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Preface

This book is based on my courses given at the University of Minnesota, Michigan State
University and University of Bergen between 1985 and 1992. It is written for advanced
undergraduates, or beginning graduate students in physics both for experimentalists
and theorists. The book contains more material than necessary for a one semester
course to allow for some selection.

The purpose of the book is to give a general introduction to all beginners in the
field of high energy heavy ion physics. It tries to cover a wide range of subjects from
intermediate to ultra-relativistic energies, so that it provides an introductory overview
of heavy ion physics, in order to enable the reader to understand and communicate
with researchers of neighbouring or related fields.

Some familiarity with basic nuclear physics, statistical physics and special relativity
is assumed. The book is essentially based on a simple introduction to relativistic kinetic
theory, with ample examples from the field of heavy ion physics. It introduces the basic
variables used in the field. Then collective macroscopic features of the dense and high
temperature matter is discussed. Collective fluid dynamical approaches are introduced
in a greater detail, and simple (frequently analytically solvable) models are presented.
The properties of the nuclear Equation of State are discussed at an introductory level,
mentioning some results from the recent years.

The connections between the collective dynamical descriptions and the experimen-
tally measurable quantities are shown, and the mass and energy scaling of data is
used to discuss the observability of dissipative properties of the high energy matter.
Microscopic an inherently nonequilibrium descriptions are discussed only briefly.

Recent advances in the search for the Quark Gluon plasma are discussed in an
extended chapter. Finally a few interesting connections to astrophysics are mentioned.

The book containes assignments with solutions of a wide range of different difficulties.
The excercises are important, because some basic information is introduced via the
excercises only.

The sections indicated by (*) are recommended for additional reading, and should
not be included necessarily in a regular course. The presentation of the subject in the
indicated sections is concise, thus the study of the original literature is advised to those
who are interested in the subject particularly and in detail.

László P. Csernai
November, 1992
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Chapter 1

Basic Phenomenology of Heavy Ion
Collisions

1.1 Introduction
In the past decade nuclear physics went through a revolution and its connection to
particle physics and statistical physics became more apparent. Initially in late 70’s
and early 80’s some accelerators used by particle physicists earlier, like the Bevatron in
Berkeley or the Dubna syncrophasotron, were converted to accelerate heavy ions. At
the same time the energies of the accelerators used for nuclear research were increased,
so that relativistic beams of heavy nuclei became available at several places in the
world. (NSCL/MSU in East Lansing, GSI in Darmstadt, GANIL, Saclay, Celsius ring
in Uppsala, etc.)

By the mid 80’s the heavy ions were injected into some of the highest energy proton
accelerators also, such as the Alternating Gradient Synchrotron (AGS) at Brookhaven
National Laboratory (BNL) and to the Super Proton Synchrotron (SPS) at the European
Center for Nuclear Research (CERN). By the early 90’s the injection of heavy ions is
studied already at the planning phase of the new accelerators, like in the case of the
Large Hadron Collider (LHC) of CERN. Why did high energy nuclear physics become
so much the center of interest again? There are several reasons. The main reason is the
exploration of the Quark-Gluon Plasma (QGP).

1.1.1 The Quark Gluon Plasma

Already in the early 70’s the deep inelastic electron collision experiments on protons
indicated that nucleons have an internal structure, they are built of quarks and gluons.
The field theory which describes these quanta is the Quantum Chromodynamics (QCD).
This theory leads to the conclusion that single free quarks or gluons cannot be studied
or observed in our laboratories, in the so called physical vacuum, because they are
confined by the strong interaction which binds them to each other. This strong tie is
represented by the quantum number called “color”. In our physical world, however, all
observable particles are colorless or color neutral. On the other hand, at high energy
densities and temperatures the strong tie among the quarks and gluons weakens and
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colored objects may propagate longer distances. This was assumedly the situation in
the early universe also.

The expectation is that these high energy densities, sufficient to produce QGP, may
be reached in laboratory in heavy ion reactions already at relatively modest energies,
in the order of 10–100 A·GeV laboratory projectile energy. When these conditions are
created, there will be a large number of quarks and gluons in the reaction zone. This
is the only possibility to produce unbound quarks and gluons in laboratory in a small
volume (10–100 fm3 for a short time, 2–10 fm/c).

The search for QGP is in progress when this book is written and no clear quantitative
conclusions are obtained about the plasma yet. [1, 2, 3] Thus we will discuss briefly the
main directions of the search at present.

1.1.2 The nuclear Equation of State

Even if QGP is not formed in a given reaction it is very important to know the behavior
of the matter under high densities and temperatures, which can be reached in heavy ion
reactions. [4] The intermediate states of a collision may involve as many as 500 particles
even at low energies (∼ 100A·MeV) in a small volume. If the energy is increased, so
much that particle-antiparticle creation becomes easily possible (at ≈ 100A·GeV), the
number of particles involved in a reaction may go up to several thousand. This system
is, although, quite small it can already be sufficiently large for statistical and kinetic
physics to be applicable. Since the heavy ion reaction is a highly dynamical process
both the equilibrium and non-equilibrium properties of the matter can be studied. Of
course equilibrium and non-equilibrium effects are not always easy to separate.

The thermodynamical properties of the matter in statistical equilibrium are described
by an Equation of State, (EOS). There are three interesting features of the EOS under
investigation now: i) the phase transition from continuous nuclear liquid into a nuclear
vapor of fragments and nucleons, the so called nuclear liquid-gas phase transition, or
the multifragmentation transition [5, 6], ii) the compressibility of nuclear matter at and
higher densities than the density of matter in ground state nuclei (n0), and finally, iii)
the phase transition to QGP mentioned above already.

The nonequilibrium features of matter can also be studied in heavy ion reactions.
Transport coefficients can be deduced from experimental results. On the microscopic
level these are associated with in-medium nuclear cross sections. The reconciliation
of several sorts of experiments and observations leads even to conclusions on the
nucleon-nucleon interaction.

1.1.3 New collective phenomena

The most impressive results of high energy heavy ion research so far are the new
collective phenomena discovered in these reactions. The hot and compressed nuclear
matter behaves like a compressible fluid (not like a dilute gas) and fluid dynamical
effects are observed in these reactions.

First the matter was seen to be flowing sidewards in the reaction plane due to
the high pressure developed at the impact. Later it was also seen that the matter is
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squeezed out of the hot zone between the two nuclei, in the orthogonal direction to the
reaction plane also. Finally at lower energies it was observed that the transverse flow
decreases with decreasing energy, goes to zero at around 100 A·MeV and turns to a
negative angle flow in peripheral reactions below this energy. This is due to the fact
that nuclear attraction starts to dominate over the repulsive pressure (which has large
thermal pressure contribution).

1.1.4 Particle production

In heavy ion reactions new particles are also produced, with increasing energy an
increasing number. Due to the collective effect of several nucleons and due to their
Fermi motion, particles can even be produced under their production threshold, i.e. at
such low energies where, in free nucleon-nucleon collisions, production is not possible.
At very high energies production of exotic particles, which were not known before, such
as strangelets, is also predicted.

The wealth of these possibilities provide a unique possibility in physics to study
high energy phenomena. Heavy ion beams are the most energetic beams produced by
an accelerator and this obviously provides unique possibilities for the research.

1.2 Energy domains of heavy ion physics

In this textbook we try to cover heavy ion physics in the wide range of energies from 100
A·MeV beam energy to 10 A·TeV. Obviously this range involves very different collision
processes and physical phenomena, but we will try to concentrate on the features that
are common to the whole heavy ion research. These are centered around the relativistic
statistical description of these reactions. We will also concentrate more on collective
phenomena in heavy ion reactions which can not be studied elsewhere. We will not
discuss separately hadron-hadron (h + h), hadron-nucleus (h + A) reactions or light ion
reactions, (like α + α or d + D). From the physical point of view the energy region can
be divided into three main regions:

i) intermediate energy heavy ion reactions,
ii) relativistic energy heavy ion reactions,
iii) ultra-relativistic heavy ion reactions.

1.2.1 Intermediate energy reactions

This is the energy region where the properties of hot nuclear matter can be studied
around the normal nuclear density, n0. The corresponding beam energies are in the
range of 10–100 A·MeV. In this region of the thermodynamic variable space there is an
interesting phenomenon the nuclear liquid-gas phase transition. At low excitations the
nuclear matter is bound due to the attractive nuclear interaction. In an intermediate
energy heavy in collision we may compress the nuclear matter initially (to 1-2 n0) and
heat up the matter to 10–20 MeV. This matter then expands nearly adiabatically to
densities below n0 and to a smaller temperature, 5–10 MeV. Due to the attractive
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interaction in this final state smaller nuclear fragments are formed, the nuclear vapor is
condensed to form droplets of nuclear liquid. This is the nuclear multi-fragmentation. If
the collision energy is low enough the effects of the phase transition, for example critical
phenomena, can be studied. The accelerators doing research in this energy domain
are for example the NSCL at Michigan State University, UNILAC and SIS at GSI in
Darmstadt Germany, GANIL in Caen France, CELSIUS in Uppsala Sweden, etc.

1.2.2 Relativistic heavy ion reactions

In this energy range, 100A·MeV–10A·GeV, the nuclear matter is compressed and
heated more than at lower beam energies. Here mainly the compressibility and other
basic properties of the nuclear EOS and nuclear interactions can be tested. The
results in this energy range have astrophysical relevance to neutron stars and supernova
explosions. This is the area where the research is most developed and real quantitative
questions on the nuclear incompressibility, transport coefficients, in medium cross
sections, momentum dependence of the nucleon-nucleon interaction, etc., are studied.
Collective processes are well established both experimentally and theoretically, such
as different collective flow patterns. The most dominant is the collective sidewards
flow in the reaction plane which is used as a tool to extract the EOS and transport
properties of nuclear matter. This energy range is studied at some of the accelerators
mentioned above and at some others like the BEVALAC at LBL in Berkeley, the heavy
ion accelerator in Dubna, SATURN in Saclay France.

1.2.3 Ultra-relativistic heavy ion reactions

This energy region starts around 10 A·GeV beam energy and the most intriguing
physics question is the search for Quark Gluon Plasma. The most optimistic theoretical
estimates allow QGP formation already at 10 A·GeV. The ultra-relativistic domain can
be separated into two regimes with essentially different physics: the stopping region
where baryons stemming from the projectile and the target are fully or partly stopped
by each other, forming a fairly baryon rich matter in the middle of the reaction zone,
and the transparent region where initial target and projectile baryons are so far apart
in the phase space that the heavy ion collision cannot slow them down completely. The
boundary between these two regions is not very sharp and experimentally not known
yet.

Stopping region

As indicated by the first results from the SPS at CERN and AGS at BNL, up to 60
A·GeVthere is almost complete stopping in reactions with S and Si projectiles. Some
theoretical estimates predict that with lead beams even 200 or 800 A·GeVcollisions will
result in stopping of the baryons in the middle of the reaction zone and of the phase
space [8]. Thus, these reactions provide a tool to study very highly excited baryon rich
matter, or eventually baryon rich quark gluon plasma. This area has also astrophysical
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Figure 1.1: The layout of the SPS at CERN, Geneva. Reproduced by permission of
Elsevier Science Publishing from [7].

relevance associated with possible hybrid stars, i.e. neutron stars with dense quark
matter core.

Transparent region

If we increase the energy further the theoretical expectation is that the initial baryon
charge from the projectile and target will not be slowed down completely. The quanta
carrying this baryon charge will essentially keep their initial velocities and the middle
zone in the reaction will be baryon free. Of course energy will be deposited in this
region also. The large energy density matter in the central region may form a baryon
free quark gluon plasma, which is of large theoretical interest. The theoretical model
calculations are more straightforward for this form of matter than for baryon rich quark
gluon plasma, and furthermore, this form of high energy density and low baryon density
matter is the one which was present in the early universe before hadrons were formed.
The heavy ion accelerators which would be able to reach this energy region are in the
planning and construction stage now: the LHC heavy ion collider at CERN, and the
RHIC at BNL. The TEVATRON at Fermilab can be mentioned as a proton antiproton
collider relevant to this research, where some basic experience can be gained before the
heavy ion colliders will be available.

1.3 Heavy ion experiments
Although this textbook does not address the problem of experimental methods and
techniques, we have to mention some basic physical features of relativistic heavy ion
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Figure 1.1: continued

collisions, which imply a new experimental approach to the problem also.
At low energy nuclear physics the most frequent event is an elastic collision, where

the target and projectile maintain their integrity and even their internal quantum state.
In low energy inelastic processes one or both of the outgoing particles may be in excited
states, and even some extra third (or fourth) particle(s) are created. But in any case
the final multiplicity is rather small. Consequently it is satisfactory at these energies
to measure one or at most two outgoing particles. Although in principle there exist
a reaction plane in these reactions it cannot be reliably identified in low multiplicity
events particularly if some of the particles are not measured (like neutrals). Thus it
is customary to measure azimuth averaged cross sections in low energy nuclear and
particle collision experiments.

In relativistic heavy ion collisions the multiplicities are large. Already at 100 A·MeV
beam energy we can have about 10–100 secondaries, while at 100 A·GeV the number
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Figure 1.2: The layout of the RHIC at Brookhaven National Laboratory. Reproduced
by permission of Elsevier Science Publishing from [9].



24 CHAPTER 1. BASIC PHENOMENOLOGY OF HEAVY ION COLLISIONS

of produced particles may exceed 1000, i.e., it can be much more than the number of
initial nucleons.

This large multiplicity leads to special experimental requirements not known before
in nuclear physics. These multiplicities exceed even the multiplicities of highest energy
particle physics experiments. To a general characterization of the event, first of all
event by event detection is desirable, and it is also advantageous if we can measure
all emitted particles in an event simultaneously. Obviously these requirements led
to the introduction of highly segmented detector arrays, like the MSU 4π detector,
the BEVALAC Plastic Ball, or the large detector arrays at the CERN-SPS and BNL-
AGS heavy ion experiments. Another alternative is a large volume track detector like
the streamer chamber, time projection chamber (TPC) or stacks of nuclear emulsion.
High energy particle detectors are using top technology, but heavy ion detectors have
special extra features. With these advanced detectors the increasing multiplicity
does not seem to be an obstacle at the first sight, but the track recognition problem
becomes increasingly difficult at very large multiplicities. Recently new techniques are
experimented with, like neural networks, to solve the track recognition problem.

The relativistic heavy ion experiments thus are large scale efforts involving several
dozen researchers usually and large systems of equipment, similarly to modern particle
physics experiments.

The experimental effort is threefold: (i) equipment design and construction, (ii)
data taking and (iii) data evaluation. Here we will only concentrate on the last point,
but a familiarity with technical limitations and possibilities is necessary if we want to
discuss the measurable consequences of the underlying physical processes.

1.3.1 Acceptance

Detectors are of a limited size and given geometry, thus for example they seldom are
able to measure sharply forward or backward going particles because the beam vacuum
pipe is occupying that region. Also the target is mostly in vacuum also, while the
detectors are usually outside the vacuum. Consequently very soft particles (low energy
particles of less than 20–30 MeV) cannot penetrate the vacuum vessel, leading to a low
energy threshold in the acceptance of the detector system.

The limited geometrical acceptance of the detector system is usually not represented
by clear orthogonal cuts in the parallel and orthogonal momenta (with respect to the
beam) direction. Thus extrapolations and interpolations are frequently necessary even
to construct the transverse momentum, pt, spectrum of the emitted particles.

1.3.2 Event selection

With heavy ions a collision can be very different if the ions collide head on or only graze
each other. Obviously we cannot detect the projectile and the target before the collision,
so an evaluation of the final state is necessary to classify the events in some way. It is a
common assumption that the more central the collision the more violent it is and it
produces more outgoing particles. However, to quantify this aspect of the collision is not
easy. It is assumed that on the average, decreasing impact parameter (see the definition
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later) leads to increasing multiplicity. Thus the most central collisions (these are the
most interesting ones) correspond to the highest multiplicity ones. Since the geometrical
probability to have a collision of impact parameter b± db is increasing proportionally
with 2πb. Selecting the 25% highest multiplicity events corresponds approximately to
selecting collisions with impact parameters less than half of the maximum possible
impact parameter. One has to emphasize that this is not an exact impact parameter
selection because due to random fluctuations it is possible that the observed multiplicity,
M , is higher or lower than the mean value for any given impact parameter. Thus a
given selected set of data, M ∈ S, corresponds to a set of events with some distribution
of impact parameters, PM(b). This distribution is not known, it can be estimated in
theoretical models. Based on geometrical arguments one can assume that the asymptotic
behavior of this distribution for small b is PM(b) ∼ 2πb.

Event trigger

If we want to select e.g. 25% of the highest multiplicity collisions we have two tasks.
First we have to determine how much is 100% of the collisions. In principle if we
know all incoming and outgoing particles in an event it is easy to tell if a reaction has
happened or not, so that all subsets can be compared to this complete event sample.
However, in a real detector system it is possible that some particles are missed, thus
some low multiplicity events are not detected at all. Therefore it is important to have
an event trigger and an absolute total cross section in an experiment, which is not
always an easy task, particularly with limited coverage detectors.

Selection trigger

Having defined a complete sample of measured events, we usually want to select a
subset of most violent, most central, or highest multiplicity events. Multiplicity could
be measured with a general detector of close to 4π acceptance, but most experimental
setups do not have this possibility, therefore some reduced triggering device, or software
selection criteria, are used to select a subset of events. The effect of a special triggering
may not even select the general highest multiplicity subset of events, furthermore the
impact parameter distribution of the subset is basically unknown. Simulations with
a given theoretical model may provide an impact parameter distribution for a given
trigger condition, but such simulations are costly and even if they are performed very
carefully they will be biased by the model used.

1.3.3 Physical event tape

The above mentioned features are quite general in heavy ion experiments. The measured
primary data, on the other hand are quite different in different experiments, and a
major part of the data evaluation is to convert these primary data to a physical data
set which contains the detected particles and their characteristics (species, energy,
momentum, etc.) in an event. A set of events with all these characteristic data on each
emitted particle can than be stored on a physical data tape. This can then be used to
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evaluate the desired cross section, momentum distribution, correlation, or some other
measurable.

1.3.4 Detector filters

Some theoretical models can also produce similar "physical data tapes" with a set of
particles produced in simulated events. These are usually called event generators. It
is, however, not possible to compare the two data tapes directly, since the theoretical
models are usually not limited by a detector acceptance. Furthermore, the set of
events included in the theoretical set might not correspond to the experimentally
selected set of events. To circumvent these difficulties some experimental groups provide
computer codes to anyone who needs it which simulate their detector acceptance and
triggering. The theoretical data tape should then be filtered through the particular
detector acceptance program and the resulting filtered theoretical data can be compared
to experimental data.

This procedure is, however, seldom performed. Mainly experimental groups perform
these calculations by simpler theoretical models to enable extrapolations to a given
limited region of the phase space. These extrapolated data are then published, which
can be directly compared to (non-filtered) theoretical results.

1.3.5 Outline

In this textbook the experimental methods of representing the primary physical data
are presented, but experimental techniques are not discussed. There are an almost
infinite number of ways to project primary data of an event into a more transparent
representation, which gives more insight into the underlying physical phenomena. The
most important measurables will be discussed later in this book, after the introduction
of basic theoretical aspects of a nonequilibrium, high energy, many-body system.

1.4 General features of heavy ion physics

In all energy ranges mentioned above there are some common aspects of heavy ion
reaction dynamics. The energies are large enough and the masses of ions are also large,
to consider the heavy ions as classical particles. Their De Broglie wavelength is much
less than the typical nuclear sizes. Quantum effects influence the underlying microscopic
dynamics only, which can be included in the EOS, in the transport coefficients, or in
the kinetic theory describing these reactions.

At relativistic and ultra-relativistic energies even the nucleons can be considered to
a large extent as classical particles. This and the short range of the nuclear interaction
leads to the fact that geometrical concepts are applicable to a large extent to these
reactions. The total reaction cross section can be calculated from the sizes of heavy
ions. Furthermore, a simple clear cut geometry is quite well applicable for simple
separation of participant and spectator regions in a heavy ion collision. If we assume
that all nucleons propagate along straight line trajectories in a non-central heavy ion
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collision, those nucleons which do not meet any other nucleon on their way are the
spectators. There can be target and projectile spectators in a collision. The rest of the
nucleons may hit each other on the way forming a participant zone with both target
and projectile nucleons in it. Of course in reality the separation between spectators
and participants is not exact and there is a transition zone between these areas. With
increasing energy, however, this transition region becomes smaller. Fig. 1.3.

Figure 1.3: Spectators and participants in a heavy ion collision. Reproduced by
permission of the American Physical Society from [10].

The most interesting phenomena and the new physics is in the participant zone,
but the spectator regions also provide us with interesting phenomena. For example the
spectators may form a rest fragment which is somewhat excited due to its irregular
shape and the friction to the participants. The study of these fragments is also of great
interest. For example extremely neutron rich light fragments can be (and are) created in
peripheral heavy ion reactions, which were not produced in laboratory before relativistic
heavy ion beams existed. This is the simple consequence of the fact that heavy nuclei
are much more neutron rich than light ones, and the remaining light spectator fragment
inherits the A/Z ratio of the heavy primordial nucleus.

Realistically the nucleons do not propagate along exactly straight trajectories,
deviations from straight propagations are observed even at the highest energies of
200 GeV per nucleon. According to the fluid dynamical model, considerable collective
sideward motion is generated [11, 12, 13]. See Fig. 1.4.

1.5 Connections to other fields of physics

1.5.1 Nuclear physics

First of all these events belong to Nuclear Physics obviously, but some subfields of
nuclear physics have strong connections to relativistic heavy ions. The most important
connection is to the studies on the nuclear equation of state (EOS). In low energy
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nuclear reactions the EOS could be studied at essentially zero temperature and at
densities very close to the ground state. At relativistic energies Heavy ion reactions
map out a much larger domain of the field of thermodynamical variables.

These reactions are strongly influenced by the properties of the nucleon-nucleon
interaction, and through this by the non-equilibrium or transport properties of the
nuclear matter.

Figure 1.4: Final state in a collision of Ne+U in the fluid dynamical model. The
dotted line encloses a region of temperature T > 10 MeV, other lines are encircling the
regions of high density in the target and projectile residues. The arrows indicate the
flow velocity field. Reproduced by permission of the American Physical Society from
[13].
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1.5.2 Particle physics

The connection to particle physics is almost as strong as to nuclear physics. The exact
description of many elementary collisions would be needed by the study of heavy ion
reactions. Hadronic collision phenomenology is the basis of many reaction models
directly (like string Monte Carlo models), and many other models extract features from
hadron physics.

Knowledge of hadron physics is a necessity if we want to extract the collective nuclear
processes from the simple superposition of many independent hadronic collisions.

On the theoretical side these reactions are testing the features of the nonperturbative
QCD, which are not completely known yet. This is an extremely wide field and a large
fraction of the researchers works on the study of non-perturbative QCD. Most of these
studies are numerical, in the so called “Lattice QCD” which tries to find the equilibrium
and nonequilibrium solutions of QCD. In this book we just touch upon this subject.
Our aim is just to give some very limited information, necessary to understand the
essential basic results of these studies and apply them in reaction models, EOS, etc.

In heavy ion reactions subthreshold particle production may take place also. Not
only due to the internal Fermi motion of the nucleons within the nuclei but also due to
more interesting collective effects (like cumulative production).

1.5.3 Statistical physics

A heavy ion reaction is a dynamical system of a few hundred nucleons. This is a large
number but still far from the continuum, so that deviations from infinite matter limit
are important. On the other hand the number of particles participating in a reaction is
large enough that the signs of collective matter like behavior can be clearly observed.
This is an interesting territory in statistical physics of small but collective systems. The
methods developed in this field are unique and may also be applicable in other “small”
statistical systems.

When Quark Gluon Plasma is formed the number of quanta increases to a large
extent. The plasma can already be considered as a continuum, and finite particle effects
should be small.

On the other hand the heavy ion reaction is a rapid dynamical process. The question
of phase transitions in a dynamical system is still an open field of research. Heavy
ion physics may contribute to this field at two points: i) the dynamics of the phase
transitions in "small" systems, and ii) the dynamics of the phase transitions in ultra-
relativistic systems where the energy of the system is much higher than the rest mass
of the particles.

Finally the heavy ion physics contributes to a large extent to the evolution of the
transport theory at high energies. Many numerical reaction models were developed
based on transport theory, and the field is in rapid development today.
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1.5.4 Relativistic fluid dynamics

Heavy ion reactions are providing a terrestrial possibility to test the solutions of
relativistic fluid dynamics. Highly energetic processes like relativistic detonations and
deflagrations can be studied theoretically and numerically. Their consequences can be
checked by comparing model results to experiments. Considerable development on this
field can be attributed to heavy ion physics.

The dynamics of heavy ion reactions is oftentimes better approximated by mul-
ticomponent fluid dynamical models. Although such models were known before for
partly equilibrated systems (like electron-ion plasmas) the development due to heavy
ion physics in this field is also apparent.

1.5.5 Astrophysics

This is maybe the most interesting connection to other fields of physics. For long
the information which can be extracted from heavy ion reaction was needed to create
adequate models of the early universe, of neutron stars, supernova explosions, quark
stars, etc. Some of these questions will be discussed at the end of this book.

The most important common ingredient is the EOS, which is searched for by both
astrophysicists and heavy ion researchers. Although astrophysical information provides
less constraint on the EOS, conclusions extracted from heavy ion data should be
checked against the known astrophysical information. For example, we can extract the
compressibility of nuclear matter from heavy ion collision data. This compressibility
is, on the other hand strongly related to the mass of the neutron stars. One should
pay attention that an EOS extracted from heavy ion data should not support neutron
star masses which contradict to the observations; i.e. smaller maximum mass than the
observed maximum.

The models of the early universe are strongly influenced by the phase transitions
in the highly energetic matter, particularly by the formation of hadrons. We hope
to gain important information from heavy ion reactions on the phase transition from
Quark-Gluon Plasma to hadronic matter and on the dynamics of this phase transition.

Since heavy ion collisions are highly complex processes connections with other fields
of physics may also show up and become important. (One example for such a possibility
is the puzzle of electron positron pairs, which show up in a narrow energy peak in
relatively low energy heavy ion reactions. There are speculations that nuclear and
atomic processes may interact in these phenomena.)

1.6 Why a theoretical treatment is important?
This textbook is written both for theorists and experimentalists as an introduction
to the field. It tries to present the basic introductory knowledge mainly from the
theoretical side.

It is important that to a certain extent both experimentalists and theorists should
speak the same language, and theorists should also be aware of experimental possibilities
and limitations which are mentioned in the book.
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Both experimentalists and theorists should be familiar, on the other hand, with the
basic theoretical concepts of the field. Since a heavy ion collision is a rather complex
process many areas of physics are necessary for its understanding. The books gives
an introduction to most of these fields. Nevertheless, it does not go into the latest
details of the more complicated recent research, although a few topics are mentioned
indicated with (*). These are advisable for the more theoretically interested reader.
For more advanced and theoretically oriented readers more advanced and relatively
detailed material can be found in two recent monographs on the field [14, 15]. The
proceedings of the Quark Matter series of conferences provides up to date information
both for experimentalists and theorists.

1.7 Outline of the book

In Chapters 2 and 3 an introduction is given to the transport theory of relativistic
systems. Several examples are taken from the field of heavy ion physics. This part is
important to understand the basics of equilibrium and non-equilibrium systems and
how the systems evolve towards equilibrium.

Chapter 4 discusses the basic features of the nuclear equation of state (EOS)
which characterizes a static equilibrium system. Chapter 5 introduces relativistic fluid
dynamics which is able to describe dynamical systems which are locally equilibrated
but not globally. Heavy ion reactions in the “ideal” case belong to this category, if the
system is sufficiently large (e.g. central or near central collisions with more than 400
particles involved or more than several thousand quanta if QGP is formed). In Chapter
6 the most simple reaction models are presented, widely used both by theorists and
experimentalists in the recent years. These are all simple fluid dynamical models.

In Chapter 7 the experimental observables are discussed and their connections to
the collective properties of the system. In Chapter 7 the characteristic energy and mass
scaling of the observables are discussed, i.e. how can one compare experimental results
measured at different beam energy or in different colliding systems.

In Chapter 9 some of the reaction models not assuming a priory equilibrium are
introduced. Since most of these are numerical microscopic models we constrain ourselves
to the presentation of the basic features and the results of these models.

In Chapter 10 an overview of the search for quark gluon plasma is given. Here more
information is given on the EOS based on Lattice QCD, The possible reaction dynamics
is discussed in different energy regions, and the results of some reaction models are
presented and compared to experiments. Some recent ideas for the possibility to detect
the phase transition are mentioned. Since the development particularly in this field
is very rapid, the reader should certainly consult the current literature for up to date
information.

Finally in Chapter 11 connections between astrophysics and heavy ion reactions are
presented.

At the end of each Chapter there are assignments which are important parts of the
textbook. Some of the concepts used in the field are introduced in assignments! For
those who do not want to solve the assignments a brief solution is also provided. The
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difficulty of the assignments gradually increases up to the middle of the book.

1.8 Assignment 1

Participants and Spectators

1.a Calculate the number of participant nucleons in a central S + Pb reaction, assuming
that the nuclei have sharp surfaces and their density distribution is uniform,
n0 = 0.17/fm3.

1.b What is the center of mass kinetic energy of the participants in the laboratory
frame if the Sulfur projectile had a beam kinetic energy of ε(kin.)

S = 200 GeV per
nucleon in the lab, and the Lead was a fixed target. What is the average excitation
energy of the participant nucleons?
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1.8.1 Solutions to Assignment 1
1.a The radii of the nuclei can be obtained from 4R3πn0/3 = A. If n0 = 0.17/fm3, then

RPb = 6.64 fm and RS = 3.56 fm. The height of the cylinder cut out of the target
by the path of the projectile is H = 2

√
R2
Pb −R2

S , thus the volume of this cylinder
is V1 = R2

SπH = 445 fm3. The height of the spherical slices at the two ends of

the cylinder is h = RPb −
√
R2
Pb −R2

S , so the volume of the two spherical slices is
V2 = 2/3 πh2(3RPb − h) = 42 fm3. I.e. the total number of target participants is
AT = n0(V1 + V2) = 83, and the total number of participants is APart. = 115.

1.b The momentum of the projectile is conserved and will be carried by all participants, ~PS =
~PPart.. If the average nucleon mass is mNc

2 = 0.939 GeV, the total projectile energy
is ES = AS(200 GeV +mNc

2) = 6.430048 TeV, and the total projectile momentum is

PS = (AS/c)
√

200.9392 GeV2 − (mNc2)2 = 6.429978 TeV/c. Consequently the total

participant energy is EPart. =
√
P 2
S + s =

√
P 2
S +A2

Part.(mNc2 + ε∗)2 = 6.507985 TeV,
and the excitation energy of the participant nucleons is ε∗ =

√
s/APart. − mNc

2 =

mNc
2[
√
A2
T +A2

S + 2ATES/(mNc2)/APart. − 1] = 7.797 GeV
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Chapter 2

Introduction to Relativistic Kinetic
Theory

Our aim is to describe non-equilibrium relativistic (classical) many body systems, e.g.
Relativistic Heavy Ion Collisions (RHIC). Several reaction models exist for this purpose,
most of them are based on kinetic theory. The fluid dynamical model, the cascade
model, the so called VUU-BUU approach, and different classical and quantum molecular
dynamics models can all be related to basic transport theory. These models will be
discussed later in this textbook.

In the following we assume that the reader is familiar with the basic concepts of
special relativity, elementary statistical physics, and has some initial knowledge of basic
classical nuclear and/or particle physics. Thus, we start with a short introduction to
kinetic theory. Our discussion is based on the book of S. R. de Groot, W. A. van Leeuwen
and Ch. G. van Weert [1]. Those interested may find further information in this excellent
textbook. A somewhat shorter introduction than here can be found in ref. [2]. First we
have to introduce our basic variables which we use to describe these phenomena.

• Microscopic variables: particle mass, momentum, energy, position

• Macroscopic variables: flow, velocity, density, temperature, etc.

The kinetic theory establishes a relationship between macroscopic and microscopic
properties, by using a one-particle distribution function f(x, p). The function f(x, p)
describes the phase space density of the particles and a kinetic equation or transport
equation governs the time development of f(x, p) (usually for dilute systems). We may
have seen this at the discussion of the non-relativistic Boltzmann equation in standard
courses of statistical physics.

2.1 Basic definitions of microscopic quantities
Here we briefly repeat some basic definitions and notations of special relativity. A
detailed introduction to special relativity can be found in several basic textbooks. In
this book we will most of the time use the convention c = kB = 1.

37
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2.1.1 Phase-space variables

• Space-time coordinates.
The 3 spatial coordinates and the time span a 4 dimensional space, the space-time.
Its coordinates are composed of the time t and position 3-vector ~r. See Fig. 2.1.

6

-

t

x

�
�
�
�
�
�
�
�
�
�
�
�
��

@
@

@
@
@

@
@
@

@
@
@

@
@I

lightcone

��1
xµ space-like 4-vector

Figure 2.1: Coordinates of a point (or event) in space-time are denoted by a 4-vector:
xµ = (t, ~r). Reproduced by permission of World Scientific Publishing Co. from [2].

• Four momentum.
The four momentum of a particle in space-time is: pµ = (p0, ~p), where p0 =√

(~p)2 +m2, (p0 = E, as usual at relativistic energies). The 4-momentum is a
time-like vector with the normalization (p0)2 − (~p)2 = m2. This can be written in
the form:

pµpµ ≡
∑
µ

pµpµ = m2, (2.1)

where pµ’s are called the contravariant, and pµ’s are the covariant components of
a 4-vector:

pµ = gµνp
ν , (2.2)

where gµν = gµν = diag(1,−1,−1,−1) is the metric tensor. So, pµ = (p0, ~p), and
pµ = (p0,−~p). The square of the 3-momentum, (~p)2, is also denoted by p2(= (~p)2),
while pµpµ = m2. Four vectors may be space-like, qµqµ < 0 or time-like qµqµ > 0.

• Four velocity.
(The 3-velocity is ~v ≡ ~p/p0.) The 4-velocity is a unit vector which points in the
direction of the motion. It is a time-like unit vector:

uµuµ = +1, (2.3)
uµ = (γ, γ~v), and uµ = (γ,−γ~v), (2.4)

where γ = 1/
√

1− ~v 2. This velocity 4-vector is normalized, i.e. uµuµ = γ2(1−
~v 2) = +1. The proper time of an object moving with 4-velocity uµ is τ = t/γ.



2.1. BASIC DEFINITIONS OF MICROSCOPIC QUANTITIES 39

Figure 2.2: uµ is tangent to the world-line. This means that uµ = dxµ/dτ . Reproduced
by permission of World Scientific Publishing Co. from [2].

• World-line of a particle in space-time is illustrated in Fig. 2.2.

For a space-like unit four vector Λµ: ΛµΛµ = −1, while for a time-like unit vector
Ωµ : ΩµΩµ = +1. Space-like and time-like vectors cannot be transformed into
each other by a proper Lorentz-Transformation!

• Coordinate system.
In particle and nuclear physics it is practical to introduce a special coordinate
system, where the spatial z-axis is parallel to the beam of the accelerator. In
general, not exactly central (not head on) collisions, the 3-vector connecting the
centers of a beam particle and a target particle points out an other direction. The
component of this vector orthogonal to the beam is the impact vector ~b, which is
a two dimensional vector. The direction of this vector is denoted usually as the x
direction. These two axes, x and z, span the so called reaction plane of a given
collision [x, z]. See Fig. 2.3.

• Rapidity.
The rapidity is a generalization of the velocity. The definition of rapidity is:

y ≡ arcth v‖ = arcth
p‖
p0

=
1

2
ln
p0 + p‖
p0 − p‖

(2.5)

This definition uses the components of vectors ~v and ~p that are parallel to the
particle beam of the accelerator. This implies that we use a special coordinate
system.
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Figure 2.3: The z component of a vector is also denoted as its parallel, (‖), component.
Thus, any vector (three-vector) can be decomposed as: ~v = (v‖, ~v⊥). Here ~v⊥ is a
two-vector which can rotate in the azimuthal (φ) direction. Reproduced by permission
of World Scientific Publishing Co. from [2].

2.1.2 Properties of the rapidity

For small velocities: y ≈ v‖. If a particle is moving after the collision into some direction
~v it is customary to give its phase space position by the coordinates (y, ~p⊥/m). Thus the
momentum vector can also be decomposed in this coordinate system as pµ = (p0, p‖, ~p⊥).
The limit of rapidity coordinates for non-relativistic velocities: (y, ~p⊥/m) −→ (v‖, ~v⊥).
While the velocity is limited to 1 (c), the rapidity y may vary between (−∞,∞). See
Fig. 2.4
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Figure 2.4: The beam-parallel component of the velocity as function of the rapidity y.
Reproduced by permission of World Scientific Publishing Co. from [2].

Lorentz transformation properties of rapidity:
If y1 is the rapidity of a particle in frame K1, and y2 is the rapidity of frame K1 in
frame K2, then: y = y1 + y2 is the rapidity of the particle in frame K2. Assignment No.
2.a is to prove this.

Assignment No. 2 also includes the definitions of further important quantities like
the transverse mass, the pseudo-rapidity and the light-cone variables!
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ELab p0 | ~p | ∆y v Place
[AGeV] [GeV] [GeV/c] - [c] -

0.1 1.03 0.445 0.458 0.428 MSU-K800
0.5 1.44 1.09 0.99 0.758 LBL-BEVALAC
1.0 1.94 1.69 1.35 0.875 LBL-BEVALAC
2.0 2.94 2.78 1.81 0.947 LBL-BEVALAC
4.1 5.04 4.95 2.36 0.982 DUBNA
10 - - 3.06 - BNL-AGS
14 - - 3.4 - BNL-AGS
60 - - 4.9 - CERN-SPS
200 - - 6.0 - CERN-SPS

1800 (30+30) - - 8.2 - BNL-RHIC∗
(100+100) - - 10.7 - BNL-RHIC∗
(900+900) - - 15.1 - (pp̄) FNAL-Tevatron∗

(3500+3500) - - 17.8 - CERN-LHC∗
(8TeV+8TeV) - - 19.5 - (pp) CERN-LHC∗

(20TeV+20TeV) - - 21.2 - (pp) SSC∗

∗planned

Table 2.1: Typical rapidities and beam energies of some proton or heavy ion accelerators.
The planned accelerators are colliders. At higher energies, ELab � mp, the velocity
tends to the velocity of light, and p0 and |~p| approach each other.

2.1.3 Some typical rapidities

Here we give some examples for nucleons (m = 0.939GeV). The beam energies for some
accelerators are given in Table 2.1. In case of colliders the energies of both beams are
given separately as 30+30 AGeV.
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2.2 Basic definitions of macroscopic quantities
Here we introduce some of the elementary macroscopic quantities and their definitions
within the kinetic theory. Several essential macroscopic quantities are presented in the
subsequent sections.

(i) Local density n = n(~r, t) = n(x) as a function of the space time coordinate x
(≡ xµ); (N = n ∆3x). So this density n is not an invariant scalar because the
3-volume element, ∆3x, is not invariant under Lorentz transformation. The total
number of particles in a fixed volume element, N , is obviously independent of the
reference frame, so it is an invariant scalar.

Example: density (Fig. 2.5).

Density profile of a nucleus at rest
n(r), n0 = 0.145/fm3

(1 fm = 1 F = 1 fermi = 10−13 cm)
(10 mbarn = 1 fermi2 )
R ≈ 7 fm, for Pb.

The nucleus at rest is characterized by this density profile where the bulk of the
matter is at density n0 except the relatively narrow surface region.

6

-

n(r)

r
-R

n0 $
&

Figure 2.5: Schematic density profile of a large nucleus of radius R and central density
n0

(ii) Local particle flow ~j = ~j(~r, t) = ~j(x), i.e.: particle current across unit area in unit
time.

Example: flow (Fig. 2.6).

The current ~j, depends on (~r, t).

When two equal size nuclei collide in their center of mass system the currents
are directed along the beam (z-axis) and they are opposite to each other in the
projectile and target regions. In the overlap region (hatched area) the two currents
cancel each other and the resulting current vanishes (if sidewards flow and squeeze
out of the matter are neglected).
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Figure 2.6: Baryon currents in different spatial regions of a heavy ion collision in the
center of mass (c.m.) system.

(iii) Particle four flow. From the above two quantities we can formally create a 4-vector.
At this stage we do not know its transformation properties yet.

Nµ(x) = (n(x),~j(x)) (2.6)

(iv) Particle distribution, f , in µ-space, i.e. in the 6-dimensional (x, p)-space

It gives the number of particles, N , in a phase space volume element:

f(x, p) : N = f(x, p) ∆3x ∆3p. (2.7)

Example f(x, p) (Fig. 2.7).

Figure 2.7: Longitudinal component of the momentum distribution in different spatial
regions of a heavy ion collision. Reproduced by permission of World Scientific Publishing
Co. from [2].
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In a given reference frame the density and current can be expressed in terms of the
distribution function:

n(x) =

∫
d3p f(x, p), (2.8)

~j(x) =

∫
d3p ~v f(x, p). (2.9)

It is not trivial to see what the transformation properties of these quantities are.
We know, however, that ~v = ~p/p0, so the above two equations can be united as
Nµ(x) = (n(x),~j(x))

Nµ(x) =

∫
d3p

p0
pµ f(x, p). (2.10)

Here pµ is a 4-vector, so if we want Nµ to be a 4-vector also, then f(x, p) times
∫

d3p
p0

should be an invariant scalar. As we will see later this is satisfied, because both of them
are invariant scalars.

Aside:
Let us show that d3p/p0 is invariant scalar: In four dimensional pµ space (p0, p1,-
p2, p3), (d3p)µ is the normal four vector of a surface element (of a 3-dimensional
hypersurface in 4-space) for which the constraint pµpµ = m2 is satisfied and it is
centered at some point pµ. This hypersurface element is then represented by its
normal vector (4-vector). It is pointing into the direction of pµ.

2-dim. hypersurface in a 3-dim space −→
Sphere with constant
radius: pµpµ = m2.

We can visualize the invariance of the phase space volume element as follows:
d3p is the 0th component of the normal vector, (d3p)µ. If we divide it by the
0th component of another 4-vector pµ parallel to it, then the ratio is an invariant
scalar :d3p/p0.
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Strictly we can see this in the following way:∫
2δ(pµpµ −m2)Θ(p0) d4p =∫ ∞

−∞
dp3

∫ ∞
−∞

dp2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp02δ(pµpµ −m2)Θ(p0) (2.11)

Using

δ[φ(x)] =
∑
i

1
| φ′(ai) |

δ(x− ai), (2.12)

where ai is the root of φ(x), (i.e. φ(ai) = 0), we can cast the δ-function in the form
δ(pµpµ−m2) = δ((p0)2−(~p)2−m2) = δ((p0)2−ε2) = 1

2ε [δ(p0−ε) + δ(p0 +ε)]
where ε =

√
(~p)2 +m2. Thus:∫ ∞

−∞
2

1
2ε

[δ(p0 − ε) + δ(p0 + ε)]Θ(p0) dp0 =
1
ε

=
1

p0(~p)
, (2.13)

where p0(~p) = ε =
√

(~p)2 +m2 and

Θ(p0) =
{

1 : ifp0 ≥ 0
0 : ifp0 < 0

Therefore

Nµ(x) =

∫
d4p 2 δ(p2 −m2)pµf(x, p) Θ(p0) =

∫
d3p

p0
pµ f(x, p), (2.14)

where Θ(p0) is the step function. Conclusion: f(x, p) is an invariant scalar, and
consequently Nµ is a contravariant 4-vector. Furthermore n(x) and ~j(x) are transformed
as components of a 4-vector.

The other macroscopic quantities are more involved. They will be introduced via
the distribution function f(x, p) in sections (2.3-4).
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2.3 Energy-momentum tensor
The energy-momentum tensor is another macroscopic quantity characterizing the matter
(see ref. [3]). T 00(x) is the energy density. Since the energy of a particle is p0 in the
kinetic theory

T 00(x) =

∫
d3p p0 f(x, p) (2.15)

The energy flow is: cT 0i.
The momentum density: 1

c
T i0, (i = 1, 2, 3).

These can be expressed by the distribution function f(x, p):

T 0i =
∫
d3p p0 vi f(x, p) : energy flow,

T i0 =
∫
d3p pi f(x, p) : momentum density.

(2.16)

where vi is the ith-component of the flow 3-velocity. The momentum flow tensor or
pressure tensor can be written as:

T ik =

∫
d3p pi vk f(x, p) (2.17)

All these can be combined into the form (by using ~v = ~p/p0 ):

T µν(x) =
∫

d3p
p0

pµpν f(x, p),

tensor scalar tensor scalar
(2.18)

i.e. the energy-momentum tensor is the second moment of the distribution function
f(x, p). It is symmetric: T µν = T νµ. This energy momentum tensor does not include
fields and potential energy of the particles. Only the rest mass and the kinetic energy
are included.

This energy momentum tensor includes the contribution of the particles with their
kinetic energies. If for example they interact via electromagnetic fields the contribution
of these fields should be added to the energy momentum tensor.
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Figure 2.8: Flow velocity

2.3.1 Hydrodynamic flow

The flow velocity of a medium, uµ, is a time-like unit vector parallel to the world-line
of the particles (if there are particles in the matter, otherwise is parallel to the energy
flow as we will see this later!), Fig. 2.8.

We define a projector, ∆µν , which projects a 4-vector into the plane (3-dimensional
hypersurface) orthogonal to uµ.

Aside:
Construct ∆µν orthogonal projection to any time-like 4-vector uµ. The unit vector
parallel to uµ is: uµ

(uµuµ)1/2
. The projected length of any vector Aµ in this direction

is Aµuµ

(uµuµ)1/2
, and so the vector projection into the direction of uµ is

Aµu
µ

(uµuµ)1/2
× uτ

(uτuτ )1/2
. (2.19)

We have to subtract this from the total Aµ in order to get the orthogonal projection.
Thus the orthogonal projector is:

∆µν ≡ gµν − uµuν

(uνuν)
. (2.20)

The projector acting on the flow velocity thus yields: ∆µνuµ = 0.
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2.3.2 Local Rest frame: (LR)

This is the reference frame where uµ = uµ(LR) = (1, 0, 0, 0). Since uµ is time-like there
is always a Lorentz transformation which leads to the Local Rest frame (LR). In this
frame:

∆µν
(LR) = ∆µν (LR) = diag (0,−1,−1,−1), (2.21)

and
∆µ
ν (LR) = diag (0, 1, 1, 1). (2.22)

How do we find the Local Rest frame? There are two usual ways!

Eckart’s Definition

According to this definition the Local Rest frame is tied to conserved particles, or
conserved charges like baryon charge (if there are any!) We know the particle 4-flow

Nµ =

∫
d3p

p0
pµ f(x, p), (2.23)

so a unit vector in this direction is

uµ =
Nµ

(NνNν)1/2
. (Eckart) (2.24)

If we decompose the four components of the flow velocity: uµ = (γ, γ~v), we can see that
the 3-vector of the flow velocity, ~v, is parallel to the particle current, ~j, according to
Eckart’s definition. Nµ is always a time-like 4-vector. Consequently, if we use Eckart’s
definition, there is no particle flow in LR in the spatial directions

N i
(LR) = 0; i = 1, 2, 3. (Eckart) (2.25)

In other form this definition means that ∆µνN
µ = 0. This definition is not very suitable

for ultra-relativistic heavy ion reactions or for the early universe where radiation
energy density is high, and the baryon density is low or zero. If the baryon density is
approaching zero the flow velocity, eq. (2.24), becomes ill defined because the mass or
energy flow becomes independent of the vanishing particle flow. It is also interesting to
mention that a coherent flow of particles and antiparticles would yield vanishing flow
according to Eckart’s definition.
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Landau’s definition

According to this definition the LR is tied to energy flow: in the LR frame the spatial
component of the energy flow and the momentum density should vanish:

T 0i
(LR) = T i0(LR) = 0; i = 1, 2, 3. (Landau). (2.26)

Since the energy-flow 4-vector is T µνuν and this should be parallel to uµ according to
eq.(2.20), consequently

∆σµT
µνuν = 0 (Landau) (2.27)

This definition is hardly usable (because uµ is implicit), but it shows that uµ is the
normalized eigenvector of T µν , since T µνuν is parallel to uµ. Consequently:

uµ = constant× T µνuν (2.28)

where from the normalization of uµ the constant (uρT
ρνuν)

−1.
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2.3.3 Other macroscopic quantities

We can now introduce covariant macroscopic quantities.

(i) Invariant scalar density n:
n ≡ Nµuµ, (2.29)

is the density in the local rest frame.

n = N0
(LR). (2.30)

The previously introduced n was not an invariant scalar, it is equal to n only if
we are in the local rest frame.

(ii) Invariant scalar energy density e:

e ≡ uµT
µνuν , (2.31)

so that in the local rest frame
e = T 00

(LR). (2.32)

In the literature the notation ε for the energy density is frequently used (ε = e).
We should, however, note that the specific energy is ε = e/n = ε/n.

(iii) Pressure tensor P µν :
P µν ≡ ∆µ

σT
στ∆ν

τ (2.33)

so that P 00
(LR) = P i0

(LR) = P 0i
(LR) = 0, and P ij

(LR) = T ij(LR) for i, j = 1, 2, 3.

We will see later that P µν can be split up into two parts:

P µν = −P∆µν + Πµν ,
hydrostatic viscous
pressure stress
tensor tensor

(2.34)

where P is the hydrostatic pressure.

(iv) Heat flow:

Iµq ≡ [uνT
νσ − ( e+P

n
) Nσ] × ∆µ

σ

energy enthalpy particle
4− current per current
vector particle vector

(2.35)

The enthalpy per particle or specific enthalpy is denoted sometimes by h, sometimes
by w in the literature, h = w = e+ P . In the local rest frame the heat flow has
spatial components only

I0
q (LR) = 0; I iq (LR) = T 0i

(LR) −
(w
n

)
N i

(LR), (2.36)
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the covariant expression is:
Iµq uµ = 0, (2.37)

i.e. the heat flow, Iµq , and the four velocity, uµ, are orthogonal! Definition (2.35)
is rather complicated if, however, we choose one of the above mentioned usual
definitions of the flow velocity the definition of the heat flow will be greatly
simplified as we will see it below.

Special cases

Eckart’s definition (∆µ
σNµ = 0):

Iµq = uνT
νσ∆µ

σ, (2.38)

Landau’s definition (uµT
µν∆σ

ν = 0):

Iµq = −(
e+ P

n
)Nσ∆µ

σ, (2.39)

If the particle distribution, f(x, p), is known from kinetic theory (see the next
Chapter), T µν , and Nν can be evaluated and both the static matter properties like the
hydrostatic pressure, P , and the energy density, e, as well as the transport properties
like the viscous stress tensor, Πµν , and the heat flow, Iµq can be obtained. For small
deviations from static equilibrium the transport properties can be approximated as
linearly dependent on the changes of flow velocity and temperature. In these cases the
non-static matter can be characterized by transport coefficients like the shear and bulk
viscosity, η, and ζ, and the heat conductivity, κ. We do not evaluate η, ζ, κ or Πµν , and
Iµq in terms of these transport coefficients here, but for some situations the calculation
of these quantities is presented in refs. [1, 4] and in the current literature.
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2.3.4 Decomposition of the energy-momentum tensor

Previously we have defined T µν and Nµ based on microscopic quantities. We have
used analogies to usual definitions od baryon and energy density in constructing these
variables. If, on the other hand, T µν and Nµ are known the energy and baryon density
can be obtained in a straightforward way.

Let us divide the energy momentum tensor into a reversible and an irreversible
(dissipative) part.

T µν = T µν (0) + T µν (1)

reversible, irreversible
part (dissipative) part

(2.40)

where
T µν (0) = euµuν − P∆µν = (e+ P )uµuν − Pgµν , (2.41)

which in the Local Rest frame yields

T
µν (0)
(LR) =


e 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (2.42)

The dissipative part is then

T µν (1) =


(
Iµq + (

e+ P

n
)Nσ∆µ

σ

)
︸ ︷︷ ︸

≡Qµ

uν +

(
Iνq + (

e+ P

n
)Nσ∆ν

σ

)
︸ ︷︷ ︸

≡Qν

uµ

+ Πµν (2.43)

Similarly the particle four flow can also be divided into two parts

Nµ = Nµ (0) +Nµ (1) = n uµ − n

w
Iµq . (2.44)

If T µν and uµ are given this decomposition can be constructed by using the equations
below:

e ≡ uµT
µνuν (2.45)

−P∆µν + Πµν ≡ ∆µ
σT

στ∆ν
τ (2.46)

Qµ ≡ uνT
νσ∆µ

σ (2.47)

Special cases The (1) component of the energy-momentum
tensor takes the simple forms if we use one of the definitions below.
(Landau):

T µν (1) = Πµν Nµ (1) = −n
w
Iµq . (2.48)

(Eckart):
T µν (1) = Iµq u

ν + Iνq u
µ + Πµν Nµ (1) = 0 . (2.49)
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2.4 Jüttner distribution
A question frequently asked is how can f(x, p) be an invariant scalar if the volume
element, ∆3x, is Lorentz contracted? Yes, ∆3x, is Lorentz contracted indeed, but the
momentum space, ∆3p, is Lorentz elongated! To see this we introduce the “Relativistic
Boltzmann”, or “Jüttner” distribution function (See refs. [5, 6]):

fJuttner(p) =
1

(2π~)3
exp

(
µ− pµuµ

T

)
, (2.50)

In this definition µ is the chemical potential and it should not be mistaken for the
covariant and contravariant summation indices, which are also denoted by µ! Since
in the (LR) uµ(LR) = (1, 0, 0, 0) it follows that (pµuµ)(LR) = p0 = E, and since pµuµ
is an invariant scalar it is the same in all reference frames. Thus fJuttner(p) is the
distribution of particle momenta, pµ, in a thermal system, which is moving with velocity
uµ, has a chemical potential µ, and temperature parameter T . We will see later that
these parameters correspond to the usual thermodynamical state variables. Note our
convention that the Boltzmann constant is unity, k = 1.

2.4.1 Normalization

If we know the invariant scalar density

n = Nµuµ = uµ

∫
d3p

p0
pµf(x, p) =

∫
d3p

p0
pµuµ e

(
− p

µuµ
T

)
eµ/T

(2π~)3
, (2.51)

we may determine the chemical potential µ. Since n is an invariant scalar it can be
evaluated in any frame (n = const.). In the (LR), uµ = (1, 0, 0, 0), so

n =
eµ/T

(2π~)3

∫
d3p

p0
p0 e−p

0/T =
eµ/T

(2π~)3
4π

∫ ∞
0

dp (~p)2 e−
√
m2+~p2

T . (2.52)

Let us introduce τ = 1
T

√
m2 + ~p2, dτ = 1

T
|~p|√
m2+~p2

dp and p2 = T 2τ 2 −m2, then

n =
4π eµ/T

(2π~)3
T 3

∫ ∞
m/T

dτ τ

√
τ 2 −

(m
T

)2

e−τ =
eµ/T

(2π~)3
4πm2T K2(

m

T
), (2.53)

where K2 is the Modified Bessel function of the second kind (see ref. [7]). This relation
gives a connection between the chemical potential, µ, and the density, n.
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2.4.2 Transformation properties of f(x,p).

In the configuration space

First let us see the relatively well known Lorentz contraction. This indicates that a fast
moving object seems to be shorter to a stationary observer than the same object when
it is standing still in the reference frame of the observer. The distribution function
has a spatial component, and this should exhibit the above Lorentz contraction. For
now we want to disregard the momentum dependence of our distribution function.
This can be done in two ways: Either we can assume that f(x, p) is constant as a
function of p (i.e. “homogeneous in p”), or we can integrate it over the momentum
space n(x) =

∫
d3p f(x, p). In both cases we will have a distribution function in the

configuration space, n = n(x), which is independent of p. Figure 2.9 illustrate the
transformation properties of a distribution function in the configuration space.
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Figure 2.9: Lorentz transformation in the configuration (x) space. Reproduced by
permission of World Scientific Publishing Co. from [2].
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In the momentum space:

Let us assume that the distribution is uniform in x or integrate the distribution over

the whole configuration space. For the latter case assume f(x, p) = const.× e
(
− p

µuµ
T

)
,

where uµ = (γ, γv‖, 0, 0). This results

pµuµ = p0γ − p‖γv‖ = (
√
m2 + (~p⊥)2 + (p‖)2 − p‖v‖)/

√
1− (v‖)2. (2.54)

So the momentum distribution, F (p) =
∫
d3xf(x, p) = const.×e

(
− p

µuµ
T

)
, can be plotted

for m = 1 GeV, T = 0.1 GeV at p⊥ = 0, for different velocities, v‖ = 0, 0.5, 0.9. Figure
2.10.
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Figure 2.10: Longitudinal momentum distributions Lorentz-boosted with velocity, v‖.
The boosted distribution is not symmetric! This is due to the fact that the width of the
original distribution is not negligible compared to the boost. Reproduced by permission
of World Scientific Publishing Co. from [2].

The constant in front of the exponential does not depend on the boost velocity and
it is the same in all cases.
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2.5 Mixtures

We have introduced the flow velocity for a medium, but in non-equilibrium systems
there can be problems, and it may happen that the introduction of a flow velocity is
not possible or at least not practical because it does not reflect the essential physical
features of our system.

Examples:

• In heavy ion reactions at high energies it is possible that the target and projectile
nuclei penetrate somewhat into each other before the collisions among the nucleons
will slow down the incoming matter. If the random velocities of nuclei (due to
the Fermi motion) are much smaller than the relative velocity of the projectile
with respect to the target in the overlap region the local momentum distribution
may be very far from any thermalized distribution.
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If x is in the overlap region the distribution is f(x, p) = fProjectile(x, p) +
fTarget(x, p) + fTherm.(x, p), and the total distribution function may have two
peaks in momentum space. This makes it somewhat unphysical to introduce one
single flow velocity although it is possible. Later on during the reaction the distri-
butions approach each other and a united thermalized momentum distribution
develops where the original Target and Projectile nucleons cannot be separated
any more. This situation is usually handled by introducing more fluid components
(see e.g. ref. [8]).

• In Electron-Ion plasmas in TOKAMAK’s the situation is somewhat similar. The
two plasmas show different temperatures and move with different velocities due
to external electric and magnetic fields. Unlike the previous example here the two
components never get thermalized with each other. The two fluid dynamics (or
magneto hydrodynamics) is a well known theoretical method in this field.

• The introduction of more fluid components is not new in nuclear physics either.In a
classical collective excitation of nuclei, protons and neutrons oscillate against each
other. This is the well known Giant Dipole Resonance. In the Jensen-Steinwedel
model [9] this resonance is described by a two component distribution function,
i.e. one for the protons fp(x, p), and one for the neutrons fn(x, p).
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• Nucleons and light fragments at the final stage of a Relativistic Heavy Ion Collision
(RHIC) may also be considered as two components. It is usually assumed that
before the breakup they are all in thermal and chemical equilibrium. Temperature
measurements rely on this assumption! This assumption is, however, not true, it
should only be considered as an approximation. Different fragments, and the single
nucleons may have very different temperatures, and the internal temperature
of the fragments may also differ from the temperature exhibited by the kinetic
energies. These differences are due to the relatively fast breakup process compared
to the microscopic processes which act in the direction of thermalization.

• Another example may be two coexisting phases in a gas or a fluid. The kinetic
motion in this case is usually thermalized due to the enhanced cross sections
at the phase transition. Thus the assumption of a common flow velocity and
temperature is usually a reasonable approximation for phase mixtures. The
chemical potential may, however, be different in the two phases because inelastic
reactions converting one phase into another are less frequent. Consequently a two
component nonequilibrium mixture may characterize such matter adequately.

In kinetic theory a mixture of several components may be described similarly to the
theory we introduced for the one particle component above.

The distribution function of more (N) components is denoted as:

fk(x, pk) k = 1, 2, 3, ..., N (2.55)

The rest masses of the components may be different: pµkpµk = m2
k.

The four flow of component k is

Nµ
k =

∫
d3pk
p0
k

pµkfk(x, pk), (2.56)

and similarly to the one component case the energy momentum tensor can be evaluated
for the components separately

T µνk =

∫
d3pk
p0
k

pµkp
ν
k fk(x, pk). (2.57)

Important: there is always one common flow velocity uµ, although the component
distributions may be centered around different velocities uµk . This common flow velocity
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can be connected to the total particle current or to the total energy momentum tensor:

Nµ =
N∑
k=1

Nµ
k , (2.58)

T µν =
N∑
k=1

T µνk . (2.59)

If particles of a component are not conserved, but there is one (or more) conserved
charge, qk, (like baryon charge) carried by these particles we can introduce a total
current for this charge:

Qµ
k =

∫
d3pk
p0
k

qk p
µ
k fk(x, pk), Qµ =

N∑
k=1

Qµ
k . (2.60)

In mixtures one can define the scalar density as n =
∑
nk, and the concentrations

as xk = nk/n, which satisfy
∑
xk = 1. Note that these are valid only if the flow

velocities of the components are the same or if nk is defined as nk ≡ Nµ
k uµ and not via

the component velocities uµk . If the components have different flow velocities we can
introduce the diffusion current:

Dµ
k ≡ Nµ

k − xkN
µ (2.61)

so that
N∑
k=1

Dµ
k = 0. (2.62)

2.6 Assignment 2

Properties of the Rapidity

2.a Prove that the rapidity is additive under Lorentz transformation

2.b Show that the energy of a particle of rapidity, y, and transverse momentum, p⊥, is
E(= p0) = m⊥ cosh(y), where m⊥ is the transverse mass : m⊥ =

√
m2 + p2

⊥.

2.c Show that if E → ∞ then y → η = ln(cot Θ
2
) (pseudorapidity), where Θ is the

polar angle of the emitted particle.

2.d Plot the contour lines belonging to E = 2, 4, 8 GeV/nucleon energy in the [y, p⊥/m]
plane. (m = 1 GeV ).

Plot also the lines in the same plane, corresponding to constant polar angles
Θ = 0o, 30o, 60o, 90o.
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2.6.1 Solutions to Assignment 2
2.a A Lorentz transformation into a frame moving with velocity −u along the z−axis is:

v′ =
v + u

1 + vu

Then the rapidity is:
yi = arcth vi or vi = tanh yi.

v′ =
tanh yv + tanh yu

1 + tanh yv tanh yu
= tanh(yv + yu).

Since v′ = tanh yv′ it follows that tanh yv′ = tanh(yv + yu). So in conclusion

yv′ = yv + yu.

Note that this goes in one direction only! (By definition the beam axis is selected!)
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2.b According to the definition of the rapidity:

y = arcth v‖ = arcth
p‖

p0
= arcth

p‖

E
.

Using that

arcthx =
1
2

ln
1 + x

1− x
if (|x| < 1) we can write that

y =
1
2

ln
E + p‖

E − p‖
.

Let us now define the light cone variables:

p+ = E + p‖ and p− = E − p‖.

It follows then

p+p− = E2 − p2
‖ = m2 + p2

⊥ + p2
‖ − p

2
‖ = m2 + p2

⊥ ≡ m2
⊥.

This is the definition of the transverse mass, m⊥. Then by using these (so called
light-cone) variables

y =
1
2

ln
p+

p−
=

1
2

ln
(p+)2

p+ p−
=

1
2

ln
(p+)2

m2
⊥

= ln
p+

m⊥
= − ln

p−

m⊥
.

Inverting these last two equations

p+ = m⊥ e
+y, and p− = m⊥ e

−y.

Summing up these two and dividing by 2:

p0 ≡ E = m⊥ cosh y,

p‖ = m⊥ sinh y.

q.e.d.

2.c If E →∞ then [m2 + (~p)2]→∞ so it follows that p→∞ (if m� |~p|). Thus if E →∞,
it means that E → |~p| → ∞. So that

y → 1
2

ln
|~(p)|+ p‖

|~(p)| − p‖
= ln

(
1 + p‖/|~(p)|
1− p‖/|~(p)|

)1/2

Since cos Θ = p‖/|~(p)|, so we obtain the required relation

y → ln

√
1 + cos Θ
1− cos Θ

= ln
(

cot
Θ
2

)
≡ η,

which is at the same time the definition of the pseudo-rapidity, η.
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2.d

Figure 2.11: Constant angle (150, 300, 450, 600 and 750) and constant energy (E = 2, 4,
6, 8 GeV/nucl.) contour lines in the rapidity–transverse momentum plane

Figure 2.12: Constant angle and constant energy contour lines in the rapidity -
transverse momentum plane at low energies
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Chapter 3

Relativistic Boltzmann Transport
Equation

The relativistic Boltzmann Transport Equation (BTE) describes the time evolution of
the single particle distribution function f(x, p). It is based on the following assumptions:

1. Only two-particle collisions are considered, the so called binary collisions.

2. “Stoßzahlansatz” or assumption of “Molecular Chaos”: Number of binary collisions
at x is proportional to f(x, p1)× f(x, p2).

3. f(x, p) is a smoothly varying function compared to the mean free path (m.f.p.)

3.1 Particle conservation
The number of particles in a small 3-dimensional volume element around ~x at time t,
∆N(x), is identical to the number of world-lines crossing a 3-dimensional (time-like)
hyper surface:

∆N(x) =

∫
∆3σ

d3σµ N
µ(x′) =

∫
∆3σ

∫
∆3p

d3σµ
d3p

p0
pµ f(x′, p). (3.1)

Here d3σµ is a time-like 4-vector, which is orthogonal to the surface ∆3σ. In the (LR)
d3σµ = (d3x′, 0, 0, 0). In the (LR) ∆N(x) =

∫
∆3x

∫
∆3p

d3x′ d3p f(x′, p) is the number of
world-lines crossing ∆3σ, with momenta in the range ∆3p around p.

If particles are conserved, the number of world-lines is constant, i.e. they cross both
∆3σ and later ∆3σ′. (see Figure 3.1.) So∫

∆3σ

∫
∆3p

d3σµ
d3p

p0
pµ f(x′, p)−

∫
∆3σ′

∫
∆3p

d3σµ
d3p

p0
pµ f(x′, p) = 0. (3.2)

Since the edges of the 4-volume element are negligibly small it follows that the integral
over the total surface of the volume element, S, should vanish:∫

S(∆4x)

∫
∆3p

d3σµ
d3p

p0
pµ f(x′, p) = 0. (3.3)

65
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Figure 3.1: World-lines penetrating through a 4-volume element. Reproduced by
permission of World Scientific Publishing Co.

Using then Gauss’es theorem, (keeping in mind that ∂
∂xµ

(pµf) = (pµf),µ = pµf,µ ,
because pµ does not depend on x ):

∫
∆4x

∫
∆3p

d4x
d3p

p0
pµ f,µ (x, p) = 0. (3.4)

Here we used the notation ∂µ ≡,µ≡ ∂
∂xµ
≡ (∂t,∇). Since x, p and ∆4x , ∆3p are

arbitrary:

pµf,µ = 0, or pµ∂µf(x, p) = 0. (3.5)

This is the relativistic transport equation for the collisionless case in non-relativistic
notation. Now dividing eq.(3.5) by p0,:

(∂t + ~v ∇x)f(x, p) = 0, (3.6)

since ~v = ~p/p0. This is the known form of the continuity equation. This derivation did
not take into account an external force.

3.2 Collisions

Collisions among particles lead to a change of f(x, p). The number of particles in ∆4x,
∆3p changes by ∆4x∆3p

p0
C(x, p), where C(x, p) is the collision integral. A general binary
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collision can be characterized by the momenta:
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pµ pµ1

p′µ p′µ1

The number of such collisions is proportional to:

(i) The number of nucleons (particles) around ~p: ∆3p f(x, p).

(ii) The number of nucleons (particles) around ~p1: ∆3p1 f(x, p1).

(iii) The final state and configuration volume intervals ∆3p′, ∆3p′1, and ∆4x. The
proportionality factor is:

W (p, p1|p′, p′1)

p0 p0
1 p
′0 p′01

(3.7)

The quantity W (p, p1|p′, p′1) is the transition rate. It is an invariant scalar. Its x
dependence is assumed to be weak.

Thus the number of particles scattering out of ∆3p∆4x is

1

2
∆4x

∆3p

p0

∫
d3p1

p0
1

d3p′

p′0
d3p′1
p′01

f(x, p) f(x, p1)W (p, p1|p′, p′1). (3.8)

The factor 1
2
in front of the integral is there because it is symmetric under the exchange

p, p1 ↔ p′1, p
′ , and we correct for double counting. Similarly the change due to the gain

term is:
1

2
∆4x

∆3p

p0

∫
d3p1

p0
1

d3p′

p′0
d3p′1
p′01

f(x, p′) f(x, p′1)W (p′, p′1|p, p1). (3.9)

Thus the total transport equation is:

pµ∂µf(x, p) = C(x, p), (3.10)

where

C(x, p) =
1

2

∫
d3p1

p0
1

d3p′

p′0
d3p′1
p′01

[f ′f ′1W (p′, p′1|p, p1)− ff1W (p, p1|p′, p′1)] , (3.11)

where we introduced the notation

f ′ ≡ f(x, p′), f ′1 ≡ f(x, p′1), f ≡ f(x, p), f1 ≡ f(x, p1). (3.12)



68 CHAPTER 3. RELATIVISTIC BOLTZMANN TRANSPORT EQUATION

3.3 Non-relativistic limit
We can rewrite the above equation in another form

(∂t+~v ∇x)f(x, p) =
1

2

∫
d3p1 d

3p′ d3p′1 [f ′f ′1w(p′, p′1|p, p1)− ff1w(p, p1|p′, p′1)] , (3.13)

where
w =

W (p, p1|p′, p′1)

p0 p0
1 p
′0 p′01

(3.14)

Since W is a Lorentz scalar depending on pµ ’s of a collision, it may depend on
the invariants of the collision only: (Due to the energy conservation in a collision
pµ + pµ1 = p′µ + p′µ1 ). There are only 2 independent invariants we can use

s ≡ (p+ p1)2, (3.15)
t ≡ (p− p′)2. (3.16)

In the c.m. frame of the collision if P µ ≡ pµ + pµ1 = p′µ + p′µ1 , then P µ = (
√
s, 0, 0, 0);

i.e.
√
s is the total c.m. energy. t is related to the scattering angle Θ

cos Θ ≡
[

(~p ~p′)

|~p| |~p′|

]
cm

=
(pµ − pµ1)(p′µ − p′µ1

)

(p− p1)2
=

2t

s− 4m2
+ 1. (3.17)

Thus the transition rate can be expressed as

W (p, p1|p′, p′1) = s σ(s,Θ) δ(4)(p+ p1 − p′ − p′1) (3.18)

where the delta function enforces energy conservation and s is introduced to have the
proper non-relativistic limit as we will see it later; (By dimensional analysis: [W] =
[fm2/GeV2]; from eqs.(3.10) and (3.11), and c = 1.) Here σ(s,Θ) is some function
having the dimension of fm2 .

We will see that σ(s,Θ) is in fact the differential cross-section by calculating the
non-relativistic limit. Insert eq.(3.18) into eq. (3.11) and for example for the gain term
of the collision integral will have the form

I =

∫
d3p1

p0
1

d3p′

p′0
d3p′1
p′01

f(x, p′) f(x, p′1) s σ(s,Θ) δ(4)(p+ p1 − p′ − p′1). (3.19)

In the c.m. system P µ = pµ + pµ1 = p′µ + p′µ1 = (
√
s, 0, 0, 0), so the integration over d3p′1

p′01

can be carried out. There is only the 0th component left then.∫
d3p′

p′0
d3p′1
p′01

δ(4)(p+ p1 − p′ − p′1) =
1

2

∫
d3p′

p′0
1

p′0
δ(

1

2

√
s− p′0), (3.20)

i.e. p′0 = 1
2

√
s in the c.m. frame. Then

I = 2

∫
d3p′

d3p1

p0
1

δ(
1

2

√
s− p′0)σ(s,Θ) f(x, p′) f(x, p′1) , (3.21)
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where d3p′ = |~p ′|2 dp′ dΩ. Now using the relations for δ(φ(x)) (see Chapter 2)

δ(
1

2

√
s−

√
(~p ′)2 +m2) =

√
s

s− 4m2
δ(|~p ′| − 1

2

√
s− 4m2). (3.22)

Thus the integral is:

I = 2

∫
dp′

d3p1

p0
1

dΩ |~p ′|2
√

s

s− 4m2
δ(|~p ′| −

√
s− 4m2

2
)σ(s,Θ)f ′f ′1 = (3.23)

∫
d3p1

p0
1

dΩ
1

2

√
s(s− 4m2)︸ ︷︷ ︸
≡F

σ(s,Θ)f ′f ′1, (3.24)

where the part indicated by F is the so called Invariant Flux. Remember that the flux
was |~v2 − ~v1| in the non-relativistic transport theory. F corresponds to this quantity

F =
1

2

√
s(s− 4m2) =

√
(pµ1pµ)2 −m4

|in c.m.

=

∣∣∣∣ ~pp0
− ~p1

p0
1

∣∣∣∣ p0p0
1 = |~v − ~v1|c.m. p

0p0
1.

(3.25)
The two 0th components of the momenta are present in the relativistic expression to
balance the invariant scalar volume elements of the integration, d

3p
p0

. Using this quantity

I =

∫
d3p1

p0
1

dΩ |~v − ~v1|c.m. p
0p0

1σ(s,Θ) f(x, p′) f(x, p′1). (3.26)

And finally using the symmetry relations of W or σ we can write down the complete
collision integral and then the full BTE:

pµf,µ =
1

2

∫
d3p1 dΩ |~v − ~v1|c.m. p

0σ(s,Θ) [f(x, p′) f(x, p′1)− f(x, p) f(x, p1)]. (3.27)

By expressing the conmoving derivative in the usual non-relativistic way

(∂t +~v ∇)f(x, p) =
1

2

∫
d3p1 dΩ |~v − ~v1|c.m. σ(s,Θ) [f(x, p′) f(x, p′1)− f(x, p) f(x, p1)].

(3.28)
This is the form of the Boltzmann equation we learned in the statistical physics course.
The definition of the cross section via the transition rate is then

σ(s,Θ)dΩ =
1

F
W (p, p1|p′, p′1)

d3p′

p′0
d3p′1
p′01

(3.29)

One important difference is the factor 1
2
! In the non-relativistic theory (see ref. [1])

there is no such factor. This means that in the classical theory σcl = 1
2
σ, and the factor

one half takes into account the identical particles. The total cross section should be
calculated here as σtot = 1

2

∫
dΩσ(s,Θ), while in the classical theory σtot =

∫
dΩσcl(s,Θ).
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3.4 An example for the solution
This example is taken as an illustration from the work of J. Randrup [2]. Randrup
solved the Boltzmann transport equation for a spatially uniform distribution. This
example may represent the overlap region of a heavy ion collision. The initial condition
was such as in the overlap region (Fig. 3.2) of a heavy ion reaction initially, before the
nucleon-nucleon collisions result in an approach to thermalization. The question was:
how fast can we approach a thermalized momentum distribution.

&%
'$&%
'$

Time dependence of f(p) in the overlap region

Figure 3.2: The overlap region of two nuclei in a heavy ion collision

The Pauli principle for the nucleons was also taken into account in this work. If
at a given location x the p1, p→ p′1, p

′ scattering would populate a momentum state
which is already occupied then this is forbidden. Thus the rate is not proportional to
ff1, but to

f(x, p)︸ ︷︷ ︸
≡f

f(x, p1)︸ ︷︷ ︸
≡f1

[1− f(x, p′)]︸ ︷︷ ︸
≡f̄ ′

[1− f(x, p′1)]︸ ︷︷ ︸
≡f̄ ′1

.

These terms were introduced by Nordheim [3] and by Uehling and Uhlenbeck [4].
Randrup, thus, solved numerically the equation:

p0f,0 = const.

∫
d3p1 dΩ |~v − ~v1| p0σ(s,Θ) [f ′f ′1f̄ f̄1 − ff1f̄

′f̄ ′1]. (3.30)

The initial state was given by a two-peaked momentum distribution representing a
heavy ion collision before the thermalization. Fig. 3.3.

Figure 3.3: Momentum distribution in the longitudinal direction in the overlap region

The time development of momentum distribution was calculated for several beam
energies. The result is illustrated in Fig. 3.4 (from ref. [2]).
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The entropy can also be calculated. By using the usual definition the entropy
4-current is

Sµ ≡ −
∫
pµ
d3p

p0
[f(x, p) ln f(x, p)− f(x, p)] , (3.31)

where the additive −f(x, p) term ensures the appropriate entropy constant for joining
smoothly low temperature quantum statistical results (See also assignment 3.e). Also,
the argument of the function ln(z) should be dimensionless. This is ensured by inserting
the elementary phase space volume next to f in the argument, (2π~)3. In eqs. (3.31-3.32)
we drop this factor for simplicity. If we want to take into account the Pauli principle in
high temperature limit

Sµ ≡ −
∫
pµ
d3p

p0

[
f ln f + f̄ ln f̄

]
. (3.32)

Figure 3.4: The time development of longitudinal momentum distribution f(p‖) which
is obtained from the phase occupancy f(p) by projecting onto the beam axis. The
normalization is arbitrary but common. p‖ runs from 0 to the c.m. beam momentum,
p0. Reproduced by permission of Elsevier Science Publishing from [2].

Randrup used this latter definition. We will see later that these definitions coincide
with the thermodynamic definitions for equilibrium systems! The Lorentz scalar entropy
density is then defined as

s = Sµuµ, (3.33)
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while the specific entropy is

σ =
s

n
. (3.34)

Randrup calculated the time dependence of entropy production and this way the
speed of equilibration or thermalization. See Fig. 3.5 (from ref. [2]).

Figure 3.5: Specific entropy production as a function of time The role of Pauli principle
in the process of equilibration is shown in the figure: dashed lines are without, full lines
with Pauli principle. Reproduced by permission of Elsevier Science Publishing from [2].

The role of Pauli principle is not too large in entropy production! The population of
the momentum space is qualitatively different in elastic and in inelastic collisions. The
elastic collisions populate essentially a sphere in the c.m. momentum space because of
energy conservation. Fig. 3.6 from ref. [2]

Inelastic collisions populate mid rapidities. This leads to thermalization faster than
expected!!

There is a large number of works where the collective mean field formed by the
nuclear matter is also taken into account. These are called as BUU, VUU or Landau–
Vlasov models. These models proved to be very effective in explaining heavy ion
collisions up to a few 100 MeV/nucleon colliding energy. [5, 6, 7, 8]
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Figure 3.6: Contour plots of the distribution of nucleons in rapidity space after their
first collision. The upper portion is for elastic collisions only. In the lower portion
inelasticity is included via delta formation. The nucleons resulting from the isotropic
decay of the deltas have been added to the plot. Reproduced by permission of Elsevier
Science Publishing from [2].
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3.5 Relativistic Boltzmann equation for mixtures
Let us assume that we have N components and their distribution is described by

fk(x, pk), k = 1, 2, ..., N. (3.35)

The BTE is then

pµkfk,µ =
N∑
l=1

Ckl(x, pk) (3.36)

where

Ckl(x, pk) = (1− 1

2
δkl)

∫
d3pl
p0
l

d3p′k
p
′0
k

d3p′l
p
′0
l

[f ′kf
′
lWkl(p

′
k, p
′
l|pk, pl)− fkflWkl(pk, pl|p′k, p′l)] .

(3.37)
This is the BTE for elastic collisions only. The δkl in front of the collision integral
serves to distinguish mixtures composed of identical particles, k = l, and of non-
identical particles, k 6= l. For inelastic collisions the final states may belong to different
components: k + l → i + j. (We will neglect the possibility now, that the particle
number may change in an inelastic collision like: k + l → i+ j + s+ ....) In such a
more general case we have a transition rate Wkl→ij or Wkl|ij. In this case the collision
integral is:

Ckl(x, pk) =
1

2

N∑
i,j=1

∫
d3pl
p0
l

d3pi
p0
i

d3pj
p0
j

[
fifjWij|kl(pi, pj|pk, pl)− fkflWkl|ij(pk, pl|pi, pj)

]
.

(3.38)
In the following discussion we will omit the arguments of the transition ratesW , keeping
the indices only (similarly as we do it for the distribution function f). The transition
rates have some simple symmetries. First the sequence of the final states is irrelevant:

Wkl|ij = Wkl|ji, (3.39)

and from the time reversal symmetry of the microscopic processes Wij|kl = Wkl|ij.

3.6 Conservation laws
According to macroscopic (phenomenological) theories the macroscopic quantities,
n, e, P, ... change according to given dynamical equations (e.g. in hydrodynamics) which
are postulated. In the transport theory the conservation laws connect the microscopic
properties of the system to the equations governing the development of the macroscopic
quantities.

Lemma

1. Ψk is a microscopic quantity determined by the particle type (k), position (x) and
momentum (pk) as:

Ψk(x, pk) = ak(x) + bµ(x)pµk .
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2. This quantity is conserved in a binary collision kl→ ij, such that:

Ψk + Ψl = Ψi + Ψj.

One example for such a conserved quantity is the mass in an elastic collision, ak = mk,
and then the energy and momentum conservation leads to bµ = 1, because pµ is a
conserved quantity also.

Statement: If assumptions 1 and 2 are valid then the quantity, F , is

F =
N∑

k,l=1

∫
d3pk
p0
k

ΨkCkl(x, pk) = 0, (3.40)

where

Ckl(x, pk) =
1

2

N∑
i,j=1

∫
d3pl
p0
l

d3pi
p0
i

d3pj
p0
j

[
fifjWij|kl(pi, pj|pk, pl)− fkflWkl|ij(pk, pl|pi, pj)

]
.

(3.41)
Let us calculate F

F =
1

2

N∑
i,j,k,l=1

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

Ψk

[
fifjWij|kl − fkflWkl|ij

]
. (3.42)

Let us exchange the summation and integration variables in the loss term as k, l ↔ i, j.
This yields

F =
1

2

N∑
i,j,k,l=1

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

(Ψk −Ψi)fifjWij|kl. (3.43)

Using the symmetry Wij|kl = Wij|lk = Wji|lk, F can be written as:

F =
1

2

N∑
i,j,k,l=1

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

(Ψl −Ψj)fjfiWij|kl. (3.44)

Summing up the last two expressions and multiplying by 1
2

F =
1

4

N∑
i,j,k,l=1

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

(Ψk + Ψl −Ψi −Ψj)fifjWij|kl. (3.45)

Since Ψ is conserved in a collision the expression in parentheses vanishes, and so F = 0.
q.e.d.
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3.6.1 Conservation of particle number

In this case Ψk = 1. Let us take the BTE

pµkfk,µ =
N∑
l=1

Ckl(x, pk), (3.46)

and multiply it with Ψk, sum it over k and integrate it over
∫

d3pk
p0k

:

N∑
k=1

∫
d3pk
p0
k

pµkfk,µ =
N∑

k,l=1

∫
d3pk
p0
k

Ckl(x, pk). (3.47)

According to the Lemma the right hand side vanishes. Since the particle four-current is
Nµ
k =

∫
d3pk
p0k
pµkfk equation (3.47) means that the 4 divergence of the particle current

vanishes:

Nµ,µ =
N∑
k=1

Nµ
k ,µ = 0. (3.48)

This is the Continuity Equation. It expresses the fact that the particle number is
conserved if it is conserved in a microscopic collision.

3.6.2 Conservation of charge

We can choose any conserved charge, like baryon charge, strangeness, or electric charge.
In this case Ψk = qk can be taken as the charge. The corresponding 4-current is then

Qµ
k =

∫
d3pk
p0
k

qk p
µ
k fk. (3.49)

Thus the Charge Conservation can be expressed similarly to the previous case as

Qµ,µ =
N∑
k=1

Qµ
k ,µ = 0. (3.50)
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3.6.3 Conservation of energy and momentum

Choose in this case Ψk = pνk. Let us take the BTE again

pµkfk,µ =
N∑
l=1

Ckl(x, pk), (3.51)

and multiply it with Ψk, sum it over k and integrate it over
∫

d3pk
p0k

:

N∑
k=1

∫
d3pk
p0
k

pµkp
ν
kfk,µ =

N∑
k,l=1

∫
d3pk
p0
k

pνkCkl(x, pk). (3.52)

According to the Lemma the right hand side vanishes. Since the energy-momentum
tensor is T µνk =

∫
d3pk
p0k
pµkp

ν
kfk, equation (3.52) means that the 4 divergence of the

energy-momentum tensor vanishes:

T µν ,µ =
N∑
k=1

T µνk ,µ = 0. (3.53)

This is the energy and momentum conservation. Equations (3.48-3.53) are also the
equations of the relativistic fluid dynamics. In the fluid dynamics these equations are
postulated and not derived. As a matter of fact equations (3.48-3.53) are not a closed
set of equations, because the energy-momentum tensor and the particle 4-current should
be defined too. In the transport theory this is done through the distribution function,
which is known only if the solution of the BTE is known. Thus within the transport
theory these equations do not provide us the solution of a dynamical problem.

In Eulerian (perfect) fluid dynamics we postulate that the form of the energy-
momentum tensor is given by T µν (0) (see section 2.3.4) and the Equation of State
(EOS) gives the relation P = P (e, n). This provides a closed set of solvable partial
differential equations.

In the case of Navier–Stokes (viscous) fluid dynamics we assume that the energy-
momentum tensor contains T µν (1) also, and not only the EOS but the transport
coefficients that occur in the dissipative part of the energy momentum tensor also have
to be given.
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3.7 Boltzmann H-theorem

We have seen that the definition of the entropy 4-current in transport theory is

Sµ = −
∑
k

∫
d3pk
p0
k

pµkfk[log fk − 1]. (3.54)

Here we assume that c = ~ = k = 1. The entropy should be a non-decreasing function
of time, i.e. Sµ,µ≥ 0.

We want to see if this is a consequence of the BTE or not. Let us calculate the 4
divergence of the entropy current according to the definition

Sµ,µ = −
∑
k

∫
d3pk
p0
k

pµk [log fk]fk,µ . (3.55)

From the Boltzmann Transport Equation pµkfk,µ =
∑

l Ckl(x, pk). Inserting this into the
equation above

Sµ,µ = −
∑
k,l

∫
d3pk
p0
k

[log fk]Ckl(x, pk). (3.56)

We can now repeat the steps of the Lemma in the previous section, with Ψk = log fk,
although log fk is not a collision invariant. Thus the integral will not necessarily vanish,
but we still can get it into a symmetrized form by using the same steps:

Sµ,µ = −
∑
ijkl

1

4

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

[
log

fkfl
fifj

]
fifjWij|kl. (3.57)

Aside:
The transition rate has also the following symmetry:

∑
ij

∫
d3pi
p0
i

d3pj
p0
j

Wkl|ij =
∑
ij

∫
d3pi
p0
i

d3pj
p0
j

Wij|kl. (3.58)

This is a consequence of the unitarity of the scattering matrix. Now multiply the
above equation by fkfl, then sum it over k and l, and integrate it over d3pk

p0k
and

d3pl
p0l

. ∑
ijkl

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

(fkflWkl|ij − fkflWij|kl) = 0. (3.59)

In the first term we make an index change: i, j ↔ k, l. This yields

1
4

∑
ijkl

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

(fkfl − fifj)Wij|kl = 0. (3.60)
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Summing up equations (3.57) and (3.60) we obtain the relation

Sµ,µ =
1

4

∑
ijkl

∫
d3pi
p0
i

d3pj
p0
j

d3pk
p0
k

d3pl
p0
l

[
fkfl
fifj
− log

fkfl
fifj
− 1]fifjWij|kl. (3.61)

The expression in parentheses is a function, g(x) = x− log(x)− 1, which is depicted in
Figure 3.7

Figure 3.7: The g(x) = x− ln(x)− 1 function

Since the distribution function is never negative, the argument of function g(x) is
also non-negative, thus it follows that g(x) ≥ 0. This means that the above equation
then yields

Sµ,µ≥ 0, (3.62)

and it vanishes only if x = 1, i.e. if fkfl = fifj.

Consequence: If irreversible processes are present the entropy increases. In equilib-
rium the distribution, f = f eq., is constant, so Sµ,µ = 0, i.e. the entropy is constant,
but it reached its maximum when the equilibrium was reached.

Special case for one component only: Since Sµ,µ = 0 it follows

f eq.(x, p)f eq.(x, p1) = f eq.(x, p′)f eq.(x, p′1), (3.63)

so, log f is a collision invariant:

log f eq.(x, p) + log f eq.(x, p1) = log f eq.(x, p′) + log f eq.(x, p′1). (3.64)
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3.8 Equilibrium distribution function
In a collision p, p1 → p′, p′1, where pµ +pµ1 = p′µ +p′µ1 the most general collision invariant
is Ψ = a(x) + bµ(x)pµ. This means that if log f eq.(x, p) is a collision invariant it should
be expressible via Ψ,

log f eq.(x, p) = a(x) + bµ(x)pµ, so that, f eq.(x, p) = exp(a(x) + bµ(x)pµ). (3.65)

If there is no external force the distribution should be homogeneous:

f eq.(x, p) = f eq.(p). (3.66)

Since there are no gradients it follows that there are no transports. This way Landau’s
and Eckart’s definitions are equivalent. We can determine constants a and bµ by
calculating macroscopic expectation values from this distribution f eq.(p). Let us start
with the flow velocity, uµ = const.×Nµ, where

Nµ = const.×
∫
d3p

p0
pµ exp(a+ bµp

µ) = const.×
∫
d3p

p0
pµ exp(bµp

µ). (3.67)

This integral converges only if bµ is a time-like four-vector (and bµpµ < 0). Then from
(3.67) Nµ will be parallel to bµ. Consequently

bµ = const.× uµ = − 1

T
uµ, (3.68)

where T is just a constant. This yields

f eq.(p) = const.× e−uµpµ/T , (3.69)

where the normalization constant can be obtained from the requirement n = uµN
µ and

it yields const. = n/[4πm2TK2(m/T )]. This is just the Jüttner distribution that was
introduced in sect. 1.8.

Thus we have seen that the Jüttner distribution is the stationary solution of the
relativistic Boltzmann equation. If f is a solution of the BTE, it tends to fJuttner. This
was illustrated in the example in sect. 2.4.

This is the relativistic extension of the Boltzmann distribution. The approach to
equilibrium is fast: 3-8 fm/c! Most of the time the local distribution f(x, p) is close to
fJuttner.

3.9 Zeroth order approximation
Perfect fluid dynamics
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Assumption: Our system is not homogeneous, but the gradients are small, so local
distributions can be written as

f(x, p) =
1

(2π~)3
exp

(
µch(x)− pµuµ(x)

T (x)

)
, (3.70)

now the local n(x), P (x), e(x), s(x) are also known (from f(x, p) by using the definitions),
and we assume (!) that in the (LR), T µν is diagonal. This is also a consequence of
the assumption since we have neglected the gradients of the flow velocity and of the
thermodynamical variables:

T µνLR = T
µν (0)
LR = (e+ P )uµLRu

ν
LR − Pgµν =


e 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P


LR

(3.71)

The equations of Perfect Fluid Dynamics are the conservation laws under the assumption
that f(x, p) = fJuttner(x, p)

Nµ,µ = 0 or ∂µ(nuµ) = 0, (3.72)

and
T µν,µ = 0 or ∂µ(T µν) = 0. (3.73)

Using uµ = (γ, γ~v), T ik = wγ2vivk + Pδik, T 0i = −T0i = wγ2vi, T 00 = T00 =
(e+ Pv2)γ2 , (i, k = 1, 2, 3), the equation of continuity takes the form

∂t(nγ) + div(nγ~v) = 0, (3.74)

or
(∂t + ~v grad)(nγ) + nγdiv~v = 0. (3.75)

Now introducing the apparent density

N ≡ nγ = n, (3.76)

the continuity equation takes the familiar form

(∂t + ~v grad)N = −Ndiv~v. (3.77)

Similarly introducing
~M≡ T 0i = wγ2~v, (3.78)

E ≡ T 00 = (e+ P~v 2)γ2, (3.79)
the energy and momentum conservation will take the form

(∂t + ~v grad) ~M = − ~M(div~v)− gradP, (3.80)
(∂t + ~v grad)E = −Ediv~v − div(P~v). (3.81)

The last two equations are the Euler equation of fluid dynamics and the energy
conservation. Equations (3.77,3.81) have the familiar form of the equations of non-
relativistic perfect fluid dynamics. The difference is that

the quantities N , E , ~M are not related directly to the EOS, but one has to solve a
set of algebraic equations, (3.76,3.78,3.79) to obtain the thermodynamical quantities.
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3.10 Assignment 3
3.a Show that, if uµ is the flow velocity: uµuµ,ν = 0. (The notation is such that:

,µ≡ ∂
∂xµ
≡ ∂µ ≡ (∂t,∇~r).

3.b Prove that ∆µν∆νσ = ∆µ
σ, and ∆µ

µ = 3.

3.c Determine the chemical potential µ from the normalization n = Nµuµ. (Will be
done in class too!)

3.d Determine the energy-momentum tensor for the equilibrium distribution function
fJuttner(x, p), (i.e.: determine e and p). Show that T tends to the temperature in
the non-relativistic limit (i.e.: e ≈ n(m+ 3

2
T + ....)).

3.e Determine the entropy density and show that the basic thermodynamical relation

Ts = e+ p− µn

holds for the Jüttner distribution.
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3.10.1 Solutions to Assignment 3
3.a Show that uµuµ,ν = 0.

uµ is a time-like unit vector: uµuµ = +1, so it follows that (uµuµ),ν = 0. Thus,

(uµuµ),ν = uµ,ν uµ + uµuµ,ν = (gµσuσ),ν uµ + uµuµ,ν = gµσuσ,ν uµ + uµuµ,ν =

gµσuµuσ,ν +uµuµ,ν = uσuσ,ν +uµuµ,ν = 2× uµuµ,ν = 0.

q.e.d.

3.b Prove that ∆µν∆νσ = ∆µ
σ, and ∆µ

µ = 3.

∆µν∆νσ = (gµν − uµuν)(gνσ − uνuσ) = gµνgνσ + uµuνuνuσ − gµνuνuσ − gνσuµuν =

gµσ + uµuσ − uµuσ − uµuσ = gµσ − uµuσ = ∆µ
σ

∆µ
µ = gµµ − uµµ = δµµ − uµuµ = 4− 1 = 3

other solution: ∆µ
µ is invariant scalar. In the LR ∆µ

muLR = 3 . Hence ∆µ
µ = 3.

q.e.d.
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3.c This is important, students should solve it or it should be presented in class!

n = Nµuµ = C

∫
d3p

p0
pµuµ exp(−pµuµ/T ).

This integral is an invariant scalar, therefore it can be evaluated in any frame. We will
take the LR frame. Here uµ = (1, 0, 0, 0), so pµuµ = p0 =

√
~p 2 +m2. Using this

n = C

∫
d3p

p0

p0
exp(−

√
~p 2 +m2 /T ).

Introducing spherical polar coordinates d3p = |~p|2 d|~p| dΩ, and performing the integration
over dΩ we obtain

n = 4πC
∫ ∞

0
d|~p||~p|2 exp(−

√
|~p|2 +m2 /T ).

Introducing new variables

τ =

√
|~p|2 +m2

T
, z =

m

T
,

leads to

|~p|2 = (Tτ)2 −m2, d|~p| = T 2τ√
(Tτ)2 −m2

dτ =
T 3τ

T |~p|
dτ,

and consequently

n = 4πT 3C

∫ ∞
z

dττ
|~p|
T

exp(−τ) = 4πT 3C

∫ ∞
z

dττ
√
τ2 − z2 exp(−τ).

Comparing this with the integral expression of the modified Bessel function of the second
kind:

Kn(z) =
2n−1(n− 1)!

(2n− 2)!
z−n

∫ ∞
z

dτ(τ2 − z2)n−3/2 τ exp(−τ),

the particle number density can be written as

n = 4πC
m2

T 2
T 3K2(

m

T
)

and from here the normalization constant C can be expressed:

C =
n

4πm2TK2(m/T )
.

Thus the complete distribution function is

feq(p) =
n e−p

µuµ/T

4πm2TK2(m/T )
.

We can determine the chemical potential µ. From the definition C = eµ/T / (2π~)3, so
it follows that

n =
4πm2Teµ/T K2(m/T )

(2π~)3
,

and then

µ = T ln
[

n(2π~)3

4πm2TK2(m/T )

]
.
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3.d The energy-momentum tensor Tµν is diagonal in the LR frame, and

e = uµT
µνuν = C

∫
d3p

p0
(pµuµ)2e−p

µuµ/T ,

P = −1
3
Tµν∆µν = −1

3
C

∫
d3p

p0

 pµpµ︸︷︷︸
(p0)2−|~p|2

−(pµuµ)2

 e−pµuµ/T .
Evaluating this second integral in the LR frame

P = −1
3
C

∫
d3p

p0

[
(p0)2 − |~p|2 − (p0)2

]
e−p

0/T =
4π
3
C

∫ ∞
0

d|~p| |~p|2 1
p0
|~p|2e−

√
|~p|2+m2 /T .

Using the same variable transformations as in the solution of problem 2.d:

P =
4π
3
C

∫ ∞
z

dτ
Tτ√
τ2 − z2

T 4 [τ2 − z2]2

τT
e−τ =

4π
3
CT 4

∫ ∞
z

dτ(τ2 − z2)3/2e−τ .

Now using the definition:

Kn(z) =
2n n!
(2n)!

z−n
∫ ∞
z

dτ (τ2 − z2)n−1/2 e−τ ,

we obtain

P =
4π
3
CT 43z2K2(z) = 4πC

m2

T 2
T 4K2(m/T ).

Now using the normalization expressed in terms of n above:

P = nT.

This is the Equation of State (EOS) of the relativistic ideal gas of classical particles.
It is the same as that of the non- relativistic ideal gas!! Consequently T can be
identified with the temperature! This can be done only now, before it was just a
parameter of the distribution function characterizing the width of the distribution.

Similarly the energy density, e, can be obtained in a straightforward calculation following
the same procedure as we did it for the pressure.

e = 4πCm4

[
3
K2(z)
z2

+
K1(z)
z

]
.

Thus the energy per particle, ε = e
n is

ε = 3T +m
K1(m/T )
K2(m/T )

.

Making use of the asymptotic formula for z →∞:

Kn(z) =
√

π

2z
e−z

[
1 +

4n2 − 1
8z

+
(4n2 − 1)(4n2 − 9)

2! (8z)2
+ ...

]
,

the second term in the expression of the specific energy tends to

K1

K2
→

1 + 3
8z
−1 − 15

2·64z
−2 + ...

1 + 15
8 z
−1 + 15·7

2·64z
−2 + ...

≈
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(Using (1 + x)−1 = 1− x+ x2 − ....)

≈
(

1 +
3
8
z−1 − 15

2 · 64
z−2 + ...

)(
1− 15

8
z−1 +

15 · 7
2 · 64

z−2 + ...+ (
15
8

)2z−2 + ...

)
=

1− 3
2
z−1 −

(
2 · 3 · 15

2 · 64
+

15
2 · 64

+
7 · 15
2 · 64

+
152

64

)
z−2 + ... = 1− 3

2
z−1 +

15
8
z−2 + ...

Using this low temperature limit the specific energy is:

ε = m+
3
2
T +

15
8
T 2

m
+ ...

The first two terms give the well known non-relativistic expression, the third term is
a relativistic correction for gases where the temperature is still not too high but it is
comparable with the rest mass.

3.e

s = Sµuµ = −
∫
d3p

p0
pµuµf

eq(p)
[
ln
(
(2π~)3feq(p)

)
− 1
]

=

−
∫
d3p

p0
pµuµf

eq(p)
[
µ− pµuµ

T
− 1
]

= −
∫
d3p

p0
feq(p)

[
µ

T
pµuµ −

1
T

(pµuµ)2 − pµuµ
]
.

Comparing this with the previous results,

s = −µ
T
n+

1
T
e+ n,

and using the EOS, P = nT :
Ts = e+ P − µn.

Thus the entropy density, s, as we defined it satisfies the well known thermodynamical
relations. Thus at this point we can state that the entropy, s = Sµumu, is really the
parameter we are familiar with from equilibrium thermodynamics. This definition,
however, is applicable for non-equilibrium situations also!
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Chapter 4

Equation of State

In this chapter we will study two regions of the nuclear equation of state (EOS): the
energy and density region which is reachable in intermediate energy heavy ion collisions
up to a few GeV/nucl. energy, and some aspects of the Quark-Gluon Plasma (QGP)
phase transition. In the intermediate energy region we will pay particular attention to
the compressibility of nuclear matter and to the liquid–gas phase transition. Some basic
facts about the nuclear multifragmentation will also be mentioned. Here we will discuss
the features of the phase transition to QGP only from the EOS view point, and the
sensitivity of the phase transition to the nuclear compressibility. We will concentrate
on the connections between experimental data and the EOS rather than on theoretical
derivation of a particular EOS in the framework of a particular theoretical model.

The EOS provides only limited information about the nuclear matter: the static
thermal equilibrium properties. Before we proceed it has to be mentioned that in heavy
ion collisions non-equilibrium processes are very important, thus nuclear transport
properties will play an equally important role. It is also possible to extract transport
coefficients from the data. An example of this is given in refs. [1, 2] where scaling
properties of the data were studied and this led to conclusions about the Reynolds
number (i.e. viscosity).
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4.1 Intermediate Energy EOS

4.1.1 Bulk nuclear matter

Nuclear compressibility

From conventional nuclear physics we know that there is a stable equilibrium state at
the normal nuclear density n0 = 0.145− 0.17fm−3 [3, 4] with a compressibility which
was earlier assumed to be in the range of K = 180− 240 MeV [5] and a binding energy
of 16 MeV/nucleon. If we want to learn about the EOS at high densities and high
temperatures we have to rely mostly on theoretical estimates. The high density high
temperature part of the equation of state is decisive in the first, compression stage of the
collision. The low density behavior of nuclear matter determines the observables and
the reaction mechanism of the final expansion stage in a collision before the breakup.
In this first part of the lecture we will concentrate on the low density part of the
nuclear equation of state, which is directly related to the final fragmentation, nuclear
compressibility, momentum dependence, etc.

After an energetic nucleus-nucleus collision, many light nuclear fragments, a few
heavy fragments and a few mesons (mainly pions) are observed in the 100 MeV −
4 GeV/nucleon beam energy region. Thus the initial kinetic energy of the projectile
leads to the destruction of the ground state nuclear matter and converts it into a dilute
gas (n << n0) of fragments, which then loses thermal contact during the breakup or
freeze-out stage. These frozen-out fragments and their momentum distributions can be
measured by the detectors. Some excited fragments can of course decay while reaching
the detectors.

One of the most standard methods to calculate the nuclear EOS is in the mean
field theory. We start out with a Lagrangian including the nucleon field, ψ, a scalar
meson field, φ and a vector meson field, Vµ. Customarily the contribution of the scalar
field is described by a quartic polynomial. The coefficients and the coupling constants
determine the behavior of the calculated EOS. Not all the parameters are free obviously,
since basic nuclear parameters like the binding energy and the saturation density should
be reproduced by the model. Also the compressibility, K, and the effective nucleon
mass, m∗, are sometimes considered as known parameters.

However, based on a mean field theoretical calculation Waldhauser et al., pointed out
recently that the characterization of the EOS with the ground state compressibility is
sometimes very misleading [6]. For example at T = 100 MeV , and if the effective mass is
m∗ = 0.55m the EOS at n = 2−3n0 is practically the same for different compressibilities
like K = 210, 300, 400 MeV . On the other hand the EOS is very sensitive to the
effective mass at high densities. This finding explains the earlier experience that if some
phenomenon, which is sensitive to the EOS at high densities, is satisfactorily described
in a theoretical model with one given K(n0, T = 0), it is still possible that other models
have to use a different constant value for the ground state K. So to debate about the
nuclear compressibility is meaningful only if apart of the value of K also the particular
model or parametrization is also discussed.

The nuclear compressibility is in the focus of an international debate recently. With
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the advancement of the relativistic heavy ion physics we reached the stage where
quantitative conclusions about the high temperature high density EOS became possible.
The compressibility

Kσ = 9
∂P (σ, n)

∂n

influences a great number of experimental observables. These were summarized re-
cently by Glendenning [7]. Following his work we can briefly summarize the different
phenomena leading to some conclusions about the EOS.

Landau Sum Rule. In the Landau theory of Fermi liquids the compressibility is given
by K = 3~2k2

F (1 + F0)/m
∗, where F0 is one of the Landau parameters characterizing

the liquid. Brown and Osnes [8] determined F0, and thus K, from the Landau sum rule
which connects the Landau parameters. Collecting the information available for them the
authors concluded that the compressibility is K = 106 MeV . Glendenning, on the other
hand analyzing the accuracy of this estimate found that since the Landau parameters
are not known really well the compressibility can be in the range of K = 74− 371 MeV .

Pion Multiplicities in Relativistic Heavy Ion Collisions. One of the first attempts
to determine the EOS from high energy experiment was done by Stock et al. [9].
The idea was that there are less pions observed than one would expect based on a
cascade calculation, or on a (noninteracting) ideal gas model. So, some kinetic energy
should be missing during the collision, and this causes the smaller pion production rate.
This missing energy should then be the compressional energy. In several subsequent
works this effect was studied in more sophisticated models. First the compression was
calculated by using the EOS from the Rankine-Hugoniot relations for shock compression.
Then it turned out that the final expansion should also be taken into account because
pion reabsorption is also important. These calculations are quite involved but in most
of them a large compressibility, K > 200 MeV was needed to reproduce the pion
multiplicity data. A basic problem was pointed out recently by Maruhn and Stöcker
[10]. The pion multiplicities were measured at high energies only, and there is a sizeable
energy gap between the ground state and the lowest energy data. This leads to an
essential uncertainty if we want to calculate the EOS directly from the data using the
Rankine-Hugoniot relations. Most authors do not realize this because they assume
some given parametrization of the EOS which connects the two regions in an arbitrary
way. To avoid this problem the measurement of K around the ground state would be
needed, or in other words the first and second derivative of K (versus n and T ) at the
ground state.

Sidewards Flow in High Energy Nuclear Collisions. The existence of shock waves
and the collective “bounce off” of nuclei of each other was predicted [11, 12] long before
the first really convincing experiments [13]. By now the flow analysis is one of the well-
established methods to extract information about the EOS, and even about the transport
properties of the hot nuclear matter. Earlier it was described satisfactorily in the fluid
dynamical model but the more recent transport theoretical models (VUU-BUU-LV)
[14, 15] have the advantage of being able to incorporate finite particle number and non-
equilibrium effects. The nuclear mean field potential is an organic constituent of these
models, so the nuclear compressibility can be explicitly read off from the calculations.
The most recent model calculations include also momentum dependent interactions
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which are especially important in the initial, not completely equilibrated stage of the
collision. These calculations indicate that the compressibility should be in the range of
K = 200− 400 MeV to fit the flow data. The momentum dependence of the potential
allows for the lower compressibility values in this range while momentum-independent
interactions lead to stiffer EOS.

Supernova Explosions. A very interesting contribution to the nuclear EOS has
been provided by theoretical calculations of Supernova explosions. At late stages of
star evolution a star of about 10M� may explode if its iron core is in the range of
1.3− 1.35M�. Baron et al. found that, if the EOS is sufficiently soft at high densities, a
successful prompt supernova explosion may occur due to the shock wave which develops
after the gravitational collapse of the core [16]. The compression modulus depends
on the proton fraction Z/A, which is smaller in supernova than in nuclei. The EOS
which led to the explosion had K(Z/A = 1/3) = 138 MeV and this corresponds to a
K(1/2) = 180 MeV .

Neutron Stars . Glendenning [7] used the same EOS [16] to calculate the maximum
mass of a neutron star by solving the Tollman–Oppenheimer–Volkov equation. The
stiffer the EOS the heavier neutron star can be supported by it. He found that with
Z/A = 1/3 the maximum neutron star mass would be 1.25M�. However, the neutron
stars are more neutron rich, so Z/A = 1/5 might be more appropriate value. In this
case the maximum neutron star mass would be only 1M�. Since there is a neutron
star with M = 1.451± 0.007M� (PSR1913+16), and another where the mass is less
accurately measured with M = 1.85+0.35

−0.30
M�, these indicate that the EOS may be more

stiff than the supernova calculations predicted. According to Glendenning’s calculations
at least K = 200 MeV is necessary to account for the observed neutron star masses.

Giant Monopole Resonance. New results for K have been reported by the Groningen
group who made precision measurements of the breathing mode of 5 Sn and 4 Sm
isotopes [17, 18]. These data were analyzed in conjunction with the already existing
data on 208Pb and 24Mg nuclei. They determined the compressibility of infinite nuclear
matter, the surface, the isospin and the Coulomb contribution to the data:

KA = K∞ +KsA
−1/3 +Kτ (

N − Z
A

)2 +KCZ
2A−4/3.

The resulting value for K∞ was 299± 25 MeV , much more than the value extracted
from the earlier data.

The above mentioned cases are not complete, there are still other ways to gain
information about the EOS and the compressibility. The most accurate measurements
of course still apply to the ground state nuclear matter (Giant Monopoles) or to the cold
matter (Neutron Stars). The other data deal with more dynamic situations and with
hot and compressed matter so it is not surprising that there is still room for improving
the present estimates.
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Thermodynamical variables

Before we continue the discussion of the EOS, let us repeat the definitions and notations
of the most important thermodynamical variables, particularly because these notations
are not completely unique in the literature. Thermodynamics is usually discussed for
macroscopic systems of given volume, V , and given particle number, N . If, however,
we have a continuum like a fluid where the parameters change from place to place, it
is useful to introduce local quantities instead of the global extensives. There are two
usual ways to do this: either we introduce specific extensives by dividing each extensive
by N , or by introducing extensive densities by dividing each extensive by V .

Here we will denote all specific extensives by Greek letters and all extensive densities
by lower case latin letters. This notation is quite usual but we have to keep in mind
that the energy density, denoted here by e is frequently denoted by ε. Here we use ε for
the specific energy. The thermodynamics and the EOS can be formulated in all three
formalisms. See Table 4.1.

If one thermodynamical potential in terms of its proper variables is given, all
other quantities can be derived immediately by simple derivations. If the microscopic
properties of a system are known along with the statistics of the particles, one can
calculate the partition function. This is related directly to one of the thermodynamical
potentials, usually to the Helmholz free energy (Canonical Partition Funct.) or to the
Grand-potential (Grand-Canonical Partition Function).

A simplified Equation of State

Considering the most essential properties of the nuclear equation of state for densities
below n0, theoretically a liquid gas phase transition is clearly predicted with Tc =
15− 20 MeV and nc = 0.3− 0.5n0. More accurate information and further details can
be obtained only from thorough experimental research and by comparing experimental
and theoretical results. Before we discuss the properties of the nuclear equation of state
let us introduce the general notation of thermodynamic variables (Table 3.1). If we
have defined one of the “state functions” or “thermodynamical potentials” in terms of its
proper variables like e(s, n), F (T, V,N) or µ(T, P ), all other thermodynamical variables
can be obtained by differentiating the thermodynamical potential. For example: The
equation of state P = P (T, n) can be obtained from the Helmholtz free energy density
as P (T, n) = n f,n−f . (The comma denotes the partial derivative: a,x≡ ∂a/∂x.)
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THERMODYNAMICAL VARIABLES
Extensives Specific Extensives(1/N) Extensive densities(1/V )
S = entropy N = particle number V = volume

σ = S/N s = S/V

E(S, V,N) = TS − PV + µN ε(σ, ν) = Tσ − Pν + µ e(s, n) = Ts+ µn− P
dE = TdS − PdV + µdN dε = Tdσ − Pdν de = Tds+ µdn

eg.: P = −e+ se,s +ne,n
One intensive replaces an extensive:
Enthalpy:
H(S, P,N) = E + PV = TS + µN χ(σ, P ) = ε+ Pν = Tσ + µ w(s, n) = e+ P = Ts+ µn
dH = TdS + V dP + µdN dχ = Tdσ + νdP dw = Tds+ µdn

(redundant)
Helmholtz free energy:

F (T, V,N) = E − TS = Φ(T, ν) = ε− Tσ = µ− Pν f(T, n) = e− Ts =
= µN − PV = µn− P
dF = −SdT − PdV + µdN dΦ = −σdT − Pdν df = −sdT + µdn

X - potential:
X(S, V, µ) = E − µN = TS − PV − x(s, µ) = e− µn = Ts− P
dX = TdS − PdV −Ndµ dx = Tds− ndµ
Two intensives replace two extensives:
Gibbs free energy:
G(T, P,N) = E + PV − TS = µN µ(T, P ) = −Tσ + Pν −
dG = −SdT + V dP + µdN dµ = −σdT + νdP

Grand potential Ω:
Ω(T, V, µ) = −PV = − z(µ, T ) = −P =
= E − TS − µN = e− Ts− µn
dΩ = −SdT − PdV −Ndµ dz = −sdT − ndµ
Y-potential:
Y (S, P, µ) = E + PV − µN
dY = TdS + V dP −Ndµ
Gibbs–Duhem relation
E + PV − TS − µN = 0 dµ = −σdT + νdP dP = sdT + ndµ
−SdT + V dP −Ndµ = 0

Table 4.1: Thermodynamical potentials
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As an example which is used widely in the literature [19, 20, 21, 22, 23, 24, 25, 26, 27],
let us define an analytic parametrization for the nuclear equation of state. The
thermodynamical potential e = e(n, s) as a function of baryon density n, and entropy
density s is given by:

e(n, s) = ec(n) + e∗F (n, s)− e∗F (n, 0),

where ec(n) is the ground state energy density, and e∗F (n, s) is the energy density of an
ideal Fermi-gas. We can parametrize the ground state energy density as [25]

ec(n) = n0

5∑
i=2

ai (
n

n0

)
i
3

+1,

where ai = +21.1,−38.3,−26.7,+35.9 MeV for i = 2, ..., 5 respectively. This para-
metrization yields a binding energy ε0(n0) ≡ ε(n0) = e0(n0)/n0 = −8 MeV (instead
of the usual infinite nuclear matter value of −16MeV to simulate finite size effects)
and a nuclear compressibility K = 210 MeV at n0 = 0.15fm−3. Note that this para-
metrization is used for small nuclear densities n < 2n0. At high densities the sound
speed exceeds the speed of light. For the thermal part of the energy density we use
the non-relativistic ideal Fermi-gas approximation because for the low density and
temperature at the break-up, relativistic corrections are negligible. Then the energy
density e depends on the density n and specific entropy σ = s/n as [28]:

e∗F (n, s) = (
n5/3

m
)y(σ),

where y is a dimensionless quantity and it depends on the dimensionless specific entropy
σ (or µ/T ). y(σ) can be given in integral form [28], but in actual calculations usually
practical analytic parametrizations are used [25, 29]. A parametrization for the inverse
function, σ(y) given in ref. [25] is

σ(y) = 0.5213 + 1.5 ln(y + 0.7064) +
1.809y1/2

1 + 1.139y1/3 + 1.417y + 1.014y3/2
.

Other thermodynamical quantities can then be calculated from standard thermody-
namical relations:

T (n, s) = e,s =
n2/3

m
y′(σ),

µ(n, s) = e,n =
1

3

5∑
i=2

(i+ 3)ai(
n

n0

)i/3 +
5

3n
e∗F (n, s) − T (n, s)σ,

P (n, s) = Pc(n) +
2

3
e∗F (n, s),

where Pc(n) = n0

3

∑5
i=2 iai(

n
n0

)i/3+1 . The equation of state represents a stable equilib-
rium configuration only if the energy has a minimum. This condition is satisfied if the
matrix Mik = e,ik (where k, i = n, s) is positive definite. This requirement leads to two
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independent constraints on the derivatives of the thermodynamical parameters [28],
(Section 21):

cν = Ts(T, ν),T > 0, and κT = −1

ν
ν(P, T ),P > 0,

where κT is the isothermal compressibility, and cν is the isochoric (under constant
specific volume) specific heat. In nuclear physics the compressibility is customarily
characterized by another positive quantity:

Kσ = 9P (σ, n),n , and KT = 9P (T, n),n .

If these requirements are satisfied then the adiabatic sound speed is positive and larger
than the isotherm sound speed: u2

σ = (cp/cν)u
2
T > u2

T > 0.
There are regions in the [T, n] plane where these stability conditions are not satisfied.

That is, our equation of state does not represent a stable equilibrium. The region where
the isotherm sound speed, u2

T < 0 is contained within the unstable region. There are
speculations [19, 30] that the matter in a relativistic heavy ion collision might penetrate
into the unstable region because of rapid expansion during the collision.
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Figure 4.1: Phase diagram on the entropy density plane. Phase equilibrium is possible
above the critical entropy too! uσ and uT are the adiabatic and isotherm sound speeds.
The stable gas and liquid phases are separated from the metastable region by the
Maxwell construction line. Reproduced by permission of Elsevier Science Publishing
from [29].

Phase coexistence between liquid and gas phases

If the temperature and density of our system falls into the unstable region, or even close
to this region, it may split up into two phases. Theoretically this is also a consequence
of the stability requirements. If we allow for two co-existing liquid (L) and gas (G)
phases we have one more free parameter in our thermodynamical problem, the volume
fraction of the phases i = L,G:

λi = Vi/V,

or equivalently the particle number fractions:

αi = Ni/N.

The sum of both is normalized to 1, αL + αG = 1, λL + λG = 1 and there is a relation
among α and λ:

λi =
n

ni
αi, and λL =

n− nG
nL − nG

.

Now the requirement of the energy minimum leads to Gibb’s criteria of phase equilibrium:
PL = PG = P , TL = TG = T , and µL = µG = µ. For a two phase system these
requirements restrict the region of stability on the [n, s] plane to a line! This is the
Maxwell construction line, and it lies in the stable region of the previous stability study.
Fig. 4.1.
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Outside the region confined by this line the matter is stable in one single phase.
Within this line but outside the u2

T < 0 region the matter is mechanically stable if
formation of the other phase is hindered or delayed. The region between the Maxwell
construction line and the boundary of instability u2

T < 0 is metastable, matter can be
stable in this region if the other phase is not present. These are the phenomena of
superheating and supercooling which are quite common in relatively slow thermodynamic
processes, so we expect these phenomena to occur in the much faster relativistic heavy
ion collisions too. If we solve the Gibb’s criteria for our equation of state the extensive
thermodynamic quantities are given along the Maxwell construction line as functions of
one intensive parameter, say T . In a heavy ion reaction in principle we might reach
the phase mixture region with arbitrarily high energy collisions in the subsequent
quasi-adiabatic expansion [21] if the break-up density is sufficiently low.

Critical exponents

It will be imperative to mention a few results about critical phenomena. The critical
opalescence in liquid gas phase transition was observed more than a century ago and
in the 1940’s Guggenheim [31] realized that several fluids behave similarly around the
critical point of the liquid-gas phase transition. This lead to the extended study of
the critical exponents which started in the 1960’s. (see ref. [32]). Let us introduce the
“order parameter” neqL (T ) − neqG (T ), (= nL − nG) and the relative deviation from the
critical temperature

ε = (T − Tc)/Tc.

Figure 4.2: Determination of the critical behavior. Reproduced by permission of Oxford
University Press from [32].

Guggenheim’s observation was that just below the critical point

nL − nG ∝ (−ε)β,

where β is a critical exponent, which was found to be universally β = 1/3 for the liquids
he studied. Similarly, another critical exponent δ is defined at T = Tc by

P − Pc ∝ (n− nc)δsign(n− nc).
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At the critical point the isotherm compressibility, κT , diverges and at the same time KT

tends to zero. See Fig. 4.2. This divergence can be parametrized by a critical exponent
also:

κT ∝ (−ε)−γ′ , if : ε < 0,

κT ∝ (ε)−γ, if : ε > 0,

below and above the critical point, respectively. Similarly the specific heat can be
parametrized around the critical point as:

cν ∝ (−ε)−α′ , if : ε < 0,

cν ∝ (ε)−α, if : ε > 0.

The critical exponents can be calculated for a given equation of state. So far in nuclear
physics applications, however, the critical exponents were seldom evaluated. In Table
4.2 (from [32]) some critical exponents are listed for different models and systems:

α α′ β γ γ′ δ

T > Tc T < Tc T < Tc T > Tc T < Tc T = Tc
Fluids ∼ 0.1 ∼ 0.1 ∼ 0.34 1.35 ∼ 1 4.2
3 dim Ising model ∼ 1/8 ∼ 1/8 ∼ 5/16 ∼ 5/4 ∼ 5/4 ∼ 5
Classical mean field 0 0 1/2 1 1 3
(Van der Waals)

Table 4.2: Values of critical-point exponents for selected systems.

In [24] for a simple analytic equation of state the above mentioned critical exponents
were evaluated and the same values were obtained as in the Van der Waals theory.

A discussion of the critical point properties of a Skyrme interaction is given in
[33, 34]. The similarity between the nuclear liquid gas transition and a ferromagnetic
system is studied in [35].

Fragment mass distributions

There are numerous models describing fragment mass distributions. A concise review is
given in ref. [29]. The overwhelming majority of the models describe a static situation
at the “freeze-out moment”. It is possible that at this moment some excited nuclear
fragments exist and their final decay by particle emission is also considered in the most
sophisticated calculations [19, 36, 37, 38]. Most models are of statistical origin and in
principle they would yield an equation of state. (This is not so in some percolation
models where the connection between the bond-breaking probability and physical
quantities like energy and density is not defined.) The evaluation of the equation of
state is, however, not a trivial task and in practice it is very seldom performed. Thus
it is not always clear whether a statistical model which satisfactorily describes the
experimental data exhibits a liquid- gas phase transition or not. Here, only some very
basic facts will be mentioned about the fragment distributions, and a few of the recent
works not mentioned in ref. [29] will be discussed.
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At high beam energies the system breaks up after the collision with considerable
excitation energy, so that the system is rather dilute at freeze out. In this case the
description of fragment mass distribution is simpler because we are close to an ideal
gas behavior. This situation will be discussed in the next section. At lower accelerator
energies the situation might get more involved, due to the influence of the liquid gas
phase transition. Both in equilibrium and in non-equilibrium expansion, if finally two
phases exist, they are very different. The gas phase is very dilute and has a large
entropy σ = 3.5 − 4, while the liquid phase has low entropy σ = 1 − 2 and density
close to n0. What is the fragment distribution in such a phase mixture? The gas phase,
having large entropy, consists of very light fragments with an exponentially decreasing
mass spectrum. In this limit there is not much difference in the model estimates. From
the experimentally observed light fragment (proton to alpha) abundances all previously
discussed models extract an entropy value on the order of 3 − 4, down to a few 100
MeV beam energy or even lower [25, 39].

The prediction of the mass distribution of heavier fragments representing the liquid
phase is a more involved problem. The thermodynamical limit does not yield a definite
prediction. Surface effects, nuclear size, reaction geometry, fission, final state decays
and even the collective flow pattern may influence the intermediate and heavy fragment
mass distribution. The light fragment distributions are not independent of the liquid
phase. The final decay or fission of the heavier fragments can change the light fragment
distributions too. While for the light fragments the grand canonical treatment is
acceptable, the behavior of intermediate mass fragments is already strongly influenced
by the limited nucleon number. These finite size and surface effects will be discussed
later in sect. 3.1.2.

Law of Mass Action

The law of mass action as applied to ideal gases is the most basic law describing the
fragment distributions. The application of Law of Mass Action for Relativistic Heavy
Ion Reactions was first proposed by Mekjian in 1978 [40]. Ignoring relativistic, quantum
and isospin effects the number density of ground state nuclei, ng, of mass number A is

ng(A) = gA(
mTA

2π
)3/2 eA(µ+W0)/T (4.1)

where gA is the spin degeneracy, m is the nucleon mass, and W0 > 0 is the binding
energy per nucleon. The non-relativistic chemical potential per nucleon, µ, is related
to the relativistic chemical potential by µ = µrel. −m. If µ < −W0 then the number
density is an exponentially decreasing function of A. Once µ = −W0 the nuclei would
like to coalesce, to form uniform liquid nuclear matter.

Using Eq.(4.1) for p and d, and neglecting the binding energy difference, the deuteron
to proton ratio is: x ≡ nd/np = 3

2
23/2eµ/T . It follows that µ/T = lnx − 1.445. Now

from e = Ts+ µn− p by inserting the Boltzmann ideal gas expressions e = n3
2
T and

p = nT , we get σ = s/n = −µ/T + 2.5. Using the expression of µ/T in terms of x we
can express the entropy by the d/p ratio:

σ = 3.945− lnx.
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This result was first obtained by Siemens and Kapusta [41], and it served as the basis
for experimental measurements of entropy later.

At the freeze out, however, not only nuclei in their ground states but also nuclei in
various excited states will be present. To explicitly count them we should additively
include

ni(A) =
gi
gA
ng(A)e−E

∗
i /T ,

where gi is the degeneracy of the excited state and E∗i is its excitation energy above
the ground state. If the total baryon density is known as usual, µ can be obtained from
the total nucleon density of the system at break-up

n =
∑
A

∑
g,i

Ani(A).

There are several large numerical models which calculate the nuclear fragment mass
distribution based on the law of mass action for ideal gases. In [42, 43, 36, 44] all
known nuclear states with A < 16 having a width Γ < 1 MeV were included explicitly,
and these levels for A > 4 were supplemented by an effective level density formula
for the higher lying states which are not known experimentally [36, 45]. Since this
model includes an excluded volume approximation, the equation of state belonging to
this is somewhat different from the ideal gas equation of state, the pressure increases
sharper at higher densities as n→ n0. It does not show a first order phase transition
because only repulsive interactions are included, long-range attraction is not. This
code has recently been named FREESCO [45]. It is an approximate microcanonical
event generator where the exact microcanonical fragment distribution is calculated
recursively by approximating the one-fragment inclusive distributions in each step
by the grand canonical distribution. Another fragmentation model is the Quantum
Statistical Model (QSM) [46, 19] which calculates the grand canonical one-fragment
inclusive distribution functions, but it includes as a special feature quantum statistics.
The known particle-stable and metastable nuclear states with A < 20 are included
in this model, and the repulsive interactions are simulated by the excluded volume
approximation also.

Both models are based on the same physical picture: namely a first fast explosion
creating light and medium mass fragment according to the law of mass action followed
by sequential evaporation from these products in a final decay step. These two models,
which can be regarded as different implementations of a general statistical model for
nuclear disassembly, were compared to each other and to experimental results recently
[38]. It was found that in the breakup temperature range of T = 30− 90 MeV there is
an essentially unique relationship between the “d-like/p-like” fragment ratio, X, and
the specific entropy of the ideal gas mixture σ. The lower temperature isotherms begin
to deviate from the universal curve at low entropies. At high entropies and low X the
“Siemens–Kapusta” formula [41] σ = 3.945− lnX is a good approximation to the results
of the more sophisticated statistical models. The experimentally determined values of
X at the maximum charged particle multiplicity for different experiments ranging from
400 to 1050 MeV/nucleon beam energy [47] are between 0.48 and 0.68. According to
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both above mentioned models this corresponds to entropy values of σ = 3.45− 3.9 at
the break-up.

In intermediate energy heavy ion reactions temperatures extracted from the energy
spectra of different fragments with a moving source fit.1 The temperatures are impres-
sively constant independently of the particle type[48]! This might suggest thermal and
phase equilibrium. The above-mentioned experiments [47] are of relatively high energy
and we do not expect the system to reach the nuclear liquid-gas phase transition before
breakup. Therefore the above theoretical models which neglect attractive interactions
yield satisfactory results. At lower energies the same is not true anymore. While the
light fragments show a relatively high entropy according to the analysis, the intermediate
fragments have an entropy value by almost one unit smaller [49]. This indicates that
the above model cannot yield satisfactory results at lower energies, and other effects
like the nuclear liquid-gas phase transition [50], microcanonical statistics, attractive
and Coulomb interactions should be considered.

1 The moving source fit first locates the c.m. of the emitted fragments in the phase space, and then
an ideal thermal source moving with this speed is fitted to the energy spectra of the fragments to
determine the temperature, T.
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4.1.2 Finite systems and fragment abundances

Phase transition in finite systems

For a system with a finite number of particles, in a very strict sense no phase transitions
exist and fluctuations can be important. Could it be that nuclear systems are so small
that these fluctuations completely wash out the first order liquid-gas phase transition
below Tc? This question was first addressed in the context of heavy ion reactions in
ref. [51]. Consider a system held at fixed temperature and pressure. We are interested
in density fluctuations of this system. Instead of a nuclear system it may be helpful to
think of a finite number of particles placed in a cylinder which is maintained at a fixed
temperature T , with a movable piston at one end which exerts a constant pressure, P ,
on the gas particles. Only a finite number of particles per unit time collide with the
piston, so the position of the piston will fluctuate with time about some mean position.
Thus the density of the gas will also fluctuate.

The ratio of probabilities for a system to be at density n1 or n2 is

p(n2)/p(n1) = exp[−(G(n2)−G(n1))/T ]

where G(n) is the Gibbs free energy at p and T . For an infinite system in equilibrium
the density n is determined by the EOS once p and T are specified. We want to
know, however, the probability of having the system at a non-equilibrium density. It is
necessary therefore to know G(n) for densities not permitted by the equation of state.
This is provided by the Landau theory [28] in which n is treated as an independent
variable not restricted by p and T . Such an analysis was carried out in ref. [51]. A
simple form for the nuclear EOS was chosen

p = −a0n
2 + 2a3n

3 + nT, (4.2)

(a0 = 293 MeV fm3, a3 = 666 MeV fm6, n0 = 0.15fm−3, W0 = 8 MeV ) which has
a critical point at nc = a0/(6a3), Tc = a0nc , Pc = 1

3
Tcnc . One can expand the EOS

(4.2) around the critical point by introducing t = T − Tc and η = n− nc so that,

P − Pc = nct+ tη + 2a3η
3. (4.3)

This equation of state behaves similarly to the Van der Waals EOS, for negative t the
phase equilibrium points can be found by the Maxwell construction [33, 34, 51]:

ηL = −ηG =
√
−t/2a3.

The essential feature of the Landau approach is the construction of the free energy in
terms of a power series in the order parameter η. Thus G(p, T, η) will be defined at
nonequilibrium values of η too, for a fixed p and T . In the neighborhood of the critical
point the Gibbs free energy is then:

G(p, T, η) = G0(p, T, η) + α(p, T )η + A(p, T )η2 + C(p, T )η3 +B(p, T )η4 + ... (4.4)
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The EOS (4.3) can be used to obtain the coefficients in (4.4) since the equilibrium value
of η can be obtained from the requirement that G has an extremum in equilibrium:

∂G

∂η
= α + 2Aη + 3Cη2 + 4Bη3 = 0. (4.5)

This should be the EOS (4.3). Comparing (4.3) and (4.5) we obtain for the coefficients:
α = −(P − Pc − nct)D, A = 1

2
tD, B = a3

2
D, C = 0, where D = N/n2

c and N is
the total number of nucleons in the system. This choice of D gives the correct G for
equilibrium states. So the G in the order parameter expansion is

G = G0(p, T ) +
N

n2
c

[−(P − Pc − nct)η +
1

2
tη2 +

a3

2
η4].

The density or η values at the phase equilibrium ηL and ηG are the solutions of the
EOS (4.3) if P = Pc + nct. At this pressure, P , the probability distribution p(n) of the
density of the system is given by

R(n) =
p(n)

p(nL)
= exp[−(G(p, T, η)−G(p, T, ηL))/T ]. (4.6)

This probability is plotted in Fig. 4.3 (from [29]).
For T not too close to Tc there are two well defined peaks corresponding to a

separation of liquid and gas phases, thus exhibiting a reasonably sharp first order
phase transition. As T approaches Tc from below, the valley separating the two peaks
gets filled in and the distinction between liquid and gas gets washed out. At Tc the
distribution is flat at the top. These large density fluctuations at the critical point give
rise to the phenomenon of critical opalescence in atomic systems.

To find the relative probability for a system composed of N nucleons, N not
necessarily 100, one simply scales the results of Fig. 4.3 to the power N/100, RN/100,
because in Eq. (4.6) the Gibbs free energy was taken to be proportional to the total
number of particles. For the density midway between nL and nG, the relative probability
assumes the simple form R(1

2
(nL + nG)) = exp(−0.75(T − Tc)2N/(TTc)). Thus a larger

number of nucleons sharpens the distinction between liquid and gas phases.

Droplet and bubble formation

Let us now consider the surface effects. Suppose that in a central collision between
heavy nuclei an intermediate state of high temperature and density is reached and that
subsequently it undergoes an adiabatic expansion. Then, no matter what the entropy
per baryon is, it will eventually intersect the Maxwell curve separating liquid and gas
phases if it does not break up before. (See Fig. 4.1). What happens next depends on
whether the system hits the Maxwell curve from the liquid side (n > nc) or from the
gas side (n < nc). If from the liquid side, bubbles begin to form, and if from the gas
side, droplets begin to form. For definiteness we shall consider the formation of droplets
in a gas.

The probability of droplet formation is estimated by calculating the change in the
Gibbs free energy of the system when a droplet appears in the gas [28, 52]. Suppose
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Figure 4.3: The relative probability for the system to be at density n compared to
the thermodynamically favored values nL or nG. The number of nucleons is N = 100.
The pressure is the equilibrium pressure. Reproduced by permission of Elsevier Science
Publishing from [29].

that a spherical droplet containing A nucleons spontaneously forms in a gas consisting
originally of a total number A+B nucleons.

Gno drop = µG(A+B), (4.7)

Gdrop = µLA+ µGB + 4πR2σs + Tτ lnA. (4.8)

Here µG and µL are the nucleon chemical potentials in the gas and liquid phase
respectively at pressure p and temperature T . The third term in Eq. (4.8) is the surface
free energy for a droplet of radius R and with surface tension σs = σs(T ). The last
term in Eq. (4.8) was introduced by Fisher [53] in his droplet model. It takes into
account the fact that the droplet surface closes on itself which reduces the total entropy
associated with surface fluctuations. He introduced the critical exponent τ based in
the critical exponent δ as τ = 2 + 1/δ, and since in mean field theories δ = 3, thus
τ ≡ 2 + 1/δ = 7/3 .
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The probability of formation of the droplet is proportional to exp(−∆G/T ), where
∆G is the difference between Eqs. (4.8) and (4.7). The yield of a fragment of mass A is

Y (A) = Y0 exp[
µG − µL

T
A− 4πr2

0σs
T

A2/3 − τ lnA]. (4.9)

Here Y0 is a normalization constant and r0 is related to the droplet radius by R = r0A
1/3

and to the density by n−1
L = 4πr3

0/3. The importance of the surface effects was
first observed by the Purdue–Fermilab group [54, 55, 56] and applied to high energy,
80− 350 GeV , proton-nucleus reactions. Mass and charge distributions for A up to 30
were measured with higher precision than ever before possible because of the use of an
in-beam gas jet target. Arguments based on emulsion experiments and on temperature
measurements suggested that these fragments come from a common thermalized source.
It was noticed that a power law A−2.65 fits the data better than an exponential e−αA.
The novel interpretation was that the target nucleus was almost instantaneously heated
by the passage of the ultra-relativistic proton, and that subsequently the heated nucleus
expanded in size until it passed through the critical point, T = Tc and n = nc, of the
liquid-gas phase transition. At that point the distribution of droplets is Y (A) = Y0A

−τ

because in Eq. (4.9) µG = µL and σs = 0 at the critical point, so the volume and surface
free energy terms vanish. There is no distinction between liquid and gas at the critical
point, only long range fluctuations.

There are at least two difficulties with the above interpretation. First, why should
one be so lucky to hit the critical point of nuclear matter accidentally with proton
energies ranging from 80 to 350 GeV and with targets so different in size as krypton
and xenon? Second, according to Fisher’s version of the droplet model, 2 < τ < 2.5,
whereas the data were outside this range.

The group recently remeasured the mass distributions depending on the proton
energy in the range of Ep = 1 − 20 GeV [57]. Based on Eq. (4.9) they introduced a
parametrization

Y (A) = Y0 x
A0.6386

yA A−τ .

Thus if the system would approach the critical point x and y, should tend to 1, according
to (4.8). They determined x and y by fitting the experimental mass yields at different
energies and found that x and y tend to 1 monotonically from below (above) respectively!
At Ep = 2 GeV , x = 0.2, y = 1.4 and around 10 GeV both reach 1 already. At this fit
τ was kept constant at 2.2. These data indicate that the path in the thermodynamical
space is really energy dependent and it gets in the vicinity of the critical point only
at higher proton energies. When τ was independently fitted to the data it showed a
similar convergence to τ ≈ 2.1 from below.

These recent results of the group are consistent with the liquid gas phase transition
picture. With increasing bombarding energy multifragmentation occurs first in the
mechanical instability region, then in the supersaturated vapor region and finally at
energies above 10 GeV in the critical region.

To draw a conclusive opinion about the nuclear fragmentation models would be too
premature now. One remark, however, is probably important to make: The connection
between the nuclear fragmentation models and the nuclear EOS should be firmly
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established before a final conclusion about the nuclear liquid- gas phase transition can
be drawn. So far the EOS underlying the statistical models was seldom calculated
(apart from some simple cases [36]). In statistical fragmentation models the evaluation
of the EOS is in principle possible although it may be very cumbersome. We may be
confident, however, that in the near future a consistent nuclear EOS and fragmentation
theory will arise form the large scale theoretical effort.

On the experimental side the problems are to separate central heavy ion collisions
and eliminate geometric effects arising in peripheral reactions. The most promising
development in the near future will be provided by the 4π detector at Michigan State
University (MSU) with good mass and energy resolution. This will lead to a major step
in understanding the mechanism of heavy ion reactions in the nuclear liquid gas phase
transition region.

4.2 The Nuclear EOS and Quark Gluon Plasma
In the field of the equation of state of the quark gluon plasma most of the theoretical
work is invested in the study of pure SU(N) Yang-Mills theory on the lattice. These
calculations, however, are so far restricted to zero net baryon density or zero chemical
potential [58].

Lattice QCD calculations will be discussed later in the Chapter on the Search for
Quark Gluon Plasma. To form a low or “zero” baryon density matter in the deconfined
phase one expectedly needs extremely high energy. Relatively simple “phenomenological”
theories on hand, are able to provide us with an equation of state (EOS) in the
phase transition region for cold matter [59, 60, 61], for zero baryon charge at finite
temperature [62], or in the complete phase space for finite density and temperature
[16, 63, 64, 65, 66, 67, 68]. These phenomenological equation of state studies can
yield a good qualitative insight into the phase transition problem until a priori QCD
calculations will be available in the complete density-temperature domain. There are
even some advantages in the phenomenological approach: The results of these nuclear
EOS studies can easily be incorporated into the phenomenological phase transition
models.
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4.2.1 Hadronic Equation of State

We discussed the nuclear equation of state extensively in these lectures. Similar phe-
nomenological EOS can be used here too, however, more attention to high temperature
and high density behavior is necessary.

In sect. 4.1.1 we introduced a simple parametrization of the nuclear EOS. In the
literature several other parametrizations are also used. In one other parametrization
the energy density e in terms of density n and temperature T is parametrized as

e = n[m−W0 +K(n/n0 − 1)2/18 + 3T/2], (4.10)

where m is the nucleon rest mass, W0 > 0 is the binding energy, the third term is the
compressional energy ec, usually called “quadratic", and the last term is the thermal
energy described as that of a Boltzmann ideal gas. (This approximation must be
sufficient at high temperatures). At high temperatures at least pion pairs should also
be taken into account. Otherwise the energy density would be zero in baryon free
matter. The simplest way to take this additive mesonic component into account, is by
neglecting their rest mass:

em = g1(π2/30)T 4, Pm = em/3, sm =
4

3
em/T,

where g1 is the degeneracy of states. If we consider only pions, g1 = 3 and so:

eπ = π2T 4/10, Pπ = π2T 4/30, sπ = 4π2T 3/30.

At high temperatures some nucleons can be excited. The most important contribution is
coming from delta resonances. Since the total baryon charge is conserved, n = nN +n∆,
in the Boltzmann approximation the delta to nucleon ratio is given by

n∆/nN = 4(m∆/mN)3/2 exp(−[m∆ −mN ]/T ).

This causes a change in the energy density where the rest mass term is now n∆m∆ +
nNmN , and also influences the other thermodynamical variables. The sum of two or
more of the above mentioned combinations provides the total hadronic (h) EOS. In the
simplest case eh = en + eπ.
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Compressional part of the nuclear EOS

The requirement of causality provides several theoretical constraints on the EOS [69] at
high densities and limits the choice of the functional form of the compressional energy
that can be used in a phenomenological EOS. Very hard equations of state may lead
to a superluminal speed of sound (see ref. [70]). However, this is not a problem if the
acausality occurs in a region of the phase diagram where matter is in the mixed or
plasma phase, because the phase transition softens the matter. The specific energies
ε = e/n at high densities for some phenomenological parametrizations are:

• “Linear” and “Quadratic” (Ref. [71])

εL(n;K) = EB +
K

18

(n− n0)2

nn0

,

εQ(n;K) = EB +
K

18

(n− n0)2

n2
0

.

• “Sierk–Nix” (Ref. [20])

εSN(n;K) = EB +
2K

9

(√
n

n0

− 1

)2

.

• “Grant–Kapusta” (Ref. [70])

εGK(n;K, a) = εSN(n;K) + a

(
3

√
n

n0

− 1

)3

.

The corresponding density of the free energy is

fcompr(n;K) = nεcompr(n;K).

All of these parametrizations are acausal at sufficiently high densities. Fortunately
the acausality occurs well within or beyond the mixed or plasma phase for all the
parametrizations except the “Quadratic”. The basic parameter is the (isothermal)
compressibility K, which is defined as

K = 9

(
∂P

∂n

)
n=n0,T=0

.

The value of K can be determined in several different ways (see [72] and references
therein). It is usually around K = 100− 400 MeV but depends on the parametrization
chosen [70] and the point in the phase diagram at which the data are fitted. We
have chosen in most calculations the “Sierk–Nix” parametrization with K = 550 MeV
which reproduces the pion multiplicity data of Stock et al.,[73] if one assumes that
the pion properties are the same as in vacuum. This is higher than the generally
acceptable compressibility of nuclear matter in the ground state, but it corresponds
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to K = 275 MeV in the “Quadratic” parametrization! The two parametrizations
with different compressibilities yield essentially the same EOS [70] for densities of
interest. So, it should be regarded as a simple parametrization simulating the effect
of momentum-dependent interactions which also make nuclear matter stiffer at high
temperatures.

It is important to emphasize that the nuclear EOS strongly influences the phase
transition and the phase diagram. The compressional energy is particularly important.
When it is neglected [68] the resulting phase diagram may lead to pathological behavior,
the matter at n0, and T = 0 being in the mixed phase. (Also the possibility of
a first order phase transition is restricted to a very small range of bag constants:
4
√
B = 149− 154 MeV [68].) One way of including the compressional energy into the

hadronic phases is the excluded volume approximation [65], which is a standard way
of treating nuclear matter in relativistic nuclear collisions, first introduced in ref. [46].
This approximation leads to a phase diagram [65] similar to the nuclear EOS-s with
explicit compressional energy.
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4.2.2 QGP Equation of State

The QCD Lagrangian leads to an equation of state which should in principle describe
both the nuclear and quark-gluon plasma phase. Due to the nonlinear interactions it
is not easy to find this EOS. At high energy densities, however, the coupling tends to
zero between quarks and gluons and an “asymptotic freedom” sets in. In this limit, i.e.
at high enough temperatures and densities, the EOS of the quark world [74] would be
quite trivial. It would correspond to a non-interacting gas of Nf flavor quarks that
come in Nc colors, and (N2

c − 1) spin 1 gluons. In this case the EOS is given by the
Stefan–Boltzmann type expressions:

eSB(T, µ) =
π2

15
(N2

c − 1 +
7NcNf

4
)T 4 +

NcNf

2
(T 2µ2 +

µ4

2π2
),

PSB(T, µ) =
1

3
eSB(T, µ),

nSB(T, µ) =
NcNf

9π2
(µ3 + π2T 2µ),

where T and µ = µq are the quark temperature and chemical potential (µb = 3µq), and
nSB = nb is the baryon charge density in the quark phase.

It is plausible that the vacuum in which the ideal gas of quarks and gluons exist
differs from our everyday vacuum. Since we do not see the quarks and gluons in our
nonperturbative physical vacuum [75] , this vacuum should have an energy lower than
the QCD perturbative vacuum where they can exist. Phenomenologically, we can try
to take this effect into account by adding a constant Bgµν to the energy momentum
tensor of the “quark world”. This leads to the EOS :

eq(T, µ) = eSB(T, µ) +B,

Pq(T, µ) = PSB(T, µ)−B,

where B is called the bag constant and this EOS is the “Bag Model” EOS. Usually for
applications in heavy ion physics we can restrict ourselves to two flavors (u and d) in
the quark-gluon phases, so Nf = 2 and Nc = 3 (for u, d, s quarks Nf = 3). In zero’th
order of perturbation theory then the pressure Pq in terms of T and µb is

Pq = 37π2T 4/90 + µ2
bT

2/9 + µ4
b/162π2 −B,

where µb is the chemical potential associated with the baryon charge. For phase
transition studies this simple form is frequently used. In some cases 1-loop [65, 66] or
2-loop [67, 76] perturbative corrections are also included. The introduction of these
perturbative terms leads to a 10-20% increase of the critical temperature and to a
similar decrease of the critical densities ncq and nch.
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Phase mixture

Having defined both the Hadronic and QCD plasma EOS one can create a complete EOS
by Maxwell construction, containing pure phases and a region where the above two phases
coexist. If the plasma has zero baryon charge, 2 of Gibb’s criteria, Pq = Ph, Tq = Th,
and in baryon-rich plasma an additional one, 3µq = µh, should be satisfied in the
mixed phase region. For baryon free plasma Pq = 37π2T 4/90−B and for a pionic gas
Ph = 3π2T 4/90, thus from the requirement that Pq(Tc) = Ph(Tc) we can get the critical
temperature Tc :

T 4
c = 90B/(34π2)

The phase transition is first order. At Tc the coexisting hadronic and quark phase have
different energy and entropy densities. For example if B = Λ4

B/(~c)3 = 0.397 GeV/fm32,
then the critical temperature and pressure are Tc = 169 MeV , Pc = 35 MeV/fm3, and
the critical energies at Tc are eh(Tc) = 106 MeV/fm3, and eq(Tc) = 1.695 GeV/fm3.

Figure 4.4: The pressure is drastically reduced by the phase transition, when the
density and temperature reach the mixed phase region. The pressure increases again
only when the pure quark-gluon phase is reached. Thus the phase transition effectively
softens the EOS. Reproduced by permission of the American Physical Society from [77].

2The bag constant, B, is frequently parametrized by ΛB also
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For baryon-rich matter in this approach the Maxwell construction can be done
relatively easily since Pq(µ, T ) is given and the chemical potential of the hadronic phase
is also well known. For the EOS (10) in the Boltzmann approximation

µb = T ln(
nbC

dT 3/2
) + mN + W0 + K(nb − n0)(3nb − n0)/(18n2

0),

where C = (2π(~c)2/(mc2))3/2, and d is the degeneracy of the nucleon gas, d = 4. Now
the phase equilibrium at a given temperature Tc can be found from the Gibbs criteria,
i.e. by solving a single equation (numerically) for nb. A typical phase diagram arising
from this construction is shown in Fig. 4.5 (from [29]).

Figure 4.5: Phase diagram of the nuclear matter quark matter phase transition from
a simplified phenomenological model. Reproduced by permission of Elsevier Science
Publishing from [29].

4.2.3 QGP phase transition and nuclear compressibility

The phase diagram of the first order phase transition is sensitive to both the nuclear
and plasma parameters. The increase of compressibility K leads to a decrease of both
critical densities, ncq and nch while increase of the bag constant B leads to the increase
of the critical temperature, and densities. The inclusion of hadronic resonances has
negligible effect on the phase diagram at T = 0 or µ = 0 but it pushes the phase
boundaries to higher n and T values in the intermediate region, leading to an increase
of the pure nuclear matter domain on the [µ, T ] plane. The equilibrium pressure at
fixed intermediate chemical potentials also increases due to the inclusion of hadronic
resonances. The equilibrium pressure is higher at T = 0 than at Tc which is an
interesting feature first observed in ref. [67].
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The energy density where the mixed phase formation becomes possible is about
1− 2 GeV/fm3 at finite densities, and it decreases below 1 GeV/fm3 when the density
tends to zero. To form pure QCD plasma one should, however, reach 2− 6 GeV/fm3

energy density at finite densities and 1− 4 GeV/fm3 at n = 0 . This of course does not
mean that n = 0 QCD plasma can be formed with less beam energy! For comparison
the energy density of the normal nuclear matter is 0.134 GeV/fm3.

4.2.4 Dependence of phase transition on the nuclear EOS

The so called “Sierk–Nix” parametrization gives the critical baryon densities in cold,
baryon-rich plasma as ncH(T = 0) = 1.39 fm−3 and ncQ(T = 0) = 3.80 fm−3. The
corresponding energy densities are ecH(T = 0) = 2.04 GeV/fm3 and ecQ(T = 0) =
7.53 GeV/fm3[77].

The parameters of EOS influence the phase diagram in the way shown in Figure 4.6
(from ref. [77]), where the phase boundaries are plotted in the (n, T ) plane for different
equations of state.
Bag parameter: Decreasing B makes it easier to get into the perturbative vacuum.

This leads to a decrease in both the critical temperature at zero baryon density
and the critical baryon densities at zero temperature. The net effect is thus to
decrease the (n, T ) domain of hadronic matter.

Compressibility: Decreasing K gives a “softer” EOS and increases the critical baryon
densities in cold matter. Figure 4.6c shows the “Sierk–Nix” EOS with K =
350 MeV.

Parametrization of compressional energy: The type of the parametrization also
influences the transition region. To get almost identical behavior up to n = 3−4n0

one can use [70] “Quadratic” with K = 275 MeV , “Sierk–Nix” with K = 550 MeV
(Fig. 4.6a) or “Grant–Kapusta” with K = 200 MeV and a = 400 MeV. If the
compression is neglected [68], the critical baryon density of hadronic matter
is lowered to just about twice the baryon density of normal nuclear matter
n0 = 0.145 fm−3 and the bag parameter is restricted to a small interval B =
149− 154 MeV/fm3.

∆-resonances: Including ∆-resonances makes no changes at low temperatures or
baryon densities, but the chemical potential is lowered slightly at intermediate n
and T . This pushes the phase boundary outward (see Fig. 4.6d).

“Massive” pions: Lowers the pressure (as a function of T ) in the hadronic phase and
reduces the critical temperature by half a MeV (at Tc = 215.9 MeV ).

Nucleon–anti-nucleon pairs: Increases the pressure (as a function of T ) in the
hadronic phase and increases the critical temperature at n = 0 by about one
MeV .

Relativistic nucleon gas: Almost negligible increase in the pressure of the hadronic
phase and the critical temperature at n = 0 (approximately 0.5 MeV ).
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Figure 4.6: Shock adiabats and phase boundaries for different equations of state. From
top to bottom a, b, c, d. Reproduced by permission of the American Physical Society
from [77].
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4.3 EOS from microscopic theory

In elementary statistical physics we have learned, how to calculate the partition function
and the thermodynamical potentials for a statistical microscopic system. An introduc-
tion to this approach can be found e.g. in Chapters 6, 7, 9, and 10 of ref. [52]. We
present here this approach based on an example of nuclear matter [78].

In Chapter 10 further applications of this approach will be mentioned related to the
EOS of quark gluon plasma. An introduction to the calculation of EOS in quantum
field theories can be found in ref. [79].

The most general Hamiltonian for an A-nucleon system with two-body interaction
vij, three-body interaction vijk, etc., is

H =
A∑
i=1

p2
i

2m
+

1

2

A∑
i,j=1

vij +
1

6

A∑
i,j,k=1

vijk + ... , (4.11)

where m is the nucleon mass. In terms of the non-relativistic phase space distribution
function, f(r,p), we can write the total energy of the system as

E =
∫
d3rd3p p2

2m
f(r,p) + 1

2

∫
d3rd3p d3r′d3p′f(r,p)f(r′,p′) vij(r, r

′,p,p′) + . . .

=
∫
d3rd3p p2

2m
f(r,p) + V [f ]. (4.12)

Clearly, the one-body term of the Hamiltonian depends on one distribution function,
while the two-body term contains two distribution functions, etc. In general, the
potential energy, V [f ], (in addition to its complicated momentum dependence) is
explicitely nonlocal, as a consequence of the single-particle distribution functions
appearing in it.

In the local approximation, the potential energy density, u[f ], contains delta–func-
tions for the coordinates, so that one non-trivial integral over one single position
coordinate, r is left in the potential energy, V [f ]:

V [f ] =

∫
d3r u[f(r,p), f(r,p′), ... ] . (4.13)

For example, if we assume a momentum-independent two body interaction,

vij(r, r
′,p,p′) = v

(0)
ij (r− r′), (4.14)

then

V = 1
2

∫
d3rd3p d3r′d3p′ f(r,p)f(r′,p′) v

(0)
ij (r− r′)

= 1
2

∫
d3rd3r′ n(r)n(r′) v

(0)
ij (r− r′). (4.15)

Furthermore, with a local (contact) two-body interaction,

v
(0)
ij (r− r′) =

a

n0

δ(r− r′), (4.16)
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where n0 is the normal nuclear matter density and a is a constant of energy dimension,
the potential energy takes the form

V =
1

2

∫
d3rd3p d3r′d3p′ f(r,p)f(r′,p′)

a

n0

δ(r− r′) =

∫
d3r

a

2

n2(r)

n0

. (4.17)

We adopt the local approximation in the following. Note, that the parameters of
the nucleon distribution function, f(r,p), may also be position-dependent, e.g. the
local temperature, T = T (r). The distribution function for an interacting gas with
a momentum-dependent interaction will contain additional, potentially r-dependent
parameters, for example the width Λ = Λ(r) in eq. (4.18).

Even in the local approximation (as defined above), the exchange part of the
two-body interaction gives rise to a momentum-dependent term. This momentum-
dependence expresses the effective nonlocality introduced by the Pauli principle [80].
For a Yukawa two-body interaction, the term arising from the exchange part can be
written as[81]

vij = v
(0)
ij (r− r′) +

2c

n0

δ(r− r′)

1 + (p−p′

Λ
)2
, (4.18)

where c is a constant of energy dimension. The full energy is

E =

∫
d3rd3p

p2

2m
f(r,p)

+
1

2

∫
d3rd3p d3r′d3p′f(r,p)f(r′,p′)

[
v

(0)
ij (r− r′) +

2c

n0

δ(r− r′)

1 + (p−p′

Λ
)2

]
+ . . . , (4.19)

where we have separated the momentum dependent part of the two body interaction
approximated as in eq.(4.18). The v(0)

ij is assumed to be momentum independent, as
well as the three-body and further terms of the Hamiltonian. For simplicity we consider
the two-body and higher order terms of the Hamiltonian to be described in the local
approximation as:

E =

∫
d3r

[∫
d3p

p2

2m
f(r,p) +

a

2

n2

n0

+
b

σ + 1

nσ+1

nσ0
+

c

n0

∫
d3pd3p′

f(r,p)f(r,p′)

1 + (p−p′

Λ
)2

]
,

(4.20)
where the expression in the square brackets is the kinetic energy plus the potential
energy density, u[f ]. By choosing the parameter σ to be greater than one, an effective
representation of the three- and more-nucleon interactions is obtained.

The mean field approximation can be derived from the potential energy density, u[f ],
by taking the variational derivative with respect to the distribution function, f ,

ϕ ≡ δu[f ]/δf(r,p) . (4.21)

Using eq. (4.21) one obtains for the momentum-dependent part of the mean field

ϕmom(r,p) =
2c

n0

∫
d3p′

f(r,p′)

1 + (p−p′

Λ
)2
, (4.22)
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hence for the momentum-dependent part of the single-particle energy

εmom(r,p) =
p2

2m
+ ϕmom(r,p) . (4.23)

With the usual parametrization of the momentum-independent part of the mean field,
[82, 15, 81], the full single-particle energy has the form

ε(r,p) =
p2

2m
+ a

n

n0

+ b(
n

n0

)σ +
2c

n0

∫
d3p′

f(r,p′)

1 + (p−p′

Λ
)2
. (4.24)

4.3.1 Momentum dependent interaction

A simplified momentum-dependent mean field was used in Refs. [82, 78], which can be
obtained by replacing p′ in eq. (4.18) by its average, < p′ >, yielding

ϕmom(r,p) = δu[f ]/δf(r,p) = c
n

n0

[
1

1 + (p−<p′>
Λ

)2

]
+ c

n

n0

〈
1

1 + (p−<p′>
Λ

)2

〉
p

(4.25)

Note that the manifest symmetry between p and p′, reflecting the symmetry of the
nucleon-nucleon interaction [see eq.(4.18)] is lost in this approximation. The use of
eq. (4.25) is an acceptable approximation for nuclear collisions at sufficiently high
energies. We will adopt this approximation in the following.

This momentum dependent mean-field potential will lead to an attraction between
nucleons of the same or similar momenta. The potential energy density is written as

u[f ] = a
n2

2n0

+ b
nσ+1

(σ + 1)nσ0
+ c

n

n0

∫
d3p

f(p)

1 + (p−p0

Λ
)2
. (4.26)

where p0 is the local mean momentum, and n0 is the standard nuclear matter density.
In the local rest frame of the matter p0 = 0. The parameter Λ describes the width of
the momentum distribution.

4.3.2 Momentum distribution

If the mean field is independent of the momentum of the nucleon moving in it, the
momentum distribution in the classical limit has the usual Maxwell–Boltzmann form:

f0(p) =
n

g (2πmT )3/2
exp [−p2/2mT ]. (4.27)

where n is the baryon density of nuclear matter and g is the degeneracy of nucleons,
g = 4. With a momentum-dependent mean field, the exponent of the momentum
distribution will contain the entire momentum-dependent part of the single-particle
energy (4.23), and the corresponding distribution function will no longer be a simple
Maxwellian.
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The single-particle energy corresponding to eq. (4.26) is:

ε(r,p) =
p2

2m
+ a

n

n0

+ b(
n

n0

)σ + c
n

n0

1

1 + (p−p0

Λ
)2

+ c
n

n0

〈
1

1 + (p−p0

Λ
)2

〉
p

. (4.28)

For static nuclear matter p0 vanishes and, at zero temperature the integral in the
last term of Eq. (4.26) can be carried out to yield

ε0
MD(r;n) = 3c

n

n0

( Λ

pF

)3[pF
Λ
− tan−1(

pF
Λ

)
]
. (4.29)

where pF is the Fermi momentum.
The momentum-dependent part of the interaction gives rise to the following distri-

bution (see assignment [4.a]):

f(p) = N exp

[
− 1

T

(
p2

2m
− c( n

n0

)
p2

p2 + Λ2

)]
(4.30)

where N is the value of the distribution function at zero momentum, as it should
be. (Note that this would not hold true without the absorption of the momentum-
independent term in the momentum-independent part of the potential.)

However, it is advantageous for calculational purposes to approximate the full
distribution with a Maxwellian at a given temperature and density. In the following,
we introduce an ‘equivalent mass’, mMB

eq , which can be used at a given temperature
and density in a Maxwell–Boltzmann distribution with the closest correspondence to
the momentum-distribution obtained with the full momentum-dependent mean field

fMB
eq (p) = N exp [−p2/2mMB

eq T ] , (4.31)

where N = n/[(2πmMB
eq T )3/2 g]. The equivalent mass will depend on the temperature

and the density, but will be momentum-independent, mMB
eq = mMB

eq (n, T ).
When f(p) is approximated by the equivalent Maxwell–Boltzmann distribution,

mMB
eq is fixed by the condition

f(p = 0) = fMB
eq (p = 0).

This yields an equivalent mass of

mMB
eq (n, T ) =

1

2πT

{∫
d3p exp

[
−p

2

T

(
1

2m
− c

(
n

n0

)
1

p2 + Λ2

)]}2/3

. (4.32)

4.3.3 The partition function

In order to utilize the momentum dependent interaction in collective nuclear models
one has to evaluate the Equation of State (EOS). It is important to emphasize that
the thermal part of the EOS will be modified by the momentum dependent interaction
because the equilibrium momentum distribution is also changed. For instance, the



120 CHAPTER 4. EQUATION OF STATE

incompressibility will increase more rapidly with the temperature in the presence of the
momentum dependent interaction.

To obtain the correction, thermodynamic perturbation theory will be applied [28].
In this approximation the free energy of the system is calculated as

F = F0+ < V > +
1

2T

〈
(V− < V >)2

〉
,

where we will take the kinetic energy to determine the zeroth order approximation,
F0. Only the first nonvanishing correction will be evaluated here in accordance with
the approximations made earlier in the momentum independent part of the interaction
energy. This is given by the average of the interaction over the phase space, < V >.
See Ref. [28] for a general discussion of the second-order correction.

Taking the kinetic energy only as the single particle contribution to the Hamiltonian,
E =

∑A
i=1 p

2
i /2m, a calculation of the zeroth order of the free energy yields

F0 = −T lnZ0 = −T ln

{∫ ′
dΓe−E/T

}
= −AT + AT ln

[
n(2π~)3

g (2πmT )3/2

]
, (4.33)

where Z0 is the canonical partition function and
∫ ′
dΓ accounts for the proper Boltzmann

counting in the phase space integral [52]. The average of the potential energy over the
phase space is given by

< V >=

∫ ′
dΓ V∫ ′
dΓ

= e(F0−E)/T

∫ ′
dΓ V . (4.34)

The EOS can be obtained by evaluating the canonical partition function or the free
energy, F , (see ref. [78] and assignment [4.b]).

Thermodynamical Partition Statistics
potential function

S(E, V,N) lnZmc(E, V,N) [= ln Ω(E)] micro canonical
F (T, V,N) lnZc(T, V,N) canonical
Ω(T, V, µ) lnZgc(T, V, µ) grand canonical

Table 4.3: Connection between the partition functions and thermodynamical potentials

The thermodynamic potentials and the partition function are connected to each
other as shown in Table 4.3. This way, by calculating the partition function in a
microscopic theory one can obtain the EOS.
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4.4 Assignment 4
4.a Calculate the distribution function, f(p), if the single particle energy is given by

eq. (4.28).

4.b Calculate the nuclear EOS for the momentum dependent interaction given by
eq. (4.28), using the thermodynamic perturbation theory (up to first order).

4.4.1 Solutions to Assignment 4
4.a The single-particle energy (4.28) can be decomposed into a momentum dependent and a

momentum independent part:

ε(r,p) =
p2

2m
+ c

n

n0

1
1 + (p−p0

Λ )2
+ a

n

n0
+ b(

n

n0
)σ + c

n

n0

〈
1

1 + (p−p0

Λ )2

〉
p

(4.35)

Let us now focus on static nuclear matter (p0 = 0). Then

ε(r,p) =
p2

2m
+ c

n

n0

1
1 + (p

Λ)2
+ a

n

n0
+ b(

n

n0
)σ + c

n

n0

〈
1

1 + (p
Λ)2

〉
p

=
p2

2m
− c n

n0

p2

p2 + Λ2
+ a′

n

n0
+ b(

n

n0
)σ + c

n

n0

〈
1

1 + (p
Λ)2

〉
p

(4.36)

where a′ = a+ c. Using the result (4.29), the last term in (4.36) can be separated into a
zero-temperature and a T -dependent part as

c(
n

n0
)

〈
1

1 + (p
Λ)2

〉
p

= ε0
MD(r;n) +

c

n0

∫
d3p

f(p)− fFermiT=0 (p)
1 + (p

Λ)2
. (4.37)

According to the usual convention, the density-dependent, zero-temperature part of the
single-particle energy ε(r,p) will be referred to as the compressional energy:

εcomp(r;n) = a′(
n

n0
) + b(

n

n0
)σ + ε0

MD(r;n)

= a′
n

n0
+ b(

n

n0
)σ + 3c

n

n0

( Λ
pF

)3[pF
Λ
− tan−1(

pF
Λ

)
]
. (4.38)

In addition to the compressional energy, the total single particle energy contains a
density- and temperature-dependent, but momentum-independent (thermal) part

εtherm(r;n, T ) =
c

n0

∫
d3p

f(p)− fFermiT=0 (p)
1 + (p

Λ)2
. (4.39)

Thus, the total single-particle energy (4.28) is decomposed into three terms,

ε(r,p) = εcomp(r;n) + εtherm(r;n, T ) + εmom(r,p). (4.40)

Here the momentum-dependent part of the single particle energy is:

εmom(r,p) = p2

[
1

2m
− c( n

n0
)

1
p2 + Λ2

]
. (4.41)

This leads to the momentum distribution given by eq. (4.30). qed.
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4.b For the Hamiltonian (4.19) this phase space average is

< V >= e(F0−E)/T 1
A!

1
(2π~)3A

∫
d3Ar d3Ap fi(ri,pi)fj(rj ,pj) ×1

2

∑
i 6=j

[
v

(0)
ij (ri − rj) +

2c
n0

δ(ri − rj)

1 + (pi−pj

Λ )2

]+ . . . . (4.42)

Performing the major part of the phase space integrals leads to factors which will be
canceled by e(F0−E)/T . The summations over identical terms give factors of A(A− 1).
The resulting expression is

< V >=
A(A− 1)

2Ω2

∫
d3rd3r′v

(0)
ij (ri − rj) +

A(A− 1) c
n0 Ω (2πmT )3

∫
d3pd3p′

e−p
2/2mT e−p

′2/2mT

1 + (p−p′

Λ )2
, (4.43)

where Ω is the total volume of the system.

We now specialize to a sufficiently large system (A � 1) with a constant (position-
independent) density n. Then (A− 1)/Ω ≈ A/Ω = n. Further, we apply the approxima-
tion introduced in eq. (4.20) for the momentum independent terms to get

< V >= Ω

[
a

2
n2

n0
+

b

σ + 1
nσ+1

nσ0
+

c n2

n0(2πmT )3

∫
d3pd3p′

e−p
2/2mT e−p

′2/2mT

1 + (p−p′

Λ )2

]
.

(4.44)
Observing that f0(p) = n(2π~)3

g(2πmT )3/2
e−p

2/2mT , expression (4.44) can be reduced to

< V >= Ω

[
a

2
n2

n0
+

b

σ + 1
nσ+1

nσ0
+

c

n0

g2

(2π~)6

∫
d3pd3p′

f0(r,p)f0(r,p′)

1 + (p−p′

Λ )2

]
. (4.45)

To simplify this expression further, we apply the approximations used in section 4.3.2.
First we replace one of the integrands in eq. (4.45) by its average, p′ →< p′ >= p0, and
then assume that we are in the local rest frame of the matter, p0 = 0. This leads to

< V >= Ω
[
a

2
n2

n0
+

b

σ + 1
nσ+1

nσ0
+ c

n

n0

g

(2π~)3

∫
d3p

f0(r,p)
1 + (p

Λ)2

]
. (4.46)

Let us introduce the notation I(n, T ) for the integral in the last term:

I(n, T ) ≡ g

(2π~)3

∫
d3p

f0(p)
1 + ( pΛ)2

. (4.47)

The total free energy in this approximation is

F (n, T ) = Ω
{
−nT + nT ln

[
n(2π~)3

g(2πmT )3/2

]
+
an2

2n0
+

b

σ + 1
nσ+1

nσ0
+ c

n

n0
I(n, T )

}
.

(4.48)
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The corresponding pressure, entropy, energy and chemical potential are respectively

P (n, T ) = nT +
an2

2n0
+

bσ

σ + 1
nσ+1

nσ0
+ c

n2

n0

∂I(n, T )
∂n

∣∣∣∣
T

, (4.49)

S(n, T )
A

=
5
2
− ln

[
n(2π~)3

g(2πmT )3/2

]
− c

n0

∂I(n, T )
∂T

∣∣∣∣
n

, (4.50)

E(n, T ) = F + TS =

Ω
{

3
2
nT +

an2

2n0
+

b

σ + 1
nσ+1

nσ0
+ c

n

n0

[
I(n, T )− T ∂I(n, T )

∂T

∣∣∣∣
n

]}
,(4.51)

µ(n, T ) =
∂(F/Ω)
∂n

∣∣∣∣
T

=
F + PΩ

A
. (4.52)

A straightforward calculation yields for the derivatives of the integral I(n, T ):

∂I(n, T )
∂T

∣∣∣∣
n

= − 3
2T

I(n, T ) + J(n, T ), (4.53)

∂I(n, T )
∂n

∣∣∣∣
T

=
1
n
I(n, T ) . (4.54)

The integrals I(n, T ) and J(n, T ) can be evaluated to give

I(n, T ) = 2nχ2
{

1−
√
πχeχ

2
[1− Φ(χ)]

}
, (4.55)

J(n, T ) =
2nχ2

T

{
1
2
− χ2 +

√
πχ3eχ

2
[1− Φ(χ)]

}
, (4.56)

where

χ2 =
Λ2

2mT
, and Φ(x) =

2√
π

∫ x

0
e−t

2
dt ,

is the error function.
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Chapter 5

Relativistic Fluid Dynamics

Fluid dynamics is a reaction model frequently used to describe heavy ion reactions in
all energy regions. It has the advantage that it is transparent and analytic or quasi
analytic solutions are possible, which provide a deeper insight into physical processes.
The input of the fluid dynamics is directly the equation of state, so that it provides an
excellent tool for the study of the EOS.

On the other hand fluid dynamics is an idealized continuum description assuming
local equilibrium. Microscopic numerical models are usually able to describe a heavy
ion reaction more closely, and account for fluctuations and finite particle effects.

5.1 Energy domains, stopping power
Before we start to discuss specific models some basic considerations should be made
about the different types of collisions anticipated to appear at different energies.

There are two major possibilities for the basic reaction mechanism of heavy ions
colliding at ultra-relativistic energies: at lower energies the stopping power of the
colliding nucleons or quanta might be sufficient to stop the nuclear matter and create
a nearly equilibrated hot and dense system in the C.M. frame, while at very high
energies the baryons can penetrate through each other initially. In this latter case the
development of the central zones and the side (fragmentation) regions is different.
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5.1.1 Stopping energy region

At BEVALAC energies we have seen evidence that a central, highly excited zone with
high pressure develops leading to the observed collective flow[1]. The mean free path is
not negligibly small at these energies but it is still smaller than the size of the system,
so fluid dynamical effects are still observable. With increasing energies the nucleon
nucleon cross section becomes more and more forward peaked leading to longer mean
free path and more transparency. This observation led to the introduction of the two
fluid[2] and three fluid[3] models.

At the threshold of the QCD plasma phase transition, however, the degrees of
freedom increase rapidly, and so this can contribute to an increased stopping power.
In fact stopping power studies, based on proton nucleus reactions at the 20-100 GeV
energy [4, 5, 6, 7, 8, 9] indicate that a heavy target nucleus can slow down the incident
proton by about 2.5 units of rapidity[4], which means that we can have stopping for
the heaviest nuclei colliding on each other up to about 15-35 GeV/nucleon Lab. beam
energy. This indicates to us that we should try to apply a one-fluid description at this
energy region, or two-fluid dynamics to allow for a partial transparency at the initial
stages of the collision.

5.1.2 Transparent reactions, mid rapidity region

At energies above E=30-100 GeV/nucleon the stopping of the nuclei is not anticipated.
Even in central collisions the baryons or the corresponding three valence quarks are
expected to slow down only slightly. At the initial impact target and projectile nucleons
interact and this interaction, represented by gluon or chromoelectric fields lasts for a
considerable time. During this time the leading quanta (e.g. the 3 valence quarks)
carrying the baryon charge propagate further due to their large initial momentum. Thus
the quanta which carry the baryon charge leave the c.m. region while the interaction
still acts between the projectile and the target. There is a large energy density, however,
associated with the fields representing this interaction. At later stages the fields
neutralize, and pion and other hadron pairs are created. The momentum or rapidity
distribution of these particles is expected to be uniform based on the similar result in
p+p reactions. This indicates that the energy density is also "uniform" in space time.
Namely, it is constant along a curve corresponding to constant proper time away from
the reaction. Fig. 5.1.

This region can be described somewhat more easily than the others, since the matter
is free of baryon charge and so the EOS is simpler. Furthermore, the uniformity of the
rapidity distribution allows for simple and imperative theoretical description as we will
see later.



5.2. PERFECT FLUID DYNAMICS 131

Figure 5.1: Space-time picture of an ultra-relativistic heavy ion collision. The projectile
and the target and later their valence quarks propagate close to the light-cone. The
thermalized matter in the mid-rapidity region changes its state according to the proper
time counted from the event of collision

5.1.3 Transparent reactions, fragmentation region

The most involved is probably the description of the so called fragmentation region.
Based on p+p and p+A experiments the expectation is that the baryons after a high
energy collision will be emitted in a narrow rapidity range of few units, not far from
their original rapidity. The net baryon charge in these reactions is distributed in two
peaks, these are the so called fragmentation regions. However, the target nucleons still
will be accelerated by the projectile and vice versa, and this and the interaction will
lead to an increase in the energy density. The increase of energy density might be
sufficient to reach the threshold of the phase transition in the fragmentation region also.

5.2 Perfect fluid dynamics

As we derived it in chapter 2, the conservation laws of a continuum can be expressed in
a differential form via the energy-momentum tensor. The validity of these equations is
wider than the derivation in chapter 2 may suggest. Dense liquids can also be described
by these equations. Here, we will use the perfect relativistic fluid dynamical equations
most of the time.

The equations of Perfect Fluid Dynamics are the conservation laws

Nµ,µ = 0 or ∂µ(nuµ) = 0, (5.1)

and
T µν,µ = 0 or ∂µ(T µν) = 0. (5.2)

Using uµ = (γ, γ~v), w = e + P, T ik = wγ2vivk + Pδik, T 0i = −T0i = wγ2vi,
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T 00 = T00 = (e+ Pv2)γ2 , and introducing the apparent density

N ≡ nγ = n, (5.3)

and the momentum current density and apparent energy density:

~M≡ T 0i = wγ2~v, (5.4)

E ≡ T 00 = (e+ P~v 2)γ2, (5.5)

the equations of fluid dynamics take the more familiar form. The continuity equation

(∂t + ~v grad)N = −Ndiv~v. (5.6)

The energy and momentum conservation will take the form

(∂t + ~v grad) ~M = − ~M(div~v)− gradP, (5.7)
(∂t + ~v grad)E = −Ediv~v − div(P~v). (5.8)

The last two equations are the Euler equation of fluid dynamics and the energy
conservation. The difference between these equations and the non-relativistic perfect
fluid dynamics is that the quantities N , E , ~M are not related directly to the EOS, but
one has to solve a set of algebraic equations, (5.3,5.4,5.5) to obtain the thermodynamical
quantities. Thus, the equations of fluid dynamics are not complete without an equation
of state. The EOS is always needed to obtain a solution.

The viscous fluid dynamics is seldom used in relativistic physics. This is due to the
fact that there are still questions around the proper relativistic generalization of viscous
fluid dynamics [10]. It was shown that the usual relativistic generalizations of viscous
fluid dynamics may lead to unstable solutions. Dissipative effects are, nevertheless,
important as many non- relativistic calculations indicate. There exist a few relativistic
viscous calculations which can be viewed upon as approximations.

5.3 Numerical solutions
The fluid dynamical equations introduced at the end of the previous chapter were first
solved numerically in 1975 in Los Alamos [11, 12, 13, 14] for a heavy ion collision in
full complexity. By now several research groups have 3-dimensional relativistic fluid
dynamical codes, which are appropriate to model high energy heavy ion collisions. These
calculations, however, require considerable computing power and extensive numerical
work in developing proper numerical methods. Thus, today there are still less than half
a dozen groups able to perform relativistic fluid dynamical calculations in 3 dimensions.
A recent review of the fluid dynamical models can be found in refs.: [15, 16].

The equations Nµ,µ = 0 and T µν ,ν = 0 do not provide a complete system of equations,
the number of unknowns is greater than the number of equations. We need some further
information. This is provided by the Equation of State (EOS): P = P (n, T ) or
P = P (n, e).
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5.3.1 Equation of state

The nuclear Equation of State (EOS) was discussed in the previous chapter in detail,
here we just repeat the most basic information. In the transport theory we discussed so
far, the pressure is that of an ideal gas because we neglected all interactions among the
particles. Thus, strictly speaking, the fluid dynamical equations we derived from the
BTE are valid only under the assumptions we made: our system is in local equilibrium
everywhere, and the distribution function is a Jüttner distribution. Consequently, our
EOS is necessarily the EOS of a classical relativistic ideal gas.

Nevertheless, this restriction is not really necessary. The fluid dynamical equations
can be derived in many different ways, since they express only the energy, momentum
and mass conservation. Thus, the only real requirement is that the EOS should satisfy
all thermodynamical requirements. In the fluid dynamical model the EOS can be more
realistic than a simple ideal gas. For heavy ion collisions it should reflect the known
basic properties of nuclear matter.

Some basic features of the EOS are presented in Fig. 5.2. The nuclear matter has
a stable ground state at the normal nuclear density, n0 = 0.145-0.17 fm−3 with -8
MeV/nucleon energy. (The value of -8 MeV instead of -16 MeV is taken to simulate
finite size and Coulomb effects.) This is a minimum of the specific energy at zero
temperature. At higher temperatures the specific energy is higher. The curvature of the
specific energy curve is characterized by the nuclear compressibility. The value of this
compressibility is the subject of present heavy ion research, and we will discuss it later.

Figure 5.2: The nuclear EOS: the specific energy as function of the nuclear density.
The parameter is the temperature, T .

It is customary to represent the EOS via the specific energy, ε:

ε(n, T ) = m0 + ε0(n) + εT (n, T ),

where ε0(n) ≡ ε(n, T = 0), and m0 is the contribution of the rest mass to the specific
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energy. This separation of the thermal, εT , and compressional, ε0, energy is unique but
it is not necessarily a sensible separation in a given theoretical model. Furthermore, one
has to keep in mind that ε(n, T ) is not a thermodynamical potential so this quantity
alone does not determine the thermodynamical behavior of the matter completely.

Figure 5.3: Change of density configuration in a relativistic heavy ion collision. The
darkness illustrates the density of nuclear matter. (Each dot represents a so called
“marker particle” of the PIC numerical method. If several marker particles are exactly
above each other we see only one dot as their projection to the reaction plane.) One
marker particle represents a fraction of the unit baryon charge, typically 1/100-1/500.
The most apparent feature is the relatively sharp shock front at the initial compression
stage. Reproduced by permission of the American Physical Society from [12].

5.3.2 Flow characteristics from numerical solutions

Let us first see some examples for the solutions of the relativistic Euler equations. In
Figures 5.3,5.4,5.5 there are some examples from numerical results of fluid dynamical
calculations. Fig. 5.3 from ref. [12] illustrates heavy ion collisions as calculated in the
relativistic fluid dynamical model in Los Alamos.
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Figure 5.3: continued

Fig. 5.4 shows the results of a Soviet group which calculated the density increase in
a heavy ion collision in the relativistic fluid dynamical model [17].

In these collisions the increase of energy density is larger than the increase of baryon
density, due to the compressional and thermal energy. In an ideal gas the compressional
energy is not present, thus it is a very soft matter. The time dependence of the energy
density reachable in a heavy ion collision was calculated by a group at the University
of Frankfurt, ref. [18]. It turned out that the large projectile and target mass is more
important to reach high energy density for as many nucleons as possible. The increasing
beam energy is secondary but it also results in an increase of energy density. Fig. 5.5
illustrates the energy density increase at two beam energies, 5 and 15 GeV/nucleon.

In all these solutions the density increases in relatively sharp fronts of widths of a
few Fermi. The reason is that the speed of the incoming projectile and consequently
the flow velocity is supersonic. The sound speed in (ground state) nuclear matter is
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Figure 5.4: The maximum of the nuclear density as a function of time from a numerical
calculation for the reaction: 3.6 GeV/nucl. C + Pb at different impact parameters.
The parameter of the curves is the impact parameter, denoted by ρ in units of Rt +Rp,
b = ρ(Rp +Rt). Curve 1: ρ = 0.1, Curve 2: ρ = 0.3, Curve 3: ρ = 0.5, Curve 4: ρ = 0.7,
Curve 5: ρ = 0.9. Reproduced with permission from [17].

Figure 5.5: The number of nucleons that exceed a given energy density, ecrit, at a
given time, t, in a heavy ion collision. The energy density of the ground state nuclear
matter is e0 = E/V = n0ε0(n0) ≈ 0.15GeV/fm3 so that ecrit = 2GeV/fm3 is already
more than ten times larger than that of the normal nuclear matter. A is the number
of nucleons that are in the region where e > ecrit at different times t. Reproduced by
permission of World Scientific Publishing Co. from [19].
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about vsound ≈ 0.2c.

In the Eulerian fluid dynamics the formation of such sharp fronts would
rigorously mean that there is no continuous solution to the equations of fluid dynamics
at the given boundary condition and discontinuity or discontinuities should develop in
the solution. These (“infinitely sharp”) discontinuities should then be described by the
Rankine–Hugoniot–Taub equations [20].

Physically shock waves do really exist but these are not infinitely sharp. Depend-
ing on the dissipative processes (viscosity, heat conductivity, reaction rates, and/or
incomplete equilibrium of some other kind) a shock front of finite width will develop
and after some initial transients it will propagate stationarily. The final state of the
shocked matter is, however, identical with the final state we would obtain in an in-
finitely sharp shock front, because it is fully determined by the energy, momentum and
baryon conservation. Only the internal structure of the front depends on the dissipative
non-equilibrium processes [11, 12, 13, 14, 20].

There seems to be a contradiction here, since the numerical codes we mentioned are
solving the relativistic Euler equations, and they still yield shock fronts of finite width.
This is due to the numerical method which always yields a so called numerical viscosity
[21]. This is unavoidable because all numerical codes have finite spatial resolution. The
final state is, however, correct and only the internal structure (and width) of the front
depends on the numerical method.

5.3.3 Conclusions

1 Final states of compression fronts can be studied in a simple way, by means of
the Taub equations. This final state in an ideal situation depends only on the
Equation of State of the nuclear matter. These compression phenomena include
shocks, detonations, deflagrations, etc. Their details will be discussed later during
this course.

2 In realistic descriptions dissipation should be studied in two ways:

(2a) If deviations from equilibrium are small we may use an “expansion”
around f eq.. This is the Chapman–Enskog expansion, which leads to
the Navier–Stokes equations of fluid dynamics in first order.

(2b) If deviations from equilibrium are large, other approximations are
necessary to solve the physical problem like: Multi component fluid
dynamics, Cascade models, Mean field theories with cascading particles
like, Vlasov–Uehling–Uhlenbeck (VUU), Boltzmann–Uehling–Uhlenbeck
(BUU), Landau–Vlasov (LV) or Molecular Dynamical models.

3 In perfect relativistic fluid dynamics there is no entropy increase, the flow is adiabatic.
In these models entropy could be generated in discontinuities (shock fronts) only.
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5.4 Numerical methods
To solve the equations of numerical fluid dynamics there are two basic approaches, the
Eulerian and the Lagrangian solution methods. In the Eulerian method we fix our
computational reference frame (or computational grid) in the space some way and the
fluid flows across these grid cells. This method is frequently used if flow around some
known object is studied, like flow around a ship or flow in a pipeline, or in a channel.
It is also very practical for incompressible or just weakly compressible fluids.

In the Lagrangian method the reference frame is fixed to the fluid itself, and the
fluid does not flow in or out of the cells. In a flow these cells, however, change their
shape and position, and even their volume if the fluid is compressible. This method is
preferred if there are big changes in compression, if there are no fixed objects in the
flow, etc. If, however, the flow is three dimensional, with large shears, or if the flow is
getting close to turbulent, this method cannot be used because the neighbors of a cell
are not the same during the flow.

In relativistic heavy ion physics two solution methods are used for large scale
calculations the Particle in Cell method, and the Flux Corrected Transport method.
Here we demonstrate briefly these two methods based on a review of Maruhn [22].

5.4.1 The Particle in Cell (PIC) method

The PIC method developed at Los Alamos by Amsden and Harlow [23, 24] is a very fast
and efficient algorithm with some necessary drawbacks in accuracy. The formulation
is Eulerian, but with a Lagrangian admixture via the inclusion of numerical marker
particles that flow through an Eulerian-grid. (These particles are purely fictitious and
have nothing to do with nucleons). The fluid quantities N , ~M , and E are defined on
this space-fixed grid, and the marker particles are there to exchange some of these
quantities between neighboring cells. The principal part of the calculation in each time
step is divided into two phases:

(i) Updating ~M and E without including transport between neighboring cells, i.e.
using

∂ ~M

∂t
= − ∇p, ∂E

∂t
= − ∇(p ~v). (5.9)

(ii) The momentum and energy content of each cell are distributed evenly among the
marker particles in the cell. Each marker particle is then assigned a velocity by
interpolating the velocities of the neighboring grid points to the particle position,
and is then moved using that velocity. If it crosses a cell boundary, its momentum
and energy content are added to its new cell and subtracted from the old one.

Note the differences from "molecular dynamics" simulation: after each time step the
particles "forget" some information such as their previous velocities; also the momentum
and energy carried by a particle are not related to its velocity. The precise formulation
of the code for relativistic hydrodynamics is given by Harlow, Amsden and Nix [21]. The
transport is "quantized" in the method: the number of particles in each cell determines
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in which increments mass, energy, and momentum can be exchanged with other cells.
This is especially constraining in the final stages of the reaction when densities get
quite low.

5.4.2 The Flux Corrected Transport algorithm (FCT)

This algorithm, developed originally by Boris and Book [25, 26, 27], is applicable to
any one-dimensional conservation equation of the type

∂n

∂t
+
∂(n · v)

∂x
= S . (5.10)

All the equations of motion of hydrodynamics can be written this way. Three dimensional
motion can be incorporated by moving alternately along the three axes ("time step
splitting"). We will discuss the algorithm in the SHASTA -version (one variant of this,
phoenical SHASTA [26] is the one actually used in the nuclear collision calculations).
The transport is derived by moving the density, n, according to the flow velocity in a
Lagrangian way, and then reinterpolating the result onto the space-fixed Eulerian grid.
This leads to the equations for the density n after the motion:

n̄j =
1

2
Q+2
j (nj+1 − nj) +

1

2
Q−2
j (nj−1 − nj) + +(Q+

j +Q−j )nj + ∆t Sj, (5.11)

with
Q+
j = ε−j /(ε

+
j+1 − ε−j ), Q−j = 1−Q+

j−1, (5.12)

and
ε±j =

1

2
± vj∆t/∆x. (5.13)

What important is that these finite difference equations contain a strong diffusion,
which is most easily seen for the simple case v = S = 0:

n̄j = nj +
1

8
(nj+1 − 2nj + nj−1). (5.14)

On the one hand, this diffusion is disastrous for numerical accuracy, since it smears out
all structures rapidly, but on the other hand it prevents instability near shock fronts.
The basic idea of the FCT is to remove the diffusion only at those points where it can
be done without danger. In the simplest approximation one may correct approximately
with an anti-diffusion step

ñj = n̄j −
1

8
(n̄j+1 − 2n̄j + n̄j−1). (5.15)

but cut off the correction wherever this creates new extrema in the profile or enhances
existing ones. Note that physical extrema can still be created in the first diffusive step,
but cannot be further enhanced by the anti-diffusion. The cutoff is formulated in a
relatively complicated minimum-maximum formula [25]. This numerical method has
the advantage of being relatively straightforward, explicit, and easy to use in several
dimensions while allowing a good representation of shock fronts.
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5.5 Simple analytic solutions—Shock waves
In the forthcoming sections we will present some simple solutions of the Fluid Dynamics
(FD) relevant to heavy ion collisions. Most of these are one dimensional and analytically
calculable. They try to describe some characteristic features of the collision. Some basic
solutions important for us are: Shock, detonation and deflagration waves, Bjorken’s fluid
dynamical model, approximate spherical expansion model, Landau’s fluid dynamical
model etc.

In central and nearly central relativistic heavy ion collisions the density profile along
the beam axis is shown schematically in Fig. 5.6
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Figure 5.6: Schematic density profile of two colliding nuclei along the central beam
axis, z. In supersonic impact the density increase happens in shock fronts. The matter
ia at rest in the middle

The shock can be approximated by a one dimensional problem shown in Fig. 5.7.
In this figure the local sound velocity is denoted by vs. The same shock front can be
viewed from the front’s reference frame, i.e. from the frame where the front is at rest
and the matter flows across. Fig. 5.8

If the wave-shape is stationary in the constant volume , Vw, which is moving with
the front, the energy, particle number and momentum are constant in the volume, so
the incoming and outgoing N , E , ~M should be equal. Let us denote the two sides by
“1” and “2”, and the difference of a quantity, Q, by [Q] = Q2 −Q1 (e.g. [v] = v2 − v1 in
the frame where the front is at rest!)

If the front is infinitely sharp (Eulerian FD) we have to consider a sharp surface
where the flow variables are discontinuous. The surface of this discontinuity has a unit
normal vector, Λµ, in the space-time. It can be space-like or time-like:

ΛµΛµ =

{
+1 : time− like surface
−1 : space− like surface

. (5.16)
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Figure 5.7: One of the shock fronts presented in the previous Figure in the c.m. frame
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Figure 5.8: The same shock front presented in the previous Figure but in the frame of
the shock front. In this frame the shock front is kept at the same location, matter is
flowing in and out but with different velocities
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Orthogonally to the front the energy and momentum flow should be identical on the
two sides:

[T µνΛν ] = 0, (5.17)

and the particle number should also be conserved:

[NµΛµ] = 0. (5.18)

Eqs. (5.17) and (5.18) are the relativistic Rankine–Hugoniot equations, first written
down by A. Taub (but only for space-like surfaces of discontinuity). The shock front
propagates (usually) with vshock < 1, i.e. the points of the front are in causal connection.
This, however, is not necessary, vshock > 1 is possible, because the discontinuity does
not move with the matter. Space-like fronts can be transformed into their local rest
frame (where the front stands), and the matter flows across. Time-like discontinuities
can be transformed into local rest frame where the matter at a time t goes over a
sudden transition everywhere (e.g. phase transition). This can be caused by the initial
conditions, only, and not by the effect of neighboring fluid elements. An example is
very slow homogeneous compression or heating. The temperature may exceed a critical
value at the same time everywhere in the container and the phase transition may take
place simultaneously. See Figs. 5.9,5.10.

Figure 5.9: Space-like (a) and time-like (b) surfaces of discontinuity
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5.5.1 Taub adiabat for finite particle densities

One can eliminate the velocity from eqs.(5.17)-(5.18) and end up with a scalar equation
connecting the thermodynamical quantities on the two sides of the shock. The resulting
equation is called the shock or detonation adiabat.

Let us use Eckart’s definition where Nµ = nuµ. Outside the shock front we have
stationary flow with no dissipation or heat conduction, thus Landau’s and Eckart’s
definitions are equivalent. If, however, there is no conserved particle number, this
derivation we present here is not applicable. Still, the Taub adiabat can be derived in a
similar fashion as it is shown in refs. [28, 29].

Let us define the particle current across the surface:

j ≡ NµΛµ. (5.19)

This j is an invariant scalar, and according to eq. (5.18) it has the same value on both
sides of the shock! j can also be written as j ≡ nuµΛµ because outside the front there
is no dissipation. In the LR of the front

Λµ LR =

{
(1,~0) : time− like surface
(0, ~e) : space− like surface

, (5.20)

where ~e is a unit 3-vector. Using uµ = (γ, γ~v) we get the current as

jLR =

{
nγ : time− like surface
nγ(~v~e) = nγv⊥ : space− like surface

, (5.21)

where v⊥ is the component of velocity normal to the front. Since j is invariant scalar
j = jLR. Thus, eq. (5.18) can be written as

[j] = 0, (5.22)

i.e. j is constant across the front!
Eq. (5.17) is a 4-vector equation. To end up with the shock adiabat which is an

equation connecting thermodynamical (invariant scalar) quantities, we need two scalar
equations projected out of eq.(5.17). So we will have two projections:

(i) Parallel projection to the surface

(ii) Orthogonal projection to the surface

Parallel projection. Let us express the component of the conserved energy-momentum
and baryon current, orthogonal to the surface, (parallel to its normal):

[T µνΛν ] = 0  [T µνΛνΛµ] = 0

 [wuµuνΛµΛν − pΛµΛµ] = 0.

Using eq. (5.19): j = nuµΛµ, (  uµΛµ = j
n
), and inserting this into the equation

above [ w
n2
j2 − P ΛµΛµ

]
= 0,



144 CHAPTER 5. RELATIVISTIC FLUID DYNAMICS

Figure 5.10: Smooth change from spacelike to timelike detonation

[ w
n2

]
j2 − [P ] (ΛµΛµ) = 0.

This leads then to the equation of the Rayleigh-line:

j2 =
[P ](ΛµΛµ)

[X]
, (5.23)

where X ≡ w
n2 , is the generalized specific volume. In the non-relativistic limit X −→

m0Vspec.. The [P,X] plane corresponds to the [P, V ] plane in the non-relativistic limit.
The equation of the Rayleigh line is a straight line on the [P,X] plane. It gives the
locus of the possible final state coordinates, P2’s and X2’s, if the initial state “1” is
given. The slope of the Rayleigh line is given by the current across the front j. In heavy
ion reactions j usually increases if the beam energy increases.

Orthogonal projection. Form the orthogonal projection of the 4-vector T µνΛν with
the projector

∆µν
Λ = gµν − ΛµΛν

(ΛµΛµ)

we get a 4-vector tangent to the plane: Gτ ≡ TµνΛ
µ∆ντ , and then a scalar equation by

taking the norm:
[GτGτ ] = [TµνΛ

µ∆ντ T σωΛσ∆ωτ ] = 0.

Since
Gµ = (wuτuνΛ

ν − PΛτ )

(
gτµ − ΛτΛµ

(ΛσΛσ)

)
=

= w(uνΛ
ν)uµ − w(uτΛ

τ )(uνΛ
ν)

Λµ

(ΛσΛσ)
− PΛµ + P

(ΛτΛ
τ )

(ΛσΛσ)
Λµ =

=
w

n
juµ − w

n2
j2 Λµ

(ΛσΛσ)
.
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Thus the scalar equation [GµGµ] = 0 can now be calculated. One of the cross terms
and the last term cancel each other, so[

w2

n2
j2uµuµ −

w2

n4
j4 ΛµΛµ

(ΛσΛσ)2

]
= 0,  [

w2

n2

]
−
[
X2
]
j2(ΛµΛµ) = 0.

This leads to the equation

j2 =
[wX]

[X2](ΛµΛµ)
. (5.24)

Comparing eqs. (5.23) and (5.24)

[P ](ΛµΛµ)

[X]
=

[wX]

[X2](ΛµΛµ)
 

[P ](ΛµΛµ)2

[X]
=

[wX]

[X](X2 +X1)
,

which leads to the equation of Taub adiabat, shock adiabat or relativistic Rankine–
Hugoniot adiabat:

[P ] =
[wX]

(X2 +X1)
. (5.25)

This is an equation defining a curve in the [P,X] plane if an EOS is given. It depends
on the EOS and on the initial state “1”. The locus of the possible final state P2’s and
X2’s are then given by the Taub adiabat. Thus the shock adiabat is a curve in the
[P,X] plane, like the normal (Poisson) adiabat. Fig. 5.11.

The difference is that the shock adiabat depends both on the equation of state of
the matter on the side “2” and on the initial state, “1”, parameters. If the initial “1” and
final “2” states have the same equation of state, we have a normal shock, and the shock
adiabat goes through the initial point “1” as well. At this point the Poisson adiabat
and the shock adiabat are parallel (see ref. [30]). Consequently,

− ∂P

∂X

∣∣∣∣
“1′′

= (n1γsvs)
2,

because the "infinitely weak" shock wave and the sound wave are identical. The weakest
shock wave propagates with the speed of sound, us = γsvs ,Fig. 5.12. The "strength" of
the shock is characterized by j.

If the current j, or the beam energy, is given, it selects (usually) one final state “2”
from the shock adiabat.

The relative speed of matter on the two sides of the front with respect to each other
is

v12 =
v1 − v2

1− v1v2/c2
=

√
(P2 − P1)(e2 − e1)

(e1 + P2)(e2 + P1)
.

In heavy ion reactions of type A+A the center of mass system beam energy is Ec.m. =
m(γ12 − 1). In heavy ion collisions the initial state, “1”, of the shock represents the
ground state of nuclear matter. With a given equation of state eq. (5.25) can be solved.
A solution is illustrated in Fig. 5.13 (from [31]).
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Figure 5.11: Shock and Detonation adiabat in the [P,X] plane. Reproduced with
permission from [56].

Figure 5.12: The slope of the chord and the current across the shock
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Figure 5.13: Shock velocity, vS, compression, n/n0, temperature of the shocked
matter, kT , and the width of the front, ∆l, calculated analytically with two different
Equations of state: stiff — full lines, soft — dashed lines. Points are taken from a
1-dimensional numerical, viscous Relativistic Fluid Dynamical calculation. Reproduced
with permission from [31].

5.5.2 Relativistic detonations

These phenomena are also called: Deflagration, Slow combustion, or Condensation
waves.

The equation of state before and after the front may be different due to some
chemical reaction, rearrangement, structural change, phase transition etc. In such cases
the Taub adiabat does not go through the initial point “1” in the [P,X] plane. We have
two possibilities in this case (Fig. 5.14):

(i) if exotherm change: it goes above “1”

(ii) if endotherm change: it goes below “1”

Minimum energy to reach a new phase: If we have an exotherm reaction and
we want to reach the final state, “2”, on a Taub adiabat from the initial state, “1” we
can usually do it by compression (X decreases, X2 < X1) or in expansion (X increases,
X2 > X1). These two cases are called detonation and deflagration, respectively.
Deflagrations are also called slow combustion (mainly in the Russian literature).

The least steep chord corresponding to a detonation from state “1” is tangent to the
Taub adiabat. This is a Rayleigh-line touching the Taub adiabat at point "CJ". "CJ"
is called the Chapman–Jouguet point, Fig. 5.15. The slope of this Rayleigh line is:

j2
min = − P2 − P1

X2 −X1

= (nCJ γCJs vCJs)
2
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Figure 5.14: Exotherm and endotherm discontinuities. If only space-like discontinuities
are considered the current, j, would be imaginary in the hatched areas. Reproduced by
permission of the American Physical Society from [32].

Figure 5.15: Minimum energy detonation
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In a weaker shock the new phase is never reached.

Figure 5.16: Detonation adiabat for QGP EOS. Slopes and sound speeds. Instead of “1”
and “2” here the initial state is denoted by “0” and the final state by “1” ! Reproduced
by permission of the American Physical Society from [32].

The final states cannot always be reached in a stable detonation front. The study
of stability of shock fronts is quite involved. We can see the discussion of mechanical
stability of the fronts in the textbook of L. D. Landau and E. M. Lifshitz [30], for
the non-relativistic case. The stability of fast detonations dominated by radiation
is even more difficult. This is complicated further by relativistic detonations, where
discontinuities across timelike surfaces become possible.

In the stable region of the detonation adiabat the velocity of final matter leaving the
front, v2, should be smaller than the local sound velocity, v2s, in that shocked matter
v2 < v2s. As we can see in Fig. 5.16 at the final point “1” the Poisson adiabat is steeper
than the Rayleigh line. All the points above the Chapman–Jouguet point satisfy this
relation, thus these points represent mechanically stable final states. In the final state
(at point “1” in Fig. 5.16) the local weak shock adiabat (corresponding to point “1”) and
the Poisson adiabat are parallel. Both having a slope related to the sound velocity as:
−(u1sn1)2.

Let us list systematically the different possibilities of discontinuities by increasing
the current j across the surface of the discontinuity. Fig. 5.17 We discussed before
that a minimum current is necessary to have a shock or detonation front. In normal
shocks the speed of incoming matter should exceed the speed of sound. In detonations
it should exceed the speed of sound at the CJ point.
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Figure 5.17: Detonations with different currents across the front
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5.5.3 Detonations to QGP

In RHIC the phase transition to QCD plasma is endotherm, but the transition back
into the nuclear-matter in the expansion is exotherm. This goes over in a deflagration
or slow combustion, which is an extremely popular subject now. Let us study the Taub
adiabat of QCD plasma.

Aside:
Let us first recall some basic formulae about the EOS of ideal Bose and Fermi
gases. If we neglect the baryon density, then the pressure and the energy density
depends on the temperature T only. This may be a good approximation at high
temperatures and low densities. The energy density of an ideal photon gas (ideal
massless boson gas) is (c.f. eq. (60.16) in [33])

eγ = gγ
π2

30(~c)3
T 4, (5.26)

where gγ = 2 is the degeneracy of photons, (two helicity states exist). The energy
density of an ideal fermion gas at high temperatures (like the positron gas in an
electron positron equilibrium) when the rest mass is negligible compared to the
temperature (c.f. eq. (104.4) in [33]):

e+ = g+ 7
4

π2

30(~c)3
T 4, (5.27)

where g+ = 1 is the degeneracy of positrons. The electrons have the same energy
density. The pressure is one third of the energy density P = 1

3e.
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The equation of state of QCD plasma in zeroth order of the perturbation theory can
be given based on the formulae above. More detailed information may be found in
the textbook of Kapusta [34]. The plasma contains 2 × [N2

c − 1] gluons (bosons),
(Nc = 3 is the number of colors), and 2 ×NcNf quarks (fermions), (where Nf is the
number of different flavors, Nf = 2 − 4). Then e.g. for two flavors and three colors
2× [(N2

c − 1) + 7
4
NcNf ] = 37, so the pressure of the QGP at vanishing baryon chemical

potential is Pq = 37
90
π2T 4/(~c)3. One has to note, however, that the QGP exist in the

so called perturbative vacuum and not in the physical vacuum. The energy density
of the perturbative vacuum is higher, its pressure is lower than that of the physical
vacuum according to the MIT bag model. This correction is taken into account via a
bag constant B = Λ4

B/(~c)3. A typical value for the bag constant is B ≈ 0.4GeV/fm3,
i.e. ΛB = 235MeV [35]. Then the QGP pressure collecting all ingredients at zeroth
order is

Pq =

(
37

90
π2T 4 +

1

9
µ2
BT

2 +
1

162π2
µ4
B − Λ4

B

)
1

(~c)3
, (5.28)

where µB is the baryon chemical potential which can be expressed in terms of the quark
chemical potential as µB = 3µq. Other thermodynamical quantities of the QGP EOS
are:

eq =

(
37

30
π2T 4 +

1

3
µ2
BT

2 +
1

54π2
µ4
B + Λ4

B

)
1

(~c)3
, (5.29)

wq =

(
74

45
π2T 4 +

4

9
µ2
BT

2 +
2

81π2
µ4
B

)
1

(~c)3
, (5.30)

nq =
2

9

(
µBT

2 +
1

9π2
µ3
B

)
1

(~c)3
, (5.31)

sq =

(
74

45
π2T 3 +

2

9
µ2
BT

)
1

(~c)3
, (5.32)

where nq is the baryon number density in the QGP! Now we observe that the equation
of state is rather simple:

Pq =
eq
3
− 4

3
B =

wq
4
−B, (5.33)

so it follows that wq = 4(Pq + B). By dropping the index for the final state “2” and
assuming that the initial state is the ground state nuclear matter (P1 = P0 = 0 and
X0 ≈ 6 GeV fm3, w0 = 0.145 fm−3(mN − 8 MeV) = 135 MeV/fm3 ), the Taub adiabat
takes the form:

P =
wX − w0X0

X +X0

.

Here the index “0” is representing our initial state. After straightforward calculation

(P +
4

3
B)(X − 1

3
X0) =

1

3
X0(w0 −

4

3
B). (5.34)

This is a hyperbola with its center at (−4
3
B, 1

3
X0) on the [P,X] plane, Fig. 5.18.
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Depending on the value of B or ΛB the parameter of the hyperbolaQ = 1
3
X0(w0− 4

3
B)

can be both positive and negative. The parameter changes sign when B = 3
4
w0, or in

other form, when ΛB = 167MeV (or ΛB = 171MeV in Fig 5.18 with slightly different
parameters).

Figure 5.18: Taub adiabats of the QGP initiated from normal ground state nuclear
matter depending on the bag constant B or ΛB. From [32].

If ΛB is smaller than 127 MeV (or 130 MeV in Fig. 5.18) the reaction is exotherm,
otherwise it is endotherm, Fig. 5.18. Usual values range around ΛB ≈ 200MeV.

It seems that there is no threshold for this bag constant, there is an intersection
between the Rayleigh line and the Taub adiabat even at j = 0. This would mean that
the QGP could be reached in a zero energy detonation front. This does not seem to be
reasonable at all.

To any current j = n0γ0v0 = n2γ2v2, we can get a solution by using the equation of
the Rayleigh line

j2 = − P − 0

X −X0

.

From here X = X0−P/(j2). Inserting this into the equation of the Taub adiabat (5.34)
we get a quadratic equation, which yields the pressure of the final state “2”:

Pq =
1

3

[
(X0j

2 − 2B)±
√

(2B −X0j2)2 + 3X0j2(4B − w0)

]
. (5.35)

This is a seemingly perfect solution for any current j. We can solve the puzzle by
calculating all other thermodynamical quantities like the entropy, temperature and
baryon density. We will see (in assignment [6.a]) that the solutions have positive
temperatures only above a given threshold current, which then gives the absolute
threshold energy for QGP formation in a detonation front.
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5.5.4 Detonations in baryon free plasma

In the previous derivation of the Taub adiabat and Rayleigh line we assumed that the
baryon density is large enough to define a baryon current. If this is not the case we still
can use the same formalism as it is shown in refs. [29, 28]. Let us calculate the normal
projection of the energy current across the front:

[T µνΛµΛν ] = 0.

Substituting the expression of T µν = wuµuν − Pgµν , it follows that:

[w(uµΛµ)2] = [P ](ΛµΛµ). (5.36)

Similarly the orthogonal projection to Λµ can be calculated by using the projector
∆µν = gµν − ΛµΛν

(ΛξΛξ)
. The resulting projection Gµ is parallel to the surface:

Gµ = ∆µνTξνΛ
ξ = w(uνΛν)u

µ − w(uνΛν)
2 Λµ

(ΛξΛξ)
− PΛµ + PΛµ (ΛξΛξ)

(ΛµΛµ)
=

= w(uνΛν)u
µ − w(uνΛν)

2 Λµ

(ΛνΛν)
.

The length of this vector is an invariant scalar, (GµGµ), so instead of [Gµ] = 0, we can
use [GµGµ] = 0, which leads to

[ w2(uµΛµ)2 + w2(uµΛµ)4

(
(ΛξΛξ)−

2

(ΛνΛν)

)
] = 0 .

Multiplying this with (ΛµΛµ) we get:

[w2(uµΛµ)2](ΛνΛν) = [w2(uµΛµ)4] . (5.37)

Let us now introduce the quantity [29]:

x ≡ w(uµΛµ)2

(w0(uµ0Λµ)2)
,

and insert it into eqs. (5.36-5.37).

w0(uµ0Λµ)2[x] = [P ](ΛµΛµ), (5.38)

w0(uµ0Λµ)2[wx](ΛξΛξ) = w2
0(uµ0Λµ)4[x2], (5.39)

we can express w0(uµ0Λµ)2 from both eqs. (5.38) and (5.39). Equating the two expressions
we get:

[P ]/[x] = [wx]/[x2].

The Λµ falls out, so that this is the result both for spacelike and timelike surfaces! This
can be cast in the form

(P1 − P0)(x0 + x1) = (w1x1 − w0x0). (5.40)
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This is the equation of the shock adiabat. It depends on the initial state and on the
EOS of the matter. If plotted on the [P, x] plane the final state “1” should lie on this
curve. Since “0” corresponds to the initial state, one can express the equation describing
a chord on the [P, x] plane:

w0(uµ0Λµ)2 = (ΛµΛµ)[P ]/[x]. (5.41)

This equation contains the information about the spacelike or timelike nature of the
surface. The tangent of the chord is positive for timelike surfaces (bulk transitions) and
negative for propagating fronts. Eqs. (5.40-5.41) describe two curves on the P, x plane
which cross at the initial and final state, thus providing us with the P, x coordinates of
the solution we were looking for.

As we have seen earlier if there is a conserved charge and its invariant scalar density
is n, the corresponding conserved current across the front is

j = nuµΛµ, (5.42)

which is also an invariant scalar and has the same value j on both sides of the front.
In this situation as it is used in earlier works [36, 32, 37, 38, 16, 39, 13, 40, 15], a
generalized specific volume X can be introduced: X = w/n2. This is related to x by

x = X/X0

Using this variable, eqs. (5.40-5.41) will read as

[P ](X1 +X0) = [wX], (5.43)

and
j2 = (ΛµΛµ)[P ]/[X]. (5.44)

Eq. (5.43) now contains only thermodynamical quantities of the initial and final states.

5.5.5 Deflagrations from QGP (*)

This is probably the most widely investigated area of discontinuities developing in a
fluid-flow involving the Quark-Gluon Plasma. Only one study so far has addressed the
expansion of baryon-rich plasma [41], while the big majority of the works dealt with
baryon free matter [42, 43, 44, 45, 46, 47, 48, 49, 50].

As we mentioned earlier, the baryon free plasma is expected to occur at ultra-
relativistic energies in the mid-rapidity region. It provides an appealing possibility
where the theoretical treatment is much simpler. The baryon rich plasma may be formed
in the fragmentation regions of transparent ultra-relativistic collisions and at lower
energies in the stopping region. In every case there is a possibility that a rarefaction
discontinuity or deflagration wave develops during the expansion. This is possible only
because of the phase transition in the EOS , otherwise discontinuities do not occur in
expansion [30, 51].

Due to a recent development [29] the baryon free plasma can be discussed in the
same standard way as the baryon rich plasma in sections 5.5.1-5.5.4. In section 5.5.4
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the results of Danielewicz and Ruuskanen are already incorporated, yielding eqs. (5.40)
and (5.41). These equations enable us to use the standard discussion of shock waves
[30, 51] in terms of adiabats, now on the [p,X] plane.

The shock adiabat (5.40) and the Rayleigh line (5.41) corresponding to a constant
enthalpy current wuµΛµ or w1u

2
1 = w0u

2
0 are already defined for the baryon free case.

(Here u1 = γ1v1 and u0 = γ0v0 are quantities measured in the frame of the front.) The
Poisson adiabat is somewhat unusual for n = 0, since we cannot require the constancy
of the specific entropy σ = s/n. If, however, we have an incoming entropy flow s0u0

or s0u
µ
0Λµ, the outgoing entropy flow s1u1 or s1u

µ
1Λµ should be greater or equal in all

physically possible processes:

s1u
µ
1Λµ > s0u

µ
0Λµ. (5.45)

We can eliminate the four velocities from this equation by using the definition x ≡
w(uµΛµ)2

w0(uµ0 Λµ)2

s2
1

w1

x1 ≥
s2

0

w0

x0. (5.46)

In the case of equality, (5.46) is the Poisson adiabat. When n = 0, we have w = Ts
and so the Poisson adiabat becomes:

s1

T1

x1 =
s0

T0

x0. (5.47)

For a given equation of state the shock and Poisson adiabats cross each other at the
initial point. Shock transitions with p1 > p0 satisfy the entropy increase law as in the
case of n 6= 0 compression shocks.

The slope of this Poisson adiabat is related to the sound speed [29] as:

wu2
sound = −x

(
∂P

∂x

)∣∣∣∣
Poisson

. (5.48)

It can be shown [29] that at the initial point the Poisson adiabat and the shock adiabat
are tangent to each other, similarly to the n 6= 0 case.

Using the EOS for the n = 0 matter the Taub (shock) and Poisson adiabats can be
evaluated for the hadronic, plasma, and mixed phases. The shock adiabat corresponding
to the mixed phase is p = pcr., a horizontal line in the [p,X] plane, while the other two
phases yield two hyperbolas. The hyperbola corresponding to the plasma state being
much steeper than the one corresponding to the hadronic phase. In Fig. 5.19 (from
[29]) the shock adiabat of the plasma appears as a vertical line. The following series of
figures show the shock adiabats for different initial conditions.

The difficulty in the study of rarefaction fronts lies in the fact that the initial state
is not well defined and constant, like in a compression shock originating from normal
nuclear matter. The possibilities in the n� 0 case are even more numerous, that is
why the rarefaction studies are constrained mainly to the baryon free plasma case. In a
highly excited plasma, T >> Tcr. the hadronization via rarefaction discontinuity is not
possible, therefore, the plasma cools and expands. (Fig. 5.19).
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Figure 5.19: Deflagration adiabat (lower thick line) and Poisson adiabat (upper thin
line) corresponding to an initial state “0”. The OA section of the deflagration adiabat is
in the plasma phase, AC is in the mixed phase and below C is in the hadron phase. CJ
is the Chapman–Jouguet point. The dashed lines are the continuations of the plasma
adiabats representing a supercooled plasma and the continuation of the hadron adiabat
representing a superheated hadronic phase. The Poisson adiabat lies everywhere above
the shock adiabat. This means that the entropy on the shock adiabat is always lower
than the initial entropy. The development of a deflagration front is impossible if T0 � Tc
or p0 � pc. Reproduced by permission of the American Physical Society from [29].
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Figure 5.20: The same as the previous Figure with a different initial condition of a
smaller initial pressure. The Poisson adiabat (thin line) intersects the shock adiabat at
A and B. In the AB section of the shock adiabat the final state has a larger entropy
than the initial state at “0”. The entropy increase is maximum at CJ. Spontaneously
developing rarefaction fronts will propagate with the sound speed, maximizing the
entropy increase. The current corresponding to this process can be obtained by using
the “0”-CJ chord (dashed-dotted line). If the finite reaction time limits the speed
of hadronization the final state will be on the A - CJ section of the shock adiabat.
Reproduced by permission of the American Physical Society from [29].
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Figure 5.21: The same as the previous figure with an initial state “0” in the mixed
phase. Final states on the A-CJ section of the shock adiabat are realizable. The entropy
increase is smaller than in the previous case. Reproduced by permission of the American
Physical Society from [29].

Figure 5.22: The initial state is now in the supercooled (metastable) plasma phase.
The entropy increase is bigger than in the previous cases. The maximum of the entropy
production is at CJ. Slow deflagrations yield final states laying on the B-CJ section
of the adiabat. At B the enthalpy flow across the front vanishes. Reproduced by
permission of the American Physical Society from [29].
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When the plasma becomes cold enough the rarefaction front may develop, (Fig. 5.20,5.21).
The current across the discontinuity is, however, small compared to the expansion
speed as numerical fluid dynamical calculations show it [52, 44, 53, 54]. So the matter
cools further in the plasma phase, and can reach the supercooled metastable plasma
state. Then the timelike deflagration will become possible and the matter can undergo
a rapid transition into the hadronic phase, (Fig. 5.22). Although the final states above
B are usually considered to be unphysical [55], we have seen in the general derivation
(sect. 5.5.4, eq. (5.41)) of the shock equations that final states on the B-E section of
the curve can also be realized in timelike deflagrations [56]. In the local rest frame this
transition is an instantaneous bulk phase transition; in the laboratory frame, however,
it should not happen everywhere at the same time.

Figure 5.23: Space-time picture of the evolution of QCD-plasma in the mid- rapidity
region. The expanding plasma is surrounded by a spacelike and a timelike surface. The
plasma temperature monotonically decreases with time according to the calculation.
With realistic initial and boundary conditions the time-like surface is not necessarily at
t = const. Reproduced by permission of the American Physical Society from [52].

The necessity to complete the hadronization process with a timelike deflagration
was indicated by the results of ref. [52], (Fig. 5.23 from ref. [52]). Similarly the freeze
out transition calculated numerically in ref. [44] ends in a transition across a timelike
surface. See also Fig. 1 of ref. [53].

Earlier works did not realize the possibility of time-like deflagrations [47, 49, 43]
and this led to the conclusion that the hadronization across the plasma surface is too
slow and does not allow for the complete hadronization of the plasma. Consequently it
was necessary to assume that inside the plasma, hadronic bubbles will form and expand
[43], which lead to observable density and rapidity fluctuations. Since the spontaneous
formation of numerous hadronic bubbles in a bulk volume and their percolation can be
approximated by an effective timelike surface, [56] these two hadronization processes
are modeling essentially the same physical processes.
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5.6 Assignment 5
5.a Show that in perfect relativistic fluid dynamics the entropy increase in continuous flow is

zero.

5.b Calculate the critical temperature and critical pressure for a phase transition between
ideal massless hadronic matter (pion gas) and ideal quark gluon plasma. Both are
described by Stefan- Boltzmann EOS:

Pπ =
gππ

2

90
T 4, eπ = 3Pπ, gπ = 3,

Pq =
gqπ

2

90
T 4 −B, eq = 3Pq + 4B, gq = 37,

where B is the "Bag constant".

At the critical point Pπ = Pq = Pcr, and Tπ = Tq = Tcr (These are Gibbs’ criteria!).

Plot the P (e) and P (T ) functions for the different phases and for the phase mixture.

5.c Calculate the latent heat of this phase transition (per unit volume) in terms of the bag
constant B, and of the critical pressure Pcr.

5.d Calculate the energy density and pressure for a distribution

f(x, p) =
N∑
i=1

jJuttner(x, p;µi, Ti, V
µ
i ),

in terms of parameters µi, Ti, V
µ
i . For help see ref. [57].

5.6.1 Solutions to Assignment 5
5.a Solution:

Tµν ,ν = 0.

Multiplying this by uµ:
Tµν ,ν uµ = 0  

uµ(wuµuν − Pgµν),ν = 0  

uµw,ν u
µuν + uµwu

µ,ν u
ν + uµwu

µuν ,ν −uµP,ν gµν = 0  

w,ν u
ν + wuν ,ν −uνP,ν = 0.

Aside: From the continuity equation, (nuµ),µ = 0 it follows that uµn,µ =
−nuµ,µ and uµ,µ = −(uνn,ν )/n. Inserting this into the previous equation:

uνw,ν −uνn,ν
w

n
− uνP,ν = 0  

uν [
n

n
w,ν −n,ν

w

n︸ ︷︷ ︸
n(wn ),ν

−P,ν ] = 0  

nuν
[(w

n

)
,ν −

1
n
P,ν

]
= 0,



162 CHAPTER 5. RELATIVISTIC FLUID DYNAMICS

and using the relation ∂τ ≡ uν∂ν

n

[
∂τ

(w
n

)
− 1
n
∂τP

]
= 0.

Then using the second law of thermodynamics, dE = TdS − PdV , in terms of the
enthalpy,W = E+PV , as dW = TdS+V dP , and dividing this equation by N to obtain
the specific extensive thermodynamical quantities: d(wn ) = Tdσ+ 1

ndP , the change of
the specific entropy is expressed as:

dσ =
1
T

[
d(
w

n
)− 1

n
dP

]
,

comparing this and the previous equation we obtain that

∂τσ = σ̇ = 0.

q.e.d.

5.b Solution:

Let us use the Gibb’s criteria, Th = Tq = T and Ph = Pq = P , and let us introduce the
ratio of degeneracies, r = gq/gh. This is r = 37/3 if the QGP has 2 flavors and 3 colors,
and if the hadronic matter is an ideal bose gas of pions.

The Gibb’s criteria leads to the equation:

Pcr. =
gππ

2

90
T 4 =

gqπ
2

90
T 4 −B,

which leads to the critical temperature and pressure:

T 4
cr. =

90B
gπ(r − 1)π2

, Pcr. =
B

(r − 1)
.

Fig. 5.24.
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Figure 5.24: Phase transition in baryon free plasma.

5.c Solution: The latent heat is L = eq cr. − eh cr. = 3Pcr. + 4B − 3Pcr. = 4B = 4(r − 1)Pcr..
Taking the usual value for B, B ≈ 0.4GeV/fm3, leads to a large latent heat and to
Tcr. ≈ 169MeV, or Pcr. ≈ 35MeV/fm3.
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5.d Solution:
a., Calculate all quantities in the general (LR) where uµ = (1, 0, 0, 0) for the total flow.
This is not a rest frame for a single component! In this frame the component "k" has
flow velocity V µ

k(LR) = (γk, γk~vk), rest density nk0 and temperature Tk :

fJuttnerk =
nk0

4πg

(
m2
kTkK2(

m

Tk
)
)−1

exp[−(pµuµ)/Tk].

The four current of this component is Nµ
k(LR) = nk0V

µ
k(LR) . The total density is

n = Nµuµ =
∑

kN
µ
k uµ =

∑
k nk0V

µ
k(LR)uµ(LR). Consequently

n =
∑
k

nk0γk ≡ nk, i.e.

nk ≡ nk0γk,

in other words the kth component contributes nk0γk to the rest density!
b., Energy density:

e = uµuνT
µν = uµuν

∑
k

Tµνk =
∑
k

ek,

and this leads to

ek = u(LR)
µ u(LR)

ν Tµν(LR) = u(LR)
µ u(LR)

ν [(ek0 + Pk0)

V µ
k(LR)V

ν
k(LR) − Pk0g

µν ] = (ek0 + Pk0)γ2
k − Pk0.

Here
ek0 = V µ

k(LR)V
ν
k(LR)Tµν k(LR) =

4πgm4
k exp(

µk
Tk

)

[
3
(
Tk
mk

)2

K2

(
mk

Tk

)
+
(
Tk
mk

)
K1

(
mk

Tk

)]
,

and
Pk0 = nk0Tk.

As it was calculated before in the solution to assignment 2.c

ek − (ek0 + Pk0)γ2
k − Pk0,

so that if γk → 1 then ek → ek0.
c., Pressure:

Pk = −1
3

∆(LR)
µν Tµνk(LR) = −1

3
[gµν − u(LR)

µ u(LR)
ν ]× [(ek0 + Pk0)V µ

k(LR)V
ν
k(LR) − Pk0g

µν ] =

−[gµν(ek0 + Pk0)V µ
k(LR)V

ν
k(LR) − Pk0 g

µνgµν︸ ︷︷ ︸
=4

−(ek0 + Pk0)V µ
k(LR)u

(LR)
µ︸ ︷︷ ︸

=γk

V ν
k(LR)u

(LR)
ν + Pk0 V

µ
k(LR)V

ν
k(LR)gµν︸ ︷︷ ︸

=1

]/3 =

−[(ek0 + Pk0)V µ
k(LR)Vµ k(LR) − 4Pk0 − (ek0 + Pk0)γ2

k + Pk0]/3 =

Pk =
1
3

[ek0(γ2
k − 1) + Pk0(2 + γ2

k)].

If γk → 1 then Pk = Pk0. Thus the relative motion contributes to the baryon number
density, energy density and pressure as well!
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Chapter 6

Simple models

For the compression phase of Relativistic Heavy Ion Collisions in the “stopping” region
[1, 2] one can use simple model solutions like:

(i) Shock wave solutions,

(ii) Detonation wave solutions.

In this energy region the expansion is not linear anymore, but spherical or it has a
general 3-dimensional distorted shape.

However, in the ultra-relativistic energy region, at ECM ≥ 20− 30GeV/nucleon the
reaction mechanism is expected to be different. From p+p and p+A reactions at these
energies one can draw the following conclusions:

(i) The leading baryon is hardly stopped,

(ii) In the rapidity region between the projectile and the target, secondary charged
particles (mesons π+, π−, π0, K+, K−, etc.) are created.

The present theoretical assumptions are based on these p+p and p+A experiments
qualitatively shown in Fig. 6.1. At ultra-relativistic energies the mid-rapidity region
and the target and projectile rapidity regions are studied separately.

In references [1, 3, 4] the "fragmentation" region is studied, in [5] the "mid-rapidity"
region! Refs. [3, 4] present a solution similar to the detonation wave solution with some
complications. Basically, the solution is the same as assignment 4a, with source terms
in the Rankine–Hugoniot–Taub equation.

6.1 Applicability of simple models
There are several simple models, widely used to describe some aspects of heavy ion
collisions. These models have symmetry properties which make them very pleasant to
handle but they are not necessarily realistic.

The three most basic collective reaction models are i) the spherical fireball, or
different versions of it, ii) the Bjorken model, and iii) the Landau model. In certain
sense these are all fluid-dynamical models. All of them are applicable to central
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Figure 6.1: Exaggerated plot of observed rapidity distribution of baryons and mesons
in ultra-relativistic proton-proton collisions. In reality particles in the fragmentation
regions and in the central rapidity region are not separated, their rapidity distributions
overlap. Heavy ion collisions are expected to yield similar rapidity distribution at very
high energies.

symmetric collisions, since the treatment of spectators is not incorporated in any of the
basic versions of these models.

Spherical models: The fireball model assumes spherical symmetry. Although the
initial state of a heavy ion collision is never spherically symmetric, at energies in the
order of 1 A·GeV the conditions are such that, by the time the maximum density and
compression are reached, the system is thermalized and gets close to being spherically
symmetric.

Landau model: As the energy increases, around Elab. = 10-100 A·GeV the Lorentz
contraction of the projectile and target cannot be disregarded. Even when thermalization
is reached rapidly the ratio of the longitudinal thickness versus the diameter of the
intermediate object is about 0.05 - 0.1, i.e. close to the aspect ratio of the projectile
and target in the c.m. frame, γc.m.. Landau’s fluid-dynamical model assumes an initial
condition as a static homogeneous disk of such an aspect ratio. This model is the most
appropriate to apply in this energy range. Although, for simplicity spherical fireball or
spherical fluid dynamical models are some times used for characterizing these reactions,
one should keep in mind that spherical models are not applicable at these (BNL-AGS
and CERN-SPS) energies and quantitative physical conclusions should not be drawn
from such comparisons.

Bjorken model: If we increase the energy further to Ec.m. = 100 A·GeV or above
the expectation is that the Lorentz contracted nuclei will become transparent to each
other, in a way that their valence quarks will almost maintain their original rapidities.
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At their interpenetration, however, these quanta may exchange some color charge which
leads to the creation of a chromo-electric field, similar to the electric field between two
condenser plates, where the condenser plates fly apart from each other. The energy
density of this field is substantial. Due to the self interaction of the field it is assumed to
be confined in the transverse direction to a large extent. Bjorken’s model is applicable
for such a physical scenario. The model is one dimensional and time dependent. If the
transverse expansion of this flux tube is to be studied, or if the behavior around the
ends of this object is of interest, the model should be supplemented with the description
of these processes separately. This is also done in the literature.

The spherical models and Bjorken’s model are 1+1 dimensional, while the Landau
model is 2+1 dimensional. If one addresses 3 dimensional effects, like the directed
transverse flow in the reaction plane, none of these simple models apply, due to symmetry
reasons!

Here we present the spherical models and the Bjorken model in detail, but the
Landau model is more involved and it will be discussed only briefly. Landau’s fluid
dynamical model does not have a simple exact analytic solution, thus we will discuss
its physical implications only.

6.2 The Bjorken model
There is a big theoretical interest in the mid-rapidity region, because the EOS is easier if
µB = 0 and less obscure assumptions are necessary, and because there exist a nice scaling
solution for the dynamical problem, the scaling hydrodynamical model of Bjorken [5].
This model has become the basis of many subsequent models [4, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18]. Based on the observation that the rapidity distribution of the
charged secondaries is constant in the mid-rapidity region in a p+p reaction one can
conclude that the energy density is also constant. Fig. 6.2

If the rapidity distribution of the charged particle multiplicity, dNch/dy = const.
(≈ 3 at the CERN SPS), this means that it is invariant under Lorentz transformation
in the mid-rapidity region. It is reasonable to assume that all other quantities (like
n(y), e(y), etc.) also have this symmetry at least at the freeze-out. Thus the density of
charged particles, nch, does depend on the proper time, τ , only because τ is invariant
under a Lorentz transformation

nch = nch(t, z) = nch(τ), (6.1)

where
τ = t/γ = t

√
1− v2 =

√
t2 − z2 , (6.2)

if all the particles originate from one point in the space-time, so that their velocity is
v = z/t (if the point of origin is the origo of our coordinate system). This point is then
the point of impact of the colliding nuclei in the space-time.

We assume that this symmetry is achieved at the time of thermalization and then we
look for the solution of Relativistic Fluid Dynamics from that time on [5]. We assume
a special boundary condition

e = e0(τ0 = 1fm/c) ≈ 1− 10GeV/fm3.
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Figure 6.2: Space-time evolution of the mid-rapidity region in the Bjorken-model. The
solution is uniform along contours of constant proper time. This ensures that the
solution is invariant under Lorentz transformations in the beam direction.

In ref. [5] a simple hydrodynamical model is developed, which is applicable for ultra-
relativistic heavy ion collisions under this symmetry. Instead of variables x and t the
rapidity y and proper time, τ , coordinates fit the problem better. Let us see how
can we estimate the initial energy density at the beginning of the expansion from the
observations

dNch

dy p+p

= 3  
d < E >

dy p+p

≈ 1.8GeV,

because dNtot/dy = 3× 2  < m⊥ > dNtot/dy = d < E > /dy, and < m⊥ >≈ 0.4GeV.
Due to the Lorentz contraction, the colliding nuclei in their C.M. resemble two flat

disks approaching each other. The surface of a disk is A. If it contains N nucleons the
average surface per nucleon is d2

0 ≡ A/N , so that in a heavy ion collision d0 ≈ 0.3− 1fm.
If we have a thermalization at t0 = 1fm/c the energy density is:

e0 ≈
1GeV

t0 d2
0

≈ 1− 10GeV/fm3.

This is the initial condition, i.e. the variables depend on τ but not on the rapidity:

e = e(τ), p = p(τ), T = T (τ), etc.

The initial proper time is τ0, and consequently the initial condition is e(τ0) = e0. Let
us introduce a four vector x̃µ = (t, 0, 0,−z), [or the same in contravariant coordinates
x̃µ = (t, 0, 0, z)]. Then, if all particles are at rest in their own LR we can express the
velocity field using eq. (6.2) as

uµ =
1

τ
(t, 0, 0, z) =

x̃µ

τ
(6.3)

uµ =
1

τ
(t, 0, 0,−z) =

x̃µ
τ

(6.4)
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The local velocity is orthogonal to the constant proper time curve everywhere, see
Fig. 6.3.

Figure 6.3: The four-velocity vector of the flow in the Bjorken-model is orthogonal to
the constant proper time, τ = const. hyperbolas.

Let us neglect the viscosity and heat conduction and use the equations of perfect
fluid dynamics:

T µν ,ν = 0, (6.5)

where T µν = (e+ P )uµuν − Pgµν . Let us observe that

τ,µ =
∂τ

∂xµ
= uµ  ∂τ = uµ∂x

µ.

We can then rewrite eq. (6.5) as

(e+ P ),µ u
µuν − P,µ gµν + (e+ P )uµ,µ u

ν + (e+ P )uµuν ,µ = 0, (6.6)

where the last term vanishes and the others can be rewritten as shown below.

Aside:
uν ,µ =

(
x̃ν

τ

)
,µ =

1
τ
g̃νµ −

x̃ν

τ2

x̃µ
τ

=
1
τ

(g̃νµ − uνuµ),

where g̃νµ = δνµ if µ = 0, 3 else 0. I.e. g̃0
0 = 1 and g̃zz = 1. Consequently:

uµ,µ =
1
τ

(2− 1) =
1
τ
.

Inserting this into eq. (6.6):

(e+ P ),µ u
µuν − P,µ gµν + (e+ P )

1

τ
uν + (e+ P )

1

τ
uµ(g̃νµ − uνuµ)︸ ︷︷ ︸
1
τ

(uν−uνuµuµ)

= 0,
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where we see that the last term vanishes and multiplying the first two terms by uµ/uµ
leads to

∂(e+ P )

uµ∂xµ
uµuµu

ν − ∂P

uµ∂xµ
uµg

µν + (e+ P )
1

τ
uν = 0.

Using the relation uµuµ = +1 and the definition of τ

∂(e+ P )

∂τ
uν − ∂P

∂τ
uν + (e+ P )

1

τ
uν = 0.

This should be satisfied for all uν ’s, thus

∂e

∂τ
= −e+ P

τ
. (6.7)

This is the basic differential equation of Bjorken’s hydrodynamical model. e(τ0) = e0 is
given as initial condition.

6.2.1 Entropy conservation

We have seen that in perfect fluids Sµ,µ = 0, where Sµ = suµ and s is the entropy
density in the proper frame. This equation:

∂(suµ)

∂xµ
=

∂s

∂xµ
uµ + s

∂uµ

∂xµ
=

∂s

uµ∂xµ
uµu

µ + s
1

τ
= 0,

leads to the differential equation
∂s

∂τ
= −s

τ
. (6.8)

The solution of this equation is

s(τ) = s(τ0)
τ0

τ
.

Consequently dS/dy =constant. To solve the dynamical equations of the fluid dynamics
we need an EOS as was mentioned before, so eq. (6.7) still allows several solutions. For
an ideal ultra-relativistic gas the EOS is: e = 3P . This reduces eq. (6.7) to de

dτ
= −4

3
e
τ
,

which leads to the solution

e(τ) = e(τ0)

(
τ

τ0

)−4/3

.

6.2.2 Multiplicity estimate in ultra-relativistic collisions

The “chromo-electric” field between the projectile and target constituents is frequently
considered as a flux-tube or as a string of negligible transverse extent. If the field is
created by several constituents at the same time, the field strength increases or we can
say that the number of strings increases.

We have seen that in an A+A collision a large number of hadron collisions occur.
This number is proportional to the surface of the projectile and target nuclei orthogonal
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to the beam. Thus the number of strings increases and so, the entropy per unit rapidity
increases the same way as well:(

dS

dy

)
A+A

=
r2

0A
2/3π

d2
0

(
dS

dy

)
p+p

.

Assuming that the pion multiplicity and the entropy are proportional (this is the case
for an ideal Bose gas), Nπ ∼ S, we can estimate the parameter d2

0 by comparing the
results of p+p collisions and α + α collisions from ISR at 30+30 GeV/nucleon:

(dNπ/dy)A+A

(dNπ/dy)p+p
=

(
2fm

d0

)2

A2/3.

Inserting the experimental results into this equation we get

d0 ≈ 0.7 fm.

This estimate leads to a multiplicity increase proportional to A2/3, but the cross section
is somewhat bigger than one layer of nucleons would produce. I.e., not only the first
but the subsequent nucleons in a row also contribute to the collision. Later on this
problem of subsequent or better to say multiple collisions on a row of nucleons was
studied extensively in a study of “Nuclear Stopping Power”(see section 10.5). Bjorken
already estimated the multiplicity[5] one could get in a U+U collision, and his estimate
was dNπ

dy
≈ 800. This estimate indicates the difficulty of future heavy ion experiments,

but as the first CERN measurements indicate, the present measurement techniques can
cope with this task.

6.2.3 Inclusion of phase transition in the Bjorken model (*)

One of the most important questions is how to estimate the initial energy density of an
expansion from the measurables. If the energy density is high QGP is probably formed
in the collision. The energy density can be related to the entropy density if the EOS is
known, and the entropy density can be related to the particle multiplicities at the end
of the collision. In ref. [19] the assumption of the initial energy density was modified
considering the fact that the expansion is not free. The basic idea is that the expansion
is very likely to be adiabatic and therefore the initial and final entropy is the same (per
unit rapidity ). On the other hand the time evolution of the energy density depends on
the equation of state. The starting point of the discussion is that the entropy density
s and the density of quanta ñ (not necessarily the density of conserved particles) are
related to each other by s = ξñ, where ξ is a constant ξ ≈ 4, and e.g. for quark-gluon
plasma ñ = nq + nq̄ + ng. (Typical ξ values: Bose gas – ξ =3.6, Boltzmann gas – ξ =
4.0, Fermi gas - ξ = 4.2, etc.) It follows then that

dS

dy
≈ 4

dN

dy
.
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This was also the basic assumption in the Landau theory of multiparticle production
[20]. Thus

dN

dy
=

1

dy

∫
d3x ñ =

1

dy

∫
d2x(τ dy)ξ−1s = d2

0τs/ξ = d2
0τ0s0/ξ.

The relation between s0 and e0 depends on the EOS of the initial state. Using the EOS
for the hadronic matter:

sh0 =
4

3
eh0/T0 =

4

3

(
3

30

)1/4

e
3/4
h0 ,

and for QCD-plasma:

sq0 =
4

3
(eq0 −B)/T0 =

4

3

(
37

30

)1/4

(eq0 −B)3/4.

This leads us to the conclusion that

e0 ∝
(

4

τ0 d2
0

dN

dy

)4/3

,

somewhat larger than the original estimate of Bjorken for e0 [5].
If our EOS includes a phase transition the expansion is different from the one

presented earlier, at the discussion of the Bjorken model. Inserting the EOS of the
QGP into eq. (6.7) we get another solution

e(τ) = B + [e(τ0)−B]

(
τ

τ0

)−4/3

. (6.9)

Thus if we start the expansion from QGP, this is the solution we follow initially. There
are several possibilities if we have a phase transition: i) we can assume that the
expansion is still adiabatic, i.e. no dissipation will occur due to the transition, ii) we
may assume that the expansion is isoergic, i.e. the internal energy remains constant,
and no internal energy is converted into the kinetic energy of the expansion so that
the matter is coasting during the transition with constant speed, or probably the most
realistic assumption is that iii) the QGP supercools to some temperature Tq < Tcr., and
then it undergoes a time-like deflagration into hadronic matter[21]. To discuss all these
scenarios would be quite extended, so let us sketch the procedure for case i) briefly.
The expansion starts in the plasma and from eq. (6.8) the temperature decreases as

T (τ) = T (τ0)

(
τ

τ0

)−1/3

, (6.10)

while the energy follows (6.9). When during the expansion the critical temperature is
reached in the QGP phase the formation of hadronic matter begins. For a while we
will have a phase mixture, during the existence of the mixture the temperature will
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not drop but it stays at the critical Tcr.. When the matter is converted completely into
hadronic phase the expansion continues according to the solution we have seen before:

e(τ) = e(τ0)

(
τ

τ0

)−4/3

.

The time scale of the expansion is given by eq. (6.8) and by the fact that s(τ) =
λ(τ)sq cr. + [1−λ(τ)]sh cr., where λ is the volume ratio of QGP in the expanding matter
(it is 1 initially and 0 at the end of the transition):

λ(τ) =
37

34

[
T (τ0)

Tcr.

]3 (τ0

τ

)
− 3

34
. (6.11)

The phase transition begins at τ1 = [T (τ0)/Tcr.]
3 τ0, and it ends (λ = 0) at τ2 = 37

3
τ1. If

T0 = T (τ0) = 200MeV, Tcr. = 169MeV (i.e. ΛB = 235MeV, or B = 0.397GeV/fm3) and
τ0 = 1fm/c the characteristic times are: τ1 = 1.66fm/c and τ2 = 20.4fm/c.

The relation between the initial energy density and entropy density is different if we
start from different phases. If we start from QGP

s =
4

3

(
37

30

)1/4

(eq0 −B)3/4,

if we start from the mixed phase

s = [em0 −
1

3
eh(Tcr.)]/Tcr.,

and if we start from the hadronic phase

s =
4

3

(
3

30

)1/4

e
3/4
h0 .

In [19] the initial energy density was calculated for two different EOS-s, (1) and (2),
describing phase mixture between the quark and hadronic phases with bag constants
B=0.74(1), 0.05(2) GeV/fm3. The resulting relation between the initial energy density
at τ0=1fm/c and the pseudo rapidity density of the emitted particles is plotted in Fig.
6.4 (from [19]): curves (1) and (2) assuming the adiabatic scenario i). The points
above the black dot on the dashed lines, (1) and (2), correspond to QGP initial states,
below the dots to mixed phase initial states. The full line corresponds to the isoergic
expansion scenario ii), which involves entropy increase during the expansion, thus the
initial entropy and energy densities are smaller.

If one wants to develop a complete model one has to consider the transverse expansion
during the same time when the Bjorken type of longitudinal expansion is happening.
Furthermore, one has to take into account that the string is not infinitely long and at
the end of the expanding string important physical processes may be present as well.
This complicated task can be approached numerically. The first numerical solutions (ref.
[22]) included source terms in the fluid dynamical equation in order to simulate the fact
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Figure 6.4: Dependence of initial energy density on dN/dη at τ0=1fm/c calculated in
the framework of the Bjorken fluid dynamical picture. The transverse area is taken to
be d2

0 = A2/3r2
0π, (with r0=1.18fm). Multiplicities observed in cosmic ray events suggest

that an initial energy density of 3-6 GeV/fm3 can be reached in heavy ion reactions.
Reproduced with permission from [19].
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that the constituents of the matter are not immediately thermalized after the collision.
If we consider one nucleon nucleon collision from the many present in a nucleus nucleus
collision, the constituents (quarks and gluons) of these two nucleons thermalize only
after some proper time, τ0, has passed! The estimate for this time is τ0 ≈ 1fm/c. Thus
the energy and momentum contribution of one nucleon nucleon collision will be added
to the fluid flow τ0 proper time after the collision only. The locus of the points having
a proper time distance from the point of the collision (event) in space-time lies on a
hyperbola. Fig. 6.5 from [22].

Figure 6.5: Space-time picture of 4-4 nucleons colliding on each other. The contribution
to the subsequent flow starts at different proper time hyperbolas. Reproduced by
permission of Elsevier Science Publishing from [22].

In the fluid dynamical equations these subsequent contributions can be represented
by source terms [10, 22]. Thus the equations solved in this numerical study were:

T µν ,µ = Σν , (6.12)

and
Nµ
B,µ = σB. (6.13)

The source terms were based on the observations extracted from p+p collisions:

Σν
p+p = Σi=N,π,K,...mi ρi(y) xνδ(τ − τ0),

where ρi(y) is the observed rapidity distribution of different particle types, i, in a p+p
collision. The source term of the baryon continuity equation was assumed to be

σB = ρB(y)δ(τ − τ0).

These source terms were implemented in the model for A+A collisions where

Σµ =
∑
i=coll.

∑
c=π,N

< mT >

d2
0

dNc(y)

dy
vµi 2δ(∆τ 2

i − τ 2
0 ) = ecv

µ
i 2δ(∆τi − τ0). (6.14)
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Here vµi is the 4-velocity of the deposited quanta, vµi = (x−xi)µ
τ

, which originates from
the nucleon nucleon collision at (ti, zi) , and at the same time vµi is the normal unit
vector of the proper time hyperbola:

(t− ti)2 − (z − zi)2 = τ 2
0 . (6.15)

∆τi is the proper time difference between the space time point of a collision (ti, zi) and
another space time point (t, z):

∆τ 2
i = (t− ti)2 − (z − zi)2.

In order to model a heavy ion collision of a given energy in ref. [10, 22], the function
dNc(y)/dy had to have a smooth cut off at the target and projectile rapidities.

In pp and pA experiments, the net baryon charge is observed around the original
target and projectile rapidities. It is convenient to introduce a similar source term for
the baryons in the continuity equation:

σB =
∑
i=coll.

1

d2
0

dNB(y)

dy
2δ(∆τ 2

i − τ 2
0 ),

and dNB(y)/dy is chosen to be a smooth function simulating the final baryon rapidity
distribution. In this way the baryon charge is not conserved in the calculation and in
fact, initially the baryons are not present, nor is the energy carried by them.

Eqs. (6.12) and (6.13) were solved numerically [22, 23, 24] and a gradual increase of
the energy density was obtained until the energy of the last nucleon-nucleon collision
added its contribution to the flow. At this moment in a U + U collision with beam
rapidity y=3.4, the maximum energy density reached was e=5.8 GeV/fm3 in the center.
In the target rapidity region, however, the energy density remained below 1GeV/fm3,
which is much less than previous estimates [1, 25, 26], Fig. 6.6, from [22].

6.2.4 Baryon recoil in the Bjorken model (*)

To overcome the baryon conservation problem above, a model was formulated to include
nuclear recoil in a way which guarantees the conservation of baryon flux at all times
[4]. This could be accomplished by treating recoil as arising from acceleration in an
effective external field F µν . The physical picture behind the model stems from the
chromoelectric flux tube or string models [27, 28]. We assume that the interaction
between the projectile and target nucleons leads to the formation of multiple incoherent
color flux tubes. In effect the projectile and target parton clouds are "charged" up to
color non-singlet states due to multiple gluon exchange. The covariant constant color
electric field in each flux tube gives rise to a field energy per unit length or effective
string tension σ∗. For pp collisions we expect σ∗ = 1 GeV/fm3. For A+A collisions, a
random walk in color space may lead to much larger effective string tensions. Through
pair production the color fields are eventually neutralized, thus, in the final state leading
to pions distributed approximately uniformly in rapidity. However, the string tension
also acts to accelerate the partons in the target fragmentation region and to slow down
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Figure 6.6: Contour lines of energy density in the rapidity y, proper time variable
t̂ = ln(τ/τ0) plane for an U + U collision. Reproduced by permission of Elsevier Science
Publishing from [22].

the partons in the projectile fragmentation region. This is the main mechanism for
baryon recoil. It can be described by modifying Eqs.(6.12-6.14) such that

T µν ,ν = Σµ
π + F µνNν , (6.16)

Nµ,µ = 0, (6.17)

where the source term Σµ
π is due to pions alone, and where F µν is parametrized as

F µν =

(
0 −σ∗
σ∗ 0

)
. (6.18)

These equations have the advantage of incorporating longitudinal growth as well as exact
baryon flux conservation. The price paid is the introduction of an effective external
field. In principle the rate of change of four momentum flux, Σµ, due to the conversion
of field energy density into secondary particles, must be calculated consistently from
the color neutralization equations [27, 28].

In the absence of the source term, Σµ, the fluid compression is due entirely to recoil
in the external field. In the "dust" limit, where the internal pressure is neglected in
comparison to the energy density, to calculate the recoil compression is particularly
simple. The "dust" equation of state (p = 0) allows us to write

T µν = m∗nuµuν . (6.19)

Since m∗,µ = 0, and (nuµ),µ = 0, we obtain that

∂τu
µ =

1

m∗
F µνuν . (6.20)

In the target frame, the external field is assumed to be turned on as the Lorentz
contracted projectile nucleus passes by. For t < z, we thus assume that F µν = 0 .
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For t > z we parametrize F µν by Eq. (6.18). The solution of (6.20) for the fluid flow
rapidity as a function of the fluid proper time is then

y(τ)− y(τ0) = (τ − τ0)/τ ∗, (6.21)

where τ ∗ ≡ m∗/σ∗. The fluid flow velocity is then uµ(τ) = (cosh(y(τ)), sinh(y(τ))).
Thus, a fluid element initially at (tj, zj) with velocity uµ(0) = (cosh(y0), sinh(y0)) moves
in absence of a source, Σµ

π, along the hyperbola:

(z − zj + τ ∗u1(0))2 − (t− tj + τ ∗u0(0))2 = (τ ∗)2. (6.22)

Note that the light cone variable, x− = t−z, for the trajectory of the fluid cell is bounded
between x−(0) < x− < x−(0) + τ ∗e−y0 . For our problem the boundary condition is
y = 0 on the forward light cone, i.e., x−(0) = 0.

The acceleration ceases in this model when the field is neutralized by pair production.
However, the energy stored in the field must also be accounted for. Physically, the
neutralization process is the mechanism by which the energy stored in the field is
converted into energy in the matter fields. The source term, Σµ

π, is included in (6.16)
to take into account this additional source of energy and momentum in the matter
fields. We assume that each struck nucleon contributes to an independent string that
neutralizes along a proper time curve characterized by τ . We thus parametrize the
i-th source function by eq. (6.14), except the baryon contribution, because these are
always present in this model. The energy density of the matter produced along the
neutralization hyperbola must be proportional to the effective string tension, σ∗, since
both are proportional to the initial field energy density.

Trying to use the results of recent stopping power studies [29, 2, 30], in a similar
analysis it turns out that the space-time structure of the energy deposition is very
important. The interplay between the baryon recoil and the energy deposition from the
neutralization of different chromoelectric flux tubes leads to much higher energy densities
in the fragmentation region than it was expected before. The sudden energy-momentum
deposition on a hypersurface, leads to a discontinuity of the flow pattern.

In two-dimensional space-time the surface of neutralization is described by Eq. (6.15).
The normal four-vector to this surface is vµi , at a space-time point xµ. This is a time-like
surface because vµvµ = +1. We can use the formalism of time-like discontinuities for
this problem. The discontinuity here, however, is caused by the source term Σµ

π, thus
our conservation equations across the surface of discontinuity are:

[nuµviµ] = 0, (6.23)

[T µν , viν ] =
1

d2
0

∫
δV

d4xΣµ
π = eπv

µ
i . (6.24)

We can now introduce an invariant (time-like) baryon current [31] across the i-th surface
of discontinuity:

ji = nuµviµ. (6.25)

According to eq. (6.23) ji is the same on both sides of the discontinuity. Making the
orthogonal projection of eq. (6.24) to the surface and using the definition of ji we obtain
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that
j2 = ([P ] + eπ)/[X], (6.26)

where X = (e + P )/n2 is the generalized specific volume. Eq. (6.26) differs from
the similar equation for standard shock waves in the sign, because of the time-like
discontinuity, and also in the additive term which arises from the energy-momentum
source term (6.24). The parallel projection of eq. (6.24) leads to j2 = [(e+ P )X]/[X2].
Eliminating ji from the above equations, yields the usual Taub adiabat except that the
source now contributes as an additive term to the pressure difference

([P ] + eπ)(X1 +X0) = [(e+ P )X]. (6.27)

Thus we derived two invariant scalar equations (6.26-6.27) from the basic relations
(6.23-6.24). The velocity four vectors appear explicitly only in the definition of the
invariant baryon current ji .

Now we can form a model describing the space-time development of the fragmentation
region in an ultra-relativistic nuclear reaction. The highly Lorentz contracted projectile
sweeps through the target. It meets first the first nucleon in the row, and a chromoelectric
flux-tube is formed. This will pull that nucleon forward until its neutralization, τ0

proper time later. The second and subsequent nucleons in the row will also be passed
by the projectile. During that time, however, these will be pulled by the chromoelectric
field the projectile forms when passing them. (Fig. 6.7) The field created at contact
with a previous nucleon will not result in extra recoil of the nucleons sitting deeper
inside the target. Thus, the nucleon recoil is uniform initially.

When the first chromoelectric tube neutralizes it distributes its energy and momen-
tum over the whole target on a 3-dimensional hypersurface, which is represented by
Eq. (6.15) in our 1+1 dimensional model. Previous to this moment the momentum
of the field and of the recoiling target nucleons was different. At the neutralization
these two components thermalize and the matter will obtain a uniform momentum and
its energy will change. Our task is now first to find the space-time points where the
neutralization surface reaches each target nucleon in the row. For the i-th neutralization
surface and for the j-th nucleon in the row we should solve the system of Eqs. (6.15)
and (6.22). In the absence of intermediate sources the intersection is at τc where

τc/τ
∗ = cosh−1

(
1 + τ 2

0

)
/
(
2τ ∗2

)
. (6.28)

The recoil rapidity at this point is yr = τc/τ
∗. At this point (tk, zk ) we know the

recoil velocity of each baryon uµ, the density n, and the effective mass m∗. Using
Eqs. (6.23,6.26,6.28) we can determine the values of these quantities after crossing the
discontinuity. Then we propagate the target baryons according to Eq. (6.22) until they
reach the next neutralization surface, and so on.

According to the above scenario the complete fluid dynamical problem was solved on
a grid specifically suited to the description of the fragmentation region [4]. The results
indicate that the energy density inside the target increases approximately linearly with
the target depth. The deposited energy increases with increasing projectile mass. For a
thicker projectile the field strength is greater and this leads to larger recoil rapidities
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Figure 6.7: Space-time picture of the recoil and color neutralization. As a result of
interactions between projectile and target at depth z0 and z1, two incoherent strings
neutralize along hyperbolas indicated. The fluid cell initially at depth z1 follows the
dashed world line. Reproduced by permission of Elsevier Science Publishing from [4].

[29, 32, 2, 33]: ∆y = ∆y(νp), where νp is the average number of wounded nucleons in
the projectile per inelastic collision (eg. in p+A). Since the empirical rapidity shift ∆y
is the recoil rapidity, Eq. (6.28) is used to set the parameter τ ∗ characterizing the field
strength. The resulting energy density and the divergence of the flow uµ,µ, is plotted for
a fluid element initially at 6.9 fm depth in the target in Fig. 6.8. The flow divergence
characterizes the compression, because from the continuity equation: (nuµ),µ = 0 it
follows that ṅ/n = −uµ,µ . The dashed line is the result of the model without baryon
recoil [22], with νp = 6. The small energy density obtained in [22] is due to the lack of
recoil.

6.3 Spherical expansion

Up to now linear 1-dimensional solutions were discussed. Another type of simple
solutions are spherical 1-dimensional solutions which are applicable for central relativistic
heavy ion collisions at late expansion stage.

Initial condition. Initial conditions for such an expansion are the following (these
are idealized simplifying assumptions):

(i) The sphere is at rest in the C.M. system,

(ii) Uniform density, pressure, temperature, etc. distribution,
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Figure 6.8: The divergence of the flow (a) and the energy density (b) as a function of
proper time for a fluid element in the target at z0 = 6.9fm. νp is the projectile thickness
in units of mean free path. Reproduced by permission of Elsevier Science Publishing
from [4].
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(iii) vr(t = 0) = 0, i.e. there is no radial flow initially.

For a given reaction at a well defined C.M. energy there is one free initial parameter
in such a parametrization either the density, n(t = 0), or the temperature (or some
other thermodynamical quantity). If one of these is given the others can be calculated
from energy conservation if the beam energy and the EOS are known.

Final break-up condition. There is on more (free) parameter in the solution, because
the validity of the fluid-dynamical approach has to break down at some late stage in the
collision when the particles do not interact strong enough to maintain local equilibrium.
Usually the break-up density, nBU is chosen as, nBU ≈ 0.1− 0.7 n0. This determines,
or at least strongly influences the observables! We will discuss three simple models for
spherical t expansion: The Fireball model, the Blast-Wave model, and an approximate
time dependent solution.

6.3.1 Fireball model

This model was the first attempt [34, 35] to describe the measured cross sections of a
heavy ion collision in a collective thermal model. Strictly speaking collective flow is
not included in this model. The matter is assumed to be globally thermalized by the
end of the reaction, and the cross section is determined from the thermal momentum
distributions of the particles present in this final heat-bath.

At this stage it is assumed that n = nBU , and that there is no flow. Then cross
sections are easily calculated because from the energy conservation and the EOS, e(n, T ),
the temperature of the system, TBU , can be determined:

εc.m.inc. =
e(nBU , TBU)

nBU
,

where εc.m.inc. is the c.m. energy per particle for the incoming beam. Thus TBU can be
calculated if we assume nBU , or vice versa.

When this model was used first, it was assumed that the temperature is high and
the density is low enough so that the matter is close to an ideal gas at break-up. So,
the momentum distribution of the nucleons, f(~p), is known, and can be measured by
the detectors. Thus the researchers assumed that TBU was directly measured by the
energy spectra, since

f ∝ e−ε/TBU .

It turned out, however, that this was wrong or at least largely oversimplified because:

(i)) No collective flow was assumed,

(ii) Ideal gas EOS was assumed.

This showed up in form of “experimental” problems, such as:

(i) Pion and proton "temperatures" were different,

(ii) The "entropy" did not go to 0 when Ebeam → 0,
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(iii) Transverse flow was observed in noncentral collisions.

This simple model was, nevertheless, very powerful and many basic facts were interpreted
correctly by the model. Even nowadays the “temperature” extracted from the data in
this simple fashion is frequently used. It is called slope temperature, slope parameter
or effective temperature, indicating the fact that the c.m. energy spectrum of particles
on a logarithmic plot is frequently a linearly decreasing curve or very close to it.
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6.3.2 Blast-wave model

The thermalization can be reached at high densities (i.e. much before the break-up),
then a collective and (almost) adiabatic expansion follows. This lasts until the matter
becomes dilute enough. The resulting final break-up state thus has a collective expansion,
or radial flow and the superposed thermal motion. This idea was considered by Siemens,
Rasmussen and Kapusta, and the cross sections were evaluated in the presence of a
spherical flow [36, 37]. In this model it was assumed that the spherical flow had one
constant radial flow velocity, ur.

Later in ref. [38] this strong assumption was relaxed and the radial expansion
was calculated numerically in a 1-dimensional spherically symmetric relativistic fluid
dynamical model. The viscosity of nuclear matter was also taken into account, but
during the expansion it did not cause strong changes in the flow. The initial state of
the expansion was a uniform sphere, where the temperature, T0, and the density, n0,
were taken from the relativistic Rankine–Hugoniot relations (discussed in section 5.4).
Fig. 6.9-6.10 from [38].

Figure 6.9: Time dependence of density and temperature profiles calculated in a
relativistic, viscous, spherical fluid dynamical model for the reaction Ar +KCl at 800
MeV/nucleon projectile energy. The break-up is gradual in this model, it happens layer
by layer. Reproduced by permission of Springer-Verlag from [38].

At the initial state of the expansion some part of the energy is in the form of
compressional energy. The break-up temperature, TBU , is smaller than the initial
temperature, T0 , because the expansion is close to adiabatic, the matter cools nearly
adiabatically and the energy is converted into the energy of the collective flow (see
Fig. 6.10). For the same reaction the fireball model temperature TFB is higher than T0,
because ideal gas EOS is assumed and there is no compressional energy in the initial
(and in the Fireball model final) state.
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Figure 6.10: Dependence of the break-up velocity, β, (dashed curves) and of the break up
temperature, T , (full curves) on the break up radius in the same spherical fluid dynamical
model. The subscripts η< and η> belong to constant viscosity, 6 MeV/(fm2 c), and to
temperature dependent viscosity, [6 + 2(T/MeV )1/2] MeV/(fm2 c), respectively. TBW
and βBW correspond to the Blast-Wave model parameters, T0 is the initial temperature
and TFB is the temperature of the Fireball model. The temperature of the Blast-
Wave model, TBW is close to the numerically obtained break up temperatures, TBU(t).
Reproduced by permission of Springer-Verlag from [38].
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Basic assumptions of the Blast Wave model

At the break-up

• the radial flow velocity is constant (free parameter),

• the local temperature, T , is constant (not a free parameter because of energy
conservation).

Now part of the energy is in form of kinetic energy of the collective flow. Thus the
observed particle velocities have two components:

• thermal random velocity, parametrized by TBU (same for all particles) and

• collective flow velocity, v, or βflow (same for all particles).

These basic assumptions are of course debatable and can be relaxed if necessary.
For example it is easily possible that secondary created, weakly interacting particles
(having smaller than the average cross section) leave the system before the general
break-up. In this case these particles represent an earlier stage of expansion with higher
temperature and smaller expansion velocity. In the original Blast Wave model this
possibility was, however, not considered.

Due to the basic assumptions if we have particles of different masses, like mπ � mp,
then the flow energies such that,

Eflow
p � Eflow

π ,

while the thermal energies are equal, Etherm = 3
2
TBU . At the same time the flow

velocities are equal, but the random thermal velocities of the lighter particles are larger.
As a consequence this model explains one basic feature of the observations. The

energy spectra of pions decrease steeper than of proton spectra, Fig. 6.11 (from [36]).

6.3.3 An approximate spherical solution

An approximate solution for adiabatic (or dissipative) expansion of a sphere of radius
R is frequently used in the literature [39, 40]. This model is an alternate to the scaling
spherical expansion model presented in section 6.4.2. It is based on simple assumptions
like the models above:

• all thermodynamical quantities are uniform during the expansion, P (r, t) =
P (t), T (r, t) = T (t), n(r, t) = n(t), etc.,

• the 4-velocity is linearly increasing with the radius ~ur(~r, t) = γr~vr = Ṙ(t)
R(t)

~r.

As we have seen at the beginning of sect. 6.3.2, these assumptions are acceptable
according to detailed numerical solutions [38].

Now, we can get the time dependence of parameters from the energy conservation,
i.e. that the total energy of the expanding system stays the same, and from a further
condition. The simplest additional assumption is to assume adiabatic expansion. In
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Figure 6.11: Inclusive cross sections, d3σ/dp3, at Θ = 900 in the c.m. for the 20Ne +
NaF reaction at 800 MeV/nucleon laboratory beam energy. Open circles are protons,
closed circles are π−’s. Solid lines are the results of the Blast Wave model: the free
parameter the flow velocity is chosen as βflow = 0.373, then the resulting temperature
is T = 44 MeV. The number of charged pions is 9.4% of the protons. Reproduced with
permission from [36].
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this case all of the internal energy of the dense compressed system will be converted
into the collective energy of the flow, and the entropy per particle (baryon) remains
constant. It is also possible that dissipative processes, like viscosity, heat conductivity
or delayed first order phase transition, lead to entropy increase. In the most dissipative
case the energy of the flow does not increase during the expansion, the matter is coasting
and the entropy increases. The initially developed collective flow energy, if any, is
maintained during the expansion. Without such initial collective expansion energy such
maximum dissipation expansion is not possible. For adiabatic expansion (σ = const.)
the estimated process of expansion goes as follows. The energy density

T 00(r) = [e(σ, n) + P (σ, n)]γ2(r)− P (σ, n) (6.29)

depends on the radius r. The total energy of the system is then

V [(e+ P ) < γ2 > −P ] = Etot
init. , (6.30)

where < γ2 > is the volume average, because the other quantities are assumed to be
independent of r. We can calculate the volume average

< γ2 >=
4π
∫ R

0
1

1−v2 r
2dr

4πR3/3
. (6.31)

Using the assumed linear velocity profile it follows that v2 = x2/(1 + x2) where
x = r Ṙ/R. Inserting this into the expression above

< γ2 >=

[
4π
R3

Ṙ3

∫ Ṙ

0

(1 + x2)x2dx

]
/(4πR3/3) =

3

Ṙ3

∫ Ṙ

0

(1 + x2)x2dx = 1 +
3

5
Ṙ2.

(6.32)
Inserting (6.32) into (6.30) we get an equation for the radius

Ṙ =

√√√√ 5
3

(
R3
in

R3 ein − e
)

e+ P
, (6.33)

where e and P depend on the density n(t) = 3Atot
4πR3 only since σ is constant. This equation

gives us a simple estimate of the time-scale of the radial expansion. If the break-up
density is reached the thermal contact between the particles is lost and we can calculate
single particle cross sections (see the next sections) or e.g. two pion correlations [41].

The calculation for the most dissipative, isoergic (ε = e/n = const.) expansion can
be done similarly. Such an expansion should be preceded by an adiabatic or close
to adiabatic expansion[40], so that einR3

in 6= e(t)R3(t), otherwise the system would
not expand. Unlike in the scaling spherical expansion model (see section 6.4.2) the
expansion velocity of the surface is not constant in this model.
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6.4 The Landau model
At Elab. = 10-100 A·GeV the Lorentz contraction of the projectile and target in the c.m.
frame, is γc.m.. Landau’s fluid-dynamical model [20, 42] assumes an initial condition
as a static homogeneous disk of such an aspect ratio. Since this disk is rather flat
and orthogonal to the beam direction the pressure gradient is the largest in the beam
direction.

6.4.1 Physical assumptions

Because of the strong interactions, relevant relaxation times are very short and the
created pre-hadronic matter can be thought of as being in local statistical equilibrium.
Phrased another way, mean free paths of the quanta involved are assumed to be much
smaller than the characteristic lengths. Thus the system can be treated as a classical
fluid whose collective motions are governed by the laws of relativistic hydrodynamics.

The special features of the model - dynamics (apart from the equation of state) are
embodied in the initial and final (break-up) boundary conditions on the hydrodynamic
equations. The initial condition on the equations is to specify the initial temperature
distribution of the fluid. We assume baryon free matter for simplicity, thus we must
make certain assumptions about the initial size of the system, and determine the initial
temperature distribution from the center-of-mass energy via some knowledge of the
relevant dynamics.

Because of the large pressure the system expands and cools. At the first stage the
expansion then can be approximated as a linear expansion in the beam direction. Only
when the system expanded in the beam direction to a size comparable or larger than
its transverse diameter will the transverse expansion be also considered. In this second
phase the expansion is already 2+1 dimensional. This separation of the expansion to
two stages is of course somewhat artificial, and it is done for the sake of developing an
approximate method of solution. [43, 44] This approximate analytic solution, however,
is valid only for a restricted lass of EOS’s with small sound speeds [45]. Both the
linear and the spherical expansion can be handled similarly to the case presented at
the solution of the Bjorken model earlier.

Originally the model was developed for p+ p collisions, but it is well applicable to
heavy ion collisions as well. In this case there is a natural choice of initial condition,
the Lorentz-contracted disk of matter comprising the protons or heavy ions in the
c.m. frame. Thus it is expected that the initial volume, V0, is not very different from
V0 = Vrest./γ

c.m., where γc.m. is the Lorentz gamma factor in the center of mass frame.
If the system undergoes a large expansion, then it is irrelevant how the initial energy

is distributed over V0, and it is sufficient to assume that the initial energy density is
just constant over V0, i.e.,

e0 =
Ec.m.
V0

. (6.34)

The matter is at rest initially in this highly Lorentz contracted disk, which is orthogonal
to the beam direction. The expansion will be initially much stronger in the beam
direction, because the pressure gradients are much larger.
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6.4.2 Quasi-analytic solution

Let us introduce the rapidity coordinate in the beam (z−) direction, α(z, t)

α ≡ 1

2
ln

(
t+ z

t− z

)
(6.35)

and the proper time coordinate, τ ≡
√
t2 − z2. We can introduce a parameter, β, to

characterize the proper time with respect to the initial size of the system

β ≡ ln

(
τ

r0

)
, (6.36)

where r0 is a parameter characterizing the Lorentz contracted initial disk, r0 ≈ d/γc.m.,
and d is the diameter of the colliding object. For protons d ≈ m−1

π . Furthermore, we
can introduce the rapidity of the flow, η, and the rapidity of the particles emitted,
y. These latter two are not the same, even at the end of the collision, because of the
random thermal motion of the particles in a fluid element. The flow rapidity in terms
of the flow velocity is

η ≡ arthv‖ = arthvz (6.37)

If we have a scaling solution, as in the case of the Bjorken model, the flow rapidity
and the coordinate rapidity are equal, α = η, which means that the flow velocity satisfies
the equation

vz = z/t. (6.38)

This parametrization is also possible for a scaling spherical solution, where we just
replace the coordinate z, with the radial coordinate r. In this case the scaling solution
implies that vr = r/t and the radial coordinate rapidity αr will be equal with the radial
flow rapidity ηr. In one-dimensional scaling solutions the introduction of these radial
coordinates is possible. In both of these scaling cases the fluid dynamical equations
reduce to [45]

∂β lnT + λc2
0 = 0, ∂α lnT = 0, (6.39)

or
∂e

∂τ
= −λ(e+ P )

τ
, (6.40)

where
λ =

{
1, linear one− dimensional expansion
3, spherical expansion

and c0 is the sound speed of the EOS, dP/de = c2
0. The second equation in (6.39)

expresses the assumption that the thermodynamical quantities, i.e. T , are independent
of the coordinate rapidity. For simplicity we assume that the sound speed is constant,
dP/de = c2

0= constant and e ∼ T 1+1/c20 . Then eqs. (6.39) yield the solution

T

T0

=

(
τ

r0

)−λc20
,

e

e0

=

(
τ

r0

)−λ(1+c20)

, (6.41)
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where T0 and e0 are the initial temperature and energy density. This result is formally
the generalization of the result obtained at the introduction of the Bjorken model above.

For a three-dimensional solution eq. (6.38) is never valid, although as we will see,
when the beam energy increases the solution will approach the scaling solution even if
we assume the initial conditions of the Landau model!

In Landau’s approximate three dimensional solution the first stage of the expansion
is approximated as a linear expansion in the beam direction. When the system expanded
in the beam direction to a size comparable or larger than its transverse diameter the
transverse expansion is also considered.

When the energy density reduces to that of the freeze-out (or break-up) density,
ebu ≈ eπ ≈ 1 GeV/fm3, then the number of particles becomes a well-defined quantity.
We then say that the fluid "breaks up" into quasi-free final particles. We can make this
criterion more specific for a given equation of state. The break-up criterion defines a
space-time surface, σ, which is an isotherm, T (~r, t) = Tbu. Along this surface Nπ is well
defined, and we can determine the distribution of energy and number of particles as a
function of the collective velocities.

If we neglect the random thermal velocity, the distribution of particle rapidities, y,
at break up will follow the flow rapidity, η, distribution [45]:

dN

dη
≈ πd2nbu

(
e0

ebu

)1/(1+c20)

× r0 exp

(
−η2

2|L|

)
, (6.42)

where
L =

2c2
0

1− c4
0

ln

(
e0

ebu

)
,

and nbu is the break up density of particles.

6.4.3 Numerical solution

Cooper et al., provided a numerical solution of the model,[45] which is generally
applicable. As it is illustrated in Fig. 6.12, the flow pattern in the middle of the system
is similar to the flow pattern of the Bjorken model, if the initial energy density or
temperature are high.

In the one-dimensional case an exact solution is known for the expansion of the fluid
into vacuum [45]. The motion of the leading edge is a progressive wave, in which η and
T are related by

ln(T/T0) = −c0η. (6.43)

In the three-dimensional case no such analytic solution is known. However, it is easy
to show that for a very short time after the beginning of the spherical expansion this
behavior still holds.

Thus the boundary conditions can be chosen somewhat arbitrarily so that no dis-
continuity appears in the temperature distribution after the beginning of the expansion.
The initial conditions at t = 0 are set as

T (z, 0) = T0, η = 0, for 0 < z < r0 − ε and (6.44)
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Figure 6.12: The isotherms of the flow at the break up when the temperature reaches
Tbu(= Tc in the figure). The ratio of the initial temperature, T0, to the final temperature,
Tbu, is the parameter of the contours. The solution depends on the sound speed, c0,
and on the initial thickness of the disk, r0. As the initial temperature increases the
solution at break up approaches the Bjorken model solution, particularly for a soft EOS
like c2

0 = 1/6. Reproduced with permission from [45].
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Figure 6.12: continued

T (z, 0) = T0 (r0 − z)/ε, η = − 1

c0

ln

(
T

T0

)
, for r0 − ε < z < r0 , (6.45)

where ε� r0. The results are insensitive to the choice of ε as long as ε < 0.2r0.
The three-dimensional expansion has qualitative features similar to those of the

linear one-dimensional problem:
During an initial period from t = 0 to t = r0/c0 the initial disturbance at the edge

propagates inward and sets the fluid in motion. At the same time the edge of the fluid
moves outward at a speed v ≈ 1. In the region of the leading edge the isotherms are
space-like, propagate as usual discontinuities and begin as straight lines.

For t > r0/c0 the whole fluid is in motion, and because of the three - dimensional
nature of the expansion it cools very rapidly. By the time the initial sphere has expanded
to a few times its original size, the fluid is completely cool, and the final particles have
“evaporated” from it. The critical isotherm becomes time-like after some time t > r0/c0,
and for very high initial temperatures starts looking like a hyperbola. This is similar to
the behavior of the fluid in the central region of the one-dimensional Bjorken problem.
However, in the one-dimensional problem the expansion takes much longer, and the
isotherm in the central region is closer to a hyperbola whose asymptote is the light
cone.

The expansion lasts until a freeze out, when the mean free path becomes comparable
to the size of the system. We can display the critical isotherm T (z, t) = Tbu = mπ for
c2

0 = 1/3 and for various T0 values in Fig. 6.12(a). Notice that for T0 < 2mπ, there is no
hint of the isotherm looking like τ =constant. For T0 = 4mπ, we see the beginnings of
such behavior. However, even at T0 = 4mπ, the outer edge of the isotherm is far from a
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hyperboloid, and that is where most of the entropy lies.
For c2

0 = 1/6 the cooling is slower [see Fig. 6.12(b)] and for T0/Tbu = 3.8 and z < 3r0

the isotherm is almost a hyperbola. Thus for small c2
0 cooling is slow enough so that

scaling will eventually set in.
Finally one should mention that at energies 15 and 60 A·GeV, for symmetric central

heavy ion collisions full scale numerical three - dimensional relativistic fluid dynamical
models reproduce the prediction of the Landau model regarding the final rapidity
distribution of pions, to a good accuracy[46]. This is even more interesting than one
would think first, because the initial condition in this model calculation is the one
preceding the impact, i.e. two Lorentz contracted heavy ions approaching each other.
This indicates that the fine details of the initial condition are irrelevant by the end of
the collision if sufficient room for equilibration and thermalization is left during the
collision.

6.5 Assignment 6

6.a Calculate the temperature of the QCD plasma generated in a detonation front from
normal nuclear matter (for help see ref. [3] and determine the threshold beam
energy for QCD plasma creation considering that T > 0 is required!

6.b Solve the Taub adiabat for an ultra-relativistic ideal gas with the EOS

P =
e

3
,

and determine the density increase, n
n0

as a function of γ(CM)
beam , for a given γ(CM)

beam

of the incoming beam, if γ(CM)
beam � 1. The initial state is normal nuclear matter of

n0, e = n0mN , P0 = 0.

6.c Solve the Taub adiabat and the Rayleigh line equations for the relativistic ideal
gas in the low temperature limit having the EOS:

e = n(mN +
3

2
T ),

and show that n
n0
→∞ if the beam energy increases. The initial state is normal

nuclear matter.

6.d Show that
dS

dy
= constant,

for the solution of the Bjorken hydrodynamical model.
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6.5.1 Solutions to Assignment 6

6.a QCD plasma cannot be reached in a zero energy or j = 0 detonation front because
the temperature of the final state should be positive [3]. From the EOS of QGP
with Ncolor = 3 and Nflavor = 2, eqs.(5.29-5.32), the temperature is

T 2 =
9nB(~c)3

2µB
− µ2

B

9π2
. (6.46)

One can cast this in the form

9π2T 2

µ2
B

=
81π2nB

2µ3
B

− 1.

Since T > 0 and µB > 0 the positivity of the temperature leads to the requirement
that the dimensionless quantity

z ≡
[

2µ3
B

81π2nB(~c)3

]1/3

< 1. (6.47)

Using eq. (6.46) we can express the enthalpy density w = e+ P as a function of
µB and nB:

w =
74

45
π2

(
9nB
2µB

− µ2
B

9π2

)2

+
4

9
µ2
B

(
9nB
2µB

− µ2
B

9π2

)
+

2

81π2
µ4
B.

Multiplying this by 2·5·µ2
B

9n2
Bπ

2 = 9·5
2π2

[
2µB
9nB

]2

we obtain

w
2 · 5 · µ2

B

9n2
Bπ

2
=

37

9 · 5
2π2

[
9 · 5
2π2

(
1− 2µ3

B

81π2nB

)2
]

+

2 · 2
9

9 · 5
2π2

2µ3
B

9nB

(
1− 2µ3

B

81π2nB

)
+

9 · 5 · 2
9 · 9

2µ6
B

81π4n2
B

.

Inserting z, eq. (6.47), into this equation we get

Az2 − 37− 16z3 + 8z6 = 0, (6.48)

where A = 15w(2/3)1/3

n
4/3
B π2/3(~c)

. Eq. (6.48) has a physical root in zε[0, 1] only if A > 45.

Let us plot the f(z) = 8z6 − 16z3 + Az2 − 37 function, Fig. 6.13.

If A = 45 the only non-negative root is at z = 1 which implies T = 0. Using the
expression of A and the requirement A > 45 we get a relation between w and X
or P and X. From A3 ≥ 453 it follows that

w ≥ 81π2(~c)3

2X2
,
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Figure 6.13: The f(z) function

or
P ≥ 81π2(~c)3

8X2
−B (6.49)

Eq. (6.49) gives the lower limit of the detonation adiabat where T = 0. Eqs. (6.49,5.34)
lead to a 3rd order equation in X, which can be solved analytically. (Formula of
Cardano.) If we have the solution X2 for a given Bag constant the corresponding
pressure can be obtained from the EOS. From the pressure and X and from the
initial state the corresponding current can be calculated by using the equation of
the Rayleigh line.

Thus there exists a minimum current or beam energy to reach T > 0 QCD plasma,
Fig. 6.14. Using eq. (6.49) with ΛB = 235MeV and n0 = 0.16fm−3, P0 = 0,
X0 = 6GeV fm3, the final state at the threshold T > 0 is

P = 0.29GeV/fm3, (6.50)
X = 1GeV fm3. (6.51)

sing (n0γ0v0)2 = j2 = − P
X−X0

≈ 0.058fm−6 we can calculate the incoming rapidity
in the shock’s frame sinh(y) = v0γ0:

y0 = arsinh(

√
0.058

n0

) ≈ 1.19.

The current is the same in the shocked matter nBγv. In order to get the rapidity
we have to calculate the density of the shocked matter at the threshold. Form
the pressure and the EOS w = 4(P +B) = 4(0.29 + 0.4) = 2.76GeV/fm3, then
using the definition of X the final density is nB = 1.66fm−3. Thus the shocked
matter leaves the detonation front with a rapidity

y1 = arsinh(

√
0.058

n1

) ≈ 0.14.

The shocked matter is at rest in the c.m. frame of a central symmetric heavy ion
collision. So, the incoming rapidity of the ground state nuclear matter in the c.m.



6.5. ASSIGNMENT 6 201

Figure 6.14: Boundaries (hatched) of the physical region in the pressure versus X
plane given by the entropy condition (a) shock stability conditions (b) and (c) and by
the positivity of the temperature (d). Dashed lines are Taub adiabats. For details see
ref. [47].

frame (the same as the c.m. rapidity of the beam) is yc.m.0 = y0 − y1 = 1.05. In a
symmetric heavy ion collision yLab.0 = 2yc.m.0 = 2.1. This yields a threshold energy
of EMin.

Lab. = m0(γLab.0 − 1) = m0(cosh yLab.0 − 1) ≈ 3 GeV/nucleon. This threshold
energy depends somewhat on the parameters and it is also influenced by the fact
that we used an ideal Stefan - Boltzmann gas EOS for the QCD plasma which
might not be too realistic around the phase transition threshold. Therefore it is
reasonable to assume a threshold which is about 50% higher i.e. EMin.

Lab. = 4− 6
GeV/nucleon.

The threshold energy could be even higher if the nuclear stopping is not immediate,
as it is assumed in the shock description, but there is a substantial interpenetration
at the initial phases of the collision. Then the density increase is less and the
thermal excitation increases. This process and the finite nuclear size can delay
the plasma formation and increase the threshold further.

6.b Since e2 = 3P2  w2 = 4P2 and X2 = 4P2/n
2, so the Taub adiabat takes the form

P2 = (16P 2
2 /n

2
2 −m2

0)/

(
4P2

n2
+
m0

n0

)
.

This can be cast in the form

12

9

(
3P2

n

)2

= m2
0

(
1 +

n

3n0m0

(
3P2

n
)

)
.
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Since 3P2/n = ε = e/n and ε ≈ m0γc.m. � m0  

n

n0

= 4γc.m.

Note: Unfortunately n
n0

is not measurable. The entropy, however, does not
decrease, so it provides information from the hot and dense stage of the collision.

6.c The Taub adiabat is [P ] = [wX]/(X1 +X2), where

p1 = 0, w1 = m0n0, X1 = m0/n0,

p2 = 0, w2 = (m0 +
5

2
T )n, X2 = (m0 +

5

2
T )/n.

Now the Taub adiabat takes the form

nT − 0 =

(
m0 + 5

2
T
)2 −m0(

m0+ 5
2
T

n

)
− m0

n0

After straightforward calculation

n

n0

= 4 +
15

4

T

m0

.

Due to energy conservation εbeam = ε2 in the c.m. frame, so m0 + 3
2
T = m0γc.m.,

and so the temperature is T = 2
3
m0(γc.m. − 1). Inserting this into the expression

of n
n0

n

n0

=
3

2
+

5

2
γc.m..

In the non-relativistic limit γc.m. ≈ 1 + v2/2 ≈ 1, so that

n

n0

≈ 4.

6.d The volume element in the LR frame of the fluid d3x is

d3x = d2x⊥ τ dy.

The entropy contained in interval dy around u = 0 is

dS =

∫
s0d

3x = τs

∫
d2x⊥dy,

consequently

d

dτ

(
dS

dy

)
=

d

dτ

(
τs

∫
d2x⊥

)
=

(
s+ τ

ds

dτ

)∫
d2x⊥ =

(
s− τ s

τ

)∫
d2x⊥ = 0.

I.e., the entropy per unit rapidity is constant during the "scaling" expansion.
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Chapter 7

Measurables

7.1 The freeze out process

In microscopic models which simulate the collisions like an event generator the evaluation
of the measurables is identical to the way it is done in experiments.

In continuum problems, however, there are principal difficulties in evaluating the
measurables. This is because when the particles reach the detectors they do not interact
already for a long time, so there is a process when the strongly interacting continuum of
the matter becomes dilute and its particles become independent. Although this gradual
process could be handled in fluid dynamics, by the introduction of source and drain
terms, it is very seldom done [1].

The freeze out process is most usually replaced by a sudden freeze out, or sudden
break up. At a given instant in the space-time thus the constituents of the continuum
will become independent particles. The final interactions and collisions among these
particles are then neglected.

There are different levels of possible sophistication if we want to describe this
freeze out process and evaluate the measurable quantities. The sudden freeze out is
a hypersurface in the space-time. The matter flows according to the rules of fluid
dynamics until this surface is reached. This surface, of course, can be defined by using
the characteristic quantities of the flow, like density, temperature or pressure.

In the simplest approximation one can just assume that the particles will follow
the flow velocities after the break up and evaluate the measurables accordingly (while
disregarding the random thermal motion). This procedure was used for the description
of heavy ion reactions of BEVALAC in the 1970’s. The procedure can be justified only
if the break up happens very late when the thermal velocity and energy, as well as the
pressure are negligibly small. The break up, particularly in a small system can happen
earlier.

The next, and most frequently used step is to consider the thermal velocity dis-
tribution at the break up also. Thus the random thermal velocities are added to the
collective flow velocities to calculate the measurables. This procedure is based on the
Jüttner distribution and in the recent times it was used by Milekhin [2] to calculate
measurables in Landau’s fluid dynamical model for hadron-hadron collisions. In this
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chapter we will introduce this approximation. Although this procedure is already taking
into account a major part of the neglected thermal energy it is still not exact.

7.1.1 Formal treatment of the freeze out

In fact the freeze out across a hypersurface is a discontinuity, where the EOS of
the matter changes according to our assumption to an ideal gas. Thus the energy
- momentum tensor changes discontinuously across this surface. If the flow is not
orthogonal to this surface this can lead to a change in the flow. The importance of this
difference between the flow direction and the normal to the freeze out surface was first
realized by Cooper and Fry [3]. Many most recent theoretical introductions and works
are not aware of this problem and ignoring it [4, 5]. The freeze out discontinuity is a
time-like surface in most cases, and so the methods introduced in Chapter 5 for the
description of time-like detonations and deflagrations should be used [6].

Hence the flow velocity may also be discontinuous when the matter flows across this
surface. If the pressure at the breakup is small or if the flow is orthogonal to the freeze
out surface the effect is negligible. A qualitative estimate for the importance of this
effect is given in ref. [7].

The freeze out surface in the space-time is a three dimensional hyper-surface, S, with
normal vector, dσµ. The surface is not a closed surface, but it crosses the world-lines of
all particles. The particles after crossing this surface are considered to be frozen out, i.e.
their energies and momenta will not change (except due to final decays or due to final
long range Coulomb interaction if these effects are considered). The particles always
propagate along time-like paths, thus most of the time (but not always) the freeze out
surface they are crossing is a time-like surface with a time-like normal vector, dσµ.

The invariant number of particles crossing this surface at some point is dN = Nµ dσµ
and the total number of all the particles crossing this surface is

N =

∫
S

Nµ dσµ . (7.1)

This total number, N , and the total energy and momentum are of course the same at
both sides of the freeze out surface. However, the four-current, Nµ, and the energy
momentum tensor, T µν , are generally discontinuous! This is easy to see, since after the
freeze out we consider an ideal gas of particles where interactions are neglected, with an
ideal gas EOS. The matter in the flow is on the other hand described by an EOS where
interactions are included, i.e., by another EOS. Unless the EOS is an ideal gas EOS on
both sides of the freeze out surface Nµ and T µν are discontinuous. Therefore to evaluate
the measurables we have to use the parameters of the matter after the discontinuity!
The proper calculation of Nµ and T µν after such a discontinuity can be performed if
the surface, S, is known and the pre freeze out quantities Nµ

0 and T µν0 are known (see
sect. 5.5). In fact the correct determination of the freeze out surface is an involved
problem. In most cases this surface is not obtained as the solution of the dynamical
problem but it is prescribed directly, or defined by requiring some condition(s) to be
satisfied.
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If the normal freeze out surface is not identical to the flow velocity the momentum
of the matter changes due to the freeze out[7]. Even if the two vectors are identical and
just the EOS changes, the parameters of the post freeze out matter, like the temperature,
will be different, due to the fact that the energy contained in the interactions before
freeze out should be added to the kinetic energy of the particles of the noninteracting
ideal gas. This temperature change can be neglected only if the freeze out is chosen so,
that all interaction energies are negligibly small already.

Let us now assume that we have determined the post freeze out quantities, Nµ and
T µν , from the relations (see sect. 5.5):

[Nµ dσµ] = 0 and[T µν dσµ] = 0. (7.2)

Then for an ideal gas we know that

Nµ =

∫
d3p

p0
pµ f0(x, p) , (7.3)

where f0 is the phase space distribution of the ideal gas including the collective flow (see
e.g. sect. 2.4). The total number of particles frozen out can be calculated via eq. (7.1).

The experimental measurables are usually differential quantities (i.e differential
cross sections or double differential cross sections) normalized per event (not per unix
incoming flux). For example such a differential quantity is

dN

d3p

satisfying the normalization

N =

∫
S

dN

d3p
d3p =

∫
S

(∫
d3p

p0
pµ f0(x, p)

)
dσµ =

∫
S

n(x) uµdσµ . (7.4)

Similarly some component of the overall momentum of emitted particles is frequently
measured, like the transverse momentum in the reaction plane px

pxtot =

∫
S

dN

d3p
px d3p =

∫
S

(∫
d3p

p0
pµpx f0(x, p)

)
dσµ =

∫
S

T µxdσµ . (7.5)

If we are interested in differential quantities we use relations based on eqs. (7.4,7.5),
where not all the integrals, dp are performed. We will see some examples for these in
the following sections.

A frequent simplifying assumption is that the normal of the freeze out surface
is parallel to the flow, uµ = dσµ. This simplifies eqs. (7.4,7.5), and reduces the
complications related to evaluating Nµ and T µν after the freeze out discontinuity. In
such a simplified case only the energy conservation across the break up surface should
be taken care of, usually resulting in a somewhat modified freeze out temperature.

In numerical models with a calculational grid of a finite resolution this approximation
cannot be done exactly, because the cells are freezing out at discrete times and they
have finite sizes. Thus this approximation leads to a ragged surface in a way that in
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each freezing out cell the normal of the freeze out surface is parallel to the flow. The
surfaces of the neighboring freeze out cells are connected by connecting surfaces which
are parallel to the flow so that there is no matter flux across these connecting surfaces.
In this situation the integral over the freeze out hypersurface of the cell yields the
proper volume of the cell, γVcell. The connecting surfaces parallel to the flow do not
contribute to the measurables.

In analytic models or in models where spherical or cylindrical symmetry is assumed
the freeze out surface frequently satisfies uµ = dσµ, so that extra assumptions or
complications in evaluating the after freeze out quantities do not appear. In the
following sections we study a few examples where the uµ = dσµ approximation is used.

In sections 7.2 and 7.3 we evaluate some of the most common measurable quantities
used in the relativistic and ultra-relativistic heavy ion collisions. In sections 7.4 and
7.5 quantities frequently used in intermediate energy reactions are discussed, while
measurables directly connected with the collective motion are presented in sections 7.6
and 7.7.

7.2 Baryon measurables

We assume that the local baryon momentum distribution at a space-time point x is a
Jüttner distribution f(x, p). This is a reasonable assumption if the flow velocities are
relativistic, the temperature is high (e.g., a few hundred MeV), but T � m. Thus the
approximation holds for nucleons and heavy baryons. From the point of view of the
measurable quantities it is practical to introduce another parametrization of the flow
velocity uµ also

uµ = γ(1, v‖, ~v⊥) = γ⊥(cosh(y0), sinh(y0), ~V⊥),

where y0 is the rapidity of the fluid cell. It follows from this definition that v‖ = tanh(y0),
~V⊥ = ~v⊥/

√
1− v2

‖, and γ
2
⊥ = (1− v2

‖)/(1− v2
‖ − v2

⊥) = 1/(1− V 2
⊥). Using the second

notation of uµ above, the pµuµ product takes a transparent form:

pµuµ = γ⊥

(
m⊥ cosh(y − y0)− ~p⊥~V⊥

)
,

where y, ~p⊥ and m⊥ are the rapidity, transverse momentum and transverse mass of a
particle of 4-momentum pµ. Based on ref. [8] we review briefly the different projections:

7.2.1 Rapidity distribution

We can split up the phase space integrals by observing that d3p = dp||d
2p⊥ = p0dy d2p⊥.

Thus the contribution of a fluid cell to the final baryon rapidity distribution is:

dNcell

dy
= γVcell

∫
d3p

p0

d

dy
[pµuµ f(x, p)] .
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Performing the integrals yields

dNcell
dy

= γVcell gN
(2π~)3

exp( µ
T

) 2πTm2
√

2
π

√
hm×∑∞

k=0

(
g2m
2h

)k
1
k!

[(
1− ( g

h
)2
)
Kk+ 5

2
(hm) − 1

hm
Kk+ 3

2
(hm)

]
,

(7.6)

where Vcell is the volume of the fluid cell, gN is the degeneracy of nucleons (gN = 4),
h = γ[cosh(y)− v‖ sinh(y)]/T , and g = γv⊥/T . If mg2 � h and g � h this expression
reduces to

dNcell

dy
=
γVcell gN
(2π~)3

exp(
µ

T
) 2πTm2

[
1 +

2

hm
+

2

(hm)2

]
exp(−hm).

Integrating this over the rapidity y yields the total baryon number in the fluid cell. The
final rapidity distribution of the baryon charge is then obtained by summing up the
contributions from all the fluid cells:

dN

dy
=
∑
cell

dNcell

dy
.

7.2.2 Transverse Momentum Spectra

Another usual quantity measured experimentally is the transverse momentum distri-
bution. The contribution of a fluid cell to the final baryon transverse momentum
distribution is:

dNcell

p⊥dp⊥
= γVcell

∫
d3p

p0

d

p⊥dp⊥
[pµuµ f(x, p)] .

Performing the integrals yields

dNcell

p⊥dp⊥
=
γVcell gN
(2π~)3

exp(
µ

T
) T (aK1(a)I0(b) − bK0(a)I1(b)) , (7.7)

where a = γ⊥m⊥/T , and b = γ⊥(~V⊥~p⊥)/T .

7.2.3 Collective Sidewards Flow

A sensitive method to detect the collective sidewards flow is the Transverse Momentum
Analysis [9]. We can evaluate the transverse momentum flow < px/a > in relativistic
fluid dynamics also. Since we know the reaction plane exactly the majority of the
complications are nonexistent in a theoretical calculation. Under the same assumptions
that were used above, the contribution of a fluid cell to the transverse momentum
projected to the reaction plane (x, z) in the C.M. system is: pxtot cell = Vcell

∫
d3p pxf(x, p).

The yield falling into a unit rapidity interval around y is

dpxcell
dy

= Vcell

∫
d2p⊥ p

0pxf(x, p).
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This quantity is not an invariant scalar therefore we are not allowed to evaluate it in an
arbitrary frame. After a straightforward calculation we can arrive at the result

dpxcell
dy

=

2π cosh(y)m2CQVcell

√
2

π

∞∑
k=0

g2k+1

2kk!
(
m

h
)k+ 3

2

(
Kk+ 3

2
(hm) +

2(k + 2)

hm
Kk+ 5

2
(hm)

)
,

(7.8)
where Q = cos(φR) is the cosine of the azimuth angle of the fluid cell measured
from the reaction plane, the constant C is given in terms of the baryon density and
cell temperature as C = ngN/[4πm

2TK2(m/T )] = gN exp(µ/T )/(2π~)3. The average
transverse momentum per nucleon at a given rapidity y is then given by

< px/a >=

∑
cell dp

x
cell/dy∑

cell dNcell/dy
.

7.2.4 Average Transverse Momentum

We can also calculate the average transverse momentum < p⊥/a > which is the
magnitude of transverse projection of momentum. Similarly to the case of < px/a >,
we may define the rapidity distribution of the transverse momentum in the C.M. frame
as dp⊥cell

dy
= Vcell

∫
d2p⊥ p

0p⊥f(x, p). Thus yields after integrations

dp⊥cell
dy

=

2π cosh(y)CVcell

∞∑
k=0

g2k

(2k)!!2
(2k+3)!!(

m

h
)k+2

(
Kk+2(hm) +

hm

2k + 3
Kk+1(hm)

)
. (7.9)

Thus the average p⊥ per baryon is

< p⊥/a >=

∑
cell dp⊥cell/dy∑
cell dNcell/dy

.

7.3 Pion Measurables

If the particles are not heavy the previous assumptions about the applicability of the
Jüttner distribution may not hold. This is the case for pions for example, which may
reach high multiplicity and thermal equilibrium by the freeze-out time in an ultra-
relativistic heavy ion collision. The local pion distribution at a space-time point x is
assumed to be a relativistic Bose distribution fπ(x, p):

fπ(x, p) =
gπ

(2π~)3

1

exp
(pµuµ

T

)
− 1

,
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where gπ is the degeneracy factor of pions (gπ = 3). The total pion number can be
obtained from the normalization:

nπ = uµN
µ
π = uµ

∫
d3p

p0
pµfπ(x, p) =

gπ
(2π~)3

∫
d3p

p0

pµuµ

exp
(pµuµ

T

)
− 1

.

Using the power series expansion [exp(pµuµ/T ) − 1]−1 =
∑∞

k=1 exp(−k pµuµ/T ) we
arrive at

nπ =
4πgπm

2
πT

(2π~)3

∞∑
k=1

1

k
K2

(
kmπ

T

)
.

In the limit of mπ → 0 the modified Bessel function K2(
kmπ
T

) → 2( T
kmπ

)2. Using∑∞
k=1 k

−3 = ζ(3), we end up with the well known expression for the Stefan-Boltzmann
gas:

nπ =
gπζ(3)T 3

π2~3
.

This means that we assume a local ideal gas momentum distribution for the emitted
pions. The pions are emitted in their own local rest frame (LR), and their number is
proportional to this volume and to the temperature. Using the power series expansion
we can easily repeat the calculation of the measurables for pions [8]:

Rapidity Distribution:

dNπ,cell
dy

= γVcell gπ
(2π~)3

2πTm2
π

√
2
π

∑∞
j=1

√
hmπ
j
×∑∞

k=0

(
j g2mπ

2h

)k
1
k!

[(
1− ( g

h
)2
)
Kk+ 5

2
(jhmπ) − 1

jhmπ
Kk+ 3

2
(jhmπ)

]
.

(7.10)

Transverse Momentum Spectrum

dNπ,cell

p⊥dp⊥
=
γVcell Tgπ

(2π~)3

∞∑
j=1

(aK1(ja)I0(jb) − bK0(ja)I1(jb)) . (7.11)

Collective Sidewards Flow

dpxcell,π
dy

= 2π cosh(y)m2
π

√
2
π

gπVcell cos(φR)
(2π~)3∑∞

j=1

∑∞
k=0

(jg)2k+1

2kk!
(mπ
jh

)k+ 3
2

(
Kk+ 3

2
(jhmπ) + 2(k+2)

jhmπ
Kk+ 5

2
(jhmπ)

)
.

(7.12)

Average Transverse Momentum

dp⊥,cell,π
dy

= 2π cosh(y)Vcellgπ
(2π~)3∑∞

j=1

∑∞
k=0

(jg)2k

(2k)!!2
(2k + 3)!!(mπ

jh
)k+2

(
Kk+2(jhm) + jhm

2k+3
Kk+1(jhm)

)
.

(7.13)
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7.4 Calculation of cross sections

7.4.1 Inclusive and exclusive cross sections

First of all we distinguish inclusive and exclusive reactions. Inclusive reactions include
collisions of all impact parameters, while exclusive collisions select a subset of collisions
under some more or less well defined criteria. Of course, triggering for inclusive collisions
might miss a few events. The triggering of exclusive reactions usually intends to select
an impact parameter range, or most frequently the most central collisions.

It is generally assumed that the most central collisions lead to the highest observed
particle multiplicities. Also, the number of collisions with impact parameters in the
range [b, b+ db] is proportional to 2πb db. Then the most simple assumption usually is
that that a given, Q%, of the highest multiplicity collisions includes collisions of impact
parameters in the range, b = 0−

√
Q

100
bmax. Of course in reality the cut is not sharp at

this impact parameter value, but larger impact parameter collisions might also lead
to smaller multiplicities and vice versa due to random fluctuations. The shape of the
impact parameter distribution curve corresponding to a given multiplicity range can
be calculated approximately in cascade or molecular dynamics models, because these
account for random fluctuations [10].

7.4.2 Double and triple differential cross sections

We frequently mention energy spectra, differential, double differential and in high
multiplicity heavy ion reactions triple differential cross sections: dσ/ dE, dσ/ dΘ,
d2σ/ dE dΘ and d3σ/ dE dΘ dφ respectively. In low energy nuclear physics the
multiplicity of emitted particles is small, the reaction plane could not be identified, so
the triple dimensional cross section could not be measured. The cross sections were
always averaged over the azimuth.

Since 1984 in relativistic heavy ion collisions the identification of the reaction
plane is reliably possible [11], so triple differential cross sections and other even more
sensitive projections of the distributions of the emitted particles are measurable. The
identification of the reaction plane is based on the sidewards flow or side splash effect,
which is a typical collective flow effect first predicted in fluid dynamical models.

Let us see first, based on ref. [12], how do we calculate the cross sections in the
fluid dynamical model based on the transformation properties of the local thermal
momentum distributions. (An alternative way would be to generate particles randomly
according to these distributions and analyze the obtained set of particles, exactly like it
is done in experiments[13].)

7.4.3 Boosting thermal distributions

When a fluid element reaches the break-up condition the nucleons in the cell explode
into all directions due to their thermal velocities. The thermal distribution of nucleons
inside a fluid cell i is described by the relativistic Fermi-distribution (for nucleons
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gN = 4):

fi(~p)d
3p =

4

(2π~)3

d3p

exp

[√
m2+p2−µch,i

Ti

]
+ 1

, (7.14)

where µch,i is the chemical potential of the ith cell taken from the normalization condition

ni =

∫
d3p fi(~p) , (7.15)

and
√
m2 + p2 = p0

i is the energy of the emitted particle in the local rest frame of the
cell. In this section we will use the pµ = pµLR notation. Since the distribution depends on
the energy p0

LR only this dependence is the same what we have seen at the introduction
of the Jüttner distribution, i.e. pµuµ ≡ p0

LR = p0. The particle momenta in any other
than the LR frame will be denoted by P µ or qµcm here. Obviously the total number of
particles Ni in a cell of rest volume V (LR)

i is Ni = V
(LR)
i ni.

Figure 7.1: Invariant proton cross sections of central Ar + KCl collisions at 800
MeV/nucleon projectile energy (Θcm = 900). Open circles are experimental points. Full
(dashed-dotted) curves represent the cross sections obtained in the Blast-Wave (Fireball)
models. The presented viscous fluid dynamical model calculations with two different
viscosity values yielded the dashed and dashed double dotted results. Reproduced by
permission of Springer-Verlag from [12].

For zero temperature matter the distribution is sharply cut off at p = pF , that is
µ0
ch,i =

√
m2 + p2

F =
√
m2 + ~2(3

2
π2ni)2/3. For finite temperature the normalization is

more complicated.
To obtain the momentum distribution, F (P ), of all nucleons in one definite reference

frame the distributions (7.14) should be Lorentz-transformed from LR to this given
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frame (for example lab.) by the relative boost velocity, βflowi = βi, of the cell i. We can
introduce a distribution function, F (P ) which is not an invariant scalar but it has the
property that it is normalized to n = ni in the Lab. frame for example:

n = Nµuµ =

∫
d3p

p0
pµuµ︸︷︷︸
=p0LR

f(pµuµ︸︷︷︸
=p0LR

) =

∫
d3P

p0
LR

P 0
f(p0

LR)︸ ︷︷ ︸
≡F (P )

=

∫
d3P F (P ) , (7.16)

where F (P ) is function of P only since the local rest frame momentum, p0
LR, can be

expressed in terms of P and the relative speed of the ith cell: p0 = p0
LR = pµuµ = P µU

(i)
µ .

Then the distribution function in the lab. frame can be expressed as

dN

d3P
=

dN

P 2 dP dΩ
= FLab.

i (~P ) =
p0(~P )

P 0
fi

(
~p(~P )

)
, (7.17)

where (p0), (~p) and (P 0), (~P ) are the four momenta of emitted particles in the cell and
lab. systems, respectively. They are connected by the Lorentz- transformation:

p0 = p0(~P ) = γiP
0 − γi(~βi ~P ) ,

~p = ~p(~P ) = ~P − γi(p
0 + P 0)

1 + γi
~βi , (7.18)

where γi = 1/
√

1− β2
i . In the 1-dimensional, longitudinal hydrodynamical model the

scalar product (~βi ~P ) = βi cos(Θ)
√

(P 0)2 −m2, due to the fact that all cells move along
the z-axis.

The differential cross section is essentially proportional to F (P ), but the quantities
frequently measured are the energies and angles of the emitted particles. Thus, one
has to perform the necessary coordinate transformations in the momentum space.
The volume element is d3P = P 2dP dΩ, and since P 0 =

√
P 2 +m2 the differential

dP 0 = P√
P 2+m2dP = P

P 0dP . Consequently

dσ

dP 0 dΩ

∣∣∣∣
cell i

= P 0
√

(P 0)2 −m2
dσ

d3P
= P 0

√
(P 0)2 −m2 σ0F (~P ) , (7.19)

where σ0 is a constant of dimension fm2 (see later). Thus from (7.17) and (7.18) we
obtain the double differential cross section of primary charged particles, (p+2d+2α+ ...)
as

d2σprim
dP 0 dΩ

=
ZT + ZP
AT + AP

∑
i

4V
(LR)
i σ0

(2π~)3

p0
i (~P )

√
(P 0)2 −m2

exp
[
p0i (

~P )−µch,i
Ti

]
+ 1

, (7.20)

where V (LR)
i is the volume of the i-th cell in the cell’s frame, σ0 is the target area for

exclusive selected central collisions, σ0 = 4πb2
select, and p0

i (~P ) is the particle energy
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in the ith cell’s frame, but expressed in terms of the lab. frame quantities: p0
i =

γi

[
P 0 − βi cos(Θ)

√
(P 0)2 −m2

]
. For the general case when the fluid model is three

dimensional the distribution (7.20) is valid by using p0
i = γi

[
P 0 − (~βi ~P )

]
.

7.4.4 Spherical expansion

In case of spherically symmetric expansion the fluid is divided to spherical layers and
each layer i has a radial velocity βRi . Let us first evaluate the contribution of one
spherical layer of thickness ∆l. This layer contains many fluid cells. The summation
over these fluid cells can be carried out∑

i−cells

V
(LR)
i ... → R2∆l

∫
dΩ ... . (7.21)

Due to spherical symmetry the cross section will also be spherically symmetric. We can
choose one direction, the z-axis, and calculate the P -distribution in this direction. At
one fixed polar angle Θ the contribution of all azimuthal angles are the same

R2∆l

∫
dΩ ... = R2∆l

∫
dφ d cos Θ ... = R2∆l 2π

∫
d cos Θ ...

4πR2 ∆l
1

2

∫
d cos Θ ... = V

(LR)
i

1

2

∫
d cos Θ ... (7.22)

Transforming the Fermi-distributions from a fluid element of the layer to the c.m. of
the system, and then integrating over the whole layer the resulting c.m. distribution is:

F c.m.
i ( ~qcm) =

4

(2π~)3

2π

q0
cmβ

r
i γ

r
i

√
(q0
cm)2 −m2

∫ p02

p01

p0 dp0

exp
[
p0−µch i

Ti

]
+ 1

, (7.23)

where
p0

1,2 = γri

[
q0
cm ∓ βri

√
(q0
cm)2 −m2

]
.

In the relativistic Boltzmann limit (neglecting the term 1 in the denominator in the
integral) the integral can be evaluated analytically and the resulting formula of the
Blast Wave model [14] can be obtained.

The different layers may have different βri , µch i and Ti values at the break-up, so
summing up the contributions of the layers and transforming the distribution a second
time now to the lab. system we obtain:

d2σBWprim
dP 0 dΩ

=

ZT + ZP
AT + AP

∑
i

2V
(LR)
i σ0

(2π~)3

1

βri γ
r
i

√
(P 0)2 −m2

q0
cm(~P )2 −m2

∫ p02

p01

p0 dp0

exp
[
p0−µch i

Ti

]
+ 1

, (7.24)
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where q0
cm = γL

[
P 0 − βL cos(ΘL)

√
(P 0)2 −m2

]
, with ΘL being the emission angle and

βL the velocity of the c.m. system in the lab. To have the inclusive proton cross section
the primary one should be multiplied by the ratio Rp of the emitted protons to the
total charge ZP + ZT . The result of this calculation is shown in Fig. 7.1 (from ref.
[12]). The so called invariant cross section is plotted due to its preferred relativistic
transformation properties: 1

P
dσ

dP 0 dΩ
.

Eq. (7.20) is the most general form which can be used for any number of fluid cells
and for any flow pattern.

7.5 Results of three dimensional calculations
The early fluid dynamical calculations from Los Alamos did not take into account the
random thermal velocities, barely the distribution of the flow velocities of the fluid
cells were evaluated. This resulted in sharp peaks in the sidewards direction. This
sidewards flow effect was very dominant in the calculation but it was not obviously seen
in experiments.

Figure 7.2: The angular dependence of double differential cross sections from experiment
and from several theoretical calculations. Reproduced with permission from [15].

Later in Frankfurt the above described thermal distributions were also considered
when the cross sections were evaluated, and this contributed to a considerable thermal
smearing. In Fig. 7.2 (from ref. [15]) the results of the two calculations are compared
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with experimental data and with the results of some Monte-Carlo cascade simulations.
Bounce-off or side splash-effects occur only in fluid dynamical scenario. These lead to a
peak in the cross section at finite polar angle, Θ ≈ 300 − 600. The reason is in the flow
pattern of non-central collisions, Fig. 7.3 (from [16]).

Figure 7.3: Density (ρ = n), temperature (T ), and velocity (arrows) distributions in
a relativistic heavy ion collision (Ne+U 393 MeV/N) in the laboratory system at the
breakup moment (t=35 fm/c). The impact parameter of the collision is b=6 fm. The
crosses indicate that the flow velocity is v < 0.1c. The full contour lines belong to
temperatures T=10 and 20 MeV, the dashed ones to nucleon densities ρ =0.05 and 0.1
(1/fm3 ). Reproduced with permission from [16].

7.5.1 Fragment emission at the end of the flow

We have discussed already in the chapter on the Equation of State that in an ideal
mixture of different isotopes the concentration of all isotopes is determined by the
common temperature and the baryon density (Law of mass action). One can have a
rough estimate on the fragment production if this picture is used locally at the break-up.
Then, in every fluid element the density, ni, of an isotope, i, in terms of the proton and
neutron densities and the temperature is

ni(np, nn, T ) = ai n
Zi
p n

Ni
n (7.25)

where

ai = λ3Ai−3
T A

3/2
i 2−Ai (2Si + 1) exp

[
E

(i)
0

T

]
,

and
λT =

h√
2πmp T
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is the thermal de Broglie wave length. The density of a given fragment i of charge Zi
and neutron number Ni (Ai = Ni + Zi) depends on the common temperature T of the
mixture, on the proton an neutron densities, and on the physical properties of fragment
i, namely on the ground state energy E(i)

0 (E
(i)
o = 2.23, 8.49, 7.72, and 28.3 MeV for

i=d, t, 3He, and 4He, respectively) and spins Si. The unknown parameters np, nn, and
T can be obtained from the conservation of local baryon number, charge, and energy:

n = Acell/Vcell =
∑
i

niAi ,

n
Z

A
= Zcell/Acell =

∑
i

niZi ,

e = Ecell/Vcell =
∑
i

ni(mi +
3

2
T ) , (7.26)

where n is the baryon density in the fluid cell at the break-up moment and Ecell is
the total internal energy of the fluid cell including binding energy and rest masses
(kBoltzmann = 1). For simplicity we use nonrelativistic approximations here.

Figure 7.4: Proton (p) and alpha particle (α) density contour lines calculated for the
breakup configuration shown in the previous Figure. The protons are formed in the
middle of hot regions opposite to alphas which are formed at the sides. The contour
lines belong to nα = 0.005/fm3 and np = 0.003 and 0.006/fm3. Reproduced with
permission from [16].

Once the partial densities and the equilibrium temperature are given, the thermal
momentum distributions, f celli (~p, ~r) in the fluid cell at ~r can be written as

f celli =
ni(~r)

[2πmiT (~r)]3/2
exp

[
− p2

2miT (~r)

]
. (7.27)
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Since the fluid is moving with the local collective velocity, ~v(~r), these distributions
should be transformed to the laboratory system by a Lorentz transformation. If we use
a non-relativistic approximation this is barely a shift of the variable. The differential
cross section of particle of type i is

d3σ

dP 3
=

∫
d2b d3r FLab

i (~P ,~r). (7.28)

Assume that at the break-up not only nucleons, but also light composites exist (p, d,
t, ...) in thermal and chemical equilibrium. The consequence is that light and heavy
fragments are not formed at the same place, Fig. 7.4 (from [16]).

This typical flow pattern at the break up exhibits itself clearly in the triple differential
cross section. Particularly if we plot the contour lines of the cross section in terms of
momentum type variables in the reaction plane. We can use the rapidity, y, introduced
earlier, and a variable which we can call transverse rapidity, y⊥ ≡ p⊥/m, Fig. 7.5 (from
[16]).

Since we have an asymmetric collision the cross section peaks at the rapidity of the
heavier target, and there is a secondary peak at the rapidity position of the bounced
off projectile. Although the projectile is completely destroyed the peak in the cross
section is clearly observable especially for heavier emitted particles like t, 3He, or α.
The reason is three-fold:

(i) The temperature is lower at the periphery, i.e. around the deflected projectile
rapidity, so mainly heavier particles are formed here,

(ii) The collective flow velocities are larger at the periphery, so the heavier fragments
are more deflected from the collective c.m. rapidity,

(iii) The strong anisotropy shows up clearer in heavy fragments because their random
thermal velocities are smaller at the same temperature.

The protons are light, their cross sections are smeared out due to large random thermal
velocities, and they are originated from central areas of higher temperature. Thus the
bounce off effect is less apparent for protons. This isotope effect, or “Fragment flow”
(as it was called later) was predicted already in 1983 [16] and it was verified and clearly
demonstrated later, around 1987-88 by several experiments.

The observable projectile peak’s position may help us to trace down the collective
kinematics of the collision. First, at a selected set of exclusive data of nearly the same
impact parameter the bounce off, or deflection angle can be see in the cross sections.
Due to global momentum conservation the target peak should show up on the other side
of the reaction plane, so that the line connecting the target and projectile peaks should
go through the nucleus nucleus center of mass. In the rapidity plane the target peak is
much closer to this nucleus-nucleus c.m. than the projectile due to the much higher
target mass. (In symmetric collision the two peaks would be placed symmetrically
around the c.m.)

The deflection angle is close to zero in large impact parameter, so called “grazing”
collisions and the deflection increases as the collision becomes more and more central.
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Figure 7.5: Contour plots of invariant triple differential invariant cross sections
(1/p)d3N/dE dφ d cos Θ for the reaction Ne(393 MeV/N)+ U at the impact parameter
b=6 fm in the reaction plane (φ = 00/1800) and in the plane orthogonal to it (φ = 900).
The contour lines labeled by the parameter q correspond to a value of 10q /(sr MeV2).
Parts (a), (b), (c), (d), (e), and (f) correspond to p, n, d, t, 3He, and 4He cross sections,
respectively. The bounce-off effect is predominantly observable in t, 3He, and 4He
spectra. Reproduced with permission from [16].
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How large the deflection is at a given impact parameter depends on the stiffness of the
nuclear EOS. By now the measurement of this deflection is one of the most sensitive
measures of the incompressibility of the nuclear matter.

If the collision would be elastic the distance from the c.m. would be independent on
the deflection angle (on the impact parameter), because the collective kinetic energy
would be conserved in the collision. However, in reality as the collision becomes more
and more central there is more and more thermal excitation, particle creation, etc.,
so that the collision becomes more and more inelastic. This shows up in the cross
section in a way that the peak positions get closer and closer to the c.m. with increasing
deflection (particularly the projectile peak). As we can see it in Fig. 7.6 (from [16]) the
projectile peak position in collisions of impact parameter, b = 9, 8, 7, 6, ... fm shows
a momentum loss which gradually exceeds 30%.

Figure 7.6: The dependence of the c.m. bounce-off deflection angle and inelasticity
on the impact parameter b. At impact parameters smaller than 3 fm the second
local maximum of the spectrum vanishes, and so, the inelasticity cannot be uniquely
determined, but the bounce-off angle is measurable. Reproduced with permission from
[16].

7.6 Global flow analysis
It was clear immediately that in relativistic heavy ion collisions the multiparticle
correlations carry lots of information. One such dominant correlation is the final
collective flow pattern.

Although the existence of collective flow, and shock waves was predicted already
in 1973-74 by Scheid, Müller and Greiner [17], and by Chapline, Johnson, Teller and
Weis [18] independently of each other, it took a long time till some consensus started
to develop. Many physicists have debated even in 1982-83 the existence of collective
nuclear flow effects in relativistic heavy ion collisions. The double differential cross
sections did not provide sufficiently strong evidence to convince all researchers about the
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existence of collective sidewards flow. New and new more sophisticated detectors were
built and the analysis of data developed rapidly at the same time too. The breakthrough
happened in 1984 with the so called Plastic Ball detector in Berkeley. This was a large
array of close to 1000 detectors which could detect the simultaneous emission of several
hundred emitted particles in one nuclear collision. This made it possible to identify the
reaction plane on an event by event basis.

At this time, for the investigation of the possible collective properties several methods
were introduced such as the sphericity tensor, energy flow tensor, and thrust analyzes.
At the same time the first experimental studies with the plastic ball and with the
streamer chamber were in progress. Theoretically it is straightforward to evaluate the
real symmetric sphericity matrix in the c.m. frame:

Mαβ =
∑
i

wipiαpiβ , α = β = x, y, z , (7.29)

were i runs over all emitted charged particles (up to 4He for the plastic ball experiments),
and wi is a weight factor which may depend on the type of particle i. In case of the
“energy flow tensor” analysis wi = 1

2mi
. The eigenvalues Qi and eigenvectors ~e1, ~e2, ~e3,

of the tensor can be determined. If we normalize the sum of eigenvalues to unity
so that Q3 ≥ Q2 ≥ Q1, we can evaluate the commonly used quantities: sphericity
S = 1.5(Q1 +Q2), flatness F =

√
3(Q2 −Q1)/2, jet angle Θc.m. = arccos ([~e3]z/e3), and

aspect ratios R1 = Q3/Q1 and R2 = Q2/Q1. The vector ~e3 and the beam axis define
the bf experimental reaction plane. After the reaction plane is determined the other
important task is to study the distribution of the flow angle Θ (the angle between
~e3 and the beam axis, Fig. 7.7 (from [19]). The distribution of the flow angle in this
manner is subject to very little experimental and statistical bias, so this was the first
generally convincing evidence for the existence of collective flow.

When the reaction plane is identified the triple differential cross section can be
evaluated from the measured data, Fig. 7.8 (from [20, 11]). Due to the asymmetry in
the detector acceptance the experimental data are not forward-backward symmetric,
but the sideward flow is still clearly observable in the data, especially for the heavier
systems. The target peak is missing from the observed triple differential cross sections
because of the low energy cut of the detector. The random cascade at this energy does
not produce a collective azimuthal anticorrelation between the backward and forward
directions.

In cascade and molecular dynamics models the evaluation of global flow parameters
is done in the same way as in experiments, since these models create sample events
that closely resemble the experimental event sample. The models, however, have direct
primary information about the reaction plane. This way one can study the deviation
between the principal (theoretical) and experimentally determined reaction plane. The
agreement between the two reaction planes gets better with increasing multiplicity, and
for high multiplicity events the deviation is in the order of 10 degrees only.
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Figure 7.7: The observed and calculated distribution of the flow angle in collisions
of different multiplicity. High multiplicity, central, collisions of heavy systems show a
clear peak at finite angle, indicating the existence of the sideward flow. The ellipsoid of
emitted particles is significantly not aligned with the beam axis. The cascade model
does not reproduce this flow effect due to the absence of collective pressure or collective
repulsion. Reproduced with permission from [11].
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Figure 7.8: Charged particle triple differential cross sections projected to the reaction
plane after the reaction plane was identified by the global flow analyzes. The exper-
imental plots show the azimuthal anticorrelation while the cascade model does not.
Thus a collective flow effect can be suspected in the data. Reproduced with permission
from [11].
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7.6.1 Global flow analysis in fluid dynamics

In a fluid dynamical type of model the summations in eq.(7.29) can be replaced by
integrals over the continuous particle distributions:

Mαβ =

∫
d3r

∑
j−clust

wj

∫
d3P c.m. P c.m.

jα P c.m.
jβ F c.m.

i (~P c.m., ~r) . (7.30)

In a comparison of calculations with the experiments some difficulties arise. The limited
sensitivity of the detector in momentum space, and the fact that most detectors do not
cover a spherically symmetric region around the c.m. in the momentum space, cause
serious problems. The sphericity matrix detected by a given detector is not equal to
the one defined by eq. (7.30), but rather is given by

〈Mαβ〉b =

1

2πb ∆b2

∫ b−max

b−min
d2b

∫
d3r

∑
j−clust

wj

∫
µdet.

d3P c.m.P c.m.
jα P c.m.

jβ F c.m.
i (~P c.m., ~r) . (7.31)

where µdet. is the sensitivity region of the detector in the momentum space.

Figure 7.9: Observed and calculated distribution of the flow angle in collisions of different
multiplicity. Experimental data are compared to calculations in the hydrodynamical
model and in the cascade model. Reproduced with permission from [21].

After having calculated the flow tensor, one can calculate the reaction plane and
the “flow angle” in the fluid dynamical model also, Fig. 7.9 (from [19, 22, 23]). The
fluid dynamical model reproduces the flow angle distribution as expected. The effect
is, however, stronger and sharper in the fluid dynamical model than in the data. This
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indicates that the fluctuations are not barely the thermal fluctuations (which were
included in the model), but the fluctuations arising from the finite multiplicity are also
influencing the data. These fluctuations cannot be reproduced by a continuum model
like fluid dynamics.

7.6.2 Decomposition of the global flow tensor

In the nonrelativistic approach there is a transparent way to separate the thermal and
collective flow components in the global flow tensor. The problem is to calculate the
energy flow tensor, Mαβ in fluid dynamical approach by assuming Galilei transformation
between cell and C.M. systems instead of Lorentz transformation. This approximation
gives a nice analytic result and it is very useful also when one has to consider the
available computer power for a given task.

Let us recall the definition of the collective flow tensor (7.29):

Mαβ =
∑
i

wi piαpiβ , α = β = x, y, z . (7.32)

Thus if the particle distribution is described by the function f cmjH (~p, ~r) this leads to

Mαβ =

∫
d3r

∑
j−clust=p,d,t,..

wj

∫
d3P c.m.P c.m.

jα P c.m.
jβ f c.m.jH (~P c.m., ~r) . (7.33)

Although f c.m.jH (~P c.m., ~r) is known
∫
d3P c.m.... could be evaluated numerically only. This

is an enormous task if you have to do it a few 10000 times (as many times as many
fluid cells you have). Since∫

d3r

∫
d3P c.m. f c.m.jH (~P c.m., ~r) =

∑
i−cell

N i−cell
j =

∑
i−cell

∫
d3P c.m. f c.m.jH (~P c.m., i− cell) , (7.34)

we can calculate the contribution of one fluid cell. We assume that the flow and thermal
momenta of a particle are additive (Galilei transformation).

~P = ~Pflow + ~Ptherm . (7.35)

Then the expectation value of the tensor, Mαβ, with weights, wj = 1, for one particle
species, j, and from one fluid cell, i, is M j, i−cell

αβ〈
M j,i−cell

αβ

〉
= N i−cell

j 〈PαPβ〉 =

N i−cell
j {〈Pα,flowPβ,flow〉+ 〈Pα,thermPβ,therm〉+ 〈Pα,thermPβ,flow〉+ 〈Pα,flowPβ,therm〉} =

N i−cell
j {Pα,flowPβ,flow + 〈Pα,thermPβ,therm〉+ 〈Pα,therm〉Pβ,flow + Pα,flow 〈Pβ,therm〉}

(7.36)
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Since ~Ptherm follows a symmetric distribution 〈Pα, therm〉 = 0, so that〈
M j, i−cell

αβ

〉
= N i−cell

j {Pα, flowPβ, flow + 〈Pα, thermPβ, therm〉} (7.37)

Since f c.m.jH (~P c.m., i − cell) is a spherically symmetric distribution and Pα, therm =

(~eα ~Ptherm) where ~eα is a unit vector, it follows that

〈Pα,thermPβ,therm〉 =
(
~eα ~Ptherm

)(
~Ptherm~eβ

)
= δαβ

〈
(~eα ~Ptherm)2

〉
=
δαβ
3

〈
(Ptherm)2

〉
.

(7.38)
In the nonrelativistic limit ε = e

n
= p2

2m
, thus < p2

therm >= 2mjεtherm. In the nonrela-
tivistic Bolzmann limit 〈P 2

therm〉 = 2mj(3/2)T = 3mjT .
Thus 〈

M j, i−cell
αβ

〉
= N i−cell

j

{
(P i−cell

α, flowP
i−cell
β, flow) +

δαβ
3

〈
P 2
therm

〉}
. (7.39)

The last term does not depend on the cell velocity and it yields a spherical contribution
to the flow tensor even after the summation over all fluid cells.〈

M j
αβ

〉
=
∑
i−cell

N i−cell
j (P i−cell

α, flowP
i−cell
β, flow) +

δαβ
3

∑
i−cell

N i−cell
j

〈
P 2
therm

〉
. (7.40)

For the energy flow tensor, wj = 1/(2mj), in the Boltzmann limit this yields

〈
M j

αβ

〉
=

1

2

{∑
i−cell

N i−cell
j

[
mj(v

i−cell
α, flowv

i−cell
β, flow) + δαβTi−cell

]}
. (7.41)

One can see in this form of expression that the nonspherical structure of the flow
tensor (the non-diagonal part) is exclusively caused by the collective flow velocities,
furthermore the heavier particles in a fluid cell contribute to stronger asymmetry!

So in fluid dynamical model the expectation value of the flow tensor, Mαβ, can be
calculated easily. However, there are fluctuations around this expectation value in a
real experiment! This is due to the finite multiplicity of the emitted particles. This
finite multiplicity introduces an effective asymmetry in the thermal distribution also, so
that in the real life the separation of thermal and collective flow terms is not trivially
easy.

This was demonstrated in ref. [24] where instead of realistic hydrodynamics a simple
model with 3 thermal particle emitting sources was assumed. These sources were moving
with preassigned velocities like 3 large fluid cells (see fig. 7.10).

The impact parameter dependence of the flow angle, Θf(b), and inelasticity are
assumed to have simple analytic forms which were extracted from 3 dimensional fluid
dynamical calculations. In this simplified model, however, there are only 3 fluid cells!!
In this model one could evaluate the flow tensor, its eigenvalues and the corresponding
eigenvectors in two ways. First before the simulation of experimental events based
on the thermo and fluid dynamical parameters, and then just the same way as in
experiments after we have generated randomly emitted particles by an event generator



230 CHAPTER 7. MEASURABLES

Figure 7.10: Three particle emitting sources simulating the final state of a heavy ion
collision, depicted in the configuration and in the momentum space. There is a larger
central source at rest in the center of mass frame with higher temperature, representing
the hot spectator matter. On the sides there are two colder regions representing the
less excited spectator matter with a velocity that has a sidewards pointing component.
This sidewards motion (or sidewards flow) is caused by the high central pressure during
the intermediate stages of the reaction. Thus the so called “flow angle” is finite due to
this collective pressure. In the momentum space it is apparent that the spectators did
suffer a highly inelastic collision because the absolute value of their velocities is less
than the initial target and projectile velocity in the c.m. frame.
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(FREESCO). Theoretical expectation values based on continuum thermo- and fluid
dynamics and simulated experimental observables based on generating random events
with evaporation of a finite number of particles are compared. Also, fragments are
generated randomly according to thermal expectation values. Conservation laws are
satisfied. The result of such a comparison is shown in Fig. 7.11 (from [24]).

The impact parameter dependence of the random scattering results are shown in
Fig. 7.12 (from [24]).

One can see that the random fluctuations not only scatter around the fluid dynamical
expectation, but there is an unmistakable shift: the aspect ratios are shifted from zero
to finite values.

Danielewicz and Gyulassy [25] analyzed generally how the random fluctuations shift
the expectation value of these observables. They generated random events of multiplicity,
M , corresponding to the same fluid dynamical expectation values: Θflow = 0, and
R1/3 6= 0. They concluded that the finite multiplicity shifts the observable average of
these quantities as indicated in Fig. 7.13 (from [25]).

Thus the observed finite flow angle in itself is not a decisive proof of the existence
of a transverse flow!.

Danielewicz and Gyulassy [25] analyzed also how the random fluctuations shift the
expectation value of the observable flow angle if the original fluid dynamical expectation
is not zero, Θflow 6= 0. For multiplicity M=40 the observed flow angle was larger for
small original angles and smaller when the original fluid dynamical expectation was
close to Θflow = 90o. The observed flow angle tends to 57o when the aspect ration tends
to one. Fig. 7.14.

These finite multiplicity distortions seemed to make it extremely difficult to identify
the transverse flow experimentally. Danielewicz and Gyulassy have succeeded, however,
to find a quantity which showed a qualitative sign of the transverse flow. The quantity,
which is able to show the real expectation value, is the distribution dN/dΘflow itself, i.e.
the distribution function of the flow angles in the experimental event sample. While
the average arising from this distribution function looses the information about the
original flow angle, the distribution shows a peak at a finite Θflow in the presence of a
transverse flow. If there is no inherent transverse flow present the distribution peaks
at Θflow = 0, but it can be a wide distribution yielding a large mean value, Fig. 7.15
(from [25]).

Actually these studies finally led in 1984 to a breakthrough and the experimental
group around the “Plastic-Ball” detector system in Berkeley succeeded to identify the
collective transverse flow beyond doubt for the first time in history after 10 years
of persistent research and scientific debate. This latter method was used for high
multiplicity 93Nb + 93Nb reactions at 400 MeV projectile energy. The setup of the
detector system is shown in Fig. 7.16.

The detector consisted of 655+160 Plastic Scintillator telescopes (The Plastic Ball)
and 60 pairs of scintillator counters plus 36 single counters (The Plastic Wall), with
the goal to identify as many emitted particles as possible. Of course the Plastic Ball
or any detector has a certain range of sensitivity. The target is in vacuum, so low
energy particles cannot penetrate the wall of the vacuum chamber. Thus the target
peak cannot be seen on the rapidity distribution measured!! To avoid the inaccuracies
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Figure 7.11: Fluid dynamical expectation values (full curves with open circles) and
statistically generated events (dots and open squares) yielding flow diagrams: Flow
angles versus the aspect ratio of the largest to the smallest eigenvalue of the flow
tensor, R1/3, for Nb+Nb reaction at 400 MeV/nucleon lab. beam energy. Four different
impact parameters, b = s = 0.1, 0.3, 0.5, 0.7smax, and 3 different particle species
j = p, p − α, all are shown. At each impact parameter the whole fluid dynamical
expectation curve is plotted for all impact parameters, the particular impact parameter
of the actual case is indicated by an open circle. This fluid dynamical expectation
value depends on the particle species, j. Reproduced by permission of Elsevier Science
Publishing from [24].
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Figure 7.12: Fluid dynamical expectation values (full curves with dots) and statistically
generated events (open circles) yielding flow diagrams: Flow angles versus the aspect
ratio of the largest to the smallest eigenvalue of the flow tensor, R1/3, for Nb+Nb
reaction at 400 MeV/nucleon lab. beam energy. The parameters indicate the impact
parameter in units of 10s/smax. The fluid dynamical expectation value depends on the
particle species, p, p−α, All. Reproduced by permission of Elsevier Science Publishing
from [24].

Figure 7.13: Expectation values (full curves) for a given finite multiplicity, M , and
statistically generated events (dots and triangles) yielding flow diagrams: Flow angles
versus the aspect ratio of the largest to the smallest eigenvalue of the flow tensor, R1/3.
The original fluid dynamical expectation value did not have any transverse flow in,
Θflow = 0. Reproduced by permission of Elsevier Science Publishing from [25].
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Figure 7.14: Expectation values of the observed flow angle Θ′ (full curves) for multi-
plicity, M = 40, of flow diagrams when the original fluid dynamical distribution has
the theoretical flow angle indicated by the parameters along the curves. Reproduced by
permission of Elsevier Science Publishing from [25].

Figure 7.15: Expectation values of the observed flow angle distributions dNevent/dΘflow

(full curves) for multiplicities, M = 20, 40, 100, when the original fluid dynamical flow
angle is 20o. Reproduced by permission of Elsevier Science Publishing from [25].
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Figure 7.16: The “Plastic-Ball” detector.

the best is to study symmetric A+A collisions. In this case a symmetrization can be
performed around the c.m. and the limited sensitivity range of the detector can be
circumvented, Fig. 7.17.

The near to 4π detector sensitivity made it possible to perform event by event
measurements, which was unheard of in conventional nuclear physics before. The great
success of the detector created enormous response in 1984. The achievements were soon
got publicity even in the New York Times. The Plastic Ball detector was used later
extensively for many quantitative studies of the nuclear Equation of State. Three years
later the Plastic Ball detector was transported to the CERN and it was used in the
experimental set up of the WA-80 collaboration.

Immediately after the Plastic Ball the collective sidewards flow was detected by the
other optical 4π detectors as well: by the streamer chamber and by nuclear emulsions.
These latter detectors have a much smaller statistics, much less collisions can be
quantitatively analyzed by them, so a mucl more sensitive statistical method was
developed originally for streamer chamber by Danielewicz and Odyniecz [9]. This
method became widely used and sort of a standard for measuring collective flow. It
could even be used for nuclear emulsions, for a sample of few hundred collisions [27].
The method will be introduced in the next section.

7.7 Transverse Flow Analysis

The method we present here was introduced by Danielewicz and Odyniecz [9]. It became
a widely used sensitive method to detect the collective transverse flow. It could be used
in experiments where the available statistical sample is smaller than in the Plastic Ball:
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Figure 7.17: The sensitivity range of the “Plastic-Ball” detector in rapidity variables
(u⊥ = p⊥/m). From [26].

it was used in streamer chamber experiments and even in emulsion experiments [27].
The method essentially relies on the determination of the reaction plane, and then

the transverse momenta of the emitted particles are projected (or rotated) to this
reaction plane. The determination of the reaction plane is crucial in an experiment and
it is possible only if the multiplicity, M, of the emitted particles is large and the major
part of these particles are detected. The method involves two basic ideas: A) to select
the rapidity range and rapidity dependent waiting factors in the center of mass system
which provide the reaction plane closest to the real reaction plane, and B) to remove
trivial and spurious self correlations from the projections.

7.7.1 Determination of the reaction plane (A)

The reaction plane is defined by the transverse vector ~Q:

~Q =
M∑
ν=1

wν ~p⊥ν (7.42)

where the weight factor, wν , depends on the rapidity of the emitted particle, ν, so that
the central rapidity region, where the particle emission is azimuthally symmetric, is
omitted, and the forward and backward rapidity regions get weights with opposite signs.
This choice leads to the result that the forward and backward moving particles, —which
are azimuthally anticorrelated if there is a collective transverse flow,— will contribute
equally to ~Q.

wν =


+1 : ify > yc
0 : if − yc < y < yc
−1 : ify < −yc

. (7.43)
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Figure 7.18: The distribution of the azimuthal angle difference, ϕ, of the two half
events (a) from an experimental sample of 1.8 A GeV Ar+KCl reactions measured in a
streamer chamber and (b) from artificially created events by mixing up particles from
the events of the real sample. Reproduced by permission of Elsevier Science Publishing
from [9].

where the cut-off rapidity, yc, is usually chosen to be yc ≈ 0.3ybeamc . Later this weight
factor was modified by other researchers to wν(y) = Const. × y or to

wν(y) =


Cy : ify > yc
0 : if − yc < y < yc
Cy : ify < −yc

. (7.44)

The constants were determined by trial and error. For this one has to decide if the
determined reaction plane is accurate or not. This can be done the following way.

Test of the reaction plane

Let us take one event with multiplicity, M, and separate it randomly into two halves: I
and II. Each of them will have multiplicity M/2 (if M was even). We can now evaluate
the reaction plane vector in both half events separately, getting ~QI and ~QII . The two
vectors should not be identical, but they should be close to each other if there was a real
physical reaction plane in the underlying physical event. The azimuth angle difference
between the two ~Q-vectors is then ∆ϕ. Then we should plot the distribution of this
∆ϕ for the whole experimental sample. If there is a reaction plane and the weighting
was lucky we will get a distribution which peaks sharply around ∆ϕ = 0. An example
for such a distribution is shown in Fig. 7.18 taken from ref. [9].

The spread of the distribution depends also on the cut, yc and on the weight factors.
These factors and yc should be chosen to minimize the spread of the distribution.
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7.7.2 Self correlations (B)

Let us see what happens if we now project the transverse momenta of each particle on
this plane. The plane is defined by

~Q =
M∑
µ=1

wµ~p⊥µ

then the projection of a particle’s, (ν’s), transverse momentum to this plane is

p
x′

ν = ~p⊥ν
~Q

| ~Q|
, (7.45)

which can be expanded as

p
x′

ν = ~p⊥ν

∑M
µ=1wµ~p⊥µ

| ~Q|
=
wν~p

2
⊥ν +

∑
µ6=ν wµ(~p⊥ν~p⊥µ)

| ~Q|
. (7.46)

If there was no collective correlation〈
p
x′

ν

〉
|y,y+∆y =

1

< | ~Q| >

[
wν
〈
~p 2
⊥ν
〉

+

〈∑
µ 6=ν

wµ(~p⊥ν~p⊥µ)

〉]
, (7.47)

the expectation value in the second term would vanish < ~p⊥ν~p⊥µ >= 0 due to symmetry
reasons, but the first term would not since ~p 2

⊥ν ≥ 0. Thus this definition would yield a
finite < p

x′

ν > |y,y+∆y even if there are no real collective correlations in the sample. An
example for this is shown in Fig. 7.19 where the real sample shows a clear anticorrelation
between the forward and backward moving particles (a). But, if we take the emitted
particles from all events in the experimental sample and mix them randomly to form
an artificial sample where the real physical correlations should be lost, the px/a plot
still shows a clear azimuthal anticorrelation due to the self correlation effect (b).

We can remove these self correlations by removing the first term in expression (7.47).
This can be done if we project each particle’s transverse momentum to a reaction plane
determined by all other particles:

~Qν =
∑
µ6=ν

wµ~p⊥µ. (7.48)

Now the projection does not contain the self correlation term

p
x′

ν =
1

< | ~Q| >

∑
µ6=1

wµ(~p⊥ν~p⊥µ). (7.49)

Thus px
′

ν is nonzero only if real physical correlations exist.
Fig. 7.20 shows that after removing the self correlation from ~p⊥ν ~Q the real sample

still shows the azimuthal anticorrealtion (a), while the artificial sample shows no effect
(b).
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Figure 7.19: Comparison of px′/a plots of a real physical sample (a) and on a ran-
domized artificial sample (b). Due to the self correlation azimuthal anticorrelation
appears between forward and backward moving particles in both cases. Reproduced by
permission of Elsevier Science Publishing from [9].

Figure 7.20: Comparison of px′/a and dP x/dy plots of a real physical sample (a) and
on a randomized artificial sample (b). Due to the removed self correlation azimuthal
anticorrelation appears between forward and backward moving particles only for the
real physical sample (a). Reproduced by permission of Elsevier Science Publishing from
[9].
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Figure 7.21: Mean transverse momentum per nucleon projected into the reaction plane
as a function of the normalized center-of-mass rapidity for 400 MeV per nucleon Nb+Nb
in the multiplicity bin, between 50% and 75% of Nmax

p . The slope of the solid line
represents the “flow”, F , obtained from fitting the data. Reproduced by permission of
Elsevier Science Publishing from [19].

The quantity px′/a underestimates the transverse momentum because the vector
~Qν fluctuates around the real reaction plane by some azimuthal dispersion angle, ∆ϕ.
If we would know this real reaction plane we could estimate the value of px projected
to the real plane as:

< px
′
>=< px >< cos ∆ϕ > .

In experiments ∆ϕ is approximated by the width of the distribution of the azimuthal
angle difference between the two reaction planes evaluated from each event in the sample
as indicated Figs. 7.18 and 7.18.

A practical definition was introduced by the Plastic Ball team later, the “Flow”, F ,
to measure the transverse momentum transfer:

F =
∂[px/a]

∂y
|y=0 .

This quantity was subject to less experimental bias then for example the maximum
of px/a, and it enabled us to compare different reactions and results of different
experimental devices to each other, Fig. 7.21.

7.8 Assignment 7
7.a Calculate the double differential cross section by boosting the local Jüttner

(relativistic Boltzmann) distribution spherically by a collective flow velocity. (See
the Blast-Wave Model of ref. [14].)

7.b Calculate the px(y) distribution of nucleons (i.e., the average transverse momentum
of particles at rapidity y projected to the reaction plane) if you have 3 thermal
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particle emitting sources, described by the non-relativistic Boltzmann distributions.
Two of the 3 sources are moving, one forward and one backward in the c.m. frame.
These two have opposite transverse flow velocities. The third source is at rest in
the c.m. frame. Use Galilei transformation instead of Lorentz transformation.

7.8.1 Solutions to Assignment 7

7.a Blast wave model Let us follow the procedure introduced in sect. 7.4. The thermal
kinetic energy w of the particle of a given Θ flow polar angle in terms of the
observed c.m. variables ~P ,E is:

w = γ(E − βrP cos Θ) ,

where βr is the radial flow velocity of the expanding spherical layer, and γ is the
corresponding gamma factor. Consequently

dw = −γβrP d cosQ .

Now the c.m. momentum distribution can be calculated by summing up the
contributions from all flow polar angles

f cm(~P ) =

∫ π

0

w

E
f cell(~r) 2π(−d cos Θ) =

− 2π

E

1

γβr P

(∫ γ(E−βrP )=x2

γ(E+βrP )=x1

w f cell(~p) dw

)
(7.50)

and by assuming that the cell’s momentum distribution in its proper frame a
Maxwell–Boltzmann distribution:

−2π

E

1

γβr
√
E2 −m2

4

(2π~)3

∫ x2

x1

x dx

exp
[
x−µ
T

] =

−2π

E

e
µ
T

γβr
√
E2 −m2

4

(2π~)3︸ ︷︷ ︸
c

∫ x2

x1

x

e−
x
T

dx =

−cT 2
{
e−x2/T (−x2

T
− 1) + e−x1/T (

x1

T
+ 1)

}
Introducing now α ≡ γβrP/T the expression takes the form

= c exp

(
−γE
T

)[(
γET + T 2

)
sinhα− αT 2 coshα

]
.

Thus, finally we get the energy spectrum of the Blast-wave model [14]

dN

d3P
=

8πeµ/T

(2π~)3
exp

(
−γE
T

)[(
γ +

T

E

)
sinhα

α
− T

E
coshα

]
.
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7.b Let us take a 3 sources: one at c.m. (C) and two symmetrically deflected side (S)
sources, with masses Ac, As, As and temperatures TcTs, Ts respectively.

The "s" sources have collective momenta per nucleon: ~ps = (pT , 0, pL) and −~p
where x, z is the reaction plane and z is the beam axis. The transverse momentum
projected to the reaction plane can be evaluated by using:

<
px

a
>=

∫
d3r d3p n(r, t) f(~p, ~r)(~p~e) |y=y0

A|y=y0

, (7.51)

where ~e is a unit vector in the reaction plane.

Let us assume that we have one central source, c, and two identical side or
spectator sources, s. Then the energy and mass conservation in this system yields

A =
∑
s

As = 2As + Ac,

E0 =

[
2As

(
1

2
m u2(s) +

3

2
Ts

)
+ Ac

3

2
Tc

]
/A, (7.52)

where
~u(s) = u‖ + u⊥ (7.53)

Now let us calculate the transverse momentum at y = y0:

px(y) = N

∫
d2p⊥ px

[
exp[−(~p− ~ps)2

2mT
] + exp[−(~p+ ~ps)

2

2mT
]

]∣∣∣∣
at p‖=m⊥ cosh y0

(7.54)
where N is a normalization constant. The center source does not contribute to px
because ~pc = 0. Expanding the integrals:

px(y) = N

[
e−

(pz−psz)2
2mT

∫ +∞

−∞
dpx dpy px e

−
[(px−psx)2+p2y]

2mT +

e−
(pz+psz)

2

2mT

∫ +∞

−∞
dpx dpy px e

−
[(px+psx)2+p2y]

2mT

]
. (7.55)

Performing the integrals:

px(y) =
As

(2πmTs)1/2
psx

[
e−

(pz−psz)2
2mTs − e−

(pz+psx)2

2mTs

]
. (7.56)

Here pz is a function of the rapidity y. Since y ∼= vz = 1
m
pz it follows→ pz ∼= my.

The total number of nucleons A|y=y0 is:

A|y=y0 =
As

(2πmTs)3/2

∫
d2p⊥

[
e−

(~p−~ps)
2mTs + e−

(~p+~ps)
2mTs

]
+

Ac
(2πmTc)3/2

∫
d2p⊥e

− ~p2

2mTc ,

(7.57)
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and after the integration

A|y=y0 =
As

(2πmTs)3/2

[
e−

(pz−psz)2
2mTs + e−

(pz+psx)2

2mTs

]
+

Ac
(2πmTc)3/2

e−
p2z

2mTc , (7.58)

consequently the transverse momentum per nucleon in the three sourcr model is:

px(y)

a
=

As
(2πmTs)1/2

psx

[
e−

(pz−psz)2
2mTs − e−

(pz+psx)2

2mTs

]
As

(2πmTs)3/2

[
e−

(pz−psz)2
2mTs + e−

(pz+psx)2

2mTs

]
+ Ac

(2πmTc)3/2
e−

p2z
2mTc .

, (7.59)
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Chapter 8

Scaling of the hydrodynamical model

In heavy ion physics scaling is understood in two different ways. At ultra-relativistic
energies, scaling solution, or scaling fluid dynamics is frequently mentioned. These refer
to the basic assumption of the Bjorken model, i.e., that the observables and thus the
dynamics is invariant against a beam directed Lorentz boost. This is, of course only
an approximation, which can be applied in the mid rapidity region. This scaling is
discussed under the Bjorken model. A related scaling is the Feynman scaling, describing
the universality of parton momentum distributions in terms of the Feynman x variable.
This is mentioned briefly in the chapter on the search for quark gluon plasma (Chapter
10).

The other meaning of scaling is the way measurable quantities at different target
and projectile masses and at different beam energies are compared to each other. These
comparisons result in the definition of secondary variables which are invariant under the
change of beam energy or the mass of the system. These invariances are of course model
dependent and not necessarily exact. If scaling properties of a theoretical approach are
confirmed by experiments this indicates that the approach is basically a valid approach.
On the other hand it does not exclude other theoretical approaches which yield the same
or similar scaling rules. In this chapter we will discuss this latter version of scaling.

8.1 Similarity in classical fluid dynamics
This section is based on ref. [1]. The basic equations for a perfect non-relativistic
fluid-dynamical description of a nuclear collision are the continuity equation:

∂ρ

∂t
+∇(ρu) = 0, (8.1)

which relates the mass distribution ρ(r, t) and the velocity distribution u(r, t); the Euler
equation:

∂u

∂t
+ (u∇)u = −1

ρ
∇P, (8.2)

and the equation of state (EOS), which relates, the pressure P to the density p, and
the entropy density, s = S/V , of the system:

P = P (ρ, s) . (8.3)

247



248 CHAPTER 8. SCALING OF THE HYDRODYNAMICAL MODEL

For a non-viscous fluid the entropy is constant during the expansion, therefore

∇P ≈
(
∂P

∂ρ

)
s

∇ρ = c2
s∇ρ, (8.4)

where cs is the adiabatic sound velocity. The above equations with the initial conditions
on u, ρ, and s, determine the hydrodynamical evolution of the system. In ref. [1]
dimensionless, scale-invariant quantities were derived to describe the general properties
of a system, and also to compare the hydrodynamical behavior of systems of different
masses and energies.

A characteristic mass, m1, temperature T1, length l1, and velocity u1 can be intro-
duced in a heavy ion collision as:

m1 = mA, (8.5)

where m is the nucleon mass and A is the number of nucleons in the system;

u1 = |u0| =
(

2E0

m

) 1
2

, (8.6)

where E0 is the initial c.m. energy per nucleon of the projectile; and

l31 =
4

3
πr3

0 A, (8.7)

which represents the volume of the system.
After introducing the definitions r = l1r̃ for the radius, t = t1t̃ for the time, and

T = T1T̃ for the temperature (where T1 = 2/3 E0 ), the above characteristic quantities
can be utilized to define dimensionless quantities, denoted by a tilde:

ρ(r, t) =
m1

l31
ρ̃(r̃, t̃), (8.8)

u(r, t) = u1ũ(r̃, t̃). (8.9)

These characteristic dimensionless hydrodynamical functions are independent of the
total mass, A, and energy, E0, of the system.

Now, since the sound velocity is of the same order as the thermal velocity of the
nucleons, c = u1c̃, with c̃ ≈ 1, the continuity and Euler’s equations can be rewritten in
dimensionless form:

m1

[
∂ρ̃

∂t̃
+ S∇̃(ρ̃ũ)

]
= 0, (8.10)

∂ũ

∂t̃
+ S(ũ∇̃)ũ = −Sc̃2 ∇̃ρ̃

ρ̃
, (8.11)

where S = u1t1/l1 is the Strouhal number.
In a small system, such as the one formed in a nuclear collision, the role of viscosity

should not be neglected. Assuming that the coefficient of bulk viscosity, ξ, is proportional
to the shear viscosity, η, (ξ = qη, where q is a dimensionless constant) and that the
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kinematic viscosity, ν = η/ρ, is constant during the expansion, the Navier–Stokes
equation can be written (again in dimensionless form) as:

∂ũ

∂t̃
+ S(ũ∇̃)ũ = −Sc̃2 ∇̃ρ̃

ρ̃
− S

Re

[
∆̃ũ+ (q + 1/3)∇̃(∇̃ũ)

]
, (8.12)

where Re is the Reynolds number: Re = l1u1/ν. With a proper choice of the time scale,
t1 = l1/u1, S can be set equal to 1. Then the solutions of the hydrodynamical equations
depend on r̃, t̃, and the Reynolds number, Re, only. In this way, the flow patterns of
systems of different energies and of different masses are similar if the Reynolds number,
r̃ and t̃ are the same.

According to this picture, scale-invariant quantities can be defined, and a deviation
from the scale invariance indicates the onset of physical processes which lead to a
non-scale-invariant flow in the hydrodynamical description, such as viscosity, a change
in the equation of state or in the reaction mechanism.

8.1.1 Application to heavy ion collisions

Let us now assume a non-relativistic perfect flow and study the expansion stage of the
reaction. The intermediate most compressed state of the collision should be taken as
the initial condition.

Let ρ(~r, t) be the mass density, in an AP +AT = A collision. The normalization is∫
ρ(~r, t)dr = mA. (8.13)

In symmetric collisions, in the C.M. system the incoming energy is

E0 =
1

2
mu2

0. (8.14)

The radii of the nuclei can be characterized by

R = RP = RT = r0A
1/3
T . (8.15)

Let us repeat the introduction of the characteristic quantities labeled by index "1", and
through them dimensionless flow variables labeled by tilde:

~r ≡ l1 r̃,

t ≡ t1 t̃,

ρ(~r, t) ≡ m1

l31
ρ̃(r̃, t̃),

u(~r, t) ≡ u1 ũ(r̃, t̃),

T (~r, t) ≡ T1 T̃ (r̃, t̃). (8.16)

Since the kinetic viscosity is ν ≈ 10−1fm, and the characteristic time and length are
t1 ≈ 10fm/c and l1 ≈ 10fm for a relativistic heavy ion collision the Reynolds number is
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in the order of Re ≈ 10− 100. Since the dimensionless break-up time is of the order of
unity, t̃BU ≈ 1, viscous effects have no time to influence the flow essentially because
t̃BU � Re. Thus viscosity is not dominating the expansion stage of a relativistic heavy
ion collisions. It may, however, cause corrections, like entropy increase of the order of
10 % [2].

Fluid dynamical scaling is only approximate in heavy ion collisions because of the
following reasons:

(i) The initial compression stage is not scale invariant since the effect of viscosity is
essential in forming the shock profiles.

(ii) Scaling works well if our EOS is similar to an ideal gas. Binding and compressional
energy bring in new dimensional constants which violate scaling, especially at low
energies (below 100 MeV/nucleon).

(iii) The break-up condition may and may not be formulated in a dimensionless
manner. If it includes dimensional constants, like the microscopic cross sections,
in an essential way the dimensionless break-up time may not be constant, and
this might violate hydrodynamical scaling. However, many break-up descriptions
lead to t̃BU = const.

(iv) Physical processes after the break-up may violate scaling, thus preventing the
hydrodynamical scaling laws to be seen in the measurables.

Therefore it should be determined experimentally whether scaling is present in the
observables or not.

8.2 Scaling properties of cross sections
We will now discuss how to study the fluid dynamical scaling laws in measured cross
sections. We have to follow the way we evaluate these cross sections in the fluid
dynamical model. We stop the fluid dynamical calculation at some time tBU . We
assume that the local momentum distribution is a Maxwell - Boltzmann distribution
in each fluid cell at [tBU , ~r]. Thus the total momentum distribution in a collision with
impact parameter b is

Fb(~p, ~r, t) = n(~r, tBU , b)f
MB[~p− ~pflow(~r, tBU , b)], (8.17)

where n is the baryon density, n(~r, tBU , b) = ρ(~r, tBU , b)/m, and ~pflow(~r, tBU , b) =
m ~u(~r, tBU , b). The double differential nucleon inclusive cross section is then

σ2 ≡
d2σ

dEdΩ
=

dσ

d3p
· d3p

dEdΩ
=

dσ

d3p
· p

2dpdΩ

dEdΩ
= m
√

2mE
dσ

d3p
. (8.18)

Thus inserting the phase space distribution yielded by the fluid dynamics

σ2 = m
√

2mE

∫ bmax

0

d2b

∫
d3r Fb(~p, ~r, t), (8.19)
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where the total local distribution, Fb, can be factorized to the density, n, and a Maxwell–
Boltzmann momentum distribution, fMB, (normalized to unity) which depends on the
local temperature and is shifted by the local flow momentum, pflow:

σ2 = m
√

2mE

∫ bmax

0

d2b

∫
d3r n(~r, tBU , b) f

MB(~p− ~pflow(~r, tBU , b)). (8.20)

We can now introduce the dimensionless variables

bmax = l1b̃max,

~r = l1r̃,

n =
A

l31
ρ̃(r̃, t̃; b̃, Re). (8.21)

So far we did not introduce the scaling decomposition of the momentum p. We can use
the usual procedure

~p = p1p̃,

f =
1

p3
1

f̃(p̃− p̃flow). (8.22)

The parameter p1 should be fixed by the typical momentum:

p1 =
√

2mE0.

Thus the double differential cross section can be written as:

σ2 = m
√

2mE l21A
1

p3
1

∫ b̃max

0

d2b̃

∫
d3r̃ ρ̃(r̃, b̃) f̃(p̃− p̃flow), (8.23)

where we have separated the dimensional and dimensionless factors. Assume that
bmax = α2r0

(
A
2

)1/3
= l1b̃max, where α is a constant defining the cut in the impact

parameters selected. Using the definition of l1 we obtain

b̃max = α(3/π)1/3.

We can now define a dimensionless cross section as

g̃(p̃, Re) ≡
3
√

2

b̃2
max

∫ b̃max

0

d2b̃

∫
d3r̃ρ̃(r̃, b̃)f(|p̃− p̃f ). (8.24)

This expression contains only dimensionless quantities, which are invariant under the
change of energy or mass of the system. The cross section can be expressed in terms of
this quantity as

σ2 =
A5/3

E0

r2
0α

2
√
X · g̃(p̃, Re) , (8.25)

where X ≡ E/E0. The double differential cross section, σ2, is usually measured in terms
of E and Θ. The quantity Θ is dimensionless and scale invariant, but E can be replaced
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by X to get a dimensionless variable. Thus we can introduce another dimensionless
cross section

G̃(X,Θ, Re) ≡ α2
√
X g̃(p̃, Re). (8.26)

Here α characterizes the multiplicity selection. If α = 1 this means bmax = 2R, i.e. all
collisions are taken into account, the cross section is inclusive. If α < 1, this choice
corresponds to a selection of central events (e.g. α = 1

2
corresponds approximately to

25% of all events with the highest multiplicity). The double differential cross section in
terms of G̃ is

σ2 =
A5/3

E0

r2
0 · G̃(X,Θ, Re) . (8.27)

Thus if we measure a cross section at a given energy and mass with a well defined
impact parameter selection we can separate the dimensional factors from the double
differential cross section to obtain G̃. This dimensionless part G̃ should then be the
same for collisions at other energies and masses if the impact parameter selection is the
same, and if the hydrodynamical scaling is not violated.

Figure 8.1: Scale invariant double differential cross sections, G̃, taken from 3-
dimensional, numerical, perfect, relativistic, fluid dynamical calculations. The break-up
was assumed at one third nuclear density. Reproduced by permission of Elsevier Science
Publishing from [1].

Results of numerical fluid dynamical calculations show this property clearly. Cal-
culations for 250 A ·MeV and 2.1 A · GeV Ne + U collisions in ref. [3] gave similar
results in terms of G̃, Fig. 8.1.

If we compare experimental data, similarly strong scaling behavior can be seen,
Fig. 8.2 (from [1]). The agreement in the transverse directions indicates that scaling
violating factors, like viscosity, do not play dominating role here. The scaling violation
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Figure 8.2: Scale invariant double differential cross sections, G̃, taken from two
experiments at 250 and 400 A·MeV beam energy. Reproduced by permission of Elsevier
Science Publishing from [1].

at forward angles indicates that pre-equilibrium, quasi-elastic scatterings, which are
important at this angle, do not follow fluid dynamical scaling laws.

Three sets of experimental data were compared (Fig. 8.3) also by removing the
quasi-elastic component from the cross section (using a theoretical model calculation
[4]). The 800 MeV cross sections are not affected by the quasi-free scattering, because
at this energy the direct scattering is forward-backward peaked, and so it does not
influence the 900 cross section.

8.3 Scaling properties of the transverse flow
Let us now study the scaling properties of the transverse flow which is a clearly collective
fluid dynamical effect in heavy ion collisions. It is expected to occur in the whole energy
range discussed in this book. First let us consider the theoretical predictions of the
scaling properties of the measurables describing the transverse flow, and then we will
see the validity of these predictions in experimental data, as well as the deviations from
the scaling behavior and their causes.

8.3.1 Global flow tensor

Let us repeat the definition of the global flow tensor:

Mαβ =
∑
ν

1

2mν

pα(ν)pβ(ν), (8.28)



254 CHAPTER 8. SCALING OF THE HYDRODYNAMICAL MODEL

Figure 8.3: Structure functions, G̃, in the C.M. system extracted from experimental
proton inclusive data. Circles: 400 A MeV Ne+Ne, triangles: 800 A MeV Ne+Ne,
squares: 800 A MeV Ar+Ar. Quasi elastic scattering is removed (top) and maintained
(bottom) theoretically. The error bars indicate the uncertainties in the subtraction-
procedure of the quasi-free component. Reproduced by permission of Elsevier Science
Publishing from [1].

The fluid dynamical expectation value of this quantity is given by

Mαβ =

∫
d3r d3p pαpβ n(~r, tBU)fMB[~r, ~p− ~pflow, T (~r)]

1

2m
. (8.29)

Let us introduce the scaling parameters:

p1 =
√

2mE0, T1 =
2E0

3
, u1 =

√
2E0

m
, l31 =

4π

3
r3

0A, t1 =
l1
u1

and f =
1

p3
1

f̃ . (8.30)

Thus the expectation value of the global flow tensor reduces to:

Mαβ =
1

2m
l31p

3
1p

2
1

A

l31

1

p3
1︸ ︷︷ ︸

AE0

∫
d3r̃ d3p̃ p̃αp̃β ñ(r̃)f̃(p̃− p̃f )︸ ︷︷ ︸

M̃αβ

. (8.31)

If we have several fluid cells, and the thermal momentum distribution of the matter in
the fluid elements is represented by a Maxwell–Boltzmann distribution, then

Mαβ =
1

2

N∑
(cell)s=1

As[m uflowα (s) uflowβ (s) + T (s)δαβ]. (8.32)

On the other hand the energy conservation is

E0 =
∑
s

Es =
∑
s

As
A

[
m u2(s)

2
+

3

2
T (s)

]
, (8.33)
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and we can introduce the partition of thermal and flow energies as

τs =
As
A

3

2

T (s)

E0

; λs =
As
A

1

2

m u2(s)

E0

. (8.34)

Then the energy conservation is: ∑
s

τs + λs = 1 . (8.35)

Thus
M̃αβ =

∑
s

λs
ũα(s)ũβ(s)

ũ2(s)
+ τsδαβ

1

3
, (8.36)

and this leads to:
Tr M̃ = M̃αα = 1. (8.37)

The fact that the trace of the dimensionless energy flow tensor is one is a simple
consequence of energy conservation.

Experimentally, however, M̃αα < 1, because not all particles are detected. To check
the trace of the experimentally measured dimensionless energy flow tensor is a very
important test of the experimental acceptance!

8.3.2 Transverse Momentum Analysis

The Blast -Wave model [5] and the Thermal Fireball model [6] do not yield a transverse
momentum according to the Danielewicz analysis. The so called "Few Source" model
[7] on the other hand does. Let us take a simple example of 3 sources: one in the
c.m. (C) and two symmetrically deflected side (S) sources, with masses Ac, As, As and
temperatures Tc, Ts, Ts respectively.

The S-sources have collective momenta per nucleon: ~ps = (ps⊥, 0, p
s
‖) and −~ps where

[x, z] is the reaction plane and z is the beam axis. ps‖ is parallel to the beam, while ps⊥
is orthogonal and it lies in the reaction plane.

The transverse momentum projected to the reaction plane can be evaluated by
using:

<
px

a
>=

∫
d3r d3p n(r, t) f(~p, ~r) (~p ~ex) |y=y0

A|y=y0

, (8.38)

where ~ex is a transverse unit vector in the reaction plane.
Having one central source and two identical side or spectator sources the energy

and mass conservation in this system yields

A =
∑
s

As = 2As + Ac,

E0 =

[
2As

(
1

2
m u2(s) +

3

2
Ts

)
+ Ac

3

2
Tc

]
/A, (8.39)

where
~u(s) = u‖ + u⊥ (8.40)
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One can rewrite these conservation laws in scale invariant form by using the scale
parameters, p1 =

√
2mE0; T1 = 2

3
E0,:

1 = 2Ãs + Ãc,

1 = 2Ãs[Ẽ⊥ + Ẽ‖ + T̃s] + ÃcT̃c = 2Ãs[p̃
2
⊥ + p̃2

‖ + T̃s] + ÃcT̃c, (8.41)

Now let us calculate the transverse momentum at y = y0:

px(y) = N

∫
d2p⊥ p

s
⊥

{
exp

[
−(~p− ~ps)2

2mT

]
+ exp

[
−(~p+ ~ps)

2

2mT

]}∣∣∣∣
at p‖=m⊥ cosh y0

(8.42)

where N is a normalization constant. The center source does not contribute to px
because ~pc = 0. Performing the integrals yields (see the solution of Assignment 7b):

px(y) =
As

(2πmTs)1/2
psx

[
e−

(pz−ps‖)
2

2mTs − e−
(pz+p

s
‖)

2

2mTs

]
. (8.43)

Here pz is a function of the rapidity y. Since y ∼= vz = 1
m
pz it follows that pz ∼= my.

The total number of nucleons A|y=y0 is:

A|y=y0 =
As

(2πmTs)3/2

[
e−

(pz−ps‖)
2

2mTs + e−
(pz+p

s
‖)

2

2mTs

]
+

Ac
(2πmTc)3/2

e−
p2z

2mTc , (8.44)

consequently:

px(y)

a
=

2πmTsp
s
⊥

[
e−

(pz−ps‖)
2

2mTs − e−
(pz+p

s
‖)

2

2mTs

]
[
e−

(pz−ps‖)
2

2mTs + e−
(pz+p

s
‖)

2

2mTs

]
+ Ac

A−s

(
Ts
Tc

)3/2

e−
p2z

2mTc .

, (8.45)

Here pz = pz(y) = my. We will see the scaling behavior of the transverse flow in the
framework of the three source model in the next sections.

8.3.3 Fragment flow and scaling

Let us consider the Few Source model. If we have composite fragments emitted at the
break up, their momenta are ~pκ = ~pAκ, where ~p is the momentum per nucleon and Aκ
is the fragment mass.

The transverse momentum per nucleon projected to the reaction plane, determined
by the beam axis, and the unit vector ~ex in the direction of the reaction plane, can be
calculated in a fluid dynamical model separately for each type of fragment κ as〈

px

a

〉
κ

=
1

AκNκ(y,∆y)

∫
Fκ(~p, ~r)(~p ~ex) d

3r d3p
∣∣
y<y(p)<y+∆y′ , (8.46)

where the momentum integral is restricted to a given rapidity bin and AκNκ(y,∆y)
is the number of nucleons emitted into this bin within fragments of type κ, so that
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A =
∑

κAκNκ. The distribution Fκ(~p, ~r) is normalized to AκNκ. Introducing scale
invariant variables eq. (8.30) reduces to

p̃xκ(ỹ) =

〈
px

a

〉
κ

p1

= Ñ−1
κ (ỹ)

∫
F̃κ(p̃, r̃)(p̃ẽx)d

3r̃d3p̃
∣∣
ỹ<ỹ(p̃)<ỹ+∆ỹ′ , (8.47)

where the range of the momentum integral should be given in terms of the c.m. beam
rapidity and ỹ = y/y1 = y

yprojCM

(since we are confining the problem to the non-relativistic

regime, yprojCM = u1). Here F̃κ(p̃, r̃) =
p31Fκ
A

, is normalized to Ñκ = NκAκ
A

, i.e.
∑

κ Ñκ = 1.
The total scale invariant transverse momentum is then given by the average

p̃x(ỹ) =

∑
κNκAκp̃

x
κ(ỹ)∑

κNκAκ
. (8.48)

The scaling with beam energy is not expected to be perfect due to the same reasons
that were mentioned before.

8.3.4 Fragment flow - mass dependence (*)

Since there can be different fragments, κ, emitted from each source, q = c, s1, s2, the
normalization is given by:

Ãq =
∑
κ

Ãκq =
∑
κ

NκqAκ/A and
∑
κq

Ãκq = 1 . (8.49)

Here Ãκq is the fraction of nucleon number in source q within fragments of type κ. Thus
the energy conservation can be expressed by:

∑
κ

[
2Ãκs

(
(p̃s⊥)2 + (p̃s‖)

2 +
T̃s
Aκ

)
+
ÃκcT̃c
Aκ

]
= 1 (8.50)

If the dimensionless source momentum vector of a given source is p̃q the momentum
distribution F̃κ(p̃, r̃)d3r̃ is represented by a sum over the sources:∫

F̃κ(p̃, r̃)d
3r̃ =

∑
q

F̃κq(p̃). (8.51)

Let us assume that each source has a local thermal motion, described by a Maxwell–
Boltzmann distribution,

F̃κq(p̃) = Ãκq

(
3Aκ

2πT̃q

)3/2

exp

[
−3Aκ(p̃− p̃q)2

2T̃q

]
, (8.52)

normalized to Ãκq.
Now the integral (8.47) can be calculated explicitly. The central source, C, will not

contribute to the integral due to symmetry reasons. Nevertheless, it contributes to the
normalization constant Ñκ(ỹ) :



258 CHAPTER 8. SCALING OF THE HYDRODYNAMICAL MODEL

p̃t(ỹ) = p̃xκ(ỹ) = Const.

(
Ãκs√
T̃s

)
Ñκ(ỹ)−1p̃s⊥{

exp

[
−

3Aκ(ỹ − p̃s‖)2

2T̃s

]
− exp

[
−

3Aκ(ỹ + p̃s‖)
2

2T̃s

]}
. (8.53)

where

Ñκ(ỹ) = Const.

[(
Ãκs√
T̃s

){
exp

[
−

3Aκ(ỹ − p̃s‖)2

2T̃s

]
+ exp

[
−

3Aκ(ỹ + p̃s‖)
2

2T̃s

]}
+

(
Ãκc√
T̃c

)
exp

(
−3Aκỹ

2

2T̃c

)]
. (8.54)

After a straightforward calculation we obtain that

p̃t(ỹ) = p̃xκ(ỹ) = p̃s⊥ sinh

(
3ỹAκp̃

s
‖

T̃s

)
/

cosh

(
3ỹAκp̃

s
‖

T̃s

)
+ 1/2

(
Aκc
Aκs

)√
T̃s

T̃c
exp

3Ãκ
ỹ2
(
T̃c − T̃s

)
+ (p̃s‖)

2T̃c

2T̃cT̃s

 . (8.55)

This expression reproduces qualitatively the basic features of the observed transverse
momenta. The transverse momentum, p̃t(ỹ) = p̃xκ(ỹ), as a function of the rapidity
crosses the axis at the c.m. rapidity with a tangent of

F̃κ =
∂p̃xκ
∂ỹ
|ỹ=0 =

3Aκp̃
s
⊥p̃

s
‖

T̃s

[
1 + 1/2

(
Aκc
Aκs

)√
T̃s
T̃c

exp
(

3Aκ(p̃s‖)
2

2T̃s

)] , (8.56)

which increases with increasing transverse momentum and decreases with increasing
dissipation (increasing Ts ).

The collective transverse momentum p̃xκ increases with the fragment mass Aκ as
well as F̃ does. The dependence is, however, not trivial because of the denominator.
The factor

(
Aκc
Aκs

)
is not necessarily the same for all κ , and if we, as usual, assume that

T̃c > T̃s then
(
Aκc
Aκs

)
decreases with increasing Aκ enhancing the transverse momentum

further. The p̃s‖ dependence is not trivial either. To show the behavior of the model
we can use a parametrization [7] of the three source model based on detailed fluid
dynamical calculations [9, 10]. This parametrization for each impact parameter defines
the mass partition among the C- and S-sources, (just as in the standard firestreak
model). It also redistributes the remainder of the collective kinetic energy among the
sources. The thermal energy due to dissipation is also divided up among all three
sources. This parametrization can be described by the equations [7]:

Θcm(b) = z0(1− b/bmax)π/2 (8.57)
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Figure 8.4: Scale invariant transverse momentum distribution calculated in the Few
Source (FS) model for different impact parameters b̃ = 0.05 − 0.25 and averaged
over impact parameters in the range of b̃ = 0 − 0.3. The p̃t = p̃xκ(ỹ) = distribution
is different for different fragment masses Aκ. Reproduced by permission of Elsevier
Science Publishing from [8].
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and |~ps| = p1

[
1− (1− b/bmax)2 y0

]
where z0 is a parameter governing the transverse

momentum transfer and y0 is responsible for the dissipation. A third parameter x0

governs the partition of thermal energy among the sources. If Qh is the fraction of

heat energy in the system Qh =
∑

κ
ÃκqT̃q
Aκ

then x = x0

(
1− b

bmax

)2

gives the fraction

of thermal energy per nucleon contained in the sources S1 and S2 : x = T̃s
AκQh

. Thus

the temperature of the sources are T̃s = xQhAκ and T̃c = Qh−2T̃sÑs
Ñc

, where Ñq is the
number of fragments in the source q. If composite fragments are present Ñq < Ãq, and
we assumed that Ñq = Ãq/3 in the following test (neglecting the possible differences
between the C- and S- sources). This also implies that

(
Aκc
Aκs

)
=
(
Ac
As

)
is assumed. Here

we use the same values for the model parameters as in ref. [7] (z0 = 1, y0 = 0.6, x0 = 0.3).

Figure 8.5: Impact parameter averaged scale invariant flow F̃ calculated in the Few
Source model (FS) for different maximum impact parameters and for different emitted
fragment masses Aκ Reproduced by permission of Elsevier Science Publishing from [8].

In Fig. 8.4 the impact parameter dependence of the calculated scale invariant
transverse momentum distribution is shown together with the impact parameter averaged
result. The transverse momentum increases with impact parameter (for small impact
parameters b̃ < 0.4 and it also increases with the fragment mass Aκ for small rapidities.
At high rapidities the heavy fragments show less transverse momentum. The Few Source
model is not appropriate to describe peripherical collisions b̃ > 0.7 similarly to the fluid
dynamical model.

The two basic features we should concentrate on are the maximum of the transverse
momentum and the tangent of p̃t(ỹ) at the c.m., eq. (8.56). The latter quantity was also
used in ref. [11] to compare different colliding systems, and it was called "Flow" or F .
The corresponding scale invariant quantity F̃ is obtained dividing F by the C.M. beam
momentum. This quantity averaged over the impact parameter range 0− b̃max, denoted
by F̃av, is plotted in Fig. 8.5 versus the maximum impact parameter as it is calculated
in the Few Source model. Selecting more central collisions (decreasing bmax) leads to an
increase of F̃av until we reach a critical b̃critmax, where F̃av reaches its maximum. Further
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decrease of the maximum impact parameter leads to a rapid decrease of the flow. The
value of the critical b̃critmax decreases with increasing fragment mass Aκ, b̃critmax ≈ 0.3− 0.5.

8.4 Scaling violations

The assumptions we made at the beginning of this chapter do not always hold. We
made two major assumptions: i) on the scaling of the speed of sound, which is related
to the EOS, and ii) on the smallness of the viscous effects.

Let us start with perfect-fluid hydrodynamics, and let us call Φ(~r, t) any field
entering these equations (Φ = ρ, ~u, or T ). If Φ(~r, t) is a solution, then Φ(~rα, tα) is also
a solution, provided of course that the initial and final (break-up) conditions are scaled
in the same way. This is of course realized if one studies a restricted set of systems, e.g.
at the same incident energy and at the same impact parameter over radius ratio. Thus
every dimensionless quantity is a function of the Strouhal number, S, only. However,
if one concentrates on a given impact parameter, another dimensionless geometrical
parameter, b/bMax, has to be introduced. Only those collisions yield a similar flow
pattern where both the Strouhal number, S, and the parameter, b/bMax, are the same.
This could be expressed by requiring the constancy of a dimensionless parameter

Ψ = Ψ(S, b/bMax).

If the dynamics is closer to viscous fluid dynamics, any dimensionless physical quantity
can be expressed as

Ψ = Ψ(S, Re, b/bMax).

The usual way to analyze the scaling properties of the collective aspects of nuclear
collisions is, thus, to compare e.g. central events only to each other, corresponding to
a given per cent of all possible events. This selection is a dimensionless one, thus if
the measured quantity is not dependent on viscous effects, for this selected class of
events scale invariance still holds. This is the consequence of the fact that the Strouhal
number can be fixed to 1 by the appropriate choice of time scale. If the break up time
scales according to this time scale the experimental results scale also, and dimensionless
quantities, in this case will not show A or Ec.m.

0 dependence.
If the viscous effects are important such general scale invariance cannot be expected.

The constancy of the Reynolds number is also required for scale invariance. This means
that not all events with all A and Ec.m.

0 will be inwariant but only a smaller subset of
events, satisfying the relation Re(A,E0) = const., will yield scaling flow patterns.

8.4.1 Scaling violation in transverse flow

In ref. [12] , it was shown that the dependence of the transverse flow on the Reynolds
number is not negligible. A rough estimate gives (for b<∼bMax/2)

tan(< Θflow >) ≈ 1

3

[
S

(
1− b

bMax

)
− 3

Re

]
ε̄

ε̄z
, (8.58)
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where ε̄ and ε̄z are the average energy and the average energy in the z direction
respectively, of the nucleons participating in the flow. Relation (8.58) is compared to
experimental data at 400 A·MeV in ref. [13] and it was concluded that Re ≈ 8 for Nb
+ Nb, which is very close to the free gas value [14] at this energy. We recall that the
viscosity parameter, η, is related to the in medium cross section.

Figure 8.6: Comparison of flow angle dots measured in Ref. [13], with eq. (8.58) (full
line), using Reynolds number, Re = 8 for Nb+Nb. Reproduced by permission of World
Scientific Publishing Co. from [15]

In order to investigate the validity of our scaling as assumption, we first express
measured quantities in a scale-invariant way. Following ref. [16], we introduce a scale-
invariant transverse momentum per nucleon

p̃x = px/pc.m.proj. (8.59)

where px is the transverse momentum per nucleon obtained in the experiments and
pc.m.proj. is the center of mass momentum of a nucleon in the projectile. In the same way
we define the scale-invariant rapidity by

ỹ = yc.m./yc.m.proj.; (8.60)

In Fig. 8.6 different experimental data are plotted with the definitions described above.
Differences in the results arise from different multiplicity selections (i.e., different impact
parameters) and from different types of particles detected.

We use the definition introduced in ref. [8, 16, 17] to characterize the transverse
momentum dependence by one quantity: the slope of the rapidity dependence of the
transverse momentum near mid-rapidity. This parameter is called “Flow”. We denote
the corresponding scale-invariant slope by F̃ .

A more extensive analysis was done recently [16, 8], not only on the flow properties,
but also on other quantities. In Fig. 8.7 we present some of the results of ref. [16].
There is a remarkable resemblance between the dimensionless transverse Flow

F̃ =
dp̃x

dỹ
, (8.61)
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Figure 8.7: Projected transverse flow from three different experiment plotted in
dimensionless variables. The curves lie on the top of each other due to approximate
scale invariance. Reproduced with permission from [16]

and the value of the Reynolds number calculated with a viscosity coefficient as evaluated
in ref. [14]. This strongly suggests that the flow properties are much more sensitive to
viscosity than to equation of state.

If we display contour lines of constant F̃ on the same plot, we observe a behavior
shown in Fig. 8.8. At medium and high energies the qualitative behavior of the contour
lines are similar. The experimental data, however, rise somewhat more sharply than
the Reynolds number. This most probably indicates that the viscosity increases faster
with energy than

√
T calculated in ref. [2], because of other inelastic processes, pion

emission, etc. The same processes may also lead to a softening of the EOS which will
result in smaller transverse flow. Also, at high beam energies a partial transparency is
expected to occur which can reduce the transverse flow.

8.4.2 Disappearance of the transverse flow

The most drastic difference between the Re = const. and F̃ = const. curves appears at
low energies. Below Ec.m.

nucl. ≈ 60 - 70 MeV, the scale-invariant transverse flow F̃ drops
suddenly with decreasing energy, and below Ec.m.

nucl. ≈ 10 - 20 MeV it becomes negative.
A given mean-field potential leads to a well defined EOS (and vice versa) if we

assume thermal equilibrium in a given statistics. A sufficiently strong attractive mean
field leads to an EOS showing a first order, liquid-gas type, phase transition. Thus,
either the EOS or the reaction mechanism should change here drastically. The EOS
enters the scaling analysis via the sound speed. Namely, a scale-invariant flow pattern
can be obtained only if the pressure satisfies the relation ∇p = c2

s∇ρ with a sound
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Figure 8.8: Contour plots in the [A.E] plane. Full lines in (a) correspond to constant
Reynolds number. Full lines in (b) correspond to constant F̃ . The dotted curve indicates
the expected behavior of F̃ at low energies. Symbols circles, squares, diamonds, dotted
circles, inverted triangles, and triangles correspond to experimentally measured F̃ -
values of 0.4, 0.325, 0.275, 0.225, 0.175, 0.125, and 0.1 respectively. Reproduced with
permission from [16].

speed cs, which scales with the c.m. energy as

cs = c̃s

√
2Ec.m.

nucl./m = c̃s
√

2E0/m. (8.62)

For ideal gas c̃s =const. For an EOS with binding energy of 8 MeV and K =250 MeV,
the sound speed is c̃s = 0.7− 0.9 for ñ = 0.3− 1.0 and E0 = 50− 240 MeV (T =35-160
MeV). Below E0 =40 MeV, the sound speed starts to diverge with decreasing energy:
at normal nuclear density, ñ = 1 cs � 1, at ñ = 0.6 cs = 0.7 and at ñ = 0.3
cs → 0. This non-scaling behavior of cs, at low energies is related to the liquid-gas
phase transition of our EOS. Compared with the ideal gas pressure, the phase transition
in the EOS leads to a decrease of the pressure and consequently of the transverse flow.
In phase equilibrium the pressure is small but always positive. In nonequilibrium phase
transition the pressure may even become negative if the matter expands rapidly into the
supercooled liquid phase not having sufficient time to establish phase equilibrium. One
can also argue that the attractive nuclear interaction overcomes the repulsion caused by
the pressure. Such an attractive interaction is out of the scope of the fluid-dynamical
scaling studies.

The two effects, the softening of the EOS or the negative pressure caused by the
nuclear liquid-gas phase transition, and the predominance of the nuclear attractive mean
field (or surface tension), are, of course, the two sides of the same microscopic attractive
nucleon-nucleon interaction. Theoretical works in the Boltzmann–Uehling–Uhlenbeck
or Vlasov–Uehling–Uhlenbeck approach predict a “negative” deflection angle due to the



8.5. ASSIGNMENT 8 265

nuclear mean field. The same nuclear mean field leads to a fragmentation at a late
stage of a collision representing a liquid-gas phase. Recently these effects were also
detected and analyzed in detail by Westfall, et al. [18]. The point in energy where
the flow vanishes while turning from positive angle flow to negative is shown to be
sensitive to the in medium nucleon-nucleon cross section, [19]. i.e. on the viscosity,
which determines the scaling violations also.

8.5 Assignment 8
8.a Calculate the nonrelativistic scale invariant cross section in the non-relativistic

Blast wave model with local Maxwell–Boltzmann distribution. Assume that at
the breakup the ratio of the flow energy to the thermal energy is µ.

8.5.1 Solutions to Assignment 8

8.a

Figure 8.9: Dimensionless energy (X) distributions calculated in the Blast wave model.
Reproduced by permission of Elsevier Science Publishing from [1].

Nonrelativistically Eflow =
p2flow
2m

, Etherm = 3
2
T , and the total energy is E0 =

Eflow+Etherm. The thermal distribution is: f(p) = Const. e−
p2

2mT . Let µ =
Eflow
Etherm

.

Inserting these parameters into the cross section obtained in the Blast Wave
model, and calculating the dimensionless structure function yields:

G̃BW (Θ, X) = Const.
1 + µ

µ1/2
sinh

{
3
√
µ(1 + µ)X

}
exp

{
−3

2
[µ+ (1 + µ)X]

}
.

The Fireball model result is reproduced for µ = 0. In this case the cross section
is ≈ Const.X1/2e−

3
2
X . The structure function is plotted in fig. 8.9 for different µ

values. At X < 0.5 and at X > 3 the flow effects are clearly observable.
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Chapter 9

Direct Solutions of Kinetic Theory

In the study of heavy ion collisions we face a highly dynamical non-equilibrium system.
It is not in thermal equilibrium globally and at most of the time not even locally.
The solutions we have presented so far were based on perfect fluid dynamics assuming
local equilibrium. Usually this approximation is valid only at later stages of heavy ion
collisions.

We search for the real physical distribution function of the system for all particles
(in principle not only for the single particle distribution function but for the two and
more particle distribution functions also). There are different possible approaches to
find these non-equilibrium distribution functions like the Chapman–Enskog method or
its first order correction the viscous fluid dynamics, two-, three-, or more component
fluid dynamics, nuclear cascade models, nuclear cascade models with a mean field
like the Boltzmann–Uehling–Uhlenbeck (BUU), Vlasov–Uehling–Uhlenbeck (VUU) or
Landau–Vlasov (LV) approaches, molecular dynamics approaches which consider each
particle-particle interaction separately, like the Quantum Molecular Dynamics (QMD)
approach. There are even more complicated numerical microscopic simulations aimed for
higher energy collisions where multiparticle production is dominant. These are different
versions of the string or flux tube models like RQMD, QGSM, VENUS, FRITIOF,
HIJET, ATTILA, DPM, etc, and parton cascade models.

To present all these models and methods is exceeding the scope of an introductory
book. We will discuss only a few of these approaches and give a superficial insight into
some of these models, which will enable us just to understand the basic results and
constraints of the models.

The Chapman–Enskog method: We may start out from a perfect fluid dynamical
solution, which provides us with the local equilibrium phase space distribution, f (0)(x, p).
The we search for corrections to this distribution step by step. The first corrected
distribution function, f (1)(x, p), is assumed to be only slightly different from the local
equilibrium solution, f (1)(x, p) = f (0)(x, p) + g(x, p). This distribution function should
satisfy the Boltzmann Transport Equation (BTE), (see Chapter 3)

pµ∂µf
(1) ≡ Df (1) = C

[
ff

(1)
1 f

(1)
2

]
.

269
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Since g � f (0) and for f (0) the collision integral, C
[
ff

(0)
1 f

(0)
2

]
, vanishes, for f (1) the

BTE takes the following form

Df (0) = C
[
ff

(0)
1 f

(1)
2

]
= C

[
ff

(0)
1 g2

]
.

From this equation we can determine g(x, p). Now we can continue with the next
correction, then by inserting it back to the BTE we can evaluate this too [1, 2]. This is
schematically the Chapman–Enskog expansion. It is quite useful but the solutions even
after many steps of iteration will not deviate essentially or qualitatively from the local
equilibrium solution. For example the initial two peaked distribution (see sect. 3.4) in
a heavy ion collision cannot be obtained this way.

The importance of this method is that it provides us with the viscous fluid dynamics
and the transport coefficients at the same time at the first order step of this expansion.
The non-relativistic derivation of viscous fluid dynamics is quite straightforward and
it is included in many basic textbooks of statistical physics [1, 3]. The relativistic
counterpart (see ref. [2]) is quite involved and exceeds the frame of this introduction.

9.1 Viscous Fluid Dynamics
The viscous fluid dynamics is seldom used in relativistic physics. This is due to the fact
that there are still questions around the proper relativistic generalization of viscous
fluid dynamics [4]. It was shown that the usual relativistic generalizations of viscous
fluid dynamics may lead to unstable solutions. Dissipative effects are, nevertheless,
important as many non- relativistic calculations indicate. There exist a few relativistic
viscous calculations which can be viewed upon as approximations.

In relativistic dissipative fluid dynamics one adds new terms to the stress-energy-
momentum tensor and to the baryon current as follows (see sect. 2.3.1-2) [5, 6]:

T µν = −Pgµν + (P + e)uµuν + T µν (1), (9.1)

Nµ = nuµ +Nµ (1). (9.2)
In the absence of dissipation T µν (1) and Nµ (1) are both zero, and uµ is the flow four-
velocity of the matter. When dissipation is present one has a choice of defining uµ
to be the velocity of baryon flow or the velocity of energy flow. These are the Eckart
and Landau–Lifshitz approaches, respectively. In the Eckart approach Nµ (1) is zero
by definition. Then T µν (1) is a linear combination of a shear tensor, a projection
tensor on the hyperplane normal to uµ, and a heat flow vector, with coefficients being
the shear viscosity η, the bulk viscosity ζ, and heat conductivity λ, respectively. In
the Landau–Lifshitz approach T µν (1) does not have the term involving the thermal
conductivity; rather, Nµ (1) is nonzero and is in fact proportional to λ. These two
approaches are completely equivalent and describe the same physics. However, most
of the systems we are dealing with have small or no net baryon number, and so the
Eckart approach is indeterminate. Thus we must define uµ to be the velocity of energy
flow if the baryon density is negligibly small or vanishes. In these cases the thermal
conductivity simply is not defined because there is no net baryon density to define a
frame of reference with respect to which energy can be conducted.
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9.1.1 Entropy production

Let us use Landau’s definition of the flow velocity. It can be shown easily that in the
case of perfect relativistic fluids the divergence of the entropy four current vanishes [5]
(see Assignment 5.a). If we have both heat conductivity and shear and bulk viscosity,
the dissipation in relativistic fluid dynamics is

∂ι

(
suι − µ

T
N ι (1)

)
= −N ι (1)∂ι

(µ
T

)
− 1

T
Πι
ν ∂ιu

ν , (9.3)

where µ is the chemical potential, and N ν (1) = − n
w
Iνq is the particle flux density

four-vector (with respect to the flow four-velocity) and Πµν is the stress tensor. The
particle flux density takes the form

N ι (1) = −n
w
I ιq = −λ

c

(
nT

w

)2 [
∂ι
(µ
T

)
− uιuν∂ν

(µ
T

)]
, (9.4)

arising from the requirement that the entropy should not decrease [5]. Similarly from
the same requirement the stress tensor is

Πµν = −η (∂µuν + ∂νuµ − uµuι∂ιuν − uνuι∂ιuµ)− (ξ − 2

3
η)(∂ιu

ι) (gµν − uµuν) , (9.5)

where ξ and η are the coefficients of bulk and shear viscosity.
The equations of dissipative relativistic fluid dynamics form a self consistent set

of partial differential equations. These equations are the relativistic generalization of
the well known Navier–Stokes equations of fluid dynamics. It can be shown that these
equations are of the parabolic type and can lead to the propagation of perturbations
faster than the speed of light [7, 8, 4]. This poses a severe limitation on the application
of dissipative fluid dynamics to high energy processes. If, however, the flow structure
is of a length scale much larger than the mean free path, this precludes propagation
velocities faster than the thermal velocities of particles [9]. This is also necessary due
to the requirement that dissipative perturbations should be small, compared to other
dynamical processes. Consequently, we may use the relativistic theory without any
danger, for slow, non-relativistic process, like the droplet formation in relativistic matter
[10].

The equations of viscous relativistic fluid dynamics can be formulated in a way similar to the
nonrelativistic theory. For the sake of more compact notation we can introduce the operator of
derivation orthogonal to the flow

5ι ≡ ∆ιν∂ν = ∂ι − uιuν∂ν , (9.6)

where ∆ιν = gιν − uιuν is the projector in the direction orthogonal to the flow. (These have the
properties: 50

(LR) = 0, and 5i(LR) = −5i (LR) = −∂i, which means that it is purely spatial in the local
rest frame (LR) uµ5µ = 0, and ∆µν

(LR) = ∆µν(LR) = diag(0,-1,-1,-1) and ∆µ
ν (LR) diag(0,1,1,1) and

∆µ
µ = 3, These operators have the following properties: ∆µνuν = 0, ∆µν∆νσ = ∆µ

σ and 5µuµ = ∂µu
µ.

Using these projectors the stress tensor, eq. (9.5), can be written in the form

Πµν = −η(5µuν +5νuµ)−
(
ξ − 2

3
η

)
(5ιuι)∆µν (9.7)
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Using the thermodynamical identity

d
(µ
T

)
= −

( w

nT 2

)
dT +

(
1
nT

)
dP , (9.8)

the particle flux takes the form

N ι (1) =
λ

c
n

(
1
w

)[
5ιT − T

w
5ι P

]
, (9.9)

where λ is the coefficient of thermal conductivity. Nν (1) tends to zero if the baryon density n tends to
zero. Using the thermodynamical identity (9.8) the dissipation given by eq. (9.3) takes the form

∂ι

(
suι − µ

T
N ι (1)

)
= −λ

c

{
1
T 2
∂ιT 5ι T +

1
w2

∂ιP 5ι P −
1
wT

[∂ιT 5ι P + ∂ιP 5ι T ]
}
− 1
T

Πι
ν ∂ιu

ν .

(9.10)
For baryon free matter from (9.8) it follows that (1/T )5ιT = (1/w)5ιp. Using this for transformations
on the right hand side of eq. (9.10), the first term vanishes. I.e., the heat conductivity alone does not
lead to dissipation in baryon free matter, and obviously Nµ (1) = − n

w I
µ
q → 0.

Thus, for baryon free matter the equation for the entropy production, (9.10), takes the form

∂ι (suι) =
1
T
η

1
2

[5µuν +5νuµ −
2
3

∆µ
ν (∂σuσ)]2 +

1
T
ξ(∂σuσ)2 , (9.11)

so that the dissipation is proportional to η and ξ. Using the relations 5ν = 5µ∆µν and ∆µν5ν = 5µ,
the four divergence of the stress tensor takes the form

5µΠµν = ∆σ
µ∂σΠµν = −η(5µ 5µ uν)−

(
ξ +

1
3
η

)
5µ ∆µν(5ιuι) .

In the shearless limit, 5µ 5µ uν = 5ν(5µuµ), this reduces to

5µ Πµν = −
(
ξ +

4
3
η

)
5µ ∆µν(5ιuι) ∝ ∂µΠµν = −

(
ξ +

4
3
η

)
∂µ∆µν(∂ιuι) . (9.12)

Comparing this to the four divergence of the energy-momentum tensor of a perfect fluid

∂µT
µν = ∂µ(euµuν) + ∂µ∆µνP , (9.13)

we can see that in the equations of motion, in the shearless limit the only change is that the pressure
is replaced by

P → P ∗ = P + π , (9.14)
where the correction to the pressure in the one dimensional case relevant to us, π, is

π = −
(
ξ +

4
3
η

)
(∂µuµ) , (9.15)

where the unit of ξ, η is [MeV fm−2 c−1].

The contribution to the stress-energy-momentum tensor due to dissipation is

Tµν (1) = −η (∂µuν + ∂νuµ − uµuι∂ιuν − uνuι∂ιuµ)− (ζ − 2

3
η)(∂ιu

ι) (gµν − uµuν) .

(9.16)
The coefficients of shear and bulk viscosity must be positive from the requirement that
the entropy should not decrease. In fact, the divergence of the entropy current in the
absence of baryons is

∂µ(suµ) = − 1

T
T µ (1)
ν ∂µu

ν , (9.17)



9.1. VISCOUS FLUID DYNAMICS 273

from which one can calculate the total entropy change of the system. This equation
is a direct consequence of the equations of motion, which are just the usual ones
of conservation of energy and momentum, ∂µT µν = 0. In general this description
is applicable if the flow three-velocity is small compared to the speed of light. The
relativistic treatment is required mainly by the fact that the pressure is comparable to
the energy density, and by the absence of a net baryon number to define the motion of
the matter.

9.1.2 Shock front profiles

The entropy production can be evaluated in the shearless limit (9.15) following the
standard derivation given in sect 127 of ref. [5]. Introducing the notation

ȧ ≡ uµ∂µa ≡ uµa,µ , (9.18)

the entropy production is obtained as [11]:

σ̇ =

(
ξ +

4

3
η

)
1

nT

(
ṅ

n

)2

= ηeff
1

nT

(
ṅ

n

)2

(9.19)

This enables us to have a simple estimate for the width or thickness of the compression
shock fronts in heavy ion reactions. If the width of the front if Lsf the derivatives can
be estimated as

σ̇ =
∆σ

Lsf
, ṅ =

∆n

Lsf
. (9.20)

The values of ∆σ and ∆n are fixed by the Rankine–Hugoniot–Taub relations, so these
do not depend on the structure or thickness of the front. This way eq. (9.19 yields

∆σ

Lsf
∼ η̄eff

1

n̄T̄

∆n2

L2
sf n̄

2
. (9.21)

This indicates that the width of the shock front is proportional to the average effective
viscosity in the front

Lsf ∼ η̄eff . (9.22)

The width of the shock front is an important quantity because the fluid dynamical
considerations for the initial stages of the reaction can hold only if the system is
considerably larger than the width of the front. Estimates for intermediate energy
heavy ion reactions range between Lsf ≈ 0.5− 3fm.

The value of the viscosity can also be calculated in kinetic theory and for dilute gases
it is evaluated in standard textbooks[1, 3]. The viscosity of the quark gluon plasma
will be discussed in section 10.4. The viscosity is proportional with

√
T for dilute gases.

Estimates for low energy nuclear matter range between η = 6− 20MeV fm−2 c−1.
For sub-QGP densities and temperatures the transport coefficients were evaluated

by Danielewicz [12], see Fig. 9.1. We see that the viscosity diverges for low temperatures
and high densities. This is caused by the Pauli principle which limits the possible
collisions.
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Figure 9.1: The temperature and density dependence of the nuclear matter transport
coefficients. The dotted lines denote the Chapman–Enskog results with the effective
cross section σ = 30mb. Reproduced by permission of Elsevier Science Publishing from
[12].

This would result in a wide shock front in low energy reactions and therefore the
fluid dynamical approach is not valid in this domain. The shock front is sufficiently
sharp already at around 400 A MeV beam energy and above (see Fig. 9.2).

Although large scale numerical calculations are mostly in the perfect fluid approach,
they yield shock waves with similar thickness. This is due to the so called numerical
viscosity in these models.

We have seen the important effects of viscosity on fluid dynamical scaling in Chapter
8. These viscous effects are apparent in the observed transverse flow. The theoretical
values for the viscosity were taken from the calculation shown in Fig. 9.1 for the analysis
of scaling violation presented in Chapter 8. The good agreement between theory and
experiment indicates that heavy ion reactions are able to provide accurate information
both on the EOS and on the transport properties of the dense and hot nuclear matter.

9.2 Multi Component Fluid Dynamics

The initial distribution of nucleons in an energetic heavy ion collision is far from a
thermal equilibrium distribution. The nucleon distribution is close to the ideal Fermi gas
momentum distribution both in the target and the projectile, and these two distributions
are separated from each other by the beam momentum, which is much larger than the
Fermi momentum at relativistic energies (see sect. 3.4)

The basic idea behind the multi-fluid models is to start with two initially independent



9.2. MULTI COMPONENT FLUID DYNAMICS 275

Figure 9.2: Shock front profiles. Rest frame density, n, temperature, T , and pressure, P ,
as a function of the distance, z, in the shock-wave frame. The shock wave corresponds
to ELab = 400A MeV. Curves A and B are calculated using coefficients from Fig. 9.1,
curves C with η = 18.6 (1 + T/20)1/2 MeV/fm2c and curves D with η = 6 MeV/fm2c.
Curve A includes the effect of heat conductivity also the others do not. Reproduced by
permission of Elsevier Science Publishing from [12]

fluid components. These then interact with each other during the heavy ion collision,
and either get modified or populate other fluid components like the central thermalized
nucleon fluid. It is also possible to consider different particle species as fluid components.
Two fluid dynamics for example is a standard theory to describe electron - ion plasma.

There is a large number of such approaches in the literature. [13, 14, 15, 16, 17] We
can start out from the BTE again, particularly from the form introduced in sect. 3.5
for mixtures. If the components are identical particles, like nucleons, then the total
nucleon phase space distribution is given by

f(x, p) =

Ncomp∑
k=1

fk(x, pk) .

Each component is then described by a separate BTE

D fk =
∑
j

Ckj [ffkfj] .

The sum of these equations returns the full BTE. One can get the conservation laws for
each component as in sect. 3.6 and a set of fluid dynamical equations (sect. 3.9). Of
course the collision integrals will not vanish completely now, and the obtained set of
fluid dynamical equations will have couplings among them, so called drag terms (arising
from the collision integrals).

The drag terms among the fluid components can be evaluated in kinetic theory from
the collision integrals. Quite frequently simplifying assumptions are applied which are
different in different models.
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For example in ref. [14] each collision among two different components result in
particles belonging to the third thermalized central component. Thus the fluid dynamical
equations have a source term in the continuity equation for the third component and two
corresponding loss or drain terms in the first (projectile) and second (target) component.
The particles scattering into the third thermal component carry all their energy and
momentum with them to the third component. Due to this the target and projectile
components will have the same specific energy but the temperature of the third thermal
component will increase. This leads to a gradual thermalization and local thermal
equilibrium is achieved in roughly 8fm/c after the impact (see Figure 9.3)

Figure 9.3: The development of the momentum distribution of the central region in
the beam direction and in the orthogonal direction. The speed of thermalization is
similar to the one obtained in cascade and kinetic models. The arrows indicate the
initial target and projectile velocity. The given percent values indicate the degree of
thermalization; < n3 > / < n >, in the region ∆z around the c.m. Reproduced with
permission from [14]

In the multifluid models shock waves also develop and their thickness is of the order
of 1-3fm. However, if the nucleon nucleon cross section is reduced to σ = 2mb, the
model becomes transparent, a majority of particles will continue their propagation after
the collision in the same direction and only a small third component will develop.

A disadvantage of the multi-component fluid dynamical approach is that the compo-
nents are not always forming a dilute gas, and consequently the coupled fluid dynamical
equations cannot be derived in a rigorous way from the BTE. It is particularly problem-
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atic to use more fluid dynamics if we intend to describe a phase transition. The fluid
components are generally overlapping in space with different partial flow velocities and
other characteristic parameters. It is hard to imagine how can one find a unique well
defined description in a more fluid model for a system undergoing a phase transition
during the collision. Just imagine one fluid component is in one phase and another
component, overlapping with it but flowing in a different direction, is in the other phase
or in the mixed phase!

9.3 Solutions on microscopic level

The most straightforward way of solving the Boltzmann Transport Equation is to
simulate the particle propagation and collisions on a computer. The numerical Monte-
Carlo method for the solution can be performed in many ways. The most frequent is,
however, to represent each particle numerically. This makes it easy and straightforward
to implement the collision term, cross sections, etc. in the numerical model.

One such simulation gives of course a very fluctuating single particle distribution
function, f(x, p), but it is not problematic nowadays to calculate a large number of
simulations for the same collision and the average of this ensemble of simulated events
will provide already a smooth distribution. Most frequently a statistical ensemble of 1000
to 10,000 events is realized. In most cases the statistical accuracy of the experiments
can also be reached by numerical simulations. (The exceptions are exotic particles
with a multiplicity of 10−4 or 10−5 per collision: to reproduce their cross sections with
satisfactory accuracy is quite expensive numerically.)

The most important advantage of these microscopic models that they produce a
physical event closely similar to the experimental events. The final set of emerging
particles in a numerical simulation can be analyzed exactly the same way as it is done in
experiments. All measurables can be evaluated in a straightforward way. The numerical
codes doing such experimental evaluation are frequently the same and they are used
both for measured particle data as well as for simulated data.

Obviously these microscopic models are the most frequent and most popular in
the study of heavy ions. They provide immediate explanation to many measured
effects based on microscopic assumptions only. Although the realization of all possible
microscopic processes may be quite extensive the task is quite straightforward and can
be performed safely. These codes are not facing problems with numerical instabilities,
etc. unlike many of the numerical fluid dynamical models.

To provide a deeper macroscopic insight into the reaction mechanism and into the
collective behavior of the matter needs, nevertheless, a quite serious extra effort in these
models. Macroscopic parameters, like local baryon density or energy density can be
evaluated using coarse graining. The calculation of all thermodynamical quantities,
like the local entropy density, is not an easy task any more. Thus to evaluate e.g. the
underlying EOS of such a model is possible but usually so difficult that it is hardly ever
done.
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9.3.1 Intranuclear cascade models

The Intra-Nuclear Cascade (INC) model was originally introduced for high energy (GeV)
p+A collisions more than 40 years ago. It followed numerically the path of the incoming
proton in the phase space, followed all its collisions with the nucleons of the target.
A collision is simulated the following way: if the proton along its path approaches a
nucleon closer than some minimum distance, d = σ(

√
s), the proton will scatter and

the final state will be randomly generated according to the energy,
√
s, dependent cross

section. Total energy and momentum should be conserved of course. Then the outgoing
particles propagate along straight line trajectories until the next collision.

Inelastic processes like N + N 
 N + ∆ or ∆ 
 π + N can be included in a
straightforward way.

At low energies the Pauli principle is also taken account usually in the following way.
A collision will be Pauli-blocked randomly according to the probability [1 − f(x, p)],
evaluated at the final state of the outgoing particles.

The Nucleus - Nucleus INC is a superposition of the earlier p+A models. We
describe simultaneously the collisions of all projectile (and target) nucleons. We have to
set up an initial state: we generate random positions for the nucleons according to the
density distribution of the nucleus, and we also generate random momenta according to
the Fermi distribution of the nucleus. These momenta are then boosted by the beam
velocity in the frame of calculation.

To avoid that the target and projectile nuclei fly apart before their impact the
random Fermi momenta are frozen in until their first collision, i.e. they propagate only
according to the beam velocity. The first collision unfreezes the random Fermi motion.

The proper treatment of secondary collisions is also important in INC models for
Nucleus - Nucleus collisions. Two nucleons within the projectile nucleus or the target
nucleus are not allowed to collide until their first collision, but if a nucleon has already
collided the secondary nucleons are allowed to collide on any nucleon in the system.
Earlier INC models did not always allow all collisions, limiting therefore the possibility
to achieve thermalization in the model.

It turns out, however, that the INC is not a solution of the BTE in a strict sense,
but rather of an other set of kinetic equations. For details see ref. [18] and references
therein.

9.3.2 Mean field models: BUU - VUU - BN - LV

The BTE was introduced in Chapter 3 without an external field. In the non-relativistic
theory it is usual to include on the left hand side of the BTE the effect of an external
force[3]

(∂t + ~v∇x +
~F

m
∇p)f1(x, p) = C[f1f2]or

(∂t + ~v∇x −
∇xU

m
∇p)f1(x, p) = C[f1f2] .

The nucleus being a self-bound system of nucleons is kept together by a mean field
potential U . Nucleons are then bound in this self-consistent mean field potential, and
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they propagate along curved trajectories as determined by the mean field.
The nucleons were artificially kept together initially in the INC model, furthermore,

they did not feel the repulsive effect of nearby nucleons even at large nucleon densities.
To avoid these problems it is straightforward to introduce an “external” potential.

Although, the mean field potential is calculated in low energy nuclear physics
accurately using advanced methods [18] in most calculations the mean field is assumed
to be a simple function of local baryon density. The baryon density is calculated from
the average density of the whole calculational ensemble. Thus it provides a smooth
potential surface responsible for binding and collective repulsion.

The introduction of such a mean field potential solved the problem of keeping the
nuclei together before the collision and freezing in the momentum distribution before
the collision is not necessary any more. In this model the initial states of nuclei can be
dynamically stable nuclear configurations.

The introduction of mean field led to a revolution in the capacity of the microscopic
models. For example the cascade models were not able to describe accurately the
observed collective transverse flow in heavy ion collisions. The introduction of mean
field, which is repulsive at high average baryon densities reproduced the data without
any difficulty.

The mean field potential has a certain degree of freedom, for example the potential
may be momentum dependent. Considering such a momentum dependence the same
transverse flow experiments can be described with a much softer potential.

Contrary to the overwhelming success of these microscopic models with mean field
there are some drawbacks of the model which should be mentioned. One is a theoretical
problem of separating the nucleon nucleon interaction to a mean field and a cross section
part. In a dense matter this is not a trivial task and obviously the nucleon-nucleon
cross section must not be the same as in the vacuum. On the solution of this problem
see ref. [19] and references therein.

The other problem is related to the fact that due to the ensemble averaging the mean
field is smooth and density fluctuations are decreased. This leads to large discrepancies
compared to observed nuclear fragment formation. The smooth mean field does not
permit the formation of smaller self-bound clusters or nuclear fragments. This was
clearly contrary to experiments. Thus these models are manifestly applicable for single
particle observables, but phenomena like fragment formation or multifragmentation
cannot be calculated in a one particle theory.

9.3.3 Models of Molecular Dynamics

To solve this problem we need to consider N-particle correlations and N-particle dis-
tributions explicitly. This is done in the classical equations of motion approach or
in molecular dynamics approaches or in the so called Quantum Molecular Dynamics
(QMD) approach (see refs. [20, 21, 22] and references therein).

Here we have to follow each particle separately and calculate their interactions with
all other particles one by one. This is a much larger computational expense than the
previous approaches, but it is necessary to maintain the N-particle correlations.
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In the purely classical approaches quantum features are missing. The theoretical
problem of constructing a nucleon nucleon interaction which reproduces both the
scattering and the ground state properties is also a nontrivial problem[19]. The QMD
approach is essentially a classical equation of motion approach also, but it includes a few
quantum effects like the random scatterings, Pauli blocking of scatterings and stochastic
particle decays. These models are quite successful in reproducing multifragmentation
experiments, but similarly to the previous microscopic models it requires a considerable
extra effort to extract collective macroscopic information from the model applicable for
the dense and hot matter.

9.4 Assignment 9
9.a Assume that we have two coexisting phases in a fluid, i = 1, 2, described by volume

fractions, λi = Vi/Vtot, or equivalently by particle number fractions, αi = Ni/Ntot, so
that λi = αin/ni, where ni = Ni/Vi. Let us assume that the system is thermalized but
the Gibbs criteria are not necessarily fulfilled. The energy momentum tensor for the
whole system can be given as

Tµν =
∑
i

λiT
µν
i .

Calculate the entropy production as a function of the change of αi and λi.

9.4.1 Solution to Assignment 9
9.a The partial energy-momentum tensors are given by Tµνi = wiu

µuν − Pigµν . From

Tµν ,ν uµ = 0  

we obtain ∑
i

uµ (λi(wiuµuν − Pigµν)) ,ν = 0  

∑
i

(λiwi),ν uµuµ︸ ︷︷ ︸
=1

uν + λiw uµu
µ,ν︸ ︷︷ ︸

=0

uν + λiwi uµu
µ︸ ︷︷ ︸

=1

uν ,ν −(λiPi),ν uµgµν︸ ︷︷ ︸
=uν

=

∑
i

(λiwi),ν uν + λiwiu
ν ,ν −uν(λiPi),ν = 0.

From the continuity equation, (nuµ),µ = 0 follows that uµn,µ = −nuµ,µ and uµ,µ =
−(uνn,ν )/n. Inserting this into the previous equation:

∑
i

nuν

 1
n

(λiwi),ν −n,ν
(λiwi)
n2︸ ︷︷ ︸

(λiwi/n),ν

− 1
n

(λiPi),ν︸ ︷︷ ︸
=(λiPi,ν+Piλi,ν)

 = 0 .

Using the relation between the volume and particle number ratios of the two phases,
λi = αin/ni, we arrive at∑

i

nuν
[
(αiwi/ni),ν −

αi
ni
Pi,ν −

1
n
Pi

(
αin

ni

)
,ν

]
= 0 ,
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and after performing the differentiations we get∑
i

nuν
[
αi,ν

(
wi
ni

)
+ αi

(
wi
ni

)
,ν −

αi
ni
Pi,ν −

1
n
Pi

(
αin

ni

)
,ν

]
= 0 .

Now we make use of the thermodynamical relations χi = wi/ni = εi + Piνi = Tiσi + µi,
and its differential form dχ = Tdσ + νdP , which leads to Tidσi = d

(
wi
ni

)
− 1

ni
dPi, and

using the relation ˙ ≡ ∂τ ≡ uν∂ν we can rewrite the above expression in the form

n
∑
i

[
α̇i(Tiσi + µi) + αiTiσ̇i −

1
n
Pi

(
αin

ni

)
˙
]

= 0.

Reorganizing the terms we arrive at

n
∑
i

[
Ti(α̇iσi + αiσ̇i) + α̇iµi − νPiλ̇i

]
= 0.

Let us now assume that T1 = T2 = T , i.e. the thermal equilibrium is established

σ̇ = (
∑
i

αiσi) ˙ =
1
T

[
−
∑
i

α̇iµi + ν
∑
i

Piλ̇i

]
= − 1

T
(µ1 − µ2)α̇1 +

ν

T
(P1 − P2)λ̇1 .

Thus non-equilibrium phase transition leads to entropy increase!

To solve the complete dynamical problem each of the not satisfied Gibbs criteria should
be replaced by a dynamical equation. According to non-equilibrium thermodynamics
the generalized currents like α̇i or λ̇i are driven by generalized thermodynamical forces
which act in the direction of restoring the equilibrium:

µ1 = µ2  α̇1 = −(α− αeq(n, T, P ))/τch ,

P1 = P2  λ̇1 = −(λ− λeq(n, T, P ))/τpr .

Consequently the dissipation is determined by the ratio of the time scale characterizing
the dynamics of the process, τdyn, and the phase equilibration times, τch and τpr. An
explicit example for such a calculation with explicit evaluations of the time scales is
given in refs. [10, 23]
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Chapter 10

Search for Quark Gluon Plasma

10.1 Introduction

The search for quark-gluon plasma is in progress at present, thus it is not easy to present
a final textbook-like assessment of the field. The basic field theory describing hadrons
at high energies is the Quantum ChromoDynamics (QCD). Extensive theoretical and
experimental effort is necessary, nevertheless, to establish links between QCD and
heavy ion experiments. In this brief introduction most generally accepted directions are
mentioned. Subsequently some of the important points are discussed in larger detail.

In collisions of two nuclei at ultra-relativistic energies we expect deposition of
energy into a space-time region which is much larger and has longer life-time than the
fundamental hadronic scale of 1 fm. Thus such collisions provide us with an opportunity
to study hot and dense hadronic matter under conditions similar to those which existed
in the early universe. The main goals of such investigation are the determination of
the properties of the strongly interacting matter at high densities, the determination of
the nature of the quark - hadron phase, the verification of the existence of quark gluon
plasma in nature and the determination of the parameters of the quark-hadron phase
transition which is predicted by lattice QCD calculations and by phenomenological
models.

The investigation of the properties of matter at extreme densities provides a link
between nuclear and particle physics. It is a natural extension of the study of properties
of the nuclear matter, and it is inspired by the dynamics of strong interactions as
revealed in particle physics. It provide an experimental tool to study many-body
systems at high energies beyond the possibilities of particle physical studies.

To achieve energy densities which are high enough for the deconfinement of quarks
and gluons, nuclear beams with energies above 100 A·GeV are needed (for fixed target
experiments), although some idealized theoretical calculations give a threshold to the
phase transition as low as 10 A·GeV. A first exploratory phase in 1986-1987 at the
CERN-SPS and BNL-AGS pursued successfully the aim to demonstrate the feasibility
of an experimental study of dense hadronic matter. New results are expected from
experiments in 1990-1993.

At the CERN-SPS, lead beams will be available in 1994, upgrading the present
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program with Oxygen and Sulphur beams significantly. Gold beams are presently
accelerated at BNL - AGS already. The Relativistic Heavy Ion Collider (RHIC) at BNL
will increase the available energy. The CERN Large Hadron Collider, (LHC) which is
expected to start operation in 1998, will increase the c.m. collision energy by more than
a factor of 100, and is expected to lead to energy densities several times higher than
those at SPS energies (see Table 2.1). Even with conservative estimates of the energy
densities, the gain from the large collision energy at LHC may well be a decisive factor
in the observation of deconfinement transition. On the other hand, the SPS provides
the best energy range for the study of matter at high baryon density.

10.1.1 Theoretical expectations

At extreme densities we expect a deconfinement transition because the presence of
many color charges will screen the confining potential between the members of a given
qq̄ or qqq system. In the early universe, this transition presumably took place a few
tens of microseconds after the big bang. Heavy ion experiments provide the tool to
study in the laboratory both the quark-hadron phase transition and the properties
of the primordial quark-gluon plasma. On the theoretical side, strong interaction
thermodynamics, including the critical behavior at the transition, is described by QCD.

QCD Predictions

The parameters of the transition (energy density, temperature, baryon density, screen-
ing length) have been studied in QCD, both by computer simulation of the lattice
formulation and in various phenomenological approaches.

In computer simulations of lattice QCD, one tries to calculate the relevant quantities
from first principles, without any simplifying physical assumptions. The results give us
a reasonably good general understanding of the critical behavior of strongly interacting
matter at vanishing baryon number density (nB = 0). This is the first time that basic
microscopic dynamics leads directly to predictions for equilibrium thermodynamics.

The main predictions from lattice QCD are:

(i) There is an abrupt change from hadronic to QCD regime, which may be interpreted
as a phase transition. Whether the transition is first or second order or smooth
depends on several model parameters and it is the subject of current research;

(ii) For 2-3 light quark flavors one finds Tc = 150-200 MeV, which corresponds to a
critical energy density εc = 1-3 GeV/fm3, necessary to produce QGP;

(iii) The plasma becomes ideal (ε ≈ 3P ) only for T/Tc ≈ 1.5− 2.

Alternative approaches to lattice QCD are given by effective Lagrangian models,
bag models and by chiral perturbation theory. These are able to handle baryon rich
matter also. Their results agree essentially with those from lattice QCD.
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Global Characteristics of the Collision

The crucial features of the collision, such as the highest energy density, the temperature,
or the entropy density cannot be measured directly but have to be inferred from
experimental observables. The basic quantities for such estimates are the multiplicity
density, dN/dy of produced hadrons, the abundances of various particle species and
their distribution in phase space (pt, y).

Some recent significant experimental observations may be summarized as follows:

Energy density: Large multiplicities, of the order of hundreds per unit of rapidity,
have been measured. The multiplicity is strongly correlated to the transverse energy, ET .
The shape of the transverse energy distribution versus multiplicity is governed by the
geometry of nucleus-nucleus collisions, reflecting the increasing number of “participants”
with decreasing impact parameter, b. The corresponding values of energy density,
estimated using the Bjorken model, go up to ε ≈ 2GeV/fm3 at 200 A·GeV with Oxygen
and Sulphur beams at SPS.

Baryon density: From p-A collisions at A≈200, we know that in passing through
a nuclear target, the projectile proton loses approximately 2 - 2.5 units in rapidity,
δy ≈ 2− 2.5. With this loss, for heavy ions the maximal stopping occurs for ∆y ≈ 4− 5.
Model calculations suggest then that the baryon density, n, becomes as large as
nB/n0 ≈ 10 − 20 at the point of maximum stopping. A more detailed discussion of
nuclear stopping power is given later in this chapter.

Freeze-out volume: Experimentally, the freeze-out size of the system can be de-
termined by particle interferometry, based on the Hanbury-Brown and Twiss effect,
originally invented to measure star sizes. If freeze-out takes place when the mean
free path, λ, of pions has reached the size of the system, the transverse freeze-out
radius, assuming the Bjorken model scenario, becomes RF ≈ 0.7fm × (dN/dy)α, where
α = 1/2− 1/3. This yields RF values almost a factor of two larger than the radii of the
projectiles. In case of central lead-lead collisions one thus gets the radii ranging from
17 to 31 fm as the beam energy increases from SPS to LHC energies (17 A·GeV to 6300
A·GeV in c.m.).

10.1.2 Experimental facilities

Existing accelerators provide essentially complete coverage in center-of-mass energies
from

√
s ≈ 3 to 20 A·GeV(see Table 2.1). The maximum attainable energy density

is of the order of the critical value, εc ≈ 2 GeV/fm3, needed for a phase transition.
The region of maximum baryon density at ycm = 0 is expected to be in between the
top energies of AGS and SPS for the projectiles presently, available. Luminosity and
running time are excellent at the AGS and mostly adequate at the SPS, but still
marginal for some rare signals (like J/Ψ). However, only light ions could be accelerated
up to 1991, which severely restricted the volume and the lifetime of the intermediate
states that can be studied at present machines. The global assessment is therefore that
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existing accelerators are adequate in the covered energy range, but heavier projectiles
are certainly needed.

With the advent of the new heavy ion injectors at Brookhaven (1992) and CERN
(1994) and after completion of RHIC (l997), the full spectrum of ion species will be
available for experimentation with essentially complete coverage in energy from

√
s = 3

to 200 A·GeV. The maximum energy density will increase by a factor of two at RHIC,
the maximum baryon density could be within the range of the SPS (or slightly above),
and the luminosity will increase by over one order of magnitude at the SPS. The
luminosity at RHIC will be adequate for most signals, however, rare hard processes will
be only marginally within reach. Therefore these new facilities constitute a significant
improvement in all aspects.

10.2 Quarks and gluons
The theory of quarks and gluons, the quantum chromodynamics (QCD) is the accepted
theory of strong interactions. Quarks and gluons are the constituents of hadrons: quarks
are spin-1

2
fermions, with fractional electric charge and have one of three colors, Nc = 3.

The color is a new quantum number analog to the electric charge. Gluons are massless
spin 1 bosons, similar to photons, but interact among themselves because of their color
charges, which can be as many as N2

c − 1 = 8. Quarks come in different flavors,
u, d, s, c, b, t. (See Table 10.1.) Ordinary hadrons, p, n, π, ∆, etc., contain u and d
quarks only, strange hadrons, Λ,Ω, K, etc. contain strange quarks also, and so on (see
Table 10.2). A detailed introduction to QCD can be found in ref. [1] while a detailed
introduction to the thermodynamics of high temperature QCD can be found in [2]. In
this chapter we use the units ~ = c = 1.

Name Flavor Electric Mass≈
charge [MeV]

up u 2/3 5
down d -1/3 9
strange s -1/3 180
charm c 2/3 1500
bottom b -1/3 5000
top t 2/3 ?

Table 10.1: Quark properties

The color gauge group of QCD is SU(3). The generators of the group are Ga, where
a = 1, ...., N2

c − 1, and they satisfy the commutation relation

[Ga, Gb] = i fabc Gc , (10.1)

with the group structure constants fabc. The generators are conventionally orthogonal-
ized such that

Tr[GaGb] =
1

2
δab . (10.2)
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The generators of the group can be represented by the 3×3 Gell-Mann matrices, λa,
e.g. Ga = 1

2
λa. The gluons are described as the quanta of the gauge field Aµa with the

color index a, a = 1, ..., N2
c − 1 and space-time index µ. The field strength is

F µν
a = ∂µAνa − ∂νAµa − g fabcA

µ
bA

ν
c , (10.3)

where g is the strong coupling constant. The gluon field and the field strength are
not invariant under an infinitesimal gauge transformation αa(~r, t). The gluon fields
transform as

Aµa → Aµa + g fabcA
µ
bαc − ∂µαa , (10.4)

the field strength as
F µν
a → F µν

a + g fabcF
µν
b αc , (10.5)

and the quark fields as
ψk → exp[igGaαa]ψk. (10.6)

Here Ga is an Nc ×Nc representation of the color group, and ψk is an Nc-dimensional
vector in the color space representing a quark field of flavor k. The field strength square
is invariant under gauge transformations, F µν

a F a
µν → F µν

a F a
µν . The Lagrangian of QCD

is

L =

Nf∑
k=1

ψ̄k(iγµ∂
µ −Mk − gγµAµaGa)ψk −

1

4
F µν
a F a

µν , (10.7)

where γµ’s are the Dirac gamma matrices, g is the coupling constant of quarks to
gluons, Mk is the mass of quarks of flavor k, and Nf is the number of flavors. If g = 0
this Lagrangian describes non-interacting, massive quarks, and N2

c − 1 non-interacting,
massless, free gluons [2].

In the non-interacting case the EOS of the QGP is just given by the bag model
EOS, where we assume a combination of a free ideal fermion gas (quarks) and a free
ideal boson gas (gluons) with the appropriate degeneracy. A bag constant, B · gµν , is
added to the energy momentum tensor to account for the vacuum energy difference
between the physical and perturbative vacua.

The EOS can be directly calculated from the microscopic Lagrangian via the Grand
Canonical Partition function,

Z ≡ ZGC = Z(V, T, µ1, µ2, ...) = Tr
[
exp

(
−(Ĥ − µiN̂i)/T

)]
, (10.8)

for i = 1, 2, ... conserved charges. All thermodynamical quantities can be calculated
from the thermodynamical potential Ω ≡ lnZ as it is described in chapter 4 (on EOS).

The functional integral representation of the partition function for high temperatures
is presented comprehensively by Kapusta in ref. [2].

10.3 Lattice QCD
In this section some basic features and recent results of lattice QCD will be presented.
The aim is not to give an introduction to the physics of lattice QCD, just to give an
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Hadron Quark content
π+, ρ+ ud̄
π−, ρ− dū

π0, ρ0, ω0 † uū, dd̄
η0, ω0

1, ω
0
8

† ss̄, uū, dd̄
φ0 ss̄

K0, K+, K0∗, K+∗ † us̄, ds̄
K̄0, K−, K̄0∗, K−∗ † us̄, ds̄

p, ∆+ uud
n, ∆0 udd

∆++ uuu
∆− ddd

Σ+, Σ+∗ uus
Σ−, Σ−∗ dds
Σ0, Σ0∗, Λ0 uds

Ξ0, Ξ0∗ uss
Ξ−, Ξ−∗ dss

Ω− sss

Table 10.2: Quark composition of some hadrons. ( †Linear composition of these)

overview which enables the reader to understand the final results of these calculations,
and to understand the present possibilities and limitations of this approach. A detailed
introduction to lattice QCD can be found for example in the book of Creutz [3].

One has to mention the numerical constraints of the present computations. To be
able to perform calculations in the asymptotic scaling regime especially for QCD with
dynamical quarks a new generation of computers with performances of at least 103

times the present ones are needed. Such projects are in principle realistic and under
study. Taking the pure gluon theory as a guide, many of the results obtained up to
now in QCD with dynamical quarks may not change very much when we move into
the asymptotic scaling regime. It is expected that in 3-4 years we will know the QCD
predictions much better, with an accuracy sufficient to discuss the available experiments
at that time.

In this approach we want to start from first principles, the Lagrangian of quantum
chromodynamics (QCD), and obtain quantitative results on the equation of state and
on transport properties of the plasma. There is no analytical method known, which
allows this. Therefore one has to perform extensive numerical simulations. Although
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this research is in progress there are some interesting developments regarding the finite
temperature phase transition, its temperature in physical units and its order. The
physical case, two nearly massless and one massive quark, is difficult to simulate. The
simulations have mainly been performed with some other number of flavors, Nf . The
calculations have mainly been done in the following cases:

Pure gluon theory (Nf = 0)

Here one may introduce quarks as external sources, then this approach is called the
valence quark (or quenched) approximation. Due to the relatively easier computation
this approach has been widely used, because, the action is local.

Four degenerate flavors

When discretizing the action one wants to keep chiral symmetry1because the important
mechanism governing the phase transition is supposed to be the restoration of the
spontaneously broken chiral symmetry. It is, however, not known how to keep the
full chiral symmetry in the lattice discretization without a severe multiplication of the
number of flavors. The use of so called Susskind or staggered fermions (see below)
is a compromise. Part of the chiral symmetry is explicit at the prize of having four
degenerate flavors. The flavor symmetry is broken on the lattice, but should be restored
in the continuum limit [5, 6, 7].

There exists now an exact algorithm, the hybrid Monte Carlo algorithm [8] by which
the computer time does not seem to grow much worse with the lattice volume than the
local Metropolis update for the pure gluon theory. At present values of the coupling
constant it is, however, about 1000 times slower and, as will be discussed below, it is
expected to become relatively even slower as the continuum limit is approached.

Nf = 2 or 2 + 1

This case is nearer to the physical situation. We can use staggered fermions, however,
only by assuming that two flavors correspond to taking the square root of the fermion
determinant (see below). There is then no fermionic representation on the lattice, and
we don’t know if we have the symmetry corresponding to the number of flavors. There
is also no exact algorithm.

1Chiral symmetry is invariance in QCD under the transformation ψ → eᾱτ̄γ5ψ, where ᾱ is a constant
3 × 3 transformation matrix, τ̄ is the isospin, SU(2), matrix, and γ5 is a Dirac gamma matrix. A
potential or interaction may act in a way that the energy of the transformed state changes. For free
particles the quantity 〈ψ̄ψ〉 can be expressed by the integral 〈ψ̄ψ〉 = m

∫
d3p 1/

√
p2 +m2fFermi(p),

which goes to 0 if the mass tends to zero and to non-zero if the mass is finite. This quantity is used to
test the chiral phase transition as an order parameter and called the chiral condensate. In QCD it
is finite when chiral symmetry is broken and it drops to zero when chiral symmetry is restored. On
chiral symmetry see for example ref. [4]
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10.3.1 The lattice formalism

On the lattice we simulate equilibrium thermodynamics. There is very little known
theoretically about the non-equilibrium properties, which may of course also be relevant
to the heavy ion experiments.

The physical temperature, T , and volume, V , are given by

T = 1/(Nτ a) = β−1

V = (Nσ a)3 (10.9)

where a is the lattice spacing. Then VLattice = L3 =
(
Nσ
Nτ
· ~c
T

)3

, i.e. the physical volume
of the calculational cell (forming the basis of the periodic boundary condition) can be
expressed by the temperature and the lattice size in space and temperature direction.
The parameters which one can vary are: the coupling constant g, the bare quark mass,
mq a, the lattice size in the temperature-direction, Nτ , in the space- direction, Nσ,
and the number of dynamical quark flavors, Nf . Because of asymptotic freedom there
should exist a continuum limit when g → 0. In this limit the correlation lengths go
to infinity in lattice units, i.e. for fixed physical masses, which are the inverses of the
correlation lengths, the lattice spacing, a, goes to zero. Furthermore we want to take
the thermodynamical limit V →∞ at fixed T .

The lattice discretizes the space-time, so that x becomes a discrete variable, describing the
lattice site. There are links in the lattice extending from this site to all neighboring sites. A
directed link can be characterized by the site of origin and by the direction of the neighbor:
x, µ. Four directed links may form a closed loop, a plaquette. The continuum gluon and quark
fields, Aµ(x) and ψk(x), are represented by bosonic and fermionic quantities, Ux,µ and χx,k
respectively. We can associate a matrix, Ux,µ, with every link of the lattice

Ux,µ = eig A
c
µG

c a , (10.10)

where a is the lattice spacing and µ is the direction of the link. Acµ is evaluated at the
coordinate of the middle of the link. In fact Wilson [9] proposed an action in terms of the
lattice, which returns the QCD in continuum limit. The action is a sum over all elementary
squares of the lattice

S =
∑
�

S�. (10.11)

The action on each of these squares or plaquettes is the trace of the product of the group
elements surrounding the plaquette. It consists of a gluonic part, SG, and a fermionic part,
SF .

The functional integral representation of the partition function, thus can be discretized on
the lattice by introducing the contributions of plaquettes to these integrals and reducing the
functional integrals to discrete sums over all possible discrete configurations.

ZQCD =
∫ ∏

x,µ

dUx,µ
∏
x,k

dχx,kdχ̄x,k exp[−SG(U)− SF ].

The contribution of gluons to
∑
S� in terms of the Ux,µ matrices

SG(U) =
6
g2

∑
ν>µ

(
1− 1

3
Re
(

Tr[Ux,µUx+µ,νU
+
x+ν,µU

+
x,ν ]
))

, (10.12)
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is the so called Wilson action 2

The contribution of the fermions is more complicated, see [10] and references therein. The
so called staggered fermion action is given by

SF =
K∑
k=1

χ̄x,kQ
x,y
k χy,k,

where K = N s
f is the number of staggered fermions (in the continuum limit Nf = 4N s

f ), χ
and χ̄ are so called Grassmann variables [2], and Qx,yk (U) is the fermion matrix defined as

Qx,yk (U) =
3∑

µ=0

Dx,y;µ +Mkaδx,y.

The hopping matrices, Dx,y;µ, have non-zero elements only for y = x ± µ̂, and they are
given by Dx,y;µ̂ = 1

2ηµ(x)
[
Ux,µδx,y−µ̂ − U+

y,µδx,y+µ̂

]
, where the phase factors are ηµ(x) =

(−1)x0+x1+...+xµ−1 for µ > 0 and η0(x) = 1 [11].
The other representation of fermions on the lattice is the so called Wilson fermion

representation, which we will not discuss here.
The contribution of the fermions can be integrated out [2, 10] and so only the quantities

Ux,µ remain in the contribution

ZQCD =
∫ ∏

x,µ

dUx,µe
−SG(U)

(
K∏
k=1

det [Qk(U)]

)
, (10.13)

where the four dimensional lattice has the size Nτ × N3
σ . The coefficient 6/g2 ≡ βLattice =

2Nc/g
2 is frequently used to study the properties of phase transition. By varying βLattice on a

fixed lattice a phase transition may be observed.
The observables can be obtained by taking expectation values with respect to the integrand

in (10.13).

To characterize the two phases, hadron matter versus quark-gluon plasma, one
usually employs order parameters, namely the Polyakov loop

〈L〉 ≡ 〈Tr
Nτ∏
x0=1

U(~x,x0),4〉, (10.14)

or the chiral condensate
〈ψ̄ψ〉 = 〈Tr[D(U) +mqa]−1〉. (10.15)

The Polyakov loop, L, is related to the free energy of a static quark, and is an exact
deconfinement order parameter for the pure SU(3) gauge theory. The chiral condensate
〈ψ̄, ψ〉 becomes an exact order parameter for the restoration of chiral symmetry for all
Nf when mqa→ 0. Other physical quantities measured are, e.g. the energy density, e,
the pressure, P , the entropy density, s, and the Debye screening length, rD. These can
be defined in terms of the U-matrices.

2 The core gives the contribution of one plaquette, and the summation runs over all plaquettes.
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10.3.2 The order of the phase transition

Regarding the order of the finite temperature phase transition there exist universality
arguments relating the field theory to simpler three dimensional spin models [12]. The
universality of a phase transition means that transitions belonging to the same symmetry
class have similar behavior of the critical exponents and the same order. For example
an SU(N) theory has a global ZN symmetry under which the order parameter, e.g. L,
transforms non-trivially. A spontaneous breakdown of this symmetry is possible. The
dynamics near the transition may be governed by a (local) ZN theory. Then one has
the prediction that e.g. SU(3) in d = 3 + 1 dimensions is related to Z3 in d = 3. For
this latter theory only first order transitions are known. Thus SU(3) should have a first
order transition. This is not a complete proof, however, because, e.g. the hypothesis of
locality of the interaction may be violated.

For Nf > 0 and mq = 0, there is an effective model of the chiral symmetry
restoration. QCD with Nf dynamical flavors in 3+1 dimensions should be related to a
U(Nf )× SU(Nf ) σ-model in 3 dimensions. As was discussed by Pisarski and Wilczek
some time ago, the transition in thus model is expected to be first order for all Nf > 2.
[13] Recent numerical calculations suggest mostly first order phase transition also[14],
but in some cases a continuous transition is observed also.

Pure gluon matter

The present situation regarding the pure gauge theory (Nf = 0) is that most calculations
predict a first order phase transition. However, the transition is weak in the sense that
the latent heat ∆e is small compared to the discontinuity predicted by inserting the
Stefan-Boltzmann value eSB for an ideal gluon gas. In fact ∆e ≈ eSB/4. Furthermore
the string tension σ is small compared to its value at zero temperature, σ(Tc) ≈ σ(0),
and the Debye screening length rD is big compared to its value further above the
transition rD(Tc) ≈ 3rD(1.2 Tc).

Calculations with dynamical quarks

Because of computer time limitations, it has not been possible so far to study QCD
with dynamical quarks in the same detail. Still there have been several investigations
of QCD [15, 16, 17]. The general conclusion is that there is a first order transition
when mq ≤ 0.1 Tc. This seems to be consistent for all values of Nf . The fact that the
transition appears only for small masses indicates that it is connected to the restoration
of chiral symmetry. Presently there seems to be no evidence for a first order transition
for Nf = 2. For Nf = 3 the first order nature reappears. The physical case seems to be
just on the borderline between a discontinuous and a smooth transition.

Finite baryon chemical potential

So far there are no final results yet from lattice QCD, regarding baryon rich plasma,
which would be important for the description of the stopping beam energy domain (the
CERN-SPS and BNL-AGS). In an effective potential model of QCD for large baryon
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chemical potential a first order phase transition was found. Decreasing the chemical
potential led to a change at a tricritical point where the phase transition changed to be
of second order [18, 19]. The critical temperature (at µq = 0) was around Tc ≈ 110 MeV
in the model, while the tricritical point was around Tt ≈ 81−107 MeV and µt ≈ 73−82
MeV, depending on the model parameters. This indicates that in baryon rich matter a
first order phase transition may be expected.

10.3.3 Critical temperature

It is quite important to determine the critical temperature, Tc, in physical units with
some precision, because we expect the energy density, e, needed in the experiments to
create the quark-gluon plasma to behave like

e = const. T 4
c (10.16)

and thus to be sensitive to Tc. In a finite temperature lattice calculation one obtains
primarily a possible phase transition at a particular value of the bare coupling g =
gc(Nτ , Nf ,mqa). We assume Nσ to be so big that there is little dependence on Nσ. The
temperature in physical units can only be obtained by setting the scale by another
physical quantity. There exist “computer measurements” of Tc by several research teams
(see, for example, refs. [20, 21, 22]). One possibility to set the scale for Tc is by using
asymptotic scaling to relate it to Nτ .

According to present numerical estimates for Nf = 0 asymptotic scaling may have
been reached for Nτ ≥ 8. The critical temperature is saturating around 220 ± 40
MeV [20]. Another possibility to extract Tc in physical units is to assume scaling but
not necessarily asymptotic scaling. Then one measures e.g. the hadron masses at the
critical value of the coupling constant but on a lattice with large time extent, i.e. at
temperature zero. One has then a connection between Tc and the hadron masses in
lattice units, which can be extrapolated to the continuum case and then the physical Tc
can be extracted. The results show that Tc in QCD with four degenerate flavors is only
about half as big as in the Nf = 0 case, if one assumes the masses to be independent of
Nf . A similar tendency of lower Tc was already seen for Nf = 2 [20].

10.3.4 The Equation of State

A simple model giving the equation of state is the bag model, introduced already in
chapter 4. The bag model is certainly too simple to give a completely correct description
of the nonperturbative effects, however, for most parameter choices it predicts a first
order phase transition, where the entropy density has a jump from its value for the free
pion gas to a free quark-gluon gas.

It turns out that the entropy density is also the easiest quantity to measure on the
lattice, because it does not require a subtraction of the T = 0 value [20, 23, 15, 24, 22].
For Nf = 4 there is a clear discontinuity, the upper value is essentially in agreement
with the free gas value. For Nf = 2 the phase transition is presumably continuous. but
the entropy density goes fairly quickly to its free gas value. For Nf = 0 the discontinuity
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is only about a quarter of the Stefan-Boltzmann value thus indicating a “weak first
order transition”.

Figure 10.1: The Equation of State as function of the coupling constant g. The pressure
p (as p/T 4) and the quantity (e−3p)/T 4 is plotted versus 6/g2 for Nf = 0. From Engels
et al., reported in ref. [20]. Reproduced by permission of Elsevier Science Publishers

There are non-perturbative effects, which are clearly seen in some quantities. In
Fig. 10.1 the quantity (e − 3p)/T 4 for Nf = 0 is plotted. It is equal to zero in the
free gas limit. In the same figure the pressure is also shown. The data points are
from the Columbia University Lattice QCD Group, assuming asymptotic scaling, the
full line from Engels, et al. [20], using the same data but defining the pressure by an
integral method. Near the transition, the differential method using asymptotic freedom
obviously fails. The deviation of the pressure from the free gas value is substantial. For
T = 2Tc it is only about 50 % of the free gluon gas value. Clearly the pressure is more
sensitive to non-perturbative effects than the entropy density. It must be continuous
at the phase transition as discussed by Karsch [25]. The data on pressure and energy
density are less precise for Nf > 0, still the general picture is the same.

The EOS is a relevant concept for heavy ion collisions only if at some stage of the
collision local equilibrium and thermalization do exist. If this is the case already when
the maximum baryon charge density and energy density are reached, global collision
characteristics are essentially defined by conservation laws for baryon charge, energy
and momentum. In such situation the properties of the EOS are largely irrelevant
around the transition (1st, 2nd order or smooth) and only the asymptotic properties do
matter as it was shown in sect 5.5.

The final hadronization, on the other hand is sensitive to the order of the phase
transition. If the transition is 1st order and metastable states exist characteristic phase
transition phenomena: supercooling, delayed phase transition, extra entropy production
and critical fluctuations become possible.
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10.3.5 Screening lengths

One may, in analogy with the screening in an electromagnetic plasma, expect screening
in a quark-gluon plasma. This would then lead to disappearance even of "small"
resonances like J/ψ or Υ, as was proposed by Matsui and Satz [26]. By resummation
of a class of diagrams in perturbation theory one obtains

V (r, T ) =
const.

r2
e−2r/rD , (10.17)

where the potential V is defined on the lattice from the correlation between Polyakov
loops

〈L(r) L(0)〉 = 〈L〉2e−
V (r,T )
T and rD =

1

gT
√

1 +Nf/6
. (10.18)

This is in analogy with QED where the corresponding Debye screening length can be
obtained from classical considerations. In QCD it is uncertain if the thermodynamic
limit can be evaluated in perturbation theory, nevertheless, a screening of an effective
form

V (r, T ) =
a

rα
e−r/rd , (10.19)

is expected, where a, α and rD are unknown functions of T . Fixing α = 1, one obtains
values for rD between 0.1 - 1 [20, 23] Below rD ≈ 0.3 the J/ψ should be dissolved.
Further studies, extending, the measurements to larger volumes and distances are still
needed to clarify the situation.

10.3.6 Summary of present results

Following ref. [20] we can summarize some of the basic results of the ongoing lattice
QCD research.

Calculations with dynamical quarks give Tc < 200 MeV, if normalized to the hadron
masses. If Tc ≈ 150 MeV in the physical case, the energy density of the quark-gluon
plasma just above the phase transition would be only around 1 GeV/fm3.

For the pure gluon theory, Nf = 0, the phase transition is first order, at least for the
lattice sizes investigated. For Nf = 4 there is also a first order transition for sufficiently
small quark masses, thus related to the restoration of chiral symmetry. For Nf = 2,
however, no discontinuity is observed. The physical case may be a borderline case.

Free gas behavior seems to set in in thermodynamical quantities at least for T > 2Tc.
For T < 2Tc there may be a modification.

Although the phase transition for Nf = 0 is related to deconfinement of static quarks,
and for Nf = 4 to restoration of chiral symmetry, the properties of the high temperature
phase seem to be very similar, in the sense that the quantities e/eSB, s/sSB, rD and
other screening lengths are essentially independent of Nf .

First calculations of the surface tension σ at the phase transition have been performed,
still near the strong coupling region. They give σ ≈ 0.24 · T 3

c .
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10.4 Surface tension, viscosity and nucleation

If the finite temperature transition is first order there may be supercooling before
nucleation occurs. There are indications that large supercooling of the expanding
plasma and subsequent rapid deflagration to hadronic matter [27] may be able to
explain some recent experimental findings on large strange anti-baryon abundances. As
we have seen in the section on shock, detonation and deflagration waves, sect. 5.5, the
deflagration may be governed by the nucleation rates in the plasma.

The nucleation rate of baryon free, weakly supercooled, ultra-relativistic QGP was
recently estimated in refs. [28, 29]. The rate is governed by the transport coefficients,
surface tension, correlation lengths and the EOS. For baryon free matter the heat
conductivity is zero. For an ultra-relativistic gas the coefficients of viscosity can be
estimated as

η =
4

15
aT 4τ and ζ = 4aT 4τ

[
1

3
−
(
∂p

∂e

)]2

, (10.20)

where τ is the collision time, and a is the Stefan-Boltzmann constant, defined such that
the energy density is e = aT 4. Since the square of the sound velocity, (∂p/∂e), is close
to 1

3
for ultra-relativistic gases, the bulk viscosity ζ is usually much smaller than the

shear viscosity η.
Recently [30] the shear viscosity of quark-gluon plasma was estimated in leading

order of QCD. In this case the viscosity is an additive sum of the quark and gluon
viscosities, η = ηq + ηg. Both components are given in terms of viscous relaxation times
for quarks and gluons, τq and τg. For zero baryon chemical potential

τ−1
g = 4.11 T

(
1 +

Nf

6

)
α2
s | lnαs| , (10.21)

where αs = g2/4π is the QCD fine structure constant. The two terms, 1 and Nf/6,
come from the contribution of gluon-gluon and gluon-quark scatterings. The viscous
relaxation rate for quarks is

τ−1
q = 0.39 τ−1

g . (10.22)

Around the critical temperature of 200 MeV, αs has been estimated to be about 0.23
[2]. The relaxation times at T = 200 MeV thus are on the order of 1 fm/c. For QCD
with 2 flavors the viscosity is

η =
1.12T 3

α2
s ln(1/αs)

. (10.23)

The next step is the evaluation of surface tension, σ, in QCD between the two
phases. There are calculations for the surface tension using different methods [31, 32].
Conclusive results have only been obtained for Nf = 0, and Nτ = 2, i.e. at rather strong
coupling. The calculational lattice was divided to two halves, and βLattice was given
different values on the two sides of the dividing surface. This resulted in an extra energy,
∆E = A · σ(∆βlattice), compared to the case when no phase difference was present. The
energy difference increases with increasing ∆βLattice. The phase transition value of σ
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is obtained when ∆βLattice → 0, so that the dividing surface will be the critical phase
transition surface at Tc. The two calculations are in agreement, giving σ = α0T

3
c where

α0 = 0.24± .06 or α0 = 0.22± .05 (10.24)

respectively. For Nτ = 4 only an upper limit α0 < 1 has been established. With
Tc ≈ 200MeV the surface tension is σ ≈ 50MeV/fm2. This “computer measurement” is
certainly a new and interesting application of lattice QCD.

Using these parameters the critical radius, R∗, of a hadronic bubble was estimated
to be R∗ ≈ 0.5− 3 fm for T ≈ 0.8− 0.97Tc [28], and the transition time due to primary
nucleation was in the order of 100 fm/c [29]. The transition is determined then by the
interplay between the phase transition dynamics and the global expansion dynamics in
a collision. Depending on the mass and energy of the system and the assumed global
expansion characteristics the transition may be completed in 5-100 fm/c.

10.5 Nuclear stopping power

Stopping and transparency is a longstanding problem in the description of heavy ion
collisions. Different models assume sometimes completely orthogonal viewpoints in this
regard.

At the 1 A·GeV energy region the constituents of the nuclear matter are mainly
nucleons. At this energy the nucleon mean free path, λ, in heavy nuclei was determined
experimentally and turned out to be λ = 2.4 ± 0.4fm [33, 34]. According to kinetic
theory one needs about 2− 3λ for thermalization or interpenetration. Increased density
reduces the mean free path proportionally to n0/n, as well as phase transitions do.
Thus the conclusion for the 1 A·GeV region is that ideal one fluid dynamics, which
neglects the mean free path, is a rough approximation, viscous or multi-fluid dynamics,
as well as different versions of the kinetic models, like VUU, BUU, etc., and molecular
dynamics models provide a satisfactory description of the reaction dynamics. (The
molecular dynamics models have the leading edge here, due to their ability to describe
the final fragmentation[35] more realistically.)

At ultra-relativistic energies the question of stopping is more acute, since the outcome
of the experiments is qualitatively influenced by these questions even at the design phase.
The results from the 1 A·GeV energy domain cannot be implemented here directly
because the basic nucleon nucleon collision mechanism is different: the collision is not
a binary collision mostly but associated with multiparticle formation. The reaction
products are not distributed isotropically, thus several collisions are needed to reach
spherical symmetry. Furthermore the collision is not point like, the produced secondary
particles are in a virtual state for some amount of proper time and come to mass shell,
as free physical particles, only after. It is still an open question whether the virtual
secondaries are able to interact or not in a heavy ion collision.
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10.5.1 Proton nucleus collisions

The first question is: can we understand data on nuclear collisions using those for the
p+ p and the p+ A ones? The experimental works[36, 37] studied p+ A collisions, at
100 and 200 GeV projectile energy, in order to determine the longitudinal momentum
of the leading proton.

There exist a great number of theoretical works [38, 39, 40, 41, 42, 43] where the
nuclear stopping power problem is investigated. Different mechanisms of the leading
particle deceleration result in the substantial spread in the predicted magnitudes of the
nuclear stopping power. This is especially typical for the ultra-relativistic energy region.
The models are based on the direct solution of one-dimensional kinetic equations for
the leading nucleon momentum distribution. The inelastic NN scattering cross section
is parametrized as

1

σNN

dσNN→NX
dx

= ξ (10.25)

where x = pz/pi, is the ratio of the secondary nucleon longitudinal momentum pz, and
the incident nucleon momentum, pi (in the lab frame). The quantity ξ is assumed to
be independent of pi3 and x. This assumption is in good agreement with experimental
data on high-energy pp-collisions. For example, as noted in ref. [40], in the region of
ELab. = 19− 405 GeV ξp = 1

σpp

dσpp→pX
dx

varies from 0.43 to 0.55.
The evolution model[35] assumes that the average longitudinal momentum of the

leading baryon decreases exponentially with the length of its path, Z, through nuclear
matter:

〈pz(Z)〉 = pi exp[
−Z
Λp

], (10.26)

where Λp is the “momentum degradation length”. It is expressed via ξ as

Λp = 2λN/ξ , (10.27)

where λN is the nucleon mean free path. Eqs. (10.26) and (10.27) are based on the
Poisson distribution in the number of leading baryon collisions, ν, with 〈ν〉 = Z/λN .
For ultra-relativistic energies eq. Eq. (10.26) coincides with the deceleration law used
in two fluid dynamics[45]. From a fit to experimental data the value Λp = 5.7fm was
extracted in ref. [46].

The evolution or multiple scattering model[35, 39] describes the linear deceleration
of a proton in nuclear medium in the z−direction. It is assumed that the medium
has a thickness of N nucleons in a row. If we introduce the probability distribution,
Q(x), that the incident nucleon has momentum fraction x after a collision with one
more target nucleon, one can calculate the final x distribution of this nucleon after
colliding with N nucleons in a row, H(x,N). If we use the approximate relation,
x ≈ pz/pi ≈ E/Ei ≈ exp[y − y0], valid for ultra-relativistic incident energies outside
the narrow region x<∼mN/pi, we can plot the rapidity distribution of the nucleon after
penetrating the target:

H ′(y,N) = H(ey−yi , N). (10.28)
3According to the Feynman scaling [44]



10.5. NUCLEAR STOPPING POWER 301

H ′(y,N) is plotted in Fig. 10.2. We can see that at high values of N , N = 5, 7 the
distribution is peaked by ∆y ≈ 1.5, 2.5 below the initial proton rapidity, respectively.
The spread of the distribution is about twice as large as the deceleration. Considering
the fact that N = 5, 7 represent the diameters of Cu and Pb nuclei, we can conclude
that the stopping power is strongly dependent on the size of the nucleus.

Figure 10.2: Plots of the distribution of nucleon rapidity deceleration, H ′(y,N), after
the incident nucleon, with rapidity y0 = 0, has collided with N target nucleons in a
row. Reproduced with permission from [39].

10.5.2 Heavy ion collisions

The first attempts, before ultra-relativistic experiments were available, estimated
stopping in heavy ions based on p + A data. Based on the above estimate two lead
nuclei could decelerate each other, so that most nucleons have the c.m. rapidity after
the collision, up to collisions with ∆y = 5 or correspondingly up to beam energy
ELab. = 75A·GeV. For copper nuclei ∆y = 3 and ELab. = 10A·GeV, respectively.
Complete transparency and baryon charge free region at mid rapidity can be expected
above ∆y = 10 or ELab. = 11, 000A·GeV for lead nuclei. Obviously nuclear effects, such
as density increase, rescatterings, eventual phase transition or precritical behavior, etc.,
can modify these p+A estimates essentially. At ultra-relativistic energy most of the
effects one can think of act in the direction of increased stopping [47].

To assess stopping experimentally,one can basically look at the rapidity distribution
of secondaries, preferably for baryons and mesons separately. The common wisdom
tells us that a strongly peaked baryon rapidity distribution around the center of mass
indicates strong or complete stopping, while a distribution which is flat at c.m. or if it
has a minimum signals transparency.

Unfortunately to draw an accurate quantitative conclusion is not so trivial. It is true
that the Bjorken model, which assumes complete transparency provides a flat baryon
distribution for mesons and no net baryon charge at all in the central rapidity region,
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where it is valid. We have seen, however, that contrary to the common wisdom, the
Landau model—which assumes complete stopping—may produce a rapidity distribution
with a dip in the middle also. (Only Landau’s original approximate analytic solution
yields a Gaussian, but this has limited applicability.) Similarly, relativistic one-fluid
models assuming perfect fluid (no dissipation or heat conduction) may yield a bounce
back of the projectile and target on each other if two highly Lorentz contracted nuclei
collide centrally. This results in a dip at the c.m. in the baryon rapidity distribution
also. This indicates that one needs a thorough investigation of the rapidity distribution
of all particle species in order to trace down nuclear transparency in heavy ion collisions.

Experimentally the nuclear stopping in S + S collisions at 200 A·GeV can be
characterized as follows [48]. In order to quantify the stopped energy the average
total energy loss per interacting nucleon was obtained from the rapidity and pt of
the observed protons. The enhanced stopping of the primary nucleons is reflected in
〈Eloss〉 = 5.8±0.3 GeV for central collisions as compared to 4.7±0.3 GeV for peripheral
collisions (the latter being a good approximation for NN data). We obtain a total
energy deposition of 54× 5.8 = 313 GeV in central S + S collisions. The difference in
energy loss per nucleon in central collisions has to be visible in the produced particles.
However, the number of negative particles per nucleon pair goes up by 10% only when
comparing central S+S with N+N data. Also their mean transverse momentum is
unchanged. Therefore we are left with the conclusion that only a small fraction of the
additional energy loss of the incoming nucleons is seen in the pions, both with regard
to their number and their 〈pt〉.

Figure 10.3: The ratio of the rapidity densities in central 32S +32 S and p+ p collisions.
Reproduced by permission of Elsevier Science Publishers from [48].

In Fig. 10.3 the ratio dN/dy(S + S)/dN/dy(p+ p) is shown for negatives, K0
s , and

Λ particles as a function of rapidity. The difference in width is manifest by the inverse
parabolic shape of the ratio. The average ratio is 30.6, which is 12% more than the
ratio of charges in the incident particles, 27. An enhanced strange particle production is
manifest in the ratios, which amount to about 60 and 55 for Λ and K0

s , respectively. For
the K’s the enhancement is most prominent at mid-rapidity. Thus the additional energy
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loss of the nucleons reappears in enhanced strange particle yields near mid-rapidity. We
may take the present data as an indication that the enhanced strangeness production
goes along with an equally enhanced baryon-antibaryon production rate in central S +
S collisions. This might be understood to be the result of an enhanced production of
di-quark pairs along with the strangeness enhancement. (See more details in sect. 6.6.2.)

Hence, nuclear transparency turned out to be not so important up to now. Owing
to the large stopping power of nuclear matter, large baryon densities are observed even
in Sulphur-Sulphur collisions at the SPS.

Expectations for higher energies

Summarizing the above discussions in p-A collisions at A≈200 the proton projectile
loses approximately 2 - 2.5 units in rapidity, δy ≈ 2 − 2.5. With this loss, for heavy
ions the maximal stopping would occur for ∆y ≈ 4− 5.

Let us assume that in the c.m. frame in a symmetric central collision the projectile
rapidity is Y0 and the target rapidity is −Y0. After the collision the baryon number
distribution is centered at ±(Y0 ∓ δy), and δy is the rapidity loss. The overall central
baryon free region in rapidity thus becomes ∆Ybaryon free ≈ 2Y0−4δy. Here we assumed
that the spread of the decelerated baryons in rapidity is as large as their deceleration.
Assuming that δy is the same in A + A collisions as for p + A, one can predict a
central baryon free region of 1 - 2 units of rapidity at the BNL-RHIC and of 6 - 8 units
of rapidity at the CERN-LHC. If the stopping in heavy ion reactions is δy > 2.5 it is
feasible that baryon free rapidity region will be observed at LHC only. Even in this
case the central rapidity regions at RHIC will be strongly dominated by mesons and
baryon antibaryon pairs.

10.5.3 Stopping in theoretical models

We have seen already a few simple fluid dynamical models. Standard one fluid dynamical
models assume complete stopping, and as such this is true for the Landau model and
the spherical model introduced earlier. The Bjorken model is also a one-fluid model,
and as such assumes complete stopping, however, the initial condition is such that the
fluid dynamical regime was preceded by a nonequilibrium stage where the projectile
and target baryons penetrated each other. Thus any one fluid model with a well chosen
initial condition can describe the final equilibrated stages of a collision.

Two or more component fluid dynamical models, and explicitly microscopic cascade
or molecular dynamics models are able to describe transparency explicitly.

String models

String models are cascade models on the quark parton level applicable at CERN-SPS
and BNL-AGS energies. Soft quark-quark collisions are described by “string” formation
and subsequent hadronization. First of all, we know too little about “strings” and their
properties. It is also not quite certain how one should attach these strings to quarks and
gluons. We also do not know what happens if many such strings overlap in space. In
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available CERN experiments their density is few strings per fm2, and it can increase to
10 per fm2 in future lead beam experiments [49]. Thus the assumption of independent
strings, what most models assume, is questionable. Even if we have independent strings,
which independently produce hadrons, we certainly have rescatterings before secondaries
come out of the system. Therefore, any agreement between the particle spectra obtained
in such "pp-based" models (which ignore "trivial final stage interaction") can be but
misleading coincidence.

Experiments do demonstrate rather nice stopping (even at CERN energies) in terms
of nucleon energy loss. Pion rapidity distribution is surprisingly close to predictions of
Landau hydrodynamics. Does it really mean, that there is rapid thermalization? This
question is still open, for we do not have reliable estimates for the initial thermoplastic
time. People use Bjorken’s 1 fm/c value as a guess, although both old perturbative
estimates of gluonic mean free path[50, 51] and estimates based on “color rope” model[52,
53] give something shorter, 1/2 to 1/3 fm/c.

10.6 Reaction models

Relativistic heavy ion collisions are on the borderline of applicability of different
theoretical approaches. This makes this field interesting and also difficult. The problem
is twofold: the smaller than macroscopic size and the short reaction time compared to
microscopic equilibration.

Our primary goal is to draw conclusions on the global equilibrium features of the
hot and dense matter, consequently the largest colliding systems are the most favorable.
These also provide us the longest collision times. At the moment of writing this textbook
no final experimental results are available yet from such reactions, the expectations
based on smaller colliding systems are, however, quite reliable for some basic quantities.
The final particle multiplicity is in the order of several thousand. At some stage during
the reaction local thermal and mechanical equilibrium are established (not necessarily
phase or chemical equilibrium), for local volume elements of the size of ≈ 10-100 fm3.
To describe such a complicated dynamical system in QCD is beyond our possibilities,
both due to the computational scope of the problem and due to the lack of principal
microscopic information that would be necessary to solve the problem. This situation
is usual in most problems of statistical physics. The above estimates, however, are
based on comparisons of experiments and theoretical models, and leave a wide range of
possible reaction models.

Reaction models are basically belonging to two groups. Some models assume the
existence of local equilibrium at some stage of the reaction (not necessarily at the
initial moments), and from then on are applied with the appropriate boundary and
initial conditions. These models are the different fluid dynamical models and continuum
models.

Another group of models does not assume local equilibrium, but assumes the
microscopic dynamics of the system: the constituents of the matter, their interactions,
transitions, internal dynamics, etc. Then the transport theoretical behavior of these
systems is studied, usually, by Monte-Carlo simulation.
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10.6.1 Fluid dynamical results

The most simple models belong to this group, the Bjorken model (one dimensional
scaling fluid dynamics) and the Landau model discussed already in chapter 5. Both
models have an initial condition corresponding to a situation after the initial impact
when the matter is compressed and heated up already. These initial conditions are
different in the two models. At the initial state there is no kinetic energy in the Landau
model, and in the c.m. system all of the available energy is in the form of internal energy
of the strongly Lorentz contracted disk of matter. On the other hand the Bjorken model
assumes a linear scaling expansion in the beam direction in the initial state. In a way
the initial state of the Bjorken model corresponds to a later physical situation than
the initial condition of the Landau model. As we have seen in chapter 5, under certain
conditions the time development in the Landau model may reach a situation which is
very close to the initial state of the Bjorken model. I.e., in this case the subsequent
development and the final state are similar in both models. Of course, in the general
case this is not true, and the final states (breakup states) of the two models are not
necessarily identical.

Based on the observation that recent experiments at the CERN-SPS and particularly
at BNL-AGS resemble the rapidity distributions of the Landau model it was concluded
that the stopping is large at these energies. Although this observation is basically
correct we cannot draw accurate quantitative conclusions from it for the initial energy or
baryon density, because of the lack of knowledge of the EOS and the possible similarity
of the final states of the two models. The frequent use of Bjorken’s formula for the
initial energy density at the present energies is not justified, and it should be considered
as an order of magnitude estimate only.

The timespan from the initial impact to the Landau or Bjorken initial state is less
than 1-2 fm/c.

Simple model calculations are rather successful to describe the transverse momentum
spectra of several species of particles simultaneously by assuming a collective fluid
dynamical expansion which is spherically and/or cylindrically symmetric [54, 55, 56, 57].

Detailed numerical models

Three dimensional detailed fluid dynamical models are also applied to describe ultra-
relativistic heavy ion reactions [58]. The problem here - apart of numerical and
computational difficulties - is the selection of the proper initial state for the problem and
the selection of the equation of state. Obviously the study of non-central collisions is the
most interesting since exactly central collisions could be described in two dimensional
models. The three dimensional approach allows the study of phenomena like the
collective transverse flow, which was already crucial at lower energies, and led to the
most accurate determination of the stiffness of the nuclear matter.

As an example let us consider a Pb + Pb collision at 160 A·GeV energy with an
EOS including a strong first order phase transition to Quark Gluon Plasma [58]. If we
choose the initial state as the moment of the impact of the Lorentz contracted nuclei
and continue the fluid dynamical calculation from this moment on assuming immediate
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local equilibrium we obtain a high temperature (T > 400MeV) and density 0.5 fm/c
after the impact in a narrow domain, Fig. 10.4. By about 1.5 fm/c the central region is
over the maximum compression, the temperature starts to decrease, but most of the
central region is still in the QGP phase (T > Tcr). By this time other models, not
assuming immediate local thermalization, reach a rather similar configuration, energy
and density distribution.

Figure 10.4: Contour lines of the temperature distribution, T [MeV], in the reaction
plane of a Pb+Pb reaction of impact parameter b=4fm, at 160 A·GeV beam energy
at c.m. times 0.34, 0.68, 1.03, 1.37, 1.72 fm/c. The figures are distorted for better
recognizability, the size of the frame in the beam direction is 5 fm, while in the transverse
direction is 20 fm. Reproduced by permission of Elsevier Science Publishers from [58].

This observation coincides with our previous conclusion that the final dynamics is
similar in the Landau and Bjorken models. The final stages have two dominant features,
i) the development of the collective sidewards flow, starting around 1fm/c after the
impact, and ii) the final hadronization and freeze-out happening between 5-50 fm/c
after the initial impact.

Due to the fact that fluid dynamical models with the initial condition described
above assume equilibration earlier, compared to string models, the transverse flow is
developing earlier and it is stronger by about a factor of two than in string models
[58]. Nevertheless, even string models predict an observable collective transverse flow
in heavy colliding systems.

The dynamics of hadronization and freezeout are more involved problems and up to
now only simpler model dynamical studies are performed [28, 29].
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10.6.2 Microscopic string models

A complementary set of models has been developed to describe heavy ion reactions
based on microscopic Monte-Carlo simulation of the reaction. These models are in
some sense the extrapolations of the lower energy Monte-Carlo cascade and Molecular
Dynamics models. There are, however, important basic differences.

The models at lower energies assumed point like or compact particles (nucleons, pions,
deltas, etc.) as constituents, moving in a mean field potential formed by the average
density or in the force field of the sum of interaction forces of all other constituents one
by one.

Hadron - hadron reactions

Already at the simulation of high energy (around 100 A·GeV or more) p+ p collisions it
turned out that the low energy picture is not applicable at these energies. The collisions
are far from being binary and a large number of reaction products are created which
follow a clear systematics in the phase space: the transverse momentum spread of the
secondaries is relatively limited (≈ 300MeV/c) while the beam directed distribution is
widely spread between the projectile and the target and it corresponds to a nearly flat
distribution in rapidity. This feature led to the introduction of composite intermediate
objects, so called strings or flux tubes, with an internal structure and space-time
development.

Strings

With the wider acceptance of quark-parton picture of the hadrons (i.e., that hadrons
are composed of valence quarks as discussed above, plus some see-quark pairs) these
composite objects were considered as strings or flux tubes spanned between two (groups
of) quarks and the confined chromo-electric field between them. The large number of
secondary hadrons are formed at a later proper time by pair creation from the strong
field.

Thus, the microscopic Monte-Carlo models have new constituent objects, so called
strings, added to the compact hadrons at these energies. These models were quite
successful to describe phenomenologically all hadron-hadron collisions. The number
of strings in a collision was very low and the system was a dilute system of these
constituents.

Heavy ion reactions

When the same models were used to heavy ion reactions several problems became obvious
in a short time. The density of constituents became so large that interactions among
them became important. Although some information on hadron-hadron interactions
in vacuum was available nothing was known about the interactions of strings or the
modifying effects of the dense surrounding. Initially these interactions and modifying
effects were neglected.
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Part of these string models which allowed for interactions of secondary hadrons, and
string formations initiated by secondary hadrons were rather successful in reproducing
detailed experimental data on rapidity and p⊥ distributions of protons, pions, K-
mesons. The models without secondary scattering and secondary string formation
underpredicted the observed stopping power, i.e., they failed to describe the proton
rapidity distributions.

However, after a while the limits of these models were also apparent in 1991-92. The
comparisons to experiments showed that the string models have two drawbacks in their
original form based on hadron phenomenology: i) string-string interactions and string
fusion are necessary to reproduce the formation of more massive secondaries like strange
antibaryons, because single strings formed by two or three valence quarks only did not
carry sufficient energy; and ii) the inclusion of hard partons is necessary to describe
high p⊥ phenomena, minijets, gluon jets, particularly at highly ultra-relativistic energies
[59, 60, 61].

Monte-Carlo model families

(a) Naive string models: Early string models were the naive extrapolations of
hadron-hadron string models, just supplemented by the baryon distributions in the
nuclear projectile and target. These models are still widely used by experimentalists to
simulate experimental data, for purposes of detector design etc. The most commonly
used example is the FRITIOF model[62] (based on the Lund model[63]).

(b) String models with rescattering: These are more realistic models because
the concept of string formation in all hadron-hadron collisions is treated the same
way irrespectively of whether a hadron is originating primarily from the target or
projectile nucleus or it was created during the collision. String models belonging to
this category are RQMD versions without string fusion,[64, 65, 66, 67] VENUS versions
without string fusion,[68, 69, 70] QGSM,[71, 72, 49] ACR,[73] Dual Parton Model
versions of Ranft et al.,[74] etc. The nice feature of these models is that they are
based on hadron phenomenology strictly and no additional ad hoc assumptions are
involved. Consequently these models produce closely identical results although they
were developed independently. In this sense these are the most sophisticated models
assuming only a simple multitude of standard hadron-hadron collisions, i.e., the best
“negative” models without any collective effects assumed (no QGP, no mass reduction
of hadrons due to environment, etc.). The drawback is that these models become
selfcontradictory if applied to massive heavy ion collisions like Au + Au or Pb + Pb, at
energies 200 A·GeV or higher. Then the string density becomes unrealistically high[72]
and the strings will have to overlap. In this situation the assumption of independent
non-interacting strings has to break down. As we mentioned above these models describe
correctly the stopping power and most observables but fail to reproduce the heavy
secondary production like strange anti-baryons.

(c) String models with string fusion: These are trying to find the obvious remedy
to the problems of the previously mentioned family of models. The remedy is the
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interaction and fusion of strings in most cases, or the formation of some heavier
composite objects containing more valence quarks. The models belonging to this group
are for example the RQMD versions with string fusion, VENUS versions with double
strings,[75] String Fusion Model (SFM),[76] etc. Although these models are now able to
describe the experiments the previous family failed to reproduce, new ad hoc parameters
are introduced, like string string cross section, modification of string tension in fused
strings, etc., which are not based on hadron-hadron collision phenomenology. In this
way the success of these models is not surprising, but also does not provide a much
more basic understanding of the problem.

(d) Parton cascade models: Particularly for higher energies, (Fermilab, RHIC,
LHC) the correct description of hard parton-parton collisions is the most vital aspect
of the heavy ion collision. These models may abandon the idea of strings or flux-tubes
alltogether and the parton cascade is happening in the perturbative vacuum [77]. The
transition from the physical vacuum to the perturbative one, as well as, the final
hadronization and return to the physical vacuum is a sensitive part of these models and
is still under development at the time of writing this book. Some models keep the string
idea to a certain extent and the parton cascade takes place in limited clusters [59, 61].
In any case these models are allowing dynamical processes leading to the equilibration
of the parton matter, and in some models the equilibration and thermalization are
explicitly tested and achieved. A detailed experimental test of this family of the models
is expected only when RHIC and LHC heavy ion experiments will be in progress.

Monte-Carlo models and Quark Gluon Plasma

The sequence of the previously mentioned models illustrates a gradual approach to
QGP. The objects (strings) which are considered in the models are becoming larger
corresponding to bigger and bigger chunks of non-equilibrated quark matter. The
approach to equilibration is discussed only in some of the models of the last, D, family.

It is academic to ask if these models are supporting or are against the assumption
of a Quark Gluon Plasma based on the presently available results of these models.

Each of the above string models should have a stationary equilibrium solution also,
and consequently an Equation of State. In principle, however, it is possible to determine
the underlying EOS for any of these Monte-Carlo models, just the model prescriptions
should be applied to a large fixed container of matter, and the equilibrium properties
studied. Unfortunately this is not done in any of the models up to now. Nevertheless,
it cannot be excluded that these string models have a first order phase transition in
their EOS, since the strings have a substantial amount of energy, which is latent, i.e. it
is an internal energy and it is subtracted from the kinetic energy of the constituents
leading to the pressure of the material. We expect to have answers to these questions
in the next few years of research.



310 CHAPTER 10. SEARCH FOR QUARK GLUON PLASMA

10.7 On some suggested signals
There are several suggestions at present to identify whether the system produced in a
high energy heavy ion collision was, in its early “primordial” history, in a deconfined
state or not. Essential and qualitative development is expected in the next few years in
this field.

One approach is to look for primordial remnants in the observed hadron features:
discontinuities in the momentum distribution of the secondaries reflecting a first order
phase transition or at strangeness enhancement which is significantly larger if it arises
from QGP. Another usual suggestion is to look for signals produced at early times and
not affected by the subsequent hadronization. Possible observables of this type are
thermal dileptons and thermal photons, which are emitted by the plasma and then
escape. In the same context, one may also study the effect of the produced dense
medium on the observed production of heavy quark bound states, like J/Ψ suppression
or hard jets.

In the moment it is impossible to give a complete review of quark-gluon plasmas
signatures here. However, one can group the quark gluon plasma signatures in the
following categories:

(i) Transverse flow and thermodynamic variables measuring the Equation of State.

(ii) Strangeness and Anti-baryon enhancement.

(iii) Strangelets and other "exotic" signatures of the quark-gluon plasma.

(iv) Photons, and lepton pairs.

(v) J/Ψ suppression.

Collective flow, p⊥ spectra, thermodynamic variables

The aim of this group of signatures is to measure the equation of state and thermo-
dynamic parameters of the superdense matter. For example one wants to search for a
rapid rise in the effective number of degrees of freedom, as expressed by the ratios of
energy or entropy over the value in an ideal Stephan-Boltzmann gas. These quantities
would exhibit a discontinuity, if there were a first-order phase transition, and if we were
dealing with systems of infinite extent (see section 4.2). It is still an open question if
lattice QCD calculations will predict a 1st or 2nd order phase transition or a sharp but
continuous transition between hadronic matter and QGP. In real heavy ion collisions,
we may expect a steep, continuous rise even if the phase transition is 1st order because
only a part of the matter is converted into plasma, and this part will increase with
energy.

Transverse flow is the most obvious method to measure the equation of state,
pressure versus energy density and/or baryon density. When one approaches the phase
transition region the equation of state becomes very soft and only small increase of the
transverse flow velocity is expected. Only when the energy density significantly exceeds
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that needed for QGP formation, collective flow is expected to increase noticeably again.
Calculations of hydrodynamical expansion with bag-model type EOS gave predictions
showing the three stages of rapid, modest and again rapid transverse flow (or average
transverse momentum) increase with the increase of beam or internal energy. The
existence of some “plateau” in the middle is the consequence of softness of EOS in the
“mixed phase”. Detailed numerical studies in the context of the hydrodynamical model
have shown that this characteristic feature is rather weak in realistic models,[49] unless
rehadronization occurs like an explosive process [27, 29, 78].

To observe this structured increase in nuclear collisions one has to vary the beam
energy in rather small steps. In nucleon-antinucleon collisions, however, one may make
use of the existence of large fluctuations in the total multiplicity even from central N -
N collisions. Using this idea, the E-735 collaboration at Fermilab found a continued rise
of p⊥ for antiprotons and hyperons with multiplicity, reaching 1 GeV/c for the most
violent events [79]. The shape of the observed multiplicity dependence was provocatively
similar to hydrodynamical calculations. Lévai and Müller analyzed these data in terms
of a simple model,[80] and found that the surface velocity at high dN/dy must take
on quite large values for the hadrons. Studying the hydrodynamical evolution that
might lead to this final state they concluded that, such a "flow" pattern can hardly
be produced at the level of hadrons, because the drag exerted by the dominant pions
on the nucleons is far too weak to accelerate these to such speed. So, the apparent
transverse flow must be established at the quark-parton level as a consequence of
expansion of a quark-gluon plasma or mixed phase. There exist other suggestions that
the transverse "flow" might be generated by extended minijets. However, minijets might
be the microscopic mechanism by which the transverse expansion of a quark-gluon
plasma is produced.

The shape of the pion spectra: Roughly speaking, pion spectra observed in
nuclear collisions at CERN can be described by two exponents, with slopes (or effective
temperature parameters) of about 50 and 200 MeV, while K0

s , ρ or Λ show the higher
slope parameter only. These are transverse mass spectra divided by

√
mT , so that

thermal spectra should be exponential.
The concave shape of the pion pT distribution suggests a lower break-up temperature

while additional hydrodynamical motion may describe the tail [81]. The idea of one
single break-up temperature is, however, not really valid. Monte Carlo Cascade or String
model calculations show in fact significant contribution of the particles evaporated in
the whole collision process and the low P⊥ enhancement is due to resonance decays
mainly. Thus transverse momentum spectra at a single beam energy do not provide
sufficient evidence for a plasma or even a collective flow signal.

The space-time dynamics of nuclear collisions needs independent confirmation e.g.
by particle interferometry. From two-particle correlation functions in different directions
of phase space, it is possible to obtain measurements of the transverse and longitudinal
size, of the lifetime, and of flow patterns of the hadronic fireball at the moment where
it breaks up into separate hadrons. The transverse sizes found in heavy ion collisions
are larger than the radius of the incident nuclei, indicating the fact that produced
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hadrons rescatter before the final breakup. Interferometric size determinations will be
possible on an, event-by-event basis when Pb or Au beams become available, and can
be correlated with global parameters like p⊥ and dN/dy. This will allow for much more
precise study of the thermodynamic properties of superdense hadronic matter.

10.7.1 Strangeness and Anti-baryon enhancement

Enhancement of strangeness and antibaryon production is a frequently discussed signal,
it is due to the reduction of the threshold for production of strange hadrons from ≈700
to ≈300 MeV and baryon-antibaryon pairs from ≈2 GeV to almost zero. The strongest
signal is obtained by considering strange antibaryons which combine both effects[82, 83,
84]. The enhanced strange quark production in deconfined quark-gluon plasma leads to
chemical equilibrium abundances for all strange quarks. The strangeness abundance
for hadronic matter in chemical equilibrium is smaller. In a rapid hadronization the
QGP strangeness abundance could almost be conserved and could even stay larger
than the hadronic equilibrium abundance at the breakup. Slow hadronization and
long expansion in hadronic phase before breakup will, on the other hand, reduce the
strangeness abundance to the hadronic equilibrium value.

There are alternative suggestions that strange particles, and especially antibaryons,
would be produced more abundantly, if their masses would be reduced in dense hadronic
matter due to medium effects without QGP. However, at the expansion the hadronic
matter becomes dilute, the strange hadrons regain their masses and their number should
be reduced again. Thus such a process is strongly dependent on the actual timescales
and dynamics of a collision.

Increase of strangeness production has been measured. Ratios like K/π and inclusive
ϕ, Λ and Λ̄ production turned out to be a factor 2-3 larger than the values in p + p
interaction at the same energy. Also a strong increase in multi-strange baryon production
has been found. The most spectacular data are obtained by the WA85 collaboration at
CERN, [85] who find the following abundance ratios at mid-rapidity and for momenta
pT > 1GeV/c:

Λ̄

Λ
= 0.13± 0.03,

Ξ̄

Ξ
= 0.39± 0.07,

Ξ

Λ̄
= 0.6± 0.2,

Ξ

Λ
= 0.2± 0.4. (10.29)

Recent calculations indicate [86] that strange baryon ratios seen by WA85 and other
CERN heavy ion experiments can be consistently explained either by a quark-gluon
plasma or hadronic gas with parameters T = 220MeV and µB = 340MeV. It is, however,
difficult to imagine how chemical equilibrium be attained during the short life of a
hadronic fireball in any other way than through an intermediate quark-gluon plasma
phase.

Recently, attempts have been made to explain the enhanced A production seen by
NA35 at midrapidity in terms of new mechanisms in the framework of collision models
based on the string picture discussed in this chapter earlier.
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10.7.2 Heavy quark bound states

Studying the spectra of heavy quark bound states can be a promising tool of analysis.
J/Ψ particles formed in a collision decay electromagnetically into observable muon
pairs. A suppression of the J/Ψ signal relative to the Drell-Yan di-muon continuum
had in fact been predicted as a signature for deconfinement, based on Debye screening
between color charges. This suppression vanishes as the transverse momentum of the
J/Ψ increases. The suppression has to be distinguished from conventional absorption
in dense hadronic matter with initial state parton scattering.

The ground state of the (cc̄) pair does not exist if the color screening length,
λD = 1/gT is less than the ground state radius. Lattice simulations of SU(3) gauge
theory show that this condition should be satisfied slightly above the deconfinement
temperature (see sect. 6.3.5).

Electromagnetic probes

Photons For thermal photons, the main background at low momenta comes from
the decay of hadrons, mainly π0 and η of high momenta. There are, in addition, direct
photons from Compton scattering. The observation depends very much on how well
the hadron decays can be identified and eliminated.

From the experimental point of view, as far as thermal dileptons and thermal
photons are concerned, no clear signal has been seen within experimental sensitivities
so far.

Di-leptons

Thermal di-leptons are produced when π+π− or qq̄ pairs annihilate in a hot pion or
quark gas, respectively. But di-leptons are produced, as well in the decay of low mass
vector mesons, ρ, ω and ϕ, and in hard interactions between incident partons at a very
early stage of the collision, leading to so called Drell-Yan pairs or to the production
of heavy (cc̄ or bb̄) vector mesons, which subsequently decay into lepton pairs. The
main competition for thermal di-leptons at high mass comes from Drell-Yan production.
However, thermal di-leptons and Drell-Yan pairs have different functional dependencies
on the di-lepton pair mass, M, and so, should be distinguishable. For sufficiently
high energy density there seems to be a clear-cut window for high mass dileptons,
between resonance decays and Drell-Yan production. The detection of low mass thermal
dileptons, from π+π− annihilation in a pion gas or from qq̄ annihilation in a quark
gas, is not so easy, since large backgrounds from π0 and η decays and from virtual
Bremsstrahlung must be subtracted.

10.7.3 Exotic signals

One could expect that the formation of quark-gluon plasma would be associated with
the appearance of completely novel phenomena: there would be no ambiguity in such
signatures. The most probable exotic objects that might be formed from quark-gluon
plasma are strangelets[87]. These are metastable objects with baryon number A > 2
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that contain several strange quarks. The simplest such object is the strangeness S = −2
dibaryon, the H-particle, which is predicted to be metastable in the original MIT bag
model and might be produced in relativistic nuclear collisions. Experiments searching
for strangelets produced in relativistic heavy ion reactions are in progress at BNL, and
in preparation at CERN [88]. Strangelets and their hadronic counterparts, multi-hyper-
nuclei, can be easily distinguished experimentally from ordinary fragments: they have
zero or even negative charge.

10.8 Assignment 10
10.a Show that in the Bjorken model the local flow velocity, uµ = 1

τ (t, 0, 0, z), is orthogonal
to the τ = const. hyperbola.

10.8.1 Solution to Assignment 10
10.a The four vector tangent to the hyperbola can be written in the form tµ = C(ϑ, 0, 0, ζ)

where ϑ and ζ are infinitesimal displacements along the τ = const. surface and C is a
normalization constant.

Since both the point xµ = (t, 0, 0, z) and the displaced vector x′µ = (t+ ϑ, 0, 0, z + ζ)
are on the same hyperbola

τ =
√
t2 − z2 =

√
(t+ ϑ)2 − (z + ζ)2 .

For infinitesimal displacements√
t2 − z2 =

√
t2 + 2tϑ− z2 − 2zζ  1 = 1 + (tϑ− zζ)/τ2  tϑ = zζ .

This yields tµ = C ′(z, 0, 0, t). Consequently tµuµ = C ′′(zt− tz) = 0.

q.e.d.
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Chapter 11

Connections of astrophysics and
Heavy Ions

High energy heavy ion physics and astrophysics are strongly connected. The physical
state of matter formed in heavy ion collisions can only be compared to the matter in the
early universe, in neutron or hybrid (neutron and quark) stars, and in supernovae. Here
we discuss mainly the neutron and hybrid stars based on a recent review of Glendenning
[1].

11.1 Neutron and hybrid stars

Stars undergo an evolution and nuclear burning during their life, where the energy
is supplied by the gravitational collapse of the star. When all the energy producing
nuclear reactions are over the star collapses further to a cold final state of star evolution.
The final collapse is stopped either by the pressure of the degenerated (T ≈ 0) Fermi gas
pressure of the electrons leading to White Dwarfs as a final state, or by the degenerated
Fermi gas pressure of neutrons, leading to Neutron Stars. The latter are massive and
dense, so that the curvature of the space-time has to be taken into account for their
accurate description. If the initial star is extremely massive the collapse is not stopped
by any of the two processes, and the star ends up as a Black Hole. It might also be
possible that neutron stars have a quark-gluon plasma core.

The gravitational constant, G = 6.672 × 10−8cm3g−1s−2, and the speed of light,
c = 2.998 × 1010cm/s, are the fundamental constants in the theory. The constant
G/c2 = 7.423 × 10−29cm/g= 1.325 × 10−42fm c2/MeV is also useful since GM/c2 is
having the unit of length. If we use so called gravitational units, G = c = 1, both the
time unit and the mass unit will be identical with the unit of length.

Nuclear and astrophysics are connected through Einstein’s theory of general relativity,
which connects the curvature of the space with the energy momentum tensor of the
matter via Einstein’s equation[2]

Gµν = −8πTµν

(
= −8πG

c4
Tµν

)
. (11.1)
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Here Gµν = Rµν − 1
2
gµνR is Einstein’s curvature tensor, a function of the space-time

metric gµν , (it is usually given in terms of the Ricci tensor, Rµν , and the invariant scalar
curvature, R). Tµν is the matter energy-momentum tensor.

Far from any massive object the space-time is smooth and the metric tensor is gµν =
diag(1,−1,−1,−1) as we discussed in Chapter 2. In empty space outside a massive
static spherical star of radius R and mass M , Schwarzschild showed that the solution of
Einstein’s equation has a simple form. All but the diagonal components of the metric
vanish, and they are simple. The line element for r > R is

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2sin2θdφ2 . (11.2)

The metric functions in front of dt2 and dr2 change by an infinitesimal amount over the
distance between nucleons in a star even if the star is near the limit of collapse to a
black hole. Consequently in the local rest frame the matter properties and Tµν can be
calculated the same way as in the flat space-time. In other words the EOS investigated
in heavy ion reactions is relevant for astrophysical situations also.

Now let us estimate the mass and radius of a star near the black hole limit. The
metric becomes singular at r = 2M , this radius is in the interior of the star where the
Schwarzschild solution is not valid. We can roughly estimate the qualitative features of
a star with radius R ≈ 2M (or somewhat larger to avoid the collapse). Assume that
the nucleons in the star are compressed to the limit of their hard core repulsion, just
before they would have a phase transition to QGP, n ≈ 1/fm3 (see Chapt. 4). Then
the number of nucleons in the star is N = nV = n× 4πR3/3, and the mass of the star
is M = n mN 4πR3/3, where mN = 939MeV is the nucleon mass. If now we estimate
the radius of the star from R = 2M we get

R = 9.79× 1018 fm = 9.79km .

The number of nucleons in the star is 3.93× 1057. The mass of the star is

M =
R

2
= 4.9km ,

and this can be expressed in terms of the solar mass, M� = 1.5 km, as M = 3.26M�.
So here we have an estimate of the baryon number, radius and mass of a star at the
limiting nuclear density. We expect a slightly smaller mass and larger radius than the
values given by the Schwarzschild relation. The typical size and mass of of a neutron
star are

R ≈ 10km, and M = 2M�. (11.3)

The density of the nucleons is quite large in the star, so if the star would not be
neutral the Coulomb force would overwhelm gravity. Thus the nucleons are mostly
neutrons in such a star and that is why it is called neutron star.

In order to be able to calculate the structure of a star more precisely we need the
energy momentum tensor and the equation of state (EOS) of the matter. Since the
change of the metric is small in the star and even less between two neighboring nucleons
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we can neglect the effects of gravitation when the EOS is calculated. Thus in the local
rest frame we use the form of Tµν =diag(e, p, p, p) introduced in Chapter 2, for perfect
fluids.

In the special case of a spherically symmetric static star Einstein’s equation takes a
special form, the Tolman-Oppenheimer-Volkoff equation (TOV):

dp

dr
=

Me

r2
(1 +

p

e
)

(
1 +

4πr3p

M

)(
1− 2M

r

)−1

,

dM

dr
= 4πr2e . (11.4)

We can easily interpret these equations. Let us consider a shell of matter in the star of
radius r and thickness dr. The second equation gives the mass energy in this shell. The
pressure of matter exterior to the shell is p(r) and interior to it p(r) + dp(r). The left
side of the first equation is the pressure difference or force force acting outward on unit
surface of the shell, and the first term on the right hand side is the attractive force of
gravity acting on a unit size portion of the shell by the mass interior to it. This term is
present in Newton’s theory also. The remaining three factors are the exact corrections
for general relativity. So these equations express the balance of internal pressure and
gravity. The equation of state, p = p(e), completes the solvable set of equations, and
provides the influence of the matter on the solution.

This set of equations can be integrated from the origin with the initial conditions
M(r = 0) = 0, and an arbitrary value for the central energy density e(r = 0) = e(0),
until the pressure, p(r), becomes zero [4]. That point, R, defines the radius of the star,
and M(R) its mass. For the given equation of state, there is a unique relationship
between the mass and central density, e(0) (Fig. 11.1). So for each possible equation of
state there is a family of stars, parameterized by the central density.

Each family has a maximum mass star, called the limiting mass, and the central
density of the limiting mass star is higher the softer the equation of state. The part
of the curve for which the slope is positive corresponds to stable configurations i
(Fig. 11.2). For negative slope, one can readily verify that the star is unstable to radial
perturbations.

If the EOS includes a phase transition to QGP the star has a special structure.
The high density center is in the QGP phase, then moving outwards, we reach the
phase transition density. At this density the QGP and hadronic pressures are equal in
equilibrium, so we have the phase transition and the density drops down suddenly to
the equilibrium hadronic density. (Fig. 11.1). This is a sharp density discontinuity at
some radius like at the surface of the see on the Earth.

There are a large number of attempts to study the structure of such hybrid stars
[1, 5, 3, 6, 7]. The hybrid stars are smaller, but they have approximately similar masses
as the neutron stars.

The stars with mass beyond the maximum are unstable to collapse to black holes.
(Fig. 11.2). It is in the limiting mass that a constraint on the equation of state arises.
Obviously an acceptable equation of state must have a limiting mass at least as large
as the largest observed mass. The masses of observed neutron stars are between
M = 1− 2.5M�.
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Figure 11.1: Radial baryon density profiles, n(r), for a pure neutron star and a hybrid
star. The upper figure shows the density profile for a neutron star with central density
of 2n0, calculated from a so called “Quadratic EOS” with different compressibilities
indicated. The lower figure displays a hybrid star profile with a central density of 10n0

for the same nuclear EOS as above and a QGP EOS with a bag constant B1/4 = 165MeV
and αs = 0.4. The discontinuities of n(r) at the radii around 6-7.5 km reflect the first
order phase transition between the quark core and the outer layer of neutron matter.
Reproduced by permission of Springer-Verlag from [3].
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Figure 11.2: The mass of hybrid (quark-neutron) stars as a function of the central
density for different nuclear and QGP equations of state. Note that positive slope
is required for stability against gravitational collapse. Reproduced by permission of
Springer-Verlag from [3].
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The stability of stars requires that the mass and the radius of the star should increase
with increasing central density. Furthermore the mass of the star should increase with
increasing star radius. This latter requirement makes pure quark stars unstable against
collapse to black holes according to most model calculations.

11.1.1 Pulsars and neutron stars

Since the first discovery of a pulsar in the pulsed signals of a radio-telescope in 1967
about 400 pulsars have been observed. The period of the pulses ranges from milliseconds
to seconds, and is interpreted as the period of the star rotation.

Ordinary stars have magnetic fields and rotate. When they collapse from a radius
of ≈ 106 km to 10 km, both the rotation frequency and field are scaled up by the
conservation laws of angular momentum and magnetic flux. It can be shown that
these conservation laws provide the rotation frequency observed in the pulsars, (see, for
example, ref. [1].)

11.1.2 Supernova explosions

The maximum mass of the neutron and hybrid stars is not too large, 1 − 2.5M�,
so a massive star due to smooth burning and collapse would not be able to end up
in a neutron star, because the loss of mass during these processes is not very large.
Consequently smaller stars end up as White Dwarfs, while massive stars, above 5-20M�
or larger, collapse into black holes.

The most generally accepted way to produce a neutron or hybrid star is going
through an explosive process, the supernova explosion, where the outer crust of the star
is blown away by an explosion and the internal core collapses to a neutron star. The
most dominant causes of such an explosion are the shock wave propagating outwards
after a collapse of the core to a dense degenerated state, and the intense neutrino flux
arising from the collapse when the protons are converted into neutrons.

However, the physics of supernova involves so many factors of comparable importance
but high uncertainty, that they cannot be said to provide any constraint on the nuclear
EOS at the present time. It is not known whether supernovas can always explode by the
prompt bounce mechanism. Only a small part of supernova remnants contains a neutron
star and very little observational information on the explosion mechanism is available
even in the best studied case (SN 1987A). We know that some supernovas leave neutron
stars behind and that the kinetic energy of the ejecta is typically around 1051erg. It is
possible that only those stars can explode by the prompt shock wave mechanism which
possess a significant amount of angular momentum initially. Nevertheless, there is little
doubt that soft (supra-nuclear) equations of state favor prompt explosions, at least for
non-rotating models.
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11.2 Implications on the early universe
Einstein’s equations (11.1) cannot provide a static solution for the whole homogeneous
and isotropic universe. Initially this was thought to be a problem of the theory and
Einstein did introduce a small extra repulsive term the so called cosmological constant
to the Einstein equation, Λ gµν , added to the energy momentum tensor.

Later Friedmann has found a time dependent solution and it turned out that it
actually agrees with all observations. According to this solution the universe started
from a singularity at time zero, and then it is expanding. This is the so called Big Bang
theory. For a closed universe the metric of the space time is

ds2 = dt2 −R2(t)

[
dr2 + r2(dΘ2 + sin2 Θdφ2)

1 + r2/4

]
. (11.5)

The curvature radius of the universe, R(t), can be obtained from the Einstein equations
if the equation of state of the matter of the universe is known.

High energy heavy ion physics can provide experimental information of the equation
of state of the early universe. This EOS clearly influences the early development of
the universe. Phase transitions in the EOS are leading to rapid expansion of the early
universe, to the inflation.

The energy domain studied in heavy ion reactions is relevant in the first few seconds
of the universe (see Table 11.1, [1MeV = 1.16045 ×1010 oK if kB = 1]).

time Temperature Temperature
[oK] [MeV]

10−6 s 1015 105 QGP
10−4 s 1012 100 QGP hadronization
1 - 2 s 1010 1 eē annihilation
1.5 min 109 0.1 d formation

Table 11.1: Time and temperature scale of the early universe

Thus the hadronization of quark gluon plasma and the initial expansion of dense
nuclear matter happens between a few seconds and a minute in the early universe. Here
the entropy per baryon charge or particle number per baryon charge is about 109-1010,
so that only the mid rapidity region of highest energy heavy ion collisions at the CERN
- LHC or the BNL - RHIC, with near to complete transparency are relevant from this
point of view.

Possible signatures of the quark-hadron transition are strangelets as candidates for
the dark matter (i.e. of matter that contributes to the gravitation but optically not
observed in the universe), or consequences in cosmological nucleosynthesis[8].

At the time of the QGP hadronization at ≈ 10−6− 10−4 s, the horizon mass was less
than a solar mass, so fluctuations arising from the hadronization of QGP are unlikely to
affect directly anything larger than a solar mass size system. Consequently the galaxy
cluster structure or the galaxy structure is not likely to be connected with the QGP
phase transition[8].
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11.2.1 Strangelets

One form of debris possibly formed in the QGP hadronization is strange quark nuggets
or strangelets. If in QGP not only u and d, but also s quarks are present the Pauli
exclusion effect will be decreased in dense matter. High density of strange quarks may
be present in a final state if the Fermi level is above the strange quark mass.

During the rehadronization of QGP strangeness and antistrangeness may be sepa-
rated [9]. This may happen in the early universe as well as in heavy ion collisions. The
total strangeness charge is zero for the total system, but it is not necessarily so in both
phases separately in a mixed phase system. It is shown that if the system has a net
(positive) baryon charge the strangeness and anti-strangeness will be separated during
the hadronization, so that the strangeness will be retained in the QGP while the newly
formed hadronic phase will carry more anti-strange quarks.

We assume that the reaction rate is sufficiently fast to maintain thermal, mechanical,
and chemical equilibrium during the phase transition. In such a case the system
follows the Maxwell construction closely, and the extra entropy production is small.
Therefore the thermodynamical intensives should be equal during the phase transition:
TH = TQGP , PH = PQGP , µ

(B)
H = µ

(B)
QGP and µ(s)

H = µ
(s)
QGP . This last condition indicates

that not the strangeness density but the corresponding chemical potential is continuous
during the transition. Given the total energy, volume, strangeness, and baryon charge
for the combined system of the two phases the intensives can be determined. It is
important to emphasize that even if the total strangeness is zero, the strange chemical
potential and the net strangeness in the two phases will not be zero in phase equilibrium.
For vanishing total strangeness in a pure single QGP phase system the strangeness
chemical potential is zero, but in a pure hadronic system it is not if our system has a
net baryon charge. In ref. [9] the development of strangeness abundance was calculated
in the Bjorken model assuming phase equilibrium and adiabatic expansion. The ratio
of net strangeness density versus baryon density in the plasma was increasing during
the collision and it reached 0.4-0.5 by 4-5fm/c time.

The excess strangeness in the remaining plasma droplets will then contribute to
massive strange objects which are larger than conventional strange hadrons, i.e. to
massive strange objects, strangelets or strange nuggets. Some suggested observable
candidates are: multistrange hadrons with baryon charge B≥2, the H-dibaryon (uuddss),
or multistrange hypernuclei [10].

Even if the reaction rate is not sufficient to establish chemical equilibrium exactly
at each stage of the hadronization [11, 12], the hadronization will tend to develop a
strangeness, anti-strangeness separation, although (usually) somewhat smaller than in
a chemical equilibrium process.
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