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Preface

Multi-agent systems are communities of problem-solving entities that can exhibit
varying degrees of intelligence. They can perceive and react to their environment,
they can have individual or joint goals, for which they can plan and execute
actions. Work on such systems integrates many technologies and concepts in ar-
tificial intelligence and other areas of computing as well as other disciplines. The
agent paradigm has become widely popular and widely used in recent years, due
to its applicability to a large range of domains, from search engines to educa-
tional aids to electronic commerce and trade, e-procurement, recommendation
systems, simulation and routing, and ambient intelligence, to cite only some.

Computational logic provides a well-defined, general, and rigorous framework
for studying syntax, semantics, and procedures for various capabilities and func-
tionalities of individual agents, aswell as interaction amongst agents inmulti-agent
systems. It also provides a well-defined and rigorous framework for implementa-
tions, environments, tools, and standards, and for linking together specification
and verification of properties of individual agents and multi-agent systems.

The CLIMA workshop series was founded to provide a forum for discussing,
presenting, and promoting computational logic-based approaches in the design,
development, analysis, and application of multi-agent systems.

The firstworkshop in these series took place in 1999 in LasCruces, New Mexico,
USA, under the title Multi-Agent Systems in Logic Programming (MASLP 1999),
and was affiliated with ICLP 1999.The name of the workshopchanged after that to
Computational Logic in Multi-Agent Systems (CLIMA), and it has since been held
in the UK, Cyprus, Denmark, USA, Portugal, and Japan. Further information
about the CLIMA series, including past and future events and publications, can
be found at http://centria.di.fct.unl.pt/~clima.

The eighth edition of CLIMA (CLIMA VIII) was held during September 10–11,
2007 in Porto, Portugal. It was co-located with ICLP 2007 (International Confer-
ence on Logic Programming). It received 30 submissions for regular papers and 3
submissions for system description papers, with about 40 delegates registered for
participation. More details about the event can be found at
http://research.nii.ac.jp/climaVIII/.

This volume of post-proceedings contains revised and improved versions of
14 regular papers and 1 system description paper presented at the workshop, as
well as the workshop invited paper, by Witteveen, Steenhuisen, and Zhang on
plan co-ordination. All the papers included in the post-proceedings have gone
through a thorough revision process, with at least two, and in the majority of
cases, three rounds of reviewing, with at least seven reviews, for each paper.

The accepted papers cover a broad range of topics. The invited paper ad-
dresses problems of interdependencies and co-ordination of task-based planning
in multi-agent systems where multiple agents are required to find a joint plan.
The paper by Hommersom and Lucas explores how interval temporal logic can
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be extended to provide an operator describing failure, useful for modeling agents’
failures in performing tasks, for example, because of the dynamic nature of the
environment. Jamroga and Bulling describe how game theoretic concepts can
be used within an alternating-time temporal logic to provide a formalism for
reasoning about rational agents. Pereira et al. propose an Emotional-BDI model
of agency that allows the emotions of fear, anxiety, and self-confidence, con-
tributing to agent behavior as well as the more conventional beliefs, desires, and
intentions. The paper by Boersen and Brunel investigates properties concerning
persistence into the future of obligations that have not been fulfilled yet.

Hakli and Negri give a proof theory for multi-agent epistemic logic with oper-
ators for distributed knowledge, whereby a proposition follows from the totality
of what the members of a group know. In their regular paper, Slota and Leite
give a transformational semantics for Evolving Logic Programs (EVOLP), prove
its soundness and completeness, and discuss the complexity of the transforma-
tion. They use this transformation for an implementation of EVOLP which is
described in their systems paper.

Dennis et al. propose, and provide semantics for, extensions of programming
languages that are based on the BDI type of agent models. The extensions are
aimed at allowing representation of organizational structures in multi-agent sys-
tems. Bryl et al. extend Tropos, a well-known agent-oriented early requirements
engineering framework, and then show how the extended framework can be trans-
lated into a framework of abductive logic programming. Costantini et al. describe
a heuristic algorithm for agent negotiation that exploits projections in convex
regions of admissible values and discuss its implementation and complexity.

A collection of three papers are related to argumentation. Hezart et al. pro-
pose context-sensitive defeasible rules for argumentation-based defeasible rea-
soning. Stranders et al. describe a fuzzy argumentation framework for reasoning
about trsut in agents. Toni proposes an approach to the selection and composi-
tion of services based on assumption-based argumentation.

Belardinelli and Lomuscio focus on the topic of first-order epistemic logic and
give a sound and complete axiomatization for quantified interpreted systems.
Gore and Nguyen give a tableau calculus for a class of modal logics and argue
its usefulness in reasoning about agent beliefs.

We would like to thank all the authors for responding to the call for papers
with their high-quality submissions, and for responding to and taking account
of the reviewers comments thoroughly in revising their contributions for inclu-
sion in this volume. We are also grateful to the members of the CLIMA VIII
Programme Committee and other reviewers for their valuable work in reviewing
and discussing the submitted articles over several rounds of reviews. We would
also like to thank the ICLP and the local organizers in Portugal for all their
help and support. We are grateful to the local organizers for handling all the
registration details and providing a very enjoyable social programme.

April 2008 Fariba Sadri
Ken Satoh
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Plan-Coordination Mechanisms and
the Price of Autonomy

J. Renze Steenhuisen, Cees Witteveen, and Yingqian Zhang

Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science,

Mekelweg 4, 2628CD Delft, The Netherlands
{J.R.Steenhuisen,C.Witteveen,Yingqian.Zhang}@tudelft.nl

Abstract. Task-based planning problems for multi-agent systems re-
quire multiple agents to find a joint plan for a constrained set of tasks.
Typically, each agent receives a subset of tasks to complete. Due to
task interdependencies, such task allocations induce interdependencies
between agents as well. These interdependencies will prevent the agents
from making a plan for their subset of tasks independently from each
other, since the combination of such autonomously constructed plans will
most probably result in conflicting plans. Therefore, a plan-coordination
mechanism is needed to guarantee a conflict-free globally feasible plan.

In this paper, we first present a brief overview of the main results
achieved on plan coordination for autonomous planning agents, distin-
guishing between problems associated with deciding whether a coor-
dination mechanism is necessary, designing an arbitrary coordination
mechanism, and designing an optimal (minimal) coordination mecha-
nism. After finding out that designing an optimal coordination mech-
anism is difficult, we concentrate on an algorithm that is able to find
a (non-trivial) coordination mechanism that is not always minimal. We
then discuss some subclasses of plan-coordination instances where this
algorithm performs very badly, but also some class of instances where a
nearly optimal coordination mechanism is returned.

Hereafter, we discuss the price of autonomy as a measure to determine
the loss of (global) performance of a system due to the use of a coordina-
tion mechanism, and we offer a case study on multi-modal transportation
where a coordination mechanism can be designed that offers minimal re-
strictions and guarantee nearly optimal performance. We will also place
the use of these coordination mechanisms in a more general perspective,
claiming that they can be used to reuse existing (single) agent software
in a complex multi-agent environment.

Finally, we briefly discuss some recent extensions of our coordination
framework dealing with temporal planning aspects.

Keywords: Complex tasks, planning, coordination, autonomy, multi-
agent systems.

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 1–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1 Introduction

Task planning is the problem of finding a suitable plan for carrying out a com-
plex task. By calling a task complex, we mean that (i) it consists of a number
of elementary tasks that (ii) are interdependent, and (iii) (usually) cannot be
completed by a single agent. For example, building a house constitutes a complex
task since it consists of laying a foundation, then building the walls and the roof,
then assembling the cases and painting the walls, assembling doors, etc. Typi-
cally, each of these tasks requires a different agent. Other examples that come
to mind are building a large ship on a wharf, preparing a manned spacecraft for
launch, and planning inter-modal transportation jobs.

Usually, we specify such a complex task T by stating the set T of elementary
tasks to be completed, the set of capabilities required to execute each elementary
task, and a set of constraints between the tasks that have to be respected in order
to ensure a correct execution of the complex task.

The specification of the capabilities is important in deciding which agent will
execute which (elementary) task. In this paper, however, we will not pay atten-
tion to this important (task allocation) problem1 and simply assume that task
allocation has been completed and that each agent has to find a way to achieve
the set of tasks allocated to it. Therefore, we will simply omit the specification
of the capabilities required.

A complex task then is a tuple T = (T, ≺) where T is a finite set of (elemen-
tary) tasks and ≺ is a partial order. Each elementary task t ∈ T , or simply task,
is a unit of work that can be executed by a single agent. These elementary tasks
are interrelated by a partially-ordered precedence relation ≺: A task t1 is said to
precede a task t2, denoted by t1 ≺ t2, if the execution of t2 may not start until
t1 has been completed.2 For example, building a wall of a house may not start
before the work on the foundations has been completed.

Suppose that such a complex task T = (T, ≺) is given to a set of autonomous
planning agents A = {A1, A2, . . . , An}. We assume that the tasks in T are as-
signed to the agents in A by some task assignment f : T → A, thereby inducing
a partitioning {Ti}n

i=1 of T , where Ti = {t ∈ T | f(t) = Ai} denotes the set of
tasks allocated to agent Ai.

Example 1. There are two agents involved in a complex construction task. Agent
A1 has to deliver bricks (t1) to agent A2 who will use them to build a wall (t2).
Agent A2 also has to ensure that garbage is collected (t3) and to deliver it to
agent A1 (t4). Agent A1 has to pickup the garbage (t5), and then to transport
it from the construction place to a dumping ground (t6).

1 How to find a suitable assignment for a set of agents is an interesting problem on its
own [1,2].

2 Of course, this interpretation of the precedence relation might vary. In general, we
might interpret t ≺ t′ as task t should {start, be completed} before task t′ is allowed
to {start, be completed}.
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t5 t6 t1

t2
t3 t4

A1

A2

Fig. 1. A specification of a complex task. The tasks are allocated to two agents: A1

and A2. Task dependencies are denoted by arrows.

There are some natural precedence relations between the tasks that must be
obeyed: t1 ≺ t2, t3 ≺ t4, t4 ≺ t5, and t5 ≺ t6. For an illustration of this complex
task, see Figure 1.

As a result of this task assignment, each agent Ai also inherits the precedence
constraints that apply to Ti, i.e., the set ≺i=≺ ∩ (Ti × Ti). These sets ≺i to-
gether constitute the set ≺intra=

⋃n
i=1 ≺i of intra-agent constraints, while the

remaining set of constraints ≺inter=≺ \ ≺intra constitutes the set of inter-agent
constraints. So each agent Ai is now responsible for achieving the (complex)
subtask (Ti, ≺i), while the agents depend on each other via the inter-agent con-
straints ≺inter .

Example 2. Continuing Example 1, as the result of task allocation, the set T is
partitioned into two sets T1 = {t1, t5, t6} and T2 = {t2, t3, t4}. The set of inter-
agent constraints is ≺inter= {t1 ≺ t2, t4 ≺ t5}, while the intra-agent constraints
are ≺1= {t5 ≺ t6} and ≺2= {t3 ≺ t4}.

Due to time and resource constraints, an agent Ai will be forced to make a
plan for its set of tasks Ti. Such a plan should be understood as the specifica-
tion of some partially-ordered set of actions (plan steps) that satisfies the task
constraints between the tasks given to the agents. It is not important to know
exactly which planning tools are used by the agent and which set of primitive ac-
tions is used to construct the plan: What counts is that the plan respects all the
task constraints ≺i. As a consequence, we assume that, whatever plan/schedule
representation the agents (internally) employ, the result of an internal plan Pi,
developed by agent Ai for its set of tasks Ti, can always be specified by a structure
Pi = (Ti, ≺∗

i ) that refines the structure (Ti, ≺i). We, therefore, require ≺i ⊆≺∗
i

to hold, which means that an agent’s plan must respect the original precedence
relation ≺i, but his plan may of course induce additional constraints.

Remark 1. The plan representation Pi = (Ti, ≺∗
i ) may be viewed as an abstrac-

tion of a concrete original plan P c
i . Suppose that the concrete plan can be mod-

elled as a partially-ordered set S of plan steps, i.e., P c
i = (S, <). Then we say that

Pi = (Ti, ≺∗
i ) is an abstraction of P c

i if there exists some function steps : Ti → 2S

mapping tasks to plan steps, such that (i) for every task t ∈ Ti, the concrete
sub plan (steps(t), <) of P c

i realises task t, and (ii) for every t, t′ ∈ Ti : t ≺∗
i t′



4 J.R. Steenhuisen, C. Witteveen, and Y. Zhang

iff ∀s ∈ steps(t) ∀s′ ∈ steps(t′) : s < s′. Note that such a concrete plan might
contain plan steps s that have no relationship with any task t.

Example 3. Continuing our previous example, our agent A1 who has to deliver
bricks (t1) and to pickup the garbage (t5), and then to carry it away (t6) might
construct a plan where he first drives with his truck to the construction place,
will pickup the garbage, drives to the dumping place, takes some coffee, then
loads some bricks and drives back to the construction place. This plan induces
the following order on the tasks to be completed: t5 ≺ t6 ≺ t1. Hence, his
plan can be represented as P1 = (T1, ≺∗

1) where ≺∗
1= {t5 ≺∗

1 t6, t6 ≺∗
1 t1} is a

refinement of ≺1 and, therefore, is a valid plan for (T1, ≺1).

Often, when more than one agent is involved in the task-planning process, we have
to take into account some degree of autonomy that each of the participating agents
might require when planning its part of the job. Here, autonomy has to be under-
stood in the sense that an agent Ai is not able to predict exactly how the plan Pj of
another agent Aj will look like for the set of tasks Tj given to that agent, and vice
versa. However, as the result of allocating subsets of tasks to different agents, these
agents might become interdependent as interdependent tasks might be allocated
to different agents. The result of, on the one hand, interdependency and, on the
other hand, unpredictability of individual planning outcomes, might easily lead to
conflicting plans, in the sense that the structure P = (T, (

⋃n
i=1 ≺∗

i ) ∪ ≺inter),
resulting from joining the individual plans, is no longer partially ordered. If this
is the case, we call the resulting joint plan P infeasible.

Example 4. Continuing the example, suppose that agent A2 develops a plan
completely independent from agent A1. This agent might decide to execute t2
before t3 and creates a plan P2 = (T2, ≺∗

2) where ≺∗
2= (t2 ≺∗

2 t3, t3 ≺∗
2 t4). The

result of this plan together with the plan P1 of agent A1 (see Example 3) is
depicted in Figure 2. As can be seen, the two plans together create a cycle and,
therefore, constitute an infeasible joint plan.

Obviously, due to this combination of task dependencies and independent plan-
ning, some form of coordination mechanism [3] is needed to ensure that the
results of the individual task-planning processes are jointly feasible.

t5 t6 t1

t2t3 t4

A1

A2

Fig. 2. Two plans of the agents, resulting in an infeasible joint plan
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In this paper, we will address the following plan-coordination problem for self-
interested planning agents: How to provide adequate coordination mechanisms
for autonomous planning systems that want to plan independently and are not
willing or able to revise their plans. In particular,

1. we present a framework for studying this plan-coordination problem,
2. we investigate the computational complexity of designing such plan-coord-

ination mechanisms, and
3. we discuss the price of autonomy, investigating the additional costs incurred

by independent planning.

Organisation. This paper is organised as follows. First, we present a brief
overview of research on (plan) coordination to make clear what the relation is
between our approach to plan coordination and other approaches. Second, we
present our framework for plan coordination for self-interested agents and we
give an overview of the complexity results obtained for designing adequate plan-
coordination mechanisms. To prepare the reader for a case study of the applica-
tion of coordination in logistic problems, we discuss a polynomial algorithm that
can be used to find a suitable coordination mechanism. We prove that for some
particular classes of complex tasks it delivers a nearly optimal mechanism. After
introducing the price of autonomy, we apply this algorithm to a logistic prob-
lem, showing that in some particular cases plan-coordination mechanisms can be
applied with almost negligible overhead, while ensuring autonomous planning.

2 Plan Coordination for Autonomous Planning Agents

2.1 Background

In general, a plan-coordination mechanism should guarantee, by possibly re-
designing the original planning task, some minimal overall performance even if
the agents are completely selfish [3].

Redesigning the original planning task usually imposes additional restrictions
on the tasks to be completed in order to guarantee a minimal performance. In
general, such additional restrictions will possibly affect both the planning free-
dom of the participating agents and the quality (cost, efficiency) of the plans
they are able to develop. Therefore, we propose to define the quality of a plan-
coordination mechanism both in terms of the tightness of the restrictions im-
posed, and the overall plan quality it ensures. Such a definition, however, would
neglect an important factor that influences the choice of an adequate coordi-
nation mechanism: the collaboration level between the agents. Depending on
this collaboration level we have to determine which coordination mechanism is
suitable for the agents and this also determines the quality of the (optimal) co-
ordination mechanism. For example, in approaches like [4,5] the authors propose
to manage the coordinated planning and execution of the tasks by letting the
agents keep each other informed about any changes (e.g., completed, new, or
re-scheduled tasks). Here, a plan-coordination mechanism can be designed to
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facilitate inter-agent information exchange in order to improve the quality of the
joint plan.

In other approaches, like the plan-merging approach [6], plans sometimes need
to be revised when merging them into an overall plan, despite that agents are
allowed to construct their plans independently. In this case, a plan-coordination
mechanism could facilitate the exchange of mutual plan information in order to
improve the overall plan quality by merging techniques.

It is clear that these approaches require the agents to be more or less collab-
orative, each agent willing to inform other agents about details of its individual
plan and/or willing to revise its plan when necessary. However, such approaches
are hardly usable if the agents are selfish (unwilling to communicate or revise
their plans), or are not able to do so (e.g., in disaster-rescue operations, when
communication is often impossible or difficult to establish).

Approaches to coordinating self-interested, non-cooperative agents, however,
are mostly concentrating on task execution processes that do not require exten-
sive forms of planning. Typical examples here are the study of (combinatorial)
auctions for task allocation and coalition formation processes in multi-agent sys-
tems [1,7,8] and its relations to combinatorial optimisation problems (c.f. [9]).
In these approaches, the tasks to be completed consist of a set of atomic tasks
and each of the agents receives one single task of a subset of tasks. Even if the
task description is more elaborate like in the Traderbots architecture [10], it is
assumed that the set of subtasks does not require an elaborate planning process
to execute. Therefore, the problem of identifying planning constraints and the
problem of allocating them do not occur here.

2.2 The Plan Coordination Problem for Self-interested Agents

In contrast to the above mentioned approaches, some authors [11,12] studied
the (computational) properties of coordination mechanisms that can be used for
selfish planning agents. In such approaches, where the collaboration level is low
or even absent, it is assumed that the agents (i) require autonomous planning of
their part of the task, and (ii) are not willing to revise their own plan, thereby
ruling out any form of collaboration either during planning or after planning.
To meet such requirements, a plan-coordination mechanism should ensure that
whatever plans are proposed by the individual agents, their combination always
constitutes a feasible plan for the total set of tasks. The basic setup of such
an approach has been discussed in the Introduction. Summarizing, the main
ingredients of this framework are as follows:

1. We have a complex task T = (T, ≺), specifying a partially-ordered set of ele-
mentary tasks t ∈ T , and a set of self-interested agents A = {A1, A2, . . . , An}
that require planning autonomy.

2. The tasks t ∈ T are allocated to the agents Ai inducing a task partitioning
({Ti}n

i=1, {≺i}n
i=1, ≺inter ) where (Ti, ≺i) is a partially-ordered complex task

allocated to agent Ai. Here, ≺i is the restriction of ≺ to (Ti ×Ti), and ≺inter

is the set of precedence relations between tasks allocated to different agents.
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3. Each agent Ai is allowed to construct a plan Pi for its set of tasks Ti com-
pletely independent from the other agents. We assume that each such a plan
Pi is representable as a partial order Pi = (Ti, ≺∗

i ) where ≺i ⊆ ≺∗
i (i.e., each

plan Pi respects the local constraints ≺i).

Now, the coordination problem we are facing can be stated as follows.

How to ensure that, whatever plans Pi = (Ti, ≺∗
i ) are developed by the in-

dividual agents Ai, each respecting the local constraints ≺i, their
combination, together with the set of inter-agent constraints, constitutes
a feasible plan, that is, how to ensure that for every i and for every
partially-ordered extension ≺∗

i of ≺i, the relation (
⋃n

i=1 ≺∗
i ) ∪ ≺inter

again is a partial order?

As we have shown before [11,12], the only way to solve this problem is to
design a coordination mechanism that adds, to each set of individual precedence
constraints ≺i, a set Δi of precedence constraints. The resulting set Δ =

⋃n
i=1 Δi

is called a coordination set and the redesigned complex task is said to be plan
coordinated.

Example 5. Let us consider the construction task from the previous examples. As
we have shown in Example 4, there exists some combination of plans that turns
out to be infeasible, creating a cycle. Therefore, this particular complex task
instance is not plan coordinated. If, however, we change the task specification
for agent A1 adding the coordination set Δ = Δ1 = {t1 ≺1 t5} to the complex
task, no possible combination of plans developed by agent A1 and A2 will create
a cycle (see Figure 3).

t5 t6 t1

t2t3 t4

A1

A2

Fig. 3. Adding a precedence constraint prevents conflicting plans

2.3 Complexity of Designing Plan Coordination Mechanisms: Some
Results

The results of this approach to plan coordination for self-interested agents can
be summarised as follows:

1. Verifying whether a plan-coordination mechanism is necessary. It
is intractable (coNP-complete) to decide whether or not a redesign of the
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planning task is necessary to ensure feasibility of the joint plan (i.e., the
problem to verify whether it is needed to design a plan-coordination mecha-
nism is intractable)[11]. This holds already for instances with a few (at least
4) tasks per agent. If, however, the number of agents is fixed, the problem is
polynomially decidable [12].

2. Designing an arbitrary coordination mechanism. It is always pos-
sible to find a (trivial) plan-coordination mechanism in polynomial time
that guarantees the existence of a joint conflict-free plan. So the problem
of finding an arbitrary plan-coordination problem is in P. The coordination
mechanism simply specifies some additional constraints to the complex task
to be solved in such a way that for every agent the set of tasks it has to
complete is totally ordered [11].

3. Designing a minimal coordination mechanism. The construction of
a minimal plan-coordination mechanism (minimally redesigning the original
complex task specifications) is a highly complex task in itself. Even for in-
stances where the agents are assigned 2 tasks, it is already an NP-complete
problem, while in general, the problem of finding a minimal coordination
mechanism is Σp

2-hard, even if the agents have a modest number of tasks (7
or more) to complete [12].

3 A Polynomial Algorithm to Achieve Plan Coordination

Since the problem of finding a minimal coordination set Δ is too complex to
solve in reasonable time (unless P = NP), and the trivial solution to the coor-
dination problem generates an inflexible solution, in this section, we investigate
an algorithm to produce a coordination set that is more flexible than the triv-
ial one, but not necessarily an optimal one. First, we show that the algorithm
indeed may perform very badly on some instances of the coordination problem.
Then we present a class of instances where the algorithm produces near-optimal
results.

The algorithm, called the Depth-Partitioning Algorithm, is based on the simple
construction described in Algorithm 1.

This algorithm is capable of making any complex task plan coordinated.

Example 6. Let us consider the application of the algorithm to the complex
task T discussed in Example 1 and presented in Figure 1. There are six tasks
t1, . . . , t6 involved. In Figure 4, the depths of the tasks are indicated. Since the
tasks belonging to agent A1 are t1, t5, t6, their different depths induce the set
Δ1 = {t1 ≺1 t5, t5 ≺1 t6} of constraints and as a result, the (new) precedence
tuple t1 ≺1 t5 is added to ≺1 (indicated by the dashed arrow).

Likewise, since t2, t3, t4 belong to agent A2 and the depth of t3 is smaller than
the depth of t4 and t2, Δ2 = {t3 ≺2 t2, t3 ≺2 t4} and the (new) tuple t3 ≺2 t2
is added to ≺2, again indicated by the dashed arrow. As can easily be seen, the
instance is plan coordinated, since traversing the arrows, the depth of the tasks
can never decrease and if a local plan constraint t ≺i t′ is added, it can only be
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Algorithm 1. Depth-Partitioning Algorithm.
1. Take the partially-ordered complex task T = (T, ≺) and consider the subsets

T d = {t ∈ T | depth(t) = d} of tasks having the same depth in T . Here, the depth
depth(t) of a task t is defined as follows: If t does not have predecessors in ≺ then
depth(t) = 0, else depth(t) = 1 + max{depth(t′) | t′ ≺ t}. The depth depth(T )
of the set of tasks T is the maximum value of depth(t) for a t ∈ T . Note that
{T d}depth(T )

d=0 is a partitioning of T .
2. Consider the task partitioning {Ti}n

i=1 of T induced by the task allocation to the
agents {Ai}n

i=1 and let T d
i denote the set of tasks t ∈ Ti such that depth(t) = d.

3. For every agent Ai, let (T d1
i , T d2

i , . . . , T dk
i ) be the sequence of all (non-empty) sets

T d
i sorted in increasing values of the depth value dj .

4. For every agent Ai, let Δi = {t ≺i t′ : (t, t′) ∈ T
dj

i × T
dj+1
i , j = 1, 2, . . . , k − 1}

(i.e., all tasks of an agent Ai occurring at a lower depth are required to precede all
tasks occurring at a higher depth).

5. Output Δ =
⋃n

i=1 Δi.

t5 t6 t1

t2t3 t4

d = 0

d = 1d = 0 d = 1

d = 2 d = 3
A1

A2

Fig. 4. Applying the Depth Partitioning Algorithm to the task discussed in Example 1.
The dashed arrows indicate the precedence constraints added by the algorithm.

added if depth(t) < depth(t′). Hence, the task instance remains partially ordered
whatever locally feasible plan constraints are added by the agents.

Proposition 1. Let T = (T, ≺) be a complex task and Δ the set of additional
precedence constraints induced by the depth-partitioning algorithm given above.
Then the complex task T ′ = (T, ≺ ∪ Δ) is plan coordinated.

Proof. See Appendix A.

The quality of the coordination mechanism produced by an algorithm can be ex-
pressed as the number of constraints added by the algorithm versus the number
of constraints added by a minimal coordination mechanism. We will call this ra-
tio, a number greater than or equal to 1, the performance ratio of the algorithm.
The closer this ratio is to 1, the better the algorithm is. It is not difficult to see
that our simple algorithm can produce arbitrary bad coordination sets, which is
illustrated by the following example.
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A1

A2
A3

A4

A5
A6

A6

A1

A2
A3

A4

A5
A6

A6b

a

Fig. 5. A complex task (a) where the depth-partitioning algorithm performs badly,
adding 7 constraints (indicated by the dashed arcs, see (b)) where only one (from task
b to task a) is needed

Example 7. Consider the following complex task with n + 1 agents, each having
2 tasks. Each agent Ai, for i = 1, 2, . . . , n, has one task that precedes the task a
belonging to agent An+1, while agent An+1 also has a second task b that has to
precede all (second) tasks of the other agents. In Figure 5, such a complex task
is depicted for n = 6.

If we add one constraint between task b and task a for agent An+1 then the
instance is plan coordinated: Every inter-agent cycle is prevented by adding this
constraint. On the other hand, every task t in this partially-ordered set of tasks
has either depth 0 or depth 1. Moreover, every agent has exactly one task of depth
0 and one task of depth 1. Therefore, the algorithm will produce n+1 additional
constraint arcs, for every agent one constraint. This shows that the performance
ratio of this algorithm is n+1

1 and, hence, not bounded by a constant.

3.1 Task Chains

Although the algorithm produces coordination sets that are far from optimal
in general, special cases exist where the algorithm produces (nearly) optimal
results. One such a class is the class of complex tasks where the partial order
defined on T generates a series of parallel chains each of depth d for some constant
d. An example of such a set of chains and a partitioning of the tasks is given in
Figure 6. Within this class we distinguish left-right and right-left chains and a
partitioning such that an agent Ai, with i = 0, 1, . . . , d, has tasks of depth i in
left-right chains and tasks of depth d − i of right-left chains (see Figure 6). Let
us call a set of such chains of depth d a d-instance. If such a d-instance contains
k left-right and m right-left chains, we will call such a set a (d, k, m)-instance.
Note that the total number of tasks in such a set is |T | = (d + 1) × (k + m).

It is not difficult to see that the minimum number of additional constraints to
make a (1, k, m) set coordinated is k × m: In order to prevent cycles, we have to
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Fig. 6. A set of parallel chains (a (5, 3, 3)-set) as a complex task (a). In (b), the set Δ1

of additional constraints for agent A1 is shown.

add an arc between the beginning of a left-right and the end of every right-left
chain or vice-versa. Proceeding inductively, suppose that we add 1 to the length
of every chain in a given (d, k, m)-instance with d + 1 agents and we create an
additional agent to take care of the new tasks. Furthermore, suppose that the
original (d, k, m)-instance was already coordinated. Then it is not difficult to
see that again k × m coordination arcs have to be added in order to make this
instance plan coordinated. This implies the following result.

Observation 1. The minimum size of a coordination set to make a (d, k, m)-
instance plan coordinated is d × k × m.

We will show that the Depth-Partitioning Algorithm (Algorithm 1) produces
minimal coordination sets for some (d, k, m)-sets. Note that the set of tasks of
every agent (except the middle agent if d is even)3 consists of exactly two subsets
of tasks of different depth. If d is odd, the algorithm will, therefore, return a set
of (d + 1) × k × m additional constraints. If d is even, there is exactly one agent
whose tasks all have the same depth. As a result, the algorithm will return a set
of d × k × m additional arcs. Hence, we have the following result.

Proposition 2. The depth-partitioning algorithm returns an optimal coordina-
tion set for every (d, k, m)-set, d ≥ 1, where d is an even number. If d ≥ 1 is
odd, the performance ratio of the algorithm is d+1

d ≤ 2.

In particular, these performance measures do not change if, instead of one agent
Ai for every set of tasks at level i in left-right chains and depth d − i in right-left
chains, we have more than one agent for such a sets of tasks. One such example is
the logistic planning problem. Before we discuss this case, we will introduce the
price of autonomy to qualify coordination mechanisms in a more detailed way.

4 The Price of Autonomy and an Application to Logistic
Planning

A coordination mechanism like the one we discussed in the previous section
guarantees that a set of agents can plan independently. It realises this guarantee
3 Remember that d starts from 0. If d is even, the length of a chain and the number

of agents is odd.
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by imposing additional restrictions on the complex task to be completed. These
additional restrictions can be seen as one aspect of the price of autonomy, since
they restrict the planning freedom of the participating agents. One way to re-
duce the price of autonomy in this respect is to look for a minimum number of
additional constraints. Taking into account the loss of freedom, however, is only
one aspect of the price of autonomy.

Another, as important, behavioural aspect of autonomous planning is the
loss of performance it might incur: Due to autonomous planning, the joint plan
that is composed from the independently developed individual plans might have
a significantly higher cost than an optimal plan for the complex task when
assuming non-autonomous planners. So assuming an optimal (i.e., minimum)
coordination mechanism that can be found efficiently, we could define the price
of autonomy ρ w.r.t. the performance of the planning system as the ratio

ρ =
cost of joint plan composed of individually optimal plans

cost of optimal joint plan
(1)

Here, the cost of a joint plan refers to the cost of the concrete joint plan of
all agents together (see Remark 1). This implies that in order to establish the
price of autonomy we have to investigate a concrete planning domain, where the
set of plan steps used to compose plans is known and the cost of plans based
on ordering these plan steps can be determined. Here we have chosen a simple
logistic planning domain to investigate the price of autonomy.

4.1 Logistic Planning Problems

The logistic planning problem we have in mind consists of a triple (L, C, O)
where L is a set of m × n locations li,j and C is a set of n cities ci. Each city ci

is a subset ci = {li,j | j = 1, 2, . . . , m} of m locations in L. O ⊆ (L × L) is a set
of orders o = (l, l′), indicating that a certain package has to be transported from
(pickup) location l to (delivery) location l′. All locations belonging to a city ci are
interconnected via direct links. In each city ci, we distinguish a special location
li,1 as the airport of city ci. All airports are assumed to be interconnected via
direct flights. See Figure 7 for a simple illustration.

We assume a truck to be available in each city to carry packages from one
location in the city to another. There is also a plane available carrying packages
from one airport to another. Both trucks and planes can carry any amount of
packages. We distinguish intra-city orders and inter-city orders. An intra-city
order requires a load action at the pickup location, a move action, and an unload
action at the destination location in the same city. So the cost of an intra-city
order is minimally 3 actions. For an inter-city order, we distinguish a pre-order
phase, a plane-phase, and a post-order phase. In the pre-order phase, an intra-
city order is carried out by transporting the package to the airport of the pickup
city. In the plane-phase, the package is transported to the destination airport.
In the post-order phase, the package is transported from the airport to its final
destination. So an inter-city transportation might require at least 6 load/unload
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city

city

city

city

airport

airport

airport

airport

Fig. 7. A logistics example with 4 cities and 3 locations per city. No orders are specified.

actions and at least 3 move actions. We use a simple uniform cost model where
every load, unload and move action has unit cost. Hence, the cost of a plan
simply equals the number of actions it contains.

Given an instance (L, C, O) of this logistic planning problem we are looking
for a plan P that carries out all orders in O. Such a plan is a sequence of
load/unload and move actions completing all the orders in O. The cost of P ,
denoted by c(P ), is the sum of the cost of all (move, load and unload) actions
occurring in P and of course, we would like to obtain an optimal plan P ∗, i.e.,
a plan with minimum cost.4

4.2 Coordinating the Logistic Planning Problem

Note that an instance (L, C, O) of the logistic planning problem can be easily
translated into a complex task (T, ≺): Every inter-city order oj consists of a
linearly-ordered sequence of three elementary tasks tj1 ≺ tj2 ≺ tj3, where tj1 is
a truck task of transporting the package from its pickup location to the airport,
tj2 is the plane task of transporting the package to the airport of the destination
city, and finally tj3 is a truck task consisting in transporting the package to
its destination location. Note that the task assignment is trivial here, since the
pre- and post-order phase of an order o ∈ O are assigned to the truck agent in
the city where the pick-up and delivery location belong to, respectively, and the
plane-phase orders are assigned to the plane agent. Note that the set O of orders
induces a 2-instance (an instance containing chains of length 3) of size |O| in the
complex task (T, ≺).

It is easy to see that a feasible joint solution is not guaranteed if the truck
and plane agents plan independently from each other. Applying the Depth-
partitioning algorithm on this 2-set, it is easy to see that the set of orders Oi

of every truck agent Ti is partitioned into two sets O0
i and O2

i : The first set is
the set of all pre-order transportations tasks (of depth d = 0 to the airport of
the city, and O2

i is the set of all post-order transportation tasks of depth d = 2.

4 Note that we are not looking for a minimum time plan.
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The Depth-partitioning algorithm forces the addition5 of the constraints t ≺ t′

for every t ∈ O0
i and t′ ∈ O2

i . Since the complex task induced by the logistic
planning problem is a (2, k, m)-instance, from the discussion in Section 3.1, it
can be easily seen that this set of additional constraints is a minimum set.

The Depth-partitioning algorithm now guarantees that every plan developed
by any of the truck agents and every plan developed by the plane agent can be
joined together to constitute a feasible plan for the complex task. Moreover, for
this particular logistic problem, it guarantees that the coordination mechanism
imposes a minimum amount of additional constraints.

We would like to determine the price of autonomy ρ, that is the cost incurred
by the coordination mechanism. This cost measure is determined by the sum
of the costs of the individually optimal plans developed by the agents versus
the cost of the globally optimal transportation plan. Apparently, the cost of the
optimal plan seems to be fixed: Every transportation order requires 6 load and
unload actions and 3 move actions, so the cost of n transportation orders would
be ≥ 9n using a uniform cost model. This line of reasoning, however, does not
recognise that we can often build cheaper plans by carefully combining pickup
and delivery orders. For example, if a truck has to bring m packages from city
locations to the airport, a worst-case plan would be first to drive to the first
pickup location then to bring each package to the airport separately, incurring a
cost of 1 pickup + 1 move + 1 delivery = 3 actions per order + m move actions
to go to the pickup locations. This will result in a plan cost of 3m + m = 4m.
A better plan, however, would be first to drive to all pickup locations, picking
up all packages (2m actions) then to drive to the airport (1 move action) and
finally to unload the truck (m actions). This requires a plan with cost at most
3m+1. Likewise, the cost of an optimal plane plan depends on finding a smallest
number of move actions required to satisfy all transportation orders.

4.3 Visiting Sequences

To determine the price of autonomy, we have to determine the sum c(P ∗
loc) of

the costs of the independently constructed (locally) optimal plans and the cost
c(P ∗) of the optimal plan. From the discussion above, we conclude that to find
these optimal plans, we have to find the minimal number of move actions in
each of these plans. This number of move actions required can be determined by
introducing the notion of a visiting sequence.

Let L = {l1, l2, . . . , ln} be a set of locations in a given city (or a set of airports)
and let O ⊆ (L × L) be a set of pickup-delivery orders over L. We assume that
all locations are directly connected and the cost to travel from ci to cj is the
same (one move action) for all i �= j.

A (move) plan for carrying out the set of orders O can be represented by
a sequence S of locations over L such that all pickup-delivery orders can be
carried out by visiting the locations in the order indicated by S. Such a visiting
sequence S is a sequence over L with possible repetitions. An order (l, l′) ∈ O

5 The plane tasks, however, all belong to one partition.
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is fulfilled by a sequence S if there exists sub-sequences α, β, γ over L such that
S = αlβl′γ (i.e., S contains an occurrence of l before an occurrence of l′). A
visiting sequence S over L is a solution to the instance (L, C, O) if all orders in
O are fulfilled by S.

The problem to find an arbitrary visiting sequence solution S for a set of orders
O is an easy problem: Let S′ be an arbitrary sequence where every city in L occurs
exactly once and consider the concatenation S = S′◦S′. Since for every (l, l′) ∈ O
an occurrence of l in the first subsequence and an occurrence of l′ in the second
subsequence can be selected, clearly, S is a solution. However, to find an optimal
solution S∗ (i.e., a visiting sequence of minimum length) is intractable. This mini-
mal visiting sequence problem is an NP-hard problem since the NP-hard Feedback
Vertex Set (FVS) [13] is polynomially reducible to it.

Without loss of generality, we may assume that for every visiting sequence so-
lution S for O it holds that no location l mentioned in O occurs more than twice
in S. Otherwise, just keep the first and the last occurrence of l in S and we still
have a solution. Therefore, for every visiting sequence solution S, it should hold
that |S| ≤ 2 × |S∗|, since every location l in O should appear at least once in S∗.

4.4 Determining the Price of Autonomy

Note that the length of a visiting sequence S can be used to determine the cost
of a plan P for a (truck or plane) planning problem: If S is the visiting sequence
solution for the set of orders, the cost c(P ) of the corresponding transportation
plan P equals c(P ) = 2 · |O| + |S| (i.e., when taking into account one additional
load and one unload action per action, each of unit cost).

We can now determine the price of autonomy for the logistic planning problem
as follows: Let p be the number of orders, n the number of cities and m + 1 ≥ 2
the number of locations per city.6 Without loss of generality, we may assume
that each location in each city is mentioned at least once in the set of orders.
Therefore, p ≥ 0.5(n × m), because every order specifies two different locations
(not equal to the airport).

Let us first consider the cost c(P ∗
loc) of the combination of locally optimal

plans. Each order requires 6 load and unload actions, so we need 6p load and
unload actions in total. Suppose that in city ci we have mi1 pickup locations
and mi2 delivery locations. Clearly, we should have m ≤ mi1 + mi2 ≤ 2m. To
transport packages to the airport we need at most mi1 + 1 move actions per
city and to transport them from the airport we need mi2 move actions per city.
This means at least m + 1 ≤ mi1 + mi2 + 1 ≤ 2m + 1 move actions per city ci.
To transport the packages by plane, we need a minimal visiting sequence S∗

n for
pickup and delivery at the n airports. Hence, the total cost of the optimal joint
plan P ∗

loc allowing independent planning equals

c(P ∗
loc) = 6p +

n∑

i=1

(mi1 + mi2 + 1) + |S∗
n|. (2)

6 We assume that all orders create a transportation chain of length 3, which implies
that every order requires transportation to and from an airport.
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Considering the cost of a globally optimal plan P ∗, we note that in every city
transporting packages to the airport might be combined with the delivery of
packages arrived by plane to their final destinations. Since every location in a
city is mentioned at least once in some order (either as destination location or
as source location) this number of (combined) move actions per city is m + 1,
so for all cities in total (m + 1) × n. The number of plane moves is |S′∗

n |, where
the optimal plane plan has to satisfy additional constraints allowing for efficient
pre- and post transportation. Thus, the total cost for the minimal plan |P ∗| is

c(P ∗) = 6p + (m + 1)n + |S′∗
n |, (3)

where |S′∗
n | ≥ |S∗

n| since S∗
n is a globally optimal move plan for the plane. Hence,

ρ =
c(P ∗

loc)
c(P ∗)

=
6p +

∑n
i=1(mi1 + mi2 + 1) + |S∗

n|
6p + (m + 1)n + |S′∗

n | . (4)

This ratio is maximal if mi1 = mi2 = m for i = 1, 2, . . . , n, implying that
p ≥ m × n. Using the constraint |S′∗

n | ≥ |S∗
n| ≥ n, we derive

ρ =
c(P ∗

loc)
c(P ∗)

≤ 6mn + 2mn + 2n

6mn + mn + 2n
=

8m + 2
7m + 2

≤ 8
7

≈ 1.14 . (5)

Note that this price of autonomy is based on the assumption that the plane plan
to be developed by the plane agent is optimal (i.e., it costs an optimal number
of |S∗

n| move actions). As we have remarked above, determining this optimal
visiting sequence is an intractable problem. If we don’t require this plane plan
to be optimal, the total number of move actions can be at most twice the number
of move actions in an optimal plan. Then, we can determine the effective price
of autonomy ρeff as

ρeff =
c(Peff )
c(P ∗)

≤ 6p + 2mn + n + 2 × |S∗
n|

6p + mn + n + |S∗
n| ≤ 8mn + 3n

7mn + 2n
≤ 11

9
≈ 1.22 . (6)

Remark 2. To place this result into perspective, we should mention that, unless
there is some major breakthrough in complexity theory,7 we cannot hope for an
ε-approximation algorithm that solves the minimum visiting sequence problem
with ε < 2. This implies that the best performance ratio of an approximation
algorithm for the logistic planning problem with p = mn and m = 1 we can
hope for is

α =
6mn + (m + 1)n + 2 × |S∗

n|
6mn + (m + 1)n + |S∗

n| =
7mn + 3n

7mn + 2n
=

7 + 3
7 + 2

≥ 10
9

≈ 1.11 (7)

If we compare this result with Equation 5 and m = 1 this directly implies
that the best polynomial approximation algorithm would introduce almost the
same overhead (worstcase) as locally optimal algorithms for solving the logistic
problem with our coordination mechanism do.
7 The breakthrough would be finding a constant-approximation algorithm for the Min-

imum Directed Feedback Vertex Set-problem.
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5 Experimental Results

The results obtained in the previous sections are theoretical and worst-case results.
We are guaranteed that the price of autonomy is never worse than about 1.22 im-
plying that we do not increase the cost of our joint plan too much, compared to the
cost of an optimal plan. Now, we will compare the performance of our coordination
approach with planners that aim to solve the logistic problem centrally.

With this comparison we want to show two things: First, the average per-
formance of our coordination approach is much better than what should be
expected, if the worst-case performance ratio is taken as the norm. Second,
the coordination approach can be used to enhance the planning power of exist-
ing planners significantly, thereby showing that it enables single-agent planning
technology to be used in multi-agent problems.

In the Artificial Intelligence Planning and Scheduling (AIPS) competition of
the year 2000, several general-purpose planning systems competed in a number
of planning domains. The logistic planning problem as described in Section 4.1
was one of the domains featured. We have used the AIPS logistics dataset in
our experiments because of its status as a benchmark problem set, and also
because it allows us to compare our decomposition-by-coordination approach to
a selection of centralised planning systems.

In Table 1, we compare plan cost (in terms of the number of moves in a plan)
for four planners. In the second column, the costs of the optimal plans are given
as calculated by encoding the complete instance as an ILP-problem and solving
it exactly (of course not taking into account the time needed to find a solution).
The third column represents the cost of the plans produced using the coordina-
tion approach. The fourth, fifth, and sixth columns represent a selection of the
planning systems competing in the AIPS: The competition-winning TALplan-
ner [14], and the above-average performers STAN [15] and HSP2 [16]. Each row
in Table 1 represents an instance in the dataset, characterised by the number

Table 1. Results for 12 randomly chosen instances from the AIPS logistics dataset.
For each instance the minimum number of moves is determined and for each planner
the number of moves produced is given.

nr packages min nr moves Coordination TALplanner STAN HSP2
20 107 113 111 110 145
25 143 150 152 149 206
30 175 182 183 177 250
35 177 181 186 182 264
40 228 239 239 232 337
45 269 284 285 276 –
50 286 299 306 293 –
55 319 327 338 326 –
60 369 391 398 376 –
65 371 387 397 382 –
70 405 426 437 416 –
75 438 458 471 448 –
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of packages that have to be transported for that instance. Of the roughly 200
instances in the dataset, we have made a random selection of 12.

It will come as no surprise that the results produced using the coordination
approach, especially since the local plans were in fact solved exactly, deviate
little from the optimal plans (less than 5% on average). This is significantly
better than the expected (25%) based on the worst-case performance ratio.

The plans produced by the coordination approach are comparable in quality
with the plans produced by STAN (only 2% deviating from the optimum) and
TALplanner (about 7%). To illustrate that for some solvers the problems in the
logistics dataset are far from trivial, HSP2 does not manage to solve (within
reasonable time and memory constraints) any instances where more than 40
packages have to be transported, and produces significantly worse plans (about
44% deviating from the optimum). The CPU-times needed to produce the plans
by the coordination approach were a few seconds for each of the planning in-
stances occurring in Table 1.

As we remarked before, the coordination approach cannot only be used to
solve multi-agent planning problems using simpler single-agent planning tools.
We can also apply it as a pre-processing step for a given planning system that has
trouble solving such multi-agent planning problems. The idea is then to decom-
pose the problem into smaller sub-problems that can be solved independently by
the planning system. Thereafter, the solutions to the sub-problems can simply
be combined into a solution to the whole problem instance.

Specifically, we propose to use the coordination approach to decompose a
multi-agent logistics instance into a set of single-agent planning problems. Then,
feed each of the single-agent planning sub-problems to the planning system, and
combine the results (plans) according to the protocol into an overall plan, thereby
solving the complete multi-agent instance. What we would like to see using this
method is significant savings in computation time without significant loss in
plan quality compared to the use of the planner solving the complete instance.
For this experiment, we chose STAN (since it produced the best plans for the
complete instance) and HSP2 (since it consumed a lot of CPU time).

To test these expectations, we randomly selected 51 problems from the lo-
gistics planning dataset and observed both the reduction in CPU-time and the
reduction in plan cost, comparing a solution produced by using only the plan-
ner with a solution by using the planner in combination with the coordination
approach. The results are given in Figure 8.

It can be o0wbserved that both STAN and HSP2 definitely benefit from pre-
processing by the coordination approach: Both planning systems regularly achieve
savings in computation time of over 80%. In addition, we can see that HSP2 pro-
duces plans that are on average 20% cheaper (i.e., requiring 20% less actions). Also
note that the plan cost for STAN does not increase significantly when using the
coordination approach. Finally, it can be observed that even after a decomposi-
tion into smaller sub-problems, for quite some instances HSP2 again was not able
to produce a solution within reasonable time. This means that even for the local
planning problems HSP2 still has considerable difficulty in solving them.
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Fig. 8. Savings in CPU times and plan cost (#steps) when STAN and HSP2 make use
of the coordination approach as a pre-processing step

6 Discussion and Future Work

We discussed the plan-coordination problem for selfish agents. We showed that,
although optimal plan-coordination mechanisms are hard to obtain in general,
in some special cases a polynomial algorithm can be used to find minimal coor-
dination sets. We also discussed the price of autonomy as a means to determine
the performance loss one can expect when allowing a planning problem to be
solved by autonomous agents.

In more recent work [17], we have extended this approach to tightly-coupled
tasks with dependency and synchronisation constraints. There, we show that
plan-coordination mechanisms exist for such complex tasks, but that they re-
quire information exchange after planning to establish the exact time of schedul-
ing synchronised tasks. This offers possibilities to extend the plan-coordination
approach to the domain of temporal planning. We also showed that we can also
provide coordination mechanisms for durative tasks with time constraints. More-
over, the techniques developed enable us to reduce the construction (and com-
plexity) from previously-developed coordination mechanisms to the construction
of coordination mechanisms for durative tasks with time constraints, implying
that the latter are at least as hard to design as the former mechanisms.

A final extension we study are coordination mechanisms for temporal tasks
where not only the feasibility of the total plan has to be guaranteed, but also
completion time of the total task has to be minimised [18]. We show that,
while the problem can be easily solved if the agents are able to execute an un-
bounded number of tasks concurrently, the problem to find suitable coordination
algorithms in case the agents are autonomous and have bounded concurrency
is difficult. In this latter context, we can determine the price of autonomy with
respect to a coordination mechanism by taking the ratio of the completion time
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achieved by a coordination mechanism and the completion time achieved by a
dictatorial optimal algorithm. Analogously, we can establish the price of coordi-
nation by taking into account the number of additional constraints enforced by
the coordination mechanism. Taking both measures into account in determining
the quality of coordination mechanisms enforces us to look at Pareto-efficient
coordination mechanisms. In this way, we can choose the best alternative, given
a tolerated performance loss and a desired level of autonomy.
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Appendix

A Proof of Proposition 1

Proof. Suppose, on the contrary, that the resulting complex task T ′ is not plan
coordinated. Then there must exists some cycle c = (ti1 , ti2 , . . . , tim , ti1) where

1. c is not limited to tasks belonging to one agent, i.e., c contains at least two
tasks tij and tik

belonging to different agents.
2. c contains at least two tasks connected via a plan-refinement relation ≺∗

i .
This means that c has a subsequence of tasks (tij , tij+1 , tij+2 , . . . , tij+k

,
tij+k+1), where (tij , tij+1 , tij+2 , . . . , tij+k

) is a ≺∗-sequence of tasks belong-
ing to some agent A containing at least two different tasks, while the task
tij+k+1 belongs to another agent A′.

Since tij+k+1 depends on tij+k
, it follows that

depth(tij+k
) < depth(tij+k+1). (8)

Due to the construction of the Δi-sets, for every subsequence (tij+h
, tij+h+1)

of an intra-agent path (tij , tij+1 , tij+2 , . . . , tij+k
) of agent A it must hold that

depth(tij+h
) ≤ depth(tij+h+1 ), (9)

because depth(tij+h
) > depth(tij+h+1 ) for two tasks belonging to the same agent

would imply that (tij+h+1 , tij+h
) ∈ Δi and, therefore, tij+h

≺∗ tij+h+1) cannot
occur as part of A’s plan, because it would create a cycle.

Equation 8 and 9 together imply that

1. traversing from one task t to another task t′ via an inter-agent constraint in
c strictly increases the depth: depth(t) < depth(t′), and

2. traversing from one task t to another task t′ via an intra-agent constraint in
c does not decrease the depth: depth(t) ≤ depth(t′).

This implies that since there is at least one inter-agent constraint involved, the
depth of the first task ti1 occurring in c should be strictly less than the depth of
the last task in c. But that implies depth(ti1) < depth(ti1 ): contradiction. Hence,
such a cycle c cannot exist and the complex task T ′ is plan coordinated. �
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Abstract. Failures are unavoidable in many circumstances. For exam-
ple, an agent may fail at some point to perform a task in a dynamic
environment. Robust systems typically have mechanisms to handle such
failures. Temporal logic is a widely used representation language for rea-
soning about the behaviour of systems, although dealing with failures
is not part of the language. In this paper, it is investigated how inter-
val temporal logic can be extended with an operator describing failure.
This logic has a close relationship to exception handling mechanisms in
programming languages, which provides an elegant mechanism for mod-
elling and handling failures. The approach is motivated from the context
of specification of systems that have to operate in highly dynamic envi-
ronments. A case study of the formal modelling and verification of the
treatment of diabetes mellitus type 2 illustrates the practical usefulness
of the approach.

1 Introduction

For agents that do not have a complete model of their environment or lack
certain control over it, it is unavoidable that failures to perform tasks occur.
Many systems require some type of robustness against these failures, e.g., robots
need to make sure that their task will be accomplished, aviation systems need to
make sure that the plane does not crash, etc. In agent literature, the semantics of
failures have been investigated in a logical sense [11] and have been incorporated
in agent programming languages [5]. Similarly, in software engineering, the use
of exceptions as first-class citizens in programming languages is wide-spread.

Besides the internal aspects of a system, i.e., a program state or mental state
of an agent, an important aspect of systems is behaviour, i.e., how it acts and
reacts in a dynamic environment. To reason about this behaviour, mechanisms
that go beyond the scope of classical predicate logic are employed. Since the late
seventies, several temporal logics have been proposed to deal with specification
and verification of hardware and software systems. In artificial intelligence, many
of the logics dealing with actions usually contain some temporal component. In
systems where failures heavily determine the final behaviour, modelling of this
behaviour is more natural when failures are part of the modelling language.
Moreover, we will argue that, since temporal logical formulas can be used to
describe behaviour, the failure of a behaviour is best described using a sentential
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operator, i.e., as a property of a (temporal) logical sentence. This contrasts with
other approaches, where failure is seen as a property of primitive events and
corresponds to the major contribution of this paper.

In the next section, we will first consider some motivating examples for rea-
soning about failure and explain why a simple solution is often unsatisfactory.
Then, in Section 3, this is related to exception handling mechanisms that are
found in programming languages. In Section 4, preliminaries concerning Interval
Temporal Logic (ITL) are introduced, which is subsequently extended with fail-
ures in Section 5. In Section 6, we apply this to to a medical guideline that deals
with the treatment of diabetes mellitus type 2 and study the formalisation and
its properties. In Section 7, related work of modelling failure in AI is discussed.
Finally, in Section 8, we discuss the results and future work.

2 Motivating Examples

2.1 Robbing a Bank

A well-known logic to model agents is BDI logic as proposed by Rao & Georgeff
[11]. It contains modal operators BEL, GOAL, and INTEND which should be
interpreted as the believe, goal and intention of the agent. Moreover, amongst
other operators, it contains an operator failed to describe that an event has
(just) failed and temporal operators such as � (always) and ♦ (eventually). The
introduction of a failed operator is motivated by Rao & Georgeff by the fact
that failure may force an agent to replan or revise her plans. They give the
following example:

(...) the consequence of a thief successfully robbing a bank is quite dif-
ferent from a thief failing in his attempt to rob the bank, which is again
different from the thief not attempting to rob the bank.

For example, it is possible to model an agent that believes that if he fails to rob
the bank, then he will go to jail:

BEL �(failed(rob bank) → ♦locked up)

which allows the agent to revise its plan after the robbery accordingly. Robbing a
bank, however, is not an easy task for any intelligent agent (over 50 percent of the
bank robbers are arrested in the US1). For example, in case of an armed robbery,
it involves threatening the people inside the bank at all times, demanding money
and securing a getaway. Failure to accomplish any of the subtasks will result in
failure to complete the overall task. Note that failure to demand money will
in some sense result in failure to rob the bank; however, it is clear that this
does not necessarily lead to the consequence of going to jail. There is a need to
model the different ‘types’ of failure associated with a goal that the agent tries to
1 http://www.fbi.gov/ucr/cius 02/html/web/specialreport/05-SRbankrobbery.

html

http://www.fbi.gov/ucr/cius_02/html/web/specialreport/05-SRbankrobbery.
html
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accomplish. More importantly, the predicate failed describes failure of events;
however, ‘robbing a bank’ is not a primitive event here, but rather a complex
temporal description of several events to accomplish the overall task. Clearly, as
failed is a predicate on events, it cannot be used in a temporal formula. The
only possibility is to define the event rob bank in terms of more primitive events.
The downside of this approach is that there is no mechanism to infer that failure
of some of the mandatory sub-tasks will result in failure of the overall task.
While it might be possible to specify this, as rob bank is a complex temporal
description of events, a description of its failure is, most likely, complex as well.
In the next subsection, this is illustrated with some temporal patterns that may
occur in medical management.

2.2 Medical Management

Suppose we are modelling an agent, typically a physician, who treats a patient.
As almost all drugs may result in side-effects, it is of great importance that the
agent does not over-medicate the patient. Therefore, if the disease is not directly
life-threatening, management of a disease should start with a non-invasive treat-
ment where one expects as little side-effects as possible. It is not always possible
to measure beforehand if the effects of the treatment will be desirable, as this
could require a test that is considered to be too invasive or because it is not
known which physiological variable should be measured. As a result, a failure to
treat the patient may occur, which means that subsequent actions are required.

Medical treatments are performed in sequence or in parallel. Sequential ac-
tions are typically done in case an earlier treatment fails or when a certain
physiological state should be reached before a subsequent state can be effective.
In such a case, failure to perform a treatment will result in a failure of the whole
protocol, as it will block the successful administering of subsequent treatments.
Parallel treatments occur for example when multiple drugs are prescribed at
the same time. If the effects of these drugs are combined, then the combination
of drugs will fail if one of the individual actions fails. If failures are not han-
dled appropriately, it may lead to medical mismanagement, e.g., in case drugs
become ineffective due to failure of other treatment components, continuing to
administer these drugs is considered bad medical practice. As a consequence,
failure handling plays an important role in maintaining the quality of medical
management.

This idea of an implicit mechanism that “propagates” the failures throughout
the management of a disease leads to the idea that such failures could be seen
as exceptions that need to be handled appropriately. This idea is pursued in the
next section.

3 Exception Handling

The idea of handling failures while performing a task is well-known in the context
of programming languages by means of exception handling mechanisms. An ex-
ception is a failure of an operation that cannot be resolved by the operation itself
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[14]. Exception handling mechanisms provides a way for a program to deal with
them. Many programming languages (C++, Ada, Java, etc) now incorporate
such extensive exception mechanism in order to facilitate robust applications.
Typically, such a mechanism consists of two parts. There is a mechanism to
throw an exception, which sends a signal that an exception has occurred. Sec-
ond, catching an exception transfers control to the exception handler that defines
the response that the program takes when the exception occurs. Looking at it
slightly differently, one could say that the program determines the plan that is
being executed, while the exception handler is able to revise this plan in case an
failure occurs.

For the purpose of this paper, it is useful to summarise the semantics of
exception handling mechanisms. A formal semantic model of exceptions in Java
based on denotational semantics [1] as well as operational semantics [10] exists.
The complete mathematical description of these mechanisms is too extensive
to be discussed here, as only a small part of the semantics deals with failures.
Instead, we give a more general description of the operational semantics of the
exception mechanism. A state, here denoted by σ, consists of the heap, values
of the local variables, and optionally an exception. Evaluation rules describe
how statements change the state, typically in the form σ0

s−→ σ1 which denotes
that the execution of statement s starting in state σ0 can terminate in state
σ1. For exception handling, the state is extended with an exception, i.e., we
then deal with assertions σ0

s−→ σe
1 which means that the execution of s in

σ0 can terminate in σ1 throwing an exception denoted by the superscript e2.
The operational semantics is then also extended with these assertions, e.g., for
sequential composition this yields the following two rules depending on whether
or not a failure has occurred in the first statement:

Γ � σ0
s1−→ σ1 Γ � σ1

s2−→ σ2

Γ � σ0
s1;s2−−−→ σ2

Γ � σ0
s1−→ σe

1

Γ � σ0
s1;s2−−−→ σe

1

where Γ defines the context of the rule. Logically speaking, what we see here is
that failures are propagated through the semantics of each programming struc-
ture. We will show how to incorporate this idea in terms of temporal logic in the
next two sections.

4 Interval Temporal Logic

In this section, we define the necessary preliminaries of interval temporal logic
(ITL) [8], which acts as the basis for our approach and can be considered a rich
framework for specifying many systems. As it is quite a rich system, it can be
considered a rather heavy machinery for solving the problems that were discussed
in the previous section. However, it shows that the incorporation of failures in
the logic can be done for a wide range of logics, such as the more common linear
temporal logic (LTL), a sub-logic of ITL.
2 Abstracting from the different types of exceptions.
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4.1 Syntax

For the purpose of this paper, we consider the propositional part of ITL. The
main difference with standard temporal logic is that interval temporal logic deals
with intervals rather than time points, which makes it suitable for logic-based
modular reasoning involving periods of time. In this logic there are three primary
temporal constructs:

– skip: the interval is a unit interval of length 1
– ϕ;ψ: chop the interval into two parts, such that ϕ holds in the first part and
ψ holds in the second part

– ϕ∗: decompose the interval into a (possibly infinite) number of finite intervals
in which ϕ holds.

Given a non-empty set of propositional variables P , the full syntax can then be
given in BNF notation as follows:

ϕ −→ p | ¬ϕ | ϕ ∧ ϕ | skip | ϕ;ϕ | ϕ∗

with p ∈ P . Let true be defined as p ∨ ¬p and false as ¬true, for some p ∈ P .
Then, the following additional linear temporal operators are defined that are
used in the remainder of this paper:

◦ϕ � skip;ϕ in the next state ϕ
•ϕ � ¬ ◦ ¬ϕ if there is a next state, then in the next state ϕ
last � • false this is the last state of the interval
finite � ¬(true; false) the interval is finite
♦ϕ � finite;ϕ eventually ϕ
�ϕ � ¬♦¬ϕ always ϕ

Other propositional connectives are defined as usual, i.e., ϕ ∨ ψ � ¬(¬ϕ ∧ ¬ψ),
ϕ→ ψ � ¬ϕ ∨ ψ, and if α then ϕ else ψ � (α ∧ ϕ) ∨ (¬α ∧ ψ).

4.2 Semantics

Models of this logic are (possibly infinite) sequences of states, denoted by σ, i.e.,
σ = σ0, σ1, . . .. We write |σ| to denote one less than the length of the sequence
(as usual in ITL), which is either ∞ if there are infinite number of states and
otherwise some natural number n. If σ = σ0, . . . , σn, . . . , σm, . . ., then σ[n,m]

denotes the subsequence σn, . . . , σm of σ. Let each σi be a function of type
P → {⊥,
}, that denotes whether an atomic proposition is either true (
) or
false (⊥). The formal semantics is then as follows:

σ |= p ⇔ σ0(p) = 

σ |= ¬ϕ ⇔ σ �|= ϕ
σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= skip ⇔ |σ| = 1
σ |= ϕ;ψ ⇔ |σ| = ∞∧ σ |= ϕ or

there exists n ≤ |σ| with σ[0,n] |= ϕ and σ[n,|σ|] |= ψ



Actions with Failures in Interval Temporal Logic 27

σ |= ϕ∗ ⇔ |σ| = 0
or there exists 0 = n0 < n1 < . . . < nm < |σ|

with σ[ni,ni+1] |= ϕ for all 0 ≤ i < m

and σ[nm,|σ|] |= ϕ
or there exists infinite many 0 = n0 < n1 < . . .

with σ[ni,ni+1] |= ϕ for all 0 ≤ i

Sequences of, for example medical, actions can now be modelled quite easily,
e.g., action a after b is modelled as a; b, provided that a and b may overlap.
Repetition of this patterns could be modelled as, for example, (a; ◦ b)∗. If, on
the other hand, a must be applied for a longer period of time, this may be
described as �a; b. What will happen when in this latter case fail(b) holds at
some point: does this constitute a failure of the complete sequence? Presumably
not, as b does not necessarily have to hold by the given semantics. What if failure
occurs at the last time that a holds? Then it seems to be the case that the whole
sequence has failed. We will formalise this intuition in the next section.

5 Interval Temporal Action Logic with Failure

In this section, we extend the logic of ITL with actions and introduce an operator
that denotes failure of the formula. We will refer to this extended logic as ITALF.

5.1 Syntax and Semantics

Let A be a set of actions, and P a set of atomic propositions. Models σ we will
be working with consists of a (possible infinite) sequence of states σ0, . . .. Each
σi is defined as 〈πi, αi〉, where πi is a function P → {
,⊥} and αi a function
A → {inactive, active, failed}. When discussing a σ′, we will write α′

i and π′
i such

that σ′
i = 〈α′

i, π
′
i〉. Let the language be extended with actions and an operator

fail. All semantics given by the language of ITL remains the same. Entailment
of ITL will be denoted as |=ITL from now on and |= will be understood as
entailment for ITALF.

Actions are interpreted as activations, hence, negations of actions are under-
stood as actions that are not active (i.e., inactive or failed). This is formalised
as follows:

σ |= a⇔ α0(a) = active

For the definition of failure, we need to consider models where we abstract from
the difference between inactive and activation, but instead only consider the
difference between failures and non-failures. In order to accomplish this, we use
the following models, that we denote as failmodel(σ):

Definition 1. For all σ, failmodel(σ) = σ′ if:

– |σ| = |σ′|
– for all i such that 0 ≤ i ≤ |σ|:

• for all p ∈ P: πi(p) = π′
i(p)
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• for all a ∈ A: if αi(a) = failed then α′
i(a) = failed,

otherwise α′
i(a) = active

So failmodel(σ) describes σ where non-failures (in particular inactive actions) are
interpreted as activations. We can then consider failure as a type of negation in
the definition of fail, as follows:

σ |= failϕ⇔ σ �|= ϕ and failmodel(σ) �|= ϕ

To understand this definition, consider ϕ as a formula that implies that certain
propositions and actions are true or false at certain moments in time, even
though for some formulas, there is a choice to be made on which point in time.
For atomic propositions, the definition is clear and is equivalent to the negation
as failmodel(σ) does not evaluate propositions differently than σ. For actions, the
situation is more complicated. First, if an action a is implied by ϕ at a certain
moment in time, then ϕ fails if the action fails on that point in time, which
is exactly given looking at ¬a on failmodel(σ). This seems sufficient; however,
consider the converse, i.e., that ϕ implies ¬a at a certain point in time. Then, the
formula fails if in fact the action is activated at that point, which corresponds
to the first part of the definition. Note that by just looking at failmodel(σ), we
can only derive that it must be active or inactive, however, a failure not to do
an action does not correspond to this idea.

5.2 Logical Characterisation

As already mentioned in the previous section, with respect to atomic propositions
p, it follows:

fail p ≡ ¬p
i.e., failure to accomplish p simply means it is not true. So, the formalisation
considers failure as a kind of negation. Typically, in the formalisation of medical
management, we are interested in formulas such as:

fail (p→ a)

i.e., in situation described by p, the action a must be activated. According to
the semantics, this is equivalent to p ∧ fail a, i.e., if the implication fails, then
in the situation described by p, the action a indeed fails. As argued in the
previous subsection, failure not to do an action a, i.e., fail¬a means that a is

1. fail(ϕ) → fail(ϕ ∧ ψ)
2. fail(ϕ ∨ ψ) → fail(ϕ) ∨ fail(ψ)
3. fail(ϕ) → fail(ϕ;ψ), where ϕ is objective
4. fail(ϕ) → fail(ϕ∗), where ϕ is objective

Fig. 1. Propagation of failures in ITALF, where objective formulas are formulas that
do not contain any temporal operators
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fail αi

ϕ ψ

t t+ 2t+ 1

Fig. 2. Sketch of ϕ orelse{αi} ψ in case of failure of αi

in fact done. Conversely ¬fail a means that a is either active or inactive. Hence
fail¬ϕ �= ¬failϕ.

In general, the definition of fail is such as to propagate to larger formulas.
This is summarised in Fig. 1. What is interesting is that the calculus rules of
the operational semantics of an imperative programming language described in
Section 3 can now be understood in terms of failure inside the logic. For example,
for sequential composition, the following calculus rule is sound with respect to
the semantics:

Γ � fail(ϕ)
Γ � fail(ϕ;ψ)

where ϕ is objective, which follow directly from item (3) of Fig. 1 and modus
ponens.

In order to describe acting on the basis of failure, we define an additional
operator:

ϕ orelseA ψ � ϕ ∧ ¬last; ◦ (failstateA ∧ ◦ψ)

where
failstateA =

∨

ai∈A

fail ai ∧
∧

ai∈A
¬ai

i.e., ϕ holds forever, or, an action fails at some point after which ψ holds. We
assume that ϕ is true in at least a unit interval, which prevents failures to occur
right away. In Fig. 2, a model where a failure occurs and is handled is sketched.
The definition of the failstate ensures that during this time no action can be
active, and thus no additional failures may occur. In some sense, this operator
may be read as an exception handling mechanism where failures of ‘type’ A are
caught in the execution of ϕ, such that ψ is executed when this occurs.

Finally, consider the robbing example of Subsection 2.1. The ITALF logic
allows one to reason elegantly about, for example the temporal description
fail(�threaten; flee). It is cumbersome to derive an equivalent formula in ITL,
which has to describe that in case the fleeing fails or that threatening fails before
fleeing, the robbing fails. It is not difficult to see however, that it is possible to
write down such formula. In fact, this is true for arbitrary formulas of the ITALF
language and is discussed next.

5.3 Reduction to ITL

In this subsection, we will show how ITALF can be translated to ITL. We thereby
give means to exploit the proof techniques that were developed for ITL. To
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accomplish a reduction to ITL, additional propositional variables are required.
We assume we have an infinite number of propositional variables such that we
have a (unique) fresh proposition fa, standing for failure, for each a ∈ A.

Definition 2. Given a formula ϕ, define Φ(ϕ) as ϕ where every occurrence of
some action a ∈ A has been replaced with ¬fa.

Definition 3. The reduction of a formula ϕ is defined on the structure of ϕ as
follows:

reduce(p) = p
reduce(a) = a
reduce(¬ϕ) = ¬reduce(ϕ)
reduce(ϕ ∧ ψ) = reduce(ϕ) ∧ reduce(ψ)
reduce(skip) = skip
reduce(ϕ;ψ) = reduce(ϕ); reduce(ψ)
reduce(ϕ∗) = reduce(ϕ)∗

reduce(failϕ) = ¬reduce(ϕ) ∧ ¬Φ(reduce(ϕ))

Below, we refer to reduct(ϕ) as the ITALF formula that is found by applying
the definition exhaustively from left to right. The main result of this subsection
which provides the connection between ITL and ITALF follows.

Definition 4. Given a ITALF formula ϕ, intended meaning of the failure propo-
sitions is defined as follows:

I(ϕ) = �(a0 → ¬fa0 ∧ · · · ∧ an → ¬fan)

where {a0, . . . , an} ⊆ actions(ϕ), such that actions(ϕ) is defined as the set of
those a ∈ A that is a sub-formula of ϕ.

Note that I(ϕ) is finitely bounded by actions in a formula, which is important
as the total number of actions in the language may be infinite.

Then, we have the following result:

Theorem 1. |= ϕ iff I(ϕ) |=ITL reduct(ϕ)

The proof of this theorem can be found in Appendix A.

5.4 Robbing the Bank Revisited

As an illustration of the theory introduced above, we revisit the example dis-
cussed in Section 2.1. Suppose we would model robbing the bank as follows:

rob bank � (�threaten∧ ♦collect money∧ finite); get away

i.e., personnel is threatened for a finite amount of time, money is collected, after
which it is necessary to get away. Accepting the semantics of failures as presented
in this paper, we can now directly talk about failure of the logical sentence above,
possibly in combination with ‘�¬fail collect money’, as this action cannot fail
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– Step 1: diet
– Step 2: if Quetelet Index (QI) ≤ 24, prescribe a sulfonylurea drug; otherwise,

prescribe a biguanide drug
– Step 3: combine a sulfonylurea drug and biguanide (replace one of these by a
α-glucosidase inhibitor if side-effects occur)

– Step 4: insulin

Fig. 3. Tiny fragment of a clinical guideline on the management of diabetes mellitus
type 2. If one of the steps k = 1, 2, 3 is ineffective (fails), the management moves to
step k + 1.

in the sense discussed in Section 2.1, i.e., failure to collect money does not lead
to an arrest.

To illustrate what it then means to fail to rob the bank in the language of
ITL, one can take the reduction of the sentence (we will omit the definition of
failure propositions defined by I in the formulas below, i.e., we will only consider
faithful models, see Appendix A) resulting in:

· · · ∧ ¬((�¬fthreaten ∧ ♦¬fcollect money ∧ finite); fget away)

Now supposing that the money is collected, this can be further simplified using
the semantics of the ITL operators, finally yielding models for which holds:

∀n ≤ |σ| : (∃i : (0 ≤ i ≤ n and σi |= fthreaten) or σn |= fget away)

i.e., either in the first part the threatening fails or, otherwise, the robber fails
to get away, which is arguably the intended meaning of failing to rob a bank in
this example.

This, however, is not easily specified in future-time temporal logic. While
we can obviously express this with the negated chop formula above, negated
chop formulas are difficult to interpret. Using a more standard linear temporal
operator, until (see e.g., [15]), the simplified formula can be rephrased as:

¬((¬fthreaten) until (¬fget away ∧ ¬fthreaten))

which is possibly slightly more understandable. Nevertheless, if the original tem-
poral specification is more complicated than the rather simple example that we
provide here, modelling failing behaviour quickly becomes a difficult task.

6 Application to a Medical Guideline

6.1 Introduction

As a more elaborate application of failures, we consider clinical guidelines, which
are extensive documents advising clinicians appropriate management of disease.
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The guideline shown in Fig. 3 is part of the guideline for general practitioners
for the treatment of diabetes mellitus type 2 (DM2) [12], which aims at control-
ling the level of glucose in the blood. The knowledge in this fragment concerns
information about order and time of treatment (e.g., sulfonylurea in step 2),
about patients and their environment (e.g., Quetelet index lower than or equal
to 27), and finally which drugs are to be administered to the patient (e.g., a
sulfonylurea drug).

In order to reason about the quality of guidelines, we require additional med-
ical knowledge, which is based on a methodology for checking quality medical
guidelines proposed in [6]. While some of the below formalisation is also dis-
cussed in that paper, here, the guideline is formalised in temporal logic, rather
than a specialised guideline representation language. In particular, we focus on
the issue of failure of treatments.

6.2 Modelling of Medical Knowledge

In order to represent the medical knowledge, a specific language is defined in this
section. We restrict ourselves to the knowledge which concerns itself with the
primary aim of a guideline, which is to have a certain positive effect on a patient.
To establish that this is indeed the case, knowledge concerning the physiology of
a patient is required. This is here formalised as a causal model describing effects
of the treatment.

We are interested in the prescription of drugs, taking into account their mode
of action. Abstracting from the dynamics of their pharmacokinetics, this can be
formalised in logic as follows:

(d ∧ r) → ◦ (m1 ∧ · · · ∧mn) (1)

where d is the name of a drug, r is a (possibly negative or empty) requirement
for the drug to take effect, and mk is a mode of action, such as decrease of release
of glucose from the liver, which holds at all future times.

Note that we assume that drugs are applied for an instant, here formalised
as ‘next’. This is reasonable if we think of the time instants as unspecified peri-
ods of time where certain propositions hold. Synergistic effects and interactions
amongst drugs can also be formalised along those lines, as required by the guide-
line under consideration. This can be done either by combining their joint mode
of action, by replacing d in the formula above by a conjunction of drugs, or
by reasoning about modes of actions. As we do not require this feature for the
clinical guideline considered in this chapter, we will not go into details.

The modes of action mk can be combined, together with an intention n
(achieving normoglycaemia, i.e., normal blood glucose levels, for example), a
particular patient condition c, and requirements rj for the modes of action to be
effective:

(◦mi1 ∧ · · · ∧ ◦mim ∧ r1 ∧ · · · ∧ rp ∧ c) → ◦n (2)

For example, if the mode describes that there is a stimulus to secrete more insulin
and the requirement that sufficient capacity to provide this insulin is fulfilled,
then the amount of glucose in the blood will decrease.
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(1) insulin →
◦ (uptake(liver, glucose) = up ∧ uptake(peripheral-tissues, glucose) = up)

(2) uptake(liver, glucose) = up → release(liver, glucose) = down
(3) SU ∧ ¬capacity(b-cells, insulin) = exhausted) → ◦ secretion(b-cells, insulin) = up
(4) BG → ◦ release(liver, glucose) = down
(5) diet ∧ capacity(b-cells, insulin) = normal → ◦ Condition(normoglycaemia)
(6) (◦ secretion(b-cells, insulin) = up ∧ capacity(b-cells, insulin) = subnormal ∧

QI ≤ 27 ∧ Condition(hyperglycaemia)) → ◦ Condition(normoglycaemia)
(7) (◦ release(liver, glucose) = down ∧ capacity(b-cells, insulin) = subnormal ∧

QI > 27 ∧ Condition(hyperglycaemia)) → ◦ Condition(normoglycaemia)
(8) ((◦ release(liver, glucose) = down ∨ ◦ uptake(peripheral-tissues, glucose) = up) ∧

capacity(b-cells, insulin) = nearly-exhausted ∧ ◦ secretion(b-cells, insulin) =
up ∧
Condition(hyperglycaemia)) → ◦ Condition(normoglycaemia)

(9) (◦ uptake(liver, glucose) = up ∧ ◦ uptake(peripheral-tissues, glucose) = up ∧
capacity(b-cells, insulin) = exhausted ∧ Condition(hyperglycaemia)) →
◦ (Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

(10) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia)) ∧ ¬ (Condition(normoglycaemia) ∧
Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

Fig. 4. Background knowledge BDM2 of diabetes mellitus type 2. An action α holds
iff drug x is being administered at that moment in time. The ⊕ operator denotes the
exclusive OR operator.

The fragment of DM2 is relatively simple, however, diabetes is in fact a com-
plicated disease: various metabolic control mechanisms are deranged and many
different organ systems may be affected by the disorder. Pathophysiologically,
there are two main phenomena, namely, insufficient secretion of the hormone
insulin due to a decreased production of insulin by B cells in the Langerhans
islets of the pancreas, and insulin resistance in liver, muscle and fat tissue. Parts
of these mechanisms are described in more detail in [6]. These physiological
mechanisms were modelled in temporal logic, which is described in Fig. 4.

6.3 Modelling of the Guideline

In this paper, we mainly focus on the modelling of the guideline fragment of
Fig. 3. The possible actions that can be performed is the set A consisting of
{diet,SU,BG, insulin}. Each treatment A is a subset of A. Treatment changes if
a treatment has failed, which can be conveniently be formalised in ITALF. The
main structure of the guideline, denoted by M, is then:

� treatment = {diet}
orelse{diet} (if QI < 27 then (�treatment = {SU})

else (�treatment = {BG})
orelse{SU,BG} (�treatment = {SU,BG}

orelse{SU,BG} �treatment = {insulin}))
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where each term treatment = A is an abbreviation for:
∧

({α | α ∈ A} ∪ {¬α,¬fail α | α ∈ (A \A)})

i.e., the actions in A are activated, and all other actions are inactive (i.e., false
and have not failed). This formalisation includes the handling of the failures in
some sense, however, we also need to define in which cases these failures occur.
One can think of this as ‘throwing’ the exceptions during the management of
the disease. Define an abbreviation for this as follows:

failsϕ � ◦ failϕ

The guideline does not specify what amount of time is allowed to pass before it
can be concluded that the treatment is not effective. Clearly, if a failure occurs
immediately, then patients will all receive insulin treatment. Here, we assume the
property of the background knowledge that relevant effects with respect to the
condition of the patient are known in the next state. Hence, decisions whether
the treatment fails can be taken after one step in the execution. These failure
axioms are denoted as F and formalised as follows:

� (αi → ◦ ((αi ∧ Condition(hyperglycaemia)) ↔ failsαi))

for all α ∈ A.

6.4 Verification

Several tools for ITL have been developed, such as the interpreter Tempura [9]
and support for ITL in the theorem prover PVS [3]. For our experiments, we
have used the KIV system, an interactive theorem prover, designed for program
verification and capable of reasoning about algebraic specifications using classi-
cal, dynamic and (interval) temporal logic. The main proof strategy for temporal
logic is symbolic execution with induction. Symbolic execution unwinds formu-
las, e.g.,

� ϕ⇔ ϕ ∧ ◦ � ϕ

and induction is used to proof reason about recurring temporal states. Its theo-
retical background is described extensively in [2]. Below, we will write sequents
Γ � Δ to denote I(Γ ∪Δ) �KIV reduce(

∧
Γ → ∨

Δ), where �KIV denotes the de-
ductibility relation defined by the sound (propositional and temporal) inference
rules implemented in KIV.

In the specification of properties presented, we made use of algebraic speci-
fication to specify the variables in the background knowledge, though it could
be translated to propositional logic if necessary. Furthermore, we made use of
some additional variables to represent each treatment (e.g., ‘treatmentdiet ’ de-
fined as ‘treatment = {diet}’), and both failure-states. In practice, this makes
the proofs more manageable. The relationship between the actions and these ad-
ditional variables are defined appropriately in the system, i.e., all the additional
propositional variables could be replaced by actions and failure of actions.
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Example 1: Diet may be applied indefinitely. The first example is the
following property. Let BDM2 be the background knowledge, M be the guideline
given in Section 6.3, and F failure axioms defined in Section 6.3, then:

BDM2, M,F , � capacity(b-cells, insulin) = normal
� � • Condition(normoglycaemia)

i.e., in case the patient has B cells with sufficient capacity to produce insulin,
then diet is sufficient for lowering the level of glucose in the blood. As only the
failure of diet is relevant in the proof, M can be weakened to:

(�treatmentdiet) ∧ ¬ last; fdiet

Symbolic execution, in the context of the background knowledge, leads to the
situation where:

(�treatmentdiet; fdiet) ∧ Condition(normoglycaemia)

Since we have Condition(normoglycaemia), it can be derived that diet does not
fail, thus in the next step it can be derived that the condition is still normogly-
caemia, which is exactly the same situation as we had before. By induction, we
can then reason that this will always be the case. A more detailed proof can be
found in Appendix B.

Example 2: Reasoning about the patient in case of failure. Guidelines
are not applied blindly by physicians, as the physician has to make a decision for
an individual patient on the basis of all known information. As a consequence, a
physician might be interested in reasons of failure. Suppose we have an arbitrary
patient, then we can prove the following:

BDM2, M,F � fail(� diet) → ♦capacity(b-cells, insulin) �= normal

i.e., if always applying diet fails, then apparently the patient has non-normal ca-
pacity of its B cells at a certain moment in time. M is needed here to derive that
in case diet stops, a failure has occurred rather than a non-failing termination
of diet. Proving this in KIV is similar as the previous example.

Example 3: Level of sugar in the blood will decrease. As a third exam-
ple, we use one of the quality criteria for the diabetes guideline from [6]. This
property says that the guideline reaches its intention, namely, the level of sugar
in the blood will be lowered for any patient group. This property is formalised
as follows:

BDM2, M, F ,� (capacity(b-cells, insulin) = capacity(b-cells, insulin)′′) ∧
� QI = QI′′ � ♦ ¬ Condition(hyperglycaemia)

where V ′′ denotes the value of the variable V in the next step. Our proof strategy
consisted of splitting the patient group into groups which are cured by the same
treatment, e.g., similar to the previous example, when the capacity is normal,
then diet is sufficient.
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Consider the example where the capacity of insulin in the B cells is nearly-
exhausted. KIV derives from the failure axioms that:

� (αi → ◦ (αi ↔ ◦ (¬αi ∧ fαi)))

as we may assume that � ¬ Condition(hyperglycaemia), because the negation
of this formula immediately proves the property. Furthermore, reasoning with
the background knowledge, we can derive that proving ♦ (SU∧BG) is sufficient
to prove this property, because for this patient group a treatment consisting
of SU and BG is sufficient to conclude Condition(normoglycaemia). It is then
easy to see how to complete this proof as the failure axioms specify that all
the treatments will fail (after two steps), hence symbolic execution shows that
eventually the third step will be activated.

7 Related Work

Failure has received little attention in formal theories of action. Of course, reason-
ing of actions had always taken into account the notion of failure, as illustrated
by the logic of Rao & Georgeff, but it is assumed that failure can be added in a
relatively straightforward manner. One notable example of where the notion of
failure is part of both the syntax and semantics is the approach of Giunchiglia
et al. [4]. Its primitive syntactic structure is:

iffail α then β else γ

And from this, abbreviations are defined such that it allows one to reason con-
veniently about failures. The semantics is defined in terms of behaviours where
it said that some behaviours have failed, while others are successful. Behaviours
are defined technically in terms of linear models.

What this language lacks is the notion of time, as behaviours are simply
considered a sequence of actions which either fail or do not fail. For medical
management, this poses a problem, as failure may occur after a longer period of
time. This means that the notion of failure needs a richer structure, so that it is
possible to interact between time and failure.

Another important shortcoming for using this language in the context of med-
ical management is that failures are considered properties of a behaviour. As said
before, in medical management, actions are often performed in parallel, for ex-
ample, the administering of a combination of drugs. In such cases, some drugs
may fail to reach the required effects, while others may be successful. Hence, in
the language decisions need to be made on, not only if a failure has occurred,
but also what action has failed. We believe we have clearly demonstrated this in
the previous section.

8 Discussion and Conclusions

In this paper, we have introduced semantics of failures in interval temporal logic
inspired by the exception mechanism that can be found in many programming
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languages. The practical usefulness of our approach has been validated using
medical guidelines by showing the verification of a fragment of diabetes melli-
tus type 2 which was formalised elegantly using this logic. However, we think
that the results could be used in a much wider context. First, the reasoning
about failures can have its applications in agent-based systems. Failures to per-
form tasks are an important aspect for decision making by agents, so having a
reasonably rich language for modelling these failures seems justified. Second, in
the context of program refinement, the process of (high-level) specifications to
implementations of systems, exceptions are introduced at some point to model
failure of components. The results of this paper makes it possible to abstract of
concrete programming construct to describe how control of flow should change
in case exceptions occur.

The logic that is proposed here can be seen as a three-valued logic, i.e., formu-
las are true, false, or failed. Some work has been done to link three-valued logics
idea to temporal reasoning [7], which is based on Kleen’s three-valued calcu-
lus that deals with ‘unknown’ values. This results in different logical properties
compared to ITALF, e.g., unknown values propagate over a disjunctions, while
failures do not.

Compared to [6], the verification of the investigated properties required sig-
nificantly less effort. This is mainly due to the fact that in [6] the guideline was
formalised in the guideline representation language Asbru [13], which yields over-
head in complexity due to a complicated semantics. On the other hand, many of
the steps that are required in ITALF were done manually, as it is not obvious to
predict the correct next step in the proof. For example, it is important during
verification to ‘weaken’ the irrelevant parts of the guideline, making the symbolic
execution more efficient. Moreover, failure propositions on the sequent introduce
additional complexity, as the human needs to remember the semantics of these
propositions in order to apply the relevant axioms. These facts combined makes
it interesting to consider more automatic techniques, such as automated theorem
proving or model checking. This will a subject of further research.
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A Proof of Theorem 1

A helpful semantic notion is faithfulness, which means that the failure proposi-
tions correspond exactly to the failure of the the action it has been introduced
for.

Definition 5. σ is called faithful iff for all a ∈ A and all i s.t. 0 ≤ i ≤ |σ|
holds αi(a) = failed iff πi(fa) = 
.

In the following two lemmas, it is proven that the reduction is found with respect
to those faithful models. In the first lemma, we show that Φ acts as failmodel on
the syntactic level, which is then used to prove equivalence of formulas with its
reduction.

Lemma 1. For all faithful σ and ϕ:

failmodel(σ) |= ϕ iff σ |= Φ(ϕ)

Proof. By induction on the structure of ϕ. First suppose ϕ = a: (⇒) suppose
failmodel(σ) |= a then α0(a) �= failed. By faithfulness πi(fa) = ⊥, thus σ |= ¬fa.
All steps can be reversed. The rest of the cases follow almost immediately, taking
into account that if the model is faithful, so is every interval within this model,
and vice versa.
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Lemma 2. For all faithful models σ it holds that σ |= ϕ↔ reduce(ϕ).

Proof. By induction on the structure of ϕ. In this case, the only interested case
is for ϕ = fail(ψ): (⇒) σ |= fail(ψ) iff σ �|= ψ and failmodel(σ) �|= ψ. By I.H.
on the first part, it follows that σ �|= reduce(ϕ). As σ is faithful, it follows that
failmodel(σ) is faithful. Therefore failmodel(σ) �|= reduce(ϕ). Using Lemma 1, we
get σ �|= Φ(reduce(ϕ)). Therefore σ |= ¬reduce(ϕ)∧¬Φ(reduce(ϕ)). By definition,
σ |= reduce(fail(ϕ)). All steps are valid in the other direction as well.

These results do not hold for any model, e.g., it is not for all models the case
that fa → ¬a. A weak form of faithfulness can be encoded as an ITL formula,
bounded by the number of actions in some formula. The fact it is bounded
by actions in a formula is relevant, because we may have an infinite number
of actions in the language, while each formula has a finite length in standard
temporal logic.

Using Definition 4, we can then proof the main lemma, which characterises
the relation between a formula and its reduction for any model.

Lemma 3. |= ϕ iff |= I(ϕ) → reduce(ϕ)

Proof. Without loss of generality, this property can be reformulated as

|= ¬ϕ iff I(ϕ) |= reduce(¬ϕ)

as every formula can be stated as a negation and I(¬ϕ) = I(ϕ). Using the
definition of reduce, and taking negation on both sides, rewrite this to:

∃σσ |= ϕ iff ∃σσ |= I(ϕ) ∧ reduce(ϕ)

(⇒) Suppose there is some σ such that σ |= ϕ. Construct a σ′ such that π′
i(fa) =


 iff αi(a) = failed, for all 0 ≤ i ≤ |σ|, actions a, and all fresh variables fa

introduced in the reduction. Let σ′ be the same as σ in every other respect. As
ϕ does not contain any variables fa, it is clear that then σ′ |= ϕ. As σ′ is faithful
(by construction), it then follows by Lemma 2 that σ′ |= reduce(ϕ). Moreover,
by construction, it follows that σ′ |= I(ϕ).
(⇐) Suppose for some σ, σ |= I(ϕ) ∧ reduce(ϕ). Construct σ′ such that for all i
such that 0 ≤ i ≤ |σ|, and all actions a:

– if πi(fa) = 
 then α′
i(a) = failed

– if πi(fa) = ⊥ and αi(a) = active then α′
i(a) = active

– if πi(fa) = ⊥ and αi(a) �= active then α′
i(a) = inactive

In all other respects (length, valuation of atomic propositions), σ and σ′ are the
same. We then prove for all i and a ∈ actions(ϕ):

αi(a) = active ⇔ α′
i(a) = active

(⇒) αi(a) = active. Then, by the fact σ |= I(ϕ), we know that πi(fa) = ⊥.
Thus, by definition α′

i(a) = active. (⇐) Suppose αi(a) �= active. Then either
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α′
i(a) = failed (if πi(fa) = 
) or α′

i(a) = inactive (if πi(fa) = ⊥). In any case, we
conclude: α′

i(a) �= active.
As reduce(ϕ) does not contain a fail operator, it cannot distinguish if an action
is inactive or failed. Hence, it follows that σ′ |= reduce(ϕ). It is easy to see that
σ′ is faithful, so by Lemma 2 it follows that σ′ |= ϕ.

Now, Theorem 1 is proved in the following way. By Lemma 3, we know |=
ϕ iff |= I(ϕ) → reduce(ϕ). Observe that the right side does not contain the
fail operator, hence it cannot distinguish between failures and inactivations.
Therefore, |= I(ϕ) → reduce(ϕ) if all actions are interpreted as propositions.
By doing this, I(ϕ) → reduce(ϕ) is also an ITL formula. Finally, note that the
semantics of ITL and ITALF coincide for the language of ITL.

B Proof of Example 1

This appendix provides an outline of the proof performed in KIV. The first
steps of the proof consists of simple manipulation of the formulas in order to put
them in a comfortable form for presenting the proof. Note that we implicitly use
axiom (10) of the background knowledge for making sure that normo-, hyper-
, and hypoglycaemia are mutually exclusive. First, recall that the translated
failure axiom for diet is:

� (diet → ◦ ((diet ∧ Condition(hyperglycaemia) ↔ ◦ fail diet))

Reduction of this to an ITL formula yields:

� (diet → ◦ ((diet ∧ Condition(hyperglycaemia) ↔ ◦ (¬diet ∧ fdiet)))
which, by the use of Γ , can be written as:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)) (3)

Second, from the background knowledge, we know that:

� (diet ∧ capacity(b-cells, insulin) = normal → ◦ Condition(normoglycaemia))

which, together with the fact that � capacity(b-cells, insulin) = normal, it can
be automatically derived that:

� (diet → ◦ Condition(normoglycaemia)) (4)

Finally, note that the proof obligation can be presented as

• � Condition(normoglycaemia) (5)

By weakening all the uninteresting parts for proving the property, we finally end
up with the main proof obligation:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)), Eq.(3)
� (diet → ◦ Condition(normoglycaemia)), Eq.(4)
(� treatmentdiet ∧ ¬ last); ◦ fdiet, M
� (treatmentdiet → diet),
� • � Condition(normoglycaemia) Eq.(5)
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Symbolically executing this sequent requires only one possible situation that
needs to be proven:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)),
� (diet → ◦ Condition(normoglycaemia)),
(� treatmentdiet); ◦ fdiet,
� (treatmentdiet → diet),
Condition(normoglycaemia),¬ ◦ fdiet

� � Condition(normoglycaemia)

This sequent represents the situation where diet has been applied in the first
step. From this it was derived that then the condition is normoglycaemia. Using
this fact, the failure axiom is used to derive that ¬ ◦ fdiet, i.e., diet will not fail
in the next step. The rest of the proof consists of the claim that this tempo-
ral situation will remain as it is. So we reason by induction that � Condition
(normoglycaemia). Abbreviate the sequent above as Γ � Δ: then the sequent is
rewritten to:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)),
� (diet → ◦ Condition(normoglycaemia)),
(� treatmentdiet); ◦ fdiet,
� (treatmentdiet → diet),
Condition(normoglycaemia),¬ ◦ fdiet,
t = N,N = N ′′ + 1 until ¬ Condition(normoglycaemia), IND-HYP �

where IND-HYP � t < N → (
∧
Γ → ∨

Δ), N a fresh dynamic variable and
t a static variable. The remaining steps consists of symbolically executing this
sequent, which ends up in the same sequent with t = N −1. Then, the induction
hypothesis can be applied, which finishes the proof.
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Abstract. We have recently proposed an extension of alternating-time tempo-
ral logic for reasoning about behavior and abilities of agents under various ra-
tionality assumptions. The logic, called ATLP (“alternating-time temporal logic
with plausibility”) used abstract, unstructured terms for addressing rationality as-
sumptions. Here, we propose a more complex language of terms that allows to
specify sets of rational strategy profiles in the object language, building upon ex-
isting work on logical characterizations of game-theoretic solution concepts. In
particular, we recall how the notions of Nash equilibrium, subgame-perfect Nash
equilibrium, and Pareto optimality can be characterized with logical formulae and
we show how these can be used within ATLP for reasoning about what rational
agents should achieve. We also prove complexity results for model checking of
ATLP formulae.

1 Introduction

Alternating-time temporal logic (ATL) [2] is a temporal logic that incorporates some
basic game theoretical notions. In [15], we extended ATL with a notion of plausibility,
which can be used to model and reason about what agents can plausibly achieve. Our
intuition was to use game-theoretical solution concepts (like Nash equilibrium, Pareto
optimality, dominant strategies etc.) to define what it means to play rationally, and then
to assume it plausible that agents behave in a rational way. Technically, some strategies
(or rather strategy profiles) were assumed plausible in a given model, and one could
reason about what can happen if only the plausible profiles are used.

The formulation of alternating-time temporal logic with plausibility (ATLP) from
[15] was rather abstract, with unstructured terms used to address various rationality as-
sumptions, and their denotation “hard-wired” in the model. In this paper, we propose
to refine the language of terms so that it allows us to specify sets of rational strategy
profiles in the object language. The idea is to build the terms on formulae of ATLI
(ATL with intentions, [21]), as these can be used to describe sets of strategies and strat-
egy profiles. We build upon existing work on modal logic characterizations of solution
concepts [13,12,3,31,32,21]. In particular, we recall how the notions of Nash equilib-
rium, subgame-perfect Nash equilibrium, and Pareto optimality can be characterized
with ATLI formulae. Then, we show how these characterizations can be used within
ATLP for reasoning about abilities and behavior of rational agents.

The idea to define some strategies as plausible (or rational) is very much in the spirit
of game theory. There, it is usually assumed that some solution concept is given and
that agents are rational if they behave in accordance with it. Thus, assuming rationality
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of agents ultimately restricts the strategies that can be played by the agents. There are
two possible points of focus in this context: characterization of rationality (and defining
most appropriate solution concepts) vs. using the solution concepts in order to predict
the outcome in a given game. In our previous paper [15], we proposed a logic for the
latter task, i.e. for “plugging in” a given rationality criterion, and reasoning about what
can happen according to it. In this paper, we try to bridge the gap, and propose how
logic-based characterizations of rationality (formulated in ATLI) can be used to reason
about the outcome of rational play within the framework of ATLP. The work is still in
preliminary stages, and it certainly has its limitations, but we believe it to be a step in
the right direction.

We begin our presentation with an overview of the logics ATL and ATLP (Section 2)
which can be used to reason about abilities of arbitrary and rational agents, respectively.
In Section 3, we recall how some rationality criteria can be captured with formulae
of an ATL-like logic. Section 4 contains the novel contribution of this paper. First,
we propose how those ATL-like characterizations of rationality can be used in ATLP
in order to “plug in” rationality assumptions in a flexible way. Then, we discuss the
computational complexity of model checking properties of rational play, both for “pre-
wired” and flexible rationality definitions.

2 Preliminaries

In this section, we summarize two modal logics for reasoning about agents in game-like
scenarios: first, the basic logic of ATL [2]; then, its extension ATLP [15].

2.1 Alternating-Time Temporal Logic

Alternating-time temporal logic (ATL) [2] enables reasoning about temporal properties
and strategic abilities of agents. Formally, the language of ATL is given as follows.

Definition 1 (LATL [2]). Let Agt = {1, . . . , k} be a nonempty finite set of all agents,
and Π be a set of propositions (with typical element p). We will use symbol a to de-
note a typical agent, and A to denote a typical group of agents from Agt. The logic
LATL(Agt, Π) is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉� ϕ | 〈〈A〉〉ϕU ϕ.

Informally, 〈〈A〉〉ϕ says that agents A have a collective strategy to enforce ϕ. ATL for-
mulae include the usual temporal operators: �(“in the next state”), � (“always from
now on”) and U (strict “until”). Additionally, ♦ (“now or sometime in the future”) can
be defined as ♦ϕ ≡ � U ϕ. It should be noted that the path quantifiers A, E of compu-
tation tree logic CTL [8] can be expressed in ATL with 〈〈∅〉〉, 〈〈Agt〉〉, respectively. The
semantics of ATL is defined in so-called concurrent game structures.

Definition 2 (CGS [2]). A concurrent game structure (CGS) is a tuple: M = 〈Agt,Q ,
Π, π, Act, d, o〉, consisting of: a set Agt = {1, . . . , k} of agents; set Q of states;
set Π of atomic propositions; valuation of propositions π : Q → P(Π); set Act
of actions. Function d : Agt × Q → P(Act) indicates the actions available to agent
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a ∈ Agt in state q ∈ Q . We will often write da(q) instead of d(a, q), and use d(q) to
denote the set d1(q) × · · · × dk(q) of action profiles in state q. Finally, o is a transition
function which maps each state q ∈ Q and action profile −→α = 〈α1, . . . , αk〉 ∈ d(q) to
another state q′ = o(q, −→α ).

A computation or path λ = q0q1 · · · ∈ Q+ is an infinite sequence of states such that
there is a transition between each qi, qi+1.We define λ[i] = qi to denote the i-th state of
λ. ΛM denotes all paths in M . The set of all paths starting in q is given by ΛM (q).

Definition 3 (Strategy, outcome [2]). A (memoryless) strategy of agent a is a function
sa : Q → Act such that sa(q) ∈ da(q)1. We denote the set of such functions by Σa. A
collective strategy sA for team A ⊆ Agt specifies an individual strategy for each agent
a ∈ A; the set of A’s collective strategies is given by ΣA =

∏
a∈A Σa. The set of all

strategy profiles is given by Σ = ΣAgt.
The outcome of strategy sA in state q is defined as the set of all paths that may result

from executing sA: out(q, sA) = {λ ∈ ΛM (q) | ∀i ∈ N0 ∃−→α = 〈α1, . . . , αk〉 ∈
d(λ[i]) ∀a ∈ A (αa = sa

A(λ[i]) ∧ o(λ[i], −→α ) = λ[i + 1])}, where sa
A denotes agent a’s

part of the collective strategy sA.

The semantics of ATL is given by the following clauses:

M, q |= p iff p ∈ π(q)
M, q |= ¬ϕ iff M, q 
|= ϕ
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ
M, q |= 〈〈A〉〉 �ϕ iff there is sA ∈ ΣA such that M, λ[1] |= ϕ for all λ ∈ out(q, sA)
M, q |= 〈〈A〉〉� ϕ iff there is sA ∈ ΣA such that M, λ[i] |= ϕ for all λ ∈ out(q, sA)

and i ∈ N0
M, q |= 〈〈A〉〉ϕU ψ iff there is sA ∈ ΣA such that, for all λ ∈ out(q, sA), there is

i ∈ N0 with M, λ[i] |= ψ, and M, λ[j] |= ϕ for all 0 ≤ j < i.

Example 1 (Matching pennies). Consider a variant of the “matching pennies” game,
presented in Figure 1A. If both players show the heads in q0, both win a prize in the
next step; if they both show tails, only player 2 wins. If they show different sides,
nobody wins. Note that, e.g., M1, q0 |= 〈〈2〉〉� ¬money1, because agent 2 can play
tail all the time, preventing 1 from winning the prize. On the other hand, M1, q0 |=
¬〈〈2〉〉♦money2: agent 2 has no strategy to guarantee that he will win himself.

Such an analysis of the game is of course correct, yet it appears to be quite coarse.
It seems natural to assume that players prefer winning money over losing it. If we
additionally assume that the players are rational thinkers, it seems plausible that player
1 should always play head, as it keeps the possibility of a win open (while playing tail
guarantees loss). Under this assumption, player 2 has complete control over the outcome
of the game: he can play head too, granting himself and the other agent with the prize,
or respond with tail, in which case both players lose. Note that this kind of analysis

1 This is a deviation from the original semantics of ATL [2], where strategies assign agents’
choices to sequences of states. While the choice between the two types of strategies affects the
semantics of most ATL extensions, both yield equivalent semantics for “pure” ATL .
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Fig. 1. “Matching pennies”: (A) Concurrent game structure M1; both agents can only execute
action wait in states q1, q2, q3 (we omit the labels from the picture to make it easier to read). (B)
The corresponding normal form game under the assumption that the winners always get the same
amount of money.

corresponds to the game-theoretical notion of dominant strategy: for agent 1, playing
head is strongly dominant in the corresponding normal form game in Figure 1B, while
both strategies of player 2 are undominated, so they can be in principle considered for
playing.

It is still possible to refine our analysis of the game: note that 2, knowing that 1 ought
to play head and preferring to win money too, should decide to play head himself. This
kind of reasoning corresponds to the notion of iterated undominated strategies. If we
assume that both players do reason this way, then 〈head, head〉 is the only rational
strategy profile, and the game should end with both agents winning the prize.

2.2 ATL with Plausibility: Reasoning about Rational Agents

Agents have limited ability to predict the future. However, some lines of action seem
often more sensible or realistic than others. Having defined a rationality criterion, we
obtain means to determine the most plausible plays, and compute their outcome. In [15],
we proposed an extension of ATL for reasoning about rational agents, which had in
turn been inspired by the work by Van Otterloo and colleagues [34,36,37]. We called
the logic ATLP, i.e., “ATL with plausibility”2.

Definition 4 (LATLP [15]). Let Agt, Π be as before, and Ω be a set of plausibility terms
(with typical element ω). The language LATLP(Agt, Π, Ω) is defined recursively as:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉� ϕ | 〈〈A〉〉ϕU ϕ | Plϕ | Ph ϕ | (set-pl ω)ϕ.

Pl restricts the considered strategy profiles to ones that are plausible in the given model.
Ph disregards plausibility assumptions, and refers to all physically available strategies.

2 We observe that our framework is semantically similar to the approach of social
laws [29,25,33]. However, we refer to strategy profiles as rational or not, while social laws
define constraints on agents’ individual actions. Also, our motivation is different: in our frame-
work, agents are expected to behave in a specified way because it is rational in some sense;
social laws prescribe behavior sanctioned by social norms and legal regulations.
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(set-pl ω) allows to define (or redefine) the set of plausible strategy profiles to the ones
described by plausibility term ω (in this sense, it implements revision of plausibility).
With ATLP, we can for example say that Pl 〈〈∅〉〉� (closed∧Ph 〈〈guard〉〉 �¬closed):
“it is plausible that the emergency door will always remain closed, but the guard retains
the physical ability to open them”; or(set-pl ωNE)Pl 〈〈a〉〉♦¬jaila : “suppose that only
playing Nash equilibria is rational; then, agents a can plausibly reach a state where he
is out of prison. To define the semantics of ATLP, we extend CGS to concurrent game
structures with plausibility (CGSP). Apart from an actual plausibility set Υ , a CGSP
specifies a plausibility mapping [[·]] : Q → (Ω → P(Σ)) that maps each term ω ∈ Ω
to a set of strategy profiles, dependent on the current state.

Definition 5 (CGSP [15]). A concurrent game structure with plausibility (CGSP) is
given by a tuple M = 〈Agt,Q , Π, π, Act, d, o, Υ , Ω, [[·]]〉 where 〈Agt,Q , Π, π, Act,
d, o〉 is a CGS, Υ ⊆ Σ is a set of plausible strategy profiles; Ω is a set of of plausibility
terms, and [[·]] is a plausibility mapping.

When talking about the outcome of rational/plausible play (e.g., with formula Pl〈〈A〉〉γ),
the strategy profiles that can be used by all the agents are restricted to the ones from Υ .
Thus, coalition A can only choose strategies that are substrategies of plausible strategy
profiles. Moreover, the agents in Agt\A can only respond in a way that yields a plausible
strategy profile.

Definition 6 (Substrategy, outcome [15]). Let A ⊆ B ⊆ Agt, and let sB be a col-
lective strategy for B. We use sB [A] to denote the substrategy of sB for agents A, i.e.,
strategy tA such that taA = sa

B for every a ∈ A. Additionally, for a set of strategy pro-
files P , P (sA) denotes all strategy profiles from P that contain sA as substrategy (i.e.,
P (sA) = {s′ ∈ P | s′[A] = sA}).

Let M be a CGSP, A ⊆ Agt be a set of agents, q ∈ Q be a state, sA ∈ ΣA be a
collective strategy of A, and P ⊆ Σ be a set of strategy profiles. The set out(q, sA, P )
contains all paths which may result from agents A executing sA, when only strategy
profiles from P can be played. Formally: out(q, sA, P ) = {λ ∈ ΛM (q) | ∃z ∈
P (sA)∀i

(
λ[i + 1] = o(λ[i], z(λ[i]))

)
}. Furthermore, ΣA(P ) denotes all profiles of

A consistent with P , i.e., ΣA(P ) = {sA ∈ ΣA | ∃t ∈ P sA = t[A]}.

Let P ⊆ ΣAgt be a set of strategy profiles. The semantics of ATLP is given by the
satisfaction relation |=P defined as follows:

M, q |=P p iff p ∈ π(q)
M, q |=P ¬ϕ iff M, q 
|=P ϕ
M, q |=P ϕ ∧ ψ iff M, q |=P ϕ and M, q |=P ψ
M, q |=P 〈〈A〉〉 �ϕ iff there is sA∈ΣA(P )with M, λ[1] |=P ϕ for allλ∈out(q, sA, P )
M, q |=P 〈〈A〉〉� ϕ iff there is sA ∈ ΣA(P ) such that M, λ[i] |=P ϕ for all λ ∈

out(q, sA, P ) and all i ∈ N0
M, q |=P 〈〈A〉〉ϕU ψ iff there is sA ∈ ΣA(P ) such that, for all λ ∈ out(q, sA, P ),

there is i ∈ N0 with M, λ[i] |=P ψ, and M, λ[j] |=P ϕ for all 0 ≤ j < i
M, q |=P Plϕ iff M, q |=Υ ϕ
M, q |=P Ph ϕ iff (M, q) |= ϕ
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M, q |=P (set-pl ω)ϕ iff Mω, q |=P ϕ where the new model Mω is equal to M but
the new set Υω of plausible strategy profiles is set to [[ω]]q .

The “absolute” satisfaction relation |= is given by |=Σ . Note that an ordinary concurrent
game structure (without plausibility) can be interpreted as a CGSP with all strategy
profiles assumed plausible, i.e., with Υ = Σ. In this way satisfaction of ATLP formulae
can be extended to ordinary CGS.

Example 2 (Matching pennies ctd.). Suppose that it is plausible to expect that both
agents are rational in the sense that they only play undominated strategies. Let headi

denote the strategy of player i to play head in q0 and wait elsewhere (analogously for
taili). Then, Υ = {(head1, head2), (head1, tail2)}. Under this assumption, agent 2 is
free to grant himself with the prize or to refuse it: Pl (〈〈2〉〉♦ money2∧〈〈2〉〉� ¬money2).
Still, he cannot choose to win without making the other player win too: Pl¬〈〈2〉〉
♦(money2 ∧ ¬money1). Likewise, if rationality is defined via iterated undominated
strategies, then we have Υ = {(head1, head2)}, and therefore the outcome of the game
is completely determined: Pl 〈〈∅〉〉� (¬start → money1 ∧ money2).

Note that, in order to include both notions of rationality in the model, we can encode
them as denotations of two different plausibility terms – say, ωundom and ωiter, with
[[ωundom]]q0 = {(head1, head2), (head1, tail2)}, and [[ωiter ]]q0 = {(head1, head2)}.
Let M ′

1 be model M1 with plausibility terms and their denotation defined as above.
Then, we have that M ′

1, q0 |= (set-pl ωundom)Pl (〈〈2〉〉♦money2 ∧ 〈〈2〉〉� ¬money2) ∧
(set-pl ωiter)Pl 〈〈∅〉〉� (¬start → money1 ∧ money2).

3 How to Capture Rationality

It is easy to see that concurrent game frames (i.e., CGS without propositions and their
valuation) generalize extensive game frames of perfect information (i.e., game trees
without utilities)3. Thus, it is enough to “emulate” utilities (with e.g. special proposi-
tions) to obtain an embedding of extensive games in CGS. In Section 3.1, we present
the construction proposed to this end in [3,21]. Having game trees represented as ATL
models, we can use strategic formulae to characterize various rationality criteria. How-
ever, such formulae need to refer to strategies explicitly (which is not possible in ATL).
ATLI (“ATL with intentions”) is an extension of ATL that allows to assume that a par-
ticular strategy is intended for execution by a particular agent [21]. We briefly present
the logic in Section 3.2; ATLI characterizations of several solution concepts (mostly
after [32,21]) are presented in Section 3.3.

3.1 CGS and Extensive Games

In this paper we use game-theoretical concepts to describe the behavior of rational
agents. For this purpose it is necessary to establish a precise correspondence between
game trees and CGS. We only consider game trees in which the set of payoffs is finite.

3 The class of concurrent game frames is strictly more general, as they can include cycles and
simultaneous moves of players, which are absent in game trees.
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Fig. 2. CGS M2 for the bargaining game

We recall the construction proposed in [21] (and inspired by [3,32]). Let U denote the
set of all possible utility values in a game; U will be finite and fixed for any given game.
For each value v ∈ U and agent a ∈ Agt, we introduce a proposition pv

a into our set
Π , and fix pv

a ∈ π(q) iff a gets payoff of at least v in q. States in the model represent
finite histories in the game. The correspondence between a traditional game tree Γ
and a CGS M(Γ ) can be captured as follows. Let Γ = 〈P , A, H, ow, u〉, where P is a
finite set of players, A a set of actions (moves), H a set of finite action sequences (game
histories), and ow(h) defines which player “owns” the next move after history h. Moves
available at h are: A(h) = {m | h · m ∈ H}, and terminal positions are Term =
{h | A(h) = ∅}. Function u : Σ×Term → U assigns agents’ utilities to every terminal
position of the game [26]. We say that M(Γ ) = 〈Agt,Q , Π, π, Act, d, o〉 corresponds
to Γ iff: (1) Agt = P , (2) Q = H , (3) Π, π include propositions pv

a to emulate
utilities for terminal states in the way described above, (4) Act = A ∪ {nop}, (5)
da(q) = A(q) if a = ow(q) and {nop} otherwise, (6) o(q, nop, ..., m, ..., nop) = qm,
and (7) o(q, nop, nop, ..., nop) = q for q ∈ Term. Note that, for every extensive form
game Γ , there is a corresponding CGS, but the reverse is not true [21].

Example 3 (Bargaining). Consider bargaining with discount [26,27]. Two agents, a1
and a2, bargain about how to split goods worth initially w0 = 1 EUR, with finite
precision represented by a rounding function r : R → R. After each round without
agreement, the subjective worth of the goods reduces by discount rates δ1 (for player
a1) and δ2 (for player a2). So, after t rounds, the goods are worth 〈r(δt

1), r(δ
t
2)〉, re-

spectively. Subsequently, a1 (if t is even) or a2 (if t is odd) makes an offer to split the
goods in proportions 〈x, 1 − x〉, and the other player accepts or rejects it. If the offer is
accepted, then a1 takes r(xδt

1), and a2 gets r((1−x)δt
2); otherwise the game continues.

A CGS modeling this game is presented in Figure 2. Nodes represent various states of
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the negotiation process, and arcs show how agents’ moves change the state of the game.
Note that the CGS is the same as the original game tree from [26], save for the presence
of propositions (instead of utility values) and loops added at the terminal nodes.

3.2 ATL with Intentions

ATLI [21] extends ATL with formulae (straσa)ϕ with the intuitive reading: “sup-
pose that player a intends to play according to strategy σa, then ϕ holds”. Thus, it
allows to refer to agents’ strategies explicitly via strategic terms σa ∈ Stra. We as-
sume that all Stra are pairwise disjoint. The set of all strategic terms is denoted by
Str =

⋃
a∈Agt Stra.

Definition 7 (LATLI [21]). The language LATLI(Agt, Π, Str) is defined as follows:
θ ::= p | ¬θ | θ ∧ θ | 〈〈A〉〉 �θ | 〈〈A〉〉� θ | 〈〈A〉〉θ U θ | (straσa)θ.

Models of ATLI M = 〈Agt,Q , Π, π, Act, d, o, I, Str, ‖·‖〉 extend concurrent game
structures with intention relations I ⊆ Q × Agt × Act (with qIaα meaning that a
possibly intends to do action α when in q). Moreover, strategic terms are interpreted
as strategies according to function ‖·‖ : Str →

⋃
a∈Agt Σa such that ‖σa‖ ∈ Σa

for σa ∈ Stra. The set of paths consistent with all agents’ intentions is defined as
ΛI = {λ ∈ ΛM | ∀i ∃α ∈ d(λ[i]) (o(λ[i], α) = λ[i+1]∧∀a ∈ Agt λ[i]Iaαa)}. We say
that strategy sA is consistent with A’s intentions if qIasA[a](q) for all q ∈ Q , a ∈ A.
The intention-consistent outcome set is defined as: outI(q, sA) = out(q, sA)∩ΛI . The
semantics of strategic operators in ATLI is given as follows:

M, q |= 〈〈A〉〉 �θ iff there is a collective strategy sA consistent with A’s intentions,
such that for every λ ∈ outI(q, sA), we have that M, λ[1] |= θ;

M, q |= 〈〈A〉〉� θ and M, q |= 〈〈A〉〉θ U θ′: analogous;
M, q |= (straσ)θ iff revise(M, a, ‖σ‖), q |= θ;

Function revise(M, a, sa) updates model M by setting a’s intention relation to I ′
a =

{〈q, sa(q)〉 | q ∈ Q}, so that sa and Ia represent the same mapping in the resulting
model. Note that a “pure” CGS M can be seen as a CGS with the “full” intention rela-
tion I0 = {〈q, a, α〉 | q ∈ Q , a ∈ Agt, α ∈ da(q)}. Additionally, for A = {a1, ..., ar}
and σA = 〈σ1, ..., σr〉, we define: (strAσA)ϕ ≡ (stra1σ1)...(strarσr)ϕ.

3.3 Temporalized Solution Concepts

Players usually have a big repository of actions they can choose from. Analyzing games
with no additional constraints is often infeasible or at least not very helpful since too
many outcomes are possible. Our main focus is on “reasonable” outcomes that can
only be obtained by “sensible” strategy profiles. Thus, we need a notion of rationality
to reduce the space of possible moves, and “solve” a game. To this end, game theory
proposes several solution concepts, e.g., Nash equilibrium and Pareto optimality.

Example 4 (Bargaining ctd.). Consider the bargaining game from Example 3. The game
has an immense number of possible outcomes. Worse still, every strategy profile

sx :

{
a1 always offers 〈x, 1 − x〉, and agrees to 〈y, 1 − y〉 for y ≥ x

a2 always offers 〈x, 1 − x〉, and agrees to 〈y, 1 − y〉 iff 1 − y ≥ 1 − x
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is a Nash equilibrium; an agreement is reached in the first round. Thus, every split
〈x, 1−x〉 can be achieved through a Nash equilibrium; it seems that a stronger solution
concept is needed. Indeed, the game has a unique subgame perfect Nash equilibrium.
Because of the finite precision, there is a minimal round T with r(δT+1

i ) = 0 for i = 1
or i = 2. For simplicity, assume that i = 2 and agent a1 is the offerer in T (i.e., T
is even). Then, the only subgame perfect NE is given by the strategy profile sκ with

κ = (1 − δ2)
1−(δ1δ2)

T
2

1−δ1δ2
+ (δ1δ2)

T
2 . The goods are split 〈κ, 1 − κ〉; the agreement is

reached in the first round4.

With temporal logic, it is natural to define outcomes of strategies via properties of re-
sulting paths rather than single states. Let σ = 〈σ1, . . . , σk〉. The notion of temporal
T -Nash equilibrium, parametrized with a unary operator T = �, � , ♦, _ U ψ, ψ U _,
was proposed in [21], with the following ATLI specification:

BRT
a (σ) ≡ (strAgt\{a}σ[Agt \ {a}])

∧

v∈U

(
(〈〈a〉〉Tpv

a) → (straσ[a])〈〈∅〉〉Tpv
a
)

NET (σ) ≡
∧

a∈Agt

BRT
a (σ).

Thus, we have a family of equilibria now: �-Nash equilibrium, � -Nash equilibrium
etc., each corresponding to a different temporal pattern of utilities. For example, we
may assume that agents “get v” if utility of at least v is guaranteed for every time
moment (� pv

a), achieved eventually (♦pv
a), and so on. The correspondence between

Nash equilibria and temporal Nash equilibria for extensive games is captured by the
following proposition.

Proposition 1 ([21]). Let Γ be a game with a finite set of utilities. Then M(Γ ), ∅ |=
NE♦(σ) iff σ denotes a Nash equilibrium in Γ (i.e., ‖σ‖M(Γ ) is a NE in Γ )5.

It is easy to extend the above characterization to subgame-perfect Nash equilibria:

SPNT (σ) ≡ 〈〈∅〉〉� NET (σ).

Proposition 2. Let Γ be a game with a finite set of utilities. Then M(Γ ), ∅ |= SPN♦(σ)
iff σ denotes a subgame perfect Nash equilibrium in Γ .

Proof. M(Γ ), ∅ |= SPN♦(σ) iff M(Γ ), q |= NE♦(σ) for every q reachable from the
root ∅ (*). However, Γ is a tree, so every node is reachable from ∅ in M(Γ ). So, by
Proposition 1, (*) iff σ denotes a Nash equilibrium in every subtree of Γ .

We can use the above ATLI formulae to express game-theoretical properties of strate-
gies in a straightforward way.

Example 5 (Bargaining ctd.). For the CGS in Figure 2, we have M2, q0 |= NE♦(σ),
with σ interpreted in M2 as sx (for any x ∈ [0, 1]). Still, M2, q0 |= SPN♦(σ) if, and
only if, ‖σ‖M2 = sκ.

4 For the standard version of bargaining with discount (with the continuous set of payoffs [0, 1]),
cf. [26,27]. Restricting the payoffs to a finite set requires to alter the solution slightly [30,24].

5 The empty history ∅ denotes the root of the game tree.
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We now propose a tentative ATLI characterization of Pareto optimality (based on the
characterization from [32] for strategic game forms):

POT (σ) ≡
∧

v1

· · ·
∧

vk

(
(〈〈Agt〉〉T

∧

i

pvi
i ) → (strAgtσ)〈〈∅〉〉T (

∧

i

pvi
i ∨

∨

i

∨

v′ st.
v′ > vi

〈〈∅〉〉Tpv′
i )

)

That is, the strategy profile denoted by σ is Pareto optimal iff, for every achievable
pattern of payoff profiles, either it can be achieved by σ, or σ obtains a strictly bet-
ter payoff pattern for at least one player. Note that the above formula has exponential
length with respect to the number of payoffs in U . Moreover, it is not obvious that this
characterization is the right one, as it refers in fact to the evolution of “payoff profiles”
(i.e., combinations of payoffs achieved by agents at the same time), and not temporal
patterns of payoff evolution for each agent separately. So, for example, PO♦(σ) may
hold even if there is a strategy profile σ′ that makes each agent achieve eventually a
better payoff, as long as not all of them will achieve these better payoffs at the same
moment. Still, the following holds.

Proposition 3. Let Γ be a game with a finite set of utilities. Then M(Γ ), ∅ |= PO♦(σ)
iff ‖σ‖M(Γ ) is Pareto optimal in Γ .

Proof (sketch). Let M(Γ ), ∅ |= PO♦(σ). Then, for every payoff profile 〈v1, . . . , vk〉
reachable in Γ , we have that either ‖σ‖ obtains at least as good a profile6, or it obtains
an incomparable payoff profile. Thus, ‖σ‖ is Pareto optimal. The proof for the other
direction is analogous.

Example 6 (Matching pennies ctd.). Let M ′′
1 be our “matching pennies” model M1 with

additional propositions p1
i ≡ moneyi. Then, we have M ′′

1 , q0 |= PO♦(σ) iff σ denotes
the strategy profile 〈head1, head2〉.

4 Flexible Plausibility Specifications

4.1 How to Impose Rationality

So far, we used abstract terms ω to describe plausibility sets in the framework of ATLP.
However, such a solution does not realize the idea of “plugging in” arbitrary rationality
criteria very well. In a way, it only shifts the problem to another level. True, we can rea-
son about both arbitrary and rational behavior of agents (which is an advantage!), but the
actual notion(s) of rationality must be “hard-wired” in the model through the denotation
of plausibility terms [[·]]. Modeling an actual multi-agent system amounts therefore to
crafting a concurrent game structure and a fixed number of “trimming filters” that trim
off irrational options. Ultimately, this is not much different from hand-crafting a collec-
tion of separate game models: one for the unrestricted (arbitrary) play of agents, plus
one for each possible limitation of agents’ play (i.e., one model per plausibility term).
Of course, not all of these models can be easily represented as CGS (since in CGS avail-
ability of actions for different agents can be defined only separately; the same holds for

6 We recall that
∧

i pvi
i means that each player i gets at least vi.
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defining availability of actions at different states). Also, ATLP allows for “switching”
between these pre-wired model versions, which can be valuable in itself. Still, such a
framework does not seem truly elegant and satisfying.

Ideally, one would like to have a flexible language of terms that would allow to spec-
ify any sensible rationality assumption, and then impose it on the system. Section 3.3
gives a hint how it can be done. Our idea is to use ATLI formulae θ to specify sets
of plausible strategy profiles, with the presumed meaning that Υ collects exactly the
profiles for which θ holds. Then, we can embed such ATLI-based plausibility spec-
ifications in formulae of ATLP in order to reason about rational agents. We call the
resulting language ATLP[ATLI], and define it formally in Section 4.2.

4.2 ATLI-Based Plausibility Terms

Definition 8 (LATLP[ATLI]). Let Ω∗ = {(σ.θ) | θ ∈ LATLI(Agt, Π, {σ[1], . . . , σ[k]})}.
That is, Ω∗ collects terms of the form (σ.θ), where θ is an ATLI formula including
only references to individual agents’ parts of the strategy profile σ. The language of
ATLP[ATLI]is defined as LATLP(Agt, Π, Ω∗).

The idea behind terms of this form is simple. We have an ATLI formula θ, parame-
terized with a variable σ that ranges over the set of strategy profiles Σ. Now, we want
(σ.θ) to denote exactly the set of profiles from Σ, for which formula θ holds. However –
as σ denotes a strategy profile, and ATLI allows only to refer to strategies of individual
agents – we need a way of addressing substrategies of σ in θ. This can be done by using
ATLI terms σ[i], which will be interpreted as the i’s substrategy in σ. Below, we define
the concept formally.

Definition 9 (CGSP for LATLP[ATLI]). Let 〈Agt,Q , Π, π, Act, d, o〉 be a CGS, and let
Υ ⊆ Σ be a set of plausible strategy profiles. M = 〈Agt,Q , Π, π, Act, d, o, Υ , Ω∗, [[·]]〉
is a CGS with plausibility iff the denotation [[·]] of terms from Ω∗ is defined as follows.

First, we define a family of ATLI models M s=〈Agt,Q , Π, π, Act, d, o, I0, Str, ‖·‖〉,
one for each strategy profile s ∈ Σ, with Stra = {σ[a]}, and ‖σ[a]‖ = s[a]. Then, we
define the plausibility mapping as:

[[σ.θ]]q = {s ∈ Σ | M s, q |= θ}.

For example, we may assume that a rational agent does not grant the other agents with
too much control over his life: (σ .

∧
a∈Agt(straσ[a])¬〈〈Agt \ {a}〉〉♦deada). Note

that games defined by CGS are, in general, not determined, so the above specification
does not guarantee that each rational agent can efficiently protect his life. It only re-
quires that he should behave cautiously so that his opponents do not have complete
power to kill him.

It is now possible to plug in arbitrary ATLI specifications of rationality, and reason
about their consequences.

Example 7 (Matching pennies ctd.). It seems that explicit quantification over the oppo-
nents’ responses (lacking in ATLI) is essential to express undominatedness of strate-
gies (cf. [32]). Still, we can at least assume that a rational player should avoid playing
strategies that guarantee failure if a potentially successful strategy is available. Under
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this assumption, player 1 should never play tail, and in consequence player 2 controls
the outcome of the game:

M1, q0 |= (set-pl σ.
∧

a∈Agt〈〈Agt〉〉♦moneya → (straσ[a])〈〈Agt〉〉♦moneya)
Pl

(
〈〈2〉〉♦(money1 ∧ money2) ∧ 〈〈2〉〉� ¬(money1 ∧ money2)

)
.

Moreover, if only Pareto optimal strategy profiles can be played, then both players
are bound to keep winning money (we recall that M ′′

1 is model M1 extended with
propositions p1

i ≡ moneyi):

M ′′
1 , q0 |= (set-pl σ.PO♦(σ)) Pl 〈〈∅〉〉� (¬start → money1 ∧ money2).

Finally, restricting plausible strategy profiles to Nash equlibria guarantees that player
2 should plausibly win, but the outcome of player 1 is not determined:

M ′′
1 , q0 |= (set-pl σ.NE♦(σ)) Pl

(
〈〈∅〉〉� (¬start → money2)

∧¬〈〈∅〉〉♦money1 ∧ ¬〈〈∅〉〉� ¬money1
)
.

Example 8 (Bargaining ctd.). For the bargaining agents and κ = (1 − δ2)
1−(δ1δ2)

T
2

1−δ1δ2
+

(δ1δ2)
T
2 , we have accordingly:

1. M2, q0 |= (set-pl σ.NE♦(σ))Pl 〈〈∅〉〉 �(px
1 ∧ p1−x

2 ) for every x;
2. M2, q0 |= (set-pl σ.SPN♦(σ))Pl 〈〈∅〉〉 �(pκ

1 ∧ p1−κ
2 );

3. M2, q0 |= (set-pl σ.SPN♦(σ))Pl 〈〈∅〉〉� (¬px1
1 ∧ ¬px2

2 ) for every x1 
= κ and
x2 
= 1 − κ.

Thus, we can encode a game as a CGS M , specify rationality assumptions with an
ATLI formula θ, and ask if a desired property ϕ of the system holds under these as-
sumptions by model checking (set-pl σ.θ)ϕ in M . We report our results on the com-
plexity of model checking ATLP in Section 5.

5 Model Checking Rational Play

In this section we show that model checking ATLP is ΔP
3 -complete, which seems in

line with existing results on the complexity of solving games. It is well known that
determining the existence of a solution concept instance with certain natural proper-
ties (e.g., a Nash equilibrium with expected utility of at least k, or a Pareto-optimal
Nash equilibrium) is NP-hard even for normal form (i.e., one-step) games in the set of
mixed strategies [10,7]. Similar results are known for extensive turn-based games with
imperfect information and recall [9,22,5]. Formally, mixed strategies and imperfect in-
formation are absent in ATLP. However, the framework turns out to be quite powerful
in terms of expressiveness. In particular, imperfect information strategies (sometimes
called uniform strategies) can be characterized in ATLP for a relevant subclass of mod-
els, and checking strategic properties of systems in which all agents must play uniform
strategies is ΔP

3 -complete – which renders ATLP model checking also ΔP
3 -complete.
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This coincides with another result from game theory: if both players in a 2-player im-
perfect information game have imperfect recall, and chance moves are allowed, then
the problem of finding a max-min pure strategy is ΣP

2 -complete [22]7.
We mainly consider checking formulae of ATLP against “pure” concurrent game

structures (i.e., we assume that plausibility assumptions will be specified explicitly in
the formula), although we briefly show, too, that the results carry over to model check-
ing against CGS with plausibility. The size of the input is measured with the number of
transitions in the model (m) and the length of the formula (l). Note that the problem of
checking ATLP with respect to the size of the whole CGSP (including the plausibility
set Υ ), is trivially linear in the size of the model – but the model size is exponential with
respect to the number of states and transitions.

5.1 Model Checking ATLP Is in ΔP
3

Model Checking ATLP with Plausibility Terms Expressed in ATLI. A detailed al-
gorithm for model checking ATLP[ATLI]formulae against concurrent game structures is
presented in Figure 3. Apart from the model, the state, and the formula to be checked,
the input includes two plausibility specifications (each represented by an ATLI formula
and a state at which it should be evaluated). The first specification describes the cur-
rent set of plausible strategy profiles Υ . The latter is the argument of the most recent
(set-pl ·) operation, not necessarily incorporated into the definition of Υ yet – unless
the Pl operator has been used since. As both CTL and ATLI model checking is linear
in the number of transitions in the model and the length of the formula [6,21], we get
the following.

Proposition 4. M, q |= ϕ iff mcheck(M, q, ϕ, �, q, �, q). The algorithm runs in time
ΔP

3 with respect to the number of transitions in the model and the length of the formula.

Model Checking ATLP with Arbitrary Plausibility Terms. The algorithm in Figure 3
uses the ATLI-based plausibility terms presented in Section 4.2. In the general case, we
can think of any arbitrary implementation of terms in Ω. As long as plausiblestrat
(s, M, q, θ) can be computed in polynomial time, it does not affect the overall complex-
ity of mcheck. In fact, it is enough to require that plausiblestrat(s, M, q, θ) can be
computed in nondeterministic polynomial time, as the witness for plausiblestrat can
be guessed together with the strategy profile s in function solve, and with the strategy
profile t in function beatable, respectively.

Proposition 5. If the verification of plausibility (plausiblestrat) is in NP, then the
model checking algorithm (mcheck) is in ΔP

3 with respect to m, l.

Note that, if a list (or several alternative lists) of plausible strategy profiles is given
explicitly in the model (via the plausibility set Υ and/or the denotations of abstract
plausibility terms ω from Section 2.2), then the problem of guessing an appropriate

7 Note that strategic operators can be nested in an ATLP formula, thus specifying a sequence
of games, with the outcome of each game depending on the previous ones – and solving such
games requires adaptive calls to a ΣP

2 oracle.
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function mcheck(M, q, ϕ, θ1, q1, θ2, q2);
Returns “true” iff ϕ holds in M, q. The current plausibility assumptions are specified by the truth of the ATLI formula θ1 at

state q1. The most recent plausibility specification (not necessarily incorporated into the definition of the current plausibility

set Υ yet) corresponds to the truth of θ2 at q2.

cases ϕ ≡ p, ϕ ≡ ¬ψ, ϕ ≡ ψ1 ∧ ψ2 : proceed as usual;
case ϕ ≡ (set-pl σ.θ′)ψ : return( mcheck(M, q, ψ, θ1, q1, θ

′, q));
case ϕ ≡ Plψ : return( mcheck(M, q, ψ, θ2, q2, θ2, q2));
case ϕ ≡ Phψ : return( mcheck(M, q, ψ,
, q1, θ2, q2));
case ϕ ≡ 〈〈A〉〉 �ψ, where ψ includes some 〈〈B〉〉 : Label all q′ ∈ Q , in which

mcheck(M, q, ψ, θ1, q1, θ2, q2) returns “true”, with a new proposition yes. Return
mcheck(M, q, 〈〈A〉〉 �yes, θ1, q1, θ2, q2);

case ϕ ≡ 〈〈A〉〉 �ψ, where ψ includes no 〈〈B〉〉 : Remove all operators Pl , Ph , (set-pl ·)
from ψ (they are irrelevant, as no cooperation modality comes further), yielding ψ′. Return
solve(M, q, 〈〈A〉〉 �ψ′, θ1, q1);

cases 〈〈A〉〉� ψ and 〈〈A〉〉ψ1 U ψ2 : analogously ;
end case

function solve(M, q, ϕ, θ, q′);
Returns “true” iff ϕ holds in M, q under plausibility assumptions specified by the truth of θ at q′. We assume that ϕ ≡
〈〈A〉〉� ψ, where ψ is a propositional formula, i.e., it includes no 〈〈B〉〉, Pl , Ph , (set-pl ·).

� Label all q′ ∈ Q , in which ψ holds, with a new proposition yes;
� Guess a strategy profile s;
� if plausiblestrat(s, M, q′, θ) then return( not beatable(s[A], M, q, 〈〈A〉〉� yes));

else return( false);

function beatable(sA, M, q, 〈〈A〉〉γ, q′, θ);
Returns “true” iff the opponents can beat sA so that it does not enforce γ in M, q under plausibility assumptions specified

by the ATLI formula θ at q′. The path formula γ is of the form �ψ, � ψ, ψ U ψ′ with propositional ψ, ψ′.

� Guess a strategy profile t;
� if plausiblestrat(t, M, q′, θ) and t[A] = sA then

− M ′ := “trim” M , removing all transitions that cannot occur when t is executed;
− return( mcheckCTL(M ′, q, Aγ));

else return( false);

function plausiblestrat(s, M, q, θ);
Checks if strategy profile s satisfies formula θ in M, q.

� return( mcheckATLI(Ms, q, θ)); // For Ms, cf. Definition 9

Fig. 3. Model checking ATLP

strategy from such a list is in NP (memoryless strategies have polynomial size with
respect to m). As a consequence, we have the following:

Corollary 1. Model checking ATLP (with both abstract and ATLI-based plausibility
terms) against CGSP is in ΔP

3 with respect to m, l.
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5.2 Model Checking ATLP Is ΔP
3 -Hard

We prove the ΔP
3 -hardness through a reduction of SNSAT2, a typical ΔP

3 -complete
variant of the Boolean satisfiability problem. The reduction follows in two steps. First,
we define a modification of ATLir [28], in which all agents are required to play only
uniform strategies. We call it “uniform ATLir” (ATLu

ir in short), and show a polyno-
mial reduction of SNSAT2 to ATLu

ir model checking. Then, we point out how each
formula and model of ATLu

ir can be equivalently translated (in polynomial time) to a
CGS and a formula of ATLP[ATLI], thus yielding a polynomial reduction of SNSAT2
to ATLP[ATLI]. Again, we consider two cases: ATLP with arbitrary plausibility terms,
and ATLP with terms defined through formulae of ATLI. The first part of the reduction
(from SNSAT2 to model checking ATLu

ir) is the same in both cases, but the second
part (from model checking ATLu

ir to ATLP) proceeds differently, and we discuss both
variants accordingly.

Interested readers are referred to the technical report [16], where the construction is
described in more detail.

Uniform ATLir . The semantics of ATLu
ir can be defined as follows. First, we de-

fine models as concurrent epistemic game structures (CEGS), i.e. CGS with epis-
temic relations ∼a⊆ Q × Q , one per agent. (The intended meaning of q ∼a q′ is
that agent a cannot distinguish between between states q and q′.) Additionally, we re-
quire that agents have the same options in indistinguishable states, i.e., that q ∼a q′

implies da(q) = da(q′). A (memoryless) strategy sA is uniform if q ∼a q′ implies
sa

A(q) = sa
A(q′) for all q, q′ ∈ Q , a ∈ A.

M, q |= 〈〈A〉〉u
ir

�ϕ iff there is a uniform strategy sA such that, for every uniform
strategy tAgt\A, every a ∈ A, q′ such that q ∼a q′, and λ ∈ out(〈sA, tAgt\A〉, q′),
we have M, λ[1] |= ϕ;

〈〈A〉〉u
ir� ϕ, 〈〈A〉〉u

irϕU ψ: analogously.

Reduction of SNSAT2 to Model Checking of ATLu
ir . We recall the definition of

SNSAT2 after [23].

Definition 10 (SNSAT2)
Input: p sets of propositional variables Xr = {x1,r, ..., xk,r}, p sets of propositional
variables Yr = {y1,r, ..., yk,r}, p propositional variables zr, and p Boolean formulae
ϕr in positive normal form (i.e., negation is allowed only on the level of literals). Each
ϕr involves only variables in Xr ∪ Yr ∪ {z1, ..., zr−1}, with the following requirement:
zr ≡ ∃Xr∀Yr.ϕr(z1, ..., zr−1, Xr, Yr).
Output: The value of zp.

Note that every non-literal formula ϕr can be written as χ1 op χ2 with op ∈ {∧, ∨}.
Recursively, χi can be written as χi1 opi χi2 and χij as χij1 opij χij2 etc.

Our reduction of SNSAT2 is an extension of the reduction of SNSAT presented
in [17]. That is, we construct the CEGS Mr corresponding to zr with two players:
verifier v and refuter r. The CEGS is turn-based, that is, every state is “governed” by
a single player who determines the next transition. Each subformula χi1...il

of ϕr has
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Fig. 4. CEGS M2 for ϕ1 ≡ ((x1 ∧ x2) ∨ ¬y1) ∧ (¬x1 ∨ y1), ϕ2 ≡ z1 ∧ (¬z1 ∨ y2)

a corresponding state qi1...il
in Mr. If the outermost logical connective of ϕr is ∧, the

refuter decides at q0 which subformula χi of ϕr is to be satisfied, by proceeding to the
“subformula” state qi corresponding to χi. If the outermost connective is ∨, the verifier
decides which subformula χi of ϕr will be attempted at q0. This procedure is repeated
until all subformulae are single literals. The states corresponding to literals are called
“proposition” states.

The difference from the construction from [17] is that formulae are in positive nor-
mal form (rather than CNF) and that we have two kinds of “proposition” states now:
qi1...il

refers to a literal consisting of some x ∈ Xr and is governed by v; q̄i1...il
refers to

some y ∈ Yr and will be governed by r. Now, the values of the underlying propositional
variables x, y are declared at the “propositional” states, and the outcome is computed.
That is, if v executes � for a positive literal, i.e. χi1...il

= x, (or ⊥ for χi1...il
= ¬x) at

qi1...il
, then the system proceeds to the “winning” state q�; otherwise, the system goes

to the “sink” state q⊥. For states q̄i1...il
the procedure is analogous. Models correspond-

ing to subsequent zr are nested like in Figure 48. “Proposition” states referring to the
same variable x are indistinguishable for v (so that he has to declare the same value of
x in all of them), and the states referring to the same y are indistinguishable for r. A
sole ATLu

ir proposition yes holds only in the “winning” state q�. As in [17], we have
the following result which concludes the reduction.

Proposition 6. The above construction depicts a polynomial reduction of SNSAT2 to
model checking ATLu

ir in the following sense. Let

8 All states in the model for zr are additionally indexed by r.
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Φ1 ≡ 〈〈v〉〉u
ir(¬neg) U yes, and

Φr ≡ 〈〈v〉〉u
ir(¬neg) U (yes ∨ (neg ∧ 〈〈∅〉〉u

ir
�¬Φr−1)) for r = 2, . . . , p.

Then, we have zp iff Mp, q
p
0 |=

ATLu
ir

Φp.

From ATLu
ir to ATLP with Arbitrary Plausibility Terms. Now we show how ATLu

ir

model checking can be reduced to model checking of ATLP. We are given a CEGS
M , a state q in M , and an ATL u

ir formula ϕ. First, we sketch the reduction to model
checking arbitrary ATLP formulae against CGSP (i.e., CGS with plausibility sets given
explicitly in the model). Let Σu be the set of all uniform strategy profiles in M . We
take CGSP M ′ as M (sans epistemic relations) extended with plausibility set Υ = Σu.
Then:

M, q |=
ATLu

ir
〈〈A〉〉u

irϕ iff M ′, q |=
ATLP

Pl 〈〈A〉〉ϕ,

which completes the reduction9.
For model checking ATLP formulae with abstract terms ω against “pure” concurrent

game structures, the reduction is similar. We take CGS M ′ as M minus epistemic
relations, and plus a plausibility mapping [[·]] such that [[ω]]q = Σu. Then, again,

M, q |=
ATLu

ir
〈〈A〉〉u

irϕ iff M ′, q |=
ATLP

(set-pl ω)Pl 〈〈A〉〉ϕ.10

From ATLu
ir to ATLP with ATLI-Based Plausibility Terms. The reduction of ATLu

ir

model checking to model checking of ATLP[ATLI] against “pure” CGS is more sophis-
ticated. We do not present a reduction for full model checking of ATLu

ir ; it is enough
to show the reduction for the kind of models that we get in Section 5.2. We begin the
reduction by reconstructing Mp to M ′

p in which the last action profile is “remembered”
in the final states. That is, the construction yields states of the form 〈q, α1, . . . , αk〉,
where q ∈ {q�, q⊥} is a final state of the original model Mp, and 〈α1, . . . , αk〉 is the
action profile executed just before the system proceeded to q. Each copy has the same
valuation of propositions as the original state q, i.e., π′(〈q, α1, . . . , αk〉) = π(q). Then,
for each action α ∈ Act and agent i ∈ Agt, we add a new proposition i : α. Moreover,
we fix the valuation of i : α in M ′

p so that it holds exactly in the final states that can be
achieved by an action profile in which i executes α (i.e., states 〈q, α1, ..., αi, ..., αk〉).
Note that the number of both states and transitions in M ′

p is linear in the transitions of

9 We note in passing that, technically, the size of the resulting model M ′ is not entirely poly-
nomial. M ′ includes the plausibility set Υ , which is exponential in the number of states in M
(since it is equal to the the set of all uniform strategy profiles in M ). This is of course the case
when we want to store Υ explicitly. However, checking if a strategy profile is uniform can be
done in time linear wrt the number of states in M , so an implicit representation of Υ (e.g., the
checking procedure itself) requires only linear space.

We do not discuss this issue in more depth, as we focus on the other variant of ATLP (with
ATLI-based terms) in this paper.

10 Cf. footnote 9.
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Mp. The transformation produces model M ′
p which is equivalent to Mp in the follow-

ing sense. Let ϕ be a formula of ATLu
ir that does not involve special propositions i : α.

Then, for all q ∈ Q : Mp, q |=
ATLu

ir
ϕ iff M ′

p, q |=
ATLu

ir
ϕ.

In the next step, we will show that uniformity of a strategy can be characterized
in ATLI extended with epistemic operators Ka. Kaϕ reads as “agent a knows that ϕ”.
The semantics of ATLI+K extends that of ATLI by adding the standard semantic clause
from epistemic logic: M, q |= Kaϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′. Let
us now consider the following formula of ATLI+Knowledge:

uniform(σ) ≡ (strσ)〈〈∅〉〉�
∧

i∈Agt

∨

α∈d(i,q)

Ki〈〈∅〉〉 �i : α.

The reading of uniform(σ) is: suppose that profile σ is played (strσ); then, for all
reachable states (〈〈∅〉〉� ), every agent has a single action (

∧
i∈Agt

∨
α∈d(i,q)) that is

determined for execution (〈〈∅〉〉 �i : α) in every state indistinguishable from the cur-
rent state (Ki). Thus, formula uniform(σ) characterizes the uniformity of strategy
profile σ. Formally, for every concurrent epistemic game structure M , we have that
M, q |=

ATLI+K
uniform(σ) iff ‖σ[a]‖ is uniform for each agent a ∈ Agt (for all

states reachable from q). Of course, only reachable states matter when we look for
strategies that should enforce a temporal goal.

To get rid of the epistemic operators from formula uniform(σ) and epistemic re-
lations from model M ′

p, we use the construction from [14]. The construction yields a
concurrent game structure tr(M ′

p) and an ATLI formula tr(uniform(σ)) with the fol-
lowing characteristics. For every CEGS M and ATLu

ir formula ϕ, we have:
(1) M, q |=

ATLu
ir

ϕ iff tr(M), q |=
ATLu

ir
tr(ϕ);

(2) M ′
p, q |=

ATLI+K
uniform(σ) iff tr(M ′

p), q |=
ATLI+K

tr(uniform(σ)).

This way, we obtain a reduction of SNSAT2 to model checking of ATLP[ATLI].

Proposition 7
zp iff tr(M ′

p), q
p
0 |=

ATLP[ATLI] (set-pl σ.tr(uniform(σ)))Pl tr(Φp).

Proof. We have zp iff M ′
p, q

p
0 |=

ATLu
ir

Φp iff tr(M ′
p), q

p
0 |=

ATLu
ir

tr(Φp)

iff tr(M ′
p), q

p
0 |=

ATLP[ATLI] (set-pl σ.tr(uniform(σ)))Pl tr(Φp). �

Theorem 1. Model checking ATLP is ΔP
3 -complete with respect to the number of tran-

sitions in the model and the length of the formula.

On the way, we have also proved that checking strategic abilities when all players are
required to play uniformly is ΔP

3 -complete (that is, harder than ability against the worst
line of events captured by ATLir formulae, which is “only” ΔP

2 -complete). We believe
it is an interesting result with respect to verification of various kinds of agents’ ability
under incomplete information.

6 Conclusions

We propose a logic in which one can study the outcome of rational play in a logical
framework, under various rationality criteria. To our knowledge, there has been very
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little work on this issue (although “solving” game-like scenarios with help of various
solution concepts is arguably the main application of game theory). Note that we are
not discussing the merits of this or that rationality criterion here, nor the pragmatics of
using particular criteria to predict the actual behavior of agents. Our aim, most of all,
is to propose a conceptual tool in which the consequences of accepting one or another
criterion can be studied.

We believe that the logic we propose provides much flexibility and modeling power.
The results presented in Section 5 also suggest that expressive power of the language is
quite high. In terms of technical results, we prove that model checking ATLP is ΔP

3 -
complete, and establish the model checking complexity of another interesting problem
on the way.
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Abstract. Emotional-BDI agents are BDI agents whose behaviour is
guided not only by beliefs, desires and intentions, but also by the role of
emotions in reasoning and decision-making. The EBDI logic is a formal sys-
tem for expressing the concepts of the Emotional-BDI model of agency.
In this paper we present an improved version of the EBDI logic and show
how it can be used to model the role of three emotions in Emotional-BDI
agents: fear, anxiety and self-confidence. We also focus in the computa-
tional properties of EBDI which can lead to its use in automated proof
systems.

1 Introduction

Emotional-BDI agents are BDI agents whose behaviour is guided not only by
beliefs, desires and intentions, but also by the role of emotions in reasoning and
decision-making. This conceptual model was developed by Pereira et al. [1] and
a first version of the EBDI logic was presented in [2], where a first formalisation of
fear was given. In this paper we present an improved version of the EBDI logic in
order to model the role of three emotions in Emotional-BDI agents: fear, anxiety
and self-confidence. The aim of this paper is to show how EBDI logic has enough
expressivity to model some of the properties of these emotions, following Oliveira
& Sarmento’s model of emotional agent [3,4,5].

The main motivation for the current work was to provide a formal system
in which the concepts of the Emotional-BDI model of agency could be logically
expressed. Using these concepts we can specify distinct behaviours which are
expected from agents under the influence of emotions. The existing formal sys-
tems for rational agency such as Rao & Georgeff’s BDI logics [6,7] and Meyer’s
et al. KARO framework [8,9,10,11] do not allow a straightforward representa-
tion of emotions. However, both have properties which we can combine in order
to properly model Emotional-BDI agents.

The EBDI logic is an extension of the BDICTL logic, equipped with explicit refer-
ence to actions, capabilities and resources. The choice of BDICTL, and not the more
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powerful BDICTL∗ , was motivated by our interest in automated proof methods that
will allow the development of executable specification languages of rational agency
or of formal verification systems for the Emotional-BDI model of agency.

This paper is organised as follows. In Section 2 we define the EBDI logic. This
logic is based in BDICTL logic and we begin by presenting the new operators that
were added. Besides the syntax and semantics of EBDI, we present the axiom
systems for the new modal operators. We also establish the decidability of EBDI-
formulae, by transforming EBDI-formulae into equivalent BDICTL ones. In Section
3 we use the EBDI-logic to define a set of conditions which are pre-requisites for
defining how emotions are activated in Emotional-BDI agents and also special
purpose actions which are executed by the agent when it ”feels” these emotions.
In Section 4 we model the activation and effects of each of the emotions in
Emotional-BDI agents using the previous conditions. In Section 5 we give some
information about the ongoing implementation work on the decision procedures
of EBDI. In Section 6 some related work is considered. Finally, in Section 7 we
present some conclusions about this work and point some topics for ongoing and
future research in the EBDI logic.

2 The EBDI Logic

The EBDI is an extension of Rao & Georgeff’s BDICTL. This extension adds new
modal operators for representing the concepts of fundamental desires, capabil-
ities, action execution and resources. The semantics of EBDI is therefore given
by the satisfiability of EBDI-formulae on extended BDICTL-models, considering
accessibility-relations and functions for modelling the new operators.

2.1 Informal Description

The BDICTL logic is a multi-modal logic which combines Emerson’s et al.
branching-time logic CTL [12] and modal operators for representing the men-
tal states of belief (Bel), desire (Des) and intention (Int) as defined by Bratman
et al. in [13]. The underlying model of BDICTL has a two dimensional struc-
ture. One dimension is a set of possible worlds that correspond to the differ-
ent perspectives of the agent representing his mental states. The other is a set
of temporal states which describe the temporal evolution of the agent. A pair
〈world, temporal state〉 is called a situation. In the EBDI logic we added the fol-
lowing modal operators:

Fundamental desire: a fundamental desire is a desire which represents vital
conditions to the agent, like its life or alike propositions. We model this
concept using the modal operator Fund.

Actions: in EBDI we consider regular actions as defined in Propositional Dy-
namic Logic PDL [14]. In this way we can refer to the actions that the agent
performs, in particular when he is under the influence of emotions. Given a
finite set of atomic actions, regular actions are derived through the usual test
operator ? and regular action operations (sequence, disjunction and Kleene
closure).
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Capabilities: a capability represents the operational structure of the execution
of an action. This concept is similar to KARO’s ability. This is represented
by the modal operator Cap.

Resources: resources are the means (physical or virtual) for engaging the exe-
cution of actions. For the modelling of resources we consider the operators:

– Needs(a, r): the atomic action a needs a unit of the resource r to be
executed.

– Availableq(r): the agent has q units of the resource r, with 0 ≤ q ≤MAX ,
MAX > 0.

– Savedq(r): the agent has q units of resource r saved for future usage.

We also consider the operator Res for representing the availability or not of all
the resources needed to execute a regular action. We consider both Available
and Saved operators for the following reasons: the Available operator provides
only information about the available resources at the agent’s current state
of execution. No extra-information is given about the amount of resources
available in the future. However, this last information is important for agent
decision-making. If an agent considers that it would be inevitable to execute
some action in the future, it may also consider necessary to protect the
needed resources from being badly used and therefore not available when
really needed. This ”protection” of resources is given by the Saved operator.
If a unit of a resource r is saved it cannot be used in other actions. It must
first be freed and made available by the agent.

In terms of actions we consider three families of special purpose atomic ac-
tions, for the management of resource availability:

– get(r): the agent gets one more unit of the resource r and this unit becomes
available for being used.

– save(r): the agent saves one unit of the resource r which was previously
made available to the agent.

– free(r): the agent frees one unit of the resource r which has been previously
saved by the agent and makes it available to be used.

2.2 Syntax

As in BDICTL we distinguish between state formulae, which are evaluated in a
single situation, and path formulae which are evaluated along a path.

Definition 1. Considering a non-empty set of propositional variables P , a finite
set of atomic actions AAt that include the set of resource availability manage-
ment actions, a finite set of resource symbols R and a set of resource quantities
{0, . . . ,MAX}, with MAX > 0, the language of EBDI-formulae is given by the
following BNF-grammar:

– state-formulae:
ϕ ::= p | ¬ϕ |ϕ ∧ ϕ | 〈α〉ϕ |Eψ |Aψ |Bel(ϕ) |Des(ϕ) | Int(ϕ) |

Fund(ϕ) |Needs(a, r) |Availableq(r) | Savedq(r) |Cap(α) |Res(α)
where p ∈ P, a ∈ AAt, r ∈ R and 0 ≤ q ≤MAX.
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– path-formulae:
ψ ::= Xϕ | (ϕUϕ)

– regular actions (ARa):
α ::= id | a ∈ AAt |ϕ? |α;α |α+ α |α∗

In addition, we introduce the following abbreviations: �, ⊥, ϕ∨ψ and ϕ→ ψ are
abbreviations of ¬(p∧¬p) (with p being a fixed element of P ), ¬�, ¬(¬ϕ∧¬ψ)
and ¬(ϕ ∧ ¬ψ), respectively; AFϕ, EFϕ, AGϕ and EGϕ are abbreviations of
A(�Uϕ), E(�Uϕ), ¬EF¬ϕ and ¬AF¬ϕ, respectively. The formula [α]ϕ stands
for ¬〈α〉¬ϕ. Iterated action αn, with n ≥ 0, are inductively defined by α0 = id
and α(n+1) = α;αn. Informally, X means next temporal state, U true until, F in a
future temporal state, G globally true. The path quantification modal operators E
and A mean, respectively, in one path and in all paths. The regular action modal
operator 〈α〉 means possibly true after a execution of α.

2.3 Semantics

EBDI-formulae are interpreted in extended BDICTL models, called EBDI-models.
We follow Schild’s approach to BDICTL [15], by considering a situation as a pair
δ = 〈w, s〉, where s is a temporal state of the non-empty set T and w refers to
a world (mental state perspective) from the non-empty set W .

Definition 2. Given a non-empty set of situations Δ, a non-empty set of propo-
sitional variables P , a finite set of atomic actions AAt, a set of resource symbols
R and a positive constant MAX, we define an EBDI-model as a tuple:

M = 〈Δ,RT , {Ra : a ∈ AAt},B,D, I,F , V, C, avl, svd, needs〉
such that:

– RT ⊆ Δ×Δ is a temporal accessibility-relation, such that:
• it is serial, i.e., ∀δ ∈ Δ, ∃δ′ ∈ Δ such that (δ, δ′) ∈ RT ;
• if (〈wi, sj〉, 〈wk, sl〉) ∈ RT , then wi = wk.

– Ra ⊆ RT is an atomic action accessibility-relation, with a ∈ AAt;
– B,D, I,F ⊆ Δ×Δ are accessibility-relations for the mental state operators.

These relations have the following property (considering O ∈ {B,D, I,F}):

if (〈wi, sj〉, 〈wk, sl〉) ∈ O then sj = sl;

– V : P → ℘(Δ) is a propositional variable labelling function;
– C : AAt → ℘(Δ) is a capability labelling function;
– needs : AAt → ℘(R) is a function that defines which resource symbols in R

are needed to execute each action of AAt;
– avl : Δ × R → {0, . . . ,MAX} is a function that for each situation defines

which quantity of each resource is available;
– svd : Δ × R → {0, . . . ,MAX} is a function that for each situation defines

which quantity of each resource is saved.
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As in BDICTL path-formulae are evaluated along a path πδ = (δ0, δ1, δ2, . . .), such
that δ = δ0 and ∀i ≥ 0, (δi, δi+1) ∈ RT . The kth element of a path πδ is denoted
by πδ[k].

The accessibility-relation and the capability labelling function for atomic ac-
tions are extended to regular actions α, as usual in PDL and KARO. We denote
them, respectively, by RA

α and cAα .
For the modelling of resources the functions avl and svd verify the following

properties:

– the total amount of resources which the agent can deal with cannot be greater
than MAX :
∀δ ∈ Δ, ∀r ∈ R, 0 ≤ avl(δ, r) + svd(δ, r) ≤MAX .

– the execution of an atomic action consumes one unit of each resource needed
for the execution of that action:
∀r ∈ needs(a), ∀(δ, δ′) ∈ Ra, avl(δ′, r) = avl(δ, r) − 1.

Also, we assume that for the resource management atomic actions we have:

needs(get(r)) = needs(save(r)) = needs(free(r)) = ∅, ∀r ∈ R

The availability of resources for executing regular actions is given by:

res : ARa → ℘(Δ)

resa =

⎧
⎨

⎩

{δ | if r ∈ needs(a) then avl(r, δ) ≥ 1}, ifneeds(a) �= ∅

Δ, otherwise.
resϕ? = Δ

resα;β = {δ | δ ∈ resα ∧ ∃(δ, δ′) ∈ RA
α , δ

′ ∈ resβ}
resα+β = resα ∪ resβ

resα∗ = ∪n≥0(resαn)

The intuition behind the value of the resource availability function res for
α∗ is that the iterated execution of α is bounded to the existence of a finite
amount of resources. We are now in conditions to define the satisfiability for an
EBDI-formula.

Definition 3. Let M be an EBDI-model and δ a situation. The satisfiability of
an EBDI-formula is defined inductively as follows:

– state formulae satisfaction rules:
• M, δ |= p iff δ ∈ V (p)
• M, δ |= ¬ϕ iff M, δ �|= ϕ
• M, δ |= ϕ ∧ ψ iff M, δ |= ϕ e M, δ |= ψ
• M, δ |= Eψ iff exists a path πδ such that M,πδ |= ψ
• M, δ |= Aψ iff for all paths πδ, M,πδ |= ψ
• M, δ |= 〈α〉ϕ iff exists (δ, δ′) ∈ RA

α such that M, δ′ |= ϕ
• M, δ |= Bel(ϕ) iff for all (δ, δ′) ∈ B, M, δ′ |= ϕ
• M, δ |= Des(ϕ) iff for all (δ, δ′) ∈ D, M, δ′ |= ϕ
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• M, δ |= Int(ϕ) iff for all (δ, δ′) ∈ I, M, δ′ |= ϕ
• M, δ |= Fund(ϕ) iff for all (δ, δ′) ∈ F , M, δ′ |= ϕ
• M, δ |= Cap(α) iff δ ∈ cAα
• M, δ |= Needs(a, r) iff r ∈ needs(a)
• M, δ |= Availableq(r) iff avl(δ, r) = q
• M, δ |= Savedq(r) iff svd(δ, r) = q
• M, δ |= Res(α) iff δ ∈ resα

– path formulae satisfaction rules:
• M,πδ |= Xϕ iff M,πδ[1] |= ϕ
• M,πδ |= ϕ1Uϕ2 iff ∃ k ≥ 0 such that M,πδ[k] |= ϕ2 and ∀j, 0 ≤ j <
k

(
M,πδ[j] |= ϕ1

)

2.4 Properties of EBDI

The axiomatic characterisation of EBDI’s modal operators of time and BDI mental
states are the same as in BDICTL-logic. The modal operator Fund, for fundamental
desires, follows the axiom set of Des and Int operators, which is the KD system
[16], i.e., F is a serial accessibility-relation. The Bel operator verifies the KD45
axioms, i.e., B is an equivalence relation. The temporal operators follow the
axioms of CTL and the action execution operators verify the axioms of PDL.
Since both branching-time and regular action execution structures coexist, we
have the following properties:

Theorem 1. Let M be an EBDI-model, a an atomic action and α a regular
action. We have:

1. if M, δ |= 〈a〉ϕ then M, δ |= EXϕ, a �= id.
2. if M, δ |= 〈α〉ϕ then M, δ |= EFϕ.
3. if M, δ |= 〈α∗〉ϕ then M, δ |= E(〈α〉�Uϕ).

Proof (sketch). In the first case, let M, δ |= 〈a〉ϕ. Then it exists (δ, δ′) ∈ Ra such
that M, δ′ |= ϕ. By definition, (δ, δ′) ∈ RT and it exists πδ = (δ, δ′, . . .) such
that M,πδ[1] |= ϕ. Again, by definition, we have M, δ |= EXϕ .

In the second case, we proceed by induction in the structure of α. The base
case proves along the lines of the previous proof. For the induction step, we
present here only the case of α = β + γ we have M, δ |= 〈β〉ϕ or M, δ |= 〈γ〉ϕ.
By the induction hypothesis we M, δ |= EFϕ or M, δ |= EFϕ, which is equivalent
M, δ |= EFϕ. The other cases are proved analogously.

For the last case proceed again by induction on α. We only present the base
case. Let α = a. By definition it exists n ≥ 0 such that M, δ |= 〈an〉ϕ. Therefore
it exists δ′ such that (δ, δ′) ∈ RA

an and M, δ′ |= ϕ. Considering now the path πδ =
(πδ[0], πδ[1], . . . , πδ[n − 1]).π′ such that πδ[n] = π′[0] = δ′. Since ∀(πδ[i], πδ[i +
1]) ∈ RA

a , for 0 ≤ i ≤ n − 1 by definition we have M,πδ[i] |= 〈a〉� for the
same i and M,πδ[n] |= ϕ. By definition and considering the path πδ we have
M, δ |= E(〈a〉�Uϕ).

Capabilities are characterised similarly to abilities in the KARO framework.
The axioms for the Cap modal operator are:
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– Cap(ϕ?) ↔ �
– Cap(α;β) ↔ Cap(α) ∧ 〈α〉Cap(β)
– Cap(α+ β) ↔ Cap(α) ∨ Cap(β)
– Cap(α∗) ↔ Cap(α) ∧ 〈α〉Cap(α∗)
– Cap(α) ∧ 〈α∗〉(Cap(α) → 〈α〉Cap(α)) → Cap(α∗)

Resource availability for regular actions follows almost the same axioms that
characterise the Cap operator. However, the unbounded composition operator ∗

behaves differently, bounding the execution of an action α∗ to a finite number
of compositions of α. This composition stops when there are no resources to
execute α once more. The Res operator verifies the following axioms:

– Res(get(r)) ↔ �
– Res(save(r)) ↔ �
– Res(free(r)) ↔ �
– Res(ϕ?) ↔ �
– Res(a) ↔ ∧

r∈R

(
Needs(a, r) → ∨MAX

n=1 Availablen(r)
)

– Res(α;β) ↔ Res(α) ∧ 〈α〉Res(β)
– Res(α+ β) ↔ Res(α) ∨ Res(β)
– Res(α∗) ↔ Res(α) ∧ 〈α〉Res(α∗)
– Res(α∗) ∧ 〈α∗〉(Res(α) → 〈α〉Res(α)) → Res(α∗)

Resources are also characterised by axioms which deal with the modal operators
Available, Needs and Saved. First we define some abbreviations that represent,
respectively, the maximum quantity of available and saved resources, in a situ-
ation:

– MaxAvlq(r) =def Availableq(r) ∧ ¬Available(q+1)(r)
– MaxSvdq(r) =def Savedq(r) ∧ ¬Saved(q+1)(r)

The following axioms characterise the interaction between action execution and
resource availability, considering a �∈ {get(r), save(r), free(r) | r ∈ R}:

– MaxAvlq(r) ∧ Needs(a, r) → [a]MaxAvl(q−1)(r), 0 < q ≤MAX
– MaxAvlq(r) ∧ ¬Needs(a, r) → [a]MaxAvlq(r), 0 ≤ q ≤MAX

The following axioms characterise the dynamics of the availability of resources,
considering both resource availability limits and the execution of the special
actions to manage them. We have:

– resource availability limits:

• Available0(r), ∀r ∈ R
• Saved0(r), ∀r ∈ R

• Availableq(r) → Available(q−1)(r), 1 < q ≤MAX

• Savedq(r) → Saved(q−1)(r), 1 < q ≤MAX
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– resource availability and resource management actions:

• Needs(get(r), r′) → ⊥, ∀r, r′ ∈ R
• Needs(save(r), r′) → ⊥, ∀r, r′ ∈ R
• Needs(free(r), r′) → ⊥, ∀r, r′ ∈ R

• MaxAvlq(r) → [get(r)]MaxAvl(q+1)(r), for 0 ≤ q < MAX

• MaxAvlq(r)∧MaxSvdq′
(r) → [save(r)](MaxAvl(q−1)(r)∧MaxSvd(q′+1)(r)),

with 0 ≤ q + q′ ≤MAX

• MaxAvlq(r)∧MaxSvdq′
(r) → [free(r)](MaxAvl(q+1)(r)∧MaxSvd(q′−1)(r)),

with 0 ≤ q + q′ ≤MAX

2.5 Decidability

The decidability of EBDI is obtained by transforming an original EBDI-formula ϕ
into a new formula ϕ′ which is evaluated in a modified EBDI-model. This mod-
ified model is a BDICTL-model which considers the accessibility relation F and
special propositional variables which represent the execution of atomic actions,
capabilities and resource availability. Let L be an EBDI language and P the set of
propositional variables. We define a new language L′ equal to L except that it
has a new set of propositions P ′ that is the union of the following disjunct sets:

– the set of propositional variables P ,
– the set of propositional variables which represent the atomic actions:
{done a | a ∈ AAt},

– the set of propositional variables which represent the capabilities for atomic
actions:
{cap a | a ∈ AAt},

– the set of propositional variables which represent the resources for atomic
actions:
{res a | a ∈ AAt},

– a set of propositional variables for representing the various quantities of
resources available:
{avl q r, svd q r | q ∈ {0, . . . ,MAX}, r ∈ R},

– a set of propositional variables for representing the resources needed for the
execution of each atomic action:
{needs a r | a ∈ AAt, r ∈ R}.

Considering an EBDI-model M , the modified model M ′ is defined as follows,
extending the propositional labelling function of M .

Definition 4. Let M be an EBDI-model such that:

M = 〈Δ,RT , {Ra : a ∈ AAt},B,D, I,F , V, C, avl, svd, needs〉,

a model M ′ is a tuple:
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M ′ = 〈Δ,RT ,B,D, I,F , V ′〉,

such that V ′ : P ′ → ℘(Δ) is defined as follows, where a ∈ Aat, p ∈ P and r ∈ R:

– V ′(p) = V (p),
– V ′(done a) = {δ′ | (δ, δ′) ∈ RA

a },
– V ′(cap a) = C(a),
– V ′(res a) = resa,
– V ′(avl q r) = {δ |M, δ |= Availableq(r)},
– V ′(svd q r) = {δ |M, δ |= Savedq(r)},
– V ′(needs a r) = {δ |M, δ |= Needs(a, r)}.

Note that in V ′ only atomic actions are considered. Therefore, any EBDI-formula
must be normalised into an equivalent one where only atomic actions can occur.

Definition 5. For all EBDI-formula ϕ there exists a normalised formula ϕ′ ≡
ξ(ϕ), such that the normalisation ξ is inductively defined as follows:

– normalisation of regular action formulas:
ξ(〈a〉ϕ) = 〈a〉ξ(ϕ),
ξ(〈ψ?〉ϕ) = ξ(ψ ∧ ϕ),
ξ(〈α〉(ϕ ∨ ψ)) = ξ(〈α〉ϕ) ∨ ξ(〈α〉ψ),
ξ(〈α;β〉ϕ) = ξ(〈α〉〈β〉ϕ),
ξ(〈α + β〉ϕ) = ξ(〈α〉ϕ) ∨ ξ(〈β〉ϕ),
ξ(〈id〉ϕ) = ξ(ϕ),
ξ(〈α(n+1)〉ϕ) = ξ(〈α〉〈αn〉ϕ),
ξ(〈α∗〉ϕ) = ξ(E(〈α〉�Uϕ)).

– normalisation of capability formulas:
ξ(Cap(a)) = Cap(a),
ξ(Cap(ϕ?)) = �,
ξ(Cap(α;β)) = ξ(Cap(α) ∧ 〈α〉Cap(β)),
ξ(Cap(α+ β)) = ξ(Cap(α)) ∨ ξ(Cap(β)),
ξ(Cap(α∗)) = ξ(E(Cap(α) ∧ 〈α〉Cap(α))U�)).

– normalisation of resource formulas:
ξ(Needs(a, r)) = Needs(a, r),
ξ(Availableq(r)) = Availableq(r),
ξ(Savedq(r)) = Savedq(r),
ξ(Res(a)) = Res(a),
ξ(Res(ϕ?)) = �,
ξ(Res(α;β)) = ξ(Res(α) ∧ 〈α〉Res(β)),
ξ(Res(α+ β)) = ξ(Res(α)) ∨ ξ(Res(β)),
ξ(Res(α∗)) = ξ(E(Res(α) ∧ 〈α〉�))U¬Res(α))).
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– normalisation of other formulas:
ξ(�) = �,
ξ(p) = p,
ξ(¬ϕ) = ¬(ξ(ϕ)),
ξ(ϕ ∧ ψ) = ξ(ϕ) ∧ ξ(ψ),
ξ(Aψ) = A(ξ(ψ)),
ξ(Eψ) = E(ξ(ψ)),
ξ(Xϕ) = X(ξ(ϕ)),
ξ(ϕ1Uϕ2) = (ξ(ϕ1)Uξ(ϕ2)),
ξ(Bel(ϕ)) = Bel(ξ(ϕ)),
ξ(Des(ϕ)) = Des(ξ(ϕ)),
ξ(Int(ϕ)) = Int(ξ(ϕ)),
ξ(Fund(ϕ)) = Fund(ξ(ϕ)),

After normalisation, we apply the transformation defined below, so that the
resulting formula can be evaluated in a model M ′.

Definition 6. Let ϕ be an normalised EBDI-formula. The transformation of ϕ
to ϕ′ is given by τ , inductively defined as follows:

– propositional-formulae:
τ(�) = �,
τ(p) = p,
τ(¬ϕ) = ¬(τ(ϕ)),
τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ).

– temporal-formulae:
τ(Aψ) = A(τ(ϕ)),
τ(Eψ) = E(τ(ϕ)),
τ(Xϕ) = X(τ(ϕ)),
τ(ϕ1Uϕ2) = (τ(ϕ1)Uτ(ϕ2)).

– action execution formulae:
τ(〈a〉ϕ) = EX(done a ∧ τ(ϕ)),
τ([a]ϕ) = AX(done a→ τ(ϕ)).

– mental-state formulae:
τ(Bel(ϕ)) = Bel(τ(ϕ)),
τ(Des(ϕ)) = Des(τ(ϕ)),
τ(Int(ϕ)) = Int(τ(ϕ)),
τ(Fund(ϕ)) = Fund(τ(ϕ)),

– capabilities and resources formulae:
τ(Cap(a)) = cap a,
τ(Res(a)) = res a,
τ(Needs(a, r)) = needs a r,
τ(Availableq(r)) =

∧
0≤s≤q(avl s r),

τ(Savedq(r)) =
∧

0≤s≤q(svd s r).

Now we can present the following theorem.
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Theorem 2. Let M be an EBDI-model, δ a situation and ϕ a normalised EBDI-
formula. If M, δ |= ϕ then M ′, δ |= τ(ϕ).

Proof. (Sketch). Proof is done by induction of the structure of ϕ. We present here
only the case ϕ = Cap(a). Assume that M, δ |= Cap(a). By definition, δ ∈ C(a).
By definition of M ′ we get δ ∈ V ′(cap a) which is equivalent to M ′, δ |= cap a.
Since τ(Cap(a)) = cap a we get M ′, δ |= τ(Cap(a)).

Using this theorem, we obtain the decidability of a EBDI-formula ϕ by trans-
forming it into τ(ξ(ϕ)) and applying to the latter the tableau construction for
BDICTL, with a rule for expanding formulas containing the Fund modal operator.
The algorithm for building such tableau is based on the decision procedures for
BDICTL, developed by Rao & Georgeff in [6]. In particular we use the notions of
fully extended propositional tableau and of a fragment DAG[w,ϕ] as defined in
the cited work of Rao & Georgeff.

Definition 7. Let ψ be a EBDI-formula and τ(ξ(ψ)) = ϕ. The tableau construc-
tion for EBDI is defined as follows:

1. build a tree with just one node w0, called root, such that L(w0) = {ϕ}.
2. repeat (a) − (d) until none apply:

(a) build a propositional tableau: if w is a leaf, L(w) is not inconsistent,
L(w) is not a propositional tableau and ψ is the smaller witness of this
fact, then:
i. if ψ is ¬¬γ, create a node w′, son of w, such that L(w′) = L(w)∪{γ},
ii. if ψ is γ ∧ θ, create a node w′, son of w, such that L(w′) = L(w) ∪

{γ, θ},
iii. if ψ is ¬(γ ∧ θ), create two nodes w′ and w′′, sons of w, such that

L(w′) = L(w) ∪ {¬γ} e L(w′′) = L(w) ∪ {¬θ}.
(b) build a fully extended propositional tableau: if w is a leaf, L(w) is not

inconsistent, L(w) is not a fully extended propositional tableau and ψ is
a witness of this fact, then create two nodes w′ e w′′, sons of w, such
that L(w′) = L(w) ∪ {ψ} e L(w′′) = L(w) ∪ {¬ψ},

(c) extend CTL-formulas: if w is a leaf, L(w) is not inconsistent, L(w) is
a fully extended propositional tableau and contains the formulas AXϕ1,
. . . ,AXϕn,EXψ1, . . .,EXψm, then create m successors i, each containing
the set {ϕ1, . . . , ϕn, ψi},

(d) create mental states operator successors: if w is a leaf, L(w) is not in-
consistent and L(w) is a fully extended propositional tableau, then:
i. if L(w) contains ¬Bel(ϕ1), . . . ,¬Bel(ϕn),Bel(ψ1), . . . ,Bel(ψm), then

create n B-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};
ii. if L(w) contains ¬Des(ϕ1), . . . ,¬Des(ϕn),Des(ψ1), . . . ,Des(ψm), then

create n D-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};
iii. if L(w) contains ¬Int(ϕ1), . . . ,¬Int(ϕn), Int(ψ1), . . . , Int(ψm), then

create n I-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};
iv. if L(w) contains ¬Fund(ϕ1), . . . ,¬Fund(ϕn),Fund(ψ1), . . . ,Fund(ψm),

then create n F-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};
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(e) mark nodes as ”satisfiable”: if w is not marked as ”satisfiable”, then
mark it as so if:
i. L(w) is not a fully extended CTL tableau and exists a successor w′

of w which is marked as ”satisfiable”;
ii. L(w) is a fully extended CTL tableau and all formulas AXϕ and EXϕ

are satisfied (through the existence of a fragment DAG[w,ϕ]) and all
the B,D,I,F-successors are marked as ”satisfiable”,

iii. L(w) is a fully extended CTL tableau and don’t exist formulas of
the type AXϕ, nor the type EXϕ, nor the type ¬Bel(ϕ), nor the type
¬Des(ϕ), nor the type ¬Int(ϕ) nor the type ¬Fund(ϕ), and L(W ) is
not inconsistent.

3. if the root of the tableau is marked as ”satisfiable” then return ”ϕ is satisfi-
able”. Otherwise return ”ϕ is not satisfiable”.

Extending the work of Rao & Georgeff [6], we have the decidability of EBDI:

Theorem 3. The EBDI logic is decidable.

Proof. The extension of the syntax and semantics of BDICTL to support the Fund
operator is similar to the proof of the decidability of the modal operators of Des
and Int in [6].

3 Preliminaries for Modelling Emotions in EBDI

In this section we present a series of concepts which will be useful for modelling
emotions in EBDI. These concepts refer to conditions that are the basis for mod-
elling the activation of emotions and the consequences that these emotions have
in the behaviour of the agent.

3.1 Resource Management Actions

We begin by defining special regular actions for dealing with resource manage-
ment. For that we consider the following abbreviations for regular actions:

– If(ϕ, α) =def (ϕ?;α)
– IfE(ϕ, α, β) =def If(ϕ, α) + If(¬ϕ, β)
– WhileDo(ϕ, α) =def ((ϕ?;α)∗);¬ϕ?

We also consider a special function which, given a finite set of regular actions S,
returns the composition of all the actions in S, in some order (in this function
we consider that regular actions commute). This function, which we denominate
by eval set, is inductively defined as:

eval set : ℘(ARa) → ARa

eval set(∅) = id
eval set({α} ∪ S) = α; eval set(S), α �∈ S

Based on the atomic actions for the of resource management, we define the
following set of resource management regular actions:
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GET: the agent gets all the resources needed to execute some atomic action.
Considering:
Cond1(a, r) = Needs(a, r) ∧ MaxAvl0(r)
we have:
GET(a) = eval set({If(Cond1(a, r), get(r)) | r ∈ R})

SAVE: the agent saves a unit of each resource needed to execute an atomic
action. Considering:
Cond2(a, r) = Needs(a, r) ∧ MaxSvd0(r)
we have:
SAVE(a) = eval set({If(Cond2(a, r), IfE(Avl(r), save(r), get(r); save(r)))
| r ∈ R})

FREE: the agent frees the resources previously saved for executing an atomic
action. Considering:
Cond3(a, r) =def Needs(a, r) ∧ Saved1(r)
we have:
FREE(a) = eval set({If(Cond3(a, r), free(r)) | r ∈ R})

All these definition scale for regular actions α ∈ ARa and we can work with
for instance FREE(α) instead of FREE(a).

3.2 Proposition Achievement

For the agent to succeed in the execution of an action it must have both the
capability and resources for that action. We denote the existence of both of them
as effective capability. Formally we have:

– EffCap(α) =def Cap(α) ∧ Res(α)

The agent also considers if it can or cannot execute some action to achieve the
truth of some proposition. Formally we have:

– Can(α, ϕ) =def Bel(〈α〉ϕ ∧ EffCap(α))
– Cannot(α, ϕ) =def Bel(¬〈α〉ϕ ∨ ¬EffCap(α))

3.3 Risk and Favourable Conditions

The activation of emotions is based on conditions of the environment that show
to be positive or negative to the desires and fundamental desires of the agent.
First we define the following conditions:

Risk condition: a proposition ϕ is said to be at risk if there is a next situation
in which ¬ϕ is true:
AtRisk(ϕ) =def EX(¬ϕ)

Possibly at risk: a proposition ϕ is said to be possibly at risk if there exists a
future situation where ¬ϕ is true. Formally this is defined as:
PossAtRisk(ϕ) =def EF(¬ϕ)
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Safe: a proposition ϕ is said to be safe if it will always be true in the future.
Formally we have:
Safe(ϕ) =def AF(ϕ)

On believing on the above, and the propositions being either fundamental
desires or only desires, the agent distinguishes between three types of conditions
for activating emotions:

1. Threats: a threat is a condition of the environment in which a fundamen-
tal desire is in imminent risk of failure. We consider the following kinds of
threats:

– a fundamental desire ϕ is said to be threatened if the agent believes that
ϕ is at risk:
Threatened(ϕ) =def Bel(AtRisk(ϕ)) ∧ Fund(ϕ)

– a fundamental desire ϕ is said to be threatened by a proposition ψ if the
agent believes that the truth of ψ implies ϕ being at risk:
ThreatProp(ψ, ϕ) =def Bel(ψ → AtRisk(ϕ)) ∧ Fund(ϕ)

– a fundamental desire ϕ is said to be threatened by the execution of an
action a if the agent believes that the successful execution of a will put
ϕ at risk:
ThreatAct(a, ϕ) =def Bel(〈a〉AtRisk(ϕ))∧Fund(ϕ) ThreatsEffC(a, ϕ) =def

Bel(¬EffCap(a) → AtRisk(〈a〉ϕ)) ∧ Fund(ϕ)

2. Not favourable: a condition is not favourable if it reveals a possible failure
of one of the agent’s desires, in the future. As in the case of the threats, we
consider the following kinds of not favourable conditions:

– NotFavourable(ϕ) =def Bel(PossAtRisk(ϕ)) ∧ Des(ϕ)
– NotFavourableProp(ψ, ϕ) =def Bel(ψ → PossAtRisk(ϕ)) ∧ Des(ϕ)
– NotFavourableAct(α, ϕ) =def Bel(〈α〉PossAtRisk(ϕ)) ∧ Des(ϕ)

Note that here we consider regular actions instead of atomic ones since the
risk condition is not bounded to verify in a next situation.

3. Favourable: a condition is said to be favourable if it refers to a current sit-
uation of the environment in which a desire of the agent has the possibility
to be achieved. We define the following kinds of favourable conditions:

– Favourable(ϕ) =def Bel(Safe(ϕ)) ∧ Des(ϕ)
– FavourableProp(ϕ, ψ) =def Bel(ψ → Safe(ϕ)) ∧ Des(ϕ)
– FavorableAct(α, ϕ) =def Bel(〈α〉Safe(ϕ)) ∧ Des(ϕ)

4 Modelling Emotions in EBDI

In this section we present the modelling of three emotions within EBDI logic:
Fear, Anxiety and Self-Confidence. For each of these emotions we model both
its activation conditions and the effects that their presence have in the future
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behaviour of an Emotional-BDI agent. This modelling is based in the work of
Oliveira & Sarmento in [4].

The activation condition of each of the emotions corresponds precisely to a
condition defined in the previous section. We opted by this approach to avoid the
logical omniscience problem [17]. The use of a notation Emotion(F (ϕ)) allows
a more intuitive meaning and can help in the future development of a formal
calculus for (emotional) EBDI-formulae.

4.1 Fear

The activation of fear occurs when a fundamental desire of the agent is put at
risk of failure. Using other words, fear is activated when the agent detects a
threat. Therefore we have the following kinds of fear:

– Fear(¬ϕ) ≡ Threatened(ϕ)
– Fear(ψ → ¬ϕ) ≡ ThreatsProp(ψ, ϕ)
– Fear(〈a〉¬ϕ) ≡ ThreatsAct(a, ϕ)

The main effect of fear is bringing the agent into a cautious perspective towards
the environment and, in particular, to the threat he detected. Depending on
the kind of threat, the agent will aim at avoiding that threat. We consider the
following behaviours under the effect of fear:

– if the agent can avoid a threat through the execution of an action a the he
intends to execute it:
Fear(¬ϕ) ∧ Can(a, ϕ) → Int(〈a〉ϕ)

– if the agent cannot avoid the threat through an action a then he does not
intend to execute it:
Fear(¬ϕ) ∧ Cannot(a, ϕ) → ¬Int(〈a〉ϕ)

– if the agent can avoid a proposition which is a threat, or can make the
proposition and the fundamental desire coexist – both through the execution
of an action – then the agent intends to execute that action:
Fear(ψ → ¬ϕ) ∧ Can(a,¬ψ) → Int(〈a〉¬ψ)
Fear(ψ → ¬ϕ) ∧ Can(a, ψ ∧ ϕ) → Int(〈a〉(ψ ∧ ϕ))

– if the execution of an action is a threat to the agent then the agent will
not intend to execute it (possibly for achieving some proposition ψ) until it
causes no fear:
Fear(〈a〉¬ϕ) → A(¬Int(〈a〉�)U¬Fear(〈a〉ϕ))

– if the agent believes that an action a for which it does not have resources
can eliminate the threat, then one of the following conditions apply:
1. the agent can eliminate the fear by freeing previously saved resources to

execute other action:
Fear(¬ϕ) ∧ Cannot(a, ϕ) ∧ Bel([FREE(α)]Can(a, ϕ)) → Int(〈FREE(α); a〉ϕ)

2. the agent believes it can get the resources for a before compromising its
fundamental desire:
Fear(¬ϕ) ∧ Cannot(a, ϕ) ∧ Bel([GET(α)]Can(a, ϕ)) → Int(〈GET(α); a〉ϕ)
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4.2 Anxiety

The activation of anxiety occurs when the desires of the agent can be at risk
in the future. Therefore, anxiety works as preventive alert system towards fu-
ture situations which may compromise the overall performance of the agent. We
consider the following kinds of anxiety activation:

– Anx(EF¬ϕ) ≡ NotFavourable(ϕ)
– Anx(ψ → EF¬ϕ) ≡ NotFavourableProp(ψ, ϕ)
– Anx(〈α〉EF¬ϕ) ≡ NotFavourableAct(α, ϕ)

The effects of anxiety are mainly preparing the agent to face future risk condi-
tions, or to avoid them before they occur. We consider the following cases:

– if an action α guarantees that the desire will not be at risk, the agent intends
to execute α. If he does not have enough resources, he will save them:
Anx(EF¬ϕ) ∧ Can(α,AFϕ) → Int(〈α〉AFϕ)
Anx(EF¬ϕ) ∧ Int(〈α〉AFϕ) ∧ ¬Res(α) → 〈SAVE(α)〉Int(〈α〉AFϕ)

– if a proposition causes anxiety and the agent has a way to either negate that
proposition or make that proposition coexist with the desire possibly at risk,
then the agent will execute that action:
Anx(ψ → EF¬ϕ) ∧ Can(α,AF(¬ψ ∨ (ψ ∧ ϕ)) → Int(〈α〉AF(¬ψ ∨ (ψ ∧ ϕ)))

– if the execution of an action is causing anxiety and the execution of that
action is an intention of the agent, the agent will not intend it until it becomes
harmful:
Anx(〈α〉EF¬ϕ) ∧ Int(〈α〉ϕ) → AX(A(¬Int(〈α〉ϕ)UBel(AFϕ)))

4.3 Self-confidence

Self-confidence represents the well-being of the agent relatively to the future
achievement of one of its desires. Using other words, if a desire is in a favourable
condition to be achieved, the agent feels self-confidence about its achievement.
We consider the following kinds of self-confidence:

– SConf(ϕ) ≡ Favourable(ϕ)
– Sconf(ψ → ϕ) ≡ FavourableProp(ψ, ϕ)
– SConf(〈α〉ϕ) ≡ FavourableAct(α, ϕ)

Self-confidence deals mostly with the maintainance of intentions. Since the de-
sires are considered to be achievable, the agent only cares about maintaining
them in the set of intentions until he believes he achieved them. We consider the
following kinds of behaviour:

– if the agent already intends a desire to which he is self-confident about, the
agent will continue to intend it until he believes it is achieved:
SConf(ϕ) ∧ Int(〈α〉ϕ) → A(Int(〈α〉ϕ)UBel(ϕ))

– if the agent still does not intend the desire, he will begin to intend it from
the next situation on:
SConf(ϕ) ∧ Can(α, ϕ) ∧ ¬Int(〈α〉ϕ) → AXInt(〈α〉ϕ)
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– if a proposition causes self-confidence about a desire, then the agent will
start intending that proposition and also intend both the proposition and
the desire itself:
SConf(ψ → ϕ) ∧ Can(α, ψ) ∧ ¬Int(〈α〉ψ) → AXInt(〈α〉ϕ)
SConf(ψ → ϕ) → Int(ψ ∧ ϕ)

– if the agent has the resources needed to execute an action which will guaran-
tee the achievement of a desire to which it is self-confident about, then the
agent will free those resources and intend to get them right before executing
the action:
SConf(〈α〉ϕ) ∧ Int(〈α〉ϕ) ∧ Saved(α) → 〈FREE(α)〉Int(〈GET(α);α〉ϕ)

4.4 Usability of EBDI

The main goal behind the development of EBDI was to provide a language ex-
pressive enough to specify conditions where emotions are triggered and the effect
that the presence of such emotions have in the behaviour of the agent. The for-
mulas we presented in the Sections 4.1, 4.2 and 4.3 are not supposed to be all
present but rather combined to fit the special needs of the environment and role
of the agent. This combination should define the emotional state of the agent.
This mental state works on top of the properties already present in the BDI
logic.

Lets consider a scenario where a fire-fighter agent is fighting a nearby fire. It
is acceptable that the agent may fear of being burned, although believing that
he can extinguish the fire. The emotional state would contain:

1. Fear(¬healthy)
2. SConf(extinguished fire)

The result of this emotional state could be getting back to protect from very
close fire but still continuing to throw it water, which is formalised as:

1. Fear(¬healthy) ∧ Can(get back, healthy) → Int(〈get back〉)healthy
2. A(Int(〈through water〉extinguished)UBel(extinguished))

We could select different conditions to model for instance another fire-fighter
agent fighting the fire, a police agent, etc.

5 Implementation

We have implemented the tableau algorithm presented in Section 2.5 for deter-
mining the satisfiability of EBDI-formulas. Our implementation was done in the
Prolog language. Currently we are implementing EBDI syntax and semantics as a
module of the Coq interactive theorem prover system [18]. Our aim is to provide
a computational mean of doing model-checking for EBDI-formulae. We base our
approach in the work of de Wind [19] in implementing normal modal logic in
Coq plus some implementations of formal concepts present in the EBDI logic and
already implemented in Coq, as CTL logic.
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6 Related Work

The work which more relates to the one we present in this paper is the one of
Meyer in [20], where he proposes the formal modelling of happiness, sadness,
anger and fear in the KARO logical framework.

Meyer suggests the introduction of a modal operator Goalm(ϕ) which repre-
sents a so called maintainance goal. This modal operator is used to model fear
with a similar intuition as the one behind our Fund(ϕ) modal operator, i.e., to
define a more important kind of desire. In terms of modelling the evolution of the
agent, Meyer uses computational sequences of atomic actions to refer to future
states of an agent, while we use the standard CTL’s temporal operators.

In a more recent work, Meyer and Dastani introduce the modelling of emotions
previously done in an agent oriented programming language [21]. In this work
the authors present transition rules for the generation of each of the emotions
modelled in [20]. This generated emotions are then feed into the programming
language’s deliberation process which determine the effects that these emotions
have in the mental states of an agent.

Comparing both approaches we conclude that:

1. Our approach provides a more expressive language to model emotions in
BDI agents. The combination of time and action execution and the detailed
definition of resources and resource-management notions fits in the needs of
emotional agent architecture [3,1,2].

2. The new operators which we introduced were conveniently defined syntacti-
cally and semantically. The work of Meyer introduces similar concepts but
just in the language of its logic. Our work also has a strong focus on the
logical foundations of EBDI whereas Meyer’s work focus only in expressing
emotional states of rational agents.

Despite the differences, both logical frameworks try to model rational agents
with emotions in the same context: they are not interested about the internal
structure of the emotions, but only in specifying at which conditions they are
activated and how their presence influence the behaviour of the agent.

7 Conclusions and Future Work

In this paper we have presented an improved version of the EBDI logic to model
the activation and effects of emotions in the behaviour exhibited by a Emotional-
BDI agent. The emotions analysed were fear, anxiety and self-confidence. This
formalisation was based in the BDICTL logic, which was extended with the notions
of fundamental desire, explicit reference to actions, capabilities and resources.

We have shown that the satisfiability of EBDI-formulae can be reduced to the
satisfiability of BDICTL-formulae. We have implemented an extended version of
the BDICTL’s tableau decision procedure for EBDI-formulae.

Currently we are developing a library for the Coq interactive theorem prover
system [18] with the purposes of reasoning and model-checking specifications of
Emotional-BDI agents within the EBDI framework.
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As a future work, it would be interesting to add a notion of graded importance
to the Fund modal operator in order to provide a more accurate notion of the
importance of a desire to the decision-making process of an agent, in the line of
the work done by Godo et al. in [22].
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Abstract. We study a logical property that concerns the preservation
of future directed obligations that have not been fulfilled yet. We call this
property ’propagation property’. The goal is to define a combination of
temporal and deontic logics which satisfies this property. Our starting
point is the product of temporal and deontic logics. We investigate some
modifications of the semantics of the product in order to satisfy the
propagation property, without losing too much of the basic properties of
the product. We arrive at a semantics in which we only consider ideal
histories that share the same past as the current one, and that enables an
interesting characterization of the states in which obligations propagate:
these are the states where there are no violations of present directed
obligations.

1 Introduction

A strong intuition concerning the interaction of deontic and temporal modalities
is that an obligation to achieve something in the future should propagate to
future moments if it is not met presently. This is particularly true for deadline
obligations; if I have to finish my paper before the end of the week, and I do not
finish it today, tomorrow I still have to finish it before the end of the week. But,
the propagation property also pertains to future directed obligations without a
deadline: if today I need to give a party someday, and I do not give the party
today, then tomorrow I still have to give the party someday.

We want to emphasize that such properties are only valid if we assume that the
‘deontic realm’ is not changed by an explicit update of the norms that construct
it. What we call the ‘deontic realm’ is relative to the actual situation and to
an external body of norms that determines what the obligations of the agent
in the given situation are (e.g. a lawbook, or some other set of rules the agents
have to comply to). If we allowed the body of norms to vary, the propagation
property would not hold. For instance, to come back to the above mentioned
examples, there may be an unexpected extension of the deadline for the paper,
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or my friends have waited in vain for too long and no longer demand that I give
the party. This means that I no longer have to finish the paper before the end
of the week, and, that I no longer have to organize the party. In such cases, the
preservation of the original obligations is not prolonged, due to a change of the
norms, and accordingly, a change of the deontic realm. In this paper we will not
be concerned with these explicit updates of the norms; we only consider logical
properties for the case where the norms are settled, and where it makes sense
to reason about the preservation and propagation of the resulting obligations on
the basis of what actually happens. So, the only changes of the deontic realm
we consider are the ones due to changes of the situation.

The problem of propagation of obligations is an instance of the more general
problem of the interaction of ’what is obligatory’ with ’what is actually the case’.
In deontic logic such interactions are only considered sporadically. For instance,
in SDL [18], we do not have the interaction property O(ϕ ∨ ψ) ∧ ¬ϕ ⇒ O(ψ),
although it might be considered quite reasonable: if I have to be smart or strong,
and in fact I am not strong, I have to be smart. A possible ground for not wanting
this property is that in combination with ’weakening’, that is O(ϕ) ⇒ O(ϕ∨ψ),
which is valid in SDL, we get that O(ϕ) ∧ ¬ϕ ⇒ O(ψ). Thus by the combina-
tion of weakening and the proposed interaction of obligations with conditions
being settled, we get that when there is a violation, everything is obligatory.
Then, two reactions are possible: (1) indeed this property is bad, and we have to
see what we can do to avoid it (while keeping the interaction with facts, in which
we are interested), or (2) maybe this property is not as bad as it seems. Below
we elaborate on both reactions.

If we want to avoid O(ϕ) ∧ ¬ϕ ⇒ O(ψ) the obvious choice would be to
attack weakening. Ross’ famous paradox [17] indeed questions this property.
Ross’ paradox just says that O(ϕ) ⇒ O(ϕ ∨ ψ) is not intuitive under some
readings. For instance, being obliged to post a letter does not imply being obliged
to post or burn it. But many deontic logicians (see e.g., [11]) have argued that
the paradox is due to a naive interpretation of the formula. If we read O(ϕ)
properly as ’ϕ is a necessary condition of any state that is optimal according to
ones obligations’, then the property poses no problems. Another way to say this
is that O(ϕ) expresses an ‘at least’ reading of what is obligatory: it is obligatory
to at least satisfy ϕ, but maybe other properties also have to be obligatory at
the same time.

Another way to avoid O(ϕ)∧¬ϕ ⇒ O(ψ) is to refine the interaction between
’what is obligatory’ with ’what is actually the case’, i.e., to specialise the interac-
tion property O(ϕ∨ψ)∧¬ϕ ⇒ O(ψ). Our point is to consider that what happens
today can only have an effect on what will be obligatory tomorrow, and not on
what is obligatory today. We follow the idea that one time step is needed so that
the deontic realm takes into account what happens. According to this reading, if
I have to be smart or strong today, then the fact I am in one of the four possible
situations (strong and smart, strong and not smart, etc.) does not change my
obligation to be either smart or strong. In one of these situations (neither strong
nor smart) the obligation is violated, while it is fulfilled in the other ones. On
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the other hand, things change in a temporal context. Indeed, if I have the oblig-
ation to be in Paris today or in Amsterdam tomorrow, then the obligation I will
have tomorrow will depend on what I do today: if I am not in Paris today, then
tomorrow I will have the obligation to be in Amsterdam, otherwise I will not.
(Whether I am in Paris or not today, today’s obligation does not change, only
tomorrow’s obligation does.) It is closely related to the fact that an obligation
only concerns the present or the future: an obligation that yesterday I was in
Paris does not make sense. Thus, in case I am not in Paris today, tomorrow’s
obligation will not be ’to be in Amsterdam or to have been in Paris yesterday’
but simply ’to be in Amsterdam’. So in this paper the interaction property we
will consider is not O(ϕ ∨ ψ) ∧ ¬ϕ ⇒ O(ψ) but O(ϕ ∨ Xψ) ∧ ¬ϕ ⇒ XO(ψ),
and we will call it propagation property.

As a further motivation for this work we will first point to some related prob-
lems. Preservation properties have been studied for intentions. However, inten-
tions are preserved for a different reason. As Bratman [3,4] explains, intentions
serve to stabilize an agent’s deliberations. An agent cannot continuously recon-
sider his decisions, simply because usually there is no time to do that. It is
usually more rational to stick to reached decisions (thereby turning them into
intentions), and to only let achievement of that what is intended be a cause for
discharging the obligation. In AI (that is, AI as studied in computer science),
the best-known formalizations of rationality postulates for the phenomenon of
intention preservation are Rao and Georgeff’s ’commitment strategies’ [15]. For
obligations, the reason to preserve them is different: they are preserved simply
because an agent has to meet up to his obligations at some point, unless, of
course, he is explicitly relieved from his obligations. But, as said, we do not con-
sider that issue in this paper. Another motivating example is the preservation of
goals in the mechanisms underlying agent programming languages like AgentS-
peak [16] and 3APL [12,8]. Such agent programming languages usually comprise
programming rules that work on data structures for beliefs, plans and goals.
The goals in the ’goal bases’ of agent programs are often sets of propositional
formulas denoting properties the agent aims at making true. The operational
semantics of the programming languages typically treats the goals in the goal
bases as information that has to be preserved unless a state is reached where
the agent believes the goal is achieved. Of course, goals are not identical to
obligations. But it is clear that they at least share the phenomenon of propa-
gation. One of the motivations is thus to provide a logical basis for verification
of agent programs against logically formulated rationality postulates about the
propagation of goals and obligations.

The present paper is organised as follows. Section 2 presents the product
of Linear Temporal Logic (LTL) [14] and Standard Deontic Logic (SDL) [18],
which is an appropriate starting point for our investigation. Section 3 shows
that the propagation property is not compatible with the genuine product and
presents modifications of the product semantics which guarantee the propagation
of obligations. Section 5 concludes the paper.
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2 Product of Temporal and Deontic Logic

We present here standard deontic logic SDL [18], linear temporal logic LTL
[14], and their product logic LTL×SDL. We choose the product as the starting
point because the commutativity properties, which are specific for products, cor-
respond to a setting without norm updates. As we explained in the introduction
we are not interested in explicit updates here.

2.1 Deontic and Temporal Logics

Deontic logic is the modal logic of obligation, permission, and prohibition.

Definition 1 (Deontic language). The deontic language DL is defined as

DL ::= P | ⊥ | DL ⇒ DL | O(DL)

The necessity operator O is read it is obligatory that. The possibility operator
P

def
= ¬O¬ is read it is permitted that. We can read O(¬ϕ) as it is prohibited

that ϕ.

The boolean operators are defined as usual:

¬ϕ def
= ϕ⇒ ⊥ � def

= ¬⊥ ϕ1 ∨ ϕ2
def
= ¬ϕ1 ⇒ ϕ2 ϕ1 ∧ ϕ2

def
= ¬(ϕ1 ⇒ ¬ϕ2)

The truth-relation |= between a world of a Kripke model and a formula is
given through the usual possible world semantics, with which we consider the
reader is familiar. Standard Deontic Logic SDL can be defined as the logic over
the language DL determined by the Kripke frames (W,R) such that R is serial,
i.e. as the set of the DL-formulas that are valid in every frame (W,R) such that
R is serial. In a deontic frame, W is the set of the worlds, and the intuitive
reading of R is that it associates each world with a set of ideal worlds, in which
every obligation is fulfilled.

Definition 2 (Temporal language). We consider a monadic operator X
called next, and a dyadic operator U called until. Given a set P of atomic
propositions, the temporal language T L is defined as

T L ::= P | ⊥ | T L ⇒ T L | X T L | T L U T L

The informal meaning of the temporal operators X and U are as follows:

Xϕ: “at the next moment, ϕ will hold.”

ϕ1 U ϕ2: “ϕ2 will eventually hold at some moment m, while ϕ1 holds from now
until the moment before m.”

The temporal operators F (finally, or eventually), G (globally, or always) and
F�k (before k time units) are defined as the following abbreviations (the boolean
operators are defined as for DL):

F ϕ
def
= �Uϕ G ϕ

def
= ¬F ¬ϕ F�kϕ

def
=

{
ϕ if k = 0
ϕ ∨XF�k−1ϕ else
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Definition 3 (Linear temporal structure and model). We consider here
a linear, infinite, and discrete time. The unique temporal frame is (N, <) where

– N is the set of the natural numbers.
– < is the usual strict order on the natural numbers.

Given a set of atomic propositions P , a temporal valuation V is a function
V : N → 2P which associates each state with a set of atomic propositions.

Let us define the satisfaction relation between a state of a model and a temporal
formula.

Definition 4 (Satisfaction). Given a set of atomic propositions P , a temporal
valuation V , a moment i ∈ N, and a formula ϕ of T L, the satisfaction relation
|= is defined by induction on ϕ as follows:

i |= p iff p ∈ V (i) where p ∈ P
i � ⊥
i |= ϕ1 ⇒ ϕ2 iff if i |= ϕ1 then i |= ϕ2

i |= Xϕ iff i+ 1 |= ϕ
i |= ϕ1 U ϕ2 iff ∃i′ � i such that i′ |= ϕ2 and

∀ i′′ ∈ N if i � i′′ < i′ then i′′ |= ϕ1

The logic formulated in the language T L which is determined by the unique
frame (N, <) is called LTL (Linear Temporal Logic)[14].

2.2 Temporal and Deontic Product

We define here the product of temporal and deontic logics. The product frames
correspond to the usual product definition [10] (see figure 1 for an illustration).

R
Rd

w1

w2

w0

0 1 2
N,<

W,R

Fig. 1. Illustration of the product (N, <) × (W,R)

Definition 5 (Product frame, product model). Let T = (N, <) and D =
(W,R) be respectively a temporal frame and a deontic frame. Then the product
frame T ×D is a triple (S,<t, Rd) where
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– S = N×W (the set of the states) is the Cartesian product of the set N of the
natural numbers, viewed as a set of moments, and the set W of the worlds,

– <t⊆ S × S is the temporal relation on states such that (i, w) <t (i′, w′) if
and only if i < i′ and w = w′,

– Rd ⊆ S × S is the deontic relation on the states such that (i, w)Rd(i′, w′) if
and only if wRw′ and i = i′. We then say that w′ is an ideal world of w at
moment i, or that (i, w′) is an ideal state of (i, w).

Given a set P of atomic propositions, a valuation V for T ×D is a function
V : S → 2P that associates each state with a set of atomic propositions. The pair
(T ×D,V ) is then called a product model based on T ×D.

The language of the product logic LTL × SDL combines LTL operators and
SDL operator.

Definition 6 (Syntax of LTL × SDL). Given a countable set P of atomic
propositions, the temporal deontic language T DL of LTL× SDL is defined by:

T DL ::= P | ⊥ | T DL ⇒ T DL | X(T DL) | T DL U T DL | O(T DL)

Usual boolean and temporal operators defined as abbreviations in the definition
of temporal and deontic languages (definitions 1 and 2 respectively) are also
available.

We can now define the satisfaction relation for the deontic and temporal product
logic.

Definition 7 (Satisfaction). A formula ϕ of T DL is interpreted on a state of
a product model. Given a product model ((S,<t, Rd), V ), a state s = (i, w) ∈ S,
and a formula ϕ, we can define the satisfaction relation |= by induction on ϕ:

s |= Xϕ iff (i+ 1, w) |= ϕ where s = (i, w)
s |= ϕ1 U ϕ2 iff ∃s′ �t s such that s′ |= ϕ2 and

∀s” ∈ S if s �t s
′′ <t s

′ then s′′ |= ϕ1

where “ �t ” is defined by s �t s
′ iff s <t s

′ or s = s′

s |= Oϕ iff ∀s′ ∈ S if sRds
′ then s′ |= ϕ

A product model ((W,<t, Rd), V ) satisfies a formula ϕ if every state of the prod-
uct satisfies it.

A product frame F = (W,<t, Rd) validates a formula ϕ if every model based
on F satisfies it.

A formula ϕ is valid if every product frame validates it.

Let us elaborate on the interaction of the temporal and deontic dimensions.
For instance, there is no difference between “it is permitted that ϕ holds to-
morrow”, and “tomorrow, ϕ will be permitted”. This corresponds to the valid-
ity of P(Xϕ) ⇔ XPϕ. Indeed, let s = (i, w) ∈ W be a state. Suppose that
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s |= P(Xϕ). Then there is a state s′ = (i′, w′) such that sRds
′ and s′ |= Xϕ. So

(i+ 1, w′) |= ϕ. And thus (i+ 1, w) |= Pϕ. So we can deduce s |= XPϕ. In the
same way, we can show that |= XPϕ ⇒ PXϕ. Then,

|= PXϕ ⇔ XPϕ

This property can also be formulated as follows
|= OXϕ ⇔ XOϕ (1)

The above commutativity properties are typical for product logics. The prop-
erties reflect the fact the deontic realm is not updated, as we said in the intro-
duction. So, if it is obligatory to go to Paris tomorrow, then tomorrow it will be
obligatory to go to Paris immediately, and vice versa. Now the question of the
next section is whether or not we can add propagation properties to the temporal
deontic product while leaving the product intact: is there a non-empty (and in-
teresting) subset of the product frames which validate the propagation property?
Intuitively, this should not be the case: propagation means that obligations are
‘created’ for future moments. The trigger for this creation is the circumstance
that the obligations are not met presently.

3 Adding a Propagation Property

We want to consider a propagation property as general as possible. For instance
we want to capture the obligation with deadline, or the obligation to meet some-
thing eventually (without deadline). The obligation to satisfy ϕ now, or ψ next
seems to be the most general kind of obligation for which we want to study the
propagation. Indeed, the obligation with deadline O(F�k(ϕ)) can be re-written
O(ϕ ∨ XF�k−1(ϕ)), and the obligation to satisfy ϕ eventually O(Fϕ) can be
re-written O(ϕ ∨XF (ϕ)).

As a first attempt for formalizing a propagation property to be added to the
product logic, we consider:

O(ϕ ∨Xψ) ∧ ¬ϕ ⇒ XO(ψ) (2)

If it is obligatory to meet ϕ now, or ψ next, and ϕ is not satisfied now, then it
will be obligatory next to meet ψ.

As argued in the introduction, we would not want that from the propaga-
tion property and the properties of the temporal deontic logic it follows that
Oϕ ∧ ¬ϕ ⇒ XO(ψ). Yet this property does follow from 2 in combination
with (a temporal variant of) weakening of obligations: Oϕ ⇒ O(ϕ ∨ Xψ). To
solve this problem, we re-formalize the propagation property, in order to prevent
that in combination with temporal weakening it can be used to derive this un-
wanted property. To achieve this, in the propagation property, we exclude that
O(ϕ∨Xψ) holds only because O(ϕ) holds1, and we thus arrive at the following
property instead of (2):

O(ϕ ∨Xψ) ∧ ¬Oϕ ∧ ¬ϕ ⇒ XO(ψ) (3)
1 Another strategy might be to attack the temporal weakening property directly.
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Similarly, we may explicitly exclude that O(ϕ ∨ Xψ) holds only because
O(Xψ) holds. So we may formulate the propagation formula as follows:

O(ϕ ∨Xψ) ∧ ¬Oϕ ∧ ¬OXψ ∧ ¬ϕ ⇒ XO(ψ) (4)

However, with the product property XOϕ↔ OXϕ, property 4 is equivalent
with O(ϕ ∨ Xψ) ∧ ¬Oϕ ∧ ¬OXψ ∧ ¬ϕ ⇒ OXψ. This, in turn, is logically
equivalent with O(ϕ ∨Xψ) ∧ ¬Oϕ ∧ ¬ϕ ⇒ OXψ, which is exactly the same
property as 3. So, in the product setting, properties 3 and 4 are equivalent.

But, now we have to conclude that the propagation property is not compatible
with a genuine product: we can consistently add property 3 to the product logic,
but we will never have a case where XO(ψ) is really a consequence of O(ϕ ∨
Xψ)∧¬Oϕ∧¬ϕ being true. In fact, a product model satisfies property 4 only if
it does not satisfy the hypothesis O(ϕ∨Xψ)∧¬O(ϕ)∧¬O(Xψ)∧¬ϕ. (Indeed,
if a product model satisfied the hypothesis O(ϕ∨Xψ)∧¬O(ϕ)∧¬O (Xψ)∧¬ϕ,
in some state s, for some ϕ and ψ, then we could deduce ¬XO(ψ) in s.) This
corresponds to a product model where all the ideal states of a given state have
the same valuation, which is clearly not interesting to work with.

The only way to preserve the propagation property is then to drop the ‘no
learning’ property XOϕ⇒ OXϕ. So, we will no longer have a genuine product.
But this is in accordance with intuitions. Obligations may now be transferred
to future states. The above discussion shows that this is incompatible with a
product; we have to allow some dynamics in the deontic dimensions because
obligations may be inherited from earlier states. We do however preserve the
‘perfect recall’ property OXϕ ⇒ XOϕ that expresses that no obligations are
‘forgotten’ over time. Note that this last property is sufficient to ensure that
properties 3 and 4 are equivalent. So, in the rest of the paper, we will study
property 3, which is shorter.

3.1 Restricting the Ideal States

Our goal in this section will be to define a semantics that satisfies the propagation
property and the perfect recall property. To account for propagation, in the
semantics we have to introduce a stronger interaction between what happens
and what is obligatory, i.e., between what is true in the current world and what
is true in the (next) ideal worlds. If we want to satisfy the perfect recall property,
the set of ideal worlds in the next state is a subset of the set of the ideal worlds
in the current state. The principle of propagation then should point us to what
subset to take. Our idea is that for ideal worlds at a next moment we should
only take into account the worlds that share the same past as the current world
until the present moment. This reflects the idea that what is deontically ideal at
the next moment depends on what actually occurs presently.

Below, we first define the predicate SamePast(s, s′) which says that the states
s and s′ of a temporal deontic model share the same past:

SamePast((i, w), (i′, w′))
def
= i = i′ ∧ ∀j < i V (j, w) = V (j, w′)
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When interpreting an obligation in a state s, we only consider the states s′ which
satisfy sRds

′ and SamePast(s, s′).

Definition 8 (Semantics of the obligation (2)). Given a product model
(S,<t, Rd), a state s, and a formula ϕ, we now consider the following semantics
for obligation:

s |= Oϕ iff ∀s′ ∈ S if (SamePast(s′, s) and sRds
′) then s′ |= ϕ

With this new semantics, the deontic realm is described by fewer and fewer
worlds (which means that more and more formulas are obligatory) when time
passes. This is conform the fact that we keep O(Xϕ) ⇒ XO(ϕ), and avoid
XO(ϕ) ⇒ O(Xϕ); no obligations are forgotten, but some obligations may ap-
pear (in particular when they are propagated from a more general obligation in
the previous state).

0 1 2 3 4

w0

w1

w2

w3

{p} {q}

{}

{p} {p}

{p}{p} {}

{}

{}{}{}

{}

{p,q}

{p}

{p} {q}

{q}

{q}

{q}

Fig. 2. Semantics of obligation

Let us illustrate, by the way of an example, how an obligation may propagate.
Consider the product model illustrated in Figure 2, where, in state (0, w0), histo-
ries w1, w2, and w3, are ideal. Then, we have for instance 0, w0 |= O(p∨XXp)∧
¬p. Since w0 does not satisfy p at instant 0, the history w1 which satisfies p at
instant 0 is not ideal anymore at the next instant. So, only w2 and w3 (which
satisfy XXp at instant 0) remain ideal at instant 1. Thus, the propagation ap-
plies, and we have 0, w0 |= XO(Xp). Let us now state the propagation property
and propose a proof in the general case where ϕ is a propositional formula and
ψ can be any formula.

Property 1 (Propagation property). Let M be a temporal deontic product model.
Then it satisfies the propagation property for the obligation operator of defini-
tion 8:

M |= O(ϕ ∨Xψ) ∧ ¬O(ϕ) ∧ ¬ϕ ⇒ XO(ψ)

for ϕ propositional formula, and ψ any formula.
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Proof. LetM = ((S,<t, Rd), V ) be a temporal deontic model, and s = (i, w) ∈ S
a state such that s |= O(ϕ∨Xψ)∧¬O (ϕ)∧¬ϕ. Every s′ such that SamePast(s, s′)
and sRds

′ satisfies ϕ ∨ Xψ, and it is not the case that every such s′ satisfies
ϕ. If some of these states s′ = (i, w′) have the same valuation as s, then they
satisfy ¬ϕ (since s |= ¬ϕ), and ϕ ∨ Xψ. So, they satisfy Xψ. Thus, for every
state (i+1, w′) which is ideal from (i+1, w) and has the same past as (i+1, w)
satisfies ψ, i.e., (i + 1, w) |= Oψ. Otherwise (if none of the states s′ have the
same valuation as s), there is no ideal state having the same past as (i+ 1, w).
So, every formula is obligatory in (i+ 1, w). In particular, (i+ 1, w) |= Oψ. ��

The fact that ϕ is a propositional formula in accordance with intuition. Indeed,
the propagation property expresses that what will be obligatory at the next step
may depend on what happens now (ϕ not being true). So it is natural to consider
that ϕ is a formula which only concerns the present moment, i.e. a propositional
formula. Otherwise, if ϕ contained future operators, what will be obligatory at
the next step would depend on something which has not happened yet.

So we have that some of the obligations that may appear at a next state are
due to the propagation property. In fact, the following property claims that the
propagation property completely characterizes the new obligations that appear.

Property 2 (Characterization of new obligations). For any formula ψ, if in a state
s both the formulas XO(ψ) and ¬O(Xψ) hold, then there exists a propositional
formula ϕ such that

s |= O(ϕ ∨Xψ) ∧ ¬ϕ

So, if there will be next an obligation to satisfy ψ and if this obligation is
new (i.e., now, there is no obligation to meet ψ next), then it is due to a current
obligation to satisfy ϕ ∨Xψ where ϕ is propositional and not fulfilled.

Proof. Let ψ a formula and s a state such that s |= XO(ψ) ∧ ¬O(Xψ). Let E
the set of the ideal states of s which do not satisfy Xψ:

E
def= {s′ ∈ S / sRs′ and s′ |= ¬Xψ}

We now define the set V (E) of all the valuations of states in E. This set is finite

(even if E is infinite) because it belongs to 22P

. V (E)
def
= {V (s) / s ∈ E}. Then

we define the propositional formula

ϕ
def
=

∨
v∈V (E)

(
∧
p∈v

p ∧
∧
p/∈v

¬p)

Then every ideal state of s either satisfies Xψ or is in E and satisfies ϕ. So
s |= O(ϕ ∨Xψ).

Moreover, since s |= XO(ψ), the states in E - which do not satisfy Xψ
- become not ideal at the next step. So they do not share the same atomic
propositions with s. Thus s |= ¬ϕ. ��
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Unfortunately, not everything is fine. In particular, the deontically ideal worlds
may shrink to the empty set when time passes, as we saw in the proof of prop-
erty 1. This conflicts with our desire to stay in accordance with SDL where
obligations are always consistent: ¬O⊥. Another formulation is the D axiom:
Oϕ ⇒ Pϕ. Then, if from a state s, there is no ideal state with the same past,
these properties cannot be satisfied, and every formula is obligatory in s, includ-
ing s |= O⊥. In particular this occurs if there is a violation of a proposition p in
a state s = (i, w), i.e., if s |= p ∧O(¬p). In this case no ideal state is associated
with (i+ 1, w).

Property 3. With the new semantics of the obligation, the D axiom is not valid:

� ¬O(⊥) and � Oϕ ⇒ Pϕ for any formula ϕ

Proof. The problem is due to the fact that there may be states without any ideal
states with the same past. Indeed, let ((S,<d, Rd), V ) be a product model, and
s ∈ S a state such that no other state has the same past as s. (It is easy to build
such a model.) Then, according to definition 8, s |= ⊥, which invalidates the D
axiom. ��

As a solution to this problem, we might consider to add a constraint on the
models expressing that from every state there exists an ideal state with the
same past.

Definition 9 (Ideal existence constraint on models). Let M = ((S,<d,
Rd), V ) be a temporal deontic product model. We say that M satisfies the ideal
existence constraint if

∀s ∈ S ∃s′ ∈ S such that sRds
′ and SamePast(s, s′)

This constraint now guarantees validity of the D-axiom.

Property 4 (D axiom). LetM be a temporal deontic product model that satisfies
the ideal existence constraint. Then

M |= ¬O⊥ or equivalently M |= Oϕ⇒ Pϕ

for any formula ϕ.

Proof. Let M = ((S,<d, Rd), V ) be a temporal deontic product model that
satisfies the ideal existence constraint, and s ∈ S a state. From definition 9 we
have that there exists an ideal state s′ with the same past as s. So, from the
definition of obligation (definition 8), s |= ¬O(⊥). ��

However, again we have to face a problem: the ideal existence constraint interacts
with the identical past criterion in an undesirable way. In particular, if there is
a simple obligation Op that is violated in the current world, the identical past
criterion demands that all ideal next worlds satisfy ¬p in their previous state.
However, of these there can be none, since otherwise we would not have had Op.
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But then, under the identical past criterion, there can be no ideal next worlds
as soon as there is a simple obligation Op that is violated presently. But then
this directly conflicts with the ideal existence constraint. So, if in our logic, we
impose both properties, we actually get that obligations can never be violated.

Property 5 (No violation). Let M be a model satisfying the ideal existence con-
straint and ϕ a formula. Then M |= ¬(ϕ ∧O(¬ϕ)).

The conclusion has to be that we still have to refine the semantics: the violation
of obligations should be possible, without losing the interaction between what
happens and the deontic realm.

3.2 Levels of Deontic Ideality

Another way to view the problem of the previous section is to say that the
semantics should be able to deal with ‘contrary to duty’ (CTD) situations. In
states where there is a violation, something happens that is contrary to what is
obligatory for that state. It should not be the case that such situations cause the
deontic realm to collapse. So when there is a violation, it should still be possible
to point out what is obligatory and what not, despite of the violation in the
present state.

We look for a solution to the problem by switching to levels of ideality. Rather
than an accessibility relation which gives the ideal states, we consider a preference
relation �d, where s �d s′ means that the state s′ is “better” than the state s.
This allows us to have several “levels of ideality”. The ideal states will be the best
states among those which share the same past as the current state. The idea is
now that if a state (i, w) violates an obligation of a propositional formula then
the ideal states of (i+ 1, w) are states which were not ideal for (i, w): the deontic
realm thus switches to a lower level of ideality. This contrasts with the setting of
the previous section, where in this case there would be no ideal states left.

Definition 10 (Temporal deontic frame and model). A temporal deontic
frame (S,<t,�d) is defined as the product (N, <)×(W,�pref ) of a temporal frame
(N, <) and a deontic frame (W,�pref ), where �pref , considered as a preference
relation, is a total quasi-order (total and transitive relation) on W .

A temporal deontic model is defined as a product model based on a temporal
deontic frame.

For the temporal and boolean operators the satisfaction relation is defined as
above. For the obligation operator it is defined as follows.

Definition 11 (Semantics of the obligation (3)). Given a temporal deontic
model ((S,<t,�d), V ), and a state s ∈ S, ϕ is obligatory if there is a state with
the same past as s such that every “better” state with the same past satisfies ϕ.

s |= Oϕ iff ∃s′ ∈ S such that SamePast(s, s′) and
and ∀s′′ ∈ S if (SamePast(s, s′′) ∧ s′ �d s

′′) then s′′ |= ϕ
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Remark 1. If every set of states has at least one maximum element for the quasi-
order �d (i.e., the relation �d, defined by s �d s

′ iff s′ �d s, is a well-quasi-order),
then we can define the set of the best states among those having the same past:
BestSamePast(s)

def
= {s′ ∈ S / SamePast(s, s′) and

∀s′′ ∈ S if SamePast(s, s′′) then s′′ �d s
′}

And the semantic definition of O(ϕ) becomes more simple:

s |= Oϕ iff ∀s′ ∈ BestSamePast(s) s′ |= ϕ

For the newly defined models (definition 10) with levels of ideality, there is no
need for a constraint to guarantee the validity of the D axiom. Indeed, the
existence of a state with the same past is guaranteed by the current state itself.
Thus the existence of ideal states is also guaranteed. (Recall that the ideal states
are the best among those which share the same past as the current state.) So
the D axiom is valid and violations can be satisfied.

However, there still is a phenomenon that has to be considered more closely.
When an obligation of a proposition p is violated in a state (i, w), then the ideal
states at the step i+1 are completely disjoint from the ideal states at the step i.
This is easy to see: if (i, w) |= ¬p∧Op, then all the ideal states of (i, w) satisfy p.
On the other hand, the ideal states of (i+1, w) have the same past as (i+1, w),
and thus they are states (i+ 1, w′) such that (i, w′) does not satisfy p. So none
of the ideal worlds of (i, w) are ideal for (i+ 1, w) and vice versa. The problem
is now that in such states, the propagation property is not guaranteed anymore
because of the change to a completely different set of lower level ideal worlds.

Actually, the condition that makes the set of ideal worlds change between
(i, w) and (i+ 1, w) is a little more general than suggested by the example with
the violation of an atomic proposition. More in general, the condition concerns
the violation of an obligation for any propositional formula which can be seen
as an immediate obligation, that is, any propositional formula concerning the
present moment. So, if such an obligation is violated, the current ideal worlds
will not be considered as ideal in the future. The current norms become obsolete,
and we switch to the norms of a lower level. If not, we have a strong link between
what is obligatory now and next, and the propagation property holds.

To characterize these two kinds of states, we define the condition
IdealSameProp(s) on a state s which expresses that for every state with the
same past as s, there is better state which still has the same past at the next
step. This condition ensures that some of the current ideal worlds are still ideal
at the next step.

Given a temporal deontic model ((S,<t,�d), V ) and a state s ∈ S,

IdealSameProp(s)
def
= ∀s′ ∈ S if SamePast(s, s′) then

∃s′′ ∈ S such that SamePast(s, s′′) and V (s) = V (s′′) and s′ �d s
′′

Remark 2. If (W,�pref ) is a well-quasi-order, then IdealSameProp(s) is defined
in a more simple way:
IdealSameProp(s)

def
= ∃s′ ∈ BestSamePast(s) such that V (s) = V (s′)
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Property 6. Given a temporal deontic model ((S,<t,�d), V ) and a state s ∈ S,
the condition IdealSameProp(s) holds iff there is no violation of a propositional
formula in s, that is, iff for any propositional formula ϕ, s |= ¬(O(ϕ) ∧ ¬ϕ).

Proof. We first prove that if IdealSameProp(s) does not hold, then there is
some propositional formula ϕ such that s |= O(ϕ) ∧ ¬ϕ. We then prove the
other direction.

’⇐’ : Suppose that IdealSameProp(s) does not hold, i.e.,

∃s′ ∈ S such that SamePast(s, s′) and
∀s′′ �d s

′ if SamePast(s, s′′) then V (s) �= V (s′′)

Then, we consider such a state s′ and define the set V AL(s′) of all the valu-
ations of the states which are at least as good as s′ and share the same past.

V AL(s′)
def
= {V (s”) / s′ �d s” and SamePast(s′, s”)}

V AL(s′) is finite since it is included in the set 22P

. Let us consider the proposi-
tional formula ϕ defined as follows:

ϕ
def
=

∨
v∈V AL(s′)

(
∧
p∈v

p ∧
∧
p/∈v

¬p)

Since every such state s′′ has a valuation which is distinct from the valuation of
s, then s |= ¬ϕ. Besides, from the definition of obligation we have that s |= O(ϕ).
Thus, s |= O(ϕ) ∧ ¬ϕ.

’⇒’ : Let us suppose now that there exists some propositional formula ϕ such
that s |= O(ϕ) ∧ ¬ϕ. Then,

∃s′ ∈ S such that SamePast(s, s′) and
∀s′′ �d s

′ if SamePast(s, s′′) then s′′ |= ϕ

Every such s′′ has a valuation which differs from the valuation of s, i.e., V (s′′) �=
V (s), since s |= ¬ϕ and s′′ |= ϕ. Therefore, IdealSameProp(s) does not hold. ��

In a state s that satisfies IdealSameProp(s), the deontic realm that will be
considered next is a subset of the current deontic realm. So we still have,
as in section 3.1, that no obligations are forgotten, but some may appear. If
IdealSameProp(s), then s |= O(Xϕ) ⇒ XO(ϕ), but XO(ϕ) ⇒ O(Xϕ) does
not hold necessarily.

Property 7 (Propagation). A state which does not satisfy any violation of a
propositional formula satisfies the propagation property.

If IdealSameProp(s) then

s |= O(ϕ ∨Xψ) ∧ ¬Oϕ ∧ ¬ϕ ⇒ XOψ

for ϕ propositional formula, and ψ any formula.
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Proof. The proof is similar to the proof of property 1 in section 3.1, except that
we have not the case where every formula is obligatory in the temporal successor
of s. ��

We still have, as in section 3.1, property 2, a more precise characterization.

Property 8 (Characterization of new obligations). For any formula ψ, if in a state
s, which satisfies IdealSameProp(s), both the formulas XO(ψ) and ¬O(Xψ)
hold, then there exists a propositional formula ϕ such that

s |= O(ϕ ∨Xψ) ∧ ¬O(ϕ) ∧ ¬ϕ

When an obligation appears, it is necessary due to the propagation of some more
general obligation in the previous state. So the propagation property completely
characterizes the new obligations that appear.

Proof. The proof follows the same idea as the proof of property 2 in section
3.1. ��

As said in the introduction of section 3, as a consequence of the general prop-
agation property, if a state s satisfies IdealSameProp(s), then it satisfies the
following property of propagation for an obligation with deadline, since F�kϕ⇔
ϕ ∨XF�k−1ϕ, for k > 0:

s |= O(F�kϕ) ∧ ¬O(ϕ) ∧ ¬ϕ ⇒ XO(F�k−1ϕ)

for any deadline k > 0, and ϕ propositional formula. This property expresses
that if it is obligatory to satisfy ϕ before a deadline k (and it is not obligatory
to satisfy it now) then, if ϕ is not true now, the obligation is propagated.

In a state which does not satisfy IdealSameProp, that is, a state which vio-
lates an obligation of some propositional formula, the deontic realm of the next
state switches to a lower level. We consider that when a state violates the present
rules, then they become obsolete. In such a state, O(Xϕ) ⇒ XO(ϕ) is not guar-
anteed, and neither is any link between what is satisfied in the current state,
and what is obligatory next.

4 Branching Time Structures

Many proposals to combine temporal and deontic concepts use a branching time
structure, where the ideal alternatives are subsets of the possible future worlds
[13,2,1,9]. This has several advantages. In particular, the principle “must implies
can” is guaranteed. And our “identical past” criterion is automatically satisfied
by branching time structures. However, some of the intuitive properties we have
discussed in this paper do not necessarily hold in a branching time setting, and
may be hard to implement. For instance, we consider that an atomic proposition
p can be both true in the current state and false in some ideal state. In pure
branching time approaches [1,2] this is usually not possible. Branching time
approaches thus have problems modelling immediate obligations. For example,
O(p) ∧ ¬p is not satisfiable in such logics.
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An exception has to be made for deontic STIT formalisms [13], where mo-
ments are partitioned into choices, and where a proposition can be obligatory
but not true at the same moment. However, it is quite unclear how to imple-
ment a principle of propagation in the conceptually rich setting of STIT models.
Actually, we can represent our model in a tree like view as in STIT theory by
putting together the histories sharing the same past. In a STIT framework, the
moment/history pairs (m,h) would naturally correspond to our states (i, w),
and the histories h to our deontic worlds w. To have a branching time view, the
states (i, w) that share the same past would be represented by a unique mo-
ment m. So two deontic worlds w and w′ that share the same past until i would
naturally be represented by histories that go through the moment m, where m
represents both states (i, w) and (i, w′). But in the STIT framework, there is a
valuation of atomic propositions for every moment/history pair. So two histories
that go trough the same moment m, also go trough the same moments w′ for
every w′ < w, while the valuation they have may differ. Our model can thus
be easily translated to a STIT setting under the restriction that two histories
sharing the same past moments also share the same valuation on these moments.
More formally, for a moment m, and two histories h1 and h2,

(m ∈ h1 and m ∈ h2) if and only if (∀m′ < m ∀p ∈ P m′, h1 |= p iff m′, h2 |= p)

The strict operator < allows us to have different valuations for the same moment
m depending on the history we consider, if the histories split after this moment.
Our framework is close to a STIT framework with this restriction. To charac-
terize a state (called moment in a STIT model) that satisfies IdealSameProp
corresponds in such a STIT model to a moment/history pair (m,h) which has
the same valuation as some pair (m,h′), where h′ is ideal. Such pairs, which
would need a formal characterization, would satisfy the propagation properties
we have studied.

5 Conclusion

In this paper, we have studied properties concerning the propagation of oblig-
ations for the future that have not been fulfilled yet. Because we do not want
to consider explicit updates of the deontic realm, we started with a product
of temporal and deontic logics, and concluded that to account for propagation
properties we had to drop the property of ‘no learning’. Going through some
“hybrid” semantics, we settled on a semantics with levels of ideality exposing
interesting similarities with branching time STIT settings. We characterized the
states where obligations are propagated: these are the states in which no imme-
diate obligations are violated. In such states, obligations are not forgotten, and
the new obligations are due to the propagation of some past obligations which
are not fulfilled yet. On the other hand, in the states which violate immediate
obligations, the ideal states switch to a lower level of ideality, and the obligations
of the next state do not depend on what is true now.
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The propagation of obligations has been studied in the restricted case of ded-
icated operators for obligations with a deadline, for instance in [5,6,7,9]. But,
to our knowledge, the more general propagation property we have focused on is
new.

We only considered a linear time setting with one agent. We cannot express
“must implies can”, nor “it is obligatory to make something possible”, nor “it is
obligatory for an agent to do something”. Therefore it would be interesting to
further develop the link with STIT models mentioned in section 4. We plan to
formalize it and thus study the propagation of obligations in a framework which
allows branching time and multi-agents reasoning.

Another issue is the decidability of our logic. A clue is that the genuine product
LTL × SDL is decidable (see [10] for the decidability of LTL × K), but the
decision problem is non elementary.
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Abstract. The proof theory of multi-agent epistemic logic extended
with operators for distributed knowledge is studied. A proposition A
is distributed knowledge within a group G if A follows from the totality
of what the individual members of G know. There are known axioma-
tizations for epistemic logics with the distributed knowledge operator,
but apparently no cut-free proof system for such logics has yet been
presented. A Gentzen-style contraction-free sequent calculus system for
propositional epistemic logic with operators for distributed knowledge is
given, and a cut-elimination theorem for the system is proved. Examples
of reasoning about distributed knowledge that use the calculus are given.

1 Introduction

Distributed knowledge is usually characterized by saying that A is distributed
knowledge within a group G if A follows from the totality of what the individ-
ual members of G know. For instance, A is distributed knowledge in group G
(denoted DGA) consisting of three agents of which the first one knows B, the
second one knows B ⊃ C, and the third one knows B & C ⊃ A. Reasoning about
the combined information possessed by different agents is an important task in
multi-agent systems in which all information is not available in one central source
but distributed among several agents.

In such situations, epistemic logic [1] is typically used for representing and
reasoning about knowledge. In the literature concerning multi-agent epistemic
logics, e.g. [2,3], operators for distributed knowledge are often included. However,
these treatments usually concentrate on the model theory of the logics, whereas
the proof-theoretical part is limited to providing Hilbert-style axiomatizations.
Since theorem-proving is difficult in Hilbert-style systems, we shall here study
Gentzen-style sequent calculi as a step towards mechanization of proof search.

One proof-theoretical approach to reasoning about distributed knowledge is
given in [4], but the approach is different because of the use of natural deduction
instead of sequent calculus and context-based logic instead of epistemic logic.
The development of a proof system for logic of distributed knowledge has been
recently posed by S. Artemov as an open problem for the system of evidence-
based knowledge (see [5]). This paper presents a solution for ordinary multi-agent
epistemic logic by the methods developed in [6,7].
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Formal systems for drawing inferences in distributed knowledge may be useful
in several application areas that attempt to combine knowledge of agents, such
as cooperative problem solving, knowledge base merging, and judgement aggre-
gation. In cooperative problem solving it is usually assumed that the agents are
willing to provide any information they have and that all information is certain.
In such situations, it is possible to combine the separate knowledge bases into
one and then derive theorems from the large knowledge base. However, typically
in knowledge base merging the data can contain errors, and is thus not strictly
speaking knowledge. The combination of information from multiple sources may
then lead to an inconsistent knowledge base, and special methods have to be
used for dealing with contradictory information (see, e.g. [8,9,10]). These meth-
ods often involve discarding some information in order to maintain the integrity
of the database.

In cases with heterogeneous information sources, the knowledge modalities
should not be understood as knowledge proper but rather as beliefs. In open
information systems, and in situations involving strategic considerations, such
as in judgement aggregation or voting, agents can even provide false information
on purpose, so it is not possible to infer their real beliefs from what they report,
but the information they provide must be treated as claims, acceptances or just
as messages with propositional content.

The introduction of the knowledge modalities and the modality for distributed
knowledge into the logical language can be beneficial, because the management
of the meta-information concerning the sources of knowledge and their various
combinations becomes easier. When the source of information is stored in addi-
tion to the content, also contradictory information can be dealt with: If agent 1
claims that A is the case and agent 2 claims that not-A is the case, the receiv-
ing agent should decide which piece of information to accept and which one to
reject. However, when such a situation arises there may not be enough informa-
tion available for resolving the conflict. If our language is rich enough to allow
also knowledge propositions and the agents are able to reason about distributed
knowledge, incoming information need not be discarded nor is it necessary to
immediately judge some agents unreliable. Instead, we can store the knowledge
claims without violating the integrity constraints, and we can use the stored
information to find out which agents we can trust, possibly later when we have
gathered more information.

Thus, the addition of the knowledge operators to the language makes it pos-
sible for the agents to perform reasoning about the distributed information
possessed by various agents and groups of agents and to detect inconsisten-
cies between claims made by agents. Also, the possibility to iterate knowledge
operators allows for more complex reasoning tasks than reasoning from an inte-
grated knowledge base without iterated modalities. Reasoning of this type may
be used in cooperative information systems to find out which agents have useful
information with respect to the task at hand.

In Section 2, we introduce the logical system and show that it can be used to
derive the axioms given in complete axiomatizations for the logic of distributed
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knowledge. In Section 3, we show that the system has the required structural
properties such as admissibility of the structural rules, and discuss the relevance
of these results for proof search. In Section 4, we present examples of derivations
in our calculus and discuss possible application areas of our methods. In par-
ticular, we show in a concrete case that if a formula is in the deductive closure
of the totality of what the agents individually know, then it is derivable as dis-
tributed knowledge in our system; we present the same-birthday example from
[11] within our formalism; we show how proof search can be used for discarding
unreliable information sources and for performing co-operative problem solving.
Finally, after summarizing our results, we discuss in Section 5 the possibility of
extending our system with the principle of full communication mentioned in [12].

2 Logic of Distributed Knowledge

Our starting point is the modal sequent calculus system G3K [7]. (For a general
introduction to Gentzen-style sequent calculus, see [6].) We replace the modal
operator � with the knowledge operators Ka for individual agents a ∈ G. We
extend the logic with the operator DG with the intended meaning for DGA that A
is distributed knowledge within the group G (sometimes, for ease of readability,
the subscript G will be omitted when clear from the context).

In [7] the rules for � are determined by the forcing relation of Kripke semantics

x � �A iff ∀y(xRy → y � A)

where x, y range in the set of possible worlds and R is the accessibility relation.
In multi-agent epistemic logic there is an accessibility relation Ra for each agent
a, and validity of KaA is defined by

x � KaA iff ∀y(xRay → y � A).

The right to left direction of the equivalence gives the right rule of Ka, the
opposite, the left rule. We shall use colon ‘:’ to stand for the forcing relation (so
x : A can be read as saying that A holds at world x). In general, sequents of the
form Γ ⇒ Δ can be understood as saying that the disjunction of the formulas in
the multiset Δ can be derived from the conjunction of formulas in the multiset
Γ representing the open assumptions. The rules are

xRay, Γ ⇒ Δ, y : A

Γ ⇒ Δ, x : KaA
RKa

y : A, x : KaA, xRay, Γ ⇒ Δ

x : KaA, xRay, Γ ⇒ Δ
LKa

Rule RKa has the variable condition that y must not appear in the conclusion.
In possible world semantics, distributed knowledge of A in G is (usually but

not always, see [12,13]) taken to hold if and only if A holds in every world that
every agent in G considers possible. Thus, distributed knowledge is defined as
follows (see e.g. [2]) w.r.t. a Kripke structure M and a world s

(M, s) |= DGA iff (M, t) |= A for all t such that (s, t) ∈
⋂

a∈G

Ra.
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The rules for distributed knowledge are found accordingly

{xRay}a∈G, Γ ⇒ Δ, y : A

Γ ⇒ Δ, x : DGA
RDG

y : A, x : DGA, {xRay}a∈G, Γ ⇒ Δ

x : DGA, {xRay}a∈G, Γ ⇒ Δ
LDG

Similarly to rule RKa, also rule RDG has the restriction that y must not appear
in the conclusion. The intended meaning of the notation {xRay}a∈G is that what
is inside the curly brackets should be repeated for each agent a ∈ G; for instance,
with a group of two agents 1 and 2, the right rule becomes

xR1y, xR2y, Γ ⇒ Δ, y : A

Γ ⇒ Δ, x : D{1,2}A
RD{1,2}

The rules for the calculus are given in Table 1. Observe that initial sequents
are restricted to atomic formulas P . This feature, common to all G3 systems of
sequent calculus, is needed in order to ensure invertibility of the rules and other
structural properties. Note also that no rules for negation nor equivalence are
needed because we take ∼A to be a shorthand for A ⊃ ⊥ and A ⊃⊂ B as a
shorthand for (A ⊃ B) & (B ⊃ A).

In addition to these rules, the properties of the agents’ accessibility relations
can be chosen by adding to the system suitable rules corresponding to desired
properties, as explained in [7]. The common choices in the case of epistemic
logic are reflexivity (which guarantees that the actual world is always taken to
be epistemically possible so that nothing false can be known) and transitivity

Table 1. System G3KED

Initial sequents:

x : P, Γ ⇒ Δ, x : P

Propositional rules:

x : A, x : B, Γ ⇒ Δ

x : A & B, Γ ⇒ Δ
L&

Γ ⇒ Δ, x : A Γ ⇒ Δ, x : B

Γ ⇒ Δ, x : A &B
R&

x : A, Γ ⇒ Δ x : B, Γ ⇒ Δ

x : A ∨ B, Γ ⇒ Δ
L∨

Γ ⇒ Δ, x : A, x : B

Γ ⇒ Δ, x : A ∨ B
R∨

Γ ⇒ Δ, x : A x : B, Γ ⇒ Δ

x : A ⊃ B, Γ ⇒ Δ
L⊃

x : A, Γ ⇒ Δ, x : B

Γ ⇒ Δ, x : A ⊃ B
R⊃

x : ⊥, Γ ⇒ Δ
L⊥

Modal rules:

y : A, x : KaA, xRay, Γ ⇒ Δ

x : KaA,xRay, Γ ⇒ Δ
LKa

xRay, Γ ⇒ Δ, y : A

Γ ⇒ Δ, x : KaA
RKa

y : A, x : DGA, {xRay}a∈G, Γ ⇒ Δ

x : DGA, {xRay}a∈G, Γ ⇒ Δ
LDG

{xRay}a∈G, Γ ⇒ Δ, y : A

Γ ⇒ Δ, x : DGA
RDG
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(which gives the property of positive introspection: if an agent knows something
then she knows that she knows). These together yield an S4-based epistemic
system. In the case of doxastic logic, that is, the logic of belief, reflexivity is
abandoned to allow the possibility of false beliefs. Sometimes also symmetry
(which together with transitivity gives negative introspection: If an agent does
not know something, she knows that she does not know it) is added, in which
case the accessibility relations are equivalence relations and the resulting system
is then based on what is known as S5. The rules corresponding to reflexivity,
transitivity and symmetry for agent a are, respectively

xRax, Γ ⇒ Δ

Γ ⇒ Δ
Refa

xRaz, xRay, yRaz, Γ ⇒ Δ

xRay, yRaz, Γ ⇒ Δ
Transa

yRax, xRay, Γ ⇒ Δ

xRay, Γ ⇒ Δ
Syma

Observe that the rules have active and principal formulas in the antecedents of
sequents, so they correspond to implication from the atoms in the conclusion to
those in premisses.

Our system is modular in the sense that one need not be committed to a par-
ticular set of properties for the accessibility relations but the results given in this
paper hold for accessibility relations with any combinations of these properties.
Also other properties can be used as explained in [7]. It is also possible to have
several modalities in one system without losing the good structural properties
of the system. For example, knowledge and belief can be treated simultaneously
by adding suitable rules for the belief operators and the doxastic accessibility
relation for each agent. The relationship between modalities may require new
rules, like in this case a rule for ensuring that the doxastic accessibility relation
is included in the epistemic accessibility relation corresponding to the idea that
knowledge entails belief. Temporal modalities can be added in a similar fashion.
In the examples presented in this paper, we shall not combine different informa-
tion attitudes so we can just use one type of modal operator Ka (specific to each
agent a) to stand for whichever modality is appropriate in the situation. Simi-
larly, the operator DG is taken to mean a distributed version of the K-modality,
be it knowledge, belief, or something else.

According to [12], the intuitive characterization of distributed knowledge as
everything that follows from the combined knowledge of the individual agents
does not always coincide with the semantic characterization based on the in-
tersection of the agents’ accessibility relations. In particular, if the number of
possible worlds is infinite or if there are worlds that cannot be distinguished
from each other using the logical language, what they call the principle of full
communication may fail. This means that the agents are not able to express
their full epistemic state to the other agents and thus the combination of the
sentences they know may not convey all the information that would result from
taking the intersection of the agents’ accessibility relations (see [12], [13]). As
explained in Section 5, our system can be extended so as to include the principle
of full communication.

As shown in [7], the standard axiomatic sequents x : A, Γ ⇒ Δ, x : A, for
arbitrary, not just atomic, A, and the characteristic axioms of the standard
modal logics are derivable in the respective sequent calculus systems, and the
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necessitation rule is admissible. These results extend to multi-agent epistemic
logic with knowledge generalization rules for each agent a ∈ G

⇒ x : A

⇒ x : KaA

The addition of distributed knowledge operator requires new axioms. A sound
and complete axiomatization for the epistemic logic based on S5 with distributed
knowledge is provided in [14], [15], and in [3]. The axioms to be added to standard
axiomatizations of epistemic logics would be the following:

KaA ⊃ DGA, for each agent a ∈ G (1)

and
(DGA & DG(A ⊃ B)) ⊃ DGB. (2)

In order to demonstrate the completeness of our calculus, we first show that
these axioms are derivable.

Proposition 1. KaA ⊃ DGA is derivable for each agent a ∈ G in G3KED.

Proof. For each agent a ∈ G, the derivation goes as follows:

y : A, {xRay}a∈G, x : KaA ⇒ y : A

{xRay}a∈G, x : KaA ⇒ y : A
LKa

x : KaA ⇒ x : DGA
RDG

⇒ x : KaA ⊃ DGA
R⊃

where the uppermost sequent is derivable.

Proposition 2. (DGA & DG(A ⊃ B)) ⊃ DGB is derivable in G3KED.

Proof. The derivation is:

y : A, . . . ⇒ y : B, y : A y : B, . . . ⇒ y : B

y : A ⊃ B, y : A, {xRay}a∈G, x : DGA, x : DG(A ⊃ B) ⇒ y : B
L⊃

y : A, {xRay}a∈G, x : DGA, x : DG(A ⊃ B) ⇒ y : B
LDG

{xRay}a∈G, x : DGA, x : DG(A ⊃ B) ⇒ y : B
LDG

x : DGA, x : DG(A ⊃ B) ⇒ x : DGB
RDG

x : DGA & DG(A ⊃ B) ⇒ x : DGB
L&

⇒ x : (DGA & DG(A ⊃ B)) ⊃ DGB
R⊃

where the uppermost sequents are derivable.

Completeness with respect to the mentioned Hilbert-style system further requires
closure under modus ponens and under the necessitation rules for epistemic
operators. These properties are shown in the following section.

In some applications it is useful to be able to reason about shared knowledge,
that is, something that all the agents know. It is straightforward to add to the
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calculus an operator E for shared knowledge: Since EGA means that everyone
in group G knows that A, it can be used as a short-hand expression for the
conjunction Ka1A & . . . & KanA where G = {a1, . . . , an}. The right and left
rules for shared knowledge are thus not required for the calculus but can be
derived from the Ki rules. These are as follows
{xRaya, Γ ⇒ Δ, ya : A}a∈G

Γ ⇒ Δ, x : EGA
REG

ya : A, x : EGA, xRaya, Γ ⇒ Δ

x : EGA, xRaya, Γ ⇒ Δ
LEG (a∈G)

with the variable condition in REG that no variable ya appears in the conclusion.

3 Structural Properties

We shall now proceed with the structural properties of our system. The use of
variables referring to possible worlds requires that we define substitution and
prove a substitution lemma as in [7]. Substitution is defined as follows:

xRay(z/w) ≡ xRay if w �= x and w �= y,
xRay(z/x) ≡ zRay if x �= y,
xRay(z/y) ≡ xRaz if x �= y,
xRax(z/x) ≡ zRaz,
x : A(z/y) ≡ x : A if x �= y,
x : A(z/x) ≡ z : A

for all a ∈ G. Substitution in multisets is defined componentwise.

Lemma 1 (Substitution lemma). If Γ ⇒ Δ is derivable in G3KED, then
also Γ (y/x) ⇒ Δ(y/x) is derivable, with the same derivation height.

Proof. The proof is by induction on the height n of the derivation of Γ ⇒ Δ as
in [7]. If n = 0 and the substitution y/x is not vacuous, the sequent Γ ⇒ Δ is
either an initial sequent or conclusion of L⊥. In either case Γ (y/x) ⇒ Δ(y/x)
is also an initial sequent of the same form or conclusion of L⊥. Suppose then
that the claim holds for derivations of height n and consider the last rule applied
in the derivation. If the last rule is a propositional rule or a modal rule without
variable conditions, apply the inductive hypothesis to the premisses and then
apply the rule. If the last rule is a rule with a variable condition (RKa or RDG),
we must be careful with the the cases in which either x or y is the eigenvariable
of the rule, because a straightforward substitution may result in a violation of
the restriction. In those cases we must apply the inductive hypothesis to the
premiss and replace the eigenvariable with a fresh variable that does not appear
in the derivation. The details are omitted here but similar cases are considered
in [7, Lemma 4.3].

Theorem 1 (Height-preserving weakening). The rules of weakening

Γ ⇒ Δ
x : A, Γ ⇒ Δ

LW
Γ ⇒ Δ

xRay, Γ ⇒ Δ
LWRa

Γ ⇒ Δ
Γ ⇒ Δ, x : A

RW

are height-preserving admissible in G3KED.
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Proof. The proof is by induction on the height of the derivation of the premiss.
The cases with propositional rules and the modal and nonlogical rules without
variable conditions are straightforward. As in [7], if the last step is a rule with
a variable condition (RKa or RD), we need to apply the substitution lemma to
the premisses of the rule in order to avoid a clash with the variables in x : A
or xRay. The conclusion is then obtained by applying the inductive hypothesis
and the rule in question.

Theorem 2. The necessitation rules

⇒ x : A
⇒ x : KaA

⇒ x : A
⇒ x : DGA

are admissible in G3KED.

Proof. Suppose we have a derivation of ⇒ x : A. By the substitution lemma
we obtain a derivation of ⇒ y : A and, by admissibility of weakening, of
xRay ⇒ y : A, and {xRay}a∈G ⇒ y : A. By RKa and RD, respectively, we have
⇒ x : KaA and ⇒ x : DGA.

Theorem 3. The rules of G3KED are height-preserving invertible.

Proof. For the propositional rules, the proof is exactly as the proof of height-
preserving invertibility of the rules of G3c in [6, Theorem 3.1.1]. For the K-rules
and rules for the accessibility relations, the proof is similar to [7, Proposition
4.11]. Invertibility of LDG is immediate because the premiss can be obtained
from the conclusion by (height-preserving) weakening.

Invertibility of RDG is proved by induction on the height n of the derivation
of the conclusion Γ ⇒ Δ, x : DGA. If n = 0, it is an axiom or conclusion of L⊥
and so is the premiss {xRay}a∈G, Γ ⇒ Δ, y : A. If n > 0 and Γ ⇒ Δ, x : DGA is
concluded by a rule other than RKa or RDG (which have a variable condition),
we apply the inductive hypothesis to the premiss(es) and the rule. If the rule is
RKa, we have a derivation ending with

xRaw, Γ ⇒ Δ, x : DGA, w : A

Γ ⇒ Δ, x : DGA, x : KaA
RKa

We can assume that the eigenvariable w is different from y, otherwise we can ap-
ply the substitution lemma. Now the inductive hypothesis applied to the premiss
gives a derivation of the same height ending with

{xRay}a∈G, xRaw, Γ ⇒ Δ, w : A, y : A

{xRay}a∈G, Γ ⇒ Δ, x : KaA, y : A
RKa

The case in which the conclusion was derived using RDG and the principal
formula is in Δ is similar. In case the principal formula was x : DGA itself,
the premiss is already the sequent we wanted to prove derivable, except for
the possibly different eigenvariable, which can be changed by height-preserving
substitution.
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Invertibility of the rules is useful for theoretical purposes because it simplifies
some other proofs but it is crucial for the practical reason that root-first proof
search requires no backtracking mechanism if all the rules are invertible: If we
find out in our current branch of a proof tree that a sequent is not derivable we
can immediately infer that the proof search has failed and can be terminated
because, by invertibility, the conclusion cannot be derivable either.

Theorem 4. The rules of contraction

x : A, x : A, Γ ⇒ Δ

x : A, Γ ⇒ Δ
LCtr

xRay, xRay, Γ ⇒ Δ

xRay, Γ ⇒ Δ
LCtrRa

Γ ⇒ Δ, x : A, x : A

Γ ⇒ Δ, x : A
RCtr

are height-preserving admissible in G3KED.

Proof. By simultaneous induction on the height of derivation for left and right
contractions. In the base case, observe that an initial sequent stays initial if two
occurrences of a formula are contracted into one. For the inductive step, three
cases are distinguished: The case with none of the contraction formulas principal
in the last rule, the case with one principal, and (only for RCtrRa) the case with
both principal. In the former, apply inductive hypothesis to the premiss of the
rule, then the rule. In the latter, apply the matching height-preserving inversion
to the premiss(es) of the rule, the inductive hypothesis, and the rule. In the
third, the closure condition, as explained in detail in [7].

Also admissibility of contraction is useful for the practical reason that it guar-
antees that we need not multiply formulas in sequents during the proof search.
If a sequent can be derived using contraction, it can be derived without using it.
In addition, height-preserving admissibility of contraction permits the restric-
tion of the search space also with respect to other rules: Whenever application
of a rule, root-first, produces a duplication, by height-preserving admissibility
of contraction the conclusion of the rule can be obtained in one step less. The
possible applicable rule can thus be discarded if we reasonably assume that the
derivation we are looking for is a minimal one, i.e. one that does not admit any
local shortening through the elimination of contraction steps.

Theorem 5. The cut rule
Γ ⇒ Δ, C C, Γ ′ ⇒ Δ′

Γ, Γ ′ ⇒ Δ, Δ′ Cut

is admissible in G3KED.

Proof. The proof proceeds by induction on the structure of the cut formula
C with subinduction on the cut-height, that is, the sum of the heights of the
derivations of the premisses. The proof is to a large extent similar to the cut-
elimination proofs in [6] (e.g. Theorem 3.2.3) so we shall consider in detail only
the case in which the cut formula is DGA and is principal in both premisses:

{xRay}a∈G, Γ ⇒ Δ, y : A

Γ ⇒ Δ, x : DGA
RD

z : A, x : DGA, {xRaz}a∈G, Γ ′ ⇒ Δ′

x : DGA, {xRaz}a∈G, Γ ′ ⇒ Δ′ LD

Γ, {xRaz}a∈G, Γ ′ ⇒ Δ, Δ′ Cut
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Let n be the height of the derivation of the left premiss and m the height of the
second. Then the cut-height is n+1+m+1. This derivation can be transformed
into the following:

{xRay}a∈G, Γ ⇒ Δ, y : A

{xRaz}a∈G, Γ ⇒ Δ, z : A
Subst

{xRay}a∈G, Γ ⇒ Δ, y : A

Γ ⇒ Δ, x : DGA
RD

z : A, x : DGA, {xRaz}a∈G, Γ ′ ⇒ Δ′

z : A, Γ, {xRaz}a∈G, Γ ′ ⇒ Δ, Δ′ Cut

{xRaz}a∈G, Γ, Γ, {xRaz}a∈G, Γ ′ ⇒ Δ, Δ, Δ′ Cut

Γ, {xRaz}a∈G, Γ ′ ⇒ Δ, Δ′ Ctr∗

Note that the height-preserving substitution in the derivation of the left premiss
of the second cut has no effect on Γ or Δ because, by the variable restriction
of rule RD used in the original derivation, y does not appear free in Γ or Δ.
The derivation has two cuts, the first of which has lower height and the second
smaller size of the cut formula.

As a consequence of admissibility of cut, it follows that our system is closed
under modus ponens, and therefore it is complete with respect to the known
Hilbert-type systems for the logic of distributed knowledge.

In [3], an alternative Hilbert-type system is presented; the system is obtained
by adding to the standard axiomatizations of T, S4, or S5, the rule

A1& . . .&Am ⊃ B

Ka1A1& . . .&KamAm ⊃ DGB
(3)

where a1, . . . , am are the agents in G. The labelled version of the rule is shown
admissible in our system as follows:

⇒ x : A1& . . .&Am ⊃ B

x : A1, . . . , x : Am ⇒ x : B
L&-Inv ,R⊃-Inv

y : A1, . . . , y : Am ⇒ y : B
Subst

{xRaiy}ai∈G, y : A1, . . . , y : Am, x : Ka1A1, . . . , x : KamAm ⇒ y : B
LW ∗

{xRaiy}ai∈G, x : Ka1A1, . . . , x : KamAm ⇒ y : B
LKa1 ,...,LKam

x : Ka1A1, . . . , x : KamAm ⇒ x : DGB
RD

x : Ka1A1& . . . &KamAm ⇒ x : DGB
L&∗

x : Ka1A1& . . .&KamAm ⊃ DGB
R⊃

where L&-Inv , R⊃-Inv denote the (admissible) invertibilities of L& and R ⊃,
respectively, Subst the admissible rule of substitution, and the asterisk indicates
possibly repeated applications of a rule.

Admissibility of cut is crucial for delimiting the space of proof search, because
it guarantees that no arbitrary new formulas need to be constructed during the
search. However, our system does not enjoy a full subformula property because
some rules remove atoms, but a weak form of subformula property, that is, all
formulas in a derivation are either subformulas of (formulas in) the endsequent
or atomic formulas of the form xRy. By considering minimal derivations, that is,
derivations in which shortenings are not possible, the weak subformula property
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can be strengthened by restricting the labels that can appear in the relational
atoms to those in the conclusion or to eigenvariables (subterm property). This
property, together with height-preserving admissibility of contraction, ensures
the consequences of the full subformula property and has been used for estab-
lishing decidability through terminating proof search for the system G3K and
several extensions in [7]. The proofs are involved so we shall not consider the
issue for G3KED here but leave it to future work. However, we do not expect
problems from the addition of the rules for distributed knowledge.

4 Examples

As a simple example of reasoning about distributed knowledge, consider the
case of three agents mentioned in the beginning of the article. Suppose we have
encoded the initial situation to a knowledge base KB so that it consists of the
formulas x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A). We can now ask whether
x : D{1,2,3}A can be derived from the knowledge base. (We shall use for clarity
D instead of D{1,2,3}). Proceeding in a root-first fashion we get the following
derivation in which the uppermost sequents have the same formula on both sides
of the sequent arrow and are thus derivable:

. . . , y : B, . . . ⇒ y : A, y : B

y : C, y : B . . . ⇒ . . . , y : B y : C . . . ⇒ . . . , y : C

y : C, y : B . . . ⇒ y : A, y : B & C
R&

y : A, y : C, . . . ⇒ y : A

y : C, y : B & C ⊃ A, y : B, . . . ⇒ y : A
L⊃

y : B & C ⊃ A, y : B ⊃ C, y : B, . . . ⇒ y : A
L⊃

y : B ⊃ C, y : B, xR1y, xR2y, xR3y, x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ y : A
LK3

y : B, xR1y, xR2y, xR3y, x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ y : A
LK2

xR1y, xR2y, xR3y, x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ y : A
LK1

x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ x : DA
RD

Next we shall consider the derivation of the birthday case mentioned e.g. in
[11]: In any group it is distributed knowledge whether two agents have the same
birthday. The assumption is, of course, that everyone knows one’s own birthday.
If these pieces of individual knowledge were combined, it would be easy to verify
whether the birthdays of any two agents are identical. We shall here consider
only a group of two people but the extension would be straightforward.

Take P (i, t) to be the proposition that agent i’s birthday is t and consider the
proposition that it is distributed knowledge in group G whether two agents in
G have the same birthday. This could be expressed as follows:

DG∃i, j, t (P (i, t) & P (j, t) & i �= j) ∨ DG ∼∃i, j, t (P (i, t) & P (j, t) & i �= j).

Note that although we have been concerned with propositional epistemic logic,
we shall here use first-order notation for ease of exposition. The example can be
cast in propositional logic as well, for example, by using standard proposition-
alization techniques, see e.g. [16, pages 274–275]. To avoid having to use a large
number of propositional symbols, we shall use a notation that looks like first-
order notation, but we shall assume that everything is encoded in propositional
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logic. We can thus suppose that our knowledge base KB consists of sentences
such as the following: x : P (i, t) ⊃ KiP (i, t) for all agents i and all dates t. In
propositional logic, this would look something like:

Birthday Agent1 January01 ⊃ K1(Birthday Agent1 January01) etc.

KB now encodes the assumptions that each agent, here 1 and 2, knows one’s
own birthday.

Instead of putting the assumptions in KB to the left-hand side of the sequent
arrow as in the previous example, we shall here employ the method of converting
axioms to rules as in [17,6]. Thus, each axiom in KB will be replaced by a
corresponding rule of the form:

x : KiP (i, t), x : P (i, t), Γ ⇒ Δ

x : P (i, t), Γ ⇒ Δ
KBi,t

Observe that the addition of a rule of this form maintains all the structural
properties of the system: Admissibility of contraction is guaranteed by the rep-
etition of the principal formula x : P (i, t) in the premiss. Further, there is no
interference with the process of cut elimination because the principal formula
x : P (i, t) is atomic. Also invertibility of all the rules is for the same reason
unaffected by the addition.

To make the example manageable, we shall prove only the part saying that
if two agents have the same birthday, it will be distributed knowledge that they
have the same birthday. (Proving the other part saying that if their birthdays
differ, they will know that they differ, would require stating in addition that
each agent can have only one birthday.) By making a further simplification and
treating t as a constant here, we can express the claim as follows:

P (1, t) & P (2, t) ⊃ D{1,2}(P (1, t) & P (2, t)).

Without this simplification we would have to use the more complete expression,
that is, a conjunction of all implications of the above kind for all possible values
of t.

We get root-first the following derivation:

y : P (1, t), x : K1P (1, t), xR1y, xR2y, x : P (1, t), x : P (2, t) ⇒ y : P (1, t)
Ax

x : K1P (1, t), xR1y, xR2y, x : P (1, t), x : P (2, t) ⇒ y : P (1, t)
LK1

xR1y, xR2y, x : P (1, t), x : P (2, t) ⇒ y : P (1, t)
KB1

xR1y, xR2y, x : P (1, t) & P (2, t) ⇒ y : P (1, t)
L& ... (similarly)

xR1y, xR2y, x : P (1, t) & P (2, t) ⇒ y : P (1, t) & P (2, t)
R&

x : P (1, t) & P (2, t) ⇒ x : D{1,2}(P (1, t) & P (2, t))
RD

⇒ x : P (1, t) & P (2, t) ⊃ D{1,2}(P (1, t) & P (2, t))
R⊃

Thus, it is proved that if two agents have the same birthday, this fact is distrib-
uted knowledge.

Consider next an example in which agents possess information that put to-
gether leads to a contradiction. Suppose that agent 1 knows that A ⊃ B and
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B ⊃ C. She then receives a message from agent 2 claiming that A and a mes-
sage from agent 3 claiming that ∼B & (A ∨ C). Agent 1 stores the information
so her knowledge base KB contains the following formulas: x : K1(A ⊃ B),
x : K1(B ⊃ C), x : K2A, x : K3(∼B & (A ∨ C)). To find out whether all incom-
ing information can be safely believed, agent 1 should check that the claimed
contents do not lead to a contradiction as happens here:

y : A, . . . ⇒ y : ⊥, y : A

y : B, . . . ⇒ y : ⊥, y : B y : ⊥, . . . ⇒ y : ⊥ L⊥

y : B ⊃ ⊥, y : A ∨ C, y : B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥ L⊃

y : (B ⊃ ⊥) & (A ∨ C), y : B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥ L&

y : B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥ LK3

y : A ⊃ B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥ L⊃

y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥ LK1

xR1y, xR2y, xR3y, KB ⇒ y : ⊥ LK2

KB ⇒ x : D{1,2,3}⊥
RD{1,2,3}

Since combining all the information leads to a contradiction, agent 1 must find
a subset of agents such that contradiction cannot be inferred. In this particular
case she may decide that either 2 or 3 is less reliable than the others, or she
may even decide that her own previous beliefs should be revised in light of
the new information provided by 2 and 3. Supposing that she decides to drop
the information provided by agent 3, she should then check that contradiction
cannot be derived from the combined knowledge of 1 and 2 as follows:

y : A, . . . ⇒ y : ⊥, y : A

y : B, . . . ⇒ y : ⊥, y : B y : C, y : B, y : A, xR1y, xR2y, KB ⇒ y : ⊥
y : B ⊃ C, y : B, y : A, xR1y, xR2y, KB ⇒ y : ⊥ L⊃

y : B, y : A, xR1y, xR2y, KB ⇒ y : ⊥ LK1

y : A ⊃ B, y : A, xR1y, xR2y, KB ⇒ y : ⊥ L⊃

y : A, xR1y, xR2y, KB ⇒ y : ⊥ LK1

xR1y, xR2y, KB ⇒ y : ⊥ LK2

KB ⇒ x : D{1,2}⊥
RD{1,2}

The uppermost premiss on the right hand side is not derivable: It is possible
to continue the derivation by re-applying the left knowledge rules applied to
formulas in KB or using the reflexivity and symmetry (and later transitivity)
rules for the accessibility relation. After that left knowledge rules can also be
applied with the expression xR1x (or xR2x) to yield x : A, x : B and x : C
on the left hand side. Eventually only duplicates of existing formulas will be
produced and the search can be terminated.

Agent 1 can now conclude that it is safe to reason about distributed knowledge
among herself and agent 2 (because not everything can be inferred). Then she
can find out, for instance, that together they can conclude that C holds:

y : A, . . . ⇒ y : C, y : A

y : B, . . . ⇒ y : C, y : B y : C, y : B, y : A, xR1y, xR2y, KB ⇒ y : C

y : B ⊃ C, y : B, y : A, xR1y, xR2y, KB ⇒ y : C
L⊃

y : B, y : A, xR1y, xR2y, KB ⇒ y : C
LK1

y : A ⊃ B, y : A, xR1y, xR2y, KB ⇒ y : C
L⊃

y : A, xR1y, xR2y, KB ⇒ y : C
LK1

xR1y, xR2y, KB ⇒ y : C
LK2

KB ⇒ x : D{1,2}C
RD{1,2}
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This is actually the same derivation as the previous one just with ⊥ replaced by
C, but now all the premisses are derivable.

Instead of having decided to trust agent 2, agent 1 could have decided that
agent 3 is more reliable. Then she would have had to check that D{1,3}⊥ cannot
be derived and then to use the distributed knowledge between 1 and 3 as the
basis of her reasoning. In general, reasoning and decision-making of an agent a
can be based on the distributed knowledge DTa where Ta ⊆ G is the set of agents
currently held reliable by agent a. The choice of which agents to trust can later
be retracted: If it turns out that some of the agents provide information that is
clearly false, these agents can then be dropped from the subset Ta. The main
point is that storing the source of information as well as the information content
in the databases combined with the use of proof methods for reasoning about
distributed knowledge provides a flexible way to deal with possibly erroneous
multi-source information in a controlled fashion.

Note, however, that reasoning about distributed knowledge should not be seen
as an alternative to existing information merging methods but rather as a tool
for recognizing inconsistencies and making inferences from combined knowledge
bases. This is because distributed knowledge is defined as whatever follows from
the totality of what a collection of agents know. Thus, the approach does not di-
rectly support taking just one part of an agent’s knowledge and rejecting another
part that causes contradictions, as is often done in belief base merging. Reasoning
about distributed knowledge requires either including everything an agent knows
or excluding the agent altogether. Certainly, the methods can be modified by
using a more fine-grained conception of agency: Instead of labelling everything
agent a has claimed under Ka we can use, for instance, occasion-based labels
or topic-based labels, as in Ka on Thursday or KPolitician about taxes before elections.
Then only certain parts of an agent’s total knowledge can be taken into consid-
eration.

Similarly, in the present system it is not possible to infer from contradictory
reports that their disjunction must hold, contrary to e.g. [8]. If one witness claims
that a car seen was black and another says it was red, it is often inferred that it
must have been either black or red, but not white, for instance. This inference is
not directly supported in our approach but must be implemented as a meta-level
principle: If it is distributed knowledge within one consistent subset of agents
that the car is black and within another that the car is red, we may want to
conclude that it is either black or red. In a similar fashion meta-level principles
are required for implementing other conflict-resolution methods like accepting a
view supported by a majority of agents.

Another application area is cooperative problem solving, where it is assumed
that all information is correct and the agents work together to solve theoretical or
practical reasoning problems. Then distributed knowledge can be used to identify
the collection of agents needed to provide a solution to a problem. Suppose,
for instance, that the agents are asked to find out whether B holds. Suppose
that we have in our use the following sentences obtained from agents 1 and 2:
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K1(A ⊃⊂ B), K2(K3A ∨ K3 ∼A). We are interested in the truth of B, and the
first agent knows that another proposition, A, is equivalent to B, and the second
agent knows that a third agent knows whether this proposition A holds. Now
agents 1,2 and 3, distributively know whether B holds but, in fact, after getting
from agent 2 information concerning agent 3’s knowledge, agent 2 is not needed
anymore, because it is actually distributed knowledge between 1 and 3 alone
whether B is the case, as can be seen from the derivation below:

y : A, . . . ⇒ . . . , y : A y : B, . . . ⇒ . . . , y : B

y : A, y : A ⊃ B, y : B ⊃ A, xR1y, xR3y, x : K3A, . . . ⇒ x : D{1,3} ∼B, y : B
L⊃

y : A ⊃ B, y : B ⊃ A, xR1y, xR3y, x : K3A, . . . ⇒ x : D{1,3} ∼B, y : B
LK3

y : A ⊃⊂ B, xR1y, xR3y, x : K3A, . . . ⇒ x : D{1,3} ∼B, y : B
L&

xR1y, xR3y, x : K3A, xR2x, x : K1(A ⊃⊂ B), . . . ⇒ x : D{1,3} ∼B, y : B
LK1

x : K3A, xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B, x : D{1,3} ∼B
RD{1,3}

x : K3A, xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
R∨

...

x : K3A ∨ K3 ∼A, xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
L∨

xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
LK2

x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
Ref2

The branch marked with dots derives the sequent

x :K3 ∼A, xR2x, x :K1(A ⊃⊂ B), x :K2(K3A ∨ K3 ∼A)⇒ x :D{1,3}B ∨ D{1,3}∼B

It is slightly more complicated because of the negation but is derivable as well.
In this example, information provided by a collection of agents was used to
find out another collection capable of providing an answer to the original query.
The agents in the first group do not know the answer (it is not the case that
D{1,2}B ∨ D{1,2} ∼B), but they know who knows the answer (it is the case that
D{1,2}(D{1,3}B ∨ D{1,3} ∼B)). Agent 2’s knowledge was crucial for finding out
the set of agents needed to solve the original problem, but the actual query can
now be given as a task for agents 1 and 3 to co-operatively solve. Thus, distrib-
uted knowledge gives a way of reasoning about informants and their knowledge
without requiring that the reasoning agent possesses the actual knowledge. It
may be enough if the agent can find out who has the knowledge, as is often the
case in real life situations.

5 Conclusions and Future Work

We have here presented a sequent calculus system for formal reasoning in multi-
agent epistemic logic with operators for distributed knowledge. Our system en-
joys the structural properties that support proof search that starts from the
conclusion to be derived. Because the rules are invertible, there is no need for a
backtracking mechanism, since if the conclusion is derivable also the premisses
are guaranteed to be derivable. Admissibility of the contraction rules guarantees
that rules that only produce duplications of the existing formulas need not be
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considered in the proof search. Finally, admissibility of cut is crucial for delim-
iting the space of the proof search, because it ensures that no arbitrary new
formulas need to be constructed during the search.

Recent literature ([12], [13]) has emphasized the importance of certain prop-
erties for what should be appropriately called “distributed knowledge”. Among
such properties is the principle of full communication: Whenever a statement A
is distributed knowledge within a group, it should be possible to derive A from
what the agents individually know. As discussed in [12], the syntactic form of the
principle roughly corresponds to invertibility of rule 3, which does not hold in
general, as a simple Kripke countermodel shows. A characterization of the epis-
temic models that obey the principle is given in [13]. We can make the principle
of full communication part of our system by incorporating the model-theoretic
properties in the form of rules for the accessibility relation. First we observe that
if the accessibility relations for the modalities of individual knowledge Ka are
“canonical,” i.e., satisfy

xRay iff for all A(x � KaA implies y � A)

then the principle of full communication holds. Imposing canonicity amounts to
the addition of certain rules such as

x : KaA, Γ ⇒ Δ, y : A

Γ ⇒ Δ, xRay
RRa

where A is an arbitrary formula not in Γ, Δ, and

y : A, x : KaA, xRay, Γ ⇒ Δ

x : KaA, xRay, Γ ⇒ Δ
LRa

It is not difficult, although not completely straightforward, to show that the
structural properties of the system are maintained by the addition. For instance,
for proving admissibility of contraction and cut, a measure of complexity has to
be defined in such a way that the weight of relational atoms is greater than the
weight of labelled formulas. This is unproblematic as it can be done consistently
with the earlier requirements in the proofs of the structural properties of the
basic epistemic system. The details will be left for subsequent work.
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Abstract. Over the years, Logic Programming has proved to be a good
and natural tool for expressing, querying and manipulating explicit
knowledge in many areas of computer science. However, it is not so easy
to use in dynamic environments. Evolving Logic Programs (EVOLP)
are an elegant and powerful extension of Logic Programming suitable
for Multi-Agent Systems, planning and other uses where information
tends to change dynamically. In this paper we characterize EVOLP
by transforming it into an equivalent normal logic program over an
extended language, that serves as a basis of an existing implementation.
Then we prove that the proposed transformation is sound and complete
and examine its computational complexity.

1 Introduction

Construction of intelligent agents is one of the main matters of artificial in-
telligence. Computational Logic has shown to be a good tool for both symbolic
knowledge representation and reasoning, with fruitful application in Multi-Agent
Systems.

Examples of the success of Computational Logic in Multi-Agent Systems in-
clude IMPACT [1,2], 3APL [3,4], Jason [5], DALI [6], ProSOCS [7], FLUX [8]
and ConGolog [9], to name a few. For a survey on some of these systems, as well
as others, see [10,11,12].

Computational Logic, and Logic Programming in particular, can be seen as
a good representation language for static knowledge. However, agents must be
capable of operating independently in a partially observable environment that
may change unexpectedly. Therefore, they need to be able to evolve, both due
to self-updates and updates from the environment, and change their model of
the world accordingly. If we are to move to such more open and dynamic en-
vironments, we must consider ways and means of representing and integrating
knowledge updates from external as well as internal sources.

In fact, an agent should not only comprise knowledge about each state, but
also knowledge about the transitions between states. The latter may represent
the agent’s knowledge about the environment’s evolution, coupled to its own
� This research has been funded by the European Commission within the 6th Frame-
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behaviour and evolution. The lack of rich mechanisms to represent and reason
about dynamic knowledge and agents i.e. represent and reason about environ-
ments where not only some facts about it change, but also the rules that govern
it, and where the behaviours of agents also change, is common to the above
mentioned systems.

Much research in the last decade has been devoted to finding a good way of
updating knowledge bases represented by logic programs [13,14,15,16,17,18,19].
A sequence of logic programs where each program represents a supervenient
state of the world was called a Dynamic Logic Program (DLP). Finding a suit-
able semantics for DLPs became the first step on one of the paths to using Logic
Programming in Multi-Agent Systems. Quite a number of semantics with differ-
ent properties were introduced [16,17,18,19]. We will only mention the Dynamic
Stable Model semantics [17] that was later improved and called Refined Dynamic
Stable Models [19]. This is also the semantics used throughout this work. For a
more comprehensive overview of semantics for DLPs see [18,20,21].

Although Dynamic Logic Programming provides a semantics for a sequence
of states of the world expressed as logic programs, it doesn’t offer a mechanism
for constructing these programs. Update languages like LUPS [22], EPI [23],
KUL and KABUL [18] were developed for the purpose of specifying transitions
between the states of the world. Each of them defines special types of rules
for adding and deleting rules from programs in the sequence. Evolving Logic
Programs (EVOLP) [24] also comes from this line of work, but while its pre-
decessors were becoming more and more complicated as more constructs were
being added, EVOLP is a simple, yet very powerful extension of traditional logic
programming.

EVOLP generalizes Answer-set Programming [25] to allow for the specification
of a program’s own evolution, in a single unified way. Furthermore, EVOLP also
permits, besides internal or self updates, for updates arising from the environ-
ment. The resulting language provides a simpler, and more general, formulation
of logic program updating, running close to traditional LP doctrine, setting it-
self on a firm formal basis in which to express, implement, and reason about
dynamic knowledge bases, opening up several interesting research topics.

Indeed, EVOLP can adequately express the semantics resulting from succes-
sive updates to logic programs, considered as incremental specifications of agents,
and whose effect can be contextual. Syntactically, evolving logic programs are
just generalized logic programs1. But semantically, they permit to reason about
updates of the program itself. The language of EVOLP contains a special pred-
icate assert/1 whose sole argument is a full-blown rule. Whenever an assertion
assert(r) is true in a model, the program is updated with rule r. The process is
then further iterated with the new program.

Whenever the program semantics allows for several possible program models,
evolution branching occurs, and several evolution sequences are made possible.
This branching can be used to specify the evolution of a situation in the pres-
ence of incomplete information. Moreover, the ability of EVOLP to nest rule

1 Logic programs that allow for rules with default negated literals in their heads.
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assertions within assertions allows rule updates to be themselves updated down
the line. Furthermore, the EVOLP language can express self-modifications trig-
gered by the evolution context itself, present or future – assert literals included in
rule bodies allow for looking ahead on some program changes and acting on that
knowledge before the changes occur. In contradistinction to other approaches,
EVOLP also automatically and appropriately deals with the possible contradic-
tions arising from successive specification changes and refinements (via Dynamic
Logic Programming).

The aim of this work is to provide the basis for an operational semantics for
EVOLP, based on a sound and complete transformational semantics for EVOLP,
i.e. define a transformation that, given an evolving logic program and a sequence
of events, produces an equivalent normal logic program over an extended lan-
guage. Such a transformation, together with an ASP solver, is the basis of our
implementation of EVOLP under the evolution stable model semantics2. Cur-
rently, the only somehow similar implementation appears in [26] and only for a
limited constructive view of EVOLP. More information about the implementa-
tion can be found in [27].

We also examine the complexity of the defined transformation. This is per-
formed by inferring both a lower and an upper bound for the size of the trans-
formed program.

The remainder of this work is structured as follows: in Sect. 2 we introduce
the syntax and semantics of EVOLP; in Sect. 3 we define the transformation;
in Sect. 4 we show that the proposed transformation is sound and complete; in
Sect. 5 we examine the complexity of the transformation; in Sect. 6 we conclude
and sketch some possible directions of future work.

2 Background: Concepts and Notation

We start with the usual preliminaries: Let L be a set of propositional atoms.
A default literal is an atom preceded by not. A literal is either an atom or a
default literal. A rule r is an ordered pair (H(r), B(r)) where H(r) (dubbed the
head of the rule) is a literal and B(r) (dubbed the body of the rule) is a finite
set of literals. A rule with H(r) = L0 and B(r) = { L1, L2, . . . , Ln } will simply
be written as

L0 ← L1, L2, . . . , Ln. (1)

If H(r) = A (resp. H(r) = notA) then notH(r) = notA (resp. notH(r) = A).
Two rules r, r′ are conflicting, denoted by r �� r′, iff H(r) = notH(r′). We will
say a literal L appears in a rule (1) iff the set { L,notL }∩{ L0, L1, L2, . . . , Ln }
is non-empty.

A generalized logic program (GLP) over L is a set of rules. A literal appears
in a GLP iff it appears in at least one of its rules.

An interpretation of L is any set of atoms I ⊆ L. An atom A is true in I,
denoted by I |= A, iff A ∈ I, and false otherwise. A default literal notA is true

2 A web based demo is available at http://centria.di.fct.unl.pt/evolp/
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Evolution Trace

Evolution Stable Model

P1

M1

P2

M2

P3

M3

Pn

Mn

P1 = P

P2 = { r | assert(r) ∈ M1 }

P3 = { r | assert(r) ∈ M2 }

Pn = { r | assert(r) ∈ Mn−1 }

Fig. 1. Semantics of EVOLP (without events)

in I, denoted by I |= notA, iff A /∈ I, and false otherwise. A set of literals B
is true in I iff each literal in B is true in I. Given an interpretation I we also
define I− def= {notA | A ∈ L \ I } and I∗ def= I ∪ I−. An interpretation M is a
stable model of a GLP P iff M∗ = least(P ∪ M−) where least(·) denotes the
least model of the definite program obtained from the argument program by
treating all default literals as new atoms.

Definition 1. A dynamic logic program (DLP) is a sequence of GLPs. Let
P = (P1, P2, . . . , Pn) be a DLP. We use ρ(P) to denote the multiset of all rules
appearing in the programs P1, P2, . . . , Pn and P i (1 ≤ i ≤ n) to denote the i-th
component of P, i.e. Pi. Given a DLP P and an interpretation I we define

Def(P , I) def= { notA | (�r ∈ ρ(P))(H(r) = A ∧ I |= B(r)) } , (2)

Rejj(P , I) def=
{

r ∈ Pj
∣
∣ (∃k, r′)

(
k ≥ j ∧ r′ ∈ Pk ∧ r �� r′ ∧ I |= B(r′)

) }
,
(3)

Rej(P , I) def=
n⋃

i=1

Reji(P , I) . (4)

An interpretation M is a (refined) dynamic stable model of a DLP P iff M∗ =
least([ρ(P) \ Rej(P , M)] ∪ Def(P , M)).

Definition 2. Let L be a set of propositional atoms (not containing the predi-
cate assert/1). The extended language Lassert is defined inductively as follows:

1. All propositional atoms in L are propositional atoms in Lassert.
2. If r is a rule over Lassert then assert(r) is a propositional atom in Lassert.
3. Nothing else is a propositional atom in Lassert.

An evolving logic program over a language L is a GLP over Lassert. An event
sequence over L is a sequence of evolving logic programs over L.
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Table 1. Evolution of the program in Example 1 (“assert” is shortened to “ass”)

Time Program Event Model

1 P E1
{no coffee, write thesis,

ass(tired ←)}
2 { tired ← . } E2 {tired, no coffee, make coffee}
3 ∅ E3 {tired, drink coffee, ass(not tired ←)}

4 {not tired ← . } E4

{write thesis, ass(tired ←),

ass(not drink coffee ←),

ass(sleep ← tired),

ass(ass(not tired ←) ← sleep)}

5

{tired ← .,

notdrink coffee ← .,

sleep ← tired.,

ass(not tired ←) ← sleep.}

E5 {tired, sleep, ass(not tired ←)}

Definition 3. An evolution interpretation of length n of an evolving pro-
gram P over L is a finite sequence I = (I1, I2, . . . , In) of interpretations
of Lassert. The evolution trace associated with an evolution interpretation
I of P is the sequence of programs (P1, P2, . . . , Pn) where P1 = P and
Pi+1 = { r | assert(r) ∈ Ii } for all i ∈ { 1, 2, . . . , n − 1 }.

Definition 4. An evolution interpretation M = (M1, M2, . . . , Mn) of an
evolving logic program P with evolution trace (P1, P2, . . . , Pn) is an evolu-
tion stable model of P given an event sequence (E1, E2, . . . , En) iff for every
i ∈ { 1, 2, . . . , n } Mi is a dynamic stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei).

Example 1. Consider the following evolving logic program:

P : write thesis ← not tired. (5)
drink coffee ← tired,not no coffee. (6)
make coffee ← tired, no coffee. (7)

assert(tired ←) ← write thesis. (8)
assert(not tired ←) ← drink coffee. (9)

P could be an initial program of a simple agent (e.g. Mary) who is trying to write
a thesis. Mary can do 3 things: write the thesis, drink coffee or make coffee. She
also relies on a sensor that sends her the fact (no coffee ← .) as an event in case
no coffee is available. The meaning of the rules is as follows: Rule (5) says Mary’s
writing the thesis as long as she’s not tired. Rules (6) and (7) tell her what to
do when she’s tired. Rules (8) and (9) specify whether she will be tired in the
next evolution step. If she’s writing the thesis, she will get tired. Drinking coffee
has an opposite effect. If she’s making coffee, no change will take place. Table 1
shows the evolution of P given the sequence of events E = (E1, E2, E3, E4, E5)
where E1 = E2 = { no coffee ← . }, E3 = E5 = ∅ and
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E4 : assert(not drink coffee ←) ← .

assert(sleep ← tired) ← .

assert(assert(not tired ←) ← sleep) ← .

We start off with P and E1 and compute the first model. It says there is no
coffee, Mary is writing her thesis and in the next step she will get tired. We infer
the second program from the model, add the second event and compute the
second model. Now Mary is tired and makes coffee. This makes the sensor stop
complaining in the third step (i.e. E3 = ∅) and Mary, still tired, drinks coffee.
In the fourth step Mary is writing her thesis again and she is reprogrammed –
when she gets tired she will take a nap instead of drinking coffee. In the fifth
step the new rules are used – Mary is tired and sleeping.

The previous example is very simple and its main purpose is to demonstrate
how the definitions of semantics of EVOLP work. It is by no means exhaustive
and doesn’t demonstrate the full power of the language. In the next example we
will briefly show more complex rules that are a part of a more complex example
where EVOLP is used as to implement a fairly sophisticated email agent. For
the full version of the example the reader is referred to [28]. Another different
example that makes use of an agent architecture based on EVOLP can be found
in [26].

Example 2. The email agent example is composed of an evolving logic program
P and a sequence of events (E1, E2, . . . , E16). We will only pick some specific
rules from the example to demonstrate the constructs that can be specified using
EVOLP.

First let’s consider the following two rules:

assert(in(M, Fto) ←) ← move(M, Ffrom, Fto), in(M, Ffrom).
assert(not in(M, Ffrom) ←) ← move(M, Ffrom, Fto),not in(M, Fto).

They are used in [28] as a part of the base program of an email agent and
encode a message moving mechanism. The first rule specifies that if a command
received to move a message M from folder Ffrom to folder Fto and it is currently
in folder Ffrom (i.e. the command is a valid one), then in the next evolution step
the message will be in folder Fto. The second rule deletes M from folder Ffrom

in case it is different from the destination folder Fto. Similar rules are used
to remember new messages and delete them from folders and remember sent
messages.

Another three rules encode an evolving predicate that decides whether a mes-
sage is spam or not:

r1 : spam(F, S, B) ← contains(S, “credit”).
r2 : not spam(F, S, B) ← contains(F, “accountant”).
r3 : spam(F, S, B) ← contains(S, “credit”), contains(S, “Fwd”).
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They are asserted one by one in the events, i.e. assert(r1) ∈ Ei, assert(r2) ∈ Ej

and assert(r3) ∈ Ek for some i < j < k. The first rule defines a spam message
as any message having “credit” in its subject. This is further updated by the
second rule – messages whose sender contains the word “accountant” are not
considered as spam (even if they contain “credit” in their body). The third
rule further updates the way messages are classified – messages containing both
“credit” and “Fwd” in their subject are considered spam (even if they come from
the accountant).

The last rule we are going to mention encodes a more complex behaviour:

assert(send(R, S, B) ← newmsg(M, F, S, B), contains(S, ID), assign(ID, R)) ←
newmsg(M, R, ID, B), contains(B, “accept”).

The meaning of the rule is as follows: If a message is received from a reviewer
R that contains a paper identification ID in the subject and the word “accept”
in its body, then all future messages regarding this paper will be forwarded to
the reviewer R in case he has been assigned the paper ID. Multiple rules of this
kind can be used to configure a simple paper submission system that keeps track
of papers, deadlines, authors and reviewers and manages the communication
between them.

3 Transformation into a Normal Logic Program

Now we will define a transformation which turns an evolving logic program P
together with an event sequence E of length n into a normal logic program PE
over an extended language. We will prove later that the stable models of PE are
in one-to-one correspondence with the evolution stable models of P given E .

The transformation is essentially a multiple parallel usage of a similar trans-
formation for DLPs introduced in [29]. First we need to define the extended
language over which we will construct the resulting program:

Ltrans
def=

{
Aj , Aj

neg

∣
∣ A ∈ Lassert ∧ 1 ≤ j ≤ n

}

∪
{

rej(Aj , i), rej(Aj
neg, i)

∣
∣ A ∈ Lassert ∧ 1 ≤ j ≤ n ∧ 0 ≤ i ≤ j

}

∪{ u } .

Atoms of the form Aj and Aj
neg in the extended language allow us to compress

the whole evolution interpretation (consisting of n interpretations of Lassert, see
Def. 3) into just one interpretation of Ltrans. Atoms of the form rej(Aj , i) and
rej(Aj

neg, i) are needed for rule rejection simulation. The atom u will serve to
formulate constraints needed to eliminate some unwanted models of PE .

To simplify the notation in the transformation’s definition, we’ll use the fol-
lowing conventions: Let L be a literal over Lassert, Body a set of literals over
Lassert and j a natural number. Then:
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– If L is an atom A, then Lj is Aj and Lj
neg is Aj

neg.
– If L is a default literal notA, then Lj is Aj

neg and Lj
neg is Aj .

– Body j = { Lj | L ∈ Body }.

Definition 5. Let P be an evolving logic program and E = (E1, E2, . . . , En)
an event sequence. By a transformational equivalent of P given E we mean the
normal logic program PE = P 1

E ∪P 2
E ∪. . .∪Pn

E over Ltrans, where each P j
E consists

of these six groups of rules:

1. Rewritten program rules. For every rule (L ← Body .) ∈ P , P j
E contains

the rule
Lj ← Body j ,not rej(Lj , 1).

2. Rewritten event rules. For every rule (L ← Body .) ∈ Ej , P j
E contains

the rule
Lj ← Bodyj ,not rej(Lj , j).

3. Assertable rules. For every rule r = (L ← Body .) over Lassert and all i,
1 < i ≤ j, such that (assert(r))i−1 is in the head of some rule of P i−1

E , P j
E

contains the rule

Lj ← Body j , (assert(r))i−1,not rej(Lj, i).

4. Default assumptions. For every atom A ∈ Lassert such that Aj or Aj
neg

appears in some rule of P j
E (from the previous groups of rules), P j

E also
contains the rule

Aj
neg ← not rej(Aj

neg, 0).

5. Rejection rules. For every rule of P j
E of the form

Lj ← Body ,not rej(Lj , i).3

P j
E also contains the rules

rej(Lj
neg, p) ← Body . (10)

rej(Lj, q) ← rej(Lj , i). (11)

where:
(a) p ≤ i is the largest index such that P j

E contains a rule with the literal
not rej(Lj

neg, p) in its body. If no such p exists, then (10) is not in P j
E .

(b) q < i is the largest index such that P j
E contains a rule with the literal

not rej(Lj, q) in its body. If no such q exists, then (11) is not in P j
E .

3 It can be a rewritten program rule, a rewritten event rule or an assertable rule
(default assumptions never satisfy the further conditions). The set Body contains all
literals from the rule’s body except the not rej(Lj , i) literal.
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6. Totality constraints. For all i ∈ { 1, 2, . . . , j } and every atom A ∈ Lassert
such that P j

E contains rules of the form

Aj ← Bodyp,not rej(Aj , i).

Aj
neg ← Bodyn,not rej(Aj

neg, i).

P j
E also contains the constraint

u ← notu,notAj ,notAj
neg.

Each P j
E contains rules for simulating the DLP (P, P2, P3, . . . , Pj−1, Pj ∪ Ej)

from the definition of evolution stable model (Definition 4). For the simulation
we use the transformational semantics from [29]. We also rewrite all atoms from
the original rules as a new set of j-indexed atoms.

The first two groups of rules in P j
E (rewritten program rules and rewritten

event rules) contain the rewritten forms of rules from P and Ej . However, we
don’t know the exact contents of P2, P3, . . . , Pj , so the group of assertable rules
contains all rules that can possibly occur in those programs. Each of these rules
also has an atom of the form (assert(r))i−1 in its body. We will call it the
assertion guard of the rule and it assures the rule is only used in case it was
actually asserted. These atoms are also the only connection between the rules of
P j
E and the rules in P 1

E ∪ P 2
E ∪ . . . ∪ P j−1

E .
The default assumptions are defined similarly as in [29], and they have the

same function – they simulate the set of defaults defined in Def. 1.
Rewritten program rules, rewritten event rules, assertable rules and default

assumptions also contain a default literal of the form not rej(Lj , i) in their bod-
ies. We will call this literal the rejection guard of the rule and the natural number
i the level of the rule. Together with the rejection rules, the rejection guard pro-
vides a means of rejecting a rule by a higher level rule, similarly as in the set of
rejected rules (4).

Rejection rules are responsible for inferring the correct rej(Lj , i) atoms. The first
kind of rules introduces the rejection of rules with a conflicting literal in their head
and a level that is the maximum that is also less or equal to i. The second kind of
rules takes care of propagating the rejection to rules with an even lower level.

Totality constraints are important in the case that rules of the same level reject
each other and no rule of higher level resolves their conflict. An interpretation
causing such a situation is not a refined dynamic stable model (more details can
be found in [19]). Totality constraints are needed to eliminate the superfluous
stable models of PE originating from these situations.

The following example illustrates how the transformation works:

Example 3. Let’s take the evolving logic program

P : assert(a ←) ← not a.

assert(not a ←) ← a.

and a sequence of two empty events E . The defined transformation would produce
the following transformed program:
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PE : (assert(a ←))1 ← a1
neg,not rej((assert(a ←))1, 1). (12)

(assert(not a ←))1 ← a1,not rej((assert(not a ←))1, 1). (13)

a1
neg ← not rej(a1

neg, 0). (14)

(assert(a ←))2 ← a2
neg,not rej((assert(a ←))2, 1). (15)

(assert(not a ←))2 ← a2,not rej((assert(not a ←))2, 1). (16)

a2 ← (assert(a ←))1,not rej(a2, 2). (17)

a2
neg ← (assert(not a ←))1,not rej(a2

neg, 2). (18)

a2
neg ← not rej(a2

neg, 0). (19)

rej(a2
neg, 2) ← (assert(a ←))1. (20)

rej(a2, 2) ← (assert(not a ←))1. (21)

rej(a2
neg, 0) ← rej(a2

neg, 2). (22)

u ← notu,not a2,not a2
neg. (23)

The rules (12) to (14) simulate the first evolution step – they are 2 rewritten
program rules and one default assumption. Rules (15) and (16) are rewritten
program rules for the second evolution step. In this step, two new rules can be
asserted – (17) and (18) are the corresponding assertable rules. (19) is a default
assumption, (20) to (22) are rejection rules and (23) is a totality constraint.

PE has exactly one stable model

M = { a1
neg, (assert(a ←))1, a2, (assert(not a ←))2, rej(a2

neg, 2), rej(a2
neg, 0) } .

It directly corresponds to the single evolution stable model M = (M1, M2) of P
given E where M1 = { assert(a ←) } and M2 = { a, assert(not a ←) }.

4 Soundness and Completeness

The following 2 theorems show how the stable models of the transformed pro-
gram correspond to the evolution stable models of the input program. Only
sketches of proofs are provided, their full versions can be found in [30].

Theorem 1 (Soundness). Let P be an evolving logic program, E =
(E1, E2, . . . , En) an event sequence, N a stable model of PE ,

Mi = { A ∈ Lassert | Ai ∈ N } for all i ∈ { 1, 2, . . . , n } .

Then (M1, M2, . . . , Mn) is an evolution stable model of P given E.

Proof (sketch). Let (P1, P2, . . . , Pn) be the evolution trace associated with the
evolution interpretation M = (M1, M2, . . . , Mn). According to Def. 4, M is an
evolution stable model of P given E iff for every i ∈ { 1, 2, . . . , n } Mi is a dynamic
stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei). Hence we choose one arbitrary but
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fixed j ∈ { 1, 2, . . . , n } and show that Mj is a dynamic stable model of P =
(P1, P2, . . . , Pj−1, Pj ∪ Ej).

Mj contains exactly those atoms that have their corresponding j-indexed
counterpart inferred by rules in P j

E as defined in Def. 5. What we need to show
is that each rule of P j

E either corresponds to some rule in P1, P2, . . . , Pj , Ej , or is
used to simulate the rule-rejection mechanism behind Dynamic Logic Program-
ming, or has no effect on the model.

It can be seen quite easily that rewritten program rules and rewritten event
rules correspond to rules in P1 = P and Ej , respectively. They just contain one
extra literal in their body – the rejection guard that is used to block them in
case they are rejected.

An assertable rule, added as a rewritten form of an original rule r, can only
be fired in case an atom of the form (assert(r))i−1 is true in N . But then
assert(r) is true in Mi−1 and thus r ∈ Pi. On the other hand, if r ∈ Pi for
some i ∈ { 2, 3, . . . , j }, then assert(r) ∈ Mi−1 and hence (assert(r))i−1 ∈ N .
So each rewritten program rule, rewritten event rule and assertable rule either
corresponds to some rule in the dynamic logic program P , or has no effect on
the resulting model because it cannot be fired.

Default assumptions in P j
E are present for all atoms of the program. They

simulate the set of defaults from Def. 1 and contain, just like all the other rules
before, the rejection guard in their body that can block their usage in case a
higher level rule rejects them by having an opposite literal in its head and its
body satisfied in N .

The rejection rules together with the totality constraints can be proved to
behave as follows:

1. For each atom Aj appearing in P j
E they force exactly one of Aj and Aj

neg to
be a member of N .

2. They infer an atom rej(Lj, i) with i > 0 iff some rule r ∈ Reji(P , Mj) has L
in its head.

3. They infer an atom rej(Lj, 0) iff L is a default literal notA and notA /∈
Def(P , I).

The first point implies that the resulting model will be consistent with respect to
the j-indexed versions of original literals. Correct simulation of the rule-rejection
mechanism is a consequence of the second point. The third point ensures that
only the appropriate subset of default assumptions is used.

Using the propositions from the previous paragraphs, it can be proved (by
induction on the number of applications of the immediate consequence operator)
that Mj is indeed a dynamic stable model of P . �


Theorem 2 (Completeness). Let P be an evolving logic program, E =
(E1, E2, . . . , En) an event sequence, M = (M1, M2, . . . , Mn) an evolution stable
model of P given E, (P1, P2, . . . , Pn) the evolution trace associated with M and

Pi = (P1, P2, . . . , Pi−1, Pi ∪ Ei) for all i ∈ { 1, 2, . . . , n } .
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Furthermore, let

N = { Li | i ∈ { 1, 2, . . . , n } ∧ Mi |= L ∧ Li appears in PE }
∪ { rej(Li, k) | 1 ≤ k ≤ i ≤ n ∧ (∃r ∈ Rejk(Pi, Mi))(H(r) = L) }
∪ { rej(Ai

neg, 0) | i ∈ { 1, 2, . . . , n } ∧ notA /∈ Def(Pi, Mi) } .

Then N is a stable model of PE .

Proof (sketch). Let R = least(PE ∪ N−). We need to prove that N∗ = R. This
can be proved in three steps:

1. In the first step we must prove for every literal L of Lassert and all j ∈
{ 1, 2, . . . , n } that Lj ∈ N ⇐⇒ Lj ∈ R. This can be proved by complete
induction on j, using ideas very similar to those in the proof of soundness.

2. The second step is to prove that N and R are identical on the set of atoms
of the form rej(Lj , i) for all L ∈ Lassert, every j ∈ { 1, 2, . . . , n } and every
i ∈ { 0, 1, . . . , j }. If rej(Lj , i) ∈ N , then some rule r ∈ Reji(Pj , Mj) has
L in its head. This rule must have been rejected by some other rule r′.
P j
E must contain a rule corresponding to r′ that will cause the presence of

appropriate rejection rules. Consequently, rej(Lj, i) will eventually be added
to R. A similar idea can be used to prove the converse implication.

3. The last matter that needs to be proved is that none of the totality con-
straints in PE has been broken, i.e. that u /∈ R. This can be proved by
contradiction: consider one of the constraints if broken. Then for some atom
A ∈ Lassert we have notAj ,notAj

neg ∈ R and also that both Aj and Aj
neg

appear in PE . Furthermore, notAj ,notAj
neg ∈ N− and hence Aj , Aj

neg /∈ N .
But then we have both Mj �|= A and Mj �|= notA – a contradiction. �


5 Complexity of the Transformation

The computational complexity of the proposed transformation is interesting from
multiple viewpoints:

– it directly influences the computational complexity of the implementation of
EVOLP that is based on it [27],

– it allows to identify the most time-consuming parts of the transformation
which can in turn be optimized to perform better,

– it reveals the branching factor that EVOLP is capable of, i.e. it demonstrates
the expressivity of EVOLP.

The rules for generating the transformed program are quite simple, so the algo-
rithm performing the transformation will also be reasonably simple. What really
matters is the size and number of rules of the transformed program. The big-
ger the transformed program will be, the longer it will take to generate it and
perform any further processing. We are also interested in which group of rules
is the biggest and how it can be made smaller.
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The size of each generated rule is either constant (default assumptions, totality
constraints and propagating rejection rules) or just constantly bigger than the
corresponding original rule. Therefore, we will concentrate on the number of
generated rules. First we will derive both a lower and an upper bound for the
number of rules of the transformed program. After we have the bounds, we will
draw some conclusions. For the rest of this section we will assume P is a finite
evolving logic program and E = (E1, E2, . . . , En) is a sequence of finite events.

5.1 Lower Bound

We know the transformed program PE contains n|P | rewritten program rules
and

∑n
j=1 |Ej | rewritten event rules. So a very simple lower bound for |PE | is:

|PE | ≥ n|P | +
n∑

j=1

|Ej | . (24)

Equality can be achieved only if P = E1 = E2 = . . . = En = ∅. Otherwise, PE
will also contain some default assumptions and rejection rules.

5.2 Number of Assertable Rules

In order to derive an upper bound for |PE |, we will first need to make an ap-
proximation of the number of assertable rules. Let A be the set of all assertable
rules in PE . In Appendix A it is shown that

|A| ≤ |P |n
3 − n

6
+

n∑

j=1

|Ej |
(n − j)3 + 5(n − j)

6
. (25)

It is also shown that in case we disallow nested asserts (i.e. a rule within an
assert atom must not contain another assert atom in its head), we have

|A| ≤ |P |n
2 − n

2
+

n∑

j=1

(n − j)|Ej | . (26)

5.3 Upper Bound

We already know the number of rewritten program rules and rewritten event
rules in the transformed program and an upper bound for the number of as-
sertable rules. Now we need to deal with the default assumptions, rejection rules
and totality constraints.

How many default assumptions can there be? Both P and the events are finite
so only a finite set of atoms from Lassert can be used in them. Let this set be
LP,E . Each atom in this set can generate up to n default assumptions.

Each rewritten program rule, rewritten event rule and assertable rule can
generate at most 2 rejection rules. Two of these rules are needed to generate a
totality constraint.
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Taken together, we have

|PE | ≤ 7
2

⎛

⎝n|P | +
n∑

j=1

|Ej | + |A|

⎞

⎠ + n| LP,E | . (27)

If we use the approximation of |A| (25), we get the following inequality:

|PE | ≤ 7
2

⎛

⎝n|P | +
n∑

j=1

|Ej |

+ |P |n
3 − n

6
+

n∑

j=1

|Ej |
(n − j)3 + 5(n − j)

6

⎞

⎠ + n| LP,E |

which can be further simplified to

|PE | ≤ 7
2

⎛

⎝|P |n
3 + 5n

6
+

n∑

j=1

|Ej |
(

(n − j)3 + 5(n − j)
6

+ 1
)

⎞

⎠ + n| LP,E | .

When n is large and program sizes are considered as parameters, we can use the
big-oh notation to get

|PE | = |P | · O
(
n3) +

n∑

j=1

|Ej | · O
(
(n − j)3

)
+ n| LP,E | . (28)

In case of programs without nested asserts we can use (26) to derive

|PE | ≤ 7
2

⎛

⎝|P |n
2 + n

2
+

n∑

j=1

(n − j + 1)|Ej |

⎞

⎠ + n| LP,E | ,

or, for large n,

|PE | = |P | · O
(
n2) +

n∑

j=1

|Ej | · O(n − j) + n| LP,E | . (29)

5.4 Conclusion

In this section we examined how big the transformed program can get. Probably
the most obvious and also a very important observation is that the lower bound
(24) for |PE | implies that the transformed program grows with n, no matter how
big the events are. Hence for large values of n and small events this can lead to
an intractably large transformed program even for tractably large inputs.

The main reason for this is that the transformed program captures all the
possible evolutions of the input program. The expressivity EVOLP encompasses,
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especially the possibility of arbitrary branching based on intermediate models,
makes it intractable to compute all the possible evolutions of even small pro-
grams. In case we are not interested in all or many of the possible evolutions,
this transformation is not suitable as a basis for an implementation. For example
when using EVOLP as an executable specification of a Multi-Agent System, a
constructive view of the language as taken in [26] is more appropriate.

There are, however, also other possible uses of EVOLP where we do care
about the possible evolutions. An example is reasoning about possible futures or
on-line planning as a part of a deliberation of an agent. Verification of a Multi-
Agent System specified in EVOLP is another. We believe the transformation
is appropriate for such applications of EVOLP because the high computational
complexity inherent in these problems is delegated to an answer set solver which
is already optimized to deal with it.

From the upper bound (28) for |PE | we can also see that the size of the
transformed program depends on the size of the input program, size of events
and n at most polynomially. Furthermore, if we use only (or mostly) rules without
nested asserts, (29) implies we can lower the power of n that |PE | grows with.

6 Conclusion and Future Work

We have defined a transformational semantics for Evolving Logic Programs and
proved that it is sound and complete. We also examined the computational com-
plexity of the transformation and identified situations in which it is practically
applicable. These include reasoning about possible futures, on-line planning and
verification of systems specified in EVOLP.

Future work can be devoted to optimizations of the transformation. In partic-
ular, the current transformation generates a number of unnecessary default as-
sumptions and rejection rules. This was useful because it made its definition and
proofs of soundness and completeness simpler. Now that these proofs are ready, we
can concentrate on optimizing the transformation and prove more easily what op-
timizations are safe to perform. In many situations it is also possible to share rules
among evolution steps which is another source of possible future optimizations.
The third issue worth examining is the possibility of having a larger transformed
program that performs better with the current answer set solvers.

Another line of work that can be followed involves generalizing the transfor-
mation. The definition can be extended to a language with classical negation.
Another interesting issue is that of identifying a class of evolving logic programs
with variables that is groundable with intuitive results and is general enough to
be usable in practise.
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A Upper Bound for the Number of Assertable Rules

In this Appendix we derive an upper bound for the number of assertable rules
in the transformed program. We will assume P is a finite evolving logic program
and E = (E1, E2, . . . , En) is a sequence of finite events. Let A be the set of all
assertable rules in the transformational equivalent PE of P given E . We will need
some more declarative characterization of the rules in A in order to work with
its cardinality. The following Definition, Lemmas and Theorem provide such
characterization:

Definition 6. Let E0 = ∅. We define

A1
def= { r | (∃r1 ∈ P )(H(r1) = assert(r)) } , (30)

for all i ∈ { 2, 3, . . . , n − 1 }

Ai
def= { r | (∃r1 ∈ Ai−1)(H(r1) = assert(r)) }
∪ { r | (∃r2 ∈ Ei−1)(H(r2) = assert(r1) ∧ H(r1) = assert(r)) }

(31)

and for all j ∈ { 1, 2, . . . , n − 1 } also

Aj
def=

j⋃

i=1

Ai ∪ { r | (∃r1 ∈ Ej)(H(r1) = assert(r)) } . (32)

http://slotik.info/
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Remark 1. Let j ∈ { 1, 2, . . . , n }. Each assertable rule in P j
E is fully deter-

mined by its assertion guard, i.e. if we know that it has the assertion guard
(assert(r))i−1 and r = (L ← Body .), then the assertable rule must be:

Lj ← Bodyj , (assert(r))i−1 ,not rej(Lj , i).

We will make use of this fact in order to make some formulations simpler.

Lemma 1. Let i ∈ { 1, 2, . . . , n − 1 }, j ∈ { i, i + 1, . . . , n − 1 } and r ∈ Ai. Then
P j+1
E contains an assertable rule with the assertion guard (assert(r))j .

Proof. We will prove by induction on i.

1 Let r ∈ A1. Then some rule r1 ∈ P exists such that H(r1) = assert(r). Let
j ∈ { 1, 2, . . . , n − 1 }. Then P j

E must contain a rewritten program rule with
(assert(r))j in its head and therefore P j+1

E must contain an assertable rule
with the assertion guard (assert(r))j .

2 We assume the claim holds for i and prove it for i + 1. Let r ∈ Ai+1 and let
j ∈ { i + 1, i + 2, . . . , n − 1 }. Two cases are possible:
(a) Some rule r1 ∈ Ai exists such that H(r1) = assert(r). By the induction

hypothesis we have that P j
E contains an assertable rule with the assertion

guard (assert(r1))j−1. This rule has (assert(r))j in its head. Hence P j+1
E

contains an assertable rule with the assertion guard (assert(r))j .
(b) Some rule r2 ∈ Ei exists such that H(r2) = assert(r1) and H(r1) =

assert(r). Then P i
E contains a rewritten event rule with (assert(r1))i in

its head. Hence P j
E will contain an assertable rule with the assertion

guard (assert(r1))i and (assert(r))j in its head. Therefore P j+1
E must

contain an assertable rule with the assertion guard (assert(r))j . �


Lemma 2. Let j ∈ { 1, 2, . . . , n − 1 } and r ∈ Aj. Then P j
E contains a rule with

(assert(r))j in its head.

Proof. Assume that r ∈ Aj . Two cases are possible:

a) r ∈ Ai for some i ∈ { 1, 2, . . . , j }. Then by Lemma 1 we have that P j+1
E

contains an assertable rule with the assertion guard (assert(r))j . Hence P j
E

must contain a rule with (assert(r))j in its head.
b) Some rule r1 ∈ Ej exists such that H(r1) = assert(r). Then P j

E contains a
rewritten event rule with (assert(r))j in its head. �


Lemma 3. Let j ∈ { 1, 2, . . . , n − 1 } and let r be a rule over Lassert. If P j
E

contains a rule with (assert(r))j in its head, then r ∈ Aj.

Proof. We will prove by complete induction on j.

1 The basis can be inferred from the inductive step with j = 1 (the third case
doesn’t have to be examined because P 1

E contains no assertable rules).
2 We assume the proposition holds for all i ∈ { 1, 2, . . . , j − 1 } and prove it

for j. Let’s consider three cases:
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(a) If P j
E contains a rewritten program rule r∗1 with (assert(r))j in its head,

then P contains a rule r1 such that H(r1) = assert(r). Hence r ∈ A1 ⊆
Aj .

(b) If P j
E contains a rewritten event rule r∗1 with (assert(r))j in its head,

then Ej contains a rule r1 such that H(r1) = assert(r). Hence r ∈ Aj .
(c) If P j

E contains an assertable rule with (assert(r))j in its head, then it
must be of the form

(assert(r))j ← Body j , (assert(r1))i−1,not rej((assert(r))j , i).

where r1 = (assert(r) ← Body .) and i ≤ j. So P i−1
E must contain a rule

with (assert(r1))i−1 in its head and by the induction hypothesis we have
r1 ∈ Ai−1. Two cases are possible again:
i. r1 ∈ Ah for some h ∈ { 1, 2, . . . , i − 1 }. Then r ∈ Ah+1 ⊆ Aj .
ii. Some rule r2 ∈ Ei−1 exists such that H(r2) = assert(r1). We also

have H(r1) = assert(r). So r ∈ Ai ⊆ Aj . �


Theorem 3. Let j ∈ { 1, 2, . . . , n − 1 } and let r be a rule over Lassert. P j
E

contains a rule with (assert(r))j in its head iff r ∈ Aj.

Proof. Follows directly from Lemmas 2 and 3. �


As a consequence of the theorem we have

|A| =
n∑

j=1

(n − j)
∣∣Aj

∣∣ (33)

because each rule r ∈ Aj will generate n − j assertable rules, one in each of
P j+1
E , P j+2

E , . . . , Pn
E . Now we can make an approximation of |A|. According to

(30), (31) and (32) we have for all j ∈ { 1, 2, . . . , n − 1 }

|Aj | ≤ |P | +
j−1∑

i=1

|Ei| ,
∣
∣Aj

∣
∣ ≤ j|P | + |Ej | +

j∑

i=1

(j − i)|Ei| .

Furthermore, by (33) we have

|A| =
n∑

j=1

(n − j)
∣
∣Aj

∣
∣ ≤

n∑

j=1

(n − j)

(

j|P | + |Ej | +
j∑

i=1

(j − i)|Ei|
)

= |P |
n∑

j=1

j(n − j) +
n∑

j=1

(n − j)|Ej | +
n∑

j=1

(n − j)
j∑

i=1

(j − i)|Ei| .

(34)

First let’s solve the first sum:
n∑

j=1

j(n − j) = n
n∑

j=1

j −
n∑

j=1

j2 =
n3 − n

6
. (35)
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The third sum can be simplified as follows:

n∑

j=1

(n − j)
j∑

i=1

(j − i)|Ei| =
n∑

i=1

|Ei|
n−i∑

j=1

j((n − i) − j)

=
n∑

i=1

|Ei|
(n − i)3 − (n − i)

6
.

(36)

By (34), (35) and (36) we now have

|A| ≤ |P |n
3 − n

6
+

n∑

j=1

|Ej |
(n − j)3 + 5(n − j)

6
.

We can also put some extra restrictions on the input program and then look at
the number of assertable rules. For example, if we disallow nested asserts (i.e. a
rule within an assert atom must not contain an assert atom in its head), then we
have |A1| ≤ |P | and |Aj | = 0 for all j ∈ { 2, 3, . . . , n − 1 }. Hence

∣
∣Aj

∣
∣ ≤ |P |+|Ej|

for all j ∈ { 1, 2, . . . , n − 1 } and

|A| ≤
n∑

j=1

(n − j)(|P | + |Ej |) = |P |n
2 − n

2
+

n∑

j=1

(n − j)|Ej | .
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Abstract. In this paper we are concerned with proposing, analyzing and imple-
menting simple, yet flexible, constructs for multi-agent programming. In particu-
lar, we wish to extend programming languages based on the BDI style of logical
agent model with two such constructs, namely constraints and content/context
sets. These two aspects provide sufficient expressive power to allow us to repre-
sent, simply and with semantic clarity, a wide range of organisational structures
for multi-agent systems. We not only introduce this approach, but provide its for-
mal semantics, through modification of an operational semantics based on the
core of AGENTSPEAK, 3APL and METATEM. In addition, we provide illustra-
tive examples by simulating both constraints and content/context sets within the
Jason interpreter for AGENTSPEAK. In summary, we advocate the use of these
simple constructs in many logic-based BDI languages, by appealing to their ap-
plicability, simplicity and clear semantics.

1 Introduction

We characterise an agent as an autonomous software component having certain goals
and being able to communicate with other agents in order to accomplish these goals [26].
The ability of agents to act independently, to react to unexpected situations and to co-
operate with other agents, has made them a popular choice for developing software
in a number of areas. At one extreme there are agents that are used to search the IN-
TERNET, navigating autonomously in order to retrieve information; these are relatively
lightweight agents, with few goals but significant domain-specific knowledge. At the
other end of the spectrum, there are agents developed for independent process control
in unpredictable environments. This second form of agent is often constructed using
complex software architectures, and they have been applied in areas such as real-time
process control [20,14]. Perhaps the most impressive use of such agents is as part of
the real-time fault monitoring and diagnosis carried out within the NASA Deep Space
One mission [16].

The key reason why an agent-based approach is advantageous in the modelling and
programming of autonomous systems is that it permits the clear and concise representa-
tion, not just of what the autonomous components within the system do, but why they do
it. This allows us to abstract away from the low-level control aspects and to concentrate
on the key feature of autonomy, namely the goals of the component and the choices it
makes. Thus, in modelling a system in terms of agents, we often describe each agent’s
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beliefs and goals, which in turn determine the agent’s intentions. Such agents then make
decisions about what action to perform, given their current beliefs and goals/intentions.
This kind of approach has been popularised through the influential BDI (Belief-Desire-
Intention) model of agent-based systems [20] and, although this representation of be-
haviour using mental notions is initially unusual, it has several benefits. The first is
that, ideally, it abstracts away from low-level issues: we simply present some goal that
we wish to be achieved, and we expect the agent to act in what we would consider a
reasonable, or rational, way given such a goal. Secondly, because we are used to under-
standing and predicting the behaviour of rational agents, the behaviour of autonomous
software should be relatively easy for humans to understand and predict too. The mod-
elling of complex systems, even space exploration systems, in terms of rational agents
captured within the BDI approach, has been very successful [14,23,22]. Unsurprisingly,
this has led to many novel (usually, logic-based) programming languages based (at least
in some part) upon this model; these are often termed BDI Languages.

When researchers and developers experimented with these languages and used them
for a wider variety of applications it became clear that open multi-agent systems did not
scale well without a further abstraction to capture the working relationships between
agents, groups of agents and their environment [10,18]. Furthermore, only a cursory
study of human societies is needed to realise that increased levels of productivity and
efficiency are realised by societies with effective frameworks that encourage coopera-
tive behaviour amongst its population. The study of agent interaction, cooperation and
organisation is therefore of current interest in the agent research community [17,11] but,
although a wide variety of BDI languages have been developed [1], few have strong and
flexible mechanisms for organising multiple agents, and those that do provide no agree-
ment on their organisational mechanisms. Thus, while BDI languages have converged
to a common core relating to the activity of individual agents [5], no such convergence
is apparent in terms of multi-agent structuring and organisation.

1.1 Agent Organisation

In this section we briefly describe some of the more influential agent-organisational
proposals for the purpose of highlighting typical applications of the language constructs
we describe in the next section. For a concise but isolated description of each proposal
we refer the reader to our companion paper [12].

With a respected philosophical view on agent co-operation, Cohen and Levesque
produced a significant paper “Teamwork” [3] in which they persuasively argue that a
team of agents should not be modelled as an aggregate agent and propose new (logical)
concepts of joint intentions, joint commitments and joint persistent goals to ensure that
teamwork does not break down due to any divergence of individual team members’
beliefs or intentions. Tidhar [24] introduced the concept of team-oriented programming
with social structure; an agent-centred approach that defines joint goals and intentions
for teams but stops short of forcing individual team members to adopt those goals and
intentions. Ferber et al. [8] present the case for an organisational-centred approach to
the design and engineering of complex multi-agent systems. They propose a model for
designing multi-agent systems in terms of agents, roles and groups. Agents and groups
are proposed as distinct first class entities. Dignum, Esteva, Sierra and Vázquez-Salceda
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made formal [7] and practical [6,25] contributions to a method of agent organisation that
enjoys much current popularity [17]; that of institutions. An electronic institution aims
to provide an open framework in which agents can contribute to the goals of society
without sacrificing its own self-interest. A key concept is that of institutional norms.
Perhaps the most noteworthy aspect of these proposals is the change of focus from the
agents themselves onto the interactions that take place between agents.

In this paper we consider extending basic BDI languages with simple, yet powerful,
constructs that allow the development of a wide range of organisational structures. Thus,
in Section 2,we introduce the concepts behind the new constructs, in particular showing
how they relate to typical BDI language semantics. To clarify this further, in Section 3,
we provide the core semantics of a subset of AGENTSPEAK [19,2] incorporating the
new concepts; we call this language AGENTSPEAK−. To show how these concepts
can be used, in Section 4 (and in a companion paper [12]), we outline how a variety of
organisational structures can be expressed using these simple constructs, present several
case studies, and even provide some implementations within AGENTSPEAK. Finally, in
Section 5, we provide concluding remarks. Thus, this paper introduces the concepts
and provides semantics, while [12] shows how this approach captures the core of the
leading organisational mechanisms.

We begin by introducing the concepts; we do this by first considering the core oper-
ational aspects of BDI languages, describe some agent-organisational abstractions and
then show how our new concepts affect agent operation.

2 Introducing the Concepts

Although all BDI languages have a family resemblance, their syntax and semantics can
vary immensely. We therefore use a loose unifying framework for our discussion into
which we believe most BDI languages will fit1, though not always elegantly.

Our semantic framework assumes that a BDI language specifies the behaviour of
an agent in terms of the agent’s current state, S, which changes over time and a fixed
specification, SP , which does not. Thus, an agent is viewed as a tuple < S, SP >. S
consists, amongst other things, of a set of beliefs, B. The BDI programming language
then has a process for determining whether a given belief b follows from the current
state which we will write as S |= b, since these are often logical mechanisms.

The BDI programming language has a specific operation, select instruction,
which acts on the state according to the specification in order to determine the next
instruction to be executed and another, modify, which modifies the state according to
the specification and the selected instruction. The execution of an agent can therefore
be viewed as repeated application of the transition rule

< S, SP >→< modify(SP , S, select instruction(SP , S)), SP > . (1)

We assume that both S and SP are made up of a number of sets or stacks (e.g., of
beliefs) and use the notation S[S1 \ S2] to indicate the state S in which the set S1 has
been replaced by S2.

1 Indeed, in [5] such a framework was used to provide a common semantic basis for 3APL,
AGENTSPEAK, METATEM, etc.
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Note. This framework should not be interpreted as assuming that a given BDI lan-
guage has explicit constructs for select instruction and modify, but that most BDI
languages can be expressed in terms of the operation of appropriate versions of these
functions.

We also assume that a BDI language contains a set of plans (or rules), P , which are
used by the select instruction operation. These plans may either be a part of S or
SP . We assume such plans are triggered in some fashion by S. In some cases they are
triggered by the composition of the beliefs (e.g., METATEM [9]), in some by the goals
(e.g., 3APL [13,4]) and in some by explicit trigger events (e.g., Jason [2] interpreter
for AGENTSPEAK [19]).

To simplify matters, we use an abstraction of a plan, describing it as

t ← {g}b .

Thus, plans comprise; a trigger, t; a guard (checked against the agent’s beliefs), g; and
a body, b, which specifies an instruction (or sequence of instructions) to be executed. In
languages where only beliefs are used to trigger plans this can be written as

� ← {g}b .

In order to trigger plans, the language requires some component of the current state S
which activates the trigger. We treat this as a set, T , and write the triggering process as
T |=t t.

Finally, we will use the notation Ag |=a p to indicate that a plan, p, is applicable for
an agent, Ag. The semantics of this for a basic2 BDI agent is

app cond(t ← {g}b, Ag)
Ag |=a t ← {g}b

(2)

where app cond are the agent language’s applicability conditions. In most languages

app cond(t ← {g}b, Ag) = ((T |=t t) ∧ (S |= g)) .

Notes

– Again we do not necessarily expect these operations associated with plans to be
explicit in the languages (e.g., T may be a stack of goals and T |=t g may be the
process of matching the head (or prefix) of this stack).

– There may be other applicability checking processes within the language (e.g., ap-
plicability of actions) — we represent all of these within Ag |=a .

– Application of a plan results in an instruction to modify the state either directly
(e.g., +b appears in the body of the plan and is an instruction to add b to B) or
indirectly (e.g., the body of the plan is integrated into an intention or other part of
the state which is then used for further planning or to govern subsequent actions
and changes of belief).

2 I.e., a BDI agent whose semantics has not been modified with the constructs we describe later.
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Given the above, we below consider the two aspects we wish to introduce. The first,
though influenced by the representation of agent groups in METATEM [9], is indepen-
dent of the underlying language for agents. The only restrictions we put on any under-
lying language is that, as in most BDI-based languages (and as described above), there
are logical mechanisms for explicitly describing beliefs and goals, and possibly plans
and intentions3.

2.1 Content and Context Sets

Assuming that the underlying language can describe the behaviour of an agent as above,
we now extend the concept of agent with two sets, Content and Context. Concep-
tually, the agent’s Content describes the set of agents it contains, while the agent’s
Context describes a set of agents it is contained within, although in practice the re-
lationship between an agent and its Content/Context might vary. For example, an
agent’s Content might describe the set of agents it has some influence over and the
agent’s Context the set of agents it is influenced by. Similarly, an agent’s Content
might be viewed as those agents that it has recruited, and its Context those agents
it has been recruited by. Alternatively, an agent might represent a location and its
Content the agents that at that location. The addition of Content and Context to
each agent provides significant flexibility for agent organisation. Agent teams, groups or
organisations, which might alternatively be seen as separate entities, are now just agents
with non-empty Content. This allows these organisations to be hierarchical and dy-
namic, and so, as we will see later, provides possibilities for a multitude of other co-
ordinated behaviours. Similarly, agents can have several agents within their Context.
Not only does this allow agents to be part of several organisational structures simultane-
ously, but it allows the agent to benefit from Context representing diverse attributes
or behaviours. So an agent might be in a context related to its physical locality (e.g.,
agents in the same set are ‘close’ to each other), yet also might be in a context that
provides certain roles or abilities. Intriguingly, agents can be within many, overlapping
and diverse, contexts. This gives the ability to produce complex organisations, in a way
similar to multiple inheritance in traditional object/concept systems. For some sample
configurations, see Fig. 1.

An important aspect is that this whole structure is very dynamic. Agents can move
in and out of Content and Context, while new agents (and, hence, organisations)
can be spawned easily and discarded. No single agent maintains a representation of the
entire structure, allowing for the possibility of a range of organisations, from the tran-
sient to the permanent. From the above it is clear that there is no enforced distinction
between an agent and an agent organisation. All are agents; all may be treated similarly.

Our proposals prohibit cyclical structures and require that all structural changes oc-
cur with the consent of those agents whose Content or Context sets are affected.
Also, it is essential that the agent’s internal behaviour, be it a program or a specification,
has direct access to both the Content and Context, allowing each agent to become
more than just a ‘dumb’ container.

3 We also require that message-passing between agents is provided; this is standard in most
languages.
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Fig. 1. A selection of potential content/context patterns

Semantics. The simplicity of the above approach allows us to provide a few general
operational rules for managing the content and context sets. We extend the agent’s state,
S, with a content set, (Cn), and a context set, (Cx), and add four new instructions into
the language +agcn (add ag to the content set), −agcn (remove ag from the content
set) and +agcx, −agcx for adding and removing agents from the context set. We also
add four new constructs into the trigger component, T :

entered content(ag) left content(ag)
entered context(ag) left context(ag) .

Add two new constructs into our language of guards:

in content(ag)
in context(ag) .

We then extend the modify operation with the rules:

modify(SP , S, +agcn) = S[Cn \ Cn ∪ {ag}, T \ T ∪ entered content(ag)] (3)

modify(SP , S, −agcn) = S[Cn \ Cn − {ag}, T \ T ∪ left content(ag)] (4)

and two analogous ones for the context. These rules extend both the state’s content/
context and the trigger set, T . This allows plans to be triggered by changes in these
sets. (e.g., plans of the form

entered content(Ag) ← {in content(Ag)}send(self, Ag, plan)

may be written which are triggered by the addition of a new agent Ag to the content set,
into sending that agent a plan).

We also extend the belief inference process to include checking membership of Cn
and Cx:

ag ∈ Cn

S |= in content(ag)
(5)
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ag ∈ Cx

S |= in context(ag)
. (6)

It should be noted that in many languages it may be possible to streamline these exten-
sions (e.g., by merging the triggering of plans and the update of content/context sets –
see Section 3).

2.2 Constraints

The second basic component we suggest is necessary for many meaningful multi-agent
structures is that of constraints. A constraint consists of additional guards that may be
appended to plans/rules and actions and is typically provided by an agent’s context.
This, for example, allows permissions to be modelled.

Semantics. As with groups we extend the agent’s state, S, with a constraint set, (C).
C is treated as a set of pairs of a trigger and a guard, written [t ⇒ g]. Depending on
the language, it may be desirable to add other pairs to this set, for instance if actions
may have guards and there is an applicability process for actions then action/guard
pairs may also be useful within constraints. Again, we add new instructions into the
language +new constraintc (add new constraint to C) and −new constraintc (re-
move new constraint from C), which are analogous to the previous add/remove op-
erators. We then extend our applicability checking process, Ag |=a to

∀[t ⇒ g′] ∈ C. S |= g′ app cond(t ← {g}b, Ag)
Ag |=a t ← {g}b

. (7)

So, in many languages, this becomes

∀[t ⇒ g′] ∈ C. S |= g′ T |=t t S |= g

Ag |=a t ← {g}b
. (8)

Similar modifications can be made to the operational semantics of action applicability
(internal or external) and any other relevant components of S and SP .

It should be noted that constraints make relatively little sense in a single agent envi-
ronment (where guards on plans and actions are sufficient) it is only in a multi-agent en-
vironment where a member of Context may wish to provide guards to a pre-existing
plan or action that such constraints become useful.

Before going on to providing the semantics of a more comprehensive language (in
Section 3), we first consider the properties of such semantic extensions.

2.3 Properties of Groups and Constraints

In addition to the generic operational semantics for groups and constraints we present
here some properties that ideally any system implementing them should obey. We dis-
cuss when these hold in a system that implements these concepts using our suggested
rules.
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Firstly one agent should believe that another is in its Content/Context if, and
only if, that agent is actually in its Content/Context. We express this as:

CONTAINS(ag) ⇒ BEL(in content(ag)) (9)

CONTAINED BY (ag) ⇒ BEL(in context(ag)) (10)

BEL(in content(ag)) ⇒ CONTAINS(ag) (11)

BEL(in context(ag)) ⇒ CONTAINED BY (ag) . (12)

For the operational semantics presented above we interpret CONTAINS(ag) as ag ∈
Cn, CONTAINED BY (ag) as ag ∈ Cx and BEL(φ) as S |= φ.

Let us assume that the the formulae in content(ag) and in context(ag) are “re-
served” in an implementation, i.e., such formulae can not appear in the belief base
either when an agent is initialised or through any belief revision process and that there
is no way they can be inferred through belief inference except by the use of (5) and
(6). (Many BDI languages have mechanisms for reserving key-words which could be
extended for this purpose.) If this is the case then (9 –12) follow directly from rules (5)
and (6). If it is not possible to restrict the formulae that an agent might believe (e.g.,
it will accept any formula as a belief if sent it by a trusted external agent) then any
system adopting our operational semantics only satisfies (9 and 10), unless additional
safeguards are implemented.

Turning to constraints, we would expect any well-behaved system implementing
constraints to satisfy

(Ag |=a P ) ⇒ ((Ag |=a P ) ∧ (C = ∅)) (13)

i.e., if a plan is applicable given some constraints, then it is also applicable if there are
no constraints. In our operational semantics this follows from (7) if we observe that
when C = ∅ the condition ∀[t ⇒ g′] ∈ C. S |= g′ reduces to � and that C is not
referred to elsewhere in the rule.

Rao and Georgeff [21] state a number of interesting properties they suggest BDI
languages might wish to satisfy and it would be tempting to examine some of these in
relation to groups (in particular those relating intentions and beliefs (with INTEND(φ)
interpreted as φ ∈ T )). However this work assumes that intentions are expressed as
temporal formulae and that belief inference includes temporal and causal reasoning.
Our triggers are not expressed in this way and in fact may include formulae (such as
entered content(ag)) which refer to events that have occurred rather than states of the
world the agent wishes to bring about.

As mentioned previously, it is essential that the agent’s internal behaviour, be it a
program or a specification, has direct access to both the Content and Context,
allowing each agent to become more than just a ‘dumb’ container. It can provide access
to, provide services for, and share information or behaviours with, its Content, as is
demonstrated by Fig. 2; here agent j moves into the separate context of agents i and k
(perhaps i represents an auctioneer agent who provides j with the bidding rules, whilst k
is the agent on whose behalf j is bidding). Our proposals encourage the sharing of plans,
beliefs and constraints as structural changes take place but also allow the dissemination
of new knowledge. Indeed we can state the following, very general, result.
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Fig. 2. Sharing plans and information

Theorem 1. If agent A moves into a new context C and

– the context agent, C is willing to send plans/beliefs/constraints/etc to A, and
– agent A incorporates these plans/beliefs/constraints/etc sent from its new context,

then A has the new plans/beliefs/constraints/etc provided by its new context.

Aside. There is an obvious counterpart of Theorem 1 whereby A can ask its context for
information (plans/beliefs/etc). Once it moves into a new context then A has access to
the new information/capabilities provided by its context.

Theorem 1 above has many caveats! However, these mainly cover situations where
agents choose not to cooperate. In a cooperative scenario, where an agent provides
plans/beliefs/constraints/etc to any new members of its content, and where agents accept
those items from their new context, then Theorem 1 says that an agent effectively has
the information and capabilities provided by its context (in addition to its own).

Importantly, this is seamless. The particular example of constraints is informative.
Constraints effectively prohibit certain planning choices. Thus, through Theorem 1 we
know that an agent with certain choices (e.g. of how to achieve a goal) will inherit the
constraints (restrictions) from its context. If the agent is in multiple contexts, the agent
must make choices satisfying all the constraints received from its contexts. Effectively,
the agent is constrained by the union of all its contexts and so its behaviour must follow
the intersection of behaviours allowed by each context.

This aspect is exhibited in the cookery example in Section 4.3, but is also closely
linked to organisational aspects such as norms in that the agent’s choices are modified
by the contexts (organisations) in which it finds itself.

3 A Simple BDI Language: AGENTSPEAK−

We will conclude our discussion of formal semantics with a simple example showing
how our framework provides a practical methodology for extending existing BDI lan-
guages. Let us consider an extremely simple agent programming language based on
AGENTSPEAK [19,2]; we will call this language AGENTSPEAK−.
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Syntax. Our language uses ground first-order formulae for beliefs, actions and goals. A
plan is a triple of a goal, a guard and a stack of instructions (called here deeds following
AIL [5]). An Agent is a triple of a set of beliefs, a stack of deeds and a set of plans.
This is shown in Fig. 3.

belief := Ground first-order formula
action := Ground first-order formula

goal := Ground first-order formula
plan := goal : set(belief) ← stack(deed)

agent := < set(belief), stack(deed), set(plan) >
deed := action | +belief | −belief | +!goal

Fig. 3. Syntax of AGENTSPEAK−

Operational Semantics. An operational semantics for AGENTSPEAK− is provided in
the form of the four transition rules in Fig. 4. In these semantics do(a) is an operation
in an agent’s interface that causes it to perform the action, a, and then returns a set
of messages in the form of deeds, +!received(sender, φ), which instruct the agent
to handle the message φ from agent sender. In this language, therefore, perception
has to be handled by an explicit perception action which then returns messages from
the environment as if from another agent. Finally, ‘;’ represents the cons function on
stacks, ‘@’ represents the join function, and ‘random’ indicates random selection of
an element from a set.

do(a) = msg

< B, a; D, P >→< B, msg@D,P >
(14)

< B, +b; D, P >→< B ∪ {b}, D, P >
(15)

< B, −b; D, P >→< B − {b}, D, P >
(16)

body = random({b | g : G ← b ∈ P ∧ G ⊆ B})
< B, +!g;D, P >→< B, body@D, P >

(17)

Fig. 4. Operational Semantics of AGENTSPEAK−

Note. This is not intended as a practical example of a BDI language. For a start the
language is entirely ground and makes no use of unification. Secondly the rather crude
use of the deed stack to organise both planning and message handling/perception is
likely to cause quite strange behaviour in any real agent setting.
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Framework - AGENTSPEAK−

SP - P
S - < B, D >
T - D

S |= b - b ⊆ B
T |=t t - t = hd(D)

app cond(gl : g ← b) - g ⊆ B
modify((B, D), P, +b) - (B ∪ {b}, D)
modify((B, D), P, −b) - (B − {b}, D)
modify((B, D), P, ds) - (B, ds@D)

select instruction((B,a; D), P ) - do(a)
select instruction((B,+b; D), P ) - +b
select instruction((B,−b; D), P ) - −b
select instruction((B, +!g;D), P ) - random({b | p ∈ P ∧ Ag |=a p})

Fig. 5. Mapping our Framework to AGENTSPEAK−

Extension to the Simple BDI Language. Fig. 5 shows how this language fits into
our earlier framework. Modifying these semantics according to our content/context and
constraints framework now gives us the language semantics shown in Fig. 6

In fact this extension can be improved upon based on the details of our languages.
For instance we can omit the entered content() and left content() and use +agcn

and −agcn as plan triggers if we like, changing (3) to

body = random({b| + agcn : G ← b ∈ P ∧ G ⊆ B ∧ ∀[+agcn ⇒ G′] ∈ C. G′ ⊆ B}
< B,+agcn;D,Cn,Cx,C, P >→< B, body@D,Cn ∪ {ag}, Cx,C, P >

(28)

4 Using the Concepts

We will briefly discuss some illustrative examples of the use of constraints and con-
tent/context sets (sometimes termed groups) in organisational and multi-agent settings.
A group, G, is simply an agent (again called G) whose Contents are the set of agents
within the group.

We begin by considering a few common aspects of agent organisations, and then
examine two case studies in more detail. Note that a more comprehensive review of
how many agent organisational approaches can be modelled using our constructs is
provided in [12].

4.1 Shared Beliefs

Being a member of all but the least cohesive groups/organisations requires that some
shared beliefs exist between the members. Making the (contentious) assumption that all
agents are honest and that joining a group is both individual rational and group rational,
let agent i hold a belief set BSi and assume the programming language contains the
instruction addBelief (Beliefs) with the semantics

modify(SP , S, addBelief(Bs)) = S[B \ B ∪ Bs].
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do(a) = msg ∀[a ⇒ G] ∈ C. G ⊆ B

< B, a; D, Cn, Cx, C, P >→< B, msg@D, Cn, Cx, C, P >
(18)

< B, +b; D, Cn, Cx, C, P >→< B ∪ {b}, D, Cn, Cx, C, P >
(19)

< B, −b; D, Cn, Cx, C, P >→< B − {b}, D, Cn, Cx, C, P >
(20)

< B, +cc; D, Cn, Cx, C, P >→< B, D, Cn, Cx, C ∪ {c}, P >
(21)

< B, −cc; D, Cn, Cx, C, P >→< B, D, Cn, Cx, C − {c}, P >
(22)

body = random({b | g : G ← b ∈ P ∧ G ⊆ B ∧ ∀[g ⇒ G′] ∈ C. G′ ⊆ B})
< B, +!g; D, Cn, Cx, C, P >→< B, body@D, Cn, Cx, C, P >

(23)

< B, +agcn; D, Cn, Cx, C, P >→< B, +!entered content(ag); D, Cn ∪ {ag}, Cx, C, P >
(24)

< B, −agcn; D, Cn, Cx, C, P >→< B, +!left content(ag); D, Cn − {ag}, Cx, C, P >
(25)

< B, +agcx; D, Cn, Cx, C, P >→< B, +!entered context(ag); D, Cn, Cx ∪ {ag}, C, P >
(26)

< B, −agcx; D, Cn, Cx, C, P >→< B, +!left context(ag); D, Cn, Cx − {ag}, C, P >
(27)

Fig. 6. AGENTSPEAK− extended to multi-agents

Suppose a (group) agent i has the plan:

entered content(Ag) ← {in content(Ag)}send(i, Ag, inform(BSi))

and agent j has the plan:

received(Ag, j, inform(BSi)) ← {in context(Ag)}addBelief(BSi)

taken together these plans mean that if j joins the Content of i it gets sent the beliefs
BSi which it adds to its own belief base. This allows shared beliefs to be established.

The agent in receipt of the new beliefs may or may not disseminate them to the agents
in its Content, depending on the nature and purpose of the group structure. Once held,
beliefs are retained until contradicted or revised (for example, on leaving the group). It
is worth noting here that these behaviours are merely suggestions of how our proposals
can be used to implement shared beliefs, providing the developer has authorship of all
agents.
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4.2 Permissions and Obligations

A number of multi-agent proposals include concepts of permissions and obligations [1].
An agent within a group setting may or may not have the permission to perform a
particular action or communicate in a particular fashion. This can be easily represented
using constraints: for instance if agents in group, G, may not perform action a then the
constraint [a ⇒ ⊥] can be communicated to them when they join G’s Content.

It should be noted that in order for such a message to be converted into an actual
constraint, the receiving agent would also need the plan:

received(Ag, i, constrain([a ⇒ g])) ← {in context(Ag)} + [a ⇒ g]c .

This design deliberately allows varying degrees of autonomy among agents to be han-
dled by the programmer.

Obligations are where a group member is obliged to behave in a particular fash-
ion. This can be modelled if plans are treated as modifiable by the underlying agent
language. Obligations can then be communicated as new plans.

/*---------------- initial beliefs ---------------- */
cooperative.

/*---------------- rules -------------------------- */
check_constraint(Plan, Arg)

:- not constraint_fails(Plan,Arg).

/* --------------- basic plans -------------------- */

/* How an agent responds to a group membership invitations */
+!join(Group)[source(Group)] : cooperative

<- .my_name(Me);
+context(Group);
.println("I believe I have the context of ", Group);
.send(Group, achieve, accept(Me, Group)).

Fig. 7. A simple cooperative agent defined in AgentSpeak

4.3 Case Study 1: Cookery Agents

We now describe a case study which we have implemented in AGENTSPEAK using
Jason. It concerns a simple cook agent who is provided with a number of plans by a
chef agent, each for cooking a different meal. The cook’s choice of plan is constrained
by the Context in which it cooks.

Scenario. The chef of a restaurant hires a cook and provides a list of dishes from
which the cook is free to choose when asked to prepare a meal. As diners arrive, their
preferences are noted and the cook endeavours to choose a meal that satisfies all of the
diners. Our cook was implemented as a simple, cooperative agent with the ability to
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enter the Context of other agents but without any domain abilities — it can’t cook —
see Fig. 7.

When hired, the cook agent receives plans for making risotto, steak and pizza.
AGENTSPEAK code defining this behaviour is shown below.

+content(Agent)[source(self)]
<- .print("Sending ", Agent, " plans...");

.send(Agent, tellHow, "+!cook(risotto)
: check_constraint(cook,risotto)

<- make(risotto).");
.send(Agent, tellHow, "+!cook(steak)

: check_constraint(cook,steak)
<- make(steak).");

.send(Agent, tellHow, "+!cook(pizza)
: check_constraint(cook,pizza)

<- make(pizza).").

(Note that this sending of plans is triggered by the cook entering its Content.) When
asked to prepare a meal without the constraints of any diners it prepares risotto; see
Fig. 8(b). A meat eating diner then imposes their dislike for risotto by providing the
cook with the constraint

constraint_fails(cook,risotto).

Now acting in the context of this meat eater, rather than making risotto, the chef prepares
steak; see Fig. 8(c). Finally, a vegetarian diner invites the chef to join its Content
and imposes the constraint constraint fails(cook,steak), see Fig. 8(d). The
agent, now a member of three contexts, must decide an appropriate course of action
within the supplied constraints — it must not commit to cooking risotto or steak! Thus
it is constrained to choose to prepare pizza; see below.

+content(Agent)[source(self)]
<- .print("Sending ", Agent, " my constraints");

.send(Agent, tell, constraint_fails(cook,steak)).

Full execution output for this example is given below.

[chef] saying: inviting cook to join my content
[cook] saying: I believe I have the context of chef
[chef] saying: Sending cook plans...
[chef] saying: I consider cook to be in my content
[cook] doing: make(risotto)

***cook is making risotto***
[meatEater] saying: inviting cook to join my content
[cook] saying: I believe I have the context of meatEater
[meatEater] saying: Sending cook my constraints
[meatEater] saying: I consider cook to be a member of my content
[cook] doing: make(steak)

***cook is making steak***
[vegetarian] saying: inviting cook to join my group
[cook] saying: I believe I have the context of vegetarian
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Fig. 8. A cook with multiple constraints

[vegetarian] saying: Sending cook my constraints
[vegetarian] saying: I consider cook to be in my content
[cook] doing: make(pizza)

***cook is making pizza***

4.4 Case Study 2: Self Deploying Agents

This example demonstrates the potential for software services that migrate across geo-
graphical spaces and deploy themselves in their new location.

Scenario. Co-ordination of disaster and rescue missions is a challenging problem for
the authorities involved [15]. The deployment location, the number and nature of agen-
cies (commissioned or voluntary) involved cannot be foreseen and speed of deployment
is critical. Establishing fast and reliable communication channels between all parties,
no matter what their individual resources are, is essential for effective co-ordination.

In our example, disaster recovery head quarters has a co-ordination agent, hq, that is
mobilised to a wired network in the proximity of the disaster. hq has domain knowledge
but no local knowledge or resources — it does not know which agencies are on the scene
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and cannot communicate outside of its host network. In order to effectively co-ordinate
the rescue effort hq must seek help from a variety of helper agents that can carry commu-
nication to the operational agencies and provide information about local resources. Ex-
amples of help provided by such agents might be: WiFi communication; environmental
sensors; public display points; media communications; and utility providers. The suit-
ability of these agents might be determined by proximity, ability or cost.

On arrival hq broadcasts a ‘services needed’ message requesting that agents with
certain capabilities offer their services. The following code snippet illustrates an agent’s
generic recruitment plan, used to broadcast requests for services to the entire agent
space, along with the plan to recruit a WiFi service.

/* Broadcast for local services*/
+!recruit(Service)

<- .broadcast(askIf, has_ability(Agent, Service)).
...
!recruit(wifi).

Co-operative agents respond to hq’s plea for help by sending a reply stating their abili-
ties and confirming their willingness to join the group rescue effort. Below, we show an
agent’s plan for responding to requests for help.

/* Confirm ability and willingness to join */
+!help(Group, Service)

: .my_name(Me) and has_ability(Me, Service)
<- .send(Group, tell, has_ability(Me, Service));

.send(Group, achieve, accept(Me, Group)).

...
!help(hq, wifi).

The plan has a guard that ensures only genuinely able agents respond, it confirms its
ability and requests group membership. Note that in this case, the helper agent does not
consider itself to be a member of the group until the group itself directly informs it of its
membership — a hierarchical structure whereby membership is controlled by the group
is appropriate in this scenario but our proposals also allow agents to control their own
Context, as shown in Fig. 7.

On acknowledgement of group membership hq holds the belief content(wifi), wifi
holds the belief context(hq) and wifi is provided with authentication procedures to
apply to incoming connections; see below.

+!accept(Agent, Group)[source(Agent)]
: is_useful(Agent,_)[source(self)]
<- +content(Agent);

.send(Agent, tell, context(Group)).

+content(Agent)[source(self)]
<- is_useful(Agent, communicator);

.send(Agent, tellHow, authentication).

Broadcasts of this nature are unavoidable when an agent has no knowledge of the system
ahead of deployment. However the context/content mechanism provides a convenient
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and intuitive alternative that enables more efficient multi-cast communication; for ex-
ample, our agent hq may have recruited a number of communicator agents to whom it
wants to broadcast information, by creating a new agent to act as a container for the
communicator agents, hq is able to send a message to all communicators — using the
container agent as a proxy — with the send(group, broadcast(message)) message,
where the agent group receiving the broadcast(message) message distributes it to all
members of its Content. Once structures are formed, multi-cast communication of
the following type become the norm:

send(communicators, broadcast(found(Survivor, Location))).
send(locators, broadcast(is_clear(Zone))).

Fig. 9 shows some of the structural changes that take place during deployment of our
simple disaster management system.

hq

Services
acquired

hq

Migration

hq

Communicators

Fig. 9. The structural view during deployment

Fig. 10. The dynamic nature of search and rescue



154 L. Dennis, M. Fisher, and A. Hepple

One of the difficulties of disaster management where life saving rescue is required, is
the prioritisation of rescue attempts and subsequent allocation of resources, particularly
when the number, location and needs of victims changes throughout the rescue mission.
Continuous re-assessment of the mission’s priorities must take place yet pragmatic de-
cisions must be made to ensure rescue teams are effectively deployed and do not, for
example, waste time travelling between rescue sites. The context of a rescue team’s cur-
rent activity, their specialisms and location must be considered before allocating them to
a rescue site. Our grouping constructs provide the flexibility to model the dynamic na-
ture of these contexts and provides a useful bound for reasoning — reducing the search
space for suitable rescue teams. Fig. 10 illustrates how our proposal intuitively deals
with this situation. The diagram shows rescue agent Ag1 standing by in zone1 ready to
be deployed and its subsequent change of context if it were to respond to a call. Another
agent Ag2 that has both air and fire specialisms is currently attending a rescue site. Us-
ing this formalism it is easy to express autonomous behaviour on behalf of the rescue
agents;

constraint_fails(respond, _) :-
in_context(responding), in_context(on_site).

Giving the agents the above rule prevents them from responding to rescue requests whilst
either on route to, or at the scene of a rescue, when combined with the plan below.

+!respond(Rescue) : check_constraint(respond, Rescue)
<- !attend(Rescue).

5 Concluding Remarks

In this paper we have proposed a simple extension to BDI languages that permits the
development of complex multi-agent organisations. We have shown how the addition
of both content and context sets, and constraints is semantically simple and appealing.
The key aspect, particularly with contexts and constraints is that an agents behaviour
may be modified, seamlessly, when the agent moves between contexts.

Although we provided a semantic definition for a simple BDI language, we gave
this only for illustrative purposes. We expect that developers’ favourite logical agent
language could be extended in this way. Importantly, the semantic rules show how this
logical extension can be added (relatively easily) to any appropriate BDI language.

Finally, we provided some simple examples here, and yet more examples in a com-
panion paper [12], to illustrate and justify our statement that many agent organisational
aspects can be modelling using our two simple concepts. These examples demonstrate
how leading organisational and team-working concepts such as roles, joint-intentions
and groups fit within our framework, a framework that, if incorporated into BDI lan-
guages will enable a consistent agent-organisation semantics across languages.
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Abstract. The work presented in this paper stands at the intersection
of three diverse research areas: agent-oriented early requirements engi-
neering, business process requirements elicitation and specification, and
computational logic-based specification and verification. The analysis of
business requirements and the specification of business processes are fun-
damental steps in the development of information systems. The first
part of this paper presents B-Tropos as a way to combine business goals
and requirements with the business process model. B-Tropos enhances
a well-known agent-oriented early requirements engineering framework
with declarative business process-oriented constructs, inspired by the
DecSerFlow and ConDec languages. In the second part of the paper, we
show a mapping of B-Tropos onto SCIFF, a computational logic-based
framework for properties and conformance verification.

1 Introduction

This work proposes an integration of different techniques for information systems
engineering, with the aim to reconcile requirements elicitation with declarative
specification, prototyping, and analysis inside a single unified framework.

In tackling the requirements elicitation part, we take an agent-oriented per-
spective. Modeling and analyzing requirements of IT systems in terms of agents
and their goals is an increasingly popular approach [20] which helps understand-
ing the organizational setting where a system operates, as well as modeling the
stakeholders’ strategic interests, and finally documenting the rationale behind
the design choices made. After system requirements elicitation is complete, one
must define a corresponding business process. A very important issue that must
be addressed at this stage is how to link the “strategic” business goals and
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requirements with the business process model [23]. Many problems arise from
organizational theory and strategic management perspectives due to limits on
particular resources (e.g., cost, time, etc.). Business strategies have a fundamen-
tal impact on the structure of enterprises leading to efficiency in coordination
and cooperation within economic activities.

For our purpose, we have chosen Tropos [8], an agent-oriented software engi-
neering methodology which uses the concepts of agent and goal from the early
phases of the system development. Tropos has a number of interesting features,
such as its goal- and agent-orientation, intuitive and expressive modeling nota-
tion, etc., which have made it to become popular. However, a drawback of Tropos
and a number of similar methodologies is that they do not clearly define how
to move from a requirements model to a business process model. For example,
Tropos does not allow the modeling of temporal and data constraints between
tasks assigned to agents: this means that when developing a business process,
the corresponding Tropos model does not have enough information to define
a temporal ordering between activities. Likewise, start and completion times,
triggering events, deadlines, and many other aspects not necessarily related to
the temporal dimension are essential elements in the description of a business
process model, but they are not represented in Tropos models.

How to enhance Tropos with information that can be automatically used in
the generation of a business process model is one of the aspects we address in this
work. In particular, we have extended Tropos with declarative business process-
oriented constructs, inspired by two recent graphical languages: DecSerFlow [34]
and ConDec [33]. We enhance the characteristic goal-oriented approach of Tropos
agents by introducing a high-level reactive, process-oriented dimension. We refer
to the extended framework as to B-Tropos. Furthermore, we show how both these
complementary aspects could be mapped onto the SCIFF language [4], which
sits at the basis of a computational logic-based framework for the specification
and verification of interaction protocols in open multi-agent systems. In the
presentation of this work, we discuss the issue of time (ordering, deadlines, etc.)
because it is an essential part of business process modeling, and because it is
easy to explain by intuitive examples. However, B-Tropos is not only a temporal
extension of Tropos, but it covers also the treatment of conditions on process
input/output data and other constraints.

The marriage of B-Tropos with SCIFF sets a link between specification, pro-
totyping and analysis: in fact, SCIFF specifications can be used to implement
and animate logic-based agents [1], as well as to perform different verification
tasks, such as properties verification [2] and conformance verification of a given
execution trace [4]. Prototyping (animation) and analysis (properties and con-
formance verification) add value to B-Tropos and can make it appealing to a
large set of potential users. Early requirements engineers and process engineers
will be able to test their models directly and get an immediate picture of the
system being developed. Engineers testing the properties of the models will not
have to resort to ad-hoc, error-prone translations of high-level models into the
languages used to feed specifications into model checkers, since B-Tropos can
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directly generate SCIFF programs. Managers who need to monitor the correct
behavior of a running system will have a SCIFF specification of the system gen-
erated out of a B-Tropos model automatically, and based on this specification
they will be able to automatically check the compliance of the system using the
SOCS-SI runtime and offline checking facilities [3].

In this work, we focus on specific aspects of this global vision. We define B-
Tropos and the mapping of B-Tropos constructs onto the SCIFF framework. To
make the discussion more concrete, the proposed approach is applied to modeling
and analyzing an intra-enterprise organizational model, focusing on the coordi-
nation of economic activities among different units of an enterprise collaborating
to produce a specific product. The organizational model is an excerpt of a large
case study under consideration within the national FIRB TOCAI.IT project.1

The structure of the paper is as follows. Section 2 briefly presents the Tropos
methodology. Section 3 describes B-Tropos. The SCIFF framework is presented
in Section 4, whereas Section 5 defines the mapping of B-Tropos concepts to
SCIFF specifications. The paper ends with the overview of related work in Sec-
tion 6 and conclusive remarks in Section 7.

2 The Tropos Methodology

Tropos [8] is an agent-oriented software engineering methodology tailored to de-
scribe and analyze socio-technical systems along the whole development process
from requirements analysis up to implementation. One of its main advantages is
the importance given to early requirements analysis. This allows one to capture
why a piece of software is developed, behind what or how.

The methodology is founded on models that use the concepts of actors (i.e.,
agent and roles), goals, tasks, resources, and social dependencies between two
actors. An actor is an active entity that has strategic goals and performs actions
to achieve them. A goal represents a strategic interest of an actor. A task rep-
resents a particular course of actions that produce a desired effect. A resource
represents a physical or an informational entity without intentionality. A depen-
dency between two actors indicates that one actor depends on another in order to
achieve some goal, execute some task, or deliver some resource. The former actor
is called the depender, while the latter is called the dependee. The object around
which the dependency centers, which can be a goal, a task, or a resource, is called
the dependum. In the graphical representation, actors are represented as circles;
goals, tasks and resources are respectively represented as ovals, hexagons and
rectangles; and dependencies have the form depender → dependum → dependee .

From a methodological perspective, Tropos is based on the idea of building a
model of a system that is incrementally refined and extended. Specifically, goal
1 The TOCAI.IT project (RBNE05BFRK, http://www.dis.uniroma1.it/∼tocai/)

is a three-year, 4.5 Ml euro project on “Knowledge-oriented technologies for enter-
prise aggregation in Internet.” It involves a consortium of 11 Italian universities, the
National Research Council, and three industrial partners in the ICT, engineering,
and manufacturing sectors.

http://www.dis.uniroma1.it/~tocai/
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Fig. 1. Product development process

analysis consists of refining goals and eliciting new social relationships among
actors. Goal analysis is conducted from the perspective of single actors using
means-end analysis and AND/OR decomposition. Means-end analysis aims at
identifying tasks to be executed in order to achieve a goal. Means-end relations
are graphically represented as arrows without any label on them. AND/OR de-
composition combines AND and OR refinements of a root goal or a root task
into subparts. In essence, AND-decomposition is used to define the high-level
process for achieving a goal or a task, whereas OR-decomposition defines al-
ternatives for achieving a goal or executing a task. Fig. 1 presents the Tropos
diagram representing an excerpt of the product development process studied in
the course of the TOCAI project.

Example 1. Different divisions of a company have to cooperate in order to pro-
duce a specific product. The Customer Care division is responsible for deploy-
ing products to customers, which it refines into subgoals manufacture product,
for which Customer Care depends on the Manufacturing division, and present
product, for which it depends on the Sales division. In turn, Manufacturing
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decomposes the appointed goal into subgoals define solution for product, for which
it depends on the Research & Development (R&D) division, and make product
that it achieves through task execute production line. To achieve goal define so-
lution for product, R&D has to achieve goals provide solution, which it achieves
by executing task design solution, evaluate solution, and deploy solution, which it
achieves through task define production plan. The evaluation of the solution is
performed in terms of costs and available resources. In order to evaluate costs,
R&D executes task assess costs, which consists of calculate bill of quantities and
evaluate bill of quantities. Moreover, this division depends on the Warehouse for
the goal evaluate available resources. The Warehouse either queries the databases
to find available resources or asks the Purchases division to buy resources from
external Supplier. The Purchases division searches in company’s databases for
possible Suppliers and selects the one who provides the best offer.

3 Towards Declarative Process-Oriented Annotations

How business processes can be obtained from requirements analysis is an ur-
gent issue for the development of a system. Unfortunately, Tropos is not able
to cope with this issue mainly due to the lack of temporal constructs. In this
section we discuss how Tropos can be extended in order to deal with high-level
process-oriented aspects. The proposed extensions intend to support designers
in defining durations, absolute time and domain-based constraints for goals and
tasks, as well as declaratively specifying relations between them. These exten-
sions are based on the DecSerFlow [34] and ConDec [33] graphical languages for
the declarative representation of service flows and flexible business processes.
The enhanced Tropos is called B-Tropos.

3.1 Some Definitions

For the sake of clarity, we now give some informal definitions, which will be used
to describe the Tropos extensions introduced in this section.

Definition 1 (Time interval). A time interval is a definite length of time
marked off by two (non negative) instants (Tmin and Tmax), which can be con-
sidered both in an exclusive or inclusive manner. As usually, we use parentheses
( (. . .) ) to indicate exclusion and square brackets ( [. . .] ) to indicate inclusion.

Definition 2 (Relative time interval). A time interval is relative if initial
instant and final instant are defined in function of another instant. Given a time
interval TI marked off by Tmin and Tmax and a time instant T , two relative time
intervals could be defined w.r.t. T

– TI+T to denote the time interval marked off by T + Tmin and T + Tmax;
– TI−T to denote the time interval marked off by T − Tmax and T − Tmin.

For example, [10, 15)+T1 ≡ [T1 + 10, T1 + 15) and (0, 7]−T2 ≡ (T2 − 7, T2].
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Definition 3 (Absolute time constraint). An absolute time constraint is a
constraint of the form T OP Date, where T is a time variable, Date is a date and
OP ∈ {at, after, after or at, before, before or at} (with their intuitive mean-
ing).

Definition 4 (Domain-based constraint). A domain-based constraint for-
malizes specific application domain requirements and is specified using CLP con-
straints [21] (e.g., >, <, =, etc.) or Prolog predicates.

Definition 5 (Condition). A condition is a conjunction of domain-based and
absolute time constraints.

For example, condition T before or at 11.26.2007∧workingDay(T ) states that
T has 26 November 2007 as deadline and that it must be a working day.

3.2 Tasks/Goals Extension

In order to support the modeling and analysis of process-oriented aspects of
systems, we have annotated goals and tasks with temporal information such as
start and completion times (the notation is shown in Fig. 2). Each task/goal can
also be described in terms of its allowed duration ([Dmin, Dmax] in Fig. 2). This
allows one to constrain, for instance, the completion time to the start time, i.e.,
completion time ∈ [Dmin, Dmax]+start time. Additionally, absolute temporal
constraints can be used to define start and completion times of goals and tasks.

min/max duration

start completion
[Dmin, Dmax]

OP Date OP Date

input/output
absolute time

constraint
fulf

fulfillment condition

Fig. 2. Extended notation for tasks and goals

A goal/task can also be described in terms of the resources needed and pro-
duced by the goal/task itself. We represent the resources needed by a goal/task
through attribute input and the resources produced by a goal/task through at-
tribute output. Finally, tasks can be annotated with a fulfillment condition, which
defines when they are successfully executed.

3.3 Process-Oriented Constraints

To refine a requirements model into a high-level and declarative process-oriented
view, we have introduced different connections between goals and tasks, namely
relation, weak relation, and negation (see Table 1). These connections allow
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Table 1. Tropos extensions to capture process-oriented constraints (grouped negation
connections share the same intended meaning, as described in [34])

relation weak relation negation

responded
presence {c} {r} {c} {r} {c} {r}

co-existence {cr1} {cr2} {cr1} {cr2} {cr1} {cr2}

response
Tb

{c} {r} {c} {r}

Tb

{c} {r}

Tb

precedence
Tb

{c} {r} {c} {r}

Tb

{c} {r}

Tb

succession
Tb

{cr1} {cr2} {cr1} {cr2}

Tb

{cr1} {cr2}

Tb

designers to specify partial orderings between tasks under both temporal and
domain-based constraints. To make the framework more flexible, connections
are not directly linked to tasks but to their start and completion times. This
solution, for instance, enables the representation of interleaving concurrency. A
small circle is used to denote the connection source, which determines when the
triggering condition is satisfied (co-existence and succession connections asso-
ciate the circle to both end-points, since they are bi-directional).

Relation and negation connections are based on DecSerFlow [34] and ConDec
[33] template formulas, extended with constraints on execution times (e.g., dead-
lines) as well as domain-based and absolute time constraints. Conditions can be
specified on both start and completion times and are delimited by curly braces
({c}, {r} and {cri} in Table 1); the source condition is a triggering condition,
whereas the target imposes restrictions on time and/or data.

The intended meaning of a responded presence relation is: if the source hap-
pens such that c is satisfied, then the target should happen and satisfy r. The
co-existence relation applies the responded presence relation in both directions,
by imposing that the two involved tasks, when satisfying cr1 and cr2, should
co-exist (namely either none or both are executed).

Other relation connections extend the responded presence relation by spec-
ifying a temporal ordering between source and target events; optionally, a rel-
ative time interval (denoted with Tb in Table 1) could be attached to these
connections, bounding when the target is expected to happen with respect to
the time at which the source happened.2 In particular, the response relation
constrains the target to happen after the source. If Tb is specified, the minimum
and maximum times are respectively treated as a delay and a deadline, that
is, the target should occur between the minimum and the maximum time after
the source (target time ∈ T +source time

b ). The precedence relation is opposite to
response relation, in the sense that it constrains the target to happen before the

2 If Tb is not specified, the default interval is (0,∞).
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Fig. 3. Representation of two simple Allen’s intervals in B-Tropos
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Fig. 4. Integrating process-oriented and goal-directed dimensions in B-Tropos

source. A succession relation is used to mutually specify that two tasks are the
response and precedence of each other. By mixing different relation connections,
we can express complex temporal dependencies and orderings, such as Allen’s
intervals [5] (Fig. 3). For example, Allen’s duration relation is formalized by im-
posing that A’s start should happen after B’s start and A’s completion should
happen before B’s completion (Fig. 3(a)), whereas meets relation is formalized
by imposing that A’s completion should be equal to B’s start (Fig. 3(b)).

As in DecSerFlow and ConDec, we assume an open approach. Therefore, we
have to explicitly specify not only what is expected, but also what is forbid-
den. These “negative” dependencies are represented by negation connections,
the counter-part of relation connections. For example, negation co-existence be-
tween two tasks states that when one task is executed, the other task shall never
be executed, neither before nor after the source.

Summarizing, through relation and negation connections designers can add a
horizontal declarative and high level process-oriented dimension to the vertical
goal-directed decomposition of goals and tasks. It is worth noting that, in pres-
ence of OR decompositions, adding connections may affect the semantics of the
requirements model. The decomposition of task A in Fig. 4(a) shows that its
subtask C can be satisfied by satisfying D or E. On the contrary, the response
relation between B’s completion and D’s start makes D mandatory (B has to
be performed because of the AND-decomposition, hence D is expected to be
performed after B). This kind of interaction is not always desirable. Therefore,
we have introduced weak relation connections with the intent of relaxing rela-
tion connections. Their intended meaning is: whenever both the source and the
target happen and the trigger condition is satisfied, the target must satisfy the
restriction condition. The main difference between relations and weak relations
is that in weak relations the execution is constrained a posteriori, after both
source and target have happened. Differently from Fig. 4(a), in Fig. 4(b) the
response constraint between B and D should be satisfied only if D is executed.
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Fig. 5. Process-oriented extensions applied on a fragment of Fig. 1

Finally, B-Tropos permits to constrain non-leaf tasks, leading to the possi-
bility of expressing some process-oriented patterns [35]. For instance, a relation
connection whose source is the completion of a task, which is AND-decomposed
into two subtasks, triggers when both subtasks have been executed. Therefore,
the connection resembles the concept of a synchronizing merge on the leaf tasks.

To show how process-oriented constraints could be added to a Tropos model,
we extend a fragment of the diagram represented in Fig. 1; the result is shown
in Fig. 5. The first extension concerns the decomposition of task assess costs:
the bill of quantities can be evaluated only after having been calculated. Such a
constraint could be modeled in B-Tropos by (1) indicating that the calculation
produces a bill of quantities, whereas the evaluation takes a bill as an input, and
(2) attaching a response relation connection between the completion of task cal-
culate bill of quantities and the start of task evaluate bill of quantities. The second
extension has the purpose of better detailing task find resources in Warehouse,
namely representing that (1) task duration is at least 10 time units, (2) the task
produces as an output a datum (called Found), which describes whether or not
resources have been found in the Warehouse, and (3) the task is considered ful-
filled only if resources have been actually found, that is, Found is equal to yes.
Finally, one can notice the absence of constraints between goals evaluate costs
and evaluate resources. Such an absence enables the two sets of activities aimed
at achieving those goals to be executed concurrently.

4 SCIFF

SCIFF [4] is a formal framework based on abductive logic programming [22],
developed in the context of the SOCS project3 for specifying and verifying inter-
action protocols in an open multi-agent setting. SCIFF introduces the concept
of event as an atomic observable and relevant occurrence triggered at execution
3 SOcieties of heterogeneous ComputeeS,EU-IST-2001-32530 (home pagehttp://lia.
deis.unibo.it/research/SOCS/).

http://lia.
deis.unibo.it/research/SOCS/
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time. The designer has the possibility to decide what has to be considered as an
event; this generality allows him to decide how to model the target domain at
the desired abstraction level, and to exploit SCIFF for representing any evolving
process where activities are performed and information is exchanged.

We distinguish between the description of an event, and the fact that an event
has happened. Happened events are represented as atoms H(Ev, T ), where Ev
is a term and T is an integer, representing the discrete time point at which the
event happened. The set of all the events happened during a protocol execution
constitutes its log (or execution trace). Furthermore, the SCIFF language sup-
ports the concept of expectation as first-class object, pushing the user to think of
an evolving process in terms of reactive rules of the form “if A happened, then B
is expected to happen”. Expectations about events come in form E(Ev, T ) where
Ev and T are variables, eventually grounded to a particular term/value.

The binding between happened events and expectations is given by means
of Social Integrity Constraints (ICs). Such constraints are forward rules of the
form Body → Head, where Body can contain literals and (conjunctions of hap-
pened and expected) events and Head can contain (disjunctions of) conjunctions
of expectations. CLP constraints and Prolog predicates can be used to impose
relations or restrictions on any of the variables, for instance, on time (e.g., by
expressing orderings or deadlines). Intuitively, IC allows the designer to define
how an interaction should evolve, given some previous situation represented in
terms of happened events; the static knowledge of the target domain is instead
formalized inside the SCIFF Knowledge Base. Here we find pieces of knowledge
on the interaction model as well as the global organizational goal and/or objec-
tives of single participants. Indeed, SCIFF considers interaction as goal-directed,
i.e., it envisages environments in which each actor as well as the overall organiza-
tion could have some objective only achievable through interaction; by adopting
such a vision, the same interaction protocol could be seamlessly exploited for
achieving different strategic goals. This knowledge is expressed in the form of
clauses (i.e., a logic program); a clause body may contain expectations about
the behavior of participants, defined literals, and constraints, while their heads
are atoms. As advocated in [17], this vision reconciles in a unique framework
forward reactive reasoning with backward, goal-oriented deliberative reasoning.

In SCIFF an interaction model is interpreted in terms of an Abductive Logic
Program (ALP) [22]. In general, an ALP is a triple 〈P, A, IC〉, where P is a
logic program, A is a set of predicates named abducibles, and IC is a set of
Integrity Constraints. Roughly speaking, the role of P is to define predicates,
the role of A is to fill in the parts of P that are unknown, and the role of IC
is to control the way elements of A are hypothesized, or “abducted”. Reason-
ing in abductive logic programming is usually goal-directed, and accounts for
finding a set of abducted hypotheses Δ built from predicates in A such that
P ∪ Δ |= G (being G a goal) and P ∪ Δ |= IC. The idea under-
lying SCIFF is to adopt abduction to dynamically generate the expectations
and to perform the conformance checking between expectations and happened
events (to ensure that they are following the interaction model). Expectations are
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defined as abducibles: the framework makes hypotheses about how participants
should behave. Conformance is verified by trying to confirm the hypothesized
expectations: a concrete running interaction is evaluated as conformant if it ful-
fills the specification. Operationally, expectations are generated and verified by
the SCIFF proof procedure,4 a transition system which has been proved sound
and complete with respect to the declarative semantics [4]. The proof procedure
is embedded within SOCS-SI [3], a JAVA-based tool capable of accepting differ-
ent event sources (or previously collected execution traces) and checking if the
actual behavior is conformant with respect to a given SCIFF specification.

5 Mapping B-Tropos Concepts to the SCIFF Framework

In this section we present the mapping of B-Tropos concepts into SCIFF speci-
fications, briefly describing how the obtained formalization is used to implement
the skeleton of logic-based agents. The idea behind the mapping is to define a
formal statement in SCIFF for each B-Tropos graphical element. This allows for
the automatic generation of SCIFF specifications from B-Tropos models.

Table 2 summarizes the formalization of the goal-oriented part of B-Tropos in
SCIFF. This part represents the static knowledge of the application domain, so it
is modeled inside the SCIFF knowledge base. Two fundamental concepts are goal
achievement and task execution. These concepts are modeled in SCIFF using the
6-ary predicates achieve and execute. Intuitively, achieve(x, g, ti, tf , i, o) is true
if actor x achieves goal g where ti is the start time and tf is the completion time.
execute(x, a, ti, tf , i, o) holds if actor x executes task a where ti and tf are start
and completion time, respectively. Parameters i and o represent the resources
respectively needed and produced by the execution of the task or achievement
of a goal. Start and completion times should satisfy both duration and absolute
time constraints (ac in Table 2) eventually associated to a goal/task.

The execution of tasks is also determined by the satisfaction of fulfillment con-
ditions and the generation of task start and completion events. These events are
represented using literals of the form event(ev, x, a, r) where ev ∈ {start, end}, a
is the task that has generated the event, x is the actor who has executed the task,
and r is a list of resources. In particular, resources associated with start events
represent the input of the task, whereas resources associated with completion
events refer to the output.

In some cases the designer may prefer to keep the model at an abstract level, so
goals can be neither refined nor associated to tasks. Abduction allows us to face
such a lack of information by reasoning on goal achievement in a hypothetical
way. In particular, we have introduced a new abducible called achieved to
hypothesize that the actor has actually reached the goal.

Tropos relations are then formalized in SCIFF as rules on the basis of the
following concepts:

4 Available at http://lia.deis.unibo.it/research/sciff/

http://lia.deis.unibo.it/research/sciff/
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Table 2. Mapping of the goal-oriented proactive part of B-Tropos onto SCIFF

Leaf goal G
D

ac1 ac2

achieve(X, G, Ti, Tf , I, O)←
achieved(X, G, Ti, Tf , I, O),

Tf ∈ [Dmin, Dmax]+Ti , ac1, ac2.

Leaf task A
D

ac1 ac2

execute(X, A, Ti, Tf , I,O)←
E(event(start,X, A, I), Ti),

E(event(end, X, A,O), Tf ),

Tf ∈ [Dmin, Dmax]+Ti , ac1, ac2,

fulfillment condition.

AND
decomposi-
tion

G

G1 Gn...AND

achieve(X, G, Ti, Tf , I, O)←
achieve(X, G1, Ti1, Tf1, I1, O1), . . . ,

achieve(X, Gn, Tin, Tfn, In, On),

Ti = min{Ti1, . . . , Tin}, Tf = max{Tf1, . . . , Tfn},
I = I1 ∪ . . . ∪ In, O = O1 ∪ . . . ∪On.

AnA1

A

...AND

execute(X, A, Ti, Tf , I,O)←
execute(X,A1, Ti1, Tf1, I1, O1), . . . ,

execute(X,An, Tin, Tfn, In, On),

Ti = min{Ti1, . . . , Tin}, Tf = max{Tf1, . . . , Tfn},
I = I1 ∪ . . . ∪ In, O = O1 ∪ . . . ∪On.

OR decom-
position

G

G1 Gn...OR

achieve(X, G, Ti, Tf , I, O)←achieve(X, G1, Ti, Tf , I, O).

. . .

achieve(X, G, Ti, Tf , I, O)←achieve(X, Gn, Ti, Tf , I,O).

AnA1

A

...OR

execute(X,A, Ti, Tf , I,O)←execute(X,A1, Ti, Tf , I,O).

. . .

execute(X,A, Ti, Tf , I,O)←execute(X,An, Ti, Tf , I,O).

Means-end
A

G
achieve(X, G, Ti, Tf , I, O)← execute(X,A, Ti, Tf , I, O).

Goal de-
pendency

Y

G

X
achieve(X, G, Ti, Tf , I, O)←

E(delegate(X,Y, G, Tf ), Td),

Td > Ti, Td < Tf .

Task de-
pendency

YX

A

execute(X, A, Ti, Tf , I,O)←
E(delegate(X,Y, A, Tf ), Td),

Td > Ti, Td < Tf .

– AND/OR-decompositions and means-end are trivially translated to SCIFF.
– In goal (task) dependencies, it is expected that the depender appoints the de-

pendee to achieve a goal (execute a task) before a certain time instant. To this
end, we have introduced event delegate(x, y, g, t) to indicate that actor x del-
egates the achievement of goal g to actor y and y have to achieve g by time t.
A delegation is observable and so it is kept trace of in the execution trace.
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Table 3. Mapping of B-Tropos response connections onto SCIFF

Response
Tb

{c} {r}

hap(event(Ev,X1, A1, R1), T1) ∧ c

→exp(event(Ev,X2, A2, R2), T2) ∧ r ∧ T2 ∈ T+T1
b .

Weak Re-
sponse {c} {r}

Tb hap(event(Ev,X1, A1, R1), T1) ∧ c

∧hap(event(Ev,X2, A2, R2), T2)→ r ∧ T2 ∈ T+T1
b .

Negation
Response {c} {r}

Tb hap(event(Ev,X1, A1, R1), T1) ∧ c

∧hap(event(Ev,X2, A2, R2), T2) ∧ r ∧ T2 ∈ T+T1
b →⊥ .

The reactive part of B-Tropos encompasses both the reaction to a dependency
and process-oriented constraints. As already pointed out, process-oriented con-
straints are inspired by DecSerFlow/ConDec template formulas, for which a pre-
liminary mapping to SCIFF has been already established [11]. Connections are
translated using ICs. For the sake of space, we refer to [4] for a detailed descrip-
tion on how SCIFF handles constraints. Here we present some examples of how
process-oriented constraints are formalized (Table 3). Such formulas specify the
informal description given in Section 3. Response connection constraint states
that if the source, event(Ev, X1, A1, R1), happens and the trigger condition, c, is
satisfied, then the target, event(Ev, X2, A2, R2), is expected to happen and the
restriction condition imposed on the target, r, must be satisfied. In addition, the
target is expected to occur within T +T1

b . Weak response constraints are verified
a posteriori. In particular, when the connected events happen and the triggering
condition is satisfied, the restriction imposed by the target must be satisfied.
Similarly to response connections, the constraint is verified if the target event
occurs within T +T1

b . Negative response constraints spot an inconsistency when
the connected events happen and all conditions are satisfied.

We remark that the framework allows one to constrain non-leaf tasks and
goals, but only start and completion events of leaf tasks are considered as ob-
servable events. To address this issue, we have introduced intensional predicates
hap and exp to represent the happening and expectation of (possibly) composite
events. For instance, a leaf task starts (or is completed) only if there is evidence
for it (i.e., the corresponding event happened). Accordingly, for a leaf-task A:

hap(event(Ev,X, A,R), T )← H(event(Ev,X, A, R), T ).

exp(event(Ev,X, A,R), T )← E(event(Ev,X, A, R), T ).

Composite events recursively follow the goal analysis approach:

– the start/completion of an OR-decomposed task happen (resp. is expected
to happen) when one of its (sub)tasks start/completion happens (resp. is
expected to happen);

– the start of an AND-decomposed task happens (resp. is expected to happen)
when its first (sub)task starts (resp. expected to start);

– the completion of an AND-decomposed task happens (resp. is expected to
happen) when its last (sub)task is completed (expected to be completed).
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To model the reaction to a dependency, we assume that when a dependee
Y receives from a depender X a request for achieving a goal G, Y reacts by
undertaking the commitment of achieving G:5

H(delegate(X,Y, G, Tf ), Td)→ achieve(Y, G, Ti, Tf , I, O) ∧ Ti > Td.

The provided formalization can be used to directly implement the skeleton
of logic-based agents, as for example the ones described in [1]. Such agents fol-
low the Kowalsky-Sadri cycle for intelligent agents, by realizing the think phase
with the SCIFF proof-procedure and the observe and act phases in JADE. The
proof-procedure embedded in SCIFF-agents is equipped with the possibility to
transform expectations about the agent into happened events, and with a selec-
tion rule for choosing a behavior when several choices are available. In particular,
each actor represented in a B-Tropos model can be mapped into a SCIFF-agent
whose deliberative pro-active part (formalized in the agent’s knowledge base)
is driven by the goal/task decomposition of its root goal, and whose reactive
behavior (formalized as a set of ICs) is determined by the delegation mechanism
and the process-oriented constraints. The agent that wants to achieve the global
goal (e.g., Customer Care in Fig. 1) starts by decomposing it, whereas other
agents wait until an incoming request is observed. In this case, the dependency
reactive rule of the agent is triggered, and the agent attempts to achieve the
assigned goal. This goal may be either decomposed or delegated to other agents
until expectations proving its achievement are generated. Such expectations thus
are transformed to happened events, that is, actions performed by the agent.

Figure 6 presents the SCIFF formalization corresponding to the B-Tropos
diagram of Fig. 5. Here Research & Development and Warehouse are respec-
tively represented as r&d and wh, and symbol = is used to denote unification.
In that figure one can see how the formalized SCIFF specification is assigned
to the Warehouse and R&D units. To have an intuition about how the two
agents act and interact, let us consider the case in which the R&D unit intends
to achieve the goal assigned by the Manufacturing division. The unit decom-
poses goal evaluate solution in its subparts until a set of expectations, which lead
to the achievement of the goal, is determined. Below we list a possible set of
expectations:

E(event(start, r&d, calc bill, []), Tscb), . . . ,

E(event(end, r&d, calc bill, [Bill]), Tccb), Tccb > Tscb,

E(event(start, r&d, eval bill, [Bill]), Tseb), Tseb > Tccb,

E(event(end, r&d, eval bill, []), Tceb), Tceb > Tseb,

E(delegate(r&d,wh, eval resources, Tcer), Tser).

This set of expectations can be read as an execution plan, consisting of two con-
current parts: (1) a sequence of events related to start/completion of leaf tasks,
ordered by the response relation which constrains the bill calculation and evalu-
ation; (2) the delegation of resources evaluation, which should be communicated
5 For the sake of brevity we do not present here the reaction rule for task dependency

that has the same intuition as the one for goal dependency.
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KBr&d : achieve(r&d, eval solution, Ti, Tf , I, O) ←achieve(r&d, eval costs, Ti1, Tf1, I1, O1),

achieve(r&d, eval resources, Ti2, Tf2, I2, O2),

min(Ti, [Ti1, Ti2]), max(Tf , [Tf1, Tf2]),

I = I1 ∪ I2, O = O1 ∪ O2.

achieve(r&d, eval costs, Ti, Tf , I, O) ←execute(r&d, assess costs, Ti, Tf , I, O).

execute(r&d, assess costs, Ti, Tf , I, O) ←execute(r&d, calc bill, Ti1, Tf1, I1, O1),

execute(r&d, eval bill, Ti2, Tf2, I2, O2),

min(Ti, [Ti1, Ti2]), max(Tf , [Tf1, Tf2]),

I = I1 ∪ I2, O = O1 ∪ O2.

execute(r&d, calc bill, Ti, Tf , [], [CBill]) ←E(event(start, r&d, calc bill, []), Ti),

E(event(end, r&d, calc bill, [CBill]), Tf ), Tf > Ti.

execute(r&d, eval bill, Ti, Tf , [EBill], []) ←E(event(start, r&d, eval bill, [EBill]), Ti),

E(event(end, r&d, eval bill, []), Tf ), Tf > Ti.

achieve(r&d, eval resources, Ti, Tf , I, O) ←E(delegate(r&d, wh, eval resources, Tf ), Td),

achieve(wh, eval resources, Td, Tf , I, O),

Td > Ti, Td < Tf .

KBwh : achieve(wh, eval resources, Ti, Tf , I, O) ←execute(wh, find resources, Ti, Tf , I, O).

execute(wh, find resources, Ti, Tf , I, O) ←execute(wh, find in wh, Ti, Tf , I, O).

execute(wh, find resources, Ti, Tf , I, O) ←execute(wh, buy, Ti, Tf , I, O).

execute(wh, find resources, Ti, Tf , [], [Found]) ←E(event(start, wh, find in wh, []), Ti),

E(event(end, wh, find in wh, [Found]), Tf ),

Tf ≥ Ti + 10, Found = yes.

execute(wh, buy, Ti, Tf , [], []) ←E(event(start, wh, buy, []), Ti),

E(event(end, wh, buy, []), Tf ), Tf > Ti.

ICsr&d : hap(event(end, r&d, calc bill, [CBill]), T1) →exp(event(start, r&d, eval bill, [EBill]), T2)

∧ T2 > T1 ∧ EBill = CBill.

ICswh : H(delegate(r&d, wh, eval resources, Tf ), Td) →achieve(wh, eval resources, Ti, Tf , I, O)

∧ Ti > Td.

Fig. 6. Formalization of the B-Tropos model fragment shown in Fig. 5

to the Warehouse. In particular, when the expectation about the delegation is
transformed to a happened event by the R&D agent, the Warehouse agent is
committed to achieve the delegated goal inside the time interval (Tser, Tcer).
It is worth noting that the framework can identify inconsistencies in temporal
and/or data requirements specification by means of unsatisfiable constraints.
This is, for instance, the case in which the R&D unit requires an evaluation of
the availability of resources, e.g., in 5 time units, whereas the Warehouse needs
at least 10 time units to verify the presence of resources. In these situations, the
designer needs either to relax constrains (e.g., extending the time) or to adopt
new solutions for increasing the performance of the system (e.g., providing the
Warehouse with a more efficient search application).

Besides the implementation of logic-based agents, SCIFF can also be used to
perform different kinds of verification, namely performance verification and con-
formance verification. Performance verification aims at proving that stakehold-
ers can achieve their strategic goals in a given time. Such verification can also be
used to evaluate different design alternatives in terms of system performance. For
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example, one could ask SCIFF to verify whether an execution exists such that
the top goal of one of the stakeholders is achieved within a given deadline. SCIFF
will then try to generate such an execution, by means of an intensional (i.e., par-
tially specified) execution trace; generally speaking, this is achieved by transform-
ing expectations into happened events. Conformance verification [4] is related to
the auditing measures that can be adopted for monitoring the activities performed
by actors within the system. The idea underlying conformance verification is to
analyze system logs and compare them with the design of the system, to verify
whether the actual behavior of a system effectively complies with model expecta-
tions. This allows system administrators to understand whether or not stakehold-
ers have achieved their goals and, if it is not the case, to predict future actions.

6 Related Work

While the literature on single aspects of the framework is huge (many ref-
erences can be found to the papers describing Tropos, SCIFF, and DecSer-
Flow/CondDec), not much work has been done at the intersection of the corre-
sponding domains. Several formal frameworks have been developed to support
the Tropos methodology. For instance, Giorgini et al. [19] proposed a formal
framework based on logic programming for the analysis of security requirements.
However, the framework does not take into account temporal aspects of the sys-
tem. In [9] a planning approach has been proposed to analyze and evaluate design
alternatives. Though this framework explores the space of alternatives and deter-
mines a (sub-)optimal plan, that is, a sequence of actions, to achieve the goals of
stakeholders, it is limited in defining temporal constraints among tasks. Fuxman
et al. [18] proposed Formal Tropos that extends Tropos with annotations that
characterize the temporal evolution of the system, describing, for instance, how
the network of relationships evolves over time. Formal Tropos provides a tempo-
ral logic-based specification language for representing Tropos concepts together
with temporal constructs, which are verified using a model-checking technique
such as the one implemented in NuSMV. This framework has been used to verify
the consistency of requirements models [18] as well as business processes against
business requirements and strategic goal model [23]. However, Formal Tropos
does not support abduction, and thus, it is not able to generate expectations
and perform conformance checking between expectations and happened events.
Finally, we mention the work by Cares et al [10], who proposed to implement
software agents in Prolog starting from Tropos models. In particular, they pro-
posed to specify the programming activation time through four implementation
attributes, namely at begin, at end, at call, and always. The difference with our
proposal lies in the generation of implementation besides the employed tempo-
ral constructs. Actually, they do not provide an encoding of Tropos models into
Prolog so that the implementation is manual.

The last years have seen the need for bridging the gap between requirements
engineering and business process design by providing support for developing busi-
ness processes on top of requirements models and verifying whether a business
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process actually meets its business goals. For instance, Lapochnian et al. [25]
proposed a systematic requirements-driven approach for business process design
and configuration management, which adopts goal models to capture alternative
process configurations. Differently from our work, they do not consider the rela-
tionships between agents so that framework is inadequate to describe business
processes spanning across multi-agent systems. Frankova et al. [16] have used the
SI* modeling language [27], an extension of Tropos addressing security and pri-
vacy issues, as a basis for the definition of Secure BPEL, a specification language
that extends WS-BPEL [6] for modeling secure business processes. The objective
of this framework is to assist business process analysts in deriving the skeleton
of secure business processes from early requirements analysis. Finally, López et
al. [26] presented a reasoning method for verifying the consistency between SI*
models and BPMN specifications [7]. In particular, the authors have investigated
the connection between business processes and requirements models, introducing
the notion of goal equivalence based on trace semantics.

Several works also attempt to define a formal semantics underlying graphical
business process models and to design agent systems. In the business process
domain, Wong et al. [37] provided a formal semantics for a subset of BPMN in
terms of the process algebra CSP [30], whereas Dijkman et al. [15] used Petri
Nets [28]. Their objective is to formally analyze and compare business process
models. We differ from these proposals since the objective of our work is to
provide a requirements-driven framework for business process and agent system
design. The use of computational logic for the flexible specification and rigorous
verification of agent interaction is adopted by many proposals. While other works
(e.g., [36]) use temporal logic to model the temporal dimension of interaction,
SCIFF exploits a constraint solver and adopts an explicit representation of time.

Event Calculus [24] was introduced by Kowalsky and Sergot as a logic pro-
gramming formalism for representing events and their effects. This formalism
explicitly reasons upon properties (fluents) holding during time intervals. Dif-
ferently from Event Calculus, our framework treats time like other variables, in
association with domains, which makes it possible to express constraints (e.g.,
deadlines) and to exploit an underlying constraint solver. Among the works
based on Event Calculus, we cite the work by Shanahan [32], who proposed
the abductive event calculus that includes the concept of expectation, and the
work by Cicekli et al. [12], who formalized workflows using Event Calculus. In
Shanahan’s work events and expectations are of the same nature and both are
abduced, while our expectations should match the actual events. This is due
to the different underlying assumptions and, consequently, the different focus:
while we assume that the history is known, Shanahan proposes to abduce events.
Similarly to [15,37], Cicekli et al. focus on the execution of business processes,
whereas the reconciliation between a business process and the business goals
that have motivated the process definition are completely ignored.

Finally we mention that a mapping of DecSerFlow into Linear Temporal Logic
(LTL) [29] has beenproposed in [34]. It canbe used to verify or enforce conformance
of service flows and also to directly enact their execution. The advantages of using
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SCIFF instead of LTL is that SCIFF can handle time and data in an explicit and
quantitative way, exploiting CLP to define temporal and data-related constraints.

7 Conclusions

In this work we have proposed to integrate a number of techniques for infor-
mation systems engineering, with the aim to reconcile requirements elicitation
with specification, prototyping and analysis, inside a single unified framework.
We have presented B-Tropos, an extension of Tropos with declarative process-
oriented constraints, and its mapping into the SCIFF language. We have mainly
focused on the modeling and mapping of aspects related to declarative busi-
ness processes using connections inspired by DecSerFlow and ConDec languages.
Augmenting a Tropos model with such constraints has the effect that both the
proactive and the reactive, process-oriented agent behavior could be captured
within the same diagram.

The mapping of B-Tropos onto SCIFF makes it possible to directly imple-
ment logic-based agents starting from the enhanced Tropos model, as well as to
perform different kinds of verification, namely to check if the model satisfies a
given property and to monitor if the execution trace of a real system is actually
compliant with the model.

The work presented here is a first step towards the integration of a business
process in the requirements model. We are currently running experiments on pro-
totyping as well as on property and conformance verification. Some results are pre-
sented in [13], whereB-Troposmodels are also used to generate possible executions
traces, and to animate agents in the context of the CLIMAContest Food Collection
problem [14], in line with the aforementioned work by Cares and colleagues [10]. We
are also investigating in depth the formal properties of our proposed mapping, and
are trying to understand how to better exploit the underlying SCIFF constraint
solver by introducing more complex scheduling and resource constraints so as to
capture more detailed business requirements and agent interactions. As a future
activity, we plan to investigate the generation of executable business process spec-
ifications (such as WS-BPEL) from B-Tropos models. Another direction under in-
vestigation concerns business process compliance. In particular, we are interested
in the problemof the interplay betweenbusiness and control objectives during busi-
ness process design [31]. Finally, we intend to conduct empirical studies on large
scale, industrial size case studies for a practical evaluation of the framework.
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26. López, H.A., Massacci, F., Zannone, N.: Goal-Equivalent Secure Business Process
Re-engineering. In: Proc. of SeMSoC 2007 (2007)

27. Massacci, F., Mylopoulos, J., Zannone, N.: An Ontology for Secure Socio-Technical
Systems. In: Handbook of Ontologies for Business Interaction. The IDEA Group
(2007)

28. Peterson, J.L.: Petri Nets. ACM Comput. Surv. 9(3), 223–252 (1977)
29. Pnueli, A.: The Temporal Semantics of Concurrent Programs. In: Proc. of the Inter-

national Symposium on Semantics of Concurrent Computation, pp. 1–20. Springer,
Heidelberg (1979)

30. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice-Hall, Englewood Cliffs (1997)

31. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

32. Shanahan, M.: Reinventing shakey. In: Logic-based artificial intelligence, pp. 233–
253. Kluwer Academic Publishers, Dordrecht (2000)

33. van der Aalst, W.M.P., Pesic, M.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

34. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
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Abstract. In this paper, we present a formal and executable approach
to automated multi-issue negotiation between competitive agents. In par-
ticular, this approach is based on reasoning in terms of projections in
convex regions of admissible values and is an extension of previous work
by Marco Cadoli in the area of proposal-based negotiation. Our goal is to
develop a heuristic strategy to flexibly compute the offers and counter-
offers so as to fulfill each agent’s objectives and minimize the number of
agents’ interactions. The proposed algorithm aims at improving a funda-
mental parameter of the negotiation process: the interaction complexity
in the average case.

1 Introduction

Automated negotiation among software agents is becoming increasingly impor-
tant as a consequence of the rapid development of web-based transactions and
e-commerce. Negotiation is an important subject of study in the branch of Dis-
tributed Artificial Intelligence (DAI) and MAS (Multi-Agent Systems), as dis-
cussed for instance in [1,2,3,4].

A negotiation process can be defined as a particular form of interaction be-
tween two or more agents. As discussed, e.g., in [5] and [6], negotiation is a
particular type of interaction in which a group of agents, with a desire to co-
operate but with conflicting interests, work together in aim to reach a common
goal, or to achieve an agreement that is acceptable by all parties in the process.
More formally, negotiation can be defined as “a distributed research in a space of
potential agreements” ([7]). In this sense, each participant involves its individual
area of interest (also called negotiation space or feasibility region), and intends
to reach agreements in that area. Negotiation spaces can be represented by a
set of constraints. Then, finding an agreement can be modelled as a constraint
satisfaction problem (CSP). In particular, in multi-agent systems the process of
negotiation can be represented as a distributed constraint satisfaction problem
(DCSP), since the constraints are distributed among different agents ([8]).

In proposal-based negotiation, the information exchanged between the par-
ties is in the form of offers (internal points of the negotiation spaces) rather
than constraints, preferences or argumentation. Each agent is able to compute
the points to offer in order to reach an agreement. Negotiation terminates suc-
cessfully whenever the participants on the process, find a point, in the space of
negotiation, that is mutually acceptable. That point has therefore to be included
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in the common area of all negotiation spaces: i.e., in the intersection of the areas
of interests [3].

Agents involved in the process of negotiation need to interact. Usually they
are self-interested, since each one has different constraints to satisfy and different
benefits, in terms of utility functions, to maximize (or minimize). The utility
functions can be represented by new constraints on the agents’ knowledge.

The research work reported here is an extension of previous work by Marco
Cadoli, introduced in ([9]), and presents an heuristic strategy for proposal-based
negotiation. The goal is to minimize the number of the interactions between
the automated agents involved in the process and thus speed-up the search of
an agreement - note that the speed of the process, or time complexity, largely
depends on the particular negotiation strategy adopted by each agent. In this
approach, negotiation spaces are considered to be convex, i.e., all points be-
tween two acceptable points are acceptable as well. The admissible offers are
internal points of the negotiation areas, and those will be the only exchangeable
information among the involved agents. The participating agents are capable of
logical reasoning and are able to reason in means of projections. As discussed
below (section 3), reasoning by means of projection can help the agents com-
pute subsequent offers as each one can exclude certain points of the individual
negotiation areas.

Both the original Marco Cadoli’s approach and the proposed extension are
of interest in Computational Logic because involved agents are assumed to be
perfect logical reasoners, and then find a natural realization in logic-based agent-
oriented languages. In fact, as discussed in Section 6 we have implemented the
extended approach in one of these languages, namely in the DALI language. The
rest of this paper is structured as follows. Section 2 is an overview of related work.
In section 3, we present the theoretical background and the basic approach to
negotiation that we adopt, introduced by Marco Cadoli. In section 4, we discuss
our motivations for extending this basic approach. Section 5 is devoted to the
presentation of the features of the extended negotiation model. In section 6 we
present the implementation of the proposed strategy in DALI. In Section 7 we
conclude and outline future work.

2 An Overview

Numerous strategies have been proposed in order to improve the efficiency,
completeness and robustness of the process of negotiation (e.g.,
[9,3,10,11,12,13,14,15,16,17,18,19]). In [10], a number of agent strategies de-
signed for the 2002 TAC (Trading Agent Competition) are reported and com-
pared. These techniques include machine learning, adapted, planning and hybrid
agents as well as heuristic-based strategies. The aim of [11], instead, is to deter-
mine how an agent (with firm deadlines) can select an optimal strategy based on
an incomplete information about his opponent. STRATUM, reported in [12], is a
methodology for guiding strategies for negotiating agents in non-game-theoretic
domains.
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[13] analyzes how a group of agents can deal in presence of externalities. In
economics an externality is a cost or benefit resulting from a transaction that is
borne or received by third parties, thus affecting social welfare. This has been
done by adding to the worth of a bilateral coalition the amount of the nega-
tive externalities, that is created for the excluded player. The equilibrium values
are respectively increased or decreased in the presence of negative or positive
externalities. In [14], the line of research has produced a number of results on
the hardness of dealing with positive and negative externalities while aiming at
maximization of the social welfare. In [17] Matos et al. present an empirical evalu-
ation of a number of negotiation strategies in different kinds of automated agents
and environments. Rahwan et. al in [18] have developed a protocol-independent
theory of strategy. In this approach, various factors that influence the generation
of strategies are defined and used by the automated agents. In [19], instead, a
negotiation model and two types of negotiation strategies, called concession and
problem solving strategies, are presented.

The process of negotiation is considered as a constraint-based model in [9],[16]
and [3]. In [16] and [3] negotiation is considered as a distributed constraint
satisfaction problem without however considering complexity issues. Instead,
the nature of the offers and the selection of variables assignment in the approach
of [9] are mainly aimed at obtaining a reasonable complexity in terms of number
of interactions steps. The speed of negotiation is tackled in [20], where however
only boolean variables are considered.

3 Theoretical Background: The Approach by Marco
Cadoli

In this paper, we discuss and extend the approach to reasoning by means of
projections introduced by Marco Cadoli and reported in ([9]). In this section,
we first present the approach and then discuss why some extensions are needed
and are useful.

In Marco Cadoli’s approach, negotiation is considered as a distributed con-
straint satisfaction problem. The assumptions made by Marco Cadoli [9] are the
following. (i) Negotiation involves two or more parties, that exchange proposals
until either an agreement is found (i.e., the last proposal is acceptable by all the
parties involved) or there is an evidence of the fact that no agreement is possible.
(ii) Negotiation involves variables (also called negotiation issues). (iii) A proposal
(or “offer”) is a communication act possibly containing the assignment of values
to the involved variables (“variable assignment”). (iv) Negotiation is restricted
with no loss of generality to involve only two variables. The approach however
could be easily generalized. (v) The negotiation space (also called negotiation
region or feasibility region or area of interest) associated to each party coincides
with the set of variable assignments that are considered to be acceptable, i.e.,
where the value assigned to each variable is within the range that the party
considers to be acceptable. (vi) As only two variables are involved, negotiation
spaces are restricted to be regions in the cartesian plane. (vii) A possible proposal
is in principle any point of the negotiation space. (viii) Negotiation spaces are
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restricted to be convex regions, i.e., all points included within the boundaries of
each individual region belong to the region itself and thus are equally acceptable
as potential agreements. Therefore, each negotiation space can be described by a
set of constraints which describe the region perimeter by describing the accept-
able range of values for each variable. (ix) Negotiation spaces are considered to
be polyhedral (thus, negotiation spaces admit a finite number of vertices). (x)
For one of the two agents, who wishes to minimize the number of negotiation
steps, possible proposals are restricted to be the vertices of negotiation spaces.

It is assumed (again without loss of generality) that negotiation is restricted
to two parties, that have agreed in advance on the issues which are involved. Of
course, the parties (that later on we will call “agents”) associate a meaning to
the variables, that in their view may represent prices, time, number of items,
etc. A negotiation starts when one of the two agents makes a proposal. The
other one will respond with a counter-proposal, and the process will go on in
subsequent steps (where each agent responds to the other one’s last proposal).
The other party is also called the “opponent”. The negotiation process will end
either because an agreement has been found, or if there is an evidence that no
agreement is possible. Since negotiation spaces are considered as convex regions,
a necessary condition for an agreement to be reached is that the intersection of
the feasibility regions is not empty.

As offers are for one of the two parties restricted to be vertices of a polyhedral
region, in Marco Cadoli’s approach the process will necessarily end whenever this
party has no more vertices to offer. This means that each negotiation process
always converges to an end in a finite number of steps. However, the number
of vertices can be, in the worst case, exponential in the number of variable.
Thus, the process has a worst-case exponential complexity in the number of
negotiation steps. Therefore, the approach defines a negotiation protocol aimed
at obtaining in the average case large savings in terms of number of proposed
vertices. The underlying assumptions about the participating agents are the
following. (a) Agents are perfect logical reasoners. (b) Agents communicate only
by exchanging proposals and there is no other form of shared knowledge. When a
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proposal has been issued, it becomes common knowledge for all involved parties.
(c) Agents are partially cooperative, in the sense that they are aware of the
negotiation protocol that they apply faithfully, i.e., they do not make offers that
they are not really willing to accept. (d) Agents do not cheat, i.e., they do not
make proposals that are not implied by the protocol at that step and, (e) during
a negotiation, they aim at minimizing the number of steps.

The main point of the approach is that agents are able to reason by means
of projections. This kind of reasoning is illustrated below. In this setting, we
consider the projection of a line segment over another one. We recall this concept
by means of an example (in Figure 1). In the example, we consider the four points
A1, A2, B1, B2. The figure highlights two projections:

1. The projection of the segmentA1A2 overB1B2 (denoted with Π(B1B2, A1A2)
and delimited by r2B1B2r1), and

2. The projection of B1B2 over A1A2 (denoted with Π(A1A2, B1B2) and de-
limited by s1A1A2s2).

Suppose for instance, referring to Figure 1, that points A1 and A2 are offers
made by agent A, while B1 and B2 are offers made by agent B. Suppose that the
steps, i.e., the order in which proposal are exchanged, are as follows: Agent A
offers A1, agent B counter-offers B1, agent A replies with A2 and agent B with
B2. Agent A (being a perfect logical reasoner and being aware of convexity and
projections and being aware that the other agent has the same potential) is now
able to perform the following reasoning. From proposals A1 and A2 and from
the convexity hypothesis, agent B knows that the whole segment A1A2 belongs
to A’s negotiation area. Then, as B aims at minimizing the number of steps, if B
had a point of its region on that segment, it would have offered it. As B instead
has offered B2, agent A is allowed to conclude that the intersection between B’s
region and segment A1A2 is empty.

Also, A can consider that if B had any vertex on: either the line s1 that goes
beyond segment B2A1 in the direction of A1 or on the line s2 that goes beyond
segment B1A2 in the direction of A2 then, again by convexity, the segment
A1A2 would necessarily belong to B’s region: in fact, any polyhedral region
including as vertices B1, B2 and these two hypothetical points would also include
segment A1A2, which is a contradiction. Therefore, A is able to exclude the whole
projection area delimited by segment A1A2 and by the two above-mention lines.
In fact, no point in there can be possibly acceptable for B, and thus A will
choose no such point as an offer. This area can be obtained, as observed before,
by making the projection of segment B1B2 over A1A2.

Marco Cadoli’s approach adopts the strategy of concluding the process in the
minimum possible number of interactions: excluding portions of the feasibility
region actually leads to excluding many potential offers and thus reducing the
number of steps. In fact, agent B can perform a similar reasoning if A responds
to offer B2 with a counter-offer that does not constitute an agreement. The
reasoning can then be repeated by both agents after subsequent offers.

In [9] it has been proved that reasoning in terms of projections leads to a
protocol that always converges and in some cases allows for large savings in
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terms of number of proposed vertices (in the worst case, the number of agent’s
interactions is exponential in the number of variables and in the number of con-
straints). It is important to notice that the assumption of only one party being
restricted to offer vertices is essential. Otherwise, going back to the example we
may notice the following: if B were restricted to offer vertices then B might offer
a point on segment A1A2 only if B had a vertex there. Therefore, vertex-based
reasoning would be approximate and, though often leading to a speed-up, might
exclude possible agreements. Each agent is assumed to be self-interested, which
means that it ignores the other agents preferences. However, as discussed below,
if the agent considers its own preferences the potential speed-up can go lost.
This is why we devised to extend this approach.

For the sake of clarity, before discussing the extensions we consider a more
complete example. Let us consider as before a bilateral peer-to-peer negotiation
process involving two issues. Let us introduce the two involved agents, say Seller
and Buyer, represented by the respective negotiation areas reported in Figure 2.
In this example, the negotiation area (indicated as RA) of agent Seller can be
described by the set of constraints CA = {X � 4, X � 20, Y � 13, Y � 40, X �
−3Y +49, X � Y +4, X � (3/2)Y −50, X � −(3/4)Y +47}. The negotiation area
(indicated as RB) of the agent Buyer can be described by the set CB = {X �
15, X � 40, Y � 10, Y � 25}. Let VA = {A1 = (10, 13), A2 = (17, 40), A3 =
(4, 15), A4 = (17, 13), A5 = (20, 16), A6 = (20, 36), A7 = (4, 36), A8 = (10, 40)}
be the sets of possible proposals (set of vertices of the negotiation space) of
the agents Seller and VB = {B1 = (15, 10), B2 = (40, 25), B3 = (40, 10), B4 =
(15, 25)} be the possible proposals of the agent Buyer. The intersection area
I = RA

⋂
RB is clearly not empty, and therefore there is a potential agreement

between the two agents.
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We assume that the negotiation process starts with a proposal from the agent
Buyer and that the sequence of proposals is as follows: B1, A1, B2, A2. Each
interaction has the side-effect of updating the knowledge base of the agents by
storing all proposals (both made and received) and possible new constraints.
The subsequent steps of the negotiation are determined as follows:
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– Since agent Buyer has received as counter-offer point A1, not included in its
negotiation area, it rejects the proposal.

– After two interactions, the agents have exchanged four proposals, namely
B1, A1, B2, A2 and none of them has been accepted. At this point, the
agent Buyer computes a projection area by connecting the couples of points
(B1, A2), (B2, A1) and (B1, B2) and by adding to its knowledge base the
new linear constraints that represent the new lines s1 and s2. The agent
is able to conclude that the intersection of the other part negotiation area
with the projection area (delimited by the lines s1, s2 and by the segment
(B1, B2)) is empty: therefore, no point in the projection area can be accepted
from the counter-part. In fact, agent Seller knows that the buyer having of-
fered points B1 and B2 implies (by the convexity hypothesis) that the whole
segment connecting the two points belongs to the buyer’s negotiation area.
Then, had the seller’s negotiation area admitted a non-empty intersection
with this segment, the seller would have offered a vertex either on the seg-
ment or beyond it. Since the buyer instead receives point A2, it becomes
aware that no such intersection exists and, consequently, that no point in
the aforementioned projection belongs to the seller’s area.

The agent exploits the updated knowledge for selecting the next offer to
make, having excluded all points that belong to the projection area. Thus,
the agent Buyer understands that its vertex B3 cannot be accepted by the
opposer: it excludes this point from the set of proposals and proceeds by
offering its point B4.

– Finally, this offer belongs to the negotiation area of the agent Seller and
therefore this proposal will be accepted. In this case, we say that the nego-
tiation process terminated successfully.

In the case where the last offer does not belong to the negotiation area of
the opposer, the agent Buyer would conclude that there is no further point
to propose and would terminate the negotiation process, having an evidence
of the fact that the intersection of the two negotiation areas is empty and
therefore there is no possible agreement.

4 Limits of the Original Approach

The reasons why we propose an extension to the basic approach are summarized
in the following points:

– We intend to allow the two agent to both follow the same protocol. If so,
limiting the possible proposals to vertices inducts problematic trades: in par-
ticular, this happens whenever the intersection area is not empty but includes
no vertices. For example, in Figure 3 there are two agents, Seller and Buyer,
whose individual negotiation areas are expressed through convex regions. It
can be seen that there is a potential agreement amongst the agents, since
the intersection area includes various points. However in this case, after six
interactions (namely, the sequence of proposals is B1, A1, B2, A2, B3, A3) the
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seller agent understands that there is no other vertex to propose: in fact, it
has previously excluded vertex A4. Thus, it concludes the process of negoti-
ation with a proof that there no possible agreement. This problem is due to
the fact that only vertices can be proposed.
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Fig. 3. A first problematic interaction

– The “flat” nature of proposals (where all vertices are equally considered) may
lead, in real applications, to other problematic situations. In particular, it
may frequently happen that one or more issues considered by an agent have
greater priority than others. Let us assume that the agents try to reach an
optimal point with respect to an objective function. This objective function
can be chosen according to the particular context. In figure 4, for example, we
consider two agents, Business and Client. We assume that Business wishes
to maximize the issue Y and that the sequence of interactions starts with
a proposal (from Client) of point B1. The interaction proceeds with A1, B2

and A2. In this case, the approach of reasoning by means of projections does
not allow us to obtain savings in terms of number of proposed vertices.
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Fig. 4. A second problematic interaction

– As mentioned in [9], another problem of the approach of reasoning by means
of projections is that, since the agents have to remember all proposals (both
made and received), it is hard to find algorithms and data structures which
allow agents to store the entire sequence of proposals in polynomial space.
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– In [9] another problem is mentioned: the limit case where negotiation spaces
are convex (and finite) regions represented by circles. In this case, agents
are unable to select their offers since there are not vertices and there is an
infinite number of possible choices.

We have tried to overcome some of the problems discussed above. In
particular, we assume proposals to be not only vertices but also internal
points of the convex regions. Those points will not be randomly selected.
Their selection, instead, will be based on recent proposals by the same agent.

5 Proposed Extension

In this Section we illustrate the proposed extended approach by means of an
example and then we formally define the new negotiation algorithm.

5.1 An Example

Consider two agents A and B, represented by their negotiation areas denoted as
RA and RB. In general, as discussed above, the two bidding agents can reach an
agreement only in the case where RA

⋂
RB �= Ø.

We propose a change in the nature of the proposals. In fact, in the extended
algorithm agents are allowed to make proposals that are internal points of the
feasibility regions, rather than just vertices. The strategy still takes advantage
from reasoning by means of projections: projection areas will be created dynam-
ically during negotiation, so that agents will be able to exclude many internal
points of the individual feasibility region. This implies a better accuracy in the
selection of offers.

Assume that the two negotiation areas RA and RB are those represented in
figure 5. The process of negotiation initiates with a proposal, for example by
agent A. The first proposal is assumed to be a random point of the individual
convex region of the agent. The second proposal of agent A, instead, is identified
as follows: A computes the circumference whose center corresponds to the point
of the first proposal and whose radius is R = δ, where the choice of the margin
δ will depend on each specific application context (his margin can be chosen,

Agent B

Intersection Area

Agent A

������

����
Β1

δ
����
����
����

����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

Α2�
�
�
�

A1

new constraints

Fig. 5. The trade-off strategy in multi-variable regions
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for example, as in [21].). The proposal will be selected as a random point of the
semi-circumference closer to the opposer’s first proposal.

Clearly, we require it to be included on the individual feasibility region. In
this way, the agent tries to approach the opposer’s offer by proposing a point
that is more likely to be accepted, in an attempt to adapt its individual profile
to the one that can be assumed for the opposer. To do this, the agent has to
add new constraints to its knowledge base. If no such point is found, then the
next proposal will be a new random point of the feasibility region. After that,
each agent uses the reasoning on projection in the same way as in [9]. The
points included in the projection areas will be stored in the agents memory, by
adding the new constraints that represent each projection area to its knowledge
base.

All subsequent proposals will be selected in the following way: each agent
computes the segment that connects the two last offers of the opposer. Note
that, as discussed before, all points of this segment are necessarily included in
the opposer’s area. Therefore, if agent A area admits a non-empty intersection
with sg, being a perfect reasoner A will offer a point therein, thus reaching an
agreement. This constitutes an enhancement w.r.t. the basic approach where,
being each agent bound to offer vertices, we have the following two possibilities:
the case where agent A has a vertex on sg that it can propose, and thus the
agreement is found; the unfortunate case where it has no vertex on sg, and then
it can just offer a vertex beyond the segment, without being sure of that vertex
still belonging to the intersection.

If instead agent A area has empty intersection with sg, then the next pro-
posal will be selected in the same way as the second one, where however the
center of the new circumference will be A’s last proposal. Clearly, any the new
proposal must not be included in the projections made so far. The projection
areas may be described in terms of a set of linear inequations. In this way, the
agent will find the new points to offer by solving a new, or extended, DCSP
problem.

An advantage of the new algorithm is that agents do not have to store all the
potential proposals. Rather, the only information that an agent needs in order
to construct the new projections (i.e., the constraints), consists of the two most
recent proposals made by the two parties. If a satisfactory contract has not been
found yet, then the agent continues with the next proposal and so on.

5.2 Definition of the Algorithm

In this section we are going to illustrate the precise definition of the algorithm. In
the following, we consider proposalJi as the ith offer of the agent J (J ∈ {A, B}).
Each agent maintains a knowledge base KBJ . More precisely, we will denote by
KBAi the knowledge base of agent A after the ith interaction. In the description,
expressions such as offer(.), accept(.) and reply enable agents communication.
Notice that an agent which performs a communication act considers it as an
action while the receiver perceives communications as external events.
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Algorithm AgentA

if (reply = accept)
then make(contract);

else
if (interest & proposalB0) /* first proposal to make

then
(a) identify proposalA1 as random point of the feasibility region;
(b) offer(proposalA1);
(c) wait for a reply;

else
if (reply = (proposalBi ∈ RA))

then
accept(proposalBi);

else
if (i = 1) /* second proposal to make

then
(a) find a random point A2 = (x2, y2) of the semi-circumference

closer to the proposalB1 (radius = δ);
(b) construct the projections;
(c) add the new constraints which represent the projection

area to the agent’s knowledge base in KBA2;
(d) offer(proposalA2);
(e) wait for a reply;

else /* i > 1 (subsequent proposals)
if (Bi−1Bi

⋂
RA �= ∅)

then
(a) find common point Ai+1 of Bi−1Bi

⋂
RA;

(b) offer(proposalAi+1);
else

do
(a) find random point Ai+1 (with ((Ai+1 ∈ RA) &

(Ai+1 /∈ KBAi))) upon the semi-circumference closer to
the proposalBi ;

(b) construct the projections;
(c) add the new constraints which represent the projection

area to the agent’s knowledge base in KBAi+1;
(d) offer(proposalAi+1);
(e) wait for a reply;

while (proposalBi /∈ RA) /*no agreement is found

Since there is a huge (infinite, in principle) number of points included in an
agent feasibility region, convergence of the proposed algorithm is not guaranteed.
The simplest way of coping with this problem is an upper bound to the number
of allowed interactions. A (bounded) number of random restarts can also be in
order. However, in [22] we show that some additional assumptions can guarantee
convergence, at the expense of less precision in the identified solution.
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The extended approach is not in contrast to the vertex-based basic one: rather,
it is complementary in many potential ways. A first possible integration may ap-
ply the extended algorithm whenever there is no more vertex to offer. A smarter
integration, which copes with the problem of local preferences/objectives, may
assume that an agent wishes to find an agreement which is as close as possible
to a preferred vertex: the extended approach can be applied starting from this
vertex (instead of starting randomly) so as to approach step-by-step the opposer
while staying as long as possible in the preferred subpart of the region. In this
sense, the new approach can be exploited to define “local search” variants of the
original one.

5.3 Performance of the Proposed Algorithm

In [22] we present many experiments to evaluate the performance of our ap-
proach, also in comparison to the original one, where performance is here
intended in terms of the number of iterations necessary to conclude the ne-
gotiation process. The number of iterations in our case is no more proportional
in the number of vertices, contrary to [9]. Rather, it heavily depends upon the
dimension of the intersection area and upon the distance between the first two
offers. However, tests have shown that our new approach results to be in average
case even more efficient than the original one.

Parameters that influence the number of iterations are at least: i) the size of
the intersection area, ii) the size of the negotiation areas, iii) the (Euclidean)
distance between the first two proposals and iv) the δ parameter. Experiments
have shown that the size of the intersection area and the number of iterations
will tend to be in inverse proportion. Vice versa, the size of the negotiation areas
is proportional to the number of iterations which means that when the first one
increases the second one increases as well. The Euclidean distance between the
first proposals influences the algorithm performance since the more distant they
are the greater number of iterations is necessary to conclude the process.

The choice of the δ parameter deserves some discussion: with very small δ’s
each agent has to make a long way to approach the opposer’s proposal, requiring
many “steps”. If instead δ is too big, even bigger than the intersection area, then
some steps can “jump” the intersection and force to randomly walk around the
intersection itself. For the particular case of rectangular feasibility regions, the
best value for δ appears to be a bit less that the smallest edge. In fact, even
starting from a random point there is a good chance to meet the intersection
quickly.

6 Implementation

The proposed approach has been implemented in the DALI language. DALI
([23,24,25,26,27]) is an Active Logic Programming language designed for exe-
cutable specification of logical agents. DALI is a prolog-like logic programming
language with a prolog-like declarative and procedural semantics [28]. In or-
der to introduce reactive and proactive capabilities, the basic logic language
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has been syntactically, semantically and procedurally enhanced by introducing
several kinds of events, managed by suitable reactive rules. In this section, we
present a snapshot of the code developed for the implementation of the above-
discussed negotiation algorithm. The implementation is quite straightforward,
as the proposed algorithm basically consists in communication and logical rea-
soning, which find a natural and direct implementation in DALI.

All constraints (and therefore the representation of the negotiation area) as
well as the margin δ to be used during the interaction are stored in the agent
profile and are loaded at runtime. This makes the implementation elaboration-
tolerant w.r.t. changes to the negotiation parameters. The proposals of the
counter-part is received by the agent by means of a DALI reactive rule: offerE (X,
Y, A) :> once(reconsider (X, Y, A)). Whenever an agent receives an offer it
checks if the offer is included in the negotiation area and responds accordingly,
by accepting the proposal. This is implemented via the following rule:

reconsider(X,Y,A):- area(X,Y),!,clause(agent(A),_),

messageA(clientnew,send_message(accept_pr(X,Y,A),A)).

Otherwise, by using the rule call random semicycle(X1, Y 1, X, Y ), the agent
selects a (random) point of the semi-circumference closer to the opposer’s pro-
posal, provided that it belongs to the negotiation area and does not belong to
the projection areas constructed so far. After that, the agent sends a message
containing the counter-offer by means of an action of the kind messageA. Fi-
nally, it updates its knowledge base by adding the new constraints that represent
the projection areas and by updating the last four proposals (both made and
received).

reconsider(X,Y,A):- out_of_area(X,Y),(Az >X,Bz>Y,out(_,_,_,_,X,Y)),

call_random_semicycle(X1,Y1,X,Y),

messageA(clientnew,send_message(new_offer(X1,Y1,A),A)),

clause(agent(A),_), update_offer1(offer1(_,_),Ac,Bc),

update_offer2(offer2(_,_),X,Y),update_proposal1(proposal1(_,_),Az,Bz),

update_proposta2(proposta2(_,_),X1,Y1),clause(offers(L),_),

append([Y],L,L1), append([X],L1,L2),assert(offers(L2)),

retractall(offers(L)),clause(proposals(Lp),_),append([Y1],Lp,L3),

append([X1],L3,L4),assert(proposals(L4)),retractall(proposals(Lp)).

As an example of the pro-active capabilities of the agent, we show how the
agent checks whether a point is included in the projection areas. This check
employs an internal event, represented by a pair of DALI rules. The conclusion
of the first rule is automatically attempted from time to time. If at some point
it becomes true (i.e., it can been proved), possibly returning some values for the
output variables, then the (instantiated) body of the second rule (the reactive
one) is executed.

update_history(X,Y):- offerP(X,Y,_).

update_historyI(X,Y):>
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[_,_,Xo2,Yo2,Xo1,Yo1|L1]=Lo,[_,_,Xp2,Yp2,Xp1,Yp1|L2]=Lp,

new_condition(X,Y,Xp2,Yp2,Xo2,Yo2,Xp1,Yp1,Xo1,Yo1),

update_constraints([Xo2,Yo2,Xo1,Yo1|L1],[Xp2,Yp2,Xp1,Yp1|L2],X,Y).

new_condition(X,Y,X1,Y1,X2,Y2,X3,Y3,X4,Y4):-

X4>X1,X2>=X4,Y2>=Y4,X1=X3,!,X1>=X,

coeff2(X1,Y1,X2,Y2,X3,Y3,X4,Y4,M2),Cost2 is Y4-(M2*X4),(M2*X)+Cost2>=Y,

coeff3(X1,Y1,X2,Y2,X3,Y3,X4,Y4,M3),Cost3 is Y2-(M3*X2),Y>=(M3*X)+Cost3.

Here, update historyI(X, Y )) is an internal event that is triggered each time
the agent has received a new offer (recorded as a past event, suffix P ). The proce-
dure new condition(X, Y, Xp2, Y p2, Xo2, Y o2, Xp1, Y p1, Xo1, Y o1) builds the
new projection (by constructing the new constraints) while update constraints
([Xo2, Y o2, Xo1, Y o1|L1], [Xp2, Y p2, Xp1, Y p1|L2], X, Y ), updates the knowl-
edge base of the agent by adding new constraints.

7 Concluding Remarks and Future Work

The extension proposed in this paper to the original approach by Marco Cadoli is
based upon adopting a heuristic algorithm which considers not only the vertices
as possible offers but also internal points of the feasibility regions. By comparing
the proposed algorithm with the one reported in [9] we conclude that our work
overcomes some problems, even though in our case the number of interactions is
no more proportional to the number of vertices. In fact, the proposed algorithm
has no requirements on the nature of the negotiation spaces (i.e., we relax the
limitation to polyhedric areas). The new approach can be usefully integrated
with the basic approach in many ways, thus trying to keep the efficiency of
vertex-based interaction whenever possible, and exploiting the additional flexi-
bility when deemed useful. The proposed extension in general produces a more
accurate solution, as it is able to consider all points included in the negotiation
areas. The performance of the extended algorithm is worse in case of negotia-
tion spaces with a limited number of vertices, but is better, in average, in the
opposite case (high number of vertices).

Even though the algorithm complexity, in some extreme cases, can be consid-
ered high we claim that the granularity of the search space can justify this fact.
Moreover, the additional complexity is a reasonable price to pay for the extra
features and for the possibility of other extensions. In fact, the approach can
be further extended: we may add new protocols, objective and utility functions.
We have been studying the possibility of considering as negotiation spaces not
only convex areas but also non-convex ones, by converting a non-convex region
into a convex one and by excluding all points that are not part of the original
negotiation area [29].
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Abstract. Defeasible argumentation systems are used to model commonsense
and defeasible reasoning. Current argumentation systems assume that an argu-
ment that appears to be justified also satisfies our expectation in relation to the
correct outcome, and, vice versa. In this paper we present an alternative represen-
tation of defeasible rules, tailored for argumentation based defeasible reasoning,
that is free of such an assumption. We provide a mapping between our argumen-
tation system and Dung’s abstract argumentation theory to show its efficacy.

1 Prelude

Arguments and Argumentations, as far as human activities go, are quite ancient. Argu-
ments are used to draw conclusions that are supported by available premises. Argumen-
tation, on the other hand, is the interactive process used to determine what conclusions
are to be ultimately drawn when multiple arguments are available that directly or in-
directly, support or oppose a conclusion. From the point of view of argumentation,
arguments are defeasible – a seemingly good argument can fall prey to an opposing
argument if the latter is justified, and remains so. This aspect of argumentation, that
it deals with arguments that are only prima facie justified, is exploited in connecting
argumentation theory with defeasible reasoning.

The defeasibility of reasoning is captured in different ways in different frameworks.
Very roughly, in the framework of default logic it is captured by assuming that the rules
are defeasible, allowing for alternative extensions depending on which set of defaults
get activated.1 Often rules of thumb such as specificity [19,10,25],2 are used to break
the tie in case of conflicting rules. In circumscription [14], it is achieved by minimizing
the extension of “abnormal” predicates. In the case of argumentation, it is achieved by
allowing some arguments to defeat other arguments.

In this paper we introduce an alternative representation of defeasible rules that is
context sensitive. Effectively, we assume that a mechanism exists that given an arbitrary
rule, tells us whether in a given situation the rule is applicable. As already mentioned

1 Informally, a default rule is of the form: If A is known as a matter of fact, and B can be
assumed without courting inconsistency, then C may be inferred. Thus, given a knowledge
base, the rule itself tells, as it were, whether or not it can be “fired”.

2 Given two rules, applicable to a given context, the one that makes use of more specific infor-
mation takes precedence over the other. Thus, if we know Tweety is a penguin, and given the
rules that birds in general fly and penguins don’t, we should conclude that Tweety does not fly.

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 193–213, 2008.
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there are already a few representations of defeasible rules such as Reiter’s default rules
or McCarthy’s circumscription rules. However, most of the proposed rules are context
independent, in the sense that the condition that makes a rule applicable is context in-
dependent. In this paper we refer to these context independent (abnormality) conditions
conclusive defeaters of a rule.

In the next section we provide a short background of argumentation systems, setting
up the context for two running examples that we use as our motivation. In section 2
we elaborate on how these defeasible rules are represented. In section 3 we develop
an argumentation theory based on the attack and reinstatement relationships between
arguments. In section 4 we discuss the semantics of our argumentation system by pro-
viding a translation from our system to Dung’s abstract argumentation framework. We
also argue that in case of conclusive defeaters, based on the chosen semantics our ar-
gumentation system give the same outcome as systems based on conventional default
rules. Finally, we conclude with a short summary.

2 Background

From the outset we assume a propositional language L composed of countably many
literals (both positive and negative) and a set of defeasible inference rules R. Techni-
cally a rule is a relation between a set of literals called premises and another literal
called a conclusion.

Notation. An inference rule, d, is represented as d : a1, a2, ..., an → a where
a1, a2, ..., an, a ∈ L. We call bd(d) = {a1, a2, ..., an} the body of the rule,
and, hd(d) = a its head.

An argument is usually defined as a sequence of inferences from known premises (the
contingent knowledge) to a conclusion. Alternatively it is represented as an inference-
tree-structure embedded in the premises, or, as a pair of premises and conclusion. We
use all these three representations dictated by convenience.

We note that unlike the truth-based classical logical systems, argumentation systems
are founded upon justification [15]. An argument is accepted in the absence of a justi-
fied counter-argument. The counter-argument against an argument is called the attacker
[9] or the defeater [16] of an argument. We will be using the terms “defeat” and “at-
tack” pretty much interchangeably. We say that a defeated argument is reinstated if its
defeater gets defeated by an accepted argument.

There are generally two types of defeat relationship between arguments, Rebuttal
and Undercutting. Rebutting defeat is a symmetric notion. Two arguments that have
contradictory conclusions are each other’s rebutting defeater. In this case neither of the
arguments is outrightly defeated, hence, in some literatures they are assigned the status
defensible [28] or provisionally defeated [17]. On the other hand, an undercutting de-
feater is an argument that attacks the underlying reasoning of the argument under attack.
Undercutting attacks are not necessarily symmetrical. An argument that is defeated by
an undercutting attack of a justified argument is outrightly-defeated or overruled.

In general, accepted arguments in argumentation systems that are used for common-
sense reasoning are subject to two general constraints:
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1. An acceptable argument (including its conclusion) should meet our expectation in
regard to the available information,

2. An acceptable argument should be justified within the logic of the employed argu-
mentation system.

Constraints (1) and (2) imply that if our expectation says that an argument is accept-
able then the argument either has no defeaters, or, from our body of knowledge we are
able to construct other justified arguments that defeat all its defeaters, or, there are other
arguments that independently support the same conclusion.

We offer two motivating examples to address the constraint that this requirement
puts on the body of knowledge. In the first example we advocate the need to expand
the notion of reinstatement of argument to allow arguments to be reinstated without
defeating the defeater. In the second example we argue the need to allow asymmetrical-
provisional-defeat relationship. We use the result of these examples to introduce the
representation of defeasible rules that we advocate. We argue that our representation
while simple, provides a more explanatory model of a real world situation. Simplicity
of the rules allows an argumentation system meet one of the main objectives of argu-
mentation reasoning, namely to provide an explanation in line with human reasoning
[22,23,26]. We note in passing that since we have not yet introduced our own definition
of an argument, in the following examples, we represent arguments as sequences of
inferences from premises, standard in the literature. We also depict arguments as trian-
gles where the base represent premises and top vertex conclusion of the argument. The
attack relationship is shown by an arrow form attacking to the attacked argument.

Example 1. Imagine a real world system, involving, for instance, secretion of hormones
and enzymes in presence of other hormones and enzymes. Let us assume that states of
this system are all describable in terms of atoms a, b, c, v, x, y, z where a, b, c mnemon-
ically stands for enzyme A, enzyme B, enzyme C is present in the system, and , v, x,
y, z for hormone V , hormone X , hormone Y , and hormone Z is present in the system.

Tables 1(a) and 1(b) represent results of careful experimentation for two alternative
scenarios. Each table has two sections: Known Facts and Can be Believed. For instance,
the row one in Table 1(a) states that if all we know is that the enzyme A is present then
we are allowed to believe that hormone Z is present, as well. Furthermore, the only
difference between the two scenarios is that in scenario (a) all hormones are detectable
whereas in scenario (b) the hormone Y is not detectable. Our question is: Can we model
both these scenarios in terms on an argumentation system?

Furthermore, the knowledge if all we know is that enzyme A is present then we are
allowed to believe hormone Z is present too is interpreted as presence of enzyme A is the
primary explanation for secretion of hormone Z (Enzymes generally act as catalysts),
and is represented in terms of defeasible inference rule a→ z. The second row of table
1(a) is interpreted as the presence of hormone Y acts as a suppressant for secretion of
hormone Z . In argumentation terms, the presence of hormone Y is therefore interpreted
as an undercutting defeater for the reasoning: from a and a→ z to z.

The result of construction of such defeasible inference rules and their associated
undercutting defeaters is given in Table 1(c). It can be shown that the observed system,
as expressed in Table 1(a) can be modeled in terms of an argumentation system using
the rules in table 1(c). An argumentation system carries as follows:
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Table 1. (a) y: detectable. (b) y: not detectable. (c) Rules in 1(a) and 1(b).

(a) (b) (c)
Known Can be
Facts Believed

a a z
a y a y
b b y
a b a b y
a b x a b x z
a b c a b c x z
. . . . . . . . . .

Known Can be
Facts Believed

a a z
b b
a b a b
a b x a b x z
a b c a b c x z
. . . . . . . . . .
. . . . . . . . . .

Visualization of Tables 1(a), 1(b)
in terms of defeasible rules

Table Name Rule Defeater

Table 1(a)
d1 a → z y
d2 b → y x
d3 c → x

Table 1(b)
d′
1 a → z b

d′
2

d′
3 c → x

1. An argument is justified if it has no defeater, or, all its defeaters are defeated by
justified arguments,

2. An argument that has a justified defeater is overruled,
3. Only the conclusions supported by justified arguments are justified.

In the second scenario we assume that the hormone Y is not detectable. The result
of experimentation for this scenario is shown in Table 1(b). Based on Table 1(b), the
presence of enzyme B now acts as the undercutting defeater for the rule a → z. The
construction of defeasible rules for Table 1(b) is given in Table 1(c). We would now
like to ask the same central question could we still model this system in terms of an
argumentation system?

The answer this time is far from obvious. For instance, if the contingent knowledge
is {a, b, c}, i.e. the enzymes A, B, C are known to be present, are we allowed to believe
in presence of hormone Z?

The arguments3 in relation to the secretion of hormone Z are:

1. enzyme A is present represented as arg0 = 〈a〉.
2. enzyme A is present and since enzyme A is the reason for secretion of hormone

Z , so hormone Z is present represented as arg1 = 〈a, a→ z, z〉.
3. enzyme B is present represented as arg2 = 〈b〉.
4. enzyme C is present and since enzyme C is the reason for secretion of hormone

X , so hormone X is present represented as arg3 = 〈c, c→ x, x〉.
The only attack relationship is arg2 undercutting arg1 i.e. presence of enzyme B un-

dercuts the reasoning a→ z. Therefore, arg1 is defeated by arg2 (fig. 1). Furthermore,
since arg2 has no defeater (note: arg2 is an observation so cannot have any defeaters)
arg1 stays defeated. Yet, the table 1(b) indicates that despite the presence of enzyme
B, if enzyme C is present we are allowed to believe that enzyme A results in secretion
of hormone Z . As it can be seen in fig. 1, the problem lies in arg3 being unable to rein-
state arg4. The only way to reinstate arg4 is to defeat arg2. But, as it is already noted

3 An argument is represented as a sequence 〈s1, s2, ..., sn〉 of statements where the last state-
ment, sn is the conclusion. The sequence 〈sn〉 is an argument with an empty set of premises
representing a single fact.
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b a
1

arg
arg arg

Fig. 1. Arguments interaction for the scenario ({a, b, c} is given facts) in example 1

arg2 is in essence an observation and cannot be defeated. It is as if there is a miss-
ing argument arg4 as shown in figure 1 by dotted lines (arg4 can be constructed from
table 1(a)) where arg4 attacks arg1 and arg3 reinstates arg1 against this attack.

To fix this problem we could introduce another defeasible rule (a, c) → z to inde-
pendently derive z. However, (a, c) → z is an artificial construct; the explanation for
belief in z lies only in a. Hence, unless we introduce this rather artificial rule, our argu-
mentation system will fall short of matching the real system. To sum up, we would like
to allow arguments to be reinstated through context (not necessarily by attacking the
attacker). We will also use the idea of missing arguments in our translation to Dung’s
Argumentation framework.

Our next example is based on one used in [16]. The idea is, under normal circum-
stances, an object that appears to be red can be taken to be red; however one has to
be more cautious if she knows that the object in question is illuminated by a red light,
whereby red-lighting acts as an undercutting defeater against the argument supporting
the object being red based on its appearance. Contrary to what is taken for granted
in the current argumentation systems, this example shows that undercutting attacks by
acceptable arguments may result only in provisional defeat.

Example 2. In this example we argue that the common representation of this scenario
in terms of an argumentation system, fig. 2(a), does not yield the expected outcome.
However, an alternative representation, fig. 2(b), gives the expected outcome. We take
the contingent knowledge and rule base to be {Ared, Lred} and {Ared → Ired} where
A stands for appears, I for is and L for lighting.

The argument for object is red in both depiction of this scenario, fig. 2(a) and 2(b), is
A1 = 〈Ared, Ared → Ired, Ired〉. In the first representation, fig. 2(a), the argument

A2A1 A1 A3

A red L red

Ired
Lred I red I white

A red A L red,red

Fig. (a) Fig.  (b)

Fig. 2. Argumentation representation of the two alternative scenarios in example 2
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A1 is undercut by the argument A2 = 〈Lred〉, and, consequently Ired gets status
overruled [16]. Yet, the expected answer is Ired: defensible (defensible is also referred
to as provisionally defeated) as object is either red or white.

In an alternative representation where rule (Ared ∧ Lred)→ Iwhite (or alternatively
(Ared ∧ Lred) → ¬Ired) is added to the rule base, the resulting argument interaction,
fig. 2(b) gives the expected outcome, i.e Ired: defensible. In fig.2(b) the two arguments
A1 and A3 = 〈Ared, Lred, (Ared ∧ Lred) → Iwhite, Iwhite〉 rebut each other leading
to both arguments being provisionally defeated. The argument for object being white
in fig. 2(b), shown by dotted lines, could again be viewed as a missing argument in the
first depiction of this scenario. We therefore would like to allow undercutting attacks
(or asymmetrical attacks in general) result in provisional defeat.

We take an inference rule to be like a black-box4 with some underlying explanation
similar to the notion of conveyance given in [13]. In every rule, antecedents are con-
sidered as the primary reason for belief in the consequent. In addition, there are other
ancillary reasons that either strengthen or weaken a given rule.

In relation to how a rule works a justification function is provided that describes the
conditions under which a rule gets activated. The justification function maps a given
context (represented as a set of literals) into the operability space {0, 1/2, 1}, the val-
ues in question signaling, respectively, whether the rule is acceptable right away, is
provisionally defeated, or is outright defeated.

As formal theories of argumentation get matured there is a growing interest to adapt
these theories for modeling various forms of human reasoning. We believe our approach
is in line with this goal. One approach is modeling of the natural language argumenta-
tion schemes [20,22,23]. This approach involves:

1. Characterization and classification of stereotypical patterns of reasoning. The char-
acterization and classification of stereotypical patterns of reasoning is theorized in
form of argumentation schemes [23].

2. The translation of formal arguments into natural language dialectic arguments [22].

In order to adapt formal argumentation theory to model argumentation schemes, the pro-
posed approaches extend the current theory [1,29]. Amgoud and Cayrol [1] propose a
preference-based argumentation framework that augments preferences among premises
with the attack relationship in Dung’s framework, while Wooldridge et al. [29] propose a
hierarchical meta-logical argumentation framework. Our approach, too, is an extension
of current argumentation theory with a central theme that each inference rule should have
an underlying explanation. Explanations are a supposition in argumentation schemes
[13] and a requirement for translation into natural language arguments. Argumentation
schemes are a top down approach, while our approach is a bottom up approach.

3 Defeasible Reasoning System

By a defeasible reasoning system we mean a pair 〈L,R〉 where L is formal language,
andR is a set of inference rules [6].

4 A black-box view of inference rule allows for an element of intentionality in the rules [4] as
longs as there is an underlying explanation or a notion of conveyance.
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In the last section we stated that if p → q is an inference rule then our belief in p
is the primary reason for our belief in q and the circumstances affecting our belief in
applicability of p→ q are the ancillary reasons.

Consider a rule d. If a context/circumstance do not affect d then d is applicable
by default. However, if the circumstance affects the applicability of d then we should
determine its effect. We represent each circumstance Ci as a set of literals. Suppose
C1, C2, ..., Cn are the circumstances that affect applicability of d. Now, not all literals
in a circumstance Ci affect the applicability of d. Let for each circumstance Ci, its sub-
set Ji ⊆ Ci, be the set of literals that affects rule d. Then J =

⋃n
i=1 Ji is the set of all

literals that affects the applicability of rule d. We would therefore like to define a justifi-
cation function for defeasible rule d by partitioning ℘(J) into three equivalence classes
(equivalence w.r.t. the degree of acceptability of the rule d). The degree of acceptability
of the rule d is represented by values in the operability space {0, 1/2, 1}.

3.1 Defeasible Inference Rule

Accordingly, we assume every rule d is associated with three families of Td,Ud, and
Fd of sets of literals such that:

1. Td, Ud, and Fd partition a set ℘(Jd) where Jd is called justification domain of
d. This assumption says that the three families, Td,Ud and Fd jointly exhaust all
possible “observable states” that determine applicability of rule d.

2. x and ¬x are not both in Jd.
3. if a ∈ bd(d), then a �∈ Jd. The antecedent of a rule must already be believed for a

rule to be fired. Therefore, there is no special need to have the antecedent in Jd.

Definition 1. Let d be a rule with the three associated sets, (Td,Ud,Fd) 5, given above.
The justification function of a rule d is a function Hd : ℘(L) −→ {0, 1/2, 1} where

Hd(X) =

⎧
⎨

⎩

1 if Rd(X) = ∅ or Rd(X) ∈ Td

0 if Rd(X) ∈ Fd

1/2 if Rd(X) ∈ Ud

and the relevance factor of X w.r.t. the rule d, denoted Rd(X), is the largest subset of
X that is also a member of (Td ∪Ud ∪ Fd) i.e. Rd(X) = X ∩ Jd.

The parameter X is intended to represent a circumstance. A tabular representation of jus-
tification function is called justification matrix of the rule. It can be seen that if a context
has no relevance to the applicability of a rule then the rule is applicable. In other words,
if Rd(X) = ∅ then Hd(X) = 1. We next define what it means to say whether a rule is
accepted or defeated, as well as, classifying rules based on the justification function.

Definition 2. Let A ⊆ L be a set of sentences, and d ∈ R a rule.
1. A is said to

(a) accept d iff Hd(A) = 1.
(b) outright defeat d iff Hd(A) = 0.
(c) provisionally defeat d iff Hd(A) = 1/2.
(d) conclusively defeat d iff Hd(A) = 0 and if A ⊆ B then Hd(B) = 0.

5 While determining Td, Ud, and Fd require some effort, it is no more arduous than assigning
strength to arguments. However, in case of Justification Function there is the advantage of
having a point of reference, i.e. the circumstance.
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2. A rule d : a1, a2, ..., an → a inR is a normal rule iff {¬a} conclusively defeats d.
3. A normal rule d ∈ R is a default rule iff Ud = ∅, and, every A ∈ Fd conclusively

defeats d. In addition we call Fk
d = {A | A is the minimal set in Fd} the

justification-base of default rule.
4. A rule d ∈ R is an indefeasible rule iff Fd = Td = Ud = ∅.

The terms outright-defeat and provisional-defeat are adopted from [17,18]. An indefea-
sible rule d is always acceptable, i.e. Hd(X) = 1 is always true. This makes indefeasi-
ble rules synonymous to the material conditionals or the necessary knowledge in other
argumentation systems [10,25].

Conclusive defeat is an important property that is implicitly assumed in other argu-
mentation systems. In a Conclusive defeater the defeat condition is context independent
viz. a rule is always inapplicable in presence of a conclusive defeater.

Conclusive defeater is used to define normal rules. A normal rule is always defeated
in light of contrary evidence to its conclusion. Normal rules allow: 1) implicitly cap-
ture rebuttal attacks, and 2) ensure no two arguments with contradictory conclusions
are simultaneously justified. Default rules above are a special class of normal rules. In
default rules all defeat conditions are conclusive defeat conditions. It can be argued that
within our semantics default rules would be equivalent to Reiter’s default rules.

Observation 1. Given any set of sentences A ⊆ L and rule d ∈ R
1. Hd(A) has one and only one value.
2. A normal rule d with Ud = ∅ is a default rule iff no A in Fd is a subset of B in Td.
3. If d is a default rule and Fk

d its justification-base then:
(a) for every A ∈ Fk

d , A is either a singleton or A = {a | a ∈ B and B ∈ Td}.
(b) for X ⊆ L, Hd(X) = 0 iff ∃A ∈ Fk

d s.t. A ⊆ X .

The obs. 1.1 is the first step to ensure that the proposed argumentation theory is well-
defined. The obs. 1.2 and 1.3 draw a parallel between default rules (as defined in this
work) and conventional default rules e.g. Reiter default rules. Obs. 1.3 states that if a
context includes any member of Fk

d then rule d is in applicable. Hence, one can say that
members of Fk

d are similar to negation of grounded justification assumptions in Reiter
default rules. For instance, if d : b→ f and Fk

d = {¬f, p, e}, then the equivalent Reiter
default rule is dr = b:f,¬p,¬e

f (as shown in example 3).

Example 3. (the standard example in non-monotonic reasoning) A Bird can usually fly
unless it is a penguin or an emu. Let literals b, f, p, e mnemonically stand for Tweety
is a bird, can fly, is a penguin, is an emu. The example can be represented as a defeasible
rule d: b→ f is a default rule with the following justification function.

Td = Ud = ∅
Fd = {{p}, {e}, {¬f}, {p, e}, {p,¬f}, {e,¬f}, {p, e,¬f}}
Fk

d = {{p}, {e}, {¬f}} .

Example 4. Sam’s friends usually like ethnic foods unless they are hot and spicy.
Though, Thai green curry is hot and spicy, they still like it. Let the literals sf, ef, hs, tg
mnemonically represent Sam’s friends, like ethnic food, food is hot and spicy, and food
is Thai green curry. Sam’s friends usually like ethnic foods could therefore be repre-
sented as, d: sf → ef with the justification function:
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Ud = ∅ Td = {{tg}, {hs, tg}}
Fd = {{hs}, {¬ef}, {¬ef, tg}, {¬ef, tg, hs}}.

Example 5. The behavior of the Table 1(b), to the extent it is specified, can be captured
by assuming two inference rules (d1 is a normal rule and d2 is a default rule):

d1 : a→ z, and
d2 : c→ x,

where the respective justification func-
tions (see Table 2) are determined by:

Td1 = {{x}, {x, b}}
Ud1 = ∅
Fd1 = {{b}, {¬z}, {¬z, b},
{¬z, x}, {¬z, x, b}}
Td2 = ∅
Ud2 = ∅, and
Fd2 = {{v}, {¬x}, {v,¬x}}.

Tables 2. The justification matrices of infer-
ence rules for Table 1(b)

d1 : a→ z
Td1 Ud1 Fd1

(1) (1/2) (0)
x b

x, b ¬z
¬z, b
¬z, x
¬z, x, b

d2 : c→ x
Td2 Ud2 Fd2

(1) (1/2) (0)
v
¬x

v,¬x

3.2 Argument

We define an argument by a set of contingent facts, a set of inference rules and con-
clusion of the argument. This definition of an argument is in line with those given in
[25] and [27]. Though, unlike the latter we do not include the length and the size of an
argument as its properties. The size of an argument might indicate its strength [26], but,
our position is that information regarding strength of an argument should be within its
inference rules.

Definition 3. Let D ⊆ R, A ⊆ L and a ∈ L, An argument Å is a tuple 〈A, D, a〉 such
that there exists a sequence of rules d1, . . . , dm ∈ D where:

1. a = hd(dm), and
2. ∀di, 0<i≤m, either

(a) bd(di) = ∅ , or
(b) ∀aj ∈ bd(di), either aj ∈ A or there exists dk, 0<k<j such that aj = hd(dk).

3. No proper sub-sequence of A′ ⊂ A and D′ ⊂ D satisfy the two conditions above.

We denote A, D and a by AÅ, DÅ, aÅ; and call AÅ the evidence and aÅ the con-

clusion of the argument. Furthermore, we say an argument Å2 = 〈A2, D2, a2〉 is a
subargument of Å1 = 〈A1, D1, a1〉, denoted by Å2 � Å1, if and only if D2 ⊆ D1.

In our system, arguments interact with other arguments indirectly through context.
Arguments create the context in which other arguments are accepted or rejected. The
natural contribution of an argument to a context is its conclusion. On the other hand,
when we accept an argument we implicitly accept all its subarguments. Therefore, in a
set of arguments, the effective contribution of an argument to context is the conclusions
of all its subarguments.
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The set Cn(Å) = {x ∈ L | x = aÅi

, Åi � Å} is called the consequences of the

argument Å. If A is a set of arguments then Cn(A) =
⋃

i Cn(Åi) where Åi ∈ A.
We are now in a position to extend the concept of justification function to that of

defeasible arguments. The justification function of an argument is defined by applying
the weakest link principle to its inference rules.

Definition 4. Given a defeasible argument Å = 〈A, D, a〉, its justification function
GÅ : ℘(L) −→ {0, 1/2, 1} is defined as: GÅ(X) = mind∈D(Hd(X)).

Furthermore, since we deal with argument sets we need to have a justification func-
tion w.r.t. a set of arguments. Moreover, it can be seen that the meaning of HÅ(X) is
preserved whether X is a set of sentences or consequences of a set of arguments.

Definition 5. Let Å be an argument and X ⊆ A a set of arguments. The (induced)
justification function of an argument Å is defined as HÅ(X ) : ℘(A) −→ {0, 1/2, 1},
HÅ(X ) = GÅ(Cn(X )) where GÅ is the justification function of Å.

Observation 2. Given a defeasible reasoning system (L, R), X ⊆ L, A a set of argu-
ments and Å = 〈A, D, a〉 an argument in (L, R):

1. GÅ(X), and HÅ(X) have one and only one value.
2. if B ⊆ X = Cn(A) conclusively defeats d ∈ D then HÅ(A) = GÅ(X) = 0.

4 Defeat and Reinstatement Relationships

The defeasiblity of arguments is captured by Defeat Relationship between arguments.
From presented defeat relationships, we are interested in undercutting attacks and rebut-
tal attacks. We capture rebuttal attacks through defeasible property of normal inference
rules, without explicitly defining rebuttal attacks.

Unlike most argumentation systems where defeat is a direct binary relationship be-
tween individual arguments, in this system a group of arguments can cause or remove
the defeat-condition for an argument, indirectly, via context. This property makes defeat
a binary relationship between a group of arguments and an argument.

The phenomenon of separate arguments with same conclusion reenforcing each other
is called accrual of arguments. Whether accrual of arguments is a valid argumentation
concept or not is debatable [18]. Nonetheless, since our defeat and reinstatement re-
lationship is between a group of arguments and an argument the intended meaning of
accrual of arguments [26] can be easily represented in this model of defeat relationship.

In a set of argumentsA, context is set by consequences (conclusions of all subargu-
ments) of all arguments in A. In order to show an argument set Ac attacks an argument
Å in A, we need to establish given an initial context Cn(A′) where A′ ⊂ A, addition
of Cn(Ac) results in Å being defeated. The notion of defeat is connected to a decrease
in degree of acceptability of Å that is a decrease in HÅ(A). Accordingly, if HÅ(A′)
is reduced to 0 it is said Ac outrightly defeats Å, and, if reduced to 1/2 provisionally
defeats Å. In the same token, in order to reinstate Å, Ac (or {Å1}) has to increase the
degree of acceptability of Å.
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Fig. 3. A schematic of arguments interaction

An example of attack and reinstate-
ment is shown in Fig. 3. The large arrows
from arguments to context show contri-
bution of arguments (their consequences)
to the context. Let assume an initial sce-
nario where A′ = {Å, Å1}, and Å is ac-
ceptable w.r.t. A′. If we add Å2 to A′ a
portion of Cn(Ac1) ⊂ Cn(A′) where
Ac1 = {Å1, Å2} attacks Å (shown by a
circle). Yet, if add Å3 to the mix, Å be-
comes acceptable w.r.t. the new argument
setA. It is as if a portion of context ofAc2

= {Å2, Å3} reinstates Å againstAc1.

Definition 6. Let A, Ac = {Å1, Å2, ..., Ån} ⊆ A be sets of arguments, and Å ∈ A an
argument. We will say that the argument set Ac defeats the argument Å in A
1. outright iff ∃A′ ⊆ A s.t. Ac ⊆ A′ and HÅ(A′) = 0, and Ac is a maximal subset

of A′ where HÅ(A′ \ {Åj}) �= 0 for all Åj ∈ Ac,

2. provisionally iff ∃A′ ⊆ A s.t. Ac ⊆ A′ and HÅ(A′) = 1/2, andAc is a maximal

subset of A′ where HÅ(A′ \ {Åj}) = 1 for all Åj ∈ Ac.
3. Furthermore, we will call:

(a) Ac a defeat-scenario for Å in A.
(b) The argument set A′ \ Ac the defeat-context of the defeat relationship.
(c) A defeat-scenarioAc is a conclusive-defeater of Å in A iff for every A′′ ⊆ A

if Ac ⊆ A′′ then HÅ(A′′) = 0. IfAc is conclusive defeater in any arbitraryA
then it is called TConclusive-defeater of Å 6 . If Ac outrightly defeats Å and
is not a conclusive defeater, we called it a non-conclusive-defeater.

In definition above, the condition HÅ(A′) = 0 might have been enough to say A′

defeats Å. However there is a section of A′ that is responsible for defeat and there is a
section of A′ that acts as the context for a particular defeat scenario. We name the first
part the defeater and the second part the context for defeat. Now we are in a position to
show the following results.

Observation 3. Let A,A′ be two argument sets, A ⊆ A′, Å, Å
′ ∈ A, Å a subargument

of Å
′
, andAc a defeat-scenario for Å in A then:

1. Ac is also a defeat-scenario for Å in A′.
2. if Ac is a conclusive-defeater of Å thenAc is also a conclusive defeater of Å

′
in A.

3. If D, the set of all rules of arguments in A, is comprised of only indefeasible and
default rules then all defeaters of arguments in A are TConclusive defeaters where
the context of defeat is ∅. In addition, if both Ac is the minimal set of arguments
where F ∈ Fk

d , F ⊆ Cn(Ac), and, F is singleton set, then Ac is singleton set.

6 ’T’ for True in every argument set or universal defeater.
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4. If Cn(Ac) conclusively defeats at least one defeasible rule in argument Å then Ac

is a conclusive defeater of Å (though, the reverse is not necessarily true.)

Observations 3.3 and 3.4 are continuation of our attempt to draw a parallel between
argumentation systems that are built upon conventional default rules and this argumen-
tation system. In most argumentation systems Defeat relationship is a static relationship.
Observation 3.1 states that the defeat relationship between a defeat scenario Ac and an
argument Å is static. However, this claim is contrary to our original claim that defeat
relationship is subject to context. The reason for this apparent conflict is we want to
keep the proposed argumentation system in line with conventional argumentation the-
ory. In order to account for the influence of context over defeat relationship we define a
reinstatement by context relationship.

In current argumentation systems an argument is reinstated only when its defeater
is defeated. In our system arguments can reinstate other arguments by context without
defeating their defeaters. The parts 1(a) and 1(b) in the following definition are the
conventional method of reinstatement whereas parts 1(b) and 2(b) are exclusive to our
system representing reinstatement by context. It can be seen that in case of conclusive
defeat scenarios there is no reinstatement by context.

Definition 7. LetA, Ac1={Å11, Å12, . . . , Å1n} ⊆ A andAc2={Å21, Å22, . . . , Å2m} ⊆
A be three argument sets, argument Å ∈ A, andAc2 be a defeat scenario for Å in A.

1. Ac1 outrightly reinstates Å in A against Ac2 iff either:
(a) ∃Åi ∈ Ac2 such that Ac1 is an outright-defeat-scenario for Åi in A, or
(b) both

i. ∃A′ ⊆ A such that Ac1, Ac2 ⊆ A′; HÅ(A′) = 1 and

ii. A′ \ (Ac2∪{Åj}) is a defeat-context forAc2 defeating Å for all Åj ∈ Ac1.
2. Ac1 provisionally reinstates Å in A against Ac2 iff: Ac is not an outright-defeat-

scenario for any argument Åi ∈ Ac2 and either:
(a) ∃Åi ∈ Ac2 s.t. Ac1 is a provisional-defeat-scenario for Åi ∈ Ac2 in A, or
(b) both

i. ∃A′ ⊆ A such that Ac2,Ac1 ⊆ A′; HÅ(A′) = 1/2, and

ii. A′ \ (Ac2 ∪ {Åj}) is a defeat-context forAc2 outright-defeating Å, ∀Åj ∈
Ac1.

We define an argumentation theory comprised of a set of arguments and all types of
attack and reinstatement relationships given above. In order to interpret this argumenta-
tion theory into a Dung’s Argumentation framework, we require to identify our system
with all classes of attack and reinstatement relationships. The reason for this require-
ment is given in the next section.

Definition 8. Given a defeasible reasoning system (L,R), an argumentation theory
is a tuple AT = (A,⊗,⊕) where A is a set of arguments constructed in (L,R), and
⊗,⊕ are the defeat and reinstatement relationships between a set of arguments and
an argument as defined above. Furthermore, given (A, D) in (L,R), if A is all the
possible arguments that can be constructed in (A, D) then the argumentation theory AT
= (A,⊗,⊕) is called an induced argumentation theory from (A, D). In addition, AT
is called context insensitive if all defeat scenariosAc ⊆ A are conclusive defeaters.
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Observation 4. Let AT = (A,⊗,⊕) be an argumentation theory and D the set of all
rules in all arguments in A. Then, if D is comprised of only indefeasible and default
rules, AT will be context insensitive.

The next example is to show attack and reinstatement relations at work. This example
is a modified version of example given in [25,10]. This example also shows the role
of primary and ancillary reasons in an inference rule. We continue this example in
example 7 where we show which arguments are justified and which are overruled.

Example 6. Let L = {a,¬a, s,¬s, r,¬r, c,¬c, e,¬e} with the following readings:

a : Tom is a mature adult; s : Tom is a student;
r : Tom has very rich parents; c : Tom has a car; and e : Tom is employed.

All the inference rules are normal, constituting

R = {d1 : s→ ¬a, d2 : s→ ¬e, d3 : a→ ¬s, d4 : a→ c, d5 : a→ e,
d6 : c→ e, d7 : ¬e→ ¬c, d8 : r → c, d9 : e→ c}.

The rules d1, d3, d8, and d9 are all default rules with no other defeater except the
negation of their consequents. The rule d7 is also a default rule, but having an additional
conclusive defeater, namely the scenario {r}. The justification matrices of rest of the
rules are provided in the tables below.

Table 3. The justification matrices of inference rules d2, d4, d5, d6 in example 6

d2: s → ¬e

1 1/2 0

{r},
{c, r}

{c},
{a, r},
{a, c, r}

{a},
{a, c}

d4: a → c

1 1/2 0

{r}, {e},
{s, r},{s, e},
{r, e},
{s, r, a}

{s}

d5: a → e

1 1/2 0

{s},{c},
{r},
{c, s},
{c, r}

{s, r},
{s, r, c}

d6: c → e

1 1/2 0

{a},
{r},
{s, a},
{a, r}

{s},
{s, r},
{s, a, r}

Let Å1 = 〈{s}, ∅, s〉, Å2 = 〈{r}, ∅, r〉, Å3 = 〈{a}, {d5}, e〉, and Å4 = 〈{c}, {d6}, e〉
be arguments in an induced argumentation theory derived from (L, R). Then Ac1 =
{Å1, Å2} is a provisional-defeat scenario for Å3 but not for Å4 and Ac2 = {Å1} is a
provisional-defeat scenario for Å4 but not for Å3.

5 Semantics

The semantics of a argumentation system is determined by the rules of interaction
between arguments. There are a number of approaches to provide the semantics of
argumentation systems [28], e.g., assigning status to arguments [17,18], defining the
acceptable set(s) of arguments [9,6] and using dialectic argumentation trees [8]. While
there are minor differences, the approaches are driven by the same intuition where a
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definition in one can be an observation in another [9,21]. For instance in [9] it is
shown the set of justified arguments in [16] is equivalent to the grounded-extension
in [9]. Dung’s Argumentation Framework is used as basis in a number of argumenta-
tion systems. We adopt Dung’s framework in order to give an anatomical picture of this
system’s behavior. We first translate proposed argumentation theory into a Dung argu-
mentation framework and then apply Dung’s semantics to the interpreted arguments.

Definition 9 (Dung’s Argumentation Framework (Dung 1995))

1. A Dung argumentation framework is a pair AF = 〈AR, R〉 where AR is a set of
arguments and R, the attack relationship, is a binary relation between arguments
i.e. R ⊆ AR ×AR.

2. An argument a ∈ AR is attacked by a set of arguments S iff ∃b ∈ S s.t. bRa.
3. An argument a ∈ AR is acceptable with respect to a set S of arguments iff ∀b ∈

AR: if b R a then S attacks b.
4. A set S of arguments is said to be conflict-free iff ∀a, b ∈ S there is no aRb.
5. A conflict-free set of arguments S is admissible iff each argument in S is acceptable

with respect to S.
6. A preferred extension of an argumentation framework AF is a maximal (w.r.t. set

inclusion) admissible set of AF .

In general, systems that are built upon Dung’s system (with exception of [1]) deal with
conclusive defeats, and reinstatement of arguments is by defeating of their defeaters,
and the provisional-defeat is an interpretation of multiple preferred extensions.

Figure 4. shows the underlying idea in translation to Dung’s AF. Let AT be an argu-
mentation theory where Å attacks Å2 and Å3; and Å1 reinstates Å3 against Å. For sim-
plicity we use arguments instead of argument sets. If we translate AT by 1-to-1 mapping
between arguments in AT to arguments in AF , we get Å1 reinstating both Å3 and Å2,

A1

2A

A3

A

A1

2A

A3

A

A1

2A

A3

A

A1

2A

A3

A

A 4

Argumentation Theory (AT)

Translation to Dung’s AF

Argumentation Theory (AT)

Translation to Dung’s AF

fig. (a)  Wrong Translation fig. (b) Desired Translation

Fig. 4. Translation to Dung’s Argumentation
Framework

fig. 4(a) (Å1 defending Å3 against Å,
leads to defending Å2 as well). But, this
translation is incorrect since Å1 should
only reinstate Å3. To obtain the desired
translation we borrow the idea of missing
arguments from examples 1 and 2. We as-
sume there is an imaginary argument Å4,
Å � Å4 (shown by dotted lines in fig.
4(b)). It is Å4 that attacks Å3 and Å1 re-
instates Å3 by attacking Å4. This time a
1-to-1 translation to a Dung’s AF would
yield Å3 reinstated and Å2 defeated,fig.
4(b). This result is the intended result.
Hence, we need to distinguish between
various types of defeats and reinstatement
in our translation.
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Definition 10 (Translation). 7 Let AF = 〈AR, R〉 be a Dung argumentation frame-
work, and AT = (A,⊗,⊕) an argumentation theory in 〈L,R〉. AF is a translation of
AT iff:

1. there is a surjective function M1: ℘(A) −→ AR such that:
(a) For every Å ∈ A there is an α ∈ AR for {Å},
(b) For everyAc whereAc ⊆ A is a defeat-scenario or reinstatement-scenario for

Å ∈ A there is an α ∈ AR (if Ac is singleton then α is the same α in 1(a)),
(c) if Ac is a reinstatement by context scenario or a non-conclusive defeat-

scenario there is one additional αi
j ∈ AR for each defeat or reinstatement

case (indexes i and j denote Ac and individual case j).
2. Given all α, αi

j ∈ AR as specified above then there is a surjective funcion
M2: ℘(A) × ℘(A) −→ R where R is the relation R in AF such that:
(a) if Ac1 is an outright defeat scenario for an argument Åk, and β standing for

any β mapped under M1 for Åk or anyAck that Åk is a member of then:
i. if Ac1 is a conclusive defeat scenario, then αRβ where α is the mapped

α ∈ AR for Ac1,
ii. if Ac1 is a non-conclusive defeat scenario then αi

jRβ where αi
j is the

mapped αi
j for the correspondingAc1 defeating Åk,

iii. if Ac1 is a provisional defeat scenario for an argument Åk ∈ Ac2 then
αi

jRβ and βRαi
j where αi

j is the mapped αi
j for the corresponding Ac1

provisionally defeating Åk.
(b) if Ac1 is a reinstatement by context scenario for an argument Åk against the

defeat scenarioAc2, and αi
j , βi

j are the mapped arguments in AR forAc1 and
Ac2 for this defeat-reinstatement scenario then:

i. if Ac1 is an outright-reinstatement scenario, then αi
jRβi

j ,
ii. if Ac1 is a provisional-reinstatement scenario then αi

jRβi
j and βi

jRαi
j .

To define operability space we implicitly adopted values of status of arguments in
[17,18,28]. Assigning status to arguments is part of semantics in [17,18]. We defined se-
mantics based on Dung-Argumentation semantics. We are yet to interpret semantics to
values in operability space. The relation between BDKT-argumentation [6] semantics,
and Pollock-argumentation [17,18] semantics is given in [21]. BDKT-argumentation
semantics closely follows semantics given in [9].

Definition 11. Let AT = (A,⊗,⊕) be an argumentation theory in a defeasible reason-
ing system 〈L,R〉 and AF = 〈AR, R〉 its interpreted Dung-Argumentation framework,
the status assignment function 8 E: A −→ {0, 1/2, 1} is:

7 In relation to odd-defeat-cycles we agree with [5] differing from Dung’s semantics. Our in-
tuitive reason is arguments in odd-defeat-cycles indirectly attack themselves making them a
class of self-defeating arguments. In order to comply with [5] we need to change Conclusive
Defeat to TConclusive Defeat in our translation. However, for our purpose the difference is not
important as semantics is the same except when there are odd-defeat-cycles.

8 Instead of preferred semantics we could have given admissible semantics by saying E(Å) = 1
if Xp is in an admissible-extension where no attacker of Xp is in any admissible-extensions,
and E(Å) = 1/2 if at least one attacker of Xp is also in a admissible-extensions.
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E(Å) =

⎧
⎨

⎩

1 if Xp is in all preferred-extensions in AF
1/2 if Xp is in at least one, but not all the preferred-extensions in AF
0 if Xp is in none of the preferred-extensions in AF

where Xp is the mapped argument α in AR for {Å}. Furthermore, The status of a literal
x ∈ L is given by the status function S(x) = maxÅ∈A(E(Å)) where x ∈ Cn(Å), for

any x ∈ ⋃
Å∈A Cn(Å), otherwise S(x) is assigned 0 i.e. S(x) = 0. The values 1, 1/2

and 0 stand for JUSTIFIED, DEFENSIBLE and OVERRULED.

The following observation ensures that semantics of an argumentation theory AT is
well-defined.

Observation 5. In an argumentation theory AT , every argument Å and literal a ∈ L
has one and only one status.

The following example shows the status of arguments in the induced argumentation
theory given in Example 6.

Example 7. We extend example 6 as follows. Let A = {s, a, r} and AT = (A,⊗,⊕) be
an induced argumentation theory from (A,R) that is,

A = { Å1 = 〈 {s}, ∅, s〉, Å2 = 〈 {a}, ∅, a〉, Å3 = 〈 {r}, ∅, r〉,
Å11 = 〈 {s}, {d1}, ¬a〉, Å12 = 〈 {s}, {d2}, ¬e〉, Å121 = 〈 {s}, {d2, d7}, ¬c〉,
Å21 = 〈 {a}, {d3}, ¬s〉, Å22 = 〈 {a}, {d4}, c〉, Å221 = 〈 {a}, {d4, d6}, e〉,
Å23 = 〈 {a}, {d5}, e〉, Å231 = 〈 {a}, {d5, d9}, c〉,
Å31 = 〈 {r}, {d8}, c〉, Å311 = 〈 {r}, {d8, d6}, e〉 }

The calculated state of Å ∈ A is:

E(Å) =

⎧
⎨

⎩

1 if Å ∈ A2

1/2 if Å ∈ A3

0 if Å ∈ (A \ (A2 ∪ A3))

whereA2 = {Å1, Å2, Å3, Å22, Å221, Å23, Å231, Å31},
and A3 = {Å12, Å23, Å231, Å311}.
We define consistency in an argumentation theory based on its Dung’s AF translation.
For an argumentation theory to be consistent, no two justified arguments should have
contradictory conclusions. Since the acceptability of an argument is captured through
admissible set(s) then no two arguments in any given admissible set should have con-
tradictory consequences.

Definition 12. An argumentation theory AT = 〈A,⊗,⊕〉 is said to be consistent iff
there is no a ∈ L s.t. a ∈ Cn(Å1), ¬a ∈ Cn(Å2), Å1, Å2 ∈ A, and, the corresponding
mapped arguments α1, α2 in the translation AF belong to the same preferred extension.

Observation 6. Let AT = 〈A,⊗,⊕〉 be an argumentation theory then

1. If AT is consistent then ∀a ∈ L if S(a) = 1 then S(¬a) �= 1 (note:¬(¬a) = a).
2. Let D = D1 ∪ D2 be the set of defeasible rules of all arguments in A where D1

is the set of indefeasible and D2 the set of normal rules; and, C be the set of
consequences of all arguments in A (i.e. C =

⋃

Å∈A Cn(Å)). Then
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(a) if the induced argumentation theory AT ′ from (C, D1) is consistent then AT
is consistent.

(b) The mapping in translation to AF will be bijective; and, if Fk
d of all the rules

d ∈ D2 are composed of singletons then AF is isomorphic to the structure
〈A, R∗〉 where R∗ = {(Å1, Å2) ∈ A×A | {Å1}defeatsÅ2}.

Observation 6.2(a) states that given an argumentation theory AT , if the indefeasible part
of AT , i.e. the propositional part of AT , is consistent then if the defeasible part of AT
constitutes of normal rules, AT will be consistent. Observation 6.2(b) is our last result
on the parallel between our argumentation system and argumentation systems based on
default rules. The bijective mapping in obs. 6.2(b) means that there are no imaginary
arguments in translation AF . Furthermore, if defeaters in default rules are singleton
defeaters then AT would have the same structure as its Dung’s translation.

6 A Short Comparison with Other Defeasible Reasoning Systems

In this section we briefly discuss how the defeasible rules we proposed relate to other
rule-based defeasible reasoning systems, namely BDKT abstract assumption-based
framework [6], and the argumentation based Defeasible Logic [11]. These defeasible
rules are essentially assumption based defeasible rules applicable in absence of ay con-
trary evidence in Fd and Ud. Our argumentation theory is therefore a form of assump-
tion based default reasoning theory. The language L and defeasible rules are similar to
the language and rules in Defeasible Logic where language, body and head of rules are
comprised of literals.

In relation to BDKT, assuming that Ud in all rules is empty, expanding L to include
sentences with logical conjunction ’∧’ makes the proposed defeasible rules a form of
grounded Reiter defaults where the assumption is the negation of elements of Fd. It
is already shown that an argumentation theory based on this modified version of rules
can be captured by BDKT framework [6]. However, in BDKT there is no direct means
of addressing the Ud part of a rule. In other words, in BDKT an acceptable set of
assumptions can not to provisionally defeat an assumption in a direct fashion.

In relation to Defeasible Logic, assumption based rules and the corresponding under-
cutting attacks on the assumptions of rules can be represented in two ways depending on
whether the assumptions are explicitly or implicitly expressed. In our approach assump-
tions are implicitly expressed. For a rule r : bd(r)⇒ hd(r) with an implicit assumption
a, r is divided into two rules r1 : bd(r) ⇒ inf(r) and r2 : inf(r) ⇒ hd(r) 9. The
undercutting attack on the assumption of the rule can be expressed by rdft : ¬a ∼�
¬inf(r) (or, alternatively rdft : ¬a ⇒ ¬inf(r)) 10 . Though undercutting attacks can
be expressed in Defeasible Logic, attacks themselves are invariant. So, we cannot rep-
resent reinstatement of a rule by context unless we expand the rule-base by additional
rules as discussed in example 1. Furthermore, even if we assume that there is no rein-
statement by context(effectively making attacks invarient,) a translation of Ud in terms

9 Splitting rules in this fashion is originally proposed to express superiority relation among con-
flicting rules [2].

10 The reverse-translation, i.e. translating a Defeasible-Logic rule to a Default-Logic rule, is given
in [3].



210 A. Hezart, A. Nayak, and M. Orgun

of undercutting defeater would only make sense for ambiguity blocking semantics [11]
of Defeasible Logic. There is no direct means of addressing Ud in terms of a defeater
for an ambiguity propagating semantics [11].

As it can be seen the two reasons why this argumentation system cannot be directly
expressed in BDKT framework or in argumentation based Defeasible Logic are Ud and
reinstatement by context. In light of the results and discussion above, it can be argued
that with appropriate semantics, an induced argumentation theory from the proposed
default rules can indeed be embedded in both BDKT framework and Defeasible Logic.
It is possible to envisage a schema for translating a non-default rule to a set of new
default rules, effectively constructing an argumentation theory that consists of only in-
defeasible and default rules. The translated argumentation theory will be equivalent to
the original theory w.r.t. the status of literals inL. Such translation allows us to capture a
given argumentation theory in BDKT framework (or in Defeasible Logic.) The schema
is similar to the method used for translation to Dung’s Framework 11.

7 Discussion and Future Direction

In this paper we proposed a simple representation of defeasible rules consisting of only
literals. Each defeasible rule is associated with a justification function. The justification
function effectively describes under what circumstances a rule cannot be applied. The
antecedents of a rule are the primary reasons for believing the consequent. The literals in
the justification function are taken to be the ancillary reasons that strengthen or weaken
a rule. Unlike most argumentation systems, in this system arguments attack or reinstate
other arguments indirectly via context. The context is the collection of consequences
of arguments in a set of arguments. We also provided a translation from this system to
Dung’s abstract argumentation theory in way of validating our approach.

Our investigation into defeasible rules in the context of argumentation systems is
programmatic in character. There are some important issues that have not yet been
addressed, including:

1. Our system shares a problem regarding the non-normal Reiter defaults [19] in re-
lation to two seemingly acceptable arguments that are built upon contradictory as-
sumptions. We will address this problem along the lines suggested in [6] where the
conceded assumptions are explicitly stated.

2. In general, the contrapositives of default rules are not automatically allowed in
defeasible reasoning systems [6,19] although it has been argued that the contrapos-
itives help avoid certain counterintuitive results [7].

11 We provide only the basic idea behind the schema. For every rule d, we construct all possible
sequences of the form J1, J2, · · · , Jn where Ji ⊆ Jd, J1 ∈ Ud orFd, Ji ⊂ Ji+1, and Ji+1

is the minimum Jk w.r.t. ⊆ that is not in the same class as Ji (class in terms of Td,Ud,Fd).
For every distinct Ji+1 \ Ji we construct a rule d∗

i where bd(d∗
i ) = Ji+1 \ Ji, hd(d∗

i ) = a∗
i ,

Jd∗
i

= Fd∗
i

= {b∗i }, and a∗
i = b∗i−1. In addition, bd(d∗

1) = J1 and Jd∗
n

= Fd∗
n

= ∅; and,
if Ji+1 ∈ Ud then a∗

i−1 = b∗i . This way we extend (L,R) to (L∗,R∗) by newly introduced
a∗

i , b∗i and d∗
i . It can be shown that an argumentation theory from substitution of non-default

rules with the corresponding set of default rules is equivalent to the original theory w.r.t. L.
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In our future work we will show how a rule can be explained by other rules, includ-
ing expressing non-default rules as a set of default rules. We will address introduction
of logical connectives in the antecedent of a rule, as well as, giving a more in depth
comparison with other defeasible reasoning systems.
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Proof of Observations

Proof. Observation 1

1. Td,Ud,Fd are mutually exclusive, therefore Hd(A) has one and only one value.
2. (→) If ∃A ∈ Fd that A is a subset of B ∈ Td then not all A ∈ Fd are conclusive

defeaters of d which is contradictory to the assumption.
(←) If no A ∈ Fd is a subset of B ∈ Td then for ∀A ∈ Fd, A is a conclusive
defeater of d making d a default rule.

3. The members in Fd create a partial order w.r.t set inclusion. Since every A ∈ Fk
d is

the minimal set in Fd then no proper subset of A is in Fd.
(a) Therefore, if A is not a singleton then all its members should belong to some

B ∈ Td. Otherwise, it would contradict the assumption.
(b) (→) ∃C ∈ Fd s.t. C ⊆ X otherwise Hd(X) �= 0. So, there is A ∈ Fk

d s.t.
A ⊆ C.
(←) Suppose, there is A ∈ Fk

d s.t. A ⊆ X then by definition of the conclusive
defeater Hd(X) = 0. ��

Proof. Observation 2

1. The function mind∈D(Hd(X)) has one and only one value for a given argument.
2. Definition of conclusive defeat implies that defeat is context independent so

mind∈D (Hd(X)) = 0 is context independent. ��
Proof. Observation 3

1. By definition of defeat relationship ∃A1 ⊆ A such that given defeat conditions are
satisfied (for outright or provisional defeat). Now, sinceA1 is also subset ofA′, the
same defeat conditions are still satisfied in relation to A′.

2. By definition of conclusive-defeat-scenario, ∀A′′ and Ac ⊆ A′′ ⊆ A then ∃d ∈
DÅ s.t. Hd(Cn(A′′)) = 0. Moreover, since Å � Å

′
we have d ∈ DÅ

′ . Hence,

HÅ
′(A′′) = 0 or Ac is a conclusive defeat scenario for Å

′
in A.
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3. Let Ac be a defeater of Å in A then by def. 6 Cn(Ac) are defeaters of a rule
d ∈ DÅ and by obs. 1.3(b) F ⊆ Cn(Ac) where F ∈ Fk

d . Therefore, Ac is a
TConclusive defeat scenario (obs. 2.2 and definition TConclusive defeat scenario).
Next, if Ac is not the minimal set where F ⊆ Cn(Ac) then there is A′

c ⊂ Ac s.t.
F ⊆ Cn(A′

c). This means HÅ(A′ \ {Åj}) = 0 contradicting defeat condition in

def. 6.1 (A′ is the A′ in def. 6.1 and Åj ∈ (Ac \ A′
c). For the same reason (i.e.

Ac being the maximal set in def. 6.1) the context of defeat is A′ \ Ac = ∅, and, if
F ∈ Fk

d is singleton then Ac will be singleton.
4. Cn(Ac) defeating a rule d implies HÅ(A′′) = 0 for anyA′′ s.t. Ac ⊆ A′′. ��

Proof. Observation 4
If D is only comprised of indefeasible or default rules then either arguments have no
defeaters or any argument set Ac that defeats an argument in A is its conclusive de-
feater (Observation 3.3). Furthermore, any attack by a conclusive defeater can not be
reinstated by context (HÅ(A′) where Ac ⊆ A′ is always zero). ��

Proof. Observation 5
The Status function E is sum of three partial functions with exclusive domains. More-
over, from definition of Translation, every {Å} is mapped to one and only one argument
α ∈ AR of AF . Hence, every argument has one and only one status. The status function
S is a max function, therefore, every literal also has one and only one status. ��
Proof. Observation 6

1. If S(a) = 1 and S(¬a) = 1 then there are two justified arguments Å1, Å2 ∈ A
where a ∈ Cn(A1) and ¬a ∈ Cn(A2). Thus, their mapped arguments α1, α2 in
Dung’s AF belong to all preferred extensions contradicting the initial assumption.

2. (a) If AT is not consistent then there are two arguments Å1, Å2 ∈ A such that
a ∈ Cn(Å1) and ¬a ∈ Cn(Å2). Hence, there are two rules d1, d2 ∈ D such
that hd(d1) = a and hd(d2) = ¬a. Now, if one of the d1 or d2 is a normal
rule then the corresponding argument should have been conclusively defeated
by the other argument and so not to be accepted. Therefore, d1 and d2 should
both be indefeasible rules. But, if d1 and d2 are both indefeasible rules then the
induced argumentation theory AT ′ from (bd(d1)∪ bd(d2), {d1, d2}) would be
inconsistent which is contradictory to the initial assumption.

(b) According to obs. 4, AT is context insensitive, therefore, rules 1(c), 2(a)(ii),
2(a)(iii), 2(b) of translation are not applied. Hence, the mapping M1 and M2
are 1-to-1 and consequently bijective mappings. Now, if all members of Fk

d

are singletons then all Ac in AT are singletons (obs. 3.3). Thus, by rule 1(b)
of translation, arguments in AF are bijective mappings of singleton argument
sets in AT . Hence, M1 acts like a bijective function from A to AR. More-
over, since all attack relationship in R are bijective mappings from {singleton
argument set} × {singleton argument set} (all Ac are singletons), M2

acts like a bijective function from R∗ to R. Hence, 〈A, R∗〉 and 〈AR, R〉 are
two isomorphic structures. ��
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Abstract. In an open Multi-Agent System, the goals of agents acting
on behalf of their owners often conflict with each other. Therefore, a
personal agent protecting the interest of a single user cannot always rely
on them. Consequently, such a personal agent needs to be able to rea-
son about trusting (information or services provided by) other agents.
Existing algorithms that perform such reasoning mainly focus on the im-
mediate utility of a trusting decision, but do not provide an explanation
of their actions to the user. This may hinder the acceptance of agent-
based technologies in sensitive applications where users need to rely on
their personal agents.

Against this background, we propose a new approach to trust based
on argumentation that aims to expose the rationale behind such trusting
decisions. Our solution features a separation of opponent modeling and
decision making. It uses possibilistic logic to model behavior of oppo-
nents, and we propose an extension of the argumentation framework by
Amgoud and Prade [1] to use the fuzzy rules within these models for
well-supported decisions.

1 Introduction

An open Multi-Agent System (MAS) is characterized by an agent’s freedom to
enter and exit the system as it pleases, and the lack of central regulation and con-
trol of behavior. In such a MAS, agents are often not only dependent upon each
other, as for example in Computer-Supported Cooperative Work (CSCW) [2],
web services [3], e-Business [4,5], and Human-Computer interaction [6], but their
goals may also be in conflict. As a consequence, agents in such a system are not
reliable or trustworthy by default, and an agent needs to take into account the
trustworthiness of other agents when planning how to satisfy its owner’s de-
mands.

Several algorithms have been devised to confront this problem of estimating
trustworthiness by capturing past experiences in one or two values to estimate
future behavior (e.g. see the survey by Dash et al. [7]). These algorithms, how-
ever, primarily focus on improving the immediate success of an agent. Less em-
phasis is laid on discovering patterns in the behavior of other agents, or—more
challenging—their incentives. Moreover, the rationale of a decision often eludes
the user: in most approaches it is ‘hidden’ in a large amount of numerical data, or
simply incomprehensible. At any rate, these approaches do not provide human-
readable information about these decisions, and were indeed not designed to do
this.

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 214–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The following example illustrates the importance of the rationale behind the
agent’s decision. Suppose a user instructs a personal agent to buy a painting
for his collection. When an interesting painting is offered, this agent estimates
its value by requesting the opinion from a number of experts. To obtain a good
estimate, it then assigns weights to the various received appraisals. When the
user plans to buy a very valuable painting, he is not just interested in the final
estimate of this agent, or in the retrieved estimates and their weights. When so
much is at stake, he wants to know where these weights come from. Why, for
example, is the weight for this famous expert so low? If the agent told him that
this is because this expert is known to misrepresent his estimate in cases where
he is interested in buying himself, and this may be such a case, would not this
agent be much more useful than an agent that simply assigns a number to the
trustworthiness of the expert?

The lack of such explanations can severely hamper the acceptance of agent-
based technology, especially in areas where users rely on agents to perform sensi-
tive tasks. Without the availability of these explanations, the user almost needs
to have blind faith in his agent’s ability to trust other agents. We believe that
the state of the art in dealing with trust in Multi-Agent Systems has not suf-
ficiently addressed this issue. Therefore, we are interested in an approach that
lays more emphasis on the rationale of trusting decisions, and in this paper we
work towards a proof-of-concept of such an approach.

Due to the uncertainty of information in Multi-Agent Systems, this setting
gives rise to some specific requirements of the opponent model an agent should
be able to build: (i) The model should be able to represent inherently uncertain,
ambiguous, and incomplete knowledge about other agents, and (ii) it should
support an argumentation framework capable of making decisions and explaining
them. This implies that the opponent model should support logical rules.

We put forward such a model in Section 2, where the core idea of our approach
is presented: a unique combination of a fuzzy rule opponent modeling technique
and a solid argumentation framework applied to the process of making trust
decisions. In this section we also explain how the argumentation framework by
Amgoud and Prade [1] can be extended to deal with situations with not only
possibilistic rules, but also where the rules themselves are not always fully ap-
plicable to a given situation. In Section 3 we show how this model can be applied
within the context of an art appraisal domain, as described in the Agent Rep-
utation and Trust (ART) testbed [8]. The final section summarizes the benefits
of an argumentation-based approach to explaining trusting decisions, discusses
related work, and gives some interesting ways of extending the ideas given in
this paper.

2 An Architecture for Fuzzy Argumentation

The goal of the approach presented in this paper is to capture uncertain knowl-
edge about other agents in logical rules, and to use this knowledge to derive not
only good decisions, but also arguments to support these decisions. In this section
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Fig. 1. The architecture for the Modeling Agent

we describe the global architecture of our approach, the formal argumentation
framework for making the decisions, and the opponent-modeling algorithm we
used in our proof of concept.

2.1 High-level Architecture

Figure 1 shows the architecture of our proposed approach, and introduces some of
the terminology used throughout the rest of the paper. The two main components
of our framework are opponent modeling and decision making. The opponent
modeling component is responsible for modeling the behavior of other agents,
based on past experiences with these agents. Data from these past experiences
are stored in a transaction database. From this data a knowledge base of rules
is induced that models the behavior of each agent. The details of opponent
modeling are discussed in Section 2.2.

The decision making component (details in Section 2.3) is responsible for
making the actual decisions. Decisions may be supported by arguments. An ar-
gument relates to a prediction of future behavior of opponents, and is obtained
using the opponent models. The extent to which an argument supports a decision
is expressed in terms of its strength. The strength of an argument is composed
of the argument’s weight, which defines the desirability of the predicted result
of this decision, and of its level, which is the amount of confidence in the ac-
curacy of the prediction. After having executed the decision that is supported
by the strongest argument, the actual outcomes are observed and recorded in
the transaction database. These new results are subsequently used to refine the
model of the opposing agents once again, completing the circle.

2.2 Opponent Modeling

In order to explain an argument for trust to a user, the agent first needs to
possess knowledge about other agents. The format in which the knowledge is
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expressed should be capable of capturing the inherent vagueness and ambigu-
ousness of information in a trust domain. Fuzzy (or possibilistic) logic [9] is an
adequate tool to tackle this modeling problem, because it provides a natural way
of translating back and forth between logical rules describing the expected (or
learned) behavior of other agents, and uncertain numerical data.

For brevity and clarity, we omit the details of the specific variety of fuzzy logic
used in the knowledge bases of our agent, and instead focus on the intuition and
the ideas behind our approach. Therefore, it is sufficient to know that a fuzzy
proposition is a statement of the form “property x is high”, meaning that x is
a member of the fuzzy set “high”. A formula in our fuzzy language L can be
composed of such elementary statements using the fuzzy logic operators that
intuitively extend the semantics of standard propositional logic to the fuzzy
domain.

Now, the knowledge base to model the other agents consists of such fuzzy
formulas that each describe a specific aspect of another agent’s behavior. How-
ever, since such knowledge is constructed based on past interactions with other
agents, not all of these learned formulas will have the same status; the inherent
unreliability and unpredictability of other agents might cause our agent to add
imprecise or even incorrect rules to its knowledge base. Therefore, we also add a
confidence value to each formula in the knowledge base to represent the certainty
with which the formula has been learned.

Definition 1. A knowledge base K is a set of tuples (ki, ρi) where ki ∈ L is a
fuzzy formula, and ρi ∈ [0, 1] is the confidence the agent has in ki.

The valuation of a fuzzy formula depends on a given state of the world w.
Such a state w is a description of the current state of the environment by a set
of propositions. In our application, a world state represent the actions of our
agent towards other agents in the past, which might influence their behavior in
future interactions. Given a world state, the extent to which a fuzzy formula is
valid can be determined using a valuation function, which assigns a measure of
applicability to each formula.

Definition 2. Given a world state w, the valuation function vw : L → [0, 1]
gives the applicability of a fuzzy formula in the world w.

In most situations, the knowledge base consists of fuzzy rules, i.e. a material
implication from an observation (condition) to an expected/learned effect (con-
clusion). Such a rule can be partially applicable in a particular world state,
instead of just being fully applicable or not at all. If ki is a fuzzy rule, we say
that vw (ki) is the match strength of ki. Consider the following example of such
a fuzzy rule.

Example 1. Suppose we own a (possibly) very valuable painting, and we would
like to have it appraised by taking a weighted average over a set of appraisal
agents. Each of these agents not only gives the appraisal itself, but also a claim
on its certainty about this appraisal. To know which agents to trust, we look at
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their behavior in the past. Such previous interactions have led us to believe that
the following rule k1 accurately describes one of the agent’s (a) behavior: “if a
says it is certain with level chigh (very certain) then agent a’s appraisal error
aelow (low)”. This rule should be interpreted as follows: if agent a’s certainty is
a member of the fuzzy set chigh, which contains all high values of certainty, its
appraisal error will be a member of the fuzzy set aelow, containing all low values
of appraisal error. So, if this agent claims it is very certain about its appraisal,
we conclude that its appraisal error is low, and we will base our own estimate
strongly on this agent’s appraisal.

As hinted above, membership of a fuzzy set is not just true or false, but can take
on a range of values between 0 and 1. Suppose that in a certain world w agent a’s
certainty c is not exactly chigh, but slightly lower. In that case c’s membership of
chigh is less than 1. Rule k1 still applies, but its match strength vw(k1) will also
be less than one. In this case, we say the rule fires partially, and consequently
we cannot predict that the appraisal error will be exactly aelow. To be more
precise, the membership of the actual appraisal error in aelow is less than 1. In
plain English, this implies that we should expect an appraisal error that is not
low, but slightly higher.

At this point, it is important to note the difference between the confidence
ρi in a rule ki, and its match strength vw(ki) for a certain world state w. The
former represents the validity of the rule in describing a certain system or agent,
and the latter represents the applicability of a rule to the system or agent in
a particular state of the world. In the previous example, rule k1 might not be
valid at all for describing a’s behavior. Put differently, the rule could be wrong,
in which case the confidence ρ1 should be close to 0. On the other hand, given
a certain scenario (for example, in which certainty equals c), rule k1 could be
used to predict the behavior of the agent, provided that c is a member of chigh.
Otherwise, the preconditions of the rule are not met, and the rule does not apply
to the world state w. As a result, the rule’s match strength vw(ki) is zero.

Keeping in mind the requirements identified in the introduction (the ability to
model uncertainty and at the same time support an argumentation framework),
we decided to use a simple theory revision algorithm called Fuzzy Rule Learner
(FURL) [10] to construct such a knowledge base containing the observed be-
havior of the other agents. Taking observations from the environment as input,
FURL is capable of creating a rule base of fuzzy rules. FURL’s output consists
of a multi-level rule base known as a Hierarchical Prioritized Structure [11] and,
for each rule, the prediction error it causes on past observations (the training
set). Rules in each level can be thought of as an exception to rules in the layer
below it. For our application, however, we can think of the result just as a (flat)
rule base with fuzzy rules and their prediction error where the confidence values
are taken to be the inverse of the prediction error of the rule according to FURL.

2.3 Decision Making

In this section we introduce the argumentation framework used in the decision
making component. The work by Amgoud and Prade [1,12] was considered to
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be a good basis for such a framework, because it inherently supports reasoning
under uncertainty with fuzzy logic. This framework uses the agent’s knowledge
base K, a set of its goals G, and a set of possible decisions (or actions) D. An
argument A in favor of a decision d ∈ D is then defined as follows [1,12].

Definition 3. Given an agent 〈K,G,D〉, an argument A in favor of a decision
d ∈ D is a triple A = 〈S, C, d〉, where

– S ⊆ K is the support of the argument, containing the knowledge from the
agent’s knowledge base K used to predict the consequences of decision d,

– C ⊆ G are the consequences of the argument, i.e. the goals reached by decision
d, and

– d ∈ D is the conclusion argument A recommends.

Moreover, S ∪{d} should entail C, S should be minimal, and C maximal among
the sets satisfying the above conditions.

The original framework proposed in [1] requires that the support S should be
consistent with d. That is, applying d should not result in a contradiction with
previously acquired knowledge. However, the original framework is based on
propositional logic, whereas our method uses fuzzy logic. In contrast to proposi-
tional logic, applying a decision d on a fuzzy knowledge base K, will not result in
a contradiction, regardless of the contents of K. The consistency requirement is
therefore no longer relevant. This is due to the fact that a fuzzy rulebase is inher-
ently capable of resolving inconsistencies. More specifically, when multiple rules
fire at the same time, with different outputs, these outputs are fused together
and converted into a scalar using a process called defuzzification [13].

The set A gathers all arguments that can be constructed from K, G, and
D as follows: for each decision d ∈ D, the consequences C ⊆ G are predicted
using a subset S of the knowledge base K, resulting in an argument 〈S, C, d〉.
Subsequently, a decision is made by selecting the argument(s) with the highest
strength.

The process of reaching a decision can be determined in four steps:

1. The level of the argument is calculated based on the confidence in support S.
Remember from the previous section that the confidence in a rule depends
on how well it models another agent’s behavior.

2. The weight (or desirability) of the outcomes C is evaluated in light of the
goals of the agent (or those of its owner).

3. The level and the weight of each argument are combined in its strength.
Strength can be considered as a summary of the argument’s validity and the
desirability of the predicted outcomes of the decision it supports.

4. The decision supported by the argument with the highest strength is selected.

We will now discuss each step in more detail.
In the original framework [1,12], the level of an argument solely referred to

the amount of confidence in the rules and facts in the support of the argument:
Level (〈S, C, d〉) = min {ρi | (ki, ρi) ∈ S}. However, in our model, rules in the
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knowledge base cannot be applied regardless of the state of the world. Often,
their precondition matches only partially with the facts in this state (as in Ex-
ample 1). Therefore, our definition of the level of an argument needs to take
care of the balance between this match strength in an environment w and the
confidence of the rules in the knowledge base:

1. For equal confidence levels ρ, the knowledge rule with the highest match
strength should determine the Level of the argument. The higher the match
strength, the more the knowledge applies to the current world state, and the
more reliable it is in this particular case.

2. For equal match strengths vw, the knowledge rule with the lowest level of
confidence should determine the Level of the argument. This is consistent
with the argumentation framework presented in [1].

3. In cases where a rule is fully matched, or not matched at all (e.g. vw(k) ∈
{0, 1}), our definition should reduce to the definition of Level in the original
framework.

Therefore we base the level of an argument on the weakest part of the argument.
In our case, the weakest rule in a support set S given a world state w has not
only a low confidence, but also a high match strength.

Definition 4. Given a world state w, and a support set S, the weakest rule
(kj , ρj) is obtained by:

(kj , ρj) = argmin
(ki,ρi)∈S

{
ρi

vw(ki)

∣∣∣∣ vw(ki) �= 0
}

. (1)

We define the level of an argument as the product of the confidence and the
match strength of this weakest rule.

Definition 5. Given a current world state w, the level of an argument A =
〈S, C, d〉 is defined by Levelw(A) = ρj · vw(kj), where (kj , ρj) is the weakest rule.

It is easy to check that this definition meets all three of the requirements stated
above: the rule with the lowest confidence level and the highest match strength is
selected, and the resulting level is the confidence level of this rule times multiplied
by its match strength.

The Weight of an argument A depends on the goals that can be reached.
The goals are given as tuples (gj , λj) in the set G. Like an element from the
knowledge base, a goal gj is a fuzzy rule or fact. The attached value 0 ≤ λj ≤ 1
denotes the preference of the goal. In the original definition [1], weight is inversely
proportional to the preference of the most important goal that is not satisfied.
However, when using fuzzy logic, the predicate satisfied becomes fuzzy as well,
making this definition very difficult to apply. We therefore chose to re-establish
a similar relation between weight on the one hand, and preference and goal
satisfaction on the other hand. One of the key properties of such a relation is
that the more important a goal is, the more detrimental the reduction in weight
when the goal becomes less satisfied. This is realized by the following definition.
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Definition 6. Given a current world state w, the weight of an argument A =
〈S, C, d〉 is defined by

Weightw(A) =
∑

(gj ,λj)∈C

vw∪S (gj) · λj . (2)

This definition ensures that the weight of the argument is proportional to
the utility of the expected consequences of the decision. More specifically, if a
goal g with preference λ is 50% true, we expect the utility to increase with
λ/2. We sum over all goals of the agent to obtain the weight of the argument.
As Section 3.2 shows, this also brings about a more intuitive trade-off between
(possibly conflicting) goals.

Finally, the Weight and Level of an argument are combined into its the
strength. Here we just follow the original definition [1].

Definition 7. Given a current world state w, the strength of an argument is
defined by Strengthw(A) = Levelw(A) · Weightw(A).

Such a value of Strength can then be used to determine which argument is more
preferred.

Definition 8. Let A and B be two arguments in A. Argument A is preferred to
B iff Strength(A) ≤ Strength(B).

The upcoming section illustrates how an agent built according to this architec-
ture operates in a simple problem domain.

3 Examples

In this section, we would like to investigate how an agent based on our approach
behaves in a simple art appraisal environment. We assume the environment is
inhabited with other agents with fixed strategies, and show that it is capable of
explaining its decisions in terms of aggregated observations (rules).

The Agent Reputation and Trust (ART) testbed provides a simple environ-
ment to do our experiments [8]. ART is becoming the de facto standard for
experimenting with trust algorithms and evaluating their performance. In this
environment our personal agent is put in competition with N other agents to
estimate the true value v of a painting. Each agent has its own area of expertise
for which it can give good opinions to others. Consequently, it is often wise to
consult other agents for an estimate of the value of the painting. Each other
agent i can send a tuple (ci, ei) to our agent upon request where ei is the esti-
mate, and ci is the claimed certainty of this estimate (c1 being a low certainty
and c6 a high certainty). Our agent then should combine these estimates in its
own appraisal by submitting a weight vector w = {w1, w2, . . . , wN} to the test-
bed, where wi ≥ 0, and

∑
i wi = 1. The weight for an agent i should not only

depend on its claimed certainty ci, but also on its trustworthiness. Our slightly
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modified version of the testbed1 subsequently calculates the weighted average of
the estimates to obtain the final appraisal a =

∑N
i=1 wiei.

As agents are rewarded based on the accuracy of their appraisals, they should
aim to find the weight vector w that minimizes the appraisal error for a painting
with true value v:

w = arg min
w∈RN

∣∣∣∣∣v −
N∑

i=1

wiei

∣∣∣∣∣ (3)

To determine a suitable w, our agent attempts to find a relation between
the claimed certainty ci, and the accuracy |v − ei| for each agent i. Now, since
agents compete with each other for a number of rounds (appraising different
paintings), it may be worthwhile to deceive other agents misrepresenting the
claimed certainty at some point. Needless to say, this creates an issue of trust.
Knowing when and whom to trust is therefore a prerequisite for success in this
domain.

In the two scenarios that follow, we study the decision making process of
our agent while in competition with two other agents: Honest and Recipro-
cal. Honest is an agent that honestly asserts a certainty c proportional to its
expected accuracy, i.e. cHonest ∝ |v − eHonest|.

Reciprocal’s behavior is somewhat more complicated. When an opponent
has misrepresented its expertise by overstating its certainty, Reciprocal re-
sponds in kind by being dishonest as well. However, if Reciprocal’s opponent
is honest, Reciprocal behavior towards that opponent is identically to that of
Honest.

In each of the following scenarios, our agent has interacted with both agents
in 200 transactions. From the observations made during these 200 transactions,
we used FURL to build an opponent model which constitutes the knowledge
base K. The knowledge bases use three different fuzzy domains: c0 to c5 denote
very low to very high certainty, ae0 to ae7 denote eight different levels of the
appraisal error from low to high, and d0 to d5 denote the levels of dishonesty of
our agent in the previous round, also from low to high.

To give an example, Figure 2 shows the accuracy of the predictions made by
the model learned by FURL from observing Reciprocal’s behavior. During this
run, our agent ‘tests’ Reciprocal by alternating between honest and dishonest
behavior towards it. As can be observed from Figure 2, FURL is reasonably
capable of learning the effect of dishonesty on Reciprocal’s behavior. At the
end of the run, the learned model contains multiple fuzzy if-then rules describing
the behavior, together with a confidence measure. To show what an opponent
model looks like, Tables 1 and 2 contain a selection of rules from the opponent
models of Reciprocal and Honest after 200 transactions.

1 In our preliminary experiments, estimates are generated deterministically, instead of
being drawn from a probability distribution. That way, we could significantly reduce
the length of each competition run and still obtain useful results on the explanatory
power of the arguments generated by our agent.
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Fig. 2. Prediction errors of the learned opponent model for RECIPROCAL

Table 1. Model of Honest’s behavior after 200 interactions. These learned rules de-
scribe the fact that if Honest claims that its certainty is low (c0), its error is usually
quite high (ae5), and vice-versa.

# Rule Confidence
1 if certainty is c0 then appraisal-error is ae5 0.00381

. . .
6 if certainty is c5 then appraisal-error is ae0 0.00520

Table 2. Model of Reciprocal’s behavior after 200 interactions. These learned rules
describe how Reciprocal works approximately. For example, rule 13 describes that
if the claimed certainty is moderate, and our agent was honest itself in the previous
round (d0), then the appraisal error is quite low (ae0).

# Rule Confidence
1 if certainty is c0 then appraisal-error is ae7 0.09824
7 if certainty is c6 then appraisal-error is ae2 0.01403

12 if certainty is c1 and dishonesty is d6 then appraisal-error is ae6 0.05282
13 if certainty is c2 and dishonesty is d0 then appraisal-error is ae0 0.03136
26 if certainty is c3 and dishonesty is d6 then appraisal-error is ae5 0.04653

Using the opponent model, the agent is able to make a decision about trusting
its opponents in the next transaction. More specifically, it chooses a weight
vector w to determine how the opponents appraisals are combined. Obviously,
the optimal decision is to assign all the weight to the agent that is most skilled
at appraising the painting (in which case wi∗ = 1 ⇔ i∗ = argmini |v − ei|, and
wi = 0 ⇔ i �= i∗). However, because of possible noise in the environment or
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suboptimal learning capabilities, determining i∗ is not a trivial task. Using the
argumentation framework, our agent is able to find a balance between utility of
the outcome of a decision, and the confidence in the knowledge used to predict
these outcomes.

3.1 Scenario 1: Requester Role

In this example scenario our agent consults Honest and Reciprocal to ap-
praise one of its paintings. For each agent, it constructs arguments to support
the desirability of obtaining an estimate from both Honest and Reciprocal.
The strengths of these arguments are used to determine the delegation weights
w = {wHonest, wReciprocal}. In what follows, we focus on our agent’s goals, and
its available decisions. These, combined with the actual observations during a
transaction determine the strength of the arguments supporting the decisions
and subsequently the delegation weights.

Because it is in our agent’s interest to appraise the painting as accurately as
possible, its goal set G contains a single goal g1 = (appraisal-error is acceptable,
1), where acceptable is a fuzzy set with a membership function that is inversely
proportional to the relative appraisal error aei = |v−ei|

v . Put differently, goal g1

states that our agent favors accurate appraisals from its opponents. Since g1 is
the only goal, it has maximal relative priority.

As mentioned before, the claimed certainty c is a key indicator of the expertise
of agent i. In this example, suppose that Honest returns a numerical value that
is 100% member of fuzzy set c1, meaning that it is quite uncertain (see Figure 3
for the fuzzy partitioning of the certainty domain), while Reciprocal replies
that it can appraise the painting with a certainty between c4 and c5. Also, we
know that in the previous round, our agent has somewhat misrepresented its
certainty towards Reciprocal (dishonesty was a member of the fuzzy set d3).
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Fig. 3. Example fuzzy partitioning of the certainty domain
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Table 3. The support for Argument AHonest

Knowledge Match Confidence

certainty is c1 100%
if certainty is c1 then appraisal-error is ae4 100% 0.00832
appraisal-error is ae4 100%

Table 4. The consequences, and the Level and Weight calculations of argument AHonest

Goal Match Preference

g1 0.25 1

(a) The consequences of
Argument AHonest

Property Calculation Result

Level (AHonest) 1 × 0.00832 0.00832
Weight (AHonest) 1 × 0.25 0.25

(b) The Level and Weight calculations
of Argument AHonest

Our agent then has to consider two possible decisions in the set of decisions
D = {dHonest, dReciprocal}: to accept the estimate from Honest, and to accept
the estimate from Reciprocal. Because our agent can weigh the estimates re-
ceived from both agents, these decisions are not mutually exclusive. For example,
our agent can decide to weigh the appraisals from both agents equally, resulting
in a final appraisal that is the average of both agent’s appraisals.

Based on the claimed certainties from both agents, and the models in Tables 1
and 2, we see that our agent expects a poor appraisal from Honest. On the
other hand, Reciprocal’s certainty is very high, but our agent has to take
into account its own dishonesty towards Reciprocal. Using the goals G, the
knowledge base K (containing the model and the observations), and decisions
D, our agent generates two arguments. The first argument AHonest supports
decision dHonest, the second argument AReciprocal supports decision dReciprocal.

The support of AHonest consists of parts of the opponent model of Honest
relevant to this particular transaction. This is summarized in Table 3. The con-
sequences of AHonest relate to the desirability of the consequences of decision
dHonest in terms of the agent’s goals. For a certainty of c1, a single rule in the
opponent model fires, and predicts an appraisal error of ae4 (last row in Table 3).
Given this prediction, we can determine the utility in terms of goal g1 (see Ta-
ble 4(a)). When we defuzzify ae4, we obtain a numerical value of 0.75.2 Using
the membership function of acceptable, we determine that goal g1 is only 25%
satisfied. From the information in Tables 3 and 4(a), we can now calculate the
Level, relating to the desirability of the consequences, and Weight, relating to
the confidence of argument AHonest (see Equation 2): Table 4(b) lists the steps
for this calculation. From this, our agent can now determine the strength of the
argument for Honest: 0.00832× 0.25 = 0.00208 (see Definition 8).

2 Defuzzification is a mapping from membership of one or more fuzzy sets to the
original domain. There are a couple of ways to do this, but often the center of
gravity of the membership functions is taken [9].
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Table 5. The support for Argument AReciprocal

Knowledge Match Confidence

certainty is c4 50%
certainty is c5 50%
dishonesty is d3 40%
if certainty is c4 then appraisal-error is ae3 50% 0.00876
if certainty is c5 then appraisal-error is ae2 50% 0.01042
if certainty is c4 and dishonesty is d3 then appraisal-error is ae0 40% 0.01640
if certainty is c4 and dishonesty is d3 then appraisal-error is ae1 40% 0.01640

Table 6. The consequences, and the Level and Weight calculations for argument
AReciprocal

Goal Match Preference

g1 0.75 1

(a) The consequences of
Argument AReciprocal

Property Calculation Result

Level (AReciprocal) 0.5 × 0.00876 0.00438
Weight (AReciprocal) 1 × 0.75 0.75

(b) The Level and Weight calculations
of Argument A2

Next, our agent performs the same steps for Reciprocal. For determining the
support and consequences of argument AReciprocal, we follow the same procedure
as above. These are summarized in Tables 5 and 6(a), respectively. This time,
four rules fire based on the certainty received from Reciprocal and our agent’s
dishonesty towards it in the previous round. The resulting appraisal error is
expected to be somewhere between ae0 and ae3. This corresponds with a 75%
satisfaction of goal g1. Table 6(b) shows the calculation of the Level and Weight
of this argument. Based on these measures, we now calculate the strength of the
argument: 0.00438× 0.75 = 0.00329.

In the final step, our agent compares the strengths of both arguments. This
is done in Table 7. After normalizing these strengths, we obtain the weight
vector w. From Table 7 it can be seen that Reciprocal determines 61% of
the appraisal. Evidently, our agent favors a low appraisal error, while taking the
reduced confidence of the knowledge of Reciprocal’s behavior for granted.

In this scenario, it has been demonstrated that our agent is able to make a
trade-off between an agent whose behavior can be reliably predicted (Honest)
and an agent for which a less reliable opponent model is available, but which
probably provides a more accurate appraisal (Reciprocal). The strengths of
the arguments supporting both decision reflect this trade-off. In the end, the
lower predicted appraisal error for Reciprocal proved to be decisive.

Table 7. The delegation weights for Honest and Reciprocal in scenario 1

Agent Level Weight Strength Delegation weight

Honest 0.00832 0.25 0.00208 0.39
Reciprocal 0.00438 0.75 0.00329 0.61
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3.2 Scenario 2: Provider Role

In the previous scenario, we focused on the appraisals received from the oppo-
nents. Now, we also include another type of decision. Other agents may ask our
agent for an appraisal. In such a situation, our agent needs to decide how truth-
fully it should report its estimate of the value of their paintings. To this end,
we add a new goal, and apply the decision making procedure to the appraisals
generated by our agent. The new goal, called g2, essentially encourages our agent
to be as deceptive as possible towards other agents (by overstating the accuracy
of the provided estimate). However, when other agents discover this behavior,
they may give our agent worse estimates as well. Deceiving other agents must
not negatively influence the accuracy of appraisals received from those agents
too much. Consequently, we must find a balance between the members of the
new goal base G = {g1, g2}.

Deciding the extent of the deception towards an opponent differs from deciding
delegation weights in scenario 1 in that the certainty variable is not relevant. In
the previous scenario, the agent wanted to predict the appraisal error based on
the claimed certainty of its opponents. Now, the agent attempts to predict the
effect of its own dishonesty on the appraisal error in the next round. Therefore,
the opponent models in Tables 1 and 2 need first to be made independent of the
certainty variable.

This is done by generating a set of arguments for each available decision for a
number of certainty values.3 This way, we effectively factored out the certainty
variable from the opponent model, while the relation between dishonesty and ap-
praisal error remains intact. The Level and Weight of each of these arguments
are averaged to obtain an aggregated Level and Weight. The recommended deci-
sion is then calculated in the normal fashion. Of course, deciding on the amount
of deception towards Honest is trivial, because Honest does not respond to the
behavior of its opponents.4 Because of this, our agent is capable of being totally
dishonest with this agent, without surrendering accuracy. In what follows, we
therefore illustrate this process by calculating the best level of deception towards
Reciprocal.

In addition to goal g1 from scenario 1, goal g2=(dishonesty is deceptive, 0.5)
is included in the goal base G of our agent. The membership of the fuzzy set
deceptive is proportional to the extent to which the agent misrepresents its
expertise by overstating its certainty. Note that goal g2 has a lower priority than
goal g1.

We consider five different decisions: dA, i.e. dishonesty is 0.0, dB, i.e. dishon-
esty is 0.25, . . . , and dE , i.e. dishonesty is 1.0. Table 8 shows the arguments
generated for each decision. We see that the extent of our agent’s dishonesty
towards Reciprocal influences the average appraisal error. Of course, due to
the nature of Reciprocal, this is to be expected, because it punishes dishon-
3 More specifically, we generated an argument for 100 equally spaced values of ‘cer-

tainty’ between 0 and 1.
4 This is reflected in Table 1, which shows only a relation between certainty and the

appraisal error.
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Table 8. Properties of the set of arguments supporting different values of dishonesty
towards Reciprocal

Dishonesty Appraisal Error Goal Satisfaction Level Weight
g1 g2

dA 0.00 0.63 0.37 0.00 1.49 0.37
dB 0.25 0.75 0.25 0.25 1.49 0.38
dC 0.50 0.85 0.15 0.50 1.49 0.40
dD 0.75 0.87 0.13 0.75 1.49 0.51
dE 1.00 0.85 0.15 1.00 1.49 0.65

esty by responding in kind. Consequently, increasing dishonesty while keeping
the certainty constant, the appraisal error increases.

The interesting aspect of this scenario is the trade-off between goals g1 and
g2. Our agent has to decide what it values most: an accurate appraisal from,
or its deception towards Reciprocal. With this particular goal base and its
associated priorities, we conclude from Table 8 that our agent favors the latter.
Decision dE is preferred based on the fact that it has the highest weight.

4 Discussion

In this paper we showed how arguments can be based on fuzzy rules. This gen-
eralization of Amgoud and Prade’s argumentation framework [1] is able to come
up with a reasoning for each of the possible decisions. We showed how the con-
fidence and match strength of the underlying rules, and the priority of the de-
cisions influence the decisions of our agent. Combined with a fuzzy rule learner
this argumentation framework forms a unique method for agents to reason about
trust, and provide a logical explanation for the actions (to be) taken.

Existing work on opponent modeling in the context of trust uses scalars or
small vectors to represent trust. For example, in FIRE [14] the quality and
the reliability of past transaction-results are derived and used for future deci-
sion making. An application of the Dempster-Shafer theory collects evidence of
trustworthiness [15], and another approach using probabilistic reciprocity cap-
tures utility provided to and received from an agent [16], or the probability that
task delegation towards an agent is successful [17]. Because of the limited amount
of information present in these models, much of the information gathered dur-
ing interacting with an opponent is lost. Consequently, the decision models they
support are quite limited.

An example where the model of trust is more elaborate can be found in the
work by Castelfranchi et al. [6,18], where trust is decomposed in distinct beliefs.
Such a more complex model would open up the possibility of implementing
different intervention strategies, depending on the precise composition of trust,
instead of just having a binary choice: delegation or non-delegation. However in
their approach the reasons why an agent is trusted are still not very clear. An
owner of an agent that uses a so-called fuzzy cognitive map is confronted with a
list of specific beliefs on parts of the model of the other agent, such as the other’s
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competence, intentions, and reliability. It is not clear where these beliefs come
from, and no method is given to learn such beliefs from past interactions. For
this, we need to trace back the process that established a certain decomposition
of trust for a specific agent. We believe that our approach forms a good basis
to include such a more elaborate model of trust, but this may require a more
advanced fuzzy rule learning algorithm.

Improving the opponent modeling algorithm is one of our goals for future
work. The FURL algorithm we used in our approach has a number of limitations.
Most importantly, FURL is incapable of detecting relatively complex behavior.
It is not able to accurately model data sets with a large number of input variables
as can be seen from the extensive experiments in our technical report [19].

In contrast to the decision model of Castelfranchi et al., the modified doxastic
logic for Belief, Information acquisition, and Trust (BIT) [20] is more capable
of explaining why certain facts are believed. For example, using BIT, an agent
could be able to present the rationale of the decision to trust another. In terms
of our aim, this is very appealing. However, due to the inherent uncertain, vague
and continuous nature of observations in a Multi-Agent System it is not trivial to
translate these to BIT. In this paper we showed how to make such a translation
to fuzzy logic. Modal logic has no ‘native’ support for directly representing such
observations, but possibly the ideas of our architecture can be reproduced in the
context of modal logic.

As a final note, in the current work we have only used arguments in favor of a
decision. The framework, however, also allows for contra-arguments, allowing for
much more complex argumentation. Maybe even more interesting would be to
add support for reputation in our approach. This would involve broadening our
model, designing new algorithms to select agents from which reputation informa-
tion is requested, and developing an algorithm to aggregate these reputations.
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Abstract. We present an argumentation-based approach to design and
realise agents that can support the selection and composition of services
in distributed environments, such as service-oriented architectures and
grids. The choice of services (for selection or for composition) is equated
to decisions. The agents are equipped with beliefs, in the form of (possibly
conflicting) defeasible rules, goals and alternative decisions. Beliefs, goals,
decisions may be ranked according to specified preferences. We show how
beliefs and preferences can be taken into account to support the decision-
making process of the agent, in order to achieve its goals. We deal with
conflicts and preferences by using assumption-based argumentation, an
existing computational-logic-based argumentation framework, that has
already been proven to be an effective tool for many applications of
argumentation.

1 Introduction

In recent years, under the influence of the World Wide Web, many standalone
software tools have evolved into locally managed but globally accessible appli-
cations within heavily distributed environments, such as the grid and service-
oriented architectures. Users are then posed the problem of selecting and/or
composing these tools into complex applications, in order to fulfil specified users’
needs. The use of agent technology offers a powerful solution to dynamic service
composition in distributed settings such as the grid [11]. Different services can
be associated with autonomous agents that can identify and negotiate, on behalf
of service requestors and providers, implementation plans that take into account
the requirements of both sides.

We present an argumentation-based approach to design and realise agents
that can support the selection and composition of services in such distributed
environments. The choice of services (for selection or for composition) is equated
to decisions. The agents are equipped with

– beliefs, in the form of (possibly conflicting) defeasible rules and (defeasible)
preferences (e.g. expressing the credibility of beliefs);

– goals(needs/objectives), possibly incompatible and ranked according to users’
preferences (e.g. expressing how important they are to the agents); and

– alternative (and thus conflicting) decisions, possibly ranked according to
users’ preferences (e.g. expressing the cost of decisions).
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Beliefs and preferences need to be taken into account when supporting the
decision-making process of the (user) agent, in order to achieve its (most pre-
ferred) goals. We deal with conflicts and (qualitative) preferences by using argu-
mentation, and in particular assumption-based argumentation [3,6,8,9,10]. This
is a general-purpose framework for argumentation whereby, differently from [7]
and work following it, arguments and attack relation are not primitive con-
cepts, but are defined instead: arguments are backward deductions (using sets
of rules in an underlying logic) supported by sets of assumptions, and the no-
tion of attack amongst arguments is reduced to that of contrary of assumptions.
Assumption-based argumentation has been proven to generalise many forms of
non-monotonic reasoning [3] and legal reasoning [14]. It is equipped with cor-
rect computational counterparts [8,9,10] and implementations [12], heavily based
upon logic programming.

By using assumption-based argumentation, we basically define argumentative
agents capable of solving multi-attribute decision-making problems, where the
attributes are seen as the agents’ goals, and where information (beliefs) about
alternatives (decisions) is not clear-cut, and there are arguments in favour and
against attributes taking one or another value. These decisions/goals need to
be “weighted” against one another. Moreover, there may be “uncertainty” as
to the source/validity of information, or about the current state of the world.
Thus the “weight” of arguments may need to take the level of “uncertainty”
into account. We represent “weights” and “uncertainty” by using qualitative
preferences. We do so inpired by a number of concrete scenarios, borrowed from
the ARGUGRID project 1. These scenarios consider the need for service selection
and composition to support business migration and to realise complex earth
observation products. These scenarios indicate the need for dealing with possibly
conflicting information (epistemic beliefs), decisions linking to goals/objectives,
preferences over beliefs, goals, and decisions. In this paper we will show how all
these features can be formalised and dealt with by means of assumption-based
argumentation.

The paper is organised as follows. In section 2 we describe the motivating
scenarios. In section 3 we give some background on assumption-based argumen-
tation. In sections 4, 5, 6 we show how to deal with reasoning with beliefs,
alternative decisions, and goals (respectively and incrementally) in assumption-
based argumentation. In section 7 we conclude, summarising our contribution,
related work and avenues for future research.

2 Motivating Scenarios

We consider here two example scenarios where service selection and composition
are core. These scenarios are central in the ARGUGRID project 2, that aims
at developing a framework supporting service selection and composition over
1 http://www.argugrid.eu
2 ARGUGRID also considers e-market places scenarios, omitted here for lack of space.

Further details on all ARGUGRID scenarios can be found in [19].
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the grid and/or service-oriented architectures, with the help of argumentative
agents. These scenarios identify the need for a framework capable of handling

– defeasible, conflicting information (beliefs)
– preferences over beliefs
– mutually exclusive decisions for the achievement of goals
– preferences over decisions and goals.

We will see that the framework proposed in this paper will be capable of dealing
with this kind of scenarios.

2.1 Business Migration

Suppose an investor decides to migrate an existing business to a new location,
so as to improve profit while fulfilling certain requirements. The investor will
typically have (or will be able to get hold of) some information about various
alternative locations (“services”) and their characteristics.

The choice (selection) of location will typically depend on a number of fac-
tors, including ease of accessibility of the location, permits, regulations, and taxes
by the national/local governments, local markets and access to global markets,
competitors, access to any construction contractors, access to suppliers and ma-
terials, availability of additional information or assistance, etc. For example, the
investor may require that the proposed location is “easily” accessible, that the
tax rate in the country of the chosen location is a maximum of 30%, that there
are at least three suppliers of some required materials in the vicinity of the lo-
cation, and that there are “good” assistance centres for new businesses in the
chosen area.

Typically, these factors cannot be assessed with certainty for any given loca-
tion, as they depend on information that is partial and resulting from sources
whose reliability varies. For example, a location may be deemed “easily” accessi-
ble because close to a river of sufficient depth for water transportation, according
to some source of information. However, if there is no port as yet on that river,
the location would be unsuitable for water-transportation, and thus not “easily”
accessible. Moreover, according to some other source, the depth of the river may
be insufficient at points.

The investor may have some preferences over the requirements and the al-
ternative locations, and these preferences may be conditional. For example, the
investor may think that accessibility is a more important factor than availability
of materials, as materials can be transported cheaply once the transportation
network is set up. Moreover, the investor may prefer a location in a country
believed (not) to have signed the Kyoto agreement for climate change control, if
(not) environmentally conscious.

Once a location is selected, amongst a number of alternative candidates, sev-
eral “services” need to be combined, for example a construction contractor and
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some suppliers. The composition of these services corresponds to a concrete plan
of action for the set-up of the business.

2.2 Earth Observation

Satellites can be seen as earth observation services, useful in a number of appli-
cations (ranging from environmental monitoring, meteorology and map-making)
because of their wide area observation capability, the fact that they can provide
observations non-intrusively, their capability to provide measurements rapidly
and continuosly.

Different earth observation satellites exist, varying, e.g., according to their
orbit, according to the kind of instruments they carry on board and, for each
instrument, the kind of sensors the instruments are equipped with. The instru-
ments may allow to collect, save, and transmit data about the earth. The sen-
sors may be classified as radar and optical. For example, some satellites (e.g.
Meteosat, MGS, Eutelsat) are geostationary (namely apparently stationary wrt
a given location on earth), whereas others (e.g. MetOp, Radarsat, JERS 1)
are polar (revolving around earth, and passing above both poles at each res-
olution). Moreover, JERS 1 has radar sensors whereas Meteosat has optical
sensors.

Different types of satellites have different characteristics, in terms e.g. of the
resolution of images they can record and the frequency with which they can
record them, as well as their cost. For example, optical sensors are guaran-
teed to give higher resolution images than radar sensors, but they are heavily
weather-dependent, whereas radar sensors are weather-independent but limited
in detecting shapes or surface variations. Also, the RADARSAT-1 satellite would
charge 1000$ for emergency programming and 100$ for basic programming.

Given a specific image requirement by a user, in the simplest cases a specific
satellite needs to be selected, and, in the more complex cases, a combination
of satellites needs to be sought to provide a number of different images. In
both cases, the choice needs to take into account the large number of available
satellites and their many characteristics, as well as the requirements of the user.

For example, if the image is needed in order to study an oil spill then a single
satellite would suffice, as soon as the response time is very quick and the image
resolution is high. The choice amongst satellites with radar or optical sensors
largely depends on the user’s beliefs about the weather. Finally, the choice of
the satellite depends on the funds availability of the user and the cost of the
satellite. The user may have different preferences concerning its requirements
(e.g. an environment-concerned user would definitely give top priority to speed
over cost, in the case of an oil spill). Moreover, the user may have (possibly
conflicting) beliefs about the time and location of the spill, possibly coming
from different sources with different degrees of reliability.

As another example, in case of a fire monitoring scenario, several images
possibly from different satellites may be required to control the spreading of a fire
over a large region, in conjunction with information about weather conditions.
This is an example requiring the combination of services.
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3 Background: Abstract and Assumption-Based
Argumentation

Definition 1. An abstract argumentation framework is a pair (Arg, attacks)
where Arg is a finite set, whose elements are referred to as arguments, and
attacks ⊆ Arg × Arg is a binary relation over Arg. Given sets X, Y ⊆ Arg of
arguments, X attacks Y iff there exists x ∈ X and y ∈ Y such that (x, y) ∈
attacks.

Given an abstract argumentation framework, several notions of “acceptable” sets
of arguments can be defined [7].

Definition 2. A set X of arguments is

– conflict-free iff it does not attack itself;
– admissible iff X is conflict-free and X attacks every set of arguments Y such

that Y attacks X;
– preferred iff X is maximally admissible;
– sceptically preferred iff X is the intersection of all preferred sets of argu-

ments;
– complete iff X is admissible and X contains all arguments x such that X

attacks all attacks against x;
– grounded iff X is minimally complete;
– ideal iff X is admissible and it is contained in every preferred set of argu-

ments.

The last notion was not in the original [7], but has been proposed recently [9,10]
as an alternative, less sceptical semantics than the grounded semantics.

The abstract view of argumentation does not deal with the problem of actu-
ally finding arguments and attacks amongst them. Typically, arguments are built
by connecting rules in the belief set of the proponent of arguments, and attacks
arise from conflicts amongst such arguments. In assumption-based argumenta-
tion, arguments are (implicitly meant to be) obtained by reasoning backwards
with a given set of inference rules (the belief set), from conclusions to premises
that are assumptions, and attacks are defined in terms of a notion of “contrary”
of assumptions. Belief set and backward reasoning are defined in terms of a
deductive system:

Definition 3. A deductive system is a pair (L, R) where

– L is a formal language consisting of countably many sentences, and
– R is a countable set of inference rules of the form

x1, . . . , xn

x

where x ∈ L is called the conclusion and x1, . . . , xn ∈ L are called the
premises of the inference rule, and n ≥ 0.
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If n = 0, then the inference rule represents an axiom. Note that a deductive
system does not distinguish between domain-independent axioms/rules, which
belong to the specification of the logic, and domain-dependent axioms/rules,
which represent a background theory. For notational convenience, throughout
the paper we write x← x1, . . . , xn instead of

x1, . . . , xn

x
and x instead of x←.

Definition 4. Given a deductive system (L,R) and a selection function 3 f ,
a (backward) deduction of a conclusion x based on (or supported by) a set of
premises P is a sequence of multi-sets S1, . . . , Sm, where S1 = {x}, Sm = P ,
and for every 1 ≤ i < m, where y is the sentence occurrence in Si selected by f :

1. If y is not in P then Si+1 = Si−{y}∪S for some inference rule of the form
y ← S ∈ R. 4

2. If y is in P then Si+1 = Si.

Each Si is referred to as a step in the deduction.

In the remainder of this paper we will use the following notation: P � c will stand
for “there exists a deduction of c supported by P”. This notation is simplistic as
it does not allow to distinguish different deductions to the same conclusions and
supported by the same premises, but it is a useful shorthand when the steps in
the deduction are not of interest.

Deductions are the basis for the construction of arguments in assumption-
based argumentation, but to obtain an argument from a backward deduction we
restrict the premises to ones that are assumptions. Moreover, to specify when
one argument attacks another, we need to specify contraries of assumptions.

Definition 5. An assumption-based argumentation framework is a tuple
〈L, R, A, 〉 where

– (L,R) is a deductive system.
– A ⊆ L, A �= {}. A is referred to as the set of assumptions.
– If x ∈ A, then there is no inference rule of the form x← x1, . . . , xn ∈ R.
– is a (total) mapping from A into L. x is referred to as the contrary of x.

Note that assumption-based frameworks are still abstract, in the sense that in
order to be deployed they need to be instantiated. Several instances have been
studied already [3,14]. In this paper we study some additional instances, for
epistemic and practical reasoning. Note that, by the third bullet, following [8]
we restrict ourselves to flat frameworks [3], whose assumptions do not occur as

3 A selection function is any function from sets of elements to elements. The definition
of backward deduction relies upon some chosen selection function. However, note that
if a backward deduction for a conclusion exists for some selection function, then a
backward deduction for that conclusion will exist for any other selection function.
This result follows from the analogous result for SLD-resolution for Horn clauses.

4 The same symbols are used for multi-set membership, union, intersection and sub-
traction as for ordinary sets.
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conclusions of inference rules. Flat frameworks are restricted but still interesting
and general, as, for example, they admit default logic and logic programming as
concrete instances [3], as well as all the instances we will consider in this paper.

In the assumption-based approach to argumentation, arguments are deduc-
tions to conclusions, based solely upon assumptions, and the attack relationship
between arguments depends solely on the contrary of assumptions.

Definition 6. A set of assumptions A attacks a set of assumptions B iff there
exists an assumption x ∈ B and a deduction A′ � x such that A′ ⊆ A: if this is
the case, we say that A attacks B on x.

This notion of attack between sets of assumptions implicitly gives a notion of
attack between arguments supported by sets of assumptions: the attacking argu-
ment needs to have as conclusion the contrary of an assumption in the support
of the attacked argument.

Within assumption-based argumentation, implicitly, a set of assumptions
stands for the set of all arguments whose premises are contained in the given
set of assumptions. Thus, the computation of “acceptable” sets of arguments
amounts to computing “acceptable” sets of assumptions:

Definition 7. A set X of assumptions is

– conflict-free iff X does not attack itself;
– admissible iff X conflict-free and X attacks every set of assumptions Y that

attacks X;
– preferred iff it is maximally admissible;
– sceptically preferred iff X is the intersection of all preferred sets of assump-

tions;
– complete iff it is admissible and contains all assumptions x such that X

attacks all attacks against {x};
– grounded iff it is minimally complete;
– ideal iff X is admissible and it is contained in every preferred set of assump-

tions.

4 Reasoning about Beliefs

Reasoning about beliefs may be performed within a framework consisting of de-
feasible and strict rules and facts [17], some of which may express preferences
over the application of rules and the use of facts (thus some of these preferences
may be themselves defeasible). The use of rules to represent preferences rather
than fixed partial orders is advocated by many, e.g. [4,18], driven by the require-
ments of applications, for example in a legal domain. We define here frameworks
for reasoning about beliefs (referred to as epistemic frameworks) based upon
defeasible rules and preferences, ignoring for simplicity strict rules. 5 We start
by giving some preliminary notions.
5 Strict rules require special attention to guarantee “closedness” and “consistency” of

epistemic reasoning [5]. For a treatment of strict rules in epistemic frameworks built
upon assumption-based argumentation see [20].
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Definition 8

– A language Lag is a set of ground literals, which can be atoms a or negations
of atoms ¬a. We will refer to these literals as basic literals.

– A naming N is a bijective function associating a distinguished name N (x)
to any element x in a given domain X. For any given X, we will refer to
the set of all such names as N (X).

– A preference literal (wrt X and N ) is of the form n1 � n2 where n1, n2 are
(different) names in N (X).

– A literal is either a basic or a preference literal.

Intuitively, Lag is the language underlying the agent’s reasoning problem, in the
chosen domain. When X is a given set of rules over Lag, n1 � n2 stands for
“the rule named n1 is preferred to the rule named n2”. In the remainder of this
paper, given a basic literal l, with an abuse of notation, ¬l will stand for the
complement of l, namely ¬l if l is an atom, and a if l is a negative literal ¬a.
Moreover, given a preference literal l of the form n1 � n2, ¬l will stand for
n2 � n1.

Definition 9. Given a language Lag and a naming N :

– A basic rule (wrt Lag) is of the form P → c where P = l1, . . . , ln and
c, l1, . . . , ln are basic literals in Lag and n ≥ 0.

– A preference rule (wrt some given X and N ) is of the form P → c where c
is a preference literal (wrt X and N ), P = l1, . . . , ln and l1, . . . , ln are basic
literals in Lag or preference literals (wrt X and N ), and n ≥ 0.

– A (defeasible) rule is either a basic rule or a preference rule.

Given a rule P → c, c is referred to as the conclusion and P as the premises.
When n = 0 the rule may be referred to as a fact.

Definition 10. Let Lag be a language and N be a naming. An epistemic frame-
work ε is a set E of defeasible rules that can be partitioned into sets E1, . . . , Ed,
d ≥ 0, such that

– E1 is a set of basic rules (wrt Lag);
– for each i ≥ 1, Ei is a set of preference rules wrt X = ∪j=1,...,i−1Ej and N .

Intuitively, defeasible rules may or may not be chosen by a rational reasoner,
depending on the emergence of conflicts. A rational reasoner needs to avoid
these conflicts in its chosen “reasoning lines”. Conflicts in epistemic frameworks
arise from “deriving” complementary conclusions from sets of chosen (defeasible)
rules, either of the form a and ¬a or of the form n1 � n2 and n2 � n1. The
semantics of epistemic frameworks needs to resolve these conflicts. In the re-
mainder of this section, we will show how to provide this semantics for epistemic
frameworks by means of assumption-based argumentation, by first considering
frameworks without preference rules.
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Below, we will assume given an epistemic framework ε=E wrt a language Lag

and a naming N . When we restrict attention to epistemic frameworks without
preference rules, Lag will consist solely of basic literals (and N will be ignored).

Definition 11. The assumption-based framework corresponding to an epistemic
framework without preferences ε=E is 〈Lε, Rε, Aε, 〉 whereby

– Aε is a set of literals not already in Lag such that there exists a bijective
mapping α from rules in E into Aε;

– Lε=Lag ∪ Aε;
– Rε = {c← P, α(P → c)|P → c ∈ E}
– α(P → c) = ¬c.

Intuitively, any assumption in Aε correspond to the applicability of the corre-
sponding rule, which is opposed by the complement of the conclusion of that
rule being “derivable”: this is expressed by the definition of contrary.

Example 1. Consider E = {q; q → p; r; r → ¬p}. In the context of the business
migration scenario of section 2, p may represent that some given country of
interest has signed the Tokyo protocol. There is evidence from some source q
that this is so (q → p), and evidence from some other source r that this is
not so (r → ¬p). The sources (q and r) are defeasible, and so are the reports
claiming that these sources provided support for p and ¬p (that the given country
signed/did not sign the Tokyo protocol respectively).

Given this E, we can chooseAε={a1, a2, a3, a4} 6, and thenRε={q ← a1; p←
q, a2; r ← a3; ¬p← r, a4}, and a1 = ¬q, a2 = ¬p, a3 = ¬r, and a4 = p.

By virtue of the formulation in definition 11, any notion of acceptable set of
assumptions may be adopted to provide a semantics to E. For instance, in exam-
ple 1, {a1, a2} is an admissible set of assumptions with {q, p} the corresponding
“output” beliefs, and {a1, a3} is the grounded set of assumptions with {q, r} the
corresponding “output” beliefs.

Let us now consider epistemic frameworks with preference rules. We will use
the following notation: given a set of rule X , a literal L is defined in X if a rule
in X has L or ¬L as its conclusion.

Definition 12. The assumption-based framework corresponding to an epistemic
framework with preferences ε=E is 〈Lε, Rε, Aε, 〉 whereby

– Aε is a set of literals not already in Lag such that there exists a bijective
mapping α from rules in E into Aε;

– Lε=Lag∪Aε∪Bε∪Cε where Bε and Cε are distinct sets of literals not already
in Lag ∪ Aε such that
• there exists a bijective mapping β from rules in E into Bε;
• there exists a bijective mapping χ from assumptions in Aε into Cε;

6 Note that the specification of Rε depends on the choice of Aε, and for each different
choice of Aε a different Rε needs to be given. However, all alternative choices are
isomorphic.
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– Rε= {c← β(P → c)|P → c ∈ E}∪
{β(P → c)← P, α(P → c)|P → c ∈ E}∪
{χ(a)← n′ � n, β(P ′ → ¬c)| a=α(P→c), P → c ∈ E, P ′ → ¬c ∈ E,

n = N (P → c), n′ = N (P ′ → ¬c),
n′ � n is defined in E} ∪

{χ(a)← β(P ′ → ¬c)| a = α(P → c), P → c ∈ E, P ′ → ¬c ∈ E,
N (P → c) � N (P ′ → ¬c) is not defined in E};

– a = χ(a).

Intuitively, assumptions in Aε, as in the case of no preference rules, correspond
to the applicability of the corresponding rules, sentences in Bε correspond to the
actual application of the corresponding rules, and sentences in Cε correspond
to objecting to the application of a rule, by a rule with higher preference and
conflicting conclusion being “derivable” (if any) or simply by a rule with con-
ficting conclusion (if no preference is defined): this is expressed by the definition
of contrary.

Example 2. Consider E = {q → p; q;¬p;¬q; r → n1 � n3; r;¬r}, where n1 =
N (q → p) and n3 = N (¬p). Here, similarly to example 1, p may represent, in the
context of the business migration scenario of section 2, that some given country
of interest has signed the Tokyo protocol, with q → p representing that there
is evidence that some source q claims that this is indeed so. The fact that the
source q is reliably making this claim is debatable (both q and ¬q are rules).
The rule ¬p may represent a defeasible belief that the country of interest has not
signed the Tokyo protocol, and the preference rule r → n1 � n3 may represent
that there is evidence from some source r supporting that the rule leading to
conclude p is stronger (more reliable than) the rule concluding ¬p.

Given this E, Aε may be {a1, a2, a3, a4, a5, a6, a7}, Rε is

{ p← b1; b1 ← q, a1; c1 ← n3 � n1, b3;
q ← b2; b2 ← a2; c2 ← b4;
¬p← b3; b3 ← a3; c3 ← n1 � n3, b1;
¬q ← b4; b4 ← a4; c4 ← b2;
n1 � n3 ← b5; b5 ← r, a5;
r ← b6; b6 ← a6; c6 ← b7;
¬r ← b7; b7 ← a7; c7 ← b6}

and ai = ci, for i = 1, . . . , 7.

By virtue of the formulation in definition 12, any notion of “acceptable” set
of assumptions may be adopted to provide a semantics for E. For instance, in
example 2, {a1, a2} is an admissible set of assumptions, with “output” beliefs
{p, q}. Indeed, this set of assumptions is conflict-free (there is no backward de-
duction from any of its subsets supporting any of c1, c2). Moreover, it attacks (by
means of a deduction supporting c4) the set of assumptions {a4} that attacks
it (by means of a deduction supporting c2). Note that the assumption a1 is not
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attacked by any set of assumptions, as there is no deduction supporting c1. The
set of assumptions {a3, a4} is also admissible, as it is conflict-free and it attacks
all attacks against it: it is attacked by

– {a1, a2, a5, a6} (supporting a deduction for c3), counter-attacked by {a4},
– {a2} (supporting a deduction for c4), also counter-attacked by {a4}.

5 Reasoning about Decisions

Definition 13. Given Lag, a practical framework is a tuple 〈ε,D,G, D〉 where

– ε is an epistemic framework wrt Lag;
– D ⊆ Lag is the set of potential decisions such that none of its elements

occurs in the conclusion of any rule in ε;
– G ⊆ Lag is the set of goals;
– D is a set of preference rules wrt D and some naming (and wrt Lag).

In the remainder of the paper, we will assume that the naming is the identity
function, associating d to each decision d ∈ D.

Intuitively, the agent’s task is to choose amongst its potential decisions in D
so that its goals in G are achieved. These decisions are intended to be mutually
exclusive alternatives, that can be understood as possible plans of actions. The
goals are objectives/constraints of the agent, namely features that the agent
would like the decisions to exhibit.

The agent’s preferences amongst these decisions are represented within D.
These preferences may be expressing a partial order, when D only consists of
facts (and special care is taken so that antisymmetry holds).More generally,
D is a set of preference rules, e.g. P → d1 � d2, expressing that a decision
d1 is preferred to another decision d2 under certain circumstances P . These
circumstances are represented by means of literals in Lag, and will typically be
beliefs to be evaluated wrt ε.

From now on we will assume given 〈ε,D,G, D〉 wrt Lag. We will first consider
the case where D={}, and then the general case.

Frameworks for practical reasoning can be modelled naturally within gener-
alised assumption-based frameworks 7, whereby contrary is a (total) mapping
from assumptions into sets of sentences in L (rather than individual sentences
in L). Given such a generalised framework, the notion of attack between sets of
assumptions is modified as follows

– a set of assumptions X attacks a set of assumptions Y iff there exists an
assumption x ∈ Y , a sentence y ∈ x and an argument X ′ � y such that
X ′ ⊆ X .

7 Note that this generalisation is strictly speaking not necessary, and practical frame-
works could be expressed also within the orginal form of assumption-based frame-
works, by introducing new sentences and rules in the underlying deductive system,
but somewhat less naturally.
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Definition 14. The (generalised) assumption-based framework corresponding to
π=〈ε,D,G, {}〉 is 〈Lπ, Rπ , Aπ , 〉 whereby, given that 〈Lε, Rε, Aε, 〉 is the
assumption-based framework corresponding to ε,

– Aπ = Aε ∪D;
– Lπ=Lε;
– Rπ=Rε;
– if x ∈ Aε, then x = {y} where y is the contrary of x in 〈Lε, Rε, Aε, 〉; if

x ∈ D, then x = D − {x}.

Intuitively, the decisions correspond to new assumptions, reflecting the “ab-
ductive” nature of decision-making. The mutual exclusion amongst decisions is
achieved by setting the contrary of decisions to all other decisions.

Below, whenever x = {y}, for x, y ∈ Lag, we will write simply x = y.

Example 3. Consider π=〈ε,D,G, {}〉 where ε=E = {p; d1, p → q; d2 → s; s →
t; t→ ¬p; d1 → ¬p} and D = {d1, d2}. Here, again in the context of the business
migration scenario of section 2, d1 and d2 may represent two alternative locations
for the migration of a business, each having benefits (s for d2, ¬p for d1 and, if
the belief p is held, also q for d1; each of these benefits may have repercussions).
Then, in 〈Lπ, Rπ, Aπ, 〉, Rπ is 8:

p← a1; q ← p, d1, a2; s← d2, a3; t← s, a4; ¬p← t, a5; ¬p← d1, a6

where Aπ = {a1, . . . , a6, d1, d2} and a1 = ¬p, a2 = ¬q, a3 = ¬s, a4 = ¬t,
a5 = a6 = p, d1 = d2, d2 = d1.

By virtue of this formulation, any notion of “acceptable” set of assumptions may
be adopted to provide a semantics to 〈ε,D,G, D〉. For instance, in example 3,
{a1, a2, d1} and {a3, a4, a5, d2} are both admissible sets of assumptions, with
corresponding “outputs” {p, q} and {s, t,¬p}, respectively.

Amongst all acceptable sets of arguments, we want to consider solely those
having the goals in G in their “output”.

Definition 15. Given 〈Lπ, Rπ, Aπ , 〉, an “acceptable” set of assumptions Δ
wrt 〈Lπ , Rπ , Aπ, 〉 is desired iff G ⊆ O(Δ), where O(Δ) = {x ∈ Lπ|Δ′ �π

x, Δ′ ⊆ Δ}, with Δ′ �π x standing for “there exists a deduction of x supported
by Δ′” wrt 〈Lπ , Rπ, Aπ, 〉.
Thus, practical reasoning may be realised within assumption-based argumenta-
tion by identifying acceptable sets of assumptions that contain a support for
the desired goals. For instance, given G = {¬p} in example 3, {a3, a4, a5, d2} is
desired admissible, whereas {a1, a2, d1} is not.

8 We adopt here the simpler translation given in section 4, as there are no preference
rules in ε. Note that the specification of Rπ depends on the choice of Aπ , and for
each different choice of Aπ a different Rπ needs to be given. However, all alternative
choices are isomorphic.
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Note that G may contain positive and negative literals. Thus, implicitly, G
specifies properties that need to be fulfilled (the positive literals) and properties
that need to be avoided (the negative literals).

Let us consider now the general case of practical frameworks 〈ε,D,G, D〉 with
any, possibly non-empty D. The translation of definition 14 can be generalised
so that rules in D are treated in a similar manner as preference rules in ε. This
is illustrated by the following example.

Example 4. Consider π=〈ε,D,G, D〉 where ε and D are as in example 3, and
D = {u → d1 � d2; v → d2 � d1}, where u, v are new atoms of Lag. Then, in
〈Lπ, Rπ , Aπ , 〉, Rπ is

p← a1; q ← p, d1, a2; s← d2, a3; t← s, a4; ¬p← t, a5; ¬p← d1, a6;
d1 � d2 ← b7; b7 ← u, a7; c7 ← b8;
d2 � d1 ← b8 b8 ← v, a8; c8 ← b7;
e1 ← d2 � d1; e1 ← d2;
e2 ← d1 � d2; e2 ← d1

where Aπ = {a1, . . . , a8, d1, d2} and a1 = ¬p, a2 = ¬q, a3 = ¬s, a4 = ¬t,
a5 = a6 = p, a7 = c7, a8 = c8, d1 = e2, d2 = e1. The translation introduces
new literals (e1, e2) for the contraries of decisions and new definitions for these
contraries (last two lines in the description of Rπ) preventing decisions being
made if more preferred decisions can be made too, and in any case preventing
incompatible decisions. In the example, if u is an additional fact in ε, then d1 is
the only decision possible to achieve the goal ¬p according to any argumentation
semantics for 〈Lπ, Rπ , Aπ , 〉.
Due to lack of space, we omit here the formal translation into assumption-based
argumentation for 〈ε,D,G, D〉 with a non-empty D.

So far we have assumed that decisions are all in a single pool D, but in general
there could be sets of sets of potential decisions, and composite decisions result-
ing from choosing one element for each set. For example, for service composition,
two services may be needed, and for each of these services a number of possi-
ble choices may be available. This can be accommodated in a straightforward
manner, as follows:

– D is partitioned into subsets D1, . . . ,Dn, n ≥ 1;
– in 〈Lπ, Rπ , Aπ , 〉, all elements of Di are assumptions in Aπ ;
– in 〈Lπ , Rπ, Aπ, 〉, for each i, for each x ∈ Di, the contrary of x is set to
Di − {x};

– the preference rules in D may be given only for decisions in the same element
of the partition of D.

For example, in the context of the business migration scenario of section 2, there
may D1 and D2, the first representing a number of alternatives for building
constructors, the second a number of alternatives for suppliers of materials. We
omit further details due to lack of space.
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6 Reasoning about Goals

So far we have assumed that all goals in G that the decisions aim at achieving
are equally important. Also, in some cases no desired “acceptable” decision (set
of assumptions) may exist, e.g. if the goals are incompatible. This may happen
in example 3, for instance, given G = {¬p, q}. The use of stratification or, more
generally, user-defined preferences over G will help in general with identifying
desired “acceptable” sets. For example, if G = {¬p, q} and ¬p � q (namely
the goal ¬p is more preferred than the goal q), then {a3, a4, a5, d2} is desired
admissible, if instead q � ¬p (namely the goal q is more preferred than the goal
¬p), then {a1, a2, d1} is desired admissible.

Preferences may be seen as providing several layers of importance for goals
(from “must have” to various degrees of “wish to have”). In the case of prefer-
ences providing a fixed partial order (given by means of facts, with appropriate
antysymmetry), the preferences provide a partition/stratification whereby the
highest layer correspond to properties whose achievement/avoidance is a must
for the agent, and the remaining layers correspond to properties whose achieve-
ment/avoidance is a wish for the agent, but that can be overlooked in favour of
properties in higher layers.

In the sequel, we will refine the practical frameworks of definition 13 to allow
for reasoning about goals, taking into account preferences.

Definition 16. Given Lag, a (full) practical framework is a tuple 〈ε,D,G, D, G〉
where

– ε, D, G and D are as in definition 13 and
– G is a set of preference rules wrt G and some naming (and wrt Lag).

In the remainder of the paper, we will assume that the naming is the identity
function, associating g to each goal g ∈ G. Moreover, for simplicity, until sec-
tion 7, we will ignore preferences over decisions and assume that D={}. The
translation of definition 14 can be generalised so that rules in G are treated in
a similar manner as preference rules in ε as in definition 12. This is illustrated
by the following example.

Example 5. Consider π=〈ε,D,G, {}, G〉 where ε={d1 → p; d2 → ¬p},D={d1, d2},
G = {p,¬p} and G = {u→ p � ¬p; v → ¬p � p}, where Lag={p,¬p, u, v, d1, d2}.
For example, in the context of the business migration scenario of section 2, p may
represent ease of accessibility by land, guaranteed for location d1 (d1 → p) but
not true for location d2 (d2 → ¬p). The investor would prefer p or ¬p depending
on whether it will transport goods by air (u) or by land (v), respectively.

Then, in 〈Lπ , Rπ , Aπ, 〉, Rπ is

p← b1; b1 ← d1, a1; c1 ← ¬p � p; c1 ← b2

¬p← b2; b2 ← d2, a2; c2 ← p � ¬p; c2 ← b1

p � ¬p← b3; b3 ← u, a3; c3 ← b4;
¬p � p← b4 b4 ← v, a4; c4 ← b3;
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where Aπ = {a1, . . . , a4, d1, d2} and ai = ci, for all i = 1, . . . , 4. The translation
prevents goals for being achieved (by making the appropriate decisions) when
more preferred goals can also be achieved. It also prevents, in case no preferences
can be applied, that conflicting goals can be achieved. In the example, if u is an
additional fact in ε, then p is the only goal to be pursued, and decision d1 needs
to be made, according to any argumentation semantics for 〈Lπ, Rπ , Aπ , 〉.
So far we have assumed that the set of goals G is fixed. However, in general agents
may need to adopt goals dynamically, e.g. as a reaction to observations that the
agent makes in its environment. For example, in the case of business relocation, a
financial crisis may force the agent to reconsider its investment goals. This could
be accommodated, e.g. following [13], by replacing G with a set of defeasible
rules (whose conclusions would be potential goals) with preferences, allowing to
determine the most important goals for the agent to adopt at any given time.

7 Conclusions

We have shown how assumption-based argumentation can support reasoning
with defeasible (uncertain) conflicting beliefs, alternative decisions, and possi-
bly incompatible goals, all ranked using dynamic, qualitative preferences. This
reasoning is core for service selection and composition in general, and in the
motivating scenarios (business migration and earth observation applications) in
particular.

The problem we have analysed is an example of argumentation for practical
reasoning, trying to answer questions such as: “how to achieve a given purpose
best, given some circumstances?” [2]. Since the value of the required goals cannot
be evaluated with certainty, conventional multi-issue decision making techniques
cannot be directly applied. Our approach realies upon (various mappings onto)
assumption-based argumentation. As a by-product of these mappings, the com-
putational techniques [8,9,10,12] for assumption-based argumentation can be
directly deployed to provide a computational counterpart of our approach and
realise argumentative agents for service selection and composition.

We have focused on the decision-making for selection and composition of ser-
vices given some information (beliefs) available to the agents. Instead, within
the larger ARGUGRID picture and in other work (e.g. [16,15]), agents com-
municate with one another in order to exchange/evaluate information acquired
dynamically. In particular, it would be interesting to study the possibility for
arguments to be exchanged amongst agents and with the users, as justifications
for the agents’ decisions. The communicatin with the user would be important,
e.g. for business migration where it is important that the investor is presented
with an appropriate analysis of the advantages and disadvantages of potential
choices/decisions.

Our work also has a number of other limitations. First, we see decisions as full
plans. However, they could be high-level decisions, which could in turn be de-
finable in terms of atomic decisions, namely the actions composing the plans, in
a hierachical fashion. Moreover, we ignore the possibility that in general actions
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may be definiable in terms of other actions, as in “counts-as” rules. Furthermore,
we have not studied the interaction between preferences of goals and decisions:
e.g., how to deal with cases where one goal is preferred to another, but the
decision to achieve the first is less preferred than the one to achieve the second?

There are a number of approaches for reasoning about beliefs and goals, we
will focus our comparison here on approaches using argumentation. For example,
[1] uses argumentation in a similar context as the one we have considered here,
but considering stratification over goals and beliefs. [2] also sees decisions as
assumptions, but uses an accrual mechanism to determine the best decision. To
the best of our knowledge, no existing approach considers dynamic preferences
for beliefs, decisions, goals, of the type we have considered here, although [13]
does consider dynamic preferences over goals. Finally, some work exists in dealing
with service composition in an agent-oriented setting. For example, [15] proposes
to use games for service composition, focusing on interactions amongst agents
and in particular evaluating their competence to provide services.
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Abstract. We investigate quantified interpreted systems, a semantics
to model multi-agent systems in which the agents can reason about in-
dividuals, their properties, and relationships among them. The seman-
tics naturally extends interpreted systems to first-order by introducing a
domain of individuals. We present a first-order epistemic language inter-
preted on this semantics and prove soundness and completeness of the
quantified modal system QS5D

n , an axiomatisation for these structures.
Finally, we exemplify the use of the logic by modeling message passing
systems, a relevant class of interpreted systems analysed in epistemic
logic.

1 Introduction

Modal epistemic logic has been widely studied in multi-agent systems (MAS)
both on its own and in combination with other modalities, very often temporal
ones. The typical language extends propositional logic by adding n modalities
Ki representing the knowledge of agent i, as well as other modalities represent-
ing different mental states for the agents (distributed and common knowledge,
beliefs, etc) and/or the temporal flow of time [10,25].

The use of modal propositional logic as a specification language requires little
justification: it is a rather expressive language, well-understood from a theo-
retical point of view. Still, it is hard to counterargue the remark, often raised
by practitioners in Software Engineering, that quantification in specifications is
so natural and convenient that it really should be brought explicitly into the
language. Even when working with finite domains of individuals, without quan-
tification one is forced to introduce ad-hoc propositions to emulate basic relations
among individuals. Not always quantification is simply syntactic sugar: certain
expressivity needs do require infinite domains (e.g., see section 4 below).

In multi-agent systems the power of first-order logic is required every time
agents reason about:

– relational statement, as in agent i knows that message μ has been sent by a
to b, or formally

KiSent(a, b, μ)

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 248–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– functional dependency or identity: agent i knows that message μ is the en-
cryption of message μ′ with key k, formally

Ki(μ = enc(k, μ′))

– an infinite domain of individuals, or a finite domain whose cardinality cannot
be bounded in advance: agent i has to read all e-mails before deleting them,
or formally

∀μ(Delete(i, μ) → Read(i, μ))

– quantification on agents’ indexes [21]: all agents knows..., at least one agent
knows...

∀iKi . . . , ∃iKi . . .

Further, epistemic modalities can be combined with quantifiers to express con-
cepts such as knowledge de re/de dicto [12].

Irrespective of the above, the use of first-order modal logic in MAS specifi-
cations is normally frowned upon by theoreticians. Why should we use an un-
decidable language when a decidable one does the job reasonably well already?
Is the price that quantification brings in justified? While these objections are
certainly sensible, we believe that their strength has been increasingly weakened
by recent progress in the verification of MAS by model checking [13,28,26,23]. In
the model checking approach [8] the decision problem is tackled not by checking
validity but simply model satisfaction. In other words, we do not check whether
a formula representing a specification is satisfiable, but simply whether it is
true on the model representing all possible evolutions of the system. While the
former problem is undecidable for first-order modal logic, the latter is decid-
able at least in some suitable fragments, such as the monodic fragments studied
in [16,32,33,35]. Moreover, we have specification languages supporting first-order
interval temporal logic [29,30]. Recently, first-order modal logic has been applied
to the analysis of security protocols [1,5,9]. Finally, we have some preliminary
works on first-order model checking [31,34].

This paper takes inspiration from the considerations above and aims at making
progress on the subject of first-order epistemic logic. The main contribution of
the paper is the axiomatisation in section 5, where a sound and complete system
for quantified interpreted systems (QIS) is presented. We argue that QIS are
the natural extension to first-order of Interpreted Systems semantics, the usual
formalism for epistemic logic in MAS [10,25].

While completeness results for quantified modal logic are customarily proved
with respect to Kripke semantics [12,18], we should state clearly that QML has
been discussed in MAS settings before. In [10] quantified epistemic logic is briefly
discussed, along with its Kripke semantics and some significant validities; in [21]
the authors introduce a quantified logic of belief, in which the doxastic modalities
are indexed to terms of a first-order language; in [2] a limited form of quantification
is added to Coalition Logic. However, in most of the works above completeness is
not tackled. This may be due to the technical difficulties associated with QML
and the relatively poor status of the metatheoretical investigation in comparison
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with the propositional case. We hope this contribution will be the first in a line of
work in which a systematic analysis of these logics is provided.

Scheme of the paper. In section 2 we present two classes of first-order struc-
tures: systems of global states and Kripke frames. In section 3 we introduce the
first-order modal language LD

n which is interpreted on quantified interpreted sys-
tems, a valued version of the systems of global states. In section 4 we exemplify
syntax and semantics by describing three formal models for multi-agent systems
and discuss some specification patterns. In section 5 we introduce the first-order
modal system Q.S5D

n , and prove the main result of this paper: Q.S5D
n is a sound

and complete axiomatisation of the validities in the structures of global states.
Finally, section 6 outlines some extensions of the present formalism.

2 Systems of Global States and Kripke Frames

In this section we introduce the systems of global states and Kripke frames in a
first-order setting. While the first ones are used in computer science to model the
behaviour of MAS [10,14,25], Kripke frames are best employed to get a deeper
understanding of the formal properties of these systems [6,7]. Technically, we
extend the corresponding propositional structures to first-order. This extension
is not trivial, as there are many ways of performing it: for instance, we can choose
a single domain of quantification or several domains for each agent and/or for
each computational state, not to mention domains of intensional objects [4]. In
this paper we consider the simplest construction, where we have just a single
quantification domain D common to all the agents and states, which contains
all possible objects. We leave other options for further work. In what follows we
assume a set of agents A = {1, . . . , n}.

2.1 Systems of Global States

This paper is primarily concerned with the representation of knowledge in MAS,
not their temporal evolution. Given this, we adopt the “static” perspective on
the systems of global states [22], rather than the “dynamic” version [10]. So,
while we assume that the states of the system result from the evolution given by
protocols and transitions, for the time being we do not consider them explicitly.
More formally, consider a set Li of local states li, l′i, . . ., for each agent i ∈ A,
and a set Le containing the local states of the environment le, l′e, . . .. We define
a system of global states as follows:

Definition 1 (SGS). A system of global states S is a couple 〈S,D〉 such that
S ⊆ Le×L1× . . .×Ln is a non-empty set of global states, and D is a non-empty
domain of individuals. SGS is the class of the systems of global states.

This definition of SGS is based on two assumptions. First, the domain D of indi-
viduals is the same for every agent i, so that all agents effectively reason about
the same objects. This choice is justified by the external account of knowledge
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usually adopted in the framework of interpreted systems. If knowledge is as-
cribed to agents by an external observer, it seems natural to focus on a unique
set of individuals: the ones assumed to exist by the external observer. Second,
the domain D is assumed to be the same for every global state, i.e., no individual
appears nor disappears in moving from one state to another. This also is consis-
tent with the external account of knowledge: all individuals are supposed to be
existing from the observer’s viewpoint. We discuss further options in section 6.
Finally, it can be the case that A ⊆ D. This means that the agents can reason
about themselves, their properties, and relationships.

2.2 Kripke Frames

While Kripke frames are less intuitive than interpreted systems to model MAS,
they are more convenient for the purpose of formal analysis, namely completeness
investigations. We work with frames with equivalence relations, so we take the
following definition:

Definition 2. A Kripke frame F is a n+ 2-tuple 〈W,∼1, . . . ,∼n, D〉 such that
W is a non-empty set; for i ∈ A, ∼i is an equivalence relation on W ; D is a
non-empty set of individuals. K is the class of all Kripke frames.

Now we have systems of global states modelling MAS and Kripke frames. In
order to axiomatise SGS, it is useful to map SGS into Kripke frames.

2.3 Maps between SGS and K
We explore the relationship between these structures by means of two maps f
and g from SGS to K and viceversa. We show that every SGS S is isomorphic
to g(f(S)), that is, there is a one-to-one correspondence onto the sets of global
states and the domains of individuals. Further, we prove that every Kripke frame
F = 〈W,∼1, . . . ,∼n, D〉 is isomorphic to f(g(F)) = 〈W ′,∼′

1, . . . ,∼′
n, D

′〉, that
is, there are bijections between W and W ′ and between D and D′; in addition
w ∼i w

′ iff (f ◦ g)(w) ∼′
i (f ◦ g)(w′). As a result, every sound and complete

axiomatisation of Kripke frames is also an axiomatisation of SGS.
We start with the map f : SGS → K. Let S = 〈S,D〉 be an SGS, define f(S)

as the n + 2-tuple 〈S,∼1, . . . ,∼n, D〉, where S is the set of possible states and
D is the domain of individuals. Moreover, for each i ∈ A, the relation ∼i on S
such that 〈le, l1, . . . , ln〉 ∼i 〈l′e, l′1, . . . , l′n〉 iff li = l′i is an equivalence relation. So
f(S) is a Kripke frame.

For the converse map g : K → SGS , let F = 〈W,∼1, . . . ,∼n, D〉 be a Kripke
frame. For every epistemic state w ∈ W , let the equivalence class [w]∼i =
{w′|w ∼i w

′} be a local state for agent i, and W is the set of local states
for the environment. Define g(F) = 〈S,D〉, where S contains all the n+1-tuples
〈w, [w]∼1 , . . . , [w]∼n〉, for w ∈ W , while D is defined as above. The structure
g(F) is trivially an SGS.

We prove that the composition of the two maps gives isomorphic structures.

Lemma 1. Every Kripke frame F is isomorphic to f(g(F)).
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Proof. If F = 〈W,∼1, . . . ,∼n, D〉 is a Kripke frame, then f(g(F)) = 〈W ′,
∼′

1, . . . ,∼′
n, D〉 is such that W ′ is the set of n+1-tuples 〈w, [w]∼1 , . . . , [w]∼n〉,

for w ∈ W . The composition f ◦ g is a bijection between W and W ′: it is one-
to-one as if w,w′ ∈ W ′ and w = w′, then in particular the first components
of w and w′ are equal. It is onto as the first component w1 of w ∈ W ′ is such
that w1 ∈ W and f(g(w1)) = w. Also, the identity on D is a bijection. Finally,
w ∼i w

′ iff [w]∼i = [w′]∼i iff 〈w, [w]∼1 , . . . , [w]∼n〉 ∼′
i 〈w′, [w′]∼1 , . . . , [w′]∼n〉.

Thus, the two structures are isomorphic. ��
By lemma 1 we will show in section 5 that a sound and complete axiomatisation
of Kripke frames is adequate also with respect to SGS.

3 Syntax and Semantics

In this section we introduce the first-order multi-modal language LD
n containing

individual variables and constants, as well as quantifiers, n epistemic operators,
the distributed knowledge operator, and identity. The language LD

n is interpreted
on models based on Kripke frames. Finally, we present the quantified interpreted
systems, a valued version of the systems of global states.

3.1 Syntax

The first-order multi-modal language LD
n contains individual variables x1, x2, . . .,

n-ary functors fn
1 , f

n
2 , . . . and n-ary predicative letters Pn

1 , P
n
2 , . . ., for n ∈ N,

the identity predicate =, the propositional connectives ¬ and →, the universal
quantifier ∀, the epistemic operatorsKi, for i ∈ A, and the distributed knowledge
operator DG, for G ⊆ A.

Definition 3. Terms and formulas in the language LD
n are defined in the Backus-

Naur form as follows:

t ::= x | fk(t1, . . . , tk)
φ ::= P k(t1, . . . , tk) | t = t′ | ¬φ | φ→ ψ | Kiφ | DGφ | ∀xφ

Intuitively, the formula Kiφ means that agent i knows φ, while DGφ is read
as φ is distributed knowledge among the agents in G. The symbols ⊥, ∧, ∨, ↔
and ∃ are defined by means of the other logical constants; we refer to the 0-
ary functors as individual constants c1, c2, . . . A closed term v is a term where
no variable appears, the closed terms are only constants and terms obtained
by applying functors to closed terms. Finally, by t[�y] (resp. φ[�y]) we mean that
�y = y1, . . . , yn are all the free variables in t (resp. φ); while t[�y/�t] (resp. φ[�y/�t])
denotes the term (resp. formula) obtained by simultaneously substituting some,
possibly all, free occurrences of �y in t (resp. φ) with �t = t1, . . . , tn, renaming
bounded variables if necessary.
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3.2 Semantics

In order to assign a meaning to the formulas in LD
n we make use of Kripke

models. We then define validity on quantified interpreted systems in terms of
validity on Kripke models.

Definition 4 (model). A Kripke model M - or simply K-model - based on a
Kripke frame F , is a couple 〈F , I〉 where I is an interpretation such that:

– if fk is a k-ary functor, then I(fk) is a function from Dk to D;
– if P k is a k-ary predicative letter and w ∈ W , then I(P k, w) is a k-ary

relation on D, i.e. I(P k, w) ⊆ Dk;
– the interpretation I(=, w) of the identity = in w is the equality on D.

Note that function symbols are interpreted rigidly, that is, for every w,w′ ∈ W
the interpretation of a functor fk in w is the same as the interpretation of fk in
w′. Given that our approach is the one of the external observer, rigid designators
seem appropriate.

Now let σ be an assignment, i.e., any function from the set of variables in LD
n

to the domain D, the valuation Iσ(t) of a term t is defined as σ(y) for t = y,
and Iσ(t) = I(fk)(Iσ(t1), . . . , Iσ(tk)), for t = fk(t1, . . . , tk). In particular, the
valuation Iσ(d) of a constant d is an individual I(d) in D. The variant σ

(
x
a

)
of

the assignment σ differs from σ at most on x and assigns element a ∈ D to x.
Now we are able to define the truth conditions for the formulas in LD

n .

Definition 5 (Satisfaction). The satisfaction relation |= for a formula φ ∈
LD

n , a world w ∈ M and an assignment σ is inductively defined as follows:

(Mσ, w) |= P k(�t) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, w)
(Mσ, w) |= t = t′ iff Iσ(t) = Iσ(t′)
(Mσ, w) |= ¬ψ iff (Mσ, w) �|= ψ
(Mσ, w) |= ψ → ψ′ iff (Mσ, w) �|= ψ or (Mσ, w) |= ψ′

(Mσ, w) |= Kiψ iff for w′ ∈W, w ∼i w
′ implies (Mσ, w′) |= ψ

(Mσ, w) |= DGψ iff for w′ ∈W, (w,w′) ∈ ⋂
i∈G ∼i implies (Mσ, w′) |= ψ

(Mσ, w) |= ∀xψ iff for all a ∈ D, (Mσ(x
a), w) |= ψ

The truth conditions for the formulas containing the symbols ⊥ ∧, ∨, ↔ and ∃
are standardly defined from those above. Further, a formula φ in LD

n is said to
be true at a world w iff it is satisfied at w by every assignment σ; φ is valid on a
model M iff it is true at every world in M; φ is valid on a frame F iff it is valid
on every model on F ; φ is valid on a class C of frames iff it is valid on every
frame in C.

Now we have all preliminary definitions to introduce quantified interpreted
systems.

Definition 6 (QIS). A quantified interpreted systems P based on an SGS S, is
a couple 〈S, I〉 such that I is an interpretation of LD

n in the Kripke frame f(S).



254 F. Belardinelli and A. Lomuscio

The notions of satisfaction, truth and validity are defined as above, i.e., let
Pf = 〈f(S), I〉 be the Kripke model for the quantified interpreted system P =
〈S, I〉, then (Pσ, s) |= φ iff (Pσ

f , s) |= φ. In particular, the present definition of
satisfaction agrees with the usual definition for interpreted systems:

(Pσ, s) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, s)
(Pσ, s) |= Kiψ iff li(s) = li(s′) implies (Pσ, s′) |= ψ
(Pσ, s) |= DGψ iff li(s) = li(s′) for all i ∈ G implies (Pσ, s′) |= ψ

(Pσ, s) |= ∀xψ iff for all a ∈ D, (Pσ(a
x), s′) |= ψ

Moreover, a formula φ ∈ LD
n is valid on a quantified interpreted systems P iff

φ is valid on Pf , or more formally:

Definition 7 (Validity on QIS). If φ is a formula in LD
n and P is a quantified

interpreted systems, then P |= φ iff Pf |= φ.

Thus, we can reason about a multi-agent system by using the expressiveness of
QIS, but rely on Kripke models to prove formal properties of the system.

3.3 Some Validities

Clearly, the language LD
n is very expressive. We can specify the knowledge agents

have of facts about individuals, as in the following specification: agent i knows
that someone sent him a message when he receives it,

∀j, μ(Recd(i, j, μ) → KiSent(j, i, μ)) (1)

This specification can be expressed also in some propositional modal lan-
guages. However, in LD

n we can make more subtle distinctions as in if agent i
receives a message, then he knows that someone sent it to him:

∀μ(∃jRecd(i, j, μ) → Ki ∃j′Sent(j′, i, μ)) (2)

The latter specification is weaker than the former, as (2) says nothing about
the identity of the sender, while (1) requires that the receiver knows the identity
of the sender.

We briefly explore the semantics of QIS by considering the traditional Barcan
formulas [12]. There has been much discussion on these principles and their
soundness in epistemic contexts. Given that the domain of quantification is the
same for every global state, both the Barcan formula and its converse are valid
on the class QIS of all QIS, i.e., they hold in every quantified interpreted system:

QIS |= ∀xKiφ→ Ki∀xφ QIS |= ∀xDGφ→ DG∀xφ BF
QIS |= Ki∀xφ→ ∀xKiφ QIS |= DG∀xφ→ ∀xDGφ CBF

We remarked that these formulas are direct consequences of having fixed do-
mains, which were justified by the external account of knowledge usually adopted
in epistemic logic: the domain of quantification consists of the individuals con-
sidered by the designer. Also, we deem these validities in line with the bird’s
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eye approach of epistemic logic. By BF if agent i knows that a is φ for each
individual a ∈ D, then she knows that all the individuals are φ. In fact, in any
epistemic alternative considered by agent i at most the individuals she currently
considers (i.e., those in D) are present. In other words, agents are assumed to
be able to generalise their knowledge, at least when this is considered from an
external point of view. By CBF if agent i knows that all the individuals are φ,
then she knows that a is φ, for each individual a ∈ D. This happens because
in any epistemic alternative considered by agent i at least the individuals she
currently considers (again those in D) are present. In other words, agents are
assumed to be able to particularise their knowledge.

We stress the fact that in this interpretation the formula Ki∀xφ does not
mean that agent i knows that all the individuals she considers are φ, but rather
agent i knows that all the individuals (considered by the external designer) are φ.
Further, following the external account of knowledge typical in epistemic logic,
the truth of Ki∀xφ does not imply that agent i has to be aware of all the individ-
uals considered by the designer. As it is the case in propositional epistemic logic,
the formula ∀xφ expresses the knowledge attributed by the external observer to
agent i, rather than the explicit knowledge possessed by i.

We have also generalised versions of the Barcan formula and its converse, for
arbitrary strings of epistemic operators:

QIS |= ∀xEj1 . . . Ejmφ→ Ej1 . . . Ejm∀xφ BFj1,...,jm

QIS |= Ej1 . . . Ejm∀xφ→ ∀xEj1 . . . Ejmφ CBFj1,...,jm

where each Ejk
is either Ki or DG. Even if these principles seem quite strong,

by considering an external notion of knowledge they do not appear problematic.
For what concerns identity, the following principles hold:

QIS |= (t = t′) → Ki(t = t′) QIS |= (t �= t′) → Ki(t �= t′)
QIS |= (t = t′) → DG(t = t′) QIS |= (t �= t′) → DG(t �= t′)

These validities result from rigid designation and require further explanation.
Suppose message μ′ is the encryption of message μ with key k, i.e. μ′ = enc(k, μ),
then by the principles above any agent i should know this identity, that is, for
each i, we have Ki(μ′ = enc(k, μ)). But this seems to imply that we cannot
represent encryption in this formalism. However, if we assume the de re in-
terpretation of modality, we can reconcile encryption and the validities above.
In fact, if μ′ and enc(k, μ) are one and the same message, then any agent i
knows that this message is identical to itself, which is the de re interpretation
of Ki(μ′ = enc(k, μ)). Still, agent i may not have explicit, de dicto knowledge of
the fact that message μ′ is obtained by encrypting μ with key k.

4 Message-Passing QIS

In this section we show how to model message-passing systems [10] in the frame-
work of QIS. A m.p. system is a multi-agent system where agents communicate
by exchanging messages, so the most relevant events are sending and receiving
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messages. The formalism of message passing systems is useful to model a wide
range of MAS. For instance, a network of computers, such as the Internet, can
be seen as a m.p. system. In general, any multi-agent system is a m.p. system
if the message transmission delay is not negligible. In a m.p. system the local
state of each agent contains information about its initial state, the messages it
has sent or received, as well as the internal actions it has taken.

In what follows we show that m.p. systems can be defined as a particular
class of SGS satisfying a finite number of specifications in the first-order modal
language LD

n . Our main result consists in showing that Proposition 4.4.3 in
[10], concerning the knowledge of the ordering of events in m.p. systems, can
be restated as a validity on the class of QIS modeling m.p. systems. Thus, the
formalism of QIS is powerful enough to deal with the theory of m.p. systems.
Throughout the section we refer to [10], par. 4.4.5-6, for the details of m.p. sys-
tems.

More formally, we introduce a set Act of actions α1, α2, . . ., and a set MSG of
messages μ1, μ2, . . . For each agent i ∈ A, we consider a set Σi of initial events
init(i, α), and a set INTi of internal events int(i, α). We define the local state
li for agent i as a history over Σi, INTi and MSG, that is, a sequence of events
whose first element is in Σi, and whose following elements either belong to INTi

or are events of the form send(i, j, μ), rec(i, j, μ) for j ∈ A, μ ∈ MSG and
α ∈ Act. Intuitively, init(i, α) represents the event where agent i performs the
initial action α, send(i, j, μ) represents the event where agent i sends message μ
to j, while the intended meaning of rec(i, j, μ) is that agent i receives message
μ from j. Finally, int(i, α) means that agent i performs the internal action α.

A global state s is a tuple 〈le, l1, . . . , ln〉, where l1, . . . , ln are local states as
above and le contains all the events in l1, . . . , ln. We define a reflexive, transitive
and anti-symmetric relation ≤ on the local states of agent i such that li ≤ l′i
iff li is a prefix of l′i. This order extends to global states, so that s ≤ s′ iff
li ≤ l′i for every i ∈ A. We can define message passing systems as a special
class of quantified interpreted systems by considering the class of QIS P =
〈S,D, I〉 where S is a non-empty set of global states; the domainD of individuals
includes all agents in A, the messages in MSG, the actions in Act, and the events
e1, e2, . . .; I is the interpretation for LD

n . Intuitively, each m.p. QIS models the
evolution of a m.p. system: starting from an initial state, the m.p. QIS contains
the states reachable during the execution of the m.p. system. The temporal
evolution of a m.p. QIS can be represented as a sequence s0, s1, . . . of global states
such that s0 = 〈init(e, αe), init(1, α1), . . . , init(n, αn)〉, and for every n ∈ N,
either sn+1 is identical to sn or there is an i such that li(sn) ≤ li(sn+1) but
li(sn) �= li(sn+1). Note that a single m.p. QIS can contain several temporal
evolutions of the same m.p. system.

We assume that our language has terms and predicative letters for represent-
ing the objects in the domain D and the relations among them. In particular,
e1, e2, . . . are metaterms ranging over events: we write ∀eφ[e] as a shorthand for

∀i, j, μ, α φ[send(i, j, μ)] ∧ φ[rec(i, j, μ)] ∧ φ[init(i, α)] ∧ φ[int(i, α)]
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In fact, any event is either a send or a receive event, or an initial action or an
internal action. We use the same notation for the objects in the model and the
syntactic elements, as the ones mirror the others; the distinction will be made
clear by the context. We immediately give some examples of the expressiveness
of our formalism. In LD

n we can define events by formulas which are provably
valid in every m.p. QIS (the existence of a unique individual ∃! can be defined
by means of =):

∀e∃!i, j, μ, α (i �= j)∧ (e = send(i, j, μ) ∨ e = rec(i, j, μ) ∨ e = init(i, α) ∨ e= int(i, α))

∀i, j, μ, α∃!e1, e2, e3, e4(send(i, j, μ)=e1 ∧ rec(i, j, μ)=e2 ∧ init(i, α)=e3 ∧ int(i, α) = e4∧
∧e1 �= e2 ∧ e1 �= e3 ∧ e1 �= e4 ∧ e2 �= e3 ∧ e2 �= e4 ∧ e3 �= e4).

The first specification expresses the fact that every event is either a send or a
receive event, where the sender is different from the receiver, or an initial action,
or an internal action. The second specification says that every send or receive
event, initial action, and internal action are distinct events. Thus, we cannot
have send(i, j, μ) = e = rec(i′, j′, μ′). It is easy to check that our definition of
m.p. QIS validates these specifications.

In [10], p. 132 the authors list three constraints on m.p. systems, the third
one involves the notion of run on an SGS. Nonetheless, we can restate the first
two without introducing runs:

MP1 a local state li for agent i is a history over Σi, INTi and MSG;
MP2 for every event rec(i, j, μ) in li(s) there exists an event send(j, i, μ) in lj(s).

Further, the following simplifying assumption is considered.

* all events in a given agent’s local state are distinct, an agent can never
perform the same action twice.

Note that this does not restrict our analysis as identical actions can be
timestamped. We show how to formalise these specifications in the language
LD

n of m.p. QIS. First, we introduce a predicate H for happened such that
(Pσ, s) |= H(e, i) iff e is an event in li(s). The formula H(e) is a shorthand
for ∃iH(e, i). By the definition of m.p. system, we can show that (Pσ, s) |= H(e)
iff e is an event in s. Further, we define an order Prec on events as follows:

(Pσ, s) |= Prec(e, e′, i) iff (Pσ, s) |= H(e, i) ∧H(e′, i) and
for all s′ ≤ s, (Pσ, s′) |= H(e′, i) → H(e, i).

The definition of Prec(e, e′) is similar, with H(e) instead of H(e, i). We can
force the events in a global state s to be partially ordered by specifying that
Prec(e, e′) is a reflexive and transitive relation on the set of past events:

H(e) → Prec(e, e) (3)
Prec(e, e′) ∧ Prec(e′, e′′) → Prec(e, e′′) (4)

As an example, we show that (4) holds. Suppose that (Pσ, s) |= Prec(e, e′) ∧
Prec(e′, e′′). This means that (Pσ, s) |= ∃iH(e, i) ∧ ∃jH(e′′, j). Moreover, we
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have that for all s′ ≤ s, (Pσ, s′) |= ∃iH(e′, i) → ∃iH(e, i) and (Pσ, s′) |=
∃jH(e′′, j) → ∃jH(e′, j). By renaming bounded variables and the transitivity of
implication, we obtain that for all s′ ≤ s, (Pσ, s′) |= ∃iH(e′′, i) → ∃iH(e, i). As
a result, (Pσ, s) |= Prec(e, e′′). Further, Prec(e, e′, i) can be defined as a linear
order on the events in li, i.e., it is also anti-symmetric and total:

Prec(e, e′, i) ∧ Prec(e′, e, i) → (e = e′) (5)
H(e, i) ∧H(e′, i) → Prec(e, e′, i) ∨ Prec(e′, e, i) (6)

We define Linear(Prec(e, e′, i)) as the conjunction of (3)–(6) above, express-
ing the fact that the relation Prec(e, e′, i) is linear. Also, we define the first event
as the minimal one with respect to Prec(e, e′, i), that is,

Fst(e, i) ::= H(e, i) ∧ ∀e′(e′ �= e→ (H(e′, i) → ¬Prec(e′, e, i)))

Finally, the formulas Sent(i, j, μ), Recd(i, j, μ), Init(i, α), and Int(i, α) are
shorthands for H(send(i, j, μ)), H(rec(i, j, μ)), H(init(i, α)), and H(int(i, α))
respectively. Now we can formalise the specifications MP1-2 and * as follows:

MP1* Linear(Prec(e, e′, i)) ∧
∧ ∃!e(Fst(e, i) ∧ ∃α(e = init(i, α))) ∧ ∀e(H(e, i) ∧ ¬Fst(e, i) →
→ ∃j, α, μ(e = int(i, α) ∨ e = send(i, j, μ) ∨ e = rec(i, j, μ)))

MP2’ ∀i, j, μ(Recd(i, j, μ) → Sent(j, i, μ))

MP1* forces the local state of any agent i to satisfy MP1 and *; while by MP2’
specification MP2 is satisfied. MP1*-2 are the basic specifications for m.p. QIS,
but we can consider further constraints on message passing system. A property
often required in the framework of m.p. systems is channel reliability. Modified
from [10], a m.p. system is reliable if every sent message is eventually received,
or more formally:

MP4 if send(i, j, μ) is in li(s), then there exists a global state s′ such that
rec(j, i, μ) is in lj(s′).

In LD
n we can formalise this specification as follows:

MP4’ ∀j, μ(Sent(i, j, μ) → ¬Ki¬Recd(j, i, μ))

In fact, if send(i, j, μ) is in li(s), by MP4’ (Pσ, s) |= ¬Ki¬Recd(j, i, μ), this
means that there exists a global state s′ such that (Pσ, s′) |= Recd(j, i, μ), that
is, rec(j, i, μ) ∈ lj(s′). Thus, MP4 holds. Note that MP4’ is stronger than MP4 as
the former requires that the local states of agent i in s and s′ are identical. This
can be considered a limit of our epistemic language, due to the lack of temporal
operators. Further, a relevant property of m.p. systems concerns authentication:
if agent i receives a message μ from agent j, then i knows that μ was actually
sent by j. This specification can be expressed as

∀j, μ(Recd(i, j, μ) → KiSent(j, i, μ))
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Finally, we may require that agents have perfect recall, that is, they know
everything that has happened to them:

∀e(H(e, i) → KiH(e, i))

It is easy to show that by the way they are defined, m.p. QIS satisfy authen-
tication and perfect recall but not channel reliability. We remark that all the
specifications introduced are defined by means of only the predicative constants
H(e, i) and Prec(e, e′, i).

We now prove the main result of this section: Proposition 4.4.3 in [10] can
be restated as a validity on the class of m.p. QIS satisfying MP1, MP2, and *.
We do not give the full statement, but we note that this metatheoretical result
can be restated as a formula in the first-order modal language LD

n . First, we
introduce a relation �→G of potential causality between events, as discussed in
[20]. This relation is intended to capture the intuition that event e might have
caused event e′.

Fix a subset G of A, the relation �→G holds between events e, e′ at a state s
iff both e and e′ appears in s, and

1. for some i, j ∈ G, e′ is a receive event and e is the corresponding send event;
2. for some i ∈ G, events e, e′ are both in li(s) and either e = e′ or e comes

earlier than e′ in li(s);
3. for some event e′′, we have that e �→G e′′ and e′′ �→G e′ hold at s.

Note that �→G is a partial order on events. We say that (Pσ, s) |= e �→G e′

if e �→G e′ hold at s (we use the same notation for semantic and syntactic
elements).

Now we prove that the potential causality relation �→G respects the order Prec
of events by showing that the following validity holds in the class of m.p. QIS.
This means that if event e is the “cause” of event e′, then it is distributed
knowledge among the agents that e happened before e′. Note that this is the
right to left implication of Proposition 4.4.3 in [10]:

m.p. QIS |= ∀e, e′((e �→G e′) → DGPrec(e, e′))

Proof. Assume that (Pσ, s) |= e �→G e′. If e′ is a receive event and e is the
corresponding send event, then li(s) = li(s′) for all i ∈ G implies (Pσ, s′) |=
H(e) ∧H(e′), and for s′′ ≤ s′, (Pσ, s′′) |= Recd(i, j, μ) → Sent(j, i, μ) by MP2’.
Thus, (Pσ, s) |= DGPrec(e, e′).

If e, e′ are both in li(s) and either e = e′ or e comes earlier than e′ in
li(s), then li(s) = li(s′) implies that (Pσ, s′) |= H(e) ∧ H(e′), and for s′′ ≤ s′,
(Pσ, s′′) |= H(e′) → H(e). It follows that (Pσ, s) |= KiPrec(e, e′), and by D1,
D2, (Pσ, s) |= DGPrec(e, e′).

Finally, if there exists some event e′′ such that e �→G e′′ and e′′ �→G e′,
we can assume without loss of generality that this happens because we are in
either the first or second case above. In both cases we have that (Pσ, s) |=
DGPrec(e, e′′)∧DGPrec(e′′, e′). Therefore, for every s′, li(s) = li(s′) for all i ∈ G
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implies (Pσ, s′) |= H(e) ∧H(e′), and for s′′ ≤ s′, (Pσ, s′′) |= H(e′′) → H(e) ∧
H(e′) → H(e′′). By transitivity, (Pσ, s′′) |= H(e′) → H(e). Thus, (Pσ, s) |=
DGPrec(e, e′). ��

The analysis of message-passing systems carried out in this section clearly shows
the advantages of first-order modal formalisms in comparison with propositional
ones. By means of language LD

n we are able to formalise various constraints on
m.p. systems, thereby signaling the general correctness of the approach. Most
importantly, the right to left implication of Proposition 4.4.3 in [10] turned out
out be a validity on the class of QIS modelling m.p. systems.

In the second part of this paper we will show that this expressivity gain is
obtained while still retaining completeness of the logical formalism.

5 Axiomatisation

In this section we provide a sound and complete axiomatisation of systems of
global states. Note that while it is customary in modal logic to axiomatise unval-
ued structures (hence our choice of SGS), the same result applies to QIS as well.
Technically, we first prove the completeness of the first-order multi-modal sys-
tem Q.S5D

n with respect to Kripke frames. Then, by lemma 1 the completeness
of Q.S5D

n with respect to SGS follows.
In [19] Kripke proved the completeness of monomodal Q.S5 (see also [12,18]).

The novelty of this section consists in showing that the techniques in [11] for the
completeness of propositional S5D

n can be straightforwardly extended to first-
order for proving the completeness of Q.S5D

n . Also, note that an independent
completeness proof for S5D

n appeared in [24].

5.1 The System Q.S5D
n

The system Q.S5D
n on the language LD

n is a first-order multi-modal version of the
propositional system S5. Although tableaux proof systems and natural deduction
calculi are more suitable for automated theorem proving, Hilbert-style systems
are easier to handle for the completeness proof. Hereafter we list the postulates
of Q.S5D

n ; note that ⇒ is the inference relation between formulas.

Definition 8. The system Q.S5D
n on LD

n contains the following schemes of ax-
ioms and inference rules:

Taut every instance of classic propositional tautologies
MP φ→ ψ, φ⇒ ψ
Dist Ki(φ→ ψ) → (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
Nec φ⇒ Kiφ
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Dist DG(φ→ ψ) → (DGφ→ DGψ)
T DGφ→ φ
4 DGφ→ DGDGφ
5 ¬DGφ→ DG¬DGφ
D1 D{i}φ↔ Kiφ
D2 DGφ→ DG′ , for G ⊆ G′

Nec φ⇒ DGφ
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t] ⇒ φ→ ∀xψ, where x is not free in φ
Id t = t
Func t = t′ → (t′′[x/t] = t′′[x/t′])
Subst t = t′ → (φ[x/t] → φ[x/t′])

We consider the standard definitions of proof and theorem: � φ means that
φ ∈ LD

n is a theorem in Q.S5D
n . Moreover, φ ∈ LD

n is derivable in Q.S5D
n from a

set Δ of formulas in LD
n - Δ � φ in short - iff there are φ1, . . . , φn ∈ Δ such that

� φ1 ∧ . . . ∧ φn → φ. It is easy to check that the axioms of Q.S5D
n are valid on

every Kripke frame and the inference rules preserve validity. As a consequence,
we have the following soundness result.

Lemma 2 (Soundness). The system Q.S5D
n is sound with respect to the class

K of Kripke frames.

By lemma 2 and the definition of validity on SGS, these implications hold:

Q.S5D
n � φ ⇒ K |= φ ⇒ SGS |= φ

Thus, we have soundness also for the systems of global states.

Corollary 1 (Soundness). The system Q.S5D
n is sound with respect to the

class SGS of systems of global states.

In the next paragraph we show that the axioms in Q.S5D
n are not only necessary,

but also sufficient to prove all the validities on SGS . In conclusion we show that
the converse of the Barcan formula is provable in Q.S5D

n . For a proof of BF , we
refer to [12], p.138.

1. ∀xφ→ φ Ex
2. Ki(∀xφ→ φ) from 1 by Nec
3. Ki(∀xφ→ φ) → (Ki∀xφ→ Kiφ) Dist
4. Ki∀xφ→ Kiφ from 2, 3 by MP
5. Ki∀xφ→ ∀xKiφ from 4 by Gen

5.2 Completeness

We prove the completeness of Q.S5D
n by extending to first-order the proof for the

propositional system S5D
n in [11]. The novelty of our result consists in showing

that this method can be straightforwardly applied to first-order Kripke frames.
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Specifically, we show that if Q.S5D
n does not prove a formula φ ∈ LD

n , then
the canonical model MQ.S5D

n for Q.S5D
n does not pseudo-validate φ. It is not

guaranteed that the notion of pseudo-validity (to be defined below) coincides
with plain validity, but by results in [11] we can obtain from MQ.S5D

n a Kripke
model M′ such that MQ.S5D

n pseudo-validates φ iff M′ |= φ. Thus completeness
follows.

In order to show the first part of the completeness result we rely on two
lemmas: the saturation lemma and the truth lemma, whose statements require
the following definitions: let Λ be a set of formulas in LD

n ,

Λ is consistent iff for every φ ∈ Λ, � ¬φ;
Λ is maximal iff for every φ ∈ LD

n , φ ∈ Λ or ¬φ ∈ Λ;
Λ is max-cons iff Λ is consistent and maximal;
Λ is rich iff ∃xφ ∈ Λ implies φ[x/d] ∈ Λ, for some constant d ∈ LD

n ;
Λ is saturated iff Λ is max-cons and rich.

Assume that Q.S5D
n does not prove φ, then the set {¬φ} is consistent, and

by the saturation lemma below {¬φ} can be extended to a saturated set:

Lemma 3 (Saturation [18]). If Δ is a consistent set of formulas in LD
n , then

it can be extended to a saturated set Π of formulas on some expansion LD+
n

obtained by adding an infinite set of new individual constants to LD
n .

Now we introduce the canonical model for Q.S5D
n . Note that ℘+(A) is the set

of non-empty sets of agents.

Definition 9 (Canonical model). The canonical model for Q.S5D
n on the lan-

guage LD
n , with an expansion LD+

n , is a tuple MQ.S5D
n =〈W, {Rj}j∈A∪℘+(A), D, I〉

such that

– W is the set of saturated sets of formulas in LD+
n ;

– for i ∈ A, w,w′ ∈W , wRiw
′ iff {φ|Kiφ ∈ w} ⊆ w′;

– for G ⊆ A, w,w′ ∈W , wRGw
′ iff {φ|DGφ ∈ w} ⊆ w′;

– D is the set of equivalence classes [v] = {v′|v = v′ ∈ w}, for every closed
term v ∈ LD+

n ;
– I(fk)([v1], . . . , [vk]) = [fk(v1, . . . , vk)];
– 〈[v1], . . . , [vk]〉 ∈ I(P k, w) iff P k(v1, . . . , vk) ∈ w.

If we assume that Q.S5D
n �� φ, by the saturation lemma there exists a saturated

set w ⊇ {¬φ}, so the set W of possible worlds is non-empty. Further, by defini-
tion of Ri and RG, and axioms Func and Subst, we can show that the definition
of [v] is independent from w, so D is well defined. Since T , 4 and 5 are all axioms
of Q.S5D

n , the various Ri and RG are equivalence relations. Moreover, from D1
and D2 it follows that R{i} is equal to Ri, and RG ⊆ ⋂

i∈GRi. However, in
general it is not the case that RG =

⋂
i∈GRi. This remark gives the rationale
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for introducing the pseudo-satisfaction relation |=p, defined as |= but for the
distributed knowledge operator DG (in what follows we simply write M for
MQ.S5D

n ):

(Mσ, w) |=p DGψ iff for every w′ ∈ W, wRGw
′ implies (Mσ, w′) |=p ψ

Now we can prove the truth lemma for the pseudo-satisfaction relation |=p.
In order to obtain this result we observe that for an assignment σ such that
σ(yi) = [vi], for 1 ≤ i ≤ n, we have that Iσ(t[�y]) = [t[�y/�v]].

Lemma 4 (Truth lemma). For every w ∈ M, φ ∈ LD+
n , for σ(yi) = [vi],

(Mσ, w) |=p φ[�y] iff φ[�y/�v] ∈ w

Proof. The proof is by induction on the structure of φ ∈ LD+
n .

φ = P k(t1, . . . , tk). By the definitions of pseudo-satisfaction and canonical
interpretation (Mσ, w) |=p P k(t1[�y], . . . , tk[�y]) iff 〈Iσ(t1[�y]), . . . , Iσ(tk[�y])〉 ∈
I(P k, w) iff 〈[t1[�y/�v]], . . . , [tk[�y/�v]]〉 ∈ I(P k, w) iff P k(t1[�y/�v], . . . , tk[�y/�v]) ∈ w.
φ = ¬ψ, ψ → ψ′, ∀xψ. The cases for the propositional connectives follows by

the maximality and consistency of the worlds in the canonical model; whereas
for the universal quantifier, the induction step is proved by the richness of w.
φ = Kiψ. ⇐ Assume that Kiψ[�y/�v] ∈ w and wRiw

′. By definition of Ri,
ψ[�y/�v] ∈ w′ and by the induction hypothesis (Mσ, w′) |=p ψ[�y]. Therefore
(Mσ, w) |=p Kiψ[�y].

⇒ Assume that Kiψ[�y/�v] /∈ w. Note that the set {φ|Kiφ ∈ w} ∪ {¬ψ[�y/�v]}
is consistent. By standard techniques [12,18] we can extend it to a saturated
set w′ such that {φ|Kiφ ∈ w} ∪ {¬ψ[�y/�v]} ⊆ w′. This means that wRiw

′ and
(Mσ, w′) |=p ¬ψ[�y] by the induction hypothesis. Hence (Mσ, w) �|=p Kiψ[�y].
φ = DGψ. Similar to the previous case. ��

We remarked that the canonical model might not satisfy
⋂

i∈GRi = RG. How-
ever, it can be unwound to get a structure M′ in such a way that the same for-
mulas are valid [11]. More formally, given the canonical model M = 〈W,R,D, I〉,
there is another structure M∗ = 〈W ∗, R∗, D, I∗〉 and a surjective function
h : W ∗ → W such that (i) M∗ is a tree, that is, for all w,w′ ∈ W ∗, there
is at most one reduced path from w to w′, (ii) wR∗

iw
′ implies h(w)Rih(w′) and

wR∗
Gw

′ implies h(w)RGh(w′), and (iii) 〈a1, . . . , ak〉 ∈ I∗(P k, w) iff 〈a1, . . . , ak〉 ∈
I(P k, h(w)).

In order to define M∗ and h we need more definitions. Let w,w′ be worlds in
W , a path from w to w′ is a sequence 〈w1, i1, w2, i2, . . . , ik−1, wk〉 such that:

1. w = w1 and w′ = wk;
2. w1, . . . , wk ∈W ;
3. each ij is either an agent or a set of agents;
4. 〈wj , wj+1〉 ∈ R∗

ij
.

The reduction of a path 〈w1, i1, w2, i2, . . . , ik−1, wk〉 is obtained by replacing
each maximal consecutive subsequence 〈wq, iq, wq+1, iq+1, . . . , ir−1, wr〉 where
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iq = iq+1 = . . . = ir−1 by 〈wq , iq, wr〉. A path is said to be reduced is it is
equal to its reduction.

We define W ∗ by induction. Let W ∗
1 be W , and define W ∗

k+1 as the set of
worlds vw,i,w′ such that w ∈ W ∗

k , w′ ∈ W and i is an agent or group of agents.
Let W ∗ =

⋃
k∈N

W ∗
k , then define h : W ∗ →W by letting h(w) = w, for w ∈ W ∗

1

and h(vw,i,w′) = w′, for w ∈ W ∗
k . Further, R∗

i is the reflexive, transitive and
symmetric closure of the relation defined for w,w′ ∈ W ∗ iff w′ = vw,i,w′′ for
some w′′ ∈ W , and h(w)Rih(w′). Finally, I∗(P k, w) = I(P k, h(w)). It can be
checked that M∗ and h satisfy (i)-(iii) above, we omit the proof for reasons of
space and refer to [11] for the details. In particular, we can show what follows:

Lemma 5. For w ∈W ∗, φ ∈ LD
n ,

(M∗σ, w) |=p φ iff (Mσ, h(w)) |=p φ

Proof. The proof is by induction on the length of φ. If φ is an atomic formula,
then the coimplication follows by the definition of I∗. The cases for the propo-
sitional connectives and the universal quantifier are straightforward.
φ = Kiψ. ⇐ Suppose that (M∗σ, w) �|=p Kiψ, then there is a world w′ ∈

W ∗ such that wR∗
iw

′ and (M∗σ, w′) �|=p ψ. This means that h(w)Rih(w′) and
(Mσ, h(w′)) �|=p ψ by induction hypothesis. Thus (Mσ, h(w)) �|=p Kiψ.

⇒ If (Mσ, h(w)) �|=p Kiψ, then there is a world w′ ∈ W such that h(w)Riw
′

and (Mσ, w′) �|=p ψ. By construction vw,i,w′ ∈ W ∗, h(vw,i,w′) = w′ andwR∗
i vw,i,w′ .

By induction hypothesis (M∗σ, vw,i,w′) �|=p ψ, hence (M∗σ, w) �|=p Kiψ.
φ = DGψ. Similar to the previous case. ��

Now we make use of the structure M∗ to define a Kripke model M′ that does
not validate the unprovable formula φ ∈ LD

n . Define M′ = 〈W ′, R′, D′, I ′〉 as
follows:

– W ′ = W ∗, D′ = D and I ′ = I∗;
– R′

i is the transitive closure of R∗
i ∪ ⋃

i∈GR
∗
G.

Since the various R∗
i and R∗

G are reflexive and symmetric, it follows that R′
i is

an equivalence relation, and therefore M′ is based on a Kripke frame. Further,
we can prove the following result:

Lemma 6. For φ ∈ LD
n ,

(M′σ, w) |= φ iff (M∗σ, w) |=p φ

Proof. Also this proof is by induction on the length of φ. If φ is an atomic for-
mula, then the coimplication follows because I ′ = I∗. The cases for the propo-
sitional connectives are straightforward.

For φ = Kiψ or φ = DGψ, the inductive step goes as in the propositional
case; we refer to [11] for a detailed proof.
φ = ∀xψ. If (M′σ, w) |= φ, then for all a ∈ D′, (M′σ(a

x), w) |= ψ. By induction
hypothesis (M∗σ(a

x), w) |=p ψ, and since D′ = D, (M∗σ, w) |=p φ. ��
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In conclusion, if φ ∈ LD
n is not provable in Q.S5D

n , then the canonical model M
pseudo-satisfies ¬φ by lemma 4. By lemma 5 also M∗ pseudo-satisfies ¬φ, and
by the last result above M′ does not validate φ. Thus, we state the following
completeness result.

Theorem 1 (Completeness). The system Q.S5D
n is complete with respect to

the class K of Kripke frames.

As a consequence, we have completeness also with respect to the systems of global
states. In fact, if � φ then by Theorem 1 there exists a K-model M = 〈F , I〉,
based on a Kripke frame F , which falsifies φ. In order to prove that SGS �|= φ we
have to find a quantified interpreted system P falsifying φ. Define P as 〈g(F), I〉:
by the definition of validity in QIS, P |= φ iff Pf = 〈f(g(F)), I〉 models φ, but
by lemma 1 f(g(F)) is isomorphic to F . Hence P �|= φ.

As a result, we have the following implications and a further completeness
result:

SGS |= φ ⇒ K |= φ ⇒ Q.S5D
n � φ

Corollary 2 (Completeness). The system Q.S5D
n is complete with respect to

the class SGS of systems of global states.

By combining together the soundness and completeness theorems we compare
directly the axiomatisation Q.S5D

n and the systems of global states, so we state
our main result:

Corollary 3 (Soundness and Completeness). A formula φ ∈ LD
n is valid

on the class SGS of systems of global states iff φ is provable in Q.S5D
n .

6 Conclusions

As we argued in the Introduction, first-order modal formalisms offer expressivity
advantages over propositional ones. But the cited explorations already carried
out on this subject in MAS and, more in general, in knowledge representation
and Artificial Intelligence, have so far fallen short of a deep and systematic
analysis of the machinery even in the case of static epistemic logic.

In this paper we believe we have made a first attempt in this direction: the
axiomatisation presented, even if limited to the static case, shows that the pop-
ular system S5D

n extends naturally to first-order. In carrying out this exercise
we tried to remain as close as possible to the original semantics of interpreted
systems, so that fine grained specifications of MAS may be expressed, as recent
work on model checking interpreted systems demonstrates [13,28].

Different extensions of the present framework seem worth pursuing. First of
all, it seems interesting to relax the assumption on the domain of quantification
and admit a different domain d(w) for every state w. Further, we could assume
a different domain of quantification da(w) for each agent a in a state w. In this
case quantification would be agent-indexed, i.e. we would be using a different
quantifier ∀a for every agent a ∈ A. In such an extended framework we should
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check whether the validities on m.p. QIS in section 4 still hold, and how to modify
the completeness proof for Q.S5D

n . Also, it would be of interest to explore the
completeness issues resulting from term-indexing epistemic operators as in [21].

In an orthogonal dimension to the above, another significant extension would
be to add temporal operators to the formalism. This would open the way for
an exploration of axiomatisations for temporal/epistemic logic for MAS. While
as reported in the Introduction we are not so concerned with the satisfiability
problem, in doing so attention will have to be paid to the results in [16].
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34. Viganó, F.: A Framework for Model Checking Institutions. In: Edelkamp, S., Lo-
muscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 129–145. Springer,
Heidelberg (2007)

35. Wolter, F., Zakharyaschev, P.: Decidable fragments of first-order modal logics. J.
Symb. Log. 66(3), 1415–1438 (2001)



Analytic Cut-Free Tableaux for
Regular Modal Logics of Agent Beliefs
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Abstract. We present a sound and complete tableau calculus for a class
BReg of extended regular modal logics which contains useful epistemic
logics for reasoning about agent beliefs. Our calculus is cut-free and has
the analytic superformula property so it gives a decision procedure. Ap-
plying sound global caching to the calculus, we obtain the first opti-
mal (EXPTime) tableau decision procedure for BReg. We demonstrate
the usefulness of BReg logics and our tableau calculus using the wise
men puzzle and its modified version, which requires axiom (5) for single
agents.

1 Introduction

Context-free grammar logics are normal multimodal logics characterised by “in-
clusion axioms” of the form [t]ϕ ⊃ [s1] . . . [sk]ϕ, where [t] and [si] are modalities
indexed by members t and si from some fixed set MOD of indices. Such logics
are useful for modelling interactions between agents and groups of agents when
indices from MOD denote agents/groups of agents. The general satisfiability
problem of context-free grammar logics is undecidable [4], so researchers paid
attention also to regular grammar logics, which are context-free grammar log-
ics whose set of the corresponding grammar rules t → s1 . . . sk forms either a
left/right linear grammar or is specified by finite automata [4,6,7,9]. Note that a
left/right linear grammar can be transformed in polynomial time to an equivalent
finite automaton, and vice versa, and checking whether a context-free grammar
generates a regular language is undecidable (see, e.g., [18]). To avoid ambiguity,
we refer to regular grammar logics specified by finite automata as regular modal
logics. (Due to the polynomial transformation, there is no big difference between
the two notions.)
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Regular modal logics cannot be directly used for reasoning about belief due
to the lack of axioms (D) and (5). It is commonly assumed that modal logics of
belief invariably utilise the following:

Belief Consistency: Since 〈t〉ϕ ≡ ¬[t]¬ϕ, axiom (D) : [t]ϕ ⊃ 〈t〉ϕ states that
agents cannot believe both ϕ and ¬ϕ.

Positive Introspection: Axiom (4) : [t]ϕ ⊃ [t][t]ϕ states that agents are aware of
what they believe.

Negative Introspection: Axiom (5) : 〈t〉ϕ ⊃ [t]〈t〉ϕ, or alternatively ¬[t]ψ ⊃
[t]¬[t]ψ, states that agents are aware of what they do not believe.

In [22], Nguyen studied a multimodal logic KD4Ig5a for reasoning about
belief and common belief of agents in multi-agent systems. He adopted axioms
(D) and (4) for all agents and groups of agents, and axiom (I) : [t]ϕ ⊃ [s]ϕ for
any (proper) super-group t of a group (or a single agent) s, but adopted axiom
(5) : 〈t〉ϕ ⊃ [t]〈t〉ϕ only for single agents t. If t is a non-singleton group and s
is a single agent belonging to t, then the contra-positive of [t]ϕ ⊃ [s]ϕ gives us
〈s〉ϕ ⊃ 〈t〉ϕ. If axiom (5) were present for the proper group t then 〈s〉ϕ would
give us [t]〈t〉ϕ. But 〈s〉ϕ ⊃ [t]〈t〉ϕ states that the belief of a single agent s leads to
a belief among the whole super-group t about ϕ. Conversely, the contra-positive
〈t〉[t]ϕ ⊃ [s]ϕ states that if the group jointly does not believe that it does not
jointly believe ϕ, then single agent s believes ϕ, which seems equally absurd. The
logic KD4Ig5a formalises the most important properties of belief and common
belief but does not give an exact formulation of common belief. It is similar to
the well-known modal logic with common belief KD45C

n [14] and the modal logic
with mutual belief [1] but it lacks the induction rule for common belief.

In this paper, we study the class BReg of regular modal logics of agent beliefs,
which are regular modal logics extended with axioms (D) and (5), where axiom
(5) is adopted only for modal indices with the “terminal KD45-condition” as for
the case of single agents in KD4Ig5a (see Section 2.2 for a formal definition).
We extend our tableau calculus for regular modal logics [9] to a tableau cal-
culus for BReg logics. Our calculus for BReg is sound, complete, cut-free and
has the analytic superformula property. Applying sound global caching [9,11]
to it, we obtain the first optimal (EXPTime) tableau decision procedure for
BReg. Note that standard tableau algorithms without global caching for regular
modal logics and BReg logics do not belong to EXPTime (but NEXPTime or
2NEXPTime).

The rest of this paper is structured as follows. In the end of this section,
we present motivational examples and mention related works. In Section 2, we
formally specify BReg logics, introduce automaton-modal operators, and give
definitions for tableau calculi. In Section 3, we present our tableau calculus for
BReg, prove its soundness, and present “closed” tableaux for the motivational
examples. In Section 4, we prove completeness of our tableau calculus. In Section
5, we present an EXPTime decision procedure with global caching for BReg.
Section 6 concludes this work.
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1.1 Motivational Examples

We will study two motivational examples about reasoning about beliefs and
common beliefs of agents using our tableau calculus for BReg. The first one is
the wise men puzzle, which is a famous benchmark introduced by McCarthy [19]
for AI and has previously been studied in a considerable number of works (see
[22] for some of them). The puzzle can be stated as follows (cf. [17]). A king
wishes to know whether his three advisors (a, b, c) are as wise as they claim to
be. Three chairs are lined up, all facing the same direction, with one behind the
other. The wise men are instructed to sit down in the order a, b, c. Each of the
men can see the backs of the men sitting before them (e.g. c can see a and b).
The king informs the wise men that he has three cards, all of which are either
black or white, at least one of which is white. He places one card, face up, behind
each of the three wise men, explaining that each wise man must determine the
colour of his own card. Each wise man must announce the colour of his own card
as soon as he knows what it is. All know that this will happen. The room is
silent; then, after a while, wise man a says “My card is white!”.

For x ∈ {a, b, c}, let [x]ϕ stand for “the wise man x believes in ϕ” and let
px stand for “the card of x is white”. Let g denote the group {a, b, c} and let
[g] informally stand for a certain operator of “common belief” of the group g.
Let Lwmp be the BReg logic which extends Kn (n = 4 and MOD = {g, a, b, c})
with the following axioms:

[x]ϕ ⊃ 〈x〉ϕ and [x]ϕ ⊃ [x][x]ϕ for x ∈ {g, a, b, c},
[g]ϕ ⊃ [x]ϕ and 〈x〉ϕ ⊃ [x]〈x〉ϕ for x ∈ {a, b, c}.

The wise men puzzle can be formalised as follows:

– If y sits behind x then either x’s card is white or y knows that x’s card is not
white: ϕ1 = [g](pa ∨ [b]¬pa), ϕ2 = [g](pa ∨ [c]¬pa), ϕ3 = [g](pb ∨ [c]¬pb).

– At least one of the men has a white card: ϕ4 = [g](pa ∨ pb ∨ pc).
– As b and c say nothing, all of the wise men have a common belief that each

of b and c does not believe that his own card is white, which is written in
the negation normal form as: ϕ5 = [g]〈b〉¬pb, ϕ6 = [g]〈c〉¬pc.
Here, we omit the temporal aspect to make the formalisation simple.

– The question is whether a believes that his card is white ([a]pa). That is,
whether (ϕ1 ∧ . . . ∧ ϕ6) ⊃ [a]pa is Lwmp-valid. This is equivalent to whether
the formula set Γwmp = {ϕ1, . . . , ϕ6, 〈a〉¬pa} is Lwmp-unsatisfiable.

As we will see, the wise men puzzle is solvable in a regular modal logic without
axioms (D) and (5). More specifically, Γwmp is unsatisfiable in the logic L′

wmp

obtained from Lwmp by discarding axioms (D) and (5). So, we introduce a mod-
ified version of the wise men puzzle for which axiom (5) is necessary1: “. . . The
king places one card, face up, behind each of the three wise men, explaining that
as soon as b or c knows that his own card is white or that the card of the man
behind is white he must inform the man in the front about that2, and as soon as
1 It can be shown that the formula set Δwmp given below is L′

wmp-satisfiable.
2 It does not matter whether the 3rd man notices this or not.
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a knows who has a white card he must announce that. The question is whether
a will know who has a white card.” To formulate the new puzzle, we discard the
formulae ϕ5 and ϕ6 and add to the formula set the following formulae:

ϕ′
5 = [g]([c]pc ⊃ [b]pc) ϕ′

6 = [g]([b]pb ⊃ [a]pb) ϕ′
7 = [g]([b]pc ⊃ [a]pc)

The new formula set is thus Δ1 = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ
′
5, ϕ

′
6, ϕ

′
7}. The question

is whether Δ1 ⊃ [a]pa ∨ [a]pb ∨ [a]pc is Lwmp-valid, or equivalently, whether
Δwmp = Δ1 ∪ {〈a〉¬pa, 〈a〉¬pb, 〈a〉¬pc} is Lwmp-unsatisfiable.

1.2 Related Works

In the previous work [9], we gave an analytic tableau calculus for regular modal
logics and presented an EXPTime decision procedure for such logics. The class
BReg studied in this paper extends the class of regular modal logics with useful
epistemic logics for reasoning about agent beliefs.

Regular grammar logics extended with axiom (5) belong to the class of reg-
ular grammar logics with converse [7], but such a statement with (5) replaced
by (D) is not true. Adding axiom (D) to regular grammar logics with con-
verse results in a class larger than BReg. In [7], Demri and de Nivelle gave a
translation of the satisfiability problem for grammar logics with converse into
the two-variable guarded fragment GF2 of first-order logic, and showed that
the general satisfiability problem for regular grammar logics with converse is in
EXPTime. Assuming that it is easy to extend the translation with axiom (D) to
cope with BReg, we cannot compare efficiency of the two approaches (for BReg)
yet, but our tableau decision procedure for BReg is certainly worth studying and
experimenting.

Our tableau decision procedure for BReg uses global caching, which we have
used for regular modal logics [9], description logics ALC [10] and SHI [11]. Our
adaptation of global caching for BReg only slightly differs from the one used for
the other logics. We include Section 5 on global caching for BReg to increase
readability and do not count it as a main contribution of this paper.

Other related works are works on regular grammar logics [4,6], works on PDL-
like logics (e.g. [15,5,2]), and works on epistemic logics (e.g. [14,1]). However, the
first two groups often lack axioms (D) and (5) and are not devoted to reason-
ing about epistemic states of agents, while the third group often adopts only
some specific axioms but not the wide range of inclusion axioms. The class of
“incestual multimodal logics” studied by Baldoni in [3] is large and contains
the class BReg, but the general satisfiability problem for it is undecidable. No-
tice that such a problem is EXPTime-complete for regular grammar/modal log-
ics [6], regular grammar logics with converse [7], PDL and converse-PDL (see,
e.g., [15]), and KD45C

n with n ≥ 2 [14]. As BReg contains all regular modal
logics, our EXPTime decision procedure presented in this paper for BReg is
optimal.
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2 Preliminaries

2.1 Definitions for Multimodal Logics

Our modal language is built from two disjoint sets: MOD is a finite set of
modal indices and PROP is a set of primitive propositions. We use p and q
for (arbitrary) elements of PROP and use t and s for (arbitrary) elements of
MOD. Formulae of our primitive language are recursively defined using the BNF
grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃ ϕ | [t]ϕ | 〈t〉ϕ.

A Kripke frame is a tuple 〈W, τ, (Rt)t∈MOD〉, where W is a nonempty set of
possible worlds, τ ∈ W is the current world, and each Rt is a binary relation on
W , called the accessibility relation for [t] and 〈t〉.3 If Rt(w, u) holds then we say
that the world w sees world u via Rt.

A Kripke model is a tuple 〈W, τ, (Rt)t∈MOD, h〉, where 〈W, τ, (Rt)t∈MOD〉 is a
Kripke frame and h is a function mapping worlds to sets of primitive propositions.
For w ∈ W , the set of primitive propositions “true” at w is h(w).

A model graph is a tuple 〈W, τ, (Rt)t∈MOD, H〉, where 〈W, τ, (Rt)t∈MOD〉 is a
Kripke frame and H is a function mapping worlds to formula sets. We sometimes
treat model graphs as models with the range of H restricted to PROP .

Given a Kripke model M = 〈W, τ, (Rt)t∈MOD, h〉 and a world w ∈ W , the
satisfaction relation |= is defined as usual for the classical connectives with two
extra clauses for the modalities as below:

M, w |= [t]ϕ iff ∀v ∈ W. Rt(w, v) implies M, v |= ϕ
M, w |= 〈t〉ϕ iff ∃v ∈ W. Rt(w, v) and M, v |= ϕ.

We say that ϕ is satisfied at w in M if M, w |= ϕ. We say that M satisfies ϕ
and call M a model of ϕ if M, τ |= ϕ.

If we consider only Kripke models, with no restrictions on Rt, we obtain a
normal multimodal logic with a standard Hilbert-style axiomatisation Kn.

Note: We now assume that, if not stated otherwise, formulae are in negation
normal form, where ⊃ is translated away and ¬ occurs only directly before
primitive propositions. It is well known that every formula ϕ has a logically
equivalent formula ϕ′ which is in negation normal form. We treat a finite set of
formulae as the conjunction of its formulae.

2.2 A Class BReg of Regular Modal Logics of Agent Beliefs

A BReg logic is a normal multimodal logic L extending Kn with:

Inclusion Axioms: a set IA(L) of inclusion axioms [t]ϕ ⊃ [s1] . . . [sk]ϕ with k ≥ 0
whose corresponding grammar rules t → s1 . . . sk jointly form a grammar
RG(L) specified by finite automata (As)s∈MOD such that As for s ∈ MOD
recognises the set of words derivable from s using the rules of RG(L);4

3 By writing (Rt)t∈MOD instead of using R as a function that maps t to a binary
relation Rt, we emphasize that the frame is for a multimodal logic.

4 If k = 0 then the right hand side of t → s1 . . . sk stands for the empty word ε. MOD
is used both as the set of terminal symbols and the set of grammar variables.
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Seriality Axioms: a set of seriality axioms [t]ϕ ⊃ 〈t〉ϕ for every t of a set
DI(L) ⊆ MOD of D-indices;

Terminal KD45-Condition: a set of axioms [t]ϕ ⊃ [t][t]ϕ ∈ IA(L) and 〈t〉ϕ ⊃
[t]〈t〉ϕ for every t of a set EI(L) ⊆ DI(L) of E-indices, with the condition
that IA(L) contains no other inclusion axioms of the form [t]ϕ ⊃ [s1] . . . [sk]ϕ
for t ∈ EI(L).

Recall that a finite automaton A is a tuple 〈Σ, Q, I, δ, F 〉, where: Σ is the
alphabet (for our case Σ = MOD); Q is a finite set of states; I ⊆ Q is the set
of initial states; δ ⊆ Q × Σ × Q is the transition relation; and F ⊆ Q is the set
of accepting states. A run of A on a word s1 . . . sk is a finite sequence of states
q0, q1, . . . , qk such that q0 ∈ I and δ(qi−1, si, qi) holds for every 1 ≤ i ≤ k. It
is an accepting run if qk ∈ F . We say that A accepts word w if there exists an
accepting run of A on w. The set of all words accepted/recognised by A is L(A).

We do not require axiom (D) for every modal index in order to allow BReg
to contain all regular modal logics. But, if every modal index denotes either an
agent or a group of agents, then we can assume that DI(L) = MOD. We allow
axiom (5) only for modal indices which satisfy the terminal KD45-condition. This
restriction can be justified from practical considerations stated for KD4Ig5a in
the introduction. It can be shown that the multimodal logics of belief KDI4,
KDI4s, KD4Ig, KD4Ig5a studied by Nguyen in [21,22], as well as KD45(m),
belong to BReg. The monomodal logics K, KD, T, K4, KD4, S4, KD45 belong
to BReg, but KB, KDB, B, K5, KD5, K45, KB5 (KB4), S5 do not.

Given two binary relations R1 and R2 over W , their relational composition
R1 ◦R2 = {(x, z) | ∃y ∈ W.R1(x, y) & R2(y, z)} is also a binary relation over W .

The L-frame restrictions for a BReg logic L are the following restrictions:

– Rs1 ◦ . . . ◦ Rsk
⊆ Rt if s1 . . . sk is accepted by At, where t ∈ MOD and

(As)s∈MOD are the finite automata specifying RG(L);
– Rt is serial (i.e. ∀u∃w Rt(u, w)) for each D-index t ∈ DI(L);
– Rt is transitive and euclidean (i.e. ∀u, v, w Rt(u, v) ∧ Rt(v, w) → Rt(u, w)

and ∀u, v, w Rt(u, v) ∧ Rt(u, w) → Rt(w, v)) for each E-index t ∈ EI(L).

A Kripke model is an L-model if its frame satisfies all L-frame restrictions. A
formula ϕ is L-satisfiable if there exists an L-model satisfying it. A formula ϕ is
L-valid if every L-model satisfies it. It can be shown that for a BReg logic L, a
formula ϕ is L-valid iff it is derivable using the axiomatisation of L. (See [25] for
the correspondence theory.)

2.3 Some Properties of BReg Logics

Let L be a BReg logic. For t ∈ EI(L), logic L contains the axiom 〈t〉ϕ ⊃ [t]〈t〉ϕ,
which can also be written as 〈t〉[t]ψ ⊃ [t]ψ. This latter axiom implies the inclusion
axiom [t][t]ψ ⊃ [t]ψ (because t ∈ EI(L) ⊆ DI(L) and [t][t]ψ ⊃ 〈t〉[t]ψ is L-valid),
which corresponds to the grammar rule tt → t. Let eRG(L) be the grammar
extending RG(L) with rules tt → t for t ∈ EI(L). We call eRG(L) the extended
grammar of L. Syntactically, eRG(L) is not a regular grammar.
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Let L be a BReg logic and let (At)t∈MOD be the automata specifying the
regular grammar RG(L). An s-path from state q0 to state qn in At is a sequence
of transitions (q0, s, q1), (q1, s, q2), . . . , (qn−2, s, qn−1), (qn−1, s, qn) in δt, with
n ≥ 1. For each t ∈ MOD \ EI(L), let A′

t be the automaton obtained from At

by the following modification: for every s ∈ EI(L) and every s-path from state
q0 to state qn in At, add the transition (q0, s, qn) to A′

t. We call the resulting
automata A′

t, for t ∈ MOD \ EI(L), the automata specifying eRG(L). It should
be clear that, for t ∈ MOD \ EI(L), the word s1 . . . sk is accepted by A′

t iff
s1 . . . sk is derivable from t using the grammar eRG(L) since the modification
simply adds “s-transitivity” for every s ∈ EI(L). Thus eRG(L) can be treated
as a regular grammar for starting symbols outside EI(L).

Example 1. The logic Lwmp specified in the introduction is a BReg logic with
DI(Lwmp) = {g, a, b, c}, EI(Lwmp) = {a, b, c}, and the extended grammar
eRG(Lwmp) specified by the following finite automaton

Ag = 〈MOD, {0, 1}, {0}, {(0, x, 0), (0, x, 1) | x ∈ MOD}, {1}〉,

which accepts all non-empty finite words over MOD.

Example 2. The logic S4 is a BReg logic with DI(S4) = MOD = {a}, EI(S4) =
∅, and the regular grammar RG(S4) specified by the following finite automaton

Aa = 〈{a}, {0}, {0}, {(0, a, 0)}, {0}〉,

which accepts all finite sequences of a (in particular ε, and therefore is not an
automaton for K4).

Lemma 1. Let L be a BReg logic and t ∈ MOD \ EI(L). Then, for every
n ≥ 1, and every s1, s2, · · · , sn ∈ MOD, if the word s1 . . . sn is derivable from t
using the grammar eRG(L) then the formula [t]ϕ ⊃ [s1] . . . [sn]ϕ is L-valid.

Proof. By induction on the length of the derivation of s1 . . . sk from t using
eRG(L).

For a set Q of states of automaton A, the pair (A, Q) can be treated as the
automaton obtained from A by replacing the set of initial states by Q. Thus,
L(A, Q) denotes the language generated by (A, Q).

Let A = 〈MOD, QA, IA, δA, FA〉 and let ε denote the empty word. For any
Q ⊆ QA, any t ∈ MOD, and any word α over alphabet MOD, define:

δA(Q, t) = {q′ | ∃q ∈ Q.(q, t, q′) ∈ δA},
˜δA(Q, ε) = Q,

˜δA(Q, αt) = δA(˜δA(Q, α), t).

For As = 〈MOD, Qs, Is, δs, Fs〉, we write δs (resp. ˜δs) instead of δAs (resp. ˜δAs).

Lemma 2. Let L be a BReg logic, (At)t∈MOD\EI(L) the automata specifying
eRG(L), s ∈ MOD \ EI(L), As = 〈MOD, Qs, Is, δs, Fs〉, and Q = ˜δs(Is, α1) ∪
. . . ∪ ˜δs(Is, αh) for some words α1, . . . αh over alphabet MOD. Then:
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1. If t → s1 . . . sk is a rule of RG(L) then
L(As, ˜δs(Q, t)) ⊆ L(As, ˜δs(Q, s1 . . . sk)).

2. If t ∈ EI(L) then L(As, ˜δs(Q, t)) = L(As, ˜δs(Q, tt)).
3. If L(As, Q

′) ⊆ L(As, Q
′′) then L(As, ˜δs(Q′, t)) ⊆ L(As, ˜δs(Q′′, t)).

Proof. Since δs(Q′ ∪ Q′′, t) = δs(Q′, t) ∪ δs(Q′′, t) for all Q′, Q′′ ⊆ Qs, for asser-
tions 1 and 2, we can assume Q = ˜δs(Is, α) for some word α.

1: Suppose β is a word over alphabet MOD, and β ∈ L(As, ˜δs(Q, t)). Thus
αtβ ∈ L(As). If t → s1 . . . sk is a rule of RG(L), it follows that αs1 . . . skβ ∈
L(As). Hence β ∈ L(As, ˜δs(Q, s1 . . . sk)).

2: Since t → tt is a rule of RG(L) for all t ∈ EI(L), the first assertion gives
one half of the inclusion. It therefore suffices to show that L(As, ˜δs(Q, tt)) ⊆
L(As, ˜δs(Q, t)). Let β ∈ L(As, ˜δs(Q, tt)). Thus αttβ ∈ L(As). Because t ∈
EI(L), we have tt → t as a grammar rule of eRG(L). It follows that t
is derivable from tt using the grammar eRG(L). Since As recognises the
language derivable from s using eRG(L), it follows that αtβ ∈ L(As). Hence
β ∈ L(As, ˜δs(Q, t)).

3: The third assertion clearly holds.

2.4 Automaton-Modal Formulae

If A is a finite automaton, Q is a subset of the states of A, and ϕ is a formula in the
primitive language then we call [A, Q] a (universal) automaton-modal operator
and [A, Q]ϕ a formula in the extended language. Note that an automaton-modal
operator can appear only at the beginning of a formula. Similar constructions
were previously used in [15,16,9].5

Given a Kripke model M = 〈W, τ, (Rt)t∈MOD, h〉 and w0 ∈ W , define that
M, w0 |= [A, Q]ϕ if M, wk |= ϕ for every path w0Rs1w1 . . . wk−1Rsk

wk with
k ≥ 0 and ˜δA(Q, s1 . . . sk) ∩ FA �= ∅ (i.e. there exists a state of Q such that A
accepts the word s1 . . . sk when starting from that state).

From now on, by a formula we mean either a formula in the primitive language
(as defined in Section 2.1) or an automaton-modal formula.

2.5 Definitions for Tableau Calculi

As in our previous works on tableau calculi [8,20], our tableaux trace their roots
to Hintikka via [24]. A tableau rule σ consists of a numerator N above the line
and a (finite) list of denominators D1, D2, . . . , Dk (below the line) separated by
vertical bars. The numerator is a finite formula set, and so is each denominator.
As we shall see later, each rule is read downwards as “if the numerator is L-
satisfiable, then so is one of the denominators”. The numerator of each tableau
5 In [9] we used the notation (A, Q).ϕ instead of [A, Q]ϕ. We change the notation

because the modal operator is a “universal” modal operator according to the next
definition, and one can use 〈A, Q〉ϕ for the dual existential modal operator.
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Table 1. Tableau Rules for BReg Logics

(⊥) X; p; ¬p
⊥ (∧) X; ϕ ∧ ψ

X; ϕ ∧ ψ; ϕ; ψ (∨) X; ϕ ∨ ψ
X; ϕ ∨ ψ; ϕ | X; ϕ ∨ ψ; ψ

(D) X
X; 〈t〉� if t ∈ DI(L) (5) X; 〈t〉ϕ

X; 〈t〉ϕ; [t]〈t〉ϕ if t ∈ EI(L)

(aut) X; [t]ϕ
X; [t]ϕ; [At, It]ϕ

if t /∈ EI(L) (add) X; [At, Q]ϕ
X; [At, Q]ϕ; ϕ if Q ∩ Ft �= ∅

(trans) X; 〈t〉ϕ
trans(X, t); ϕ if t /∈ EI(L) (trans4)

X; [t]Y ; 〈t〉ϕ
trans(X, t); Y ; [t]Y ; ϕ if t ∈ EI(L)

rule contains one or more distinguished formulae called the principal formulae.
A tableau calculus CL for a logic L is a finite set of tableau rules.

A CL-tableau for a finite set X of formulae is a tree with root X whose nodes
carry finite formula sets obtained from their parent nodes by instantiating a
tableau rule with the proviso that if a child s carries a set Z and Z has already
appeared on the branch from the root to s then s is an end node.

Let Δ be a set of tableau rules. We say that Y is obtainable from X by
applications of rules from Δ if there exists a tableau for X which uses only rules
from Δ and has a node that carries Y . A node to which no rule is applicable is
also an end-node. A branch in a tableau is closed if its end node carries only ⊥.
A tableau is closed if every one of its branches is closed. A tableau is open if it
is not closed. A finite formula set X is CL-consistent if every CL-tableau for X
is open. If there is a closed CL-tableau for X then X is CL-inconsistent.

A tableau calculus CL is sound if for all finite formula sets X in the primitive
language, X is L-satisfiable implies X is CL-consistent. It is complete if for all
finite formula sets X in the primitive language, X is CL-consistent implies X is
L-satisfiable. We say that a rule σ of CL is sound w.r.t. L if for every instance
σ′ of σ, if the numerator of σ′ is L-satisfiable then so is one of the denominators
of σ′. Any calculus CL containing only rules sound w.r.t. L is sound.

3 A Tableau Calculus for BReg Logics

Fix a BReg logic L and let (At = 〈MOD, Qt, It, δt, Ft〉)t∈MOD\EI(L) be the
automata specifying eRG(L). Recall that formulae are in negation normal form.
We use X , Y to denote formula sets, use [t]X to denote the set {[t]ϕ | ϕ ∈ X},
and use � to denote the truth constant with the usual semantics. We write X ; Y
for X ∪ Y , write X ; ϕ for X ∪ {ϕ}, and ϕ; ψ for {ϕ, ψ}.

The transfer of X through 〈t〉, denoted by trans(X, t), is:

trans(X, t) = {[As, δs(Q, t)]ψ | [As, Q]ψ ∈ X}.

The tableau calculus CL is given in Table 1. For intuition of the use of
automaton-modal formulae in tableaux, we refer the reader to Section 2.3 of [9].
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The last two rules (trans) and (trans4) of the calculus are transitional rules, while
the remaining rules except (⊥) are static rules. The intuition of this sorting is
that static rules keep us in the same world of the Kripke model under construc-
tion, while transitional rules take us to a new Kripke successor world.

Note that we include the principal formula of the static rules in their denom-
inators.6 Thus, the numerator of any static rule is a subset of every one of its
denominators. A set X is closed w.r.t. a tableau rule if applying that rule to X
gives back X as one of the denominators. We implicitly assume that a static rule
is applied to X only when X is not closed w.r.t. that rule and treat this as an
(additional) condition for applying the rule.

In comparison with the calculus given in [9] for regular modal logics, our
calculus for BReg contains 3 more rules (D), (5), (trans4); the rule (∨) slightly
changes as described in the above paragraph; and the rule (aut) is the same as
(label). Note, however, that the automata used for (trans), (aut), (add) are now
the ones specifying the extended grammar eRG(L) but not RG(L).

A tableau calculus C has the analytic superformula property iff to every finite
set X we can assign a finite set X∗

C which contains all formulae that may appear in
any tableau for X . We write Sf(ϕ) for the set of all subformulae of ϕ, and Sf(X)
for the set

⋃

ϕ∈X Sf(ϕ) ∪ {⊥}. Our calculus CL has the analytic superformula
property, with X∗

CL = Sf(X) ∪ {[At, Q]ϕ | [t]ϕ ∈ Sf(X) & Q ⊆ Qt}.

Lemma 3. The tableau calculus CL is sound.

Proof. We show that CL contains only rules sound w.r.t. L as follows. Suppose
that the numerator of the considered rule is satisfied at a world w in an L-
model M = 〈W, τ, (Rt)t∈MOD, h〉. We have to show that at least one of the
denominators of the rule is also L-satisfiable. For the static rules, we show that
some denominator is satisfied at w itself. For the transitional rules (trans) and
(trans4), we show that its denominator is satisfied at some world reachable from
w via Rt in the same L-model.

(⊥), (∧), (∨), (D), (5): These cases are obvious.
(aut): Suppose that M, w |= X ; [t]ϕ. Let w0 = w, w1, . . . , wk be worlds of M

such that Rsi(wi−1, wi) holds for 1 ≤ i ≤ k and s1 . . . sk is accepted by
At. By Lemma 1, [t]ψ ⊃ [s1] . . . [sk]ψ is L-valid. Hence M, wk |= ϕ. Thus,
M, w |= [At, It]ϕ.

(add): Suppose that M, w |= X ; [At, Q]ϕ and Q∩Ft �= ∅. Since ˜δt(Q, ε) = Q, we
have that ˜δt(Q, ε)∩Ft �= ∅. Since M, w |= [At, Q]ϕ, it follows that M, w |= ϕ.

(trans): Suppose that M, w |= X ; 〈t〉ϕ. Then there exists some u such that
Rt(w, u) holds and M, u |= ϕ. For each [As, Q]ψ ∈ X , we have M, w |=
[As, Q]ψ, and by the semantics of automaton-modal formulae, it follows that
M, u |= [As, δs(Q, t)]ψ. Hence, the denominator is satisfied at u.

(trans4): The proof for this case is similar to the proof for the case of (trans),
with an additional justification that [t]ψ ⊃ [t][t]ψ is an axiom of L when
t ∈ EI(L).

6 This allows an easier proof for soundness of global caching.
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Γwmp 6(aut)
Γ1; Γ2; 〈a〉¬pa (trans4)

Γ3; ¬pa 2(add)
Γ3; ¬pa; pa ∨ [b]¬pa; 〈b〉¬pb (∨)

¬pa; pa;
· · ·
⊥

Γ3; ¬pa; [b]¬pa; 〈b〉¬pb (trans4)
Γ3; ¬pa; [b]¬pa; ¬pb 3(add)

Γ3; ¬pa; [b]¬pa; ¬pb; pa ∨ [c]¬pa; pb ∨ [c]¬pb; 〈c〉¬pc 2(∨)
¬pa; pa;

· · ·
⊥

¬pb; pb;
· · ·
⊥

Γ3; ¬pa; [b]¬pa; ¬pb; [c]¬pa; [c]¬pb; 〈c〉¬pc (trans4)
Γ3; ¬pa; ¬pb; ¬pc; [c]¬pa; [c]¬pb (add)

Γ3; ¬pa; ¬pb; ¬pc; [c]¬pa; [c]¬pb; pa ∨ pb ∨ pc 2(∨)
. . . ; ¬pa; pa

⊥
. . . ; ¬pb; pb

⊥
. . . ; ¬pc; pc

⊥

Δ1; 〈a〉¬pa; 〈a〉¬pb; 〈a〉¬pc 2(5)
Δ1; Δ2; 〈a〉¬pa; 〈a〉¬pb; 〈a〉¬pc; [a]〈a〉¬pb; [a]〈a〉¬pc (trans4)

Δ3; ¬pa; 〈a〉¬pb; 〈a〉¬pc; . . . 3(add)
Δ3; ¬pa; 〈a〉¬pb; 〈a〉¬pc; . . . ; pa ∨ [b]¬pa; 〈b〉¬pb ∨ [a]pb; 〈b〉¬pc ∨ [a]pc 3(res)

Δ3; . . . ; [b]¬pa; 〈b〉¬pb; 〈b〉¬pc (5)
Δ3; . . . ; [b]¬pa; 〈b〉¬pb; 〈b〉¬pc; [b]〈b〉¬pc (trans4)

Δ3; ¬pa; ¬pb; 〈b〉¬pc; . . . 3(add)
Δ3; ¬pa; ¬pb; 〈b〉¬pc; . . . ; pa ∨ [c]¬pa; pb ∨ [c]¬pb; 〈c〉¬pc ∨ [b]pc 3(res)

Δ3; . . . ; [c]¬pa; [c]¬pb; 〈c〉¬pc (trans4)
Δ3; . . . ; ¬pa; ¬pb; ¬pc (add)

Δ3; . . . ; ¬pa; ¬pb; ¬pc; pa ∨ pb ∨ pc 2(∨)
. . . ; ¬pa; pa

⊥
. . . ; ¬pb; pb

⊥
. . . ; ¬pc; pc

⊥

Fig. 1. Closed CL-Tableaux for the Wise Men Puzzle

3.1 Examples

In this subsection, we present closed tableaux for the formula sets formalising
the wise men puzzle. Let L be the BReg logic Lwmp defined in the introduction.
Recall that the following automaton Ag specifies eRG(L):

Ag = 〈MOD, {0, 1}, {0}, {(0, x, 0), (0, x, 1) | x ∈ MOD}, {1}〉

In Figure 1, we give a closed CL-tableau for the formula set Γwmp, which was
specified in the introduction for formalising the wise men puzzle. In that tableau,
for 1 ≤ i ≤ 6, ϕi is the formula as in the introduction, ψi is the subformula of
ϕi such that ϕi = [g]ψi, Γ1 = {ϕ1, . . . , ϕ6}, Γ2 = {[Ag, {0}]ψ1, . . . , [Ag, {0}]ψ6},
and Γ3 = {[Ag, {0, 1}]ψ1, . . . , [Ag, {0, 1}]ψ6}. Since the tableau calculus CL is
sound, it follows that Γwmp is L-unsatisfiable.

For the modified version of the wise men puzzle, let ϕ1, . . . , ϕ4, ϕ
′
5, ϕ

′
6, ϕ

′
7 be

the formulae as in the introduction. In the negation normal form, we have that:

ϕ′
5 = [g](〈c〉¬pc ∨ [b]pc) ϕ′

6 = [g](〈b〉¬pb ∨ [a]pb) ϕ′
7 = [g](〈b〉¬pc ∨ [a]pc)
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For 1 ≤ i ≤ 7, let ψi be the formula such that ϕi = [g]ψi if 1 ≤ i ≤ 4,
and ϕ′

i = [g]ψi if i ∈ {5, 6, 7}. Let Δ1 = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ
′
5, ϕ

′
6, ϕ

′
7}, Δ2 =

{[Ag, {0}]ψi | 1 ≤ i ≤ 7}, and Δ3 = {[Ag, {0, 1}]ψi | 1 ≤ i ≤ 7}. Let ϕ denote
the negation normal form of ¬ϕ. Note that the following rule is “derivable” using
the rules of CL :

(res)
X ; ϕ ∨ ψ; ϕ

X ; ϕ ∨ ψ; ϕ; ψ
or

X ; ψ ∨ ϕ; ϕ
X ; ψ ∨ ϕ; ϕ; ψ

In Figure 1, we also give a closed CL-tableau using the tableau rule (res) for
the formula set Δwmp = Δ1 ∪ {〈a〉¬pa, 〈a〉¬pb, 〈a〉¬pc}, which was specified in
the introduction for formalising the modified version of the wise men puzzle.
Since the tableau calculus CL is sound, it follows that Δwmp is L-unsatisfiable.

4 Completeness

4.1 Proving Completeness Via Model Graphs

Let L be a BReg logic. We prove completeness of our calculus via model graphs
following [24,8,20,9] by giving an algorithm that accepts a finite CL-consistent
formula set X in the primitive language and constructs an L-model graph (de-
fined below) for X that satisfies each of its formulae at the appropriate world.

For a finite CL-consistent formula set X , a formula set Y is called a CL-
saturation of X if Y is a CL-consistent set obtainable from X by applications of
the static rules of CL and closed w.r.t. the static rules of CL.

Lemma 4. Let X be a finite CL-consistent formula set and Y a CL-saturation
of X. Then X ⊆ Y ⊆ X∗

CL. Furthermore, there is an effective procedure that,
given a finite CL-consistent formula set X, constructs some CL-saturation of X.

Proof. Clearly, X ⊆ Y ⊆ X∗
CL. Observe that if a static rule of CL is applicable to

Y , then one of the corresponding instances of the denominators is CL-consistent.
Since Y is a CL-saturation, Y is closed w.r.t. the static rules of CL.

We construct a CL-saturation of X as follows: let Y = X ; while some static
rule of CL is applicable to Y and has a corresponding denominator instance Z
which is CL-consistent and strictly contains Y , set Y = Z. At each iteration,
Y ⊂ Z ⊆ X∗

CL, so this process always terminates. Clearly, the resulting set Y is
a CL-saturation of X .

A model graph is an L-model graph if its frame is an L-frame. An L-model graph
〈W, τ, (Rt)t∈MOD, H〉 is saturated if every w ∈ W satisfies:

– if ϕ ∧ ψ ∈ H(w) then {ϕ, ψ} ⊆ H(w);
– if ϕ ∨ ψ ∈ H(w) then ϕ ∈ H(w) or ψ ∈ H(w);
– if [t]ϕ ∈ H(w) and Rt(w, u) holds then ϕ ∈ H(u);
– if 〈t〉ϕ ∈ H(w) then ∃u ∈ W with Rt(w, u) and ϕ ∈ H(u).
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A saturated model graph is consistent if no world contains ⊥, and no world
contains a pair of the form {p, ¬p}. Our model graphs are merely a data struc-
ture, while Rautenberg’s are required to be saturated and consistent [24].

Lemma 5. If M = 〈W, τ, (Rt)t∈MOD, H〉 is a consistent saturated L-model
graph, then M satisfies all formulae in the primitive language of H(τ).

Proof. By proving ϕ ∈ H(w) implies M, w |= ϕ via induction on the length of ϕ.

Given a finite CL-consistent set X in the primitive language, we construct a
consistent saturated L-model graph M = 〈W, τ, (Rt)t∈MOD, H〉 such that X ⊆
H(τ), thereby giving an L-model for X .

4.2 Constructing Model Graphs

Given X , the compact form compact(X) of X is the smallest set such that:

– if ϕ ∈ X and ϕ is not of the form [At, Q]ψ then ϕ ∈ compact(X);
– if [At, Q]ψ ∈ X and Q1, . . . , Qk are all the sets such that [At, Qi]ψ ∈ X for

1 ≤ i ≤ k, then [At, Q1 ∪ . . . ∪ Qk]ψ ∈ compact(X).

Observe that the compact form does not affect the essence of CL-tableaux. More
specifically, if applying a CL-tableau rule to X gives denominators Y1, . . . , Yk,
then applying that rule to compact(X) gives denominators Z1, . . . , Zk such that
compact(Zi) = compact(Yi) for 1 ≤ i ≤ k. In particular, “compacting” preserves
CL-consistency and CL-inconsistency.

For t ∈ EI(L) and 〈t〉ϕ ∈ X , define

trans4(X, 〈t〉ϕ) = trans(X, t) ∪ {ψ, [t]ψ | [t]ψ ∈ X} ∪ {ϕ}.

For t ∈ EI(L), define

core5(X, t) = {[t]ϕ | [t]ϕ ∈ X} ∪ {〈t〉ϕ | 〈t〉ϕ ∈ X} ∪
{[As, Q]ϕ | ∃α, Q′.[As, Q

′]ϕ ∈ X and Q = ˜δs(Is, αt) ⊆ Q′}.

As shown in the next lemma, core5(X, t) can be treated as the subset of X
consisting of formulae that are preserved when travelling through edges of Rt,
including edges forced by the euclidean frame restriction.

Lemma 6. Let X be a CL-saturation of some formula set and Y be a CL-
saturation of trans4(X, 〈t〉ϕ) for some 〈t〉ϕ ∈ X with t ∈ EI(L). Then
core5(X, t) ⊆ core5(Y, t).

Proof. Due to the static rule (5), it suffices to show that if [As, Q]ξ ∈ core5(X, t)
then [As, Q]ξ ∈ core5(Y, t). Suppose that [As, Q]ξ ∈ core5(X, t). Thus, there exist
α and Q′ s.t. Q = ˜δs(Is, αt) ⊆ Q′ and [As, Q

′]ϕ ∈ X . By definition of the set
trans4, there exists [As, Q

′′]ϕ ∈ Y s.t. δs(Q′, t) ⊆ Q′′. It follows that ˜δs(Is, αtt) ⊆
Q′′. By Lemma 2, ˜δs(Is, αt) = ˜δs(Is, αtt), hence [As, Q]ξ ∈ core5(Y, t).
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A CL-consistent set X is core5(t)-saturated if for every 〈t〉ϕ ∈ X and every
CL-saturation Y of trans4(X, 〈t〉ϕ) we have core5(Y, t) = core5(X, t).

Algorithm 1 given below constructs a consistent saturated L-model graph for
a finite CL-consistent set X . In this algorithm, for each t ∈ EI(L): we find a
core5(t)-saturated set U which is obtainable from H(w) by applications of static
CL-rules and rule (trans4) with the principal formula of the form 〈t〉ψ; we then
create successors of w via R′

t to satisfy 〈t〉-formulae using core5(U, t) as the
content of w. But we do this in two different ways depending upon whether w
has an R′

t-predecessor at this iteration.
To prove correctness of Algorithm 1, we use a data structure denoted by core∗5

to store core5(U, t) in core∗5(w, t). Note that core5 is a function, while core∗5 is a
table. In the algorithm, the worlds of the constructed model graph are marked
either as unresolved or as resolved.

Algorithm 1
Input: a finite CL-consistent set X of primitive language formulae.
Output: an L-model graph M = 〈W, τ, (Rt)t∈MOD, H〉 of X.

1. Let W = {τ} and R′
t = ∅ for all t ∈ MOD.

Let Y be a CL-saturation of X and let H(τ ) = compact(Y ).
Mark τ as unresolved.

2. While there are unresolved worlds, take one, say w, and do:

(a) For every formula 〈t〉ϕ in H(w) with t /∈ EI(L):

i. Let U = trans(H(w), t) ∪ {ϕ} be the result of applying rule (trans) to
H(w), let Y be a CL-saturation of U , and let Z = compact(Y ).

ii. If ∃u ∈ W on the path from the root to w with H(u) = Z, then add the
pair (w, u) to R′

t. Otherwise, add a new world u with content Z to W ,
mark it as unresolved, and add the pair (w, u) to R′

t.

(b) For every t ∈ EI(L) such that R′
t(v, w) does not hold for any v:

i. Let U be a CL-saturation of trans4(H(w), 〈t〉�).
ii. While there exist 〈t〉ϕ ∈ U and a CL-saturation V of trans4(U, 〈t〉ϕ) such

that core5(U, t) ⊂ core5(V, t), let U = V .
iii. Let core∗

5 (w, t) = core5(U, t).
iv. For every 〈t〉ϕ ∈ core∗

5 (w, t):
Let Y be a CL-saturation of trans4(core∗

5 (w, t), 〈t〉ϕ),
let Z = compact(Y ), and do the same as Step 2(a)ii.

(c) For every t ∈ EI(L) such that R′
t(v, w) holds for some v:

Let core∗
5 (w, t) = core5(H(w), t).

(d) Mark w as resolved.

3. Let (Rt)t∈MOD be the least extension of (R′
t)t∈MOD for t ∈ MOD such that

〈W,τ, (Rt)t∈MOD〉 is an L-frame (note that the seriality conditions are cared by
the tableau rule (D) and need not to be considered here).

This algorithm always terminates: eventually, for every w, either w contains
no 〈t〉-formulae, or there exists an ancestor with H(u) = Z at Step 2(a)ii because
all CL-saturated sets are drawn from the finite and fixed set X∗

CL.
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4.3 Completeness Proof

Lemma 7. The following assertions are invariants during execution of Step 3
of Algorithm 1 (when (R′

t)t∈MOD are extended to (Rt)t∈MOD).

1. If Rt(w, u) holds and t ∈ EI(L) then
core∗5(w, t) = core∗5(u, t) = core5(H(u), t).

2. If Rt(w, u) holds then for every formula [As, Q]ϕ ∈ H(w), there exists
[As, Q

′]ϕ ∈ H(u) such that L(As, δs(Q, t)) ⊆ L(As, Q
′).

Proof. We first prove that if t ∈ EI(L) then the first assertion implies the second
one. Hence, we need to prove the second assertion only for the case t /∈ EI(L).

Suppose t ∈ EI(L), that the first assertion holds, and [As, Q]ϕ ∈ H(w).
Hence there exist words α1, . . . , αk such that Q = ˜δs(Is, α1) ∪ . . . ∪ ˜δs(Is, αk).
By the computation of core∗5(w, t), we have [As, ˜δs(Is, αit)]ϕ ∈ core∗5(w, t), for
1 ≤ i ≤ k. Hence [As, ˜δs(Is, αit)]ϕ ∈ core5(H(u), t) for every 1 ≤ i ≤ k. It
follows that there exists [As, Q

′]ϕ ∈ H(u) such that δs(Q, t) ⊆ Q′, and thus
L(As, δs(Q, t)) ⊆ L(As, Q

′).
We prove the assertions of the lemma by induction on the number of steps

executed when extending R′
t for t ∈ MOD to Rt.

Consider the base case, when R′
t(w, u) holds. For the first assertion, assume

that t ∈ EI(L). Hence u must have been created from w via Step 2b. We have
that core∗5(w, t) = core5(H(u), t), because core∗5(w, t) is core5(t)-saturated and
u is created from w via R′

t using core∗5(w, t) as the content of w. When u is
resolved, we have that core∗5(u, t) = core5(H(u), t) due to Step 2c. Hence the
first assertion holds. The second assertion clearly holds for the case t /∈ EI(L).

Consider the inductive step for the first assertion. If Rt(w, u) is created from
Rt(w, v) and Rt(v, u) then, by the inductive assumption, core∗5(w, t) = core∗5(v, t)
and core∗5(v, t) = core∗5(u, t) = core5(H(u), t), which imply the first assertion. If
Rt(w, u) is created from Rt(v, w) and Rt(v, u) then, by the inductive assumption,
core∗5(v, t) = core∗5(w, t) and core∗5(v, t) = core∗5(u, t) = core5(H(u), t), which
imply the first assertion.

Consider the inductive step for the second assertion and the case when t /∈
EI(L). Suppose that Rt(w, u) is created from edges Rsi(wi−1, wi) with 1 ≤ i ≤ k,
w = w0, u = wk, due to an inclusion Rs1 ◦ . . . ◦ Rsk

⊆ Rt. Let [As, Q]ϕ ∈
H(w). By Lemma 2(1), L(As, δs(Q, t)) ⊆ L(As, ˜δs(Q, s1 . . . sk)). Let Q0 = Q.
For i = 1, . . . , k, by the inductive assumption, there exists [As, Qi]ϕ ∈ H(wi)
such that L(As, δs(Qi−1, si)) ⊆ L(As, Qi). For i = 2 . . . k, by Lemma 2(3),
L(As, ˜δs(Q, s1 . . . si)) ⊆ L(As, Qi) since L(As, ˜δs(Q, s1 . . . si−1)) ⊆ L(As, Qi−1)
and ˜δs(Q, s1 . . . si) = δs(˜δs(Q, s1 . . . si−1), si). Hence L(As, ˜δs(Q, s1 . . . sk)) ⊆
L(As, Qk). It follows that L(As, δs(Q, t)) ⊆ L(As, Qk). Choose Q′ = Qk.

Lemma 8. Let X be a finite CL-consistent set of formulae in the primitive
language and M = 〈W, τ, (Rt)t∈MOD, H〉 be the model graph for X constructed
by Algorithm 1. Then M is a consistent saturated L-model graph satisfying X.
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Proof. It is clear that M is an L-model graph and for any w ∈ W , the set H(w)
is CL-consistent. We want to show that M is a saturated model graph. It suffices
to show that:

1. For all w, u ∈ W , if [t]ϕ ∈ H(w) and Rt(w, u) holds then ϕ ∈ H(u).
2. For every w ∈ W , if 〈t〉ϕ ∈ H(w) and t ∈ EI(L) then there exists u ∈ W

such that Rt(w, u) holds and ϕ ∈ H(u).

For the first assertion, suppose [t]ϕ ∈ H(w) and Rt(w, u) holds.

Case t /∈ EI(L): Since [t]ϕ ∈ H(w), there exists [At, Q]ϕ ∈ H(w) with Q ⊇ It.
By Lemma 7, there exists [At, Q

′]ϕ ∈ H(u) such that L(At, δt(It, t)) ⊆
L(At, Q

′). Since t ∈ L(At), we have that ε ∈ L(At, δt(It, t)). Hence ε ∈
L(At, Q

′), which means Q′ ∩ Ft �= ∅. Since [At, Q
′]ϕ ∈ H(u), it follows that

ϕ ∈ H(u) by rule (add).
Case t ∈ EI(L): Since [t]ϕ ∈ H(w), we have that [t]ϕ ∈ core∗5(w, t). Since

Rt(w, u) holds, there exists v such that R′
t(v, u) holds. By Lemma 7,

core∗5(w, t) = core∗5(u, t) = core∗5(v, t). Hence [t]ϕ ∈ core∗5(v, t). Since R′
t(v, u)

holds, it follows that ϕ ∈ H(u).

We now prove the second assertion. Suppose 〈t〉ϕ ∈ H(w) and t ∈ EI(L). If
R′

t(v, w) does not hold for any v when w is resolved then w is connected via R′
t

to a world u with ϕ ∈ H(u) at Step 2b since 〈t〉ϕ ∈ core∗5(w, t). Alternatively,
suppose R′

t(v, w) does hold for some v when w is resolved (at Step 2c). Since
〈t〉ϕ ∈ H(w), we have 〈t〉ϕ ∈ core5(H(w), t) = core∗5(v, t) by Lemma 7. Now v
must have been considered at Step 2b in a previous iteration since this is the only
way that an edge like R′

t(v, w) is created. Since 〈t〉ϕ ∈ core∗5(v, t), this iteration
must also create a world u with R′

t(v, u) such that ϕ ∈ H(u). Then Rt(w, u)
must hold after Step 3 by euclideaness.

Theorem 1. The calculus CL for BReg logics is sound and complete.

This theorem immediately follows from Lemmas 3 and 8.
We use Algorithm 1 only to prove completeness of the calculus CL for a BReg

logic L. It assumes that the input set X is CL-consistent and is inefficient due
to the naive computation of saturations and the limited caching. In the next
section, we present Algorithm 2 with global caching for checking CL-consistency
of formula sets. Since the calculus CL is sound and complete, CL-consistency
coincides with L-satisfiability. Algorithm 2 explores the search space by building
an and-or graph using the tableau rules of CL. The content (label) of a node in
the graph is a formula set in the compact form. Global caching means that for
each possible content, at most one node with that content in the search space is
expanded, and such an expansion is done at most once for that content. Global
caching is one of the most useful optimisations for tableau decision procedures
for modal logics [23]. Due to global caching and the compact form of nodes,
Algorithm 2 has the optimal EXPTime complexity.
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5 An EXPTime Decision Procedure with Global Caching
for BReg Logics

In this section L denotes an BReg logic. In Figure 2 we give an algorithm for
checking CL-consistency which creates an and-or graph using the tableau rules
of CL and global caching. A node in the constructed graph is a record with three
attributes:

content: the formula set carried by the node
status: {unexpanded, expanded, cons, incons}
kind: {and-node, or-node}

Algorithm 2

Input: a finite set X of primitive language formulae and an BReg logic L with finite
automata (At)t∈MOD\EI(L) specifying the extended grammar eRG(L)

Output: an and-or graph G = 〈V, E〉 with τ ∈ V as the initial node such that
τ.status = cons iff X is CL-consistent

Remark: We use “rule” to refer to a CL-tableau rule.

1. create a new node τ with τ.content := X and τ.status := unexpanded;
let V := {τ} and E := ∅;

2. while τ.status /∈ {cons, incons} and we can choose an unexpanded node v ∈ V do:
(a) D := ∅;
(b) if no rule is applicable to v.content then v.status := cons
(c) else if the rule (⊥) is applicable to v.content then v.status := incons
(d) else if some static rule with only one denominator is applicable to v.content

giving denominator Y then v.kind := and-node, D := {Y }
(e) else if the rule (∨) is applicable to v.content giving denominators Y1 and Y2

(both different from v.content) then v.kind := or-node, D := {Y1, Y2}
(f) else

i. v.kind := and-node,
ii. for every transitional rule applicable to v.content and for every possible

application of the rule to v.content giving denominator Y , add Y to D;
(g) for every denominator Y ∈ D do

i. let Z = compact(Y ),
ii. if some w ∈ V has w.content = Z then add edge (v, w) to E
iii. else let w be a new node, set w.content := Z, w.status := unexpanded,

add w to V , and add edge (v,w) to E;
(h) if (v.kind = or-node and one of the successors of v has status cons)

or (v.kind = and-node and all the successors of v have status cons) then
v.status := cons, propagate(G,v)

(i) else if (v.kind = and-node and one of the successors of v has status incons)
or (v.kind = or-node and all the successors of v have status incons) then

v.status := incons, propagate(G,v)
(j) else v.status := expanded;

3. if τ.status /∈ {cons, incons} then
for every node v ∈ V with v.status �= incons, set v.status := cons;

Fig. 2. Checking CL-Consistency Using Global Caching
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Procedure propagate(G,v)
Parameters: an and-or graph G = 〈V, E〉 and v ∈ V with v.status ∈ {cons, incons}
Returns: a modified and-or graph G = 〈V, E〉

1. queue := {v};
2. while queue is not empty do
3. (a) extract x from queue;

(b) for every u ∈ V with (u, x) ∈ E and u.status = expanded do
i. if (u.kind = or-node and one of the successors of u has status cons)

or (u.kind = and-node and all the successors of u have status cons) then
u.status := cons, queue := queue ∪ {u}

ii. else if (u.kind = and-node and one of the successors of u has status incons)
or (u.kind = or-node and all the successors of u have status incons) then

u.status := incons, queue := queue ∪ {u};

Fig. 3. Propagating Consistency and Inconsistency Through an And-Or Graph

To check whether a given finite formula set X is CL-consistent, the initial
node τ has content X and status unexpanded. The main while-loop continues
processing nodes until the status of τ is determined to be in {cons, incons}, or
until every node is expanded, whichever happens first.

The algorithm gives a preference to the rule (⊥), then any one of the static
unary rules, then the static binary rule (∨). If none of these are applicable,
then it applies the transitional rules simultaneously. When a rule is applied, the
algorithm categorises the numerator as either an or-node or an and-node with an
or-node being inconsistent if every child is inconsistent and an and-node being
inconsistent if at least one child is inconsistent.

The main difference with traditional methods appears at Step 2g: here, for
every denominator, we first check whether an already existing node can act as a
proxy for that denominator. If so, then we do not create that denominator, but
merely insert an edge from the numerator to the existing proxy.

If these steps cannot determine the status of v as cons or incons, then its
status is set to expanded. But if these steps do determine the status of a node v
to be cons or incons, this information is itself propagated to the predecessors
of v in the and-or graph G via the routine propagate(G, v), explained shortly.

The main loop ends when the status of the initial node τ becomes cons or
incons or all nodes of the graph have been expanded. In the latter case, all
nodes with status �= incons are given status cons (effectively giving the status
open to tableau branches which loop).

The procedure propagate used in the above algorithm is specified in Figure 3.
As parameters, it accepts an and-or graph G and a node v with (irrevocable)
status cons or incons. The purpose is to propagate the status of v through the
and-or graph and alter G to reflect the new information.

Initially, the queue contains only v. While the queue is not empty: a node
x is extracted; the status of x is propagated to each predecessor u of x in an
appropriate way; and if the status of u becomes (irrevocably) cons or incons
then u is inserted into the queue for further propagation.
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This construction thus uses both caching and propagation techniques.
See [12] for the proofs of the following results.

Theorem 2. Let L be an BReg logic whose extended grammar is specified by
finite automata (At)t∈MOD\EI(L), X a finite set of primitive language formulae,
and G = 〈V, E〉 the graph constructed by Algorithm 2 for X using CL, with τ ∈ V
as the initial node. Then X is CL-consistent iff τ.status = cons.

Corollary 1. Algorithm 2 is an EXPTime decision procedure for BReg logics.

6 Conclusions

We have given an analytic cut-free tableau calculus for a large class BReg of
epistemic logics for reasoning about agent beliefs. As demonstrated for the wise
men puzzle and its modified version, BReg logics are very useful for reasoning
about mutual beliefs of agents. The class BReg essentially extends the class
of regular modal logics by allowing axioms (D) and (5) which are useful and
sometimes necessary for practical applications.

Our tableau calculus for BReg seems a simple extension of our tableau cal-
culus for regular modal logics [9] using standard tableau rules to deal with ax-
ioms (D) and (5). Note, however, that non-trivial complications of the extension
w.r.t. [9] lie in the use of finite automata specifying the extended grammar
eRG(L) instead of RG(L) and the way of combining “regularity” of the used
logic with axiom (5).

Applying global caching to our calculus, we obtain the first optimal (EXP-
Time) tableau decision procedure for BReg, which does not use cut rules.7 Fur-
thermore, it is easy to show that most of the well-known optimisation techniques
for tableau decision procedures (as discussed in [13,23]) are applicable to this
decision procedure.

Acknowledgements. Our thanks to the reviewers for their useful comments.
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Abstract. In this paper we present an implementation of EVOLP un-
der the Evolution Stable Model semantics, based on the transformation
defined in [1]. We also discuss optimizations used in the implementation.

1 Introduction

Evolving Logic Programming (EVOLP) [2] is a generalization of Answer Set
Programming [3] to allow for the specification of a program’s own evolution, in
a single unified way, by permitting rules to indicate assertive conclusions in the
form of program rules. Furthermore, EVOLP also permits, besides internal or
self updates, for updates arising from the environment. The resulting language
provides a simple and general formulation of logic program updating, particularly
suited for Multi-Agent Systems [4,5].

The language of Evolving Logic Programs contains a special predicate assert/1
whose sole argument is a full-blown rule. Whenever an assertion assert(r) is true
in a model, the program is updated with rule r. The process is then further iter-
ated with the new program. Whenever the program semantics allows for several
possible program models, evolution branching occurs, and several evolution se-
quences are made possible. This branching can be used to specify the evolution
of a situation in the presence of incomplete information. Moreover, the ability
of EVOLP to nest rule assertions within assertions allows rule updates to be
themselves updated down the line. The ability to include assert literals in rule
bodies allows for looking ahead on some program changes and acting on that
knowledge before the changes occur. EVOLP also automatically and appropri-
ately deals with the possible contradictions arising from successive specification
changes and refinements (via Dynamic Logic Programming).

Elsewhere [1], we present a transformation that takes an evolving logic pro-
gram P and a sequence of events E as input and outputs an equivalent normal
logic program PE . The aim of this work is to present an implementation of
EVOLP based on this transformation. The implementation can be easily inte-
grated with other existing multi-agent programming frameworks such as Jason
[6], 2APL [7] and 3APL [8], among others.
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The remainder of this work is structured as follows: in Sect. 2 we introduce
the syntax and semantics of EVOLP and the transformation from [1]; in Sect. 3
we present the implementation; in Sect. 4 we conclude and discuss future work.

2 Preliminaries

First we present the syntax and semantics of Dynamic Logic Programs and
Evolving Logic Programs (EVOLP) and also a simple example that shows how
EVOLP can be used to program a simple agent.

Let L be a set of propositional atoms. A default literal is an atom preceded
by not. A literal is either an atom or a default literal. A rule r is an ordered
pair (H(r), B(r)) where H(r) (dubbed the head of the rule) is a literal and B(r)
(dubbed the body of the rule) is a finite set of literals. A rule with H(r) = L0

and B(r) = {L1, L2, . . . , Ln } will simply be written as

L0 ← L1, L2, . . . , Ln. (1)

If H(r) = A (resp. H(r) = notA) then notH(r) = notA (resp. notH(r) = A).
Two rules r, r′ are conflicting, denoted by r �� r′, iff H(r) = notH(r′). We will
say a literal L appears in a rule (1) iff the set {L,notL }∩{L0, L1, L2, . . . , Ln }
is non-empty.

A generalized logic program (GLP) over L is a set of rules. A literal appears
in a GLP iff it appears in at least one of its rules.

An interpretation of L is any set of atoms I ⊆ L. An atom A is true in I,
denoted by I |= A, iff A ∈ I, and false otherwise. A default literal notA is true
in I, denoted by I |= notA, iff A /∈ I, and false otherwise. A set of literals B
is true in I iff each literal in B is true in I. Given an interpretation I we also
define I− def= {notA | A ∈ L \ I } and I∗ def= I ∪ I−. An interpretation M is a
stable model of a GLP P iff M∗ = least(P ∪M−) where least(·) denotes the
least model of the definite program obtained from the argument program by
treating all default literals as new atoms.

Definition 1. A dynamic logic program (DLP) is a sequence of GLPs. Let
P = (P1, P2, . . . , Pn) be a DLP. We use ρ(P) to denote the multiset of all rules
appearing in the programs P1, P2, . . . , Pn and P i (1 ≤ i ≤ n) to denote the i-th
component of P, i.e. Pi. Given a DLP P and an interpretation I we define

Def(P , I) def= { notA | (�r ∈ ρ(P))(H(r) = A ∧ I |= B(r)) } , (2)

Rejj(P , I) def=
{

r ∈ Pj
∣
∣ (∃k, r′)

(
k ≥ j ∧ r′ ∈ Pk ∧ r �� r′ ∧ I |= B(r′)

) }
,
(3)

Rej(P , I) def=
n⋃

i=1

Reji(P , I) . (4)

An interpretation M is a (refined) dynamic stable model of a DLP P iff M∗ =
least([ρ(P) \ Rej(P , M)] ∪Def(P , M)).
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Definition 2. Let L be a set of propositional atoms (not containing the predi-
cate assert/1). The extended language Lassert is defined inductively as follows: –
All propositional atoms in L are propositional atoms in Lassert; – If r is a rule
over Lassert then assert(r) is a propositional atom in Lassert; – Nothing else is
a propositional atom in Lassert. An evolving logic program over a language L
is a GLP over Lassert. An event sequence over L is a sequence of evolving logic
programs over L.

Definition 3. An evolution interpretation of length n of an evolving pro-
gram P over L is a finite sequence I = (I1, I2, . . . , In) of interpretations
of Lassert. The evolution trace associated with an evolution interpretation
I of P is the sequence of programs (P1, P2, . . . , Pn) where P1 = P and
Pi+1 = { r | assert(r) ∈ Ii } for all i ∈ { 1, 2, . . . , n− 1 }.

Definition 4. An evolution interpretation M = (M1, M2, . . . , Mn) of an
evolving logic program P with evolution trace (P1, P2, . . . , Pn) is an evolu-
tion stable model of P given an event sequence (E1, E2, . . . , En) iff for every
i ∈ { 1, 2, . . . , n } Mi is a dynamic stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei).

Example 1. Let’s consider a simple agent that fills glasses with water. If
it receives a request from the environment (e.g. when somebody presses a
button), it starts filling a glass with water. When the glass is full, it stops
filling it. This evolving logic program encodes the described behaviour1:
P = { assert(fill←)← request., assert(not fill←)← full. }. In each step the
agent also receives an event from the environment. Let’s consider a sequence
of four events E = (E1, E2, E3, E4) where E1 = { request← . }, E2 = ∅,
E3 = { full← . } and E4 = ∅. The semantics of P w.r.t. E is a single se-
quence of four models (M1, M2, M2, M4) where M1 = { request, assert(fill←) },
M2 = { fill }, M3 = { fill, full, assert(not fill←) } and M4 = ∅. Its meaning is
that in the first step the agent receives a request in E1, in the second it starts
filling the glass, in the third it receives the signal to stop filling it and in the
fourth it does nothing, i.e. it stops filling it.

Now we will complicate things a bit. Let’s say the water was too warm
and a cooling system was installed into the agent. Its behaviour also needs
to be changed – it should ignore the request button until the water is
cold enough. In EVOLP events can be used to program the agents. In
this particular case the reprogramming is done through the event E5 =
{ assert(not assert(fill←)← not cold)← . }. The rule asserted in E5 disallows
filling the glass if the agent doesn’t receive a signal that the water is cold enough.
If, for example, the agent further receives the events E6 = { request← . },
E7 = { request← ., cold← . } and E8 = ∅, then the corresponding models will
be M6 = { request }, M7 = { request, cold, assert(fill←) } and M8 = { fill }.
In other words, the first request was ignored while the second was accepted
because the water was already cold.

1 With a small difference: the agent’s reactions are always delayed one step.
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The previous example is just a very simple one. The rules can be much more
complex and can be used to capture very complicated behaviours. Evolution
branching may also occur, allowing us to reason about incomplete information.
For more examples the reader is referred to [4,5].

Now we will present the transformation which turns an evolving logic program
P together with an event sequence E of length n into a normal logic program PE
over an extended language. In [1] we show that there is a one-to-one correspon-
dence between the stable models of PE and the evolution stable models of P given
E . The computational complexity of the transformation is also examined there.

First we need to define the extended language over which we will construct
the resulting program:

Ltrans
def=

{
Aj , Aj

neg

∣
∣ A ∈ Lassert ∧ 1 ≤ j ≤ n

}

∪{
rej(Aj , i), rej(Aj

neg, i)
∣
∣ A ∈ Lassert ∧ 1 ≤ j ≤ n ∧ 0 ≤ i ≤ j

}

∪{ u } .
Atoms of the form Aj and Aj

neg in the extended language allow us to compress
the whole evolution interpretation (consisting of n interpretations of Lassert, see
Def. 3) into just one interpretation of Ltrans. Atoms of the form rej(Aj , i) and
rej(Aj

neg, i) are needed for rule rejection simulation. The atom u will serve to
formulate constraints needed to eliminate some unwanted models of PE .

To simplify the notation in the transformation’s definition, we’ll use the fol-
lowing conventions: Let L be a literal over Lassert, Body a set of literals over
Lassert and j a natural number. Then:

– If L is an atom A, then Lj is Aj and Lj
neg is Aj

neg.
– If L is a default literal notA, then Lj is Aj

neg and Lj
neg is Aj .

– Body j = {Lj | L ∈ Body }.
Definition 5. Let P be an evolving logic program and E = (E1, E2, . . . , En)
an event sequence. By a transformational equivalent of P given E we mean the
normal logic program PE = P 1

E ∪P 2
E ∪. . .∪Pn

E over Ltrans, where each P j
E consists

of these six groups of rules:

1. Rewritten program rules. For every rule (L← Body .) ∈ P , P j
E contains

the rule
Lj ← Body j ,not rej(Lj , 1).

2. Rewritten event rules. For every rule (L ← Body .) ∈ Ej , P j
E contains

the rule
Lj ← Bodyj ,not rej(Lj , j).

3. Assertable rules. For every rule r = (L ← Body .) over Lassert and all
i ∈ { 1, 2, . . . , j − 1 } such that (assert(r))i is in the head of some rule of P i

E ,
P j
E contains the rule

Lj ← Body j , (assert(r))i,not rej(Lj, i + 1).
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4. Default assumptions. For every atom A ∈ Lassert such that Aj or Aj
neg

appears in some rule of P j
E (from the previous groups of rules), P j

E also
contains the rule

Aj
neg ← not rej(Aj

neg, 0). (5)

5. Rejection rules. For every rule of P j
E of the form

Lj ← Body ,not rej(Lj , i).2

P j
E also contains the rules

rej(Lj
neg, p)← Body . (6)

rej(Lj, q)← rej(Lj , i). (7)

where:
(a) p ≤ i is the largest index such that P j

E contains a rule with the literal
not rej(Lj

neg, p) in its body. If no such p exists, then (6) is not in P j
E .

(b) q < i is the largest index such that P j
E contains a rule with the literal

not rej(Lj, q) in its body. If no such q exists, then (7) is not in P j
E .

6. Totality constraints. For all i ∈ { 1, 2, . . . , j } and every atom A ∈ Lassert

such that P j
E contains rules of the form

Aj ← Bodyp,not rej(Aj , i).

Aj
neg ← Bodyn,not rej(Aj

neg, i).

P j
E also contains the constraint

u← notu,notAj ,notAj
neg.

Let’s take a closer look at PE . It consists of n subprograms P 1
E , P 2

E , . . . , Pn
E .

Each P j
E is used to simulate the j-th evolution step on a separate set of atoms.

In the first evolution step, the only rules that need to be simulated are the rules
of P and E1. They are simulated in the groups of rewritten program rules and
rewritten event rules. Each occurrence of a literal L is written as L1.

In the further steps there are more rules coming into play. In order to simulate
the j-th evolution step, we need to simulate rules of P and Ej and also rules
that could have been asserted in some previous evolution step. So apart from
the rewritten program rules and rewritten event rules we also have assertable
rules – whenever an atom (assert(r))i appears in the head of some rule of P i

E
for some i ∈ { 1, 2, . . . , j − 1 }, the rule r is included in P j

E in a special rewritten
form. Apart from rewriting each literal L as Lj, we need to make sure the rule
can only be used in case (assert(r))i is actually inferred by some rule of P i

E . This
is achieved by adding (assert(r))i to the body of the rewritten form of r.
2 It can be a rewritten program rule, a rewritten event rule or an assertable rule

(default assumptions never satisfy the further conditions). The set Body contains all
literals from the rule’s body except the not rej(Lj , i) literal.
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Fig. 1. Implementation of EVOLP using the transformation

Moreover, each of the mentioned rules contains one extra literal of the form
not rej(Lj , i) in its body that marks it as a rule of level i. Rules with smaller
levels can be rejected by higher level rules in case a conflict between their heads
arises. Rules originating directly from P are of level 1 and rules from Ej are
of level j, the highest level in P j

E . If a rule r was added because (assert(r))i

appears in the head of some rule of P i
E (i.e. the added rule is an assertable

rule), it is marked with level i + 1 because it can be asserted into the (i + 1)-th
step.

The other three groups of rules (default assumptions, rejection rules and
totality constraints) are used to simulate the rule rejection mechanism behind
the Refined Dynamic Stable Model semantics for Dynamic Logic Program-
ming [9]. For more information on the transformation the reader is referred
to [1].

3 Implementation of EVOLP

The described transformation, together with an ASP solver, can be used to im-
plement EVOLP. Figure 1 shows how we can do this – we use the transformation
to turn an evolving logic program and a sequence of events into an equivalent
normal logic program. Then we use an ASP solver to find its stable models and
reconstruct the evolution stable models of the original input.

One of the objectives was to make the implementation easy to integrate with
existing multi-agent programming frameworks. Since many of them are writ-
ten in Java, EVOLP is also implemented in Java. The implementation, how-
ever, uses Lparse as an external grounder and Smodels3 as an external ASP
solver.

3 http://www.tcs.hut.fi/Software/smodels/
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Fig. 2. Data processing steps

Variables are supported and restricted in the same way as in Lparse. More
specifically, every variable must be bound in the positive part of the rule’s body
by some domain predicate4.

As illustrated in Fig. 2, the input program is processed in three steps, each
implemented by a separate Java class:

1. The input text is parsed and an object representation of the evolving logic
program and events is created.

2. An equivalent normal logic program is produced according to a slightly more
optimized version of the transformation defined in Def. 5. Lparse is used
during the transformation to ground any variables in the input program. A
more detailed description of this step is given below.

3. Lparse and Smodels are executed on the transformed program in a separate
process. The resulting stable models are parsed and evolution stable models
of the original input are reconstructed.

The implementation can currently run as a simple web application5. It can be
used to enter an evolving logic program and compute some or all of its evolution
stable models. Figure 3 shows a screenshot of the web application with the source
and computed evolution stable models of the program from Example 1.

3.1 Implementation of the Transformation

The transformed program is constructed in incrementally and the partially con-
structed program is always used to construct the next part of the result. Let’s
assume we already constructed the programs P 1

E , P 2
E , . . . , P j−1

E . In order to con-
struct P j

E , we need to know what assertable rules to include. These can be
inferred from a grounded version of P 1

E ∪P 2
E ∪ . . .∪P j−1

E . Consequently, P j
E can

be constructed and the process can be iterated.
4 Domain predicates are those that are defined without recursion or using posi-

tive recursion only. A more detailed description with an example can be found
in the Lparse Manual which is included in the Lparse source package available at
http://www.tcs.hut.fi/Software/smodels/.

5 A demo runs at http://centria.di.fct.unl.pt/evolp/
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Fig. 3. Screenshot of the web application with the program from Example 1. The
program source is showed in the bottom part and the single evolution stable model is
listed in the upper part.

However, from a practical point of view, it is not possible to use Lparse to
perform the transformation exactly as described. The problem is that the pred-
icate rej/2 might be a non-domain predicate and still might contain variables
in some of the second type of rejection rules (7). Fortunately, there is a better
solution of the whole problem – it avoids the mentioned problem and is also
more efficient. Instead of constructing the whole P j

E before grounding it, only
the first three groups of rules can be constructed and changed syntactically so
that the grounder produces an appropriate grounded version. This way we only
ground a part of P j

E instead of grounding P 1
E ∪P 2

E ∪ . . .∪P j
E . On the other hand,

we need to take care of remembering the level of rules when they come out of
the grounder and also their origin – whether they are assertable or not. This can
be performed by adding dummy literals to their bodies before they are given to
Lparse and filtering them out in their grounded versions.

3.2 Optimizations

The presented implementation includes some simple optimizations that prevent
the generation of some unnecessary rules, even though these rules should be
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c l a s s EvolpTest extends EvolpVarProcessor {
protec t ed void showMessage ( S t r ing message ) {

// uncomment to see logg ing output
// System . out . p r i n t l n (”−− LOG MESSAGE: ” + message ) ;

}

pub l i c s t a t i c void main ( S t r ing [ ] args ) {
EvolpTest et = new EvolpTest ( ) ;
// s e t the program and events from Example 1 as input
et . s e t Input (new Str ingReader (

” a s s e r t ( f i l l :−) :− r eques t . ” +
” a s s e r t ( not f i l l :−) :− f u l l . ” +
”newEvents . r eques t . ” +
”newEvents . ” +
”newEvents . f u l l . ” +
”newEvents . ” +
”newEvents . ” +

” a s s e r t ( not a s s e r t ( f i l l :−) :− not co ld ) . ” +
”newEvents . r eques t . ” +
”newEvents . r eques t . co ld . ” +
”newEvents . ” ) ) ;

// compute ev o lu t i on s t ab l e models and g iv e them one
// by one to the TestConsumer . compute ( ) method
et . computeModels (new TestConsumer ( ) ) ;

}

s t a t i c c l a s s TestConsumer
extends AbstractConsumer<Evolut ionStableModel> {
p r i v a t e i n t count = 0 ;

pub l i c void consume( Evolut ionStableModel model ) {
count++;
System . out . p r i n t (” Evolut ion s t ab l e model no . ” ) ;
System . out . p r i n t l n ( count ) ;
i n t step = 0 ;
f o r ( StableModel m : model ) {

step++;
System . out . p r i n t (” Step ” + step + ” : ” ) ;
f o r (LpAtom a : m)

System . out . p r i n t ( a . t oS t r i n g ( ) + ” , ” ) ;
System . out . p r i n t l n ( ) ;

}
System . out . p r i n t l n ( ) ;

}
}

}

Fig. 4. Simple use of the implementation directly from Java
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generated according to the formal definition of the transformation. In particular,
we don’t generate all default assumptions as in the definition, we generate a
default assumption (5) only in case the atom Aj

neg appears in a body of some
rewritten program rule, rewritten event rule or assertable rule.

Another optimization involves the second type of rejection rules (7). They
are only generated if they are “reachable”, i.e. a rule rej(Lj , q) ← rej(Lj , i)
is generated only in case PE contains another rejection rule (6) of the form
rej(Lj, p)← Body for some p ≥ i.

There are also other ways of optimizing the resulting program, namely by
sharing rules among evolution steps when possible. This can significantly reduce
the size of the transformed program. We plan to include such an optimization
in later versions of the implementation. Other possible optimizations include
minimizing the amount of data transmitted between Lparse and Java by giving
shorter (numeric) names to predicates and experimenting with modifications of
the transformation that would produce equivalent normal programs that per-
form better with the current answer set solvers. We also plan to design a set of
benchmark tests and perform them with different versions of the implementation.

3.3 Using the Implementation as a Library

Our implementation can easily be used as an external library from Java. If the
binary .jar file from http://centria.di.fct.unl.pt/evolp/ is included in the
CLASSPATH, then the easiest way to use the implementation is to override
the lp.ui.EvolpVarProcessor class. Figure 4 shows a complete source code
of a Java class that uses the library to print out the evolution stable model of
the program from Example 1. It produces the following output containing the
expected evolution stable model:

Evolution stable model no. 1

Step 1: assert(fill <-), request,

Step 2: fill,

Step 3: assert(not fill <-), fill, full,

Step 4:

Step 5: assert(not assert(fill <-) <- not cold),

Step 6: request,

Step 7: assert(fill <-), cold, request,

Step 8: fill,

4 Conclusion and Future Work

We presented an implementation of EVOLP that is based on a transformation
into an equivalent normal logic program. We also discussed some basic optimiza-
tions performed in the implementation.

We are currently extending the implementation to support strong negation,
domain declarations, weight constraints, arithmetic predicates and other practi-
cal features. Apart from that, we plan to examine further optimizations of the
implementation and perform some benchmark tests.
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