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Preface

Periodic reference and disturbance signals are widespread in engineering prac-
tice, as every rotating machine and repeated process involves periodicity.
Exploiting the periodic input characteristics in the controller design is indis-
pensable to meet tight performance demands in spite of measurement noise,
model inaccuracies. . .

This monograph proposes a general design methodology for linear con-
trollers facing periodic inputs, which applies to all controller types reported in
the literature. The proposed design methodology is able to reproduce and out-
perform major current design approaches, where this superior performance
stems from the following properties: (i) uncertainty on the input period is
explicitly accounted for; (ii) periodic performance is traded-off against con-
flicting design objectives; and (iii) the controller design is translated into a
convex optimization problem, guaranteeing the efficient computation of its
global optimum. Apart from extensive numerical evaluation, the potential of
the design methodology is experimentally illustrated on an active air bearing
setup.

This monograph is the result of four years of PhD research at the Division
of Production Engineering, Machine Design & Automation (PMA), Depart-
ment of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium. I
am grateful to all people who contributed to this work. I would like to give
a special word of thanks to my supervisors Jan Swevers and Bram Demeule-
naere for offering me support and guidance, while at the same time giving me
the freedom to choose my research niche. I wish to acknowledge Z. Liu and
Prof. L. Vandenberghe (UCLA, Electrical Engineering Department) for their
kind assistance and pertinent comments concerning the numerical solution of
the SDPs involved. Also many thanks to the Research Foundation–Flanders
(FWO–Vlaanderen) for providing a fellowship for this research. Last but not
least, I am indebted to my parents who always encouraged and supported
me.

Leuven, Belgium, Goele Pipeleers
August 2009
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Chapter 1
Introduction

1.1 Motivation

1.1.1 Periodic Inputs Deserve Special Attention

Periodic reference and disturbance signals are widespread in engineering practice,
as every rotating machine and repeated process involves periodicity. Periodic dis-
turbances are for instance encountered in the track-following servo system of disk
drives [24, 25, 26, 101], steel casting [98], power electronics [12, 164, 165], active
air bearing systems [7, 67], active noise control [11], satellite attitude stabilization
[16, 156], peristaltic pumps used in medical devices [64] and robotized laparo-
scopic surgery [50]. Furthermore, disturbances due to rotating unbalances or nearby
combustion engines are dominantly periodic. On the other hand, periodic reference
trajectories occur in noncircular machining [83, 148], electronic cam motion gener-
ation [84] and robots performing repetitive tasks [80, 119].

In engineering practice, better performing controllers are an essential comple-
ment to improved machine design in the continual quest for better tracking and
disturbance rejection performance. The attainable performance of a controller is,
however, bounded by measurement noise, model inaccuracies, actuator saturation,
etc., and in face of these limitations, exploiting all knowledge available on the refer-
ence and disturbance inputs is indispensable to achieve the tightening performance
demands.

1.1.2 Linear Control for Periodic Inputs

In linear control theory, the scope of this monograph, considerable effort has been
devoted to specialized controller designs for periodic inputs. This control problem
is often handled in the context of output regulation, which concerns the design of an
internally stabilizing controller that yields perfect asymptotic rejection/tracking of

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 1–4.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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e−sTp

Fig. 1.1 Universal generator of signals with period Tp.

persistent input signals. Such signals comprise infinite energy signals of which the
excitation frequencies are known, and mathematically, they are most conveniently
described as the autonomous output of a marginally stable system. This system is
commonly referred to as exosystem or signal generator, where the latter terminol-
ogy is adopted here. Figure 1.1 shows a universal periodic signal generator, which,
determined by its initial conditions, can generate any signal with period Tp [s].

In the early 1970s, Davison et al. [34, 35] and Francis et al. [45, 46, 47, 48] laid
the foundation of regulation theory with the Internal Model Principle. This prin-
ciple states that perfect asymptotic rejection/tracking of persistent inputs can only
be attained by replicating the signal generator in a stable feedback loop. In this
earliest form, the Internal Model Principle considers the classical feedback control
configuration where both the regulated output and controller input correspond to the
tracking error.

In the 1980s, Inoue et al. [75, 76], Hara et al. [59, 60] and Tomizuka et al.
[145, 146] translated the Internal Model Principle into a feedback controller de-
sign that achieves output regulation of periodic inputs of which only the period Tp

is known. The controllers are called repetitive controllers, and their structure ex-
plicitly incorporates the signal generator shown in Figure 1.1. Ever since its origin,
repetitive control received continual interest in the literature, where contributions
involve both theoretical improvements and practical applications (see e.g. [33, 66]
for a survey).

Although specializing a feedforward controller design for periodic inputs is ben-
eficial for nonminimum-phase or uncertain systems, it is only sparsely covered in
the literature [143, 152]. Feedforward control is usually applied to a reference in-
put for improving the overall tracking performance, but by combining it with a
disturbance observer (see e.g. [103]), feedforward control can also be applied to
improve disturbance attenuation. The resulting control strategy is, however, feed-
back in nature and therefore it is here referred to as estimated disturbance feedback
control. Similar to feedforward control, only few contributions deal with exploiting
the periodic input characteristics in an estimated disturbance feedback controller
design [144, 151].

In the 1990s, fundamental research on the output regulation problem regained in-
terest. Among others, contributions involve relaxing the assumption in the Internal
Model Principle that the regulated output constitutes the controller input, and com-
bining regulation with additional performance specifications and input constraints
[117]. In addition, feedback controllers for periodic inputs are proposed that not
only exploit the input periodicity, as repetitive controllers do, but also exploit the in-
put’s harmonic frequency content (i.e., the frequencies of the harmonic components
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present in the input) [65, 88]. According to the Internal Model Principle, such
feedback controllers include a system that can generate periodic signals with a given
harmonic frequency content. Repetitive controllers, on the other hand, include the
universal periodic signal generator of Figure 1.1, which can generate periodic sig-
nals with any harmonic frequency content, and hence, constitute a subclass of feed-
back controllers.

To conclude, the literature on linear controller design for periodic inputs dis-
tinguishes four approaches: feedforward control, estimated disturbance feedback
control, repetitive control and feedback control, and has gained a marked status in
modern control literature.

1.1.3 Problem Statement

Although the literature on controller design for periodic inputs is vast, some issues
remain open:

• The majority of the results, for all aforementioned control strategies, rely on the
assumption that the period of the input is accurately known or measurable. In
practice, however, this assumption is often jeopardized by clock error drift, jitter,
measurement noise, disturbances in the period control loop, etc.

• Many controller designs adopt a single-objective point of view to the consid-
ered control problem with main (sole) emphasis on rejecting/tracking the peri-
odic inputs. However, this improved periodic performance often compromises
other performance aspects of the closed-loop system, such as the attenuation of
nonperiodic disturbances, transient response time, etc., invoking the need for a
multi-objective design philosophy.

• Except between feedforward and estimated disturbance feedback control, the lit-
erature reveals little interplay between the different control strategies. For in-
stance, the intuitive feedforward controller design proposed in [152] is not inves-
tigated within the recent theoretical findings presented in [117], and while many
applications mark the practical relevance of repetitive control, the performance of
such controllers is not compared to feedback controllers that exploit the input’s
harmonic frequency content.

1.2 Contribution

This monograph presents a general design methodology for controllers facing peri-
odic inputs. The methodology relies on the following keystones and hereby contrasts
the existing design approaches:

Periodic Performance Index: Closed-loop periodic performance is quantified in
terms of a periodic performance index, which explicitly accounts for period-time
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uncertainty. Hence, low values of this performance index translate into good
closed-loop attenuation/tracking of the periodic inputs even if the actual period
differs from its nominal value.

Multi-objective Control: Although improving the closed-loop periodic perfor-
mance is the main focus of the controller design, the design methodology is
multi-objective in nature and allows incorporating a variety of additional design
specifications.

Convex Optimization: To guarantee the reliable and efficient computation of its
global optimum, the multi-objective controller design problem is translated into
a convex optimization problem. This transformation is enabled by the Youla
parametrization and besides the efficient computation of the global optimum,
the convexity of the obtained optimization problem facilitates the generation of
trade-off curves between conflicting performance specifications. These curves in-
dicate fundamental limits of performance in the controller design (performance
bounds no controller can break), and will be shown a valuable design tool.

While this design methodology in itself is yet innovative, it has the additional con-
tribution of bridging the current gap between the different control strategies. The
methodology can be translated into a feedforward controller, estimated disturbance
feedback controller, repetitive controller and feedback controller design, and hereby
it relates these control strategies to a common ground, emphasizing their mutual
relations.

Apart from extensive numerical evaluation, the potential of the design methodol-
ogy is experimentally illustrated on an active air bearing setup.

1.3 Outline

Chapter 2 presents the developed controller design methodology and details its fun-
damental concepts. The four subsequent chapters each apply the design methodol-
ogy to a specific control strategy: Chapter 3 starts with feedforward control, while
Chapter 4 handles the estimated disturbance feedback controller design with the
developed design methodology. Chapter 5 deals with the repetitive controller de-
sign, after which Chapter 6 applies the methodology to design feedback controllers
that exploit the input’s harmonic frequency content. Each of these chapters is pro-
vided with numerical results, which emphasize the capability of the presented de-
sign methodology to reproduce and outperform major current design approaches,
for each of the four control strategies. Chapter 7 presents the experimental valida-
tion of the methodology, where it is applied to design a repetitive controller for an
active air bearing setup. Chapter 8 summarizes the conclusions of this monograph.



Chapter 2
Design Methodology for Controllers Facing
Periodic Inputs

2.1 Introduction

This chapter presents the general design methodology for controllers facing periodic
input signals and elaborates on its fundamental concepts. The subsequent chapters
apply this methodology to specific control strategies from the literature and hereby
yield a more concrete impression of its functionalities and potential.

The design methodology starts from the general control configuration, see e.g.
[13, 131, 163], which constitutes a universal way of formulating control prob-
lems. Section 2.2 details this control configuration together with the required a
priori knowledge of the periodic input. Fundamental to the methodology is its
multi-objective nature, combining improved closed-loop periodic performance with
additional design specifications. Section 2.3 elaborates on the formulation of multi-
objective control problems and defines the periodic performance index, the math-
ematical means to incorporate good periodic performance in the controller design.
The efficient and reliable solution of the resulting multi-objective design problem
relies on the benefits of convex optimization (Section 2.5), where the convex refor-
mulation of the controller design problem is enabled by the Youla parametrization
(Section 2.4).

The presented methodology is restricted to the design of a linear time-invariant
(LTI) controller for an LTI system. Complying with the literature on control for
periodic inputs, this monograph emphasizes the single-input single-output (SISO)
discrete-time controller design. This restriction is however not fundamental to
the methodology and Section 2.6 discusses the extension to continuous-time and
multiple-input multiple-output (MIMO) control.

Concerning notation on discrete-time systems: the sample frequency is denoted
by fs [Hz], where Ts = 1/ fs [s] indicates the sample period and index k labels
the sampled time instants kTs. The one-sample-advance operator is indicated by q,
while z denotes the discrete-time Laplace variable. For a discrete-time LTI system
P, P(q) and P(z) correspond to its difference equation and transfer function matrix,
respectively, while its frequency response function (FRF) matrix is denoted by P(ω)

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 5–21.
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w1(k)

wi(k)

v1(k)

vi(k)

u(k) y(k)

P

K

H

...

...
...

...

Fig. 2.1 General control configuration, where controller K is designed for generalized plant
P, yielding closed-loop system H. Signals u(k) and y(k) respectively correspond to the plant’s
control input and measured output, while exogenous inputs wi(k) and regulated outputs vi(k)
are used to define multiple design specifications.

instead of P
(
e jωTs

)
to alleviate notation. To differentiate between variables, in this

monograph, a system P is commonly indicated by P(q) or P(z), where the abuse of
notation involves omitting the initial conditions.

2.2 Control Problem Formulation

The control problem is formulated in terms of the general control configuration
discussed in Section 2.2.1, while Section 2.2.2 details the a priori knowledge of the
periodic input required by the controller design.

2.2.1 General Control Configuration

Figure 2.1 shows the general control configuration, which provides a universal way
of formulating control problems. The generalized plant P(z) constitutes a mathe-
matical model of the system to be controlled. Its input signals manipulable by the
controller are grouped in the control input u(k), while the measured output y(k)
comprises the plant outputs accessible to the controller. The controller is denoted
K(z) and its design must guarantee internal stability of the closed-loop system H(z)
and make it behave in a desired manner. Desired closed-loop behavior is translated
into multiple design specifications, labeled by index i, where the i’th specification
involves the closed-loop subsystem Hi(z) from exogenous input wi(k) to regulated
output vi(k). Exogenous inputs generally correspond to a disturbance, noise input
or reference command, while regulated outputs are usually signals that should be
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rendered “small”, such as the tracking error or control effort. Subsystems Hi(z) cor-
respond to the (block-) diagonal components of H(z):

⎡

⎢
⎢
⎢⎢
⎣

v1(k)
...

vi(k)
...

⎤

⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎣

H1(q) · · · � · · ·
...

. . .
...

� · · · Hi(q)
...

. . .

⎤

⎥
⎥
⎥⎥
⎦

︸ ︷︷ ︸
H(q)

⎡

⎢
⎢
⎢⎢
⎣

w1(k)
...

wi(k)
...

⎤

⎥
⎥
⎥⎥
⎦

,

and specifying closed-loop performance in terms of Hi(z) solely, disregarding the
off-diagonal subsystems indicated by a �, may require the recurrence of exogenous
inputs and regulated outputs. Since multiple design objectives are considered, it is
advisable to scale the exogenous inputs and regulated outputs to their maximum ex-
pected or allowed value [131]. In a SISO control problem, signals u(k) and y(k) are
scalar, while vector-valued exogenous inputs and regulated outputs are still allowed.

Provided that the generalized plant is decomposed as follows:
[

vi(k)
y(k)

]
=
[

Pi(q) Piu(q)
Pyi(q) Pyu(q)

][
wi(k)
u(k)

]
,

closed-loop subsystem Hi(z) is given by

Hi(z) = Pi(z)+ Piu(z)K(z)
[
I − Pyu(z)K(z)

]−1
Pyi(z) . (2.1)

If the plant model P(z) is uncertain, a robust controller design is demanded. To
that end, an uncertainty set ΔΔ is specified that captures the uncertainty Δ on the
nominal plant model P(z). A robust controller not only performs well for the nomi-
nal model P(z) but for all potential plant models, indicated by PΔ (z), where Δ ∈ ΔΔΔ .
Following the same notation, a given controller K(z) gives rise to a set of potential
closed-loop systems HΔ (z), while H(z) indicates the nominal closed-loop system,
corresponding to the nominal plant P(z).

While alternative uncertainty sets are allowed, this monograph focusses on mul-
tiplicative unstructured plant uncertainty [131]. Hereby, the generalized plant PΔ (z)
depends on an uncertain system GΔ (z) of the form

GΔ (z) = G(z)
[
1 +WG(z)Δ(z)

]
, Δ(z) ∈ Δ . (2.2a)

Transfer function G(z) corresponds to the nominal model, while uncertainty set Δ
is given by

Δ = {Δ(z) is a stable system with ‖Δ(z)‖∞ ≤ 1} , (2.2b)

and stable transfer function WG(z) determines the “size” of the uncertainty.
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2.2.2 Periodic Input

Inspired by the literature, this monograph focusses on a single, scalar periodic in-
put signal, while the relaxation of this restriction is discussed in Section 2.6. Good
closed-loop rejection/tracking of the periodic input corresponds to the ip’th design
specification (i = ip), where the subscript (·)ip is shortened to (·)p. Hence, wp(k)
constitutes the periodic input and its effect on vp(k), in closed loop related to wp(k)
by subsystem Hp(z), should be reduced/eliminated.

The nominal value of the input period is denoted by Tp [s], where fp = 1/Tp [Hz]
indicates the corresponding fundamental frequency and ωp = 2π fp [rad/s]. Index l
labels the harmonics of the periodic input, where 0 ≤ l ≤ Tp fs/2 is assumed with-
out loss of generality. The set of harmonics l that are present in wp(k) and should
be suppressed by the controller is denoted by L , and nL equals the number of ele-
ments in L . To each harmonic l ∈ L , a positive weight Wl is attributed, quantifying
its relative importance in wp(k). Hence, Wl generally corresponds to the amplitude
of the corresponding Fourier coefficient, or a (rough) estimate thereof.

The design methodology allows accounting for period-time uncertainty, which
is modeled as relative (multiplicative) uncertainty on ωp, bounded by δδ . Hence, all
potential values ωp,δ of the fundamental frequency are given by

ωp,δ = ωp(1 + δ ) , |δ | ≤ δ , (2.3)

while
Ωl =

[
lωp(1 − δδ ) , lωp(1 + δδ )

]
(2.4)

equals the corresponding uncertainty interval on the l’th harmonic frequency. Ac-
cording to ωp,δ : fp,δ = ωp,δ/(2π) and Tp,δ = 1/ fp,δ .

Implied by the Internal Model Principle [34, 45, 46, 47, 48], a controller that yields
perfect asymptotic rejection of wp(k) must include the corresponding signal genera-
tor. The generator of wp(k) for nominal period Tp is denoted byΛ(z) and comprises
the signal generators of each of its harmonic components:

Λ(z) = ∏
l∈L

Λl(z) , (2.5a)

where

Λl(z) =
z2

(
z− e− jlωpTs

)(
z− e jlωpTs

) , ∀l ∈ L \ {0,Tp fs/2} , (2.5b)

Λ0(z) =
z

(z− 1)
, (2.5c)

ΛTp fs/2(z) =
z

(z+ 1)
. (2.5d)
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The order of Λ(z) is indicated by nΛ and equals

nΛ = 2nL − ∣
∣L ∩{0,Tp fs/2}∣∣ , (2.6)

where for a finite set X , its cardinal number |X | equals the number of elements in X .
If Tp contains an integer number N of sample periods and all harmonics are present
in wp(k):

Λ(z) =
zN

zN − 1
,

and nΛ = N.

2.3 Optimal Controller Design

The objective is to design an internally stabilizing controller K(z) that optimizes the
closed-loop periodic performance, i.e., minimizes the steady-state effect of wp(k) on
vp(k), but without being blind for the controller’s effect on conflicting performance
aspects. As this design philosophy translates into a multi-objective controller design,
Section 2.3.1 first discusses the formal structure of such a design problem. The pe-
riodic performance index, defined in Section 2.3.2, quantifies closed-loop periodic
performance and allows incorporating good suppression/tracking of the periodic in-
put in the controller design. To conclude, Section 2.3.3 presents a multi-objective
control problem that often recurs in this monograph.

2.3.1 Formal Multi-objective Control Problem

The methodology allows incorporating any design specification provided that it
is closed-loop convex, that is: the set of LTI systems satisfying the specification
is convex. As detailed in e.g. [13, 14, 122], most performance and robustness
specifications in linear control are closed-loop convex, including internal stability,
system norms, convex pole placement constraints, constraints on a closed-loop
step response such as asymptotic tracking, under- and overshoot, settling and
rise-time, etc.

Design specifications either impose a hard constraint on the controller design or
involve a performance aspect that should be optimized. For instance, internal closed-
loop stability is an indispensable hard constraint, where the convex set of internally
stable closed-loop systems is denoted by Sstab. Additional hard design constraints
generally relate to fixed performance targets or robust closed-loop stability, as im-
posed by the small gain theorem or translated into stability margins like gain and
phase margin. Indices i related to these additional design constraints are grouped
into the set Iconstr, while each constraint can formally be described as Hi(z) ∈ Si,
where the set Si is convex.

In contrast to hard constraints, so-called soft design constraints involve a per-
formance specification that should be optimized but for which no a priori target
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is given. Mathematically, such a performance specification is translated into a per-
formance index γi that should be rendered small. Indices i related to such soft
design constraints are grouped into the set Iperf, and formally, γi is defined by(
Hi(z),γi

) ∈ Si, where set Si is convex. To minimize all performance indices in-
volved, they are combined into a weighted sum:

fobj = ∑
i∈Iperf

αiγi ,

where weights αi ≥ 0 reflect the relative “importance” attributed to the various
performance specifications. This approach is referred to as scalarization [15] and
translates into the following formulation of the multi-objective controller design
problem:

minimize
K(z),γi

∑
i∈Iperf

αiγi

subject to
(
Hi(z),γi

) ∈ Si , ∀ i ∈ Iperf

Hi(z) ∈ Si , ∀ i ∈ Iconstr

H(z) ∈ Sstab .

2.3.2 Periodic Performance Index

Closed-loop periodic performance relates to the steady-state effect of wp(k) on
vp(k), and to incorporate good closed-loop periodic performance in the controller
design, it is quantified by the periodic performance index γp, where the shortened
notation (·)p instead of (·)ip , of Section 2.2.2 is continued.

To quantify closed-loop periodic performance, in a first step the FRF of Hp(z) is
analyzed around each harmonic l ∈ L and Vl is determined as follows:

Vl = Wl max
ω∈Ωl

{|Hp(ω)|} .

If Wl equals the amplitude of the l’th Fourier coefficient of wp(k), Vl corresponds
to the worst-case amplitude of the l’th Fourier coefficient of vp(k) over all poten-
tial ωp,δ values (2.3). More generally, Vl corresponds to the worst-case steady-state
closed-loop reduction of the l’th harmonic from wp(k) to vp(k), weighted by Wl .

In a second step, the Vl values for all l ∈ L are combined into a scalar perfor-
mance index. Performing this combination in an ∞-norm based manner yields

γp = max
l∈L

{Vl} , (2.7a)

= max
l∈L

{
Wl max

ω∈Ωl

{|Hp(ω)|}
}

, (2.7b)
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while an alternative definition is based on the 2-norm1:

γp,2 =
√
∑

l∈L

V 2
l , (2.8a)

=

√

∑
l∈L

[
Wl max

ω∈Ωl

{|Hp(ω)|}
]2

. (2.8b)

Since in the subsequent chapters, definition (2.7) is more often used, the correspond-
ing index is denoted by γp instead of γp,∞. For both definitions, lower index values in-
dicate better closed-loop asymptotic attenuation/tracking of the periodic input wp(k)
for all ωp,δ . Perfect asymptotic attenuation/tracking of wp(k) is referred to as perfect
periodic performance, and yields γp = γp,2 = 0. Although definitions (2.7) and (2.8)
are closely related by the equivalence of vector norms, see e.g. [131]:

γp ≤ γp,2 ≤ √
nL γp ,

their interpretations are subtly different. A given γp value guarantees worst-case
closed-loop attenuation of each harmonic l by a level γp/Wl , where the weights Wl

can be regarded as tuning parameters to distribute control effort over the harmonics.
On the other hand, γp,2 is more appropriate if the input spectrum is known, since
it bounds from above the worst-case root-mean-square (rms) value of vp(k) over
all ωp,δ :

max
|δ |<δδ

√

∑
l∈L

(
Wl|Hp(lωp,δ )|

)2

︸ ︷︷ ︸
rms(vp(k)) for ωp,δ

≤ γp,2 , (2.9)

provided that Wl are set equal to the amplitudes of the corresponding Fourier
coefficients2.

In view of the formal multi-objective control problem stated in the previous sec-
tion, good closed-loop periodic performance can be added as either a hard or a soft
constraint. In the former case γp is fixed, whereas in the latter case γp constitutes an
optimization variable. Definition (2.7) of γp corresponds to the following set Sp:

Sp =
{(

Hp(z),γp
)∣∣
∣Wl|Hp(ω)| ≤ γp , ∀ω ∈Ωl and ∀ l ∈ L

}
,

whereas for definition (2.8):

1 While only the ∞-norm and 2-norm based definitions are used in this monograph, any
vector norm can be used to combine the Vl values into a scalar performance index, yielding
a closed-loop convex periodic performance specification.

2 The left-hand side of (2.9) is also closed-loop convex. However, converting it into a set
of LMIs by the generalized KYP, similar to the procedure of Section 2.5, yields an SDP
much harder to solve compared to definition (2.8).
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Sp,2 =

{
(
Hp(z),γp,2

)
∣∣
∣
∣
√
∑

l∈L

V 2
l ≤ γp,2 , where ∀ l ∈ L :

Wl|Hp(ω)| ≤ Vl , ∀ω ∈Ωl

}

.

2.3.3 Control Problem of Particular Interest

One particular instance of the multi-objective control problem often recurs in the
subsequent chapters. In this problem, closed-loop periodic performance is traded-
off against closed-loop nonperiodic performance, i.e., the closed-loop attenua-
tion/tracking of nonperiodic inputs. Good nonperiodic performance corresponds to
the inp’th design specification and notation (·)inp is shortened to (·)np. While alterna-
tive definitions for the nonperiodic performance index γnp are allowed, the following
one is used in this monograph:

γnp = ‖Hnp(z)‖∞ , (2.10)

yielding

Snp =
{(

Hnp(z),γnp
)∣∣
∣ |Hnp(ω)| ≤ γnp , ∀ω ∈ [0,π fs]

}
.

To account for the amplitude spectrum of nonperiodic input wnp(k), an appropriate
weighting function should be included in Hnp(z) [131].

To investigate the trade-off between γp and γnp, the following design problem is
solved for various weights α ≥ 0:

minimize
K(z),γp,γnp

γp +αγnp

subject to
(
Hp(z),γp

) ∈ Sp
(
Hnp(z),γnp

) ∈ Snp

H(z) ∈ Sstab .

In many applications, performance indices γp and γnp are conflicting, implying
that improved periodic performance (lower γp value) comes at the price of degraded
nonperiodic performance (higher γnp value). This conflicting behavior stems from
the Bode Integral Theorem [10, 21, 22, 49, 69, 138], and prevails in applications
where Hp(z) = Hnp(z). For a stable, SISO discrete-time system R(z) with gain ρ ,
minimum-phase zeros z−,i, nonminimum-phase zeros z+,i and stable poles pi:

R(z) = ρ ∏
m−
i=1(z− z−,i)∏m+

i=1(z− z+,i)
∏n

i=1(z− pi)
,

the Bode Integral Theorem states that
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−
r(k) η(k)

d(k)

K G+
+

Fig. 2.2 Classical feedback control configuration, where feedback controller K should make
output η(k) of plant G follow reference trajectory r(k) in the presence of output disturbance
d(k).

1
π fs

∫ π fs

0
ln |R(ω)|dω = ln |ρ |+

m+

∑
i=1

ln |z+,i| . (2.11)

In many control applications, fundamental limitations dictate unity gain (ρ = 1)
in the closed-loop transfer function, independent of the controller design. As this
bounds the right-hand side of (2.11) to be larger than or equal to zero, a trade-off be-
tween γp and γnp emerges: pushing the closed-loop FRF down to zero at the periodic
input’s harmonics yields a negative contribution in the integral (2.11) and hereby
invokes a positive contribution at intermediate frequencies, which corresponds to
closed-loop amplification.

The most well-known control application that features the fundamental unity gain
limitation (ρ = 1) is the classical feedback control system, shown in Figure 2.2.
K(z) is the controller to be designed and its purpose is to make output η(k) of
plant G(z) follow the reference trajectory r(k) in the presence of output disturbance
d(k). Performance is determined by the closed-loop sensitivity S(z), as this transfer
function determines the tracking error e(k) = r(k)−η(k):

S(q) =
e(k)

r(k)− d(k)
=

1
1 + K(q)G(q)

.

If the plant is strictly causal (denominator order larger than numerator order), any
causal controller yields a sensitivity function with unity gain. Hence, if r(k)− d(k)
comprises both a periodic and nonperiodic signal (that is: r(k) − d(k) = wp(k) +
wnp(k), while vp(k) = vnp(k) = e(k), yielding Hp(z) = Hnp(z) = S(z)), γp and γnp are
conflicting.

Theoretically, the trade-off between γp and γnp can be circumvented by creating
very sharp notches at the harmonics, hereby making the negative contribution in
(2.11) infinitely small. However, this comes at the expense of a very sluggish tran-
sient response3 and relies on very accurate knowledge of the input period (see Sec-
tions 5.4.2 and 6.5.2). While the latter assumption is often jeopardized in practice
by measurement noise, clock error drift, jitter, etc., sluggish transient responses are
generally unacceptable. Taking into account these practical issues, in many control

3 This holds for an LTI controller design, as is considered in this monograph, but can be
circumvented by using time-varying control [87].
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applications the Bode Integral Theorem dictates a trade-off between closed-loop
periodic and nonperiodic performance.

2.4 Youla Parametrization

In general, multi-objective control problems are hard to solve, since despite the
closed-loop convexity of the design specifications, they are nonconvex when for-
mulated in terms of the controller parameters. The origin of this nonconvexity is
twofold: (i) the closed-loop transfer function matrix H(z) depends in a nonlinear
way on the controller K(z), see Equation 2.1; and (ii) parameterizing K(z) as a
transfer function or state-space model yields a nonlinear relation between the de-
sign parameters and the evaluation of K(z) for a given z.

Currently, two approaches exist to reformulate a multi-objective control problem
as a convex optimization problem. The first approach relies on the Lyapunov shaping
paradigm [36, 121], whereas the second strategy applies the Youla parametrization
[37, 90, 159, 160]. Although the Lyapunov shaping paradigm allows incorporating
(almost) asymptotic regulation constraints [88, 121], it cannot cope with uncertainty
on the input period and the periodic performance indices defined in Section 2.3.2.
While this is yet a decisive reason to adopt the Youla parametrization, the subsequent
chapters additionally show that the Youla parametrization is able to reproduce many
of the controller structures for periodic inputs reported in the literature.

In the Youla parametrization approach, the nonlinear relation between H(z) and
K(z) is circumvented by a nonlinear, one-by-one transformation of K(z) into the
so-called Youla parameter X(z), which relates affinely to H(z) (Section 2.4.1). The
second source of nonlinearity is handled by parameterizing X(z) in an affine manner;
that is: as an affine combination of given transfer functions (Section 2.4.2).

2.4.1 Parametrization of H(z)

The Youla parametrization (see e.g. [97, 163] for more details) states that all realiz-
able, internally stable closed-loop systems H(z) can be expressed as

H(z) =Φ1(z)+Φ2(z)X(z)Φ3(z) , (2.12)

where X(z) is a free, stable transfer function, called the Youla parameter, which
relates in a one-to-one relationship to the corresponding controller K(z). The trans-
fer matrices Φ1(z), Φ2(z) and Φ3(z) are determined by the generalized plant P(z),
augmented with an arbitrary stabilizing controller. As relation (2.12) holds for the
entire transfer function matrix H(z), similar relations apply to the diagonal subsys-
tems Hi(z):

Hi(z) =Φ1,i(z)+Φ2,i(z)X(z)Φ3,i(z) . (2.13)
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Fig. 2.3 (a) The construction of the Youla parametrization starts with the design of an ar-
bitrary stabilizing feedback controller Knom. (b) In a second step, Knom is properly aug-
mented to K̃nom with auxiliary input ũ(k) and auxiliary output ỹ(k), where the augmented
plant P̃ corresponds to the resulting closed-loop system with inputs wi(k), ũ(k) and outputs
vi(k), ỹ(k).

The derivation of Φ1(z), Φ2(z) and Φ3(z) proceeds according to the steps illus-
trated in Figure 2.3. First, an arbitrary controller Knom(z), called the nominal con-
troller, is designed, where the only requirement for Knom(z) is that it must yield an
internally stable closed-loop system.

In a second step, Knom(z) is augmented to K̃nom(z) so that it accepts an auxiliary
input ũ(k) and produces an auxiliary output ỹ(k). The resulting closed-loop system
with inputs wi(k) and ũ(k) and outputs vi(k) and ỹ(k) is called the augmented plant
P̃(z), and its subsystems are indicated as follows:

[
vi(k)
ỹ(k)

]
=
[

P̃i(q) P̃iũ(q)
P̃ỹi(q) P̃ỹũ(q)

][
wi(k)
ũ(k)

]
.
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The augmentation of Knom(z) must comply with three requirements: first, the trans-
fer function from y(k) to u(k) in K̃nom(z) must remain Knom(z):

[
u(k)
ỹ(k)

]
=
[

Knom(q) K̃uũ(q)
K̃ỹy(q) K̃ỹũ(q)

]

︸ ︷︷ ︸
K̃nom(q)

[
y(k)
ũ(k)

]
.

Second, if Knom(z) is stable, the transfer functions K̃uũ(z) and K̃ỹy(z) must be stable
and invertible, whereas for unstable Knom(z), they must correspond to the product
of a stable invertible transfer function and the unstable part of Knom(z) (see e.g.
[97, 163]). Third, the design of K̃ỹũ(z) must guarantee that

P̃ỹũ(z) = 0 . (2.14)

As indicated in Figure 2.4(a), Youla parameter X(z) is designed as a stable feed-
back controller for the augmented plant P̃(z) and on account of relation (2.14), the
corresponding closed-loop system H(z) depends affinely on X(z). For instance, its
diagonal components from wi(k) to vi(k) are given by

Hi(z) = P̃i(z)︸︷︷︸
Φ1,i(z)

+ P̃iũ(z)︸ ︷︷ ︸
Φ2,i(z)

X(z) P̃ỹi(z)︸ ︷︷ ︸
Φ3,i(z)

.

The resulting feedback controller K(z) for the actual plant P(z) corresponds to the
feedback combination of K̃nom(z) and X(z), as shown in Figure 2.4(b).

In the case of a stable plant P(z), Knom(z) = 0 is a feasible nominal controller for
which

K̃nom(z) =
[

0 1
1 −Pyu(z)

]

is a feasible augmentation. This yields

Hi(z) = Pi(z)︸︷︷︸
Φ1,i(z)

+Piu(z)︸ ︷︷ ︸
Φ2,i(z)

X(z) Pyi(z)︸ ︷︷ ︸
Φ3,i(z)

,

and comparison with Equation 2.1 reveals

X(z) = K(z)
[
I − Pyu(z)K(z)

]−1
.

2.4.2 Parametrization of X(z)

Based on the results of the previous section, it is equivalent to design X(z) in-
stead of K(z), which yields the benefit that H(z) depends affinely on X(z), (2.13),
whereas its dependency on K(z) is nonlinear (2.1). In order to obtain a convex
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Fig. 2.4 (a) Youla parameter X is designed as a stable feedback controller for the augmented
plant P̃, where (b) the corresponding controller K for the actual plant P corresponds to the
feedback combination of K̃nom and X .
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optimization problem, X(z) must additionally be parameterized in an affine manner.
That is: X(z) is of the form

X(z) =
M

∑
m=1

xmXm(z) , (2.15)

where Xm(z) are given transfer functions, called basis functions. Variables xm con-
stitute the design parameters and they are grouped in x ∈ RM:

x =
[
x1 x2 · · · xM

]T
. (2.16)

This way, H(z) depends affinely on the design parameters x and, hence, closed-loop
convex design specifications translate into convex constraints on x. Or, equivalently,
by substitution of relations (2.13) and (2.15), the sets Si are converted to convex
sets for x.

Youla parameter X(z) must be stable and therefore, stable basis functions Xm(z)
are required. In addition, the set of basis functions should be complete, that is: for
M → ∞, any stable transfer function X(z) can be written as (2.15). In this mono-
graph, the following basis functions are used:

Xm(z) = z1−m , (2.17)

which comply with the aforementioned requirements, while the reader is referred to
[63] for alternatives.

2.5 Numerical Solution of Optimal Controller Design

The Youla parametrization translates the multi-objective control problem into a
convex optimization problem in x. However, often this problem is not yet numer-
ically tractable due to semi-infinite constraints that require evaluation on infinitely
many frequencies. This section shows how to render such design problems nu-
merically tractable by illustrating this transformation for the problem presented in
Section 2.3.3:

minimize
x,γp,γnp

γp +αγnp (2.18a)

subject to ‖Hnp(z,x)‖∞ ≤ γnp (2.18b)

Wl|Hp(ω ,x)| ≤ γp , ∀ω ∈Ωl , ∀ l ∈ L . (2.18c)

Variable x is added as an argument in Hnp(z,x) and Hp(z,x) to indicate relations
(2.13) and (2.15). Note that internal closed-loop stability no longer involves a con-
straint, since the Youla parametrization translates internal stability into stability of
X(z), which is guaranteed by the stability of the basis functions Xm(z).
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Constraint (2.18b) is semi-infinite since it requires evaluating |Hnp(ω ,x)| ≤ γnp

for all ω in [0,π fs]. Similarly, constraints (2.18c) require evaluating an inequality
on the continuous frequency intervals Ωl .

2.5.1 Gridding

The most straightforward way to render optimization problem (2.18) numerically
tractable is known as gridding: instead of evaluating the constraints on the continu-
ous frequency intervals, they are only evaluated on a finite number of frequencies in
these intervals. Let sets Gnp and Gp,l comprise the frequency grid points considered
in [0,π fs] and Ωl , respectively, then problem (2.18) is reformulated as:

minimize
x,γp,γnp

γp +αγnp

subject to
∣
∣
∣Φ1,np(ω)+

M

∑
m=1

xmΦ2,np(ω)Xm(ω)Φ3,np(ω)
∣
∣
∣ ≤ γnp , ∀ω ∈ Gnp

∣
∣∣Φ1,p(ω)+

M

∑
m=1

xmΦ2,p(ω)Xm(ω)Φ3,p(ω)
∣
∣∣ ≤ γp , ∀ω ∈ Gp,l ,

∀ l ∈ L .

Each of the amplitude constraints translates into a second-order cone constraint.
Although care is required in selecting the frequency grid points, the resulting
second-order cone problem (SOCP) is generally solved very efficiently with stan-
dard interior-point solvers, such as SDPT3 [141, 149]. This involves a computational
complexity of O(nG M2), where nG denotes the total number of grid points. In prin-
ciple, gridding does not require a parametric plant model, being able to deal with
nonparametric FRF estimates of the plant at the gridding frequencies. However, it
should be noted that obtaining a sufficiently fine frequency grid may invoke long
identification experiments.

2.5.2 KYP and Generalized KYP Lemma

The mathematically more elegant way to render optimization problem (2.18) nu-
merically tractable is to transform the semi-infinite constraints into linear matrix in-
equalities (LMIs) by application of the Kalman-Yakubovich-Popov (KYP) lemma
[79, 113, 157] and the generalized KYP lemma [77, 123]. These transformations are
detailed below, while more details on the (generalized) KYP lemma as well as the
numerical solution of the resulting semi-definite programming problem (SDP) are
provided in Appendix A.

As a consequence of the Youla parametrization, only the numerator coefficients
of Hp(z,x) and Hnp(z,x) depend on x, and this in an affine manner. Based on this
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property, state-space models for Hp(z,x) and Hnp(z,x) can be derived where the state
equation is independent of x:

Hp(z,x) = Cp(x)(zI − A)−1 Bp + Dp(x) ,

Hnp(z,x) = Cnp(x)(zI − A)−1 Bnp + Dnp(x) ,

while Cp(x), Dp(x), Cnp(x) and Dnp(x) are affine in x. For instance, the control
canonical state-space form satisfies these requirements. The order of the closed-loop
system H(z,x), and hence, of Hp(z,x) and Hnp(z,x) is denoted n.

The KYP lemma states that constraint (2.18b) is equivalent to the existence of a
matrix Pnp ∈ Sn that satisfies:

⎡

⎣
AT PnpA − Pnp AT PnpBnp Cnp(x)T

BT
npPnpA BT

npPnpBnp − γnp Dnp(x)T

Cnp(x) Dnp(x) −γnp

⎤

⎦ 
 0 . (2.19)

Since relations Cnp(x) and Dnp(x) are affine, this matrix inequality corresponds to
an LMI in x and Pnp.

The generalized KYP lemma states that for each l ∈ L , constraint (2.18c) is
equivalent to the existence of matrices Pp,l ∈ Hn and Qp,l ∈ Hn that satisfy the fol-
lowing set of LMIs:

⎡

⎣
AT Pp,lA − Pp,l AT Pp,lBp Cp(x)T

BT
p Pp,lA BT

p Pp,lBp − γp Dp(x)T

Cp(x) Dp(x) −γp

⎤

⎦+

⎡

⎣
ηlAT Qp,l +ηH

l Qp,lA + ζlQp,l ηH
l Qp,lBp 0

ηlBT
p Qp,l 0 0
0 0 0

⎤

⎦ 
 0 , (2.20a)

Qp,l � 0 , (2.20b)

where ζl = −2cos(lωpδTs), ηl = exp( jlωpTs).
Relying on the aforementioned transformations, optimization problem (2.18) is

transformed into the following, equivalent SDP:

minimize γp +αγnp

subject to LMI (2.19)

LMI (2.20a) , ∀ l ∈ L

LMI (2.20b) , ∀ l ∈ L ,

where the optimization variables are γp, γnp, x, Pp, and Pp,l and Qp,l for all l ∈ L .
Solving this SDP with a standard interior-point solver like SDPT3 [141, 149]

involves a computational complexity of O(n6). On the other hand, as detailed in
Appendix A, the solution approach proposed in [150] reduces the complexity to
O(n4), whereas the solver presented in [94] is even more efficient: O(n3).
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2.6 Note on Continuous-time and MIMO Control

All building blocks of the methodology remain valid in continuous time, except for
the selected set (2.17) of basis functions for the Youla parameter X(z). Stable and
complete sets of continuous-time basis transfer functions are found in [63].

Moving from a SISO controller design to a MIMO design only requires minor
and rather straightforward modifications to the methodology, but complicates the
numerical solution of the resulting optimization problem.

No assumption is made concerning the dimension of exogenous inputs wi(k) and
regulated outputs vi(k), except for wp(k), which is assumed scalar. If wp(k) is a
vector signal, the methodology allows for two cases. In the first case, the direction
el of each harmonic component is known, where el corresponds to a one-normed
vector such that the contribution to wp(k) of the l’th harmonic is of the form

2Wl sin(lωpkTs +φl)el .

For instance, under this assumption, each constraint (2.18c) is replaced by

Wl|Hp(ω ,x)el | ≤ γp , ∀ω ∈Ωl .

In the alternative case, directions el are unknown, and to account for the worst-case
directions, constraints (2.18c) are replaced by

Wl σmax{Hp(ω ,x)} ≤ γp , ∀ω ∈Ωl ,

where σmax{X} denotes the largest singular value of X . Neither of these cases
compromises the convexity of the optimization problem nor its transformation into
an SDP.

2.7 Conclusion

This chapter presents the general design methodology for controllers facing
periodic input signals and elaborates on its fundamental concepts. The design
methodology is multi-objective in nature, combining improved closed-loop periodic
performance with additional design specifications. The multi-objective controller
design is formulated in terms of the general control configuration and to incorporate
good closed-loop periodic performance in the design, it is quantified by the peri-
odic performance index, hereby explicitly accounting for period-time uncertainty.
By application of the Youla parametrization, the design problem is transformed into
a convex optimization problem, which is rendered numerically tractable by applica-
tion of gridding or the (generalized) KYP lemma.



Chapter 3
Application to Feedforward Control

3.1 Introduction

3.1.1 State of the Art

To meet the continual quest for higher tracking accuracy in engineering practice,
feedforward controllers have become an essential complement to feedback control.
The ideal feedforward controller inverts the (closed-loop) system and as it yields
perfect tracking for any reference input, specialized feedforward design for periodic
inputs seems superfluous. However, the ideal feedforward controller suffers from
two deficiencies, hereby raising applications where exploiting the input periodicity
is beneficial.

First, the practical implementation of the ideal feedforward controller is impeded
by nonminimum-phase zeros of the plant. Such zeros are common in discrete-time
plant models, where they originate from noncollocated control [115, 147, 168] or
stem from the zero-order hold discretization of a continuous-time system [8]. As
inverting nonminimum-phase zeros translates into poles outside the unit circle, the
causal1 implementation of the ideal feedforward controller is unstable. Although
stable, its noncausal implementation [39, 73] is neither appealing in practice since it
requires infinite preview time: the controller needs all future values of the reference
trajectory to compute its current output. In addition, the noncausal ideal feedforward
controller requires a certain pre-actuation time, building up control signal before the
plant output follows the reference trajectory2.

The second deficiency of the ideal feedforward controller is related to model
uncertainty: it inverts the discrete-time plant model and hereby inherently assumes

1 For ease of explanation, the plant is assumed to have zero relative degree.
2 The working principle of the noncausal ideal feedforward is to build up the initial condi-

tions for the plant such that the unstable component of the causal free and forced response
cancel. This initial condition build-up takes infinite time if it has to comply with the zero
dynamics of the plant, such that meanwhile no output it generated. If this requirement is
relaxed, finite pre-actuation time suffices [115].

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 23–42.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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high model accuracy. However, in many applications the validity of this assumption
is limited, and the tracking performance of the ideal feedforward controller is very
sensitive to model uncertainties [38].

Although the literature reveals active research on designing feedforward con-
trollers for nonminimum-phase systems [18, 29, 54, 58, 115, 142, 147, 166, 167],
only few contributions deal with specializing the feedforward controller for periodic
inputs in these applications. However, for periodic inputs the infinite preview time
requirement of the noncausal ideal feedforward controller reduces to one period of
preview, which implies that after one period, perfect tracking is possible. Tomizuka
et al. [143] propose a feedforward design that splits up the periodic input in its
harmonic components and pre-compensates for each harmonic the phase and am-
plitude distortion of the plant. The implementation of this controller is cumbersome,
and Walgama and Sternby [152] propose a feedforward design much easier to im-
plement. The feedforward controller is designed as a finite impulse response (FIR)
filter that inverts the plant only at the input harmonics, yielding perfect asymptotic
tracking of periodic reference inputs. This FIR filter design, briefly reviewed in Sec-
tion 3.2.1, is analytical (the filter coefficients are computed as the solution of a set
of linear equations), assumes perfect knowledge of the input period and cannot cope
with plant uncertainty.

Although robust feedforward control gains increasing attention [44, 52, 89, 126],
specializing the robust feedforward controller design for periodic inputs is not yet
addressed in the literature. However, specializing the robust feedforward controller
design for periodic inputs is advantageous, as in this case, robust performance is
only affected by the plant uncertainty around the input harmonics.

3.1.2 Contribution

This chapter applies the general methodology of Chapter 2 to design a feedforward
controller for periodic inputs to a discrete-time SISO LTI system. Hereby, the design
methodology extends the FIR filter design of Walgama and Sternby [152] with the
following advantages:

Period-time Uncertainty: Instead of enforcing perfect tracking for the nominal in-
put period, the primal objective in the design methodology is minimizing the pe-
riodic performance index, which explicitly accounts for period-time uncertainty.

Multi-objective Control: Whereas in [152] all design freedom is attributed to
eliminating the periodic tracking error, the developed design methodology al-
lows accounting for a variety of additional design specifications, such as transient
response, control effort, etc.

Plant Uncertainty: Contrary to [152], the design methodology allows accounting
for plant uncertainty.
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3.1.3 Outline

While Section 3.2 reviews the feedforward design approach of Walgama and Sternby
[152], Section 3.3 applies the developed methodology to design a feedforward con-
troller and elaborates on the corresponding general control configuration, Youla
parametrization and optimal design. Section 3.4 illustrates the potential of the de-
sign methodology by numerical results.

3.2 Background

This section surveys commonly used feedforward control configurations (Sec-
tion 3.2.1) and summarizes the design approach of Walgama and Sternby [152]
(Section 3.2.2).

3.2.1 Control Configuration

Figure 3.1 shows common feedforward control configurations. Feedforward con-
troller KFF(z) is added to improve tracking of reference trajectory r(k), Figures 3.1(a),
3.1(c) and 3.1(d); or to improve attenuation of measurable disturbance d(k) with
known effect Gd(z) on the plant output η(k), Figures 3.1(b) and 3.1(e). KFF(z) is
either applied to the open-loop plant G(z), Figures 3.1(a) and 3.1(b); or combined
with a feedback controller Ko(z), Figures 3.1(c), 3.1(d) and 3.1(e). In the latter case,
Ko(z) is assumed to be designed a priori and the corresponding closed-loop sensi-
tivity and complementary sensitivity are denoted by So(z) and To(z), respectively:

So(z) =
1

1 + Ko(z)G(z)
, To(z) =

Ko(z)G(z)
1 + Ko(z)G(z)

.

Ko(z) must yield an internally stable feedback system and is hence indispensable if
G(z) is unstable.

For the sake of unified treatment, the control architectures of Figure 3.1 are con-
verted to the more general configuration of Figure 3.2, where these conversions are
detailed in Table 3.1. The exogenous input is considered periodic and specified ac-
cording to Section 2.2.2, and is hence indicated by wp(k). This input is directly
accessible to the feedforward controller KFF(z), which converts it to the control sig-
nal u(k). Stable systems Pp(z) and Ppu(z) respectively relate wp(k) and u(k) to the
regulated output vp(k). The overall (closed-loop) system Hp(z) from wp(k) to vp(k)
is given by

Hp(z) = Pp(z)+ Ppu(z)KFF(z) , (3.1)

and stability of Hp(z) requires a stable feedforward controller.



26 3 Application to Feedforward Control

−

−

−
u(k)

u(k)

u(k)

u(k)

u(k)

r(k)

r(k)

r(k)

η(k)

η(k)

η(k)

η(k)

η(k)

d(k)

d(k)

KFF

KFF

KFF

KFF

KFF

G

G

G

G

G

Gd

Gd

Ko

Ko

Ko

+

+ +

+
+

+

(a)

(b)

(c)

(d)

(e)

Fig. 3.1 Common feedforward control configurations: feedforward controller KFF is designed
for plant G to improve tracking of reference input r(k), (a), (c) and (d); or to improve attenu-
ation of measurable disturbance d(k) with known effect Gd on the plant output η(k), (b) and
(e). KFF is either applied in open loop, (a) and (b); or combined with a feedback controller
Ko, (c), (d) and (e).
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+

Fig. 3.2 More general feedforward control configuration.

Table 3.1 Conversion of the feedforward control configurations of Figure 3.1 to the more
general one of Figure 3.2.

configuration wp(k) vp(k) Pp(z) Ppu(z)

Figure 3.1(a) r(k) r(k)−η(k) 1 −G(z)

Figure 3.1(b) d(k) η(k) Gd(z) G(z)

Figure 3.1(c) r(k) r(k)−η(k) 1 −To(z)

Figure 3.1(d) r(k) r(k)−η(k) So(z) −So(z)G(z)

Figure 3.1(e) d(k) η(k) So(z)Gd(z) So(z)G(z)

3.2.2 Current Design Approach

Walgama and Sternby [152] design KFF(z) as a FIR filter of length nΛ :

KFF(z) =
nΛ

∑
m=1

kFF,m z1−m , (3.2)

where nΛ corresponds to the order of signal generator Λ(z), (2.5), and is given
by (2.6). To guarantee perfect asymptotic tracking/rejection of wp(k) for nominal
period Tp, the nΛ filter coefficients kFF,m are computed such that

Hp(lωp) = Pp(lωp)+ Ppu(lωp)KFF(lωp) = 0 , ∀l ∈ L . (3.3)

The corresponding FIR filter exists provided that Pp(z)−1Ppu(z) has no zeros coin-
ciding with harmonics in L , and it is unique if Pp(z) and Ppu(z) have no common
zeros coinciding with a harmonic in L .

There are four ways to compute the filter coefficients kFF,m such that (3.3) is
satisfied:

1. By solving a diophantine equation, zeros are enforced in the closed-loop transfer
function Hp(z) on the harmonics l ∈ L , that is: on the poles of Λ(z); see [152].

2. The filter coefficients are computed by solving the set of linear equations cor-
responding to (3.3); see [152]. Each of the constraints (3.3) translates into two
real constraints, except for l = 0 and l = Tp fs/2, which yield only one constraint
since at 0 Hz and fs/2 the FRF of a discrete-time system is real.
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3. On account of the periodicity of input wp(k), all past and future values of wp(k)
can be constructed from nΛ data samples. Exploiting these relations in the con-
volution of wp(k) with the impulse response of the noncausal ideal feedforward
controller −Ppu(z)−1Pp(z) allows compressing this impulse response to a finite
and causal series of length nΛ ; see [152].

4. Within the theory of output regulation (see Appendix B for an introduction and
[117] for an in-depth treatment), the FIR feedforward controller corresponds to
a particular state-feedback controller. While in output regulation theory, a state-
feedback controller generally feeds back the states of both plant and signal gen-
erator Λ(z), for a stable plant, the controller can be designed to only feed back
the signal generator states. As the states of Λ(z) are linearly related to the nΛ
last samples of wp(k), this particular state-feedback controller corresponds to the
FIR feedforward controller of [152].

Whereas solution strategies 1, 3, and 4 require parametric models for Pp(z) and
Ppu(z), solution strategy 2 suffices with nonparametric FRF estimates of these sys-
tems at the input harmonics. However, uncertainty on these FRF estimates cannot
be accounted for, and the same holds for uncertainty on the input period.

3.3 Application of the Design Methodology

This section applies the general methodology of Chapter 2 to design a feedforward
controller for periodic inputs to a discrete-time SISO LTI system and elaborates on
the corresponding general control configuration (Section 3.3.1), Youla parametriza-
tion (Section 3.3.2) and optimal design (Section 3.3.3). Section 3.3.4 renders the
optimal feedforward controller design robust for unstructured plant uncertainty3.

3.3.1 General Control Configuration

Figure 3.3 illustrates how to transform the feedforward control configuration of Fig-
ure 3.2 into the general control configuration (Figure 2.1). This yields the following
generalized plant: [

vp(k)
y(k)

]
=
[

Pp(q) Ppu(q)
1 0

]

︸ ︷︷ ︸
P(q)

[
wp(k)
u(k)

]
, (3.4a)

and hence,

Pyp(q) = 1 , (3.4b)

Pyu(q) = 0 . (3.4c)

3 Chapters 3 and 4 focus on rendering the developed design methodology robust for plant
uncertainty, while Chapters 5 and 6 emphasize the methodology’s multi-objective nature,
trading off closed-loop periodic performance against conflicting design objectives.
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Fig. 3.3 Conversion of feedforward control configuration (a) to the general control configu-
ration (b).

Accounting for additional design specifications requires extending P(z) with com-
plementary exogenous inputs and regulated outputs.

3.3.2 Youla Parametrization

By proper plant augmentation, the Youla parametrization translates the controller
design into the design of Youla parameter X(z), which relates affinely to the closed-
loop system H(z). The augmented plant P̃(z) must be stable and satisfy P̃ỹũ(z) = 0,
and since for a feedforward controller design, plant P(z) (3.4) already satisfies these
conditions, there is no need for plant augmentation:

Knom(z) = 0 ,

and a proper augmentation of this controller is given by
[

u(k)
ỹ(k)

]
=

[
0 1
1 0

]

︸ ︷︷ ︸
K̃nom(q)

[
y(k)
ũ(k)

]
.
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This way, the Youla parameter X(z) acts as a feedforward controller, and application
of parametrization (2.17) yields

KFF(z) = X(z) =
M

∑
m=1

xmz1−m . (3.5)

The design parameters xm are grouped in the vector x ∈ RM , Equation 2.16, and
for M ≥ nΛ , this parametrization encompasses the feedforward controller (3.2) of
Walgama and Sternby [152].

An alternative parametrization of the feedforward controller is obtained by aug-
menting Knom = 0 as follows4:

K̃nom(z) =
[

0 Ppu,−(z)−1

1 0

]
, (3.6)

where Ppu,−(z) denotes the invertible part of Ppu(z). The remaining noninvert-
ible part Ppu,+(z) comprises a delay equal to the relative degree of Ppu(z) and its
nonminimum-phase zeros. Augmentation (3.6) yields the following feedforward
controller:

KFF(z) = Ppu,−(z)−1X(z) = Ppu,−(z)−1
M

∑
m=1

xmz1−m , (3.7)

and this alternative parametrization is of particular interest for configurations (a)
and (c) of Figure 3.1: for these configurations it yields a FIR closed-loop system:

Hp(z) = 1 + Ppu,+(z)X(z) ,

and the design of x only depends on the noninvertible part of Ppu(z).

3.3.3 Optimal Design

Good steady-state closed-loop attenuation/tracking of periodic input wp(k) is the
main objective in the feedforward controller design. To quantify this objective, the
2-norm based periodic performance index γp,2 (2.8) is suggested, since the designer
often has a good idea about the spectrum of wp(k) as it corresponds to a refer-
ence trajectory or measurable disturbance. Period-time uncertainty is explicitly ac-
counted for in the definition of γp,2.

Without additional design specifications, the FIR filter coefficients xm, are com-
puted as the solution of the following optimization problem:

4 In fact, any two-by-two system with zero diagonal elements, and stable and invertible off-
diagonal elements is allowed for K̃nom(z), see Section 2.4.
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minimize
x,γp,2,Vl

γp,2 (3.8a)

subject to
√
∑

l∈L

V 2
l ≤ γp,2 (3.8b)

Wl|Hp(ω)| ≤ Vl , ∀ω ∈Ωl , ∀l ∈ L . (3.8c)

This design problem can be supplemented with additional design specifications,
such as constraints on the transient response of Hp(z), reduced actuator effort, lim-
ited effect of measurement noise (if wp(k) corresponds to a measured disturbance),
etc. (see e.g. [13] for an overview). In view of the discussion in Section 2.3.3, if the
relative degree of Ppu(z) is larger than the one of Pp(z), a causal feedforward con-
troller is bound to a trade-off between periodic and nonperiodic performance. The
analysis of this trade-off is similar to the elaboration in Section 6.5.2, and therefore
not further discussed here. Instead, it is illustrated below how to render optimization
problem (3.8) robust for plant uncertainty.

3.3.4 Optimal Robust Design for Plant Uncertainty

This section renders optimization problem (3.8) robust for multiplicative unstruc-
tured plant uncertainty. This robustification is elaborated for the configuration of
Figure 3.1(a), as for this configuration the mathematics are most intuitive. Ap-
pendix C elaborates the more general approach to the robust feedforward controller
design, which relies on the structured singular value [106, 131, 163]. This approach
applies to all configurations of Figure 3.1, and allows extending the robust feed-
forward controller design to structured plant uncertainty, although this generally
involves conservatism [44, 52].

Instead of accounting for the nominal plant G(z) solely, a robust feedforward
controller performs well for all potential plant models GΔ (z) of the form (2.2). Ac-
cording to control configuration Figure 3.1(a), the corresponding set of potential
closed-loop systems Hp,Δ (z) is given by

Hp,Δ (z) = 1 − KFF(z)GΔ (z) , Δ(z) ∈ ΔΔ ,

= 1 − KFF(z)G(z)
[
1 +WG(z)Δ(z)

]
, Δ(z) ∈ ΔΔ ,

where Δ is given by (2.2b).
On count of the stability assumption on G(z), WG(z) and Δ(z), all potential plant

models GΔ (z) are stable. Consequently, in a feedforward controller design robust
closed-loop stability is equivalent to nominal closed-loop stability and only requires
stability of KFF(z). Hence, the major issue in a robust feedforward controller design
is robust closed-loop performance, which requires KFF(z) to yield good performance
for all potential plant models GΔ (z). To obtain good robust periodic performance,
for each harmonic l ∈ L , constraint (3.8c) is replaced by
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Wl|Hp,Δ (ω)|wc ≤ Vl,wc , ∀ω ∈Ωl , (3.9a)

where

|Hp,Δ (ω)|wc = max
|Δ (ω)|≤1

{|Hp,Δ (ω)|} ,

= max
|Δ (ω)|≤1

{∣∣1 − KFF(ω)G(ω)− KFF(ω)G(ω)WG(ω)Δ(ω)
∣∣
}

.

The complex scalar Δ(ω) that maximizes the right-hand side, has modulus |Δ(ω)| =
1 and its phase aligns [KFF(ω)G(ω)WG(ω)Δ(ω)] opposite to [1 − KFF(ω)G(ω)].
This way,

|Hp,Δ (ω)|wc = |1 − KFF(ω)G(ω)|+ |KFF(ω)G(ω)WG(ω)| , (3.9b)

and the robust counterpart of (3.8) amounts to

minimize
x,γp,2,Vl,wc

γp,2 (3.10a)

subject to
√
∑

l∈L

V 2
l,wc ≤ γp,2 (3.10b)

Wl|Hp,Δ (ω)|wc ≤ Vl,wc , ∀ω ∈Ωl , ∀l ∈ L . (3.10c)

After substituting relation (3.5) or (3.7) in Equation 3.9b, constraints (3.10c) corre-
spond to convex semi-infinite constraints in x. These constraints cannot be converted
into LMIs by the generalized KYP lemma5, and hence, gridding is required to render
(3.10) numerically tractable.

3.4 Numerical Results

This section illustrates the potential of the design methodology of Chapter 2 for a
feedforward control problem by numerical results, where the simulation example is
presented in Section 3.4.1. First, optimal design problem (3.8) is considered and the
solution is compared with the design methodology of Walgama and Sternby [152].
Subsequently, Section 3.4.3 discusses the robust feedforward controller design for
unstructured plant uncertainty.

5 The generalized KYP lemma does apply to:

Wl

√∣
∣1−KFF(ω)G(ω)

∣
∣2 +

∣
∣KFF(ω)G(ω)WG(ω)

∣
∣2 ≤ Vl,wc , ∀ω ∈Ωl ,

which is closely related to (3.9), since for two complex numbers α and β , the equivalence
of norms implies:

√
|α|2 + |β |2 ≤ |α|+ |β | ≤

√
2
√

|α|2 + |β |2 .
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3.4.1 Simulation Example

According to Figure 3.1(a), the feedforward controller is designed to improve the
open-loop tracking of a periodic reference trajectory. The simulation is executed at
fs = 1 kHz and reference input wp(k) corresponds to the periodic extension of the
signal shown in Figure 3.4(a). The nominal period Tp = 0.05 s comprises N = 50
sample periods, and yields fp = 20 Hz. However, the period is determined by an
external process and may deviate from its nominal value with one sample period,
invoking δδ = 2%. Figure 3.4(b) shows the weights Wl used in the feedforward de-
sign, which correspond to the amplitude spectrum of wp(k) divided by its rms value.
The set L of harmonics in wp(k) comprises 0 Hz and all odd harmonics, yielding
nL = 14.

Youla parametrization (3.7) is adopted:

KFF(z) = G−(z)−1X(z) , (3.11)

whereby the closed-loop transfer function Hp(z), and hence, the design of x depends
solely on the noninvertible part G+(z) of the plant G(z):

Hp(z) = 1 − G(z)KFF(z) = 1 − G+(z)X(z) . (3.12)

As specializing the feedforward controller design for periodic inputs is most relevant
for nonminimum-phase systems, G+(z) is chosen here to comprise a nonminimum-
phase zero z = 1.05 and one sample delay, corresponding to G(z) having relative
degree one:

G+(z) =
−20z+ 21

z2 .

Figure 3.5(a) shows the FRF of this system.
In Section 3.4.3, multiplicative unstructured uncertainty on G(z) is considered,

yielding a set of potential plant models GΔ (z) of the form (2.2), where |WG(ω)|
is shown in Figure 3.5(b). This way, all potential closed-loop transfer functions
Hp,Δ (z) are of the form

Hp,Δ (z) = 1 − G+(z)
[
1 +WG(z)Δ(z)

]
X(z) .

Length M of the FIR Youla parameter X(z) is bounded by M ≤ N −2 = 48, such
that the transient response of Hp(z) is restricted to one period.
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Fig. 3.4 (a) Periodic input signal wp(k); and (b) the corresponding weights Wl for the har-
monics l, used in the optimal feedforward controller design.
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multiplicative unstructured plant uncertainty.
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3.4.2 Optimal Design

The purpose of this section is to illustrate the advantage of the developed design
methodology compared to [152] in the presence of δδδ = 2% uncertainty on the in-
put’s fundamental frequency. Plant uncertainty ΔΔΔ is currently not accounted for.

Feedforward controller KFF0(z) is designed according to Walgama and Sternby
[152] and to avoid an under-determined FIR filter design, M is reduced to nΛ = 26.
Design parameters xm are computed according to (3.3), such that Hp(lωp) = 0 holds
for all harmonics l ∈ L . The same controller is obtained by solving optimal design
problem (3.8) with M = nΛ and δ = 0%.

For KFF1(z), the design parameters xm are computed by solving (3.8), hereby
accounting for the actual uncertainty δ = 2%. FIR filter length M is set equal to its
upper bound 48 as this does not result in an under-determined design. By gridding,
the optimal design is transformed into an SOCP, which is solved by SDPT3 [141,
149] in 1.3 CPU seconds (Intel� CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB of RAM).

Figure 3.6(a) compares the FRFs of closed-loop systems Hp(z) corresponding to
the two feedforward controllers, where the shaded bands indicate the uncertainty
intervals Ωl (2.4) around the harmonics l ∈ L . For KFF0(z), this figure reveals the
closed-loop zeros on the nominal harmonic frequencies l fp for all l ∈ L , while due
the Bode Integral Theorem [10, 21, 22, 49, 69, 138], |Hp(ω)| > 1 in between the
harmonics6. Contrary to KFF0(z), KFF1(z) accounts for the δ = 2% uncertainty on
fp, and reduces |Hp(ω)| as much as possible over the shaded uncertainty intervals,
instead of on the nominal harmonic frequencies solely.

To evaluate the periodic performance achieved by the two controllers, Fig-
ure 3.6(b) compares the worst-case closed-loop reduction of each harmonic l ∈ L ,
over all potential values ωp,δ (2.3) of the fundamental frequency:

Vl/Wl = max
ω∈Ωl

{|Hp(ω)|} .

Hence, Figure 3.6(b) is constructed from Figure 3.6(a) by computing the maximum
of |Hp(ω)| over each of the uncertainty intervals. Although for δ = 0%, KFF0(z)
yields perfect rejection of all harmonics l ∈ L , its periodic performance is very
sensitive to uncertainty on the fundamental frequency: for δ = 2%, all harmon-
ics except l = 0 and l = 1 are amplified instead of attenuated. On the other hand,
KFF1(z) attenuates all harmonics l ∈ L for all ωp,δ , but this controller no longer
yields perfect periodic performance for δ = 0%. That is: KFF1(z) no longer yields
Hp(lωp) = 0, ∀l ∈ L , as is clear from Figure 3.6(a).

Figure 3.7 evaluates the closed-loop performance for the particular reference in-
put wp(k) of Figure 3.4, by showing rms(vp(k))/rms(wp(k)) as a function of fp,δ .
As the zero’th and first harmonic are dominant in wp(k), see Figure 3.4(b), KFF0(z)
still yields an overall closed-loop reduction of wp(k) for all possible fundamental

6 For this particular example, |Hp(ω)| becomes rather large in between the harmonics as
the solution strategy of [152] places a closed-loop nonminimum-phase zero at z = 15.97,
which increases the right-hand side of (2.11).
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Fig. 3.6 Evaluation of feedforward controllers KFF0(z) [152] and KFF1(z) (optimal de-
sign): (a) amplitude FRF of the closed-loop transfer function Hp(z); and (b) Vl/Wl =
maxω∈Ωl

{|Hp(ω)|}.

frequencies fp,δ . Compared to KFF0(z), the performance of KFF1(z) for wp(k) is sig-
nificantly less sensitive to δ , where the price for this improved robust performance
is moderate: instead of yielding rms(vp(k)) = 0 for δ = 0%, 0.4% of rms(wp(k))
remains.
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Fig. 3.7 Closed-loop rms reduction of the considered input wp(k) achieved by feedforward
controllers KFF0(z) [152] and KFF1(z) (optimal design) as a function of fp,δ .

3.4.3 Optimal Robust Design for Plant Uncertainty

This section illustrates the necessity of a robust controller design in the presence
of plant uncertainty ΔΔ . To this end, optimal design KFF1(z) is compared to KFF2(z),
which is designed according to Section 3.3.4. Optimal robust design problem (3.10)
is solved with gridding and SDPT3 [141, 149] requires 2.9 CPU seconds to solve
the resulting SOCP (Intel� CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB of RAM).

Figure 3.8(a) compares the amplitude FRFs of the Youla parameters X(z) cor-
responding to KFF1(z) and KFF2(z), see Equation 3.11, while |G+(ω)−1|, corre-
sponding to the noncausal ideal feedforward controller, is added to facilitate the
interpretation of the results. Figure 3.8(b) compares the FRFs of the corresponding
closed-loop systems Hp,Δ (z): the thin lines indicate the nominal amplitude |Hp(ω)|:

|Hp(ω)| =
∣
∣1 − G+(ω)X(ω)

∣
∣ , (3.13)

while the thick lines correspond to the worst-case amplitude |Hp,Δ (ω)|wc (3.9b):

|Hp,Δ (ω)|wc =
∣
∣1 − G+(ω)X(ω)

∣
∣+

∣
∣WG(ω)G+(ω)X(ω)

∣
∣ . (3.14)

For KFF1(z), the thin curve corresponds to the result shown in Figure 3.6(a).
Figure 3.9(a) evaluates the periodic performance achieved by the feedforward

controllers for the nominal plant model, showing

Vl/Wl = max
ω∈Ωl

{|Hp(ω)|} ,
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Fig. 3.8 Evaluation of feedforward controllers KFF1(z) (optimal design) and KFF2(z) (optimal
robust design): (a) amplitude FRF of Youla parameter X(z); and (b) amplitude FRF of the
closed-loop transfer function Hp,Δ (z), where the thin and thick line respectively indicate the
nominal amplitude |Hp(ω)| and worst-case amplitude |Hp,Δ (ω)|wc.
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Fig. 3.10 Closed-loop rms reduction of the considered input wp(k) achieved by feedforward
controllers KFF1(z) (optimal design) and KFF2(z) (optimal robust design) as a function of
fp,δ : the thin and thick lines respectively correspond to the nominal and worst-case plant.

whereas Figure 3.9(b) evaluates their periodic performance for the worst-case plant:

Vl,wc/Wl = max
ω∈Ωl

{|Hp,Δ (ω)|wc
}

.

Hence, Figures 3.9(a) and 3.9(b) are constructed from Figure 3.8(b) by computing
the maximum of, respectively, the thin and thick curve over each of the gray-shaded
uncertainty intervals.

Figure 3.8(b) reveals that KFF1(z) is very sensitive to plant uncertainty: at high
frequencies where plant uncertainty is prominent, see Figure 3.5(b), |Hp,Δ (ω)|wc

deviates significantly from |Hp(ω)|, both around and in between the harmonics.
For l ≥ 13 (260 Hz), |Hp,Δ (ω)|wc > 1 in the gray-shaded uncertainty intervals, and
hence, the periodic performance achieved by KFF1(z) for the worst-case plant is
poor. This is clarified by Figure 3.9: at the higher harmonics, Vl,wc is about 30 dB
higher than the nominal value Vl .

Robust controller KFF2(z) is designed to yield good periodic performance for
all potential plants GΔ (z). Comparison of Equations 3.13 and 3.14 reveals that the
difference between |Hp(ω)| and |Hp,Δ (ω)|wc can only be reduced by restricting the
control action, that is: by reducing |X(ω)| and hence, |KFF(ω)|. This is confirmed
by Figure 3.8(a), which shows that at high frequencies, |X(ω)| is significantly lower
for KFF2(z) than for KFF1(z), particularly around the input harmonics. As revealed
by Equation 3.13 and Figure 3.8(b), the reduced gain |X(ω)| ≈ 0 translates into
|Hp(ω)| ≈ 1. Due to this property, at the higher harmonics, the periodic performance
of KFF2(z) for the nominal plant is worse compared to KFF1(z), see Figure 3.9(a).
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However, KFF2(z) yields significantly better periodic performance for the worst-case
plant, as is clear from Figure 3.9(b).

Figure 3.10 evaluates for the two feedforward controllers the closed-loop per-
formance for the particular reference trajectory wp(k) of Figure 3.4, by showing
rms(vp,Δ (k))/rms(wp(k)) as a function of fp,δ . The thin and thick lines respectively
correspond to the nominal and worst-case plant. While for nominal plant G(z), the
overall performance of KFF2(z) is only slightly larger compared to KFF1(z), its worst-
case performance is significantly better.

3.5 Conclusion

This chapter applies the general methodology of Chapter 2 to design a feedfor-
ward controller for periodic inputs to a discrete-time SISO LTI system. The design
methodology is able to reproduce and outperform the design approach of Walgama
and Sternby [152], currently the major feedforward controller design for periodic
inputs. The latter design approach attributes all design freedom to eliminating the
periodic input and hereby assumes perfect knowledge of input period and plant. The
developed design methodology, on the other hand, provides the flexibility to incor-
porate additional design specifications and allows accounting for uncertainty on the
input period as well as plant uncertainty. The latter two advantages are illustrated
by numerical results.



Chapter 4
Application to Estimated Disturbance Feedback
Control

4.1 Introduction

4.1.1 State of the Art

The appeal of feedforward control is to a large extent related to the following prop-
erties: (i) the only stability concern in a feedforward controller design is its own
stability whereas a feedback controller must additionally guarantee stability of the
closed-loop system; (ii) the effect of a feedforward controller is restricted to the
input channel to which it is added, not affecting other inputs and the related per-
formance; and (iii) many applications can cope with limited noncausality of a feed-
forward controller, whereas a feedback controller must be causal. Unfortunately,
feedforward control only applies to reference inputs or measurable disturbances,
while unmeasurable disturbances, on the other hand, are widespread in engineering
practice. Extending the advantages of feedforward control to unmeasurable distur-
bances is the rationale for disturbance observers, where the observer developed by
Ohnishi [103] is most popular [82, 95, 104, 116, 155]. Disturbance observers pro-
vide an estimate of the unmeasurable disturbance, which can be used to compute an
appropriate control input similar to feedforward control.

In this monograph, the control strategy of feeding back an estimated distur-
bance to the control input is referred to as estimated disturbance feedback con-
trol1, where the controller comprises a disturbance estimator and a disturbance feed-
back controller. Although the latter part features great similarity with a feedforward
controller, its combination with a disturbance observer turns it into a feedback con-
trol strategy (hence its name). Hereby, estimated disturbance feedback control can
only preserve the benefits of feedforward control to a limited extent: in the case of
a perfect plant model, the estimated disturbance feedback controller does not af-
fect closed-loop stability and transfer functions from alternative inputs, but these

1 The literature reveals a variety of names for this control strategy, such as pseudo-
feedforward control [151], virtual feedforward control [154], external model control
[9, 127, 144, 158], etc. In addition, this control strategy is closely related to internal (plant)
model control [102].

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 43–59.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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benefits are compromised by model uncertainty [31, 32, 56, 130, 140, 153]. More-
over, in contrast to a feedforward controller, a disturbance feedback controller must
be causal.

Due to the last property, for nonminimum-phase systems an estimated distur-
bance feedback controller design is even more challenging than a feedforward con-
troller design [23, 129]. This motivated both Tomizika et al. [143] and Walgama and
Sternby [152] to extend their feedforward controller design approach for periodic in-
puts to estimated disturbance feedback controllers. Tomizuka et al. [144, 158] apply
a parameter adaptation algorithm to estimate the Fourier coefficients of the distur-
bance harmonics on line and according to [143] the control signal is computed to
cancel the disturbance. Walgama [151] combines the FIR feedforward controller
design of [152] with the disturbance observer of Ohnishi [103].

For persistent disturbances, which include periodic signals, disturbance observers
are closely related to state observers, as their signal generator can be absorbed in the
plant dynamics [70, 100, 114, 125]. In fact, translated to output regulation theory
(see Appendix B for an introduction and [117] for an in-depth treatment), the design
of [151] corresponds to the combination of a specific Luenberger state estimator [96]
and a particular state-feedback controller. Relying on the equivalence between out-
put and state observers, more advanced periodic disturbance estimators have been
proposed in the literature [9, 100, 114, 127]. Their advantage is faster elimination
of an initial estimation error, but at the downside they explicitly rely on the periodic
signal generator (they only estimate the disturbance at the harmonic frequencies)
and hereby cannot cope with period-time uncertainty. Therefore, these disturbance
observers are not discussed in this chapter.

4.1.2 Contribution

This chapter deals with the design of an estimated disturbance feedback controller
for periodic disturbances acting on a discrete-time SISO LTI system. The distur-
bance estimator of Ohnishi [103] is combined with a disturbance feedback con-
troller, designed according to the methodology of Chapter 2. Hereby, the estimated
disturbance feedback controller design of Walgama [151] is extended with the fol-
lowing advantages:

Period-time Uncertainty: Instead of enforcing perfect rejection of the periodic
disturbance for the nominal period, the primal objective in the design method-
ology is minimizing the periodic performance index, which explicitly accounts
for period-time uncertainty.

Multi-objective Control: Whereas in [151] all design freedom is attributed to
eliminating the periodic disturbance, the developed design methodology allows
accounting for a variety of additional design specifications, such as transient re-
sponse, control effort, etc.

Plant Uncertainty: Contrary to [151], the design methodology allows accounting
for plant uncertainty.
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4.1.3 Outline

Section 4.2 provides some background on estimated disturbance feedback control
and reviews the disturbance feedback controller design of [151]. Section 4.3 applies
the developed methodology to design a disturbance feedback controller and elabo-
rates on the corresponding general control configuration, Youla parametrization and
optimal design, while Section 4.4 illustrates its potential by numerical results.

4.2 Background

This section presents the architecture of an estimated disturbance feedback con-
troller (Section 4.2.1) and briefly reviews the disturbance feedback controller design
of [151] (Section 4.2.2).

4.2.1 Control Configuration

Figure 4.1 shows, for a stable plant G(z), the architecture of an estimated distur-
bance feedback controller that applies the disturbance observer of Ohnishi [103]2.
The disturbance observer computes the following estimate d̂(k) of output distur-
bance d(k) from the control signal u(k) and plant output η(k):

d̂(k) = η(k)− G(q)u(k) .

This estimate relies on the plant model G(z) and if this model is accurate, the dis-
turbance observer yields a perfect estimate: d̂(k) = d(k). The second part of the
estimated disturbance feedback controller is the disturbance feedback controller
KdFB(z) which feeds back d̂(k) to the plant input.

The estimated disturbance feedback controller can be applied to the open-loop
plant, Figure 4.1(a); or combined with a feedback controller Ko(z), Figure 4.1(b).
In the latter case, Ko(z) is assumed to be stable and designed a priori, yielding
the so-called original feedback system. This system must be internally stable and
its closed-loop sensitivity and complementary sensitivity are denoted by So(z) and
To(z), respectively:

2 The derivation for an unstable plant proceeds along the same lines, but then an estimate of
VG(q)d(k) instead of d(k) is computed similarly to Figure 4.1:

VG(q)d̂(k) = VG(q)η(k)−UG(q)u(k) ,

where stable transfer functions UG(z) and VG(z) constitute to a fractional representation of
G(z): G(z) = UG(z)VG(z)−1 [97].
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Fig. 4.1 Estimated disturbance feedback control: relying on plant model G, an estimate d̂(k)
of output disturbance d(k) is constructed, which is fed back to the control signal u(k) by the
disturbance feedback controller KdFB. The estimated disturbance feedback controller is either
applied in open loop (a); or combined with a feedback controller Ko (b).

So(z) =
1

1 + Ko(z)G(z)
, To(z) =

Ko(z)G(z)
1 + Ko(z)G(z)

. (4.1)

As the control configuration of Figure 4.1(b) can reproduce Figure 4.1(a) by setting
Ko(z) = 0, the remainder of this chapter is elaborated for the former setup.

Disturbance d(k) is considered periodic and specified according to Section 2.2.2,
yielding wp(k) = d(k) and vp(k) = η(k). In case of a perfect plant model, KdFB(z)
acts as a feedforward controller: (i) KdFB(z) preserves the original closed-loop trans-
fer functions from reference input r(k); and (ii) as long as KdFB(z) is stable, it does
not compromise closed-loop stability. The similarity with feedforward control also
prevails in the closed-loop transfer function Hp(z) from wp(k) to vp(k):

Hp(z) = So(z)
[
1 − G(z)KdFB(z)

]
, (4.2)

which resembles (3.1).
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4.2.2 Current Design Approach

The estimated disturbance feedback controller design of Walgama [151] assumes
both a perfect plant model and accurate knowledge of the input period. Since for a
perfect plant model the disturbance feedback controller behaves like a feedforward
controller, KdFB(z) is designed according to [152] (see Section 3.2.2). That is: it is
set equal to a FIR filter of length nΛ , Equation 2.6:

KdFB(z) =
nΛ

∑
m=1

kdFB,m z1−m , (4.3)

where the filter coefficients kdFB,m are computed such that

Hp(lωp) = So(lωp)
[
1 − G(lωp)KdFB(lωp)

]
= 0 , ∀l ∈ L .

Section 3.2.2 reviews four approaches to compute kdFB,m according to these
constraints.

4.3 Application of the Design Methodology

This section applies the general methodology of Chapter 2 to design a disturbance
feedback controller and elaborates on the corresponding general control configura-
tion (Section 4.3.1), Youla parametrization (Section 4.3.2) and optimal design (Sec-
tion 4.3.3). Section 4.3.4 renders the optimal disturbance feedback controller design
robust for unstructured plant uncertainty3.

4.3.1 General Control Configuration

Essentially, estimated disturbance feedback control constitutes a specific way of de-
signing a general feedback controller K(z) to attenuate an unmeasurable disturbance.
Figure 4.2(a) shows the corresponding control configuration, which translates into
the general control configuration shown in Figure 4.2(b). The corresponding gener-
alized plant P(z) is given by

[
vp(k)
y(k)

]
=
[

1 G(q)
−1 −G(q)

]

︸ ︷︷ ︸
P(q)

[
wp(k)
u(k)

]
,

3 Chapters 3 and 4 focus on rendering the developed design methodology robust for plant
uncertainty, while Chapters 5 and 6 emphasize the methodology’s multi-objective nature,
trading off closed-loop periodic performance against conflicting design objectives.
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Fig. 4.2 General control configuration (b) for the design of feedback controller K to attenuate
the periodic output disturbance wp(k) to the output vp(k) of plant G (a).

while accounting for additional design specifications requires extending P(z) with
complementary exogenous inputs and regulated outputs.

4.3.2 Youla Parametrization

The Youla parametrization augments the generalized plant with a nominal controller
and hereby translates the controller design into the design of Youla parameter X(z).
The nominal controller Knom(z) is set equal to the original feedback controller Ko(z),
and the addition of the disturbance observer of Ohnishi [103] corresponds to a par-
ticular augmentation of Knom(z). This augmentation is shown in Figure 4.3 and
yields [

u(k)
ỹ(k)

]
=
[

Ko(q) −1
−(

1 + Ko(q)G(q)
)

G(q)

]

︸ ︷︷ ︸
K̃nom(q)

[
y(k)
ũ(k)

]
,

while the corresponding augmented plant P̃(z) is given by

[
vp(k)
ỹ(k)

]
=
[

So(q) −So(q)G(q)
1 0

]

︸ ︷︷ ︸
P̃(q)

[
wp(k)
ũ(k)

]
.
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ũ(k)
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Fig. 4.3 Youla parametrization: augmentation of nominal controller Knom = Ko corresponding
to the disturbance observer of Ohnishi [103]: (a) in the classical feedback control configura-
tion; and (b) in the general control configuration.

Youla parameter X(z) acts as a disturbance feedback controller, and application of
parametrization (2.17) yields

KdFB(z) = X(z) =
M

∑
m=1

xmz1−m . (4.4)

The design parameters xm are grouped in the vector x ∈ RM, (2.16), and for M ≥ nΛ ,
this parametrization encompasses the disturbance feedback controller (4.3) of [151].

An alternative parametrization of the disturbance feedback controller is obtained
by redefining ũ(k) as G−(q)−1ũ(k), where G−(z) denotes the invertible part of G(z).
This yields the following augmented controller:
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K̃nom(z) =
[

Ko(z) −G−(z)−1

−(
1 + Ko(z)G(z)

)
G+(z)

]
,

and the corresponding disturbance feedback controller is given by

KdFB(z) = G−(z)−1X(z) = G−(z)−1
M

∑
m=1

xmz−m+1 . (4.5)

Substituting relation (4.4) or (4.5) in Equation 4.2 yields the closed-loop transfer
function Hp(z) as a function of x.

4.3.3 Optimal Design

Good steady-state closed-loop attenuation of periodic disturbance wp(k) is the major
objective in the disturbance feedback controller design. Without additional design
specifications, the FIR filter coefficients xm are computed as the solution of the fol-
lowing optimization problem:

minimize
x,γp,2,Vl

γp,2 (4.6a)

subject to
√
∑

l∈L

V 2
l ≤ γp,2 (4.6b)

Wl|Hp(ω)| ≤ Vl , ∀ω ∈Ωl , ∀l ∈ L . (4.6c)

The 2-norm based periodic performance index γp,2 is suggested, since the designer
can obtain an estimate of the spectrum of wp(k) from the output of the disturbance
observer. Period-time uncertainty is accounted for through definition (2.4) of the
uncertainty intervals Ωl around the harmonics.

Design problem (4.6) can be supplemented with additional design specifications,
such as constraints on the transient response of Hp(z), reduced actuator effort, lim-
ited effect of measurement noise, etc. (see e.g. [13] for an overview). In view of the
discussion in Section 2.3.3, for a strictly causal plant G(z) the disturbance feedback
controller (which must be causal) is bound to a trade-off between periodic and non-
periodic performance. That is: if the disturbance comprises both a periodic and a
nonperiodic part, closed-loop attenuation of one part generally implies closed-loop
amplification of the other part. The analysis of this trade-off is similar to the elabora-
tion in Section 6.5.2, and therefore not further discussed here. Instead, it is illustrated
below how to render optimization problem (4.6) robust for plant uncertainty.
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Fig. 4.4 Estimated disturbance feedback control configuration in the case of an uncertain
plant GΔ .

4.3.4 Optimal Robust Design for Plant Uncertainty

This section renders the optimal disturbance feedback controller design (4.6) robust
for multiplicative unstructured plant uncertainty: all potential plant models GΔ (z)
are of the form (2.2). The disturbance observer incorporates the nominal plant model
G(z), and due to model uncertainty, disturbance estimate d̂(k) differs from d(k).
This compromises the feedforward-like behavior of KdFB(z) and, in contrast to its
closed-loop effect for the nominal plant, KdFB(z) does affect robust closed-loop sta-
bility and robust closed-loop performance for reference input r(k).

For the robust disturbance feedback controller design, the control configuration
of Figure 4.1(b) is translated into Figure 4.4. Besides attenuating the periodic output
disturbance wp(k) = d(k) to the plant output vp(k) = η(k), the design of KdFB(z)
must also account for the robust closed-loop tracking performance. This design
specification is labeled i = ir, and involves exogenous input wr(k) = r(k) and reg-
ulated output vr(k) = r(k) − η(k), where (·)r is shortened notation for (·)ir . The
considered uncertain closed-loop transfer functions are given by

Hp,Δ (z) = So(z)
1 − G(z)KdFB(z)
1 + Hstab(z)Δ(z)

, Δ(z) ∈ Δ , (4.7a)

Hr,Δ (z) = So(z)
1 + KdFB(z)G(z)WG(z)Δ(z)

1 + Hstab(z)Δ(z)
, Δ(z) ∈ Δ , (4.7b)

where Δ is given by (2.2b). Transfer function So(z) corresponds to the nominal
closed-loop sensitivity function realized by Ko(z), see Equation 4.1, and

Hstab(z) =

[
KdFB(z)+ Ko(z)

]
G(z)WG(z)

1 + G(z)Ko(z)
. (4.8)

Rendering the design of KdFB(z) robust for plant uncertainty ΔΔ requires three
modifications to (4.6). First, robust stability must be added to the controller design
as a hard constraint, since Δ(z) appears in the denominator of the closed-loop trans-
fer functions (4.7) and hereby has the potential of making the closed-loop system
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unstable. By application of the Nyquist stability criterion, robust stability is equiva-
lent to [131]

|1 + Hstab(ω)Δ(ω)| �= 0 , ∀ω ∈ [0,π fs] , ∀Δ(z) ∈ ΔΔ , (4.9a)

⇔ |1 + Hstab(ω)Δ(ω)| > 0 , ∀ω ∈ [0,π fs] , ∀Δ(z) ∈ ΔΔ . (4.9b)

At each frequency ω , the worst-case complex scalar Δ(ω) (i.e., the one that mini-
mizes the left-hand side) has modulus |Δ(ω)| = 1 and its phase aligns [Hstab(ω)Δ(ω)]
along the negative real axis. Hence, robust stability is equivalent to

1 −|Hstab(ω)| > 0 , ∀ω ∈ [0,π fs] , (4.9c)

⇔ ‖Hstab(z)‖∞ < 1 . (4.9d)

After the substitution of parametrization (4.4) or (4.5) for KdFB(z) in Equation 4.8,
constraint (4.9d) corresponds to a convex constraint in the design parameters x,
which complies with both gridding and the KYP lemma.

The second concern in the robust disturbance feedback controller design is ro-
bust periodic performance. To guarantee good periodic performance for all potential
plant models GΔ (z), for each harmonic l ∈ L , constraint (4.6c) is replaced by

Wl |Hp,Δ (ω)|wc ≤ Vl,wc , ∀ω ∈Ωl , (4.10a)

where

|Hp,Δ (ω)|wc = max
|Δ |≤1

{∣∣
∣
∣

1 − GKdFB

1 + KoG+(Ko + KdFB)GWGΔ

∣
∣
∣
∣

}
, (4.10b)

=
|1 − GKdFB|

|1 + KoG|− |(Ko + KdFB)GWG| . (4.10c)

In the right-hand side, argument ω is omitted to save space. The transition from
(4.10b) to (4.10c) follows from the worst-case uncertainty Δ(ω) which has modulus
|Δ(ω)| = 1 and its phase aligns [(Ko(ω) + KdFB(ω))G(ω)WG(ω)Δ(ω)] opposite
to [1 + Ko(ω)G(ω)]. After substitution of (4.4) or (4.5), the corresponding robust
constraint

∣
∣1 − G(ω)KdFB(ω)

∣
∣

∣
∣1 + Ko(ω)G(ω)

∣
∣− ∣

∣(Ko(ω)+ KdFB(ω)
)
G(ω)WG(ω)

∣
∣ ≤ Vl,wc , ∀ω ∈Ωl

(4.10d)
is convex in x but, however, not simultaneously convex in x and Vl,wc. Hence, by
convex optimization, one can only check whether a disturbance feedback controller
(4.4) or (4.5) exists that satisfies (4.10d) for given Vl,wc. In addition, constraint
(4.10d) only complies with the gridding solution approach.

Third, KdFB(z) affects the robust closed-loop performance related to reference
input wr(k). Suppose that in the design of Ko(z), good robust closed-loop tracking
was quantified as ‖Wr(z)So,Δ (z)‖∞ ≤ 1, for all Δ(z) ∈ ΔΔ , then preserving this robust
tracking performance imposes the following constraint in the design of KdFB(z):
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|Wr(ω)| |Hr,Δ (ω)|wc ≤ 1 , ∀ω ∈ [0,π fs] . (4.11a)

The computation of

|Hr,Δ (ω)|wc = max
|Δ |≤1

{∣∣∣
∣

1 + KdFBGWGΔ
1 + KoG+(Ko + KdFB)GWGΔ

∣
∣∣
∣

}
(4.11b)

is not as intuitive as (4.10); it involves the structured singular value and is elaborated
in Appendix C. Still, a convex constraint in x is obtained, which only complies with
the gridding solution approach.

Adopting these three modifications to the optimal disturbance feedback controller
design (4.6), yields the following optimization problem:

minimize
x

0 (4.12a)

subject to ‖Hstab(z)‖∞ < 1 (4.12b)

Wl |Hp,Δ (ω)|wc ≤ Vl,wc , ∀ω ∈Ωl , ∀l ∈ L (4.12c)
∣∣Wr(ω)

∣∣ ∣∣Hr,Δ (ω)
∣∣
wc ≤ 1 , ∀ω ∈ [0,π fs] . (4.12d)

Scalars Vl,wc are no longer considered as optimization variables. However, if these
scalars all depend on one variable β : Vl,wc = βV l,wc, as for instance holds for defini-
tion (2.7) of γp, then complementing (4.12) with a bisection algorithm [15] provides
an efficient way to minimize β .

4.4 Numerical Results

To illustrate the potential of the design methodology of Chapter 2 for an estimated
disturbance feedback control problem, this section continues the simulation example
of Section 3.4. As the major difference with Section 3.4, wp(k) is considered here
as an unmeasurable output disturbance instead of a reference input. The estimated
disturbance feedback controller design is applied in open loop, according to Fig-
ure 4.1(a), which corresponds to So(z) = 1. Youla parametrization (4.5) is adopted:

KdFB(z) = G−(z)−1X(z) , (4.13)

whereby the closed-loop transfer function Hp(z), and hence, the design of x depends
solely on the noninvertible part G+(z) of the plant G(z):

Hp(z) = 1 − G(z)KdFB(z) = 1 − G+(z)X(z) . (4.14)

If no plant uncertainty is considered, optimization problem (4.6) yields the same
solution obtained in Section 3.4.2, which follows from the similarity between Equa-
tions 3.11, 3.12, and 4.13, 4.14. In the presence of plant uncertainty, on the other
hand, the robust feedforward and disturbance feedback controller design generally
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yield different solutions. This is illustrated by Section 4.4.1, which shows that ro-
bust feedforward controller KFF2(z), designed in Section 3.4.3 is unacceptable as a
disturbance feedback controller. Section 4.4.2 designs an appropriate robust distur-
bance feedback controller.

4.4.1 Feedforward Versus Disturbance Feedback Control

Figure 4.5 evaluates KFF2(z) as a disturbance feedback controller, where the shaded
bands indicate the uncertainty intervals Ωl (2.4) around the harmonics l ∈ L .
Figure 4.5(a) resumes the amplitude of its Youla parameter X(z), shown in Fig-
ure 3.8(a). For the considered simulation example, robust stability requirement (4.9)
imposes

|WG(ω)G(ω)KdFB(ω)| < 1 , ∀ω ∈ [0,π fs] , (4.15a)

⇔ |X(ω)| <
1

|WG(ω)G+(ω)| , ∀ω ∈ [0,π fs] , (4.15b)

where the right-hand side of (4.15b) is indicated by the thick dashed line in Fig-
ure 4.5(a). This figure reveals that KFF2(z) violates the robust stability requirement,
where the violations of (4.15b) primarily occur in between the harmonics. Around
the harmonics, |X(ω)| is already restricted by the robust feedforward controller de-
sign, in order to achieve good robust periodic performance.

Figure 4.5(b) shows the amplitude of the closed-loop system Hp,Δ (z) achieved
by KFF2(z) as disturbance feedback controller: The thin line indicates the nominal
amplitude |Hp(ω)|:

|Hp(ω)| =
∣
∣1 − G+(ω)X(ω)

∣
∣ ,

while the thick line corresponds to the worst-case amplitude |Hp,Δ (ω)|wc:

|Hp,Δ (ω)|wc =
|1 − G+(ω)X(ω)|

1 −|WG(ω)G+(ω)X(ω)| . (4.16)

The thin curve corresponds to the result shown in Figure 3.8(b). Since in both the
robust feedforward and disturbance feedback controller design, good periodic per-
formance for the worst-case plant requires |X(ω)| to be small around the harmonics,
|Hp,Δ (ω)|wc is acceptable around all harmonics, except l = 13 (260 Hz).

Although not clear from Figures 3.8(b) and 4.5(b), for l = 0, the robust per-
formance of KFF2(z) is better as disturbance feedback controller than as feed-
forward controller. This is clarified by the comparison of (3.14) and (4.16): for
|Hp(0)| = 0, the former formula yields |Hp,Δ (0)|wc = |WG(0)|, while the latter yields
|Hp,Δ (0)|wc = 0.
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Fig. 4.5 Evaluation of feedforward controller KFF2(z) as a disturbance feedback controller:
(a) amplitude FRF of Youla parameter X(z), where robust stability requires |X(ω)| to reside
below 1/|WG(ω)G+(ω)|, indicated by the thick dashed line; and (b) amplitude FRF of the
closed-loop transfer function Hp,Δ (z), where the thin and thick line respectively indicate the
nominal amplitude |Hp(ω)| and worst-case amplitude |Hp,Δ (ω)|wc.
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4.4.2 Disturbance Feedback Controller

KdFB1(z) is designed as a robust disturbance feedback controller that yields similar
robust periodic performance as KFF2(z) evaluated as feedforward controller. To that
end, in optimization problem (4.12) Vl,wc = βV l,wc, where V l,wc are set equal to the
values for KFF2(z) indicated in Figure 3.9(b). According to the discussion in the last
paragraph of the previous section, V 0,wc is reduced to V 0,wc = 10−6.

For β = 1, the feasible set of (4.12) contains more than one solution x. There-
fore, β is minimized by bisection, while in feasibility problem (4.12), robust stabil-
ity constraint (4.12b) is tightened to ‖Hstab(z)‖∞ < 0.8. Problem (4.12) is handled
by gridding and SDPT3 [141, 149] requires on average 5.1 CPU seconds to solve
the corresponding SOCP (Intel� CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB of RAM).
Few bisection iterates suffice to reduce β to 0.9.

Figure 4.6(a) shows |X(ω)| corresponding to KdFB1(z) and confirms robust stabil-
ity of the corresponding closed-loop system since |X(ω)| resides below the thick
dashed line, which indicates 1/|WG(ω)G+(ω)|. Figure 4.6(b) shows |Hp(ω)| (thin
line) and |Hp,Δ (ω)|wc (thick line) realized by KdFB1(z). Good periodic performance
for all potential plant models GΔ (z) implies a small difference between these curves
in the gray-shaded uncertainty intervals.

Figure 4.7 evaluates the corresponding closed-loop periodic performance for the
worst-case plant by showing

Vl,wc/Wl = max
ω∈Ωl

{|Hp,Δ (ω)|wc
}

,

for all harmonics l ∈ L . Hence, Figure 4.7 is constructed from Figure 4.6(b) by
computing the maximum of the thick curve, over each of the gray-shaded uncer-
tainty intervals. This figure corresponds to the results for KFF2(z) in Figure 3.9(b),
scaled with β = 0.9, except for l = 0.

Figure 4.8 shows rms(vp,Δ (k))/rms(wp(k)) as a function of fp,δ and hereby as-
sesses the closed-loop performance of KdFB1(z) for the particular input wp(k) of Fig-
ure 3.4. The thick line corresponds to the worst-case plant and nearly coincides with
the thin curve, which relates to the nominal plant. On account of β = 0.9 and the
improved performance for l = 0, the worst-case reduction of rms(wp(k)) achieved
by KdFB1(z) is better than the result for KFF2(z) shown in Figure 3.10, for all fp,δ .
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Fig. 4.6 Evaluation of optimal robust disturbance feedback controller KdFB1(z): (a) ampli-
tude FRF of Youla parameter X(z), where robust stability requires |X(ω)| to reside below
1/|WG(ω)G+(ω)|, indicated by the thick dashed line; and (b) amplitude FRF of the closed-
loop transfer function Hp,Δ (z), where the thin and thick line respectively indicate the nominal
amplitude |Hp(ω)| and worst-case amplitude |Hp,Δ (ω)|wc.
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Fig. 4.8 Closed-loop rms reduction of the particular input wp(k) of Figure 3.4 achieved by
KdFB1(z) as a function of fp,δ : the thick line corresponds to the worst-case plant and nearly
coincides with the thin line, which relates to the nominal plant.
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4.5 Conclusion

This chapter designs an estimated disturbance feedback controller for periodic dis-
turbances acting on a discrete-time SISO LTI system. The controller comprises the
most popular disturbance estimator of Ohnishi [103] and a disturbance feedback
controller, designed according to the methodology of Chapter 2. Contrary to all de-
sign approaches from the literature, the proposed design methodology can cope with
uncertainty on the input period. Moreover, the design methodology has the advan-
tage of easy incorporation of plant uncertainty and additional design specifications.
The potential of the resulting disturbance feedback controller design is illustrated
by numerical results.



Chapter 5
Application to Repetitive Control

5.1 Introduction

5.1.1 State of the Art

In the early 1980s, Inoue et al. [75, 76] and Hara et al. [59, 60] laid the foundation of
repetitive control. Facing the control problem of asymptotically rejecting periodic
inputs of which only the period Tp is known, they relied on the Internal Model Prin-
ciple [34, 45, 46, 47, 48] and included the signal generator shown in Figure 5.1(a)
in the controller. This is the most general periodic signal generator as, determined
by its initial conditions, it can generate any signal with period Tp. Although the first
repetitive controllers were described in continuous-time, the discrete-time repetitive
controller design got the upper hand [145, 146]. The preference for the discrete-time
design stems from the digital controller implementation and the advantage that the
discrete-time counterpart of the infinite-dimensional continuous-time signal gen-
erator of Figure 5.1(a) is of finite dimension, provided that Tp contains an integer
number N of sample periods Ts. Figure 5.1(b) shows the corresponding discrete-time
signal generator.

During the first decade, research on repetitive control focussed on closed-loop
stability, as including the signal generator of Figures 5.1(a) and 5.1(b) is detrimental
for stability [60]. To resolve the stability issues, the repetitive controller evolved
from the signal generator of Figure 5.1(b) to the structure shown in Figure 5.1(c) [27,
28, 74, 128, 134]. Filter L(z) guarantees nominal closed-loop stability by inverting
the transfer function from uRC(k) to yRC(k) as determined by the control setup (see
Section 5.2.2), while low-pass filter Q(z) turns off the repetitive controller at high
frequencies for reasons of robust stability [60, 61, 75]. Although more advanced
repetitive controller designs have since been proposed [33, 55, 57, 66, 86, 91, 92,
105, 108, 132], the repetitive controller of Figure 5.1(c) remains most popular [25,
30, 40, 83, 99, 105, 132, 164].

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 61–82.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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+ +
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Fig. 5.1 Continuous-time (a) and discrete-time (b) generator of periodic signals with period
Tp = NTs; (c) corresponding structure of a discrete-time repetitive controller, where filters L
and Q are added to ensure robust closed-loop stability.

By incorporating the signal generator of Figure 5.1(b), repetitive controllers yield
the advantage of perfect nominal periodic performance: any periodic input is per-
fectly rejected/tracked asymptotically, provided that its period is exactly Tp. On the
other hand, most repetitive controller designs from the literature suffer from two dis-
advantages. First, the obtained closed-loop periodic performance is very sensitive to
uncertainty on the input period Tp. Hence, while yielding perfect nominal periodic
performance, the resulting robust periodic performance is generally unsatisfactory.
Consequently, well-functioning of these repetitive controllers requires the period Tp

to be constant or accurately measurable, which may be jeopardized in practice by
clock error drift, jitter, measurement noise, etc. Second, due to the Bode Integral
Theorem [10, 21, 22, 49, 69, 138], the repetitive controller degrades the closed-loop
performance for nonperiodic inputs, i.e., the nonperiodic performance: pushing the
sensitivity down to zero at the multiples of ωp is paid for by an increased sensitivity
at intermediate frequencies.

To deal with these disadvantages, so-called high-order repetitive control has been
proposed. Inoue [74] and Chang et al. [20] design high-order repetitive controllers
to improve nonperiodic performance under the constraint of perfect nominal pe-
riodic performance, while the design of Steinbuch [135] improves robust periodic
performance under the same constraint. A unified framework able to reproduce the
results of both [20] and [135] is proposed in [136].

5.1.2 Contribution

This chapter applies the methodology of Chapter 2 to design a high-order repetitive
controller for a discrete-time SISO LTI system. This results in a novel high-order
repetitive controller design [112], which features the following advantages over the
current design approaches [20, 74, 135, 136]:
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Multi-objective Control: Contrary to all current design approaches, perfect peri-
odic performance is not the starting-point of the presented repetitive controller
design. Instead, the repetitive controller is designed to yield an optimal trade-off
between performance indices γp and γnp, which quantify its effect on the closed-
loop periodic and nonperiodic performance, respectively.

Period-time Uncertainty: Periodic performance index γp explicitly accounts for
period-time uncertainty, and this quantitative treatment of period-uncertain in-
puts contrasts the more qualitative approaches of [74] and [135].

Limits of Performance: The convex reformulation of the optimal design problem
facilitates the computation of trade-off curves between conflicting performance
indices γp and γnp. By means of these trade-off curves the fundamental limits of
performance in repetitive control are analyzed.

In addition, the proposed repetitive controller design approach is able to reproduce
and outperform the designs by Chang et al. [20] and Steinbuch [135].

5.1.3 Outline

First, Section 5.2 details the control setup used in this chapter and presents the struc-
ture of a high-order repetitive controller. While this section also reviews the design
approaches of [20] and [135], Section 5.3 applies the methodology of Chapter 2 to
the high-order repetitive controller design. The potential of the resulting design ap-
proach is illustrated by numerical results presented in Section 5.4, while Section 5.5
summarizes the conclusions of this chapter.

5.2 Background

This section presents the control configuration of an add-on repetitive control system
(Section 5.2.1) and briefly reviews the high-order repetitive controller designs of
Chang et al. [20] and Steinbuch [135] (Section 5.2.2).

5.2.1 Control Configuration

As is common in the literature [25, 27, 40, 42, 81, 83, 135, 146], the repetitive
controller, KRC(z), is considered as an add-on device, implying that it is added to
the loop of an existing feedback system. This system is referred to as the “original
feedback system” and comprises plant G(z) and original feedback controller Ko(z),
which has been designed a priori and is hence considered fixed. Figure 5.2(a) shows
the corresponding control setup, where signals r(k), d(k) and η(k) respectively
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Fig. 5.2 (a) Add-on repetitive control configuration, where repetitive controller KRC is added
to the “original feedback system” comprising plant G and feedback controller Ko; and (b)
structure of a μth-order repetitive controller. Signals r(k), d(k) and η(k) respectively denote
the reference trajectory, output disturbance and plant output.

correspond to the reference input, output disturbance and plant output. In closed
loop, the tracking error e(k) = r(k)−η(k) is given by

e(k) = S(q)
(
r(k)− d(k)

)
,

where S(q) corresponds to the closed-loop sensitivity. The combined input r(k)−
d(k) features both a periodic and a nonperiodic contribution:

r(k)− d(k) = wp(k)+ wnp(k) , (5.1)

where wp(k) is specified according to Section 2.2.2. The sample frequency is chosen
such that Tp contains an integer number N of sample periods1:

Tp = NTs .

1 If N is not integer, it is rounded to the nearest integer Nint and the rounding error is ac-
counted for as uncertainty on Tp ≡ NintTs.
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Original Feedback System

Ko(z) must yield an internally stable closed-loop system and is hence indispensable
for unstable plants G(z). The sensitivity and complementary sensitivity function of
the original feedback system are respectively denoted by So(z) and To(z):

So(z) =
1

1 + Ko(z)G(z)
, To(z) =

Ko(z)G(z)
1 + Ko(z)G(z)

.

For ease of explanation, Ko(z) is assumed to be stable and designed properly, which
implies [131]: (i) a stable closed-loop system; (ii) high-gain feedback at low fre-
quencies; (iii) sufficient roll-off of |To(ω)| at high frequencies; and (iv) a large
modulus margin ‖So(z)‖−1

∞ . Figure 5.3 illustrates the FRFs of So(z) and To(z) cor-
responding to such a design.

Property (ii) is referred to as good nonperiodic performance, since it yields small
|So(ω)| at low frequencies, resulting in a small tracking error e(k) for any low-
frequency input wnp(k). By defining the bandwidth ωBW of the original feedback
system as the frequency where |So(ω)| first crosses −3dB from below, see Fig-
ure 5.3(a), Ko(z) is said to yield good nonperiodic performance up to ωBW.

Combination of properties (i), (iii) and (iv) ensures robust stability of the original
feedback system. In the presence of multiplicative unstructured plant uncertainty
(2.2), robust stability of the original feedback system requires ‖To(z)WG(z)‖∞ < 1
[131], where optimizing closed-loop performance pushes |To(ω)| at high frequen-
cies to its upper bound |1/WG(ω)|, as illustrated in Figure 5.3(b). The modulus
margin ‖So(z)‖−1

∞ corresponds to the minimal distance between the Nyquist plot of
the loop transfer function and the point −1, and is therefore also considered as a
robust stability measure.

Overall Feedback System

When KRC(z) is added to the loop, the closed-loop sensitivity changes from So(z)
to S(z):

S(z) =
1

1 +
[
Ko(z)+ KRC(z)

]
G(z)

,

= So(z)
1

1 + KRC(z)G(z)So(z)︸ ︷︷ ︸
MS(z)

.

Transfer function MS(z) is called the modifying sensitivity function and represents
the effect of KRC(z) on the closed-loop sensitivity. KRC(z) must not compromise the
robust stability of the original feedback system, while improving closed-loop pe-
riodic performance. These design specifications for KRC(z) are nonconflicting pro-
vided that all harmonics l ∈ L lie well belowωBW: at harmonics near or aboveωBW
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Fig. 5.3 Typical FRFs for the closed-loop sensitivity So(z) (a) and complementary sensitivity
To(z) (b) of a properly designed original feedback system, where ωBW indicates the band-
width. In the presence of multiplicative unstructured plant uncertainty (2.2), robust closed-
loop stability requires ‖To(z)WG(z)‖∞ < 1.

better performance simply cannot be achieved without compromising the modulus
margin or high-frequency roll-off of the original feedback system. This assumption
is made throughout this chapter.

High-Order Repetitive Controller

Figure 5.2(b) shows the structure of a repetitive controller of order μ . A high-order
repetitive controller (μ > 1) generalizes the classical, first-order repetitive controller
shown in Figure 5.1(c) by extending z−N to a polynomial in z−N :
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χ(z) =
μ

∑
m=1

χmz−mN . (5.2)

The repetitive controller structure of Figure 5.2(b) gives rise to the following ex-
pressions for KRC(z) and MS(z):

KRC(z) =
χ(z)Q(z)L(z)
1 − χ(z)Q(z)

, (5.3a)

MS(z) =
1 − χ(z)Q(z)

1 − χ(z)Q(z)
[
1 − L(z)G(z)So(z)

] . (5.3b)

5.2.2 Current Design Approaches

A high-order repetitive controller design involves designing χ(z) and the filters Q(z)
and L(z). Current high-order repetitive controller designs [20, 74, 135, 136] adopt
the design of Q(z) and L(z) that is common in first-order repetitive control [28] to
guarantee preservation of the original feedback system’s robust stability, indepen-
dent of χ(z). In the second step, performance of the high-order repetitive controller
is improved through the design of χ(z) [20, 74, 135, 136].

Design of L(z): Nominal Stability

To achieve a nominally stable closed-loop system, L(z) is set equal to

L(z) =
[
G(z)So(z)

]−1
, (5.4)

giving rise to a plant-independent expression of the modifying sensitivity function
(5.3b):

MS(z) = 1 − χ(z)Q(z) . (5.5)

However, design (5.4) poses two practical issues. First, nonminimum-phase zeros of
G(z)So(z) render L(z) unstable, and hereby require the use of an approximate, stable
inverse of G(z)So(z). The “zero phase error tracking” inversion [142] is often used
[61, 146], while alternative approximations are indicated in Section 3.1. In fact, by
the effect of Q(z) (discussed below), it suffices that L(ω) ≈ [G(ω)So(ω)]−1 up to
bandwidth ωBW of the original feedback system.

The second practical issue raised by (5.4) is related to causality, since the inverse
of a strictly causal G(z)So(z), is noncausal. In addition, the approximate inversions
of a nonminimum-phase system are generally noncausal. Fortunately, noncausal-
ity of L(z) can be encompassed by absorbing it in the delay z−N , as illustrated in
Figure 5.4. Figure 5.4(b) shows the practical, causal implementation of the desired
repetitive controller of Figure 5.4(a). The desired filter L(z) is noncausal, while τL

equals the smallest integer that renders z−τL L(z) causal.
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Fig. 5.4 Practical implementation (b) of repetitive controller (a) with noncausal filters Q(z)
and L(z). Integers τL and τQ correspond to the smallest integers for which z−τL L(z) and
z−τQ Q(z) are causal, and implementation (b) is causal provided that N ≥ τQ + τL.

Design of Q(z): Robust Stability

Robust closed-loop stability requires, in addition to nominal stability, preservation
of the modulus margin and high-frequency roll-off of the original feedback system.
To that end, the repetitive controller’s action must be restricted to frequencies be-
low the bandwidth ωBW of the original feedback system. This is accomplished by
designing Q(z) as a low-pass filter where its order nQ and cut-off frequency ωQ are
tuned such that all harmonics l ∈ L lie in the pass-band of Q(z), while |Q(ω)| ≈ 0
for all ω ≥ ωBW [28, 61, 136]. Q(z) can comply with both requirements provided
that all harmonics l ∈ L lie well below ωBW, as is assumed here.

A zero-phase filter is preferred for Q(z) and it is generally constructed from a
linear-phase FIR filter Q̃(z). The phase behavior of Q̃(z) corresponds to a pure delay
z−τQ , where τQ = nQ/2 , such that

Q(z) = zτQQ̃(z)

has zero phase. However, Q(z) is noncausal, while Q̃(z) = z−τQQ(z) is causal. As
illustrated in Figure 5.4, noncausality of Q(z) can be compensated for by absorbing
zτQ in z−N . The resulting practical implementation of the repetitive controller is
causal provided that N ≥ τQ + τL.

To illustrate the effect of Q(z) on MS(z), Figure 5.5 compares, for a common
repetitive control system, the FRF of MS(z) with the FRF of MS(z), defined as the
modifying sensitivity function for Q(z) ≡ 1:
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Fig. 5.5 Comparison between MS(ω) and MS(ω), defined as the modifying sensitivity func-
tion for Q(z) ≡ 1, for a common repetitive control system. Up to cut-off frequency ωQ of
Q(z), the curves coincide.

MS(z) = 1 − χ(z) . (5.6)

Since MS(z) only contains powers of z−N , its FRF is periodic with ωp. Low-pass
filter Q(z) turns off KRC(z) from its cut-off frequency ωQ, since Q(ω) ≈ 0 yields
MS(ω) ≈ 1. All harmonics l ∈ L are situated to the left of ωQ, while ωBW > ωQ.

Design of χ(z): Performance

All current high-order repetitive controller designs adopt the assumption of a prop-
erly designed filter Q(z), such that

MS(lωp) ≈ MS(lωp) , ∀l ∈ L .

This assumption justifies the design of χ(z) based on MS(z) (5.6) instead of MS(z)
(5.5).

Chang et al. [20] use χm to improve closed-loop nonperiodic performance under
the constraint of perfect nominal periodic performance. To that end, parameters χm

are computed as the solution of the following optimization problem:

minimize
χm

‖MS(z)‖∞ (5.7a)

subject to
μ

∑
m=1

χm = 1 (5.7b)

0 ≤ χm ≤ 1 , ∀m = 1, . . . ,μ . (5.7c)

Constraint (5.7b) guarantees perfect nominal periodic performance since it yields
MS(0) = 0 and, implied by the FRF periodicity, MS(lωp) = 0 for all integers l.
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Chang et al. [20] use a stochastic “evolution strategy” to solve semi-infinite opti-
mization problem (5.7).

To improve closed-loop robust periodic performance under the constraint of
perfect nominal periodic performance, Steinbuch [135] enforces the higher-order
derivatives of |MS(ω)| equal to zero at the multiples of ωp. Hence, for a repetitive
controller of order μ , parameters χm are designed to satisfy the following set of μ
equations, linear in χm:

di|MS(0)|
dω i = 0 , ∀i = 0, . . . ,μ− 1 . (5.8)

5.3 Application of the Design Methodology

This section applies the methodology of Chapter 2 to design a high-order repetitive
controller. Through parameters χm, the controller is designed to yield an optimal
trade-off between performance indices γnp and γp, which quantify its effect on the
closed-loop nonperiodic and robust periodic performance. The design of filters Q(z)
and L(z) is preserved from Section 5.2.2.

This section directly addresses the optimal design of χm, while the general con-
trol configuration and Youla parametrization are temporarily omitted. They are
picked-up again in Chapter 6, where a high-order repetitive controller is shown to
correspond to a feedback controller with restricted design freedom in the Youla
parameter.

5.3.1 Optimal Design

As presented in Section 5.2.1, the combined input r(k)− d(k) features both a pe-
riodic and a nonperiodic contribution (5.1). To focus on the effect of the repetitive
controller on the closed-loop performance, its performance is related to the modify-
ing sensitivity function MS(z) instead of S(z), yielding

vnp(k) = vp(k) =
1

So(q)
e(k) , (5.9a)

Hnp(z) = Hp(z) =
S(z)
So(z)

= MS(z) . (5.9b)

The effect of the repetitive controller on the closed-loop nonperiodic performance
is quantified by index γnp (2.10):

γnp = ‖MS(z)‖∞ , (5.10a)

≈ ‖MS(z)‖∞ , (5.10b)

where the close relation between ‖MS(z)‖∞ and ‖MS(z)‖∞ is clarified by Figure 5.5.
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Applying∞-norm based definition (2.7) of the periodic performance index yields

γp = max
l∈L

{
Wl max

ω∈Ωl

{|MS(ω)|}
}

, (5.11a)

where, by the use of (5.9), it is appropriate to change weights Wl to Wl|So(lωp)|.
The assumption that all harmonics l ∈ L lie in the pass-band of Q(z), justifies the
following approximation of γp:

γp ≈ max
l∈L

{
Wl max

ω∈Ωl

{|MS(ω)|}
}

, (5.11b)

= max
l∈L

{
Wl max

ω∈Ω l

{|MS(ω)|}
}

, (5.11c)

where Ω l corresponds to Ωl , (2.4), shifted around the origin:

Ω l =
[−lωpδ , lωpδ

]
. (5.12)

Transition from (5.11b) to (5.11c) relies on the FRF periodicity of MS(z).

In a μ th-order repetitive controller design, indices γp and γnp are conflicting, since
the Bode Integral Theorem [10, 21, 22, 49, 69, 138] dictates

∫ ωp

0
log

(|MS(ω)|) dω = 0 . (5.13)

Hence, improved periodic performance, γp < 1, comes at the price of nonperiodic
performance degradation, γnp > 1. This trade-off between γp and γnp is analyzed by
solving the following optimization problem for various weights α ≥ 0:

minimize
χm,γp,γnp

γp +αγnp (5.14a)

subject to ‖MS(z)‖∞ ≤ γnp (5.14b)

Wl|MS(ω)| ≤ γp , ∀ω ∈Ω l , ∀l ∈ L . (5.14c)

Approximate definitions (5.10b) and (5.11b) are used since: (i) they are used in all
current high-order repetitive controller designs; (ii) they are generally very accurate;
and (iii) the resulting optimization problem is solved much more efficiently com-
pared to the program formulated in terms of MS(z). The latter advantage is related
to the fact that MS(z) only comprises powers of z−N . Hereby, MS(z) is equivalently
described by a μ th-order FIR filter at sample period NTs = Tp, while at the actual
sample period Ts, it corresponds to a FIR filter of order μN. Accordingly, applica-
tion of the (generalized) KYP lemma yields LMIs involving matrix variables in Sμ
instead of SμN , which yields a significant reduction in computational time. Also the
gridding solution approach benefits from the use of MS(z) instead of MS(z), as the
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FRF periodicity of MS(z) allows reducing the frequency range involved in (5.14b)
from [0 , fs/2] to [0 , fp/2].

Optimization problem (5.14) does not depend on the original feedback system to
which the repetitive controller is added, and by the FRF periodicity of MS(z), the
solution of (5.14) is independent of ωp. If all harmonics l ∈ L are accounted for
with equal weights Wl , the set of constraints (5.14c) is equivalent to

|MS(ω)| ≤ γp , ∀ω ∈Ω lmax ,

where lmax = maxl∈L {l}, since for all l ∈ L : Ω l ⊂ Ω lmax . In this special case, the
solution of (5.14) only depends on L and δδ through the product lmaxδ .

5.4 Numerical Results

This section illustrates the potential of the proposed high-order repetitive controller
design by numerical results. The convexity of optimal design problem (5.14) facili-
tates the computation of trade-off curves between γp and γnp for a fixed order μ , and
these trade-off curves are discussed in Section 5.4.1. Section 5.4.2 analyzes how the
trade-off between γp and γnp evolves as a function of μ , and investigates the solution
of (5.14) for μ →∞. Subsequently, Section 5.4.3 compares the proposed high-order
repetitive controller design with the current design approaches of [20] and [135].

In this section, equal weights Wl = 1 are applied to all l ∈ L and this way, the
presented results only depend on L and δδ through the product lmaxδδ , for which
various values are considered. In addition, the results are independent of the original
feedback system to which the repetitive controller is added, and do not depend on
ωp either.

5.4.1 Trade-off γp –γnp for Fixed μ

Figure 5.6 shows the trade-off curves between γp and γnp, for repetitive controllers
of order μ = 1,2, . . . ,5, while relative uncertainty lmaxδδ ranges from 0% in Fig-
ure 5.6(a), to 10% in Figure 5.6(d). These trade-off curves are computed by solving
(5.14) for various weights α ≥ 0: by increasing α they are traced from left to right.
Optimization problem (5.14) is rendered numerically tractable by application of the
(generalized) KYP lemma and the resulting SDP is solved with the solver of Liu
and Vandenberghe [94]. Each of the problems (5.14) required to generate Figure 5.6
is solved within 0.1 CPU second (Intel� CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB
of RAM).

The trade-off curves shown in Figure 5.6 indicate the limits of performance for
μ th-order repetitive controllers. For a given level of robust periodic performance
improvement γp, the curve indicates the minimal level of nonperiodic performance
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Fig. 5.6 Trade-off curves between γp and γnp for different orders μ of the repetitive con-
troller and various uncertainty levels lmaxδ on the fundamental frequency: (a) lmaxδ = 0%;
(b) lmaxδ = 2%; (c) lmaxδδ = 5%; and (d) lmaxδ = 10%.

degradation γnp that has to be tolerated. Or, vice versa, for a fixed level of allow-
able nonperiodic performance degradation, the trade-off curve indicates the best
robust periodic performance improvement that a μ th-order repetitive controller can
achieve.

Given the higher number of design variables, a repetitive controller of a given
order μ yields at least as good a performance as lower-order controllers, for all
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values of lmaxδδ : the trade-off curves shift to the left and/or downwards as μ in-
creases. However, increasing the order does not guarantee better performance: Fig-
ures 5.6(b), 5.6(c) and 5.6(d) reveal points at which the trade-off curves for orders
μ and μ + 1 touch. In such a point neither γp nor γnp improves if the order of the
repetitive controller is increased by one, whereas increasing the order by two again
results in improved performance.

Every trade-off curve is defined for γp values between an uncertainty and order-
dependent lower limit and an uncertainty and order-independent upper limit γp = 1,
corresponding to KRC(z) = 0. If no uncertainty is present, the lower limit equals
γp = 0 for all orders μ , whereas for a nonzero uncertainty, γp = 0 cannot be achieved
by a finite-order controller since it invokes infinitely many equality constraints. The
latter fact is clearly observable in Figure 5.6(d), whereas Figure 5.6(b) reveals that
for small uncertainty levels, nearly zero γp values are still achievable.

The presence of “knees”, i.e., abrupt changes in the slope of the trade-off curve,
such as the points x and y for μ = 3 in Figure 5.6(b), facilitates the choice of a good
engineering design: y would be preferred over any repetitive controller design with
higher γp, since the cost for decreasing γp to 0.18 is only small an increase in γnp.
On the other hand, is it not advisable to decrease γp below 1.23 ·10−2 (point x) since
this implies a very large increase in γnp. If no uncertainty, Figure 5.6(a), or larger
relative uncertainty levels, Figure 5.6(d), are considered, such clear knees are not
present, whereby many more viable designs emerge.

5.4.2 Trade-off γp –γnp –μ

As the trade-off between γp and γnp improves as μ increases, a trade-off surface
between γp, γnp and μ emerges. μ determines the transient response time of S(z),
since MS(z) has a finite impulse response of length Nμ+nQ/2. Hence, in repetitive
control, the Bode Integral Theorem (5.13) essentially dictates a trade-off between
closed-loop periodic performance, nonperiodic performance and transient response
time, while for a μ th-order repetitive controller this trade-off reduces to a trade-off
between periodic and nonperiodic performance. This section analyzes the γnp –γp –
μ trade-off surface and investigates the solution of (5.14) for μ → ∞.

Trade-off Surface

To analyze the trade-off between closed-loop periodic performance, nonperiodic
performance and transient response time in repetitive control, Figure 5.7 shows for
various uncertainty levels lmaxδδ , the trade-off curves between γp and γnp for μ rang-
ing from 1 to 100. These curves define the γp –γnp –μ trade-off surface, which fea-
tures a staircase-like behavior in μ , since μ is integer. The trade-off curves mark the
μ stairs, where a repetitive controller of order μ can obtain all γp –γnp pairs above
the corresponding trade-off curve.
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Fig. 5.7 Trade-off curves between γp and γnp for μ ranging from 1 to 100, while the black
dotted line corresponds to the asymptotic curve for μ → ∞. Four uncertainty levels lmaxδδ on
the fundamental frequency are considered: (a) lmaxδ = 0%; (b) lmaxδ = 2%; (c) lmaxδ = 5%;
and (d) lmaxδ = 10%.

The black dotted line in Figure 5.7 corresponds to the asymptotic trade-off curve
between γp and γnp for μ → ∞, and this curve is computed based on the asymp-
totic behavior of |MS(ω)| for μ → ∞, shown in Figure 5.8. The Bode Integral
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Fig. 5.8 Asymptotic behavior of |MS(ω)| for μ → ∞.

Theorem (5.13) dictates equality of the positive and negative gray-shaded areas,
which mathematically yields:

γnp = exp

(
− ln(γp)

lmaxδ
0.5 − lmaxδδδ

)
. (5.15)

If Tp is known with infinite accuracy, δδ = 0%, the trade-off between γp and γnp

vanishes for μ → ∞, as then, (5.15) yields γnp = 1, independent of γp. The dotted
lower bound for the trade-off curve between γp and γnp is independent of the repet-
itive controller’s parametrization, since for μ → ∞, the FIR parametrization (5.2)
encompasses any stable transfer function χ(z) as a rational function of z−N .

Figure 5.7 reveals that the performance gained by increasing the transient re-
sponse time saturates: while initially, the trade-off curves shift significantly to the
left and/or downwards as μ increases, for high μ values the trade-off curves lie
closer and closer to each other. This saturation is observed for all lmaxδδ values.

To further analyze performance as a function of μ , Figure 5.9 shows the cross-
sections through the trade-off surfaces of Figure 5.7 at γnp = 1.3. Hence, this figure
shows how the periodic performance improves as the transient response time in-
creases. The dashed lines indicate the asymptotic γp values, predicted by (5.15).
While Figure 5.9(a) reveals that for δδ = 0%, the asymptotic value γp = 0 is reached
with finite μ , for δ > 0%, the asymptotic γp value is only reached for μ → ∞, as
observed in Figures 5.9(b), 5.9(c) and 5.9(d).

For μ < 20, the curves of Figures 5.9(b), 5.9(c) and 5.9(d) feature alternating
parts with steep and shallow steps. From an engineering point of view, μ values
at the foot of a steep part are preferred: reducing μ would result in a substantial
loss of performance, whereas little performance is gained by increasing μ . Fig-
ures 5.9(b), 5.9(c) and 5.9(d) confirm the saturation of the performance gained by
increasing μ , and for μ > 20, γp only decreases very slowly as μ increases. Hence,
repetitive controllers with μ > 20 are only relevant to applications with tight steady-
state performance demands, while transient response time is of minor importance.
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Fig. 5.9 Evolution of γp as a function of μ for γnp = 1.3 and four uncertainty levels lmaxδδ
on the fundamental frequency: (a) lmaxδ = 0%; (b) lmaxδ = 2%; (c) lmaxδ = 5%; and (d)
lmaxδ = 10%. The dashed lines indicate the asymptotic γp values for μ → ∞.

Up to μ = 15, problem (5.14) is most efficiently solved by combining the (gen-
eralized) KYP lemma and the solver of [94], while for higher μ , gridding becomes
more efficient. For μ = 100, the former approach requires about one CPU minute
to solve (5.14), while SDPT3 [141, 149] solves the SOCP resulting from gridding
within a few (< 5) CPU seconds (Intel� CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB
of RAM).
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Fig. 5.10 FRF of MS(z) for three repetitive controllers designed to yield γp = 10−3 for
lmaxδδ = 5%.

Evolution of MS(z) as a Function of μ

Figure 5.10 shows the FRF of MS(z) for three repetitive controllers, designed to yield
γp = 10−3 for lmaxδ = 5%. The results are shown for μ = 50, μ = 100 and μ → ∞,
where the latter result is constructed from Figure 5.8 by spectral factorization [107,
120]. As μ increases, MS(z) indeed approaches the asymptotic behavior predicted
in Figure 5.8. However, approximating the sharp edges in the asymptotic |MS(ω)|
curve with a FIR parametrization gives rise to a Gibbs-like phenomenon [51].

Figure 5.11 shows the step response of MS(z) for the repetitive controllers con-
sidered in Figure 5.10. Since MS(z) only contains powers of z−N , the step response
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Fig. 5.11 Step response of MS(z) for three repetitive controllers designed to yield γp = 10−3

for lmaxδδ = 5%.

only changes at time instants k corresponding to a multiple of N. The step response
of MS(z) determines the transient response of all harmonic components, since, due
to its FRF periodicity, MS(z) treats all harmonics similar to a step input. For a μ th-
order repetitive controller, MS(z) has a finite impulse response of length μN and
consequently, steady state is reached after μ periods. Figure 5.11 reveals that for
lower μ , the step response of MS(z) is faster: the step response for μ → ∞ lags
behind the response for μ = 100, which is slower than the response for μ = 50.
For μ → ∞, the step response corresponds to a decaying harmonic signal, of which
the period approaches 20N, corresponding to the frequency δδ fp. Figure 5.11 con-
firms that pushing the repetitive controller design to the asymptotic γp –γnp trade-off
curve, comes at the price of a sluggish transient response: for μ → ∞, the transient
response decays very slowly.

5.4.3 Comparison with the Literature

This section illustrates the capability of the proposed design approach to reproduce
and outperform the current high-order repetitive controller designs of Chang et al.
[20] and Steinbuch [135].
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Chang et al. [20]

To improve the nonperiodic performance of a repetitive controller that yields per-
fect nominal periodic performance, Chang et al. [20] design a high-order controller
according to optimization problem (5.7). As already pointed out in [136], inequal-
ity constraints (5.7c) are superfluous. As a result, optimization problem (5.7) cor-
responds to the left-most point of the corresponding trade-off curve for δ = 0%,
computed by solving (5.14) with a very small α value. Whereas Chang et al. [20]
solve semi-infinite optimization problem (5.7) with a stochastic “evolution strat-
egy”, the proposed methodology provides a systematic and efficient approach to
compute their solutions with guaranteed global optimality.

Figure 5.12 illustrates for μ = 3 the difference between the optimal solution and
the solution of [20]. Based on the guarantee of obtaining a global optimum, the
optimal solution (γnp = 1.37) is better, albeit only marginally, than the solution of
[20] (γnp = 1.39).

Steinbuch [135]

To improve robust periodic performance under the constraint of perfect nomi-
nal periodic performance, Steinbuch [135] enforces the higher-order derivatives
of |MS(ω)| equal to zero at the multiples of ωp (5.8). While this analytical de-
sign approach does not involve numerical optimization, the results can be approx-
imated by solving optimization problem (5.14) with α = 0 for a small uncertainty
lmaxδ . Figure 5.13 compares for μ = 3 the result of [135] with the optimal so-
lution of (5.14) with α = 0 (corresponding to the left-most point of the trade-off
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Fig. 5.13 Comparison of the optimal repetitive controller and the repetitive controller de-
signed by Steinbuch [135] for μ = 3 and two values of lmaxδ : (a) lmaxδδ = 2%; and (b)
lmaxδ = 20%. The shaded bands indicate the corresponding uncertainty intervals Ω lmax .

curve). Figures 5.13(a) and 5.13(b) respectively show the results for lmaxδδ = 2%
and lmaxδδ = 20%, where the corresponding uncertainty intervals Ω lmax are shaded
gray.

For small uncertainty, lmaxδ = 2%, the results of the two design approaches al-
most coincide. Steinbuch [135] yields γp = 2 ·10−3 and γnp = 8, while the optimal
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design yields γp = 4.98 ·10−4 and γnp = 7.96. If an optimal repetitive controller is
designed that yields γp = 2 ·10−3, the same value as [135], a better nonperiodic per-
formance index is achieved: γnp = 6.97, a reduction by 13% compared to γnp = 8.
However, since both solutions are situated to the left of knee x in Figure 5.6(b), none
of them is preferable in practice, as discussed in Section 5.4.1.

For large uncertainty, lmaxδδδ = 20%, the presented approach differs significantly
from the design of Steinbuch [135], which, being derivative based, inherently as-
sumes small uncertainty levels. The optimal repetitive controller design features
both a better periodic performance index (γp = 0.37 compared to γp = 1.62 for
[135]) and a better nonperiodic performance index (γnp = 4.83 compared to γnp = 8
for [135]). This can be understood from the Bode Integral Theorem (5.13) as con-
straints (5.8) enforce |MS(ω)| ≈ 0 around the multiples ofωp, which results in a very
large negative contribution of these frequencies in integral (5.13). This negative con-
tribution has to be compensated for by high values of |MS(ω)| at the intermediate
frequencies. The optimal design, on the other hand, does not push |MS(ω)| down
to zero, yielding a substantially smaller negative contribution in (5.13), and hence,
lower values of |MS(ω)| at the intermediate frequencies.

5.5 Conclusion

This chapter applies the methodology of Chapter 2 to design a high-order repetitive
controller for a discrete-time SISO LTI system. This results in a novel high-order
repetitive controller design, which allows a systematic and quantitative treatment
of combined nonperiodic and period-uncertain inputs. By means of performance
indices γp and γnp, the repetitive controller is designed to yield an optimal
trade-off between periodic performance improvement and nonperiodic performance
degradation.

The convexity of the optimal design problem facilitates the computation of trade-
off curves between γp and γnp. These trade-off curves are independent of the feed-
back system to which the repetitive controller is added, and do not depend on the
input period either. Computing these trade-off curves for various orders μ of the
repetitive controller allows a quantitative analysis of the fundamental performance
limits in repetitive control: dictated by the Bode Integral Theorem, any repetitive
controller is bound to a trade-off between periodic performance improvement, non-
periodic performance degradation and transient response time.

The proposed design approach is able to reproduce and outperform the results
of Chang et al. [20] and Steinbuch [135]. The high-order repetitive control design
approach of [20] corresponds to the left-most point of the corresponding trade-
off curve. The proposed repetitive controller design outperforms the approach of
Steinbuch [135]: the same periodic performance is achieved with significantly less
nonperiodic performance degradation, and this performance gain increases with
period-time uncertainty.



Chapter 6
Application to Feedback Control

6.1 Introduction

6.1.1 State of the Art

This chapter deals with the general design of a feedback controller in the pres-
ence of periodic inputs. Repetitive controllers, discussed in the previous chapter, are
the most popular type of feedback controllers for periodic inputs (see references in
Section 5.1), where this popularity is to a large extent related to their simple struc-
ture, shown in Figure 5.2(b), and intuitive design. Moreover, a repetitive controller
design only requires knowledge of the input period Tp, and its implementation is
easily made adaptive for varying periods by adjusting N = int(Tp/Ts) [42, 139]. On
the other hand, its particular structure impedes a repetitive controller to properly
account for additional information on the periodic input spectrum as well as uncer-
tainty on the input period. These disadvantages are caused by the period delays z−N

embedded in the repetitive controller structure. The FRF of z−N is periodic with
ωp = 2π/(NTs) and this FRF periodicity enforces an equal treatment of all harmon-
ics l. Hence, a repetitive controller: (i) also accounts for harmonics l not present in
the input (l /∈ L ); (ii) cannot attribute different weights Wl to the harmonics l ∈ L ;
and (iii) a robust design for uncertainty on Tp is usually overly robust at the lower
harmonic frequencies, since the uncertainty intervals Ωl (2.4) grow linearly with
harmonic number l. These disadvantages restrict the ability of a repetitive controller
to optimize closed-loop periodic performance, and the quantification of the result-
ing performance loss is valuable for a control engineer who has to decide whether
the advantages of the repetitive controller structure pay off its disadvantages.

In feedback control, the Bode Integral Theorem [10, 21, 22, 49, 69, 138] dictates a
fundamental trade-off between closed-loop periodic performance, nonperiodic per-
formance and duration of transient response (see Section 5.4.2 and Section 6.5.2).
Hence, the performance degradation caused by the repetitive controller structure
should be analyzed in view of this trade-off and hereby invokes questions like: “For
a given level of periodic and nonperiodic performance, how much is the transient

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 83–118.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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response lengthened by adopting the repetitive controller structure?” or “For a given
transient response time, how much performance can be gained by abandoning the
repetitive controller structure?”. To answer these questions, the fundamental per-
formance trade-off in feedback control needs to be investigated in a quantitative
manner, similar to the analysis of Section 5.4.2 for repetitive controllers.

The current literature results only allow for a partial analysis of this trade-off
since the feedback controller design for periodic inputs is usually considered as
an output regulation problem (see Appendix B for an introduction and [117] for
an in-depth treatment). A regulator is a controller that achieves perfect asymptotic
tracking/rejection of persistent inputs, and according to the Internal Model Principle
[34, 45, 46, 47, 48] it includes a (partial) copy of the input signal generator. Hence,
by reformulating the feedback controller design as a regulation problem, perfect
periodic performance is inherent to the design. Moreover, uncertainty on the input
period cannot be accounted for, since regulation theory cannot cope with uncertainty
on the signal generator.

The (partial) copy of the signal generator is usually complemented with addi-
tional design freedom to optimize alternative performance specifications [1, 2, 3, 4,
19, 71, 118, 121, 133, 137]. Among these contributions, only Scherer et al. [121]
allow investigating the remaining trade-off between nonperiodic performance and
transient response time. The latter is controlled by constraining the closed-loop
poles to the disc with radius β < 1 centered at the origin, which forces the transient
response to decay with at least β k. By means of the Lyapunov shaping paradigm,
closed-loop nonperiodic performance can be optimized while satisfying this pole
placement constraint [121]. Hillerström and Sternby [65] propose a similar feed-
back controller design as they place the closed-loop poles on the circle with radius
β < 1 centered at the origin. Scalar β controls the trade-off between nonperiodic
performance and the exponential decay rate of the transient response.

Recent research in output regulation deals with relaxing the perfect periodic per-
formance resulting from the Internal Model Principle to good periodic performance
[72, 86, 88, 93]. The result of Köroğlu and Scherer [88] is most relevant to this chap-
ter as it extends the trade-off analysis by Scherer et al. [121] with this relaxation.

6.1.2 Contribution

This chapter applies the methodology of Chapter 2 to design a feedback controller
for a discrete-time SISO LTI system. The design is similar to the repetitive controller
design presented in Chapter 5 and shares its advantages:

Multi-objective Control: Contrary to the output regulation based design approach-
es, perfect periodic performance is not the starting-point of the presented feed-
back controller design. Instead, the controller is designed to yield an optimal
trade-off between two performance indices, γp and γnp, which quantify its effect
on the closed-loop periodic and nonperiodic performance, respectively.
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Period-time Uncertainty: Periodic performance index γp explicitly accounts for
period-time uncertainty, whereas this uncertainty cannot be accounted for in out-
put regulation.

Limits of Performance: The convex reformulation of the optimal design problem
facilitates the computation of trade-off curves between the conflicting perfor-
mance indices γp and γnp. The length of the transient response, the third issue
involved in the fundamental performance trade-off, is determined by the con-
troller parametrization. This way, the presented feedback controller design allows
a systematic and quantitative analysis of the fundamental limits of performance
in feedback control.

In applying the general design methodology, the Youla parametrization is chosen
such that repetitive controllers are encompassed as a special case. The resulting
controller structure is therefore indicated as “generalized repetitive control” [111],
and to emphasize the distinction between repetitive and generalized repetitive con-
trollers, the former controllers are in this chapter referred to as “typical repetitive
controllers”. The property that typical repetitive controllers constitute a subclass of
generalized repetitive controllers allows investigating the performance loss caused
by the particular structure of the former type of controllers.

6.1.3 Outline

Section 6.2 details the control setup used in this chapter and presents the structure
of a generalized repetitive controller. This section also reviews the feedback con-
troller designs of Hillerström and Sternby [65], Scherer et al. [121] and Köroğlu and
Scherer [88]. Section 6.3 clarifies how the generalized repetitive controller structure
encompasses typical repetitive controllers as a special case and reveals a close rela-
tionship between generalized repetitive control and estimated disturbance feedback
control, presented in Chapter 4. Section 6.4 applies the developed methodology
to the generalized repetitive controller design and elaborates on the correspond-
ing general control configuration, Youla parametrization and optimal design, while
Section 6.5 illustrates its potential by numerical results. Section 6.6 summarizes the
conclusions of this chapter.

6.2 Background

Section 6.2.1 details the control configuration used in this chapter and presents the
structure of a generalized repetitive controller. Subsequently, Section 6.2.2 briefly
reviews the current feedback controller designs [65, 88, 121].
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6.2.1 Control Configuration

To enhance the similarity with the previous chapter, the feedback controller, KFB(z),
is considered as an add-on device, that is: it is added to the loop of an existing feed-
back system, referred to as the “original feedback system”, to improve its closed-
loop periodic performance. The original feedback system comprises plant G(z) and
original feedback controller Ko(z), which has been designed a priori and is hence
considered fixed. Figure 6.1(a) shows the corresponding control setup, where sig-
nals r(k), d(k) and η(k) respectively correspond to the reference input, output dis-
turbance and plant output. In closed loop, the tracking error e(k) = r(k)−η(k) is
given by

e(k) = S(q)
(
r(k)− d(k)

)
,

where S(q) corresponds to the closed-loop sensitivity. The combined input r(k)−
d(k) features both a periodic and a nonperiodic contribution:

r(k)− d(k) = wp(k)+ wnp(k) , (6.1)

where wp(k) is specified according to Section 2.2.2. Contrary to the previous chap-
ter, the period Tp is not required to contain an integer number of sample periods.

Original Feedback System

Ko(z) must yield an internally stable closed-loop system and is hence indispensable
for unstable plants G(z). The sensitivity and complementary sensitivity function of
the original feedback system are respectively denoted by So(z) and To(z):

So(z) =
1

1 + Ko(z)G(z)
, To(z) =

Ko(z)G(z)
1 + Ko(z)G(z)

.

For ease of explanation, Ko(z) is assumed to be stable and designed properly, which
implies [131]: (i) a stable closed-loop system; (ii) high-gain feedback at low fre-
quencies; (iii) sufficient roll-off of |To(ω)| at high frequencies; and (iv) a large
modulus margin ‖So(z)‖−1

∞ . These assumptions are also made in Chapter 5, and
Figure 5.3 illustrates the FRFs of So(z) and To(z) corresponding to a proper design
of Ko(z).

Property (ii) is referred to as good nonperiodic performance, since it yields small
|So(ω)| at low frequencies, resulting in a small tracking error e(k) for any low-
frequency input wnp(k). By defining the bandwidth ωBW of the original feedback
system as the frequency where |So(ω)| first crosses −3dB from below, see Fig-
ure 5.3(a), Ko(z) is said to yield good nonperiodic performance up to ωBW.

Combination of properties (i), (iii) and (iv) ensures robust stability of the original
feedback system. In the presence of multiplicative unstructured plant uncertainty
(2.2), robust stability of the original feedback system requires ‖To(z)WG(z)‖∞ < 1
[131], where optimizing closed-loop performance pushes |To(ω)| at high
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Fig. 6.1 (a) Add-on feedback control configuration, where controller KFB is added to the
“original feedback system” comprising plant G and controller Ko; and (b) structure of a
generalized repetitive controller KgRC. Signals r(k), d(k) and η(k) respectively denote the
reference trajectory, output disturbance and plant output, while So indicates the sensitivity
function of the original feedback system.

frequencies to its upper bound |1/WG(ω)|, as illustrated in Figure 5.3(b). The mod-
ulus margin ‖So(z)‖−1

∞ corresponds to the minimal distance between the Nyquist
plot of the loop transfer function and the point −1, and is therefore also considered
as a robust stability measure.

Overall Feedback System

When KFB(z) is added to the loop, the closed-loop sensitivity changes from So(z)
to S(z):

S(z) =
1

1 +
[
Ko(z)+ KFB(z)

]
G(z)

,

= So(z)
1

1 + KFB(z)G(z)So(z)︸ ︷︷ ︸
MS(z)

.
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Transfer function MS(z) is called the modifying sensitivity function and represents
the effect of KFB(z) on the closed-loop sensitivity. KFB(z) must not compromise ro-
bust stability of the original feedback system, while improving closed-loop periodic
performance. These design specifications for KFB(z) are nonconflicting provided
that all harmonics l ∈ L lie well below ωBW: at harmonics near or above ωBW

better performance simply cannot be achieved without compromising the modulus
margin or high-frequency roll-off of the original feedback system. This assumption
is made throughout this chapter.

Generalized Repetitive Controller

Figure 6.1(b) shows the structure of a generalized repetitive controller, indicated by
KgRC(z), where X(z) is a FIR filter of length M with design variables xm:

X(z) =
M

∑
m=1

xmz1−m . (6.2)

The invertible part of G(z)So(z) is denoted by
[
G(z)So(z)

]
−, where the remain-

ing noninvertible part
[
G(z)So(z)

]
+ comprises a delay equal to the relative degree

of G(z)So(z) and its nonminimum-phase zeros. The nonminimum-phase zeros of
G(z)So(z) only stem from G(z), since the nonminimum-phase zeros of So(z) cor-
respond to the unstable system poles and consequently cancel in the multiplication
with G(z). If G(z) and/or Ko(z) is strictly causal, So(z) has zero relative degree,
whereby

[
G(z)So(z)

]
− = G−(z)So(z) , (6.3a)

[
G(z)So(z)

]
+ = G+(z) . (6.3b)

The controller structure of Figure 6.1(b) gives rise to the following expressions
for KgRC(z) and MS(z):

KgRC(z) =
[
G(z)So(z)

]−1
−

X(z)
1 − [

G(z)So(z)
]
+X(z)

, (6.4a)

MS(z) = 1 − [
G(z)So(z)

]
+X(z) . (6.4b)

6.2.2 Current Design Approaches

This section briefly reviews the current feedback controller designs of Hillerström
and Sternby [65], Scherer et al. [121] and Köroğlu and Scherer [88]. These design
strategies adopt a controller structure that differs from the generalized repetitive
controller structure of Figure 6.1(b).
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Hillerström and Sternby [65]

Hillerström and Sternby [65] present a discrete-time SISO LTI feedback controller
design for periodic inputs, and although they don’t explicitly adopt the add-on con-
trol configuration of Figure 6.1(a), this setup is beneficial if both nonperiodic and
periodic inputs enter the control loop.

A feedback controller designed according to [65] comprises three parts: (i)
through pole-zero cancelation, the undesired plant dynamics are eliminated from
the closed-loop system; (ii) dictated by the Internal Model Principle, the controller
includes signal generator Λ(z), Equation 2.5, to achieve perfect asymptotic track-
ing/rejection of all harmonics l ∈ L ; and (iii) an additional controller part assigns
the closed-loop poles to the poles of Λ(z) (which lie on the unit circle) multiplied
by a positive scalar β < 1. As illustrated in Section 6.5.3, β governs the trade-off
between nonperiodic performance and transient response time. Related to the In-
ternal Model Principle, perfect periodic performance is intrinsic to the design, and
uncertainty on the input period cannot be accounted for.

Translated to the add-on control configuration of Figure 6.1(a), the design ap-
proach of [65] yields

KFB(z) =
[
G(z)So(z)

]−1
− Λ(z)Kpp(z) ,

where Kpp(z) is the controller part that places the closed-loop poles at their desired
locations.

Scherer et al. [121]; Köroğlu and Scherer [88]

A feedback controller designed according to Scherer et al. [121] comprises two
parts: (i) a copy of signal generator Λ(z), Equation 2.5, which guarantees per-
fect periodic performance; and (ii) a complementary controller that stabilizes the
closed-loop system and provides the design freedom to optimize alternative perfor-
mance specifications. The design of this complementary controller is facilitated by
the derivation of an auxiliary plant (see Appendix B), and relies on the Lyapunov
shaping paradigm [121]. This paradigm provides an approximate, convex approach
to design a controller according to multiple specifications that can be recast into
LMIs (see e.g. [14, 121] for an overview).

The additional design specifications of interest are nonperiodic performance and
transient response speed. In this monograph, nonperiodic performance is quantified
by γnp (2.10), which equals the H∞ norm of Hnp(z) and complies with the Lyapunov
shaping paradigm. Although the closed-loop transient response can be designed rig-
orously via H2 techniques, the resulting controller design generally depends on the
periodic input and the system’s initial conditions [118]. Pole placement is a more
elegant way to control the transient response speed, since constraining the closed-
loop poles to the disc with radius β < 1 centered at the origin forces the transient
response to decay with at least β k. By combining this pole placement constraint
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LQ
μ

∑
m=1

χmz−mN

KtRC

+

Fig. 6.2 Structure of a μth-order typical repetitive controller KtRC.

with γnp, Scherer et al. [121] allow investigating the trade-off between transient
response time and nonperiodic performance under the constraint of perfect periodic
performance.

Köroğlu and Scherer [88] extend the above described analysis with the possi-
bility to relax the perfect periodic performance constraint. Their modification only
involves the controller part related to the Internal Model Principle, while the design
of the complementary controller part is preserved from [121]. Instead of including
a copy of Λ(z), this controller part is modified (see Appendix B) to guarantee that
in steady state:

|vp(k)| ≤ κ rms(wp(k)) , (6.5)

for any periodic input wp(k), where vp(k) indicates the regulated output related to
closed-loop periodic performance. The design approach of Köroğlu and Scherer
[88] encompasses the result of Scherer et al. [121] by setting κ = 0, while uncer-
tainty on the input period cannot be accounted for.

6.3 Relation with Alternative Controller Structures

This section illustrates how typical repetitive controllers correspond to a subclass
of generalized repetitive controllers (Section 6.3.1), and reveals a close relationship
between generalized repetitive control and estimated disturbance feedback control,
presented in Chapter 4 (Section 6.3.2).

6.3.1 Relation with Typical Repetitive Control

Figure 6.2 resumes the structure of a μ th-order typical repetitive controller of Fig-
ure 5.2(b). A typical repetitive controller relies on the internal model shown in Fig-
ure 5.1(b), where

N = int
(
Tp/Ts

)
,
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(a)

(b)

z−τ [G(z)So(z)
]−1

z−τ [G(z)So(z)
]−1Q(z)

μ

∑
m=1

χmz−mN+τ

z−τ

z−τ

M

∑
m=1

xmz1−m

+

+

Fig. 6.3 Structure of a typical repetitive controller KtRC (a) and a generalized repetitive con-
troller KgRC (b) in the case of a minimum-phase system G, where τ ≥ 0 denotes the relative
degree of G(z)So(z).

and the rounding error is accounted for as additional uncertainty on Tp ≡ NTs. In
high-order typical repetitive controllers, the delay z−N is extended to a polynomial
in z−N :

χ(z) =
μ

∑
m=1

χmz−mN ,

which gives the designer more freedom to improve closed-loop performance through
a proper design of the parameters χm (see Chapter 5). L(z) guarantees nominal sta-
bility of the closed-loop system, whereas low-pass filter Q(z) improves its robust
stability (see Section 5.2.2).

To reveal the similarity between typical and generalized repetitive controllers,
Figure 6.3 compares both structures for a minimum-phase system G(z), where τ ≥ 0

denotes the relative degree of G(z)So(z). In this case, L(z) =
[
G(z)So(z)

]−1
is the

common design procedure in typical repetitive control, where noncausality of L(z)
due to τ > 0, is accounted for as illustrated in Figure 6.3(a). For a minimum-
phase system G(z):

[
G(z)So(z)

]
+ = z−τ and

[
G(z)So(z)

]−1
− = z−τ[G(z)So(z)

]−1,
whereby the generalized repetitive controller structure amounts to Figure 6.3(b).
Typical repetitive controllers constitute a subclass of generalized repetitive con-
trollers since a FIR filter design of Q(z), as is common practice in typical repetitive
control [28, 61, 136], turns χ(z)Q(z) into a FIR filter with a particular structure.

For a nonminimum-phase system G(z), in typical repetitive control L(z) is gener-

ally not designed as
[
G(z)So(z)

]−1
− , but set equal to an approximate, stable inverse of
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(a)

(b)

z−τL L(z)

z−τL L(z)
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μ

∑
m=1
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+

+

Fig. 6.4 Structure of a typical repetitive controller KtRC (a) and alternative structure of a
generalized repetitive controller KgRC (b) in the case of a nonminimum-phase system G,
where L(z) corresponds to an approximate stable inverse of G(z)So(z), while τL equals the
smallest integer that renders z−τL L(z) causal.

[
G(z)So(z)

]
. The “zero phase error tracking” inversion [142] is often used [61, 146],

while alternative approximations are indicated in Section 3.1. These approximations
are generally noncausal, whereby the smallest integer τL that renders z−τL L(z) causal
is larger than τ , and this noncausality is accounted for as indicated in Figure 6.4(a).
With this design of L(z), the typical repetitive controller no longer corresponds to
a particular generalized repetitive controller. However, if this property is crucial,
for a nonminimum-phase system G(z) the generalized repetitive controller structure
of Figure 6.1(b) can be modified to the one of Figure 6.4(b). This chapter continues
with the former structure since it does not require approximate inversion techniques,
while the elaboration for Figure 6.4(b) is very similar.

6.3.2 Relation with Estimated Disturbance Feedback Control

Figure 6.5 shows an equivalent representation of the estimated disturbance feedback
control system of Figure 4.1(b). It comprises add-on feedback controller KFB(z):

KFB(z) =
So(z)−1KdFB(z)
1 − G(z)KdFB(z)

, (6.6)

and feedforward controller KFF(z):
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−
η(k)r(k)

d(k)
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1−GKdFB

Ko G++
+

Fig. 6.5 Equivalent representation of the estimated disturbance feedback control configura-
tion shown in Figure 4.1(b).

KFF =
Ko(z)

Ko(z)+ KdFB(z)
,

which cancels the effect of the disturbance feedback controller on r(k). Comparison
between (6.6) and (6.4a) reveals that the generalized repetitive controller yields the
same feedback controller as an estimated disturbance feedback controller with

KdFB(z) = So(z)
[
G(z)So(z)

]−1
− X(z) .

On account of relations (6.3), this expression generally reduces to KdFB(z) =
G−(z)−1X(z), which is also suggested in Equation 4.5. Hence, the major difference
between generalized repetitive control and estimated disturbance feedback control
is the absence of KFF(z). From this observation, the design guideline is extracted
that when adding a feedback controller to the loop to improve closed-loop periodic
performance, the effect of this controller on measurable, nonperiodic inputs should
be canceled by feedforward control.

6.4 Application of the Design Methodology

This section applies the general methodology of Chapter 2 to design an add-on
feedback controller KFB(z). Section 6.4.1 presents the corresponding general control
configuration, while Section 6.4.2 shows that the generalized repetitive controller
structure of Figure 6.1(b) corresponds to a particular Youla parametrization for this
control problem. Section 6.4.3 presents the resulting optimal design problem.

While KgRC(z) constitutes a particular Youla parametrization for add-on feedback
controllers KFB(z), it should be noted that the combination of Ko(z) and KgRC(z)
corresponds to a particular Youla parametrization for the set of internally stabilizing
feedback controllers. Hence, no conservatism is introduced by adopting the add-
on control configuration of Figure 6.1(a): for M → ∞, Figure 6.1 can generate any
internally stable closed-loop system.
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Fig. 6.6 Equivalent representations of the add-on feedback control configuration of Fig-
ure 6.1(a).

6.4.1 General Control Configuration

To introduce the derivation of the general control configuration related to Fig-
ure 6.1(a), this control configuration is first transformed into the equivalent schemes
shown in Figure 6.6. Figure 6.6(a) is obtained from Figure 6.1(a) by shifting input
r(k) to the right-hand side, while Figure 6.6(a) is further simplified to Figure 6.6(b).

The design of KFB(z) faces three specifications: (i) it must not compromise the
original feedback system’s robust stability, while (ii) improving the closed-loop
periodic performance at (iii) an acceptable nonperiodic performance degradation.
These specifications are labeled irs, ip and inp, respectively, while notation (·)irs is
shortened to (·)rs, similar to notation (·)p and (·)np. Figure 6.7 shows the correspond-
ing general control configuration, where the three design specifications are related
to the closed-loop subsystems from exogenous inputs wrs(k), wp(k) and wnp(k) to
regulated outputs vrs(k), vp(k) and vnp(k), respectively.

To preserve robust stability, the overall feedback system should revert to the orig-
inal feedback system for ω ≥ ωBW. This requirement implies that for ω ≥ ωBW,

|T (ω)− To(ω)| = |So(ω)− S(ω)| = ∣∣So(ω)
[
1 − MS(ω)

]∣∣

must be small. By choosing wrs(k) and vrs(k) as indicated in Figure 6.7(a),

Hrs(z) = MS(z)− 1 =
−KFB(z)So(z)G(z)

1 + KFB(z)So(z)G(z)
,

and hence, robust stability is preserved if |Hrs(ω)| is small for all ω in [ωBW,π fs].
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Fig. 6.7 General control configuration (b) for the design of add-on feedback controller KFB
(a); the design specifications involve the closed-loop subsystems from exogenous inputs
wp(k), wnp(k) and wrs(k) to regulated outputs vp(k), vnp(k) and vrs(k), respectively.

The second and third design specification for KFB(z) relate to performance, and
to focus on the effect of KFB(z) on the closed-loop performance, Hp(z) = Hnp(z) =
MS(z) is preferred over S(z). These transfer functions are obtained by choosing ex-
ogenous inputs wp(k), wnp(k) and regulated outputs vp(k), vnp(k) as indicated in
Figure 6.7(a). While substituting (6.1) in Figure 6.6(b) would yield S(z) for Hp(z)
and Hnp(z), the modifying sensitivity is obtained by shifting the inputs beyond the
branch to Ko(z).

Figure 6.7(b) shows the internal structure of the resulting generalized plant P(z),
which yields
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⎡

⎢
⎢
⎣

vp(k)
vnp(k)
vrs(k)
y(k)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

1 � � −So(q)G(q)
� 1 � −So(q)G(q)
� � 0 −So(q)G(q)
1 1 −1 −So(q)G(q)

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
P(q)

⎡

⎢
⎢
⎣

wp(k)
wnp(k)
wrs(k)
u(k)

⎤

⎥
⎥
⎦ ,

where symbol � indicates entries irrelevant to the controller design.

6.4.2 Youla Parametrization

The Youla parametrization augments the generalized plant with a nominal controller
and hereby translates the design of KFB(z) into the design of Youla parameter X(z).
Since the original feedback system is already stable, there is no need for a nomi-
nal controller: Knom(z) = 0. The generalized repetitive controller structure of Fig-
ure 6.1(b) corresponds to the particular augmentation of this controller shown in
Figure 6.8, which yields

[
u(k)
ỹ(k)

]
=

⎡

⎣0
[
G(q)So(q)

]−1
−

1
[
G(q)So(q)

]
+

⎤

⎦

︸ ︷︷ ︸
K̃nom(q)

[
y(k)
ũ(k)

]
,

and the resulting augmented plant P̃(z) is given by

⎡

⎢⎢
⎣

vp(k)
vnp(k)
vrs(k)
ỹ(k)

⎤

⎥⎥
⎦ =

⎡

⎢
⎢⎢
⎢
⎣

1 � � −[
G(q)So(q)

]
+

� 1 � −[
G(q)So(q)

]
+

� � 0 −[
G(q)So(q)

]
+

1 1 −1 0

⎤

⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
P̃(q)

⎡

⎢⎢
⎣

wp(k)
wnp(k)
wrs(k)
ũ(k)

⎤

⎥⎥
⎦ .

As shown in Figure 6.8, Youla parameter X(z) acts as a feedback controller for
the augmented plant, and yields the following closed-loop transfer functions:

Hp(z) = 1 − [
G(z)So(z)

]
+ X(z) ,

Hnp(z) = 1 − [
G(z)So(z)

]
+ X(z) ,

Hrs(z) = −[
G(z)So(z)

]
+ X(z) .

In the generalized repetitive controller, parametrization (2.17) is used for X(z), see
Equation 6.2, where the design parameters xm are grouped in the vector x ∈ RM ,
Equation 2.16. By parameterizing X(z) as a FIR filter of length M, transfer functions
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Fig. 6.8 Youla parametrization: augmentation of nominal controller Knom = 0 corresponding
to the generalized repetitive controller structure: (a) in the classical feedback control con-
figuration; and (b) in the general control configuration. To save space, argument (k) of the
sampled time signals is omitted in (a).

Hp(z), Hnp(z) and Hrs(z) have a finite impulse response as well, and their FIR lengths
depend affinely on M. Hence, M determines the duration of the closed-loop transient
response.
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6.4.3 Optimal Design

Preserving the original feedback system’s robust stability requires |Hrs(ω)| to be
small from ωBW, which is enforced by

|Hrs(ω)| ≤ ε , ∀ω ∈ [ωBW,π fs] ,

where ε is a small positive scalar. To quantify the periodic performance improve-
ment by KFB(z), ∞-norm based definition (2.7) of the periodic performance index
γp is adopted. As Hp(z) = MS(z) instead of S(z), it is appropriate to change weights
Wl into Wl|So(lωp)|. The nonperiodic performance degradation caused by KFB(z) is
quantified by index γnp, defined by (2.10).

For a given FIR filter length M, performance indices γp and γnp are generally
conflicting, since for a strictly causal plant G(z) the Bode Integral Theorem [10, 21,
22, 49, 69, 138] dictates

∫ π fs

0
log(|MS(ω)|) dω = 0 . (6.7)

Hence, improved periodic performance, γp < 1, comes at the price of nonperiodic
performance degradation, γnp > 1. This trade-off between γp and γnp is analyzed by
solving the following optimization problem for various weights α ≥ 0:

minimize
x,γp,γnp

γp +αγnp (6.8a)

subject to ‖Hnp(z)‖∞ ≤ γnp (6.8b)

Wl|Hp(ω)| ≤ γp , ∀ω ∈Ωl , ∀l ∈ L (6.8c)

|Hrs(ω)| ≤ ε , ∀ω ∈ [ωBW,π fs] . (6.8d)

6.5 Numerical Results

This section illustrates the potential of the developed generalized repetitive con-
troller design by numerical results. These results are computed for a minimum-phase
system G(z), sampled at fs = 1 kHz, which has relative degree one:

[
G(z)So(z)

]
+ = G+(z) = z−1 . (6.9)

As revealed by (6.4b), this is the only plant information affecting the general-
ized repetitive controller design. The original feedback controller yields ωBW =
2π180 rad/s, and its robust stability is preserved by enforcing constraint (6.8d) with
ε = 10−3. Periodic input wp(k) has nominal period Tp = 0.05 s, which corresponds
to fp = 20 Hz, and the generalized repetitive controller design accounts for harmon-
ics l ∈ L = {0,1,3,5,7} with equal weight: Wl = 1, ∀l ∈ L . These weights are



6.5 Numerical Results 99

extracted from Figure 3.4(b), where So(z) is assumed to satisfy Wl ≡ Wl|So(lωp)| =
1. Various uncertainty levels δδδ on fp will be considered.

As discussed in Section 6.3.1, typical repetitive controllers constitute a subclass
of generalized repetitive controllers. Section 6.5.1 compares both controller designs
for the considered simulation example and investigates control problems for which
typical repetitive controllers are optimal.

While for given M, the Bode Integral Theorem (6.7) implies a conflict between
performance indices γp and γnp, this theorem dictates a more fundamental trade-off
in feedback control between periodic performance improvement, nonperiodic per-
formance degradation and transient response time. The generalized repetitive con-
troller design translates this trade-off into a trade-off surface between γp, γnp and M.
Section 6.5.2 analyzes this trade-off surface for the considered simulation example
and investigates the solution of (6.8) for M → ∞.

Subsequently, Section 6.5.3 compares the generalized repetitive controller design
with the current feedback controller designs of Hillerström and Sternby [65] and
Köroğlu and Scherer [88].

6.5.1 Generalized Versus Typical Repetitive Control

This section investigates the performance loss caused by the particular structure of
a typical repetitive controller (Figure 6.2). To this end, typical repetitive controllers
are compared to generalized repetitive controllers that yield the same impulse re-
sponse length for MS(z), and hence, an equal transient response time. The following
section complements the results presented here by comparing typical and gener-
alized repetitive controllers that yield similar performance but different transient
response times.

For the considered simulation example, a generalized repetitive controller with
given M, yields a finite impulse response for MS(z) of M +1 samples, as is clarified
by the substitution of (6.9) in Equation 6.4b. A μ th-order typical repetitive controller
corresponds to a particular generalized repetitive controller with

M = μN + nQ/2 , (6.10)

where N = int(Tp/Ts) = 50, while nQ denotes the order of FIR filter Q(z). To obtain
a fair comparison between generalized and typical repetitive controllers, Q(z) is
designed as the lowest-order zero-phase FIR filter for which all harmonics l ∈ L
lie in its pass-band (lmax = maxl∈L {l}):

1 − 10−3 ≤ |Q(ω)| ≤ 1 + 10−3 , ∀ω ∈ [0, lmaxωp] ,

while |Q(ω)| ≤ ε for all ω in [ωBW,π fs], similar to (6.8d). This way, nQ = 88. In
this section, optimal typical and generalized repetitive controllers that correspond
to a given M value, and hence, yield FIR length M + 1 for MS(z), are indicated by
KtRC,M(z) and KgRC,M(z), respectively.
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Fig. 6.9 Comparison of |MS(ω)| for the KtRC,149(z) and KgRC,149(z) that yield γnp = 1.3. The
δ = 1% uncertainty on fp results in the gray-shaded uncertainty intervals Ωl .

Typical repetitive controller design problem (5.14) is rendered tractable by appli-
cation of the (generalized) KYP lemma and the resulting SDP is solved with [94].
Each of the problems (5.14) required to generate the results of this section is solved
within 0.1 CPU second (Intel� CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB of RAM).
Generalized repetitive controller design problem (6.8), on the other hand, is handled
with gridding, and SDPT3 [141, 149] requires about 30 CPU seconds to solve the
resulting SOCP for M = 299, the highest value considered in this section (Intel�

CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB of RAM). The combination of the (general-
ized) KYP lemma and [94] is less appropriate for solving (6.8) as it invokes longer
computational time (several CPU minutes) and requires more memory.

Modifying Sensitivity

This paragraph compares for M = 144 the optimal typical repetitive controller
KtRC,144(z) and optimal generalized repetitive controller KgRC,144(z) that yield γnp =
1.3, while δδδ = 1% uncertainty on fp is considered. Hence, KtRC,144(z) is obtained
by solving (5.14) with μ = 2, while KgRC,144(z) is obtained by solving (6.8) with
M = 144. Instead of tuning α such that the resulting controller yields γnp = 1.3, it
is more appropriate to add the constraint γnp ≤ 1.3 to (5.14) and (6.8). If α is small
enough, this constraint will be active.

For the same level of nonperiodic performance, γnp = 1.3, the generalized repet-
itive controller yields significantly better periodic performance than the typical
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repetitive controller: KgRC,144(z) yields γp = 0.23, whereas γp = 0.61 for KtRC,144(z).
Figure 6.9 compares the amplitude FRFs of MS(z) obtained by KtRC,144(z) and
KgRC,144(z), where the shaded bands indicate the uncertainty intervals Ωl (2.4) cor-
responding to δδδ = 1%. For KtRC,144(z), this figure reveals the characteristic periodic
behavior of MS(ω) in the pass-band of Q(z), which is imposed by the typical repet-
itive controller structure. This FRF periodicity restricts the ability of KtRC,144(z) to
optimize γp in two ways. First, KtRC,144(z) automatically accounts for all harmonics
in the pass-band of Q(z) and hereby wastes control effort at the even harmonics,
not present in the input. KgRC,144(z), on the other hand, only improves the closed-
loop performance around the harmonics l ∈ L . Second, contrary to KgRC,144(z),
KtRC,144(z) cannot account properly for the growing uncertainty intervals Ωl around
the harmonics. For KgRC,144(z), constraint (6.8c) is active for all harmonics l ∈ L ,
that is: in each of the gray-shaded uncertainty intervals there is at least one ω value
for which |MS(ω)| = γp = 0.23. For KtRC,144(z), on the other hand, constraint (5.14c)
is only active for l = 7, the highest harmonic in L , and hence, this controller is
overly robust at the lower harmonic frequencies. Although not illustrated by the
simulation example, in a similar way the periodicity of MS(ω) impedes a typical
repetitive controller to properly account for harmonic dependent weights Wl .

Trade-off Curves

To allow for a more systematic comparison of the performance achievable by a
KtRC,144(z) and a KgRC,144(z), Figure 6.10 shows the corresponding trade-off curves
between γp and γnp, for δδδ = 0% (a), δδ = 1% (b) and δδ = 2% (c). These trade-off
curves are computed by solving (5.14) with μ = 2, and (6.8) with M = 144 for
various values of α: by increasing α they are traced from left to right. For a given
level of periodic performance improvement γp, the curve indicates the minimal level
of nonperiodic performance degradation γnp that has to be tolerated, or, vice versa,
for a fixed level of allowable nonperiodic performance degradation, the trade-off
curve indicates the best periodic performance improvement that can be achieved.

Figure 6.10(a) reveals that, if no uncertainty on fp is present (δ = 0%), KgRC,144(z)
can improve the periodic performance index of KtRC,144(z) with up to 0.47, while
yielding the same level of nonperiodic performance degradation. Thanks to a gener-
alized repetitive controller’s capability to deal more efficiently with uncertainty on
fp, the advantage of KgRC,144(z) over KtRC,144(z) is larger for higher δδ : for δδ = 2%
and the same γnp level, KgRC,144(z) allows decreasing the γp value of KtRC,144(z)
with 0.57. Figures 6.10(b) and 6.10(c) reveal that for δδ > 0%, a KgRC,144(z) is able
to achieve γp values not attainable by a KtRC,144(z). For instance, in Figure 6.10(c)
where δ = 2%, the γp lower bound equals 0.013 for KgRC,144(z), while 0.35 for
KtRC,144(z).
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Fig. 6.10 Trade-off curves between γp and γnp for KtRC,144 and KgRC,144: results for (a) δδ =
0%; (b) δδ = 1%; and (c) δδ = 2% uncertainty on fp.

When is Typical Repetitive Control Optimal?

The structure of a typical repetitive controller dictates an FRF periodicity for MS(z)
in the pass band of Q(z), and hereby restricts the typical repetitive controller’s ability
to account for harmonic dependent weights Wl and uncertainty on the input period.
On the other hand, typical repetitive controllers are expected to perform well in
applications where these issues are not encountered, and the results presented in
this paragraph confirm this expectation.



6.5 Numerical Results 103

γp

γ n
p

KtRC,99 (μ = 1)
KgRC,99
KtRC,149 (μ = 2)
KgRC,149
KtRC,199 (μ = 3)
KgRC,199
KtRC,249 (μ = 4)
KgRC,249
KtRC,299 (μ = 5)
KgRC,299

0 0.2 0.4 0.6 0.8
1

1

1.2

1.4

1.6

1.8

2
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no uncertainty on fp is considered: δ = 0%.
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is modified to L = {0,1,2,3,4,5,6,7}, ωBW is lowered to 2π173 rad/s, and no uncertainty
on fp is considered: δ = 0%.
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The simulation example is modified accordingly: all harmonics up to lmax = 7 are
accounted for with equal weight: Wl = 1, for all l in L = {0,1,2,3,4,5,6,7} . In
addition, δδδ = 0%, and ωBW is lowered to 2π173 rad/s such that in order to meet its
design specifications, Q(z) needs to be of order nQ = 98, the highest order allowed
for a causal implementation (see Section 5.2.2).

Figure 6.11 compares the trade-off curves between γp and γnp for typical repet-
itive controllers of various orders with the ones for the generalized repetitive
controllers that yield the same transient response time for MS(z). For the typical
repetitive controllers, these curves correspond to the results shown in Figure 5.6(a).
For the modified simulation example, the trade-off curves for the corresponding
typical and generalized repetitive controllers nearly coincide, which indicates that a
typical repetitive controller is indeed close to optimal.

To investigate the remaining difference between the typical and generalized
repetitive controllers, Figure 6.12 compares |MS(ω)| corresponding to the KtRC,149(z)
and KgRC,149(z) that yield γnp = 1.3. Up to lmax fp = 140 Hz, these FRFs are very
similar, which confirms the good suboptimality of KtRC,149(z). The modifying sensi-
tivities mainly differ between 140 Hz and 173 Hz. In this frequency range, |MS(ω)|
for KtRC,149(z) is determined by Q(z), while KgRC,149(z) has more freedom to shape
|MS(ω)|. This results in a minor performance improvement: KgRC,149(z) yields
γp = 0.40 while γp = 0.43 for KtRC,149(z).

6.5.2 Trade-off γp –γnp –M

In feedback control, the Bode Integral Theorem (6.7) dictates a fundamental trade-
off between closed-loop periodic performance improvement, nonperiodic perfor-
mance degradation and transient response time. The proposed generalized repetitive
controller design translates this trade-off into a trade-off surface between γp, γnp

and M. The computation of this trade-off surface is facilitated by the convexity of
optimal design problem (6.8) and involves computing the trade-off curves between
γp and γnp for various FIR filter lengths M. This section analyzes the γp –γnp –M
trade-off surface and investigates the evolution of MS(z) as a function of M.

Trade-off Surface

To analyze the fundamental trade-off in feedback control, Figure 6.13 shows the
trade-off curves between γp and γnp, for M ranging from 50 to 500. Three uncertainty
levels δ on the fundamental frequency are considered: δ = 0% (a), δ = 1% (b), and
δ = 2% (c). Each of the trade-off curves is computed by solving (6.8) for various
weightsα . Optimization problem (6.8) is rendered numerically tractable by gridding
and the computational time required by SDPT3 [141, 149] to solve the resulting
SOCP ranges from ±5 CPU seconds for M = 50, to ±500 CPU seconds for M = 500
(Intel� CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB of RAM).

The trade-off curves shown in Figure 6.13 define the γp –γnp –M trade-off sur-
face, which features a staircase-like behavior in M, since M is integer. The trade-off
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Fig. 6.13 Trade-off curves between γp and γnp for M ranging from 50 to 500, while the black
dotted line corresponds to the asymptotic curve for M → ∞. Three uncertainty levels δ on the
fundamental frequency are considered: (a) δ = 0%; (b) δ = 1%; and (c) δ = 2%.

curves mark the M stairs, where a generalized repetitive controller with given M can
obtain all γp –γnp pairs above the corresponding trade-off curve.

The black dotted line in Figure 6.13 corresponds to the asymptotic trade-off curve
between γp and γnp for M → ∞, and this curve is computed based on the asymp-
totic behavior of |MS(ω)| for M → ∞, shown in Figure 6.14. The Bode Integral
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Fig. 6.14 Asymptotic behavior of |MS(ω)| for M → ∞.

Theorem (6.7) dictates equality of the positive and negative gray-shaded areas,
which mathematically yields:

γnp = exp

(
− ln(γp)

∑l∈L 2lωpδδδ
ωBW −∑l∈L 2lωpδδδ

)
. (6.11)

If Tp is known with infinite accuracy, δδ = 0%, the trade-off between γp and γnp

vanishes for M → ∞, as then, (6.11) yields γnp = 1, independent of γp. The dotted
lower bound for the trade-off curve between γp and γnp holds for all add-on feedback
controllers KFB(z), irrespective of their structure, since the set of basis functions
(2.17) chosen for the Youla parameter is complete.

Figure 6.13 reveals that for low M values, the trade-off curves are grouped in
bundles, where this bundling is most prominent for δδ = 0%, Figure 6.13(a). Little
performance is gained by increasing M within a bundle, whereas increasing M such
that the trade-off curve shifts to the subsequent bundle results in a significant per-
formance improvement. For larger M, the trade-off curves lie closer and closer to
each other, which indicates saturation of the performance gained by increasing the
transient response time.

Figure 6.15 provides additional insight in the effect of the transient response time
on the performance attainable by an add-on feedback controller. The black solid
lines correspond to the cross-sections through the trade-off surfaces of Figure 6.13
at γnp = 1.3, and consequently, these curves show the minimal γp value attainable
by a generalized repetitive controller that yields γnp = 1.3, as a function of M. The
gray solid lines in Figure 6.15 correspond to optimal typical repetitive controllers,
where their orders μ are translated into M by Equation 6.10. The black dashed lines
indicate the asymptotic γp values for a generalized repetitive controller, predicted
by (6.11), while the gray dashed lines indicate the asymptotic γp values for a typical
repetitive controller, computed from (5.15).
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Fig. 6.15 Evolution of γp as a function of M (solid lines), for γnp = 1.3 and three uncertainty
levels δ on the fundamental frequency: (a) δ = 0%; (b) δδ = 1%; and (c) δδ = 2%. The black
and gray lines respectively correspond to generalized and typical repetitive controllers, while
the dashed lines indicate the corresponding asymptotic γp values for M → ∞.

Since the trade-off curves in Figure 6.13 are grouped in bundles, the black solid
lines in Figure 6.15 feature alternating parts with steep and shallow steps. These
alternations are most prominent in Figure 6.15(a), where δ = 0%. From an engi-
neering point of view, M values at the foot of a steep part are preferred: reducing
M would result in a substantial loss of performance, whereas little performance is
gained by increasing M.
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Figure 6.15(a) reveals that for δδ = 0%, a generalized repetitive controller reaches
the asymptotic value γp = 0 with finite M, whereas for δδδ > 0%, the asymptotic γp

value is only reached for M → ∞, as observed in Figures 6.15(b) and 6.15(c). The
latter figures also confirm the saturation of the performance gained by increasing M:
for M > 200, γp only decreases very slowly as a function of M. Hence, generalized
repetitive controllers with M > 200 are only relevant to applications with tight steady-
state performance demands, while transient response time is of minor importance.

Comparison of the black and gray curves in Figure 6.15 complements the com-
parison between typical and generalized repetitive controllers presented in Sec-
tion 6.5.1. The horizontal distance between the black and gray solid curve indicates
how much the transient response can be shortened, without loss of performance,
by relaxing the typical repetitive controller structure. Alternatively, the vertical dis-
tance between the curves indicates the periodic performance degradation caused by
the particular structure of KtRC(z).

For δ = 0%, Figure 6.15(a), the asymptotic γp values for M → ∞ of KgRC(z)
and KtRC(z) coincide: γp = 0, but it is reached by KgRC(z) with a shorter transient
response than KtRC(z). In Figures 6.15(b) and 6.15(c), on the other hand, where
δ > 0%, the asymptotic γp value of KgRC(z) is lower compared to KtRC(z), and the
difference between both values is larger for higher δ , thanks to a generalized repeti-
tive controller’s capability to deal more efficiently with uncertainty on fp. Moreover,
a generalized repetitive controller reaches the asymptotic performance of a typical
repetitive controller with finite M.

Evolution of MS(z) as a Function of M

Figure 6.16 shows the FRFs of MS(z) for three generalized repetitive controllers,
designed to yield γp = 10−3 in the presence of δδ = 1% uncertainty on fp. The re-
sults are shown for M = 1000, M = 2000, and M → ∞, where the latter result is
constructed from Figure 6.14 by spectral factorization [107, 120]. As M increases,
the FRF of MS(z) indeed approaches the asymptotic curve predicted in Figure 6.14.
However, approximating the sharp edges in the asymptotic |MS(ω)| curve with a FIR
parametrization gives rise to a Gibbs-like phenomenon [51], which is most prominent
around 0 Hz. The results for the phase of MS(ω) confirm that the asymptotic behavior
of MS(z) around 0 Hz is particularly hard to catch with a FIR parametrization.

Figure 6.17(a) shows for the three considered generalized repetitive controllers
the response of MS(z) to a sinusoidal input with frequency 3 fp = 60 Hz and ampli-
tude 1, while Figure 6.17(b) resumes the result for M → ∞ in a larger time frame.
The transient response of MS(z) is confined to M samples, and Figure 6.17(a) reveals
that for smaller M, the transient response is faster: the response for M → ∞ lags be-
hind the response for M = 2000, which is slower than the response for M = 1000.
For M → ∞ the transient response consists of a decaying harmonic signal with fre-
quency 3 fp = 60 Hz, and its amplitude features a harmonic amplitude modulation of
which the frequency evolves to 3 fpδδ = 0.6 Hz. Figure 6.17(b) confirms that pushing
a feedback controller design to the asymptotic γp –γnp trade-off curve, comes at the
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Fig. 6.17 (a) Response of MS(z) to a sinusoidal input with frequency 3 fp = 60 Hz and am-
plitude 1 for three generalized repetitive controllers designed to yield γp = 10−3 for δ = 1%,
while (b) resumes the result for M → ∞ in a larger time frame.
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price of a sluggish transient response: for M →∞ the transient response decays very
slowly.

6.5.3 Comparison with the Literature

This section compares, for the considered simulation example, the developed gen-
eralized repetitive controller design with the current feedback controller designs of
Hillerström and Sternby [65] and Köroğlu and Scherer [88]. For the sake of unified
treatment, the latter design approaches are also applied to the add-on control con-
figuration of Figure 6.1(a), and in addition, the following decomposition is enforced
in all controllers:

KFB(z) =
[
G(z)So(z)

]−1
− KFB(z) ,

such that

MS(z) =
1

1 + G(z)So(z)KFB(z)
=

1

1 +
[
G(z)So(z)

]
+KFB(z)

.

The approaches [65, 88] are applied to design KFB(z) based on MS(z), hereby only
accounting for

[
G(z)So(z)

]
+ = z−1, Equation 6.9. Since the design approaches of

Hillerström and Sternby [65] and Köroğlu and Scherer [88] cannot cope with period-
time uncertainty, δδδ = 0% is applied throughout this section.

Hillerström and Sternby [65]

According to the Internal Model Principle, a feedback controller achieves perfect
rejection/tracting of the periodic input wp(k) by placing closed-loop zeros at the har-
monics l ∈ L , that is: at the poles of Λ(z), which lie on the unit circle. A controller
KFB(z) designed according to [65] places the zeros of MS(z) at these locations, while
its poles are assigned to these locations, yet scaled with a factor β < 1. Figure 6.18
shows the resulting poles and zeros of MS(z) for β = 0.995 and β = 0.95.

Figure 6.19 evaluates these two controller designs in frequency and time domain:
Figure 6.19(a) compares the resulting FRFs of MS(z), while Figure 6.19(b) shows
the responses of MS(z) to a sinusoidal input with frequency 3 fp = 60 Hz and am-
plitude 1. If β is close to one, the poles of MS(z) nearly cancel its zeros, which
yields the benefit of a very small effect of these zeros on the closed-loop FRF: for
β = 0.995, Figure 6.19(a) reveals sharp notches at the input harmonics, and hereby
γnp = ‖MS(z)‖∞ ≈ 1. On the other hand, this near pole-zero cancelation invokes a
very sluggish transient response, as is clear from Figure 6.19(b). Placing the poles
of MS(z) on the circle with radius β centered at the origin, results in a transient re-
sponse that decays with β k, and in Figure 6.19(b) the corresponding decay rates are
indicated by dotted lines. Implied by the β k decay, decreasing β from 0.995 to 0.95
results in much faster a transient response. On the other hand, Figure 6.19(b) reveals



112 6 Application to Feedback Control

ℜ

ℑ

β = 0.995 β = 0.95

−1
−1

1

1

0.2
0.4

0.6
0.8

0

20

20

60

60

100

100

140

140180

180
220

220260

260300

300

340

340

380

380

420

420

460

460

500
500

Fig. 6.18 Poles and zeros of MS(z) corresponding to two controllers KFB(z) designed ac-
cording to Hillerström and Sternby [65]. The grid indicates the natural frequency [Hz] and
damping factor of the poles and zeros.

that with β = 0.95, the design of Hillerström and Sternby [65] is unacceptable for
the considered simulation example: it improves the periodic performance by com-
promising the robust stability of the original feedback system. Preserving the origi-
nal feedback system’s robust stability requires MS(ω) ≈ 1 fromωBW = 2π180 rad/s,
whereas Hillerström and Sternby [65] provide no systematic way to include such
constraint in the controller design.

Neither of the presented controllers designed according to Hillerström and Sternby
[65] is compared to a generalized repetitive controller: with β = 0.95 the design of
[65] is unacceptable, while the design of [65] with β = 0.995 is hard to approximate
by a generalized repetitive controller, as was already observed in Figure 6.16.

Köroğlu and Scherer [88]

A controller KFB(z) designed according to Köroğlu and Scherer [88] comprises two
parts. One part guarantees good periodic performance while the complementary
controller part handles the remaining design specifications by means of the Lya-
punov shaping paradigm. Good periodic performance is translated into (6.5), and
the two feedback controllers presented here differ in the adopted κ value: one en-
forces perfect periodic performance: κ = 0, while the other uses κ = 0.5.
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Fig. 6.19 Comparison of two controllers KFB(z) designed according to Hillerström and
Sternby [65]: (a) |MS(ω)|; and (b) response of MS(z) to a sinusoidal input with frequency
3 fp = 60 Hz and amplitude 1. The dotted lines indicate the β k decay rates of the transient
responses.
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Fig. 6.20 Poles and zeros of MS(z) corresponding to the controller KFB(z) designed according
to Köroğlu and Scherer [88] with β = 0.95 and κ = 0. The grid indicates the natural frequency
[Hz] and damping factor of the poles and zeros.

The complementary controller part combines the following three design specifi-
cations: first, the controller must not compromise the original feedback system’s
robust stability, which requires |Hrs(ω)| small for ω ≥ ωBW. In the generalized
repetitive controller design this is ensured by constraint (6.8d), but this constraint
does not comply with the Lyapunov shaping paradigm. Therefore, it is replaced by

‖Wrs(z)Hrs(z)‖∞ ≤ 1 ,

where weighting function Wrs(z) satisfies

Wrs(ω) ≈ ω4

(2π155)4 ,

to enforce a fourth-order roll-off of |Hrs(ω)| from 155 Hz. Second, the length of the
closed-loop transient response should be restricted in the controller design, since
otherwise, solutions similar to the result of Hillerström and Sternby [65] with β =
0.995 (Figure 6.19) are obtained. Similar to [65], the transient response is enforced
to decay with at least 0.95k by constraining the poles of MS(z) to the disc with radius
β = 0.95 centered at the origin. Third, nonperiodic performance is optimized under
the aforementioned constraints by minimizing γnp = ‖MS(z)‖∞.

Figure 6.20 shows the poles and zeros of MS(z) corresponding to the feed-
back controller KFB(z) designed according to the above described strategy with
κ = 0. Figure 6.21 evaluates this controller design in frequency and time domain:
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Fig. 6.21 Comparison of the controller KFB(z) designed according to Köroğlu and Scherer
[88] with β = 0.95 and κ = 0, and the corresponding generalized repetitive controller (M =
54): (a) |MS(ω)|; and (b) response of MS(z) to a sinusoidal input with frequency 3 fp = 60 Hz
and amplitude 1.
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Fig. 6.22 Poles and zeros of MS(z) corresponding to the controller KFB(z) designed accord-
ing to Köroğlu and Scherer [88] with β = 0.95 and κ = 0.5. The grid indicates the natural
frequency [Hz] and damping factor of the poles and zeros.

Figure 6.21(a) shows the resulting FRF of MS(z), while Figure 6.21(b) shows the
response of MS(z) to a sinusoidal input with frequency 3 fp = 60 Hz and amplitude 1.

The poles and zeros shown in Figure 6.20 address the design specifications in
the following way: (i) perfect periodic performance is guaranteed by the closed-
loop zeros on the unit circle, which coincide with the poles of Λ(z); (ii) minimizing
γnp requires counteracting these zeros by nearly coinciding poles, while these poles
are drawn away from the unit circle by the pole-placement constraint; and (iii) the
three complementary resonance–antiresonance pairs guarantee preservation of the
original feedback system’s robust stability. This last set of poles and zeros lacks
in the result of Hillerström and Sternby [65] shown in Figure 6.18, and hence, its
function clearly emerges from the comparison of Figures 6.21(a) and 6.19(a).

As indicated in Figure 6.21(a), the controller of Köroğlu and Scherer [88] yields
γnp = 1.76, and Figure 6.21 compares this design with the fastest generalized repet-
itive controller, that is: the one with the smallest M, that satisfies γnp = 1.76 and
γp < 10−6. This yields M = 54, and the obtained generalized repetitive controller
resembles the controller designed by Köroğlu and Scherer [88], both in frequency
and time domain. Figure 6.21(a) reveals the alternative implementation of the ro-
bust stability requirement, while Figure 6.21(b) shows that the generalized repetitive
controller condenses the transient response of MS(z) into 54 samples.

In the second step, a controller KFB(z) is designed according to Köroğlu and
Scherer [88] with κ = 0.5, and this result yields γnp = 1.56 and γp = 0.18.
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Fig. 6.23 Comparison of the controller KFB(z) designed according to Köroğlu and Scherer
[88] with β = 0.95 and κ = 0.5, and the corresponding generalized repetitive controller (M =
54): (a) |MS(ω)|; and (b) response of MS(z) to a sinusoidal input with frequency 3 fp = 60 Hz
and amplitude 1.
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Figure 6.22 shows the corresponding poles and zeros of MS(z), and comparison
with Figure 6.20 reveals that relaxing γp from 0 to 0.18 only involves a minor in-
ward shift of the zeros of MS(z) on the unit circle. Figure 6.23 evaluates the con-
troller in frequency and time domain and compares it with the fastest generalized
repetitive controller that achieves γnp = 1.56 and γp ≤ 0.18, which yields M = 54
and γp = 0.14. Figure 6.23(a) compares the FRFs of MS(z) for the two controllers,
while Figure 6.23(b) shows the responses of MS(z) to a sinusoidal input with fre-
quency 3 fp = 60 Hz and amplitude 1. Figure 6.23(a) reveals a different behavior of
both controllers between 0 Hz and 20 Hz, in addition to the alternative implementa-
tion of the robust stability requirement. Figure 6.23(b) shows a slightly more gruff
transient response for the generalized repetitive controller, due to the finite impulse
response of MS(z). In addition, the small difference between the γp values of the two
controllers prevails in steady state.

6.6 Conclusion

This chapter applies the methodology of Chapter 2 to design a feedback controller
for a discrete-time SISO LTI system facing periodic inputs. This results in a novel
type of feedback controllers, called generalized repetitive controllers, that encom-
passes typical, one-period delay based repetitive controllers as a special case. The
generalized repetitive controller design allows a systematic and quantitative treat-
ment of combined nonperiodic and period-uncertain inputs: by means of perfor-
mance indices γp and γnp, the generalized repetitive controller is designed to yield
an optimal trade-off between closed-loop periodic and nonperiodic performance.

Dictated by the Bode Integral Theorem, any feedback controller design is bound
to a trade-off between closed-loop periodic performance, nonperiodic performance
and transient response time. The presented generalized repetitive controller design
allows a quantitative analysis of this trade-off, by translating it into a trade-off sur-
face between periodic performance index γp, nonperiodic performance index γnp

and the finite impulse response length of the (modifying) sensitivity. In addition, the
performance loss caused by the typical repetitive controller structure is analyzed in
view of this performance trade-off.

Among current feedback controller designs, Köroğlu and Scherer [88] is most
related to the presented generalized repetitive controller design, where the presented
design approach is shown able to generate controllers similar to the ones obtained
by Köroğlu and Scherer [88]. On the other hand, the systematic treatment of period-
time uncertainty that is presented in this chapter, is innovative with respect to the
literature.



Chapter 7
Experimental Validation on an Active Air
Bearing Setup

7.1 Introduction

In repetitive control, the Bode Integral Theorem [10, 21, 22, 49, 69, 138], dictates
a fundamental trade-off between improved closed-loop periodic performance, de-
graded nonperiodic performance and transient response time. Relying on the design
methodology of Chapter 2, Chapter 5 develops an optimal repetitive controller de-
sign, where optimality is translated into an optimal trade-off between performance
indices γp and γnp, which respectively quantify the closed-loop periodic and nonpe-
riodic performance. Index γp explicitly accounts for period-time uncertainty, while
transient response time, the third issue involved in the performance trade-off is de-
termined by the repetitive controller order μ . For a given order μ , the remaining
trade-off between periodic and nonperiodic performance is translated into a trade-
off curve between γp and γnp (see Section 5.4.1).

The purpose of this chapter is twofold. First, the value of the trade-off curves
between γp and γnp in dealing with the performance trade-off in repetitive control is
experimentally demonstrated on an active air bearing setup [110]. The control ob-
jective is to reduce the error motion of the spindle’s axis of rotation by appropriate
actuation of an active journal bearing. This error motion, being due to mass unbal-
ance and profile errors of the bearing parts, is periodic with the spindle rotation,
leaving measurement noise as the sole nonperiodic input to the control problem.
Comparison of various Pareto optimal repetitive controller designs reveals that su-
perior reduction of the periodic error motion comes at too high a price of measure-
ment noise amplification, which deteriorates the overall closed-loop performance.
This way, the experimental results sustain the practical relevance of performance
indices γp and γnp, as well as the corresponding trade-off curves.

Second, the relation is investigated between the steady-state performance indices
γp and γnp, and the adaptive performance of the repetitive controller during large
variations of the spindle’s rotational speed setpoint, where the adaptive implemen-
tation is adopted from [42, 139]. The experiments indicate that good robust periodic
performance for period-time uncertainty translates into good adaptive performance

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 119–140.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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during small variations of the spindle’s rotational speed. Large variations, on the
other hand, are no longer encompassed in the period-time uncertainty and cause
performance degradation.

As periodic disturbances are characteristic for spindle applications, repetitive
control is not new in the field of active bearing control. In active air bearing applica-
tions, repetitive control has been applied to overcome the low stiffness and damping
of the air film [5, 7, 67, 68], and in some magnetic bearing systems, repetitive con-
trol has been used to increase the rotational accuracy [161, 162]. While in these
applications the repetitive controller is restricted to a basic, first-order design, more
advanced repetitive controller designs have been experimentally validated for disk
drive servo systems [135, 136], a major industrial application of repetitive control.
However, all these repetitive controllers enforce perfect suppression of the periodic
disturbances without investigating the consequences of the performance trade-off in
repetitive control on the overall performance.

This chapter is organized as follows. Section 7.2 describes the experimental setup
and the corresponding control configuration. Section 7.3 elaborates on the repeti-
tive controller design, while Section 7.4 experimentally validates the selected con-
trollers. Section 7.5 concludes the chapter.

7.2 Experimental Setup

The experimental setup comprises the active air bearing prototype presented in [6]
and is described in Section 7.2.1. Section 7.2.2 details the corresponding control
configuration, while Section 7.2.3 discusses the parametric identification of the test
setup.

7.2.1 Description

The experimental setup is depicted in Figure 7.1, where Figure 7.1(a) shows a top
view on the front part of the setup and Figure 7.1(b) illustrates the active air bearing
layout.

At the rear end of the setup an asynchronous motor drives the spindle, where the
rotational speed is controlled in open loop by a frequency converter. The spindle is
supported by aerostatic bearings: the axial (thrust) and rear radial (journal) bearings
are passive whereas the front radial bearing is active. The active bearing comprises
a compliant bearing surface composed of four lands, which are each supported on
a row of two piezo-actuators. Those actuators deform the bearing surface in a con-
trolled manner so as to induce a radial force on the shaft via the air film. In the case
of a radial spindle bearing, the shaft has two degrees of freedom normal to its axis.
Consequently, two displacement sensors are needed, one for each of these two prin-
cipal directions. Capacitive sensors are employed (Lion Precision) and a reference
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(a)

(b)

piezo-actuators displacement sensors unbalance disc encoder

air-inlet

piezo-actuator

deformed surface

Fig. 7.1 Active air bearing setup: (a) top view on the front part of the experimental setup; and
(b) illustration of the active air bearing layout (not to scale), where the dashed line illustrates
the bearing surface deformation (not to scale) due to actuation of the top piezo-actuator.

target ring is machined in situ on the spindle nose. The two measurement directions
are aligned horizontally and vertically, and coincide with the working directions
of the piezo-actuators. When driving the diametrically opposite piezo-actuators in
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Fig. 7.2 Control configuration used to suppress the error motion e(k) of the spindle’s axis of
rotation by repetitive control.

anti-phase, both “pushing” and “pulling” in the two principal directions is possible.
As a result, only two scalar control inputs, denoted uh [V] and uv [V], are needed
to determine the amplifier inputs for the horizontal and vertical piezo-actuators, re-
spectively. These signals are grouped into the vector

u =
[

uh

uv

]
,

and in the same way, the outputs of the displacement sensors, denoted ym,h [m] and
ym,v [m], are grouped into ym. Throughout this chapter, vectors and matrices are
indicated in bold, while plain characters are used for scalars. In a two-dimensional
vector, the first and second element respectively relate to the horizontal and vertical
direction.

At the nose of the spindle, a disk is clamped, which generates a 46 gmm mass
unbalance and connects the spindle with an encoder (500 counts per rotation).

7.2.2 Control Configuration

The objective of the controller is to suppress the error motion e [m] of the spin-
dle’s axis of rotation, i.e., the variation in position of the spindle’s axis of rotation
observed at the measurement plane [17], by controlling the piezo-actuators of the
active air bearing based on the measured displacements ym. Since e is periodic with
the spindle rotation, repetitive control is an appropriate control strategy. The control
problem is handled in discrete time, where the sample frequency fs equals 10 kHz
and the corresponding control configuration is shown in Figure 7.2. Mainly moti-
vated by practical issues, the experimental validation of the repetitive controllers is
confined to spindle speeds between 900 rpm and 1200 rpm.

Error motion e(k) is the sum of two contributions: (i) ed(k) [m] related to the
mass unbalance and profile errors of the bearing parts; and (ii) eu(k) [m] caused
by actuation of the active air bearing. The displacement sensors generate the mea-
surement ym(k), which corresponds to the actual error motion e(k) supplemented
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with (i) (stochastic) measurement noise n(k) [m]; and (ii) a (periodic) systematic
error r(k) [m] due to the roundness error of the reference target ring for the dis-
placement sensors.

As suppressing the error motion e(k) constitutes the control objective, the repeti-
tive controller KRC(z) should not respond to the systematic measurement error r(k).
To this end, the measured error motion em(k) [m] is constructed from measurements
ym(k) by subtracting an estimate r̂(k) [m] of the roundness error r(k). To compute
r̂(k) at each time instant k, the roundness error is determined a priori as a function
of the spindle angle θ [rad] using the method of master reversal proposed by Don-
aldson [41]. During rotation, θ (k) is measured by the encoder, which yields r̂(k) as
a function of time.

In view of the add-on repetitive control setup adopted in Chapter 5, the so-called
original feedback controller Ko(z) is omitted: Ko(z) = 0. This choice is allowed
as the experimental setup is open-loop stable. Moreover, it yields the best nonperi-
odic performance since measurement noise n(k) is the sole nonperiodic input to the
control problem.

7.2.3 Identification

For the considered control problem, the plant G(z) corresponds to the two-by-two
system with input u(k) and output eu(k):

[
eu,h(k)
eu,v(k)

]

︸ ︷︷ ︸
eu(k)

=
[

Gh(q) Ghv(q)
Gvh(q) Gv(q)

]

︸ ︷︷ ︸
G(q)

[
uh(k)
uv(k)

]

︸ ︷︷ ︸
u(k)

.

This system is identified in open loop with separate excitation of the horizontal and
vertical piezo-actuators, and the identification is performed at three spindle speeds:
900 rpm, 1050 rpm and 1200 rpm. The system is excited between 1 Hz and 2500 Hz,
where the fundament of the excitation signals is a random-phase multi-sine [109]
with a frequency resolution of 1 Hz and flat amplitude spectrum. Excitation fre-
quencies coinciding with harmonics of the spindle’s rotational speed are eliminated
to prevent that the error motion ed(k) (due to mass unbalance and profile errors of
the bearing parts) hampers the identification.

In the first step, nonparametric FRF estimates are obtained for the four plant
components and at the three considered spindle speeds. Figure 7.3 shows these non-
parametric FRFs, and as they only reveal a limited effect of the spindle’s rotational
speed on the plant dynamics (between 900 and 1200 rpm), all results are shown in
gray (three spindle speeds and various experiments at each speed). Figure 7.3 re-
veals that up to 600 Hz the off-diagonal gains |Ghv(ω)| and |Gvh(ω)| are on average
20 dB smaller than the diagonal gains |Gh(ω)| and |Gv(ω)|. To further analyze the
interaction between the horizontal and vertical control direction, Figure 7.4 shows
the interaction measure μ proposed by [53], as a function of frequency:
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μ
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Fig. 7.4 Interaction measure μ as a function of frequency, computed from the nonparametric
FRF estimates shown in Figure 7.3.

μ(ω) =

√∣
∣∣
∣
Ghv(ω)Gvh(ω)
Gh(ω)Gv(ω)

∣
∣∣
∣ .

This figure confirms the dominance of the diagonal plant components up to 600 Hz.
Around 400 Hz, μ increases to −10 dB due to the combination of an antiresonance
in Gh(z) and an increase of the off-diagonal gains (see Figure 7.3).

In the second step, a parametric model Ĝ(z) is identified for G(z) based on the
obtained nonparametric FRF estimates. This model should be accurate up to 600 Hz,
since extensive simulations reveal that the active frequency range of the controller is
restricted to this frequency by the uncertainty on the antiresonance of Gh(z) around
680 Hz. Based on the dominance of the diagonal plant components, a decoupled
plant model is proposed

Ĝ(z) =
[

Ĝh(z) 0
0 Ĝv(z)

]
, (7.1)

where the SISO models Ĝh(z) (9th-order) and Ĝv(z) (17th-order) are identified us-
ing the fdident toolbox [85]. Figure 7.5 evaluates these models by comparing
their FRFs with the nonparametric FRF estimates for the diagonal plant compo-
nents. Implied by the use of model Ĝ(z), the plant is assumed decoupled for the
controller design and the simulations.
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7.3 Repetitive Controller Design

This section elaborates on the design of repetitive controller KRC(z). Relying on the
decoupled plant model Ĝ(z), a decoupled design of KRC(z) suffices:

KRC(z) =
[

KRC,h(z) 0
0 KRC,v(z)

]
. (7.2)

The SISO repetitive controllers KRC,h(z) and KRC,v(z) are designed according to
Chapter 5. Section 7.3.1 briefly summarizes the repetitive controller design, while
Section 7.3.2 discusses the selected repetitive controllers for the control problem
at hand.

Generalized repetitive controllers designed according to Chapter 6 are also exper-
imentally validated, but these results are not presented here. The generalized repet-
itive controllers only achieve a limited performance improvement compared to the
(typical) repetitive controllers, which is related to the large number of harmonics to
be suppressed, and all harmonics except l = 1 having a similar contribution to ed(k)
(see Figure 7.10(a)). In addition, (typical) repetitive controllers have the advantage
of facile adaptive implementation for varying spindle speeds (see Section 7.4.3).

Concerning the rotational speed of the spindle, the following notation is used:
the desired rotational speed used as input for the frequency converter that drives
the asynchronous motor, is indicated by fp,des [Hz]. However, a repetitive controller
requires the period to contain an integer number N of samples. Hence, assuming
that fs cannot be changed, the best the repetitive controller can do is to account for
fp = fs/N [Hz], where

N = int( fs/ fp,des) , (7.3)

and ωp = 2π fp [rad/s]. The actual rotational speed of the spindle is denoted by
fp,δ [Hz], ωp,δ = 2π fp,δ [rad/s], and may deviate from both fp,des and fp, where δ
corresponds to the relative deviation from fp and is bounded by δ (2.3).

7.3.1 Repetitive Controller Design Strategy

The SISO repetitive controllers KRC,h(z) and KRC,v(z) feature the structure of Fig-
ure 7.6, where only the design of the filter L(z) depends on the control direction.
The horizontal repetitive controller equals

KRC,h(z) = Lh(z)
χ(z)Q(z)

1 − χ(z)Q(z)
, (7.4)

where

χ(z) =
μ

∑
m=1

χmz−mN , (7.5)
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uh(k)−em,h(k) Q Lh

KRC,h

μ

∑
m=1

χmz−mN
+

Fig. 7.6 Structure of the horizontal SISO repetitive controller, where the vertical equivalent
is obtained by replacing subscript (·)h by (·)v.

and μ is called the order of the repetitive controller. Under the assumption of
a decoupled plant, the decoupled controller KRC(z) (7.2) gives rise to a decou-
pled closed-loop sensitivity function, of which the horizontal diagonal element is
given by

Sh(z) =
1 − χ(z)Q(z)

1 − χ(z)Q(z) [1 − Lh(z)Gh(z)]
. (7.6)

The vertical equivalents of (7.4) and (7.6) are obtained by replacing the subscript
(·)h by (·)v.

Filters Q(z) and L(z) guarantee robust stability of the closed-loop system, whereas
the closed-loop performance is optimized through the design of parameters χm.

Stability

To achieve robust closed-loop stability, the filters L(z) and Q(z) are designed in
accordance with the common procedure in repetitive control (see Section 5.2.2):

• L(z) is designed as the series connection of the inverse plant model and a low-
pass filter F(z):

Lh(z) = Ĝh(z)−1F(z) , Lv(z) = Ĝv(z)−1F(z) .

Filter F(z) is designed as a low-pass zero-phase FIR filter of order 300 with
cut-off frequency 640 Hz, and it is added to improve robust closed-loop stability
[61, 74, 135].

• Q(z) is designed as a low-pass zero-phase FIR filter of order 200 with cut-off
frequency 620 Hz.

Noncausality of filters Lh(z), Lv(z) and Q(z) is accounted for as indicated in Sec-
tion 5.2.2. Including the inverse plant model in L(z) guarantees nominal stability,
since in case of perfect plant models Ĝh(z) and Ĝv(z) and F(z) = Q(z) = 1, Sh(z)
and Sv(z) are both equal to:

S(z) = 1 − χ(z) . (7.7)
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However, the identified decoupled plant model Ĝ(z), Equation 7.1, is only accurate
up to 600 Hz, raising the issue of robust stability. To this end, low-pass filters Q(z)
and F(z) turn off the repetitive controller from 600 Hz. Their orders and cut-off
frequencies are tuned such that the following sufficient MIMO stability criterion
(derived from the small gain theorem, similar to [61]) is satisfied for the three de-
signs of χ(z) selected in Section 7.3.2:

sup
ω∈R

{
max

i
{|λi (H(ω)) |}

}
<

1
‖χ(z)‖∞ , (7.8)

where

H(z) =
[(

1 − Gh(z)Ĝh(z)−1F(z)
)
Q(z) −Ghv(z)Ĝv(z)−1F(z)Q(z)

−Gvh(z)Ĝh(z)−1F(z)Q(z)
(
1 − Gv(z)Ĝv(z)−1F(z)

)
Q(z)

]
,

and λi(X) denote the eigenvalues of X . The left-hand side of (7.8) is computed from
the nonparametric FRF estimates of G(z).

Performance

According to Section 5.3.1, performance is specified as an optimal trade-off
between two performance indices that quantify the closed-loop steady-state per-
formance with respect to periodic and nonperiodic inputs. The definitions of these
performance indices are simplified by the assumptions that in the pass band of the
filters Q(z) and F(z) (i) the filters equal their dc-gain; and (ii) the identified plant
models are perfect. These assumptions imply that Sh(ω) = Sv(ω) = S(ω) holds up
to 600 Hz.

According to (5.11b), periodic performance index γp corresponds to the smallest
reduction |S(lωp,δ )| over all harmonics l ∈ L and over all potentialωp,δ values. For
the control problem at hand: L = {1,2, . . . ,30}, where lmax = 30 follows from the
fact that the repetitive controller action is restricted to 600 Hz, which corresponds to
the 30’th harmonic at 1200 rpm, the highest spindle rotational speed. As all harmon-
ics except l = 1 have a similar contribution to ed(k) (see Figure 7.10(a)), weights
Wl = 1 are used ∀l ∈ L . Hereby, definition (5.11b) of γp reduces to

γp = max
ω∈Ω lmax

{|S(ω)|} ,

where Ω l is given by (5.12).
By adopting (5.10b), nonperiodic performance index γnp corresponds to the high-

est amplification |S(ω)| over all frequencies ω :

γnp = ‖S(z)‖∞ .
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The repetitive controller is designed to yield an optimal trade-off between the con-
flicting performance indices γp and γnp. To that end, parameters χm are computed as
the solution of the following optimization problem, for given α ≥ 0:

minimize
χm,γp,γnp

γp +αγnp (7.9a)

subject to ‖S(z)‖∞ ≤ γnp (7.9b)

|S(ω)| ≤ γp , ∀ω ∈Ω lmax . (7.9c)

7.3.2 Selected Repetitive Controllers

As explained in Section 5.3.1, the solution of (7.9) does not depend on fp, while
it only depends on L and δδ through the product lmaxδ . In the repetitive controller
design lmaxδδ is set equal to 2%, corresponding to the initial estimate δδ = 0.07%.

Three repetitive controllers, characterized by a different design of χ(z), are exper-
imentally validated. The first repetitive controller, denoted by KRC1(z), corresponds
to the more frequently used basic first-order repetitive controller χ(z) = z−N . This
controller yields γnp = 2 and, although this controller perfectly rejects periodic dis-
turbances at fp, its robust periodic performance is moderate: γp = 0.13.

The Pareto optimal repetitive controllers KRC2(z) and KRC3(z), on the other
hand, are fifth-order repetitive controllers (μ = 5), optimized according to (7.9) and
corresponding to different trade-offs between γp and γnp, that is: different weights
α in (7.9). Figure 7.7 indicates both designs on the trade-off curve between γp and
γnp for fifth-order repetitive controllers, which is computed by solving (7.9) with
μ = 5 for a range of α values. For a given level of periodic performance γp, the
trade-off curve indicates the minimal level of nonperiodic performance degradation
γnp that has to be tolerated. Or, vice versa, for a fixed level of nonperiodic per-
formance, the trade-off curve indicates the best periodic performance that can be
achieved. The steep slope between KRC2(z) and KRC3(z) indicates that improving
the periodic performance below γp = 0.022 comes at the price of high amplification
of nonperiodic disturbances: compared to KRC2(z), KRC3(z) improves the periodic
performance from γp = 0.022 to γp = 0.0013, but degrades the nonperiodic perfor-
mance from γnp = 1.8 to γnp = 3.3. The first-order repetitive controller KRC1(z) is
also indicated in Figure 7.7, but as it does not correspond to an optimal fifth-order
design, it is located off the trade-off curve.

Figure 7.8 compares, for the considered repetitive controller designs, the FRF of
S(z), which is a good approximation of both Sh(ω) and Sv(ω) up to 600 Hz. Since
χ(z), Equation 7.5, contains only powers of z−N , the FRF of S(z), Equation 7.7,
is periodic with ωp. Therefore, Figure 7.8 only shows this FRF for the frequency
range [0,ωp]. γnp is found as the peak value of |S(ω)| over the entire frequency
range, whereas γp corresponds to the maximum of |S(ω)| over the 2% uncertainty
interval, indicated by the shaded band.
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Fig. 7.7 Trade-off curve between γp and γnp for fifth-order repetitive controllers, where the
selected controller designs are indicated: KRC2(z) and KRC3(z) correspond to Pareto optimal
controllers, whereas KRC1(z) is a classical first-order repetitive controller.

7.4 Experimental Results

The three selected repetitive controllers are experimentally validated on the active
air bearing setup. First, the controllers are validated for a fixed rotational speed
of 1200 rpm, yielding fp = fp,des = 20 Hz and N = 500. Sections 7.4.1 and 7.4.2
respectively assess the corresponding transient and steady-state performance of the
controllers.

Second, the adaptive implementation of the repetitive controllers is experimen-
tally validated (Section 7.4.3), which allows dealing with large variations of the
spindle’s rotational speed setpoint, as occurring during run-ups and run-downs. Fol-
lowing [42, 139], N, the only parameter that depends on the spindle’s rotational
speed, is adapted according to its estimate obtained from the index pulse (one pulse
per revolution) of the encoder.
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Fig. 7.8 Comparison of S(z), defined as the closed-loop sensitivity in the case of a perfect
plant model and F(z) = Q(z) = 1, for the selected repetitive controller designs. Since these
FRFs are periodic with ωp, they are only shown for the frequency range [0,ωp]. The shaded
bands indicate the lmaxδ = 2% uncertainty interval.

7.4.1 Transient Response (1200 rpm)

To evaluate the transient response of the controllers, Figure 7.9 shows the measured
horizontal error motion em,h(k) of the spindle’s axis of rotation, where the repetitive
controllers are switched on at t = 0.5 s. In contrast to the following sections, which
show results for the decoupled controllers (7.2), Figure 7.9 relates to the situation
where only the horizontal SISO controllers KRC1,h(z), KRC2,h(z) and KRC3,h(z) are
switched on, while the vertical control loop is left open.

Whereas the first-order repetitive controller KRC1,h(z) needs only one period for
reaching steady state, the transient response of the fifth-order repetitive controllers
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Fig. 7.9 Transient response (1200 rpm): measured horizontal error motion em,h(k) of the
spindle’s axis of rotation, where the repetitive controllers are switched on at t = 0.5 s; results
for (a) KRC1,h(z); (b) KRC2,h(z); and (c) KRC3,h(z).



134 7 Experimental Validation on an Active Air Bearing Setup

Table 7.1 Steady-state response (1200 rpm): rms values of the periodic and nonperiodic con-
tribution to the measured error motion of the spindle’s axis of rotation in the active frequency
range of the repetitive controllers.

horizontal vertical

per. nonper. per. nonper.

no RC 95.2 nm 2.4 nm 113.4 nm 2.9 nm

KRC1(z) 4.3 nm 2.1 nm 3.9 nm 3.9 nm

KRC2(z) 2.7 nm 2.1 nm 2.7 nm 4.2 nm

KRC3(z) 0.7 nm 4.4 nm 0.9 nm 8.6 nm

KRC2,h(z) and KRC3,h(z) lasts for five periods. Compared to KRC2,h(z), KRC3,h(z)
yields a more gruff transient response, which is attributed to its worse nonperi-
odic performance (higher γnp value) in combination with actuator saturation: only
for KRC3,h(z) the transient control signal hits the ±2 V input bounds of the piezo-
actuator amplifier.

7.4.2 Steady-state Response (1200 rpm)

Due to the Bode Integral Theorem [10, 21, 22, 49, 69, 138], a repetitive controller’s
steady-state performance is bound to a trade-off between the suppression of periodic
disturbances and the amplification of nonperiodic inputs. This section experimen-
tally investigates the implications of this performance trade-off on the test setup by
comparing the selected repetitive controllers.

To this end, the measured steady-state error motion em(k) is split up into a part
periodic with the spindle rotation, and its nonperiodic content. Table 7.1 summa-
rizes the rms values of the periodic and nonperiodic part of em(k), where only the
frequency content up to 600 Hz, the working range of the repetitive controllers, is
accounted for. As discussed below, Table 7.1 can to a large extent be explained based
on the performance indices of the repetitive controller. Hence, the experiments sup-
port both the accuracy of the identified decoupled plant model Ĝ(z) and the practical
relevance of γp and γnp.

Periodic Performance

To allow for a detailed evaluation of the repetitive controllers’ periodic performance,
Figure 7.10 shows the amplitude spectrum of the periodic part of the measured hor-
izontal error motion em,h(k) up to the 30’th harmonic, and the corresponding reduc-
tion achieved by the repetitive controllers. The actual period of the spindle rotation
is estimated a posteriori using the approach of [124], yielding fp,δ ∼= 19.968 Hz and
hence, δ = 0.16%.
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Fig. 7.10 Periodic steady-state response (1200 rpm): (a) amplitude spectrum of the periodic
part of the measured horizontal error motion em,h(k); and (b) the corresponding reduction
achieved by the three repetitive controllers.

Converted to dB, the γp values imply that all harmonics up to l = int(δδ/δ )=
int(2/0.16) = 12, are reduced 18 dB by KRC1(z), 33 dB by KRC2(z), and 58 dB by
KRC3(z); which is confirmed by Figure 7.10(b). Furthermore, both Figure 7.10 and
Table 7.1 indicate that a lower γp value gives rise to a smaller periodic contribution
to em(k), even if 30 harmonics are taken into account.
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Fig. 7.11 Nonperiodic steady-state response (1200 rpm): amplitude spectrum of the nonperi-
odic part of (a) the measured horizontal error motion em,h(k); and (b) the horizontal control
signal uh(k) for the three repetitive controllers.

The results for KRC1(z) reveal the necessity to account for uncertainty on fp.
Whereas this controller would perfectly eliminate the periodic contribution to em(k)
if δ = 0%, the small deviation δ = 0.16% causes a significant periodic performance
degradation for KRC1(z).
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Nonperiodic Performance

For the control problem at hand, the measurement noise n(k) constitutes the sole
nonperiodic input to the closed-loop system. Figure 7.11 complements the results
of Table 7.1 by showing the amplitude spectrum of the nonperiodic part of the mea-
sured error motion em(k) and the control signal u(k).

Interpretation of the results of Figure 7.11(a) and Table 7.1 requires special care,
for they involve the measured error motion em(k). While n(k) relates to em(k) by the
closed-loop sensitivity, its effect on the actual error motion e(k) is determined by the
complementary sensitivity. For this reason, Figure 7.11(a) and Table 7.1 only pro-
vide an indication of the measurement noise contribution to the error motion e(k).
However, main conclusions regarding the nonperiodic performance remain valid:
KRC1(z) and KRC2(z) yield a similar, modest, nonperiodic contribution to e(k),
whereas KRC3(z) amplifies the measurement noise with a factor of almost two.
This is also clear from the effect of the measurement noise on the control signal,
see Figure 7.11(b), since this nonperiodic contribution is transmitted to the system,
thereby directly affecting the output eu(k) and the actual error motion e(k). The
simulated response of Ĝ(z) to the experimental control signals yields similar results
as Figure 7.11(a) and Table 7.1.

Inspection of the rms values in Table 7.1 reveals that the superior periodic per-
formance of KRC3(z) comes at too high an amplification of the measurement noise,
deteriorating the overall closed-loop performance. From this point of view KRC2(z)
is preferred, as it combines better periodic performance than KRC1(z) with a similar
nonperiodic contribution to e(k).

7.4.3 Adaptive Response (900–1200 rpm)

The adaptive implementation of the repetitive controllers is validated for a run-down
from 1200 rpm to 900 rpm in 9.85 s and a run-up from 900 rpm to 1200 rpm in the
same time frame. Figure 7.12(a) shows the relative rotational speed variation corre-
sponding to the constant deceleration profile entered to the frequency converter:

αp,des =
1

fp,des

d fp,des

dt
.

The horizontal error motion em,h(k) of the axis of rotation measured during this run-
down without control is shown in Figure 7.12(b), while Figure 7.13 shows the results
for the three selected repetitive controllers. To quantify the adaptive performance of
the controllers, Table 7.2 summarizes the rms values of the measured error motion
em(k) during the 9.85 s run-down and run-up.

To which extent the repetitive controllers preserve their steady-state perfor-
mance depends on two factors. The first and dominating factor is αp,des: while
small relative speed variations are accounted for by the robustness of the repetitive
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Fig. 7.12 Adaptive response (900–1200 rpm): (a) relative speed variation αp,des; and (b)
measured horizontal error motion of the axis of rotation without control, for a run-down from
1200 rpm to 900 rpm in 9.85 s.

Table 7.2 Adaptive response (900–1200 rpm): rms values of the measured error motion of
the spindle’s axis of rotation during a run-down and run-up between 1200 rpm and 900 rpm,
each in 9.85 s.

horizontal vertical

run-down run-up run-down run-up

no RC 80.0 nm 81.0 nm 95.7 nm 96.0 nm

KRC1(z) 9.0 nm 8.6 nm 9.4 nm 9.5 nm

KRC2(z) 7.9 nm 7.6 nm 8.6 nm 8.9 nm

KRC3(z) 10.2 nm 10.7 nm 14.1 nm 13.7 nm
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of rotation for a run-down from 1200 rpm to 900 rpm in 9.85 s; results for (a) KRC1(z); (b)
KRC2(z); and (c) KRC3(z).
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controller’s periodic performance, large |αp,des| values cause performance degrada-
tion. This is revealed by Figure 7.13: while initially all three repetitive controllers
preserve their steady-state performance, the error motion deteriorates near the end
of the run-down due to the increasing |αp,des| value. Second, sudden changes in
the amplitude/phase spectrum of the error motion ed(k) put the higher-order repeti-
tive controllers KRC2(z) and KRC3(z) at a disadvantage due to their longer transient
response to these changes. These sudden changes are revealed by the nonsmooth en-
velope of em,h(k) in Figure 7.12(b), because for the case without control: eu(k) = 0
and hence, e(k) = ed(k).

Related to the first factor, KRC2(z) yields better adaptive performance than
KRC1(z) thanks to its lower γp value. On account of the second factor, KRC3(z)
yields worse adaptive performance than KRC2(z), as its high γnp value translates
into gruff transients at the sudden changes in ed(k). Hence, the performance indices
γnp and γp, being defined for steady state, also relate to the adaptive performance of
the repetitive controllers.

7.5 Conclusion

Relying on the repetitive controller design proposed in Chapter 5, this chapter in-
vestigates the implications of the performance trade-off in repetitive control for the
reduction of the error motion of a spindle’s axis of rotation, supported in an active air
bearing setup. Dictated by the Bode Integral Theorem, improved suppression of pe-
riodic disturbances, quantified by γp, comes at the price of a degraded performance
for nonperiodic inputs, quantified by γnp.

The experimental results confirm the theoretical trade-off curve between γp and
γnp. Although measurement noise constitutes the sole nonperiodic input to the con-
sidered control problem, the experimental results show that it should not be ne-
glected in the repetitive controller design. If γp is improved at the price of too high
a degradation of γnp, the fed-back measurement noise dominates the error motion of
the axis of rotation. Moreover, high γnp values give rise to a gruff transient response.

Although defined for steady state, the performance indices γp and γnp also re-
late to the repetitive controller’s adaptive performance during large variations of
the spindle’s rotational speed. The adaptive controller implementation benefits from
low γp values, since small speed variations are encompassed by the robustness for
period-time uncertainty. High γnp values, on the other hand, translate into adaptive
performance degradation due to gruff transients at sudden changes in the error mo-
tion’s amplitude/phase spectrum.



Chapter 8
Conclusions

This monograph presents a general design methodology for linear controllers fac-
ing periodic inputs. As every rotating machine and repeated process involves pe-
riodicity, periodic signals are widespread in engineering practice. Consequently,
control for periodic inputs has gained a marked status in modern control literature,
where four control strategies are distinguished: feedforward control, estimated dis-
turbance feedback control, repetitive control and feedback control. The presented
design methodology applies to these four controller types, and in all cases it is able
to reproduce and outperform major current design strategies. The superior perfor-
mance of the proposed methodology stems from the following properties:

Multi-objective Control: The majority of existing design approaches enforce per-
fect closed-loop periodic performance, that is: perfect asymptotic tracking/re-
jection of the periodic input, without investigating the corresponding degradation
of alternative closed-loop performance aspects. The proposed design methodol-
ogy, on the other hand, adopts a multi-objective design philosophy, and although
improving closed-loop periodic performance remains the primal objective, it is
traded-off against other performance specifications.

Period-time Uncertainty: The majority of existing design approaches cannot cope
with period-time uncertainty and hence, inherently assume the input period to
be accurately known or measurable. The developed design methodology, on the
other hand, provides a systematic way to handle this uncertainty: instead of ac-
counting for the nominal period-time only, the methodology introduces the pe-
riodic performance index, which quantifies the worst-case closed-loop periodic
performance over all potential values of the input period. The advantage of the
periodic performance index is illustrated by numerical results and its practical
relevance is sustained by experiments.

Convex Optimization: To guarantee a reliable and efficient computation of the
global optimum, the multi-objective controller design problem is translated into
a convex optimization problem. This transformation is enabled by the Youla
parametrization, while further manipulations are generally required to render the
optimization problem numerically tractable. This latter step can be accomplished

G. Pipeleers et al.: Optimal Linear Controller Design for Periodic Inputs, LNCIS 394, pp. 141–142.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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by either gridding or application of the (generalized) KYP lemma, where the ad-
vantages of both approaches are illustrated.

Thanks to these properties, the design methodology is innovative with respect to
the current literature. In addition, the design methodology achieves the following
contributions:

Mutual Relations: The presented methodology can be translated into a feedfor-
ward, estimated disturbance feedback, repetitive or feedback controller design
and hereby emphasizes their mutual relations. The major differences between
feedforward and estimated disturbance feedback control are revealed, and when
applying the methodology to the feedback controller design, the relations with
repetitive and estimated disturbance feedback control are highlighted.

Limits of Performance: In feedback control, the Bode Integral Theorem dictates a
fundamental trade-off between periodic performance improvement, nonperiodic
performance degradation and duration of the transient response. The proposed
design methodology allows a systematic and quantitative analysis of this trade-
off by translating it into a trade-off surface between the periodic performance
index, the nonperiodic performance index and the finite impulse response length
of the (modifying) sensitivity. The computation of this trade-off surface is facili-
tated by the convex reformulation of the controller design problem.

Performance of Repetitive Controllers: Repetitive controllers are feedback con-
trollers that only exploit the input periodicity, while more general feedback
controllers additionally account for the input’s harmonic frequency content. Al-
though repetitive controllers benefit from a simple structure and intuitive design,
their particular structure impedes repetitive controllers to optimize closed-loop
periodic performance properly. In the general feedback controller design, the
Youla parametrization is chosen such that repetitive controllers are encompassed
as a special case, and hereby the performance loss caused by the repetitive con-
troller structure is analyzed in view of the aforementioned performance trade-off.



Appendix A
Semi-definite Programming Reformulation of
Optimal Controller Design

A.1 Introduction

This appendix details how to transform the semi-infinite constraints that define γp,
Equation 2.7, and γnp, Equation 2.10, into LMIs, and derives three equivalent for-
mulations for the resulting SDP. These SDP reformulations are presented for the
particular optimization problem discussed in Section 2.3.3 for SISO systems Hnp(z)
and Hp(z), while extending these results to MIMO systems and alternative design
problems is rather straightforward. Hence, this appendix deals with the following
semi-infinite optimization problem:

minimize
x,γp,γnp

γp +αγnp (A.1a)

subject to ‖Hnp(z,x)‖∞ ≤ γnp (A.1b)

Wl|Hp(ω ,x)| ≤ γp , ∀ω ∈Ωl , ∀ l ∈ L , (A.1c)

where optimization variable x ∈ RM is added as an argument in Hnp(z,x) and Hp(z,x)
to indicate relations (2.13) and (2.15) corresponding to the Youla parametrization.
These relations allow for state-space models in the following form:

Hp(z,x) = Cp(x)(zI − A)−1 Bp + Dp(x) ,

Hnp(z,x) = Cnp(x)(zI − A)−1 Bnp + Dnp(x) ,

where the relations Cp(x), Dp(x), Cnp(x) and Dnp(x) are affine in x:

[
Cp(x) Dp(x)

]T = Ep x + Fp ,
[
Cnp(x) Dnp(x)

]T = Enp x + Fnp .

The order of closed-loop systems Hp(z,x) and Hnp(z,x) is denoted by n and depends
affinely on M.
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The reformulation of the optimal design problem into an SDP relies on the KYP
lemma [79, 113, 157] and the generalized KYP lemma [77, 123]. Section A.2 briefly
reviews these lemmas and applies them to the constraints of (A.1). Solving the
resulting SDP with a standard interior-point solver involves a computational com-
plexity of O(n6). Section A.3 elaborates the equivalent reformulation of this SDP
proposed by Vandenberghe et al. [150], which is solved with a standard interior-
point solver at the cost of O(n4). Subsequently, Section A.4 presents the SDP
reformulation derived by Liu and Vandenberghe [94], which can be solved with
computational complexity O(n3) by exploiting its structure.

The computational complexities indicated in this appendix in fact correspond to
the cost of one iteration of an interior-point solver. Since in general, the number of
iterations of an interior-point solver grows very slowly with the problem size [15],
these computational complexities provide an accurate estimate of the overall cost of
solving the SDP. In addition, the affine dependency M = O(n) is exploited in the
complexity analysis, and nL � n is assumed.

A.2 Application of the (Generalized) KYP Lemma

A.2.1 KYP Lemma and Its Generalization

For a discrete-time system H(z), the KYP lemma and its generalization analyze the
following inequality: [

H(z)
I

]H

Π
[

H(z)
I

]
≤ 0 , (A.3)

on the unit circle, whereΠ is a given symmetric matrix. The order of H(z) is denoted
by n, and matrices A, B, C and D correspond to a state-space model of H(z):

H(z) = C(zI − A)−1B + D .

Although not essential to the (generalized) KYP lemma, matrix A is assumed to be
stable and the pair (A,B) controllable.

The KYP lemma [79, 113, 157] considers inequality (A.3) over the entire fre-
quency range:

z ∈ {
e jωTs |ω ∈ R

}
,

and this subset of C corresponds to

ϒ (Φ,0) =
{

z ∈ C
∣
∣∣
[

z
1

]H [
1 0
0 −1

]

︸ ︷︷ ︸
Φ

[
z
1

]
= 0

}
.
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The KYP lemma states the equivalence between the following statements:

• Frequency domain inequality (A.3) holds for all z ∈ϒ (Φ,0).
• There exists a matrix P ∈ Sn that satisfies the following LMI:

[
A B
I 0

]T

(Φ ⊗ P)
[

A B
I 0

]
+
[
C D
0 I

]T

Π
[
C D
0 I

]

 0 , (A.4)

where ⊗ indicates the matrix Kronecker product.
The generalized KYP lemma [77, 123] considers inequality (A.3) over a limited

frequency range:
z ∈ {

e jωTs |ω ∈ [ω1 , ω2]
}

.

This subset of C corresponds to

ϒ (Φ,Ψ ) =
{

z ∈ C
∣
∣∣
[

z
1

]H

Φ
[

z
1

]
= 0;

[
z
1

]H

Ψ
[

z
1

]
≥ 0

}
,

where

Ψ =

[
0 exp( jωcTs)

exp(− jωcTs) −2 cos(ωdTs)

]

,

with

ωc = 0.5(ω1 +ω2) ,

ωd = 0.5(ω2 −ω1) .

The generalized KYP lemma states the equivalence between the following
statements:

• Frequency domain inequality (A.3) holds for all z ∈ϒ (Φ,Ψ ).
• There exist matrices P,Q ∈ Hn that satisfy the following set of LMIs:

Q � 0 , (A.5a)
[

A B
I 0

]T

(Φ⊗ P+Ψ ⊗ Q)
[

A B
I 0

]
+
[
C D
0 I

]T

Π
[
C D
0 I

]

 0 . (A.5b)

A.2.2 Primal SDP

Applying the KYP lemma to constraint (A.1b) yields the following LMI in x ∈ RM ,
γnp ∈ R and Pnp ∈ Sn:

Knp(Pnp)+Enp(x)+Gnp(γnp)+Fnp 
 0 ,

where matrix Fnp and linear mappings Knp(Pnp), Enp(x) and Gnp(γnp) are defined
as follows:
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Fnp =

⎡

⎢
⎣

0 0
0 0

Fnp

FT
np 0

⎤

⎥
⎦ ,

Knp(Pnp) =

⎡

⎢
⎣

AT Pnp A − Pnp AT Pnp Bnp 0

BT
np Pnp A BT

np Pnp Bnp 0

0 0 0

⎤

⎥
⎦ ,

Enp(x) =

⎡

⎢
⎣

0 0
0 0

Enp x

(Enp x)T 0

⎤

⎥
⎦ ,

Gnp(γnp) =

⎡

⎣
0 0 0
0 −γnp 0
0 0 −γnp

⎤

⎦ .

The generalized KYP lemma replaces each of the constraints (A.1c) by the fol-
lowing set of LMIs in x ∈ RM , γp ∈ R and Pp,l,Qp,l ∈ Hn:

Qp,l � 0 ,

Kp(Pp,l)+Rp,l(Qp,l)+Ep(x)+Gp(γp)+Fp 
 0 ,

where matrix Fp and linear mappings Kp(Pp,l), Rp,l(Qp,l), Ep(x) and Gp(γp) are
defined as follows:

Fp =

⎡

⎢
⎣

0 0
0 0

Fp

FT
p 0

⎤

⎥
⎦ ,

Kp(Pp,l) =

⎡

⎢
⎣

AT
p Pp,l Ap − Pp,l AT

p Pp,l Bp 0

BT
p Pp,l Ap BT

p Pp,l Bp 0

0 0 0

⎤

⎥
⎦ ,

Rp,l(Qp,l) =

⎡

⎢
⎣

ηl AT
p Qp,l +ηH

l Qp,l Ap + ζl Qp,l ηH
l Qp,l Bp 0

ηl BT
p Qp,l 0 0

0 0 0

⎤

⎥
⎦ ,

Ep(x) =

⎡

⎢
⎣

0 0
0 0

Ep x

(Ep x)T 0

⎤

⎥
⎦ ,

Gp(γp) =

⎡

⎣
0 0 0
0 −γp 0
0 0 −γp

⎤

⎦ ,

and ζl = −2cos(lωpδδTs) and ηl = exp( jlωpTs).
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This way, optimization problem (A.1) is transformed into the following, equiva-
lent SDP:

minimize γp +αγnp (A.6a)

subject to Knp(Pnp)+Enp(x)+Gnp(γnp)+Fnp 
 0 (A.6b)

Kp(Pp,l)+Rp,l(Qp,l)+Ep(x)+Gp(γp)+Fp 
 0 , ∀ l ∈ L (A.6c)

Qp,l � 0 , ∀ l ∈ L , (A.6d)

with optimization variables γp, γnp, x, Pnp, and Pp,l , Qp,l for all l ∈ L . The compu-
tational complexity of solving this SDP with a standard interior-point solver equals
O(n6).

A.2.3 Dual SDP

Alternative to solving the primal SDP (A.6), its dual can be solved at the same
computational complexity. The formulation of the dual of (A.6) is facilitated by the
notion of adjoint mappings: Given a linear mapping F from vector space V with
internal product 〈·, ·〉V to vector space W with 〈·, ·〉W, then F adj : W → V, such that

∀α ∈ V,β ∈ W : 〈F (α),β 〉W = 〈α,F adj(β )〉V .

The adjoints of the linear mappings defined in the previous section are given by

K adj
np (Znp) =

[
A Bnp 0

]
Znp

⎡

⎢
⎣

AT

BT
np

0

⎤

⎥
⎦− [

I 0 0
]

Znp

⎡

⎣
I
0
0

⎤

⎦ ,

E adj
np (Znp) = 2ET

np Znp(1:n+1 , n+2) ,

G adj
np (Znp) = Tr

⎧
⎨

⎩
Znp

⎡

⎣
0 0 0
0 −1 0
0 0 −1

⎤

⎦

⎫
⎬

⎭
,

K adj
p (Zp,l) =

[
A Bp 0

]
Zp,l

⎡

⎢
⎣

AT

BT
p

0

⎤

⎥
⎦− [

I 0 0
]

Zp,l

⎡

⎣
I
0
0

⎤

⎦ ,
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Radj
p,l (Zp,l) = ηl

[
I 0 0

]
Zp,l

⎡

⎢
⎣

AT

BT
p

0

⎤

⎥
⎦+ηH

l

[
A Bp 0

]
Zp,l

⎡

⎣
I
0
0

⎤

⎦+

ζl
[
I 0 0

]
Zp,l

⎡

⎣
I
0
0

⎤

⎦ ,

E adj
p (Zp,l) = 2ET

p ℜ{Zp,l(1:n+1 , n+2)} ,

G adj
p (Zp,l) = Tr

⎧
⎨

⎩
Zp,l

⎡

⎣
0 0 0
0 −1 0
0 0 −1

⎤

⎦

⎫
⎬

⎭
.

Using these adjoint mappings, the dual of SDP (A.6) equals

maximize Tr{Znp Fnp}+ ∑
l∈L

Tr{Zp,l Fp} (A.7a)

subject to α+G adj
np (Znp) = 0 (A.7b)

1 + ∑
l∈L

G ajd
p (Zp,l) = 0 (A.7c)

E adj
np (Znp)+ ∑

l∈L

E adj
p (Zp,l) = 0 (A.7d)

K adj
np (Znp) = 0 (A.7e)

K adj
p (Zp,l) = 0 ∀ l ∈ L (A.7f)

Radj
p,l (Zp,l) � 0 ∀ l ∈ L (A.7g)

Znp � 0 (A.7h)

Zp,l � 0 ∀ l ∈ L , (A.7i)

where Znp ∈ Sn+2 and Zp,l ∈ Hn+2 for all l ∈ L , constitute the optimization
variables.

A.3 Eliminated Dual SDP

Equality constraints (A.7e) and (A.7f) allow eliminating the largest part of Znp and
Zp,l from SDP (A.7), which results in the following reduction of the number of
optimization variables:

� =
(n + 2)(n + 3)

2
+ nL (n + 2)2 elimination−−−−−−→ � = (2n + 3)+ nL (4n + 4) .
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Hereby, the computational complexity of solving the SDP with an interior-point
solver reduces from O(n6) to O(n4). The central idea of the elimination is explained
below while the reader is referred to [150] for more details.

A.3.1 Elimination of Znp

LetΘ ∈ Sn, κ ∈ Rn and κn+1 ∈ R be defined as follows

Znp =

⎡

⎣
Θ κ �
κT κn+1 �
� � �

⎤

⎦ ,

then constraint (A.7e) imposes

AΘ AT −Θ +
(

Aκ BT
np + BnpκT AT + Bnpκn+1 BT

np

)
= 0 .

For given κ and κn+1, this corresponds to a Lyapunov equation in Θ and since A
is stable, this equation has a unique symmetric solution. Hence, constraint (A.7e)
relatesΘ uniquely to κ , and this relationship is made explicit in the following way:

Θ =
n+1

∑
i=1

κiΘi , (A.8a)

where

AΘi AT −Θi +
(

Aei BT
np + Bnp eT

i AT
)

= 0 , ∀i = 1, . . . ,n , (A.8b)

AΘi AT −Θi +
(

Bnp BT
np

)
= 0 , i = n + 1 , (A.8c)

and vector ei corresponds to the i’th unity vector of Rn. Hence, computing the
explicit parametrization (A.8) involves solving n+1 Lyapunov equations a priori,
which requires a computational cost of O(n4).

A.3.2 Elimination of Zp,l

Since A and Bp are real matrices, complex matrix constraint (A.7f) is equivalent to
the following real-valued constraints:

ℜ
{

K adj
p (Zp,l)

}
= K adj

p

(
ℜ{Zp,l}

)
= 0 , (A.9a)

ℑ
{

K adj
p (Zp,l)

}
= K adj

p

(
ℑ{Zp,l}

)
= 0 . (A.9b)
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As a result, separate eliminations can be performed for the real and imaginary part
of Zp,l . The elimination of ℜ{Zp,l} is similar to the elimination of Znp, described in
the previous section. The elimination of ℑ{Zp,l} is slightly different, since ℑ{Zp,l}
is skew-symmetric instead of symmetric and is further elaborated below.

Let ρ ∈ Rn and the skew-symmetric matrix Σ ∈ Rn×n be defined as follows

ℑ{Zp,l} =

⎡

⎣
Σ ρ �

−ρT 0 �
� � 0

⎤

⎦ ,

then constraint (A.9b) imposes

AΣ AT −Σ +
(

Aρ BT
p − BpρT AT

)
= 0 .

For a given ρ , this corresponds to a Lyapunov equation in Σ and this equation has a
unique skew-symmetric solution, since A is stable. Hence, constraint (A.9b) relates
Σ uniquely to ρ , which is made explicit in the following way:

Σ =
n

∑
i=1

ρiΣi , (A.10a)

where

AΣi AT −Σi +
(

Aei BT
p − Bp eT

i AT
)

= 0 , ∀i = 1, . . . ,n . (A.10b)

Hence, computing the explicit parametrization (A.10) requires solving n Lyapunov
equations a priori, which requires a computational cost of O(n4).

A.4 Low-rank Structured Primal SDP

Based on the theory of Popov functions, summarized in Section A.4.1 for a discrete-
time SISO LTI system, optimization problem (A.1) is reformulated as an SDP that
features a low-rank structure. Solver gkypsdp, developed by Liu and Vanden-
berghe [94] exploits this structure and hereby reduces the computational complexity
to O(n3). Section A.4.2 details the corresponding LMI reformulations for the con-
straints of (A.1).
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A.4.1 Popov Functions

Any function of the form

[
(zI − A)−1B

1

]∗
R

[
(zI − A)−1B

1

]
,

with a given matrix R ∈ Hn+1, is called a Popov function, where superscript (·)∗
indicates the following relation

[
(zI − A)−1B

1

]∗
=
[
( 1

z I − A)−1B
1

]T

.

For z on the unit circle: z−1 = zH , and hence,

[
(zI − A)−1B

1

]∗
=
[
(zI − A)−1B

1

]H

.

The (generalized) KYP lemma analyzes functions of the form

[
H(z)

1

]H

Π
[

H(z)
1

]

on (parts of) the unit circle, or stated otherwise, the (generalized) KYP lemma ana-
lyzes the Popov function

[
(zI − A)−1B

1

]∗
RΠ

[
(zI − A)−1B

1

]
,

on (parts of) the unit circle, where

RΠ =
[
C D
0 1

]T

Π
[
C D
0 1

]
.

Identically Zero Popov Functions

Hassibi et al. [62] show that
[
(zI − A)−1B

1

]∗
R

[
(zI − A)−1B

1

]
= 0 , ∀z ∈ C (A.11)

holds if and only if there exists a matrix P ∈ Hn, for which

[
A B
I 0

]T

(Φ⊗ P)
[

A B
I 0

]
= R . (A.12)
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Equation A.11 involves a rational function of order 2n in z and consequently, this
function is identically zero if it is zero at 2n+1 distinct points. If these interpolation
points are chosen on the unit circle and grouped in the set C , constraint (A.11), and
hence, linear matrix equality constraint (A.12), is equivalent to

[
(zI − A)−1B

1

]H

R

[
(zI − A)−1B

1

]
= 0 , ∀z ∈ C .

KYP Lemma

LMI (A.4), obtained from the KYP lemma, is equivalent to

[
A B
I 0

]T

(Φ⊗ P)
[

A B
I 0

]
= Y − RΠ , (A.13)

for an arbitrary Y ∈ Sn+1, Y 
 0. Using the results of the previous paragraph, linear
matrix equality (A.13) is equivalent to

[
(zI − A)−1B

1

]H

Y

[
(zI − A)−1B

1

]
=
[

H(z)
1

]H

Π
[

H(z)
1

]
, ∀z ∈ C . (A.14)

Hence, frequency domain inequality (A.3) holds for all z ∈ ϒ (Φ,0) if and only if
there exists Y ∈ Sn+1, Y 
 0, for which (A.14) holds.

Generalized KYP Lemma

LMI (A.5b), obtained from the generalized KYP lemma, is reformulated as follows

[
A B
I 0

]T

(Φ⊗ P)
[

A B
I 0

]
= Y − RΠ −

[
A B
I 0

]T

(Ψ ⊗ Q)
[

A B
I 0

]
, (A.15)

with arbitrary Y ∈ Hn+1, Y 
 0. Using the results on identically zero Popov func-
tions, linear matrix equality (A.15) is equivalent to

[
(zI − A)−1B

1

]H (
Y −

[
g(z)Q 0

0 0

])[
(zI − A)−1B

1

]

=
[

H(z)
1

]H

Π
[

H(z)
1

]
, ∀z ∈ C , (A.16)

where

g(z) =
1
z

exp( jωcTs)+ z exp(− jωcTs)− 2cos(ωdTs) .
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Hence, frequency domain inequality (A.3) holds for all z ∈ϒ (Φ,Ψ ) if and only if
there exists Y ∈ Hn+1, Y 
 0, and Q ∈ Hn, Q � 0, for which (A.16) holds.

A.4.2 Reformulated Constraints

By applying the theory of Popov functions detailed in the previous section, con-
straint (A.1b) is converted into the following set of constraints in x ∈ RM and
Ynp ∈ Sn+1:

[
(zI − A)−1Bnp

1

]H

Ynp

[
(zI − A)−1Bnp

1

]
= γnp , ∀z ∈ Cnp ,

[
Ynp Enp x + Fnp

(Enp x + Fnp)T γnp

]
� 0 ,

where Cnp corresponds to a set of 2n + 1 interpolation points on the unit circle. In
[94] it is explained how to choose these interpolation points in order to obtain a
well-conditioned SDP.

In addition, each of the constraint (A.1c) is equivalent to the following set of
constraints in x ∈ RM , Yp,l ∈ Hn+1 and Qp,l ∈ Hn:

[
(zI − A)−1Bp

1

]H (
Yp,l +

[
gl(z)Qp,l 0

0 0

])[
(zI − A)−1Bp

1

]
= γp , ∀z ∈ Cp ,

[
Yp,l Ep x + Fp

(Ep x + Fp)T γp

]
� 0 ,

Qp,l � 0 ,

where

gl(z) =
1
z

exp( jlωpTs)+ z exp(− jlωpTs)− 2cos(lωpδTs) ,

and Cp corresponds to a set of 2n + 1 interpolation points on the unit circle.



Appendix B
Introduction to Output Regulation

This appendix provides a brief introduction to output regulation, which concerns
the design of an internally stabilizing controller that yields perfect asymptotic track-
ing/rejection of persistent inputs (see e.g. [117] for an in-depth treatment). Persis-
tent signals have infinite energy and can be described as the autonomous output of
a marginally stable system. According to the focus of this monograph, regulation
theory is elaborated here for a discrete-time SISO LTI system, while the persistent
input is considered periodic and generated byΛ(z), defined by Equation 2.5. Hence,
output regulation theory is applied to design a controller that yields perfect periodic
performance. Since current regulation theory cannot cope with uncertainty onΛ(z),
period-time uncertainty cannot be accounted for: δ = 0%.

As the output regulation problem is generally handled in state space, Section B.1
first presents the state-space models of P(z) and Λ(z). Subsequently, Section B.2
formulates the Internal Model Principle, the keystone of regulation theory, which
states that the controller must contain a (partial) copy ofΛ(z) to achieve output reg-
ulation. The design of the remaining freedom in the controller is facilitated by the
derivation of an auxiliary plant, detailed in Section B.3, while Section B.4 presents
particular controllers that achieve output regulation. To conclude, Section B.5 dis-
cusses the modifications required to relax the perfect periodic performance enforced
by the Internal Model Principle. To alleviate notation, argument (k) of the sampled
time signals is temporarily omitted.

B.1 Control Problem Formulation

This appendix follows the control problem formulation of Section 2.2, but requires
a state-space model of P(z) and Λ(z). These models are first presented below, fol-
lowed by the formulation of the output regulation problem.
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State-Space Models of P(z) and Λ(z)

The state-space model of generalized plant P(z) is described as follows:

P(z) :

⎧
⎪⎪⎨

⎪⎪⎩

qx = Ax + ∑
i∈I

Biwi + Buu

vi = Cix + Diwi + Diuu
y = Cyx + ∑

i∈I

Dyiwi

. (B.1)

Index i ∈ I labels the design specifications in the controller design, each involving
the closed-loop subsystem from exogenous input wi to regulated outputs vi. As the
off-diagonal subsystems are irrelevant to the controller design, only the direct feed-
through terms from wi to vi are indicated in (B.1). Without loss of generality, see
e.g. [78], no direct feed-through term from u to y is considered.

Perfect periodic performance corresponds to the ip’th design specification, where
subscript (·)ip is shortened to (·)p. Periodic input wp corresponds to the autonomous
output of signal generatorΛ(z), Equation 2.5, described by the following state-space
model:

Λ(z) :

{
qxΛ = AΛ xΛ
wp = CΛ xΛ

. (B.2)

In regulation theory, input wp is replaced by the states xΛ of its signal generator, and
to shorten notation, Bp, Dp and Dyp are redefined as follows:

Bp ≡ BpCΛ ,

Dp ≡ DpCΛ ,

Byp ≡ DypCΛ .

The remainder of this appendix focusses on one additional performance specifi-
cation i besides ip, and continues with the following state-space model:

P(z) :

⎧
⎪⎪⎨

⎪⎪⎩

qx = Ax + Biwi + BpxΛ + Buu
vi = Cix + Diwi + Diuu
vp = Cpx + DpxΛ + Dpuu
y = Cyx + Dyiwi + DypxΛ

.

Output Regulation

Output regulation deals with the design of a feedback controller K(z) that internally
stabilizes the closed-loop system and guarantees

lim
k→∞

vp(k) = 0 , (B.3)

independent of the initial states of P(z), Λ(z) and K(z).
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Well-posedness of this control problem requires the following assumptions:

1. The pair (A,Bu) is stabilizable.

2. The pair

([
Cy Dyp

]
,

[
A Bp

0 AΛ

])
is detectable.

The combination of (A,Bu) stabilizable and (Cy,A) detectable is essential to guar-
antee the existence of an internally stabilizing controller, while Λ(z) can always be
reduced to satisfy assumption 2, without loss of generality [45].

B.2 Internal Model Principle

As proven in e.g. [117], the existence of a controller that achieves output regulation
is equivalent to the existence of matrices Π and Γ that solve the following linear
equation, often called the regulator equation:

ΠAΛ = AΠ + BuΓ + Bp , (B.4a)

0 = CpΠ + DpuΓ + Dp . (B.4b)

For a SISO control problem, the regulator equation has a solution if and only if
subsystem Ppu(z), from u to vp, has no zeros coinciding with an eigenvalue of AΛ .

The Internal Model Principle states that a controller achieves output regulation if
and only if it admits a realization of the form:

K(z) :

⎧
⎪⎨

⎪⎩

qξ1 = AΛξ1 + CK1ξ2 + DK1
(
y +(Dyp +CyΠ)ξ1

)

qξ2 = AKξ2 + BK
(
y +(Dyp +CyΠ)ξ1

)

u = −Γξ1 + CK2ξ2 + DK2
(
y +(Dyp +CyΠ)ξ1

)
. (B.5)

Matrices Π and Γ are the solution of (B.4), while the design of AK, BK, CK1, CK2,
DK1 and DK2 is free as long as it guarantees internal closed-loop stability.

The earliest and most well-known form of the Internal Model Principle concerns
the control problem where vp(k) corresponds to the measured output: vp(k) = y(k).
By this equality, (B.4b) yields Dyp +CyΠ = 0, such that K(z) obtains a state matrix
of the following form: [

AΛ CK1

0 AK

]
,

and hence, the poles of Λ(z) are reproduced in K(z).
While controller structure (B.5) guarantees perfect periodic performance, the de-

sign of AK, BK, CK1, CK2, DK1 and DK2 should address the remaining design spec-
ifications i ∈ I \ {ip}. Since designing a controller with a particular structure is
mathematically involved, it is more convenient to transfer states ξ1, which relate to
the output regulation requirement, to the plant. This yields an auxiliary plant P(z),
and designing an unstructured controller K(z) for P(z) is equivalent to designing a
structured controller K(z), Equation B.5, for P(z), see e.g. [117] for a proof.
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B.3 Auxiliary Plant

Transferring states ξ1 from controller K(z) to plant P(z) requires the following mod-
ifications:

• The controller is provided with an additional output u1 that transfers the dynam-
ics of ξ1 to the plant: u1 = qξ1 − AΛξ1.

• Control signal u is replaced by u2 = u +Γξ1.
• Output signal y is replaced by ȳ = y +(Dyp +CyΠ)ξ1.

The remaining controller dynamics are contained in K(z):

K(z) :

⎧
⎨

⎩

qξ2 = AKξ2 + BKȳ
u1 = CK1ξ2 + DK1ȳ
u2 = CK2ξ2 + DK2ȳ

,

while the resulting auxiliary plant P(z) is given by

P(z) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qx = Ax + Biwi + BpxΛ + Bu(u2 −Γξ1)
qξ1 = AΛξ1 + u1

vi = Cix + Diwi + Diu(u2 −Γξ1)
vp = Cpx + DpxΛ + Dpu(u2 −Γξ1)
ȳ = Cyx + Dyiwi + DypxΛ + (Dyp +CyΠ)ξ1

.

More insight in the auxiliary plant dynamics is obtained by the following state trans-
formation:

x1 = x −Πxλ ,

x2 = ξ1 + xλ ,

which yields:

P(z) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qx1 = Ax1 − BuΓ x2 + Biwi + Buu2

qx2 = + AΛ x2 + u1

vi = Cix1 − DiuΓ x2 + Diwi + Diuu2 + (CiΠ + DiuΓ )xΛ
vp = Cpx1 − DpuΓ x2 + Dpuu2

ȳ = Cyx1 + (Dyp +CyΠ)x2 + Dyiwi

.

The direct feed-through term from xΛ to vi can be omitted as it is irrelevant to the
controller design. As long as K(z) yields an internally stable closed-loop system,
output regulation is always obtained, since in P(z) neither the state equation, nor the
output equations for vp and ȳ depend on xΛ .
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B.4 Special Regulators

If both x and xΛ are measurable (if the pair (CΛ ,AΛ ) is observable, xΛ can be re-
constructed from the nΛ last samples of wp), a static state-feedback controller of the
form

u =
[
(Γ − FΠ) F

]
[

xΛ
x

]
, (B.6)

where F is an arbitrary matrix such that A + BuF is stable, achieves output regula-
tion.

For measurement feedback control, regulation is achieved by a controller of the
form

K(z) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q

[
x̂Λ
x̂

]
=
[

AΛ 0
Bp A

][
x̂Λ
x̂

]
+
[

0
Bu

]
u(k)+ L

(
[
Dyp Cy

]
[

x̂Λ
x̂

]
− y

)

u =
[
(Γ − FΠ) F

]
[

x̂Λ
x̂

]

where F and L are chosen such that

A + BuF and

[
AΛ 0
Bp A

]
+ L

[
Dyp Cy

]

are stable. This controller corresponds to the combination of a Luenberger state
observer [96] and state-feedback controller (B.6).

B.5 Extension to Approximate Regulation

Only few contributions in output regulation deal with approximate instead of per-
fect regulation (B.3) [72, 86, 88, 93]. Köroğlu and Scherer [88] present an elegant
relaxation of exact output regulation theory, where “almost asymptotic regulation of
level κ” involves a controller design that internally stabilizes the closed-loop system
and guarantees

‖vp(k)‖2 ≤ κ‖xΛ (k)‖2 ,

for k → ∞, independent of the initial states of P(z), Λ(z) and K(z). State-space
model (B.2) of Λ(z) can be chosen such that ‖xΛ (k)‖2 equals rms(wp(k)). The con-
troller design for almost output regulation is very similar to the design for exact
regulation, where the main modification is replacing Equation B.4b by:

[
κI (CpΠ + DpuΓ + Dp)

(CpΠ + DpuΓ + Dp)T κI

]
� 0 .



Appendix C
Robust Controller Design Using the Structured
Singular Value

Section 3.3.4 presents an intuitive robust feedforward controller design approach,
but it only applies to the control configurations of Figures 3.1(a) and 3.1(b). Al-
ternatively, Section 4.3.4 proposes a robust disturbance feedback controller design,
but it cannot handle the robust tracking requirement (4.11) in an intuitive way. This
appendix presents the more general approach to the robust feedforward and esti-
mated disturbance feedback controller design, which relies on the structured singu-
lar value, see e.g. [43, 106, 131] for more details.

First, Section C.1 presents the definition and some properties of the structured
singular value. Subsequently, Section C.2 tackles the robust feedforward controller
design using the structured singular value, while Section C.3 deals with the robust
disturbance feedback controller design.

C.1 Structured Singular Value

While this monograph generally considers uncertainty set (2.2b), this section con-
siders a more general set ΔΔ , which allows for MIMO plant uncertainty Δ(z). The
structure of this uncertainty is determined by subset Ψ ⊂ Cm×m:

ΨΨ =
{

diag(ψ1Im1 , . . .ψEImE ,Ψ1, . . . ,ΨF) | ψi ∈ C , Ψj ∈ Cmj×mj

}
, (C.1)

and the more general set ΔΔ considered in this section is

ΔΔ =
{
Δ(z) is a stable system with ‖Δ(z)‖∞ ≤ 1 , and ∀z ∈ C :Δ(z)∈ΨΨ}

.
(C.2)
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w(k) v(k)

Δ

HΔ

H

Fig. C.1 Uncertain system HΔ corresponding to the linear fractional transformation of H
and Δ .

Definition

For a given matrix M ∈ Cm×m, the structured singular value related to ΨΨ (C.1),
denoted by μΨ (M), is defined as:

μΨ (M) ≡ 1
min{σmax(Ψ) |Ψ ∈ΨΨ , det(I − MΨ) = 0} ,

unless no Ψ ∈ΨΨΨ makes (I − MΨ) singular, in which case μΨΨΨ (M) ≡ 0. σmax(Ψ )
denotes the largest singular value of matrixΨ .

Computation

In general, the structured singular value μΨ (M) cannot be computed analytically,
and its numerical computation involves a nonconvex optimization problem. On the
other hand, the following upper-bound on μΨ (M) can be computed using convex
optimization:

μΨ (M) ≤ min{σmax(PMP−1) | P ∈ P} , (C.3)

where PP is the set of matrices P that commute with allΨ ∈ΨΨ , i.e., satisfy PΨ =ΨP.
The resulting upper-bound is generally tight (within a few per cent), and even exact
if 2E + F ≤ 3. Using upper bound (C.3), μΔΔ (M) < 1 is guaranteed if there exists a
matrix Q = P−1P−H , where P ∈ P, that satisfies:

MQMH − Q ≺ 0 .

Application to Robust Performance Analysis

Figure C.1 shows an uncertain (closed-loop) system HΔ (z), where model uncer-
tainty Δ(z) ∈ ΔΔ (C.2) is “pulled-out”, such that HΔ (z) corresponds to the linear
fractional transformation of H(z) and Δ(z). At a given frequency ω , robust closed-
loop performance can be analyzed by means of the following equivalence:
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−

−

(a)

(b)

wp(k) vp(k)
wΔ (k)

vΔ (k)

wp(k) vp(k)

wΔ (k)

vΔ (k)

KFF

KFF

G

G

WG

WG

Δ

Δ

Hp,Δ

H

+

+

+

+

Fig. C.2 Transformation of the robust feedforward control configuration (a) to the linear frac-
tional representation (b), where dynamic uncertainty Δ is “pulled-out” by means of additional
input wΔ (k) and output vΔ (k).

|HΔ (ω)| < 1 , ∀Δ(z) ∈ Δ ⇔ μΨ
(
H(ω)

)
< 1 ,

where
Ψ =

{
diag(Ψ1,Ψ2) |Ψ1 ∈Ψ , Ψ2 ∈ Cmw×mv} .

mw and mv respectively denote the dimensions of exogenous input w(k) and regu-
lated output v(k).

C.2 Robust Feedforward Controller Design

The difficulty in the robust feedforward controller design is to render the following
constraint:

|Hp,Δ (ω)| ≤ ν , ∀Δ(z) ∈ ΔΔ , (C.4)

for givenω , convex in ν and the design parameters of feedforward controller KFF(z).
The relation between closed-loop system Hp,Δ (z) and KFF(z) is determined by the
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control configuration (see Section 3.2.1), while model uncertainty Δ(z) corresponds
to multiplicative unstructured plant uncertainty: all potential plant models are of the
form

GΔ (z) = G(z)[1 +WG(z)Δ(z)] , Δ(z) ∈ ΔΔΔ , (C.5a)

where G(z) corresponds to the nominal model, uncertainty set ΔΔ is given by

Δ = {Δ(z) is a stable SISO system with ‖Δ(z)‖∞ ≤ 1} , (C.5b)

and stable transfer function WG(z) determines the “size” of the uncertainty. Since
uncertainty set Δ (C.5b) is unstructured:Ψ = C.

In the first step, the feedforward control configurations of Figure 3.1 with uncer-
tain plant GΔ (z) are transformed to Figure C.1. This transformation is illustrated in
Figure C.2 for the control configuration of Figure 3.1(a), which yields:

[
vΔ (k)
vp(k)

]

=

[
0 KFF(q)G(q)WG(q)

−1
(
1 − KFF(q)G(q)

)

]

︸ ︷︷ ︸
H(q)

[
wΔ (k)
wp(k)

]

.

The derivation of HΔ (z) for the alternative configurations of Figure 3.1 proceeds
similarly and yields:

(b) : H(z) =
[

0 KFFGWG

1 Gd + KFFG

]
,

(c) : H(z) =
[−ToWG KFFToWG

−So 1 − KFFTo

]
,

(d) : H(z) =
[−ToWG So(KFF + Ko)GWG

−So So(1 − KFFG)

]
,

(e) : H(z) =
[−ToWG So(KFF − GdKo)GWG

So So(Gd + KFFG)

]
,

where in the right-hand side, argument (z) is omitted to save space. To conclude, all
configurations give rise to

H(z) =
[

H1(z) H1p(z)
Hp1(z) Hp(z)

]
,

where H1(z) and Hp1(z) are independent of KFF(z), while H1p(z) and Hp(z) depend
affinely on KFF(z).

In the second step, constraint (C.4) is analyzed by means of the structured singu-
lar value. In this case,Ψ is given by

Ψ =
{

diag(Ψ1,Ψ2) |Ψ1 ∈ C , Ψ2 ∈ C} , (C.6)
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Fig. C.3 Robust estimated disturbance feedback control configuration, where argument (k)
of the sampled time signals is omitted to save space.

and the set P of matrices that commute withΨ ∈Ψ corresponds to P =Ψ . This way,
all matrices Q = P−1P−H , where P ∈ P, are real and diagonal, and without loss of
generality one of the diagonal elements is set equal to 1:

Q =
[

q 0
0 1

]
. (C.7)

SinceΨ , Equation C.6, only contains F = 2 subblocks, upperbound (C.3) is exact,
and therefore, the following equivalences hold:

|Hp,Δ (ω)| ≤ ν , ∀Δ(z) ∈ Δ

⇔
[

H1(ω) 1
ν H1p(ω)

Hp1(ω) 1
ν Hp(ω)

][
q 0
0 1

][
H1(ω) 1

ν H1p(ω)

Hp1(ω) 1
ν Hp(ω)

]H

−
[

q 0
0 1

]
≺ 0

⇔

⎡

⎢
⎣

[
H1(ω)
Hp1(ω)

]
q̄

[
H1(ω)
Hp1(ω)

]H

−
[

q̄ 0
0 ν

] [
H1p(ω)
Hp(ω)

]

[
H1p(ω)H Hp(ω)H

] −ν

⎤

⎥
⎦ ≺ 0 .

The last matrix inequality is affine in ν , q̄ = νq and in H1p(ω) and Hp(ω), which
depend affinely on KFF(ω), and hence, on the design parameters of KFF(z).

C.3 Robust Estimated Disturbance Feedback Controller Design

The difficulty in the robust estimated disturbance feedback controller design is to
render the following constraint:

|Hr,Δ (ω)| ≤ ν , ∀Δ(z) ∈ ΔΔ , (C.8)
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for given ω and ν , convex in the design parameters of disturbance feedback con-
troller KdFB(z). Model uncertainty Δ(z) corresponds to multiplicative unstructured
plant uncertainty (C.5) and Hr,Δ (z) is given by (4.11b).

In the first step, auxiliary closed-loop system H(z) is derived, where its inputs
wΔ (k), wr(k) and outputs vΔ (k), vr(k) are indicated in Figure C.3:

[
vΔ (k)
vr(k)

]

=
[−(KdFB + Ko)SoGWG ToWG

(KdFBG− 1)So So

]

︸ ︷︷ ︸
H(q)

[
wΔ (k)
wr(k)

]

,

where argument (q) is omitted to save space. Using the notation

H(z) =
[

H1(z) H1r(z)
Hr1(z) Hr(z)

]
,

H1r(z) and Hr(z) are independent of KdFB(z), while H1(z) and Hr1(z) depend affinely
on KdFB(z).

Second, constraint (C.8) is analyzed by means of the structured singular value,
and this step proceeds similarly to the previous section. The only modification re-
quired is replacing (C.7) by

Q =
[

1 0
0 q

]
,

whereby the following equivalence is obtained:

|Hr,Δ (ω)| ≤ ν , ∀Δ(z) ∈ ΔΔΔ

⇔

⎡

⎢
⎣

[
H1r(ω)
Hr(ω)

]
q
ν2

[
H1r(ω)
Hr(ω)

]H

−
[

1 0
0 q

] [
H1(ω)
Hr1(ω)

]

[
H1(ω)H Hr1(ω)H

] −1

⎤

⎥
⎦ ≺ 0 .
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