tτ (vk)rk/tk

− (vk+1)rk/tk
→ 0.

Setting τ = 0 we obtain (4.3.4.1).
Let V ⊂ U be an arbitrary open set, ε > 0 arbitrarily small and s > 0

arbitrarily large. We show that there exists an (ε, s)-chain from V to V .
Choose s1 such that

i. for rk > s1, d(w∗(•|rk − 0), w∗(•|rk)) < ε. This is possible by virtue of
(4.3.4.1).

ii. w(•|s1) ∈ V . This is possible because w(•|•) is ω -dense.

iii. d(w∗(•|t), w(•|t)) < d(w(•|s1), ∂V ) for t > s1. This is possible because of
Theorem 4.3.3.1.

Choose s2 > s1 such that w(•|s2) ∈ V . This is possible because w(•|•) is
ω-dense. Then the pseudo-trajectory w∗(•|et) for s1 ≤ et ≤ s2 is an (ε, s)-chain
connecting w∗(•|s1) and w∗(•|s2) that belong to V .

Exercise 4.3.4.2 Check this in detail.

Hence (T•, U) is chain recurrent.

4.3.5 We will prove one more existence theorem that is a corollary of Theorem
4.2.1.2.

Theorem 4.3.5.1 Let Λ ⊂ U [ρ] be a compact connected and T•-invariant subset of
U [ρ]. Then for any proximate order ρ(r) → ρ there exists u ∈ SH(Rm, ρ, ρ(r))
such that

h(x, u) = sup{v(x) : v ∈ Λ}, (4.3.5.1)
h(x, u) = inf{v(x) : v ∈ Λ}. (4.3.5.2)

Proof. Let U := ConvΛ be the convex hull of Λ. It is linearly connected and hence
polygonally connected (see 4.1.4). By Theorem 4.1.4.1 it is chain recurrent and by
Theorem 4.2.1.2 for any proximate order ρ(r) → ρ there exists u ∈ SH(Rm, ρ, ρ(r))
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such that
Fr[u, ρ(r), Vt,R

m] = U.

Since every v ∈ U can be represented in the form v = av1 + (1 − a)v2 for 0 ≤ a ≤
1, v1, v2 ∈ Λ we obtain (4.3.5.1) and (4.3.5.2) from Theorem 3.2.1.1 (Properties
of Indicators), h2).

Exercise 4.3.5.1 Check this.

4.3.6 In applications we need the following

Theorem 4.3.6.1 Let p ∈ P ⊂ Rm and let P be a connected closed set. Let UP :=
{v(z, p) : p ∈ P ⊂ Rm} be a family of functions with parameter p such that for
every p ∈ P , v(•, p) ∈ U [ρ] and satisfy the condition (4.1.3.3). Then there exists
u ∈ SH(ρ(r)) such that Fr[u] = UP .

This is a direct corollary of Theorems 4.1.1.2, 4.1.3.3 and 4.2.1.2.

Exercise 4.3.6.1 Explain this in detail.

4.3.7 In the next three sections we return to the periodic limit sets (see Theo-
rem 4.1.7.1). We show that the limit set Fr[u, ρ(r), V•,Rm] of every subharmonic
function u ∈ SH(ρ(r),Rm), ρ(r) → ρ for non-integer ρ can be approximated in
some sense by periodic limit sets ([Gi], [GLO, Ch. 3, § 2, Thm. 10]).

Here we give some definitions. Let Xn ⊂ U [ρ], n = 1, 2, . . . be a sequence of
compact sets. We say that Xn converges to a compact set Y ⊂ U [ρ], i.e.,

D′ − lim
n→∞Xn = Y (4.3.7.1)

if the following two conditions hold:

converg1) ∀xn ∈ Xn, n = 1, 2, . . . ∃xnj ∈ Xnj , j = 1, 2, . . . and y ∈ Y such that
D′ − lim

j→∞
xnj = y;

converg2) ∀y ∈ Y ∃xn ∈ Xn, n = 1, 2, . . . , such that xn → y.

On every compact set K in D′-topology one can introduce a metric d(•, •)
such that the topology generated by this metric is equivalent to D′-topology (see,
e.g., [AG(1982)]).

Denote by

Xε := {y ∈ K : ∃x ∈ X such that d(y, x) < ε}
the ε-neighborhood of X .

Let X,Y be two compact sets. Set

d(X,Y ) := inf{ε : X ⊂ Yε, Y ⊂ Xε}.
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Exercise 4.3.7.1 Prove the assertion

(4.3.7.1) ⇐⇒ {d(Xn, Y ) → 0}. (4.3.7.2)

We prove the following

Theorem 4.3.7.1 (Approximation by Periodic Limit Sets) Let u ∈ SH(ρ(r),Rm),
ρ(r) → ρ for non-integer ρ. Then for every V• there exists a sequence un ∈
SH(ρ(r),Rm) with periodic limit sets Fr[un, ρ(r), V•,Rm] such that Fr[un, •] →
Fr[u, •].

This theorem is a corollary of the following

Theorem 4.3.7.2 Let μ ∈ M(ρ(r),Rm), ρ(r) → ρ for non-integer ρ. Then for
every V• there exists a sequence μn ∈ SH(ρ(r),Rm) with periodic limit sets
Fr[μn, ρ(r), V•,Rm] such that Fr[μn, •] → Fr[μ, •].

Proof of Theorem 4.3.7.1. The canonical potential u(x) :=Π(x,μ,p) (see (2.9.2.1))
of a measure μ ∈ M(ρ(r),Rm) belongs to SH(ρ(r),Rm) by Theorem 2.9.3.3 and
has a limit set

Fr[u, •] = {Π(•, ν, p) : ν ∈ Fr[μu]}
by Theorem 3.1.4.4 (*Hadamard). The potentials un(x) := Π(x, μn, p) have peri-
odic limit sets

Fr[un, •] = {Π(•, ν, p) : ν ∈ Fr[μun ]}
by Theorem 3.1.5.0. Let us prove that

Fr[un, •] =: Xn → Y := Fr[u, •].

If vn ∈ Fr[un, •] then from the corresponding sequence of νn := νvn ∈ Fr[μn, •] we
can find a subsequence νnj and ν ∈ Fr[μ, •] such that νn → ν (by Theorem 2.2.3.2
(Helly)). It is easy to check, using Theorem 3.1.4.3 (*Liouville), that v∗ = D′ −
lim

j→∞
Π(•, νnj ) exists and coincides with v = Π(•, ν, p) ∈ Fr[u, •].

So the condition converg1) is verified. In the same way one can check con-
verg2). �

Exercise 4.3.7.2 Prove this in detail.

4.3.8 Now we are going to prove Theorem 4.3.7.2. We begin from

Proposition 4.3.8.1 For any μ ∈ M(ρ(r), •) there exists μ̂ ∈ M(ρ, •) such that

Fr[μ̂, ρ, •] = Fr[μ, ρ(r), •]. (4.3.8.0)

In other words we can suppose further that ρ(r) ≡ ρ.
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Proof. Set L(r) = rρ(r)−ρ and

μ̂(dx) := L−1(|x|)μ(dx). (4.3.8.1)

Using properties of proximate order (Section 2.8.1., po1)–po4)), it is easy to check
that

[L−1(r)]′ = L−1(r)o(1) and [L(r)]′ = L(r)o(1), as → 0. (4.3.8.2)

Exercise 4.3.8.1 Prove this.

Let us show that μ̂ ∈ M[ρ,Δ] for some Δ. Indeed

μ̂(R)
Rρ+m−2

= R−ρ−m+2

R∫
0

μ(dr)
L(r)

=
μ(r)

Rρ+m−2L(r)
|R0 +R−ρ−m+2

R∫
0

μ(r)(L−1)′dr.

We suppose that μ(r) = 0 in some neighborhood of zero. Using (4.3.8.2) we obtain
further for the last expression,

μ(R)R−ρ(r) +R−ρ−m+2

R∫
0

μ(r)(L−1)o(1)dr.

Using the l’Hospital rule, we obtain

lim
R→∞

R−ρ−m+2

R∫
0

μ(r)(L−1(r))o(1/r)dr = (−ρ−m+ 2) lim
R→∞

μ(R)R−ρ(R)o(1/R).

Thus

lim sup
R→∞

μ̂(R)
Rρ+m−2

≤ lim sup
R→∞

μ(R)(L−1(R))[1 + o(1/R)] = Δ[μ, ρ(r)] < ∞.

Let us note that μt = L(t)μ̂[t]. This implies equality (4.3.8.0) because L(t) → 1 as
t → ∞.

Exercise 4.3.8.2. Prove this in detail. �

Proof of Theorem 4.3.7.2. As we already said we can also suppose that μ ∈ M[ρ].
Let ν ∈ Fr[μ]. We can suppose that

ν({|x| = 1}) = 0. (4.3.8.2a)

Otherwise we can find τ such that ν[τ ]({|x| = 1}) = 0 and if νn → ντ and are
periodic, then (νn)[1/τ ] are also periodic and (νn)[1/τ ] → ν.
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Let rn → ∞ be such that μ[rn] → ν. By passing to subsequences we can
make rn+1/rn > rn.

Denote Kn := {x : rn ≤ |x| < rn+1}. Set for every E ⊂ Kn

μn|E := μ(E)

and continue it periodically with the period Pn = rn+1/rn by the equality

μn(P k
nE) = P kρ

n μ(E), k = ±1,±2, . . . . (4.3.8.3)

Since every X ∈ Rm can be represented in the form

X =
∞⋃

k=−∞
{X ∩ P k

nKn},

we can define

μn(X) :=
∞∑

k=−∞
μn({X ∩ Pn

k Kn}).

It is easy to check that μn is periodic with period Pn and μn ∈ M[ρ,Δ] with Δ
independent of n.

Exercise 4.3.8.3 Check this.

Let us prove that
Fr[μ] = lim

n→∞Fr[μn]. (4.3.8.4)

Check the condition converg1). Let νnj ∈ Fr[μnj ] and suppose D′− lim
j→∞

νnj := ν.

Let us prove that ν ∈ Fr[μ].
Since Fr[μnj ] is a periodic limit set,

νnj = (μnj )[τj ].

Take kj such that
τ ′j := τjP

kj
nj

∈ [rnj , rnj+1).

From periodicity μnj we obtain

νnj = (μnj )[τ ′j ].

Passing to a subsequence if necessary, we can consider three cases:
i) lim

j→∞
τ ′j/rnj = ∞, lim

j→∞
τ ′j/rnj+1 = 0;

ii) lim
j→∞

τ ′j/rnj = τ ; 1 ≤ τ < ∞; In this case we have also lim
j→∞

τ ′j/rnj+1 = 0.

iii) lim
j→∞

τ ′j/rnj+1 = τ ; 0 < τ ≤ 1; In this case we have also lim
j→∞

τ ′j/rnj = ∞.

Consider the case i). Let φ ∈ D(Rm \ O). Then suppφ(x/τ ′j) ⊂ (rnj , rnj+1)
for j ≥ j0. It is easy to see that, for j ≥ j0,

〈(μnj )[τ ′j ], φ〉 = 〈μ[τ ′j ], φ〉.
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Exercise 4.3.8.4 Check this.

Since μ[τ ′j] → ν ∈ Fr[μ] by definition the condition converg1) holds for the
case i).

Consider the case ii). Recall that O /∈ suppφ. Then there exists 1 ≤ c < ∞
such that

suppφ ⊂ {x : |x| ∈ (1/c, c)}.
Define

φt(x) := φ(x/t)(1/t)ρ.

Represent τ ′j in the form

τ ′j := ejτrnj where ej :=
τ ′j
rnj τ

.

The condition ii) means that
ej → 1. (4.3.8.4a)

Compute
〈νj , φ〉 := 〈(μnj )[τ ′j ], φ〉 = 〈μnj , ((φτ )ej )rnj

〉.
Note that

suppφτ ⊂ {x : |x| ∈ (τ/c, τc)}.
We can increase c so that 1 ∈ (τ/c, τc).

Consider the following partition of unity. Choose the functions ηk ∈ D(Rm),
k = 1, 2, 3 so that

η1(t) + η2(t) + η3(t) = 1

for t ≥ 1 and

supp η1 ⊂ {x : |x| < 1 − ε},
supp η2 ⊂ {x : |x| ∈ (1 − 2ε, 1 + 2ε)},
supp η3 ⊂ {x : |x| > 1 + ε},

where ε is an arbitrary number, satisfying

τ/c < 1 − 2ε < 1 + 2ε < τc.

Represent φτ in the form

φτ = ψ1 + ψ2 + ψ3, where ψk = φτηk, k = 1, 2, 3.

In this notation

〈νj , φ〉 =
3∑

k=1

〈μnj , (ψk)ejrnj
〉. (4.3.8.5)
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Choose jε such that for j ≥ jε the following inclusions hold:

supp(ψ1)ejrnj
⊂ {x : |x| ∈ (rnj τ/c, rnj (1 − ε))};

supp(ψ2)ejrnj
⊂ {x : |x| ∈ ((1 − ε)rnj , rnj (1 + ε))};

supp(ψ3)ejrnj
⊂ {x : |x| ∈ ((1 + ε)rnj , τrnj }.

Thus for ψ3 we have

〈μnj , (ψ3)ejrnj
〉 =

∫
(ejrnj )

−ρψ3(|x|/(ejrnj ))μnj (dx)

=
∫

(ejrnj )
−ρψ3(|x|/(ejrnj ))μ(dx) = 〈μ[rnj

], (ψ3)ej 〉.

Since μ[rnj
]
D′→ν and (ψ3)ej

D→ ψ3 we have (see Theorem 2.3.4.6)

lim
j→∞

〈μnj , (ψ3)ejrnj
〉 = 〈ν, ψ3〉. (4.3.8.6)

Consider the addend with ψ1. Because of periodicity μnj we have

〈μnj , (ψ1)ejrnj
〉 = 〈(μnj )[Pnj

], (ψ1)ejrnj
〉.

Transforming the RHS we obtain

〈(μnj )[Pnj
], (ψ1)ejrnj

〉 = 〈μnj , ((ψ1)Pnj
)ejrnj

〉.

Since Pnj = rnj+1/rnj the following inclusion holds for j ≥ jε :

supp(ψ1)Pnj
ejrnj

⊂ {x : |x| ∈ (Pnj rnj

τ

c
, Pnjrnj (1 − ε))}

= {x : |x| ∈ (rnj+1
τ

c
, rnj+1(1 − ε))} ⊂ {x : |x| ∈ (rnj , rnj+1)}.

Thus

〈μnj , ((ψ1)Pnj
)ejrnj

〉 = 〈μ, (ψ1)Pnj
ejrnj

〉 = 〈μ, (ψ1)ejrnj
〉 = 〈μ[rnj

], (ψ1)ej 〉.

Hence
lim

j→∞
〈μnj , (ψ1)ejrnj

〉 = 〈ν, ψ1〉 (4.3.8.7)

because ej → 1 and μ[rnj
]
D′→ ν (see Theorem 2.3.4.6).

From (4.3.8.5), (4.3.8.6) and (4.3.8.7) we obtain

lim
j→∞

〈νj , φ〉 = 〈ν, ψ1 + ψ3〉 + lim
j→∞

〈μnj , ((ψ2)ejrnj
〉.
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Let us estimate the last limit. We have

lim
j→∞

〈μnj , (ψ2)ejrnj
〉 = 〈(μnj )[ejrnj

], ψ2〉.

Define

E1(ε) := {x : |x| ∈ (1 − 2ε, 1)};E2(ε) := {x : |x| ∈ [1, 1 + 2ε)}.
Suppose ε is chosen so that

ν(∂Ek) = 0, k = 1, 2. (4.3.8.7a)

Recall that ν satisfies the condition (4.3.8.2a), hence E1, E2 are ν-squarable and
hence (see Theorem 2.2.3.7)

lim
n→∞μ[rn](Ek(ε)) = ν(Ek(ε)), k = 1, 2.

Define
Cφ := max{φ(x) : x ∈ Rm}.

Then for j ≥ jε,

|〈(μnj )[ejrnj
], ψ2〉| ≤ Cφ(μnj )[ejrnj

](E1(ε) ∪ E2(ε))

= Cφ((μnj )[ejrnj
](E1(ε)) + (μnj )[ejrnj

](E2(ε)).

By definition
(μnj )[ejrnj

](E2(ε)) = μ[ejrnj
](E2(ε)).

Because of (4.3.8.4a) we obtain

lim
j→∞

μ[ejrnj
](E2(ε)) = ν(E2).

Exercise 4.3.8.5 Check in detail.

To compute the limit of the first addend we use periodicity of μnj :

μnj (E1(ε)) = P−ρ
nj
μnj (PnjE1(ε)) = (μnj )[Pnj

](E1(ε)),

where
rnjPnjE1(ε) = {x : |x| ∈ (rnj+1(1 − 2ε), rnj+1)}.

Thus

(μnj )[ejrnj
](E1(ε)) = (μnj )[ejrnj

Pnj
](E1(ε))

= (μnj )[ejrnj+1](E1(ε)) = μ[ejrnj+1](E1(ε)).

From this we obtain

lim
j→∞

(μnj )[ejrnj
](E1(ε)) = ν(E1(ε)).
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Therefore
lim

j→∞
|〈(μnj )[ejrnj

], ψ2〉| ≤ Cφν(E1(ε) ∪ E2(ε)). (4.3.8.8)

Because of (4.3.8.2a) we have

ν({x : |x| ∈ (1 − 2ε, 1 + 2ε)}) → 0 (4.3.8.9)

as ε → 0 over the set of ε satisfying (4.3.8.7a). From (4.3.8.8) and (4.3.8.9) we
obtain

lim
j→∞

〈
(μnj )[ejrnj

], ψ2

〉
→ 0 (4.3.8.10)

and
〈ν, ψ2〉 → 0 (4.3.8.11)

when ε → 0. Hence if ε → 0 satisfying (4.3.8.7a) we have

lim
j→∞

〈νj , φ〉 − 〈ν[τ ], φ〉
= lim

ε→0
[〈ν, ψ1 + ψ3〉 + lim

j→∞
〈(μnj )[ejrnj

], ψ2〉 − 〈ν, ψ1 + ψ2 + ψ3〉]
= lim

ε→0
[ lim
j→∞

〈(μnj )[ejrnj
], ψ2〉 − 〈ν, ψ2〉] = 0.

The last equality holds because every addend tends to zero.
The case iii) can be considered in an analogous way.

Exercise 4.3.8.6 Consider it.

Thus the condition converg1) was checked. �

4.3.9 Now we should check the condition converg2). We need

Lemma 4.3.9.1 Let μ ∈ M[ρ], ν ∈ Fr[μ] and rn → ∞, n = 1, 2, . . . be a sequence
such that

D′ − lim
n→∞μ[rn] = ν0. (4.3.9.1)

Then passing if necessary to a subsequence, we can find {rn} such that for arbi-
trarily ν ∈ Fr[μ] a sequence tj → ∞ exists such that

D′ − lim
j→∞

μ[tj ] = ν (4.3.9.2)

and for every n we can find tj ∈ [rn, rn+1].

Proof. Note that if the assertion of the lemma is satisfied for the sequence {rn, n =
1, 2, . . .} it is satisfied for every subsequence of {rn, n = 1, 2, . . . }.

Let M be a countable set that is dense in Fr[μ]. Since reduction D′-topology
on M[ρ] is metrizable, it is sufficient to prove that we can choose a subsequence
rn for which assertion of the lemma is satisfied for all ν ∈ M. We can do it using
a diagonal process.
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Let r0n → ∞ be an arbitrary sequence such that

D′ − lim
n→∞μ[r0

n] = ν0

and let a sequence t1j satisfy the condition

D′ − lim
j→∞

μ[t1j ] = ν1.

Omitting in the sequence {r0n} the ends of the segments [r0n, r
0
n+1] that do not con-

tain elements {tj} we obtain a subsequence {r1n}. Continuing in such a way we ob-
tain a subsequence {rm

n } satisfying (4.3.9.1) and the sequences {t1j}, {t2j}, . . . , {tmj },
j = 1, 2 . . . satisfying

D′ − lim
j→∞

μ[tl
j ]

= νl, l = 1, 2, . . .m. (4.3.9.3)

Taking a diagonal sequence {rn
n}, n = 1, 2, . . . we observe that it is a subsequence

of every subsequence {rm
n } and hence satisfies the assertion of the lemma. �

Proof of converg2). We can suppose that {rn} from the construction of μn with
periodic limit sets satisfies the assertion of Lemma 4.3.9.1. Let ν ∈ Fr[μ] and
μtj → ν under condition tj ∈ [rn, rn+1]. We should consider as in the proof of
converg1) three cases i), ii) and iii). But all these cases were already considered
and hence it was proved that

νn := (μn)rn → ν.

Exercise 4.3.9.1 Check this. �

4.4 Subharmonic curves.
Curves with prescribed limit sets

4.4.1 In this paragraph we consider subharmonic functions u ∈ SH(ρ(r)) in the
plane of finite type with respect to some proximity order ρ(r) → ρ.

The pair u := (u1, u2), u1, u2 ∈ SH(ρ(r)) is called a subharmonic curve
(which for brevity we will refer to simply as a curve).

The family
(u)t := ((u1)t, (u2)t)

is precompact in the topology of convergence in D′-topology on every component.
The set of all limits

Fr[u] := {v = (v1, v2) : ∃tj → ∞,v = D′ − lim
j→∞

utj }

is called the limit set of the curve u.
Actually this set describes coordinated asymptotic behavior of pairs of sub-

harmonic functions.
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Theorem 4.4.1.1 Fr[u] is closed, connected, invariant with respect to (•)[t] (see
3.1.2.4a) and is contained in the set

U [ρ,σ] := {v = (v1, v2) : vn(z) ≤ σn|z|ρ, vn(0) = 0, n = 1, 2.}

where σ := (σ1, σ2)

Exercise 4.4.1.1 Prove this by using Theorem 3.1.2.2.

Let us define σ > 0 as σn > 0, n = 1, 2. Set

U [ρ] :=
⋃

σ>0

U [ρ,σ].

We will write U ⊂ U [ρ] if U ⊂ U [ρ,σ] for some σ.
Since (T•,U [ρ]) is a dynamical system we have two theorems analogous to

Theorems 4.2.1.1 and 4.2.1.2.

Exercise 4.4.1.2 Formulate and prove these theorems.

All the other assertions and definitions of Sections 4.2,4.3 can be repeated
for subharmonic curves.

Let U ⊂ U [ρ]. Set

U ′ := {v′ : ∃v′′ : (v′, v′′) ∈ U}.

This is a projection of U . Set for v′ ∈ U ′,

U ′′(v′) := {v′′ : (v′, v′′) ∈ U}.

This is the fibre over v′.

Theorem 4.4.1.2 Let U � U [ρ] be closed and invariant and assume that every
fiber U ′′(v′) is convex. Let U ′ = Fr[u′] for some u′ ∈ U(ρ(r)). Then there exists
u′′ ∈ U(ρ(r)) such that Fr(u′, u′′) = U .

We construct a pseudo -trajectory asymptotics in the form (4.2.5.2) replacing
u with u and v with v. We can directly check that this curve satisfies the assertion
of the theorem.

Exercise 4.4.1.3 Check this.

Theorem 4.4.1.3 (Concordance Theorem) Let u ∈ U(ρ(r)) and v0 ∈ Fr[u], and
suppose v ∈ U [ρ] has the property

lim
τ→−∞Tτv = lim

τ→+∞Tτv = ṽ.
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Then there exists a function w ∈ U(ρ(r)) such that the limit set of the curve
u = (u,w) Fr[u] = (Fr[u],C(v)) and for every sequence tn → ∞ such that
lim

n→∞wtn = v,

lim
n→∞utn = (v0, v). (4.4.1.3.)

For proving this theorem we should use a.d.p.t. (4.2.5.2). If vj = v0 we replace
vj by vj := (v0, v). If vj �= v0 we replace vj by vj := (vj , ṽ).

Exercise 4.4.1.3 Do that and exploit Theorem 4.3.1.2 and Theorem 4.2.1.2.

Corollary 4.4.1.4 Under conditions of Theorem 4.4.1.3, if lim
n→∞wtn = Tτv, then

lim
n→∞utn = Tτv

0.

We should apply Tτ to (4.4.1.3) and use its continuity in D′-topology. �



Chapter 5

Applications to Entire Functions

5.1 Growth characteristics of entire functions

5.1.1 Let f(z) be an entire function. The function u(z) := log |f(z)| is subharmonic
in R2(= C). Hence the scale of growth subharmonic functions considered in Section
2.8 is transferred completely to entire functions. We will mark passing to entire
function by changing index u for index f . For example,

M(r, f) := M(r, log |f |), T (r, f) := T (r, log |f |).

If u(z) := log |f(z)| has order ρ[u] = ρ, then f(z) has order ρ[f ] := ρ and so on.
We will write f ∈ A(ρ, ρ(r)) and say “f is an entire function of order ρ

and normal type with respect to proximate order ρ(r)” if log |f | is a subharmonic
function of order ρ and normal type with respect to the same proximate order.
Shortly, if log |f | ∈ SH(ρ, ρ(r),R2), then f ∈ A(ρ, ρ(r)).

Exercise 5.1.1.1 Give definitions of

T (r, f), M(r, f), ρT [f ], ρM [f ], σT [f, ρ(r)], σM [f, ρ(r)]

and reformulate all the assertions of Section 2.8 in terms of entire and meromorphic
functions.

5.1.2 A divisor of zeros of an entire function can be represented as an integer mass
distribution n on a discrete set {zj} ⊂ C. The multiplicity of a zero zj is the mass
concentrated at the point zj .

The notation for characteristics of the behavior of zeros will mimic that of
the behavior of masses, replacing μ for n. For example, n(Kr), n(r) is the number
of zeros (with multiplicities) in the disk Kr, ρ[n] is the convergence exponent, Δ[n]
is the upper density and so on.
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Exercise 5.1.1.2 Give definitions of N(r, n), ρN [n], ΔN [n], p[n].

5.1.3 The limit set Fr[f ] of an entire function f ∈ A(ρ, ρ(r)) is defined as the limit
set of the subharmonic function u(z) := log |f(z)| ∈ SH(ρ, ρ(r),R2) (see Section
3.1), i.e.,

Fr[f ] := Fr[log |f |]. (5.1.3.1)

It possesses, of course, all the properties described in Chapters 3, 4 but it is not
clear now if there exists an entire function with prescribed limit set, i.e., whether
the subharmonic function in Theorem 4.2.1.2 can be chosen to be log |f(z)| where
f ∈ A(ρ, ρ(r)). It turns out that this is possible and we prove this in Section 5.3.

As it was mentioned in 3.1.1 the general form of V• for the case of the plane is

Vtz = zeiγ log t,

where γ is real.
The limit set Fr[n] of a divisor n is the limit set of the corresponding mass

distribution n (see 3.1.3).
Of course generally speaking nt (see (3.1.3.2)) is not an integer mass distri-

bution.

Exercise 5.1.3.1 Give a complete definition of Fr[f ] and Fr[n], and reformulate
all the theorems of Sections 3.1.2, 3.1.3 in terms of entire functions and their zeros.

The connection between Fr[f ] and Fr[n] is preserved completely (see Section
3.1.5).

Exercise 5.1.3.2 Reformulate the theorems of Section 3.1.5 for entire functions.

5.1.4 Let f = f1/f2 be a meromorphic function, where f1, f2 have no common
zeros. If f2(0) = 1, f1(0) �= 0 and f1, f2 ∈ A(ρ, ρ(r)), then u := log |f1| − log |f2| ∈
δSH(ρ, ρ(r)), and we write f ∈ Mer(ρ, ρ(r)) and say “f is a meromorphic function
of order ρ and normal type with respect to the proximate order ρ(r)”. For f ∈
Mer(ρ, ρ(r)) we use the following characteristics: T (r, f), ρT [f ], σT [f, ρ(r)]. The
charge of log |f | consists of integer positive and negative masses.

5.2 D′-topology and topology of exceptional sets

5.2.1 Let α−mes be the Carleson measure defined in Section 2.5.4. Set for C ⊂ R2,

α− mesC := lim sup
R→∞

[α− mes(C ∩KR)]R−α. (5.2.1.1)

It is called the relative Carleson α-measure.
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Theorem 5.2.1.1 (Properties of the Relative Carleson Measure) One has

rCm1) If C is bounded α− mesC = 0;

rCm2) α− mes(C1 ∩ C2) ≤ α− mesC1 + α− mesC2,

i.e., the relative Carleson measure is sub-additive;

rCm3) C1 ⊂ C2 ⇒ α− mes(C1) ≤ α− mesC2,

i.e., the relative Carleson measure is monotonic with respect to sets;

rCm4) α1 > α2 ⇒ α1 − mesC ≤ α2 − mesC,

i.e., the relative Carleson measure is monotonic with respect to α.

Exercise 5.2.1.1 Prove this.

A set C ⊂ R2 for which α− mesC = 0 is called a Cα
0 − set. If α− mesC = 0

for all α > 0, C is called a C0
0 − set.

Let us recall that if u1,u2 ∈SH(ρ,ρ(r),R2), then u=u1−u2 ∈δSH(ρ,ρ(r),R2)
(see Section 2.8.2).

Theorem 5.2.1.2 (D′-topology and Exceptional sets) Let u ∈ δSH(ρ, ρ(r),R2). In
order that

ut → 0 (5.2.1.2)

in D′ as t → ∞ it is sufficient that

u(z)|z|−ρ(|z|) → 0 (5.2.1.3)

as z → ∞ outside some C2
0 -set.

If (5.2.1.2) holds, then (5.2.1.3) holds outside some C0
0 -set.

5.2.2 To prove Theorem 5.2.1.2 we need some auxiliary assertions. Recall that dz
is an element of area following the notation of the previous chapters.

Proposition 5.2.2.1 Let u ∈ SH(ρ, ρ(r),R2), and C2
0,R := C2

0 ∩KR. Then∫
C2

0,R

|u|(z)dz = o(Rρ(R)+2) (5.2.2.1)

as R → ∞.

Proof. Suppose (5.2.2.1) does not hold. Then there exists a sequence Rj → ∞
such that

lim
Rj→∞

R
−ρ(Rj)−2
j

∫
C2

0,Rj

|u|(z)dz = A > 0. (5.2.2.2)
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Consider the following family of δ-subharmonic functions:

uj(ζ) := R
−ρ(Rj)
j u(ζRj). (5.2.2.2a)

It can be represented as a difference uj = u1,j − u2,j of subharmonic functions of
the same form.

Thus it is precompact in Lloc (Theorem 2.7.1.3). Let us choose a convergent
subsequence for which we keep the same notation. Its limit v is a locally summable
function.

Now let χj be the characteristic functions of the sets

Ej := R−1
j C2

0,Rj
.

Since mesEj → 0 it is possible to choose a sequence (for which we keep the same
notation) such that χj → 0 almost everywhere. We will also suppose that Rj are
the same for χj and uj. Thus∫

|ζ|≤1

|χj(ζ)uj(ζ) − 0 · v(ζ)|dζ =
∫

|ζ|≤1

|χj(ζ)uj(ζ)|dζ → 0.

By change of variables z = Rjζ we obtain that

R
−ρ(Rj)−2
j

∫
C2

0,Rj

|u|(z)dz =
∫

|ζ|≤1

|χj(ζ)uj(ζ)|dζ → 0.

Hence the limit in (5.2.2.2) is equal to zero. Contradiction. �

Proposition 5.2.2.2 Under condition (5.2.1.2) the set

C := {z : |u(z)||z|−ρ(|z|) > ε}

is a C0
0 -set for arbitrary ε.

Proof. Assume the contrary; that is , ∃α > 0 such that

α− mesC = 2δ > 0. (5.2.2.3)

One can see that for some η > 0,

lim sup
R→∞

(α− mesKηR)R−α ≤ δ/2. (5.2.2.4)

Exercise 5.2.2.1 Check this.
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(5.2.2.3) and (5.2.2.4) imply that there exists a sequence Rj → ∞ such that

lim
Rj→∞

α− mes[C ∩ (KRj \KηRj )]R
−α
j ≥ 3

2
δ.

Set
Ej := R−1

j C ∩ (KRj \KηRj ).

It is clear that Ej ⊂ K1 \Kη and for sufficiently large j,

α− mesEj ≥ δ. (5.2.2.5)

Set uj as in (5.2.2.2a). We claim that for large j and ζ ∈ Ej ,

|uj |(ζ) ≥ ε

2
|ζ|ρ. (5.2.2.6)

Indeed,

|uj |(ζ) =
|u|(Rjζ)

R
ρ(Rj)
j

=
|u|(z)

|z|ρ(|z|) (1 + o(1))|ζ|ρ ≥ ε

2
|ζ|ρ.

We used here properties of the proximate order and the equivalence

z = Rjζ ∈ C ∩ (KRj \KηRj ) ⇔ ζ ∈ Ej .

Exercise 5.2.2.2 Check this in detail.

Now we will show that the condition (5.2.1.2) contradicts (5.2.2.6). Since u ∈
δSH(ρ, ρ(r),R2) it is a difference of u1, u2 ∈ SH(ρ, ρ(r),R2). The corresponding
sequences u1,j and u2,j are precompact in D′ and there exist subsequences (with
the same notation) that converge to v1 and v2, respectively.

By Theorem 2.7.5.1 these sequences converge to v1 and v2 with respect to
α−mes on K1 \Kη. Since ut → 0 in D′, it follows that v1 = v2. Thus uj → 0 with
respect to α−mes onK1\Kη. However, this contradicts (5.2.2.5) and (5.2.2.6). �

Proposition 5.2.2.3 Let {Cj}∞1 be a sequence of C0
0 -sets. There exists a sequence

Rj → ∞ such that the set

C =
∞⋃

j=1

{Cj ∩ (KRj+1 \KRj)} (5.2.2.7)

is a C0
0 -set.
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Proof. Choose εj ↓ 0 and αj ↓ 0. Set R0 := 1. Suppose Rj−1 was already chosen.
Take Rj such that

αj − mes[C ∩KRj−1 ] < εjR
αj (5.2.2.8)

for R > Rj .
It is possible because of property rC1) Theorem 5.2.1.1. We can also increase

Rj so that
αj − mes[Cj ∩KR] < εjR

αj (5.2.2.9)

and
αj − mes[Cj+1 ∩KR] < εjR

αj (5.2.2.10)

for R > Rj .
It is possible because Cj and Cj+1 are C0

0 -sets.
Let us estimate αj−mes[C∩KR] for Rj ≤ R < Rj+1. From (5.2.2.8), (5.2.2.9)

and (5.2.2.10) we obtain

αj − mes[C ∩KR] ≤ 3εjRαj . (5.2.2.11)

Let α > 0 be arbitrarily small. Find αj < α. For Rj+1 ≥ R > Rj we have

α− mes[C ∩KR]R−α ≤ αj − mes[C ∩KR]R−αj ≤ 3εj.

Hence α− mesC = 0. �

5.2.3

Proof of Theorem 5.2.1.2. Let φ ∈ D(C) and suppφ ⊂ KR. Then for any ε > 0,

J(t) :=
∫
φ(z)ut(z)dz =

⎛⎜⎝ ∫
KR\Kε

+
∫

Kε

⎞⎟⎠φ(z)ut(z)dz := J1(t) + J2(t). (5.2.3.1)

We have for J2 (see 2.8.2.3):

|J2|(t) ≤ max
|z|≤ε

|φ(z)| × const

ε∫
0

T (r, |ut|)rdr ≤ constT (ε, |ut|)ε2. (5.2.3.2)

Further (see Theorem 2.8.2.1)

T (r, |ut|) ≤ 2T (r, ut) +O(t−ρ(t)) ≤ 2[T (r, u1,t) + T (r, u2,t)] +O(t−ρ(t))

≤ 2[M(r, u1,t) +M(r, u2,t)] +O(t−ρ(t)). (5.2.3.3)

Using (5.2.3.2), (5.2.3.3) and (3.1.2.3) we obtain

lim sup
t→∞

|J2(t)| ≤ const ερ+2. (5.2.3.4)
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Exercise 5.2.3.1 Check this using the change of variable z = tζ.

To estimate J1(t) write

|J1(t)| ≤ const
( ∫

K̃t\C2
0,Rt

|u(z)|dz +
∫

C2
0,Rt

|u(z)|dz
)
t−ρ(t)−2 := J1,1(t) + J1,2(t),

(5.2.3.5)
where K̃t := {z : εt ≤ |z| ≤ Rt}.

The summand J1,1 is o(1) as t → ∞ by (5.2.1.3).

Exercise 5.2.3.2 Check this using the properties of the proximate order (Theorem
2.8.1.3, ppo3).

The summand J1,2 is o(1) by Theorem 5.2.2.1. Thus

lim sup
t→∞

|J(t)| ≤ const ερ+2

for any ε. Hence it is equal to zero and the sufficiency of (5.2.1.3) has been proved.
Let us prove sufficiency of (5.2.1.2). Let εj ↓ 0. By Theorem 5.2.2.2 we choose

a C0
0 -set Cj outside which |u(z)||z|−ρ(|z|) < εj .

We construct the set C by (5.2.2.7). Outside C we have (5.2.1.3). And by
Theorem 5.2.2.3 it is a C0

0 -set. �

5.3 Asymptotic approximation of
subharmonic functions

5.3.1 One of the widely applied methods of constructing entire functions with a
prescribed asymptotic behavior is the following: First construct a subharmonic
function behaving asymptotically as the logarithm of modulus of the entire func-
tion,and then approximate it in some sense by the logarithm of modulus of entire
function such that the asymptotic is preserved.

Various queries about the a precision of the approximation and about the
metric in which it was implemented generated a spectrum of theorems of such
kind that we will demonstrate.

Historically the first theorems of this kind were proved for concrete functions,
the masses of which were concentrated on sufficiently smooth curves (in particular,
on lines, see, e.g., [BM, Ev, Kj, Ar], . . . )

In such cases the approximation was very precise and exceptional sets where
the approximation failed were small and determined.

The first general case was proved in [Az(1969)]. Next it was developed in
[Yu(1982)], and vastly improved in [Yu(1985)]. It is the following
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Theorem 5.3.1.1 (Yulmukhametov) Let u ∈ SH(ρ). Then there exists an entire
function f such that for every α ≥ ρ,

|u(z) − log |f(z)|| < Cα log |z|

for z /∈ Eα, where Eα is an exceptional set that can be covered by discs Dzj ,rj :=
{z : |z − zj | < rj} satisfying the condition∑

|zj|>R

rj = o(Rρ−α), R → ∞.

This theorem is precise in the following sense: If

||z| − log |f(z)|| = o(log |z|), z → ∞, z /∈ E,

then for every covering of E by discs Dzj ,rj and every ε > 0∑
|zj |<R

rj ≥ R1−ε, R → ∞,

i.e., in any case this sum is not even bounded.
However it is necessary to remark that the construction from [Yu(1985)]

“ rigidly ” fastens zeros of the entire function, whereas the construction of
[Az(1969)] and [Yu(1982)] gives some possibilities to move them, which is
needed in some constructions.

Let us also mention that such approximation generates an approximation of
a plurisubharmonic function by the logarithm of the modulus of an entire function
in Cp (see [Yu(1996)]).

It is also useful to approximate subharmonic functions in an integral metric,
for example Lp, as was done in [GG].

Set

‖g‖p :=
(∫ 2π

0

|g(t)|pdt
)1/p

.

Denote by Q(r, u) a function that satisfies the conditions:

1) if u is of finite order, then Q(r, u) = O(log r);

2) if u is of infinite order, then Q(r, u) = O(log r + logμu(r)).

Theorem 5.3.1.2 (Girnyk, Gol′dberg) For every subharmonic function in C u there
exists an entire function f such that ‖u(rei·) − log |f |(rei·)‖p = Q(r, u).

This theorem also considers functions of infinite order. In this case, it is
possible to replace μu(r) by T (r, u) or M(r, u) in Q(r, u) outside an exceptional
set E ⊂ R+ of finite measure. This theorem is also unimprovable for subharmonic
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functions of finite order, because, for example, u = 1
2 log |z| gives, as it is possible

to prove:

lim inf
r→∞

‖u(rei•) − log |f |(rei•)‖p

log r
> 0.

However it was found [LS], [LM] that the remainder term O(log |z|) that
was regarded the best possible is not precise and in some “regular” cases can be
replaced with O(1) outside a bigger (but still “small”) set .

Set, for E ⊂ C:

Δ(E) := lim sup
r→∞

mesE ∩D0,R

R2
.

Theorem 5.3.1.3 (Lyubarskii, Malinnikova) Let u be a subharmonic function in C

with μu satisfying the conditions: μu(C) = ∞ and there exists α > 0, q > 1, R0 >
0 such that

μu(D0,qR \D0,R) > α

for all R > R0.
Then there exists an entire function f such that for every ε > 0,

|u(z) − log |f(z)|| < Cε

for z ∈ C \ Eε with Δ(Eε) < ε.

So if μu has no “Hadamard’s gaps” such approximation is possible.
In this book we restrict ourself to a weaker and simply proved theorem that

is sufficient for our aim

Theorem 5.3.1.4 (Approximation Theorem) For every u ∈ SH(ρ, ρ(r)) there ex-
ists an entire function f such that

D′ − lim
t→∞(u − log |f |)t = 0.

Nevertheless this theorem has an important

Corollary 5.3.1.5 For every u ∈ SH(ρ, ρ(r)) there exists an entire function f such
that

Fr[u] = Fr[f ].

5.3.2 Now we prove Theorem 5.3.1.4. We can suppose, because of Theorem 3.1.6.1
(Dependence Fr on V•), that in the definition of (•)t (see 3.1.2.1) Vt ≡ I

We prove this theorem for the case non-integer ρ. For proving this theorem
we need

Lemma 5.3.2.1 Let u ∈ δSH(ρ, ρ(r)), for ρ non-integer, and ν is its charge. Then
ut → 0 iff νt → 0 in D′ as t → ∞.
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Proof. Sufficiency. Suppose ut := (u1)t − (u2)t �→ 0. There exists a subsequence
tj → ∞ and subharmonic functions v1 and v2 such that

utj = (u1)tj − (u2)tj → v1 − v2 := v �= 0. (5.3.2.1)

Applying to (5.3.2.1) the continuity of Δ in D′ and using the conditions of the
theorem, we obtain

νtj → 1
2π

Δv = 0.

Hence v is harmonic. Since v1, v2 ∈ U [ρ, ] also v ∈ U [ρ] (see Theorem 2.8.2.1, t3),
t4) and Theorem 2.8.2.3).

Exercise 5.3.2.1 Prove this in detail.

By Theorem 3.1.4.3 we obtain v = 0. Contradiction.
Necessity. Since the Laplace operator is continuous in D′-topology, the asser-

tion ut → 0 implies νt := 1
2π Δut → 0. �

Now we describe a construction of the zero distribution of the future entire
function. Let u ∈ SH(ρ) and μ be its mass distribution. Set

Rj+1 := Rj(j + 1)4/κ (5.3.2.2)

where κ := min(ρ− [ρ], [ρ] + 1 − ρ).
Let us divide all the plane by circles of the form SRj := {|z| = Rj} such that

Rj+1/Rj → ∞ and μ(SRj ) = 0.

Exercise 5.3.2.2 Prove that it is possible.

Choose a sequence δj ↓ 0. Divide every annulus Kj := {z : Rj ≤ |z| < Rj+1}
by circles SRj,n for

Rj,n :=
(

1 + δj
1 − δj

)n

Rj , n = 0, 1, 2, . . . , nj,

where

nj :=

⎡⎣ log Rj+1
Rj

log 1+δj

1−δj

⎤⎦ ,
and by rays

Lk := z : arg z = kδj , k = 0, 1, . . . , [2π/δj].

They divide all the plane into sectors Kj,n,k. We can choose δj in such a way that
μ(∂Kj,n,k) = 0 because μ(Kj,n,k) is a monotonic function of δj and has only a
countable set of jumps.

Exercise 5.3.2.3 Explain this in detail.



5.3. Asymptotic approximation of subharmonic functions 161

Choose a point zj,n,k in every sector Kj,n,k and concentrate all the mass of
the sector at this point. In other words we consider a new mass distribution μ̂ that
has masses concentrated in the points zj,n,k and μ̂(zj,n,k) = μ(Kj,n,k).

The next lemma shows that μ̂ is close to μ.

Lemma 5.3.2.2 One has
μ̂t − μt → 0

in D′ as t → ∞.

Proof. Assume the contrary, i.e., μ̂t − μt �→ 0. Choose a sequence tl → ∞ such
that μ̂tl

→ ν̂ and μtl
→ ν, ν, ν̂ ∈ M[ρ], ν �= ν̂. Then there exists a disc Kz0,r0 :=

{z : |z − z0| < r0} such that ν(Kz0,r0) �= ν̂(Kz0,r0). We can assume that this disc
does not contain zero since for all the ν ∈ M[ρ] the condition ν(Kr) ≤ Δrρ, ∀r > 0
is fulfilled.

Suppose, for example,

ν(Kz0,r0) > ν̂(Kz0,r0). (5.3.2.3)

Set a := ν(Kz0,r0) − ν̂(Kz0,r0) > 0. Choose ε such that

ν(Kz0,r0) < ν(Kz0,r0−ε) + a/3. (5.3.2.4)

This is possible because the countable additivity of ν̂ implies lim
r′↑r

ν(Kz0,r′) =

ν(Kz0,r).
Consider now the sets tlKz0,r0 , tlKz0,r0−ε. For sufficiently large tl they are

contained in the union of the annuluses Kjl
∪Kjl+1.

As jl → ∞ the diameters of all the sectors Kjl,n,k are o(Rjl
) uniformly.

Thus they are o(tl). Hence for such tl’s we can find a union Γl of sectors covering
tlKz0,r0−ε that does not intersect the circle of tlKz0,r0 .

We have μ̂(Γl) = μ(Γl) by definition of μ̂. Using the monotonicity of mea-
sures, we obtain μ(tlKz0,r0−ε) ≤ μ̂(tlKz0,r0), whence

μtl
(Kz0,r0−ε) ≤ μ̂tl

(Kz0,r0).

Passing to the limit as l → ∞ and using Theorems 2.2.3.1 and 2.3.4.4, we obtain
ν(Kz0,r0−ε) ≤ ν̂(Kz0,r0). Using (5.3.2.4), we obtain ν(Kz0,r0) − 1/3[ν(Kz0,r0) −
ν̂(Kz0,r0)] ≤ ν̂(Kz0,r0) and hence ν(Kz0,r0) ≤ ν̂(Kz0,r0), that contradicts (5.3.2.3).
Since ν and ν̂ are symmetric in this reasoning the lemma is proved. �

Let us finish the proof of Theorem 5.3.1.4 for non-integer ρ.
We construct a distribution n with integer masses concentrated at points

zj,k,n. Set
n(zj,k,n) := [μ̂(zj,k,n)]
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and estimate the growth of the difference

δμ := μ̂− n

that is also a mass distribution concentrated at the same points.
Since

δμ(zj,k,n) ≤ 1

it is sufficient to count the number of points in the disc KR.
The number of points in the annulus {Rj ≤ |z| < R} is found from (5.3.2.2),

δμ({Rj ≤ |z| < R}) ≤
[
log

(
1 + δj
1 − δj

)]−1 2π
δj

log
R

Rj

≤ const × log(j + 1)
δ2j

= const ×(j + 1)4 log(j + 1).

The mass of the disc KR is estimated by the inequality

δμ(KR) ≤ const ×
n−1∑
k=0

(k + 1)4 log(k + 1) = o(n6) = o(Rε) (5.3.2.5)

for any ε > 0 because R > Rn−1 = ((n− 1)!)4/κ.

Exercise 5.3.2.4 Check this in detail.

The estimate (5.3.2.5) shows that

δμt → 0 (5.3.2.6)

as t → ∞.
Lemma 5.3.2.2 and (5.3.2.6) imply that

μt − nt → 0. (5.3.2.7)

Set
u1(z) := Π(z, n, p)

(see (2.9.2.1)) where Π is a canonical potential. This is a subharmonic function
in the plane with integral masses. Thus it is the logarithm of the modulus of the
entire function

f(z) =
∏

E(z/zj,k,n).

(5.3.2.7) implies by Lemma 5.3.2.1 that ut − (u1)t → 0 and this is the assertion of
Theorem 5.3.1.4 for non-integer ρ. �



5.4 Lower indicator of A.A. Gol′dberg 163

5.4 Lower indicator of A.A. Gol′dberg.

Description of lower indicator
Description of the pair: indicator-lower indicator

5.4.1 Now we consider the lower indicator. For an entire function of finite order ρ
and normal type it can be defined in one of the following ways:

h1(φ, f) := sup
C∈C

{ lim inf
reiφ→∞,reiφ /∈C

log |f(reiφ)|r−ρ(r)}, (5.4.1.1)

where C is the set of C0-sets (see [Le, Ch. II, § 1]), i.e., the sets that can be covered
by a union of discs Kδj (zj) := {z : |z − zj | < δj} such that

lim
R→∞

1
R

∑
|zj |<R

δj = 0.

The exclusion of C0-sets is necessary because we must exclude from our
consideration some neighborhoods of roots of f(z) where log |f(z)| is near −∞.

Similarly, define

h2(φ, f) := sup
E(φ)∈E

{ lim inf
r→∞,r /∈E(φ)

log |f(reiφ)|r−ρ(r)}, (5.4.1.2)

where E is the set of E0-sets (see [Le, Ch. III]), i.e., sets E ⊂ (0,∞] satisfying the
condition

lim
R→∞

mes{E ∩ (0, R)}R−1 = 0.

The definition (5.4.1.1) was introduced by A.A. Gol′dberg (see [Go(1967)]). We
will use the definition (3.2.1.2)

h(φ, f) = inf{v(eiφ) : v ∈ Fr[f ]}. (5.4.1.3)

It was proved in [AP, Thm. 1] that the definitions (5.4.1.1), (5.4.1.2) and (5.4.1.3)
coincide.

Let us note that (5.4.1.3) uses the definition (3.2.1.2) only on the circle
{|z| = 1}. However, it is easy to check, by using Theorem 3.2.1.2 that for h(z) =
|z|ρh(arg z) properties h1) and h2), Theorem 3.2.1.1, are preserved.

Exercise 5.4.1.1 Check this.

We are going to prove

Theorem 5.4.1.1 Let g(φ) be a 2π-periodic function that is either semicontinuous
from above or ≡ −∞ and ρ(r) → ρ be an arbitrary approximate order. Then there
exists an entire function f ∈ A(ρ, ρ(r)) such that

h(φ, f) = g(φ) (5.4.1.4)

for all φ ∈ [0, 2π).
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5.4.2 We will use the following assertion that is a corollary of Theorem 4.3.5.1 and
Corollary 5.3.1.5:

Theorem 5.4.2.1 Let Λ ⊂ U [ρ] be a compact, connected and T•-invariant subset.
Then for any proximate order ρ(r) → ρ there exists f ∈ A(ρ, ρ(r)) such that

h(φ, f) = sup{v(eiφ) : v ∈ Λ}, (5.4.2.1)

h(φ, f) = inf{v(eiφ) : v ∈ Λ}. (5.4.2.2)

Exercise 5.4.2.1 Prove Theorem 5.4.2.1.

For the sake of clarity let us restrict ourselves to non-integer ρ. We will
construct a set Λ such that

inf{v(eiφ) : v ∈ Λ} = g(φ).

Denote

H(z, p) := log |1 − z| + �
p∑

k=1

zk

k
; p = [ρ],

γ(z,K, λ) := −λ+K|z − 1|, λ,K ≥ 0.

Note the following properties of these functions:

a) min
|z−1|≥δ

δH(z, p)|z|−ρ → 0, as δ → 0;

b) δH(z, p)|z|−ρ ≤ Aδ, for all z ∈ C, where A depends only on p;

c) max
|z−1|≤0.5K

γ(z,K, λ) ≤ −1
2
. (5.4.2.3)

Exercise 5.4.2.2 Prove properties a), b), c).

Let us note that H(1, p) = −∞. Consider the family:

Λ∞ = {vθ,τ (z) := H(ze−iθτ, p)τ−ρ : θ ∈ [0, 2π), τ ∈ (0,∞)} ∪ 0.

This family is contained in U [ρ] because of b) and closed in D′-topology. It is
also T•-invariant, hence, satisfies the conditions of Theorem 5.4.2.1. For every
φ ∈ [0, 2π) there exists θ0(= φ), and τ0(= 1) such that vθ0,τ0(eiφ) = H(1, p) = −∞
Hence

inf{v(eiφ) : v ∈ Λ∞} = −∞. (5.4.2.4)

For the general case this construction will be improved, cutting the “trunk” of the
function H(ze−iθ, p).
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Take δ small enough so that the following conditions hold:

δH(z, p)|z|−ρ ≥ −1
4
, for |z − 1| ≥ δ, (5.4.2.5)

δH(z, p) ≥ −1
4
, for |z − 1| = δ, (5.4.2.6)

δ ≤ 1
2K

. (5.4.2.7)

Then
δH(z, p) > γ(z,K, λ), for|z − 1| = δ. (5.4.2.8)

Denote

W (z,K, δ, λ) :=

{
max{δH(z, p), γ(z,K, λ)}, for |z − 1| < δ,

δH(z, p), for |z − 1| ≥ δ.
(5.4.2.9)

Lemma 5.4.2.2 The following holds:

aw) The function W (z,K, δ, λ) is subharmonic in C;
bw) suppμW � {|z − 1| < δ};
cw) sup

z∈C

W (z, •, δ, λ)|z|−ρ ≤ Aδ, (5.4.2.10)

where A depends only on p.

Proof. For |z − 1| < δ, W is subharmonic as the maximum of two subharmonic
functions. For |z − 1| ≥ δ it is harmonic even in the neighborhood of the circle
|z − 1| = δ, because of inequality (5.4.2.8). So aw) and bw) hold. The assertion
cw) follows from b) and c) (5.4.2.3) above.

Now we get to the proof of (5.4.1.4). Let gn ↓ g be a sequence of continuously
differentiable functions that converges to g monotonically. This is possible, because
g is semicontinuous from above.

Exercise 5.4.2.3 Prove that Theorem 2.1.2.9 and the Weierstrass theorem of ap-
proximation of every periodic function by trigonometrical polynomials imply the
last assertion.

We write
Mn := max

φ
g+

n (φ)

where as usual a+ = max(a, 0). Set

vθ,n(z) := W (ze−iθ,Kn, δn,Mn + 1 − gn(θ)) + (Mn + 1)|z|ρ,
where δn is chosen small and Kn is chosen large. Set z = τeiφ. It is clear that

vφ,n(eiφ) = gn(φ) (5.4.2.11)

for all Kn, δn.
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We can choose Kn so large and δn so small that

γ(z,Kn,Mn + 1 − g(θ))|z|−ρ ≥ gn(φ)

for |z − 1| ≤ δn, because gn has bounded derivative.
After that we can make δn smaller so that for |z − 1| ≥ δn the inequality

(5.4.2.8) would hold.

Exercise 5.4.2.4 Estimate exactly Kn and δn via the derivative of gn.

Then
vθ,n(z)|z|−ρ ≥ gn(φ)

for all z = reiφ. Thus
min
θ,τ

vθ,n(τeiφ)τ−ρ = gn(eiφ),

and the minimum is attained for τ = 1, θ = φ.
Let us note that from (5.4.2.10) we have

sup
θ

sup
z∈C

vθ,n(z)|z|−ρ ≤ Aδn +Mn + 1 ≤ A+M1 + 1.

Consider now the family of functions

Λ0 := {vθ,n(zτ)|τ |−ρ : θ ∈ [0; 2π), n = 1, 2, . . . , τ ∈ (0; ∞)}.
It is contained in U [ρ, σ] for σ = A + M1 + 1 and is T•-invariant. Let Λ be its
closure in D′. Let us show that

g(φ) = inf{v(eiφ) : v ∈ Λ}. (5.4.2.12)

Indeed, for every sequence vj ∈ Λ1

vj(eiφ) ≥ inf
n
gn(φ) = g(φ).

Let v ∈ Λ. By Theorem 2.7.4.1 (D′ and Quasi-everywhere Convergence)

v(z) := (D′ − lim
j→∞

vj)(z) = (lim sup
j→∞

vj)∗(z).

Hence
v(eiφ) ≥ g(φ).

However, the infimum is attained for every φ on the sequence vφ,n(z) because of
(5.4.2.11). Hence (5.4.2.12) holds and Theorem 5.4.1.4 is proved. �
5.4.3 Now we describe the pair: indicator-lower indicator. Let h be a 2π-periodic,
ρ-trigonometrically convex function (ρ-t.c.f) and let g be a 2π-periodic upper semi-
continuous function. Further they are indicator and lower indicator of an entire
function, and hence must satisfy the condition

h(φ) ≥ g(φ), φ ∈ [0, 2π). (5.4.3.1)
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An interval (a, b) ⊂ [0, 2π) is called a maximal interval of ρ-trigonometricity of
the function h if

h(φ) = A cos ρφ+B sin ρφ, φ ∈ (a, b) (5.4.3.2)

for some constants A,B, and h has no such representation on any larger interval
(a′, b′) ⊃ (a, b).

A function h is said to be strictly ρ-t.c.f. if it is a ρ-t.c.f. and is not ρ-
trigonometrical on any interval.

If the function h is a strictly ρ-t.c.f., then h and g (satisfying other pre-
vious bounds) could be an indicator and lower indicator of an entire function
f ∈ A(ρ(r)). However this is not so if the function h has an interval of trigono-
metricity.

Recall, for example, the famous M. Cartwright Theorem [Le, Ch. IV, § 2,
Thm. 6]: if an indicator of an entire function is trigonometrical on an interval
(a, b) with b− a > π/ρ, then the function is a CRG -function on this interval, i.e.,

h(φ) = g(φ), φ ∈ (a, b). (5.4.3.3)

Let us formulate all the necessary conditions of such kind. Let (a, b) be a max-
imal interval of ρ-trigonometricity of the function h. The M. Cartwright theorem
can be formulated as the implication

(b− a > π/ρ) ⇒ (5.4.3.3). (5.4.3.4)

The following implications are also necessary:

(∃φ0 ∈ (a, b) : h(φ0) = g(φ0)) ⇒ (5.4.3.3), (5.4.3.5)
(h(a) = g(a) ∧ h′+(a) = h′−(a)) ⇒ (5.4.3.3), (5.4.3.6a)
(h(b) = g(b) ∧ h′+(b) = h′−(b)) ⇒ (5.4.3.3), (5.4.3.6b)

where h′±(a) and h′±(b) are the right and left derivatives of the function h at the
points a and b.

(b − a = π/ρ ∧ h′+(a) = h′−(a)) ⇒ (5.4.3.3), (5.4.3.7a)
(b − a = π/ρ ∧ h′+(b) = h′−(b) ⇒ (5.4.3.3), (5.4.3.7b)(

lim inf
φ→a+0

h(φ) − g(φ)
φ− a

= 0
)

⇒ (5.4.3.3), (5.4.3.8a)(
lim inf
φ→b−0

h(φ) − g(φ)
b − φ

= 0
)

⇒ (5.4.3.3). (5.4.3.8b)

Now we shall give an exact formulation. The functions h and g are said to
be concordant if at least one of the following conditions holds:

1. h is strictly ρ-t.c.;

2. for each (a, b) that is a maximal interval of ρ-trigonometricity of the function
h the implications (5.4.3.4)–(5.4.3.8b) are satisfied.
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Theorem 5.4.3.1 Let 0 < ρ < ∞, h(φ) be a 2π-periodic, ρ-t.c.f., g(φ) be an upper
semicontinuous, 2π-periodic function, h(φ) ≥ g(φ) for all φ, and h �≡ g.

A function f ∈ A(ρ(r)) which simultaneously satisfies the identity hf ≡
h, hf ≡ g with an arbitrary proximate order ρ(r) → ρ exists if and only if the
functions h and g are concordant.

5.4.4

Proof of necessity. Note that implication (5.4.3.4) is a corollary of (5.4.3.6a) or
(5.4.3.6b), because every ρ-trigonometrical function is continuous and has contin-
uous derivative in (a, b). Recall that (•)[t] was defined by (3.1.2.4a).

From properties of the limit set Fr[f ] (Theorem 3.1.2.2, fr2), fr3)) and the
definition of indicators ((3.1.2.1), (3.1.2.2)) we can obtain for every function v ∈
Fr[f ] the inequality

v(τeiφ) ≤ τρh(φ), φ ∈ [0, 2π), τ > 0. (5.4.4.1)

Since h(φ) is ρ-trigonometrical for φ ∈ (a, b), the function

H(reiφ) := rρh(φ)

is harmonic in the angle

Γ(a, b) := {reiφ : φ ∈ (a, b), r ∈ (0,∞)},
whence the function v − H is subharmonic and nonpositive in Γ(a, b). By virtue
of the maximum principle, either v < H in Γ(a, b) or v ≡ H in Γ(a, b) for each
v ∈ Fr[f ]. Note that the condition v ≡ H in Γ(a, b) implies v ≡ H in Γ[a, b] for
the closed interval because of the upper semicontinuity of v.

Let us prove (5.4.3.5). For every v ∈ Fr[f ] we have v(reiφ0 ) − H(reiφ0 ) = 0
whence by the maximum principle v = H in Γ(a, b). Hence (5.4.3.3) holds.

Let us prove (5.4.3.6a). Assume the contrary:h(a) = g(a) ∧ h′+(a) = h′−(a)
holds, but there exists φ0 ∈ (a, b) such that h(φ0) > g(φ0). Then there exists
v ∈ Fr[f ] such that

g(φ0) ≤ v(eiφ0) < h(φ0)

whence
v(τeiφ) < τρh(φ) ∈ Γ(a, b). (5.4.4.2)

Without loss of generality, we can assume that v(z) > −∞, otherwise we can
replace v with max(v,−C) for a large positive constant C > 0.

We choose 0 < τ1 < τ2 and to every function

Wj(reiφ) := v[τj ](re
iφ+a) − rρh(φ + a), j = 1, 2, γ = b− a, reiφ ∈ Γ(0, γ)

we apply the following lemma due to A.E. Eremenko and M.L. Sodin [So] (see also
[PW, Ho]):
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Lemma 5.4.4.1 (E.S.) Let W be a subharmonic nonpositive function inside the
angle Γ(0, γ), γ > 0. Then the following implication is valid,(

lim sup
φ→0

W (eiφ)
φ

= 0

)
⇒ W ≡ 0.

If the condition of this theorem is not satisfied for

W ∗(reiφ) = max
τ∈[τ1,τ2]

v[τ ](reiφ)

it would be possible to insert a ρ-t.c.function between h(φ) − ε(φ− a) (for a small
ε) and v(eiφ). However, such a function does not exist, because of the negative
jump of the derivative. So it will be a contradiction. See further for details.

From Lemma 5.4.4.1 we get

lim inf
φ→a+0

h(φ) − v[τ1](e
iφ)

φ− a
:= α1 > 0

and likewise

lim inf
φ→a+0

h(φ) − v[τ2](e
iφ)

φ− a
:= α2 > 0.

So a Δ > 0 can be chosen such that a+ Δ < b and the inequalities

H(τjeiφ) − v[τj ](e
iφ) > ατρ

j (φ− a), j = 1, 2, (5.4.4.3)

where α := 1/2 min(α1, α2), hold for all φ ∈ [a, a+ Δ].
We write

β := min
τ∈[τ1,τ2]

(H(τei(a+Δ)) − v(τei(a+Δ)))

which is positive because of (5.4.4.2).
Let us choose ε > 0 small enough to

ε < min(α, β(τ2)−ρΔ−1) (5.4.4.4)

and let us consider the ρ-trigonometrical function

hε(φ) := ρ−1(h′(a) − ε) sin ρ(φ− a) + h(a) cos ρ(φ − a), φ ∈ (a, b)

that coincides with

h(φ) = ρ−1h′(a) sin ρ(φ− a) + h(a) cos ρ(φ− a), φ ∈ (a, b)

in the point φ = a but has a tangent that is lower than the tangent of h.
Further

h(φ) − hε(φ) = ρ−1ε sin ρ(φ− a) ≤ ε(φ− a), φ ∈ [a, a+ Δ]. (5.4.4.5)
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Combining (5.4.4.3)–(5.4.4.5) we obtain

v[τj ](e
iφ) < τj

ρh(φ) − α(φ − a) < τj
ρh(φ) − ε(φ− a) (5.4.4.6)

≤ τj
ρhε(φ), φ ∈ [a, a+ Δ], j = 1, 2,

v(τeiφ) ≤ τρhε(a+ Δ) + τρεΔ − β (5.4.4.7)
< τρhε(a+ Δ), τ ∈ [τ1, τ2].

We write
G := {reiφ : φ ∈ [a, a+ Δ], τ ∈ [τ1, τ2]}. (5.4.4.8)

It follows from (5.4.4.6), (5.4.4.7) that

v(reiφ) < rρhε(φ), reiφ ∈ ∂G,

where ∂G is the boundary of the domainG. Since the functions v(reiφ) and rρhε(φ)
are subharmonic in G, by virtue of the maximum principle we have

v(reiφ) < rρhε(φ), reiφ ∈ G. (5.4.4.9)

Let us consider the function

H1(reiφ) := rρh1(φ), reiφ ∈ Γ(a− Δ, a+ Δ)

where

h1(φ) :=

{
h(φ), φ ∈ (a− Δ, a],
hε(φ), φ ∈ [a, a+ Δ).

The function H1 is continuous in Γ(a− Δ, a+ Δ) and subharmonic in the angles
Γ(a − Δ, a) and Γ(a, a + Δ). Let us prove that it is subharmonic at the point
z = eia. Let M(z,R, v) be the mean value of v over the circle {ζ : |ζ − z| = R}
(see (2.6.1.1)). Taking into consideration (5.4.4.9) and subharmonicity of v (see
(2.6.1.1)), for all small R we have

M(eia, R,H1) ≥ M(eia, R, v) ≥ v(eia) = H1(eia).

Hence H1 is subharmonic for z = eia. Since H1 is homogeneous, i.e., H1(kz) =
kρH1(z),

M(keia, kR,H1) = kρM(eia, R,H1) ≥ kρH1(eia) = H1(keia).

So H1 is subharmonic on the ray {z = keia : k ∈ (0,∞)} and hence in the angle
Γ(a − Δ, a + Δ). Thus h1(φ) is a ρ-t.c.f. for φ ∈ (a − Δ, a + Δ). However, by
construction

(h1)′−(a) = h′−(a) = h′+(a) = (hε)′+ + ε = (h1)′(a) + ε

and this contradicts the fact that h1 is ρ-t.c.f.
Concordance of the implication (5.4.3.6a) is proved.



5.4. Lower indicator of A.A. Gol′dberg 171

5.4.5 Here we continue the proof of necessity. Pass to the proof of necessity of
the condition (5.4.3.7a). Assume the contrary. Then there exists v ∈ Fr[f ] and
φ0 ∈ [a, b] such that g(φ0) ≤ v(eiφ0) < h(φ0), whence by virtue of the maximum
principle, v(τeiφ) < τρh(φ) for τeiφ ∈ Γ(a, b). Actually v(τeiφ) ≤ τρh(φ) every-
where and on the circle we have strict inequality. If v(τeia) = H(τeia) for a τ > 0,
then v[τ ](eia) = h(a), and it will suffice to repeat the arguments used in proving
(5.4.3.6a) with v[τ ] instead of v.

Exercise 5.4.5.1 Do that.

So it is sufficient to examine the case v(τeia) < H(τeia), τ > 0. Denote

T (φ) := h′(a)ρ−1 sin ρ(φ− a) + h(a) cos ρ(φ − a).

This is a ρ-trigonometrical function, the graph of which is tangent to the graph of
h(φ) at the point a.

There are two possibilities for T (φ) on some small interval φ ∈ (a−γ, a), γ >
0 : either T (φ) < h(φ) or T (φ) = h(φ).

Inequality T (φ) > h(φ) contradicts ρ-t.convexity at the point a. The equality
on the sequence of points φj → a − 0 contradicts the maximum principle for ρ-
t.c.functions.

Exercise 5.4.5.2 Why is it?

If T (φ) = h(φ), φ ∈ (a − γ, a), then h is ρ-trigonometrical on the interval
(a−γ, b) ⊃ (a, b) that was already considered in the case (5.4.3.4) (M. Cartwright’s
Theorem).

So we assume T (φ) < h(φ), φ ∈ (a− γ, a). We set

h1(φ) := h(φ) − T (φ), φ ∈ (a− γ, a),

v1(reiφ) := v(reiφ) − rρT (φ), reiφ ∈ Γ(a− γ, b).

Then h1(φ) = 0 for φ ∈ [a, b], h1(φ) > 0 for φ ∈ (a− γ, a) and h′(a) = 0.
The function v1(eiφ) < 0, φ ∈ [a, b). Let us analyze the behavior of the

function v1(eiφ) at the point b. Either v1(eib) < 0 or v1(eib) = 0 but

lim sup
φ→b−0

v1(eiφ)(b− φ)−1 ≤ −C

for some C > 0 by Lemma 5.4.4.1 (E.S.).
From the other side v1(eiφ) is strictly negative also in some left (say, (a −

Δ, a)) neighborhood of a because of upper semicontinuity. In any case v1(eiφ) can
be majorated on the interval (a− Δ, b) by the function

hε := −A sin(ρ− ε)(b− φ)

with sufficiently small A.
A point of intersection of the graph of hε with the axis 0, φ can be regulated

by ε and can be chosen so close to the point a that the graph of hε also intersects
the graph of h1(φ), at some point θ0 < a because h1(a) = h′1(a) = 0.
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Exercise 5.4.5.3 Make the precise proof with all the estimates.

Let the parameters A, ε, θ0 be fixed as above. Denote

S := {reiφ : φ ∈ (θ0, b), 0 < r < 1}.
Then Hε(reiφ) := rρ−εhε(φ) is harmonic in the sector S and satisfies the inequality
Hε(reiφ) ≥ v1(reiφ) on ∂S. Hence Hε(reiφ) ≥ v1(reiφ) on S. Thus

v(reiφ) ≤ H(reiφ) +Hε(reiφ), reiφ ∈ S. (5.4.5.1)

Let M(r, v) be the mean value of the function on the circle {ζ : |ζ| = r} (see
2.6.1.1). Using (5.4.5.1) we have

M(r, v) ≤
b∫

θ0

[H(reiφ) +Hε(reiφ)]dφ +
∫

[0,2π)\(θ0,b)

H(reiφ)dφ

≤ d1r
ρ − d2r

ρ−ε, d1, d2 > 0.

So we get M(r, v) < 0 = v(0) for sufficiently small r > 0 which contradicts the
subharmonicity of the function v at zero.

5.4.6 Now we complete proof of necessity, proving (5.4.3.8a,b). Assume the con-
trary: suppose

lim inf
φ→a+0

h(φ) − g(φ)
φ− a

= 0 (5.4.6.1)

but there exists a φ0 ∈ (a, b) such that h(φ0) > g(φ0). Then there exists a function
v ∈ Fr[f ] such that

g(φ0) ≤ v(eiφ0) < h(φ0). (5.4.6.2)

Then the function v1(reiφ) := v(reiφ) − H(reiφ) is subharmonic and nonpositive
in Γ(a, b). By virtue of the maximum principle v1(reiφ) < 0, reiφ ∈ Γ(a, b).

From (5.4.6.1) we obtain

0 = lim inf
φ→a+0

h(φ) − g(φ)
φ− a

≥ lim inf
φ→a+0

h(φ) − v(eiφ)
φ− a

= − lim inf
φ→a+0

v1(eiφ)
φ− a

whence, recollecting that v1(eiφ) < 0, we get

lim sup
φ→a+0

v1(eiφ)
φ− a

= 0.

Applying Lemma 5.4.4.1 (E.S.) to the function

W (reiφ) = v1(reiφ+a), reiφ ∈ Γ(0, γ), γ = b − a

we get v1 ≡ 0 in Γ(a, b) which leads to a contradiction. The implication (5.4.3.8b) is
proved in the same way. So the proof of necessity in Theorem 5.4.3.1 is completed.

�
We do not include here the proof of sufficiency and refer the readers to the

original paper [Po(1992)].
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5.5 Asymptotic extremal problems.
Semiadditive integral

5.5.1 Suppose some class of entire functions is determined by asymptotic behavior
of their zeros, and we want to know what is the restriction on asymptotic behavior
of functions: for example, to estimate the indicator of such a function. The first
example of such a problem was considered by B.Ya. Levin in [Le, Ch. IV, § 1,
Example]. A developed theory of such estimates was constructed in the papers
of A.A. Gol′dberg [Go(1962)] and his pupils [Kon], [KF]. We consider this theory
from the point of view of limit sets.

Let M � M(ρ) (see (3.1.3.4)) be a convex set of measures which is closed in
D′ and is invariant with respect to the transformation (•)t (see (3.1.3.1), (3.1.3.2))
and let A(M) be a class of entire functions f for which Fr[nf ] ⊂ M. We suppose ρ
is non-integer. Recall that canonical potential Π(z, ν, p) is defined by: (see (2.9.2.1))

Π(z, ν, p) :=
∫
C

Gp(z/ζ)ν(dζ),

where ν is a measure and

Gp(z) := log |1 − z| + �
p∑

k=1

zk

k
.

Theorem 5.5.1.1 [AP] The relation

h(φ, f) = sup{Π(eiφ, ν, p) : ν ∈ M} (5.5.1.1)

is valid. There exists f ∈ A(M) for which the equality holds in (5.5.1.1) for all φ.

Proof. We should only prove that there exists an entire function with such indi-
cator. Consider the set

Λ := {Π(eiφ, ν, p) : ν ∈ M}.
It is a convex set contained in U [ρ]. Thus there exists a subharmonic (see Corollary
4.1.4.2) and hence entire (see Corollary 5.3.1.5) function f such that Fr[f ] = Λ.
By Theorem 5.4.2.1, (5.5.1.1) holds. �

For some M it is possible to compute the supremum in (5.5.1.1) and thus to
obtain explicit precise estimates of indicators in the respective class A(M). As an
example, we shall present an estimate given by A.A. Gol′dberg.

We recall that the upper density of zeros of an entire function f ∈ A(ρ) is
defined by the equality

Δ[nf ] := lim sup
r→∞

nf (r)
rρ
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where nf is the distribution of zeros of the function f , and denote

K(t, φ) := −
[
d

dt
G+

p (eiφ/t)
]−

(5.5.1.2)

where a+ := max(a, 0), a− := min(a, 0). This function is piecewise continuous.

Corollary 5.5.1.2 [Go(1962)] Let the distribution of zeros nf of a function f be
concentrated on the positive ray, and let Δ[nf ] ≤ Δ < ∞. Then

h(φ, f) ≤ Δ

∞∫
0

tρK(t, φ)dt, φ ∈ [0, 2π) (5.5.1.3)

and there exists a function from the same class for which equality is attained for
all φ.

Proof of Corollary 5.5.1.2. We exploit Theorem 5.5.1.1. The class of functions f
satisfying the assumption of the corollary coincides with the class of f for which

Fr[nf ] ⊂ M = {ν ∈ M(ρ) : supp ν ⊂ [0,∞] ∧ ν(r) ≤ Δrρ}. (5.5.1.4)

Exercise 5.5.1.1 Show this by using Corollary 3.3.2.6.

Thus

Π(eiφ, ν, p) =

∞∫
0

Gp(eiφ/t)ν(dt) ≤
∞∫
0

G+
p (eiφ/t)ν(dt).

Integrating by parts we obtain

Π(eiφ, ν, p) ≤ −
∞∫
0

ν(t)[
d

dt
G+

p (eiφ/t)]−dt.

By (5.5.1.4) we get (5.5.1.3). �
We write

Mp(r) := max{Gp(reiφ) : φ ∈ [0, 2π)}.
In the same way one can prove

Corollary 5.5.1.3 [Go(1962), Thm. 4.1] Let distribution of zeros of the function
f ∈ A(ρ) satisfy only the condition Δ[nf ] ≤ Δ < ∞. Then

h(φ, f) ≤ Δρ

∞∫
0

tρ−1Mp(1/t)dt, φ ∈ [0, 2π) (5.5.1.5)

and there exists a function from the same class for which equality is attained for
all φ.
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Exercise 5.5.1.2 Prove this corollary exploiting

M := {ν ∈ M(ρ) : ν(r) ≤ Δrρ, ∀r > 0}.

5.5.2 To be able to obtain explicit estimates for more diverse classes of entire
functions defined by a restriction on the density of zeros, Gol′dberg introduced an
integral with respect to a nonadditive measure and obtained estimates for indica-
tors in terms of a one-dimensional integral (along a circumference) with respect
to such a measure ([Go(1962)]. Gol′dberg initially constructed the integral sum of
a special form. The construction presented here is based on the Levin–Matsaev–
Ostrovskii theorem (see [Go(1962), Thm. 2.10]). Fainberg (1983) developed this
approach using a two-dimensional integral. This made it possible to extend signif-
icantly the set of classes of entire functions for which the estimate expressed by a
nonadditive integral is precise. We shall present these results after the necessary
definitions.

Let δ(X) be a nonnegative monotonic function of X ⊂ C, the function being
finite on bounded sets and δ(∅) = 0. For a given family of sets X := {X} we denote
by N(δ,X ) the class of countable-additive measures μ defined by the relation

N(δ,X ) := {μ : μ(X) ≤ δ(X), X ∈ X }.

For a Borel function f ≥ 0 we define the quantity

(X )
∫
fdδ := sup

{∫
fdμ : μ ∈ N(δ,X )

}
,

called an (X )-integral with respect to a nonnegative measure δ. For a Borel set
E ⊂ C we set

(X )
∫

E

fdδ := (X )
∫
fIEdδ,

where IE is an indicator of the set E, i.e.,

IE(z) :=

{
1, if z ∈ E;
0 if z /∈ E.

This integral possesses a number of natural properties: it is monotonic with respect
to f and δ and the family X , positively homogeneous and semi-additive with
respect to the function f and δ. If δ is a measure, if X is a Borel ring, and if f
is a measurable function, then (X )-integral coincides with the Lebesgue-Stieltjes
integral.

Exercise 5.5.2.1 Check these properties.
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Let δ(Θ) be a nonadditive measure on the unit circle T, defined initially on
the family of all open sets Θ ⊂ T. It can be naturally extended to all closed sets
ΘF using the equality

δ(ΘF ) := inf{δ(Θ) : Θ ⊃ ΘF }.
Let χΘ be a set of open sets containing the set T. We write

Dr,Θ := {z = teiθ : 0 < t < r, eiθ ∈ Θ}, χz := {Dr,Θ : r > 0, Θ ∈ χΘ}.
The subscripts Θ and z at χ indicate that the families under consideration are
located either on T or on the plane, respectively.

Let us define a nonadditive measure δz on χz by the equalities

δz(Dr,Θ) := rρδ(Θ), Dr,Θ ∈ χz.

Now the integral (χz)
∫
G+

p (eiθ/ζ)dδz is defined.
Recall that the classical angular upper density of zeros of an entire function

f ∈ A(ρ) is defined by the equality (compare (3.3.2.7))

Δ
cl
[nf ,Θ] := lim sup

r→∞
nf (Dr,Θ)r−ρ.

Consider the class of entire functions Acl(δ, χΘ) defined by the equality

Acl(δ, χΘ) := {f : Δ
cl
[nf ,Θ] ≤ δ(θ), ∀Θ ∈ χΘ} (5.5.2.1)

for a given non-additive measure δ(Θ) and a family χΘ.

Theorem 5.5.2.1 [Fa] Let δ(Θ) satisfy the condition

δ(Θ) = δ(Θ), ∀Θ ∈ χΘ (5.5.2.2)

(the dash means the closure of a set). Then

h(φ, f) ≤ (χz)
∫
G+

p (eiθ/ζ)dδz. (5.5.2.3)

There exists a function f ∈ Acl(δ, χΘ) such that equality in (5.5.2.7) is attained
for all φ ∈ [0, 2π) simultaneously.

Proof. Let us note the following: If we replace in this theorem Δ
cl
[nf ,Θ] with its

D′ counterpart Δ(CoΘ(I1)) (see Theorem 3.3.1.2) and consider the corresponding
class of entire functions A(δ, χΘ), the assertion of the theorem holds without con-
ditions (5.1.5.6). You should only apply Theorem 5.5.1.1 with the corresponding
M. The condition (5.5.2.7) is exploited only for replacing “D′” quantities by the
classic ones using results of Sections 3.3.2. �

Exercise 5.5.2.2 Prove this theorem in detail.

It is also worth noting that every family χΘ can be replaced by a family χ′Θ
that is dense in χΘ (see 3.2.2) and such that for χ′Θ (5.5.2.6) already holds (see
Theorem 3.3.2.3).
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5.6 Entire functions of completely regular growth.
Levin-Pfluger Theorem. Balashov’s theory

5.6.1 The most famous definition of a function of completely regular growth (CRG-
function) is the following:

A function f ∈ A(ρ(r)) is a function of completely regular growth, if the
limit

lim
z→∞ r

−ρ(r) log |f(z)|, r := |z|

exists when z → ∞ uniformly outside some C1
0 -set (see Section 5.2.1.)

Actually, it is equivalent to all other definitions of the functions of completely
regular growth in the plane (compare [Le, Ch. III], [Pf(1938)], [Pf(1939)]).

By A.A. Gol′dberg ([Go(1967)]) this definition was reduced to the following:
A function f ∈ A(ρ(r)) is a function of completely regular growth, if

hf (φ) = hf (φ), ∀φ ∈ [0, 2π).

Because of the formulae (3.2.1.1), (3.2.1.2) (see also Section 3.2.7) we have
the following

Theorem 5.6.1.1 A function f ∈ A(ρ(r)) is a function of completely regular growth
(CRG-function) iff Fr[f ] consists of only one subharmonic function h(z).

Because of (3.2.1.11) the function h(z) has the form

h(z) = rρh(eiφ). (5.6.1.1)

The function h(φ) := h(eiφ) is ρ-trigonometrically convex and it was studied in
Sections 3.2.3, 3.2.4, 3.2.5.

5.6.2 The initial definition of regular zero distribution [Le, Ch. II, § 1] is the fol-
lowing:

Let n be a zero distribution (divisor, or mass distribution) of convergence ex-
ponent ρ1 := ρ[n] (see Section 2.8.3), and let ρ1 > [ρ1]. Let ρ1(r) → ρ1 be a proper
proximate order of n(r) (see Theorem 2.8.1.2). It means that n ∈ M(ρ(r)), ρ(r) →
ρ1 (see Section 3.1.3).

The initial definition of regular zero distribution for ρ1 being non-integer is:
A zero distribution n is regular if the limit

lim
r→∞

n(Co(α,β)(It))
tρ1(t)

:= Δ((α, β)) 1

exists for all α > β except perhaps for a countable set on the circle.

1For the definition of Co(α,β)(It), see Exercise 3.3.1.5.
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By using results of Section 3.3, one can prove

Theorem 5.6.2.1 The zero distribution n is regular iff Fr[n] consists of only one
measure νreg.

Exercise 5.6.2.1 Prove this exploiting Theorems 3.3.3.1 and 3.3.2.4.

Recall that for f ∈ A(ρ(r)), ρ(r) → ρ we have nf ∈ M(ρ(r)), ρ(r) → ρ (see
Theorem 2.9.3.2). Now we can formulate

Theorem 5.6.2.2 (Levin-Pfluger) [Le, Ch. II, Ch. III] An entire function f ∈
A(ρ(r)), ρ(r) → ρ of non-integer order ρ is of completely regular growth func-
tion iff its zero distribution is regular.

After Theorems 5.6.1.1, 5.6.2.1 this theorem is a direct corollary of Theo-
rem 3.1.5.1.

5.6.3 Consider now the case of integer ρ. In general, this case differs from the case
of non-integer ρ. For example, Theorem 2.9.4.2 (Brelot-Lindelöf) implies that

(f ∈ A(ρ(r)), ρ(r) → ρ) ⇐⇒ nf ∈ M(ρ(r)), ρ(r) → ρ

iff the family of polynomials (2.9.4.4a) is compact.
To describe the regularity of zero distribution for the case of integer ρ we

assume that the limit
lim

R→∞
δR(z, ν, ρ) := �[δ∞zρ] (5.6.3.1)

exists, where

δ∞ := lim
R→∞

⎡⎢⎣ ∫
|ζ|<R

|ζ|−ρ cos arg ζn(dζ) + i

∫
|ζ|<R

|ζ|−ρ sin arg ζn(dζ)

⎤⎥⎦ .
Now a zero distribution n ∈ M(ρ(r)), ρ(r) → ρ with integer ρ is called

regular if Fr[n] consists of only one measure νreg as in Theorem 5.6.2.1 and the
limit (5.6.3.1) exists.

Under this definition Theorem 5.6.2.2 still holds, because the set (H,Fr)[log |f |]
from Theorem 3.1.5.2 consists of only one element (�[δ∞zρ], νreg).

Note also

Proposition 5.6.3.1 The measure νreg has the form

νreg(drdφ) = ρrρdr ⊗ Δ(dφ)

where Δ is a measure of bounded variation on the unit circle.

This assertion is a corollary of invariance of Fr[n], Theorem 3.1.3.3, frm3).
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5.6.4 In the papers [Bal(1973), Bal(1976)] functions of completely regular growth
along curves of regular rotation were considered. A curve of regular rotation is a
curve that is described by the equation

z = tei(γ(t) log t+φ), 0 < t < ∞
for a fixed φ.

If γ(t) ≡ γ, then this curve is a logarithmic spiral. In the general case γ(t) is
a differentiable function such that

γ(t) → γ, tγ′(t) → 0, t → ∞.

To describe this theory in terms of limit sets we consider the transformation

Pt = teiγ(t) log t,

ut(z) = u(Ptz)t−ρ(t).

The following theorem is similar to Theorem 3.1.2.1.

Proposition 5.6.4.1 (Existence of spiral Limit Set) The following holds:

esls 1) ut ∈ SH(ρ(r)) for all t ∈ (0,∞);

esls 2) the family {ut} is precompact at infinity.

The set of all limits D′ − lim
j→∞

utj does not depend on γ(t) but only on the

constant γ since
lim

t→∞(γ(t) − γ) log t = lim
t→∞ tγ

′(t) = 0.

So it is the same as that for
Pt = teiγ log t,

i.e., the case that was already considered in the general theory.
In particular (3.2.1.8) for this case has the form

z0(z) = ei(−γ log r+φ). (5.6.4.1)

Hence, from Theorem 3.2.1.2 the indicator (see (3.2.1.1)) has the form

h(reiφ) = rρh(−γ log r + φ), z = reiφ,

where h(φ) is a ρ-trigonometrically convex 2π-periodic function (see Section 3.2.3).
All other assertions of Levin-Pfluger theory can be obtained analogously from

other general assertions as it was done in the previous sections.
Theorem 3.1.6.1 connects limit sets for every γ.

Exercise 5.6.4.1 Formulate and prove Balashov’s analogy of the Levin-Pluger
Theorem 5.6.2.2 and Theorem 3.1.6.1 for m = 2.

For other generalizations of the Levin-Pfluger theory see [AD] and [Az(2007)].
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5.7 General characteristics of growth of entire functions

5.7.1 A functional F(u) acting in the unit circle and defined on subharmonic
functions u ∈ SH(ρ(r)) is called a growth characteristic if the following conditions
are fulfilled:

1. continuity:
F(uj) → F(u), (5.7.1.1)

if uj → u uniformly on compacts (of course, for continuous functions u) or if
uj ↓ u;

2. positive homogeneity:

F(cu) = cF(r, u); (5.7.1.2)

for every constant c > 0.
Here we shall list some widely used functionals that satisfy these conditions:

Hφ(u) := u(eiφ); (5.7.1.3)

T (u) =
1
2π

2π∫
0

u+(eiφ)dφ; (5.7.1.4)

Mα(u) := max{u(eiφ) : |φ| ≤ α}; (5.7.1.5)
M(u) := Mπ(u); (5.7.1.6)

Iαβ(u) :=

β∫
α

u(eiφ)dφ; (5.7.1.7)

I(u, g) :=

2π∫
0

u(eiφ)g(φ)dφ, g ∈ L1[0, 2π]. (5.7.1.8)

Exercise 5.7.1.1 Check properties 1 and 2 for these functionals.

Let α(t) and αε(ζ) be the “hats” defined by the equalities (2.3.1.1)–(2.3.1.3)
and let Rεu be defined by (2.3.1.4).

This averaging has the following properties.

Proposition 5.7.1.1

1. if u is subharmonic, then Rεu is subharmonic;
2. Rεu ↓ u as ε ↓ 0 for every subharmonic function;
3. if uj → u in D′ and uj, u are locally summable functions, Rεuj → Rεu

uniformly on every compact set.
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Exercise 5.7.1.2 Prove this using Theorem 2.3.4.5, 2.6.2.3.

Now we can define the asymptotic characteristics of growth of entire function
f ∈ A(ρ(r)) :

F [f ] := lim
ε→0

lim sup
t→∞

F(Rεut(•)), (5.7.1.9)

F [f ] := lim
ε→0

lim inf
t→∞ F(Rεut(•)), (5.7.1.10)

where u = log |f | and (•)t is defined by (3.1.2.1).

Proposition 5.7.1.2 For F(u) defined by (5.7.1.3)

F [f ] = hf(φ); F [f ] = hf (φ).

For other functionals from the list (5.7.1.4)–(5.7.1.8) one may replace Rεu by u
and omit lim

ε→0
.

Exercise 5.7.1.3 Prove this.

The following assertion connects the asymptotic growth characteristics with
limit sets.

Theorem 5.7.1.3 The relations

F [f ] = sup{F(v) : v ∈ Fr[f ]},
F [f ] = inf{F(v) : v ∈ Fr[f ]}

are true.

Proof. Let v ∈ Fr[f ] and utj → v in D′. Then Rεutj → Rεv uniformly on every
compact set. Hence

lim
tj→∞

F(Rεutj) = F(Rεv).

Passing to the limit as ε → 0 we obtain

lim
ε→0

lim
tj→∞

F(Rεutj ) = F(v).

Choosing a sequence that corresponds to lim sup or lim inf we obtain the assertion
of the theorem. �

Applying this theorem to the functional (5.7.1.3) we obtain the RHS’s of
(3.2.1.1), (3.2.1.2) and hence another definition for the indicator and lower indi-
cator.

5.7.2 A family of growth characteristics χA := {Fα(r, •) : α ∈ A} is called total if
the equation

Fα(v1) = Fα(v2), ∀r > 0, α ∈ A (5.7.2.1)

implies v1 ≡ v2 for v1, v2 ∈ U [ρ] (see 3.1.2.4).
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Here are some examples of the total families:

χH := {Hφ(u(eiφ) : φ ∈ [0, 2π)}; (5.7.2.2)
χI := {Iα,β(u) : α, β ∈ [0, 2π)}; (5.7.2.3)
χFo := {ck(u) = I(u, gk) : k ∈ Z}; (5.7.2.4)

where
g0 := 1, gk := cos kφ; g−k = sinkφ, k ∈ N. (5.7.2.5)

It is easy to deduce from Theorem 5.6.1.1

Theorem 5.7.2.1 Let a family {Fα(•) : α ∈ A} be a total family of characteristics.
An entire function f is a CRG-function iff

Fα[f ] = Fα[f ]. (5.7.2.6)

Exercise 5.7.2.1 Check this.

5.7.3 Let us consider a total family of characteristics of the form

χΨ := {I(u, ψ) : ψ ∈ Ψ}, (5.7.3.1)

where Ψ is a set which is complete in L1[0, 2π]. For instance, such are the families
χI and χFo.

Theorem 5.7.3.1 [Po(1985)] Let f ∈ A(ρ(r)). The following assertions are equiva-
lent:

a) F [fg] = F [f ] + F [g], ∀F ∈ χΨ,
b) F [fg] = F [f ] + F [g], ∀F ∈ χΨ, for all entire functions g ∈ A(ρ(r)).
c) f is a GRG-function.

Proof of sufficiency of assertion c). Let us prove c) =⇒ a) and c) =⇒ b). Using
Theorem 5.7.1.3 we obtain for every characteristic F

F [fg] = sup{F(w) : w ∈ Fr[fg]}. (5.7.3.2)

Because of Theorem 3.1.2.4 fru1),

Fr[fg] ⊂ Fr[f ] + Fr[g].

Since f is a CRG-function, Fr[f ] consists of only one subharmonic function vreg
(see Theorem 5.6.1.1) and it is easy to check that in this case we have equality

Fr[fg] = vreg + Fr[g].

Exercise 5.7.3.1 Check this.
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Since F(vreg + vg) = F(vreg) + F(vg), we obtain

F [fg] = F(vreg) + sup{F(vg) : vg ∈ Fr[g]} = F [f ] + F [g].

So c) =⇒ a) was proved. In the same way one can prove c) =⇒ b). �

Exercise 5.7.3.2 Prove this.

In the proof of sufficiency for c) of a) and b) we can suppose that ψ belong
to the space D(T) of infinitely differentiable functions on the unit circle T because
D(T) is complete in L1[0, 2π]. We prove now sufficiency of b) in Theorem 5.7.3.1.

We recall that (see (3.1.2.4a))

v[t](z) = v(tz)t−ρ, v ∈ U [ρ]

to distinguish it from (•)t that we define as

ut(z) = u(tz)t−ρ(t), u ∈ SH(ρ(r)).

The main constructive element for the proof sufficiency of b) in Theorem
5.7.3.1 is

Lemma 5.7.3.2 Let ψ0 ∈ D(S). There exists v ∈ U [ρ] with the following properties:

D′ − lim
t→0

v[t] = D′ − lim
t→∞ v[t] = ṽ, (5.7.3.3)

〈v[t](ei•), ψ0〉 > 〈v(ei•), ψ0〉 for t ∈ (0,∞), t �= 1, (5.7.3.4)

〈ṽ(ei•), ψ0〉 > 〈v(ei•), ψ0〉. (5.7.3.5)

Proof of Lemma 5.7.3.2. Let ψ0 be represented by Fourier series

ψ0(φ) =
a0

2
+

∞∑
n=1

(an cosnθ + bn sinnθ)

Since ψ0 �≡ 0 there exists ak �= 0 or bk �= 0. Suppose there exists ak �= 0. In the
proof we will consider three cases:

1. k = 0;
2. k �= 0 ∧ k ≤ p;
3. k ≥ p+ 1.

The number ρ is supposed non-integer and p = [ρ].
Consider the case a0 �= 0, a0 > 0. Set

ψ(x) := log(−e−α|x| + C), α > 0, C > 1,

v(z) := |z|ρeψ(log |z|) = exp(ρ log r + ψ(log r)). (5.7.3.6)
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Applying the Laplace operator, we obtain:

Δv =
1
r2
r
∂

∂r
r
∂

∂r
v(r) = e−2x ∂2

∂x2
eρx+ψ(x) (5.7.3.7)

= exp((ρ− 2)x+ ψ(x))
[
(ρ+ ψ′(x))2 + ψ′′(x)

]
, x = log r.

Since

ψ′(x) = α sgnx exp(−α|x|) → 0, ψ′′(x) = −α2 sgnx exp(−α|x|) → 0

as x → ±∞, it is possible to choose α such that the expression (5.7.3.7) is positive.
So v(z) is subharmonic.

It is easy to check that all the assertions of the lemma are satisfied and
ṽ(z) = b|z|ρ where b(> 0) is a constant.

Exercise 5.7.3.3 Check this.

If a0 = −|a0| < 0, consider the function

v0(z) :=

{
log |z|, |z| ≥ 1,
0, |z| < 1;

it is subharmonic and
〈v0

[t](e
i•), ψ0〉 = a0t

−ρ log+ t. (5.7.3.8)

Since the RHS of (5.7.3.8) is minimized for t0 = eρ−1
, the function

v(z) := v0
[t0−1](z)

satisfies the assertions of the lemma with ṽ = lim
t→0,∞

v[t] = 0

Now let a0 = 0, ak �= 0, 0 < k < p. We will search for a function v of the form

v(reiφ) :=

2π∫
0

Gp(rei(φ−θ))(1 − sgn ak cos kθ)dθ. (5.7.3.9)

This is the convolution Gp(rei•) ∗ g of the primary kernel (see Section 2.9.1)

Gp(z) = log |1 − z| + �
p∑

n=1

zn/n

with a positive function g(θ) := (1 − sgn ak cos kθ) on the circle. So it is subhar-
monic. Recall that the cos-Fourier coefficients of the function Gp(reiθ) are (see
Exercise 2.3.7.2).

Ĝp(m, r) =

{
0, m = 0, 1, . . . , p
(1/m)rm, m = p+ 1, . . .

if r ≤ 1, (5.7.3.10)
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and

Ĝp(m, r) =

⎧⎪⎨⎪⎩
log r, m = 0
1
m (rm − r−m), m = 1, . . . , p
(1/m)rm, m = p+ 1, . . .

if r ≥ 1. (5.7.3.11)

All the sin-Fourier coefficients are equal to zero. The Fourier coefficients of the
function g are 1 and − sgnak.

Using well-known properties of Fourier coefficients, we obtain for 0 < k ≤ p,

v̂[t](0) =

{
0, t ≤ 1,
log t
tρ , t ≥ 1,

v̂[t](k) =

{
0, t ≤ 1,
− 1

k
tk−t−k

tρ sgnak t ≥ 1,

〈v[t](ei•), ψ0〉 =

{
0, t ≤ 1,
−1/k(tk−ρ − t−k−ρ)|ak| t ≥ 1.

The function t �→ 〈vt(ei•), ψ0〉 tends to zero when t → 0,∞ and has its only
minimum at the point

t0 =
(
ρ+ k

ρ− k

)1/k

.

Thus v[(t0)−1] satisfies the conditions of the lemma with ṽ = 0.
For k ≥ p+ 1 we should take the same g and then

〈vt(ei•), ψ0〉 =

{
−(1/k)tk−ρ|ak|, t ≤ 1,
−(1/k)t−k−ρ|ak| t ≥ 1.

So the corresponding function t �→ 〈vt(ei•), ψ0〉 obtains its minimum at the point
t0 = 1 and the function v satisfies the assertions of the lemma with ṽ = 0. �
Exercise 5.7.3.4 Prove the lemma for the case bk �= 0.

Lemma 5.7.3.3 Let v ∈ U [ρ] with the condition

D′ − lim
t→0

v[t] = D′ − lim
t→∞ v[t] = ṽ

fulfilled, and let u ∈ SH(ρ(r)) with some v0 ∈ Fr[u]. Then there exists w0 ∈
SH(ρ(r)) such that

Fr[w0] = {v[t] : t ∈ (0,∞)} ∪ ṽ (5.7.3.12)

and the following condition holds:
1. If the sequence lim

tn→∞
w0

tn
= v[t] for some t ∈ (0,∞) and the sequence utn

converges in D′ as tn → ∞, then lim
n→∞utn = v0

[t].

For the proof see Corollary 4.4.1.4.
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Lemma 5.7.3.4 Let w ∈ SH(ρ(r)), ψ ∈ D(S). Then the following holds:

lim inf
t→∞ 〈w,ψ〉 = min

v∈Fr w
〈v, ψ〉,

lim sup
t→∞

〈w,ψ〉 = max
v∈Fr w

〈v, ψ〉.

Exercise 5.7.3.5 Prove this exploiting completeness of Fr.

Proof of sufficiency of b) in Theorem 5.7.3.1. In assumption b) we should prove
that f is a CRG-function, i.e., by Theorem 5.6.1.1 its Fr[f ] consists of only one
function. Since log |f | ∈ SH(ρ(r)) and because of Theorem 5.3.1.4 (Approxima-
tion) it is enough to prove the corresponding theorem for subharmonic functions.
Suppose

F [u+ w] = F [u] + F [w], ∀F ∈ χΨ (5.7.3.13)

for all w ∈ SH(ρ(r). We exploit Lemma 5.7.3.4 and write (5.7.3.13) in the form:

min
v∈Fr[u+v]

〈v, ψ〉 = min
v∈Fru

〈v, ψ〉 + min
v∈Frw

〈v, ψ〉, ∀ψ ∈ Ψ.

Suppose the contrary, i.e., u is not a CRG-function and Fru does not consist
of only one vmin ∈ U [ρ]. Then there exists v0 �= vmin. The family χΨ is total;
therefore there exists ψ0 ∈ Ψ such that 〈v0, ψ0〉 �= 〈vmin, ψ

0〉 and hence

〈v0, ψ0〉 > 〈vmin, ψ
0〉. (5.7.3.14)

Using Lemma 5.7.3.2, construct for the function ψ0 a function v ∈ U [ρ] satisfying
the conditions (5.7.3.3), (5.7.3.4) and (5.7.3.5). Apply Lemma 5.7.3.3 to construct
a function w0 satisfying (5.7.3.12) and the condition 1. Under conditions of the
theorem,

min
ω∈Fr(u+w0)

〈ω, ψ0〉 = min
ω∈Fr(u)

〈ω, ψ0〉 + min
ω∈Fr(w0)

〈ω, ψ0〉. (5.7.3.15)

Let γ ∈ Fr(u+w0) be the function on which the minimum of LRH in (5.7.3.15) is
attained. Using (5.7.3.4), (5.7.3.5) and (5.7.3.12), we can rewrite (5.7.3.15) in the
form

〈γ, ψ0〉 = min
ω∈Fru

〈ω, ψ0〉 + 〈v, ψ0〉. (5.7.3.16)

Since γ ∈ Fr(u + w0), γ = D′ − lim
n→∞(u + w0)tn . Passing to subsequences, we can

suppose that the sequences {utn} and {w0
tn

} have limits. Since Frw0 has the form
(5.7.3.12), there are two possible cases : w0

tn
→ v[t], t ∈ (0,∞) and w0

tn
→ ṽ.

Consider the first case. Because of condition 1 from Lemma 5.7.3.3, utn → v0
[t]

and γ = v0
[t] + v[t]. Substituting this in (5.7.3.15), we obtain

〈v0
[t], ψ

0〉 − min
ω∈Fru

〈ω, ψ0〉 = 〈v, ψ0〉 − 〈v[t], ψ0〉.
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This equality leads to a contradiction because for t = 1 it contradicts (5.7.3.14)
and for t �= 1 it contradicts (5.7.3.4).

Consider the second case, when w0
tn

→ ṽ. Denote v2 = lim
n→∞utn and rewrite

(5.7.3.15) in the form

〈v2, ψ0〉 − min
ω∈Fru

〈ω, ψ0〉 = 〈v, ψ0〉 − 〈ṽ, ψ0〉.

The last equality contradicts (5.7.3.5). �

Sufficiency of condition a) of Theorem 5.7.3.1 can be proved using the Lem-
mas 5.7.3.3, 5.7.3.4 and a variation of Lemma 5.7.3.2.

Lemma 5.7.3.2′ Let ψ0 ∈ D(S). There exists v ∈ U [ρ] with the following properties:

D′ − lim
t→0

v[t] = D′ − lim
t→∞ v[t] = ṽ, (5.7.3.3′)

〈v[t](ei•), ψ0〉 < 〈v(ei•), ψ0〉 for t ∈ (0,∞), t �= 1, (5.7.3.4′)

〈ṽ(ei•), ψ0〉 < 〈v(ei•), ψ0〉. (5.7.3.5′)

Exercise 5.7.3.6 Prove this lemma and sufficiency of a) in Theorem 5.7.3.1.

5.7.4 In this section we consider the question of summing the asymptotic charac-
teristics connected with the functional (5.7.1.3), i.e., indicator and lower indicator.
Recall that f ∈ A(ρ(r)) is completely regular on the ray {arg z = φ} (f ∈ Areg,φ) if

hf (φ) = hf (φ). (5.7.4.0)

We are going to prove the following assertions:

Theorem 5.7.4.1 Let f ∈ Areg,φ. Then for every g ∈ A(ρ(r)),

hfg(φ) = hf (φ) + hg(φ), (5.7.4.1)
hfg(φ) = hf (φ) + hg(φ). (5.7.4.2)

Theorem 5.7.4.2 Suppose the equality (5.7.4.1) holds for every g ∈ A(ρ(r)). Then
f ∈ Areg,φ.

Let us note that the assertion of Theorem 5.7.4.2 holds also if the equality
(5.7.4.1) fulfilled for some sequence φn → φ, because the indicator is a continuous
function (see Section 3.2.5). So if the equality (5.7.4.1) holds for the set Φ of φ
that is dense in [0, 2π) (or the set

eiΦ := {eiφ : φ ∈ Φ} (5.7.4.3)

is dense on the unit circle), then f ∈ Areg,φ for all φ, i.e., f is a CRG-function.
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On the other hand, the following assertion holds

Theorem 5.7.4.3 If the set Θ of θ is not dense in [0, 2π), there exists f ∈ Areg,θ, θ ∈
Θ that is not a CRG-function.

The situation with a lower indicator is analogous, but in another topology.

A set E is called non-rarefied at a point z0 if for every function v subharmonic
in a neighborhood of z0 the following holds:

v(z0) = lim sup
z∈E,z→z0,z �=z0

v(z) = lim sup
z∈E,z→z0

v(z).

A set is rarefied if it is not non-rarefied.
Note that if hf (φ) = −∞, then hfg(φ) = −∞ for every g ∈ A(ρ(r)). It is

obvious that f /∈ Areg,φ.

The next theorems were proved in [GPS].

Theorem 5.7.4.4 Let (5.7.4.2) be fulfilled for ψ ∈ E for all g ∈ A(ρ(r)) and eiE be
non-rarefied at the point eiφ. Then f ∈ Areg,φ.

Theorem 5.7.4.5 Let E0 be a set such that eiE0 is rarefied at all points of the unit
circle. Then there exists f ∈ A(ρ(r)) for which (5.7.4.2) is fulfilled for all φ ∈ E0

and all g ∈ A(ρ(r)), but f /∈ Areg,φ for all φ and hf (φ) > −∞, ∀φ.
Let us note that E0 can be dense in [0, 2π) and E from Theorem 5.7.4.4 can

even be of zero measure.
The proof of Theorems 5.7.4.4 and 5.7.4.5 is based on the following assertion

that gives a criterion for (5.7.4.2) in terms of limit sets Fr[f ].

Theorem 5.7.4.6 Let f ∈ A(ρ(r)) and hf (φ) > −∞. The condition (5.7.4.2) holds
for every g ∈ A(ρ(r)), such that hg(φ) > −∞ iff

lim inf
t→1

v(teiφ) = hf (φ) (5.7.4.4)

for all v ∈ Fr[f ].

An analogous criterion holds for (5.7.4.1).

Theorem 5.7.4.7 Let f ∈ A(ρ(r)). Then (5.7.4.1) holds for every g ∈ A(ρ(r)), iff

lim sup
t→1

v(teiφ) = hf (φ), (5.7.4.5)

for all v ∈ Fr[f ].

Corollary 5.7.4.8 The equality (5.7.4.5) implies f ∈ Areg,φ.
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Actually, for every v ∈ Fr[f ] we have, using semicontinuity of subharmonic
functions and the definition (3.2.1.1) of the indicator,

hf (φ) = lim sup
t→1

v(teiφ) ≤ v(eiφ) ≤ hf (φ)

for all v ∈ Fr[f ]. So Fr[f ] consists of functions v that coincide at the point eiφ

and hence on the ray {reiφ : r ∈ (0,∞)}.
Note also that the set eiE for which (5.7.4.1) holds is closed and Theorem

5.7.4.4 means that the set where (5.7.4.2) holds is thinly closed, i.e., closed in thin
topology (see [Br, § 6]).

Therefore if eiφ0 is a limit point of eiE in the euclidian (respectively, thin)
topology, then (5.7.4.1) ((5.7.4.2), respectively) is also a sufficient condition for
completely regular growth at φ0.

5.7.5 The main constructive element for proving Theorem 5.7.4.6 is

Lemma 5.7.5.1 Let ε > 0, t0 > 0 and φ0 ∈ [0, 2π) be fixed. Then there exists
v ∈ U [ρ] with the following properties:

D′ − lim
t→0

v[t] = D′ − lim
t→∞ v[t] = 0, (5.7.5.1)

v(eiφ0) < v[t](eiφ0), t ∈ (0, 1) ∪ (1,∞), (5.7.5.2)

−∞ < v(eiφ0) < −ε, (5.7.5.3)

and the inequality
v[t](eiφ0) − v(eiφ0) ≤ ε/2 (5.7.5.4)

implies
t ∈ [1/t0, t0]. (5.7.5.5)

The last condition means that the function ψ(t) := v[t](eiφ0) can be less than
ψ(1) + ε/2 only in a neighborhood of t = 1.

Proof. Set

w(z) := max(log |1 − ze−iφ0 |,−N) + �
p∑

n=1

1
n

(ze−iφ0)n,

N > 0, p = [ρ]. (5.7.5.6)

It is obvious that w is subharmonic, with masses νw concentrated in a neighbor-
hood of the point eiφ0 . Thus νw ∈ M[ρ] (see (3.1.3.4)) and

D′ − lim
t→0

(νw)[t] = D′ − lim
t→∞(νw)[t] = 0.

Hence (see Theorem 3.1.4.2) w ∈ U [ρ], and (see (3.1.5.0))

D′ − lim
t→0

w[t] = D′ − lim
t→∞w[t] = 0. (5.7.5.7)
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Let us capitalize on the behavior of w[t] on the ray {arg z = φ0}:

w[t](eiφ0) := ψ(t) =
(

max(log |1 − t|,−N) + �
p∑

n=1

1
n

)
t−ρtn. (5.7.5.8)

It is possible to prove directly the following properties of ψ(t).

i) outside interval (1−e−N , 1+e−N), ψ(t) = Gp(t)t−ρ; where Gp is the Primary
Kernel (see Section 2.9.1) and inside this interval the first summand is −N ;

ii) ψ(t) > 0 for t > t1 where t1 is a zero of the equationGp(t) = 0, ψ(t) decreases
monotonically on the interval (0, 1 − e−N ) and increases monotonically on
the interval (1 − e−N , t1).

Exercise 5.7.5.1 Prove this.

Now set t2 := 1 − e−N and v(z) := Dwt2(z), where D is a constant. This
function satisfies the conditions (5.7.5.1) and (5.7.5.2) of the lemma and v[t](eiφ0)
has only one negative minimum for t = 1. Thus it is possible to take D sufficiently
large to satisfy the conditions (5.7.5.3) and (5.7.5.4) for fixed ε and t0. �

Exercise 5.7.5.2 Prove this in detail.

In the proof of Theorem 5.7.4.6 we also use Lemma 5.7.3.3. We can prove all
the assertions for subharmonic functions from SH(ρ(r)).

Proof of Theorem 5.7.4.6. Necessity. We should prove that if the equality

h(eiφ0 , u+ w) = h(eiφ0 , u) + h(eiφ0 , w) (5.7.5.9)

holds for a fixed u ∈ SH(ρ(r)), φ0 and every w ∈ SH(ρ(r)), then

lim inf
t→1

v(teiφ) = h(eiφ, u) (5.7.5.10)

for all v ∈ Fru. Assume that h(eiφ, u) > −∞ and h(eiφ0 , w) > −∞. Suppose the
contrary, i.e., there exists v0 ∈ Fru such that

lim inf
t→1

v0(teiφ0) > h(eiφ0 , u). (5.7.5.11)

The inequality (5.7.5.11) implies that there exists ε > 0 and t0 > 0 such that for
every t ∈ [1/t0, t0] the inequality

v0(teiφ0) > h(eiφ0 , u) + ε (5.7.5.11a)

holds. Let us construct by Lemma 5.7.5.1 for these ε, t0, φ0 a function v and by
Lemma 5.7.3.3 for the functions u, v0 and the already found v a function w0. Let
us show that for w0 the equality (5.7.5.9) does not hold.
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Compute h(eiφ, w0). From (3.2.1.2)

h(eiφ0 , w0) = min{0, inf{v[t](eiφ0 : t ∈ (0,∞)}}.

The inequalities (5.7.5.3) imply that 0 can be omitted and (5.7.5.2) implies that
the infimum is attained at t = 1, i.e.,

h(eiφ0 , w0) = v(eiφ0). (5.7.5.12)

Find vε ∈ Fr(u+w0) such that h(eiφ0 , u+w0) > vε(eiφ0) − ε/3. Let tn → ∞ and
(u+ w0)tn → vε in D′. Passing to subsequences we can assume that utn and w0

tn

also converge. Consider two cases. The first, when

D′ − limw0
tn

= v[t], t ∈ (0,∞). (5.7.5.13)

By Lemma 5.7.3.3 limutn = v0
[t] and hence vε = lim(w0 + u)tn = v[t] + v0

[t]. If
t /∈ [1/t0, t0], then by (5.7.5.4)

v[t](eiφ0) > v(eiφ0) + ε/2 = h(eiφ0 , w0) + ε/2. (5.7.5.14)

In this case we have

h(eiφ0 , u+ w0) ≥ vε(eiφ0) − ε/3 ≥ v[t] + v0
[t] − ε/3. (5.7.5.14a)

Using (5.7.5.14a), we obtain

h(eiφ0 , u+ w0) ≥ h(eiφ0 , w0) + h(eiφ0 , u) + ε/6. (5.7.5.15)

If t ∈ [1/t0, t0], then from (5.7.5.11) we have

h(eiφ0 , u+ w0) ≥ h(eiφ0 , w0) + h(eiφ0 , u) + 2ε/3. (5.7.5.16)

So the case (5.7.5.13) is settled.
Let D′ − limw0

tn
= 0. In this case we have

h(eiφ0 , u+ w0) ≥ vε(eiφ0) − ε/3 ≥ h(eiφ0 , u) − ε+ ε− ε/3 = h(eiφ0 , u) − ε+ 2ε/3.

Using (5.7.5.12) and (5.7.5.3) we obtain

h(eiφ0 , u+ w0) ≥ h(eiφ0 , u) + h(eiφ0 , w0) + 2ε/3.

So we proved in any case that (5.7.5.9) does not hold if (5.7.5.10) does not hold.
Let us prove sufficiency in Theorem 5.7.4.6. We prove it for subharmonic

functions. Let u ∈ SH(ρ(r)) and for every v ∈ Fru (5.7.5.10) holds. Let us show
that for all w ∈ SH(ρ(r)) (5.7.5.9) holds. It is sufficient to prove that

h(eiφ0 , u+ w) ≤ h(eiφ0 , u) + h(eiφ0 , w) (5.7.5.17)
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holds since the inverse inequality holds for every w ∈ SH(ρ(r)) (see (3.2.1.5)). Let
us begin by noting that for every v2 ∈ Frw there exist v ∈ Fr(u+w) and v1 ∈ Fru
such that

v = v1 + v2. (5.7.5.18)

Indeed, let tn → ∞ be a sequence such that wtn → v2. We can suppose, in choosing
a subsequence, that utn → v1 and (u+ w)tn → v. Then (5.7.5.18) holds.

Let ε be arbitrarily small. Choose v2 ∈ Frw such that v2(eiφ) < h(eiφ, w)+ ε
holds. From upper semicontinuity of v2 we have

lim sup
t→1

v2(eiφ) ≤ h(eiφ0 , w) + ε. (5.7.5.19)

Let v1 ∈ Fru and v ∈ Fr(u + w) satisfy (5.7.5.18). Then we have

h(eiφ0 , u+ w) ≤ (v1 + v2)[t](eiφ0) = v1
[t](e

iφ0) + v2
[t](e

iφ0), ∀t.
Hence

h(eiφ0 , u+ w) ≤ lim inf
t→1

v1
[t](e

iφ0) + lim sup
t→1

v2
[t](e

iφ0).

Using (5.7.5.10) and (5.7.5.19) we obtain

h(eiφ0 , u+ w) ≤ h(eiφ0 , u) + h(eiφ0 , w) + ε.

This proves the inverse inequality and hence the equality (5.7.5.9), because ε is
arbitrarily small. �

5.7.6 Now we are going to prove Theorem 5.7.4.4. We need the following assertion
from Potential Theory.

Lemma 5.7.6.1 Let E be a set that is non-rarefied at the point eiφ0 . Let E′ be a
set in C, such that ∀eiφ ∈ E and ∀δ > 0 there exists a point z′ ∈ E′ on the ray
{arg z = φ} such that |z′− eiφ| < δ. Then E′ is also non-rarefied at the point eiφ0 .

Proof. We can suppose without loss of generality that E′ has no intersection with
some neighborhood of zero. Denote by P (z) the map z �→ ei arg z . It is easy to see
that for all pairs z′1, z

′
2 ∈ E′ the inequality |P (z′1) − P (z′2)| < A|z′1 − z′2| holds for

some constant A. Thus the logarithmic capacity (2.5.2.5) satisfies ([La, Ch. II, § 4,
it. 11, 15]).

capl(M) < Acapl(M
′) (5.7.6.1)

where M ′ ⊂ E′,M = P (M ′). Now we exploit the following properties of non-
rarefied sets. First, if E is non-rarefied at a point z0, then there exists a compact
set that is non-rarefied at z0 ([La, Ch. V, § 1, it. 5, § 3, it. 9]). Second, for a compact
set K that is non-rarefied at z0,

∞∑
n=1

n

log(caplKn)−1
= ∞ (5.7.6.2)

where Kn := K ∩ {z : qn+1 ≤ |z − z0| ≤ qn}, 0 < q < 1.
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Using the inequality (5.7.6.1), we obtain that divergence of the series (5.7.6.2)
for a compact K ⊂ E implies divergence for K ′ ⊂ E′ where K = P (K ′), i.e., E′

is non-rarefied at the point P (eiφ0) = eiφ0 . �

Proof of Theorem 5.7.4.4. Let ε(φ) → 0 as φ → φ0 and let v ∈ Fru. Suppose
(5.7.5.9) holds for eiφ ∈ E. By Theorem 5.7.4.6 the equality (5.7.5.10) holds. Thus
∀Δ > 0, ∃z′ = z′(eiφ,Δ) such that

|z′ − eiφ| < Δ, arg z′ = φ, v(z′) < h(eiφ) + ε(φ). (5.7.6.3)

Set

E′ :=
⋃

φ∈E

∞⋃
n=1

z′(eiφ, 1/n).

By (5.7.6.3) and upper semicontinuity of h(eiφ) we obtain

lim sup
z′→eiφ0 , z′∈E′

v(z′) ≤ h(eiφ0). (5.7.6.4)

Since E′ is non-rarefied, by Lemma 5.7.6.1 the upper limit of v coincides with
v(eiφ0) and hence v(eiφ0) ≤ h(eiφ0). The inverse inequality holds always. Thus
v(eiφ0) = h(eiφ0), ∀v ∈ Fru. Hence h(eiφ0) = h(eiφ0). �

5.7.7 Now we are going to prove Theorem 5.7.4.5. Before this we need to describe
a construction and prove some auxiliary assertions.

Let Bj := {z : T j < |z| < T j+1}, j = 0,±1,±2, . . . where T > 1 is a fixed
number. Denote LE0 := {z : ei arg z ∈ eiE0}. Recall that eiE0 is a set rarefied at
every point of the unit circle. Let Q be the set of rational numbers on the interval
(1, T ). Set

SQ := {z : |z| ∈ Q},
T jSQ := {zT j : z ∈ SQ},
Aj := LE0 ∩ T jSQ, j = 0,±1,±2, . . . .

Lemma 5.7.7.1 There exists v ∈ U [ρ] such that

v(z) = −∞ (5.7.7.1)

for z ∈ A0 and
μv(e) = 0, ∀e ⊂ C \B0. (5.7.7.2)

Proof. The set E is rarefied at every point, hence it is polar ([Br, Ch. 7, § 4]).
Thus the set {z : |z| = r} ∩LE0 is polar (see [Br, Ch. 3, § 2]). A countable union of
polar sets is polar ([Br, Ch. 3, § 2]). Thus A0 is polar.Hence there exists a positive
measure μ concentrated on B0 for which the potential v(z) :=

∫
Gp(z/ζ)μ(dζ)

is equal to −∞ on A0 (see [Br, Ch. 4, § 6, Applications]). It is easy to see that
μ ∈ M(ρ) and hence v ∈ U [ρ] (see Theorem 3.1.4.2). �
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Lemma 5.7.7.2 There exists ω ∈ U [ρ] such that the following conditions are ful-
filled:

ω(z) = −∞, z ∈ A := ∪+∞
j=−∞Aj ; ω(Tz) = T ρω(z). (5.7.7.3)

Proof. Set for every E � C \ 0,

ν(E) :=
j=+∞∑
j=−∞

T jρμv(T−jE ∪B0) (5.7.7.4)

(compare Theorem 4.1.7.1). We have ν ∈ M(ρ). Set

ω(z) :=
∫
Gp(z/ζ)ν(dξdη), ζ = ξ + iη.

This ω satisfies (5.7.7.3). �

Exercise 5.7.7.1 Prove this using Theorem 4.1.7.1.

Lemma 5.7.7.3 Let ω be a subharmonic function in C. Denote

m(φ) := max{ω(reiφ) : r ∈ [1, T ]}.

Then there exists a constant C > −∞ such that m(φ) > C ∀φ.

Proof. If not, there exists a sequence φn that we can assume to converge to
φ∞ such that m(φn) → −∞. By upper semicontinuity of ω we have ω(z) =
−∞, ze−iφ∞ ∈ [1, T ]. Thus ω(z) ≡ −∞ because the capacity of the segment in
the plane is positive and hence it is not polar for some subharmonic function. �

Recall that for v ∈ U [ρ] (see (4.1.3.1))

C(v) := D′ − clos{v[t] : 0 < t < ∞}, (5.7.7.5)
Ω(v) := {v′ ∈ U [ρ] : (∃tk → ∞)(v′ = lim

k→∞
v[tk]}, (5.7.7.6)

A(v) := {v′ ∈ U [ρ] : (∃τk → 0)(v′ = lim
k→∞

v[tk]}. (5.7.7.7)

By Theorems 4.1.3.3 and 4.2.1.2, if

A(v) ∩ Ω(v) �= ∅, (5.7.7.8)

there exists u ∈ SH(ρ(r)) such that

Fru = C(v). (5.7.7.9)
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Lemma 5.7.7.4 There exists v1 ∈ U [ρ] such that the following holds:

A(v1) = Ω(v1), (5.7.7.10)

inf{v(eiφ) : v ∈ C(v1)} = lim inf
t→1

v(teiφ) = 0, ∀v ∈ C(v1), ∀eiφ ∈ eiE0 , (5.7.7.11)

sup{v(eiφ) : v ∈ C(v1)} �= inf{v(eiφ) : v ∈ C(v1)}. (5.7.7.12.)

Proof. Let ω(z) be constructed by Lemma 5.7.7.2. Set

v(z) := ω(z) +D log+ 2|z|.

The condition (5.7.7.3) implies

A(ω) = Ω(ω) = {ω[t] : t ∈ [1, T ]}

because it is a Periodic Limit Set (see Theorem 4.1.7.1).
Since (log+ 2|z|)[t] → 0, t → 0, t → ∞, the function v satisfies the condition

A(v) = Ω(v) = {ω[t] : t ∈ [1, T ]}.

By Theorem 2.1.7.4 for the function v1 := v+ we have

A(v1) = Ω(v1) = {ω+
[t] : t ∈ [1, T ]}.

Note that v1(z) = 0 for z ∈ A and since A is dense in LE0 (5.7.7.11) holds.
Choosing D sufficiently large it is possible (using Lemma 5.7.7.3) to find on every
ray {arg z = φ} a point zφ where v1(zφ) > 0. Hence sup{v(eiφ) : v ∈ C(v1)} > 0.
Because of (5.7.7.11) and upper semicontinuity of inf{v(eiφ) : v ∈ C(v1)} it is zero
for every eiφ. Thus (5.7.7.12) holds. �

Proof of Theorem 5.7.4.5. Let us construct by Theorems 4.1.3.3 and 4.2.1.2 a
function u ∈ SH(ρ(r) such that Fru = C(v1) where v1 is taken from Lemma
5.7.7.4. It does not belong to Areg,φ for any φ. The equality (5.7.5.9) holds for
every φ ∈ E0 because of (5.7.7.11) by Theorem 5.7.4.6. �

5.7.8 The proof of Theorem 5.7.4.1 is a copy of the proof of sufficiency of asser-
tion c) in Theorem 5.7.3.1.

Exercise 5.7.8.1 Prove Theorem 5.7.4.1.

Now we are going to prove Theorem 5.7.4.7 which implies (as it was shown
in Corollary 5.7.4.8) Theorem 5.7.4.2.



196 Chapter 5. Applications to Entire Functions

The main constructive element of the proof of necessity is

Lemma 5.7.8.1 Let ε > 0, t0 > 0 and φ0 ∈ [0, 2π) be fixed. Then there exists
v ∈ U [ρ] with the following properties:

D′ − lim
t→0

v[t] = D′ − lim
t→∞ v[t] = 0, (5.7.8.1)

v(eiφ0) > v[t](eiφ0), t ∈ (0, 1) ∩ (1,∞), (5.7.8.2)

and the inequality
v[t](eiφ0) − v(eiφ0) ≥ −ε/2 (5.7.8.3)

implies
t ∈ [t0, 1/t0]. (5.7.8.4)

The last condition means that the function ψ(t) := v[t](eiφ0) can be more
than ψ(1) − ε/2 only in a neighborhood of t = 1.

Proof. Consider the function

w(z) := log+ |z|. (5.7.8.5)

It is subharmonic and satisfies (5.7.8.1). Since the function

ψ(t) := w[t](eiφ0) = t−ρ log+ t

has its only strict maximum in the point tmax > 1, the function

v(z) := w(z/tmax)

has all the properties (5.7.8.1)–(5.7.8.4). �

After this lemma all the proof of Theorem 5.7.4.6 can be repeated with
minimal changes.

Exercise 5.7.8.2 Prove Theorem 5.7.4.7.

5.7.9 Now we are going to prove Theorem 5.7.4.3. Let us prove the following

Lemma 5.7.9.1 Let Θ be a closed subset of [0, 2π). Then for every σ > 0 there
exists a 2π-periodic ρ-trigonometrically convex function h(φ) such that

h(φ) = σ (5.7.9.1)

for φ ∈ Θ and
h(φ) > σ (5.7.9.2)

for φ /∈ Θ.
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Proof. We can suppose that 0 ∈ Θ, otherwise we can shift it a little. The set
[0, 2π) \ Θ is open and it can be represented as the union of non-intersecting open
intervals. If length of an interval is ≤ π/ρ we can construct a ρ-trigonometrical
function that is equal to σ on the ends of the interval. It is greater than σ in all inner
points of the interval because f(φ) ≡ σ is a strictly ρ-trigonometrical function.
If the length of the interval is greater than π/ρ, for example (−l/2, l/2) with
l > π/2ρ, we cover it by intersecting intervals of length less then π/ρ, construct
hI(φ) as before for every interval I and set h(φ) = max

I
hI(φ). It is obvious that

h(φ) is greater than σ and it is ρ-trigonometrically convex. �

Theorem 5.7.4.3 is a corollary of Lemma 5.7.9.1 and the following

Theorem 5.7.9.2 Let h1 and h2 be two ρ-trigonometrically convex functions. Then
there exists a function f ∈ A(ρ(r)) such that

hf(φ) = max(h1(φ), h2(φ)), hf (φ) = min(h1(φ), h2(φ)).

Proof. Consider the set

U := {v(z) = crρh1(φ) + (1 − c)rρh2(φ) : 0 ≤ c ≤ 1}. (5.7.9.3)

It consists of invariant subharmonic functions and is contained in U [ρ] and satisfies
the condition of Theorem 4.1.4.1. Hence (Theorems 4.2.1.2, Corollary 5.3.1.5) there
exists a function f ∈ A(ρ(r)) such that

Frf = U. (5.7.9.4)

By formulae (3.2.1.1), (3.2.1.2) we obtain the assertion of the theorem, using
(5.7.9.3). �

Exercise 5.7.9.1 Prove Theorem 5.7.4.3.

5.7.10 The family of characteristics {Fα, α ∈ A} is called independent if for every
subset A′ ⊂ A (or subset in some class of subsets, for example, measurable or
closed) there exists a function f = fA′ ∈ A(ρ(r)) such that

Fα[f ] = Fα[f ], α ∈ A′,

Fα[f ] �= Fα[f ], α ∈ A \A′.

It means that for every pointed subset of characteristics there exists a function
that has regular growth with respect to this subset of characteristics and is not of
regular growth with respect to all other characteristics.

Theorem 5.7.4.3 can be considered as an assertion of independence of the
family (5.7.2.2).
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Theorem 5.7.10.1 The family χFo (5.7.2.4) is independent.

I.e., for every A ⊂ Z there exists f ∈ A(ρ(r) such that

lim
r→∞ r

−ρ(r)

∫ 2π

0

log |f(reiφ)gk(φ)dφ

exists for all k ∈ A and does not exist for k ∈ Z \A. To begin we prove

Lemma 5.7.10.2 There exist two ρ-trigonometrically convex functions h1 and h2

for which ∫ 2π

0

h1(φ)gk(φ)dφ =
∫ 2π

0

h2(φ)gk(φ)dφ, k ∈ A, (5.7.10.1)∫ 2π

0

h1(φ)gk(φ)dφ �=
∫ 2π

0

h2(φ)gk(φ)dφ, k ∈ Z \A. (5.7.10.2)

Proof. Let g(φ) ∈ C2 be a function, the Fourier coefficients of which with indices
k ∈ A are equal to zero. We can represent it as a difference of ρ-trigonometrically
convex functions in the following way. Suppose for simplicity that ρ is non-integer.
Then take Tρg = g′′ + ρ2g and consider

h1(φ) :=
1

2ρ sinπρ

∫ 2π

0

c̃os ρ(φ − ψ − π)(Tρg)+(φ)dφ;

h2(φ) :=
1

2ρ sinπρ

∫ 2π

0

c̃os ρ(φ − ψ − π)(Tρg)−(φ)dφ.

By Theorem 3.2.3.3 these functions are ρ trigonometrically convex and h1−h2 = g.
Hence (5.7.10.11), (5.7.10.12) holds. �

Proof of Theorem 5.7.10.1. We consider a function f ∈ A(ρ(r)) with the limit
set U := {v(z) = crρh1(φ) + (1 − c)rρh2(φ) : 0 ≤ c ≤ 1 } with h1, h2 from the
conditions of lemma, and we exploit Theorem 5.7.1.3. �

Exercise 5.7.10.1 Do this in detail.
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5.8 A generalization of the Valiron-Titchmarsh
theorem

5.8.1 The point of departure on this topic is the following

Theorem VT [Va, Ti] Let f ∈ A(ρ), ρ < 1 have its zeros on the negative ray. If
the limit

lim
r→∞ r

−ρ log |f(r)|
exists, then the limit

lim
r→∞ r

−ρn(r)

exists.

The latter means that f is a CRG-function.
The general problem is the following. Let ρ be any non-integer number, f ∈

A(ρ(r)), and suppose all zeros of f lie on a finite system of rays

KS1 := {z = reiφ : 0 < r < ∞, φ ∈ S1} (5.8.1.1)

where
S1 := {eiθj : j = 1, 2, . . . ,m}. (5.8.1.2)

We write nf ∈ MS1 .
Let nj be a zero distribution on the ray {arg z = θj} and all the limits

lim
r→∞ r

−ρnj(r) := Δj (5.8.1.3)

exist. In such a case we write nf ∈ Mreg,S1 .
Let KS be one more system of rays

S = {eiψk : k = 1, 2, . . . , n}. (5.8.1.4)

Some ψk can coincide with some θj . Suppose that f has regular growth on this
system, i.e.,

hf (φ) = hf (φ), eiφ ∈ S. (5.8.1.5)

In such a case we write f ∈ Areg,S .
The problem is, what is the connection between S and S1 so that the impli-

cation (f ∈ Areg,S) =⇒ (nf ∈ Mreg,S1) holds.
This problem can be reformulated in another way. For nf ∈ Mreg,S1 if nf ∈

MS1 it is necessary and sufficient that f is a CRG-function, because existence of
an angle density is equivalent to existence of all the limits. So the problem can be
reformulated in the form: what is the connection between S and S1, so that the
implication (f ∈ Areg,S) =⇒ (f is CRG-function) holds.
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We write
G(t, γ, ρ) := Gp(et−iγ)e−ρt, p = [ρ] (5.8.1.6)

where Gp is the Primary Kernel:

Gp(z) = log |1 − z| + �
p∑

k=1

zk/k.

Set

Ĝ(s, γ, ρ) :=

∞∫
−∞

G(t, γ, ρ)e−istdt.

This is the Fourier transformation of G(t, γ, ρ). It can be computed (see, e.g,[Oz,
Lem. 3]);

Ĝ(s, γ, ρ) =
π cos(π + γ)(ρ+ is)
(ρ+ is) sinπ(ρ+ is)

.

Consider the matrix

Ĝ(s, S1 − S) := ‖Ĝ(s, θj − ψk, ρ)‖. (5.8.1.7)

We are going to prove (see [Az(1998)])

Theorem 5.8.1.1 The implication

{f ∈ Areg,S} ∧ {nf ∈ MS1} =⇒ {f is a CRG-function}
holds iff

rank Ĝ(s, S1 − S) = m, ∀s ∈ (−∞,∞). (5.8.1.8)

As a corollary we obtain the following ([De])

Theorem 5.8.1.2 (Delange) Suppose that S1 and S consist of one ray, i.e.,

S1 = {eiθ1}, S = {eiψ1}.
The implication (5.8.1.5) holds iff

θ1 − ψ1 �= (1 − (2k + 1)/2ρ)π, k = 1, 2, . . . . (5.8.1.9)

5.8.2 A Fourier transformation for distribution ν on the real axes is a distribution
in the standard space S′ (see [Hö, vol. 1, Ch. 7, § 7.1]). For a locally bounded
measure whose variation is “not very quickly” growing, it can be defined by

(Fν)(s) := lim
ε→0

∞∫
−∞

eitse−
εt2
2 ν(dt)

where the right side is understood in the sense of distributions.
For example, if ν(dt) := eis0tdt, we have Fν(s) = δ(s − s0) where δ is the

Dirac function.
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Exercise 5.8.2.1 Check this.

For distribution and a summable function one can define a convolution for
which the property F(f ∗ ν)(s) = Ff(s)Fν(s) holds.

Proof of Theorem 5.8.1.1. Since f ∈ MS1 the limit set Frnf is concentrated on
KS1. So every v ∈ Fr[f ] can be represented in the form (see Theorem 3.1.5.1):

v(z) =
j=m∑
j=1

∞∫
0

Gp(z/reiθj )μj(dr) (5.8.2.1)

where μj is concentrated on the ray {arg ζ = θj} and belongs to U [ρ]. After
changing variables,

r = eτ , |z| = et,

we obtain from (5.8.2.1)

v1(teiφ) =
j=m∑
j=1

∞∫
−∞

G(t− τ, φ− θj , ρ)μ1
j(dτ) (5.8.2.1a)

where
eρτμ1

j(dτ) := μj(dr), v1(teiφ) := v(|z|eiφ)e−ρ|z|. (5.8.2.2)

The equality (5.8.2.1a) can be written as

v1(teiφ) =
j=m∑
j=1

[G(•, φ− θj , ρ) ∗ μ1
j ](t) (5.8.2.3)

where * stands for convolution. Then f ∈ Areg,S with nf ∈ MS1 , iff every pair
v1, v2 ∈ Fr[f ] satisfies the condition

v1(z) = v2(z), z ∈ KS . (5.8.2.4)

Denote by μ1,j , μ2,j the restriction of μv1μv1 to the ray {arg z = θj}. Set νj :=
μ1,j − μ2,j Using (5.8.2.3) we can rewrite (5.8.2.4) in the form

j=m∑
j=1

[G(•, φk − θj , ρ) ∗ ν1
j ](t) ≡ 0, k = 1, 2, . . . , n. (5.8.2.5)

Applying Fourier transforms we obtain a system of linear equations:

j=m∑
j=1

[Ĝ(•, ψk − θj , ρ) · ν̂1
j ](t) ≡ 0, k = 1, 2, . . . , n. (5.8.2.6)
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Suppose now that rank Ĝ(s, S−S1) = m for every s ∈ R. The system (5.8.2.6)
has only the trivial solution for every s. Thus ν̂1

j (s) ≡ 0, for j = 1, 2, . . . ,m.
This implies ν1

j (t) ≡ 0 for j = 1, 2, . . . ,m and νj ≡ 0 for j = 1, 2, . . . ,m. Thus
μv1 = μv2 , i.e., (by (5.8.2.3)) Fr[f ] consists of one function v ∈ U [ρ]. Thus f is a
CRG-function.

Conversely, suppose that rank Ĝ(s, S − S1) < m for some s0.
Then there exists a nontrivial solution (b1, . . . , bm) that satisfies the corre-

sponding system. We obtain that {ν̂1
j bjδ(s − s0), j = 1, 2 . . . ,m} is a solution of

(5.8.2.6) for all s ∈ R and hence

ν1
j (dt) = bje

its0dt, j = 1, 2, . . . ,m.

Since ν1
j have bounded densities dν1

j /dt, we can find a constant C such that
sup{|dν1

j /dt| : 0 < t < ∞, j = 1, 2 . . . ,m} ≤ C.
Set

μ1
1,j(dt) = Cdt+ ν1

j (dt); μ1
2,j = Cdt. (5.8.2.7)

Both of these are measures. Now we pass to m1,j , m2,j via (5.8.2.2). It is easy to
check that m1,j , m2,j ∈ M(ρ).

Exercise 5.8.2.2 Check this.

Consider μ1, μ2 ∈ M(ρ) which are defined uniquely by their restrictions
μ1,j, μ2,j respectively on KS1 . Set

v1(z) :=
∫
C

Gp(z/ζ)μ1(dξdη); v2(z) :=
∫
C

Gp(z/ζ)μ2(dξdη); ζ = ξ + iη.

It is easy to check that the equality

v1(z) = v2(z), z ∈ KS (5.8.2.8)

holds.

Exercise 5.8.2.3 Check this.

Since μ1 and μ2 are finite sums of trigonometrical functions, for v1 and v2
the condition (4.1.3.3) is satisfied. Thus by Theorem 4.3.6.1 there exists a function
f ∈ A(ρ(r)) for which

Fr[f ] =
⋃

0≤c≤1

C(cv1 + (1 − c)v2).

Since for v ∈ C(cv1 + (1 − c)v2) (5.8.2.8) also holds, the same holds for v ∈ Fr[f ]
and this function is not a CRG-function. �



Chapter 6

Application to the
Completeness of Exponential
Systems in Convex Domains
and the Multiplicator Problem

The completeness of exponential systems in convex domains is intimately con-
nected to the multiplicator problem. Considering a special form of exponent sys-
tem is related to the study of special subharmonic functions that determine the
periodic limit set, the so-called automorphic subharmonic functions. The next
Sections 6.1, 6.2 are devoted to these problems.

6.1 The multiplicator problem

6.1.1 Let Φ ∈ A(ρ(r)) and let H(φ) be a ρ-trigonometrically convex function. A
function g ∈ A(ρ(r)) is called an H-multiplicator of Φ if the indicator hgΦ of the
product gΦ satisfies the inequality

hgΦ(φ) ≤ H(φ), ∀φ.
In some questions (see Section 6.3) we need to determine whether a given function
Φ has a multiplicator. We shall study this problem in terms of the limit set of
Φ. Define H(z) := rρH(φ), z = reiφ. Let v ∈ U [ρ] (see (3.1.2.4)). Consider the
function

m(z, v,H) := H(z) − v(z).

As will be proved in Corollary 6.1.9.3, the maximal subharmonic minorant of
m(z, v,H) exists and is continuous. The maximal subharmonic minorant of m
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(m.s.m.) belonging to U [ρ] will be denoted by GHv, while the domain of definition
of the operator GH will be denoted by DH . Though m(0, •, •) = 0, the m.s.m. of
m can differ from zero (as was remarked by A.E. Eremenko and M.L. Sodin), but
if the m.s.m. of m equals zero at zero, then it belongs to U [ρ].

Exercise 6.1.1.0 Prove this.

Exercise 6.1.1.1 Consider the function

w(z) =

{
|z| log |z|, if |z| ≤ 1;
|z| − 1, if |z| ≥ 1.

It is subharmonic and belongs to U [1]. Show that the maximal subharmonic mi-
norant of K|z| − w(z) is different from zero in 0 for every K > 0.

Theorem 6.1.1.1 ([AG(1992)]) Φ ∈ A(ρ(r)) has an H-multiplicator iff

Fr[Φ] ⊂ DH . (6.1.1.1)

Proof of necessity. Let g be a multiplicator of Φ, i.e.,

hgΦ(φ) ≤ H(φ) (6.1.1.2)

and let v ∈ Fr[Φ]. We can choose vgΦ ∈ Fr[gΦ] and vg ∈ Fr[g] such that vgΦ =
v + vg (see Theorem 3.1.2.4, fru1)).

Exercise 6.1.1.2 Prove this directly.

By definition of indicator (3.2.1.1) and (6.1.1.2) we have vgΦ(z) ≤ H(z) or
vg(z) ≤ m(z, v,H). Since vg ∈ U [ρ], v ∈ DH . �

For proving sufficiency we need the following

Theorem 6.1.1.2 The operator GH is

1. upper semicontinuous in the D′-topology, 6.1.1.5, i.e.,

(vj → v) ∧ (GHvj → w) =⇒ (w ∈ U [ρ]) ∧ (w(z) ≤ GH(z), z ∈ C);

2. invariant: (GHv)[t] = GHv[t]; (see (3.1.2.4a) for Pt ≡ tI);
3. concave:

(∀v1, v2 ∈ DH , c ∈ [0; 1]) =⇒ (vc := cv1 + (1 − c)v2 ∈ DH)

and
GH(vc) ≥ cGH(v1) + (1 − c)GH(v2).
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Proof. Let us prove 1). Suppose vj ∈ U [ρ] → v and GHvj → w. Then

GHvj ≤ H(z) − vj(z), z ∈ C. (6.1.1.3)

Applying (•)ε from (2.6.2.2) and Theorem 2.3.4.5, reg 3), we obtain

wε ≤ (H)ε(z) − (v)ε(z), z ∈ C wε(0) ≥ 0.

Passing to the limit as ε ↓ 0 we obtain by Theorem 2.6.2.3, ap2)

w(z) ≤ H(z) − v(z) = m(z,H, v), z ∈ C.

Since 0 ≤ w(0) ≤ m(0, H, v) = 0 we have w(0) = 0 and, hence, w ∈ U [ρ]. Thus
v ∈ DH and w(z) ≤ GHv(z).

Let us prove 2). Since H(z) is invariant with respect to (•)[t],

(Gv)[t] ≤ H(z) − v[t].

Hence,
(Gv)[t](z) ≤ (G(v[t]))(z), (6.1.1.4)

because G(v[t]) is the maximal subharmonic minorant. We can replace v with v[1/t]

and obtain (Gv[1/t])[t](z) ≤ Gv(z). Applying (•)[t] to the two sides of the inequality,
we obtain Gv[1/t](z) ≤ (Gv(z))[1/t]. Now we can replace 1/t with t and obtain the
reverse inequality to (6.1.1.4), which, together with (6.1.1.4), proves 2).

3). Let v1, v2 ∈ DH and c ∈ [0; 1]. One has

Gvi(z) ≤ H(z) − vi(z), i = 1, 2, ∀z.
Then

[cGv1 + (1 − c)Gv2](z) ≤ H(z) − [cv1 + (1 − c)v2](z).

Thus
[cGv1 + (1 − c)Gv2](z) ≤ G[cv1 + (1 − c)v2](z). �

Proof of sufficiency in Theorem 6.1.1.1. Assume that Fr[Φ] ⊂ DH and consider
the set

U := {(v′, v′′) : v′′ ≤ Gv′, v′ ∈ Fr[Φ]}. (6.1.1.5)

Then U is nonempty, because of (6.1.1.1), closed, because of Theorem 6.1.1.2, 1),
and invariant, because of Theorem 6.1.1.2, 2).

Every fiber U ′′ = {v′′ : v′′ ≤ Gv′} is convex because of Theorem 6.1.1.2, 3).
By Theorem 4.4.1.2 there exists u′′ ∈ U(ρ(r)) such that for the curve u := (u′, u′′),

Fr[u] = U . (6.1.1.6)

By Theorem 5.3.1.4 (Approximation Theorem) the function u′′ can be re-
placed with log |g|, where g ∈ A(ρ(r)), retaining the property (6.1.1.6).
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Let us prove that g is an H-multiplicator of Φ. Indeed, set Π := gΦ. It is
enough to prove that for every vΠ ∈ Fr[Π],

vΠ(z) ≤ H(z). (6.1.1.7)

Note that every vΠ has the form vΠ = vg + v, where (v, vg) ∈ U . Thus, because
of definitions (6.1.1.5) and (6.1.1.6), vΠ satisfies (6.1.1.7). �

Let us note that the pair (v,GHv) ∈ U because of closeness of U . Hence the
following assertion holds.

Proposition 6.1.1.3 Every Φ ∈ A(ρ) that satisfies (6.1.1.1) has a multiplicator
g ∈ A(ρ) such that

v + GHv ∈ Fr[gΦ]. (6.1.1.8)

Exercise 6.1.1.3 Check this in detail.

Although v ∈ U [ρ] is in general an upper semicontinuous function, we need

Theorem 6.1.1.4 The function GHv(z), v ∈ U [ρ], is a continuous function that is
harmonic outside the set E = {z : GHv(z) = m(z, v,H)}.

Proof. GGv(z) is continuous because of Corollary 6.1.9.3. If GHv(z0) < v(z0) and if
GHv(z) is not harmonic in a neighborhood of z0, we can make sweeping of masses
from a small disc {|z− z0| < ε} (see Theorem 2.7.2.1). The obtained subharmonic
function will be greater than GHv(z), contradicting maximality. �

6.1.2 Suppose that someH-multiplicator g = g(z,Φ, H) of the function Φ is found.
We examine the function Π = gΦ. The structure of its limit set is described by
the following statement:

Proposition 6.1.2.1 Every vΠ ∈ Fr[gΦ] can be written as vΠ = v + w1, where
v ∈ Fr[Φ] and w1 ∈ U [ρ] with the condition

w1(z) ≤ GH(z), ∀z ∈ C, (6.1.2.1)

and, conversely, for every v ∈ Fr[Φ] there exists a vg, vg(z) ≤ GHv(z), such that

v + vg ∈ Fr[gΦ].

Exercise 6.1.2.1 Prove this the same way as in Exercise 6.1.1.2.

An H-multiplicator G of the function Φ will be called ideally complementing
if it satisfies the condition

Fr[GΦ] = {vΠ = v + GHv : v ∈ Fr[Φ]}.
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If a multiplicator is ideally complementing, then equality is achieved in (6.1.2.1)
for all v ∈ Fr[Φ]. This make the multiplicator optimal in another respect. Recall
that an entire function f is of minimal type with respect to a proximate order
ρ(r), ρ(r) → ρ if (see (2.8.1.6))

σf := lim sup
r→∞

logM(r, f)r−ρ(r) = 0.

Proposition 6.1.2.2 Let G = G(•,Φ, H) be an ideally complementing H-multipli-
cator of a function Φ. Then each H-multiplicator of the function Π = GΦ is of
minimal type.

This proposition is proved in Section 6.1.3.

A function Φ is said to be ideally complementable if for each H the condition
(6.1.1.1) implies that Φ has an ideally complementing multiplicator. For instance,
if Φ is a function of completely regular growth (see Section 5.6) then it is ideally
complementable.

Exercise 6.1.2.2 Prove this.

Theorem 6.1.2.3 Every function with periodic limit set is ideally complementable.

This theorem is proved in Section 6.1.6.

Let C ⊂ Rl be an l-dimensional connected compact and let {h(φ, c) : c ∈ C}
be a set of ρ-t.c. functions that is continuous with respect to c ∈ C. For example,
c ∈ [0, 1] and h(φ, c) = ch1(φ) + (1 − c)h2(φ). The set

Uind := {v(reiφs) = rρh(φ, c) : c ∈ C} (6.1.2.2)

is the limit set of an entire function.

Exercise 6.1.2.3 Prove this using Theorem 4.3.6.1.

Such a set is called a set of indicators. Entire functions with such limit sets
can be also considered as a generalization of CRG-functions.

Theorem 6.1.2.4 Every function Φ whose limit set is a set of indicators is ideally
complementable.

This theorem is proved in Section 6.1.7.

The existence of an ideally complementing H-multiplicator depends, of
course, both on Φ ∈ A(ρ(r)) (or, more precisely, on its limit set Fr[Φ]) and on H .

Theorem 6.1.2.5 Let Φ and H be such that the condition (6.1.1.1) is satisfied.
The function Φ has an ideally complementing H-multiplicator if and only if the
operator GH is continuous on FrΦ.

This theorem is proved in Section 6.1.6.



208 Chapter 6. Application to the Completeness of Exponential Systems

Now we formulate a sufficient condition for continuity of the operator GH .
We shall say that the maximum principle for U [ρ] is valid in the domain G, (which
is, generally speaking, unbounded), if the conditions w ∈ U [ρ], w(z) = 0 for z /∈ G
imply w(z) ≡ 0.

Let us denote by Hw a region of harmonicity of w ∈ U [ρ], i.e., a region where
the conditions “w is harmonic in G” and “G ⊃ Hw” imply G = Hw.

We remark that Hw is a connected component of the open set on which w is
harmonic. Generally it is not unique.

The image of U ∈ U [ρ] will be denoted by GHU , while its closure in the
D′-topology will be denoted by clos GHU .

Theorem 6.1.2.6 Suppose for every w ∈ clos GHU and every Hw the maximum
principle for U [ρ] holds. Then GH is continuous on U .

This theorem is proved in Section 6.1.5.

In Section 6.1.8 we will construct an example of Φ and H such that the
operator GH is not continuous on Fr[Φ]. This is also an example of the function
that has no ideally complementing multiplicator.

6.1.3

Proof of Proposition 6.1.2.2. Let g be an ideally complementing multiplicator of
the function Π = GΦ. We write

θ(z) := (gGΦ)(z). (6.1.3.1)

Let vg ∈ Fr[g]. Let us choose tj → ∞ such that:

(log |g|)tj → vg; (log |Π|)tj → vΠ ∈ Fr[Π]; (log |θ|)tj → vθ ∈ Fr[θ].

It follows from (6.1.3.1) that vθ = vg + vΠ. Since g is a multiplicator of Π, we have

vθ(z) = vg(z) + vΠ(z) ≤ H(z). (6.1.3.2)

Since G is an ideally complementing multiplicator, vΠ = v+ GHv. So for all z ∈ C

(6.1.3.2) implies
(vg + GHv)(z) ≤ (H − v)(z).

Since GHv is the maximal subharmonic minorant, vg(z) ≤ 0 and hence vg(z) ≡ 0.
Thus (see (3.2.1.1)) we have hg(φ) ≡ 0 and therefore

σg = max
0≤φ≤2π

hg(φ) = 0. �

6.1.4 In order to prove Theorem 6.1.2.6 we need a number of auxiliary statements.

Lemma 6.1.4.1 Let the maximum principle be valid in G for U [ρ] and for some
continuous functions w1, w ∈ U [ρ] satisfy:

a) w is harmonic in G;
b) w1(z) = w(z) outside of G.
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Then
w1(z) ≤ w(z), z ∈ G. (6.1.4.1)

Proof. We set

w0(z) :=

{
(w1 − w)+(z), z ∈ G,

0, z /∈ G.

This function is continuous in C and, evidently, subharmonic both in G and in
C \G. Since w0(z) ≥ 0, the inequality for the mean values

0 = w0(z) ≤ 1
2π

2π∫
0

w0(z + εreiφ)dφ, z ∈ ∂G,

implies the subharmonicity on ∂G. Since G satisfies the maximum principle for
U [ρ], we have w0 ≡ 0, which is equivalent to (6.1.4.1). �

Now we shall dwell on some properties of maximal subharmonic minorants
and, in particular, of w = GHv. Let

Ev := {z ∈ C : GHv(z) = m(z, v,H)}. (6.1.4.2)

We remark that m(z, v,H) is a δ-subharmonic function in C whose charge will be
denoted by ν(•, v), its positive and negative parts will be denoted by ν+ and ν−.

Let us denote by μH the measure of H(z). It is decomposed into the product
of measures (see Section 3.2 and Proposition 5.6.3.1)

μH = ΔH ⊗ ρrρ−1dr, (6.1.4.3)

where ΔH is the measure on the unit circle and ρrρ−1dr is the measure on the
ray. It is obvious that

ν+(•, v) ≤ μH(•). (6.1.4.4)

We shall denote the mass distribution of w ∈ U [ρ] by μw.
The modulus of continuity of w (if w is continuous) will be denoted by

ωw(z, h), z ∈ C, h > 0.

The following lemma lists various properties of w ∈ GHU, U ⊂ U [ρ] which
will be useful in the sequel:

Lemma 6.1.4.2 Let w ∈ GHU . Then

1. w ∈ U [ρ, σ] where

σ = 4 · 2ρ[max{H(eiφ) : φ ∈ [0, 2π]} + 2σ1],

σ1 = max{v(z)|z|−ρ : z ∈ C, v ∈ U};
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2. the charge restriction ν(•, v)|Ev to Ev is nonnegative, i.e.,

ν(•, v)|Ev = ν+(•, v)|Ev ;

3. outside Ev the function w is harmonic, i.e.,

μw|C\Ev
= 0;

4. the measure μw is bounded from above by ν+(•, v), i.e.,

μw ≤ ν+(•, v);
5. GHU is equicontinuous on each compact set, i.e.,

ωw(z, h) ≤ C(R, σ, ρ)
√
h log(1/h), |z| ≤ R,

where C(R, σ, ρ) is independent of w ∈ GHU .

Proof. Let us prove property 1. We have

T (r, w) :=
1
2π

2π∫
0

w+(reiφ)dφ

≤ 1
2π

[
rρ

2π∫
0

H+(eiφ)dφ +

2π∫
0

v+(reiφ)dφ +

2π∫
0

v−(reiφ)dφ
]
.

Since v(0) = 0, we have

2π∫
0

v−(reiφ)dφ ≤
2π∫
0

v+(reiφ)dφ.

Therefore
T (r, w) ≤ [max{H(eiφ) : φ ∈ [0, 2φ]} + 2σ1]rρ.

It is known (see Theorem 2.8.2.3, (2.8.2.5)) that M(r) ≤ 4T (2r). So we conclude
that

w(z) ≤ 4 · 2ρ[max{H(eiφ;φ ∈ [0, 2π]} + 2σ1]|z|ρ = σ|z|ρ.
Let us prove property 2. To this end we shall use the following theorem (Grishin’s
Lemma) [Gr].

Theorem A.F.G Let g be a nonnegative δ-subharmonic function, and let νg be its
charge. Then the restriction νg|E to the set E = {z : g(z) = 0} is a measure.

Applying this theorem to the function g := m(z, v,H) − GHv(z), we get

ν(•, v)|Ev ≥ μw|Ev , (6.1.4.5)

hence, we obtain property 2.
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Let us prove property 3. Since w and v are upper semicontinuous, and H is
continuous (see Theorem 3.2.5.5), the set {z : (w + v)(z) −H(z) < 0} is open.

Let us take a neighborhood of an arbitrary point of this set and replace the
function w within it with the Poisson integral constructed using this function,
i.e., let us sweep out the mass from this neighborhood. The subharmonic function
obtained would be strictly greater than the initial one, if the latter were not
harmonic. This means that the initial w was not the maximal minorant. We have
arrived at a contradiction, which proves property 3.

Property 4 immediately follows from property 3 and (6.1.4.5).
In order to prove property 5 we shall need an auxiliary statement which will

be stated as a number of lemmas. Let

P (z, φ,R) :=
1
2π

R2 − |z|2
|z −Reiφ|

be the Poisson kernel in the disc KR = {z : |z| < R}.
Below, C′s with indices will denote constants.

Lemma 6.1.4.3 In the disc KR/2, we have

| gradz P (z, φ,R)| ≤ C1(R),

where C1(R) depends only on R.

Exercise 6.1.4.1 Prove this.

We shall introduce the notation for the Green function for the Laplace oper-
ator in the disc KR:

G(z, ζ, R) := log
∣∣∣∣ R2 − ζz

R(z − ζ)

∣∣∣∣ .
The disc {ζ : |ζ − z| < t} will be denoted by Kz,t.

Lemma 6.1.4.4 Let z ∈ KR/2 \Kζ,
√

h. Then for a small h,

| gradz G(z, ζ, r)| ≤ C2(R)/
√
h.

Exercise 6.1.4.2 Prove this.

Let us write μ(z, t) := μ(Kz,t).

Lemma 6.1.4.5 For z ∈ KR/2, 0 < t < R/10, we have

μH(z, t) ≤ C3(σ,R)t.



212 Chapter 6. Application to the Completeness of Exponential Systems

Proof. Applying Theorem 2.6.5.1 (Jensen-Privalov) to the function H(z), we ob-
tain

MH = max{H(eiφ : φ ∈ [0; 2π]} = ΔH(T)/ρ

where T is the unit circle.
Now

μ(z, t) ≤ ΔH(T)

|z|+t∫
|z|−t

rρ−1dr ≤ ρ2MHR
ρ−1t ≤ σC(ρ)Rρ−1t

where C(ρ) is a constant depending only on ρ. This proves the lemma. �

Lemma 6.1.4.6 Let h < 1 and suppose that a monotonic function μ(t) satisfies the
condition

μ(t) < ct. (6.1.4.6)

Then √
h∫

0

log(1/t)μ(dt) ≤ (3/2)c
√
h log h.

Exercise 6.1.4.3 Prove this by integrating by parts and using (6.1.4.6).

Lemma 6.1.4.7 Let z ∈ KR/2 and ζ ∈ KR. Then

| log |(R2 − ζz/R|| ≤ C4(R).

Exercise 6.1.4.4 Prove this.

Now we pass to the proof of assertion 5 from Lemma 6.1.4.2. According to
the F. Riesz theorem (Theorem 2.6.4.3) we represent w in the circle as

w(z) = H(z, w) −
∫

KR

G(z, ζ, R)μw(dξdη), ζ = ξ + iη, (6.1.4.7)

where

H(z, w) =
1
2π

2π∫
0

P (z, φ,R)w(Reiφ)dφ.

It follows from Lemma 6.1.4.3 and 1 of Lemma 6.1.4.2 that

| gradz H(z, w)| ≤ C1(R)
1
2π

2π∫
0

|w|(Reiφ)dφ ≤ C1(R)2σRρ. (6.1.4.8)
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We split the integral in (6.1.4.7) into three terms:

ψ1(z, h) :=
∫

Kr\Kz0,
√

h

G(z, ζ, R)μw(dξdη),

ψ2(z, h) =
∫

Kz0,
√

h

log |(R2 − zζ)/R|μ(dξdη),

ψ3(z, h) =
∫

Kz0,
√

h

log |ζ − z|μ(dξdη),

where z0 is an arbitrary fixed point in KR/2.
Combining property 4 and inequality (6.1.4.4) we have

μw(E) ≤ μH(E), ∀E ⊂ KR. (6.1.4.9)

For all z ∈ Kz0,
√

h/2 Lemma 6.1.4.4 yields

| gradψ1(z, h)| ≤ C2(r)σRρ/
√
h. (6.1.4.10)

Combining Lemmas 6.1.4.5 and 6.1.4.7 with inequality (6.1.4.9), we get

|ψ2(z, h)| ≤ C4(R)C3(σ,R)
√
h. (6.1.4.11)

Further, from Lemmas 6.1.4.5 and 6.1.4.6, taking into account the fact that log |ζ−
z| < 0, we obtain

|ψ3(z, h)| ≤ (3/2)C3(σ,R)
√
h log h. (6.1.4.12)

Now consider the difference

Δw := w(z0 + Δz) − w(z0), |Δz| < h <
√
h/2.

It can be represented as

Δw = Δψ1 + Δψ2 + Δψ3 + ΔH(z, w). (6.1.4.13)

Choosing h small enough, one may assume that z0 + Δz ∈ K√h/2,z0
. Thus, ac-

cording to (6.1.4.11),

|Δψ2(z0, h)| ≤ |ψ2(z0, h)| + |ψ2(z0 + h, h)| ≤ C6(σ,R)
√
h. (6.1.4.14)

Likewise (6.1.4.12) yields

|Δψ3(z0, h)| ≤ |ψ3(z0, h)| + |ψ3(z0 + h, h)| ≤ C7(σ,R)
√
h log h. (6.1.4.15)

Finally, from (6.1.4.10) and (6.1.4.8), respectively, we obtain

|Δψ1| ≤ C3(σ,R)
√
h, |ΔH(z0, w)| ≤ C8(σ,R)h. (6.1.4.16)

Substituting (6.1.4.14)–(6.1.4.16) into (6.1.4.13), we obtain relation 5 of Lemma
6.1.4.2. �

Thus we have completed the proof of Lemma 6.1.4.2.
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6.1.5 In this item we are going to prove Theorem 6.1.2.6. However, before that,
we prove

Lemma 6.1.5.1 Let wn = GHvn, vn
D′→ v and wn

D′→ w∞. Set

E∞ := {z : w∞(z) = H(z) − v(z)}.
Then w∞ is harmonic in C \ E∞.

Let us note that w∞, in general, is not the maximal subharmonic minorant
because the operator GH can be only upper semicontinuous, as will be demon-
strated by example in Section 6.1.8. However, w∞ is a minorant of H − v because
of Theorem 6.1.1.2, 1.

Proof. Let z0 /∈ E∞. Then there exists a δ > 0 such that

w∞(z0) + v(z0) ≤ H(z0) − 2δ.

Since the function b(z) := w∞+ v(z) −H(z) is upper semicontinuous, there exists
an ε = ε(δ) such that b(z) < −δ for all z ∈ {|z − z0| < 2ε}.

Let (•)ε be a smoothing operator from (2.6.2.3). If wn
D′→ w then (wn)ε → wε

uniformly on every compact set (Theorem 2.3.4.5, reg3) and for every subharmonic
function v the sequence vε(z) ↓ v(z),when ε ↓ 0 (Theorem 2.6.2.3, ap2).

Then (b)ε(z) < −δ, for |z− z0| < ε or (w∞)ε(z)+ (v)ε(z) ≤ (H)ε(z) − δ. The
function H is continuous, hence uniformly continuous on the circle {z : |z − z0| ≤
ε}. Thus we can replace (H)ε in the last inequality with H and δ with δ/2. So, we
have

(w∞)ε(z) + vε(z) ≤ H(z) − δ/2, |z − z0| < ε. (6.1.5.1)

Since (•)ε is monotonic on subharmonic functions, we can replace ε in (6.1.5.1)
with any ε1 < ε. So we obtain

(w∞)ε1(z) + vε1(z) ≤ H(z) − δ/2, |z − z0| < ε. (6.1.5.2)

Since (wn)ε1 → (w∞)ε1 uniformly in the disc |z−z0| ≤ ε we can replace in (6.1.5.2)
w∞ with wn and respectively v with vn, changing δ/2 with δ/4. After that we can
pass to the limit as ε1 ↓ 0 for every sufficiently large n. So we obtain

wn(z) + vn(z) ≤ H(z) − δ/4, |z − z0| < ε.

It means that the disc {|z − z0| < ε} ⊂ C \Evn . Because of Lemma 6.1.4.2, 3, wn

is harmonic in this disc for all large n. Thus w∞ is also harmonic, as the D′-limit
of wn. �

Proof of Theorem 6.1.2.6. Let vn
D′→ v. Then the set wn = GHvn is equicontin-

uous by Lemma 6.1.4.2, 5, and we can choose from it a subsequence uniformly
converging to a continuous function w∞. Let w = GHv, E = Ew, E∞ being defined
in Lemma 6.1.5.1.
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Since
(w∞ + v)(z) ≤ H(z), (w + v)(z) ≤ H(z), ∀z ∈ C

and v is upper semicontinuous, whereas w and H are continuous, the sets E and
E∞ are closed.

Since w∞(z) ≤ H(z) − v(z) we have

w∞(z) ≤ w(z), ∀z ∈ C, (6.1.5.3)

and therefore E∞ ⊂ E.
The function w is subharmonic in C \ E∞, and w∞ is harmonic in C \ E∞

by Lemma 6.1.5.1. They take the same values on E∞. As the maximum principle
holds in Hw∞ by assumption we have, according to Lemma 6.1.4.1 the inequality

w(z) ≤ w∞(z), ∀z ∈ C. (6.1.5.4)

The inequalities (6.1.5.4) and (6.1.5.3) imply that w(z) = w∞(z), i.e., GH is con-
tinuous. �

6.1.6

Proof of Theorem 6.1.2.5. Sufficiency. We exploit the following criterion for exis-
tence of a limit set that follows from Theorems 4.2.1.1, 4.2.1.2, 4.3.1.2 and Corol-
lary 5.3.1.5:

Proposition 6.1.6.1 In order that U ⊂ U [ρ] be a limit set of an entire function
f ∈ A(ρ(r)) it is necessary and sufficient that there exists a piecewise continuous,
ω-dense in U asymptotically dynamical pseudo-trajectory (a.d.p.t) v(•|t).

Exercise 6.1.6.1 Check this.

Let vΦ(•|t) be an a.d.p.t. corresponding to FrΦ. Consider the pseudo-trajec-
tory vg(•|t) := GHvΦ(•|t). It exists because of (6.1.1.1). Prove that this pseudo-
trajectory is asymptotically dynamical, i.e., (4.3.1.1) is fulfilled. Recall that
Tτ• = (•)[eτ ].

Using the property of invariance of GH (Theorem 6.1.1.2, 2) we have

Tτvg(•|et) − vg(•|et+τ ) = GH [TτvΦ(•|et) − vΦ(•|et+τ )].

Thus (4.3.1.1) is fulfilled because of continuity of GH . Also the condition of ω-
denseness (4.3.1.4) is fulfilled and

{w ∈ U [ρ] : (∃tj → ∞) w = D′ − lim vg(•|etj )} = GH(FrΦ).

The corresponding entire function g ∈ A(ρ(r)) with the limit set Ug = GH(FrΦ)
is an ideally complementing multiplicator, because

Fr[gΦ] = {v + GHv : v ∈ Fr[Φ]}.
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Exercise 6.1.6.2 Check this.

Necessity. Let G be an ideally complementing multiplicator of Φ. Let us
show that GH is continuous on Fr[Φ]. Assume this is not the case, i.e., there exists
a sequence vj → v such that GHvj → W and W �= GHv. Since the limit set
Fr[GΦ] is closed, we have vj + GHvj → v + GHv, vj ∈ Fr[Φ]. On the other hand,
vj + GHvj → v +W . Thus, W = GHv, which is a contradiction. �

Proof of Theorem 6.1.2.3. Let Fr[Φ] be a periodic limit set, that is

Fr[Φ] = C(v) = {v[t] : 1 ≤ t ≤ eP },

where v ∈ U [ρ]. We shall show that GH is continuous on U [ρ]. By Theorem 6.1.1.2,
2) the equality (GHv)[t] = GHv[t] holds. Since the operation (•)[t] is continuous for
all t, GH is continuous on C(v). �

6.1.7 Now we are going to prove Theorem 6.1.2.4. However, we need some prepa-
ration.

Let h(φ), φ ∈ [0, 2π) be a 2π-periodic ρ-t.c.function, satisfying the condition

max
φ∈[0,2π]

h(φ) = σ.

We denote this class as TC[ρ, σ] and write

TC[ρ] :=
⋃
σ>0

TC[ρ, σ].

The class of functions w = h1 − h2 where h1, h2 ∈ TC[ρ, σ] will be denoted as
δTC[ρ, σ] and we will also write

δTC[ρ] :=
⋃
σ>0

δTC[ρ, σ].

From properties of a ρ-t.c.function (see Sections 3.2.3–3.2.5) we can obtain the
following properties of δ − ρ-t.c.functions:

Proposition 6.1.7.1 For w ∈ δTC[ρ] the following holds:

1. w′(φ − 0) and w′(φ + 0) exist at each point and are bounded in [0; 2π];
2. w′(φ − 0) = w′(φ+ 0) for all φ ∈ [0; 2π], except, perhaps, a countable set;
3. the charge Δw generated by the function

Δw := w′(φ) + ρ2

∫ φ

w(θ)dθ
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has bounded variation |Δw|; the variation |Δw|(α, β) of the charge on the in-
terval (α;β) and the variation of the charge generated by derivative |w′|(α;β)
on the same interval satisfy the relation

|Δw|(α, β) ≥ |w′|(α;β) + ρ2(β − α).

4. For all w ∈ δTC[ρ, σ],

max(|w′(φ − 0)|, |w′(φ + 0)|) ≤ C(ρ, σ), φ ∈ [0; 2π];

5. if rρwn
D′→ rρw and wn ∈ δTC[ρ, σ], then wn → w uniformly on [0; 2π].

Exercise 6.1.7.1 Prove this using properties of ρ-t.c.functions.

We also need a technical

Lemma 6.1.7.2 Let Mn(φ) be a sequence of functions that satisfy the conditions:

1. Mn ≥ 0; Mn(0) = 0;
2. Mn converges uniformly to M∞(φ) ≥ A sin ρφ, A > 0;
3. M ′

n(φ − 0), M ′
n(φ+ 0) exist at every point, and they coincide almost every-

where;
4. there exists a sequence φn ↓ 0 such that for each arbitrarily small ε > 0

and arbitrarily large n0 ∈ N there exists n > n0 for which the inequality
Mn(φn) < εφn holds.

Then there exists a sequence (ζn, ηn) of disjoint intervals and a subsequence Mkn

such that
M ′

kn
(ζn) −M ′

kn
(ηn) ≥ Aρ/2. (6.1.7.1)

Proof. Set ε0 = 1/2, η0 = π/4 and choose the required sequence recurrently.
Let εn, ηn, ζn be already chosen. Set εn+1 = εn/2, find φn+1 < ηn and choose
k0 = k0(n) so that for k > k0,

Mk(φn+1) −Aρφn+1 > −εn+1φn+1.

This is possible because of condition 2 and sinρφ ∼ ρφ, φ → 0. So we have

Mk(φn+1)
φn+1

> Aρ− εn+1. (6.1.7.2)

Now, choose ψn+1 < φn+1 and kn+1 > k0 so that

Mkn+1(ψn+1) < εn+1ψn+1. (6.1.7.3)

This is possible by condition 4. Thus for small εn+1 from (6.1.7.2) and (6.1.7.3)
we obtain

Mkn+1(φn+1) −Mkn+1(ψn+1)
φn+1 − ψn+1

> (2/3)Aρ. (6.1.7.4)
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On the other hand
Mkn+1(ψn+1) −Mkn+1(0)

ψn+1 − 0
< εn+1. (6.1.7.5)

On the interval (ψn+1, φn+1) there is a point ηn+1 where the derivative exists and
the inequality

M ′
kn+1

(ηn+1) ≥ Mkn+1(φn+1) −Mkn+1(ψn+1)
φn+1 − ψn+1

(6.1.7.6)

is valid. Also there is a point ζn+1 ∈ (0, ψn+1) where the derivative exists and the
inequality

M ′
kn+1

(ζn+1) ≤ Mkn+1(ψn+1) −Mkn+1(0)
ψn+1 − 0

(6.1.7.7)

is valid.
From the inequalities (6.1.7.4)–(6.1.7.7) we obtain (6.1.7.1). �

Proof of Theorem 6.1.2.4. Denote by ĜHh the maximal ρ-t.c.minorant of
H(eiφ) − h(φ). It follows from Theorem 6.1.1.2, 2 that

GH(rρh(φ))(reiφ) = rρĜHh(φ).

Exercise 6.1.7.2 Prove this.

So taking in consideration Proposition 6.1.7.1, 5, one must prove

Proposition 6.1.7.3 The operator ĜH is continuous on the set

Ûind := {h(φ, c) : c ∈ C}

in the uniform topology.

Proof. Let hn → h, hn, h ∈ Ûind. Set ŵn = ĜHhn, ŵ = ĜHh, ŵ∞ = limn→∞ ŵn.
We set also M̂n = H−hn − ŵn, M̂∞ = H−h− ŵ∞, M̂ = H−h− ŵ. Let (αn;βn)
be a maximum interval where M̂n(φ) > 0. We shall show that βn − αn ≤ π/ρ.
Indeed, for a fixed n let us consider the function

Ŵn := ŵn + εnL(φ− (αn + βn)/2)

where

L(φ) =

{
cos |φ|, φ ∈ (−π/2ρ;π/2ρ);
0, φ ∈ [−π;π] \ (−π/2ρ;π/2ρ),

and εn is small enough. If βn − αn > π/ρ, then Ŵn is also a ρ-t.c.minorant of
H − hn, i.e., ŵn is not maximal.
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If βn − αn = π/ρ, then, to ensure that ŵn is a maximal minorant, at least
one of the conditions

lim inf
φ→αn+0

M̂n(φ)
φ− αn

= 0, lim inf
φ→βn−0

M̂n(φ)
βn − φ

= 0 (6.1.7.8)

must be satisfied.
Let us choose (and preserve the previous notation) a subsequence M̂n(φ) for

which αn → α, and βn → β.
If β − α < π/ρ, then the maximum principle for ρ-t.c.functions is valid.

Repeating arguments of proof of Theorem 6.1.2.6, we obtain ŵ∞ = ŵ for all φ,
which proves Proposition 6.1.7.3 for the case considered.

Exercise 6.1.7.3 Repeat them.

Consider the case when β −α = π/ρ. Set q(φ) = (w−w∞)(φ). The function
q is ρ-trigonometric on the interval (α;β) since ŵ and ŵ∞ are ρ-trigonometric,
i.e., have the form A sin ρφ+B cos ρφ.

Exercise 6.1.7.4 Explain this.

Besides, we have q ≥ 0 and q(α) = q(β) = 0. It is easy to see that q has the
form

q(φ) = A sinρ(φ − α), A > 0. (6.1.7.9)

Exercise 6.1.7.5 Prove this.

Since M̂(φ) ≥ 0, we have M̂∞(φ) = M̂(φ)+(ŵ−ŵ∞)(φ) ≥ (ŵ−ŵ∞)(φ), ∀φ,
whence

M̂∞(φ) ≥ A sin ρ(φ− α), A > 0. (6.1.7.10)

Since βn − αn ≤ π/ρ, the segment [α, β] contains the infinite sequence αn or βn.
Let us single out a subsequence, let it be, for example, αn → α+ 0, αn ∈ [α;β].

Consider the sequence Mn(φ) = M̂n(φ − a). From the definition of Mn and
from relation (6.1.7.10) it follows that conditions 1 and 2 of Lemma 6.1.7.2 are
fulfilled. Condition 3 is fulfilled because of property 1 of Lemma 6.1.7.2. Further, if
αn �≡ α, then condition 4 of Lemma 6.1.7.2 is trivially true,since Mn(αn −α) = 0;
otherwise, if αn ≡ α, condition 4 follows from (6.1.7.8).

Applying Lemma 6.1.7.2, we obtain the union of intervals satisfying (6.1.7.7).
The equality H(φ) = M̂n −hn − ŵn yields the following inequality for the measure
ΔH :ΔH((ηn; ζn)) ≥ Aρ/2. Summing this inequality and taking into account the
fact that the intervals do not intersect, we obtain ΔH(∪n(ηn, ζn)) = ∞, which is
impossible. So, Proposition 6.1.7.3 is proved. �

Hence, Theorem 6.1.2.4 is proved. �



220 Chapter 6. Application to the Completeness of Exponential Systems

6.1.8 In this item we show an example of H and an entire function without an
ideally complementing H-multiplicator.

According to Theorem 6.1.2.5, to construct such an example it is sufficient
to construct a limit set on which GH is not continuous.

We set

L(η) =

{
cos |η|, η ∈ (−π/2ρ;π/2ρ);
0, η ∈ [−π;π] \ (−π/2ρ;π/2ρ).

Let us define X ∈ C∞ so that X(ξ) = 1 for ξ < 0 and X = 0 for ξ > α.
We set

κ := (1/ρ2) max
(−∞;+∞)

[2ρX ′ +X ′′](ξ), H0(η) := L(η) + κ. (6.1.8.1)

We also set
v(ζ, c) := [H0 −X(ξ − c)L(η)]eρξ, ζ = ξ + iη,

where H0 and L have been periodically extended from the interval [−π;π] to
(−∞,+∞).

As H(z) we take
H(z) := H0(φ)rρ.

Lemma 6.1.8.1 We have

v(log z, c) ∈ U [ρ, σ], σ = 1 + κ, (6.1.8.2)
GHv(•, c) ≡ 0, (6.1.8.3)

lim
c→∞ v(log z, c) = κrρ (6.1.8.4)

uniformly with respect to z ∈ K � C, and

GH(κrρ) = L(φ)rρ. (6.1.8.5)

Proof. For the Laplace operators in ζ and z it is true that Δζ = Δz/|ζ|2. Let us
check that v(ζ, c) is subharmonic in ζ. We have

Δζv(ζ, c) = {[1−X(ξ−c)](L′′+ρ2L)(η)+[ρ2κ−L(ξ)[X ′′(x−c)+2ρX ′(x−c)]}eρξ.

Exercise 6.1.8.1 Check this computation.

Since X(ξ) ≤ 1 and L(η) is ρ-t.c.,

[1 −X(ξ − c)](L′′ + ρ2L)(η) ≥ 0.

Since L(ξ) ≤ 1 and [X ′′(x− c) + 2ρX ′(x− c)] ≤ κρ2 we have

[ρ2κ− L(ξ)[X ′′(x− c) + 2ρX ′(x − c)] ≥ 0.

Thus v(log z, c) is subharmonic.
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Exercise 6.1.8.2 Prove that v(log z, c) ∈ U [ρ, σ] for σ = 1 + κ.

Let us prove (6.1.8.3). We have

H(z) − v(log z, c) = X(log r − c)L(φ)rρ.

Since X = 0 for r > ec+α, the maximal subharmonic minorant of H − v is zero by
the maximum principle.

Relation (6.1.8.4) is obvious, since X(log r − c) converges to 1 uniformly on
every disc {|z| ≤ R}. Relation 6.1.8.5 follows from the equality H(z) − κrρ =
L(φ)rρ, since L(φ)rρ ∈ U [ρ]. �

Now we pass to the construction of the example. Examine the set

U1 := clos{v(log z, c) : c ∈ [0; ∞)}.

It contains the function

D′ − lim
c→∞ v(log z, c) = κrρ.

Let us consider the minimal convex (•)[t]-invariant set U containing U1. The set
is contained in U [ρ, 1 + κ]. It is a limit set for a certain entire function Φ. Let us
show that GH is not continuous on Fr[Φ]. We take an arbitrary sequence cj → ∞
and set vj(z) := v(log z, cj) ∈ U . Now D′ − limj→∞ vj = κrρ by (6.1.8.4) and
GHvj(z) = 0, so D′ − limj→∞ GHvj = 0 but

GH(lim vj) = GH(κrρ) = L(φ)rρ �≡ 0

which shows the lack of continuity.
By virtue of Theorem 6.1.2.5, Φ is not ideally complementable.

6.1.9 Here we prove existence and continuity of the maximal subharmonic mino-
rant for some classes of functions m(z) .

Theorem 6.1.9.1 Let m(z) be a continuous function such that the set of subhar-
monic minorants is nonempty. Then the maximal subharmonic minorant of m
exists and is continuous.

Proof. The set of subharmonic minorants is nonempty and partially ordered.
Indeed, for every subset {uα, α ∈ A} of subharmonic minorants there exists uA =
(sup{uα : α ∈ A})∗ which is subharmonic and is a minorant of m, because m is
continuous.

Exercise 6.1.9.1 Explain this in detail.
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Thus there exists a uniquely maximal element m.s.m.(z,m), which is a sub-
harmonic minorant of m.

Let us prove that it is continuous at every point z0. Since m.s.m.(z,m) is
upper semicontinuous,

m.s.m.(z,m) > m.s.m.(z0,m) − ε

for |z − z0| < δ for arbitrarily small ε and corresponding δ = δ(ε). So we need to
prove the inequality

m.s.m.(z,m) < m.s.m.(z0,m) + ε

for arbitrarily small ε and corresponding δ = δ(ε).
Perform sweeping m.s.m.(z,m) from the disc |z−z0| < δ such that the result

u(z, δ) satisfies the inequality

m.s.m.(z,m) < u(z, δ) < m.s.m.(z,m) + ε < m(z) + ε.

Thus u(z, δ) − ε < m(z). Hence m.s.m.(z,m) > u(z, δ) − ε for all z. Since u(z, δ)
is continuous, u(z, δ) > u(z0, δ) − ε in the disc {|z − z0| < δ1}. So m.s.m.(z,m) >
u(z0, δ) − ε > m.s.m.(z0,m) − ε. �

Theorem 6.1.9.2 Let m = m1 − m2, where m1,m2 are subharmonic functions.
Then the maximal subharmonic minorant of m exists. If m1 is continuous, then
the maximal subharmonic minorant is continuous.

Proof. Set Mε(z,m) := Mε(z,m1) − Mε(z,m2), where Mε(z,mi), i = 1, 2 is
defined by (2.6.1.1). Since Mε(z,m) is continuous (see Theorem 2.6.2.3 (Smooth
approximation)), there exists m.s.m.(z,Mε(z,m)). We have

u(z,m) := lim sup
ε→0

m.s.m.(z,Mε(•,m)) ≤ lim
ε→0

Mε(z,m) = m1 −m2(z) = m(z).

Now we prove that the upper semicontinuous regularization u∗(z,m) also satisfies
the inequality u∗(z,m) ≤ m(z). Indeed, m2 + u(z,m) ≤ m1(z). Hence,

Mε(z,m2) + Mε(z, u(•,m)) ≤ Mε(z,m1).

Passing to the limit we obtain three subharmonic functions and inequality

m2(z) + u∗(z,m) ≤ m1(z).

We prove that u∗(z,m) is the m.s.m.(z,m). If not, there would exist a subharmonic
function u1 which exceeds u∗(z,m) on a set of positive measure (otherwise they
coincide); thus we would have for some z and ε,

u∗(z,m) < Mε(z, u1) ≤ m.s.m.(z,Mε(z,m)).

This contradicts the definition of u∗(z,m).
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Now suppose that m1 is continuous at a point z0. From Theorem 2.6.5.1
(Jensen-Privalov) we obtain that it is equivalent to∫ ε

0

μm1({z : |z − z0| < t})
t

dt = o(1), ε → 0.

Similarly to the proof of Theorem 6.1.4.2, 5, we obtain

μm.s.m.(z,m) ≤ μm1 .

Hence m.s.m.(z,m) is also continuous. �

Exercise 6.1.9.2 Prove continuity in detail.

Corollary 6.1.9.3 For m = m(z, v,H) the function GHv(z) := m.s.m.(z,m) exists
and is continuous.

Exercise 6.1.9.3 Prove Corollary 6.1.9.3.

6.2 A generalization of ρ-trigonometric convexity

6.2.1 One of the important and useful kinds of limit sets is periodic limit sets.
They are determined by one subharmonic function v ∈ U [ρ] that satisfies the
condition

v(Tz) = T ρv(z), z ∈ C. (6.2.1.1)

Such a function is called automorphic. They generate the class of so-called Lρ-
subfunctions, that is a generalization of ρ-trigonometrically convex functions. In
this part we are going to review properties of such functions from different points
of view that will be useful for applications (see [ADP]).

In connection with property (6.2.1.1) it is natural to consider so-called T -
homogeneous domains in C, i.e., such domains G that satisfy the condition {Tz :
z ∈ G} = G or shortly TG = G. As we can see they are invariant with respect to
dilation by T . For example, every component of an open set of harmonicity of an
automorphic function is a T -homogeneous domain.

Let v satisfy (6.2.1.1). Then the function

q(z) := v(ez)e−ρx (6.2.1.2)

is a 2π periodic function in y and P -periodic in x, where P = logT .
The function q can be considered as a function on a torus T2

P , obtained by
identifying the opposite sides of the rectangle Π = (0, T ) × (−π, π).

The homology group of T2
P is nontrivial, and generated by the cycles γx, γy,

where γx = T2
P ∩ {y = 0}, γy = T2

P ∩ {x = 0}.
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Let π be the covering map of C onto T2
P , then φ = π ◦ log is a well-defined

covering map of C\{0} onto T2
P , where the group of deck transformations is given

by the dilations by Tm for m ∈ Z. So if G is a given T -homogeneous domain, then

D = π ◦ logG = φ(G) (6.2.1.3)

is a domain in T2
P . On the other hand, not every domain in T2

P has a T -homogen-
eous domain as its preimage under φ. The preimage φ−1(D) under φ is a possibly
disconnected set which is invariant under dilations by Tm for m ∈ Z. An intrinsic
description is given by the next proposition.

Proposition 6.2.1.1 Let γ be a closed curve in a domain D ⊂ T2
P that is homologous

in T2
P to a cycle γ = nxγx + nyγy, nx, ny ∈ Z.

1. If nx = 0 for every such γ in D, then

φ−1(D) = ∪∞j=−∞Gj ,

where Gj = T jG0, G0 is an arbitrary connected component of φ−1(D), and
Gj ∩Gl = ∅ for j �= l.

2. If there exists a curve γ as above with nx �= 0, then

φ−1(D) = ∪k−1
q=0Gq,

where k = min |nx| with the minimum taken over all such curves γ; G0

is an arbitrary component of φ−1(D); Gj , j = 0, 1, . . . , k − 1, are disjoint
T k-homogeneous domains, and for every m ∈ Z, TmG0 = Gq, provided
m = lk + q, for some q ∈ Z, 0 ≤ q ≤ k − 1, l ∈ Z.

We call domains as in part 2 of Proposition 6.2.1.1 connected on spirals. In
particular, this proposition shows that for every D connected on spirals, we can
find a connected T k-homogeneous domain that relates to D by (6.2.1.3).

Let us give some examples. The domain D′ = T2
P ∩ {|x−P/2| < P/4} is not

connected on spirals, whereas D′′ = T2
P ∩ {|y| < π/4} is. It follows that D′ ∩D′′

is not connected on spirals whereas D′ ∪D′′ is.
The situation can be more complicated. Set

x′(x, y, α) := x cosα+ y sinα;
y′(x, y, α) := −x sinα+ y cosα; 0 ≤ α < π/4;

P1 := (1/2) |x′(P, 2π,−α)|;
P2 := (1/2) |y′(P, 2π,−α)|.

Then R′ = {z′ = x′ + i′y′ : −P1 < x′ < P1; −P2 < y′ < P2} is a fundamental
rectangle for T2

P in the corresponding coordinates. Set f(y′) := (P2 − y′)−1 −
(y′ + P2)−1 and D0,0 := {z′ : −P2 < y′ < P2; f(y′) < x′ < f(y′) + d} where
0 < d < P1. Then the domains Dl,m := D0,0 + 2P1l + 2P2mi

′, l,m ∈ Z are
disjoint, and their union D determines a domain D̂ ⊂ T2

P . This D̂ is determined
completely by the intersection of D with the rectangle R = (0, P ) × (−π, π). The
domain D̂ is not connected on spirals.
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One more example. Consider the family of lines Ll := {z = x + iy : y =
π/(kP )x+ lπ/k, x ∈ R}, l ∈ Z. It determines a closed curve (spiral) γ on T2

P with
n1 = k. The open set Dk = {z : |z − ζ| < ε, ζ ∈ Ll, l ∈ Z}, 0 < ε < P/2

√
π2 + k2,

determines a domain D̂k on T2
P that is connected on spirals, and such that φ−1(D̂k)

consists of k components, every one of them T k-homogeneous.
Since the function v in (6.2.1.1) is subharmonic, the function q of (6.2.1.2)

is upper semicontinuous and in the D′ topology on T2
P satisfies the inequality

Lρq ≥ 0, where

Lρ := Δ + 2ρ
∂

∂x
+ ρ2. (6.2.1.4)

Such functions q are called subfunctions with respect to Lρ, or Lρ-subfunctions.
Lρq is a positive measure on T2

P .
The operator Lρ arises naturally by changing variables z �→ log z in the

Laplace operator Δζ .

Exercise 6.2.1.1 Check this. Set ζ = ez.

Let us note that if q depends only on the variable y, it is a 2π-periodic ρ-
trigonometric convex function because Lρ turns into Tρ = (•)′′+ρ2(•) (cf. Section
3.2.3).

6.2.2 Consider the solution of the homogeneous boundary problem

Lρq = 0 in D;

q
∣∣
∂D

= 0,
(6.2.2.1)

where D is a domain in T2
P and q is bounded in a neighborhood of ∂D with

boundary value zero quasi-everywhere. This is a spectral problem for a pencil of
differential operators ([Ma]).

A solution of this problem can be defined for an arbitrary domain D ⊂ T2
P

with a boundary of positive capacity.
The spectrum of the problem (6.2.2.1) consists of those (complex) ρ for which

(6.2.2.1) holds for some function q �≡ 0. The minimal positive point of the spectrum
ρ(D) exists iff the spectrum exists. The spectrum exists iff the domain D is con-
nected on spirals. In this case ρ(D) is the order of the minimal harmonic function
in every one of the domains Gi that corresponds to D by Proposition 6.2.1.1.

The quantity ρ(D) is strictly monotonic. It means that if two domains D1,
D2 ∈ T2

P are such that D1 ⊂ D2 and the capacity of D2 \ D1 is positive, then
ρ(D2) < ρ(D1). For example, this is the case of D2 = {|y| < d, d < 2π} and D1 is
the same strip without the segment {it : 0 ≤ t ≤ d}.

In connection with the multiplicator problem we considered the maximal
subharmonic minorant of a function m = H − v where v is a T -automorphic
function. From Theorem 6.1.1.2, 2 we can obtain that if v is a T -automorphic
function, then GHv is also T -automorphic.
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Exercise 6.2.2.1 Check this.

Thus for this case, finding DH in Theorem 6.1.1.1 is reduced to finding a
maximal Lρ-subfunction q that satisfies the inequality

q(z) ≤ m(z) := [H(ez) − v(ez)]e−ρx, z ∈ T2
P . (6.2.2.2)

We say that m(z) has an Lρ-subminorant.
The idea of ρ(D) gives a possibility for

Theorem 6.2.2.1 If m has a non-zero Lρ-subminorant, then ρ(D) ≤ ρ for some
component D of the open set M+ := {z : m(z) > 0}.

Conversely, if ρ(D) < ρ (strict inequality) for some component D of the set
M+, and m(z) ≥ 0 for all z ∈ T2

P , then m has a non-zero Lρ-subminorant.

Exercise 6.2.2.2 Prove that M+ is open.

6.2.3 If ρ /∈ Z, the operator Lρ has a fundamental solution Eρ(• − ζ) in T2
P , where

ζ is a shift by the torus, i.e., by the modulus P + i2π. It means that

LρEρ(• − ζ) = δζ ,

in D′(T2
P ), where δζ is the Dirac function, concentrated at ζ.

If ρ ∈ Z, there exists, as for operator Tρ and a spherical operator (see Theo-
rem 3.2.4.2, Theorem 3.2.6.3), a generalized fundamental solution E′ρ that satisfies
the equation

LρE
′
ρ(• − ζ) = δζ − cos ρ(y − η), ζ = ξ + iη

in D′(T2
P ).

Theorem 6.2.3.1 Let ρ > 0, ρ /∈ Z. Then every Lρ-subfunction on T2
P can be

represented in the form

q(z) =
∫

T2
P

Eρ(z − ζ)ν(dζ), (6.2.3.1)

where ν = Lρq.

This theorem is the counterpart of Theorems 3.2.3.3, 3.2.6.2.

Theorem 6.2.3.2 Let ρ > 0, ρ ∈ Z. Then the mass distribution ν = Lρv satisfies
the condition ∫

T2
P

e±iρyν(dz) = 0, (6.2.3.2)

and the representation

q(z) = �(Ceiρy) +
∫

T2
P

E′ρ(z − ζ)ν(dζ) (6.2.3.3)

holds with C that is a complex scalar.

This theorem is the counterpart of Theorems 3.2.4.2, 3.2.6.2.



6.2. A generalization of ρ-trigonometric convexity 227

LetD ⊂ T2
P and ρ(D) > ρ. Then the operator Lρ has inD the Green function

−Gρ(z, ζ,D). Thus for every q that is an Lρ-subfunction in D and bounded from
above in D, we have the representation

q(z) = g(z) −
∫

D

Gρ(z, ζ,D)ν(dζ), (6.2.3.4)

in which ν = Lρq and g is the minimal majorant on ∂D of the function q, satisfying
Lρg = 0 in D.

This is the counterpart of Theorem 2.6.4.3 (F. Riesz representation) and
Theorem 3.2.5.1.

From (6.2.3.4) one can easily obtain

Theorem 6.2.3.3. (Maximum principle) If ρ(D) > ρ and q(z) is an Lρ-subfunction
such that q(z) ≤ 0, z ∈ ∂D, then q(z) ≤ 0, z ∈ D.

Exercise 6.2.3.1 Prove this.

Theorem 6.2.3.4 An Lρ-subfunction in T2
P can not attain zero maximum if it is

not zero identically.

Exercise 6.2.3.1 Prove this by exploiting (6.2.1.2) and properties of subharmonic
functions.

Theorem 6.2.3.5 Let q be an Lρ-subfunction in T2
P . If q(z) ≤ 0 for z ∈ T2

P then
q(z) ≡ 0.

Exercise 6.2.3.2 Prove this using Theorem 3.1.4.7 (**Liouville).

Proposition 6.2.3.6 Let qD be the solution of the problem (6.2.2.1) in a domain D
with a smooth boundary, corresponding to ρ = ρ(D). Suppose that qD(z0) = 1 for
some z0 ∈ D. Then

∂qD
∂n

> 0, ∀z ∈ ∂D.

Exercise 6.2.3.3 Prove this, using properties of positive harmonic functions.

6.2.4 In the part devoted to completeness of an exponential system (Section 6.3)
we will need the notion of minimality of a subharmonic function from U [ρ]. A
function v ∈ U [ρ] is called minimal if the function v − εrρ has no subharmonic
minorant for arbitrarily small ε > 0. If v is T -automorphic, the corresponding Lρ-
subfunction q is called minimal if the function q− ε has no Lρ-subminorant in T2

P .
We formulate one sufficient condition for minimality and one sufficient condition
for nonminimality.
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Theorem 6.2.4.1 Let Hρ(q) be the maximal open set on which Lρq = 0. If there
exists a connected component M ⊂ Hρ(q) such that ρ(M) < ρ, then q is a minimal
Lρ-subfunction.

For example, q ≡ 0 is minimal.

Proposition 6.2.4.2 The function q is nonminimal if q(z) ≥ c or Lρq − c > 0 for
some positive c for all z ∈ T2

P .

For example, q ≡ c > 0 is nonminimal.

6.3 Completeness of exponential systems
in convex domains

6.3.1 Let Λ := {λk}, k = 1, 2, . . . be a set of points in the complex plane C,
satisfying the condition λk �= 0 and λj �= λk, if k �= j.

Consider the canonical product

ΦΛ(λ) :=
∏
k

(1 − λ/λk) expλ/λk. (6.3.1.1)

We suppose in this section that ΦΛ(λ) is an entire function of order 1 and normal
type, i.e., a function of exponential type (see [Le, Ch. 1, § 20].

This fact can be expressed in terms of Λ by using the Brelot-Lindelöf Theorem
2.9.4.2.

Exercise 6.3.1.1 Formulate this theorem for entire functions of order 1 and normal
type under assumption that ρ(r) ≡ 1.

We will suppose that the upper density of zeros (see Section 2.8, Section 5.1).
ΔΛ > 0.

6.3.2 Let G ⊂ C be a convex bounded domain containing zero. This last re-
quirement does not restrict any of the further considerations connected to com-
pleteness, because expΛ := {eλjz : λj ∈ Λ} can be replaced by the system
{eλj(z−z0) : λj ∈ Λ} and eλj(z−z0) = Cje

λjz. Let A(G) be the space of holo-
morphic functions in G with the topology of uniform convergence on compact
sets. We will study the completeness of the exponential systems

exp Λ := {eλjz : λj ∈ Λ} (6.3.2.1)

in A(G).
We will be interested in the following questions:

1. completeness of exp Λ in A(G);
2. maximality of G for exp Λ, which is complete in A(G);
3. extremal overcompleteness of exp Λ in A(G) for a maximal G.
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Let us give precise definitions of maximality and extremal overcompleteness.
The completeness means that every function f ∈ A(G) can be approximated
on every compact set K � G with arbitrary precision by linear combinations of
functions from expΛ.

A convex domain G is called maximal for a system exp Λ, which is complete
in A(G) if for every domain G1 such that G � G1 expΛ is not complete in A(G1).

A system exp Λ is called extremely overcomplete in A(G) for a maximal G, if
for every sequence Λ1 := {λ1

j} such that Λ1 ∩ Λ = ∅ and ΔΛ1 > 0 the domain G
is not maximal for the system exp Λ ∪ Λ1.

In other words, every essential enlargement of an extremely overcomplete
system enlarges also the maximal domain of completeness.

6.3.3 Let
hΛ(φ) := lim sup

r→∞
log |ΦΛ(reiφ)|r−1

be the indicator of ΦΛ. It is a 1-trigonometrically convex function or simply a
trigonometrically convex function (t.c.f). Let GΛ be the conjugate indicator dia-
gram of ΦΛ, i.e., a convex domain of the form

GΛ := {z : max
z∈GΛ

�(zeiφ) ≤ hΛ(φ)}.

Let us describe conditions for completeness, maximality and extremal over-
completeness when Λ is a regular set (see Section 5.6) and ΦΛ is a CRG-function
(see Section 5.6).

We say that GΛ is enclosed in G if it can be enclosed in G by parallel transla-
tion, enclosed with sliding, if it can be moved after enclosing only in one direction,
enclosed rigidly if it is impossible to move after enclosing, freely enclosed in every
other case of enclosing.

Theorem 6.3.3.1 Let Λ be a regular set. Then the following holds:

1. {exp Λ is not complete in A(G)} ⇐⇒ {GΛ is freely enclosed in G};
2. {G is maximal for exp Λ} ⇐⇒ {GΛ is not freely enclosed in G};
3. {exp Λ is extremely overcomplete in A(G)} ⇐⇒ {GΛ is enclosed rigidly

in G}.
Let us note that G is maximal for exp Λ but not extremely overcomplete if

and only if GΛ is enclosed with sliding in G.
This theorem is a corollary of the more general Theorem 6.3.4.1, but will be

proved independently in Section 6.3.10.

6.3.4 If Λ is not regular, it is natural to exploit the notion of a limit set (see
Section 3.1) to characterize exp Λ.

Suppose the limit set of ΦΛ has the form

Fr[ΦΛ] := {v(λ) = |λ|(ch1 + (1 − c)h2)(argλ) : c ∈ [0; 1]}
where h1, h2 are t.c.f.
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Such a limit set is a particular case of Uind (6.1.2.2). It is called an indicator
limit set and it is indeed a limit set of an entire function (see Exercise 6.1.2.4).

The asymptotic behavior of the set Λ (i.e., the limit set of the corresponding
mass distribution) can be described completely using Theorem 3.1.5.2.

Exercise 6.3.4.2 Do that.

We will call such Λ an indicator set. Denote by G1, G2 the conjugate diagram
of h1, h2. Since G1, G2 are convex, the set

αG1 + βG2 := {αz1 + βz2 : z1 ∈ G1, z2 ∈ G2}, α, β > 0

is also convex and is a conjugate diagram of the t.c.f. h := αh1 + βh2.

Theorem 6.3.4.1 Let a set Λ be an indicator set. Then the following holds:

1. {exp Λ is not complete in A(G)} ⇐⇒ {G1 and G2 are freely enclosed in G};
2. {G is maximal for exp Λ} ⇐⇒ {G1 and G2 are enclosed in G and at least

one of them is not freely enclosed in G};
3. {exp Λ is extremely overcomplete in A(G)} ⇐⇒ {cG1 +(1 − c)G2 is enclosed

rigidly in G ∀c ∈ [0; 1]}.
This theorem is proved in Section 6.3.10.

The equality holds:
hΛ = max(h1, h2). (6.3.4.1)

Thus the conjugate diagramGΛ of the function hΛ is the convex hull ofG1 and G2.
Let us note that the indicator hΛ does not determine the completeness of the

system exp Λ if Λ is not a regular set, as the following example shows.

Example 6.3.4.1 Let

G1 := {z = x+ iy : x = 1; −1 ≤ y ≤ 1},
G2 := {z = x+ iy : x = −1; −1 ≤ y ≤ 1},

and G = {z : |z| < 1 + ε}

with a small ε.

Exercise 6.3.4.3 Prove that G1 and G2 are freely enclosed in G and their convex
hull is not enclosed.

Let Λ be a set such that the interior of GΛ coincides with G. If Λ is a regular
set, then exp Λ is complete in A(G), G is maximal for exp Λ and expΛ is extremely
overcomplete in A(G).

If Λ is an indicator set, then the first two assertions hold but exp Λ can be
not extremely overcomplete:
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Example 6.3.4.2 Set

G1 := {z = x+ iy : −1 ≤ x ≤ 0; y = 0};
G2 := {z = x+ iy : x = 1; −1 ≤ y ≤ 1}.

Here GΛ is a triangle in which G1 is freely enclosed and G2 is rigidly enclosed, but
cG1 + (1 − c)G2 is free enclosed for all c : 0 < c < 1.

Exercise 6.3.4.4 Check this.

Example 6.3.4.3 Set

G1 := {z = x+ iy : x = −1; y ∈ [−1; 1]};
G2 := {z = x+ iy : x = 1; y ∈ [−1; 1]}.

Exercise 6.3.4.5 Check that G1 and G2 are enclosed with sliding in GΛ.

If G1 and G2 are rigidly enclosed in G it does not imply in general that
cG1 + (1 − c)G2 are rigidly enclosed for all c ∈ [0; 1].

Example 6.3.4.4 Let G1 be an equilateral triangle inscribed in the circle |z| = 1,
let G2 be the same triangle rotated by the angle π/6, and let G be the unit disc.

Exercise 6.3.4.6 Show that 1
2 (G1 +G2) is freely enclosed in G.

If G1, G2 ⊂ G and G1 ∩G2 is rigidly enclosed in G, then cG1 + (1 − c)G2 is
rigidly enclosed for c ∈ [0; 1].

Exercise 6.3.4.7 Check this.

However this is not a necessary condition.

Example 6.3.4.5

G := {z = x+ iy : |x| < 1; |y| < 1};
G1 := {z = x+ iy : x ∈ (−1, 1); −x > y > −1};
G2 := {z = x+ iy : x ∈ (−1, 1); −1 < y < x}.

Exercise 6.3.4.8 Check that every triangle cG1 + (1 − c)G2 is rigidly enclosed in
G and G1 ∩G2 is freely enclosed.

6.3.5 Consider in more detail the conditions for extremal overcompleteness in the
case when Λ is an indicator set and GΛ = G or, in other words, if

hΛ = hG. (6.3.5.1)

We can suppose that h1 and h2 are linearly independent, otherwise we exploit
Theorem 6.3.3.1. If, for example, the inequality h1(φ) ≤ h2(φ), ∀φ, holds, the
extremal overcompleteness is in the case when G1 is rigidly enclosed in G2 because
G1 ∩G2 = G1, and this case was mentioned above (Exercise 6.3.4.7).
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Consider the general case. Denote g(φ) := |h1 − h2|(φ), and set ΘΛ :=
{φ : g(φ) > 0}. This is an open set on the unit circle. Denote as IΛ := (α1, α2)
the maximal interval contained in ΘΛ and denote by dΛ its length. Since g(φ) is
continuous,

g(αj) = 0, j = 1, 2. (6.3.5.2)

If also at least one of the conditions

lim inf
φ∈IΛ,φ→αj

g(φ)
φ− αj

= 0, j = 1, 2,

is fulfilled, we say g is zero with tangency on ∂IΛ.

Theorem 6.3.5.1 Suppose Λ is an indicator set that satisfies (6.3.5.1). In order
that exp Λ be extremely overcomplete in A(G) it is necessary and sufficient that at
least one of the following conditions holds:

1. dΛ < π;
2. dΛ = π and g is zero with tangency on ∂IΛ.

This theorem is proved in Section 6.3.11.

6.3.6 We call Λ periodic if Fr[ΦΛ] is a periodic limit set (see Theorem 4.1.7.1). In
such a case all the limit set is determined by one subharmonic function v ∈ U [1]
(see (4.1.3.1)). Let us characterize the system exp Λ for periodic Λ.

Set

hG(φ) := max{�(zeiφ) : z ∈ G}, (6.3.6.1)
m(λ,G, v) := |λ|hG(argλ) − v(λ). (6.3.6.2)

Denote by GGv the maximal subharmonic minorant of the functionm(λ,G,v).
A function w ∈ U [1] is called minimal if the function w− ε|λ| has no subharmonic
minorant in U [1] for every small ε > 0. The harmonic function of the form

H(λ) := |λ|(A cos(arg λ) +B sin(arg λ)), (6.3.6.3)

for example, is minimal.
We will denote as HARM the set of functions of the form (6.3.6.3).

Theorem 6.3.6.1 Let Λ be a periodic set. The following holds:

1. {exp Λ is not complete in A(G)} ⇐⇒ {GGv exists and is non-minimal};
2. {G is maximal for exp Λ} ⇐⇒ {GGv exists and is minimal};
3. {exp Λ is extremely overcomplete in A(G)} ⇐⇒ {GGv ∈ HARM}.

This theorem is proved in Section 6.3.12.
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6.3.7 Let us characterize the completeness of expΛ for periodic Λ in other terms.
For this we need the information that was presented in Section 6.2. We will take
ρ = 1. Denote

qΛ(z) := vΛ(ez)e−x (6.3.7.1)

(compare with (6.2.1.2)). As it was explained in Section 6.2 this function is an
L1-subfunction on the torus T2

P . Set

m(z,G, qΛ) = hG(y) − qΛ, D(G,Λ) := {z : m(z,G, qΛ) > 0} ⊂ T2
P .

The set D(G,Λ) is open because −m is an upper semicontinuous function (see
Theorem 2.1.2.4), denote

ρ(Λ, G) := min ρ(M)

where the minimum is taken over all components M of D(G,Λ), and it is attained
on one of the components because they are not intersecting and T2

P is compact.

Exercise 6.3.7.1 Explain this in detail, using properties of ρ(D) (Section 6.2).

Theorem 6.3.7.1 If
ρ(Λ, G) ≥ 1, (6.3.7.2)

then exp Λ is complete in G.

This theorem is proved in Section 6.3.12.
Let w := gGqΛ(z) be the maximal L1-subminorant of m(z,G, qΛ). Denote by

HΛ the open set in T2
P where L1w = 0.

Theorem 6.3.7.2 If there exists a component M of HΛ such that ρ(M) < 1, then
w is minimal, and, hence, G is maximal for expΛ.

This theorem follows directly from Theorem 6.2.4.1. It is not known if the
condition (6.3.7.2) is necessary.

Consider in detail the situation in which the domain G coincides with GΛ,
the conjugated indicator diagram of hΛ, i.e., we suppose that

hG(φ) = hΛ(φ), ∀φ. (6.3.7.3)

In this case m(z,G, qΛ) ≥ 0 and we obtain the following criterion:

Theorem 6.3.7.3 In order that expΛ be complete in GΛ it is necessary and suffi-
cient that

ρ(Λ, GΛ) ≥ 1. (6.3.7.4)

This theorem is proved in Section 6.3.12. The condition (6.3.7.3) automati-
cally implies maximality if there is completeness.

Since
hΛ(y) = max{qΛ(x+ iy) : x ∈ [0;P ]}, (6.3.7.5)

the function m(z,GΛ, qΛ) has a zero in x for every fixed y.
Thus the set D(G,Λ) does not contain any curve y = const on the torus.
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Theorem 6.3.7.4 Let G0 be a strictly convex domain and let D0 ⊂ T2
P be such that

T2
P \D0 intersect every line {y = y0}, y0 ∈ [0, 2π].

Then there exists a periodic Λ such that

GΛ = G0, D(GΛ,Λ) = D0. (6.3.7.6)

This theorem is proved in Section 6.3.13.

Example 6.3.7.1 Let D0 be the complement in T2
P to the set

M := {z = x+ iy : x = f(y), y ∈ [0; 2π]} (6.3.7.7)

where f(y) is a continuous 2π-periodic function satisfying the condition

0 < f(y) < P.

Then ρ(D0) = ∞, because this domain is not connected on spirals (see Section
6.2.). It means that for every strictly convex G0 there exists a periodic Λ such
that GΛ = G0 and expΛ is extremely overcomplete in G0.

Example 6.3.7.2 Let D0 be the complement to the set

M :=
{
z = x+ iy : x =

P

2π
y, 0 ≤ y ≤ 2π

}
.

Then
ρ(D0) =

1
2
(
1 + (2π/P )2

)
(6.3.7.8)

(see Section 6.3.13).

Thus, choosing P , and using Theorem 6.3.7.4, it is possible make exp Λ com-
plete or non-complete in G0(= GΛ) for every strictly convex domain G0.

6.3.8 Now pass to generalizations. Denote by DG the natural domain of definition
of the operation GG, i.e., the set of v ∈ U [1] for which m(λ,G, v) (see (6.3.6.2))
has a subharmonic minorant belonging to U [1].

Let ΦΛ be defined by the equality (6.3.1.1). The condition that for every
v ∈ Fr[ΦΛ] the function m(λ,G, v) has a subharmonic minorant belonging to U [1]
is possible to express by the relation

Fr[ΦΛ] ⊂ DG (6.3.8.1)

(compare with (6.1.1.1)).
We call the set U ⊂ U [1] minimal (U ∈ MIN) if for arbitrarily small ε > 0

there exists w = wε ∈ U such that the function wε − ε|λ| has no subharmonic
minorant, belonging to U [1].

Let us note that if U contains a minimal function (in the sense of Section
6.3.6), then U ∈ MIN. We denote the image of Fr[ΦΛ] under the mapping by the
operator GG as JG(Λ).
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Theorem 6.3.8.1 The following holds:

1. {expΛ is not complete in A(G)} ⇐⇒ {((6.3.8.1) holds) ∧ (JG(Λ) /∈ MIN)};
2. {G is maximal for expΛ} ⇐⇒ {((6.3.8.1) holds) ∧ (JG(Λ) ∈ MIN)};
3. {exp Λ is extremely overcomplete for maximal G} ⇐⇒ {((6.3.8.1) holds) ∧

(JG(Λ) ∈ HARM)};

6.3.9 In the proof of Theorem 6.3.8.1 that we are going to prove now we exploit

Theorem 6.3.9.1. (A.I. Markushevich) see [Le, Ch. 4, § 7] Let A(C \G) be a class
of functions ψ which are holomorphic in C \ G and equal to zero in infinity. In
order that the system exp Λ be complete in A(G), it is necessary and sufficient that
the function

Φ(λ) :=
∫

Lψ

eλzψ(z)dz, (6.3.9.1)

where ψ ∈ A(C \ G), and Lψ � G is a rectifiable closed curve, has the following
property: the condition

Φ(λk) = 0, ∀λk ∈ Λ (6.3.9.2)

implies Φ(λ) ≡ 0.

Proof of Theorem 6.3.8.1, 1. Necessity. Let exp Λ be not complete . By Theorem
6.3.9.1 Φ(λk) = 0, but Φ(λ) �≡ 0. The function g(λ) := Φ(λ)/ΦΛ(λ), where ΦΛ is
from (6.3.1.1), is an entire function and it has order one and normal or minimal
type by Theorem 2.9.3.1. Set

ug := log |g(λ)|; uΦ(λ) := log |Φ(λ)|; uΛ(λ) := log |Φ(λ)|.

We have from (6.3.9.1) uΦ(λ) ≤ max{�(λz) : z ∈ Lψ} + Cψ}, where Cψ is a
constant, depending possibly on ψ.

This implies that

uΦ(λ) ≤ hG1(φ)r + Cψ , λ = reiφ, (6.3.9.3)

for some convex domain G1 � G.
Let v ∈ Fr[ΦΛ]. Choose a sequence tj → ∞ for which (uΛ)tj → v, and the

sequences (uΦ)tj and (ug)tj also converge to vΦ and vg respectively. From the
equality ug(λ) = uΦ(λ) − uΛ(λ) we obtain vg(λ) = vΦ(λ) − v(λ) where vg ∈
Fr[g], vΦ ∈ Fr[Φ].

Since (6.3.9.3) implies vΦ(λ) ≤ hG1(φ)r,

vg(λ) ≤ hG1(φ)r − v(λ) (6.3.9.4)

and it means that for every v ∈ Fr[ΦΛ] GG1v and hence GGv exist, i.e., the condi-
tion (6.3.8.1) holds.
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Let us show that the condition JG(Λ) /∈ MIN is satisfied. We have for some
δ > 0 the relation

hG1(φ) − hG(φ) ≤ −δ.
From (6.3.9.4) we obtain

vg(λ) + δr ≤ m(λ,G, v). (6.3.9.5)

The left-hand side of the inequality (6.3.9.5) belongs to U [1]. Thus wv := GG1v
satisfies the condition vg(λ) + δr ≤ wv(λ) for every v ∈ Fr[ΦΛ]. It means that
JG(Λ) /∈ MIN.

Necessity is proved. �
For proving sufficiency we exploit the following assertion.

Theorem 6.3.9.2 (I.F. Krasichkov-Ternovskii) Suppose there exists an entire func-
tion g such that

hgΦΛ(φ) < hG(φ), ∀φ. (6.3.9.6)

Then the system exp Λ is not complete for some convex domain G1 � G.

This theorem connects the problem of completeness to the multiplicator prob-
lem.

Proof of Theorem 6.3.9.2. Let g(λ) satisfy (6.3.9.6). Denote by ψ(z) the Borel
transformation for Φ(λ) := g(λ)ΦΛ(λ). By the Pólya Theorem (see, for example,
[Le, Ch. 1, § 20]), all the singularities of ψ are contained in a convex domain GΦ

which is the conjugate diagram of the indicator hΦ(φ). Thus the representation
(6.3.9.1) holds with Lψ that embraces GΦ. It follows from (6.3.9.6) that GΦ � G.
Thus it is possible to choose Lψ between ∂GΦ and ∂G. Since (6.3.9.2) for Φ is
fulfilled and Φ(λ) �≡ 0, exp Λ is non-complete in some convex G1 � G such that
Lψ � G1 by Theorem 6.3.9.1. �

Now we can prove sufficiency in Theorem 6.3.8.1, 1. From the condition
JG(Λ) /∈ MIN it follows that one can choose δ > 0 such that ∀v ∈ Fr[ΦΛ] the
functions wv − δr where wv := GG, have subharmonic minorants. As we already
said in Section 6.3.2, completeness does not depend on shift by any fixed z0. Thus
we can suppose that 0 ∈ G and, hence, hG(φ) > 0 for all φ. Let γ < 2δ be such
that hG(φ) − γ > 0 and G1 � G satisfy

hG1(φ) − γ/3 > 0, hG(φ) − hG1(φ) ≤ γ/2. (6.3.9.7)

Let us check that
DG1 ⊃ Fr[ΦΛ], (6.3.9.8)

Indeed, for v ∈ Fr[ΦΛ] we have

m(λ,G1, v) := hG1(φ)r − v(λ) ≥ hG(φ)r − (γ/2)r − v(λ)
≥ hG(φ)r − v(λ) − δr

≥ wv − δr. (6.3.9.9)
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Since the right-hand side of (6.3.9.9) has a subharmonic minorant from U [1], then
(6.3.9.8) is proved. By Theorem 6.1.1.1 there exists a multiplicator g(z) ∈ A(1)
such that

hgΦ(φ) ≤ hG1(φ) < hG(φ). (6.3.9.10)

From Theorem 6.3.9.2 we obtain that expΛ is non-complete in G.

Proof of Theorem 6.3.8.1, 2. Necessity. Let Gj , j = 1, 2, . . . be a sequence of
convex domains, satisfying the conditions Gj � G, Gj ↓ G. Since exp Λ is non-
complete in every A(Gj), DGj ⊃ Fr[ΦΛ] by Theorem 6.3.8.1, 1.

The sequence wj := GGjv satisfies

wj(λ) ≤ hGj (φ)r − v(λ), λ ∈ C.

Since {wj} is compact and hGj → hG, one can find a subsequence with the limit
w ∈ U [1]. Then w(λ) ≤ hG(φ)r − v(λ). Hence GGv exists.

If JG ∈ MIN would not hold, then, by Theorem 6.3.8.1, 1, exp Λ is non-
complete in A(G), which contradicts maximality.

Necessity is proved. Let us prove sufficiency.
Completeness of expΛ in A(G) follows from Theorem 6.3.8.1, 1. We will

prove that expΛ is non-complete in A(G1) for every G1 � G under the condition
DG ⊃ Fr[ΦΛ]. Set

δ := min
φ

[hG1(φ) − hG(φ)] > 0.

Then ∀v ∈ Fr[ΦΛ],

GGv + δr ≤ hG1(φ)r − v(λ), λ ∈ C.

This means that GG1v ≥ GGv+δr. Hence JG1(Λ) /∈ MIN and, by Theorem 6.3.8.1,
1, expΛ is non-complete in A(G1). �

Proof of Theorem 6.3.8.1, 3. Necessity. By Theorem 6.3.8.1, 2 from maximality
G (6.3.8.1) follows. We will prove that GGv ∈ HARM ∀v ∈ Fr[ΦΛ]. Suppose it is
not fulfilled, i.e., there exists v0 ∈ Fr[ΦΛ] such that the mass distribution ν0 of the
function w0 = GGv0 is not zero. By Proposition 6.1.1.3 there exists a multiplicator
g such that v0 + w0 ∈ Fr[gΦΛ]. Let Λ0 be the set of zeros of g. Since ν0 ∈ FrΛ0,
Δ(Λ0) > 0, because ν0 �= 0 and by the definitions in Section 3.3.1.

We can shift a little zeros of g and suppose without lack of generality that
they are simple and Λ0 ∩ Λ = ∅.

The condition for a multiplicator gives the inequality:

hgΦΛ(φ) ≤ hG(φ), ∀φ.

It implies
m(λ,G, vΠ) = rhG(φ) − vΠ ≥ 0
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for all vΠ ∈ Fr[gΦΛ]. It means that m(λ,G, vΠ) has zero as a minorant ∀vΠ ∈
Fr[gΦΛ], i.e., DG ⊃ Fr[gΦΛ]. So the domain G is maximal although the system
expΛ is replaced with the system exp(Λ ∪ Λ0). This contradicts the extremal
overcompleteness. Hence, ν0 ≡ 0 and w0 = GGv0 ∈ HARM.

Necessity is proved. Let us prove sufficiency.
Let the condition GGv ∈ HARM ∀v ∈ Fr[ΦΛ] hold. Suppose that there exists

Λ0 such that ΔΛ0 > 0 and G is maximal for the system exp(Λ ∪ Λ0).
Theorem 6.3.8.1, 2 implies

DG ⊃ Fr[ΦΛ1 ], (6.3.9.11)

where Λ1 = Λ ∪ Λ0.
For every v0 ∈ Fr[ΦΛ0 ] one can find v ∈ Fr[ΦΛ] such that

v1 := v0 + v ∈ Fr[ΦΛ1 ].

The condition ΔΛ0 > 0 implies that one can choose v0 for which the Riesz measure
ν0 �≡ 0. For w1 = GGv1 one has the inequality w1 ≤ rhG − v1 by (6.3.9.11), so
w1 + v0 ≤ rhG − v holds. Hence wv := GGv satisfies the inequality

(w1 + v0)(λ) ≤ wv(λ), ∀λ ∈ C. (6.3.9.12)

Let us show that (6.3.9.12) is impossible.Indeed, since wv ∈ HARM w := w1 +
v0 − wv ≤ 0 and w ∈ U [ρ]. Thus w ≡ 0. However the Riesz measure νw ≥ ν0 �≡ 0,
hence w �≡ 0. This contradiction proves sufficiency. �

6.3.10 Now we prove Theorems 6.3.3.1, 6.3.4.1 and 6.3.5.1. We need some auxiliary
assertions.

Lemma 6.3.10.1 Let v := rh1(φ) and G1 be the conjugated diagram of h1. Then
the following holds:

1. {G1 is freely enclosed in G} ⇐⇒ {GGv is non-minimal};
2. {G1 is enclosed to G but not free enclosed}⇐⇒ {GGv is minimal};
3. {G1 is rigidly enclosed in G} ⇐⇒ {GGv ∈ HARM};
4. {G1 is not enclosed in G} ⇐⇒ {GGv does not exist}.

To prove this lemma we need the following two lemmas.

Lemma 6.3.10.2 Let v := rh(φ). Then GGv = rh1(φ) where h1 is the maximal
trigonometrically convex minorant of the function

m(φ,G, h) := hG(φ) − h(φ).
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Proof. Let v1 = GGv. Since v[t] = v for all t > 0,

(v1)[t] = GGv[t] = GGv

by Theorem 6.1.1.2, 2.
Thus the function

v̂1 :=
(

sup
t

(v1)[t]

)∗
(λ) ≥ v1(λ)

and is also a subharmonic minorant belonging to U [1]. Thus v1 = v̂1. However,
the function v̂1 is invariant with respect to the transformation (•)[t]. Hence it has
the form rh1(φ). The maximality of h1(φ) follows from the maximality v1. �

Lemma 6.3.10.3 In order that v := rh1 be a minimal function, it is necessary and
sufficient that G1, the conjugate diagram of h1, be a segment (in particular, a
point).

Proof. Let v = rh1 be minimal and let G1 be the conjugate diagram of h1. If G1

is not the segment, then it contains some disc of radius δ > 0. Hence there exists
a trigonometric function A cos(φ− φ0) such that

δ +A cos(φ− φ0) ≤ h1(φ).

Multiplying this inequality by r, we obtain that v− δr has a harmonic (and hence
subharmonic) minorant. This contradicts minimality.

Inversely, suppose v is not minimal. Then there exists δ > 0 and t.c.f. h2(φ)
such that

h2(φ) ≤ h1(φ) − δ. (6.3.10.1)

For every t.c.f. h2 there exists a trigonometric function A cos(φ− φ0) such that

h2(φ) +A cos(φ − φ0) ≥ 0. (6.3.10.2)

This corresponds to a shift of the diagram which contains zero. From (6.3.10.1)
and (6.3.10.2) we obtain

δ −A cos(φ− φ0) ≤ h1(φ),

which means thatG1 contains some disc of radius δ > 0. So it is not a segment. �

Proof of Lemma 6.3.10.1. G is freely enclosed iff the following assertion holds:
there exists δ > 0 and a trigonometrical function A cos(φ − φ0) such that the
inequality

h1(φ) + δ −A cos(φ− φ0) ≤ hG(φ) (6.3.10.3)

holds.
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Exercise 6.3.10.1 Prove this.

Let GGv be non-minimal. By Lemma 6.3.10.2 it has the form w2 = rh2, where
h2 is the maximal trigonometrically convex minorant of m(φ,G, h1). There exists
δ > 0 such that the function w2 − δr has the maximal subharmonic minorant
v3 = rh3(φ). Let A cos(φ − φ0) be a trigonometric function for which

h3(φ) +A cos(φ − φ0) ≥ 0.

In addition,
h3(φ) ≤ h2(φ) − δ, h2(φ) ≤ hG − h1(φ).

From this we obtain (6.3.10.3) and hence that G1 is free enclosed.
Inversely, let G1 be freely enclosed in G. From (6.3.10.3) it follows that

δ −A cos(φ − φ0) ≤ hG(φ) − h1(φ). (6.3.10.4)

Multiplying (6.3.10.4) by r, we obtain that m(λ,G, v) has a minorant v0 = r(δ −
A cos(φ− φ0)) which obviously is non-minimal. Hence, GGv is non-minimal.

G1 is enclosed in G with sliding, hence there does not exist δ > 0 such that
(6.3.10.3) is fulfilled, but there exists a segment with support function

E(φ) = B| sinφ| +A cos(φ − φ0),

such that the inequality
h1(φ) + E(φ) ≤ hg(φ) (6.3.10.5)

holds.

Exercise 6.3.10.2 Prove this.

Let GGv be minimal. By Lemma 6.3.10.2 it has the form w2 = rh2 and by
Lemma 6.3.10.3, h2 = E(φ). Thus E(φ) ≤ (hG − h1)(φ), which is equivalent to
(6.3.10.5).

Prove 2, suppose G is not freely enclosed and hence only (6.3.10.5) is possible.
If GGv were non-minimal, (6.3.10.3) would follow, as it was proved above. This
contradicts the supposition.

The rigid enclosure is equivalent only to the inequality of the form

h(φ) −A cos(φ− φ0) ≤ hG(φ) ∀φ,
and impossibility of enclosure is equivalent to the impossibility of even such an
inequality. Thus all other assertions of the lemma can be proved analogously.

Exercise 6.3.10.3 Do this in detail. �

Proof of Theorem 6.3.3.1. Regularity of Λ means that Fr[ΦΛ] = {v0} where
v0 = rhΛ. Thus JG(Λ) = {GGv0} and all the assertions of Theorem 6.3.3.1 follows
from Theorem 6.3.8.1 and Lemma 6.3.10.1. �

Exercise 6.3.10.4 Check this in detail.
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For proving Theorem 6.3.4.1 we need an additional

Lemma 6.3.10.4 Let Λ be an indicator set, v1 = rh1, v2 = rh2. Then

{JG(Λ) /∈ MIN} ⇐⇒ {GGv1 and GGv2 are non-minimal}.

Proof. Suppose w1 := GGv1 and w2 := GGv2 are not minimal, i.e., w1 − δr and
w1 − δr have subharmonic minorants g1 and g2.

Then cg1 + (1 − c)g2 is a minorant of the function cw1 + (1 − c)w2 − δr, i.e.,
JG(Λ) /∈ MIN. The inverse implication is trivial. �

Exercise 6.3.10.5 Prove this.

Proof of Theorem 6.3.4.1. Suppose exp Λ is not complete. By Theorem 6.3.8.1
JG /∈ MIN. By Lemma 6.3.10.4, GGv1 and GGv2 are not minimal. Hence G1 and
G2 are freely enclosed in G by Lemma 6.3.10.1. Since every one of these assertions
is reversible, the inverse implication also holds. Analogously the other cases are
proved. �

Exercise 6.3.10.6 Prove all this in detail.

6.3.11 To prove Theorem 6.3.5.1 we need some auxiliary assertions.

Lemma 6.3.11.1 Let φ0 be a maximum point of t.c.f. h(φ) and h(φ0) ≥ 0. Then

h(φ) ≥ h(φ0) cos(φ− φ0), |φ− φ0| ≤ π/2. (6.3.11.1)

Proof. We write y(φ) := h(φ0) cos(φ − φ0). We have y(φ0) = h(φ0) and y(φ) is
a trigonometric function. If y(φ1) = h(φ1) for some φ1 such that |φ1 − φ0| < π/2
this contradicts Theorem 3.2.5.2. If y(φ) does not intersect h(φ), this contradicts
Theorem 6.2.3.4 applied to the function h(φ) − y(φ), which is an Lρ-subfunction
with ρ = 1. �

Lemma 6.3.11.2 Let H(φ) be a trigonometric function on the interval I = (α, β)
of length ≤ π, such that H(φ) = 0 at one of the ends of I. Then every one of the
conditions

1. H(φ0) = 0, φ0 ∈ (α;β); 2. H(φ) is zero on ∂I with tangency;
implies H(φ) ≡ 0, φ ∈ I.

Exercise 6.3.11.1 Prove this.

Lemma 6.3.11.3 Let g ≥ 0 be a continuous periodic function, and let ΘΛ, IΛ, dΛ

be defined as in Theorem 6.3.5.1. In order that its maximal t.c.minorant be a
trigonometrical function, it is necessary and sufficient satisfying at least one of
the conditions:

1. dΛ < π;
2. dΛ = π and g(φ) is zero with tangency on ∂I.
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Proof. Necessity. Suppose dΛ > π. Without loss of generality we can suppose that
IΛ = (α; −α), where α > π/2.

Set cos+ φ := max(cosφ, 0),

a = inf
(
g(φ)

cos+ φ
: φ ∈ (−α;α)

)
. (6.3.11.2)

We have a > 0. Set

h(φ) :=

{
a1 cosφ, |φ| ≤ π/2
0 |φ| > π/2,

(6.3.11.3)

where a1 ≤ a.
The function h(φ) is a t.c.minorant of g(φ) and it is not a trigonometric

function, which contradicts the supposition. Thus dΛ ≤ π.
Suppose dΛ = π and the condition to be zero with tangency on ∂I does not

hold. Then for a defined by (6.3.11.2) the condition a > 0 holds and h(φ) defined
by (6.3.11.3) is a non-trigonometric minorant of g that contradicts the supposition.

Sufficiency. Let the first condition hold and let I = (α;β) be an arbitrary
interval belonging to ΘΛ; let h(φ) be the maximal t.c.minorant of g(φ).

Set
H(φ) := h(φ0) cos(φ − φ0),

where φ0 is the maximum point of h(φ) on I. From inequality (6.3.11.1) and the
conditions g(α) = g(β) = 0 follows H(α) = H(β) = 0. Then, by Lemma 6.3.11.2,
we obtain H(φ) ≡ 0. Thus h(φ0) = 0 and h(φ) ≡ 0 for φ ∈ (α;β), i.e., h(φ) is
trigonometric.

Let the second condition be fulfilled. Lemma 6.3.11.1 implies that H(φ) is
zero with tangency on ∂I. By Lemma 6.3.11.2 we obtain that h(φ) ≡ 0. �

Proof of Theorem 6.3.5.1. Necessity. Let us note that if v ∈ Fr[ΦΛ], then for
c ∈ [0; 1] we have the equality

m(λ,G, v) = r
(
c(h2 − h1)+ + (1 − c)(h2 − h1)−

)
(φ) := rm(φ, c). (6.3.11.4)

Let expΛ be extremely overcomplete in A(G). By Theorem 6.3.8.1 JG ⊂ HARM,
i.e., for every c ∈ [0; 1] the maximal t.c.minorant of the function m(φ, c) is trigono-
metric. Since

∀c ∈ [0; 1], ΘΛ = {φ : m(φ, c) > 0}
the necessity follows from Lemma 6.3.11.3.

Sufficiency. It follows directly from Lemma 6.3.11.3. �

Exercise 6.3.11.2 Explain this.
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6.3.12 To prove Theorem 6.3.6.1 we need

Lemma 6.3.12.1 If w ∈ U [1] is non-minimal, then

C(w) := {w[t] : 1 ≤ t ≤ eP } /∈ MIN .

It follows from Theorem 6.1.1.2, 2

Exercise 6.3.12.1 Explain this in detail.

Proof of Theorem 6.3.6.1. By Theorem 6.1.1.2, 2. JG(Λ) = C(GGv). Thus Lemma
6.3.12.1 implies that JG(Λ) /∈ MIN if and only if GGv is not minimal. Thus Theo-
rem 6.3.8.1 implies Theorem 6.3.6.1, 1 and 2.

Suppose JG(Λ) ⊂ HARM. Hence, GGv = rH0(φ), where H0 is trigonometric.
Inversely, Lemma 6.3.12.1 implies JG(Λ) = {rH0(φ)}. �

Proof of Theorem 6.3.7.1. Let ρ(Λ, G) > 1. Suppose wq := gGq exists. By def-
inition of ρ(Λ, G) we have wq(z) ≤ 0 for z ∈ ∂D(Λ, G). By Theorem 6.2.3.3
(Maximum principle) wq ≤ 0 for z ∈ D(G,Λ). Also wq ≤ 0 for z ∈ T2

P \ D(G,Λ)
by definition of D(Λ, G). By Theorem 6.2.3.4 wq ≡ 0 and hence is minimal. So
expΛ is complete by Theorem 6.3.6.1. If ρ(Λ, G) = 1, then the system exp Λ is
complete for every Gn � G, because of strict monotonicity of ρ(•) (see Section
6.2.2) so G is the maximal domain. �

For the proof of Theorem 6.3.7.3 we need an auxiliary assertion. We suppose
that D is an image on T2

P by the map (6.2.1.3) of the domain G with a smooth
boundary.

Theorem 6.3.12.2 Let D ⊂ T2
P and ρ(D) ≤ 1. Then ρ(T2

P \ D) > 1, if DΛ �=
{�z > 0}.

For the proof we need the following assertion which was proved originally by
A. Eremenko and M. Sodin:

Theorem 6.3.12.3 (Eremenko, Sodin) Let Γ be a Jordan curve, connecting 0 and
∞, TΓ = Γ for some T > 1. Let D+, D− be domains, into which Γ divides the
plane, and let ρ1, ρ2 be the orders of the minimal harmonic functions in D+ and
D− respectively. Then

1
ρ1

+
1
ρ2

≤ 2,

and equality is attained only if Γ consists of two rays.

We will give prove this theorem in Section 6.3.14.

Proof of Theorem 6.3.12.2. Let ρ1 = ρ(D), and suppose q1(z) is a solution of
boundary problem (6.2.2.1), ρ2 = ρ(T2

P \D), q2(z) is a solution of the correspond-
ing boundary problem. Then the image of the boundary under the map λ = ez

(we denote it as Γ) satisfies the conditions of Theorem 6.3.12.3 and the functions
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v1(λ) := q1(logλ)|λ|ρ1 and v2(λ) := q2(log λ)|λ|ρ2 are positive harmonic functions
in D+, D− with orders ρ1 and ρ2 respectively. By Theorem 6.3.12.3 we obtain

1/ρ(D) + 1/ρ(T2
P \D) ≤ 2.

and equality holds only if Γ is a pair of rays, i.e., DΛ = {�z > 0}. �

Proof of Theorem 6.3.7.3. Necessity. Suppose ρ(Λ, GΛ) < 1. Let us prove that
expΛ is not complete. To this end we construct an L1-minorant of m(z,GΛ,Λ)
and prove that it is not minimal.

Let D0 � D(GΛ,Λ) be a domain with smooth boundary for which ρ(D0) = 1.
This is possible because of strict monotonicity ρ(D) (Section 6.2.2). Let q0 be a
solution of the problem (6.2.2.1) satisfying the condition

0 < max{q0(z) : z ∈ D0} ≤ min{m(z,GΛ,Λ) : z ∈ D0} − 2ε

for sufficiently small ε. By Theorem 6.3.12.2, ρ(T2
P \D0) > 1. Thus the potential

Π(z) = −
∫

D

Gρ(z, ζ,D)ν(dζ)

exists and ν can be chosen in such way that supp ν � T2
P \ D0. By Proposition

6.2.3.6,
∂q0
∂n

> 0, z ∈ D0.

Thus ν can be chosen in such a way that

−∂Π
∂n

< min
∂q0
∂n

, z ∈ ∂D0.

Then the function

q(z) =

{
q0(z), z ∈ D0,

Π(z), z ∈ T2
P \D0,

is an L1-subfunction on T2
P .

Exercise 6.3.12.2 Explain this in detail, exploiting Theorem 2.7.2.1.

The function q(z) satisfies the condition

q(z) ≤ m(z,GΛ,Λ) − 2ε, ∀ z ∈ T2
P ,

because of negative potential. Hence,

q1(z) := q(z) + η

for some η > 0 also is a minorant of m(z,GΛ,Λ) and it is not minimal. Necessity
is proved. Sufficiency follows from Theorem 6.3.7.1. �
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6.3.13 Now we pass to the proof of Theorem 6.3.7.4 and construction of Example
6.3.7.2.

Proof of Theorem 6.3.7.4. The set T2
P \ D0 is closed. Let φ(z) be an infinitely

differentiable function equal to zero on T2
P \D0 and positive on D0. Set

q(z) := h0(y) − εφ(z),

where h0(y) is a t.c.f., corresponding to G0, and let ε be small enough to satisfy
L1q(z) > 0, z ∈ T2

P . It is possible, because L1h0(y) > 0 by the condition of the
theorem.

Then we have

m(z,G0, q) = εφ(z), hence {z : m(z,G0, q) > 0} = D0.

Take
v(λ) := |λ|q(log λ)

and construct an entire function ΦΛ for which

Fr[ΦΛ] = {v[t] : 1 ≤ t ≤ eP }.
It is easy to check that the zero distribution of this function has all the properties
demanded by Theorem 6.3.7.4. �

Exercise 6.3.13.1 Check this.

Proof of (6.3.7.8). Consider the problem

L1q(z) = 0, q|x=(2π/P )y = 0. (6.3.13.1)

Let us pass in the equation to new coordinates{
ξ = x cosα+ y sinα,
η = −x sinα+ y cosα, tanα = 2π/P.

Then the equation takes the form:[
∂2

∂ξ2
+

∂2

∂η2
+ 2ρ

(
cosα

∂

∂ξ
− sinα

∂

∂η

)
r2
]
R(ξ, η) = 0.

The condition of being zero on D0 is

R(ξ, 2πl cosα) = 0. l ∈ Z.

The condition of periodicity gives

R(ξ + (P/ cosα)k, η) = R1(ξ, η), k ∈ Z.
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We search for a solution that does not depend on ξ. We have

R′′(η) − 2ρ sinαR′(η) + ρ2R(η) = 0, R(0) = R(2π cosα) = 0.

Further,

R(η) = C1e
(ρ sin α)η cos((ρ cosα)η) + C1e

(ρ sin α)η sin((ρ cosα)η).

Exploiting the boundary condition, we have

ρmin = (2 cos2 α)−1 =
1
2

[
1 +

(
2π
P

)2
]
.

The corresponding eigenfunction is

R = exp (ρmin sinα)η sin((ρmin cosα)η).

It is zero on T2
P \ D0 and positive in D0, so it is determined up to a constant

multiple. �

6.3.14 We are going to prove Theorem 6.3.12.3. Actually we prove

Theorem 6.3.14.1 Let Γ1,Γ2, . . . ,Γn be Jordan curves, such that
1. Γi, i = 1, 2, . . . , n connect 0 and ∞;
2. there exists a number T, |T | > 1 (not necessarily real) for which TΓi = Γi, i =

1, 2, . . . , n.
Let Di, i = 1, 2, . . . , n be domains into which the plane is divided, and let ρi be
the order of the minimal harmonic function in Di. Then∑

i

1/ρi ≤ 2 (6.3.14.1)

and equality holds if and only if Γi are a logarithmic spirals (or rays, when
T ∈ R+).

Proof. Denote by Hi the minimal harmonic function in Di. Then Hi = �φi

where φi : Di �→ Π+ is a conformal map of Di to the upper half-plane, φ(0) = 0.
The maps gi := φi(Tφ−1

i ) : Π+ �→ Π+ are continued by isomorphism to C, and
gi(0) = 0. Thus gi(z) = σiz, where σi > 1. Hence, φi(Tz) = σiφi(z) or

Thi(z) = hi(σiz), hi := φ−1
i : Π+ �→ Di.

Now we exploit the following inequality from [Lev]
n∑

i=1

1
log σi

≤ 2 logT
| logT |2 ≤ 2

logT
. (6.3.14.2)

The equalities in (6.3.14.2) are attained only when Γi are logarithmic spirals
or rays.

Since ρi = log σi/ log |T | (6.3.14.2) implies (6.3.14.1). �
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lower semicontinuous function

2.2 measure
mass distribution
support of μ
μ is concentrated on E ∈ σ(G)
restriction of μ onto F ∈ σ(G)
charge
positive and negative, respectively, variations of ν
full variation of ν
variation
Borel function
restriction of μ on the set E
product of measures

2.3 linear space
topological space
linear continuous functional on D
Schwartz distribution
Dirac delta-function
the nth derivative of the Dirac delta-function
regular distribution
positive distribution
product of a distribution f by

an infinitely differentiable function α(x)
sum of distributions f1 and f2
partial derivative of distribution
sequence of distributions fn converges to a distribution f
regularization of the distribution f
restriction of distribution f ∈ D′(G) to G1 ⊂ G
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fundamental solution of L at the point y
spherical operator

2.4 harmonic distribution
Lipschitz boundary, Lipschitz domain
harmonic measure
spherical function of a degree ρ
Green potential of μ relative to D
Newton potential
logarithmic potential

2.5 balayage, sweeping
Green capacity of the compact set K relative to the domain D
Wiener capacity
external and inner capacity of any set E
capacible set
logarithmic capacity
irregular point
equilibrium mass distribution
h-Hausdorff measure
Carleson measure

2.6 mean value of u(x) on the sphere Sx,r := {y : |y − x| = r}
subharmonic function
the least harmonic majorant of u in K
Riesz measure of the subharmonic function u

2.7 precompact family of functions
a sequence fn of locally summable functions converges in Lloc

quasi-everywhere convergence
a sequence of functions un converges to a function u relative to

α-Carleson measure
a point x ∈ Rm (α, α′, ε)-normal with respect to the measure μ

2.8 order of a(r)
type number of a(r)
a(r) of minimal type
a(r) of normal type
a(r) of maximal type
convergence exponent for the sequence {rj}
a proximate order with respect to order ρ
equivalent proximate orders
type number with respect to a proximate order
proper proximate order
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Nevanlinna characteristic
order of u(x) with respect to T (r)
characteristics ρM [u], σM [u], σM [u, ρ(r)]
convergence exponent of μ
upper density of μ
genus of μ
N-order of μ
N-type of μ

2.9 Gegenbauer polynomials
Chebyshev polynomials
primary kernel
canonical potential
zero distribution
canonical Weierstrass product

3.1 limit set of the function u(x)
limit set of the mass distribution μ

3.2 indicator of growth of u
lower indicator
ρ-subspherical function
ρ-trigonometrically convex (ρ-t.c.)
fundamental relation of indicator

3.3 upper (lower) density of μ
subadditivity of Δ(E, •)
superadditivity of Δ(E, •)
semi-additivity
generalized semi-additivity
monotonic function of E ∈ Rm

t-extension of E
to be dense in
angular densities

4.1 dynamical system
(ε, s)-chain from m to m′

chain recurrent dynamical system
non-wandering point
attractor
completely regular growth
polygonally connected set
periodic dynamical system
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4.2 partition of unit

4.3 pseudo-trajectory
asymptotically dynamical pseudo-trajectory

with dynamical asymptotics T• (a.d.p.t.)
piecewise continuous pseudo-trajectory w(•|•)
ω-dense pseudo-trajectory

4.4 subharmonic curve

5.1 entire function of order ρ and normal type
with respect to proximate order ρ(r)

entire function with prescribed limit set
meromorphic function of order ρ and normal type

with respect to a proximate order ρ(r)

5.2 relative Carleson α-measure

5.3 lower indicator of entire function

5.4 maximal interval of ρ-trigonometricity
strictly ρ-t.c.f.
concordant h and g

5.5 upper density of zeros of entire function
(X )-integral with respect to a nonnegative measure δ

5.6 completely regular growth function
CRG-function
regular zero distribution
regular zero distribution with integer ρ
completely regular growth functions

along curves of regular rotation
curve of regular rotation

5.7 growth characteristic
continuity, positive homogeneity
asymptotic characteristics of growth
total family of growth characteristics
non-rarefied set
rarefied set
thinly closed set
independent family of characteristic
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6.1 ideally complementing H-multiplicator
entire function is of minimal type

with respect to a proximate order ρ(r), ρ(r) → ρ
limit set of indicators
the maximum principle for U [ρ] is valid in the domain G

6.2 automorphic
connected on spirals
spectrum
strictly monotonic
minimal v ∈ U [ρ]

6.3 function of exponential type
completeness
maximality
extremal overcompleteness
maximal domain of completeness
extremely overcomplete system expΛ
trigonometrically convex function (t.c.f)
conjugate indicator diagram
regular set
GΛ is enclosed in G
enclosed with sliding
enclosed hardly
enclosed freely
indicator limit set
indicator set
zero with tangency
Λ is periodic
w ∈ U [1] is minimal
U ⊂ U [1] is minimal
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